A Statechart-Based Anomaly Detection
Model for Multi-Threaded SCADA Systems

Amit Kleinmann®) and Avishai Wool

Tel-Aviv University, 69978 Tel-aviv, Israel
amitkl@post.tau.ac.il, yash@eng.tau.ac.il

Abstract. SCADA traffic between the Human Machine Interface (HMI)
and the Programmable Logic Controller (PLC) is known to be highly
periodic. However, it is sometimes multiplexed, due to asynchronous
scheduling. Modeling the network traffic patterns of multiplexed SCADA
streams using Deterministic Finite Automata (DFA) for anomaly detec-
tion typically produces a very large DFA, and a high false-alarm rate.
In this paper we introduce a new modeling approach that addresses this
gap. Our Statechart DFA modeling includes multiple DFAs; one per cyclic
pattern, together with a DFA-selector that de-multiplexes the incoming
traffic into sub-channels and sends them to their respective DFAs. We
evaluated our solution on traces from a production SCADA system using
the Siemens S7-0x72 protocol. We also stress-tested our solution on a
collection of synthetically-generated traces. In all but the most extreme
scenarios the Statechart model drastically reduced both the false-alarm
rate and the learned model size in comparison with the naive single-DFA
model.

1 Introduction

1.1 Background

SCADA systems are used for monitoring and controlling numerous Industrial
Control Systems (ICS). In particular, SCADA systems are used in critical
infrastructure assets such as chemical plants, electric power generation, trans-
mission and distribution systems, water distribution networks, and waste water
treatment facilities. SCADA systems have a strategic significance due to the
potentially serious consequences of a fault or malfunction.

SCADA systems typically incorporate sensors and actuators that are con-
trolled by Programmable Logic Controllers (PLCs), and which are themselves
managed by a Human Machine Interface (HMI). PLCs are computer-based
devices that were originally designed to perform the logic functions executed by
electrical hardware (relays, switches, and mechanical timer/counters). PLCs have
evolved into controllers with the capability of controlling the complex processes
used for discrete control in discrete manufacturing.

This work was supported in part by a grant from the Israeli Ministry of Science and
Technology.
© Springer International Publishing Switzerland 2016

E. Rome et al. (Eds.): CRITIS 2015, LNCS 9578, pp. 132144, 2016.
DOTI: 10.1007/978-3-319-33331-1_11

A Statechart-Based Anomaly Detection Model for SCADA 133

SCADA systems were originally designed for serial communications, and
were built on the premise that all the operating entities would be legitimate,
properly installed, perform the intended logic and follow the protocol. Thus,
many SCADA systems have almost no measures for defending against deliber-
ate attacks. Specifically, SCADA network components do not verify the identity
and permissions of other components with which they interact (i.e., no authen-
tication and authorization mechanisms); they do not verify message content and
legitimacy (i.e., no data integrity checks); and all the data sent over the network
is in plaintext (i.e., no encryption to preserve confidentiality). Therefore, deploy-
ing an Intrusion Detection Systems (IDS) in a SCADA network is an important
defensive measure.

1.2 Related Work

Byres et al. [5] describe different attack trees on SCADA systems based on the
Modbus/TCP protocol. They found that compromising the slave (PLC) or the
master (HMI) has the most severe potential impact on the SCADA system. For
instance, an attacker that gains access to the SCADA system could identify
as the HMI and change data values in the PLC. Alternately, an attacker can
perform a Man In The Middle attack between a PLC and HMI and “feed” the
HMI with misleading data, allegedly coming from the exploited PLC.

Carcano et al. describe a system with a pipe in which flows high pressure
steam [12]. The pressure is regulated by two valves. An attacker capable of send-
ing packets to the PLCs can force one valve to complete closure, and force the
other to open. Each of these SCADA commands is perfectly legal when consid-
ered individually, however when sent in a certain order they bring the system
to a critical state. Marsh [18] presents an attack scenario where a system-wide
water hammer effect is caused simply by opening or closing major control valves
too rapidly. This can result in a large number of simultaneous main breaks. The
Stuxnet malware [11,17] implemented a similar attack by changing centrifuge
operating parameters in a pattern that damaged the equipment - while sending
normal status messages to the HMI to hide the fact that an attack is under way.

