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Abstract. Today policy specification and enforcement mechanisms are
often interwoven with the industrial control processes on which the secu-
rity policy is enforced. This leads to interferences and non-secure behav-
iour as well as increases system attack surface. This paper presents a
security system architecture and a framework where the processes, poli-
cies, and enforcement are strictly separated. The security architecture
follows separation and least-privilege principles. The policy framework is
based on a formal language and tools to specify and generate components
for the security architecture. We illustrate our approach on an techno-
logical process and present how this solution is implemented in practice
where security is mixed with safety requirements such as real-time, worst
case execution time and certification.

Keywords: Security policy · Linear Temporal Logic · Industrial control
system · Separation kernel

1 Introduction

Weaknesses of modern industrial control systems are caused by multiple reasons.
Networked systems with historically grown architectures, made up from hetero-
geneous devices are very difficult to maintain, support and update. Usage rules
and policies sometimes do not provide the necessary level of security, because the
system has to operate (i.e. functional safety) and provide technological manage-
ment interface.Weakly controlled access to the control interface of the critical-
purpose system may have dire consequences.

In all use-cases security of the technological process shall be provided. This
security should be gained not only by restricting access to the system. The human
factor can thwart all measures of controlling the remote or physical access to the
system (e.g. angry net-admin), particularly if the system should have emergency
personnel access.
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Even for all seemingly authorized accesses, operational control must comply
with the policy that will keep the technological process within its safe execution
boundaries, e.g. building up or reducing pressure or temperature, or a process
with big inertial or sensitive thresholds.

There are plenty examples where technological process got out of safe bound-
aries. On August of 2010 at Millard Refrigerated Services, in Alabama, U.S. the
hydraulic shock caused a roof-mounted 12-inch suction pipe to catastrophically
fail. This led to the release of more than 32,000 pounds of anhydrous ammonia [1].
There were more than 150 exposed victims, 32 of which required hospitalization,
and 4 were placed in intensive care. Except of the failure of roof-mounted piping
it also caused an evaporator coil inside the facility to rupture.

The hydraulic shock occurred during the restart of the plant’s ammonia
refrigeration system following a 7-hour power outage. While this incident was
not a cyberattack, it is disturbing that the control program didn’t prevent the
dangerous attempt to restart and diagnose the system that caused the momen-
tary pressure rise in the pipes. In case of the unauthorized access to the system
the catastrophe may repeat.

As described in recent report of German government’s Bundesamt für Sicher-
heit in der Informationstechnik [2] there was an incident where a malicious actor
infiltrated a steel facility. To gain access to the corporate network the attacker used
the spear phishing email. Then he moved into the plant network (it isn’t reported
how, but he probably traversed through trusted zones and connections between
the corporate and plant network). The adversary showed knowledge of industrial
control systems (ICS) and was able to cause multiple components of the system
to fail. This specifically impacted critical process components to become unregu-
lated, which has resulted in massive physical damage. This is one more case where
the security control of the process operations would help to mitigate the harmful
consequences of unauthorized access to the industrial system network.

The incidents with gathering unauthorized access to Internet-exposed
SCADA systems are quite common now. But the process can be impacted also
by insiders such as in Maroochy in 2000 [3] or due to complicated malware attack
as was demonstrated by Stuxnet in 2010 [4].

2 Related Work

Common ICS security approaches are often inherited from the real-world con-
straints. They are pretty close to the principles of the role-based access control
except that the access control on its own is unable to guarantee the proper execu-
tion of the process. Role-based security principles are unable to take into account
the constraints on operations sequence and time-based issues. Such constraints
may be very important in industrial control systems.

Mossakowski et al. [5] concluded that classical role-based access control
(RBAC) provides the separation of duties principle but it doesn’t factor the
sequence of states in making a security decision. They proposed a security model
extended by temporal logic to specify the execution sequences. However, they
don’t describe any implementation of the extended security models.
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A similar approach is proposed by Mondal et al. [6]. They described a for-
mal technique to perform security analysis on the Generalized Temporal RBAC
(GTRBAC) model [7–9]. This model can be used to express a range of tempo-
ral constraints on different RBAC components like role, user and permission.
In GTRBAC time is represented by a periodic expression [10]. To validate the
GTRBAC model authors map it to the state transition system built using timed
automata. Each of the constraints of GTRBAC model is also mapped to the
timed automaton. As shown in the paper all the features of GTRBAC model
can be represented using timed automata.

