
A Model-Based Approach for the Pragmatic
Deployment of Service Choreographies

Raphael Gomes1,2(B), Júnio Lima1, Fábio Costa1, Ricardo da Rocha1,
and Nikolaos Georgantas2

1 Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil
raphael.gomes@ifg.edu.br, junio.lima@ifgoiano.edu.br,

{fmc,ricardo}@inf.ufg.br
2 MiMove Team Inria Paris, Rocquencourt, France

nikolaos.georgantas@inria.fr

Abstract. The development of applications using service choreogra-
phies is becoming one of the de facto standards for the Future Internet.
However QoS-aware management of service compositions is usually per-
formed without considering service sharing. This simplifying assumption
makes choreography deployment less feasible in real scenarios, in which
a single service is typically shared in many scenarios. In this paper we
discuss the problem of managing multiple choreographies in multi-cloud
environments and we advocate that sharing-aware deployment is a more
effective and resource-efficient approach. We propose a model for the
combined deployment of multiple choreographies on top of a shared set
of services, and we further investigate the problem through experiments.

1 Introduction

Among its new features, the Future Internet is characterized by the evolution
from content sharing to service sharing. In this new scenario, mainly facilitated
by the adoption of cloud technologies, software modules of different complexities
are provided on top of virtualized servers and consumed via the Internet [1].

Keeping centralized coordinators for these new types of applications is unfea-
sible due to requirements like fault tolerance, availability, heterogeneity and
adaptability. For this reason, a promising solution is the use of decentralized and
distributed services through choreographies. Choreographies are service com-
positions that implement distributed business processes in order to reduce the
number of exchanged control messages and distribute business logic, without the
need for centralized coordinators [2]. Building a choreography is usually a two-
step task [3]. Firstly, the functionalities required from the participating services,
i.e., their operations, are identified. Secondly, for each operation an appropri-
ate implementation is selected and bound to it. The activity of performing the
interactions and getting the expected results is named choreography enactment.

In most cases, service selection and choreography enactment are not based
solely on functional criteria. Instead, they aim to satisfy non-functional require-
ments as well, in terms of Quality of Service (QoS) properties, which in turn
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 153–165, 2016.
DOI: 10.1007/978-3-319-33313-7 11

154 R. Gomes et al.

poses many challenges. For implementation selection, the growing number of
alternative web services that provide the same functionality but differ in qual-
ity parameters makes service selection an NP-hard optimization problem [4]. On
the other hand, along with choreography enactment, resource allocation plays an
important role in QoS since almost all non-functional requirements are related
to the resources used to deploy the services.

The problem of QoS-aware choreography enactment is usually solved using
variations of the Knapsack Problem [5]. However, all these solutions assume
that there are no conflicts between the services that are part of a choreogra-
phy, such as heterogeneous communication protocols. They also do not take into
account the fact that a given service may be part of more than one choreogra-
phy, which in turn means that requests for the same operation of a service may
come concurrently from different sources and with different QoS requirements.
As a consequence, service implementation selection and resource management
typically take into account QoS requirements that are specific to a single chore-
ography. This is far from ideal, given the combined QoS-related constraints that
arise from the sharing of services among multiple and diverse choreographies.

We argue that a pragmatic view of choreography deployment, based on ser-
vice sharing and on management on a per operation basis, represents a more real-
istic perspective since each service can have different QoS requirements for the
same operation depending on which choreography is generating calls to it. With
this in mind, we propose a model-based approach that encompasses both chore-
ography deployment and resource management. We first formalize a working
terminology (Sect. 2) and discuss the effects of service sharing in choreographies
based on some experimental results (Sect. 3). We then examine related work
(Sect. 4), and propose a formal model (Sect. 5) to represent service choreogra-
phies taking into account a global view of service utilization and the associated
non-functional requirements. We aim to use this model as part of a adaptive app-
roach for choreography enactment, which is discussed in Sect. 6. Finally, Sect. 7
presents some final remarks.

2 Terminology

In our work, an application is a web-based computer program designed for a
specific use, such as an application for setting up a doctor’s appointment in the
public health system. An application is composed using one or more services.
A service, in turn, is an independent software component that executes one or
more operations. An operation defines some action performed by the service.
It requires some amount of computing power to be processed.

