
A Lightweight Method for Analysing
Performance Dependencies Between Services

Arjan Lamers1,2 and Marko van Eekelen2,3(B)

1 First8 BV, Nijmegen, The Netherlands
a.lamers@first8.nl

2 Open University of the Netherlands, Heerlen, The Netherlands
3 Radboud University Nijmegen, Nijmegen, The Netherlands

marko@cs.ru.nl

Abstract. For many applications, performance is paramount. For exam-
ple, to improve conversion rates in e-commerce applications or to comply
with service level agreements. Current trends in enterprise level archi-
tecture focus on designing and orchestrating services. These services are
typically designed to be functionally isolated from each other up to a
certain degree. During the design phase as well as when the application
is deployed, choices have to be made how services interact and where
they need to be deployed. These choices have a profound impact on
the responsiveness of an application as well as on which performance
can be made. In this paper we propose a methodology to describe and
analyse performance dependencies between services. The resulting model
can then be used to assist in designing a service oriented architecture and
improving existing solutions by pointing out performance dependencies
of services.

Keywords: Services · Deployment · Architecture · Design

1 Introduction

Current trends in enterprise level architecture are focused on delivering true
components. Service Oriented Architecture (SOA) and Microservices are trends
that aim at delivering components (services) [7,8,14,16] that can be used as
ready-made parts. Building software products should then become a matter of
orchestrating these services. A service in SOA is defined by OASIS [14] as a
mechanism to enable access to one or more capabilities, where the access is pro-
vided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the service description. Typically services are grouped
together in a domain and each domain is isolated to some degree from other
domains. This degree of isolation can mean that different domains are managed
by different companies or departments, that they are hosted in different data
centres, on different machines or that they don’t share e.g. the same database
schema. This degree of isolation has profound impact on the resulting software

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 93–110, 2016.
DOI: 10.1007/978-3-319-33313-7 7

94 A. Lamers and M. van Eekelen

product: it impacts how software changes can be managed but also has an effect
on performance issues [11] such as latency and scalability.

The main goal of the methodology described in this paper is to analyse
performance dependencies of services in an architecture. In general, not all parts
of an architecture have the same performance constraints. Some areas can be
more focused on latency, others on throughput. Some services may be governed
by a service level agreement (SLA) while others are less business critical. If
parts of a system can be isolated and have their own constraints, the resulting
product can be simpler and cheaper. Moreover, to be able to guarantee that
a specific part of a system has a certain level of performance, it cannot be
influenced by parts of the system that are not under full control (e.g. public
API’s). This method does not attempt to quantify performance aspects; doing
so would require a detailed knowledge on the actual implementation. These are
either not yet known (in the design phase) or prone to change due to functional
or hardware changes. Furthermore, not all services may be owned by the owner
of the architecture or are exposed to third parties. For example, traffic on public
API’s might be possible to be estimated, but in the event of marketing campaigns
or DDOS attacks, these averages are not representative anymore. In these events,
even a low order relationship between the API and other services might still be
enough to degrade the system performance as a whole. It emphasises latency
(responsiveness) although it reveals information about throughput bottlenecks
as well.

The method has been used by the author at different stages of various
projects. During design it helped to determine how to design interaction between
services as well as to define domain boundaries. It was also helpful with inves-
tigating performance problems in an existing architecture. Proposed changes
were again validated using the model. Fellow architects in those projects were
able to quickly explain performance issues more concisely using the methodol-
ogy without having to invest in expensive tests or complex modelling. Business
stakeholders were able to understand performance consequences of decisions and
understand the reasoning behind the proposed changes. The methodology gives
a more concise and formal output than the ‘gut feeling’ that a proposed change
might improve the performance of an architecture.

The model assumes a given set of services. Higher level abstractions such as
processes, or lower abstractions such as components are all flattened to basic
services. By modelling the way the services interact it is possible to predict
potential performance issues and solve them. It also helps in determine which
services can be grouped together from performance point of view and as such can
help in (re)defining domains. The interaction between services is described by
making a distinction between a flow of information and a flow of initiative: is the
information pushed or pulled? Rather than focusing on describing an algorithm
or optimising a protocol between services, the method focuses on questioning
if two services should be connected at all and, if so, which service should take
initiative. In any sufficiently complex architecture, information can take a signif-
icant amount of time to travel through the system. Optimising that information

A Lightweight Method for Analysing Performance Dependencies 95

latency while at the same time managing performance constraints is not trivial.
The method first focuses on trying to solve this issue on the architecture level.
The proposed abstraction is simple enough to allow discussion between software
architects and domain experts, negotiating on performance aspects, while still
expressive enough to meaningfully guide an architecture. Local optimisations
can follow afterwards.

