
123

Antonio Celesti
Philipp Leitner (Eds.)

Workshops of ESOCC 2015
Taormina, Italy, September 15–17, 2015
Revised Selected Papers

Advances in
Service-Oriented
and Cloud Computing

Communications in Computer and Information Science 567

Communications
in Computer and Information Science 567

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Antonio Celesti • Philipp Leitner (Eds.)

Advances in
Service-Oriented
and Cloud Computing
Workshops of ESOCC 2015
Taormina, Italy, September 15–17, 2015
Revised Selected Papers

123

Editors
Antonio Celesti
DICIEAMA
University of Messina
Messina
Italy

Philipp Leitner
Software Evolution and Architecture Lab
University of Zürich
Zürich
Switzerland

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-33312-0 ISBN 978-3-319-33313-7 (eBook)
DOI 10.1007/978-3-319-33313-7

Library of Congress Control Number: 2016936647

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the technical papers presented at the six high-quality workshops
associated with ESOCC 2015 (European Conference on Service-Oriented and Cloud
Computing), held in Taormina, Messina, September 15–17, 2015. The workshops
focused on specific topics in service-oriented and cloud computing-related domains:
Third International Workshop on CLoud for IoT (CLIoT 2015), 5th International
Workshop on Adaptive Services for the Future Internet (WAS4FI 2015), Second
Workshop on Seamless Adaptive Multi-Cloud Management of Service-Based Appli-
cations (SeaClouds 2015), First International Workshop on Cloud Adoption and
Migration (CloudWay 2015), First International Workshop on Digital Enterprise
Architecture and Engineering (IDEA 2015), the First Workshop on Federated Cloud
Networking (FedCloudNet 2015).

Moreover, this volume also includes papers presented at the European Projects
Track (EU Projects 2015) in conjunction with ESOCC 2015.

There were a total of 48 submissions, from which 24 papers were accepted giving an
acceptance rate of 50 %. The review and selection process was performed rigorously,
with each paper being reviewed by at least two Program Committee (PC) members.
Here, a brief description of each workshop is given.

The CLIoT 2015 workshop aimed at discussing the limits and/or advantages of
existing cloud solutions for IoT and at proposing original and innovative contributions
for enhancing real-world resources over cloud environments. Smart connectivity with
existing networks and context-aware computation is becoming indispensable for IoT.
Cloud computing provides a very strategic virtual infrastructure that integrates moni-
toring devices, storage devices, analytics tools, virtualization platforms, and client
delivery. It supports enormous amounts of data generated for IoT purposes, which have
to be stored, processed, and presented in a seamless, efficient, and easily interpretable
form. The first part of this volume includes all the technical papers of CLIoT 2015.

The W4S4FI 2015 workshop focused on Future Internet (FI) technologies. The FI
has emerged as a new initiative to pave a novel infrastructure linked to objects (things)
of the real world to meet the changing global needs of business and society. It offers
Internet users a standardized, secure, efficient, and trustable environment, which allows
open and distributed access to global networks, services, and information. There is a
need for both researchers and practitioners to develop platforms made up of adaptive FI
applications. In this sense, the emergence and consolidation of service-oriented
architectures (SOA), cloud computing, and wireless sensor networks (WSN) give
benefits, such as flexibility, computing, scalability, security, interoperability, and
adaptability for building these applications. FI systems will need to sense and respond
to a huge amount of signals sourced from different entities in real time. WAS4FI
addresses different aspects of adaptive FI applications, emphasizing the importance of
governing the convergence of contents, services, things, and networks to achieve
building platforms for efficiency, scalability, security, and flexible adaptation. WAS4FI

2015 covered the foundations of these technologies as well as new emerging proposals.
The second part of this volume includes all the technical papers of WAS4FI 2015.

The SeaCloud 2015 workshop focuses on enabling an efficient and adaptive
deployment and management of service-based applications across multiple clouds.
Deploying and managing in an efficient and adaptive way complex service-based
applications across multiple heterogeneous clouds is one of the problems that have
emerged with the cloud revolution. The current lack of universally accepted standards
supporting cloud interoperability is severely affecting the portability of cloud-based
applications across different platforms. At the same time, even at the level of a single
cloud, adaptation of cloud services to their execution environment is strongly desirable
in order to take appropriate actions in response to changes in the highly dynamic
environment of the cloud. Adaptations can be performed at runtime (dynamic adap-
tation) and at development time. In the latter case runtime and contextual data provided
to business application developers can allow them to enhance their applications based
on the actual operating conditions. The SeaCloud 2015 workshop covered solutions
and perspectives of the ongoing research activities aimed at enabling an efficient and
adaptive management of service-based applications across multiple clouds. The third
part of this volume includes all the technical papers of SeaCloud 2015.

The CloudWay 2015 workshop focused on novel cloud service migration practices
and solutions, and aims to identify future cloud migration challenges and dimensions.
Major IT companies and start-ups envision cloud computing as an economic strategy to
meet business objectives cost effectively and a way to remain competitive by exploiting
technical resources efficiently. Given the potential benefits of cloudification, an
increasing number of organizational business-critical applications – so-called legacy
systems – are being migrated to cloud environments. Regardless of the benefits of
cloudification, many organizations still rely on legacy software systems developed over
the lifetime of an organization using traditional development methods. Therefore,
migrating legacy systems toward cloud-based platform allows organizations to leverage
their existing systems deployed (over publicly available resources) as scalable cloud
services. The CloudWay 2015 workshop covered novel cloud migration practices and
solutions to identify future cloud migration challenges and dimensions. The fourth part
of this volume includes all the technical papers of CloudWay 2015.

The IDEA 2015 workshop focused on the digitization of enterprises in the cloud
computing era in order to advance digital enterprise architectures. Digitization is the
use of digital technologies for creating innovative digital business models and trans-
forming existing business models and processes. On a technological level, digitization
embraces the automation of processes and decisions. Advanced analytics provides the
automation of decisions hitherto made by human beings. Typical elements of digital
enterprise architectures are the use of decision automation, predictive or even pre-
scriptive analytics. In this way, digital technologies such as service orientation, cloud
computing, big data, mobile or the Internet of Things enable the creation of new
options for enterprises and organizations. Owing to the high diversity of concepts, the
complexity of systems involved, and the heterogeneity of stakeholders, a method-
ological foundation is crucial to the success of digitization. The IDEA 2015 workshop
covered business with technological themes and applied methodical and engineering

VI Preface

principles to the design of digital enterprise architectures (EA). The fifth part of this
volume includes all the technical papers of IDEA 2015.