Fundamentally all these attacks work by injecting messages into the commu-
nication stream—possibly legitimate messages—on an attacker-selected pattern
and schedule. Hence a good anomaly detection system needs to model not only
the messages in isolation but also their sequence and timing.

A survey of techniques related to learning and detection of anomalies in
critical control systems can be found in [2].

While most of the current commercial network intrusion detection systems
(NIDS) are signature-based, i.e., they recognize an attack when it matches a pre-
viously defined signature, Anomaly-based Network Intrusion Detection Systems
(IDS) “are based on the belief that an intruder’s behavior will be noticeably
different from that of a legitimate user” [19].

Different kinds of Anomaly Intrusion Detection models have been suggested
for SCADA systems. Yang et al. [26] used an Auto Associative Kernel Regression
(AAKR) model coupled with the Statistical Probability Ratio Test (SPRT) and

134 A. Kleinmann and A. Wool

applied them on a SCADA system looking for matching patterns. The model
used numerous indicators representing network traffic and hardware-operating
statistics to predict the ‘normal’ behavior. Several recent studies [3,7] suggest
anomaly-based detection for SCADA systems which are based on Markov chains.
However, Ye et al. [27] showed that although the detection accuracy of this tech-
nique is high, the number of False Positive values is also high, as it is sensitive to
noise. Hadiosmanovic et al. [14] used the logs generated by the control applica-
tion running on the HMI to detect anomalous patterns of user actions on process
control application.

Nai Fovino et al. [12] have presented a state-based intrusion detection system
for SCADA systems. Their approach uses detailed knowledge of the industrial
process’ control to generate a system virtual image. The virtual image represents
the PLCs of a monitored system, with all their memory registers, coils, inputs
and outputs. The virtual image is updated using a periodic active synchroniza-
tion procedure and via a feed generated by the intrusion detection system (i.e.,
known intrusion signatures).

Model-based anomaly detection for SCADA systems, and specifically for Mod-
bus traffic, was introduced by Cheung et al. [8]. They designed a multi-algorithm
intrusion detection appliance for Modbus/TCP with pattern anomaly recogni-
tion, Bayesian analysis of TCP headers and stateful protocol monitoring, comple-
mented with customized Snort rules [21]. In subsequent work, Valdes and Cheung
[23] incorporated adaptive statistical learning methods into the system to detect
for communication patterns among hosts and traffic patterns in individual flows.
Later Briesemeister et al. [4] integrated these intrusion detection technologies into
the EMERALD event correlation framework [20].

Sommer and Paxson [22] discuss the surprising imbalance between the exten-
sive amount of research on machine learning-based anomaly detection pursued
in the academic intrusion detection community, versus the lack of operational
deployments of such systems. One of the reasons for that, by the authors, is
that the machine learning anomaly detection systems are lacking the ability to
bypass the “semantic gap”: The system “understands” that an abnormal activ-
ity has occurred, but it cannot produce a message that will elaborate, helping
the operator differentiate between an abnormal activity and an attack.

Erez and Wool [10] developed an anomaly detection system that detects
irregular changes in SCADA control registers’ values. The system is based on an
automatic classifier that identifies several classes of PLC registers (Sensor regis-
ters, Counter registers and Constant registers). Parameterized behavior models
were built for each class. In its learning phase, the system instantiates the model
for each register. During the enforcement phase the system detects deviations
from the model.

Goldenberg and Wool [13] developed a model-based approach (the GW
model) for Network Intrusion Detection based on the normal traffic pattern
in Modbus SCADA Networks.

Subsequently, Kleinmann and Wool [16] demonstrated that a similar method-
ology is successful also in SCADA systems running the Siemens S7 protocol.

A Statechart-Based Anomaly Detection Model for SCADA 135

Caselli et al. [6] proposed a methodology to model sequences of SCADA pro-
tocol messages as Discrete Time Markov Chains (DTMCs). They built a state
machine whose states model possible messages, and whose transitions model
a “followed-by” relation. Based on data from three different Dutch utilities the
authors found that only 35 %—75 % of the possible transitions in the DTMC were
observed. This strengthens the observations of [13,16] of a substantial sequen-
tiality in the SCADA communications. However, unlike [13,16] they did not
observe clear cyclic message patterns. The authors hypothesized that the diffi-
culties in finding clear sequences is due to the presence of several threads in the
HMTI’s operating system that multiplex requests on the same TCP stream. Each
independently scheduled thread is responsible for certain intervals of registers.

