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Abstract. Robust resource share estimation of data-intensive work-
loads is integral to efficient workload management in a (virtualized) clus-
ter where multiple systems co-exist and share the same infrastructure.
However, developing a reliable resource estimator is quite challenging due
to (i) heterogeneity of workloads (e.g. stream processing, batch process-
ing, transactional, etc.) in a multi-system shared cluster, (ii) limited (in
batch processing) or complete uncertainties (in stream processing) on
input data size or arrival rates, and (iii) changing configurations from
run to run. To address above challenges, we propose an inclusive frame-
work and related techniques for workload profiling, similar job identi-
fication, and resource distribution prediction in a cluster. Our analysis
shows that the framework can successfully estimate the whole spectrum
of resource usage as probability distribution functions for wide ranges of
data-intensive workloads.
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1 Introduction

Datacenter-scale computing for big data analytics workloads has seen a surge
in adoption due to availability and affordability of large-scale data processing
systems which transform the traditional data mining and machine learning tech-
niques into easy to program and deploy distributed analytics applications. In
such an environment, robust resource usage prediction of data-intensive jobs is
integral to make efficient workload management decisions in different scenarios
such as workload migration between clouds or workload scheduling in a multi-
system cluster.

Cost reduction is one of the main drivers for migrating the workloads between
cloud providers (e.g. Amazon AWS) [10]. For example, the Azure Cost Estima-
tor1 has been designed to assist the infrastructure manager to either assess the
1 http://www.microsoft.com/en-us/download/details.aspx?id=43376.
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running cost of the existing on-premises workloads or analyse how much she can
save by moving the hosted servers on other cloud platforms (e.g. AWS) to Azure.
This class of tools typically does analysis irrespective of the workload resource
usage patterns, thereby is not able to extrapolate the analysis beyond the current
conditions of the workloads. However, robust resource usage prediction paves the
way for predictive analysis of workload migration costs betweens clouds. From
another standpoint, such estimation is integral to efficient workload scheduling
in a multi-system cluster.

In a multi-system cluster, data-intensive workloads are typically classified as
either productions or best effort jobs [5]. Production jobs (e.g. Oozie), unlike the
best-effort ad-hoc jobs, are business-critical, meaning that missing their service
level agreements (SLAs) can have substantial financial impact. State of the art
workload scheduling techniques [5,8,14] focus on guaranteeing the SLAs for this
class of workload subject to fairness, capacity, priority, and throughput maxi-
mization. Majority of these techniques [5,8] need the cost of the workload to be
specified a priori to be able to define appropriate resource sharing policies.

However, developing a reliable resource estimator for production jobs is a
hard research problem due to: (i) heterogeneity of workloads pertaining to each
class of big data systems, (ii) limited (in batch processing) or complete uncer-
tainties (in stream processing) on input data size/arrival rates and schema, and
(iii) changing configurations (e.g. number of mappers/reducers or spouts/bolts
respectively in Hadoop and Storm) from run to run. To address above prob-
lems, we propose an inclusive framework and related techniques for resource
distribution estimation of heterogeneous big data workloads in a shared cluster.

To this end, the proposed framework first generates a set of data-intensive
specific job templates (JT) by applying a clustering technique on a set of job
characteristics. These templates are then used to identify similar jobs. Once the
templates are generated, an statistical machine learning (ML) model is built for
each of them by exploiting the past execution traces within the template. We
argue that the existing single point resource estimator is not adequate for describ-
ing the whole spectrum of resource usage of big data workloads. Therefore, we
introduce the novel approach of applying mixture density networks (MDN) as an
underlying ML technique to approximate the probability distributions by means
of finite mixture of Gaussians.

Therefore, the main contributions of the proposed resource estimation frame-
work for big data analytics workload are: (i) Introducing appropriate techniques
to profile and identify similar jobs within a heterogeneous workloads from both
batch and stream data processing systems, (ii) Proposing a novel approach of
estimating the full spectrum of resource usage in form of probability density
functions (pdfs).

The reminder of the paper is organized as follows: The next section explores
the related work. Section 3 presents the overview of the proposed framework. In
this section, we propose our ideas on how to define templates for similar jobs
identification, and how to build resource distribution prediction models. Section 4
presents initial results on distribution based resource modelling along with some
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discussions on how the predicted pdfs can be utilized in workload management
scenarios. The paper ends with some concluding remarks and the plan for future
work in Sect. 5.

2 Related Work

In this section we present a high level discussion on the past research done in
the domain of job performance estimation. Following that, discussion of related
work including performance estimation of declarative (SQL-style) and procedural
(MapReduce style) data-intensive workload is presented.