The FedCloudNet 2015 workshop focused on federated cloud networking services.
Cloud federation enables cloud providers to collaborate and share their resources to
create a large virtual pool of resources at multiple network locations. In order to support
this scenario, it is necessary to research and develop techniques to federate cloud
network resources, enabling the instantiation and provision of overlay networks across
geographically dispersed clouds, and to derive the integrated management cloud layer
that enables an efficient and secure deployment of federated cloud applications.
Emerging topics in this research area includes cloud network federation models and
architectures, cross-data-center software-defined networking (SDN), network function
virtualization (NFV), data center interconnection, overlay networks, virtual private
networks (VPNs), federated cloud network security, geographic location-aware net-
works with high availability and elasticity. The FedCloudNet 2015 workshop covered
the latest research results on traffic engineering for cloud network federation. The sixth
part of this volume includes all the technical papers of FedCloudNet 2015.

EU Projects Track 2015 aimed at presenting the major running European-funded
projects highlighting the main industrial and academic trends in terms of research and
innovation. The seventh part of this volume includes all poster papers of EU Projects
2015.

October 2015 Antonio Celesti
Philipp Leitner

Preface VII

Organization

ESOCC 2015 was organized by the Department of Engineering and by the Mobile and
Distributed System Laboratory (MDSLAB) of the University of Messina (Italy).

Contents

CLIoT Workshop Papers

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 5
Marco Cavallo, Lorenzo Cusmà, Giuseppe Di Modica, Carmelo Polito,
and Orazio Tomarchio

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks . . . 20
Luiz Angelo Steffenel and Manuele Kirch Pinheiro

Design of an IoT Cloud System for Container Virtualization
on Smart Objects . 33

Davide Mulfari, Maria Fazio, Antonio Celesti, Massimo Villari,
and Antonio Puliafito

A Federated System for MapReduce-Based Video Transcoding to Face
the Future Massive Video-Selfie Sharing Trend . 48

Alfonso Panarello, Antonio Celesti, Maria Fazio, Antonio Puliafito,
and Massimo Villari

Internet Service Provision and Content Services: Peering and Service
Differentiation . 63

Alexei A. Gaivoronski, Per Jonny Nesse, Olai-Bendik Erdal,
and Finn-Tore Johansen

Security Requirements in a Federated Cloud Networking Architecture 79
Philippe Massonet, Anna Levin, Antonio Celesti, and Massimo Villari

W4S4FI Workshop Papers

A Lightweight Method for Analysing Performance Dependencies
Between Services . 93

Arjan Lamers and Marko van Eekelen

Automated Prediction of the QoS of Service Orchestrations: PASO
at Work . 111

Leonardo Bartoloni, Antonio Brogi, and Ahmad Ibrahim

A Workflow Service Mediator for Automated Information Processing
and Scheduling Delivery to an Archive . 126

Salvatore D’ Antonio, Giuliano Gugliara, Carlo Francesco Romano,
and Luigi Romano

http://dx.doi.org/10.1007/978-3-319-33313-7_1
http://dx.doi.org/10.1007/978-3-319-33313-7_2
http://dx.doi.org/10.1007/978-3-319-33313-7_3
http://dx.doi.org/10.1007/978-3-319-33313-7_3
http://dx.doi.org/10.1007/978-3-319-33313-7_4
http://dx.doi.org/10.1007/978-3-319-33313-7_4
http://dx.doi.org/10.1007/978-3-319-33313-7_5
http://dx.doi.org/10.1007/978-3-319-33313-7_5
http://dx.doi.org/10.1007/978-3-319-33313-7_6
http://dx.doi.org/10.1007/978-3-319-33313-7_7
http://dx.doi.org/10.1007/978-3-319-33313-7_7
http://dx.doi.org/10.1007/978-3-319-33313-7_8
http://dx.doi.org/10.1007/978-3-319-33313-7_8
http://dx.doi.org/10.1007/978-3-319-33313-7_9
http://dx.doi.org/10.1007/978-3-319-33313-7_9

Adaptive Architectural Model for Future Internet Applications 141
Marina Mongiello, Luigi Alfredo Grieco, Massimo Sciancalepore,
and Elvis Vogli

SeaCloud Workshop Papers

A Model-Based Approach for the Pragmatic Deployment of Service
Choreographies . 153

Raphael Gomes, Júnio Lima, Fábio Costa, Ricardo da Rocha,
and Nikolaos Georgantas

Supporting Cloud Service Selection with a Risk-Driven
Cost-Benefit Analysis . 166

Aida Omerovic

Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case. . . 175
Dario Bruneo, Francesco Longo, and Boris Moltchanov

Axe: A Novel Approach for Generic, Flexible, and Comprehensive
Monitoring and Adaptation of Cross-Cloud Applications 184

Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

CloudWay Workshop Papers

Migrating to Cloud-Native Architectures Using Microservices:
An Experience Report . 201

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 216
Leila Abidi, Christophe Cérin, Danielle Geldwerth-Feniger,
and Marie Lafaille

Resource Distribution Estimation for Data-Intensive Workloads:
Give Me My Share & No One Gets Hurt! . 228

Alireza Khoshkbarforoushha, Rajiv Ranjan, and Peter Strazdins

Supporting Partial Database Migration to the Cloud Using Non-intrusive
Software Adaptations: An Experience Report . 238

Caio H. Costa, Paulo H.M. Maia, Nabor C. Mendonça,
and Lincoln S. Rocha

Cloud Adoption by Fine-Grained Resource Adaptation: Price
Determination of Diagonally Scalable IaaS . 249

Kevin Laubis, Viliam Simko, and Alexander Schuller

XII Contents

http://dx.doi.org/10.1007/978-3-319-33313-7_10
http://dx.doi.org/10.1007/978-3-319-33313-7_11
http://dx.doi.org/10.1007/978-3-319-33313-7_11
http://dx.doi.org/10.1007/978-3-319-33313-7_12
http://dx.doi.org/10.1007/978-3-319-33313-7_12
http://dx.doi.org/10.1007/978-3-319-33313-7_13
http://dx.doi.org/10.1007/978-3-319-33313-7_14
http://dx.doi.org/10.1007/978-3-319-33313-7_14
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_16
http://dx.doi.org/10.1007/978-3-319-33313-7_17
http://dx.doi.org/10.1007/978-3-319-33313-7_17
http://dx.doi.org/10.1007/978-3-319-33313-7_18
http://dx.doi.org/10.1007/978-3-319-33313-7_18
http://dx.doi.org/10.1007/978-3-319-33313-7_19
http://dx.doi.org/10.1007/978-3-319-33313-7_19

