
Chapter 2
Detecting Sums of Hermitian Squares

2.1 Introduction

The central question of this chapter is how to find out whether a given nc
polynomial is a sum of hermitian squares (SOHS). We rely on Sect. 1.3, where
we explained basic relations between SOHS polynomials and positive semidefinite
Gram matrices. In this chapter we will enclose these results into the Gram matrix
method and refine it with the Newton chip method.

2.2 The Gram Matrix Method

Recall from Sect. 1.3 that an nc polynomial f ∈ R〈X〉2d is SOHS if and only if
we can find a positive semidefinite Gram matrix associated with f , i.e., a positive
semidefinite matrix G satisfying W∗

dGWd = f , where Wd is the vector of all words
of degree ≤ d. This is a semidefinite feasibility problem in the matrix variable G.
The constraints 〈Ai |G〉= bi are implied by the fact that for each monomial w∈W2d

we have

∑
u,v∈Wd
u∗v=w

Gu,v = aw, (2.1)

where aw is the coefficient of w in f .
Problems like this can be (in theory) solved exactly using quantifier elimination

[BPR06] as has been suggested in the commutative case by Powers and Wörmann
[PW98]. However, this only works for problems of small size, so a numerical
approach is needed in practice. Thus we turn to numerical methods to solve
semidefinite programming problems.

© The Author(s) 2016
S. Burgdorf et al., Optimization of Polynomials in Non-Commuting Variables,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-33338-0_2

35

36 2 Detecting Sums of Hermitian Squares

Sums of hermitian squares are symmetric so we consider only f ∈ SymR〈X〉.
Two symmetric polynomials are equal if and only if all of their “symmetrized
coefficients” (i.e., aw +aw∗) coincide, hence Eqs. (2.1) can be rewritten as

∑
u,v∈Wd
u∗v=w

Gu,v + ∑
u,v∈Wd
v∗u=w∗

Gv,u = aw +aw∗ ∀w ∈ W2d, (2.2)

or equivalently,

〈Aw |G〉= aw +aw∗ ∀w ∈ W2d, (2.3)

where Aw is the symmetric matrix defined by

(Aw)u,v =

⎧
⎨

⎩

2; if u∗v = w, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ �= w,
0; otherwise.

Note that in this formulation the constraints obtained from w and w∗ are the
same so we keep only one of them. As we are interested in an arbitrary positive
semidefinite G satisfying constraints (2.3), we can choose the objective function
freely. However, in practice one prefers solutions of small rank leading to shorter
SOHS decompositions. Hence we minimize the trace, a commonly used heuristic
for matrix rank minimization (cf. [RFP10]). Therefore our SDP in primal form is as
follows:

inf 〈 I |G〉
s. t. 〈Aw |G〉 = aw +aw∗ ∀w ∈ W2d

G 	 0.
(SOHSSDP)

Summing up, the Gram matrix method can be presented in Algorithm 2.1.

Algorithm 2.1: The Gram matrix method for finding SOHS decompositions

Input: f ∈ SymR〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww,, where aw ∈ R;
1 G =∅;
2 Construct Wd;
3 Construct data Aw,b,C corresponding to (SOHSSDP);
4 Solve (SOHSSDP);
5 if (SOHSSDP) is not feasible then
6 f �∈ Σ 2. Stop;
7 end
8 Take an optimal solution G and compute the Cholesky decomposition

G = R∗R;
9 G = {gi}, where gi denotes the ith component of RWd;

Output: G ;

2.2 The Gram Matrix Method 37

Remark 2.1. The order of G in (SOHSSDP) is the length of Wd, which is σ =
nd+1−1

n−1 , as shown in Remark 1.12. Since σ = σ(n,d) grows exponentially with
the polynomial degree d it easily exceeds the size manageable by the state-of-the-
art SDP solvers, which is widely accepted to be of order 1000. This implies, for
example, that the above algorithm can only handle nc polynomials in two variables if
they are of degree < 10. Therefore it is very important to find an improvement of the
Gram matrix method which will be able to work with much larger nc polynomials.
This will be done in the rest of the chapter.

