
Image Complexity and Visual Working
Memory Capacity

Juan Huo

Abstract This chapter presents a discussion about the relationship between the
image complexity and the visual working memory capacity. In advertisement and
web site design, the mismatch between the target objects and the real salient objects
can represent the degree of image complexity which is an important reason of low
efficiency and unpleasant reading.Many psychological experiments have also shown
the effect of image complexity on short term memory. In this chapter, a method
was introduced to measure this mismatch and the image complexity. The present
algorithm used in this method combines the mathematic algorithm like SIFT (Scale
Invariant Feature Transformation) and K-means with the cognitive science theory of
visual workingmemory capacity. Results of themeasurement method were validated
by the visual working memory practical experiments. Besides, the results from EEG
study of visual working memory on the same group of test images are also consistent
with the value from our algorithms.

1 Introduction

As most of our knowledge and information comes from the visual system, visual
workingmemory plays an important role in our cognitive process. However, although
hundred billion (1011) neurons and several hundred trillion synaptic connections of
human brain can process and exchange prodigious amounts of information over a
distributed neural network in the matter of milliseconds, the information load we
can process in a short time (within seconds) is limited [1]. It is not clear whether the
limited physical resources is the major cause of visual attention, in the experiment
for both human brain and primate brain, the dual-interference between simultaneous
spatial attention task and spatial memory task show the competition of physical
resource [2]. Even thoughworkingmemory and selective attentionweremanipulated
in two separate and unrelated tasks, the interference between them is obvious, the
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distractors of visual input is crucially determined by the availability of working
memory [3]. InEEGstudy and other kind of psychological experiments, the increased
image complexity or distractors induces increased brain activity [3].

In our daily life, we have to read information from different media, either through
electronic media like web site or from paper publications. Most of these information
are accessed through our visual system to the brain. However, the visual information
that the viewer has paid attention to may not be the useful information that the
author want to show or the viewer is unpleasant with the publication due to high
level of visual complexity [4]. This visual complexity caused mismatch in serious
situation can even induce car accident [5], which is largely due to the dual-task
interference ofmemory and attention [2, 6].An algorithmwhich is based onSIFT and
K-means algorithmhas been designed to estimate thismismatch (namely the distance
between the expected region of “visual conspicuity” and the real salient areas) as a
metric of visual complexity [7]. As visual complexity (or image complexity called
somewhere) is an important reason for this mismatch, the relationship between the
saliency mismatch and the visual complexity estimator is close. Furthermore, it has
been proved in cognitive experiment that the image saliency and attention priority
can determine the visual working memory capacity, where the image information is
stored [8]. The mismatch between the image targets and the interesting points of an
image thus can be proved to have effect on our visual working memory. Until now,
there have been hundreds of papers which have discussed the saliency detection of
images [7]. A comprehensive survey of saliency detection algorithm is not intended
here. The reason for us to employ SIFT is because of its popularity in computer
vision applications and in saliency modelling [9–11]. In addition, SIFT is similar
to the information process of inferior temporal cortex and has good image feature
descriptor which is scale-variation free [9]. In later part of this paper, results of this
SIFT & K-means algorithm are compared with two other saliency map of [12, 13],
which shows similar trend of image saliency shift. Results of the SIFT & K-means
is then further validated by a cognitive experiment. The cognitive experiment results
show the more complex the image background is, the less objects the participants
kept in their visual workingmemory. This is highly correlatedwith our new estimated
value of the saliency mismatch. The algorithm of SIFT & K-means thus can be a
reference to analyze the web site, publication, advertisements, movie frames and
other media contents.