IDEA Workshop Papers

Digitization – Perspectives for Conceptualization . 263
Rainer Schmidt, Alfred Zimmermann, Michael Möhring, Selmin Nurcan,
Barbara Keller, and Florian Bär

A Scientometric Analysis of Cloud Computing and QoE Literature
to Design a Cloud Platform of Experience for Digital Business. 276

Maurizio Giacobbe, Maria Fazio, Antonio Celesti, Tindara Abbate,
and Massimo Villari

Enabling Digital Transformation Using Secure Decisions as a Service 289
Hans-Joachim Hof, Rainer Schmidt, and Lars Brehm

Exploring Requirements for Multipurpose Crowd Computing Framework. . . . 299
Alexander Smirnov and Andrew Ponomarev

Adaptive Enterprise Architecture for Digital Transformation 308
Alfred Zimmermann, Rainer Schmidt, Dierk Jugel, and Michael Möhring

FedCloudNet Workshop Papers

BEACON: A Cloud Network Federation Framework 325
Rafael Moreno-Vozmediano, Eduardo Huedo, Ignacio M. Llorente,
Rubén S. Montero, Philippe Massonet, Massimo Villari,
Giovanni Merlino, Antonio Celesti, Anna Levin, Liran Schour,
Constantino Vázquez, Jaime Melis, Stefan Spahr, and Darren Whigham

Federated Networking Services in Multiple OpenStack Clouds 338
Antonio Celesti, Anna Levin, Philippe Massonet, Liran Schour,
and Massimo Villari

Networking Introspection and Analysis for Virtual Machine Migration
in Federated Clouds. 353

Giuseppe Andronico, Filippo Bua, Marco Fargetta, Emidio Giorgio,
Alessio Guglielmo, Salvatore Monforte, Maurizio Paone,
and Massimo Villari

SHYAM: A System for Autonomic Management of Virtual Clusters
in Hybrid Clouds . 363

Daniela Loreti and Anna Ciampolini

A Database-Specific Pattern for Multi-cloud High Availability
and Disaster Recovery . 374

Huanhuan Xiong, Frank Fowley, and Claus Pahl

Contents XIII

http://dx.doi.org/10.1007/978-3-319-33313-7_20
http://dx.doi.org/10.1007/978-3-319-33313-7_21
http://dx.doi.org/10.1007/978-3-319-33313-7_21
http://dx.doi.org/10.1007/978-3-319-33313-7_22
http://dx.doi.org/10.1007/978-3-319-33313-7_23
http://dx.doi.org/10.1007/978-3-319-33313-7_24
http://dx.doi.org/10.1007/978-3-319-33313-7_25
http://dx.doi.org/10.1007/978-3-319-33313-7_26
http://dx.doi.org/10.1007/978-3-319-33313-7_27
http://dx.doi.org/10.1007/978-3-319-33313-7_27
http://dx.doi.org/10.1007/978-3-319-33313-7_28
http://dx.doi.org/10.1007/978-3-319-33313-7_28
http://dx.doi.org/10.1007/978-3-319-33313-7_29
http://dx.doi.org/10.1007/978-3-319-33313-7_29

An OpenStack-Based Implementation of a Volunteer Cloud 389
Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito

Cloud Services Composition Through Semantically Described Patterns:
A Case Study . 404

Beniamino di Martino, Giuseppina Cretella, and Antonio Esposito

EU Projects Track

Adaptive Application Management over Multiple Clouds 422
M. Barrientos, A. Brogi, M. Buccarella, J. Carrasco, J. Cubo,
F. D’Andria, E. Di Nitto, A. Nieto, M. Oriol, D. Pérez, E. Pimentel,
and S. Zenzaro

TAP: A Task Allocation Platform for the EU FP7 PANACEA Project. 425
Erol Gelenbe and Lan Wang

Towards Quality-Aware Development of Big Data Applications with DICE . . . 427
Giuliano Casale, Elisabetta Di Nitto, and Ilias Spais

On MODAClouds’ Toolkit Support for DevOps . 430
Elisabetta Di Nitto, Giuliano Casale, and Dana Petcu

CloudWave – Leveraging DevOps for Cloud Management
and Application Development . 432

Dario Bruneo, Aryan Dadashi, Philipp Leitner, Avi Miron,
Boris Moltchanov, Francesco Javier Nieto De-Santos, Eliot Salant,
Amir Molzam Sharifloo, Karl Wallbom, and Chris Woods

AppHub – The European Open Source Market Place (Extended Abstract) . . . 435
Peter H. Deussen, Majid Salehi Ghamsari, Alexandre Lefebvre,
Alban Richard, Cédric Thomas, Olivier Bouzereau, and Catherine Nuel

Cloud Application Modelling and Execution Language (CAMEL)
and the PaaSage Workflow . 437

Alessandro Rossini

Broker@Cloud: Enabling Continuous Quality Assurance and Optimisation
in Future Enterprise Cloud Service Brokers . 440

Simeon Veloudis and Iraklis Paraskakis

BEACON – Enabling Federated Cloud Networking. 442
Philippe Massonet and Craig Sheridan

EUBrazil Cloud Connect: A Federated e-Infrastructure
for Cross-Border Science . 444

Roberto G. Cascella, Stephanie Parker, and Silvana Muscella

XIV Contents

http://dx.doi.org/10.1007/978-3-319-33313-7_30
http://dx.doi.org/10.1007/978-3-319-33313-7_31
http://dx.doi.org/10.1007/978-3-319-33313-7_31
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7

CLIPS – CLoud Approach for Innovation in Public Services 447
Roberto Di Bernardo and Marco Alessi

FrontierCities: Leveraging FIWARE for Advantages in Smart Mobility 450
Antonio Celesti and Massimo Villari

Author Index . 453

Contents XV

http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7

CLIoT Workshop Papers

Preface of CLIoT 2015

A new generation of embedded devices provide an opportunity to create new business
and social models by exploiting a strong interaction with the environment. At the same
time, the Internet of Things (IoT) seem to change the way we interact with the world
around us. The IoT conceptual base aims to represent the physical world through
uniquely identifiable and interconnected objects (things). These things have the
capacity for sensing, processing, or actuating information about entities available from
within the real world. They allow interactions or generate events about them. The
generated information travels along heterogeneous systems, such as routers, databases,
information systems, and the Internet. Consequently, there are enormous amounts of
data that have to be stored, processed, and presented in a seamless, efficient, and easily
interpretable form.

Cloud computing represents a very flexible technology, able to offer theoretically
unlimited computing and storage capabilities and efficient communication services for
transferring terabyte flows between data centers. Cloud technologies address two
important goals for distributed system: high scalability and high availability. These
features make cloud computing a promising choice for supporting IoT services. IoT has
the potential to offer the killer applications of cloud computing, where the cloud allows
one to access IoT-based resources and capabilities, to process and manage IoT envi-
ronments, and to deliver on-demand utility of IoT services such as sensing/actuation as
a service.

