
Quantitative Assessment of Anomaly
Detection Algorithms in Annotated
Datasets from the Maritime Domain

Mathias Anneken, Yvonne Fischer and Jürgen Beyerer

Abstract The early detection of anomalies is an important part of a support system
to aid human operators in surveillance tasks.Normally, such an operator is confronted
with the overwhelming task to identify important events in a huge amount of incoming
data. In order to strengthen their situation awareness, the human decision maker
needs an support system, to focus on the most important events. Therefore, the
detection of anomalies especially in the maritime domain is investigated in this
work. An anomaly is a deviation from the normal behavior shown by the majority of
actors in the investigated environment. Thus, algorithms to detect these deviations
are analyzed and compared with each other by using different metrics. The two
algorithms used in the evaluation are the Kernel Density Estimation and the Gaussian
Mixture Model. Compared to other works in this domain, the dataset used in the
evaluation is annotated and non-simulative.

1 Introduction

In order to be able tomake the best decision, an operator in surveillance tasks needs an
overview about all incoming data. Therefore, only if operators are able to understand
and interpret the whole data correctly, they will be able to make the best possible next
move. As stated by Fischer and Beyerer [7], the main problem is not the acquisition
of the data, but the large amount of data. In order to aid human decision makers, a
support system is needed. This system needs to provide the aid to identify important
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events. Without such a system, the operator needs to analyze the whole data by hand.
This is tedious work and might result in a reduced concentration of operators. Hence,
the chance is high to overlook crucial events.

The crucial events are most often deviations from the normal behavior. Therefore,
this events can be classified as anomalies. If a support system is able to provide an
operator reliable with information about anomalies, this will increase the situation
awareness of the operator. Thus, algorithms to identify anomalies are evaluated in
this work. The idea is to reduce the workload of an operator by providing information
about the important events. While this reduction helps an operator to concentrate on
the important tasks, it is crucial for the acceptance, that the algorithms will identify
the anomalies as good as possible. In order to be able to assess the performance of
an algorithm in real life, the algorithm has to be evaluated with real data. Else, the
support system might not be able to detect some anomalies, which are not covered
in a simulated dataset.

Here, the detection of anomalies is investigated in the maritime domain. In this
special case, the normal traffic drives on sea lanes. Anomalies can, e.g., be seen as
the deviation from these lanes or a different speed compared to the normal traffic.
Thus, the algorithms in the evaluation must be able to assess spatio-temporal data in
form of trajectories.

2 Related Work

Chandola et al. [6] give a wide overview about different tasks and algorithms used
to detect anomalies. The applications range from sensor network and cyber secu-
rity to fraud detection and image processing. Morris and Trivedi [13] give a survey
especially for anomaly detection using vision-based algorithms. For each applica-
tion appropriate algorithms are introduced. The underlying concepts for the algo-
rithms vary, depending on the use case, e.g., classification-, clustering- or nearest
neighbor-based algorithms are used. Each of these algorithms has its advantages and
disadvantages.

Especially in the maritime domain, the detection of anomalies is an important
field of research. Several different approaches were introduced to identify abnormal
behavior of vessels and to incorporate expert knowledge to correctly assess specific
situations.

Laxhammar et al. [11] compare the Kernel Density Estimation (KDE) and the
Gaussian Mixture Model (GMM). The models are trained with a real life dataset
comprising the position, heading and speed of each vessel. For the evaluation, arti-
ficial anomalies are simulated. The models’ performances to resemble the normal
behavior is evaluated by comparing the log-likelihood with the 1st percentile as well
as the median log-likelihood. For the anomaly detection performance, the needed
number of observations for detecting an anomaly is compared. Anneken et al. [2]
evaluate the same algorithms by using an annotated dataset.
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Brax and Niklasson [5] introduce a state-based anomaly detection algorithm. The
different discrete states are heading, speed, position and relative position to the next
vessel. Different roles (here called agents) are developed and incorporate the states.
These roles comprise, e.g., smuggler and raid agents. The probability for each role
is calculated using the prior defined states. For the evaluation, different scenarios
resembling specific situations are generated to obtain an accurate ground truth. The
algorithms are only tested using this simulated ground truth.

Andersson and Johansson [1] use an algorithm based on a Hidden Markov Model
(HMM) to detect abnormal behavior. They train the HMM with simulated normal
behavior of ships in a certain area. For the evaluation, the data is divided into dis-
crete states. The states resemble the change of specific values, i.e., distance to other
objects, vessel size, identification number, speed and heading. Afterwards, themodel
is evaluated by using a simulated pirate attack.