2 Background Knowledge

Saliency detection is considered the key for attentional mechanism. In many papers,
the location of the image saliency is defined as the region where the viewers paid
attention to and is also called the “conspicuity area” [7]. Information is said to be
‘attended’ if the information is kept in visual working memory [12]. It is believed
that there is a two-component framework for the control of where the visual attention
is deployed: a top down cognitive volitional control and a second faster bottom-up
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saliency based primitive mechanism [12]. This chapter investigates people’s direct
response to visual stimuli, namely the bottom-up primitive mechanism. The visual
stimuli which win the competition for saliency is sent to the higher levels of brain
neural networks. If the wrong stimuli or the noise is strong, the expected information
can be overwhelmed and missed. Thus the mismatch between the supposed visual
target and the image saliency can be a serious disturbance for viewers. The viewers
can easily miss cues due to the image quality, visual complexity and the other reasons
[14, 15]. In cognitive science, the limits of saliency-based information search and the
shifts of visual attention is largely due to the limited visual workingmemory capacity
[12, 16–18]. Although researchers of visual working memory have claimed differ-
ent memory capacity limitation (for example in Nelson Cowan’s paper, the visual
working memory capacity is 4, while in Miller’s research the capacity limitation is
7 ± 2) [16, 19, 20], until now the 7 [16, 20]. Thus in the following sections, the
number limitation of visual working memory capacity is set to be 7, which means
the maximum number of salient items that can effectively attract a viewer’s attention
is 7. If the number of salient items is higher than 7, some items can be possibly
ignored by the viewer, which causes the so called attention competition between
the expected target information and the irrelevant ones [12]. The competition results
between the expected attention target and the real interest points in an image is the
study issue of this paper. For the study of interesting points, SIFT is well recognized
as an efficient image feature description method for image recognition [9–11]. As
a bottom-up approach, the SIFT key points detection is not only popular for image
feature recognition, but also widely used as a step for saliency estimation [11, 21,
22].

Until now, the improvement of saliency detection algorithm is still going on and
many algorithms define different salient regions for one same image. In Sect. 3.1.5,
to check the functionality of SIFT & K-means, Itti-Koch and AIM saliency map
are implemented [12, 13]. The Itti-Koch method is an unsupervised method, which
combines color, intensity and other texture information while the method of AIM
makes use of Shannon’s information measure to transfer the image feature plane into
a dimension that closely corresponds to visual saliency. The saliency map generated
by these two methods differs from each other for complex images but are correlated.

3 A Tentative Measurement Algorithm

3.1 Method

Based on the SIFT Density Map (SDM) described in [21], the algorithm of SIFT and
K-means algorithm are implemented to calculate the locations of salient regions in
this paper. Then a scale-free distance between the expected target locations and the
interesting points is measured. This distance is the estimator of the mismatch. Since
the computer recognized saliency differs from each other for different algorithms,



304 J. Huo

it should be noted the algorithm in this paper is not to precisely locate the most
possible first attention point, the locations calculated by K-means algorithm is rather
a reference for viewer’s possible attention.

3.1.1 SIFT and Key Points

To implement SIFT, all the images are transferred to gray scale at first. We then get
the candidate key points from the scale space by finding the maxima and minimum
of the convolution of image I (x, y) and a variable-scale Gaussian kernel G(x, y, σ )

[9, 23]. The scale space of an image is defined as a function L(x, y, σ ).

G(x, y, σ ) = 1

2πσ 2
e−(x2+y2)/2σ 2

(1)

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (2)

Since the computer generated key points are closely related to the real fixation
points which has been validated by [21], here the K-means algorithm is used to find
the relevant locations of interesting areas in an image.

A difference-of-Gaussian function, D(x, y, σ ) is then calculated. The candidate
keys are detected by the maxima and minimum of D(x, y, σ ).

D(x, y, σ ) = (G(x, y, kσ) − G(x, y, σ )) ∗ I (x, y) (3)

= L(x, y, kσ) − L(x, y, σ ) (4)

where k is a constant factor.
After we got the candidate key points, the next step is to have these key points

tested and the key points which have low contrast will be rejected by a threshold
according to the value of |D(x̂)|. The information of locations, scale and ratio of
curvatures are calculated for the selected key points.

