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Abstract This paper introduces a novel study on the performance of Stochastic Dif-
fusion Search (SDS)—a swarm intelligence algorithm—to address DNA sequence
assembly problem. This is an NP-hard problem and one of the primary problems in
computational molecular biology that requires optimisation methodologies to recon-
struct the original DNA sequence. In this work, SDS algorithm is adapted for this
purpose and several experiments are run in order to evaluate the performance of the
presented technique over several frequently used benchmarks. Given the promising
results of the newly proposed algorithm and its success in assembling the input frag-
ments, its behaviour is further analysed, thus shedding light on the process through
which the algorithm conducts the task. Additionally, the algorithm is applied to over-
lap score matrices which are generated from the raw input fragments; the algorithm
optimises the overlap score matrices to find better results. In these experiments real-
world data are used and the performance of SDS is compared with several other
algorithms which are used by other researchers in the field, thus demonstrating its
weaknesses and strengths in the experiments presented in the paper.

1 Introduction

Every cell in the body has a complete copy of about 3.2 billion1 DNA base pairs or
letters which build the human genome [22]. DNA has all the information necessary
to build the whole living organism. Although the letters of the genetic alphabet

1In American English, 1 billion is equated to a thousand million (i.e. 1,000,000,000).
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Adenine (A), Thymine (T), Cytosine (C) and Guanine (G) are meaningless on their
own, they are joined into useful instructions in genes. It is interesting to note that
more than 99% of human’s structure is genetically identical [21].

Imagine having several copies of the same book written in a language you cannot
understand. Every page of each copy has been randomly cut into horizontal strip and
a piece from one copy may overlap a piece from another copy. Assuming that some
of strips are missing and some are splashed with ink, and maybe some of the books
have random typos and error throughout, in different places. Try to arrange all the
strips and assemble a single copy of the original book without any typos or errors.
This process is similar to the important task of DNA sequencing.

In this work, novel applications of a swarm intelligence technique is introduced as
a proof of principle. The swarm intelligence algorithm used is Stochastic Diffusion
Search (SDS) which has a good potential to work in large search spaces and noisy
environments. This algorithm is explained in the paper and its application to the
problem is detailed.

This paper starts by presenting the swarm intelligence algorithm along with a
simple example demonstrating its use. Then a brief introduction is given to the
DNA assembly problem and the solutions offered so far using swarm intelligence
techniques. Subsequently, some experiments are designed and the performance of
SDS is investigated using various benchmarks and then its performance is contrasted
against several other techniques. Finally, the reason behind using SDS is further
elaborated and the difference between utilising SDS and Smith–Waterman algorithm
is discussed. Additionally in the second set of experiments, initially SDS is shown
to be generating the overlap score matrices (a task that is historically accomplished
by Smith–Waterman algorithm); and then the details of using the SDS generated
matrices to optimise the overlap scores are described. This is followedby a conclusion
and directions for future research.

2 Swarm Intelligence

The paper is based on swarm intelligence which is one of the categories of artificial
intelligence. Swarm intelligence is based on the study of behaviour of simple indi-
viduals (e.g. ant colonies, bird flocking, and honey bees, animal herding) that mimics
the behaviour of swarms of social insects or animals [5]. More and more researches
are interested in this field as swarm intelligence offers new ways of designing intel-
ligence systems.

Among the successful examples of optimisation techniques inspired by swarm
intelligence are: ant colony optimisation (inspired by foraging behaviour of real ant
colonies) and particle swarm optimisation (inspired by bird flocking) [5]. In this
work, Stochastic Diffusion Search (SDS) [1] algorithm is used. This algorithm also
belongs to the category of swarm intelligence and is based onmimicking the foraging
behaviour of one type of ants Leptothorax acervorum. More details about SDS are
provided in Algorithm 1 and a simple example is presented next.
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Algorithm 1 SDS algorithm

Initialisation phase: Allocate agents to random hypotheses in the search space

Until (all agents congregate on the best hypothesis)

• Test phase

– Each agent evaluates its hypothesis
– Each agent is classified into active or inactive

• Diffusion phase

– Each inactive agent randomly chooses another agent to communicate with. If the inactive
agent selects another inactive agent, no information will be transferred between the agents.
Therefore the selecting agent should choose another hypothesis randomly. If the selected agent
is active, the active agent communicate its hypothesis to the selecting agent

End

2.1 Search Example with SDS

In the following example the aim is to find a 4-letter model (Table1) in a 32-letter
search space (Table2).