The composition of several services by means of their provided operations
forms a choreography. As pointed out before, a choreography is a form of ser-
vice composition where the interaction protocol (among services) is defined in a
global way using a peer-to-peer approach. The services that compose a choreog-
raphy can be described in an abstract way by means of the expected role that
each service plays in the interaction. Such abstract services can be realized using

A Model-Based Approach for the Pragmatic Deployment 155

concrete entities, i.e., by identifying a target implementation for each service.
Abstracting services is particularly important in multi-cloud environments, as
some implementations can be specific to a cloud provider/technology. In such
environments, composition deployment may become overly constrained if con-
crete services are used instead to specify a choreography.

User refers to the person(s) responsible for application composition and
administration, which includes service selection and resource allocation. Both
tasks must be performed with the aim of satisfying the functional and non-
functional requirements of clients. Another task performed by the user is to man-
age adaption of service selection and resource allocation in the face of changes
in the system’s conditions and in the client’s expectations. The client in turn is
an entity that interacts with the application. It mainly refers to the end-user.

Finally, a system is a set of interacting or interdependent components form-
ing an integrated whole. We use this term to refer to the set of managed appli-
cations, together with the components required to implement our approach.

3 The Effect of Service Sharing

Nowadays applications are developed mainly by means of preexisting service
compositions. QoS management in this composite scenario is even more difficult
if we consider that a service may be used by many applications at the same
time. For instance, a maps service can be used in applications such as driving
directions guides, picture location tagging, and partner matching by location.
For each of these applications, the service may have different QoS requirements.

As illustrated in Fig. 1, this scenario is equivalent to managing a dancer par-
ticipating in a music mash-up choreography: she must be able to properly handle
the multiple requests and perform the different dance rhythms with an expected
quality. In the same sense, for a given application (which is analogous to the
mash-up in our metaphor) there can be several choreographies (rhythms in our
metaphor), with the same services (analogous to dancers) being shared among
them with different QoS requirements. Therefore, it is not possible to manage
services without considering all the choreographies in which they participate. To
achieve this goal, we need to act upon resource allocation, as the majority of
non-functional properties are related to the use of resources.

Fig. 1. Mash-up metaphor.

156 R. Gomes et al.

Thus, in our approach, QoS specification is done at two different levels: ser-
vice and choreography. The first level specifies requirements regarding a specific
service/operation, without taking into account end-to-end QoS. The second level
concerns the quality of the choreography as a whole (i.e., end-to-end) and is eval-
uated in terms of the composition of all participating services.

We have performed a set of experiments to demonstrate the effect of service
sharing on choreography QoS. Thereby, we aim to demonstrate the need for
global resource management across choreographies for the effective satisfaction
of QoS requirements. The experiments show that service concurrency does not
make QoS satisfaction unfeasible, provided that proper resource management is
performed. We present our analysis results in the following.

3.1 Evaluating the Effects of Service Sharing

Our analysis of the effects of service sharing is based on queueing theory. For
this purpose, we used JINQS [6], a library for simulating multiclass queuing
networks. We evaluated the execution of different choreographies composed by
non-intersecting service sets, as well as choreographies that use shared services.
In our experiment we generated random choreography topologies with sequential
and branching control flow patterns. For simplicity, we assume that each service
provides only one operation, whose processing time follows an exponential distri-
bution with rate parameter μ taking values between 2 and 200 (meaning that the
mean processing time is between 0.5 and 0.005 time units). By putting together
generated choreography topologies, we create sets of choreographies. Considering
the choreography topologies of a set separately and in combination, we model
them as queueing networks and simulate them on JINQS. To each choreogra-
phy we apply an external input load following a Poisson distribution with rate
parameter λ = 50 requests per time unit.

We simulated different levels of service sharing among the choreographies,
varying from 0 % (no sharing) to 100 % (all services are shared). With this in
mind, we generated a service base of available services, from which we randomly
selected 10 services each time in order to compose the choreographies, accord-
ing to the chosen service sharing level. Note that this parameter only indicates
the probability of having a specific number of services shared among the chore-
ographies (it does not mean that all services are necessarily shared among all
choreographies). We also analyzed different numbers of choreographies combined
together, with 2, 4, 8 and 16 choreographies being enacted at same time.

