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Abstract We present an approach for predicting continuous pedestrian trajectories
over a time horizon of 2.5 s by means of polynomial least-squares approximation
and multilayer perceptron (MLP) artificial neural networks. The training data are
gathered from 1075 real urban traffic scenes with uninstructed pedestrians including
starting, stopping, walking and bending in. The polynomial approximation provides
an extraction of the principal information of the underlying time series in the form
of the polynomial coefficients. It is independent of sensor parameters such as cycle
time and robust regarding noise. Approximation and prediction can be performed
very efficiently. It only takes 35µs on an Intel Core i7 CPU. Test results show 28%
lower prediction errors for starting scenes and 32% for stopping scenes in comparison
to applying a constant velocitymovement model. Approaches based onMLPwithout
polynomial input or Support Vector Regression (SVR) models as motion predictor
are outperformed as well.
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1 Introduction

1.1 Motivation

In the World Health Organisation’s last comprehensive status report on road safety,
traffic deaths are listed as the eighth leading cause of death with annually more than
1.2 million global cases. Current estimates suggest the possibility that until 2030
traffic accidents will even become the fifth leading cause of death unless urgent action
is taken [18]. Furthermore, for every recorded traffic fatality 4 permanent, 8 serious
and 50minor injuries are estimated with costs for the society of more than 100 billion
Euro per year, only for Europe [4]. During the last decades large efforts were made to
continually improve vehicle safety. Although 27% of the victims are vulnerable road
users (VRUs), e.g., pedestrians and cyclists, VRU protection remained an ongoing
problem due to the absence of possibilities for effective passive or active safety
mechanisms.

Only recently, vehicles get more often equipped with several types of sensors
allowing them to perceive the local surrounding and thus offering advanced com-
fort and safety functionality to the driver. Common available examples of those
“intelligent driving” applications are park distance control, lane assistant, traffic sign
recognition or emergency brake assistant. This development offers a unique chance
to address the great challenge of VRU safety effectively using early recognition of
potentially critical situations to initiate active countermeasures at an early stage.
However, mastering this task is complex: in a first processing step VRUs have to
be detected and classified. Current state-of-the-art methods of pattern recognition
and sensor data as well as image processing have to be performed in real-time gener-
ally using embedded hardware units in vehicles. Their computational power increases
continuously. The latest developments lead tomassive parallel processing bygraphics
processing units (GPUs) and hardware implementations of computationally complex
algorithms using field programmable gate arrays (FPGAs), e.g., [13].

The second major step is understanding the current traffic scene based on
information about the own (ego) vehicle, other road users, and the environment
(road geometry, obstacles, etc.). The situation has to be continuously analyzed in
order to detect critical situations. The criticality is defined by the potential for an acci-
dent and thus requires the prediction of the future behavior of potentially involved
road users, in our case of the ego vehicle and theVRU.While the ego vehicle’s behav-
ior is relatively well known and predictable due to available on-board sensor data and
existing models, the VRU has to be considered as an external system. The prediction
of the VRU behavior has to be based only on external observations and on prior
knowledge of his behavior. While many current approaches use the enhancement
of the last movement state for this purpose (e.g., with Kalman filtering (KF) [1]),
the VRU behavior is much more complex within the time ranges relevant for these
applications. To gain and use the knowledge about VRU behavior for a more realistic
movement prediction, models with higher complexity are needed. A new approach
of movement prediction by polynomial approximation and supervised learning of
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multilayer perceptron (MLP) neural networks is in the focus of this publication. The
subsequent step is using the gathered information for an adequate reaction of the
intelligent vehicle to actively prevent the predicted accident. This may include the
driver (information, warning) or it may happen in a completely autonomous way
(breaking, evasive maneuver) if the timing constraints, the most important being the
time to collision (TTC), fall into the range of human reaction times.

The state of the art in VRUmotion modeling and path prediction is dominated by
conventional movementmodels such as constant velocity (CV). As input information
the measured position as well as further image and context information may be used.
For a more detailed description of the state of the art we refer to own, preliminary
work [10].

1.2 Our Contribution

The main contribution of our publication is a novel approach for self-learning tra-
jectory prediction based on polynomial least-squares approximation and multilayer
perceptron neural networks. Training and evaluation is done using trajectory data
of uninstructed pedestrians in urban traffic scenarios whereby we assume that the
method may also be applied to other VRU types. We focus on the prediction itself as
major step, not a finished application in a vehicle. The method has the advantage not
to be limited to certain types of movements, but it is able to handle all motion types
included in training data. As self-learning predictor, it is independent of specific
movement models since the network contains all required knowledge implicitly. The
least-squares approximation of the discrete input track allows an extraction of the
principal information of the current behavior of the pedestrian with the advantages of
independence of sensor parameters such as cycle time and improved noise resistance.
The output of the proposed method is a continuous position estimate up to a certain
time horizon instead of only single trajectory points.

