
Chapter 5
Trace Optimization of Polynomials
in Non-commuting Variables

5.1 Introduction

In Chap. 3 trace-positivity together with the question how to detect it was explored
in details. Due to hardness of the decision problem “Is a given nc polynomial f
trace-positive?” we proposed a relaxation of the problem, i.e., we are asking if f is
cyclically equivalent to SOHS. The tracial Gram matrix method based on the tracial
Newton polytope was proposed (see Sects. 3.3 and 3.4) to efficiently detect such
polynomials.

In this chapter we turn our attention to trace optimization of nc polynomials. We
are interested in computing the smallest number the trace of a given nc polynomial
can attain or approaches over a given nc semialgebraic set of symmetric matrices.
This is in general a very difficult question, so we employ approximation tools
again and present a tracial Lasserre relaxation scheme [Las01, Las09]. It yields
again a hierarchy of semidefinite programming problems resulting in an increasing
sequence of lower bounds for the optimum value. Finally we also shortly discuss
the extraction of optimizers.

5.2 Unconstrained Trace Optimization

The purpose of this section is twofold. First we formulate the unconstrained trace
optimization problem and second we present a Lasserre type of approximation
hierarchy consisting of semidefinite programming problems. We also explore the
duality properties.

Let f ∈ R〈X〉 be given. We are interested in the trace-minimum of f , that is,

tr min(f ) := inf{tr f (A) | A ∈ S
n }. (Trmin)
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88 5 Trace Optimization of Polynomials in Non-commuting Variables

This is a hard problem. For instance, a good understanding of trace-positive
polynomials is likely to lead to a solution of the Connes’ embedding conjecture
[Con76], an outstanding open problem from operator algebras; see [KS08]. Another
way to see the hardness is due to a result of Ji [Ji13] who proved that deciding
whether the quantum chromatic number of a graph is at most three is NP-hard. This
problem in turn is a conic optimization problem which is dual to an optimization
problem over certain trace-positive polynomials, see [LP15] for details.

We can rewrite (Trmin) as

tr min(f ) = sup{a | tr(f −a)(A)≥ 0, ∀A ∈ S
n}. (Trmin′)

We again assume sup∅=−∞. Nc polynomials from Θ 2 are trace-positive therefore
it is natural to consider the following relaxation of (Trmin′):

trΘ 2(f ) := sup{a | f −a ∈Θ 2
2d}, (Trsohs)

where 2d = cdeg f (if cdeg f is an odd number, then tr min(f ) = trΘ 2(f ) =−∞, hence
we do not need to consider this case).

Remark 5.1. Since we are only interested in the trace of nc polynomials f ∈ R〈X〉,
when evaluated on elements from S

n, DS, or D II1
S we use that tr f (A) = tr f ∗(A) for

all A; hence there is no harm in replacing f by its symmetrization 1
2 (f + f ∗). Thus

we will focus in this chapter on symmetric nc polynomials.

Lemma 5.2. Let f ∈ SymR〈X〉. Then trΘ 2(f )≤ tr min(f ).

Proof. Indeed, if a ∈ R is such that f − a ∈ Θ 2, then 0 ≤ tr(f − a) = tr f − tra =
tr f −a, hence tr f ≥ a. �

In general we do not have equality in Lemma 5.2. For instance, the Motzkin
polynomial f satisfies tr min(f ) = 0 and trΘ 2(f ) = sup∅ := −∞, see [KS08] and
Example 5.14. Nevertheless, trΘ 2(f ) gives a solid approximation of tr min(f ) for
most of the examples and is easier to compute. It is obtained by solving an instance
of SDP.

Suppose f ∈ SymR〈X〉 is of degree ≤ 2d (with constant term f1). Let Wd be a
vector of all words up to degree d with first entry equal to 1. Then (Trsohs) rewrites
into

sup f1 −〈E1,1 |F 〉
s. t. f − f1

cyc
∼ W∗

d(G−〈E1,1 |F 〉E1,1)Wd

F 
 0.