As target metrics we first measured the number of served (completed)
requests and the average response time (RT). The results are presented in
Tables 1 and 2, which show the mean of the differences in the two metrics for
running the choreographies in isolation and in combination, with a confidence
interval of 95 %. Positive values indicate loss of QoS when executing choreogra-
phies in combination. Hence, negative values indicate better QoS. As expected,
service sharing causes loss of QoS since both metrics are worse when we execute
a higher number of choreographies concurrently. Another interesting result is
that the number of served requests is less influenced by changes in the level of

A Model-Based Approach for the Pragmatic Deployment 157

Table 1. Mean difference (%) between the numbers of completed requests when run-
ning the choreographies in isolation and in combination.

Sharing/# Chor. 2 4 8 16

0 % −0.02 ± 0.11 −0.04 ± 0.06 0.03 ± 0.05 −0.02 ± 0.03

25 % −0.11 ± 0.11 −0.04 ± 0.07 0.00 ± 0.05 56.19 ± 0.05

50 % −0.02 ± 0.12 −0.01 ± 0.08 41.32 ± 0.08 101.06 ± 0.05

75 % 0.01 ± 0.11 0.04 ± 0.07 41.34 ± 0.07 101.03 ± 0.05

100 % −0.08 ± 0.09 −0.02 ± 0.07 63.20 ± 0.07 117.47 ± 0.06

Table 2. Mean difference (%) between the response times when running the chore-
ographies in isolation and in combination.

Sharing/# Chor. 2 4 8 16

0 % −9.88 ± 0.05 −12.20 ± 0.03 −13.32 ± 0.03 −13.42 ± 0.02

25 % −7.68 ± 0.06 −4.31 ± 0.04 42.11 ± 0.18 199.94 ± 0.00

50 % −2.80 ± 0.09 22.12 ± 0.11 199.93 ± 0.00 199.96 ± 0.00

75 % 3.60 ± 0.07 43.37 ± 0.11 199.93 ± 0.00 199.96 ± 0.00

100 % 13.46 ± 0.10 121.74 ± 1.16 199.95 ± 0.00 199.96 ± 0.00

Table 3. Mean difference (%) between the numbers of completed requests when run-
ning the choreographies in isolation and in combination (with the addition of more
resources when running them in combination).

Sharing/# Chor. 2 4 8 16

0 % −0.01 ± 0.12 −0.05 ± 0.07 −0.01 ± 0.04 −0.01 ± 0.03

25 % −0.06 ± 0.10 −0.01 ± 0.06 −0.04 ± 0.05 0.02 ± 0.03

50 % −0.12 ± 0.11 0.04 ± 0.07 −0.00 ± 0.04 3.77 ± 0.04

75 % 0.11 ± 0.13 0.06 ± 0.07 −0.04 ± 0.05 3.75 ± 0.05

100 % 0.04 ± 0.13 −0.00 ± 0.06 0.00 ± 0.05 27.07 ± 0.06

Table 4. Mean difference (%) between the response times when running the chore-
ographies in isolation and in combination (with the addition of more resources when
running them in combination).

Sharing/# Chor. 2 4 8 16

0 % −9.96 ± 0.05 −12.22 ± 0.04 −13.30 ± 0.03 −13.42 ± 0.02

25 % −25.68 ± 0.07 −28.79 ± 0.04 −28.61 ± 0.03 −24.13 ± 0.02

50 % −43.85 ± 0.07 −46.98 ± 0.04 −43.54 ± 0.03 199.34 ± 0.01

75 % −74.58 ± 0.06 −76.48 ± 0.04 −66.42 ± 0.03 199.36 ± 0.01

100 % −106.46 ± 0.05 −101.48 ± 0.03 −77.25 ± 0.05 199.89 ± 0.00

158 R. Gomes et al.

sharing, while RT doesn’t change significantly as the number of choreographies
increases.

We also analyzed the impact of resource allocation. To this end we carried out
the same experiment, now increasing resource allocation by a factor of 1 to 3 for
combined choreography execution. Tables 3 and 4 show the results. The behav-
ior is similar, although with a smaller difference between separately executing
each choreography and executing all of them in combination. This reinforces the
motivation for using a more precise resource allocation.