Job Performance Estimation. Job performance estimation, in general, using
historical information of similar job has been studied in the past in domain of
parallel computing [17,18]. The key difference among the existing approaches is
the way they tackle the problem of identifying similar jobs. In particular, authors
in [18] focus on application characteristics such as user of jobs, jobs’ submission
time, jobs’ arguments and on the number of physical servers on which the jobs
are submitted for the definition of application similarity. Recently, authors in
[17] propose the novel use of clone detection technique to determine the clone
level of a newly submitted job with respect to the jobs in the execution history
and to predict the resource requirement of the new job depending on its clone
level.

High-Level Data Intensive Frameworks. There are a number of related
work on runtime and resource usage estimation in the context of DBMS [1,13].
In the majority of related work, different statistical ML techniques are applied
for estimating query performance. These approaches typically build statistical
models using past query executions and a representative set of query features
(query plan and/or operator level features) which possibly have the high predic-
tive power in terms of resource or performance measures.

When it comes to MapReduce ecosystem, a major fraction of big data clus-
ter workloads are generated by a handful of high-level frameworks such as Hive,
Pig, Giraph [4]. This opens up an opportunity to train ML techniques against a
set of finite recurring operators to estimate workload performance. For example,
authors in [7] apply the Kernel Canonical Correlation Analysis (KCCA) to the
Hive execution plan operators. They conclude that only a set of low level features
pertaining to Hive query execution such as the number of maps and reduces,
bytes read locally, bytes read from HDFS lead to accurate performance mod-
elling. However, the provided low level features are not available before actual
query execution. Therefore, above technique cannot be applied for performance
prediction of new incoming workloads.

Similarly, authors in [16] propose a technique that predicts the runtime per-
formance for a fixed set of queries running over varying input data sets. Specif-
ically, it splits each query into several segments where each segment’s perfor-
mance is estimated using uni-variate linear regression. Next the estimates are
plugged into a global analytical model to predict the overall query runtime. Since
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modelling a small and finite space of relational operators might not be adequate
for all MapReduce workloads (e.g. iterative analytics), several studies focused on
more fine-grained analysis of MapReduce job performance analysis as discussed
next.

Procedural Data Intensive Workload. Herodotou et al. [9] propose a self-
tunning system for Hadoop that uses performance models with the goal of work-
load tuning, finding the best configuration settings for a given workload and a
cluster infrastructure. Along these lines, the authors in [20] first build the job
profile from the job past executions or by executing the workload on a smaller
data set using an automated profiling tool. Then, they apply the performance
bounds of completion time of different job phases to predict the job completion
time as a function of the input dataset size and allocated resources.

In terms of runtime prediction of ML algorithms executing on top of MapRe-
duce ecosystem, authors in [15] present an experimental methodology for pre-
dicting the runtime of iterative algorithms written in Apache Giraph. To do so,
they conduct sample runs for capturing the algorithm’s convergence trend and
per-iteration key input features.

Concluding Remarks. In summary, all of the above studies focused on sin-
gle type of workload in particular Hadoop, while in reality big data workloads
are heterogeneous consisting of multiple types of systems (e.g. Apache Hive,
Apache Storm, etc.) and jobs. In contrast, our framework considers heteroge-
neous workloads where different jobs and queries from either batch or stream
data processing systems running side by side. Moreover, existing approaches esti-
mate resource and performance as a single point value which is neither expressive
enough nor does it capture the possible variances due to resource contentions
and interferences from other workloads. In contrast, we use a distribution pre-
diction technique that describes the resource usage as conditional distribution
functions.

3 Overview of the Proposed Framework

The problem of resource requirement estimation for future job in a multi-system
cluster is decomposed in (i) characterizing the similar jobs that have executed in
the past, and (ii) building a prediction model based on the collected statistics.
The workflow in the proposed framework, as shown in Fig. 1, is as follows. Firstly,
workload profiling is conducted in order to collect required information for defin-
ing similar jobs and building resource models. Secondly, a set of job templates
are generated based on the collected features and their corresponding values.
Finally, a distribution ML model is trained and built for each job templates
which is responsible for resource prediction of a new incoming workload.

3.1 Similarity Definition and Template Generation

The routine nature of productions jobs allows us to build the resource model
based on the past execution profiles of the same or similar jobs. Thus, building
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Fig. 1. Comprehensive framework for performance distribution prediction of heteroge-
neous data-intensive workloads.

profiles is the first step. Our framework considers both batch and streaming
workloads, thereby the profiles will be logged as either categorical or time series
files respectively. We next look into what to profile.