Example 2.2. Let

f = X2 −X10Y20X11 −X11Y20X10 +X10Y20X20Y20X10. (2.4)

The order of a Gram matrix G for f is σ(10) = σ(2,10) = 241 −1 and is too big for
today’s SDP solvers. Therefore any implementation of Algorithm 2.1 will get stuck.
On the other hand, it is easy to see that

f = (X−X10Y20X10)∗(X−X10Y20X10) ∈ Σ 2.

The polynomial f is sparse and an improved SDP for testing whether (sparse)
polynomials are sums of hermitian squares will be given below.

The complexity of solving an SDP is also determined by the number of Eq. (2.3),
which we denote by m. There are exactly

m = card{w ∈ W2d | w∗ = w}+ 1
2

card{w ∈ W2d | w∗ �= w}

such equations in (SOHSSDP). Since Wd contains all words in 〈X〉 of degree ≤ d,

we have m > 1
2 σ(2d) = n2d+1−1

2(n−1) .

For each w ∈ W2d there are t different pairs (ui,vi) such that w = u∗i vi, where
t = degw + 1 if degw ≤ d, and t = 2d + 1 − degw if degw ≥ d + 1. Note that
t ≤ d+1. Therefore the matrices Ai defining constraints (2.3) have order σ(d) and
every matrix Ai has at most d+ 1 nonzero entries if it corresponds to a symmetric
monomial of f , and has at most 2(d + 1) nonzero entries otherwise. Hence the
matrices Ai are sparse. They are also pairwise orthogonal with respect to the standard
scalar product on matrices 〈X |Y 〉 = trXTY , and have disjoint supports, as we now
proceed to show:

Theorem 2.3. Let {Ai | i = 1, . . . ,m} be the matrices constructed in Step 3 of
Algorithm 2.1 [i.e., matrices satisfying (2.3)]. If (Ai)u,v �= 0, then (Aj)u,v = 0 for
all j �= i. In particular, 〈Ai |Aj 〉= 0 for i �= j.

Proof. The equations in the SDP underlying the SOHS decomposition represent
the constraints that the monomials in W2d must have coefficients prescribed by the
polynomial f . Let us fix i �= j. The matrices Ai and Aj correspond to some monomials
p∗1q1 and p∗2q2 (pi,qi ∈ Wd), respectively, and p∗1q1 �= p∗2q2. If Ai and Aj both have a
nonzero entry at position (u,v), then p∗1q1 = u∗v = p∗2q2, a contradiction. �

38 2 Detecting Sums of Hermitian Squares

Remark 2.4. Sparsity and orthogonality of the constraints imply that the state-
of-the-art SDP solvers can handle about 100,000 such constraints (see, e.g.,
[MPRW09]), if the order of the matrix variable is about 1000. The boundary
point method introduced in [PRW06] and analyzed in [MPRW09] has turned
out to perform best for semidefinite programs of this type. It is able to use the
orthogonality of the matrices Ai (though not the disjointness of their supports). In the
computationally most expensive steps—solving a linear system—the system matrix
becomes diagonal, so solving the system amounts to dividing by the corresponding
diagonal entries.

Since Wd contains all words in 〈X〉 of degree ≤ d, we have, e.g., for n = 2, d = 10
that m = σ(20) = σ(2,20) = 2,097,150 and this is clearly out of reach for all
current SDP solvers. Nevertheless, we show in the sequel that one can replace the
vector Wd in Step 2 of Algorithm 2.1 by a vector W which is usually much smaller
and has at most kd words, where k is the number of symmetric monomials in f
and 2d = deg f . Hence the order of the matrix variable G and the number of linear
constraints m end up being much smaller in general.

2.3 Newton Chip Method

We present a modification of (Step 1 of) the Gram matrix method (Algorithm 2.1)
by implementing the appropriate non-commutative analogue of the classical Newton
polytope method [Rez78], which we call the Newton chip method and present it as
Algorithm 2.2.

