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Abstract Advanced automation requires complex robotic systems that are suscep-
tible to mechanical, software and sensory failures. While bespoke solutions exist to
avoid such situations, there is a requirement to develop generic robotic framework
that can allow autonomous recovery from anomalous conditions through hardware or
software reconfiguration. This paper presents a novel robotic architecture that com-
bines fuzzy reasoning with ontology-based deliberative decision making to enable
self-reconfigurability within a complex robotic system architecture. The fuzzy rea-
soning module incorporates multiple types of fuzzy inference models that passively
monitor the constituent sub-systems for any anomalous changes. A response is gener-
ated in retrospect of this monitoring process that is sent to anOntology-based rational
agent in order to perform system reconfiguration. A reconfiguration routine is gen-
erated to maintain optimal performance within such complex architectures. The cur-
rent research work will apply the proposed framework to the problem of autonomous
visual navigation of unmanned ground vehicles. An increase in system performance
is observed every time a reconfiguration routine is triggered. Experimental analysis
is carried out using real-world data, concluding that the proposed system concept
gives superior performance against non-reconfigurable robotic frameworks.

1 Introduction

Robotics and complex autonomous systems are becoming increasingly pervasive
in almost every field of life [6, 17]. The evolution of robotic research and real-
world application domains has resulted in a great number of sophisticated robotic
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architectures that are prone to mechanical, software and sensory failures. Although
manual servicing is regularly carried out, it can become extremely time-consuming,
expensive, risky [17] and even infeasible (such as for Martian rovers) in certain sit-
uations. As such there is a requirement to develop generic architectures of robotic
systems that can enable self-reconfiguration of critical application software or hard-
ware units in response to any environmental perturbation, performance deterioration
and system malfunction. Hardware-based reconfiguration may include physical sen-
sors and manipulators while software-based reconfiguration would allow the use of
the most optimal software programs that is appropriate for a given situation. Rational
agent-based architectures perform reconfiguration of higher-level goals, actions and
plans [? ]. A summary of the different types of reconfiguration that may take place
in a robotic architecture is presented in Fig. 1.

This article addresses the problem of reconfiguration in complex robotic systems
by using a multi-layered framework that builds upon the model introduced in [16].
The architecture presented in [16] incorporates the agent as a part of the reconfigu-
ration layer. The proposed model adopts the rational agent as a separate layer, hence
extending it to a three-layered architecture, thus further allowing the reconfiguration
of higher level goals, actions and plans (for example multi-agent systems). This work
will seek to establish the advantage of the proposed reconfigurable robotic framework
by performing a number of quantitative and qualitative assessments.
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2 Background

2.1 Reconfigurable Systems

In literature, the field of self-reconfigurable robotic systems has traditionally focused
on the design and development of techniques and algorithms that can process
reconfiguration of the morphological characteristics of modular systems [21]. How-
ever, there is an increasing understanding that the concept of reconfiguration in
autonomous systems and robots expands beyond variation in geometry, shape, and
hardware composition [12]. Many contemporary robotic architectures follow an iso-
lated engineered system approach in comparison to many contemporary autonomous
systems, which employ a hybrid agent architecture with many of the hardware and
software sub-systems supervised by a Rational Agent [5]. Their highly modular and
distributed architectures enable them with software and hardware reconfiguration
within their capabilities in response to novel situations; whereas, the agent makes
rational high-level decisions, define goals and perform planning/re-planning (refer
to Fig. 1) [5]. While these advantages have yet to be fully utilised in the robotics
field [21], there are a number of relevant examples in literature that have sought
to develop techniques that can enable reconfiguration with limitations according to
their specific applications.

Systems that can perform reconfiguration of controllers based on errors or specific
performance requirements have also been proposed literature, known as Plug & Play
control, and the controllers described as polymorphic [5]. In software architectures,
there are examples of self-managing distributed processing systems, which can adapt
to stochastic changes such as; Autonomic Computing [7], Autonomic Control Loops
[5], Self-CHOP, and Self-Organising Component Based Software [18], MAPE-K
[5] etc. For a few agent-based complex robotic systems, a number of multi-agent
based reconfigurable architectures have also been proposed in literature [2]; however,
certain limitations do exist in terms of generality.