There are four agents; and a hypothesis identifies four adjacent letters in the search
space (e.g. hypothesis ‘6’ refers to D-N-A-F; hypothesis ‘17’ refers to A-S-S-E, etc.).
In the first step, each agent initially picks a random hypothesis from the search space
(see Table3). Assume that:

• The first agent points to the 27th entry of the search space and randomly picks one
of the letters (e.g. the fourth one, (B): O B L E

• The second agent points to the 14th entry and randomly picks the first letter
(E): E N T A

Table 1 MODEL

Index: 0 1 2 3

Model: D N A F

Table 2 Search space

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search
space

T H I S I S D N A F R A G M E N

Index: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Search
space

T A S S E M B L Y P R O B L E M
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Table 3 Initialisation and iteration 1

Agent no 1 2 3 4 5

Hypothesis position 27 14 8 20 4

OBLE ENTA AFRA EMBL ISDN

Letter picked 4th 1st 2nd 3rd 2nd

Status × × × × ×

• The third agent refers to the 8th entry in the search space and randomly picks the
second letter (F): A F R A

• The fourth agent goes the 20th entry and randomly picks the third letter
(B): E M B L

• The fifth agent refers to the 4th entry in the search space and randomly picks the
second letter (S): I S D N

The letters picked are compared to the corresponding letters in the model that is
D-N-A-F (see Table1). In this case:

• The fourth letter from the first agent (E) is compared against the fourth letter from
the model (F) and because they are not the same, the agent is set inactive.

• For the second agent, the first letter (E) is compared with the first letter from the
model (D) and because they are not the same, the agent is set inactive.

• For the third, fourth and fifth agents, letters ‘F’, ‘B’ and ‘S’ are compared against
‘N’, ‘A’ and ‘N’ from the model. Since none of the letters correspond to the letters
in the model, the status of the agents are set inactive.

In the next step, each inactive agent chooses another agent and gets the same hypoth-
esis if the selected agent is active. If the selected agent is inactive, the choosing agent
generates a random hypothesis. Assume that the first agent selects the third one; since
the third agent is inactive, the first agent chooses a new random hypothesis from the
search space (e.g. 6). Figure1 shows communication between agents.

The process is repeated for the other four agents. When the agents are inactive,
they all choose new random hypotheses (see Table4).

In Table4, the first, third, fourth and fifth agents do not refer to their corresponding
letter in themodel, therefore they become inactive. The second agent, with hypothesis
‘6’, chooses the second letter (N) and compares it with the second letter of the model
(N). Since the letters are the same, the agent becomes active.

In this case, consider the following communication between the agents: (seeFig. 2)

• The third and fourth agents choose the second one
• The first agent chooses the third one

Fig. 1 Agent
Communication 1



Maximising Overlap Score in DNA Sequence Assembly Problem … 305

Table 4 Iteration 2

Agent no 1 2 3 4 5

Hypothesis position 1 6 22 12 17

HISI DNAF BLYP GMEN ASSE

Letter picked 1st 2nd 4th 3rd 3rd

Status × √ × × ×

Fig. 2 Agents
Communication 2

• The fifth agent chooses the fourth one

At this stage, the first and fifth agents, which chose the inactive third and fourth
agents, have to choose other random hypotheses from the search space. However,
agents three and four use the hypothesis of the active agent, two.

This process is repeated until all agents are active pointing to the location of the
model inside the search. Depending on the problem, there are alternative termination
strategies; for instance, in some cases, SDS algorithm is set to terminates only if all
agents are active and refer to the same hypothesis.

The next section, provides a brief introduction to DNA assembly problem, stating
the main phases and the major challenges faced by researchers in this field. This is
followed by an overview of some of the algorithms that aimed to address the problem.
Afterwards the experiments and results are reported.

3 Understanding DNA Assembly

There is no single solution available for NP-hard problems [22] and it is often not
possible to find an extremely good algorithm that solves such problems [18].

In DNA assembly, a process is required to join the relevant fragments together.
In other words, the overlapping fragments are to be assembled back into the original
DNA sequence. Therefore, the goal of genome projects is to reconstruct the original
genome sequence of an organism. To achieve the goal, DNA fragment assembly
process is divided into three phases [6, 9]:

1. Overlap Phase is tasked to find the common sequence among the prefix of one
sequence and suffix of another.

2. Layout Phase uses alignment strategies to determine the order of fragments based
on high overlap scores and according to the level of similarity.