Definition 2.5. Let us define the right chip function rc : 〈X〉×N0 → 〈X〉 by

rc(w1 · · ·wn, i) :=

⎧
⎨

⎩

wn−i+1wn−i+2 · · ·wn if 1 ≤ i ≤ n;
w1 · · ·wn if i > n;
1 if i = 0.

Example 2.6. Given the word w = X1X2X1X2
2X1 ∈ 〈X〉 we have rc(w,4) = X1X2

2X1,
rc(w,6) = w and rc(w,0) = 1.

We introduce the Newton chip method, presented as Algorithm 2.2. It substantially
reduces the word vector needed in the Gram matrix method.

Theorem 2.7. Suppose f ∈ SymR〈X〉. Then f ∈ Σ 2 if and only if there exists a
positive semidefinite matrix G satisfying

f = W∗GW,

where W is the output given by the Newton chip method (Algorithm 2.2).

Proof. Suppose f ∈ Σ 2. In every SOHS decomposition

f = ∑
i

g∗i gi,

2.3 Newton Chip Method 39

only words from D (constructed in Step 4) are used, i.e., gi ∈ spanD for every i.
This follows from the fact that the lowest and highest degree terms cannot cancel
(cf. proof of Proposition 1.16). Let W :=

⋃
iWgi be the union of the supports of

the gi. We shall prove that W ⊆ W. For this, let us introduce a partial ordering
on 〈X〉:

w1 w2 ⇔ ∃ i ∈ N0 : rc(w2, i) = w1.

Note: w1 w2 if and only if there is a v ∈ 〈X〉 with w2 = vw1.

CLAIM. For every w ∈W there exists u ∈ 〈X〉: w u u∗u ∈Wf .

Proof. Clearly, w∗w is a word that appears in the representation of g∗i gi which one
naturally gets by multiplying out without simplifying, for some i. If w∗w �∈ Wf ,
then there are w1,w2 ∈ W \ {w} with w∗

1w2 = w∗w (appearing with a negative
coefficient so as to cancel the w∗w term). Then w w1 or w w2, without loss of
generality, w w1. Continuing the same line of reasoning, but starting with w∗

1w1,
we eventually arrive at w� ∈ W with w∗

�w� ∈ Wf and w w1 ·· · w�. Thus
w w� w∗

�w� ∈Wf , concluding the proof of the claim.
The theorem follows now. Since u∗u ∈ Wf and w is a right chip of u we have

w ∈ W. �

Algorithm 2.2: The Newton chip method

Input: f ∈ SymR〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww,, where aw ∈ R;
1 Define the support of f as Wf := {w ∈ 〈X〉 | aw �= 0};
2 W :=∅;

3 Let mi := mindeg if
2 , Mi := deg if

2 , m := mindeg f
2 , M := deg f

2 ;
4 The set of admissible words is defined as

D := {w ∈ 〈X〉 | mi ≤ deg iw ≤ Mi for all i, m ≤ degw ≤ M};

for every w∗w ∈Wf do
5 for 0 ≤ i ≤ degw do
6 if rc(w, i) ∈D then
7 W := W ∪{rc(w, i)};
8 end
9 end

10 end
11 Sort W in a lexicographic order and transform it into the vector W;

Output: W;

Example 2.8 (Example 2.2 Continued). The polynomial f from Example 2.2 has
two hermitian squares: X2 and X10Y20X20Y20X10. The first hermitian square con-
tributes via the Newton chip method only one right chip: X; while the second hermi-
tian square X10Y20X20Y20X10 contributes to W the following words: X, X2, . . . ,X10

as well as YX10,Y2X10, . . . ,Y20X10,XY20X10, . . . ,X10Y20X10.

40 2 Detecting Sums of Hermitian Squares

Applying the Newton chip method to f therefore yields W which is a vector in
the lexicographic order and is equal to

W =
[

X X2 · · · X10 YX10 · · · Y20X10 XY20X10 · · · X10Y20X10
]T

of length 40. Problems of this size are easily handled by today’s SDP solvers.
Nevertheless we provide a further strengthening of our Newton chip method
reducing the number of words needed in this example to 2 (see Sect. 2.4).