2.2 Fuzzy Inference Systems

Fuzzy inference systems (FIS) are used in robotic systems to incorporate intelligent
reasoning in situations where physical sensors and actuators have an intrinsic notion
of uncertainty. Such systems have been widely used for practical control architec-
tures. FIS have also proven to be very useful in logic-based decision-making and
discerning patterns from low-level sensory inputs [16] and top-down reasoning in
multi-layered hierarchical architectures that incorporate machine vision and learn-
ing [14, 20]. FIS use logic applicable to fuzzy sets with degrees of membership,
which are formulated in terms of membership functions valued in the real unit inter-
val [0, 1]. These membership functions can either be singular values, intervals or
even sets of intervals. Machine learning techniques (such as, neural networks) are
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commonly used for optimisation and development of these membership functions.
However, such methods rely on the scale of training data and the number of adjusted
parameters [16]; therefore, they may not be suitable for complex robotic architec-
tures with multiple levels of data abstraction and rational decision making. To avoid
such problems, membership function definitions and parameter setting can also be
performed using empirical knowledge of the robot sensory and control settings. Such
knowledge can be extracted using Ontology.

2.3 Ontology

For a system to perform reconfiguration autonomously the systemmust be self-aware.
In other words, the system must have a usable System knowledge representation of
its internal subsystems, if it is going to be able attempt any autonomic characteristics.
To accomplish this a Ontological model can be used.

An Ontology is a formal description of the concepts and relationships that can
formally exist in a domain. Ontologies are often equated with taxonomic hierarchies
of classes, class definitions, and the subsumption relation, but ontologies are not
limited to these forms. An Ontology can be described as a Description Logic built
on top of a Description Logic, where a Description Logic is any decidable fragment
of FOL, that models concepts, roles and individuals, and their relationships [11].

The most prominent robot ontology research is the newly formed IEEE-RAS
working group entitled Ontologies for Robotics and Automation (ORA) [13]; how-
ever, nothing is concrete as of yet. The goal of this working group is to develop
a standard ontology and associated methodology for knowledge representation and
reasoning in robotics and automation, together with the representation of concepts
in an initial set of application domains.

Another example of an emerging robotics domain ontology is Intelligent Systems
Ontology [13].Thepurposeof this ontology is to develop a common, implementation-
independent, extensible knowledge source for researchers and developers in the intel-
ligent vehicle community. It provides a standard set of domain concepts, along with
their attributes and inter-relations allow for knowledge capture and reuse, facilitate
systems specification, design, and integration. It is based on a service based descrip-
tion akin to web service’s WSDL [4], hence the use of a OWL-S [10] as the base
language. It similarities to WSDL are profound, but what it does have is an ability to
describe complex agents. What it does not have, is an ability to describe the physical
environment; however, other ontologies can be appended to this ontology to make a
more domain complete ontology.
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3 A Reconfigurable Robotic Framework

The proposed multi-layered self-reconfigurable robotic architecture is illustrated in
Fig. 2. It is a three-layered architecture; an Agent, a Reconfiguration, and an Appli-
cation layer.

Briefly:

• The Application Layer contains the traditional elements of a robotic architecture,
and doesn’t contain any of the elements required for self-reconfiguration.
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• The Reconfiguration Layer contains the elements of the system required for self-
monitoring and self-awareness, and thus monitors the Application Layer’s perfor-
mance.

• The Agent Layer contains the Agent that computes Self-Reconfiguration for the
system using the knowledge in the Reconfiguration Layer.

The layer of abstraction are ordered in this manner to: maximise modularity,
which in turn allows the layers to be adapted and changed more easily; not require
the Application Layer components to be integrated deeply with reconfiguration ele-
ments, which limits the number of faults/errors that Reconfiguration andAgent Layer
unintentionally inject to the Application Layer; and it allows the Application Layer
to be easily divorced from the Reconfiguration elements if they are no longer desired.

The Frameworks basic operations breaks into three control loops. The first control
loop is the standard robotics control loops,which occurs in theApplicationLayer, this
maybe multiple nested control loops like any non-self-reconfigurable robotic frame-
work. The next control loop is in the Reconfiguration Layer, this separate control
loop monitors the application layer, updating its internal knowledge of the system.
The Reconfiguration Layer’s control loop, if required, triggers the next control loop.
The Final Control loop is the Agent control loop, which occurs in the Agent Layer.
In the Agent control loop the required reconfiguration is calculated.