1.3 Contributions

DFA-based models have been shown to be extremely effective in modeling the
network traffic patterns of SCADA systems [13,16], thus allowing the creation
of anomaly-detection systems with low false-alarm rates. However, the existing
DFA-based models can be improved in some scenarios.

In this paper we address two such scenarios: the first scenario is the one
identified in [6]: the HMI is multi-threaded, each thread independently scans a
separate set of control registers, and each thread has its own scan frequency. The
second scenario occurs when the SCADA protocol allows the HMI to “subscribe”
to a certain register range, after which the PLC asynchronously sends a stream
of notifications with the values of the subscribed registers. The commonality
between the scenarios is that the network traffic is not the result of a single cyclic
pattern: it is the result of several multiplexed cyclic patterns. The multiplexing
is due to the asynchronous scheduling of the threads inside the HMI, or to the
asynchronous scheduling of PLC-driven notifications. Attempting to model a
multiplexed stream by a single DFA typically produces a very large DFA (it’s
cycle length can be the least-common-multiple of the individual cycle lengths),
and also a high false-alarm rate because of the variations in the scheduling of
the independent threads.

Our solution to both scenarios is the same: instead of modeling the traf-
fic of an HMI-PLC channel by a single DFA, we model it as a Statechart of
multiple DFAs, one per cyclic pattern, with a DFA-selector that de-multiplexes
the incoming stream of symbols (messages) into sub-channels and sends them
to their respective DFAs. Our design supports simple cases, in which each sub-
channel has a unique set of symbols—and also the complex cases in which the
patterns overlap and some symbols belong to multiple sub-channels.

We evaluated our solution on traces from a production SCADA system using
the latest variant of the proprietary Siemens S7 protocol, so called S7-0x72.
Unlike the standard S7-0x32 protocol, which is fairly well understood, little is
published about the new variant. Based on recent advances in the development
of an open-source Wireshark dissector for this variant, we were able to model
S7-0x72 in the Statechart framework, including its subscribe/notify capability.
A naive single-DFA model caused a false-alarm rate of 13-14% on our traces,

136 A. Kleinmann and A. Wool

while the Statechart model reduced the false-alarm rate by two orders of magni-
tude, down to at most 0.11 %. A separate contribution is our description of the
S7-0x72 protocol, with its complex message formats and advanced semantics.

We also stress-tested our solution on a collection of synthetically-generated
traces, with intentionally difficult scenarios multiplexing up to 4 periodic pat-
terns and with up to 56 % symbol overlap between patterns. In all but the most
extreme scenarios the Statechart model drastically reduced both the false-alarm
rate and the model size in comparison with the naive single-DFA model.

2 The DFA-based Model for Modbus

The GW model [13] was developed and tested on Modbus traffic. Modbus is a
simple request-response protocol widely used in SCADA networks. A Modbus
HMI sends a request to a Modbus PLC. The request includes a function code
specifying the service, and the address range of data items. Modbus functions
include reading values from coils (bit-size entities) or registers (16-bit entities),
writing values to coils and registers, and performing diagnostics. After the PLC
processes the request, it sends a response back to the HMI.

In the GW model, the key assumption is that traffic is periodic, therefore,
each HMI-PLC channel is modeled by a Mealy Deterministic Finite Automaton
(DFA). The DFA for Modbus has the following characteristics: (a) A symbol
is defined as a concatenation of the message type, function code, and address
range, totaling 33-bits; (b) A state is defined for each message in the periodic
traffic pattern.

The GW model suggests a network anomaly detection system that comprises
two stages: A learning stage, and an enforcement stage. In the learning stage a
fixed number of messages is captured, the pattern length is revealed, and a
DFA is built for each HMI-PLC channel. The learning assumes that the sniffed
traffic is benign. In the enforcement stage, traffic is monitored for each channel
(according to its DFA), and proper events are triggered.