3.1.2 Distance Parameters Q

Since the computer generated key points are closely related to the real fixation points
which has beenvalidated by [21], aK-means algorithmwhose cluster center is labeled
asCi is used to calculate the possible locations of interesting points from the cluster of
selected key points. The maximum number of the cluster center is n ≤ min{7, NT },
where NT is the object number. If the nearest expected target object location is labeled
as Ti , then the distance between Ci and Ti can be expressed as ΔCTi . The scale-free
parameter of ΔCTi is represented as Q in Eq.5, which is the reference parameter
for the saliency mismatch. In Eq.5, X is the image length and Y is the image width
in pixel, and k is a constant factor.
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Q =
∑n

i ΔCTi

n
√
XY

(5)

where n ≤ min{7, NT }.

3.1.3 Experiments and Results

To validate this new algorithm, two experiments were carried out with a dataset of
250 images. The location of the target objects are stored in a database before the
target objects are merged with different backgrounds. In our experiments, the target
objects are small white balls with numerical mark on it.

3.1.4 Experiment 1

To express the measurement process, the SIFT algorithm is applied to four images
shown in Fig. 1. Complexity of these images’ background increases in sequence.
In these images, the red diamonds represents the key points cluster center Ci . The
blue arrows represents the vector of the selected key points, which indicates the key
point’s orientation and scale, are derived from the difference-of-Gaussian function D.

After we implement the SIFT & K-means algorithm introduced in Sect. 3.1, the
mismatch value for these four images is listed in Table1. In the first image, the
background is a white plane with very low image complexity, thus theCi is registered
well with Ti . From the second image, the image background becomes more andmore
complex, from cloudy sky to the crowded people, the distraction from the target
objects to the image background becomes more and more serious. More and more
interesting points derived from the SIFT algorithm obviously shift away from the
target objects.

3.1.5 Experiment 2

In the second experiment, the same images in Fig. 1 are processed by Itti-Koch and
AIM algorithms to have their saliency map. Figure2 is the result of Itti-Koch method
and Fig. 3 is the result of AIM method, where the white area is the salient region. To
make a comparison, the red diamond still indicates the location of Ci of Sect. 3.1.4,
similarly the green star in the image represents the target objects.

The saliency map of Itti-Koch and AIM differs from each other, but nearly the
same for the first image: the salient regions all registered well with the green target.
Similar as the results of the SIFT&K-means method in Sect. 3.1.4, the shift from the
salient points starts from the second image Fig. 2b and become most obvious for the
fourth image of Fig. 2d. The distance between the green targets and the center of the
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Fig. 1 Images of experiment. The red diamond is the key points K-means cluster center and the
blue arrows are the vectors of key points

Table 1 Q value of SIFT-K method for Fig. 1

(a) (b) (c) (d)

Q 0.0377 0.0644 0.1334 0.1559

salient regions is then measured by Eq.5, similar method as described in Sect. 3.1.2.
The mismatch parameter Q of Itti-Koch saliency map is shown in Table2.

TheAIMmethod can recognize the target objectswell for nearly all four images of
Fig. 3. However, the shift of the attention is not obvious as the targets are still labeled
as salient while the image background becomes more complex and the number of
salient regions increase globally. Instead of salient region shift, the AMI method
does show the increase of non-target salient information. Especially for Fig. 3c, d,
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Fig. 2 Itti-Koch’s saliency and target objects [12]

Table 2 Q value of Itti-Koch for Fig. 1

(a) (b) (c) (d)

Q 0.0354 0.1396 0.1423 0.2097

the number of labeled white salient regions is higher than visual attention capacity
and thus the viewers can feel difficult to find the target and remember them in visual
working memory.