CLIoT 2015 was the third edition of the International Workshop on Cloud for IoT.
It aims at bringing together scientists, practitioners, and PhD students in order to
discuss the limits and/or advantages of existing cloud solutions for IoT, and to propose
original and innovative contributions for enhancing real-world resources over cloud
environments. The topics of interest for CLIoT 2015 included but were not limited to:

– Innovative models and system architectures for cloud-based IoT
– IoT Data abstraction and processing
– Mobile cloud
– Cloud storage for IoT
– Interaction between sensor networks and the cloud
– Discovery Service for IoT
– Cloud computing-based IoT technologies
– Wireless sensor networks into the cloud
– Big data management using clouds
– Smart environments for IoT
– Ubiquitous computing/pervasive computing for IoT
– Real-time communication with smart objects
– Applications based on IoT and the cloud
– Inter-cloud management: cloud federation serving IoT
– Security and privacy in clouds and IoT

All submissions were peer-reviewed by an international Program Committee, with
the objective of having at least three reviews for each paper. The final acceptance rate
of the manuscripts was 62 %.

The contributions accepted for presentation at the workshop include the work of
Cavallo et al., who designed a context-aware Hadoop framework able to schedule and
distribute tasks among geographically distant clusters minimizing the overall job
execution time. Such a framework can be successfully used to process huge amounts of
data generated in IoT scenarios.

Steffenel et al. presented CloudFIT, a PaaS middleware for the creation of private
clouds over pervasive environments. Using a Map Reduce application as an example,
the authors showed how CloudFIT provides both storage and data aggregation/analysis
capabilities at the service of IoT networks.

Panarello et al. proposed a cloud federation-based system to support the increasing
usage of mobile devices and social networks, where photo selfie sharing is gradually
turning into video selfie. The proposed solution exploits the Hadoop-MapReduce
paradigm to perform video transcoding in multiple formats and in a fast and efficient
way.

Gaivoronski et al. presented modeling tools for evaluating business models of ISPs
in the Internet ecosystem, also discussing some results of this analysis. In particular,
they modeled the relationship between a content provider (CP) with significant market
power and an ISP. Such a relationship is very important in the establishment of a real
interconnection between IoT environments and cloud providers.

Massonet et al. presented the main security requirements of a generic federated
cloud netwoking architecture analyzed in the Horizon 2020 BEACON project that aims
to research and develop techniques to federate cloud network resources in order to
derive an integrated cloud management layer that enables an efficient and secure
deployment of federated cloud applications.

The workshop program also included a short paper presenting the research activity
of Mulfari et al. on container virtualization on Linux embedded IoT devices. In par-
ticular, the work presents a tool designed to compose cloud facilities by means of a
flexible federation-enabled communication system.

Moreover, the workshop program included a joint panel with the CloudWay
Workshop, titled “Migrating to Cloud and IoT Solutions: Challenges and Perspec-
tives,” where several different approaches and features in the field were discussed.

Maria Fazio
Dana Petcu

Preface of CLIoT 2015 3

Organization

Workshop Organizers

Maria Fazio University of Messina, Italy
Dana Petcu West University of Timisoara, Romania

Steering Committee

Nik Bessis University of Derby, UK
Massimo Villari University of Messina, Italy

Technical Program Committee

Liz Bacon Greenwich University, UK
Francisco J. Blaya Gonzálvez University of Murcia, Spain
Antonio Celesti University of Messina, Italy
Erik Elmroth Umeå University, Sweden
Teodor-Florin Fortis West University of Timisoara, Romania
Horacio Gonzalez-Velez National College of Ireland, Ireland
Brian Lee Athlone IT, Ireland
Juan Manuel Murillo Rodríguez University of Extremadura, Spain
Tommi Mikkonen Tampere University of Technology,

Tampere, Finland
Victor Muntés-Mulero Universitat Politècnica de Catalunya, Spain
Zsolt Nemeth MTA SZTAKI, Hungary
Bogdan Nicolae IBM Research, Ireland
Leire Orue-Echevarria Tecnalia Research and Innovation, Spain
Jose Luis Vazquez-Poletti Universidad Complutense de Madrid, Spain

A Scheduling Strategy to Run Hadoop
Jobs on Geodistributed Data

Marco Cavallo, Lorenzo Cusmà, Giuseppe Di Modica, Carmelo Polito,
and Orazio Tomarchio(B)

Department of Electrical, Electronic and Computer Engineering,
University of Catania, Catania, Italy

{marco.cavallo,lorenzo.cusma,giuseppe.dimodica,carmelo.polito,
orazio.tomarchio}@dieei.unict.it

Abstract. Internet-of-Things scenarios will be typically characterized
by huge amounts of data made available. A challenging task is to effi-
ciently manage such data, by analyzing, elaborating and extracting use-
ful information from them. Distributed computing framework such as
Hadoop, based on the MapReduce paradigm, have been used to process
such amounts of data by exploiting the computing power of many cluster
nodes. However, as long as the computing context is made of clusters of
homogeneous nodes interconnected through high speed links, the benefit
brought by the such frameworks is clear and tangible. Unfortunately, in
many real big data applications the data to be processed reside in many
computationally heterogeneous data centers distributed over the planet.
In those contexts, Hadoop was proved to perform very poorly. The pro-
posal presented in this paper addresses this limitation. We designed a
context-aware Hadoop framework that is capable of scheduling and dis-
tributing tasks among geographically distant clusters in a way that min-
imizes overall jobs’ execution time. The proposed scheduler leverages on
the integer partitioning technique and on an a-priori knowledge of big
data application patterns to explore the space of all possible task sched-
ules and estimate the one expected to perform best. Final experiments
conducted on a scheduler prototype prove the benefit of the approach.

1 Introduction

While the first wave of IoT has focused on delivering frameworks on which
“smart” sensors can be implemented and connected to the Internet, focus now
has shift towards the definition of backend services capable of managing the huge
amount of data that those sensing frameworks, as well as the sensors that billions
of portable devices are equipped with, produce every day [9]. The Cloud has
been evoked by many as the “right place” where sensed data ought to be stored
and mined [12]. The Cloud can scale very well with respect to both the data
dimension and the computing power that is required for elaboration purposes.
If on the one hand there is a strong trend that pushes for executing some data
processing (such as filtering, cleaning, etc.) close to the place where they have

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 5–19, 2016.
DOI: 10.1007/978-3-319-33313-7 1

6 M. Cavallo et al.

been sensed (on the smart sensing frameworks, indeed), on the other one there
is still the need to run computationally heavy mining procedures on the Cloud,
where data are conveyed after sensing, and may even happen to reside on data
centers which are geographically distant to each other’s [11].