The methodology consists of three steps. First an architecture is defined in
Sect. 2. This describes the services and their interactions. Also, isolation con-
straints can be formulated. Next, these services have to be run on machines,
potentially having more than one instance of a service. This is described in
the deployment allocation (Sect. 3) of the model. In Sect. 4 managing state is
discussed. Based on the resulting optionality of connections, this deployment
allocation can be configured by choosing which connections between machines
are optimal. This results in a deployment configuration as described in Sect. 5.
In each step, the isolation constraints of a service can be verified.

2 Architecture Layer

2.1 Service Interaction

In SOA, services are consumed by work flows or processes. Services can also be
composed out of other services, making the model fractal. In this methodology,
everything is flattened to a service. If a service consists of components that can
be deployed by themselves (e.g. a service using a database), those components
are considered services as well.

A service is considered a vertex in a graph. The edges represent calls from one
service to another. There are two properties to be considered when describing
interaction between two services. The first property is the flow of information,
the second defines which service takes initiative. If service a has information that
is required by service b, that information can be pushed from a to b (Fig. 1).

a b

Fig. 1. a pushes to b

ab

Fig. 2. b pulls from a

The initiative can also originate from service b. In this case, a is pulled by b
(Fig. 2). Information still flows in the same direction, but the initiative is placed
with the receiver instead of the sender.

A push from a to b is considered a fire-and-forget operation. It is assumed
that even if b is busy, a can continue its work without significant delay. If a
confirmation of a push which can have a significant delay (e.g. the confirma-
tion contains a business result) is required information flows back from b to a.
Therefore, an additional edge is required: a pulls from b.

96 A. Lamers and M. van Eekelen

gui db

Fig. 3. Gui and db

gui db

Fig. 4. Information graph

gui db

Fig. 5. Initiative graph

As an example throughout the paper, consider an online bookstore. In its
basic form, it consists of a web application consisting of a graphical user interface
(gui) and a database (db), as shown in Fig. 3.

In this scenario, the user interface allows users to enter new information or
change information in the database. Thus, it pushes information as entered by
the user to the database. The user interface also can query the database so it
also pulls information from the database. Information flows in both directions
(Fig. 4). All initiative, however, always originates from the user interface. In
other words, this is a classical client-server setup; without a client, the server
(db in this case) has nothing to do (Fig. 5).

Formally, an architecture A consists of a vertex set S for the services and
an edge set CA representing the calls between services. A typed edge (p, s, t)
with p ∈ {push, pull} going from source s to target t is defined as having s as
the source of information. Thus, in the example above, S = {gui, db}, CA =
{(push, gui, db), (pull, db, gui)}.

This model can be translated to two different graphs, an information flow
graph and an initiative graph:

The information graph Iinf for a given architecture A is defined as:
Iinf (A) = (S,E), where S is the same service set of A. The edge set E is

defined as: Einf (A) = {(s, t)|(p, s, t) ∈ CA}.
The initiative graph Iint for a given architecture A is defined as:
Iint(A) = (S,E), where S is the same service set of A. The edge set E is

defined as: Eint(A) = {(s, t)|(p, s, t) ∈ CA∧p = push}∪{(t, s)|(p, s, t) ∈ CA∧p =
pull}, reversing the pull edges.

2.2 Stress and Responsiveness

In this model, a couple of properties can be defined.
The first property is stress. The stress graph (Fig. 6) of a service s is defined

as the subgraph of vertices that can reach the service s in the initiative graph,
including s itself. This means that the amount of work to be done on that service
s is influenced by all the services in the stress graph. For the example above, the
stress set STR of vertices in the stress graph are: STR(gui) = gui, STR(db) =
{gui, db}. This can be interpreted as follows: an increased load on gui will lead
to an increased load on db, but an increase in load on db does not lead to more
load on gui.

More formally, for a service S in an architecture A, the stress set STR is
defined as:

STR(s) = {s} ∪ STRpush(s) ∪ STRpull(s), with:
STRpush(s) =

⋃
(p′,s′,t′)∈CA{STR(s′)|s′ = s ∧ p′ = push}

A Lightweight Method for Analysing Performance Dependencies 97

STRpull(s) =
⋃

(p′,s′,t′)∈CA{STR(t′)|t′ = s ∧ p′ = pull}
To determine if a service can quickly respond to a request, the above prop-

erties are not enough. The stress indicates what impacts resource usage but
the service might also require information from another service. If the database
has a high load, it will still impact the user interface: retrieving information
will be slower. To represent this a second property is introduced, responsive-
ness (Fig. 7), combining the stress on the service s with the stress of the ser-
vices from which it pulls. For the example above, the responsiveness RES is
RES(gui) = RES(db) = {gui, db}.