(TrSDP)

Here E1,1 is again the matrix with all entries 0 except for the (1,1)-entry which is 1.
The cyclic equivalence translates into a set of linear constraints, cf. Proposition 1.51.

In general (TrSDP) does not satisfy the Slater condition. Nevertheless:
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Theorem 5.3. (TrSDP) satisfies strong duality.

Proof. The proof is essentially the same as that of Theorem 4.1 so is omitted. We
only mention an important ingredient is the closedness of the cone Θ 2 which is a
trivial corollary of Proposition 1.58. �

Repeating the Lagrangian procedure from (4.1)–(4.4) we obtain the dual
to (TrSDP):

LΘ 2(f ) = infL(f )

s. t. L(1) = 1
L ∈ (Θ 2

2d)
∨

Following Remark 1.64 we rewrite this problem into an explicit semidefinite
programming problem:

LΘ 2(f ) = inf 〈HL |Gf 〉
s. t. (HL)u,v = (HL)w,z for all u∗v

cyc
∼ w∗z,

(HL)1,1 = 1,
HL 
 0.

(TrDSDP)

Recall that HL from the SDP above is a tracial Hankel matrix. It is of order
σ(d). By Theorem 5.3, we have trΘ 2(f ) = LΘ 2(f ). The question is, does trΘ 2(f ) =
LΘ 2(f ) = tr min(f ) hold? This is true for the case of unconstrained eigenvalue
optimization (see Theorem 5.3), while in the unconstrained trace optimization it
only holds under additional assumptions. We show that if the optimum solution
of (TrDSDP) satisfies a flatness condition (see Definitions 1.47 and 1.49), then the
answer to the question is affirmative. In particular, the proposed Θ 2-relaxation is
then exact. Furthermore, in this case we can even extract global trace-minimizers
of f .

Theorem 5.4. If the optimizer Hopt
L of (TrDSDP) satisfies the flatness condition, i.e.,

the linear functional underlying Hopt
L is 1-flat, then the Θ 2-relaxation is exact:

trΘ 2(f ) = LΘ 2(f ) = tr min(f ).

Proof. The first equality is strong duality shown in Theorem 5.3. For the second
equality, if the linear functional Lopt corresponding to Hopt

L satisfies the flatness
condition, then by Theorem 1.71 there exist finitely many n-tuples A(j) of symmetric
matrices and positive scalars λj > 0 with ∑j λj = 1 such that

Lopt(f ) = ∑
j

λjtr f (A(j)).

Hence LΘ 2(f ) = Lopt(f )≤ tr min(f ) and equality follows from weak duality. �
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5.3 Constrained Trace Optimization

In this section we present the tracial version of Lasserre’s relaxation scheme to
minimize the trace of an nc polynomial.

Let S ⊆ SymR〈X〉 be finite and let f ∈ SymR〈X〉. We are interested in the
smallest trace the polynomial f attains on DS, i.e.,

tr min(f ,S) := inf
{

tr f (A) | A ∈DS
}
. (Constr-Trmin)

Hence tr min(f ,S) is the greatest lower bound on the trace of f (A) for tuples of
symmetric matrices A ∈ DS, i.e., tr(f (A)− tr min(f ,S)A) ≥ 0 for all A ∈ DS, and
tr min(f ,S) is the largest real number with this property.

We introduce tr II1
min(f ,S)∈R as the trace-minimum of f on D II1

S . Since D II1
S ⊇DS,

we have tr II1
min(f ,S) ≤ tr min(f ,S). As mentioned in Remark 1.61 (see also Proposi-

tion 1.63), tr II1
min(f ,S) is more approachable than tr min(f ,S). In fact, in this section

we shall present Lasserre’s relaxation scheme producing a sequence of computable

lower bounds tr (s)Θ 2(f ,S) monotonically converging to tr II1
min(f ,S). Here, as always,

the constraint set S is assumed to produce an archimedean quadratic module MS.
From Proposition 1.62 we can bound tr II1

min(f ,S) from below by

tr (s)Θ 2(f ,S) := sup λ
s. t. f −λ ∈Θ 2

S,2s,
(Constr-Tr(s)SDP)

for 2s ≥ cdeg f . For 2s < cdeg f , (Constr-Tr(s)SDP) is infeasible.