2.4 Augmented Newton Chip Method

The following simple observation is often crucial to reduce the size of W returned
by the Newton chip method.

Lemma 2.9. Suppose W is the vector of words returned by the Newton chip
method. If there exists a word u ∈ W such that the constraint in (SOHSSDP)
corresponding to u∗u can be written as

〈Au∗u |G〉= 0

and Au∗u is a diagonal matrix (i.e., (Au∗u)u,u = 2 and Au∗u is 0 elsewhere), then
we can eliminate u from W and likewise delete this equation from the semidefinite
program.

Proof. Indeed, such a constraint implies that Gu,u = 0 for the given u ∈ W, hence
the uth row and column of G must be zero, since G is positive semidefinite. So we
can decrease the order of (SOHSSDP) by deleting the uth row and column from G
and by deleting this constraint. �

Lemma 2.9 applies if and only if there exists a constraint 〈Aw |G〉 = 0, where
w = u∗u for some u ∈ W and w �= v∗z for all v,z ∈ W, v �= z. Therefore we augment
the Newton chip method (Algorithm 2.2) by new steps, as shown in Algorithm 2.3.

Algorithm 2.3: The Augmented Newton chip method

Input: f ∈ SymR〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww,, where aw ∈ R;
1 Compute W by the Newton chip method (Algorithm 2.2);
2 while exists u ∈ W such that au∗u = 0 and u∗u �= v∗z for every pair v,z ∈ W,

v �= z do
3 delete u from W;
4 end

Output: W;

Note that in Step 2 there might exist some word u ∈ W which does not satisfy
the condition initially but after deleting another u′ from W it does. We demonstrate
Algorithm 2.3 in the following example:

2.5 Implementation 41

Example 2.10 (Example 2.2 Continued). By applying the Augmented Newton chip
method to f from (2.4) we reduce the vector W significantly. Note that after Step
1, W also contains the words X8, X9, X10. Although X18 does not appear in f , we
cannot delete X9 from W immediately since X18 = (X9)∗X9 = (X8)∗X10. But we can
delete X10 since X20 does not appear in f and (X10)∗X10 is the unique decomposition
of X20 inside W. After deleting X10 from W we realize that (X9)∗X9 becomes
the unique decomposition of X18, hence we can eliminate X9 too. Eventually the
Augmented Newton chip method returns

W =
[

X X10Y20X10
]T

,

which is exactly the minimum vector needed for the SOHS decomposition of f .

2.5 Implementation

2.5.1 On the Gram Matrix Method

The Gram matrix method (Algorithm 2.1) consists of two main parts: (1) con-
structing the matrices corresponding to (SOHSSDP)—Step 3 and (2) solving the
constructed SDP in Step 4. Step 3 is straightforward, running the Augmented
Newton chip method (Algorithm 2.3) gives the desired vector of relevant words.
There are no numerical problems, no convergence issues, Algorithm 2.3 always
terminates with the desired vector W.

The second main part is more subtle. Solving an instance of SDP in practice
always involves algorithms that are highly numerical: algorithms to compute
spectral decompositions, solutions of systems of linear equations, inverses of
matrices, etc. Methods for solving SDP, especially interior point methods [dK02,
Ter96, WSV00], but also some first order methods [MPRW09, PRW06], typically
assume strictly feasible solutions on the primal and the dual side, which imply the
strong duality property and the attainability of optimums on both sides. Moreover,
this assumption also guarantees that most of the methods will converge to a primal–
dual ε-optimal solution; see also Sect. 1.13.

As the following example demonstrates, the Slater condition is not necessarily
satisfied on the primal side in our class of (SOHSSDP) problems.

Example 2.11. Let f = (XY + X2)∗(XY + X2). It is homogeneous, and the Aug-
mented Newton chip method gives

W =

[
X2

XY

]

.