Laxhammer and Falkman [10] introduce the sequential conformal anomaly detec-
tion. The underlying conformal prediction framework is, e.g., explained further by
Schafer and Vovk [16]. The algorithm provides a reliable lower boundary for the
probability that a prediction is correct. This threshold is given as a parameter for the
algorithm and directly influences the false positive rate. The similarity between two
trajectories is calculated by using the Hausdorff distance. The model is trained with
real life data, but the anomalies for the evaluation are simulated.

De Vries and van Someren [17] use piecewise linear segmentation methods to
partition trajectories of maritime vessels. The resulting trajectories are grouped in
clusters. Afterwards, the anomaly detection is performed by using kernel methods.
Additionally, expert domain knowledge like geographical information about harbors,
shipping lanes and anchoring areas is incorporated. The algorithms are validatedwith
a dataset from the Netherlands’ coast near Rotterdam.

Guillarme and Lerouvreur [9] introduce an algorithm consisting of three main
steps. They first partition the training trajectories into stops and moves segments
using the Clustering-Based Stops and Moves of Trajectories algorithm. Afterwards,
a similarity measure and a clustering algorithm based on the density of the data is
used to cluster the resulting sub-trajectories. The clusters discovered by the algorithm
need to be assessed by hand. With this results, motion patterns and junctions for the
trajectories are defined. For the evaluation, satellite AIS data is used. No information
about the performance of the algorithm compared to other algorithms is given.

Fischer et al. [8] present an approach based on dynamic Bayesian networks. Dif-
ferent situations and their relationship with each other are modeled in a situational
dependency network. With this network, the existence probability for each defined
situation, e.g., a suspicious incoming smuggling vessel, can be estimated. This esti-
mated probability is used to detect unusual behavior. The algorithm is tested with
simulated data.

Anneken et al. [3] reduce the complexity of trajectories by using b-splines estima-
tion. The control points of the b-splines are used as the feature vector and the normal
model is trained by using different machine learning algorithms. For the evaluation
an annotated dataset is used. The results of the different algorithms are compared
with the results of a KDE and a GMM as previously shown in [2, 11].
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The majority of the previous work in the maritime domain uses simulated data
to evaluate their proposed algorithms. E.g., the evaluations in [1, 8] rely entirely on
simulated data, and in [10, 11] the anomalies are created artificially. In this work,
the same annotated dataset as in [2, 3] is used. Additionally to the previously used
areas, an additional area is introduced and the algorithms are compared by using a
different set of metrics.

3 Dataset

The dataset for the evaluation was recorded by using the automatic identification
system (AIS). The AIS provides different kinds of data like navigation-status, esti-
mated time of arrival, ..., destination. For the analysis only a subset of the whole
available data is used, namely position, speed, heading, maritime mobile service
identity (MMSI), timestamp and vessel-type. The whole dataset comprises more than
2.4 million unique measurements recorded during a time span of seven days.

A depiction of the dataset in form of a heat-map is shown in Fig. 1. The map
encodes the traffic density with colors ranging from green for low density to red
for high density. Thus sea lanes and harbors are easily recognizable for their higher
traffic density. Geographically, the recorded area comprises the western parts of the
Baltic Sea, theKattegat and parts of the Skagerrak. Temporally, it spans awholeweek
starting from 16th May 2011. Altogether, 3,702 different vessels (unique MMSIs)
grouped into 30 different vessel types were detected. In the first step, clearly wrong
measurements as well as measurements generated by offshore structures (e.g., lights)
are removed. Afterwards, 3,550 unique vessels remain. For further processing the
data points created by each ship are grouped by their corresponding MMSI and
connected to tracks. If the time between two measurements with the same MMSI
is too large (here, larger than 30min), the track of the ship is split. Therefore, each
vessel can generate more than one track and altogether 25,918 different tracks are
detected.

For further investigations, only cargo vessels and tankers are used. In the prepared
dataset, there are 1,087 cargo vessels and 386 tankers. The two types have similar
movement behavior; therefore, they are treated as one. This means, there will always
be one compound model for both types instead of a single one for each.

Due to the huge amount of data and the necessary effort to annotate the whole
dataset, only three subareas (called Fehmarn, Kattegat and Baltic) are annotated
which reflect specific criteria. A description of the Kattegat and the Fehmarn area
can be found in [2].