The article is structured as follows: In Sect. 2 the proposed path prediction
approach is described. Section3 outlines the methods used for evaluating the pre-
diction quality while the according test results are set out in Sect. 4. A concluding
summary is given in Sect. 5.

2 Methodology

In this section, we describe the usage of the measured trajectory information to
predict the behavior of pedestrians represented by their future trajectory.

As the prediction is supposed to be invariant to the current global position and
orientation of the pedestrian, the input data of the predictor is based on a time series
of the absolute velocity |v(t)| and the angular velocity ω(t) instead of directly on
the global position measurements. The time series are approximated with multiple
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polynomials in sliding windows in a fixed position relative to the current time tc
in order to extract the polynomial coefficients every time cycle. They are serving
as descriptor since they contain the principal information of the observed pedestrian
behavior. The prediction output is also supposed to be invariant to the global position
and orientation, so we use coefficients of polynomials describing the future velocity
profile vlon(t), vlat(t) in the pedestrian’s ego coordinate system for this purpose. As
output, this representation shows better results than an output based on |v(t)| and
ω(t). The estimated future trajectory is rebuild from the predicted information by
numerical integration and a retransformation into the global coordinate system.

The relation between the measured (input) and the future (output) pedestrian
movement is established by a multi layer perceptron neural network model, which is
capable of predicting all coefficients of the output polynomials based on those of the
input polynomials within a single instance. As kernel-based comparison method we
also evaluated Support Vector Regression. However, it requires one instance for each
output value. The three consecutive steps of pedestrian tracking and data preprocess-
ing, approximation with polynomials and prediction of polynomial coefficients of
the future trajectory are described in the following Sects. 2.1–2.3.

2.1 Pedestrian Tracking and Data Preprocessing

The proposed method for pedestrian movement prediction is based on a short time
tracking of the horizontal 2D position. The method is independent of the underlying
sensor technology as long as it is capable of providing object positions in real world
coordinates. Typical sensor setups are stereo cameras, lidar or radar sensors.

In our concrete setup we make use of a wide angle stereo camera system installed
at a public urban intersection to generate pedestrian track data needed for training
and testing of the self-learning algorithms. The field of view covers two crosswalks
with pedestrian lights and two sidewalks of the crossing roads (see Fig. 1, left). The
observed scenes provide a large variety of movement types such as straight walking,
starting, stopping or bending in. The test site and the sensor setup are described in
[9, 11].

The center of the pedestrian’s head is serving as reference point for stereo trian-
gulation and tracking. As the human gait can physically be described by the model
of an inverted pendulum [17], the upper body and, in particular, the head indicates
changes in motion very early (see Fig. 1, right). Furthermore, the center of the head
can be recognized and located relatively stable from all directions by computer vision
algorithms. This leads to a more robust trajectory measurement and potentially faster
detection of upcoming movement changes compared to reference points which are
based on the detection of whole persons, e.g., the center point of a detection window.
The further major processing steps of the path prediction methodology described
below are depicted in Fig. 2.
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Fig. 1 Left field of view for 3D tracking by the wide angle stereo system at a public test intersection
used to create the track database. Right optical people detection, head detection and -tracking to
obtain pedestrian movement data

Fig. 2 Overview of the proposed path prediction method

In an own preliminary publication [10] we used the approach of transforming the
measured past track into the pedestrian’s ego coordinate system, in order to receive an
input vector basedon vlon(t) and vlat(t) independent of the global position xworld, yworld
and orientation ϕworld . This transformation has to be reapplied to the track at every
time cycle since the pedestrian’s position and orientation is continuously changing. In
the approach described here, the transformation is substituted by an extraction of the
absolute horizontal velocity |v(t)| and the angular velocity ω(t). Those parameters
are invariant to the current values of xworld, yworld and ϕworld . Therefore, they have to
be calculated only for the current time step while the preceding values remain the
same. This sliding window behavior of the extracted time series has great advantages
regarding the computational efficiency of the subsequent polynomial fitting, as the
fast update algorithms of our Fast Approximation Library [7] can be applied. In
return, ω(t) contains more noise compared to the previous approach and, therefore,
an additional on-line exponential low-pass IIR filtering of the time series with

ωsm,t = α · ωt + (1 − α) · ωsm,t−1 (1)
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is added withωt being the current,ωsm,t the current filtered andωsm,t−1 the preceding
filtered angular velocity value. The smoothing factor α is included as additional input
parameter to the optimization process for the prediction quality.