3.1.6 The Key-Points Ratio Knum

Besides the distance parameter Q, the key point number Knum is another important
parameter to evaluate the image complexity. The key numbers derived from SIFT
algorithm increasewith the complexity level, thus can be another important reference
for the complexity level, especially when parameter Q lost its ability to distinguish
the background saliency and the target memory items (there is possibility that there
is overlap between the background saliency and the target memory items) (Tables3
and 4).
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(a) (b)

(c) (d)

Fig. 3 AIM’s saliency and target objects [13]

Table 3 Knum list of Fig. 1

(a) (b) (c) (d)

Knum 136 527 640 4004

Table 4 Five factors of input

Number of items (Xnum) In each image, large Xnum means higher
memory load

Background complexity (Xback) Higher Xback increases the task difficulty

Test item’s position attribute (Xpos) It is a value to label the randomness of item
positions

4 Human Visual Test

The stimuli are the images shown in Fig. 1. Stimuli of this experiment were pre-
sented for 70 young participants at one time with 50% male and female at the age
of 21 on the average in a large classroom. Each image was presented for 5 s and
followed by 30 s memory recall time for the students to note down the numbers they
have seen in each image. Four students’ records were detected as outlier and rejected
according to standard deviation analysis. The anova analysis of the rest 66 students’
correctly recorded items is shown in Fig. 4. When the image complexity increases,
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Fig. 4 Anova analysis of
human visual experiment

0

1

2

3

4

5

6

7

8

1 2 3 4

co
rr

ec
t n

um
be

rs

the mean number of correctly recalled items decreases significantly. The test results
were shown in Fig. 4. Generally, all three methods’ complexity measurement value is
inverse to students’ remembered item numbers. The Spearman correlation between
the tested new saliency measurement value and the mean correctly recalled number
of items from the students is strong, with |r | = 0.80. We then perform the similar
test for Itti-Koch’s Q and we have |R| = 0.78076 while the correlation for SIFT &
K-means is as high as |R| = 0.96621, p < 0.05.

Although this is not a strict cognitive experiment, this experiment does show the
K-means based saliency mismatch estimation method is consistent with human’s
visual cognitive visual sense. Besides the above experiments, another 32 images
were tested within the similar procedure of Sect. 3.1.

5 Brain Computer Interface Experiments

To further validate the above algorithm and hypothesis, a brain computer interface
experiment is carried out. This task in our EEG experiments is to remember the
numbers attached to white balls which are scattered in different image backgrounds
as shown in Fig. 1. Each number is treated as an item for visual working memory
task. The amount of items to be remembered varies from low to high. The stimuli
were presented and the participants’ response was recorded by EPrime software.
The participants were placed 70cm in front of a 19 in. LCD screen straight ahead
of their eyes horizontally where the visual stimuli were displayed at the center of
the participants’ visual field. The stimuli were subtended around 6.5◦ visual angle.
After the stimuli presentation, the participants then had another 1000ms interval of
retention time before the memory recall.
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6 Image Measurement

The target items to be remembered were numbers which were shown in limited digit
length (<4). We have 4 participants tried 252 groups of images, namely 252 trials
in total. Target items are all smallwhite balls associatedwith randomnumbers in blue,
the numbers to be remembered in every image was different from each other. These
images were shown to the participants in random sequence and each participant had
50 trials on average. The four image background varies from simple to complex and
classified into four levels as shown in Fig. 1. Trials for every participant include all
four level image backgrounds.

To measure the image, the target item number and the background textures were
labeled as a factor vector Xnum, Xback, Xpos. Xnum is the number of items shown
per image, whose value varies from 3 to 50 per image. The image complexity level of
the image background is the second factor considered. Image stimuli in this research
varies from a mono-color background to different texture backgrounds added in the
image to increase the complexity level. The image background complexity value
is labeled as (Xback), which is calculated according to our algorithm of SIFT &
K-means. Another factor worth noting is the position distribution of the items which
is referred to as the factor Xpos. Xpos value is high if the arrangement of the items
is random and is low if the arrangement of the items is in array. The memory recall
process from the participants were recorded and the participants’ responses were
automatically calculated at the end of each trial. To make sure the participant is not
aware of the factor level change and deliberately change their attention, all the factor
values are arranged randomly for each image during the image generation.