3. Consensus Phase assembles all fragments into the consensus sequence and omits
the similar parts.
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The quality of a consensus sequence is measured by the term coverage [6, 19].
Coverage is evaluated according to the following equation:

Coverge =
∑n

i=1 length of fragment i

target sequence length
(1)

where n is the number of fragments.
The higher the coverage, the higher the probability of covering original genome,

the higher the correctness of the assembled parts, the fewer the number of the gaps,
and the better the result [6, 11].

The Layout Phase is the most complex step due to the difficulty of finding the
best overlap. This difficulty is caused by the following challenges [6, 11]:

• Unknownorientation:After the original sequence is divided intomany fragments,
the direction may change.

• Base call errors: substitution, insertion, and deletion errors are types of base call
error. The errors happen because of experimental errors in the electrophoresis
procedure that affects the finding of fragment overlaps.

• Incomplete coverage: It occurs when the algorithm cannot assemble a given
fragments into one contig.

• Repeated regions: the problem occurs when some sequences are repeated two
or more times in the DNA. None of the current assembly programs can solve the
problem without an error [18].

• Chimeras and contamination: Chimeras arise when two fragments that are not
adjacent, or overlapping on the target molecule, join together into one fragment.
Contamination occurs due to the incomplete purification of the fragment from the
vector DNA.

3.1 DNA Sequence Assembly and Swarm Intelligence

DNA Assembly problem is still open to a large extent because of the principal issue
of “scaling up to real organism”. Some of the swarm intelligence and evolutionary
algorithms, such as genetic algorithms and ant colony optimisation have been used
for the fragment assembly problem focusing on the overlap, layout and consensus
approach [14].

In 1995, Rebecca Parsons and Johnson created performance improvements for a
genetic algorithm applied to the DNA sequence assembly problem [17]. In 2003 Kim
and Mohan used a new parallel hierarchical adaptive genetic algorithm. The method
is reported as accurate and noise-tolerant compared to previous methods [10]. In
the same year, Meksangsouy and Chaiyaratana proposed ant colony optimisation.
The goal of the search was to find the right order and orientation of each fragment
to create a consensus sequence [15]. In 2005 Fang proposed approach speeded up
the searching process and maximised the similarity or overlaps between given frag-
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ments [7]. Alba and Luque presented several methods, including genetic algorithm,
a CHCmethod, scatter search algorithm, and simulated annealing to solve accurately
DNA Assembly problem in 2005 [12]. They also proposed a local search method
named PALS in 2007 [2]. In 2008, Luque and Alba studied the behaviour of a hybrid
heuristic algorithm that combines a heuristic, PALS, with a meta-heuristic, a genetic
algorithm, achieving an assembler to find optimal solutions for large instances of
this DNA assembly problem [3]. In 2010 Kubalik presented a method called Pro-
totype Optimisation with Evolved Improvement Steps (POEMS). Also in the same
year Minetti and Alba presented a paper about how noiseless and noisy instances of
this problem are handled by three algorithms: problem aware local search, simulated
annealing and genetic algorithms [16].

There are some other solutions that are proposed in 2011 for DNA sequence
assembly problem using Particle Swarm Optimisation (PSO) with Shortest Position
Value (SPV) rule [22]. In 2012 Firoz analysed and discussed the performance of
two swarm intelligence based algorithms namely Artificial Bee Colony (ABC), and
Queen Bee Evolution Based on Genetic Algorithm (QEGA) to solve the fragment
assembly problem [8]. In 2013 Fernandez-Anaya et al. designed a nature inspired
algorithm (PPSO+DE) based on Particle SwarmOptimisation andDifferential Evo-
lution [13].

4 Experiments and Results I

In order to understand the process through which SDS is adopted and adapted for
DNAsequence assemblyproblem, anumber of fragments are used in the experiments.
The fragments are the input of the programand the program is responsible to assemble
the fragments and create one long sequence. This is achieved by taking a fixed number
of characters from the end of the first fragments and trying to find those characters
in the other fragments using SDS algorithm. Once the other fragment is found, the
two fragments are joined and the repeated part is deleted from one of the fragments.
This will create a longer fragment. This process is repeated until all fragments are
joined. The steps required for SDS to assemble a set of fragments are detailed in
Algorithm 2.

In the experiments reported in this paper the agent size is empirically set to 100
and the model size for SDS is set to 50. Table5, as proposed by Mallén-Fullerton
et al. [14], shows the benchmarks used by SDS for DNA assembly.