2.2 Approximation with Polynomials

The time series |v(t)| and ω(t) are approximated with polynomials. This approx-
imation is based on a least-squares error and orthogonal basis polynomials. The
coefficients of the orthogonal expansion of the approximating polynomial serve as
principal information sources as they represent the temporal development of the
pedestrian’smovement. The coefficients of the orthogonal expansion can be regarded
as optimal estimators of average, slope, curve, change of curve, etc. of the time series
in a considered time window [5, 6]. The approximating polynomial f (t) is a linear
combination of the basis polynomials fk(t)

f (t) =
K∑

k=0

wk · fk(t) (2)

at a finite set of points in time t0, …, tN . The objective is to solve the least squares
problem

min
w

‖Fw − s‖2 , (3)

where ‖. . .‖ is the Euclidean norm, s are the time series values (targets), w is the
vector containing the coefficients of the respective polynomials and F is a matrix
(the design matrix) of form

F =
⎛

⎜⎝
f0(t0) . . . fK(t0)

...
. . .

...

f0(tN ) . . . fK(tN )

⎞

⎟⎠ . (4)

As the approximation has to be performed in a sliding window manner on our
approach, the coefficients can be computed with extremely fast update algorithms if
certain kinds of orthogonal basis polynomials, in our case discrete Legendre poly-
nomials, are used. The approximation is capable of reducing the dimensionality of a
feature vector serving as input for the subsequent self-learning predictor. At the same
time the influence of measurement noise is reduced due to implicit data smoothing.
A third advantage is that the coefficients can be calculated independent of sensor
parameters such as the sampling rate. That is, a predictor could be trained with one
and used with another sensor and sampling rate. Even changes of the sampling rate
within one time series or handling of missing measurements are conceivable.



Track-Based Forecasting of Pedestrian Behavior … 265

Fig. 3 Schematic representation of polynomial approximation for movement prediction for the
case of |v| (left, similar for ω, not shown). The coefficients of the fitted input window polynomials
are used to estimate those of the vlon, vlat timeseries in the output window (right, only vlon is shown).
tc indicates the current time step

In the proposed method we make use of multiple polynomials fitted in different
temporal sub-windows together representing the overall input window. The example
in Fig. 3 shows two consecutive input polynomials (left: green, orange) approximat-
ing the measured velocity (blue dots) where tc indicates the current time step. The
technique allows, e.g., to split the input window into separate sub-windows for short-
and long-time observation as shown in this example. Another exemplary variant are
multiple small input windows in order to get a closer approximation to periodic
velocity variations, which occur within the human gait.

According to the procedure for the input time window the method also uses a
polynomial representation for the predicted output information. However, contrary
to the input, the 2D velocity in the pedestrian’s ego system vlon(t), vlat(t) is taken as
output time series as experiments show that even small prediction errors of ω(t) lead
to relatively large errors when transforming back into estimated global positions. As
the polynomial approximation for the output window has only to be performed to
generate the training output coefficients but not during an on-line processing where
the future track is generated from the predicted output coefficients, this does not yield
a disadvantage regarding processing time.

For the training of theMLP-based prediction process polynomials are fit in a single
or multiple defined output sub-windows. The polynomial coefficients are taken as
targets for the MLP models in order to predict them based on the input window
coefficients in an on-line mode. The output polynomials can thus be evaluated to
obtain a continuous prediction of the future movement for the learned output time
window.While overlapping sub-windows are possible as input only non-overlapping
consecutive sub-windows are feasible for the output in order to get a unique position
estimate for each future point in time. In the visualized example two consecutive
output polynomials are predicted (right of tc: violet, red). The output window in the
example is also splitted into two sub-windows, here with constant size.
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The number of polynomials, their temporal position and length, as well as the
degree of each polynomial can be varied to optimize the prediction quality. The pos-
sible upper limit of the variation of polynomial degree K to get an unique approxi-
mation solution is N − 1 where N is the number of measured velocity values within
the considered time window. This limit is only relevant when short windows and low
sampling rates are used at the same time.

The coefficients k = 0, . . . ,K are estimators of the average, slope, curve, change
of curve, etc., of the polynomial. The underlying reference time unit is the cycle time
Tcyc = 1/fs of the time series, with fs being the sampling rate of the source data. As
we want the coefficients to be independent of the sampling rate, they are transformed
to a reference time of 1 s by multiplying the scaling factor f ks with each coefficient.
The transformation results in normalized coefficients with the physical units m/s,
m/s2, m/s3, etc.