An interesting approach to expressing information flow policies for impera-
tive programs is demonstrated by Balliu et al. [11]. Authors connect temporal
epistemic logic and several security conditions studied in the area of language-
based security. They claim that temporal epistemic logic appears to be a well
suited logical framework to express and study information flow policies.

The state-based security conditions related to noninterference for confiden-
tiality (absence of “bad” information flows) and declassification (intended release
of information) are addressed in the paper. The considered attack in this app-
roach is basically reduced to observing the system activities and deducing the
information about process execution. This approach may be quite useful for mon-
itoring the safety-critical processes but the security objectives addressed in this
work are not really applicable to industrial automation because in ICS security
the confidentiality of process execution is not an issue and often can be found in
public sources (e.g. in form of Process Hazard Analysis [12]). The only consid-
ered impact of an attack is the direct influence on technological process, whether
it was intentional or not.

Today policy specification and enforcement mechanisms are often interwoven
with the process on which the policy is to be enforced [13,14]. That makes it hard
to separate policy from enforcement objectives and lead to non-secure behaviour.

Flux Advanced Security Kernel (FLASK) [15] implements the idea of sepa-
ration of access computation and decision enforcement. This implementation is
based on two key concepts: a security server, that contains policy implementa-
tions, and object managers which are responsible for querying the security server
and enforcing access decisions. Such a separation is an important step towards
more flexible and reusable policies. We employ and enhance this idea by offering
a number of architectural and language concepts, which, applied together, form
a flexible security specification and enforcement system.

The principle of separation between the resource and application layers with
minimal trusted base for the enforcement of security policies has been studied
since 80s [21]. This principles are well known as Multiple Independent Levels
of Security (MILS) architecture. The recently published technical report in the
EURO-MILS project [20] defines a template to specify and design a MILS sys-
tem with a precise operation of concerns and use-cases. The proposed security
architecture follows the ideas summarised in the template.
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3 Main Contribution

The objective of this research is to provide a solution to keep the execution of
technological process in industrial control system safe and secure even in case of
malicious activity. In this paper we

• propose a generic comprehensive security architecture with separated appli-
cation execution, policy computation, and policy enforcement

• define an adaptive security framework to specify security policies
• present an implementation of the security architecture and the frame-

work which preserves safety, real-time execution, reliability, components and
resources availability etc.

The cornerstone of the solution is a security system architecture and a frame-
work which are designed to provide support for diverse security policies. Flex-
ibility is an essential requirement because there cannot be a single definition
of security, e.g. different deployments even with one site. capability-based sys-
tems), but in practice, it is insufficient to rely on a single security policy or a
fixed list of policies. We achieve this flexibility by separating a security-related
logic from applications implementing the business logic/technological process.
This approach has a number of advantages. From application point of view

• there is no need for applications to implement security policies
• there is no need to change applications if the security policy changes
• security policy is not limited to the means supported by applications.

We also strengthen the security part (i.e. the security of the security mechan-
ics themselves) because

• policies are abstracted away from applications
• policies operate over abstract domains
• policies are not aware of differences between applications, resources, etc.
• policy may remain stable even if applications change significantly
• system-wide security policy is a composition of smaller policies.

The paper is structured as follows. In Sect. 4 we propose the architecture
that allows different objects and subjects interact and coexist in a secure way.
In Sect. 5 we define a framework which enables the system designer specify his
system for both safety and security and instantiate the security architecture with
his configuration. We illustrate usage of our framework on a simple technological
process in Sect. 6. Finally, in Sect. 7 we show how the security architecture and
the framework are implemented, i.e. how a secure industrial control system is
created.