Figure2 depicts the normal behavior within the Baltic area. This area consists of
two main sea lines. In the east both lines are starting in the north west of the Danish
island Bornholm. One line goes in the direction of Copenhagen, the other in the
direction of Fehmarn and Lolland. Furthermore, the sea lanes of vessels calling the
port at Trelleborg can be seen in the north. As the traffic density of the other possible
lanes (e.g. the traffic to Ystad) is low, all other traffic is defined as abnormal behavior
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Fig. 1 Heat-map of the vessel traffic in the dataset. The traffic density is encoded by the color,
whereas the gradient from red to green represents the gradient from high density to low density.
The marked areas (namely Fehmarn, Kattegat and Baltic) are further analyzed

(compare Fig. 3). The resulting area has 698 unique tankers and cargo vessels which
generate a total of 26,808 data points.

During the annotation of the tanker and cargo vessels in the designated areas,
moored vessels moored in a harbor are removed from the dataset, for the behavior
in harbors is out of scope for this work. For the Fehmarn area, 14.5% of the data
points by cargo vessels and 8.7% of the data points by tankers are marked as unusual
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Fig. 2 Normal trajectories (grey lines) in the annotated and evaluated area consisting of a part of
the Baltic Sea. The white background represents water

Fig. 3 All trajectories (grey lines) in the annotated and evaluated area consisting of a part of the
Baltic Sea. The white background represents water

ones. In the Kattegat area, 5.4% of the data points by tankers and 6.6% of the data
points by cargo vessels were annotated as abnormal. For the Baltic area, 15.2% of
data points generated by cargo vessels and 14.4% of the ones by tankers are marked
as anomalies.
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4 Test Set-Up

In this section, the two evaluated algorithms, the metrics and the general process of
detecting algorithms are introduced. The Gaussian Mixture Model (GMM) and the
Kernel Density Estimation (KDE) are chosen as algorithms for the evaluation. The
algorithms themselves and the possible parameters are described. As feature vector,
the position in latitude plat and longitude plon as well as the speed vector split into
its latitude vlat and longitude vlon components are used, resulting in

xi = {plat, plon, vlat, vlon}

for each data point i . A new model has to be trained for each area. Further, each
area can be divided by a grid and for each cell in the grid a distinct model has to
be trained. The optimal grid-size as well as the parameters of the models have to be
estimated. For these purposes, the Python package scikit-learn [15] is used.

4.1 Algorithms

4.1.1 Gaussian Mixture Model

A GMM consists of n superimposed multivariate normal distributions called com-
ponents. Each distribution i has its own mean vector μi and covariance matrix Σi .
Together, they form theparameter set θi = {μi ,Σi } for each component i . Thedimen-
sion of μi and Σi depend on the number of observed features k. The probability
density function is then given by

f (x) =
n∑

i=1

fg(x, θi )

with the density function for each component given by

fg(x, θi ) = 1

(2π)
k
2
√|Σi |

exp

(
−1

2
(x − μi )

TΣi
−1(x − μi )

)
.

In order to estimate the parameter sets θi , the expectation-maximisation (EM) algo-
rithm is used. Prior to this estimation, the number of components nmust be available.
More details on the GMM and the EM algorithm is given, e.g., by Barber [4].
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4.1.2 Kernel Density Estimator

The KDE or Parzen-window density estimation estimates the probability density
function (PDF) of a dataset with n data points. Each of these data points is assigned
a kernel function K (x) with the bandwidth h. For each kernel function the same
bandwidth is chosen. As kernel function, any valid PDF may be chosen. By taking
the sum of all kernels evaluated at the point x , the PDF is estimated resulting in

f (x) = 1

n

n∑

i=1

1

hk
K

(
x − xi
h

)
.

The Gaussian kernel

K (x) = 1

(2π)
k
2
√|Σ | exp

(
−1

2
xTΣ−1x

)

with the covariancematrix set to the identitymatrixΣ = Ik is used as kernel function.
The bandwidth has a huge impact on the resulting PDF. If it is chosen too small,
the resulting estimation will overfit the problem; if the chosen bandwidth is too
large, underfitting will occur. Further information on the KDE is available, e.g., by
Murphy [14].

4.2 Anomaly Detection

For both algorithms, the detection of abnormal behavior is defined as depicted in
Fig. 4. First, a normal model is estimated by using only data with normal behavior.
Then, the minimum log-likelihood lmin for each model for the training data is cal-
culated. The log-likelihood is the natural logarithm of the likelihood function which
is defined as the conditional probability that an outcome is generated by a specific
model. By using only normal data for the training, it can be expected that abnormal
data will generate a lower log-likelihood.