The variation of parameters leads to some special cases at the edges of the para-
meter space for the input sliding window configuration:

• One single polynomial with K = 0: Corresponds to the average (absolute and
angular) velocity of the regarded time window. Degree K = 1 adds the average
acceleration, and so on.

• The case of N polynomials with K = 0 corresponds to the direct usage of the time
series |v(t)| and ω(t) as input pattern for the subsequent predictor. This is similar
to the technique used for MLP prediction in [8].

2.3 Prediction of Polynomial Coefficients Using a Multilayer
Perceptron

As predictor we use a feed-forward artificial neural network (ANN) in form of a
multilayer perceptron (MLP, see e.g. [12]). A MLP is capable of predicting multiple
output values at the same time what constitutes a great advantage whenmultiple time
steps and dimensions shall be estimated in parallel (Fig. 2c). The network consists
of neurons with the sigmoid activation function

f (x) = 1 − e−x

1 + e−x
(5)

and is trained with the Resilient Backpropagation (RPROP) algorithm [16]. The
normalization of the input data is done using the statistical z-transformation

zi = xi − x

s
(6)

where xi are the original input values, x the mean and s the standard deviation of
training values per input dimension and zi the z-transformed values. The size of the
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input layer is determined by the number of polynomials NPol and their degrees Ki

with

Nin = 2 ·
NPol∑

i=0

(Ki + 1). (7)

The size and number of hidden layers are variable and part of the optimization
process. The network output consists of polynomial coefficients of the future tra-
jectory represented in the ego velocity time series vlon(t) and vlat(t), which were
determined for training by polynomial approximation. The output may also consist
of multiple polynomials for separate time windows. To extract the trajectory esti-
mation the output polynomials are evaluated for the required future points in time.
From the current time on the predicted vlon(t) and vlat(t) are numerically integrated
to obtain the positions xlon(t), xlat(t). Afterwards, the prediction is transformed back
into the world coordinate space xworld(t), yworld(t) (see Fig. 2d).

3 Evaluation of Prediction Quality

To evaluate the quality of the proposedmethods we regard a timewindow of [−1, 0] s
for the input and ]0, 2.5] s for the output of the predictor, relative to the time stamp of
the current measurement. The older the input measurements are, the less influence
they have on the result. Also, longer input windows require longer initialization
time after the first detection of a pedestrian in a practical application, until the first
prediction is available. Tests using MLP prediction based on direct input of the
velocity measurements show that input windows larger than 1.5 s do not result in
further improvements of the prediction quality on our data. With an input window of
1 s a prediction quality of over 97% of the measured optimum at 1.5 s is reached. To
make the prediction results of different configurations comparable we set the overall
input window length to this value. The prediction horizon is set to 2.5 s since this
value suffices for autonomous reactions of a vehicle as well as for effective driver
warnings in advanced driver assistant system (ADAS) scenarios [15].

As major quality indicator we evaluate the average Euclidean error (AEE) from
the predicted position to ground truth (GT). As ground truth the tracked head center
position is used whereby the tracking in the stereo images and in world coordinates
are manually inspected to avoid tracking errors and outliers. The AEE is defined for
all P predictions in the test data with a specific prediction time step tpred as

AEE(tpred) = 1

P

P∑

i=1

√
(xpred(i) − xGT (i))2 + (ypred(i) − yGT (i))2 (8)

with (xpred; ypred) being the predicted and (xGT ; yGT ) being the ground truth positions.
As the AEE is based on the Euclidean norm, the results are independent of the
underlying coordinate system (here: global or ego coordinates). In order to evaluate
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the prediction quality for the longitudinal and lateral directions the average position
error is also evaluated separately for these dimensions (AElon and AElat).

As the minimization of the AEE can only provide an optimal overall parameter
setting for a specific prediction time step tpred but not for the whole predicted output
time window, another indicator is required as sole optimization target value in this
case. Since the prediction error naturally rises with increasing tpred an averaging of
all AEE values would outweigh more recent prediction times. To avoid this problem
we decided to consider the AEEs with regard to the respective tpred and to calculate
the weighted average of the AEEs as target value which has to be minimized:

ASAEE = 1

N

N∑

i=1

AEE(tpred(i))

tpred(i)
, (9)

withN being the number of discrete subsequent prediction stepswithin the considered
prediction horizon and ASAEE being the average specific AEE.