6.1 Statistics of Image Measurement Results

The statistics of the total number remembered by the participants Xnum was
described in Fig. 6a. Although the participants were provided a glut of items in one
image, the maximum number of items recalled is no more than 6 in all. Considering
about that there is time related mechanism in brain, some trials were set with longer
duration time. The image stimuli were presented within the same 2 s duration time.
The total average time an image shown is within 2–3 s. It was also observed the short
term memory limitation is also obvious even when an image’s appearance repeated.
In an experiment for a same participant, we have tested one image with 16 numbers
which has a duration of 1 s appeared three times in less than 15min in three separate
trials. It was normally assumed that the participants got familiar with these images
and correct typed in item number should increase significantly. However, participants
in this research increased remembered items from 4 to 6, but no more than 6 (Fig. 5).

We have observed the main brain activity in frontal, parietal and occipital brain
areas. To someextent, the increased visual information load, especially the Xnum and
Xback not only increases the visual working memory load, but also a combination
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Fig. 5 a Shows the total tested input x, y position in the image compared to the whole image screen.
b Shows the correctly picked number x, y positions in the screen. (0, 0) is the center of the screen
while the x, y ranges from −1 to 1. In the figure, CV is the abbreviation of coefficient variation

of attention, mental and visual working memory. This is because the visual working
memory and attention share some common neural substrate [24]. The attention and
working memory representation of the brain cortex have been shown to be over-
lapped in different areas such as frontal and parietal areas [25, 26]. The increase
of EEG power is the reflection of combined attention and mental load. The shared
representation in brain area is also considered an important reason for the limited
workingmemory capacity. As the attention andmental load increase, the information
compete the neural resources in the same brain area.

6.2 Electrophysiological Analysis

The EEG signal was acquired from an electrode cap with 32 channels at 1000Hz
by the BrainVision recorder. The electrode impedance is kept lower than 20K�.
The reference signal VEOG and HEOG were also recorded. The recorded signals
were then processed by a professional software BrainVision Analyzer which is a
professional software for EEG signal analysis. Multiple signal processing and pat-
tern recognition techniques were employed in this software. In this study, the signal
process follows the sequence of dataset preprocessing, IIR Filters, Band Rejection,
artifact rejection, frequency filtering, segment analysis and comparison. Any suspi-
cious muscle activity-related artifact has been rejected during the process of artifact
rejection and ocular correction ICA (Independent Component Analysis). Frequency
higher than 70Hz has been filtered out during band rejection transformwhich is used
to filter out interference signals due to power supply or to poorly shielded electrical
devices. The line noise or called notch frequency (50Hz) is also filtered out in this
process.
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Fig. 6 a The average correctly recalled item numbers in each Xnum group were summarized from
all trials. The error bar is the standard deviation of each group’s remembered items. b The item
numbers are divided into 3 groups, the average EEG power from each trial in high load group
(Xnum ∈ {16, 25, 50}) is nearly one time higher than the low load groups (Xnum ∈ {3, 4, 5})

The filtered participants’ EEG signal was segmented, the brain state during mem-
ory retention time (1 s duration time) is represented by its corresponding EEG power
segment [27, 28]. Average EEG power was calculated from these segments based
on Fast Fourier Transform (FFT) [29–32]. The average EEG power value of that
segment is found to be positively correlated with the score of image complexity.
Generally when the memory load is increased, the participant’s brain activity also
significantly increases compared to the brain’s last state. However, this increase trend
is not infinite. The averaged performance and the remembered item number drops
after Xnum = 16 in Fig. 6a. The results in [33] show the similar brain power limita-
tion for more difficult task, which indicates children and older adults have decreased
alpha powerwith highermemory load. However, in general, the Fig. 6b shows the sta-
tistic higher EEG power level with increased target item numbers. Our results show
the young adults also have on average weak EEG power when the task difficulty is far
beyond their ability. The Pearson correlation test show positive correlation between
the EEG power and the Xnum(p < 0.05 Bonferroni corrected). When Xnum is cer-
tain, the correlation between Xback and the EEG power is also positive (p < 0.05).
In comparison, the correlation between the Xpos and the EEG power is modest,
positive but not significant (0.05 < p < 0.1). In summary, EEG power of working
memory process is closely related to the main visual complexity factor Xnum and
Xback.