Based on traffic captured from a production Modbus system, Goldenberg
and Wool discovered that over 97 % of Modbus traffic is well modeled by a
single DFA per HMI-PLC channel. However they also discovered a phenomenon
that challenges the DFA-based approach: In addition to a frequent scan cycle
that occurs multiple time per second, they found a second periodic pattern with
a 15-minute cycle. Attempting to model both cycles by a single DFA produces a
very large, unwieldy model: Its normal pattern consists of hundreds of repetitions
of the fast scan cycle followed by one repetition of the slow cycle. Such a pattern
is also inaccurate since the slow cycle does not always interrupt the fast cycle at
the same point, and while the slow pattern is active, symbols from both patterns
are interleaved.

3 A Statechart-Based Solution

Our first observation is that, as hypothesized by Caselli et al. [6] modern HMIs
employ thread-based architecture (e.g., this is how the Afcon’s Pulse HMI [1] is

A Statechart-Based Anomaly Detection Model for SCADA 137

built): While each thread is responsible for certain tasks (e.g., controlling access
to a range of registers on a PLC), the threads run concurrently with different
scheduling frequencies, and share the same network connections. Hence, to accu-
rately model the traffic produced by such an HMI (with the PLC’s responses),
we should use a formalism that is more descriptive than a basic DFA. Our choice
is to base our model on the concept of a Statechart [15]: the periodic traffic pat-
tern driven by each thread in the HMI is modeled by its own DFA within the
Statechart. Fach DFA is built using the learning stage of the GW model. The
Statechart also contains a DFA-selector to switch between DFAs.

3.1 The Statechart Enforcement Phase

During the enforcement stage, each DFA in the Statechart maintains its own
state, from which it transitions based on the observed symbols (messages).

The DFA-selector’s role is to send the input symbol s to the appropriate DFA.
To do so it relies on a symbol-to-DFA mapping ¢: ¢(s) denotes the set of DFAs
that have symbol s in their pattern. If each pattern has a unique set of symbols
then ¢ is 1-1. However, in the general case, a symbol may appear in multiple
patterns and ¢ is one-to-many. Upon receiving a symbol s the DFA-selector uses
the following algorithm:

— If ¢(s) = @ the DFA-selector reports an “Unknown” symbol.

— If ¢(s) = {D}, i.e., the symbol is a unique symbol of a single DFA D, then s
is sent to D, which handles it using its own transition function.

— Else, if |¢(s)| > 1, the selected DFA is the member of ¢(s) for which the
absolute difference between the current time and the predicted arrival time
of s is minimal.

In order to implement this policy:

— During the DFA learning stage of the GW model, for each state r in the DFA’s
pattern we calculate the average time difference to its immediate successor in
the cyclic pattern (along the “Normal” transition). We denote this Time to
Next State by TN.S(r).

— During the enforcement phase, each DFA D retains the time-stamp Tjq4:(D)
of the last symbol that was processed by it (in addition to the identifier of
the current state).

The predicted arrival time Tjcq(s, D) of a symbol s for a DFA D € ¢(s)
which is currently at state ¢, is calculated as follows:

1. Identify the tentative state ¢’ that DFA D transitions to from state g upon
symbol s. Note that ¢’ is not necessarily the immediate successor of ¢ in the
pattern—the transition from ¢ to ¢’ may be a “Miss” or a “Retransmission”.

2. Let P(q,q’) denote the path of DFA states starting at ¢ and ending at ¢’ along
the “Normal” transitions (not including ¢’). Then Tpyeq(s, D) = Tiase(D) +
> orep(qq) TNS(r): The predicted arrival time is the sum of inter-symbol
delays along the “Normal” path between ¢ and the tentative transition-to
state ¢’ added to the time-stamp of the last symbol processed by DFA D.

138 A. Kleinmann and A. Wool

40 Dataset # 1 2
» Duration 560 Sec. | 2632 Sec.
j" TCP Packets| 15875 67585
5
£, S7 Packets 4600 23553
* s AER 9.19 9.16
10 Dataset # 1 2
- ARSI, (o= wvoe oo s
0 .
0 100 200 300 400 500 Model size 62 3 12 3
Time since start of dataset (seconds) False alrm %]|14.54| 0.11 [12.98 0

(a) Applying the naive model on dataset #1. (b) Results of applying both models

Fig. 1. Detected abnormal symbols after applying the models on the S7 datasets.