For each new data point x , the log-likelihood lx for the estimated model is calcu-
lated. If lmin > lx holds true, the data point is considered an anomaly. Thus lmin is the
boundary between abnormal and normal behavior.

4.3 Metrics

For the evaluation, precision, recall, f1-score, accuracy, false positive rate (FPR),
receiver operating characteristic (ROC) and area under ROC are used as metrics to
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Fig. 4 Flow chart of the anomaly detection algorithm

compare and assess the algorithms. Here, only a brief introduction to the metrics is
given. Further explanation are, e.g., given by Manning et al. [12].

The precision is defined as

precision = true positives

true positives + false positives
,

whereas the recall is defined as

recall = true positives

true positives + false negatives
.

The f1-score is the harmonic mean of the precision and recall. It is defined as

f1-score = 2 × precision × recall

precision + recall
.

The recall describes the fraction of the positives which are actually classified as
positive (true positives). Thus, a small recallmeans, that there are lots of false negative
classifications. The precision describes the fraction of all positively classified results
which are actually positives. Hence, a small precision equals a great number of false
positive classifications. The accuracy is defined as

accuracy = true positives + true negatives

true positives + true negatives + false negatives + false negatives
.

It describes the amount of correctly identified object compared to all available objects.
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The FPR is given by

FPR = false positives

false positives + true negatives
.

It describes the probability, that the classifier falsely identifies an object as positive.
These metrics are commonly used in classification tasks. For an optimal classifier,
the value of each metric except the FPR should be “1”. For the FPR, the optimal
classifier should yield the value “0”.

The ROC curve is a graphical tool to describe the performance of a classifier while
varying the discrimination threshold between to classes. It is a plot of the recall (true
positive rate) against the false positive rate. If the ROC curve of a classifier is a
diagonal line starting in the origin of the coordinate system, it will be equal to a
random guess. This is the worst result for a classifier. For further comparison, the
area under ROC (AUROC) is used as a metric. The worst value for the AUROC is
“0.5”, the best is “1”. A value of “0.5” would equal a random guessing strategy and
an optimal classifier would be described by an AUROC of “1”.

5 Empirical Evaluation

Before the results of both algorithms are compared with each other, the optimal
parameters for both algorithms have to be determined. Therefore, a k-fold cross-
validation as, e.g., described by Witten and Frank [18] is conducted for different
parameter combination. The parameters to estimate are the bandwidth for the KDE
and the number of components as well as the optimal grid-size for the GMM.

For the cross-validation, each of the validation fold consists of the same ratio of
normal and abnormal data in order to ensure that the folds are comparable to each
other. The training fold has no anomalies at all. All in all, the available data is divided
into k folds. In each step of the cross-validation, the model is trained with k − 1 folds
and validated by using the remaining fold. The results for the optimal parameters
using a 3-fold cross-validation are shown in Table1. For each step in the cross-
validation, the precision, recall, and f1-score are calculated. Finally, the cumulated
means of these scores are determined and the parameter set with the highest f1-score
is chosen as the best.

In Fig. 5a, b the precision, recall and f1-score for different bandwidths using the
data in the Baltic area are shown. The difference between those two figures is the
underlying grid. The model for Fig. 5a has no grid, while the model for Fig. 5b has
a 3×3 grid. Comparing those figures, the one without grid performs better. Thus the
parameter as shown in Table1 are used in the evaluation. For theKDE, the grid-size is
not an important parameter to optimize. Due to the main principle behind the KDE,
only data points from the training set which are close to the evaluated data point
will have an influence on the resulting probability density function. If the distance
between data points from the training set and the evaluated data point is large, the
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Table 1 Optimal Parameter

Area KDE GMM

Bandwidth # Components Grid Size

Fehmarn 0.06 75 5×5

Kattegat 0.09 50 3×3

Baltic 0.085 70 1×5

(a) (b)

Fig. 5 Precision, recall, and f1-score for different bandwidths and different grids in the Baltic area

(a) (b)

Fig. 6 Precision, recall, and f1-score for different numbers of components and different grids in
the Baltic area

resulting value of the kernel function will tend to zero. Thus, omitting some points
will only decrease the calculation time, which is not important for this work.

