
Cloud Services Composition Through
Semantically Described Patterns: A Case Study

Beniamino di Martino, Giuseppina Cretella(B), and Antonio Esposito

Second University of Naples, Via Roma 29, Aversa, CE, Italy
beniamino.dimartino@unina.it,

{giuseppina.cretella,antonio.esposito}@unina2.it

Abstract. With the proliferation of Cloud services and the huge num-
ber of Cloud offers currently available in the IT market, it can be diffi-
cult for customers to understand which one fits their need. Patterns, if
correctly applied to the design and development of Cloud applications,
can ease programmers’ burden and reduce errors and bugs in applica-
tion implementation. In this paper we use a methodology, based on the
semantic representation of Cloud patterns, Cloud services and applica-
tions, to support users in developing Cloud oriented software meeting
their explicit requirements.

Keywords: Cloud computing · Services composition · Cloud patterns ·
Semantics · Ontology · OWL

1 Introduction

The Cloud Computing scenario is a plethora of always new and changing Cloud
proposals, platforms and capabilities. Furthermore, each provider tends to use
its own terminology in order to differentiate itself from others and try to gain
new market shares. Thus, it can be difficult for users to clearly understand which
services are more suitable for their requirements and needing. In such a situa-
tion, also portability and interoperability of Cloud applications and services is
badly influenced, making it difficult to make services and resources from dif-
ferent providers to cooperate in order to provide specific functionalities. In this
paper we show how, by using a semantic-based representation of Patterns, Cloud
services and Virtual appliances, based on the work presented in [16,17,20], it is
possible to describe a classical application and support users in deploying it
to the Cloud. Such a uniform, integrated and machine-readable representation
aims at supporting the migration of applications to the Cloud and at easing the
procedures needed to port them across different platforms.

The paper is organized as follows: Sect. 2 reports related works and offers
some insight on the technologies used in our representation; Sect. 3 briefly
describes the methodology we have applied to the description of patterns and
services; Sect. 4 describes the use case and the application of our methodology;
finally, in Sect. 5 we report some consideration on the present work and address
future directions of research.
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 404–418, 2016.
DOI: 10.1007/978-3-319-33313-7 31



Cloud Services Composition Through Semantically Described Patterns 405

2 State of the Art

The classification and categorization of Cloud Services has been the topic of
many research efforts [12,13], which have tried to systematize their exposed
functionalities, operations, parameters and service models. A freely navigable
online taxonomy has been provided by the OpenCrowd [6] consortium, which
categorizes Cloud Services according to both their service model (IaaS, PaaS or
SaaS) and application context. Nevertheless the criteria followed to categorize
each service are not clear, as well as the limitations and controls under which the
taxonomy creation is performed. Machine readable standards for services’ rep-
resentation and orchestration have been proposed and approved: among these,
remarkable results have been accomplished by the Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA - an OASIS standard)
and by the orchestration template language HOT, developed by Openstack [7]
within the HEAT project. TOSCA describes both a topology of Cloud based
web services, consisting in their components, relationships, and the processes
that manage them, and the orchestration of such services. HOT is a new tem-
plate format, compliant with the CloudFormation Template defined by Ama-
zon, which details everything that is required for orchestration and it is written
in YAML. A Comparison of such formats is available in [19]. Semantic based
approaches have been considered and applied in order to overcome limits related
to automated processing and reasoning, caused by differences in semantics and
syntactic. A semantic ontology is a formal, machine readable knowledge rep-
resentation of a set of domain-related concepts and the relationships between
them. It is used to reason about the properties of that domain and may be used
to efficiently describe it by providing a shared vocabulary. The Web Ontology
Language (OWL) [30] is a semantic mark-up language for publishing and sharing
ontologies on the World Wide Web. A number of ontologies related to cloud com-
puting emerged in the past few years. The authors of [10] provide an overview
of Cloud Computing ontologies, their applications and focuses. Some ontologies
are used to describe Cloud resources and services, classify the current services
and pricing models or define new types of Cloud services [15,34]. Many research
efforts have been carried-out to develop ontologies to achieve interoperability
among different Cloud providers and their services: different solutions have been
discussed in [32]. A remarkable result has been reached by the mOSAIC cloud
ontology [31] developed for the mOSAIC platform [21]. Such an ontology has
also been adopted by the IEEE P2302 Working Group (Intercloud) [4] for the
development of the Intercloud Interoperability and Federation (SIIF). In [11]
Bernstein and Vij present the InterCloud Directories and Exchanges mediator
to allow collaboration among Cloud vendors which work on an ontology of Cloud
Computing resources to deal with providers heterogeneity. In [33], the authors
propose a resource selection mechanism based on the users’ requirements regard-
less of where the services are hosted. Han and Sim [25] propose a Cloud service
discovery system that uses Cloud ontologies, matchmaking and agents to deter-
mine the similarities between and among services. In [14] the author present
an ontology-based discovery system to help users in deploying their virtual