The Reconfiguration Control loop can carrying on monitoring system, while the
Agent Layer is computing. If new information is pertinent to the Agent control loop,
the Agent Control loop may be restarted. When the Reconfiguration control loop
triggers the Agent Layer, it puts the Application into a safe mode. Safe mode is a
operation mode, which limits the amount of damage a system can do itself, whilst
performing sub-optimally. It is analogous to the system Safety modes of operations
in robotic space-craft.

The following is a series of more detailed discussions in to these three layers.

3.1 Application Layer

The Application layer contains all the hardware and software components that exist
inmost other autonomous systems or robotic architectures. This layer contains all the
classic elements of a non-reconfigurable robotics architecture. This layer contains
no elements necessary for self-reconfiguration.

The hardware components may be:

• Sensors: are various types of exteroceptive and interoceptive sensors such as, Cam-
eras, LiDAR, Touch Sensors, Encoders, GPS, etc. For example, Sensor Reconfig-
uration may involve the process of replacing one type of sensor with another due
to malfunction, fallible inputs or precision requirements from the higher level
reconfiguration layer.

• System: components are adherent to the system architecture and form an intrinsic
part of some mechanism, such as, wheels, grippers, manipulators, etc. In this case,
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reconfiguration may be required by the system course of actions, for example,
orientation of the wheels to perform a specific type of manoeuvre.

• Cooperative scenarios: are situations consisting of multiple robots working
towards common mission goals, where a reconfiguration may be required when
one of the robots either stops working, or the rational agent generates a new plan
that may require an alternative formation of the robots.

Similarly, the software components can be:

• Functional components: are application software and programs that use sensor
data to enable autonomous capabilities, such as visual navigation from camera
images, map generation and localisation from LiDAR, etc. Most of these algo-
rithms are intrinsically stochastic, and their performance can be affected by spu-
rious data. In such cases specific software can be reconfigured with more robust
algorithms with better or more optimal performance for the scenario presented.

• System: components are critical system software units that run and execute appli-
cation software, for example, operating systems, boot-loaders, safety monitoring
systems, etc. Any failure in this category can cause a critical paralysis of the whole
system; however, a reconfigurable architecture can avoid this well in advance if
certain anomalies are detected by the higher levels.

Under normal conditions, the system would operate without any anomalies and
the application layer performance may not significantly differ from that of an engi-
neered robotic system. However, within this framework, any changes that occur in
the application layer are monitored and analysed. Any anomalies that are identified
can then be dealt with as deemed appropriate by the Reconfiguration Layer.

3.2 Reconfiguration Layer

TheReconfiguration layer operates at a higher-level than theApplication layerwithin
the hierarchy of abstraction, which contains the necessary elements for building a
knowledge of the changes in the Application layer and enabling the Rational Agent
to trigger a reconfiguration. This from an Autonomic point of view would be the
Self-Aware, Self-Monitoring, and Self-Analysing element of the system.

The principal components of this layer are: the Inspector, and the Ontology. The
following are two individual discussions into these principal components.

3.2.1 Inspector

An Inspector is the lowest layer in the hierarchy of the Reconfiguration Layer, which
passively monitors the Application Layer for Reconfiguration Anomalies, via FIS.
The Inspector monitors the Application Layer for Reconfiguration Anomalies.
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Reconfiguration Anomalies are things that deviate from what is standard, normal,
or expected, which may affect an application optimal operation. These anomalies
can be defined as:

A Self-Reconfiguration System Failure (SR-Failure) is an event that occurs
when the configuration deviates from optimal strategy. These are distinct and
adjoint from standard software failures, because a non-optimal configuration is
not the same as the Fault.

A Self-Reconfiguration System Error (SR-Error) is that part of the system
state that may cause a subsequent SR-Failure: a SR-Failure occurs when an
SR-Error reaches the service interface and alters the service.

A Self-Reconfiguration System Fault (SR-Fault) is the adjudged or hypoth-
esized cause of an SR-Error.

SR-Faults can include environmental, software, and hardware changes. Fur-
thermore, these definitions limit SR-Faults to individual components. Whilst, SR-
Failures can propagate through a system with these definitions, a SR-Fault is their
point or points of origin.

To monitor for SR-Faults, outputs from the application layer are translated into
fuzzy confidence values that provides a semantic notion of performance to theOntol-
ogy. To date, the proposed framework has implemented fuzzy inference based on
Mamdani’s method [9] due to its simple structure of min–max operations and high
degree of success rate in many complex control architectures. However other types
can be easily integrated in the Inspector. This allows for generic monitoring of low-
level systems within the proposed framework, making it appropriate for any type of
complex robotic system.