The responsiveness set (Fig. 7) is thus more formally defined as follows:
RES(s) = STR(s) ∪ ⋃

(p′,s′,t′)∈CA{RES(s′)|p′ = pull}

a

c b

e d

g f

i h

Fig. 6. STR(a) = {a, b, c, d}

a

c b

e d

g f

i h

Fig. 7. e /∈ RES(a)

2.3 Analysing an Architecture

In any architecture, different services have different non-functional requirements.
Typically, a user interface has to respond quickly to an end-user’s actions. The
model cannot give a quantitative measurement. However, it can reveal which ser-
vices impact the user interface. This allows us to define constraints that enforce
a disconnect in performance between two services. For example, consider a sys-
tem with, amongst other services, a user interface and a public API. A typical
constraint might be that the user interface should always be responsive, no mat-
ter the (uncontrolled) load on the public API. This constraint can be proven in
the model by showing that the public API is not in the responsiveness set of the
user interface.

We can thus define the following two constraints:

Definition 1. A service a is weakly isolated from b if b /∈ STR(a).

Definition 2. A service a is strongly isolated from b if b /∈ RES(a).

98 A. Lamers and M. van Eekelen

3 Deployment Allocation

The next step is to describe the machines on which the services will be deployed.
Larger systems might require multiple (virtual) machines. If multiple machines
are available, the option arises to deploy services isolated on machines or to
combine a subset of them on a single machine. A service can even be deployed
multiple times to be able to handle more traffic.

If two services are deployed on the same machine, they will share resources
and thus their stress will be shared. A perfectly scalable architecture might thus
be deployed in such a way that it looses its responsiveness properties. On the
other hand, deploying two communicating services on separate machines will
introduce additional network latency. Furthermore, since it is typically assumed
that a network might fail, the two services will have to deal with CAP problems.
To analyse this, a deployment layer will be added to the model.

A deployment allocation for an architecture A is a set of machines with each
machine running a subset of A’s services. The calls made between services in A
are expanded to connections in the deployment: for each call from s to t in the
architecture, a similar connection is made between every machine that runs s
and every machine that runs t (Fig. 8).

Back to the bookstore example application. Initially, it might be deployed on
a single machine, running both the gui and the db. If the bookstore is successful,
the traffic to the website will increase. At some point, the single machine does
not have enough resources to manage the traffic. Typically, the easiest way to
scale up is to vertically scale by buying bigger hardware, or dividing the services
over multiple machines as in Fig. 9. A next step, assuming that the bottleneck
is the gui as it often is, could be to horizontally scale by deploying more than
one instance of a service on multiple machines, as seen in Fig. 10.

In this example, machine 1 and 2 contain a deployment of the service gui.
Machine 3 contains a deployment of the service db.

A deployed service σ for service s on machine m is defined as σ = (s,m) ∈ Σ.
A deployment allocation D is graph with vertex set Σ of deployed services and
an edge set of connections CD.

1

gui db

Fig. 8. 1 = {gui, db}

1 2

gui db

Fig. 9. 1 = {gui}, 2 = {db}

1

2

3

gui1

gui2

db

Fig. 10. 1 = 2 =
{gui}, 3 = {db}

A Lightweight Method for Analysing Performance Dependencies 99

For convenience, the set of machines within D is defined as M = {m|(s,m) ∈
Σ}. The deployment set of a service s is defined as the set of machines that deploy
s: DEP (s) = {m|(m, s) ∈ Σ}.

A machine holds a subset of services and all services should be deployed:
∀(s,m) ∈ Σ : s ∈ S and ∀s ∈ S : ∃(s,m) ∈ Σ.
The edge set is derived from the services and holds a reference to the original

call:
CD =

⋃
(pa,sa,ta)∈CA{((pa, sa, ta), sd, td)|sd = (sa,m) ∧ m ∈ DEP (sa), td =

(ta, n) ∧ n ∈ DEP (ta)}.

3.1 Analysing a Deployment Allocation

Similar to the properties STR and RES as defined in the context of an architec-
ture, we can define analogue properties for machines and services in the context
of a deployment. Services deployed on the same machine share resources such as
memory or cpu. Therefore they share stress.

The isolated stress of a deployed service (s,m), i.e. the stress without con-
sidering other services on the same machine, is defined in a similar way to the
stress of a service:

str(σ) = {σ} ∪ strpush(σ) ∪ strpull(σ)
strpush(σ) =

⋃
((p′,s′,t′),σ′,ς′)∈CD{str(ς ′)|σ′ = σ ∧ p′ = push}

strpull(σ) =
⋃

((p′,s′,t′),σ′,ς′)∈CD{str(ς ′)|ς ′ = σ ∧ p′ = pull}
The actual stress of a service s on machine m is thus simply the stress of

machine m, STR(s,m) = STR(m) =
⋃

(s′,m)∈D str((s′,m)).
We can now also define the responsiveness of a service on a machine. While

stress is automatically shared between services (since they share resources), the
responsiveness of two services on a different machine might still be different
since they can pull from different sources. The responsiveness of a service s
on the machine m is thus defined as the stress of the machine m united with
the responsiveness of all deployed services that are pulled from service s. More
formally,

RES(s,m) = STR(m) ∪ ⋃
((p′,s′,t′),σ′,ς′)∈CD{RES(σ′)|p′ = pull}

We can thus redefine the isolation constraints on deployment allocation level:

Definition 3. A service a is weakly isolated from a service b if
∀m∈DEP (a)∀(s′,m′)∈STR(m)s

′ �= b.