406 B. di Martino et al.

appliances on the most appropriate IaaS providers, based on their definition
of QoS requirements.

2.1 Cloud Patterns

Design Patterns, defined as a general and reusable solution to a common and
recurrent problem within a given context [23], have been used for a long time in
software design and development. Their objective is to support developers in the
design of their application, reducing design and developing time, known errors
and bugs. As of today, a number of Design Patterns catalogues exist for several
purposes, like ontology creation [5,24] and definition of SOA-oriented applica-
tions [8,22]. Recently both Cloud vendors and independent researchers have
developed catalogues of Cloud Patterns, which define architectural solutions for
designing and developing efficient applications on the Cloud. Remarkable exam-
ples are represented by the vendor specific catalogues developed by Microsoft
[9] for Azure and by Amazon for Amazon Web Services [1]. Independent
catalogues are instead retrievable at [2,3]. In the remainder of this paper, we
will refer to the formers as to Vendor Specific patterns, since they are bound
to the specific platform they have been designed for. The latter will be referred
to as Agnostic patterns, since they provide generic solutions, which are not
bound to a specific platform and are therefore more flexible and applicable to
different targets. The use of Cloud patterns for the design, implementation and
management of Cloud Applications has been widely discussed in the literature
[26,27,29].

Our semantic representation focuses on Patterns, and Cloud Patterns in par-
ticular, because they can provide the necessary information to build an applica-
tion’s architecture on a platform and, in the case of vendor-specific ones, also to
deploy such an application and configure the services which compose it. As an
instance, suppose that a user needs to monitor a certain applications, which is
running on a server owned by a Cloud Provider. Without knowing which provider
hosts the server, it is possible to leverage an agnostic Cloud pattern to know in
advance the components needed. The pattern Usage Monitoring provided in
[3] defines the main components needed to monitor the usage of a simple Cloud
Service, by providing access to a set of collected metrics via a portal, which
collects information through a ad-hoc monitoring service. The different possible
interactions between the user and the system are also described in the pattern,
as shown in Fig. 1.

Since the agnostic pattern is extremely general, it is possible to determine
a whole set of possible implementations for a certain Cloud platform, each one
addressing a specific issue. For example, if we consider the AWS platform and we
want to deploy a generic monitoring application on it, the Monitoring Inte-
gration Pattern describes the architecture and the components needed. As it
is shown in Fig. 2, the pattern points out the Amazon services needed to deploy a
monitoring application and also shows how to actually connect it to the services
to monitor.



Cloud Services Composition Through Semantically Described Patterns 407

Fig. 1. Usage Monitoring pattern

Fig. 2. Monitoring Integration Pattern

3 Methodology Description

In this section we briefly introduce the integrated representation of cloud ser-
vices, appliances and cloud patterns we have devised. For a more detailed descrip-
tion of such a semantic representation, please refer to [16].

The model we use to describe Cloud related concept is based on a graph
representation, which can be divided into five conceptual levels. Each level is



408 B. di Martino et al.

Fig. 3. The Conceptual Layers Fig. 4. Application Pattern Composition

connected to the others through relationships, which enable the Cloud services
discovery and composition. Figure 3 reports the layered organization of our rep-
resentation:

– The Parameters Level contains the semantic description of the data types
exchanged among Cloud services as input and output of their exposed opera-
tions.