The FIS system uses multiple fuzzy variables that associate confidence values
with the inputs from the Application layer; for example, these can be errors and
processing time of an extended kalman filter within a simultaneous localisation and
mapping system [1]. FIS subsumes conjunctive operators (T-norms; min, prod etc.)
and disjunctive operators (T-conorms; max, sum, etc.) as well as hybrid operators
(combinations of the previous operators). In particular, the T-norm (triangular norm)
is generally a continuous function, [0, 1] × [0, 1] ⇒ [0, 1]. Membership function
definition depends upon the appropriate modelling parameters of the various units in
the Application layer, and they can either be gaussian, trapezoids or triangular. A
fuzzy rule-base combines the input variables in order to compute the rule strength.
The antecedents within the fuzzy rule-base use the fuzzy operators to compute a
single membership value for each rule. The outputs from multiple rules in the fuzzy
rule-base are aggregated into a single fuzzy set, which is generally performed using
the max operator. The fuzzy logic inference system allows the use of multiple input
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fuzzy variables, for example processing time and error to infer decisions as the
consequence of the a priori set of fuzzy logic rules. The final output from the fuzzy
inference system is a single confidence value instead that is used by the Ontology.

Consider an example of a fuzzy variable associated with the computation time
characterised as,

compute_time = 〈α,Uα,R(α)〉, (1)

where α is the computation time required for processing within the Application
layer, Uα is the universe of discourse, and R(α) is the fuzzy membership of α. Two
piecewise linear continuous fuzzy membership functions, i.e., ‘comp_timelow(α)’
and ‘comp_timehigh(α)’, can be associated with α, as defined in [16].

Similarly, a fuzzy variable associated with the estimation error can be charac-
terised as follows,

estimation_error = 〈β,Uβ,R(β)〉, (2)

where β the error in state estimation of a localisation technique,Uβ is the universe of
discourse, and R(β) is the fuzzy membership of β. Similar to the previous case, two
piecewise linear continuous fuzzymembership functions, i.e., ‘post_errorlow(β)’ and
‘post_errorhigh(β)’, are associated with the input error from the Navigation system
β [16].

The output variable defines the performance of the system in the Application layer
on the aggregated confidence value computed from an inference technique applied
to the fuzzy input variables,

system_performance = 〈γ,Uγ ,R(γ )〉. (3)

Two piecewise fuzzy membership functions, i.e., ‘system_performancebad(γ )’
and ‘system_performancegood(γ )’ associated with the system performance output
provide a confidencemeasure on how “good” or “bad” the lower-level SLAMsystem
is performing [16].

A fuzzy rule-base combines the fuzzy input variables to compute the rule strength.
The antecedents within the fuzzy rule-base use the fuzzy operators AND as t-norm
and OR as t-conorm in order to compute a single membership value for each rule,
for example:

− if comp_timelow(α) AND post_errorlow(β) THEN system_performancegood(γ ),

− if comp_timehigh(α) OR post_errorhigh(β) THEN system_performancebad(γ ),

An implication operator is used to truncate the consequent’s membership function
output. The outputs from multiple rules within the fuzzy rule-base are aggregated
into a single fuzzy set (refer to Fig. 3a for a graphical representation of the process).
The final output is a single value, which is the final stage of the inference process
known as defuzzification [14, 16, 20].
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3.2.2 Ontology

The Ontology is the upper layer in the hierarchy of the reconfiguration layer, which
contains all information used for a successful self-reconfiguration of the robotic sys-
tem. The Ontology has been designed as a Modular Ontology with an Upper Ontol-
ogy. This splitting of the Ontology into different modules increases extensibility,
usability and readability of the Ontology. Furthermore, modularity adds the ability
to perform validity checking and inference gathering on sub-ontologies, because
there are fewer assertions and instances, it is more efficient.

The primary modules of the Ontology are:

• Upper Ontology forms the base syntax and logic for the description of goals and
capabilities of modules, and is further sub-divided into essential modules like
numerics, timings etc.