7 Conclusion

In this chapter, the relationship between the visual complexity and visual working
memory capacity is discussed. Although the relationship between the visual com-
plexity and the visual attention is well known, the relationship between the visual
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complexity and the working memory capacity is rare to be discussed. The increased
visual complexity means higher information load and caused the difficulty of correct
visual attention towards the locations of memory target items, as the attention is
limited by the visual working memory capacity.

Based on the relationship between the visual working memory and the visual
workingmemory capacity, this chapter introduced a new algorithm SIFT&K-means
to measure the discrepancy between the expected target object and the image salient
regions. The resulting metric for mismatch and visual complexity calculated from
SIFT&K-means algorithm in the first experiment is consistent with the human visual
working memory experiments. Results of the second experiment show comparison
between this method and two saliency detection methods show the reliability of this
algorithm. The SIFT&K-means algorithm can be a reference for themeasurement of
image quality and image complexity. Both EEG and psychological experiments have
the consistent results of visual working memory capacity as our algorithm predicted,
because the EEG results clearly show the increased brain activity is needed for
the correct visual attention when the visual complexity is high. Our findings from
the above experiments prove the link between the visual complexity and the visual
working memory capacity is close.

References

1. Marois, R., Ivanoff, J.: Capacity limits of information processing in the brain. Trends Cognit.
Sci. 9(6), 296–305 (2005)

2. Watanabe, K., Funahashi, S.: Neuralmechanisms of dual-task interference and cognitive capac-
ity limitation in the prefrontal cortex. Nat. Neurosci. 17(4), 601–611 (2014)

3. de Fockert, J.W., Rees, G., Frith, C.D., Lavie, N.: The role of working memory in visual
selective attention. Science 291(5509), 1803–1806 (2001)

4. Tuch, A.N., Bargas-avila, J.A., Opwis, K., Wilhelm, F.H.: Visual complexity of websites:
Effects on users’ experience, physiology, performance, and memory. Int. J. Hum.-Comput.
Studi./Int. J. Man-Mach. Stud. 67(9), 703–715 (2009)

5. Reimer, B.: Impact of cognitive task complexity on drivers’ visual tunneling. Transp. Res. Rec.
2138, 13–19 (2009)

6. Strayer, D.L., Johnston, W.A.: Driven to distraction: dual-task studies of simulated driving and
conversing on a cellular telephone. Psychol. Sci. 12(6), 462–466 (2001)

7. Toet, A.: Computational versus psychophysical bottom-up image saliency: a comparative eval-
uation study. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2131–2146 (2011)

8. Melcher, D., Piazza, M.: The role of attentional priority and saliency in determining capacity
limits in enumeration and visual working memory. PloS One 6(12), e29296 (2011)

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004)

10. Li, Z., Itti, L.: Saliency and gist features for target detection in satellite images. IEEE Trans.
Image Process. 20(7), 2017–2029 (2011)

11. De Campos, T., Csurka, G., Perronnin, F.: Images as sets of locally weighted features. Comput.
Vis. Image Underst. 116(1), 68–85 (2012)

12. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual
attention. Vis. Res. 40(10–12), 1489–1506 (2000)

13. Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic
approach. J. Vis. 9(3) (2009)



314 J. Huo

14. Cardaci, M., Di Gesu, V., Petrou, M., Tabacchi, M.E.: A fuzzy approach to the evaluation of
image complexity. Fuzzy Sets Syst. 160(10), 1474–1484 (2009)

15. Da Silva, M.P., Courboulay, V., Estraillier, P.: Image complexity measure based on visual
attention. In: 2011 18th IEEE International Conference on Image Processing (ICIP 2011), pp.
3281–3284 (2011)

16. Brzezicka, A., Wróbel, A., Kamin, J.: Neurobiology of learning and memory short-term mem-
ory capacity (7 ± 2) predicted by theta to gamma cycle length ratio. Neurobiol. Learn. Mem.
95, 19–23 (2011)