– The Operations Level provides a syntactic description of the operations and
functionalities exposed by a cloud service, in a machine readable format. In
this way, it is possible to automatically retrieve information on how to call the
service and interact with it.

– The Services Level provides a semantic annotation of Cloud services, which
are organized according to a hierarchical classification described in [18]. Both
vendor specific services and agnostic ones are represented at this level.

– The Cloud Patterns Level represents the semantic description of agnos-
tic and vendor dependent Cloud patterns realized through an OWL repre-
sentation. The patterns described here are composed of services delivered at
infrastructure and platform level.

– The Application Patterns Level contains information on high level pat-
terns, which describe entire applications with their components. Such patterns
are general enough to be applied to different contexts, not necessarily Cloud
related: in this way, it is possible to describe a generic application through
one or more of Application patterns and then retrieve the components to be
used for its implementation using the lower levels of our representation. The



Cloud Services Composition Through Semantically Described Patterns 409

organization of such components and how they should interact to achieve the
required functionality in Cloud are described in the Cloud Pattern level.

3.1 Pattern Representation

The core element of our representation is the Application Pattern, which is
used to describe general applications with their architectural details and infor-
mation on the interactions taking place among their components. Application
patterns can consist of multiple Design/Cloud patterns, and their components
are connected through relationships expressing the equivalence between their
participants and potential implementing services. As shown in Fig. 4, each of
the application patterns’ participants is connected to a Cloud/Design patterns’
component: the matching is not necessarily one to one, since two elements
of an Application pattern could be embodied by the same participant in a
composing Cloud pattern and vice-versa. The same applies to the mapping
between Cloud/Design patterns’ participants and application components. In
the semantic-based representation we use to describe Patterns, the participants
are represented by individuals of the OWL class ComponentTemplate, while
the connections between elements of different layers is obtained via instances of
an object property equivalent. The connections existing within the same layer,
representing workflow and interactions among patterns’ participants, are repre-
sented via OWL-S [28] native constructs. In order to keep trace of the Patterns
involved, of their interconnections and participants, each pattern is represented
by an instance of the Pattern OWL class, while the object properties hasPar-
ticipant and includes are used to connect a pattern to its owned elements and
to other contained patterns, respectively. The representation we use for pattern
description is applied to both vendor specific and agnostic patterns, in order to
have a homogeneous definition of them. The only difference between agnostic and
vendor specific pattern representations resides in the nature of the application
components used to realize them: vendor specific patterns will be connected to
real components, while agnostic patterns will be composed of agnostic services.

3.2 Services Representation

As we have stated in Sect. 3.1, patterns are connected to application compo-
nents which can be potentially used to implement them. In particular, since we
are addressing a Cloud-oriented implementation, such components will be rep-
resented by Cloud Services or Virtual Appliances. Such components are defined
in the Services layer, which contains both representation of vendor specific and
agnostic services. Agnostic services act as place-holders for services’ functionali-
ties, and constitute a hierarchical architecture against which vendor services are
annotated. In this way, equivalences between several services and their function-
alities can be automatically inferred, through the explicitly declared equivalence
with agnostic concepts and logical rules.



410 B. di Martino et al.

Physically, the agnostic services are all defined within a single Cloud Service
ontology; vendor specific services are organized in self-contained ontologies, inde-
pendent of each other, which import the agnostic one to annotate their services.
The annotation is possible via a set of three object properties:

– exactEquivalence defines and exact correspondence between the vendor spe-
cific and agnostic service.

– plugin is used if a service has not a single correspondence, but it exposes
functionalities offered by more than one service.

– subsumes represents the inverse situation of plugin, that is when the func-
tionality exposed by a service can be obtained only by composing two or more
different agnostic or vendor specific services.

All these are sub-properties of a more generic equivalent object property. The
description of the input and output parameters of vendor specific services relies
on OWL-S descriptions, which also leverage an underlying parameter ontology
for the disambiguation of similar variable types and the support to logical infer-
ences.