• Process sub-ontology describes the processes of autonomous software
• Software sub-ontology describes inner working and inter-communications of
autonomous software

• External sub-ontology describes external environments
• Sensor and Actuator sub-ontology are both self-explanatory, and are dependent
on the software and external sub-ontology

The Capabilities of Software and Hardware shall be represented in an extended
IOPE format. The Input andOutput (IO) are the communication input channels. Each
channel connects to their appropriate service grounding, having a communication
type, message type, rates, and their communications properties, they also have their
necessity defined (i.e., is the communication input necessary for completion). The
message formats and communication type exist in a subsumption hierarchy. The
subsumption hierarchy has increasingly complex and specific properties and log-
ics. The Precondition and Effect describe, in an extensible subsumptive description
logic, the precondition for a service and the effect of implementing stated service.
These conditions affect both the Environment and internal conditions. Then, there are
non-functional properties, that can be used for quality of service metrics. Addition-
ally, most configurations are encoded in states, so that each configuration represents a
different IOPE. Continuous configurations parameters are encoded to states via para-
metric equations, they should be used not to make large changes, but mere parameter
changes (e.g. rate). If continuous configuration parameter do make large changes to
the functional operation of a service, it should be abstracted to another discontinuous
parameter and another continuous parameter.

The Process logic is encoded as a single control loop of the autonomous software,
multiple control loops can be described as a hierarchy, similar to a Hierarchical task
network. The non-functional environmental and internal parameter condition change
based on their separate conditions. For example, the battery usage for a service is
given as a conservative estimate for complete standard cycle loop, battery usage is
then verified at the lower abstraction layer, like the standard action planner and sched-
uler. The process is then logically modelled by a reduced version of Computational
Tree Logic (CTL) translated to First order logic [19].
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3.3 Agent Layer

The (Rational)Agent layer analyses theOntology andperformsplanning/re-planning,
followed by the Validation and Verification process, and finally implementation. The
Rational Agent is the main source of triggering a self-reconfiguration routine in the
lower layers. The basic process of the Rational Agent is outlined in the system dia-
gram, Fig. 3c. The self-reconfiguration control loop is started by the Inspector in the
Reconfiguration layer every time the system develops a fault or detects an anomalous
behaviour.

The Rational agent triggers reconfiguration. The Rational agent takes a tiered
view of the world. A subsumptive three-tier model is applied to the planning problem
to reduce complexity and consequently reduce individual planning subspaces, and
rendering the process of action planning more efficient [8]. Similarly, the planning
problem for self-reconfiguration is not choreographing every action of the system,
but the self-reconfiguration system adds another level to the subsumptive architecture
that deals with a reconfiguration of the lower levels. Thus, the planning problem is
to find a configuration of the system which allows the lower levels to perform their
intended action.

The Rational agent has both reactive and deliberative elements, and is initialised
by a change in the Ontology. Once the Rational agent has been informed by the
OntologyManager about a change, it will go through a series of steps in the attempt to
rectify or optimise the system. For the purposes of speed, initial steps of the Rational
agent are all reactive. The Reactive component has pre-calculated criteria, which
when triggered react with a corresponding pre-calculated plan. The pre-calculated
plans and criteria are prepared by a deliberative fault (or world-change) injection
analysis, which calculates the most likely changes to the system. If none of the
reactive criteria are fulfilled the Rational agent will use its deliberative techniques to
devise an alternate plan.

To deal with the intrinsic complexity the Rational agent uses many techniques
to mitigate the inherent complexity to remain efficient. The Deliberative component
will first place the application layer in a safety mode, which halts all future operations
until the safety of the system can be evaluated by the Rational agent. TheDeliberative
component then gathers all relevant information to the reconfiguration process and
convert it into a form which can be used to generate the reconfiguration plan. While
this could be achieved via first order logic in theOntology’s inference engine, directed
planning algorithms with heuristics are more suited for this long chain style planning
problem. Thus, the planning problem is converted into a generic planning language
(i.e., PDDL2.1), then a generic Planner is used to find a self-reconfiguration plan.
Using generic Planners allows for fast optimisation of planner algorithm and heuristic
choice. This plan is then verified in the Ontology and implemented by the Rational
agent.