Devising efficient mechanisms for storage, manipulation and analysis of such
huge amount of data is currently one of the main research and technological
challenges [14]. Application parallelization and divide-and-conquer strategies are
natural computational paradigms for approaching big data problems, addressing
scalability and high performance. The availability of grid and cloud computing
technologies, which have lowered the price of on-demand computing power, have
spread the usage of parallel paradigms, such as the MapReduce [3], for big data
processing. But, despite getting additional computing resources has become very
simple by using cloud computing technologies, in many big data scenarios several
challenges are still not adequately solved. It is not uncommon the need to process
data which are geographically distributed. In these scenarios, the data required
to perform a task is often non-local. This may severely affect the performance of
a MapReduce application. Hadoop, one of the most widespread implementation
of the MapReduce paradigm, has been designed mainly to work on clusters of
homogeneous computing nodes belonging to the same local area network; thus,
data locality is one of the crucial factors affecting its performance.

In our work we address just this issue, trying to take into account the actual
heterogeneity of nodes, network links and data distribution in order to optimize
the job execution time [2]. Our solution follows a hierarchical approach, where
a top-level entity will take care of serving a submitted job: the job is split into
a number of bottom-level, independent MapReduce sub-jobs that are scheduled
to run on the sites where data natively reside or have been ad-hoc moved to.
The designed job scheduling algorithm aims to exploit fresh information continu-
ously sensed from the distributed computing context (available sites computing
capacity and inter-site bandwidth) to estimate each jobs optimum execution
flow. Main focus of this work is on a study conducted on the “profile” of appli-
cations, i.e., the set of application features that may impact on the phases of the
job execution, and on the definition of a job scheduling strategy that leverages
on the integer partitioning technique to search for the best task schedule that
guarantees the job’s shortest execution time.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
the overall system design. Section 3 provides the details of the job scheduling
algorithm and discusses the application profiling. Section 4 presents some pre-
liminary results of the proposed job scheduling run on well known MapReduce
applications. Finally, Sect. 5 presents related work, while Sect. 6 concludes the
work.

2 Design of a Hierarchical Hadoop Approach

According to the MapReduce paradigm, a generic computation is called job [3].
Upon a job submission, a scheduling system is responsible for splitting the job in

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 7

several tasks and mapping the tasks to a set of available nodes within a cluster.
The performance of a job execution is measured by its completion time (some
refers to it with the term makespan), i.e., the time for a job to complete. Apart
from the size of the data to be processed, that time heavily depends on the job’s
execution flow determined by the scheduling system (the sequence of tasks that
the job is split in) and the computing power of the cluster nodes where the tasks
are actually executed.

In a scenario where computing nodes reside in distributed clusters that are
geographically distant to each other’s, there is an additional parameter that
may affect the job performance. Communication links among clusters (inter-
cluster links) are often disomogeneous and have a much lower capacity than
communication links among nodes within a cluster (intra-cluster links). Also,
clusters are not designed to have similar or comparable computing capacity,
therefore they might happen to be heterogeneous in terms of computing power.
Third, it is not rare that the data set to be processed are unevenly distributed
over the clusters. So basically, if a scheduling system does not account for this
threefold unbalancement (nodes capacity, communication links capacity, data
set distribution) the overall job’s performance may degrade dramatically.

To face these issues, we propose a hierarchical MapReduce framework where
a top-level scheduling system sits on top of a bottom-level distributed computing
context and is continuously kept informed about the dynamic conditions of the
underlying computing context. Information retrieved from the computing con-
text is then used to drive the generation of each job’s optimum execution flow
(or execution path).

The basic reference scenario addressed by our proposal is depicted in Fig. 1.
Sites (data centers) populate the bottom level of the hierarchy. A Site may be
composed of one or more cluster nodes that provide the overall Site’s computing
power. Each Site stores a certain amount of data and is capable of running
plain Hadoop jobs. Upon receiving a job, a Site transparently performs the
whole MapReduce process chain on the local cluster(s) and returns the result
of the elaboration. The system’s business logic devoted to the management of
the geo-distributed computing resides in the top-level of the hierarchy. When a
new Hadoop job is submitted that requires to process the data distributed over
the Sites, the business logic splits the job into a set of sub-jobs, pushes them
to the distributed context, gathers the sub-job results and packages the overall
computation result.

Hierarchical MapReduce approaches are not new in the literature [5,7,13].
The novelty introduced by this work is the adoption of a scheduling strategy
based on the integer partitioning technique and the inclusion of the application
profile among the parameters that may influence the determination of the job’s
optimum execution flow. Such a novelty will be thoroughly discussed in Sect. 3.

The system’s business logic is composed of the following entities:

– Orchestrator. It is responsible for the generation of a Top-level Job Execu-
tion Plan (TJEP). A TJEP contains the following information:

8 M. Cavallo et al.

Fig. 1. Overall architecture

• the Data Logistic Plan (DLP), which states how data targeted by the job
have to be re-organized (i.e., shifted) among Sites;

• the Sub-job Scheduling Plan (SSP), which defines the set of Hadoop sub-
jobs to be submitted to the Sites holding the data.

– Master. It is the entity to which Hadoop jobs are submitted. It calls on the
Orchestrator for the generation of the TJEP, and is in charge of enforcing the
TJEP according to the information contained in the DLP and the SSP.

– Global Reducer. It performs the top-level reduction of the results obtained
from the execution of Hadoop sub-jobs.

At design time two important assumptions are made. First, only one Global
Reducer is responsible for collecting and reducing the data elaborated by bottom-
level Sites. One may argue that this choice might impact on the job performance,
nevertheless it does not invalidate the approach. Anyway, in the future this
assumption is going to be relaxed. Second, being this a pure hierarchical app-
roach, the top-level MapReduce job must be implemented in such a way that
the applied operations are “associative”, i.e., may be performed recursively at
each level of the hierarchy and the execution order of the operations does not
affect the final result [5].

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 9

In the scenario of Fig. 1 four geo-distributed Sites are depicted that hold
company’s business data sets. The numbered arrows describe a typical execution
flow triggered by the submission of a top-level job. This specific case envisioned
a shift of data from Site1 to Site4, and the run of local MapReduce sub-jobs on
two Sites (Site2 and Site4).