Figure 5 reports a schematic representation of the different ontologies
involved in the services representation: the top Agnostic Service Descrip-
tion Ontology contains abstract descriptions of services, parameters, opera-
tions and resources, which are used as a common ground for comparisons among
concepts described in the bottom Cloud Provider Ontologies and Cloud
Services OWL-S Descriptions which, instead, contain platform-specific infor-
mation. Our knowledge base contains a specific Cloud Provider ontology and
OWL-S description for each Cloud platform (AWS, Azure, OpenStack, Google
AppEngine, BlueMix) we have considered. Categorization of services is provided
by the Cloud Services Categorization Ontology, which is used as a bridge
between the agnostic descriptions and the OWL-S representations. The connec-
tions shown in the figure are obtained through OWL object properties which
assess the equivalence among services, parameters and operations. Such proper-
ties enable the free navigation of the ontology framework, making it possible to
rapidly determine how to replace one or more services and operation calls when
necessary.

4 Case Study

The application of Design and Cloud pattern to software development can ease
and speed-up programmers’ work: common problems that can be encountered in
designing and developing a new application can find immediate solutions in the
appropriate pattern. The case study we propose in this section aims at showing
how, with our semantic base representation, it is possible to effectively support
programmers in choosing and applying the needed patterns to the development
of a new Cloud-oriented software and/or the migration of an existing application
to a Cloud platform.



Cloud Services Composition Through Semantically Described Patterns 411

Fig. 5. Ontology Organization

Each of the steps we are showing is executed through a prototype graphical tool,
which hides all the SPARQL queries which are automatically run against our
knowledge base. Such a tool is still at its early stages of development and will
not be shown here.

The example we are taking in consideration regards the complex informa-
tion system needed to manage a railway reservation web-site. Figure 6 reports a
schematic representation of the main components of such a system:

– the Reservation front-end that provides a user friendly web interface to
customers, allowing them to interact with the system.

– the Back-end system, a complex component which in turn consists of an
Availability Checker system (responsible to check tickets availability), a
Reservation system (in charge of making the actual reservations) and a
Payment system (that validates online transactions).

– a Database that holds information on trains, stations, timetables, purchased
tickets and reservations.

4.1 Step 1: Selection of the Application Pattern

Using a graphical interface, a user can select the type of application she wants to
build and deploy on the Cloud: for each application category there will be one or
more specific application patterns which will be presented to the user, who can
then refine the selection. The software we want to develop in our case study can
be easily represented through a very generic Application Pattern, namely the



412 B. di Martino et al.

Fig. 6. The railway reservation system example

Reservation System pattern, whose components and correspondence with the
agnostic Three-Tier Cloud Application Pattern [2] are shown in Fig. 7. The
Reservation System application pattern can be easily applied to other similar
applications, since it is sufficiently general and does not impose specific require-
ments. Our semantic-based representation can be also extended, so that new
patterns can be built from the existing ones to add functionalities.

As soon as the user chooses the application type and a corresponding Appli-
cation pattern is selected, the system automatically maps its components to an
agnostic high-level Cloud pattern, which will represent the starting point for fur-
ther refinements. The mapping shown in Fig. 7 simply matches the components
of the application pattern, corresponding to the Reservation System used as an
example, to the three major layers composing a three-tier application on Cloud:
the correspondence is not one-to-one, as the Back-end system’s components are
all automatically matched with the Business Logic layer, where all the processing
components belong to. At this point, the user can select one of the components
of the high-level Cloud pattern in order to refine it further.

4.2 Step 2: Refinement of the Pattern’s Components

Each of the three layers of the selected Three-Tier Cloud Application Pattern
can be further refined via a mapping to other agnostic Cloud Patterns, which
provide better instructions regarding the possible implementation of the needed



Cloud Services Composition Through Semantically Described Patterns 413

Fig. 7. Mapping between application pattern and agnostic cloud pattern

infrastructure. For each tier a composition of cloud patterns is suggested to
implement and improve the single tier performance.

– the presentation tier (Fig. 8) can be implemented using a combination of an
Elastic Load Balancer pattern (providing application scalability), a Stateless
Component pattern (managing the status of the application’s components)
and a User Interface pattern (serving as a bridge between the synchronous
access of the human user and the asynchronous communications used with
other application components).