Using the benchmarks provided, SDS algorithm assembles the entire sequences
correctly. Table6 shows the performance of SDS when assembling the nine afore-
mentioned benchmarks. Each benchmark is assembled 50 times. As the table shows,
the larger the coverage, themore SDS iterations it takes to fully assemble the datasets.
While the number of overall algorithm cycles needed follow the same structure, there
are some exception caused by the order of the fragments. Observing the sum of active
agents over all the iterations and their consistent proximity (check the negligible dif-
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Algorithm 2 DNA sequence assembly using SDS
Choose a model from the end of 1st fragment in the search space

While (true)

• Use SDS to search the model in the fragments

– If no matching fragment is found
· Choose the model from the beginning of the first fragment
· Use SDS to search the model in the fragments
· If no matching fragment is found

Break

• Compile a list of fragments where the model is found
• Pick the fragment ( j th) with the maximum similarity (based on agents activity)

– assemble fragments i and j.
– Delete the j th fragment
– Choose a new model from the end of assembled fragment

End While

Table 5 Benchmark datasets

Benchmark Coverage Mean fragment
length

Number of
fragments

Original sequence
length

x60189 4 4 395 39 3,835

x60189 5 5 286 48

x60189 6 6 343 66

x60189 7 7 387 68

m15421 5 5 398 127 10,089

m15421 6 6 350 173

m15421 7 7 383 177

j02459 7 7 405 352 20,000

bx842596 7 7 703 773 77,292

ference between the median and the mean, as well as the value of the standard
deviation) shows the robustness of the technique.

The results shown in Table6 indicate that three of the benchmarks (m15421 6,
m15421 7 and bx842596 7) are not assembled fully into one sequence. SDS has been
able to assemble two large, accurate sequences from the fragments of each of these
datasets whichmake up the whole dataset. However up to this point, given there were
no similarities between the two resulting sequences, they are returned separately.
Therefore, caution is taken and they are reported as not completely assembled.

Next, one of the benchmarks is chosen (x60189 4) and the analysis are reported
based on this benchmark. The results are compatiblewith the ones generated from the
other benchmarks. Figure3-left shows the level of agents activity at various stages of
SDS assembling process, including both when a match is found and when a match is
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Table 6 Summary of assembling four datasets

Sum of active agents

Cycles SDS Itrs Median Mean Stdev Max Min

x60189 4 23 46,899 384,075 384,746 4,007 392,361 374,717

x60189 5 17 53,649 418,777 418,744 4,119 430,935 409,683

x60189 6 28 114,799 752,539 752,176 4,382 763,060 740,365

x60189 7 26 124,249 1,095,673 1,096,029 5,928 1,109,507 1,083,767

m15421 5 57 476,149 2,175,028 2,176,785 9,722 2,220,938 2,150,915

m15421 6 – – – – – – –

m15421 7 – – – – – – –

j02459 7 129 3,174,449 12,092,968 12,087,911 21,613 12,127,170 12,021,776

bx842596 7 – – – – – – –

Fig. 3 Left activity of the agents in the fragments of x60189 4;middle the histogram of the activity
of the agents; right zooming to show the activity of agents between 0 and 100

not found in any given fragment. The activity of the agents is in the range [0, 100],
however if less than the entire agent population (i.e. 100) are active, the agents’
hypotheses are not taken into account for the assembling purpose; this ensures the
presence of a full match. Reducing the 100% accuracy would cater for a noisy
environment which is one of the strengths of SDS algorithm.

To provide a better understanding, the histogram of the agents’ activity is pre-
sented in Fig. 3-middle. This graph clearly shows that in most cases there is no high
similarity between fragments (note that the similarity between fragments is eval-
uated by comparing the model to the fragments). However when there is a match
(i.e. 100% activity), the fragments are joined on the fly.

Figure3-right provides a close-up view of the graph on its left and demonstrates
that when there are no exact matches, some of the SDS agents could be activated;
however if there are no full match, the activated agents eventually lose their active
status in the consequent iterations when they choose a different micro-feature. This
feature is particularly useful in a noisy environment whose complete analysis will
be provided in an expanded future publication.
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Fig. 4 Left activity of the agents in noisy set of fragments; middle histogram of the activity of the
agents in noisy set of fragments; right zooming to show the activity of agents between 0 and 100

Fig. 5 Left absence of a match; right presence of a full match

In a similar experiment and in order to analyse the behaviour of the agents when
some of the fragments are contaminated with noise, some noise (i.e. of type substi-
tution) is added to all the fragments. Figure4-left shows the activity of the agents
and Fig. 4-middle and right illustrate the frequency of activity level at various itera-
tions. Note that there are fewer number of iterations needed before SDS terminates
(as at some point during the process, nomatch is found from either end of the growing
sequence). However the proportion of agents activity between 0 and 100 is increasing
with the presence of noise. Despite the fact that the entire fragment is contaminated
with noise, SDS is able to produce more than half the length of the target sequence.
Further research is required to improve this rate.