The results for varying the number of components in the Baltic area is shown in
Fig. 6a, b. The first has a 1×5 grid, the second a 5×5 grid. These figures are only
exemplary to show the different behavior of the algorithm with different parameter
configurations. The best performance is achieved with the 1×5 grid. The number of
components is chosen like shown in Table1.
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Table 2 Evaluation results

Fehmarn Kattegat Baltic

KDE GMM KDE GMM KDE GMM

Precision 0.5128 0.5607 0.3844 0.4675 0.5690 0.7013

Recall 0.6405 0.5428 0.4040 0.5250 0.5655 0.6227

F1-Score 0.5696 0.5515 0.3940 0.4946 0.5673 0.6597

Accuracy 0.8705 0.9144 0.9224 0.9376 0.8707 0.9037

FPR 0.0940 0.0456 0.0431 0.0369 0.0755 0.0467

AUROC 0.8719 0.8165 0.8514 0.7771 0.8656 0.8981

As the main task is the detection of anomalies, a data point which is detected
and annotated as anomaly is a true positive. The results for the different areas using
the different metrics are given in Table2. Furthermore, the ROC for each area and
algorithm combination is depicted in Fig. 7. For each fold, the ROC is drawn, with
the AUROC value stated in the legend. Furthermore, the mean of the fold is depicted.

Comparing the scores of the algorithms as depicted in Table2, it is clear, that
neither of the algorithms delivers a good performance for the detection of anomalies.
The overall performance of the GMM measured by the f1-score is always higher as
the one of the KDE. In the Fehmarn area, both algorithms have nearly an equal score,
while in the Kattegat area the GMM’s f1-score is 25.5% higher and in the Baltic area
it is 16.3% higher.

The accuracy of the GMM in all areas is higher than the KDE’s. In the Fehrmarn
area, it is 5%, in the Kattegat area 1.6%, and in the Baltic area 3.8% higher. The
FPR of the GMM is lower in all areas than the one of the KDE. Thus, the GMM’s
performance is always better for these metrics in the annotated areas.

Comparing the AUROC of the two algorithms, the KDE performs better in the
Fehmarn area and the Kattegat area, while the GMM has a better result in the Baltic
area. These results can also be derived by comparing the shape of the ROC curves
in Fig. 7. The ROC curve of the GMM is less steep than the one of the KDE in
the Fehmarn area and the Kattegat area, resulting in the lower AUROC value of the
GMM in these particular areas.

Figures8, 10, and 12 show the results for the GMM algorithm for the different
folds in the Baltic area. The equivalent figures for the KDE algorithm are Figs. 9,
11, and 13. Similar figures for the other areas can be found in [2]. Both algorithms
will perform quite well, if the data point which is to be analyzed is far away from
the normal sea lanes as it can be seen in the southern part of each figure. Most of
the points in the southern part are correctly identified as either anomalies or normal
data points. A problem for both algorithms are the more sparsely and less dense
trajectories to and from Trelleborg. These normal trajectories are found as abnormal
behavior as seen, e.g., in Figs. 8 and 9.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 The ROC for the KDE and GMM in the different areas. In each figure, the ROC curve for
each fold as well as the mean ROC is shown. In the legend, the area under each curve is stated.
a KDE—Fehmarn. b GMM—Fehmarn. c KDE—Kattegat. d GMM—Kattegat. e KDE—Baltic.
f GMM—Baltic

If a trajectory is quite near to the normal behavior, and if the speed and heading
of the vessel is similar to the normal model, the trajectory will not be identified as
anomaly. In Figs. 12 and 13, this problem can be seen in the eastern region, where
several vessels are entering the sea lanes at no distinct point.
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Fig. 8 GMM results for the Baltic area for one fold. The grey lines correspond to all trajectories,
the grey dotted lines represent the used grid, the dots represent some evaluated data points. Green
dots represent correctly found anomalies, red dots missed anomalies and blue dots normal points
which are falsely declared as anomaly

Fig. 9 KDE results for the Baltic area for one fold. The grey lines correspond to all trajectories,
the dots represent some evaluated data points. Green dots represent correctly found anomalies, red
dots missed anomalies and blue dots normal points which are falsely declared as anomaly
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Fig. 10 GMM results for the Baltic area for one fold. The grey lines correspond to all trajectories,
the grey dotted lines represent the used grid, the dots represent some evaluated data points. Green
dots represent correctly found anomalies, red dots missed anomalies and blue dots normal points
which are falsely declared as anomaly