Motivated by these results, our proposal is to automate the management of
service selection and resource allocation in multi-cloud environments taking into
account service sharing. We propose the representation of services and resources
in abstract models which are dynamically interpreted by the system. In the next
section we discuss how this aspect is considered in related work. We then present
the first step towards defining our approach, which consists in eliciting a formal
model to represent combined choreographies.

4 Related Work

A number of research efforts reported in the literature have focused on the
problem of providing QoS guarantees for service compositions [3–5]. However,
most of these studies focus on service selection for a single composition. To the
best of our knowledge, Nguyen et al. [7] carried out one of the first studies to
deal with QoS guarantees for multiple inter-related compositions. The authors
argue that if a service engages in a number of compositions, there will be a
dependency between the levels of QoS that the service can contribute to these
compositions. In the approach proposed by Ardagna and Mirandola [8], service
composition is carried out based on groups of invocations where multiple requests
are generated by multiple users. However, they assume that each service provider
has fixed resources, thus not proposing resource adaptability.

Furtado et al. [9] present a middleware to support the enactment of web
service choreographies in the cloud. Similarly to our work, resource adaptation
is proposed to maintain the expected levels of QoS. However, they do not handle
service selection. Huang and Shen [10] propose an approach for the deployment of
multiple services in the cloud. They developed two types of graphs to model the
communication costs and potential parallelism among the services of different
compositions. However, unlike our approach, which focuses on service sharing,
they aim at minimizing communication costs and maximizing parallelism.

In contrast, we propose an approach to deal with multiple inter-related service
choreographies, taking into account their associated non-functional requirements
and a global view of service utilization. We analyze the role each service plays in
several choreographies and estimate the amount of resources needed to deploy
each service in order to ensure the expected level of QoS.

A Model-Based Approach for the Pragmatic Deployment 159

5 Formal Model for Choreography Deployment

In this section we present a formalization of the problem of combined deployment
of multiple choreographies. We focus on non-functional properties, although our
formalization can handle functional properties as well. Our representation of
choreographies is language-independent but contains the main components of
commonly adopted choreography definition languages, such as BPMN2 [11].

The set of available services used to compose choreographies is defined as
S, which contains n services {s1, s2, . . . , sn}, each represented by a group of
operations O. Each operation o ∈ O has resource demand d, which represents
the amount of resources, e.g., number of CPU cores and their capacity, needed to
compute the operation. Moreover, the set of available resources is represented as
V, which contains t virtual machine (VM) configurations {v1, v2, . . . , vt}. Each
resource v has ρ resource units, each one with resource capacity ζ and a cost c for
using it for a given time slice. The topology of a choreography can be abstracted
using a process graph [12], which is defined as follows:

Definition 1 (Predecessor and Successor Nodes). Let N be a set of nodes
and E ⊆ N × N a binary relation over N defining the edges. For each node
n ∈ N we define the set of predecessor nodes •n = {x ∈ N |(x, n) ∈ E} and the
set of successor nodes n• = {x ∈ N |(n, x) ∈ E}.
Definition 2 (Process Graph). A process graph PG consists of a tuple
(b, Z,S, L, t, E) where:

– b denotes the start point, |b • | = 1 ∧ | • b| = 0.
– Z denotes the set of end events, |Z| ≥ 1 and ∀z ∈ Z : | • z| ≥ 1 ∧ |z • | = 0.
– S denotes the set of services, ∀s ∈ S : | • s| = 1 ∧ |s • | = 1.
– L denotes the set of connectors, ∀l ∈ L : (| • l| > 1 ∧ |l • | = 1) ∨ (| • l| =

1 ∧ |l • | > 1).
– t is a mapping t : L → {AND, XOR, OR}, which specifies the type of a

connector l ∈ L as either a conjunction (AND), a disjunction (OR) or a
mutually exclusive disjunction (XOR).