Definition 4. A service a is strongly isolated from a service b if
∀m∈DEP (a)∀(s′,m′)∈RES(m)s

′ �= b.

As an example, consider Fig. 10 again. The gui’s have been horizontally
scaled, but how effective is that? The stress of the machines in this example is:

STR(1) = {(gui1, 1)}, STR(2) = {(gui2, 2)}, STR(3) = {(gui1, 1), (gui2, 2),
(db, 3)}

The responsiveness of the deployed services are:
RES(gui1, 1) = RES(gui2, 2) = RES(db, 3) = {(gui1, 1), (gui2, 2), (db, 3)}.

The stress property indicates that all machines provide stress on the db, making

100 A. Lamers and M. van Eekelen

it a likely bottleneck. Furthermore, while the gui deployments don’t share stress,
they still influence each other in responsiveness: if one gui puts a high load on
the db, it will impact the other gui ’s responsiveness.

Thus, both gui services are only weakly isolated from each other, not strongly
isolated.

There are also some new properties to be discussed. In a distributed deploy-
ment (a deployment with |M | > 1), communication between two machines is
done via network calls. These are orders of magnitude slower than local calls.
Therefore, to reduce latency in a system, it is necessary to reduce the number
of network hops. Secondly, since network connections are more prone to break,
it is more important to define a consistency model which allows for faulty com-
munication channels. To avoid network hops, one could collocate two services on
the same machine. This, however, will result in them sharing stress.

A network hop or non-local connection is a connection that has its source
and target services on different machines.

Thus for a connection c, with c = (c′,m′, n′):

local(c) =

{
0 when m′ = n′

1 when m′ �= n′

There are two important properties that are impacted by the network hops.
Firstly, the responsiveness is not only impacted by stress on the machines, net-
work latency is an important factor as well: responsiveness network depth. The
responsiveness network depth RNET (s,m) for a service s on a machine m is
defined as the maximum number of network hops to any other service which can
be reached by s via pull requests. Note that if there are cycles in the graph, the
network depth is defined to be infinite. More formally, assume a pull-graph P
for (m, s) is a weighed graph derived from a deployment D with the same vertex
set M . The edge set for P is defined as all the pull edges for s as well as all pull
edges for the source vertices of those edges. An edge c in the pull-graph derived
from edge c′ in the deployment has weight local(c′). RNET (s,m) is now the
maximum of the sum of weights of each branch from s. If the graph is not a tree,
RNET (s,m) = ∞.

Secondly, to accurately define a consistency model allowing for failing net-
work connections, one needs to take into account the full source of information:
consistency network depth. The first property to discuss is consistency. As with
any system, there is a delay whenever information is passed from one point to
another. As such, for a service to have a world view on its state consistent with
the whole chain, any and all change in information it requires has to have reached
the service. The subgraph of all vertices that can reach a service s in an archi-
tecture, including s itself, in the information graph is defined as the consistency
graph for s. The consistency set for s is the set of vertices within the consistency
graph. For the group of services in this set, consistency model limitations will
hold (e.g. CAP limits). Either these services are deployed on a non-partitionable
system, or availability/consistency limitations will arise. More formally, for a
service s in an architecture A, the consistency set CON is defined as the set of
vertices including s that can reach s in the information graph Iinf (A):

A Lightweight Method for Analysing Performance Dependencies 101

CON(s) = {s} ∪ ⋃
(p′,s′,t′)∈CA{CON(s′)|s′ = s}

Similar to RNET , the consistency network depth CNET (s,m) is defined as
the maximum number of network hops to any service that provides information
for s. The same definition applies, only using the information graph Iinf (A)
instead of the pull graph.

These properties can be used to analyse and reduce the number of network
calls for a specific service. CNET gives an indication from how far information
has to come, thus increasing consistency model complexity, whereas RNET
indicates how much the network impacts the responsiveness.

4 State

When distributing a service, there is always the matter of synchronizing state.
Changes in one instance of a service might impact another instance of a service.
This impacts how an application can be deployed and which calls and connections
are required. To reflect this, the model supports three kinds of statefulness for
a service, stateless, stateful and partitionable.