There exists a unique symmetric Gram matrix

G =

[
1 1
1 1

]

42 2 Detecting Sums of Hermitian Squares

for f such that f = W∗GW. Clearly G, a rank 1 matrix, is the only feasible solution
of (SOHSSDP), hence the corresponding SDP has no strictly feasible solution on the
primal side.

If we take the objective function in our primal SDP (SOHSSDP) to be equal to
〈 I |G〉, then the pair y = 0, Z = I is always strictly feasible for the dual problem
of (SOHSSDP) and thus we do have the strong duality property.

Hence, when the given nc polynomial is in Σ 2, the corresponding semidefinite
program (SOHSSDP) is feasible, and the optimal value is attained. If there is no
strictly feasible solution, then numerical difficulties might arise but state-of-the-
art SDP solvers such as SeDuMi [Stu99], SDPT3 [TTT99], SDPA [YFK03], or
MOSEK [ApS15] are able to overcome them in most of the instances. When the
given nc polynomial is not in Σ 2, then the semidefinite problem (SOHSSDP) is
infeasible and this might cause numerical problems as well. However, state-of-the-
art SDP solvers are generally robust and can reliably detect infeasibility for most
practical problems; for more details see [dKRT98, PT09].

2.5.2 Software Package NCSOStools

The software package NCSOStools [CKP11] was developed to help researchers
working in the area of non-commutative polynomials. NCSOStools [CKP11]
is an open source Matlab toolbox for solving SOHS related problems using
semidefinite programming. It also implements symbolic computation with non-
commuting variables in Matlab.

There is a small overlap in features with Helton’s NCAlgebra package
for Mathematica [HMdOS15]. However, NCSOStools [CKP11] performs basic
manipulations with non-commuting variables and is mainly oriented to detect
several variants of constrained and unconstrained positivity of nc polynomials, while
NCAlgebra is a fully fledged add-on for symbolic computation with polynomials,
matrices, and rational functions in non-commuting variables.

When we started writing NCSOStools we decided to use Matlab as a main
framework since we solve the underlying SDP instances by existing open source
solvers like SeDuMi [Stu99], SDPT3 [TTT99], or SDPA [YFK03] and these solvers
can be very easily run within Matlab.

Readers interested in solving sums of squares problems for commuting polyno-
mials are referred to one of the many great existing packages, such as SOSTOOLS
[PPSP05], SparsePOP [WKK+09], GloptiPoly [HLL09], or YALMIP [Löf04].

Detecting sums of hermitian squares by the Gram matrix method and using the
(Augmented) Newton chip method can be done within NCSOStools by calling
NCsos.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/

2.5 Implementation 43

Example 2.12 (Example 2.11 Continued). We declare the polynomial f that we
started considering in Example 2.11 within NCSOStools by

NCvars x y
>> f=(x*y+x^2)’*(x*y+x^2)

By calling

>> [IsSohs,Gr,W,sohs,g,SDP_data,L] = NCsos(f)

we obtain that f is SOHS (IsSohs=1), the vector given by the Augmented Newton
chip methods (W) and the corresponding Gram matrix Gr:

W =
’x*x’
’x*y’

Gr =
1.0000 1.0000
1.0000 1.0000

Likewise we obtain the SOHS decomposition of f

sohs =
x^2+x*y

2.2e-07*x*y

which means that the SOHS decomposition for f is

f = (X2 +XY)∗(X2 +XY)+(2.2 ·10−7XY)∗(2.2 ·10−7XY).

This is ε correct for ε = 10−13, i.e., if we leave cut off all monomials with
coefficients less than 10−13 we obtain f . We can control precision using the
parameter pars.precision. All monomials in sohs having coefficient smaller
than pars.precision are ignored. Therefore by running

>> pars.precision=1e-6;
>> [IsSohs,Gr,W,sohs,g,SDP_data,L] = NCsos(f,pars);

we obtain the exact value for a SOHS decomposition of f , i.e., f is exactly a SOHS
of elements from sohs.