For each fixed s, (Constr-Tr(s)SDP) is an SDP (see Proposition 5.7 below) and leads
to the tracial version of the Lasserre relaxation scheme.

Corollary 5.5. Let S ⊆ SymR〈X〉, and let f ∈ SymR〈X〉. If MS is archimedean,
then

tr (s)Θ 2(f ,S)−→s→∞
tr II1

min(f ,S). (5.1)

The sequence tr (s)Θ 2(f ,S) is monotonically increasing and bounded from above, but
the convergence in (5.1) is not finite in general.

Proof. This follows from Proposition 1.63. For each m ∈ N, there is s(m) ∈ N with

f − tr II1
min(f ,S)+

1
m

∈Θ 2
S,2s(m).

In particular,

tr (s(m))

Θ 2 (f )≥ tr II1
min(f ,S)−

1
m
.
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Since also

tr (s(m))

Θ 2 (f )≤ tr II1
min(f ,S),

we obtain

lim
s→∞

tr (s)Θ 2(f ,S) = lim
m→∞

tr (s(m))

Θ 2 (f ) = tr II1
min(f ,S).

�
Example 5.6. For a simple example with non-finite convergence, consider

p = (1−X2)(1−Y2)+(1−Y2)(1−X2),

and

S = {1−X2,1−Y2}.
Then tr II1

min(p,S) = 0, but p �∈Θ 2
S [KS08, Example 4.3]. The first few lower bounds

for tr II1
min(p,S) are in the second column of Table 5.1.

Generally we are interested in tr II1
min(f ,S), but there is no good procedure or

algorithm for computing it. Therefore we stick to tr (s)Θ 2(f ,S) since its computational

feasibility comes from the fact that verifying whether f ∈ Θ 2
S,2s is a semidefinite

programming feasibility problem when S is finite.

Proposition 5.7. Let f = ∑w fww ∈ SymR〈X〉 and S = {g1, . . . ,gt} ⊆ SymR〈X〉
with gi = ∑w∈〈X〉deggi

gi
ww. Then f ∈ Θ 2

S,2s if and only if there exists a positive

semidefinite matrix A of order σ(s) and positive semidefinite matrices Bi of order
σ(si) (recall that si = �s−deg(gi)/2�) such that for all w ∈ 〈X〉2s,

fw = ∑
u,v∈〈X〉s
u∗v

cyc
∼ w

Au,v +∑
i

∑
u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

gi
zB

i
u,v. (5.2)

Proof. We start with the “only if” part. Suppose f ∈ Θ 2
S,2s, hence there exist nc

polynomials ai = ∑w∈〈X〉s ai
ww and bi,j = ∑w∈〈X〉si

bi,j
w w such that f

cyc
∼ ∑i a∗i ai +

∑i,j b∗i,jgibi,j. In particular this means that for every w ∈ 〈X〉2s the following must
hold:

fw = ∑
i

∑
u,v∈〈X〉s
u∗v

cyc
∼ w

ai
uai

v +∑
i,j

∑
u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

bi,j
u bi,j

v gi
z

= ∑
u,v∈〈X〉s
u∗v

cyc
∼ w

∑
i

ai
uai

v +∑
i

∑
u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

gi
z ∑

j

bi,j
u bi,j

v .
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If we define a matrix A of order σ(s) and matrices Bi of order σ(si) by
Au,v = ∑i ai

uai
v and Bi

u,v = ∑j bi,j
u bi,j

v , then these matrices are positive semidefinite
and satisfy (5.2).