For our experimental studies we use a database of 1075 pedestrian tracks recorded
with the sensor setup described in [9] at a public test intersection. All tracks have a
sampling rate of 50Hz and lengths between 4 and 10s or 200–500 samples, respec-
tively. They are divided into four types of movement: “Waiting”, “Starting”, “Walk-
ing” and “Stopping”. Scenes of type “Waiting” are scenes with persons standing
and usually waiting for the light signal to cross the road performing only small
movements not exceeding a head velocity of 0.3 m/s. “Walking” consists of straight
walking with constant or changing velocities as well as bending-in scenarios. “Start-
ing” and “Stopping” include the corresponding motion transition with one second
before and three seconds after. The track database is split into training (60%, 643
tracks) and test data (40%, 432 tracks) with equal split ratio for each included scene
type (see Table1). For the optimization of the individual stages of the prediction
method the training data is further divided into 70% training to 30% test data. Due
to the large number of variable parameters a k-fold cross-validation is not performed.

Table 1 Total number of
trajectories sorted by training
data, test data, and type of
movement

Type Training Test Total

Waiting 117 78 195

Starting 184 124 308

Walking 204 137 341

Stopping 138 93 231

All 643 432 1075
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4 Results

In this section we present the tested parameter ranges and resulting prediction quality
values based on the evaluation methods introduced in Sect. 3. As baseline method
for comparison we use CV Kalman Filtering.

As the different phases of the proposed method (input polynomial approxima-
tion, MLP, output polynomial prediction) provide a large amount of parameters to
minimize the overall prediction error, an extensive grid search in the entire parame-
ter space is not feasible. Instead, the phases are optimized separately in alternating
manner. The parameters of the separate stages are optimized with coarse-to-fine grid
searches, if possible (MLP network structure), or by manual variation of parameters
(the polynomial stages). The varied parameters include

• the exponential smoothing factors of the input time series,
• the number, temporal position, length and degrees of input and output polynomials,
• the number and size of hidden layers of the MLP,
• the parametersC, γ and ε of the alternatively used SVRmethod with RBF kernels.

4.1 Variation of Polynomial Parameters

In this section we evaluate the effect of changes in size, position, length, and degree
of the input and output polynomials. The overall window sizes are thereby held
constant at the values defined in Sect. 3: 1 s for the input and 2.5 s for the output
window. Figure4 shows the results of a variation of the polynomial degree K for
four sample input configurations.

As base configuration for a comparison of different input configurations, we use
|v| and ω data directly (but normalized) as input for the MLP. This corresponds to an
input layer size of 100 neurons in our sensor setup with 50Hz and 1.0 s total input
time. The configuration is equivalent to 50 polynomials per dimension with a degree
of 0. For the following evaluations of the input structure, the structure of the MLP

Fig. 4 Quality indicator
ASAEE depending on input
polynomial degree K , input
sub-window numbers,
positions, and sizes in
comparison to the baseline
technique of CV Kalman
filtering (CV-KF). Lower
ASAEE values are better. The
examples only show an
excerpt of the evaluated
input configurations
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and the output polynomials were kept constant at their optimized final configuration
(two hidden layers with 20 and 8 neurons, 5 consecutive output polynomials with
degree 2 and 0.5 s length). The given configuration leads to an AEE of 20.7cm for
1.0 s and 71.0cm for 2.5 s prediction time. The resulting ASAEE value is 22.4cm/s
(Fig. 4, single black marker at K = 0).

The evaluation for different input polynomial structures generally shows a trend
to decreasing prediction errors with increasing polynomial degrees, according to the
gain of usable information content for the neural network. The improvement slows
down with higher degrees until a saturation plateau is reached, whereby a stronger
splitting into more input polynomials leads to an earlier flattening of the ASAEE
curve. With still higher polynomial degrees a slight increase of the prediction error
is observable. In Fig. 4 the blue dashed line shows the configuration with a single
polynomial covering the whole input time horizon of 1.0 s. Here, K = 0 describes
the minimum tested input size using only the average two dimensional velocity. This
already leads to anASAEEof 41.8cm/s.The step fromK = 0 toK = 1adds thevalues
of mean acceleration to the input, which leads to a benefit of a 35% lower ASAEE
(27.3cm/s) on our test data and already slightly outperforms CV Kalman filtering
(28.5cm/s, see Fig. 4, line “CV-KF”). Using a single polynomial the minimum error
plateau is reached at degreeK = 8with 21.87cm/sASAEE according to an input layer
size of 18. The green line represents the result for an input of five sequential input
polynomials with the same window lengths of 0.2 s. In this case, polynomial degrees
of 2 already suffice for the best prediction quality, but due to the higher number of
sliding windows the input layer size grows to 30. The red dotted line represents an
asymmetrical input configuration with a 0.8 s window followed by a 0.2 s window.
The intention is to set an additional attention on short-time features in the second
window, while the first covers the longer time distance up to 1.0 s. The configuration
also reaches the quality of the previous configurations at a degree of 2 but already
with a small input layer size of 12. The best result is reached at degree 3 and layer
size 18 with an ASAEE of 20.7cm/s. This input configuration will be used for further
quality measurements presented in this work. Other tested input structures lead to
similar results, e.g., 2 × 0.5 s, 0.4 + 0.3 + 0.2 + 0.1 s, 10 × 0.1s and configurations
with overlapping sub-windows of 1.0 and 0.2 or 0.1 s. Altogether we can state that
it is possible to use only 2 windows without reduction of the prediction quality.