The planning problem in the case of the self-reconfiguration of the application
layer has an initial state that includes the (initial) world state. The goal of the plan-
ning problem includes the final world state. The possible actions in the planning
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domain are the services and the connection of services in which the appropriate
communication link is used. Services follow the form of input, output, precondition,
and effect (IOPE). The input and output refer to their communication requirements
(e.g. publishing rate), and the precondition and effect refer to systems world state.
The precondition and effect may include energy requirements, context requirements,
other world state changes, and service requirements, e.g. whether a camera has pre-
viously been connected to the application layer. For all parameter configurations of
a service there are different defined actions. The service can have discontinuous and
continuous attributes and parameters. The services are assumed to perform with the
most conservative scenario in respect to usable resources. This allows the other three
levels of the hierarchical execution structure to be confident in being able complete
their goals. The service can have any number of logical preconditions and restric-
tions on them. Then the solution to this planning problem is a set of services, their
parameter configurations, and their connections.

To generate the PDDL, first order logic rules are used, which allows for very
high level of extensibility since new rules for PDDL creation can be introduced
easily. To minimise the planning domain sent to the PDDL planner, multiple space
size reduction techniques are used. Using the knowledge that the plan will primarily
focus on connecting services and then service configurations, a planning domain can
be pruned for unreachable services that would not be apparent to generic algorithms
as efficiently.

4 Experimental Scenarios

To demonstrate and prove the robustness of the Self-Reconfiguring Robotic Frame-
work against unforeseen changes in the system, this paper presents two experiments
incorporating software and hardware based self-reconfiguration scenarios. In the
following, these individual scenarios will be discussed with their respective results
followed by a discussion into the significance of these experimental findings.

The experimental workstation used for running the FIS comprises a quad-core
Intel(R) Xeon(R) X5482 CPU (3.20 GHz) running Linux (Ubuntu 12.04, 64-bit
architecture). Workstation used for the Agent, Application Layer, and the Ontology
also had similar specifications.

4.1 SLAM in Unstructured Environments

The aim of the experiment is to test the ability of the Self-Reconfiguring Robotic
Framework to optimise the system on the basis of changing system performance,
which can alter because of changing environments and anomalous operations of
the Application layer. The scenario in this experiment is a Planetary rover using a
monocular camera based navigation system. The navigation system implemented in
the Application Layer is the PM-SLAM localisation system introduced in [1].
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PM-SLAM (Planetary monocular simultaneous localization and mapping) is a
highly modular, monocular SLAM system for use in planetary exploration. PM-
SLAM’s modular structure allows multiple techniques to be implemented, such as,
distinct SLAM filters, and visual feature tracking techniques. For example, multiple
types of vision-based features may be implemented, SURF features or hybrid of
semantic blob-based [1, 15] feature tracking, both having their own performance
characteristics for different environments.

A visual SLAM system is susceptible to accumulated posterior state estima-
tion error, and accruing computation time over multiple iterations [1]. The Self-
Reconfiguring Robotic Framework attempts to maintain an optimal level of compu-
tational load and error over the course of operation, through self-reconfiguration of
the subcomponents of PM-SLAM. For the purpose of monitoring the Application
layer, this paper implements a FIS based Inspector. This Inspector monitors the pre-
dicted localisation error and computation loop time to generate a confidence value
that quantifies the performance of the localisation system. The predicted localisation
error for this experiment is derived from the covariances estimated by the SLAM
filter. This Confidence measure is used to update the Ontology, which is then used by
the Agent Layer to compute, and if necessary implement a new optimal configuration
of the Application Layer.

A subset of the images generated by the European Space Agency field trial in the
Atacama Desert, Chile in 2012 using the SEEKER rover platform is used for this
experimental scenario [1].

4.1.1 Experimental Setup

PM-SLAM and the other Application Layer modules have been implemented in C++
using ROS and OpenCV. The Agent Layer is implemented in JAVA using Apache’s
JENA. The reactive component of the Agent Layer has been not implemented for this
test, as it does not aid in demonstrating the capabilities and efficiency of the Agent
Layer. The Ontology is implemented in OWL (Web Ontology Language), as it is
the most widely used and supported Ontology Language, with a wealth of mature
tools like Protégé and Apache JENA. The FIS Inspector has been implemented in
MATLAB.Both theAgent Layer and theOntology have been implemented as generic
systems such that they can be adapted for various other types of robotic applications.