To prove the “if” part we use that A and Bi are positive semidefinite, therefore
we can find (column) vectors Ai and Bi,j such that A = ∑i AiAT

i and Bi = ∑j Bi,jBT
i,j.

These vectors yield nc polynomials ai = AT
i Wσ(s) and bi,j = BT

i,jWσ(si), which give

a certificate for f ∈Θ 2
S,2s. �

Remark 5.8. The last part of the proof of Proposition 5.7 explains how to construct
the certificate for f ∈Θ 2

S,2s. First we solve the semidefinite feasibility problem in the
variables A∈ S

+
σ(s), Bi ∈ S

+
σ(si)

subject to constraints (5.2). Then we use the Cholesky

or eigenvalue decomposition to compute column vectors Ai ∈R
σ(s) and Bi,j ∈R

σ(si)

which yield desired polynomial certificates ai ∈ R〈X〉s and bi,j ∈ R〈X〉si .

By Proposition 5.7, (Constr-Tr(s)SDP) is an SDP. It can be explicitly presented as

tr (s)Θ 2(f ,S) = sup f1 −A1,1 −∑i gi
1Bi

1,1

s. t. fw = ∑ u,v∈〈X〉s
u∗v

cyc
∼ w

Au,v +∑i ∑ u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

gi
zB

i
u,v

for all 1 �= w ∈ 〈X〉2s,

A ∈ S
+
σ(s), Bi ∈ S

+
σ(si)

,

(Constr-Tr(s)SDP′)

where we use si = �s−deg(gi)/2�.

Lemma 5.9. The dual semidefinite program to (Constr-Tr(s)SDP) and (Constr-Tr(s)SDP′)
is

L(s)
Θ 2(f ,S) = inf L(f )

s. t. L : R〈X〉2s → R is linear and symmetric,
L(1) = 1,
L(pq−qp) = 0, for all p,q ∈ R〈X〉s,

L(q∗q)≥ 0, for all q ∈ R〈X〉s,

L(h∗gih)≥ 0, for all i and all h ∈ R〈X〉si ,

where si = �s−deg(gi)/2�.

(Constr-Tr(s)DSDP)

Proof. For this proof it is beneficial to adopt a functional analytic viewpoint

of (Constr-Tr(s)SDP) and (Constr-Tr(s)SDP′).
We have the following chain of reasoning, similar to (4.1)–(4.4) (recall

2s ≥ �cdeg f �):

sup{λ | f −λ ∈Θ 2
S,2s} = sup

{
λ | f −λ ∈Θ 2

S,2s

}

= sup {λ | ∀L ∈ (
Θ 2

S,2s

)∨
: L(f −λ )≥ 0} (5.3)
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= sup {λ | ∀L ∈ (
Θ 2

S,2s

)∨
with L(1) = 1 : L(f )≥ λ} (5.4)

= inf {L(f ) | L ∈ (
Θ 2

S,2s

)∨
with L(1) = 1}. (5.5)

(Recall that
(
Θ 2

S,2s

)∨
is the set of all linear functionals R〈X〉2s → R nonnegative

on Θ 2
S,2s.) The last equality is trivial. We next give the reasoning behind the third

equality. Clearly, “≤” holds since every λ feasible for the right-hand side of (5.3)
is also feasible for the right-hand side of (5.4). To see the reverse inequality
we consider an arbitrary λ feasible for (5.4). Note that λ ≤ f1 = L̃(f ), where
L̃ ∈ (

Θ 2
S,2s

)∨
maps every polynomial into its constant term. We shall prove that

L(f −λ )≥ 0 for every L ∈ (
Θ 2

S,2s

)∨
. Consider an arbitrary L ∈ (

Θ 2
S,2s

)∨
and define

L̂ = L+ε
L(1)+ε for some ε > 0. Then L̂(1) = 1 and L̂ ∈ (

Θ 2
S,2s

)∨
, therefore L̂(f −λ )≥ 0,

whence L(f −λ )≥ ε(λ −1). Since ε was arbitrary we get L(f −λ )≥ 0.
The problem inf{L(f ) | L ∈ (