Resource usage r is the function of a job j that is executed on input data
(stream) d using configuration parameter settings c:

r = f(j, d, c) (1)

This means that resource modelling requires logging appropriate information
about job, its data flow and configurations along with the resources in use, as
follows:

– Job Profile
• Input Data Stats: such as number of Input Records/Bytes (e.g. in Hive

tables), Average arrival rates (in Stream processing), Data file format,
etc.

• Job Metadata: including Job Name, User who submitted the job, Sub-
mission time, File input path, and so on.

• Runtime Stats: such as number of mappers and reducers per stage (as in
Hive), Response time, Latency/Throughput (in stream processing).

– Resource Profile including CPU time and utilization, Memory usage,
local/network I/O.
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– Configuration Profile
• Compact2 job configs: such as number of reducers in Hive which can be

set for a specific query using mapred.reduce.tasks property and override
the cluster wide settings.

• Compact cluster configs: such as the number of virtual CPU cores for
each reduce task of a job which is set by mapreduce.reduce.cpu.vcores
property in Apache Yarn [19].

The job profiling is a recurrent process, means that the mentioned profiles
will be generated for every submitted job. However, to avoid any performance
degradation, two design principles need to be realized. First, statistics should
be collected passively, without affecting the performance. For example, in [12]
we used dstat (http://dag.wiee.rs/home-made/dstat/) as a lightweight python-
based tool that collects OS and system statistics non-intrusively. Second, profil-
ing process should be tractable via enabling a feature to on/off profiling process.
This means that every job is profiled unless it is deactivated by the user of the
final prototype.

Upon extracting required information from job history and big data cluster
logs, we now focus on the second challenge, that is characterizing the similar
jobs that have executed in the past. We need to identify a set of classes of jobs
(i.e. job templates) that exhibit a similar resource usage pattern.

Modern big data clusters run a diverse mix of applications and production
workloads [19], thereby characterizing similar jobs is challenging. Although diffi-
cult, we argue that appropriate clustering techniques along with the proper job
execution and big data system configuration profiles lead to formation of fitting
templates.

In our problem domain the clusters (i.e. candidate job templates) need not
be disjoint, and the same job can be associated to several classes. Because
two jobs can be compared in many ways. For example, our initial analy-
sis on synthetic MapReduce workloads of Facebook3 [4] demonstrates that
the (submit time seconds, hdfs input path) is a proper candidate job template
since jobs with the close submission time and same input path have roughly
same map input byte size, shuffle bytes, etc. Yet another template is (user,
submit time seconds, hdfs input path) which is more restricted. Intuitively, a
certain job can be assigned to both of these templates with respect to its char-
acteristics.

Therefore, we use a probabilistic clustering technique, Expectation Maxi-
mization (EM) algorithm [6] which is a soft clustering technique. EM finds
clusters by determining a mixture of Gaussians that fit a given data set. Each
Gaussian has a mean and covariance matrix. The prior probability for each
Gaussian is the fraction of points in the cluster defined by that Gaussian. These
parameters can be either initialized by randomly selecting means of the Gaus-
sians or by using the output of K-means algorithms for the initial centres.
2 Due to the large number of configuration parameters, only a subset of settings which

have substantial impacts on resource and performance measures need to be logged.
3 https://github.com/SWIMProjectUCB/SWIM/wiki.

http://dag.wiee.rs/home-made/dstat/
https://github.com/SWIMProjectUCB/SWIM/wiki
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EM converges on a locally optimal solution by iteratively updating means and
variances.

Once the candidate job templates (i.e. clusters) becomes available, different
validity measures which falls broadly into internal, relative, and external valida-
tions are used to evaluate clustering results. The output of this step is a set of
final job templates through which we are able to identify who belongs to whom.
To do so, for a new job, the template membership probability is calculated.
The higher probability seemingly shows the more the templates match the job’s
characteristics.

3.2 Distribution Prediction

Many workload scheduling studies [5,8] formulate and optimize the policies sub-
ject to fairness, capacity, and priority, conditioned on having the cost of a work-
load a priori in a multidimensional space representing different resources. In
contrast, there exists criticism of the off-line predictions [14] due to the interfer-
ences from other workloads concurrently running and sharing the same resources
at runtime.

As stressed in related work, the state of the art resource and performance
estimation techniques for data intensive workloads only provide the conditional
mean of the point of interest. However, even running the same query on the
same data with constant configuration show different performance and resource
behaviour. In response, we argue that the distribution estimation provides an
expressive description of the target values (e.g. runtime, CPU time) and the
possible variances due to resource contention.