– the Business Logic tier (Fig. 9) is built via the combination of a Process-
ing Component Pattern (providing elaboration capabilities), a Stateless
Component Pattern and a Data Access Component Pattern (which
guarantees access to the needed data).

– the Data Tier (Fig. 10) is the simplest of the three different layers as it is com-
posed by a single agnostic patterns, namely the Data Access Component
Pattern

Composing patterns can be shared among the different layers (the Data Access
Component Pattern is used in both the Business Logic and Data tiers) and can
also share participants: in the considered Presentation layer the Elastic Load
Balancer participant is shared among two of its composing patterns.

4.3 Step 3: Selection of a Target Platform

The patterns used to compose the application layers are all agnostic ones: their
components are not immediately implemented, as they need to be connected to
an existing target platform. By following our pattern-based approach, it is pos-
sible to further refine the application composition by identifying vendor specific
patterns with more detailed information regarding the implementation of the



414 B. di Martino et al.

Fig. 8. Presentation tier composing patterns

Fig. 9. Business tier composing patterns

Fig. 10. Data tier composing patterns

different components. In this example, we will refer to Amazon Web Services
as a possible target for the application deployment. By automatically analysing
the semantic-based representation of the Amazon Cloud patterns catalogue [1]



Cloud Services Composition Through Semantically Described Patterns 415

we have devised, it is possible to retrieve equivalent patterns and to determine
correspondences between their components. Figure 11 shows how the agnostic
patterns and components identified for the Presentation tier are mapped to cor-
responding Amazon Cloud Patterns and services. In particular:

– Corresponding patterns are connected with black arrows: Stateless Component
Pattern with State Sharing Pattern; Elastic Load Balancer Pattern with Scale-
out Pattern.

– Blue arrows connect corresponding services/components: Stateless Compo-
nent, Elastic Infrastructure and User Interface with EC2; Elastic Infrastruc-
ture with AutoScaling; Monitor with CloudWatch; Load Balancer with Elastic
Load Balancer; Message Queue with Simple Queue Service.

Fig. 11. Implementation of the Presentation tier with AWS patterns

The User Interface pattern does not correspond to any Amazon Cloud pat-
tern, so the system simply identifies suitable services from the target vendor
to implement them, without applying a specific pre-defined configuration. In
this way, we can avoid the restrictions that the use of vendor specific Cloud
patterns could impose to the implementation of an application. Once all the
pattern elements have been mapped to a potential implementing Cloud service,
the system supports users in making them interact, thanks to the information
on the parameters and the operations they expose, which are contained in our
semantic-enabled knowledge base. All the correspondences and mappings shown
in figures are retrieved by means of SPARQL queries, which are run against our
OWL-based knowledge base. Such queries leverage the properties described in
Sects. 3.1 and 3.2, and are described in more details in [16]. Here we report,
in Listing 1.1, an example of the SPARQL query used to retrieve all the ven-
dor specific services which are equivalent to the agnostic Elastic Load Balancer
used in the use case. The query first retrieves the category to which the Elastic
Load Balancer service belongs, using the equivalent property defined in the pat-
tern ontology (hence the prefix patternOntology we have used). Than, using the
service category (Type in the query) we retrieve all the corresponding services
via the equivalent property defined in the Cloud service ontology (hence the



416 B. di Martino et al.

cloudOntology prefix). The vendor name is retrieved via the hasVendor prop-
erty. Table 1 reports the results of the query. Please note that all the retrieved
components are Cloud services, apart from ZeusExtensibleTrafficManager
which is a Virtual Appliance. The knowledge base contains information on the
resource requirements needed to run the virtual appliance on a virtual machine
and supports users in selecting the best suited offer on the target platform. The
first three Cloud services belong to two different service categories, regarding
balancing of application and network loads.