Θ 2
S,2s

)∨
with L(1) = 1} is an SDP, and this is

easily seen to be equivalent to the problem (Constr-Tr(s)DSDP) given above. Indeed, if
L∈ (

Θ 2
S,2s

)∨
, L(1) = 1, then L must be nonnegative on the terms (1.18) and on every

commutator, therefore L is feasible for the constraints in (Constr-Tr(s)DSDP). �
Proposition 5.10. Suppose DS contains an ε-neighborhood of 0. Then the

SDP (Constr-Tr(s)DSDP) admits Slater points.

Proof. Since the constructed linear functional in the proof of Proposition 4.9 is
tracial, the same proof can be applied here and is thus omitted. �

Remark 5.11. As in the eigenvalue case, having Slater points for (Constr-Tr(s)DSDP)
is important for the duality theory. In particular, there is no duality gap, so for every
s ≥ 1

L(s)
Θ 2(f ,S) = tr (s)Θ 2(f ,S)

and

LΘ 2(f ,S) := lim
s→∞

L(s)
Θ 2(f ,S) = tr II1

min(f ,S).

Algorithms to compute the lower bounds tr (s)Θ 2(f ,S) = L(s)
Θ 2(f ,S) for tr II1

min(f ,S)
and tr min(f ,S) are implemented in NCSOStools [CKP11] . We demonstrate it on
a few examples at the end of the chapter.

http://ncsostools.fis.unm.si/
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5.4 Flatness and Extracting Optimizers

In this section we assume S ⊆ SymR〈X〉 is finite, and f ∈ SymR〈X〉2d. Let MS be
archimedean. In this case D II1

S is bounded and hence tr II1
min(f ,S)>−∞. Since MS is

archimedean, for s big enough (Constr-Tr(s)SDP) will be feasible.
Like in constrained eigenvalue optimization, flatness is a sufficient condition for

finite convergence of the bounds tr (s)Θ 2(f ,S) = L(s)
Θ 2(f ,S) and exactness of the relaxed

solution; it also enables the extraction of optimizers.
We first recall a variant of Theorem 1.71 adapted to this setting.

Theorem 5.12. Suppose Lopt is an optimal solution of (Constr-Tr(s)DSDP) for some
s ≥ d + δ that is δ -flat. Then there are finitely many n-tuples A(j) of symmetric
matrices in DS and positive scalars λj > 0 with ∑j λj = 1 such that

Lopt(f ) = ∑
j

λjtr f (A(j)). (5.6)

In particular, tr min(f ,S) = tr II1
min(f ,S) = L(s)

Θ 2(f ,S) = tr (s)Θ 2(f ,S).

We propose Algorithm 5.1 to find solutions of (Constr-Tr(s)DSDP) for s ≥ d + δ
which are δ -flat enabling us to extract a minimizer of (Constr-Tr(s)SDP). It is a variant
of Algorithm 4.2 and performs surprisingly well; e.g., it finds flat solutions in all
tested situations where finite convergence was numerically detected (i.e., at least
two consequent bounds were equal).

Algorithm 5.1: Randomized algorithm to find flat solutions for prob-

lem (Constr-Tr(s)DSDP)

Input: f ∈ SymR〈X〉 with deg f = 2d, S = {g1, . . . ,gt},
δ = �maxi deg(gi)/2�, δmax;