– E is a set of edges that define the flow as a simple and directed graph. Each
edge e ∈ E is a tuple (e−→,−→e , o), where e−→ ⊆ (b ∪ S ∪ L) is the origin of
this edge, −→e ⊆ (Z ∪ S ∪ L) is the end of this edge, and o is the operation
being requested. If −→e ∈ {Z ∪ L}, then o is null. Being a simple graph implies
that ∀n ∈ (b ∪ Z ∪ S ∪ L) : (n, n)
∈ E (no reflexive edges) and that ∀x, y ∈
(b ∪ Z ∪ S ∪ L) : |{(x, y)|(x, y) ∈ E}| = 1 (no multiple edges).

In our approach, each expected non-functional requirement is described in
terms of a QoS property, which in turn is represented by one or more QoS
metrics. These concepts are formalized in the following.

Our representation for QoS metrics is based on Rosario et al. [13]:

Definition 3 (QoS Metric). A QoS metric is a tuple m = (D,≤,⊕,∧,∨,U):

– (D,≤) is a QoS domain with a corresponding set of ordered QoS values.

160 R. Gomes et al.

– ⊕ : D → D defines how QoS gets incremented by each new event. It satisfies
the following conditions: (i) ⊕ possesses a neutral element 0 satisfying ∀l ∈
D ⇒ l ⊕ 0 = 0 ⊕ l = l; (ii) ⊕ is monotonic: l1 ≤ l′1 and l2 ≤ l′2 implies
(l1 ⊕ l2) ≤ (l′1 ⊕ l′2).

– (∧,∨) represents the lower and upper lattices, meaning that any l ⊆ D has
unique lower and upper values (∧l,∨l). When taking the best result with
respect to the ordering ≤, the lowest QoS is taken with ∧. When synchro-
nizing events, the operator ∨ takes the worst QoS as per the ordering ≤.

– U is a utility function U : (S,V) → D, that gives the expected QoS value when
a service s ∈ S is deployed on a specific resource v ∈ V.

Definition 4 (Non-Functional Requirement). A non-functional require-
ment (NFR) is represented using one of the following tuples:

(1) (s, o, k, φ), where s ∈ S is a service, o is the operation being requested, k is
a QoS metric, and φ is the target average value for this metric (φ ∈ D(k));

(2) (k, φ), where k is a QoS metric and φ is the target average value for this met-
ric, with φ ∈ D(k). This tuple is used to represent end-to-end NFRs, which
means that the target value must be somehow split among the operations
(and respective services) in the possible execution flows.

To allow QoS-aware choreography enactment, we propose the representation
of choreographies and NFRs in a structure called QoS-Aware Process Graph.

Definition 5 (QoS-Aware Process Graph). A QoS-aware process graph
consists in a process graph that is annotated with the expected load for each
operation, along with the NFRs associated with the related service composition.

Figure 2 shows two choreographies specified using this notation. At this stage,
services are specified in an abstract way. They will be subsequently replaced by
concrete implementations as a result of service selection.

Our proposal for choreography enactment is based on the combined repre-
sentation of multiple choreographies using a structure called QoS-Aware Depen-
dency Graph. This structure represents the services that are part of the chore-
ographies, the dependencies among those services, and their NFRs.

Definition 6 (QoS-Aware Dependency Graph). A QoS-aware dependency
graph G is a directed graph represented by a tuple (P,E,Q):

– P = {b ∪ z ∪ S} is a set of vertices, where b and z represent the initial and
end vertices, respectively.

– E is the set of directed edges. Each edge e ∈ E is a tuple (ps, pr, o), where
ps ∈ {P − z} is the send vertex, pr ∈ {P − b} is the receive vertex, and o is
the operation being requested.

– Q is a set of QoS properties. Each q ∈ Q is a tuple (k,Ω, λ, φ), where k is a
QoS metric, λ is the load (λ > 0), φ ∈ Dk is the target average value for this
metric, and Ω is a set of pairs (s ∈ S, o) that represent the services and the
target operations to which the metric must be applied.