4 Security System Architecture

The architecture consists of three separated layers (cf. Fig. 1).
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Fig. 1. Security system architecture

• Application layer: execution environments
• Security Reference Monitor (SRM): enforcement of the security verdict
• Security Subsystem: computation of a security verdict.

Application layer consists of separated execution environments, where
technology specific applications are executed, e.g. interaction between processes,
external communications, local computations, process control, human-machine
interfaces etc. We employ the term entity to describe any part of application
such as separated technological processes, domain, or subject whose behaviour
can be described in terms of a security policy. Entities interact with each other
by sending and receiving messages.

The layer for the security subsystem computes a verdict based on sys-
tem state, input data, and configured security policy.

Each entity on its execution is associated with a security context. A security
context is a data structure, which is used by stateful polices to keep security
related attributes required to compute a decision. In fact, a policy knows nothing
about the entity, except for its security context.

The security subsystem layer consists of two separated components a security
server and a security runtime. The security runtime for each message, intercepted
by SRM:

• builds the set of policies which have to be applied to this particular interaction
according to security configuration

• requests the security server to compute those policies
• combines the results of the computation into the final access decision
• communicates the decision to the enforcement layer.
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Security server is a component which contains implementations of all policies,
manages security contexts and serves requests on policy calculation from security
runtime. Security server provides interfaces to plug in external verdict engines
for specific security requirements (e.g. file system with specific policy for files
accesses).

The layer for the Security Reference Monitor (SRM) enforces the
computed verdict on technological processes and the system as whole. The SRM
controls the execution of entities, mediates interactions between entities, and
communicates with the security runtime to receive and enforce the verdicts.

The verdict can be from simple “don’t transfer this data”, “don’t allow open
the file” to more complex such as “restart/pause/activate entities”.

In short, the SRM can be viewed as the infrastructural level which enables
entities to work, and sets up communication channels to let the information flow.
SRM also guarantees that the channels do not leak, are correctly interconnected,
and the channels endpoints are opened when it’s allowed. The security subsys-
tem is responsible to control content of the pipe with respect to the configured
security policy. Thus, our architecture allows an easy separation of functionality,
security policies, and security enforcement.

5 Framework for Security Policy Definition

The framework consists of a set of policies templates for the security server, inter-
face definition language (IDL), security specification language (which is called
CFG), and toolchain to translate specification into executable programs. Figure 2
illustrates how the framework works with the security architecture.

Fig. 2. Framework role in the security
architecture

Security Server Templates. The
framework provides a number of poli-
cies implementing specific access con-
trol approaches, e.g. type enforcement,
time logic-based safety properties spec-
ifications, multilevel security. The secu-
rity server can be easily extended with
new policies.

Each policy may have its own, pol-
icy specific configuration, and thus,
many policies operate domain spe-
cific notions (for example, multilevel
security models operate by labels, sen-
sitivities and categories, type enforce-
ment operates by domains, types etc.).
These notations require support for
policy-specific configurations. The framework allows a policy developer to define
such policy-specific configurations as well as to integrate a parser implementation
for these configurations. In Sect. 6.2 we show how this approach to custom policy
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configuration works with a policy, which verifies a safety property specified as a
temporal logic statement.

Interface Definition Language (IDL) is used to statically declare mes-
sages structure of every interaction between applications/entities in the system.
Declared interfaces serves as anchor points in security specification to associate
interactions and policies to validate them.

To configure system-wide security policy, the framework provides specifica-
tion language CFG. It allows to specify for every interaction in the system,
which policies should be applied. It also allows to specify custom policy config-
uration if a policy requires such a configuration. CFG is a declarative, suitable
for static analysis language.

CFG compiler translates specification into C-code of security runtime com-
ponent. Thus, the security runtime is a component, directly obtained from CFG
specification.

6 Framework Application on a Typical Industrial Control
System

6.1 Industrial Process Specification

In this section we introduce a simple processing unit which we use as the running
example in this paper. This unit consists of the conveyor transferring the detail
and the drill which makes a hole in this detail in the given location when the
detail is under the drill.

The interesting part of the technological process consists of moving the belt
to position the workpiece under the drill, running the drill, descending the drill
(i.e. drilling itself), elevating the drill, and stopping the drill.