One of the Orchestrator’s tasks is to monitor the distributed context’s
resources, i.e., the Sites’ available computing capacity and the inter-site band-
width capacity. As for the monitoring of the computing capacity, each Site peri-
odically advertises its capacity to the Orchestrator. Such capacity represents the
overall computing capacity of the Site for MapReduce purposes (overall nominal
capacity). Since the amount of computing capacity potentially allocable to a
single job (slot capacity) may differ from Site to Site, Sites are also requested to
communicate that amount along with the overall nominal capacity. The avail-
able inter-site link capacity is instead “sensed” through a network infrastruc-
ture made of SDN-enabled [10] switches. Switches are capable of measuring the
instant bandwidth occupied by incoming and outgoing data flows. The Orches-
trator periodically enquires the switches to retrieve the bandwidth consumption
and elaborates statistics on the inter-site bandwidth consumption.

3 Job Scheduling Strategy

As mentioned in the previous section, the Orchestrator is the component in
charge of generating the TJEP, which contains some directives on how data
have to be re-distributed among Sites and the articulation of sub-jobs that have
to be run on the Sites. In order to compute the TJEP, the Orchestrator will call
on a scheduling strategy that explores the universe of all feasible execution paths
for that specific distributed computing context. Each execution path is assigned
a score, which is a function of its estimated completion time (the shorter the
estimated completion time, the higher the score), and finally the execution path
with the best score will be appointed TJEP.

If it may appear clear that the sites’ computing capacity and the inter-site
bandwidth affect the overall path’s completion time, some words have to be
spent on the impact that the type of MapReduce application may have on that
time. We argue that if the scheduling system is aware of the application behavior
in terms of the data produced in output with respect to the data taken in input,
it can use this information to take important decisions. In a geo-distributed
context, moving big amounts of data back and forth among Sites is a “costly”
operation. If the size of the data produced by a certain application can be known
in advance, this information will help the scheduling system to decide on which
execution path is best for the application.

In [4] the authors introduce the α expansion/compression factor, that repre-
sents the ratio of the size of the output data of the Map task of a MapReduce
job to the size of its input data. In our system focus is on the MapReduce
process (not just on the Map phase) that takes place in a Site. Therefore we are
interested in profiling applications as a whole.

10 M. Cavallo et al.

We then introduce the data Compression factor βapp, which represents
the ratio of the output data size of an application to its input data size:

βapp =
OutputDataapp

InputDataapp
(1)

The βapp parameter may be used to calculate the amount of data that is
produced by a MapReduce job at a Site, traverses the network and reaches
the Global Reducer. Depending on that amount, the data transfer phase may
seriously impact on the overall top-level job performance. The exact value of βapp

for a submitted application may not be known a priori: Sect. 3.2 will discuss on
how to get a good estimate of it.

We adopt a graph model to represent the job’s execution path. Basically, a
graph node may represent either a Data Computing Element (site) or a Data
Transport Element (network link). Arcs between nodes are used to represent the
sequence of nodes in an execution path. A node is the place where a data flow
arrives (input data) and another data flow is generated (output data). Nodes
are characterized by two parameters. The βapp, that is used to estimate the
data produced by a node, and the Throughput, defined as the amount of
data that the node is able to process per time unit. The βapp value for Data
Transport Elements is equal to 1, because there is no data computation occurring
in a data transfer. As for the Data Computing Element, instead, βapp strictly
depends on the type of application to be executed. In the case of Data Transports
Element, the Throughput is equal to the link capacity. The Throughput of a
Data Computing Elements depends again on both the application type and the
Site’s computing capacity. Like for the βapp value, the exact Throughput value
is not a priori known; Sect. 3.2 discusses a sample-based procedure employed to
derive the Throughput of a computing node for a certain application. Finally,
arcs between nodes are labeled with a number representing the size of the data
leaving a node and reaching the next node.

The label value of the arc connecting node j − th to node (j + 1) − th is
given by:

DataSizej,j+1 = DataSizej−1,j × βj (2)

In Fig. 2 an example of a graph branch made of two nodes and a connecting
arc is depicted:

Fig. 2. Nodes’ data structure

A generic node j’s execution time is defined as:

Tj =
DataSizej−1,j

Throughputj
(3)

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 11

Fig. 3. Example topology of a distributed computing environment

Fig. 4. Graph modeling a potential execution path

An execution path is then modeled as a graph of nodes. The hard part of
the scheduling system’s work is the generation of all the potential execution
paths. The algorithm used to generate potential execution paths is discussed
in Sect. 3.1. We now put the focus on how to calculate the execution time of a
specific execution path.

Figure 3 depicts a scenario of four sites (S0 through S3) and a geographic
network interconnecting the sites. A top-level job need to process a 15 GB data
set distributed this way: 5 GB located in Site S0 and 10 GB located in Site S2. Let
us assume that one of the execution-paths generated by the scheduling system
involves the movement of 5 GB of data from S2 to S3, and that three MapReduce
sub-jobs will be executed at S0, S2 and S3 respectively. The Global reducing of
the data produced by the MapReduce sub-jobs will be performed at S3.

In Fig. 4 the graph that models a potential execution path for the just dis-
cussed configuration is represented. Basically, a graph has as many branches as
the number of bottom-level MapReduce (three, in our case). Every branch starts
at the root node (initial node) and ends at the Global reducer’s node. Next to
node I is the node where the data interested by the MapReduce computation
initially resides. In the example, the branch in the bottom models the elaboration
of data initially residing in node S2, that are map-reduced by node S2 itself, and
results are finally pushed to node S3 (the Global reducer) through the links LA 2

and LA 3. In the graph, only the LA 2 node is represented as it is slower than LA 3

and will impose its speed in the overall path S2 → LA 2 → RA → LA 3 → S3.
Similarly, in the top-most branch the data residing in node S0 are moved to

12 M. Cavallo et al.

node S1 through link LA 0, are map-reduced by node S1 and results are pushed
to node S3 through link LA 3.

We define the execution time of a branch to be the sum of the execution
times of the nodes belonging to the branch; the Global reducer node’s execution
time is left out of this sum. Note that execution carried out through branches
are independent of each other’s, so branches will have different execution times.
In order for the Global reducing to start, all branches will have to produce and
move their results to the reducer Site. Therefore the longest among the branches’
execution times determines when the global reducing is allowed to start.