3.2 The Statechart Learning Phase

The goal of the learning phase is to construct the Statechart for a specific HMI-
PLC channel, given a captured stream symbols from the channel. For this we
need to create the symbol-to-DFA mapping ¢, for the use of the DFA selector,
and we need to create the individual DFAs themselves. A key component in
this learning phase is the Goldenberg and Wool learning algorithm, that accepts
a periodic stream of symbols and creates a single DFA that best models that
stream. Thus our Statechart learning phase is done as follows:

1. Split the channel’s input stream into multiple sub-channels.
2. For each sub-channel use the GW learning algorithm to create a DFA.
3. Create the DFA-selector’s mapping ¢ from the sub-channel DFAs.

The sub-channel splitting (step 1) can be implemented in different ways, depend-
ing on the available semantic knowledge. The easy case is when we know how
many sub-channels can exist, each sub-channel has a unique set of symbols, and
there is a filter criterion to recognize them. In this case the splitting algorithm
works as a simple demultiplexer: for every input symbol it activates the filter
criterion and sends the symbol to the (single) sub-channel based on the filter
outcome. The difficult case is when we don’t know in advance how many sub-
channels exist, and the sub-channels potentially have overlapping symbols.

In the S7-0x72 traces we observed the easy case: the channel consisted of 2
sub-channels, one for request and response messages, and the other for notifi-
cation messages. Since the message types are in the packet meta-data it is easy
to split the input stream. Similarly, Goldenberg and Wool [13] reported that in
their Modbus traces the slow and fast cycles had distinct symbols.

However, it seems that in the Modbus data set analyzed by Caselli et al. [6]
the number of sub-channels is not clear in advance, and sub-channel symbols may
be overlapping. Since this data set was not available to us we chose to stress-test
the capabilities of our Statechart approach in this scenario using synthetic data
(see Sect.5.2).

A Statechart-Based Anomaly Detection Model for SCADA 139

4 The S7-0x72 Protocol

The S7 PLC Platform. The Siemens SIMATIC S7 product line is estimated to
have over 30 % of the worldwide PLC market [9]. It includes both standard PLC
models (S7-200, S7-300 and S7-400), and new generation PLCs (S7-1200 and
S7-1500). Siemens has its own HMI software for its SIMATIC products called
STEP7 and uses its own S7 communication protocol, over TCP port 102.

Two different protocol flavours are implemented by SIMATIC S7 products:
The standard SIMATIC S7 PLCs implement a legacy S7 flavor, identified by
the value 0x32, while the new generation PLCs implement a very different S7
flavor identified by 0x72. Among other changes, the newer S7-0x72 protocol also
supports security features.

The standard S7-0x32 protocol is quite well understood, and a standard
Wireshark dissector is available for it. The newer S7-0x72 protocol is not yet
fully described in open literature. There is, however, a Wireshark dissector for
it which is still in beta status [24].

A unique feature of the S7-0x72 protocol is its optional subscription model
(in addition to the traditional request-response pattern). The HMI can send a
special “subscribe” message, referring to certain control variables, to a PLC.
Subsequently the PLC sends back a periodic stream of “notification” messages
with the values of the subscribed variables. The challenge that this subscription
model poses to a DFA-based anomaly detection system is that the notification
messages are sent asynchronously, and are not part of the HMI-driven request-
response pattern.

Experimenting with the S7-0x72 Data. Due to the proprietary nature and
potential sensitivity of SCADA operations, real SCADA network data is rarely
released to researchers. An important aspect of this work is that we were able to
collect and analyze traces from a production S7 network running the S7-0x72 pro-
tocol from a control network of a solar power plant. In these traces we observed
a single channel between the HMI and a Siemens S7-1500 PLC. We observed
both the request-response and the unique subscribe/notification communication
patterns. An overview of the S7 datasets can be found in Fig. 1b. During our
recordings the infrastructure was running normally without any intervention of
operators.

The message format and protocol semantics described here are based on
the reverse engineering work of Wiens [24]. Somewhat surprisingly the S7-0x72
message formats are very different from those of the older S7-0x32 protocol, even
though the overall protocol semantics are quite similar. An S7 0x72 packet is
composed of the following parts:

— Header: ‘magic ID’ byte with a value of 0x72, a PDU type (one byte) and the
length of the data part.

— Data part: includes meta data fields describing the data, data values, and an
optional integrity part that is supported only by the newest S7-1500 PLCs
(it contains two bytes representing an ID, one byte for the digest length and

140 A. Kleinmann and A. Wool

a 32 byte message digest, which is apparently a cryptographic hash or MAC,
details are yet unknown).
— Trailer: utilized to enable fragmentation.