These are defined as follows:
A service is stateless if, when there are multiple instances deployed of that

service, they do not require any exchange of information between those instances
to be able to fulfil all requests. In other words, each instance can be deployed
fully isolated while still be able to serve all requests.

A service is partitionable if, when there are multiple instance deployed of
that service, a specific instance can handle the request in isolation. The instance
that is able to handle a specific call must be determined based on the content of
that call. Each instance holds its own subset of the state and can manage that
independently. A call is called routable if the correct instance can be determined
based on the parameters of the call.

A service is stateful if, when there are multiple instance deployed of that ser-
vice, they do require to synchronise state in order to be consistent with each other.

Recall that an architecture A has a vertex set of services S. A service
s ∈ S with name n and statefulness p is defined as a tuple (n, z) with
z ∈ {stateful, stateless, partitionable}. For a partitionable service, it is further
relevant on which dimensions it can be partitioned. To simplify, it is assumed
there is only a single dimension on which a service can be partitioned if it is
partitionable. If s = (n, z), z = partitionable then its partitioning dimension
should also be defined as PART (z).

In the bookstore example, the architecture could be further refined to include
an explicit business layer service. This might be deemed necessary due to an
increase in features or due to a need for different front ends. The bookstore’s
architecture will then look like the following classical 3-tier architecture:

The graphical user interface can be scaled to have multiple instances. When a
user logs in, he or she has a session at a specific instance and as such all requests
related to that session can be managed by that single instance in isolation. Thus,
the gui is partitioned by sessions.

102 A. Lamers and M. van Eekelen

b dg

Fig. 11. Partitioned gui (g), stateless business layer (b) and stateful database (d)

The business layer handles requests from the gui, interprets them, applies
business rules and uses the database to store information. It does not keep any
state between calls so if there are multiple instances of the business layer service,
they can act isolated. The business layer is thus stateless.

The database stores the information as requested by the business layer. If
there is more than one instance, these instances need to be synchronized in order
to stay consistent. Thus, the database is stateful.

4.1 Deploying with State

When an architecture is deployed, the statefulness of a service determines how it
affects the different connections resulting from calls between services. A call can
be given as either routable or a broadcast in this model. Routable means that a
single instance of a service is sufficient to handle the request and that it is known
which instance this is. A broadcast means that all instances of a service need to
handle the request. A routable call to a stateless or stateful service means that the
request can be handled locally, a broadcast to these services is probably a cache
invalidation or some other global effect. A routable call to a partitioned service
means that by the nature of the request or its payload it can be determined which
partition holds the subset of data required to process the request. A broadcast
is necessary if it is unknown which partition holds the data, or all partitions are
required to process the request. Graphically, this is indicated by the color of the
service s (based on PART (s)) and the color of the connection (again based on
PART (s)) where s is the source in the information graph.

Recall that an architecture A has an edge set CA with a call c = (p, s, t) ∈ CA.
To represent the routability property, the tuple is redefined as c = (p, s, t, r) ∈
CA where r ∈ {routable, broadcast}.

When there is more than one instance of a stateful service, these instances
need to synchronize. For that to happen, information has to be exchanged and
that means that broadcast calls between all instances exist. By convention, these
calls are designated as broadcasting push connections. For the properties as
defined until now, it does not matter if it is push or pull since the call is from a
service to itself. To indicate if a call is a broadcast or if it is routable, respectively
double and single arrow heads are used in an architecture graph as in Fig. 12.

In extending a deployment graph from an architecture graph, connections
are derived from calls. The connections will derive a new property optionality
which can be deployment optional, runtime optional or compulsary, based on the
type of service and if the call is routable or not.

A connection is by definition compulsary if the call is a broadcast, since all
instances of a service have to be reached.

A Lightweight Method for Analysing Performance Dependencies 103

d

Fig. 12. Stateful database (d) needs to synchronize using a broadcast

A connection is deployment optional when, for all the connections in a deploy-
ment for a specific call, only one is necessary for the system to function correctly.
All others can be left out of the deployment. If the target of a call in the ini-
tiative graph is either stateless or stateful, any of the deployed instances can be
the target for the connection. Each instance can handle the request. This type
of connection is considered deployment optional. A push to or a pull from any
stateless or stateful service is considered deployment optional by default.

A connection is runtime optional when, for all the connections in a deploy-
ment for a specific call, only one connection is used in a specific instance. Which
one it is, is determined at runtime. Other connections may be used for different
calls. If the target of a call in the initiative graph is partitioned and the call
is routable, only one connection is used runtime to the specific instance of the
partitioned service. This type of connection is considered runtime optional.

A connection c ∈ CD is now defined as c = (c′, σ, ς, o), with as before
c′ ∈ CA and having a deployed service σ ∈ Σ as a source of information and
ς ∈ Σ as a target. The new property o ∈ {runtime − optional, deployment −
optional, compulsary} is added.