The execution time of a branch is computed as the sum of the execution
times of all the branch’s nodes:

Tbranch =
N−1∑

j=1

DataSizej,j+1

Throughputj+1
(4)

being N the number of nodes in the branch.
In particular, the execution time of the top-most branch of Fig. 4 is:

Ttop =
5GB

3MB
s

+
5GB

50MB
s

+
3GB

2MB
s

= 3, 27 × 103 s

The execution time of the Global reducer is given by the summation of the
sizes of the data sets coming from all the branches over the node’s estimated
throughput. Let DataSize(K)N−1,N be the data size of the k-th branch reaching
the Global reducer node. The execution time for the Global reducer will be:

TGR =
∑P

K=1 DataSize(K)N−1,N

ThroughputGR
(5)

being P the total number of branches in the graph. In the considered case,
the execution time of the Global reducer (node S3) will be:

TGR =
3GB + 3GB + 3GB

50MB
s

= 180 s

Finally, the overall execution time estimated for the specific execution path
represented by the graph is defined to be the sum of Global reducer’s execution
time and the maximum among the branches’ execution times:

Tpath = max
1≤K≤P

(T (K)branch) + ThroughputGR (6)

This concludes the computation of the execution time of the considered
graph. We remind that the scheduling system is able to generate many job’s
execution paths, for each of which the execution time is calculated. In the end,
the best path to schedule will be, of course, the one showing the shortest time.

In Sect. 4 a more complex scenario is shown and the result of experiments
conducted on a real use case application are discussed.

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 13

3.1 Execution Path Generation

The scheduling system’s strategy to identify the best execution path for specific
top-level job is to generate all potential execution paths and find out the one
with the shortest execution time. The scheduling algorithm just needs a few
parameters in input: the network’s topology, the list of Sites holding the data
to be processed, parameters related to the MapReduce application (βapp and
Throughput). All potential execution paths are explored by applying combina-
torics operation. First, the algorithm analyzes all computing nodes (Sites) to find
the best mapper nodes’ combination. A combination is a way of selecting map-
per nodes from the collection of all available Sites. The algorithm computes a
k-combination of all nodes with k ranging from 1 to the number of available Sites,
where K is the number of mappers. The overall number of k-combination is:

n∑

k=1

Cn,k =
n∑

k=1

n!
k!(n − k)!

(7)

For each k-combination, the algorithm computes the needed data transfers.
Those transfers consists in moving data blocks from the Sites that hold them
to the mapper nodes. The basic assumption we make is that overall data to be
processed must be divided into equally sized data blocks. Therefore, Sites holding
data will hold one or more data blocks. Those blocks need to be re-distributed
to mapper nodes. Of course, a Site holding data may also be a mapper, therefore
will happen to be assigned one or more data blocks. In order to represent all pos-
sible assignments of data blocks to mappers, we call on the Integer Partitioning
technique [1]. A partition of a positive integer n, also called an integer partition,
is a way of writing n as a sum of positive integers. It is possible to partition n
as a sum of m addenda, in which case we will refer to it as a partition of the
number n of order m. Finally, our objective is to compute the partitions of the
integer n of order m, where n is the total number of data blocks and m is the
number of nodes candidates to become mappers.

By the notation P (n,m) we refer to the number of partitions of the integer
number n in the order m. The overall number of partitions of a number n in all
the orders m = 1, 2,..,n is:

P (n) =
n∑

m=1

P (n,m) (8)

Of course, the data blocks configuration tells us just the ways to “group” data
blocks for distribution, but the distribution phase complicates the problem, as
there are many possible ways to distribute group of data blocks among sites. So
for the distribution of data blocks we have to call on the permutation theory.
In the end, the calculus of the number of all the execution paths for a
certain application must consider both the block data distribution configuration
(Eq. 8) and the combination of mappers (Eq. 7). For example, in the case of
n = 7 the number of generated paths will be around 18.000. For n = 8 more than
150.000 configurations were obtained. Treating the problem of the generation

14 M. Cavallo et al.

of execution paths as an integer partitioning problem allowed us to apply well
known algorithms working in constant amortized time that guarantee acceptable
time also on off-the-shelf PCs [15].

3.2 Application Profiling

The generation and evaluation of the best execution path is highly dependent on
the data processing pattern of an application. The way an application manipu-
lates data affects both the computing phase and the transfer phase of the overall
job execution.

The parameters that can be used to best represent the application profile
are the βapp and the Throughput discussed in the previous section. Since the
exact values of those application parameters are not known at job submission
time, we have to provide an accurate estimate. The estimate process consists in
asking the Sites holding the data to run the job on a small portion of their data
and provide back the nominal βapp and nominal Throughput computed on those
data. Since the nominal Throughput indicates the amount of data processed per
time unit, all Sites will have to compute it on a reference machine having an
agreed computing power (e.g., equal to 1 Gflops). At the end of the nominal val-
ues estimate, the involved Sites send their estimates to the Orchestrator, where
they will be appropriately averaged. The averaged values will be considered the
application’s official profile, and will be used in the definition of the graph.

The Throughput of a given computing node is computed by multiplying the
application’s official Throughput by the node’s computational power expressed
in Gflops. This estimate makes the assumption that the node’s Throughput is
a linear function of the computing power. To estimate the βapp we assume this
parameter is not influenced by both the heterogeneity of the input data used for
its estimate and the size of the data blocks that a node has to process. In order
to support our assumption, we investigated on the behavior of this parameter in
the case of two typical Hadoop applications: WordCount and InvertedIndex.
The object of the investigation was to prove the independence of the βapp from
the type and the size of the input data.

WordCount reads text files and counts how often words occur. The input and
the output data are both text files. The output file is a list of words each followed
by its occurrence in the input file. WordCount was executed on an input text
file of a 4 GB Wikipedia dump. We started with a 500 MB sample, and then we
considered samples of 1 GB, 2 GB and 4 GB size respectively. The observed result
for the βapp are shown in Fig. 5(a). The graph shows that the variance between
the maximum and minimum of βapp is negligible, so we can deduce that size of
the input data does not affect the compression factor in an appreciable way. Let
us now consider the analysis of the βapp evaluated on different data samples. We
want to verify that whatever the particular data sample (split, in the figure),
the βapp value is not influenced. The input data was then divided into splits of
same size each time, and the compression factor for each sample was computed.
Results are shown in Fig. 5(b). The experiment was run several times, each time

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 15

with a different split size (from 500 MB up to 4 GB). Again, no appreciable
variation of βapp can be observed.

Fig. 5. Variations of beta in the WordCount application

InvertedIndex is a word-oriented mechanism for indexing a text collection in
order to speed up the searching task. The inverted file structure is composed
of two elements: the vocabulary and the occurrences. The vocabulary is the
set of words in the text. For each word, a list of all the positions where the
word appears is stored. The set of all those lists is called the occurrences. These
positions can refer to either words or characters. We analyzed the execution of the
InvertedIndex application on an input file originated from a 8 GB StackOverFlow
dump. Figure 6(a) and (b) reports the obtained results. The considerations made
for the WordCount application apply for the InvertedIndex as well.