In order to illustrate the activity of the agents at each SDS iterations, the graphs
in Fig. 5 are presented. In Fig. 5-left the activity of SDS agents are displayed when
there is no match. As shown, most of the agents are inactive and very a few flicker
from being active and then back to being inactive.

However, on the contrary to the lack of a match, when there is a full match, as
shown in Fig. 5-right, soon after the start of the SDS iteration and through agents’
communication and information exchange, the entire population becomes active and
points to the right position, which is the position of the model within the fragment.
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Table 7 Comparison with other techniques

SDS PALS GA PMA CAPS Phrap

x60189 4 1 1 1 1 1 1

x60189 5 1 1 1 1 1 1

x60189 6 1 1 – 1 1 1

x60189 7 1 1 1 1 1 1

m15421 5 1 1 6 1 2 1

m15421 6 2 NA NA NA NA NA

m15421 7 2 1 1 2 2 2

j02459 7 1 1 13 1 1 1

bx8425696 7 2 2 – 2 2 2

4.1 Comparison with Other Techniques

In another analysis, the performance of SDS is compared against a few other algo-
rithms tasked with assembling the benchmarks. These algorithms, which are used in
this context in the literature, are genetic algorithm (GA), a patternmatching algorithm
(PMA), Problem Aware Local Search (PALS) and commercially available packages:
CAP3 and Phrap. The algorithms are compared in terms of the final number of con-
tigs assembled. Despite being in the early stages of its application in DNA assembly
problem, SDS shows a competitive performance (see Table72). Other than an iso-
lated case (m15421 7), where PALS and GA outperform SDS, in the rest of the cases
(89%), SDS either presents similar or better outcome. SDS is also tried on a bench-
mark (m15421 6) that is not attempted by the rest of the techniques. The accuracy
of the assembled sequences is 100%; in other words, whenever the accuracy is less
than 100%, the results are considered unsuccessful.

In these experiments, SDS deals with various issues common in DNA sequence
assembly,3 including but not limited to fragments with varying lengths, unknown
orientation, incomplete coverage, repeated regions, chimeras and contamination,
etc.

4.2 SDS Versus Smith–Waterman Algorithm I

Many DNA sequence assembly techniques use Smith–Waterman algorithm [20],
which is a pairwise alignment method to create a similarity matrix between the
fragments, therefore generating a complete picture of the entire available data
before setting off to the overlapping and assembling stage. While Smith–Waterman

2The results of these algorithms, other than SDS, are borrowed from [2].
3These issues are explained in Sect. 3.
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algorithm provides a precise and detailed account of the input data, it comes at the
expense of being time consuming and computationally expensive [23].

Assuming there are n fragments, once the similarity between each pair is cal-
culated using Smith–Waterman algorithm, an n × n matrix is created. The matrix
is then used by other optimising algorithm to conduct the overlapping phase. The
results of many of these algorithms are reported in [14].

In the experiments reported earlier in the paper, instead of using Smith–Waterman
algorithm to calculate the similarities between fragments, SDS picks a model from
a given fragment and aims to find the model in the rest of the fragments. Among
the fragments containing the model, the one with the highest similarity is picked
and assembled on the fly and then removed from the search space, thus reducing the
subsequent computational cost.

On the contrary to many other swarm intelligence and evolutionary computa-
tion, SDS has been successful in assembling the benchmarks without using Smith–
Waterman algorithm, therefore avoiding its time consuming and computational
expensive nature. To understand the full picture of the process, further analysis is
needed, among other things, to verify the impact left on the assembling process
without accessing the very detailed information provided by Smith–Waterman
algorithm.

5 Experiments and Results II

In the second set of experiments of this paper, SDS is tasked to generate overlap score
matrices and then the same algorithm is used to optimise the generatedmatrices. In the
next subsections, the process through which the overlap score matrices are generated
are described, then the constrains in creating these matrices as well as choosing SDS
hypothesis are presented. Afterwards SDS is applied to the benchmarks in the dataset
and the results are reported.

5.1 Generating Matrices of Overlap Score by SDS

In this section, SDS is shown to be generating the overlap score matrices. As in
the previous set of experiments, an already commonly used dataset [14] is used.
More details about the reason behind using SDS (instead of the commonly used
Smith–Waterman algorithm) for generating the overlap score matrices are provided
in Sect. 5.5.