4.1.2 Experimental Results

The application layer takes two different configurations during the experimental
process.An initial configuration of the application layer utilisingSURF-based feature
tracking, a depth perception module, and an EKF SLAM filter and a reconfigured
application layer after the FIS Inspector confidence has dropped below acceptable
levels (as determined by the Rational Agent). This configuration utilises a hybrid
semantic blob and SURF feature tracking technique and an EKF SLAM filter [1].
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As discussed in Sect. 3.2.1, the FIS generates confidence values using the inputs
(error and computation time) from the SLAM system, which are added to the Ontol-
ogy and used by the Rational agent to examine the system performance over the
course of operation. The tests are run on-line over the images from the dataset;
however, a reconfiguration routine is triggered by the Rational agent responding to
the change in the Ontology as soon as the system performance confidence value
goes below a specified threshold (0.5 in the current case). Referring to Fig. 4b, a
significant reduction in the computation time is observed for the proposed reconfig-
urable system. In contrast, the engineered system continues its operation without any
reconfiguration and therefore the computation time continues to increase. Similarly,
Fig. 4c presents the behaviour of the system’s posterior error over multiple iterations,
which is marginally increased following the reconfiguration. This is because of the
sudden change in the type and cardinality of the visual features used by the SLAM
filter. However, this is deemed by the system as a suitable compromise to maximise
the over performance of the system. This is also observed for the FIS-based system
performance measure as shown in Fig. 4a, where the confidence value increases fol-
lowing the reconfiguration in the proposed system, while it continues to decrease for
the engineered system.
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Fig. 4 FIS performance-based confidence output (a), computation time (b), weighted error (c) and
CPU usage (d) for the proposed self-reconfigurable system against an engineered system in the
SLAM scenario
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As Fig. 4d shows the reconfiguration process takes approximately 0.46 s. The
average slam loop time before the reconfiguration is approximately 5.65 s; therefore,
the reconfiguration time is comparatively fast compared to the applications layer
process. Similarly, the computation usage of the Application layer and Reconfigu-
ration Layer, when they are in active full use, is of a similar amount. Moreover, the
computational usage of the reconfiguration layer whilst not in actively calculating a
reconfiguration plan is comparatively minimal.

4.1.3 Discussion

From the results presented in Sect. 4.1.2, it is clear that the Self-Reconfiguring
Robotic Framework is capable of optimising the Application Layer, in that an
improvement in performance is observed following a reconfiguration, as compared
to a standard engineered system that does not allow for any reconfiguration. In par-
ticular, it demonstrate the system ability to reconfigure complex autonomous soft-
ware at run-time, while maintaining continuity of service. Furthermore, it is clear
that the system can self-optimise a system in such a way that includes compro-
mising other systems, to maximise the systems overall performance. Moreover, the
Self-Reconfiguring Framework demonstrates an ability to perform reconfiguration
relatively efficiently.

4.2 Hardware in Complex Systems

The aim of this experiment is to test the ability of the Self-Reconfiguring Robotic
Framework to respond to degrading or faulty hardware, to improve the continuity
of operations of the system and optimise the systems overall performance. Similar,
to the previous experiment a rover navigation system will be the scenario, with a
camera that will be artificial impaired as to simulate degrading hardware or envi-
ronmental conditions that may affect camera lens and cause unwanted artefacts in
the input images. A common factor for noisy visual inputs is granulated dust parti-
cles. Such type of noisy conditions can be simulated by adding “salt-and-pepper”
noise to images [1], hence simulating problem with one of the camera hardware.
The Self-Reconfiguring Robotic Framework is expected to maintain continuity in
the system, optimising the Application Layer, and eventually switching to another
camera entirely.

Similar to the last system the Application Layer is monitored by a FIS based
Inspector, which uses entropy as a statistical measure of randomness that can char-
acterise the texture of the input image, and computation loop time to generate a
confidence value for the performance of the Application layer system. This value is
used to update the Ontology, which is then used by the Agent Layer to compute, and
if necessary implement a new optimal configuration of the application layer.
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In order to prove that the Self-Reconfiguring Robotic Framework can cope with
such hardware problems, the framework should demonstrate a reconfiguration at
run-time to provide continuity of service, even after a significant event in contrary
to a traditionally engineered system, which may suffer a catastrophic failure.

4.2.1 Experimental Setup

The experimental setup is the same as for the previous scenario in Sect. 4.1.1. How-
ever, unlike the previous scenario the second camera (right) in the stereo pair from
the SEEKER dataset, is used to simulate an auxiliary camera. Test images from
left and right cameras are subsampled by adding “salt-and-pepper” noise over a
varying scale of 0–100% with a step size of 1 for the left camera (simulating very
fast deterioration), and a step size of 0.1 for the right camera (simulating negligible
damage).