In this example, the system can be viewed as consisted of two communicating
parties: entity, sending control commands (SCADA), and entity, responsible for
command implementation and sending sensor information (Factory).

Control interface (IFactory) and sensor notification interface are defined using
IDL:

package Factory

interface IFactory { /* Factory control interface */

BeltOn(); /* turn conveyor belt on */

BeltOff(); /* turn conveyor belt off */

DrillOn(); /* turn drill on */

DrillOff(); /* turn drill off */

DrillPlateDown(); /* let drill plate down */

DrillPlateRaise(); /* raise drill plate */

DrillPlateOn(); /* turn drill plate on */

DrillPlateOff(); /* turn drill plate off */

}

interface IStatus { /* Factory status interface */
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BeltOn(); /* conveyor belt was turned on */

BeltOff(); /* conveyor belt was turned off */

DrillPlateRaised(); /* drill plate is at the highest position */

DrillPlateDown(); /* drill plate is at the lowest position */

}

Our purpose is to identify and specify safety properties for this small part
of the process, thus, we are looking for conditions which are necessary to avoid
breaking the drill or the detail. The identified constraints for this process are
defined as follows:

• drilling is not allowed if the belt is currently moving on
• the conveyor can’t be started while drilling
• the drill can’t be descended if it is not run
• drilling can’t be stopped if drill is not elevated.

Some conditions may depend on input provided by installed sensors. For
example, drilling can’t be run if the detail is not positioned properly, or the drill
must be run at specific RPM.

6.2 Formalizing Safety Properties with Linear Temporal Logic

Linear Temporal Logic (LTL) is a useful tool in formal specification and runtime
verification of temporal safety properties. LTL formulae define a set of event
traces where each even has an index and an identifier of its type (such as observed
command or action). In the running example, informal drilling safety properties
for drilling (see Sect. 6.1) are expressed in LTL as a custom policy for security
server and placed in a file “drill.tl”:

C:DrillOn ==> !S:BeltOn SINCE S:BeltOff
C:BeltOn ==> !(!C:DrillOff SINCE C:DrillOn)
C:DrillPlateOn ==> !C:DrillOff SINCE C:DrillOn
C:DrillOff ==> !C:DrillPlateOn SINCE S:DrillPlateRaised

where’|’,’!’ and’==>’ mean OR, NOT and IMPLY respectively.

6.3 Security Specification with CFG Language

So far we have two interacting entities SCADA and Factory, which use interfaces
IFactory and IStatus to communicate. We have also formalized safety properties
of the interesting part of the process encoded with LTL notation and stored in
file “drill.tl”. We have all pieces in place to provide CFG specification for the
system.

01 use init policy drill_ltl_init = SecurityServer.LTL.init;

02 use call policy drill_ltl = SecurityServer.LTL.call "drill.tl";

03 use call policy allow = SecurityServer.Basic.allow;
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04 entity Factory {

05 execute default = drill_ltl_init;

06 /* Status message */

07 send out IStatus.BeltOn = drill_ltl "S:BeltOn";

08 send out IStatus.BeltOff = drill_ltl "S:BeltOff";

09 send out IStatus.DrillPlateRaised = drill_ltl "S:DrillPlateRaised";

10 send out IStatus.DrillPlateDown = drill_ltl "S:DrillPlateDown";

11 /* Control message */

12 receive in IFactory.BeltOn = drill_ltl "C:BeltOn";

13 receive in IFactory.BeltOff = drill_ltl "C:BeltOff";

14 receive in IFactory.DrillOn = drill_ltl "C:DrillOn";

15 receive in IFactory.DrillOff = drill_ltl "C:DrillOff";

16 receive in IFactory.DrillPlateDown = drill_ltl "C:DrillPlateDown";

17 receive in IFactory.DrillPlateRaise = drill_ltl "C:DrillPlateRaise";

18 receive in IFactory.DrillPlateOff = drill_ltl "C:DrillPlateOff";

19 }

20 entity SCADA {

21 execute default = allow;