As an example, consider deployments for the architecture as defined in the
bookstore’s 3-tier architecture (Fig. 11). If two instances for each service are
created, the deployment as seen in Fig. 13 is the result. Here the dotted lines are
deployment optional, the solid lines are compulsary. The two database instances
are synchronized in what is generally called a master-master replication. Other
database replication scheme’s would require a change in architecture first. For

1

2

3

4

5

6

d2

d1g1

g2

b1

b2

Fig. 13. Deployed partitioned gui (g), stateless business layer (b) and stateful data-
base (d)

104 A. Lamers and M. van Eekelen

example, read-only slave configurations require that the client (in this case the
business layer) knows which database to use for writes and which for reads.
Thus, without changing the architecture, this is the resulting deployment.

If the statefulness of the business layer is changed, the connections will
change as well. For example, assuming the business layer is partitioned as well,
the graph will look like Fig. 14, where the dashed lines represent the runtime
optional connections. Imagine for example that each business layer instance ser-
vices different payment options (e.g., mastercard transactions go to b1 and visa
to b2). In this example, the g and b services use different partitioning dimensions
(PART (g) �= PART (b)): the gui is partitioned by user sessions whereas the
business layer by payment options. The connections from g to b thus have to
be routable on PART (b). As a last example, if the statefulness of the business
layer is stateful, the graph will look like Fig. 15. This is quickly the case if the
business layer manages its own state instead of delegating to the database.

1

2

3

4

5

6

d2

d1g1

g2

b1

b2

Fig. 14. Partitioned business layer

1

2

3

4

5

6

d2

d1g1

g2

b1

b2

Fig. 15. Stateful business layer

5 Deployment Configuration

The deployment allocation assignes services to machines. Given a deployment
allocation, the optionality of the connections between machines is known and
some of those connections are redundant. Based on this, non optimal connec-
tions can be pruned and configuration choices can be made. Some of these choices
are obvious improvements, while others have both advantages and disadvan-
tages. Choosing which connections to actually configure results in a deployment
configuration.

5.1 Deployment Optional Pruning

In case of deployment optional connections, if one of the connections is local
than that one is generally preferred; there is no obvious reason to use a non-local
connection since all are equal. By picking the local connection, that connection is
no longer deployment optional, there is nothing else to choose from. For example,
considering the bookstore 3-tier architecture (Fig. 11). Due to budget constraints

A Lightweight Method for Analysing Performance Dependencies 105

or other reasons, the gui and the business layer are to be deployed together on
the same machine, resulting in a deployment allocation that will initially look
like the graph in Fig. 16.

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 16. Initial

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 17. Static load balancing

1

2

3

5

4lb

d2

d1
g1

g2

b1

b2

Fig. 18. Dynamic load balancing

The connections on the left side are all deployment optional and result from
g and b having multiple instances. As such, all possible connections are derived
from the architecture into the deployment allocation. However, since only one
connection for each call is required, non-local connections can be removed, avoid-
ing network calls when not required. For the deployment optional calls between
the business services b1 and b2 to the databases instances d1 and d2, a couple
of options are possible. One obvious choice is to assign each business service
its own database. This would lead to Fig. 17 with each business service having
compulsary connections to a dedicated database. Another is to dynamically load
balance request between the databases. That would require an additional load-
balancer service (lb) which routes the traffic to one of the database instances
(Fig. 18). The connections from the business service to the loadbalancer become
compulsary, while the connections from the loadbalancer to the database will
be runtime optional; only one is required. While having a load balancer might
lead to a more evenly distributed load over both database instances, the load
balancer by itself is another bottleneck and network hop.

106 A. Lamers and M. van Eekelen

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 19. Initial

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 20. Pruned as processing units

5.2 Pruning Runtime Optionals

For runtime optional connections resulting from partitioned services, some prun-
ing options are possible as well. If both the source s and the target t of a con-
nection are partitionable, share the same partitioning dimension and are always
codeployed, the deployment configuration can exploit that by assigning the same
partitions for instances of s and t. The assumption here is that a call does not
change routing. If the use case requires a different routing, it should be marked
as a broadcast. If this assumption holds, the machine which holds both s and t
can be treated as a “processing unit” which deliver all functionality for a subset
of partitions.

As an example, recall the partitioned business layer architecture in Fig. 14.
Each business layer served a subset of payment methods (e.g. mastercard to b1
and visa to b2). It might be beneficial to partition the database in a similar way,
storing only mastercard transactions in one instance, and visa transactions in the
other. This way, both database instances can operate independently, resulting
in the deployment allocation as found in Fig. 19. The consuming services, in this
case a differently partitioned user interface g, should be able to route its calls
to one of the processing units formed by machines 3 or 4. Pruned, this could be
reduced to Fig. 20.