The parameters of output polynomials have less influence on the prediction quality
than the input parameters. TheASAEE also improves slightlywith increasing polyno-
mial degree but with a much earlier entering the plateau at degree 1–2 depending on
window number and size. The overall ASAEE difference between a single and mul-
tiple output sub-windows is only approximately 2% using a degree of 2. For special
cases, e.g., the acceleration phase after an initial movement, the slight improvement
is visible in velocity plots (see Fig. 5). For all further evaluations we choose an output
of 5 consecutive polynomials of degree 2 and 0.5 s length each.
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Fig. 5 Comparison of a sample prediction of a startingmovement with two different output polyno-
mial configurations in a velocity magnitude plot. The blue line represents the actual measurements
over time, the red dot marks the current point in time, the red line represents the prediction. Left sin-
gle polynomial with K = 2 and 2.5 s window length. Right 5 consecutive polynomials with K = 2
and 0.5 s window length each

4.2 Variation of Neural Network Structure

Though the size of the input and output layers is defined by the polynomial structure
only size and number of hidden layers can be varied. We performed a coarse-to-
fine grid search for network topologies with 0–3 fully connected hidden layers and
numbers of 2–40 neurons per layer, including different layer sizes. The results show
remarkable improvements for networks with two hidden layers in comparison to
those with one or zero while an extension to three hidden layers shows no further
advantages. The best result of a grid search with the 0.8 + 0.2 s input configuration
and degree 3 is given with 20 neurons in the first and 8 neurons in the second hidden
layer (see Fig. 6). Similar network configurations with two hidden layers, e.g., using
4 instead of 8 neurons in the second hidden layer, lead to very similar results, in this
case a slight increase of the ASAEE of 1.5%.

Fig. 6 Architecture of the
finally used ANN. The best
results were archived with a
fully connected MLP with
two hidden layers and
16–20-8–30 neurons
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Fig. 7 Average Euclidean
(AEE), average longitudinal
(AElon) and lateral position
errors (AElat) for the
complete prediction horizon
up to 2.5 s
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Fig. 8 Error ellipses for five
specific prediction times
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of movement. The red arrow
shows the direction of
movement, the ellipses
indicate the mean and
standard deviation of the
estimated position relative to
the ground truth in the ego
coordinate system of the
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4.3 Quality Depending on Prediction Horizon and Type of
Movement

In order to compare the prediction error for different prediction times tpred in this
section we evaluate the AEE performance for several time steps. Figure7 visualizes
the change of the AEE over the regarded prediction time horizon of 2.5 s for all
test data predictions. As one can observe the 2D prediction error increases slightly
disproportionate with growing prediction time tpred . The longitudinal and lateral
components (average absolute errors AElon and AElat) show almost equal behavior
over time.

The error ellipses for five specific prediction times are drawn in Fig. 8. Each ellipse
indicates the mean and standard deviation of the estimated position to the ground
truth in ego coordinates of the pedestrians. This overall evaluation shows a slight
tendency of predicted velocities that are to low in longitudinal direction.
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Fig. 9 Error ellipse plots for the four different types of movement labeled in the test data. Waiting
(a), walking (b), starting (c), and stopping (d)

To investigate this aspect further a similar plot is generated for each of the four
labeled movement types separately in Fig. 9. In Fig. 9a the result for people standing
and waiting on the sidewalk shows relatively small errors, as expected. The error
ellipses appear as concentric circles while the standard deviation even for the maxi-
mumprediction time of 2.5 s is just 1 cm. Regarding the evaluation of walkingmotion
in Fig. 9b a shift of the means against the moving direction and a dominant lateral
standard deviation are visible. This effect is mainly based on changes of walking
direction generating a lateral deviation while the original movement vector in lon-
gitudinal direction gets shorter. Figure9c shows the same plot for starting motions,
where even more significant shifts of the mean prediction errors against the moving
direction are visible. They arise from the fact that a prediction of the initial movement
from a standing position over several seconds is a very difficult task, for machine
vision as well as for human observers. The discrepancy between the prediction of
an almost constant position and the person starting to move forward in the ground