We adopt a novel approach of workload resource distribution prediction using
Mixture Density Networks (MDN) [3]. An MDN fuses a Gaussian mixture model
(GMM) with feed-forward neural networks. In MDN, the distribution of the
outputs t is described by a parametric model whose parameters are determined
by the output of a neural network, which takes x as inputs. Specifically, an MDN
maps a set of input features x to the parameters of a GMM including mixture
weights αi, mean μi, and variance σ2 which in turn produces the full pdf of
an output feature t, conditioned on the input vector. Detailed discussion on the
proposed approach are available in accompanying technical reports [11,12] which
discuss how to predict the resource and performance distribution for batch (Hive
workloads) [11] and stream data processing (i.e. continuous queries) [12]. We will
show the efficacy of distribution as opposed to existing techniques in workload
resource modelling in the next section.

Note that due to the large number of profiles and historical logs, building
a model could be prohibitively expensive, though we already showed [11] that
the training time of the MDN linearly grows with respect to the training data
size. Thus, enabling a maximum history feature as in [18] which indicates the
maximum number of data points to be used for building/refreshing a model is
inevitable.

Once the model is built and trained, it can then be invoked when a similarity
measures assign a new job to one of the existing classes. Since the job templates
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overlap, a single job may be associated to multiple job templates and their
corresponding ML model. Therefore, the prediction with the smallest confidence
interval will be selected.

4 Initial Results

In this section, we present some compact yet lucid results on how the distribution
prediction look like and how one can utilize them for appropriate policy setting
across a shared big data cluster.

Fig. 2. (a) a sample predicted pdf for CPU Time of an input test from Hive workload.
(b) a sample predicted pdf for CPU Utilization, selected from a test dataset of linear
road benchmark (Color figure online).

Figure 2(a) plots a sample predicted pdf for CPU time for one of the experi-
ments conducted on TPC-H in [11]. The predicted pdf is corresponding to a test
input from Template-7 (Q7) of TPC-H against 100 GB database size. To demon-
strate the whole possible range of CPU time values under Q7, the histograms
for 30 instance queries based on Q7 from test set are shown as well.

As we can see, the predicted distribution adequately estimates the CPU time
distribution in which they show high probability around the target value. More
importantly, they provide information about the whole spectrum of resource
usage. In particular, the predicted pdf shows highly probable CPU time in ranges
(0.25, 0.4) which are consistent with the actual distribution. Note that the pre-
dicted pdf is concerned with one single input, thereby the resulted uncertainty
of pdf for the range (0.6, 0.9) is justifiable.

In a similar manner, Fig. 2(b) depicts a sample predicted pdf and actual CPU
usage in terms of normalized histogram for one of the experiments on linear road
benchmark [2] queries conducted in [12]. As the figure indicates, the estimated
pdf approximates the actual resource usage closely. The predicted pdf provides a
complete description of the statistical properties of the CPU utilization through
which we are not only able to capture the observation point, but also the whole
spectrum of the resource usage. In contrast, a best estimation from the existing
resource estimation techniques [1,7,9,13,20] merely provides the point which is
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visualized by solid red vertical line. Unlike pdfs, with such estimation we are
not able to directly calculate any valuable statistical measures (e.g. variance,
expectation) about the target data. Detailed evaluation of the proposed approach
and its comparison with the state of the art single point estimator can be found
in accompanying technical reports [11,12].

Once the resource usage distribution becomes available, it can then be used
to define appropriate resource pool policy for critical SLA-driven workloads. For
example, Cloudera Manager4 provides the ability to statically allocate resources
using Linux control groups through which one can allocate services (e.g. Hive,
Storm) a percentage of total resources. Static resource pools isolate the services
in the cluster from one another, so that load on one service has a bounded
impact on the others. With distribution based resource estimation, we are able
to determine appropriate percentage of resource shares for a workload before
actual execution, without sacrificing the cluster throughputs and utilization.

5 Conclusions and Future Work

This paper proposed an inclusive framework and related techniques for resource
usage distribution prediction of heterogeneous big data workloads in a cluster. To
this end, our framework uses the clustering techniques along with the statistical
machine learning algorithm to identify similar jobs and build a distribution-
based prediction models. The initial results show that the approach is capable
of estimating resource usage distribution accurately, through which we are able
to define more reliable resource sharing policies aiming at guaranteeing SLA
subject to fairness, capacity, priority, and throughput maximization.

As an ongoing work, we plan to complete and evaluate the template genera-
tion phase using real-world workload traces collected from our private CSIRO big
data cluster and possibly more traces from other companies. Following that, we
also plan to accommodate the distribution predictions in cost-optimized resource
provisioning of big data analytics flows in a datacenter cloud.
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