6 Architectural Patterns

To resolve performance issues, there are a number of technical patterns available
that will isolate service performance to some degree. In this section common
patterns like caches and queues are discussed, modeled and compared using the
method. The most basic patterns, push and pull have been discussed in the first
chapter as they are the building blocks of the model.

A cache pattern is used to keep state readily available if it has been calculated
or received before. This way, the consumer is decoupled from the performance
of the producer. A cache can behave in a lazy way, and only retrieve values
when they are requested as modelled in Fig. 21. Here, the consumer c pulls the
information from a cache store (cdb). If this store does not contain the value,

A Lightweight Method for Analysing Performance Dependencies 107

it retrieves it from the producer. While the stress of the consumer is decoupled
from the producer, the model shows that the responsiveness is still dependent on
the producer. In effect, the cache has no effect in the model since the producer
and consumer are not fully isolated in the case of a cache miss.

Caches can also behave in an eager fetching way as modelled in Fig. 22. Here
the cdb cache store is filled by an independent cache reader which pulls the orig-
inal information from the producer. This can be a scheduled or an asynchronous
task. In this scenario, the consumer’s stress is isolated but the producers stress
is depending on cr. The responsiveness of the consumer is now only dependent
on cr and cdb. The cr service can thus be tuned to balance the stress on the
producer versus the responsiveness of the consumer.

1 2

p ccdb

Fig. 21. Typical lazy cache

1 2

p ccdbcr

Fig. 22. Typical eager cache

A queue pattern is used to decouple a flow between services. One service
pushes a message onto the queue, another service can pick it up at any time. See
Fig. 23. The producer p can always deliver its messages and as such is unaffected
by the performance of the consumer c. The model shows this as well: the stress
and the responsiveness of p only depends on p itself. The consumer c also only
receives stress from itself, but the responsiveness is impacted by both the queue
(q) itself as well as the producer p. A queue reader or writer might be added
(similar to the cache reader above, or even by adding a complete cache) to be
able to improve responsiveness of the consumer.

1 2 3

qp c

Fig. 23. A queue between p and c

In Table 1 presents a summary on how these architectural patterns behave
according to this model. Note that the more performance isolation a pattern
offers, the more elements are involved in maintaining consistency. For a queue,
the consistency network depth also increases. As can be predicted, caches and
push calls are excellent for improving responsiveness since they decrease the
distance of accessing data (decreasing RNET (s)).

108 A. Lamers and M. van Eekelen

Table 1. Isolation levels of patterns

Pattern p c RNET (c, 2) CON(c, 2) CNET (c, 2)

Push Strong - 0 {c,p} 1

Pull - Weak 1 {c,p} 1

Lazy cache - Weak 0 {c,p,cdb} 1

Eager cache Strong Strong 0 {c,p,cdb, cr} 1

Queue Strong Weak 1 {c,p,qdb} 2

7 Related Work

In this paper we have presented a novel notation. Other notations, such as UML
sequence diagrams or Petri nets, also exist. Sequence diagrams can express par-
allelism and ordering of actions, expressing interaction between services quite
detailed. Petri nets allow concurrency and synchronisation analysis in distrib-
uted systems and as such require details on how state is synchronised. These
details are very useful within a specific service or domain but less useful between
domains since these are, by definition, reasonably isolated. Instead, our notation
leaves out algorithmic details and focuses on expressing the distinction between
the source of information and initiative on a higher abstraction. This allow a
focus on the question whether the architecture or the deployment needs to change
or whether some latency requirements can be loosened, before trying to optimise
it in the implementation.

Research has been done which focuses on predicting a quantified throughput
of a (workflow in a) Service Oriented Architecture, e.g. [3,4,6,10,17]. In general,
these models require load functions, detailed descriptions or actual implementa-
tions for each service. Determining load functions and finding reasonable values
for parameters of these models can be quite demanding and might be possible
only quite late in the development process. Additionally, calculating the perfor-
mance of the architecture might not be instant but requires a (relatively) long
simulation. Instead, our work focuses on finding performance isolation between
services without quantifying it. The properties can be quickly derived, even man-
ually up to a certain complexity, and future tooling could extensively compare
alternatives. SLAng [15] provides a precise way of defining SLA’s for services. It
would be interesting to see if some properties could be guaranteed by the model.

Software defined networks [13] decouple the network control decisions from
the actual hardware, making it easier to change deployment configurations, either
manually or automatically.