In the meantime, the steps through which the overlap scores between fragments
are computed using SDS are described below:

1. Take a model from the end of the first fragment, and search each fragment one by
one to check if other fragments have overlaps with the first fragment. For instance,
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if fragment 1 and fragment 5 have 100 bases in common, this value is stored in
the matrix as (1, 5) = 100.

2. After going through all the fragments, another model is taken from the beginning
of the first fragment and again the program searches all the fragments. If the
program finds a matching fragment, it stores the value of the overlap score in the
matrix.

3. Then the orientation and bases of the first fragment is changed (i.e. A replaces T,
T replaces A, C replaces G and G replaces C. Then the orientation is reversed).

4. Steps 1–3 are repeated for all other fragments (in the second cycle, the second
fragment will be verified, and in the third the third fragment, until all fragments
are checked, their matches are found and their overlap scores are stored in the
correct entry of the matrix).

5.2 Constraints in Overlap Score Matrices and Hypotheses
Choice

Before preceding to the experiments, some important points about the input matrices,
overlap scores and the constraints and rules are listed below:

• The matrix always has symmetric overlap score.
• The matrix always has the overlap score of zero on the diagonal line.
• The dimension of the matrix is equal to the number of fragments in the dataset.
• For computing the overlap score of a dataset (that for instance) has 40 fragments,
the program should select 40 indices from the matrix. In this work, each one of
these elements is called the index hypothesis.

• For choosing the hypothesis from the matrix, the program should follow some
rules and consider some constraints.

The following constraints should be considered when choosing the hypotheses
(also see Fig. 6):

• Assume each hypothesis has one row and one column. The row and column should
not be equal. In other words, hypothesis should not be chosen from the diagonal
line of the matrix as the values on the diagonal line are always zero.

Fig. 6 Matrix Constraints
(The entries highlighted in
green are the valid elements
(coordinates) of the
hypothesis, and the entries in
red are the invalid ones)
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• Two different hypotheses should not be on the same row.
• Two different hypotheses should not be on the same column.

Having mentioned the rules and constraints, the next section presents the experi-
ments designed for this paper, demonstrating the performance of the proposed algo-
rithm. Then the results are reported alongwith comparisons against other techniques.

5.3 Applying SDS on Overlap Score Matrices

As mentioned before, SDS has the three phases of initialisation, test and diffusion.
In this part, these phases are explained in detail and it is shown how SDS is applied
to the matrices in order to find the optimum solution. Thus, on the contrary to the
previous set of experiments where the inputs were DNA bases, in this section the
inputs data are overlap score matrix.

5.3.1 Initialisation Phase

The initialisation phase of SDS algorithm should adhere to the rules and constraints
described above. Also it is important to note the following problem-dependant issues:

• Every fragment (except the first and last one) is a prefix of one fragment and suffix
of another fragment.

• The first fragment in a contig has no prefix, and the last fragment has no suffix.
• The fragments cannot be appended to itself.

During the implementation stage of the initialisation phase, a hypothesis
(i.e. member of matrix) is generated for every agent with respect to the constraints.

For generating the hypothesis, the following steps should be taken:

1. Create a list and populate the cells with values from [0, n − 1] where n is the size
of any sides of the matrix.

2. Initialise the first value in X with zero (see Fig. 7).
3. Randomly choose the Y value from the list created. According to Fig. 7, 2 is

chosen randomly. Now the row and column (X, Y) of the first hypothesis are
assigned.

4. In the next step, the Y value of the previous hypothesis will be assigned as the
X value of the second hypothesis. Then that number will be removed from the
array (i.e. 2) which was created in the first step. Again the Y value of the second
hypothesis will be selected randomly.

5. Finally when all the elements of the array are removed, zero is assigned as the Y
value of the last hypothesis. Note that the algorithm is prevented from choosing
zero as the Y value during generating the hypotheses until it reaches to the last
hypothesis. As stated earlier, the reason behind picking the value of ‘0’ is that
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Fig. 7 Sample Hypothesis of an agent (based on the matrix in Fig. 6)

the first and the last fragments in every sequence only have suffix and prefix
respectively.

6. All these elements form one SDS hypothesis for the first agent.

After the initialisation phase, every agent has a SDS hypothesis which consists of
n coordinates from the overlap score matrix. Therefore there will be an overlap score
associated with every agent (e.g. the overlap score of the first agent is 50 + 0 + 0 +
26 + 72 + 10 = 158). This will pave the way for comparing the agents against one
another.