SELECT ?Component ?Vendor ?Type
WHERE {patternOntology:ElasticLoadBalancer

patternOntology:equivalent ?Type.
?Component cloudOntology:equivalent ?Type
?Component cloudOntology:hasVendor ?Vendor.
}

Listing 1.1. SPARQL query to retrieve equivalent patterns’ components from multiple
vendors

Table 1. Partial results from query in Listing 1.1

Component Vendor Type

Openstack Neutron Redhat NetworkLoadBalancing, ApplicationBalancing

Azure Trafficmanager WindowsAzure NetworkLoadBalancing, ApplicationBalancing

Amazon ElasticLoadBalancing Amazon NetworkLoadBalancing, ApplicationBalancing

ZeusExtensibleTrafficManager Riverbed NetworkLoadBalancing

5 Conclusion and Future Work

In this paper we have applied a semantic-based approach for the description of
Cloud Patterns and services to a simple use case, in order to demonstrate the
capability of such an approach to support users in developing Cloud oriented
applications, without a deep and extensive knowledge of the entire Cloud Com-
puting panorama. The different steps needed to deploy the example application
to the Cloud have been described, and an example of the queries run against the
proposed semantic knowledge-base has been provided. In the future, we are plan-
ning to develop the user friendly graphical interface to ease users’ interactions
with the system, and to include further services and patterns in our description.

Acknowledgements. This research has been supported by the European Commu-
nity’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n
256910 (mOSAIC Project), by PRIST 2009, “Fruizione assistita e context aware di
siti archeologici complessi mediante dispositivi mobili”and CoSSMic (Collaborating
Smart Solar-powered Micro-grids - FP7-SMARTCITIES-2013).



Cloud Services Composition Through Semantically Described Patterns 417

References

1. Aws cloud design patterns. http://en.clouddesignpattern.org
2. Cloud computing patterns. http://cloudcomputingpatterns.org
3. Cloud patterns. http://cloudpatterns.org
4. Ieee p2302 working group (intercloud). http://grouper.ieee.org/groups/2302/
5. Ontology design patterns. http://ontologydesignpatterns.org/
6. Opencrowd: Cloud computing vendors taxonomy. http://cloudtaxonomy.

opencrowd.com/
7. Openstack services. http://www.openstack.org/software
8. Soa patterns. http://www.soapatterns.org/
9. Windows azure application patterns. http://blogs.msdn.com/b/jmeier/archive/

2010/09/11/windows-azure-application-patterns.aspx
10. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review.

In: The Third International Conference on Models and Ontology-Based Design of
Protocols, Architectures and Services, MOPAS 2012, pp. 9–14 (2012)

11. Bernstein, D., Vij, D.: Intercloud directory and exchange protocol detail using
XMPP and RDF. In: 2010 6th World Congress on Services (SERVICES-1), pp.
431–438. IEEE (2010)

12. Buyya, R., Vecchiola, C., Thamarai Selvi, S.: Mastering cloud computing: founda-
tions and applications programming, 1st edn. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2013)

13. Catteddu, D.: Cloud Computing: benefits, risks and recommendations for infor-
mation security. In: Serrão, C., Dı́az, V.A., Cerullo, F. (eds.) IBWAS 2009. CCIS,
vol. 72, p. 17. Springer, Heidelberg (2010)

14. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: An effective architecture for auto-
mated appliance management system applying ontology-based cloud discovery. In:
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 104–112. IEEE (2010)

15. Deng, Y., Head, M., Kochut, A., Munson, J., Sailer, A., Shaikh, H.: Introducing
semantics to cloud services catalogs. In: 2011 IEEE International Conference on
Services Computing (SCC), pp. 24–31, July 2011

16. Di Martino, B., Esposito, A., Cretella, G.: Semantic representation of cloud pat-
terns and services with automated reasoning to support cloud application portabil-
ity. IEEE Trans. Cloud Comput. PP(99), 1 (2015). doi:10.1109/TCC.2015.2433259

17. Di Martino, B., Cretella, G., Esposito, A.: Semantic and agnostic representation
of cloud patterns for cloud interoperability and portability. In: Proceedings of the
IEEE Fifth International Conference on Cloud Computing Technology and Science
(CloudCom 2013) (2013)

18. Di Martino, B., Cretella, G., Esposito, A.: Towards an unified owl ontology of
cloud vendors appliances and services at PaaS and SaaS level. In: Proceedings
of the 8th International Conference on Computational Intelligence in Security for
Information Systems (CISIS 2014), pp. 570–575 (2014)