1 Lflat = 0;
2 for s = d+δ ,d+δ +1, . . . ,d+δ +dmax do

3 Compute L(s) – the optimal solution for (Constr-Tr(s)DSDP);
4 if L(s) is δ -flat then
5 Lflat = L(s). Stop;
6 end

7 Compute L(s)
rand;

8 if L(s)
rand is δ -flat then

9 Lflat = L(s)
rand. Stop;

10 end
11 end

Output: Lflat;
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In Step 7 we solve the SDP which is obtained from (Constr-Tr(s)DSDP) by fixing the
upper left-hand corner of the Hankel matrix to be equal to the upper left-hand corner
of the Hankel matrix of L(s) and by taking a full random objective function—like

in (Constr-Eig(s)RAND). We repeat this step several (e.g. 10) times. In our experiments,
this algorithm very often returns flat solutions if the module Θ 2

S,2d is archimedean.
On the other hand, there is little theoretical evidence supporting this performance.

We repeat Steps 1–3 at most δmax + 1 times, where δmax is for computational
complexity reasons chosen so that d+δ +δmax is at most 10, when we have two nc
variables, and is at most 8 if we have three nc variables. Otherwise the complexity of
the underlying SDP exceeds the capability of our current hardware. We implemented
Steps 1–3 from 5.1 in the NCSOStools function NCtraceOptRand.

In [KP16] we report numerical results obtained by running Algorithm 5.1 on
random polynomials. We generated random polynomials as in Sect. 4.3.2 and we
check for δ -flatness by computing ranks much like in Sect. 4.3.2. In all cases we
took the tolerance to be min{30 ·errflat,10−3}.

With this tolerance we can observe (as in Sect. 4.3.2) that in almost all tested
(random) cases Algorithm 5.1 returned a flat optimal solution already after the first
step, i.e., for s = d+δ ; see [KP16, Table 4] for concrete results.

Once we have a flat optimum solution for (TrDSDP) or (Constr-Tr(s)DSDP) we can
extract optimizers, i.e., compute an n-tuple of symmetric matrices A, which is in
DS when we consider the constrained case, such that tr(A) is equal to tr min(f ) and
tr min(f ,S), respectively, by running Algorithm 1.2.

5.5 Implementation

We can compute the unconstrained and constrained trace optimum exactly only
for very simple and nice examples. For all other cases we shall use numerical
algorithms. The software package NCSOStools contains NCcycMin to compute
the unconstrained trace optimum (i.e., trΘ 2(f ) = LΘ 2(f )) and NCcycOpt to extract
the related optimizers if the dual optimal solution is 1-flat. Likewise we have

NCtraceOpt to compute tr (s)Θ 2(f ,S) and NCtraceOptRand to compute flat

solutions together with tr II1
min(f ,S) when a flat solution is found. In this case we

also extract optimizers by running Algorithm 1.2.

Example 5.13. Let

f = 3+X2
1 +2X3

1 +2X4
1 +X6

1 −4X4
1X2 +X4

1X2
2 +4X3

1X2 +2X3
1X2

2 −2X3
1X3

2

+2X2
1X2 −X2

1X2
2 +8X1X2X1X2 +2X2

1X3
2 −4X1X2 +4X1X2

2 +6X1X4
2 −2X2

+X2
2 −4X3

2 +2X4
2 +2X6

2 .

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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The minimum of f on R
2 is 1.0797. Using NCcycMin we obtain the floating point

trace-minimum trΘ 2(f ) = 0.2842 for f which is different from the commutative
minimum. In particular, the minimizers will not be scalar matrices. The dual optimal
solution for (TrDSDP) is of rank 4 and 1-flat. Thus the matrix representation of the
multiplication operators Ai is given by 4×4 matrices (see the proof of Theorem 1.69
and Algorithm 1.1):

A1 =

⎡

⎢
⎢
⎣

−1.0761 0.5319 0.1015 0.2590
0.5319 0.4333 −0.3092 0.2008
0.1015 −0.3092 −0.2633 0.9231
0.2590 0.2008 0.9231 −0.3020

⎤

⎥
⎥
⎦ ,

A2 =

⎡

⎢
⎢
⎣

0.7107 0.2130 0.7090 0.4415
0.2130 0.2087 0.3878 −0.9321
0.7090 0.3878 −0.5016 −0.0757
0.4415 −0.9321 −0.0757 0.1393

⎤

⎥
⎥
⎦ .