A Model-Based Approach for the Pragmatic Deployment 161

b1 s1 s2 z1

k1(s1, o1) φ1

k2(s1, o1) φ2

k1(s2, o2) φ3

k2(s2, o2) φ2

k3 φ4

o1, λ1 o2, λ1

b2 s1

s2

s3

z2

k1(s1, o3) φ6

k1(s2, o2) φ7

k2(s2, o2) φ2

k1(s3, o6) φ8

k2(s3, o6) φ2

k3 φ9

k4 φ5

o3, λ2

o2, λ2.1

o6, λ2.2

Fig. 2. Two choreographies specified using the QoS-Aware process graph notation.

b s1

s2

s3

z

o1

o3

o2

o6

k1{(s1, o1)} λ1, φ1

k1{(s1, o3)} λ2, φ6

k2{(s1, o1)} λ1, φ2

k1{(s2, o2)} λ1, φ3

k1{(s2, o2)} λ2.1, φ7

k2{(s2, o2)} λ1 + λ2.1, φ2

k1{(s3, o6)} λ2.2, φ8

k2{(s3, o6)} λ2.2, φ2

k3{(s1, o1), (s2, o2)} λ1, φ4

k3{(s1, o3), (s2, o5),
(s3, o6)}

λ2, φ9

k4{(s1, o3), (s2, o5),
(s3, o6)}

λ2, φ5

Fig. 3. QoS-aware dependency graph for the choreographies shown in Fig. 2.

162 R. Gomes et al.

Figure 3 illustrates the QoS-aware dependency graph for the two annotated
choreographies shown in Fig. 2. We can find elements that remain the same as in
the original choreographies (shown in lighter shades of gray) as well as elements
that had some change in their load and target values (highlighted in darker
tones). Changes are due to the increased load on services and to the aggregation
of NFRs when they have the same target. In this structure the services represent
concrete chosen implementations.

This formalization enables the representation of combined choreographies
and the execution of more realistic service selection and resource allocation.
Additionally, these aspects must be reexamined (i.e., adapted) during choreog-
raphy enactment (at runtime). In the next section we outline the approach we
are developing to do this using the model described here.

6 Adaptive Approach to Choreography Deployment

The preceding sections discuss the issue of managing multiple choreographies at
the same time in the presence of service sharing. Users in charge of choreography
management must take into account the different roles of services and select the
resources needed to run each service. This must be done at deployment time,
and needs to be constantly reviewed at runtime to match QoS requirements.

The formalization presented in the previous section can be used to deal with
the service sharing issue during choreography enactment. It facilitates the initial
resource allocation and its adaptation at runtime as outlined next.

Fig. 4. Scenario of manual choreography enactment management.

As illustrated in Fig. 4, according to feedback from clients, such as regarding
the level of satisfaction, or from the system, e.g., number of aborted requests,
the user must manage service and resource allocation and adaptation. Every
time some QoS violation is detected, the first attempt to deal with it is through
adaptation of resource allocation. In cases where it is not possible to achieve
the needed QoS by acting (solely) at this level, another strategy is to perform
adaptation on service selection and resource configuration. As a last attempt,
the user may be required to adapt the choreography and/or accept lower QoS.

A Model-Based Approach for the Pragmatic Deployment 163

Our approach to automate the above scenario is to use models at runtime [14].
The use of models at runtime allows the specification of services and resource
requirements based on the current needs of applications; it also allows more
precise management of the available computing power, especially compared to
the allocation of resources based simply on profiles of virtual machines (VM).
In doing so, service selection and resource allocation can be performed auto-
matically according to abstract models and monitored data, thus facilitating
adaptation.

Fig. 5. Runtime models.

As can be seen in Fig. 5, our proposal relies on three different entities that are
abstracted using models. The choreography model (upper left side in the figure)
is represented using the QoS-aware process graph notation and is the input in
our approach. It is then used to generate the deployment model (upper middle
part in the figure), which is represented using the QoS-aware dependency graph
notation (with concrete service selection). The dependency graph, in turn, is
used to select the resources used to deploy/run the services. Moreover, the cloud
resources model (upper right side) represents available resource configurations
and is used as input for resource selection. The formalization proposed in this
paper can be used to specify the first two levels of modeling. We aim to extend
this formalization to represent cloud resources as well.

Although there is reification1 of the running system in all models, direct
absorption4 only applies to the deployment model, since changes on it are directly
reflected on the running system. Nevertheless, changes in the other two models
are also reflected in a indirect way since they are used as input for service and
resource selection. Note that this is ongoing work and an implementation of the

1 Reification is the action of exposing the representation of a system in terms of
programming entities that can be manipulated at runtime. The opposite process,
absorption, consists in effecting the changes made to these entities into the sys-
tem [15].