274 M. Goldhammer et al.

Table 2 Quantitative prediction error results for the proposed polynomial-MLP method for the
four investigated types of pedestrian movement and overall

Mov. type AEE (1.0 s) (cm) AEE (2.5 s) (cm) ASAEE (cm/s) Comp. to KF (%)

Overall 19.4 85.9 20.7 −27.4

Waiting 5.3 14.6 5.8 −0.8

Starting 26.6 97.6 28.6 −28.0

Walking 21.4 85.9 24.4 −23.1

Stopping 22.3 73.4 23.2 −32.0

In the right columns the percentage difference of ASAEE to CV Kalman Filter prediction is listed
for comparison

Table 3 Quantitative errors of CV Kalman Filter prediction

Mov. type AEE (1.0 s) (cm) AEE (2.5 s) (cm) ASAEE (cm/s)

Overall 27.9 95.0 28.5

Waiting 6.1 14.6 5.9

Starting 38.0 136.1 39.7

Walking 30.9 99.1 31.7

Stopping 33.2 122.8 34.1

The values are used as baseline for the evaluation of the proposed method in Table2

truth data leads to this effect. The lateral errors show that estimating the movement
direction for standing persons is also a challenging task for the algorithm. Ways to
solve this problem could be the consideration of additional input information for
prediction, such as the viewing direction of the pedestrian or the orientation of the
road she or he intends to cross. In Fig. 9d the opposite effect is visible: For stopping
persons the algorithm slightly tends to overestimate the velocity, such that a mean
shift in direction of movement occurs. Since the stopping motions of people in traffic
scenarios take generally more time than the starting motions (see [9]) the predictor
has more time to react on appearing characteristic features.

Detailed numerical results for two prediction times 1.0 and 2.5 s as well as the
ASAEE are given in Table2. A comparison to the ASAEE values of the KF method
taken as baseline (see Table3) is shown in the right column (reduction of the ASAEE
in percentage) and as bar plot in Fig. 10. The results show an overall improvement
of the prediction result of 27.4% compared to the Kalman Filter. Considering the
individualmovement types, themost benefit of ourmethod occurs at starting (28.0%)
and stopping scenes (32.0%) but also the prediction of walking scenes including
bending is improved (23.6%). The waiting scenarios show almost equal results for
the proposed method and the Kalman Filter.
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Fig. 10 Visual comparison
of ASAEE values for the
proposed polynomial-MLP
and the baseline Kalman
Filter method

4.4 Early Recognition of Initiation of Gait

As shown in the previous section the prediction of a starting motion for a standing
pedestrian is a challenging task. At the same time this case is one of themost common
and important ones in public traffic scenarios. Therefore we investigate the detection
time and precision of the initial movement detection with the proposed method.
The test data for this evaluation consists of 40 tracks of non-instructed pedestrians
waiting at the roadside and then crossing the road.We define the moment of the heel-
off of the first foot moving as reference time t = 0 s and labeled the associated time
stamp by manually observing the video data. The initial movement is considered as
detected successfullywhen the predicted position for tpred = 1.0 s exceeds a specified
Euclidean distance from the current position. This corresponds to a threshold for the
absolute velocity averaged over the first second of the predicted time span. In order to
vary the sensitivity of the motion detection this threshold can be shifted, what which
is equivalent tomoving the operating point of the detector. A lower velocity threshold
accelerates the recognition of the starting motion but increases the probability for
false alarms during the standing phase. For our evaluation we define already a single
violation of the threshold during the standing phase of a scenario as false alarm (FA),
while the correct detection during or after the labeled heel-off without prior false
alarms counts as true positive (TP). The precision P over all scenes is defined as
P = TP/(TP + FA) and depends on the chosen threshold and, thus, on the detection
time relative to heel-off.

The resulting relationship of precision and detection time is plotted in Fig. 11
(red line). The evaluation shows that already at the moment of heel-off a precision
of 80% is reached. This confirms the suitability of the head position tracking as
input source for the neural network since 80% of the initial movements are correctly
detected before there is any movement of a foot. During the next 300ms after heel-
off the reachable precision exceeds 95%. It should be mentioned that the predictor
tested here is not optimized for this motion detection application, especially it is
not designed to comply with the defined false alarm rate criteria of exceeding a low
threshold during the waiting phase. The objective function in the training has been
the goal to minimize the 2D position prediction error, not the binary movement state
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Fig. 11 Precision over mean
relative detection time to
heel-off for initial movement
detection using the proposed
prediction method (red) and
the MCHOG method (blue)
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(standing/walking). As comparison the same scenes are evaluated using the video-
based initial movement detection method presented in [14] (MCHOG, blue dashed
line). As one can see, our method shows advantages for the short prediction times
up to 100–150ms after heel-off while the MCHOG shows slightly higher precision
rates afterwards.