Unlike the packet structure of the S7-0x32 protocol, nearly every field inside
the S7-0x72 data part may be composed of recursively defined data structures.
Further, elementary components such as numeric values are encoded using the
variable-length quantity (VLQ) encoding [25], a universal code that uses an
arbitrary number of binary octets. The precise S7-0x72 packet structure depends
on the type of the command and the information it is instructed to carry. The
beta Wireshark dissector [24] is able to parse the structure of over 30 different
S7-0x72 commands.

To use the GW model we need to hash the meta-data fields of a SCADA
packet into a symbol while ignoring the actual data values. In order to model the
S7-0x72 packets we relied on the deep understanding embedded in the Wireshark
dissector [24] to identify the structural meta-data components in the packets
(command codes and arguments, register types and reference ids, etc.). In total
we extracted 11-17 meta-data fields, comprising of 17-26 bytes, out of typical
S7-0x72 packets, which were hashed into 64-bit symbols.

Figure 1a shows the false alarm rate over time of the naive DFA model applied
to S7 dataset #1. Figure 1b summarizes the results on the two S7 traces, compar-
ing the Naive and Statechart models. We can see that the naive DFA model has
high false-alarm rates: 14.54 % and 12.98 %. The Statechart model successfully
reduced the false-alarm rate by two orders of magnitude, down to at most 0.11 %.
The table shows that the model sizes dropped from the incorrect sizes of 62 and
12 by the naive DFA model down to the correct size of 3 (a request-response
pattern of 2 symbols and a notification pattern of 1).

Table 1. Overview of the sets of sequences used to generate the synthetic datasets

ID|Length|Uniq.|Period|[ID|Length|Uniq.|Period||[ID|Length|Uniq.|Period
1 6 6 300 10 8 300 10 8 250
4 4 950 7 8 7 350 11 4 2 650
2 6 6 300 10 9 400 6 4 1100
4 4 950 10 8 300 8 7 420
3 6 4 300 8 8 7 850 6 4 250
4 1 400 10 9 1300 12 4 4 350
4 6 4 300 10 7 300 10 9 550
4 2 950 9 8 4 350 8 7 420
10 9 300 10 8 400 10 9 300
5 4 2 600 6 3 300 13 4 2 600
4 3 200 10 4 2 350 4 2 200
10 7 300 6 2 400 6 3 350
6 10 7 950
10 7 2000

A Statechart-Based Anomaly Detection Model for SCADA 141

5 Stress Testing with Synthetic Data

5.1 Generation of Synthetic Data

In order to test our model in different scenarios, we implemented a multi-
threaded generator, where each of the threads simulates an HMI thread trans-
mitting a cyclic pattern of SCADA commands. Each simulated thread has a
pattern P of symbols, and a frequency f. Every f msec the thread wakes up
and emits the pattern P as a burst, at a 1-msec-per-symbol rate, and returns to
sleep. The thread’s true timing has a jitter caused by the OS scheduling deci-
sions. Further, when multiple threads are active concurrently then their emitted
symbols are arbitrarily serialized.

We generated 13 scenarios, varying the number of patterns, the number of
unique symbols per pattern, and their frequency. Table 1 shows the parameters of
the scenarios that were used in our simulations. For the purpose of our evaluation
and analysis we defined the following metrics:

— The Symbol Uniqueness of a channel = >°"" U;/ " | L;, where L; is the
length of the cyclic pattern of sub-channel i and U; is the number of symbols
unique to that sub-channel.

— A channel’s Time Overlap is the percentage of 1-msec time slots at which
multiple packets where scheduled to be sent over the communication link
during the time of the trace.

— The model size of a DFA is its number of states, and the model size of a
statechart is the sum of the model sizes of its DFAs.

5.2 Experiments with the Synthetic Data

We started our evaluation by running the DFA described by Goldenberg and
Wool, which we henceforth call the “naive-DFA”. We ran the model’s learning
stage on the synthetic datasets with a maximum pattern length of 100 symbols

F l\ i \’ i

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time since start of dataset (seconds) Time since start of dataset (seconds)

(a) Naive DFA model (b) Statechart model

% AER
o
5

% AER
5]

Fig. 2. The false-alarm rate of the two models on synthetic dataset #11. Each time
frame on the X axis represents 5s. The Y axis shows the false alarm frequency as a
percentage of the Average Event Rate (AER) for each time period.