164 R. Gomes et al.

proposed approach is currently being developed. We are currently implementing
the generation of dependency graphs by means of the combination of the target
process graphs. Service and resource selection in turn are being implemented
using a variation of the multiple-choice multi-dimension knapsack problem [16].

7 Final Remarks

The sharing of services among multiple service compositions has a significant
effect on the overall provided QoS. Based on this observation, we advocate that
performing choreography enactment without taking this into account is not a
realistic approach. We present some experiments that demonstrate the problem
and propose a formal model to represent QoS-aware service compositions.

We aim to use the formal model presented here to represent abstract service
compositions. Taking these abstract compositions as input, we can automatically
select the best services in order of satisfy associated non-functional requirements.
Another important ongoing work is to extend the formalization presented here
with a cloud resources model in order to provide a basis to implement the allo-
cation of resources to run the selected services in a multi-cloud environment.

Acknowledgments. This work is supported by the Brazilian foundations FAPEG
(calls # 04/2011, 12/2012 and 03/2013) and CNPq (grants # 249809/2013-3 and
473939/2012-6).

References

1. Strunk, A.: QoS-aware service composition: a survey. In: 2010 IEEE 8th European
Conference on Web Services (ECOWS), pp. 67–74. IEEE (2010)

2. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE Tran.
Serv. Comput. 2(2), 152–166 (2009)

3. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Software Eng. 30(5),
311–327 (2004)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of
composite web services. In: Proceedings of IEEE International Conference on Web
Services, ICWS 2005, Proceedings, pp. 121–129. IEEE (2005)

5. Peng, X., Changsong, L.: ESCA: evolution-strategy based service composition algo-
rithm for multiple QoS constrained cloud applications. Int. J. Future Gener. Com-
mun. Netw. 7(1), 249–260 (2014)

6. Field, T.: JINQS: an extensible library for simulating multiclass queueing net-
works, v1.0 user guide (2006). http://www.doc.ic.ac.uk/ajf/Software/manual.pdf.
Accessed 30 March 2015

7. Nguyen, X.T., Kowalczyk, R., Han, J.: Using dynamic asynchronous aggregate
search for quality guarantees of multiple web services compositions. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 129–140. Springer, Hei-
delberg (2006)

8. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services
based processes. J. Syst. Softw. 83(8), 1512–1523 (2010)

http://www.doc.ic.ac.uk/ajf/Software/manual.pdf

A Model-Based Approach for the Pragmatic Deployment 165

9. Furtado, T., Francesquini, E., Lago, N., Kon, F.: A middleware for reflective web
service choreographies on the cloud. In: Proceedings of the 13th Workshop on
Adaptive and Reflective Middleware, vol. 9. ACM (2014)

10. Huang, K.C., Shen, B.J.: Service deployment strategies for efficient execution of
composite SaaS applications on cloud platform. J. Syst. Softw. 107, 127–141 (2015)

11. OMG: Documents Associated with Business Process Model and Notation (BPMN),
Version 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/

12. Mendling, J., Lassen, K.B., Zdun, U., et al.: Transformation strategies between
block-oriented and graph-oriented process modelling languages. In: Multikonferenz
Wirtschaftsinformatik, vol. 2, unknown, pp. 297–312 (2006)

13. Rosario, S., Benveniste, A., Jard, C.: Flexible probabilistic QoS management of
transaction based web services orchestrations. In: IEEE International Conference
on Web Services, ICWS 2009, pp. 107–114. IEEE (2009)

14. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27
(2009)

15. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware.
Commun. ACM 45(6), 33–38 (2002)

16. Khan, S., Li, K.F., Manning, E.G., Akbar, M.M.: Solving the knapsack problem
for adaptive multimedia systems. Stud. Inform. Univ. 2(1), 157–178 (2002)

http://www.omg.org/spec/BPMN/2.0/

	A Model-Based Approach for the Pragmatic Deployment of Service Choreographies
	1 Introduction
	2 Terminology
	3 The Effect of Service Sharing
	3.1 Evaluating the Effects of Service Sharing

	4 Related Work
	5 Formal Model for Choreography Deployment
	6 Adaptive Approach to Choreography Deployment
	7 Final Remarks
	References