4.5 Runtime Performance

The computation time of the used trajectory-based algorithms is very short compared
to the cycle time of commonly used sensors and algorithms for pedestrian detection.
Nevertheless, in this section the runtime performance of the proposed method is
evaluated.

Using the multi-polynomial configuration evaluated in the previous section (two
input and five output polynomials) the prediction from input to output track requires
35µs on an Intel Core i7-3770 CPU with 3.4GHz. So, under the preference of an
available pedestrian detection and tracking system, the algorithms should operate on
small embedded systems. Compared to the originally proposedmethod using vlon and
vlat as prediction input [10] we could improve this value from 252µs by a factor of
7, which is mainly due to faster preprocessing and exploiting the fast sliding window
polynomial update functions for the |v| and ω time series. The processing times of
single steps are shown in Table4.

Table 4 Processing time of
the single modules, averaged
over the entire test data

Module Processing time (μs)

Track preprocessing < 1

Polynomial fitting 14

Neural network prediction 5

Prediction reconstruction 15



Track-Based Forecasting of Pedestrian Behavior … 277

Table 5 Comparison of AEE of MLP to SVR method for different prediction times

Pred. time (s) 0.5 1.0 1.5 2.0 2.5

AEE (cm)
(MLP)

9.3 19.4 32.3 48.0 66.1

AEE (cm)
(SVR)

9.4 19.9 33.4 49.5 68.6

Comparison
(SVR: 100%)

−1.1% −2.5% −3.3% −3.0% −3.6%

The offline training of the predictorwas performed on the samemachine. It needed
computational times between 20s and 6min for 643 tracks depending on the used
polynomials and neural network topology.

4.6 Comparison to Support Vector Regression

For the purposes of comparison to a kernel-based alternative to MLP we also inves-
tigated Support Vector Regression (SVR, see [2]). Therefore, the MLP prediction
module is substituted by an ε-SVR based on the LibSVM library [3] while the poly-
nomial input remains unchanged.

We applied a radial basis function (RBF-) kernel and optimized the parameters C,
γ , and ε by a coarse-to-fine grid search. Because SVR only allows a single output, we
trained two instances to predict 2D positions for single prediction times in each case
instead of a continuous estimation over a timespan based on the output polynomial
coefficients. The resulting AEE values and a comparison to the above approach are
set out in Table5.

The evaluation shows a slight advantage of the MLP method. It yields smaller
AEE values for all tested prediction horizonswhile the improvement riseswith higher
prediction times up to 3.6% for 2.5 s. Besides the lower prediction errors a major
benefit of the neural network is the capability to predict positions for a continuous
future timespan with a single instance at the same time.

5 Conclusion

In this publication we proposed a method for the prediction of pedestrian trajectories
by polynomial least-squares approximations in combination with MLP neural net-
works. Themethod is trained and tested on 1075 different tracks of pedestrians in real
urban scenarios. Our implementation features the prediction of a continuous future
trajectory for a time horizon of 2.5 s using camera-based head tracking data of the
most recent time interval of 1.0 s as input. Due to the usage of a self-learning method
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as “implicit” movement model, a sole prediction technique is capable of handling
different movement types crucial for traffic safety, e.g., starting and stopping. The
polynomial approximation of the input tracks provides great flexibility as it allows
for independence from sensor type and sampling rate. For a prediction time of 1 s our
tests result in average Euclidean errors of 27cm for starting and 22cm for stopping
scenes, and for 2.5 s in 98 and 86cm, respectively. The proposedmethod outperforms
the prediction quality of a CV model Kalman filter by 27.4% over all test data, by
28% for starting and by 32% for stopping scenes.

Our future work will include the application of the method to bicyclists, who con-
stitute another important proportion ofVRUs.A vehicle-based implementation of the
method requires an additional ego-motion compensation as the pedestrian track in
global coordinates is used as input. Also, systems based on a forward-looking stereo
camera will be investigated. As cars have a limited view on traffic scenarios and
because not all intersections will be equipped with sensors, we envision a scenario
where the protection of VRUs is realized in a cooperative way. The collective intel-
ligence of cars, complemented by information from infrastructure (where available)
and VRUs themselves (if equipped with intelligent devices such as smartphones)
will be exploited to detect the intention of VRUs in a distributed way. This approach
will not only provide an essential component for future traffic automation, it will
also increase the safety of road users.
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