142 A. Kleinmann and A. Wool

o o
25 25
- 20 _ 20
g - £ -
S 5 @ Naive DFA S 15 # Naive DFA
§ © - * Dstatechart g o * . DOstatechart
d* . . a ¢
5 *> * 5 > 0
* * *
0 o 0Hhmo é 0 ﬁ 0o ooo oo
0 20 40 60 80 100 0 5 10 15 20
(a) Symbol Uniqueness (%) (b) Time Overlap (%)

Fig. 3. The false alarm rates as a function of the Symbol Uniqueness and Time Overlap
over the synthetic datasets.

and a validation window of 400 (100 - 4) symbols. Then we ran the enforcement
stage on the full datasets using the learned patterns.

When we applied the naive DFA model on the synthetic datasets it learned
model sizes that are on average 3.5 times longer than the statechart model sizes
for the same traces. Moreover, the Statechart model produced a much lower false-
alarm rate on the same datasets. E.g, Fig.2 illustrates the results of applying
the two models on dataset #11.

Figure 3 shows that the Statechart managed to model the benign traffic suc-
cessfully with very low false-alarm rate: up to 0.9% in nearly all our intentionally
complex scenarios. The two exception cases are of datasets #10 (the worst result)
and #13 (2nd worst result) that have very low symbol uniqueness (44 % and 67%
respectively, compared to an average of 77% for the successful cases) and a high
time overlap (19.13% and 17.74% respectively—approximately twice the average
of the successful cases of 9.76%). In other words, only when around half of the
symbols are not unique to a single pattern, and there is significant time over-
lap between patterns, does the Statechart model’s performance deteriorate. In
the more realistic scenarios, when symbol uniqueness is high or when the time
overlap is low, the model performs extremely well.

6 Conclusions

In this paper we developed and applied the Statechart DFA model, which is
designed specifically for anomaly detection in SCADA networks. This model has
three promising characteristics. First, it exhibits very low false positive rates
despite its high sensitivity. Second, it is extremely efficient: it has a compact rep-
resentation, it keeps minimal state during the enforcement phase, and can easily
work at line-speed for real-time anomaly detection. Third, its inherent modular
architecture makes it scalable for protecting highly multiplexed SCADA streams.
Our experiments demonstrate that the Statechart DFA anomaly detection model
handles multiplexed SCADA traffic patterns very well.

A Statechart-Based Anomaly Detection Model for SCADA 143

References
1. Afcon Technologies: Pulse HMI Software (2015). Accessed 6 May 2015
2. Alcaraz, C., Cazorla, L., Ferndndez, G.: Context-awareness using anomaly-based

10.

11.

12.

13.

14.

15.

16.

detectors for smart grid domains. In: Proceedings of the 9th International Con-
ference on Risks, and Security of Internet and Systems (CRISIS), Trento, Italy,
September 2014

Atassi, A., Elhajj, I.LH., Chehab, A., Kayssi, A.: The State of the Art in Intru-
sion Prevention and Detection, Auerbach Publications. In: Intrusion Detection for
SCADA Systems, pp. 211-230. Auerbach Publications, January 2014
Briesemeister, L., Cheung, S., Lindqvist, U., Valdes, A.: Detection, correlation, and
visualization of attacks against critical infrastructure systems. In: 8th International
Conference on Privacy Security and Trust (PST), pp. 17-19 (2010)

Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulner-
abilities in SCADA systems. In: Proceedings of the International Infrastructure
Survivability Workshop (2004)

Caselli, M., Zambon, E., Kargl, F.: Sequence-aware intrusion detection in industrial
control systems. In: Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, pp. 13-24. ACM, New York (2015)

Chen, C.-M., Hsiao, H.-W., Yang, P.-Y., Ya-Hui, O.: Defending malicious attacks in
cyber physical systems. In: IEEE 1st International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA), pp. 13-18, August 2013

Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner, K., Valdes, A.: Using
model-based intrusion detection for SCADA networks. In: Proceedings of the
SCADA Security Scientific Symposium, pp. 127-134 (2007)