22 send in IFactory.* = allow;

23 receive in IStatus.* = allow;

24 }

Let’s each line in more detail. Line 1 declares that init policy SecurityServer.
LTL.init is used in this specification under name drill ltl init. Init policy
is a special kind of policy which is typically applied on entity execution and it’s
main purpose is to initialize the security context for newly created subject. Line 2
declares that call policy SecurityServer.LTL.call is used in this specification
under name drill ltl. The generic policy is parameterized with particular LTL
statements from file "drill.tl". Call policy is used to control interactions. Line 3
declares usage of a very basic call policy, which just permits any interaction if
applied. Lines 4–19 describe security specification for entity Factory. It has three
parts: execute section, sent messages control and received messages control. Exe-
cute section at line 5 specifies that on Factory-entity creation newly created secu-
rity context has to be initialized with policy drill ltl init. Lines 7–10 specify
what type of event should be fed into LTL policy when Factory sends particular
sensor notification. For example, when Factory sends notification BeltOn, the pol-
icy emits an event of type "S:BeltOn". Similarly, lines 11–18 specify what type of
event should be fed into LTL policy when Factory accepts a command. But here,
if a command violates safety properties stated in "drill.tl", policy prohibits
its execution. Lines 20–23 specify very permissive configuration for SCADA (all
communications are allowed), since all interesting events are handled on Factory
side.

As one can see, CFG allows us easily to bind formal symbols from LTL state-
ments to particular commands and sensor notifications in a very concise way.
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Fig. 3. Security system implementation (instantiation of Fig. 1)

7 Security System Implementation

The described solution is implemented as a security system collaboratively devel-
oped by SYSGO AG [16] and Kaspersky Lab [17]. Figure 3 depicts the imple-
mentation of the concept presented in Sect. 4.

The security system architecture is based on the virtualisation platform
PikeOS [18] and covers safety and security aspects on resource and application
execution layers. The PikeOS role is to

• implement the Security Reference Monitor (SRM)
• provide separated environment for entity execution
• provide separated and protected environment for execution of the security

subsystem
• provide controlled communication channels between entities
• provide corset and interfaces for the security architecture defined in Sect. 4
• enforce safety policy for resource usage (e.g. memory, CPU) and guarantee

real-time requirements
• provide high-assurance certification guarantees according to IEC61508 up to

SIL4, IEC62443, and Common Criteria.

The implementation of the framework and security subsystem is based on a
set of Kaspersky Lab technologies. The security runtime code is generated from
CFG security specification for the SCADA and PLC domains as well as the
domain for the operator’s panel (HMI). The security runtime is a glue between
SCADA, PLC, HMI and the security server and issues calls into the security
server to calculate access decision with policies it contains.The verdict logic for
the HMI is generated from a simple access control list.

The framework toolchain extensively uses model based specification and code
generation (for both security runtime and parts of security server) to exclude
human factor from the implementation of specification for the critical system.
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8 Conclusions and Future Work

In this work we have presented a security system architecture for industrial
control system which follows separation principles. We explicitly split between
evaluation of security policies, enforcement of security verdicts, and safety critical
computations. This approach allows system integrators to greatly reduce attack
surface and increase security maintainability.

We have also proposed a framework accompanying the security system
architecture to specify technological processes. We demonstrate the approach
by employing LTL-based languages to express complex time- and event-based
polices for the controlled processes.

Finally, we have implemented the security system architecture and the frame-
work. The implementation of the security system architecture is based on the
certified hypervisor PikeOS. The toolchain implementing framework is heavily
utilising code generation and automatic deployment to decrease the human fac-
tor in critical parts to the minimum.

In the future we will explore and validate the developed solution on wider
technological processes and adjacent domains such as railway automation, trans-
portation and communications. We are already working on formal verification
of the code generators of the security subsystem to provide ultimate correctness
guarantees between the generated code and the specification. We will asses to
bring formal semantics of the PikeOS as the Security Reference Monitor [19].
We will investigate how the framework’s toolchain can be extended with deploy-
ment generation and interfaces to typical model-based integrated development
environments.
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