5.3.2 Test Phase

The test phase is explained by taking agent ‘0’ as the starting point to determine
whether it should be active or inactive.

• Agent 0 is compared with a random agent
• If agent 0 has a higher overlap score than the randomly selected agent, it will be
active

• If agent 0 has a lower overlap score than the randomly selected agent, it will be
inactive

• This continues until all agents are labelled as either active or inactive

5.3.3 Diffusion Phase

This phase is similar to the original description of the SDS’s diffusion search and
works as follows:

• Each inactive agent selects an agent randomly
• If the selected agent is active, the hypothesis (which contains all the x and y
coordinates) will be copied from the active to the inactive agent.
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• If the selected agent is not active, again, another valid hypothesis will have to be
generated for that inactive agent.

This technique shows a good initial outcome however it does not return an opti-
mum solution since the agents communicatewith each otherwith limited information
(the hypotheses that are chosen randomly) and there is not sufficient comparisonwith
the “outside worlds” (all other possible hypotheses that can be generated from the
matrix are not considered). Therefore, to improve the program, in the next section,
another important phase (i.e. Reform Phase) is added. This phase complements the
three previously discussed phases.

Prior to explaining the Reform phase, it is important to discuss what happens if
one of the elements of the hypothesis moves from one position to another.

5.3.4 Hypothesis Sliding and the Reform Phase

In the following part, the steps are shown as to how to exchange the values of the
coordinates of hypothesis in each agent.

Figure8 shows a samplematrix representing a dataset with 8 fragments. Therefore
each agent has a set of 8 coordinates belonging to the hypothesis. The details of the
figure are explained below:

Fig. 8 Hypothesis Sliding (This figure shows the elements of a sample agent hypothesis. The
hypothesis’ elements are highlighted in grey as well as the one in red. When the red elements of
the hypothesis are updated and the new coordinates are shown in green. Note that the number of
hypothesis elements are 8)
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• The grey circles are the hypotheses in the current agent.
• The red circles are the old hypotheses that are replaced by the new ones
• The green circles are the new hypotheses that are replaced with the old ones.

The below steps, describe how the Reform Phase works on the input matrix:

1. Initially the minimum hypothesis (with the smallest overlap score) other than
zero, which is called ‘First Old’ is picked. Assume that the hypothesis (5, 1)
which has the minimum value is picked.

2. The aim is to have theminimum hypothesis exchangedwith an index in thematrix
which has a value (overlap score) more than the minimum value. This index is
called ‘First New’.

• The position of this index (i.e. First New) should be selected from the same
row of where theminimum overlap score (First Old) is located. In other words,
‘First Old’ and ‘First New’ are in the same row. In order to do that, a column is
chosen randomly. Assuming the fourth column is selected, the index of ‘First
New’ will be (5, 3).

3. Next, the program should find a hypothesis that is called ‘Second Old’. The steps
below show how this is accomplished:

• The ‘Second Old’ has the same column as the ‘First New’. According to the
previous stage, the column of ‘First New’ was 3, therefore the column of
‘Second Old’ will become 3.

• In order to find the row, the algorithm checks which hypothesis in the current
agent has column 3. Then it picks the row of that hypothesis. Suppose the row
of that hypothesis is 6. Thus the index of ‘Second Old’ hypothesis becomes
(6, 3).

• As mentioned before, in every agents hypothesis, every column is used once,
and every row is used once too. In other words, no two items of the hypothesis
should be in the same column or the same row.

4. The next tasks is to find the position of the new coordinate in the original matrix.
This coordinate is called the ‘Second New’, which takes the row of the ‘Second
Old’ and the column of the ‘First Old’.

5.4 Results

This section presents the results of optimising the overlap score on the real dataset.
These experiments are conducted on the following datasets from Table5: x60189_4,
x60189_5, x60189_6, x60189_7.

In the experiments reported in this paper the agent size is empirically set to 100
and the model size for SDS is set to 50. Table5, as proposed by Mallén-Fullerton
et al. [14], shows the benchmarks used by SDS for DNA assembly.
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Table 8 Collection of results for the commonly used 4 benchmark datasets along with SDS results

Benchmark SDS LKH PPSO+DE QEGA PALS SAX POEMS

x60189 4 11,322 11,478 11,478 11,478 11,478 11,478 11,478

x60189 5 13,930 14,161 13,642 14,027 14,021 14,027 –

x60189 6 15,160 18,301 18,301 18,266 18,301 18,301 –

x60189 7 19,728 21,271 20,921 21,208 21,210 21,268 21,261

As part of the results reported, the performance of SDS is compared against a few
other algorithms used for computing the overlap scores. These algorithms, which
are used in this context in the literature, are Prototype Optimisation with Evolved
Improvement Steps (POEMS), Problem aware local Search (PALS), Queen Bee Evo-
lution Based on Genetic Algorithm (QEGA), Particle Swarm Optimisation and Dif-
ferential Evolution, which is called (PPSO+DE), SAX and Lin-Kernighan (LKH).
The algorithms are compared in terms of the total overlap score (see Table84) and
the results show that the preliminary investigation of SDS behaviour demonstrates a
competitive performance.