The Artin–Wedderburn decomposition for the matrix ∗-algebra A generated
by A1,A2 gives in this case only one block. Using NCcycOpt, which essentially
implements Algorithm 1.2 leads to the trace-minimizer

Â1 =

⎡

⎢
⎢
⎣

−1.0397 −0.0000 0.1024 0.6363
−0.0000 −1.0397 −0.6363 0.1024

0.1024 −0.6363 0.4356 −0.0000
0.6363 0.1024 −0.0000 0.4356

⎤

⎥
⎥
⎦ ,

Â2 =

⎡

⎢
⎢
⎣

−0.4246 0.0000 −0.1377 −0.8559
0.0000 −0.4246 0.8559 −0.1377

−0.1377 0.8559 0.7031 0.0000
−0.8559 −0.1377 0.0000 0.7031

⎤

⎥
⎥
⎦ .

The reader can easily verify that tr (f (Â1, Â2)) = 0.2842.
Note that A is (as a real ∗-algebra) isomorphic to M2(C). For instance,

A ≈ Ã =

[ −1.0397 0.6363+0.1024i
0.6363−0.1024i 0.4356

]
,

B ≈ B̃ =

[ −0.4246 −0.8559−0.1377i
−0.8559+0.1377i 0.7031

]
.

In this case it is possible to find a unitary matrix U ∈C
2×2 with A′ = U∗ÃU ∈R

2×2

and B′ = U∗B̃U ∈ R
2×2, e.g.,
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U =

[
0.9803+0.1576i 0.1176+0.0189i

0.1191 −0.9929

]
,

A′ =
[−0.8663 −0.8007
−0.8007 0.2622

]
, B′ =

[−0.6136 0.7089
0.7089 0.8921

]
.

Then (A′,B′) ∈ (
S

2×2
)2

is also a trace-minimizer for f .

Example 5.14. We demonstrate our software for constrained trace optimization for
the set S = {1−X2,1−Y2} with the polynomial

p = (1−X2)(1−Y2)+(1−Y2)(1−X2)

from Example 5.6, and a non-commutative version of the Motzkin polynomial from
Example 4.25,

q = XY4X+YX4Y −3XY2X+1.

It is obvious (see Example 5.6 and [KS08, Example 4.3]) that tr II1
min(p,S) = 0.

Similarly, tr II1
min(q,S) = 0 (see [KS08, Example 4.4]). We use NCSOStools as

follows:

>> NCvars x y
>> S = {1 - x^2, 1 - y^2};
>> p = (1-x^2)*(1-y^2)+(1-y^2)*(1-x^2);
>> q = x*y^4*x+y*x^4*y-3*x*y^2*x+1;

To compute the sequence of lower bounds tr (s)Θ 2(p,S) for tr II1
min(p,S) we call

>> [opt,decom_sohs,decom_S,base] = NCtraceOpt(p,S,2*s);

with s = 2,3,4,5. Similarly we obtain bounds for q. Results are reported in
Table 5.1.

We can see that the sequence of bounds tr (s)Θ 2(p,S) of p increases and does not

reach the limit for s ≤ 5. Actually, it never reaches tr II1
min(p,S); see Example 5.6. On

the other hand, the sequence of bounds for q is finite and reaches the optimal value

already for s = 3 (tr (2)Θ 2(q,S) is not defined).

Table 5.1 Lower bounds
tr (s)Θ 2 (f ,S) for p and q over

S = {1−X2,1−Y2}
s tr (s)Θ 2 (p,S) tr (s)Θ 2 (q,S)

2 −0.2500 n.d.