Electrical Engineering Blog: The top most used PLC systems around the world.
Electrical installation & energy efficiency, May 2013. http://engineering.electrical-
equipment.org/electrical-distribution/the-top-most-used-plc-systems-around-the-
world.html

Erez, N., Wool, A.: Control variable classification, modeling and anomaly detection
in Modbus/TCP SCADA networks. In: 9th Annual IFIP Working Group 11.10
International Conference on Critical Infrastructure Protection, Washington, DC,
USA, March 2015

Falliere, N., Murchu, L.O., Chien, E.: W32. stuxnet dossier. White Paper, Syman-
tec Corporation, Security Response (2011)

Fovino, I.N., Carcano, A., De Lacheze Murel, T., Trombetta, A., Masera, M.: Mod-
bus/DNP3 state-based intrusion detection system. In: 24th IEEE International
Conference on Advanced Information Networking and Applications (AINA), pp.
729-736. IEEE (2010)

Goldenberg, N., Wool, A.: Accurate modeling of modbus/tcp for intrusion detec-
tion in SCADA systems. Int. J. Crit. Infrastruct. Prot. 6(2), 63-75 (2013)
Hadziosmanovic, D., Bolzoni, D., Hartel, P.H., Etalle, S.: MELISSA: towards auto-
mated detection of undesirable user actions in critical infrastructures. In: Proceed-
ings of the European Conference on Computer Network Defense, EC2ND 2011,
Gothenburg, Sweden, pp. 41-48, USA, IEEE Computer Society, September 2011
Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231-274 (1987)

Kleinmann, A., Wool, A.: Accurate modeling of the siemens S7 SCADA protocol
for intrusion detection and digital forensic. JDFSL 9(2), 37-50 (2014)

http://engineering.electrical-equipment.org/electrical-distribution/the-top-most-used-plc-systems-around-the-world.html
http://engineering.electrical-equipment.org/electrical-distribution/the-top-most-used-plc-systems-around-the-world.html
http://engineering.electrical-equipment.org/electrical-distribution/the-top-most-used-plc-systems-around-the-world.html

144

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Kleinmann and A. Wool

Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49-51 (2011)

Marsh, R.T.: Critical foundations: protecting america’s infrastructures - the report
of the president’s commission on critical infrastructure protection. Technical
report, October 1997

Mukherjee, B., Heberlein, L.T., Levitt, K.N.: Network intrusion detection. IEEE
Network 8(3), 26-41 (1994)

Porras, P.A., Neumann, P.G.: EMERALD: event monitoring enabling responses
to anomalous live disturbances. In: 1997 National Information Systems Security
Conference, October 1997

Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of
the 13th USENIX Conference on System Administration, LISA 1999, pp. 229-238.
USENIX Association, Berkeley (1999)

Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy
(SP), pp. 305-316, May 2010

Valdes, A., Cheung, S.: Communication pattern anomaly detection in process con-
trol systems. In: IEEE Conference on Technologies for Homeland Security (HST),
pp. 22-29. IEEE (2009)

Wiens, T.: S7Tcomm wireshark dissector plugin, January 2014. http://sourceforge.
net/projects/s7commwireshark

Wikipedia: Variable-length quantity — Wikipedia, the free encyclopedia, (2015).
Accessed 5 May 2015

Yang, D., Usynin, A., Hines, J.W.: Anomaly-based intrusion detection for SCADA
systems. In: 5th Int International Topical Meeting on Nuclear Plant Instrumenta-
tion, Control and Human Machine Interface Technologies, pp. 12-16 (2006)

Ye, N., Zhang, Y., Borror, C.M.: Robustness of the markov-chain model for cyber-
attack detection. IEEE Trans. Reliab. 53(1), 116-123 (2004)

http://sourceforge.net/projects/s7commwireshark
http://sourceforge.net/projects/s7commwireshark

	A Statechart-Based Anomaly Detection Model for Multi-Threaded SCADA Systems
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contributions

	2 The DFA-based Model for Modbus
	3 A Statechart-Based Solution
	3.1 The Statechart Enforcement Phase
	3.2 The Statechart Learning Phase

	4 The S7-0x72 Protocol
	5 Stress Testing with Synthetic Data
	5.1 Generation of Synthetic Data
	5.2 Experiments with the Synthetic Data

	6 Conclusions
	References