17. Vogel, E.K.,Machizawa,M.G.:Neural activity predicts individual differences in visualworking
memory capacity 428, 748–751 (2004)

18. Tsubomi, H., Fukuda, K., Watanabe, K., Vogel, E.K.: Neural limits to representing objects still
within view. J. Neurosci. 33(19), 8257–8263 (2013)

19. Cowan, N.: Themagical number 4 in short-term memory: a reconsideration ofmental storage
capacity. Behav. Brain Sci. 24, 87–185 (2000)

20. Miller, G.A.: The magical number seven plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 63(2), 81–97 (1956)

21. Ardizzone, E., Bruno, A., Mazzola, G.: Visual saliency by keypoints distribution analysis. In:
16th International Conference on Image Analysis and Processing, ICIAP 2011, September
14, 2011–September 16, ser. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6978 LNCS, pp.
691–699. Springer Verlag (2011)

22. Uchida, S., Shigeyoshi, Y., Kunishige, Y., Yaokai, F.: A keypoint-based approach toward
scenery character detection. In: 11th International Conference on Document Analysis and
Recognition, ICDAR 2011, September 18, 2011–September 21, ser. Proceedings of the Inter-
national Conference on Document Analysis and Recognition, ICDAR, pp. 819–823. IEEE
Computer Society (2011)

23. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the
Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

24. Mayer, J.S., Bittner, R.A., Nikolic, D., Bledowski, C., Goebel, R., Linden, D.E.J.: Common
neural substrates for visual workingmemory and attention. Neuroimage 36(2), 441–453 (2007)

25. Buschman, T.J., Siegel, M., Roy, J.E., Miller, E.K.: Neural substrates of cognitive capacity
limitations. Proc. Natl. Acad. Sci. USA 108(27), 11252–11255 (2011)

26. Lepsien, J., Griffin, I.C., Devlin, J.T., Nobrea, A.C.: Directing spatial attention in mental repre-
sentations: interactions between attentional orienting and working-memory load. Neuroimage
26(3), 733–743 (2005)

27. Delorme, A.,Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial eeg dynam-
ics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

28. Junfeng, S., Yingying, T., Lim, K.O., Jijun, W., Shanbao, T., Hui, L., Bin, H.: Abnormal
dynamics of eeg oscillations in schizophrenia patients on multiple time scales. IEEE Trans.
Biomed. Eng. 61(6), 1756–1764 (2014)

29. Ghafar, R., Hussain, A., Samad, S.A., Tahir, N.M.: Comparison of FFT and AR techniques for
scalp EEG analysi. Ser. IFMBE Proceedings, vol. 21, pp. 158–161 (2008)

30. Lehmann, D., Michel, C.M.: Intracerebral dipole sources of eeg fft power maps. Brain Topogr.
2(1–2), 155–164 (1989)

31. Michel, C.M., Lehmann, D., Henggeler, B., Brandeis, D.: Localization of the sources of eeg
delta, theta, alpha and beta frequency bands using the fft dipole approximation. Electroen-
cephalogr. Clin. Neurophysiol. 82(1), 38–44 (1992)

32. Singh, Y., Singh, J., Sharma, R., Talwar, A.: Fft transformed quantitative eeg analysis of short
term memory load. Ann. Neurosci. 22(3), 176–179 (2015)

33. Sander, M.C., Werkle-bergner, M., Lindenberger, U.: Amplitude modulations and intertribal
phase stability of alpha-oscillations differentially reflect working memory constraints across
the lifespan. NeuroImage 59, 646–654 (2012)


	Image Complexity and Visual Working Memory Capacity
	1 Introduction
	2 Background Knowledge
	3 A Tentative Measurement Algorithm
	3.1 Method

	4 Human Visual Test
	5 Brain Computer Interface Experiments 
	6 Image Measurement 
	6.1 Statistics of Image Measurement Results
	6.2 Electrophysiological Analysis

	7 Conclusion
	References