8 Conclusion

The described method gives insight into how services influence each other with
regards to performance. This can be used to validate and assist in decisions both

A Lightweight Method for Analysing Performance Dependencies 109

on architectural level as well as on deployment. Since the model does not require
concrete details it can be used as a light weight method to drive discussion
and validate performance requirements. Multiple implementations of a simple
example, a bookstore website, were modeled and analysed, providing insight in
difference in performance behaviour. Here the method provides a tangible result
for performance related issues within an architecture. Possible solutions on both
architectural (software) level as well as on deployment level can be compared
and weighed.

Future Work

The methodology described can be applied to both small and larger architec-
tures. For small architectures, this can be done by hand and the results are nat-
ural. For larger architecture tooling is required to derive results and these might
be surprising. A tool is being build to automate calculation of the properties.
This should aid in quickly discovering and analysing deployment scenario’s and
weighing the advantages and disadvantages such as balancing isolation versus net-
work latency. It should also be able to point out possible areas where changes in
the architecture could be beneficial and potentially detect (a subset of) perfor-
mance anti-patterns [5]. Changing the initiative from one service to another, or
edges that are suitable candidates for static or dynamic loadbalancing, could be
auto detected and then alternatives could be compared. Other “Middlepipes” [9]
related products such as circuit breakers as shown in e.g. [12] could be modelled
as well, either as concrete specialisations or by deriving REO connectors [1]. The
properties could be further formalised to derive optimisations for e.g. nested archi-
tectures and deployments. More research is to be carried out to see if we can help
discover consistency models between services based on the initiative and informa-
tion graphs, e.g. to help derive application invariants for [2].

To further validate the approach, the methodology should be applied at full
scale projects in different stages of development or production.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14, 329–366 (2004). http://journals.cambridge.org/
article S0960129504004153

2. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Coor-
dination avoidance in database systems. Proc. VLDB Endow. 8(3), 185–196 (2014).
http://dx.org/10.14778/2735508.2735509

3. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)

4. Brebner, P.C.: Real-world performance modelling of enterprise service oriented
architectures: delivering business value with complexity and constraints. In: ACM
SIGSOFT Software Engineering Notes, vol. 36, pp. 85–96. ACM (2011)

5. Cortellessa, V., Di Marco, A., Trubiani, C.: An approach for modeling and detect-
ing software performance antipatterns based on first-order logics. Softw. Syst.
Model. 13(1), 391–432 (2014)

http://journals.cambridge.org/article_S0960129504004153
http://journals.cambridge.org/article_S0960129504004153
http://dx.org/10.14778/2735508.2735509

110 A. Lamers and M. van Eekelen

6. Ferrer, A.J., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C.,
Sirvent, R., Guitart, J., Badia, R.M., Djemame, K., et al.: Optimis: a holistic
approach to cloud service provisioning. Future Gener. Comput. Syst. 28(1), 66–77
(2012)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000). aAI9980887

8. Fowler, M.: Microservices. http://martinfowler.com/articles/microservices.html
9. Jamjoom, H., Williams, D., Sharma, U.: Don’t call them middleboxes, call them

middlepipes. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, pp. 19–24. ACM (2014)

10. Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Trans. Softw. Eng. 32(7), 486–502 (2006)

11. Kratzke, N.: About microservices, containers and their underestimated impact on
network performance. In: Proceedings of CLOUD COMPUTING 2015 (6th Inter-
national Conference on Cloud Computing, GRIDS and Virtualization) (2015)

12. Netflix: Hystrix. https://github.com/Netflix/Hystrix
13. Nunes, B., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T., et al.: A sur-

vey of software-defined networking: past, present, and future of programmable
networks. IEEE Commun. Surv. Tutorials 16(3), 1617–1634 (2014)

14. OASIS: Oasis soa reference model tc. https://www.oasis-open.org/committees/tc
home.php?wg abbrev=soa-rm

15. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In:
Proceedings of the 26th International Conference on Software Engineering, pp.
179–188. IEEE Computer Society (2004)

16. The Open Group: Service oriented architecture: What is soa? http://www.
opengroup.org/soa/source-book/soa/soa.htm#soa definition

17. Zhu, L., Liu, Y., Bui, N.B., Gorton, I.: Revel8or: model driven capacity planning
tool suite. In: 29th International Conference on Software Engineering, ICSE 2007,
pp. 797–800. IEEE (2007)

http://martinfowler.com/articles/microservices.html
https://github.com/Netflix/Hystrix
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition

	A Lightweight Method for Analysing Performance Dependencies Between Services
	1 Introduction
	2 Architecture Layer
	2.1 Service Interaction
	2.2 Stress and Responsiveness
	2.3 Analysing an Architecture

	3 Deployment Allocation
	3.1 Analysing a Deployment Allocation

	4 State
	4.1 Deploying with State

	5 Deployment Configuration
	5.1 Deployment Optional Pruning
	5.2 Pruning Runtime Optionals

	6 Architectural Patterns
	7 Related Work
	8 Conclusion
	References