19. Di Martino, B., Cretella, G., Esposito, A.: Defining cloud services workflow: a
comparison between TOSCA and OpenStack hot. In: Proceedings of the 9th Inter-
national Conference on Complex, Intelligent, and Software Intensive Systems, July
8th–July 10th 2015. IEEE (2015)

20. Di Martino, B., Esposito, A.: Towards a common semantic representation of design
and cloud patterns. In: Proceedings of International Conference on Information
Integration and Web-Based Applications & Services, p. 385. ACM (2013)

http://en.clouddesignpattern.org
http://cloudcomputingpatterns.org
http://cloudpatterns.org
http://grouper.ieee.org/groups/2302/
http://ontologydesignpatterns.org/
http://cloudtaxonomy.opencrowd.com/
http://cloudtaxonomy.opencrowd.com/
http://www.openstack.org/software
http://www.soapatterns.org/
http://blogs.msdn.com/b/jmeier/archive/2010/09/11/windows-azure-application-patterns.aspx
http://blogs.msdn.com/b/jmeier/archive/2010/09/11/windows-azure-application-patterns.aspx
http://dx.doi.org/10.1109/TCC.2015.2433259


418 B. di Martino et al.

21. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 571–578. Springer, Heidelberg (2011)

22. Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M.,
Newling, T.: Patterns: service-oriented architecture and web services. IBM Corpo-
ration, International Technical Support Organization (2004)

23. Catteddu, D.: Cloud Computing: Benefits, Risks and Recommendations for Infor-
mation Security. In: Serrão, C., Aguilera Dı́az, V., Cerullo, F. (eds.) IBWAS 2009.
CCIS, vol. 72, p. 17. Springer, Heidelberg (2010)

24. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262–276. Springer, Heidelberg (2005)

25. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Proceedings of the International Multiconference of Engineers and Computer Sci-
entists, vol. 1, pp. 17–19 (2010)

26. Homer, A., Sharp, J., Brader, L., Narumoto, M., Swanson, T.: Cloud Design Pat-
terns: Prescriptive Architecture Guidance for Cloud Applications. Microsoft Pat-
terns & Practices (2014). ISBN:1621140369 9781621140368

27. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns Fundamentals to Design, Build, and Manage Cloud Applications. Springer
(2014). doi:10.1007/978-3-7091-1568-8, ISBN: 9783709115671, 9783709115688

28. Mark, B., Jerry, H., Ora, L., Drew, M., Sheila, M., Srini, N., Massimo, P., Bijan,
P., Terry, P., Evren, S., Naveen, S., Katia, S.: OWL-s: Semantic markup for web
services. http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

29. Martino, B.D., Cretella, G., Esposito, A.: Semantic and agnostic representation of
cloud patterns for cloud interoperability and portability. In: 2013 IEEE 5th Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
vol. 2, pp. 182–187. IEEE (2013)

30. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
In: W3C Recommendation, vol. 10, no. 10 (2004)

31. Moscato, F., Aversa, R., Di Martino, B., Fortis, T., Munteanu, V.: An analysis of
mosaic ontology for cloud resources annotation. In: 2011 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 973–980. IEEE (2011)

32. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: challenges, taxonomy, and survey. ACM Comput. Surv. (CSUR) 47(1), 7
(2014)

33. Xu, B., Wang, N., Li, C.: A cloud computing infrastructure on heterogeneous
computing resources. J. Comput. 6(8), 1789–1796 (2011)

34. Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud com-
puting. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10. IEEE
(2008)

http://dx.doi.org/10.1007/978-3-7091-1568-8
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

	Cloud Services Composition Through Semantically Described Patterns: A Case Study
	1 Introduction
	2 State of the Art
	2.1 Cloud Patterns

	3 Methodology Description
	3.1 Pattern Representation
	3.2 Services Representation

	4 Case Study
	4.1 Step 1: Selection of the Application Pattern
	4.2 Step 2: Refinement of the Pattern's Components
	4.3 Step 3: Selection of a Target Platform

	5 Conclusion and Future Work
	References