4.2.2 Experimental Results

The application layer takes twodifferent configurations as in the previous experiment,
i.e., the initial configuration where the left camera is initially used by subsystem,
followed by a reconfiguration process triggered by the Rational Agent switching
the subsystem to the alternative right camera, which is still in working condition
compared to the left camera.

Referring to Fig. 5, the Self-Reconfiguring Robotic Framework is capable of opti-
mising the Application Layer, by switching to an alternative camera as soon as
the fuzzy confidence measure goes below the specified threshold. This results in
an improvement in performance of the system. Comparative analysis in this figure
shows that a standard engineered system without any reconfiguration continues to
use images from the faulty camera.

The FIS generated confidence values depend upon the entropy value and compu-
tation time from the SLAM subsystem, which are added to the Ontology and used
by the Rational agent to check system performance. The tests are run on-line over
the images from the sub-sampled dataset with simulated noise. A reconfiguration is
performed by the Rational agent responding to the change in the Ontology on the
basis of the system performance confidence value. Referring to Fig. 5b, the compu-
tation time is significantly reduced, while an improvement is observed in the entropy
measure. This is a result of switching the faulty camera (left camera) to an alternative
one that is still in working order (right camera). The engineered system continues
its operation without any reconfiguration and therefore the computation time and the
entropy measure continue to deteriorate over time. Similarly, the FIS-based system
performance measure as shown in Fig. 5a, increases following the reconfiguration in
the proposed system, while it continues to decrease without any reconfiguration.

As Fig. 5d shows the reconfiguration process takes approximately 0.47 s. The
average slam loop time before the reconfiguration is approximately 3.61 s; therefore,
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Fig. 5 FIS performance-based confidence output (a), computation time (b), entropy (c) and CPU
usage (d) for the proposed self-reconfigurable system against an engineered system in the faulty
hardware scenario

the reconfiguration time is comparatively fast compared to the applications layer
process. The average time post reconfiguration is 1.80 s, which is comparatively
slow compared to the Reconfiguration process. Similarly, the computation usage of
the Application layer and Reconfiguration Layer, when they are in active full use, is
of a similar amount. Moreover, the computational usage of the reconfiguration layer
whilst not actively calculating a reconfiguration plan is comparatively minimal.

4.2.3 Discussion

From the results presented in Sect. 4.2.2, it is clear that the Self-Reconfiguring
Robotic Framework is capable of optimising the Application Layer, in that an
improvement in performance is observed following a reconfiguration, as compared
to a standard engineered system that does not allow for any reconfiguration. In partic-
ular, the framework can reconfigure hardware for autonomous systems at run-time.

Furthermore, it demonstrates the system ability to cope with inferred measures
of the systems performance. Moreover, the Self-Reconfiguring Framework demon-
strates an ability to perform reconfiguration relatively efficiently.
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5 Conclusion

This paper introduced a Self-reconfiguringRobotic framework in the formof a hierar-
chy combining fuzzy reasoning with ontology-based deliberative decision making to
enable self-reconfigurability within a complex robotic system and increase the fault
tolerance and robustness to unforeseen changes in the system and the environment.
The framework is designed to be generic and therefore allows to be implemented
in a wide variety of robotic applications. An Ontological model is used for system
knowledge representation to enable it to be self-aware of its constituent subsystems.
A fuzzy inference system quantifies the performance of the lower-level subcompo-
nents within the Application layer in terms of fuzzy confidence measures which are
intuitive for human operators that may be monitoring the system. At the highest level
of the system hierarchy; a rational-agent constantly checks the underlying levels of
the system for anomalies or inconsistent behaviour that can potentially cause fatal
damage to itself, harm to the environment or failure to achieve desired objectives
and trigger a reconfiguration in the Application layer.

Two different experimental setups were used to test the proposed system and its
advantages against a system that does not allow reconfiguration in any situation. The
setups involved real-world robotic hardware, such as, autonomous rovers and vision
sensors that were used to generate the test and analysis data. The outcome of these
experiments established that the proposed Self-Reconfiguring Robotic Framework
either maintains or improves the performance of the over all system in challenging
operating conditions. The layered design of the system, has proven to be an effective
method for abstracting the reconfiguration of a complex system,without significantly
influencing the underlying system (i.e., application layer) during normal operations.

In future work, an extension to the work presented in this paper could include
inspectors that monitor the application layer using other logical inferencing tech-
niques to discover various performance characteristics such as software faults for
reconfiguration.
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