3 −0.0178 0

4 −0.0031 0

5 −0.0010 0
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Table 5.2 Lower bounds tr (s)Θ 2 (p,S),

tr (s)Θ 2 (q,S), and tr (s)Θ 2 (r,S) over S =

{1−X,1−Y,1+X,1+Y}
s tr (s)Θ 2 (p,S) tr (s)Θ 2 (q,S) tr (s)Θ 2 (r,S)

2 −2.0000 n.d. −1.0000

3 −0.2500 −0.0261 −1.0000

4 −0.0178 0.0000 −1.0000

5 −0.0031 0.0000 −1.0000

Example 5.15. Let p,q be as in Example 5.14 and let r = XYX. Let us define
S = {1−X,1− Y,1+X,1+ Y}. The resulting sequences from the relaxation are
in Table 5.2 and show that there is again no convergence in the first four steps
for p, while for q we get convergence at s = 4 and for r we get the optimal value
immediately (at s = 2).

To compute, e.g., tr (5)Θ 2(p,S) we need to solve (Constr-Tr(s)SDP′) which has 3739
linear constraints and five positive semidefinite constraints with matrix variables of
order 63, 31, 31, 31, 31.

Example 5.16. Let us consider p = XY , q = 1+X(Y −2)+Y(X−2), f = p∗q+q∗p
and S = {4−X2,4−Y2}. If we use NCSOStools and call

>> NCvars x y
>> p = x*y;q = 1+x*(y-2)+y*(x-2);f = p’*q+q’*p;
>> S = {4-x^2,4-y^2};
>> [opt_2,decom_1,dec_S1,base1] = NCtraceOpt(f,S,4);
>> [opt_3,decom_2,dec_S2,base2] = NCtraceOpt(f,S,6);
>> [opt_4,decom_3,dec_S3,base3] = NCtraceOpt(f,S,8);

we obtain opt_2 = tr (2)Θ 2(f ,S) = −8 and opt_3 = tr (3)Θ 2(f ,S) = tr (4)Θ 2(f ,S) =
−5.2165. This was checked numerically but running NCtraceOptRand did not
finish with a numerical proof of 1-flat solutions, so we cannot claim that tr II1

min(f ,S)
is equal to −5.2165.

It is easy to see that the (commutative) minimum of f on DS ∩R
2 = [−2,2]2

is −4.5.

Example 5.17. Let us compute the trace-minimum of f = 2−X2 +XY2X−Y2 over
the semialgebraic set defined by S = {4−X2 −Y2,XY +YX−2}.

>> NCvars x y
>> f = 2 - x^2 + x*y^2*x - y^2;
>> S={4-x^2-y^2,x*y+y*x-2};
>> [X,fX,tr_val,flat,err_flat]=NCtraceOptRand(f,S,4);

Firstly we see that flat= 1 which means that the method has found a flat optimal
solution with err_flat≈ 4 ·10−8. This gives a matrix X of size 2×16; each row
represents one symmetric 4×4 matrix,
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A = reshape(X(1, :),4,4) =

⎡

⎢
⎢
⎣

−0.0000 1.4044 −0.1666 −0.0000
1.4044 0.0000 0.0000 1.1329

−0.1666 0.0000 −0.0000 −0.8465
−0.0000 1.1329 −0.8465 0.0000

⎤

⎥
⎥
⎦

B = reshape(X(2, :),5,5) =

⎡

⎢
⎢
⎣

−0.0000 0.8465 1.1329 0.0000
0.8465 0.0000 0.0000 −0.1666
1.1329 0.0000 0.0000 −1.4044
0.0000 −0.1666 −1.4044 0.0000

⎤

⎥
⎥
⎦

such that A and B are from DS(4) and

fX = f (A,B) =

⎡

⎢
⎢
⎣

−1.0000 0.0000 0.0000 −0.0000
0.0000 −1.0000 0.0000 0.0000
0.0000 0.0000 −1.0000 0.0000

−0.0000 0.0000 0.0000 −1.0000

⎤

⎥
⎥
⎦

with (normalized) trace equal to trace_val = −1.
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