The data describing the semidefinite program (SOHSSDP) is given in SDP_data
while the optimal matrix for the dual problem to (SOHSSDP) is given in L. In g
we return sum of squares of entries from sohs with monomials having coefficient
larger than 10−8 which is an internal parameter.

http://ncsostools.fis.unm.si/

44 2 Detecting Sums of Hermitian Squares

References

[BPR06] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms
and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)

[CKP11] Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic
and numerical computation with noncommutative polynomials. Optim. Methods
Softw. 26(3), 363–380 (2011). Available from http://ncsostools.fis.unm.si/

[dK02] de Klerk, E.: Aspects of Semidefinite Programming. Applied Optimization, vol. 65.
Kluwer Academic, Dordrecht (2002)

[dKRT98] de Klerk, E., Roos, C., Terlaky, T.: Infeasible-start semidefinite programming
algorithms via self-dual embeddings. In: Topics in Semidefinite and Interior-Point
Methods (Toronto, ON, 1996). Fields Institute Communications, vol. 18, pp. 215–
236. American Mathematical Society, Providence (1998)

[HMdOS15] Helton, J.W., Miller, R.L., de Oliveira, M.C., Stankus, M.: NCAlgebra: a mathemat-
ica package for doing non commuting algebra. Available from http://www.math.ucsd.
edu/~ncalg/ (2015)

[HLL09] Henrion, D., Lasserre, J.B., Löfberg, J.: GloptiPoly 3: moments, optimization and
semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009). Avail-
able from http://www.laas.fr/~henrion/software/gloptipoly3/

[Löf04] Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD Conference, Taipei. Available from http://control.ee.ethz.
ch/~joloef/wiki/pmwiki.php (2004)

[MPRW09] Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite
programming. SIAM J. Optim. 20(1), 336–356 (2009)

[ApS15] MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 7.1
(Revision 28) (2015)

[PT09] Pólik, I., Terlaky, T.: New stopping criteria for detecting infeasibility in conic
optimization. Optim. Lett. 3(2), 187–198 (2009)

[PRW06] Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite
programs. Computing 78, 277–286 (2006)

[PW98] Powers, V., Wörmann, T.: An algorithm for sums of squares of real polynomials. J.
Pure Appl. Algebra 127(1), 99–104 (1998)

[PPSP05] Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS and its control
applications. In: Positive Polynomials in Control. Lecture Notes in Control and
Information Science, vol. 312, pp. 273–292. Springer, Berlin (2005)

[RFP10] Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

[Rez78] Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45(2), 363–374
(1978)

[Stu99] Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999). Available from http://
sedumi.ie.lehigh.edu/

[Ter96] Terlaky, T. (ed.): Interior Point Methods of Mathematical Programming. Applied
Optimization, vol. 5. Kluwer Academic, Dordrecht (1996)

[TTT99] Toh, K.C., Todd, M.J., Tütüncü, R.: SDPT3–a MATLAB software package for
semidefinite programming, version 1.3. Optim. Methods Softw. 11/12(1–4), 545–581
(1999). Available from http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

[WKK+09] Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883:
sparsePOP—a sparse semidefinite programming relaxation of polynomial optimiza-
tion problems. ACM Trans. Math. Softw. 35(2), Art. 15, 13 (2009)

[WSV00] Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Program-
ming. Kluwer, Boston (2000)

[YFK03] Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0
(semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505
(2003). Available from http://sdpa.sourceforge.net/

http://ncsostools.fis.unm.si/
http://www.math.ucsd.edu/~ncalg/
http://www.math.ucsd.edu/~ncalg/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://sedumi.ie.lehigh.edu/
http://sedumi.ie.lehigh.edu/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://sdpa.sourceforge.net/

	2 Detecting Sums of Hermitian Squares
	2.1 Introduction
	2.2 The Gram Matrix Method
	2.3 Newton Chip Method
	2.4 Augmented Newton Chip Method
	2.5 Implementation
	2.5.1 On the Gram Matrix Method
	2.5.2 Software Package NCSOStools

	References