As explained before, the starting point in the reform phase is the minimum (small-
est) element of the hypothesis. The algorithm aims to find a larger value to replace the
minimum element. The question is: should the program search the entire matrix envi-
ronment to find a bigger value (global search) or should it search just, for instance,
the row or the column where the minimum elements are sitting in (local or neigh-
bourhood search). At the moment the paper has explored the neighbourhood search
and global search is the topic of an ongoing research.

5.5 SDS Versus Smith–Waterman Algorithm II

In the dataset used [14] for the experiments reported, the file ‘matrix conservative’
contains matrices that store the overlap score amongst all fragments for each bench-
mark in the dataset. The overlap scores are computed by the Smith–Waterman algo-
rithm. Smith–Waterman algorithm takes into account the overlap of each fragment
with every other fragments individually, therefore, while providing a comprehen-
sive picture, it is computationally expensive. In other words, Smith and Waterman
which was proposed in 1981, is a dynamic programming local sequence alignment
algorithm that is used for this purpose. This algorithm’s most common setting are 1
for a match, 3 for a mismatch, and 2 for a gap. This algorithm must of run on the
entire possible combination of fragment pairs taking both orientations into account
(regular and reverse compliment); this is necessary due to the unknown orientation

4The results of these algorithms, other than SDS, are borrowed from [14].
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of every input fragment. Upon finding the maximum overlap by the algorithm, the
actual overlap needs to be calculated. Once complete, the final values are inserted
into the overlap score matrix, which details the overlap between any two pair of
fragments. As stated before, this is a time consuming and computational expensive
task, with the computational complexity of O(n2). As stated in [14], even if there
are only 500 fragments of approximately 100 bases long, around 2,500,000,000
Smith–Waterman elements would be required to calculate the overlap matrix.

In order to explore an alternative less time consuming approach, SDS algorithm
is tasked to accomplish the creation of the overlap score matrices.

SDS ignores the non-significant overlap. This is achieved by assigning the min-
imum overlap score by setting the model size. When the overlap between two frag-
ments is less than the model size, the overlap score value of the fragments is set
to zero in matrix. For instance, if model size is 50 and the overlap score between
fragments 1 and 4 is 40, the value in entry (1, 4) in the matrix will be zero. The
advantage of using this technique (i.e. ignoring non-significant overlaps) is speeding
up the search. Additionally the matrix could be compressed easily by removing the
zero values.

6 Conclusions

SinceDNA fragment assembly problem isNP-hard, it is difficult to find optimal solu-
tions. The increasing presence of biological data and the requirements to study and
understand them closely lead researchers and scientists in this field to use computa-
tional approaches. This work has shown how DNA fragment assembly problem can
be addressed with meta-heuristics. This paper presents Stochastic Diffusion Search
(SDS), which belongs to the extended family of swarm intelligence algorithms, in
the context of DNA fragment assembly problem. An initial study into the behav-
iour of SDS is provided, offering an analysis into the agents’ activity using several
benchmarks. The results are promising as they demonstrate how the activity of the
agents shed light into the way agents interact and eventually finalise the assembling
process. Additionally it is shown that the level of agents’ activity provides a measure
of similarity between fragments, thus allowing more similar fragments to be joined
in the assembling process.

Subsequently, SDS algorithm is used to optimise the overlap score of the input
overlap scorematrices. In this optimisation task, inputmatriceswith overlap scores of
fragments is given as input to the systemand the adaptedSDSalgorithm is responsible
for finding the optimum overlap score in order to assembly the fragments. Taking
into account the initial attempt of using this algorithm, the results are close to the
those of other researchers.

As part of the future research, this algorithm will be compared against other
evolutionary computation techniques used in this field; also larger datasets withmore
complex features are to be used, and more research is needed in order to theoretically
determine the two values (population size and model size) of the SDS parameters.
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Additionally, CPU time and memory usage will be taken into account for all the
comparisons to provide a more comprehensive account on the performance of the
proposed algorithm.
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