Fig. 11 KDE results for the Baltic area for one fold. The grey lines correspond to all trajectories,
the dots represent some evaluated data points. Green dots represent correctly found anomalies, red
dots missed anomalies and blue dots normal points which are falsely declared as anomaly
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Fig. 12 GMM results for the Baltic area for one fold. The grey lines correspond to all trajectories,
the grey dotted lines represent the used grid, the dots represent some evaluated data points. Green
dots represent correctly found anomalies, red dots missed anomalies and blue dots normal points
which are falsely declared as anomaly

Fig. 13 KDE results for the Baltic area for one fold. The grey lines correspond to all trajectories,
the dots represent some evaluated data points. Green dots represent correctly found anomalies, red
dots missed anomalies and blue dots normal points which are falsely declared as anomaly
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Another problem can occur, if there is not enough data in one of the grid-cells
to build a normal model. In this case, there will be no valid model for the decision
about abnormal behavior. Therefore, a different strategy has to be chosen; e.g., all
data points in the cell are anomalies, or there are no anomalies in the cell. Here,
all points in those cells are marked as anomaly. This problem arises especially in
the Fehmarn area as shown in [2]. Furthermore, several falsely classified anomalies
occur in all areas with both algorithms (blue dots).

6 Conclusion

The two algorithms generate a large amount of false positives and false negatives.
Therefore, the results are not as good as it would be expected for a support system.
Both algorithm estimate the underlying PDF of the sea traffic. For the GMM, the
PDF is expected to consists of superimposedmultivariate normal distributions, while
the real PDF is unknown and might be of a different kind. This might be a reason
for the result. A KDE is able to estimate an arbitrary PDF, if enough training data is
available. If not enough data is available, the resulting PDFmight differ significantly
from the true PDF.

Both algorithms only evaluate a single point of the trajectory at a time. Therefore,
the whole trajectory is never considered. Thus, Trajectories as shown in Fig. 14 will
probably not be recognized correctly. Each data point of the orange trajectory for
itself might be detected as normal behavior resulting in a normal label for the whole
trajectory. An anomaly like this can only be recognized by evaluating the whole
trajectory.

By using a grid to divide the area, the following problems might occur: In the
border region between two cells, the grid can perform worse than using no grid at
all. The EM algorithm fits the components of the GMM to the underlying data of
each cell separately. The data in each cell abruptly ends at the grid border. Hence, it

Fig. 14 Problem with point only evaluation. Two trajectories (each is only valid in the direction
of the arrow) are crossing. An abnormal behavior is depicted as an orange dashed line. It starts on
one trajectory and changes to the other during the crossing. Depending on the context, this can be
considered as anomaly
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is likely to be less dense at the border compared to the center of a cell. This might
likely result in the placement of the components of a GMM in the center instead of
the border, even though globally observed the data might have the same density at
the center and at the border.

Furthermore, if the grid was chosen unfavorably, the resulting model will not be
able to learn a sea lane properly, because the grid might divide a sea lane or cut out
parts of a sea lane. A similar problemmight occur, if there are not enough data points
in a cell for the estimation of a normal model. For this case, different strategies are
possible, e.g., every point in these areas is marked as anomaly. This might result
in cutting sea lanes with normal behavior and detecting this normal behavior as
anomaly.

7 Future Work

Even though, the optimal parameters are estimated, the same parameters are used for
all grid-cells. Therefore, an improvement could be achieved by estimating the model
parameters for each cell separately, respectively to use an adaptive approach for the
bandwidth estimation for the KDE. Thus, the difference in density and complexity
of each local area would be taken into account.

Currently, only quite simple algorithms for the anomaly detection are examined.
The performance of these algorithms was suboptimal. Therefore, the next step is to
comparemore sophisticated algorithms.These algorithms should consider past points
of a track while evaluating a new point. By incorporating the additional information
provided using whole or partial trajectories, the results should improve compared to
the density estimation using a GMM or a KDE.

Another open point is the annotation of the whole dataset and not only some
artificial subsets. Currently, only a small subset of the whole dataset is annotated and
inspected during the evaluation. By using the whole dataset, a better overview of
the observed area can be used to get a better understanding of the normal behavior,
and thus to improve the models. Due to the greater amount of data, the methods of
annotating the data must be reconsidered and improved. e.g., to achieve better model
results the tracks could be annotated by domain experts or by using another strategy
to ensure a consistent and reliable annotation. Also, using sea-maps to gain a better
understanding of the sea lanes, shoals etc. will help to improve the annotated ground
truth.
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