To conclude, the investigation showed that the βapp is invariant to both the
size and the type of the considered input data. This fact support the assumption
made in Sect. 3 that the value of βapp computed on whatever small-sized data
sample can be reasonably used as a good estimate of the βapp of a big data set
as well.

Fig. 6. Variations of beta in the InvertedIndex application

16 M. Cavallo et al.

4 Prototype Implementation and Test Case

We implemented a prototype of the scheduling system in Java. With the proto-
type, we ran a few experiments in order to test the effectiveness and efficiency
of our scheduling approach. This section explains how a TJEP is generated for
real use case applications. We chose to run experiments on the WordCount and
the InvertedIndex applications, that we analyzed in Sect. 3.2, for which the esti-
mated compression factors turned out to be βapp = 0.015 and βapp = 0.0005
respectively. The reference computing context is the network topology depicted
in Fig. 7.

Fig. 7. Use case topology

The links connecting the computing nodes were configured to have the fol-
lowing capacity: LA 0 = LA 2 = LB 3 = LAB = 10 MB/s; LA 1 = LB 4 = LB 5

= 5 MB/s. Sites were assigned unbalanced computing capabilities in terms of
Gflops. The Sites’ computing power (Throughput) were estimated in a prelim-
inary profiling phase (see Sect. 3.2). In the case of the WordCount, it gave the
following results: ThroughputS0 = ThroughputS2 = ThroughputS4 = 10 MB/s;
ThroughputS1 = ThroughputS3 = ThroughputS5 = 50 MB/s. The input data
that both the applications need to process are organized in 10 data blocks of
128 MB. Data blocks reside in the network with this distribution: S0 stores 2
data blocks; S2 stores 3 data blocks; S4 stores 5 data blocks.

When fed with the run the WordCount configuration, the scheduler generated
56376 potential execution paths in about 50 s1. The objective of the experiment
was to compare the performance of the best execution path generated by our
scheduler with that of the execution path of a plain hierarchical MapReduce,
i.e., an execution path that makes use of no data transfer among sites, but just
envisions to run MapReduce sub-jobs on the Sites holding the data and send
the results to another Site for the Global reduce. Figure 8(a) depicts the graph
representing the execution path of the no-data-transfer case for the Wordcount
application. In Fig. 8(b) the graph modeling the best execution path (having the
shortest completion time) is shown.

1 The scheduler is a Java7 program running on PC with a 2.4 Ghz CPU and a 8 GB
RAM.

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 17

(a) (b)

Fig. 8. Variations of beta in the WordCount application for (a) the no-transfer case
and (b) the best case

Table 1. Completion time comparison.

No-data-transfers case Best case

WordCount 66.112 s 38.6304 s

InvertedIndex 64.0704 s 38.40768 s

The experiment result is condensed in Table 1. The result confirms that our
scheduler is capable of finding an execution path which performs much better.
In particular, in the WordCount case, the estimated completion time found by
the scheduler is 58 % shorter than that of the standard path. In the case of
the InvertedIndex application, the observed performance improvement is about
60 %.

5 Related Work

In the literature two main approaches are followed by researchers to efficiently
process geo-distributed data: (a) enhanced versions of the plain Hadoop imple-
mentation which account for the nodes and the network heterogeneity (Geo-
hadoop approach); (b) hierarchical frameworks which gather and merge results
from many Hadoop instances locally run on distributed clusters (Hierarchical
approach). The former approach aims at optimizing the job performance through
the enforcement of a smart orchestration of the Hadoop steps. The latter’s phi-
losophy is to exploit the native potentiality of Hadoop on a local base and then
merge the results collected from the distributed computation. In the following a
brief review of those works is provided.

Geo-hadoop approaches reconsider the phases of the job’s execution flow
(Push, Map, Shuffle, Reduce) in a perspective where data are distributed at a

18 M. Cavallo et al.

geographic scale, and the available resources (compute nodes and network band-
width) are not homogeneous. In the aim of reducing the job’s average makespan,
phases and the relative timing must be adequately coordinated. Some researchers
have proposed enhanced version of Hadoop capable of optimizing only a single
phase [6,8]. Heintz et al. [4] analyze the dynamics of the phases and address the
need of making a comprehensive, end-to-end optimization of the job’s execution
flow. To this end, they present an analytical model which accounts for parame-
ters such as the network links, the nodes capacity and the applications profile,
and transforms the makespan minimization problem into a linear programming
problem solvable with the Mixed Integer Programming technique.

Hierarchical approaches tackle the problem from a perspective that envisions
two (or sometimes more) computing levels: a bottom level, where several plain
MapReduce computations occur on local data only, and a top level, where a
central entity coordinates the gathering of local computations and the packaging
of the final result. In [7] authors present a hierarchical MapReduce architecture
and introduces a load-balancing algorithm that makes workload distribution
across multiple clusters. The balancing is guided by the number of cores available
on each cluster, the number of Map tasks potentially runnable at each cluster and
the nature (CPU or I/O bound) of the application. The authors also propose to
compress data before their migration from one data center to another. Jayalath
et al. [5] make an exhaustive analysis of the issues concerning the execution
of MapReduce on geo-distributed data. The particular context addressed by
authors is the one in which multiple MapReduce operations need to be performed
in sequence on the same data.

6 Conclusion

The gradual increase of the information daily produced by devices connected to
the Internet, such as smartphones, sensors, cameras and so on, combined with the
enormous data stores found in traditional databases, has led to the definition of
the Big Data concept. To efficiently process these heterogeneous data on a large
scale, many distributed computing paradigms have been proposed, among which
MapReduce stands out. In this paper we describe a solution based on hierarchical
MapReduce that allows to process big data located in geodistributed datasets.
Our approach involves the design of a scheduling system that, considering the
available computational resources, the capacity of the links and the type of job
applications to execute, is able to generate an execution plan that optimizes
the completion time of a job. A prototype implementation is also discussed that
proves the viability of the approach. Future work will focus on the development
of other components of the presented architecture and on the implementation of
a real large scale test-bed.

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 19

References

1. Andrews, G.E.: The Theory of Partitions, Encyclopedia of Mathematics and its
Applications, vol. 2 (1976)

2. Cavallo, M., Di Modica, G., Carmelo, P., Tomarchio, O.: Context-aware mapreduce
for geo-distributed big data. In: Proceedings of the 5th International Conference
on Cloud Computing and Services Science (CLOSER 2015), pp. 414–421, Lisbon
(Portugal), May 2015

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceeding of the 6th Conference on Symposium on Operating Systems Design
and Implementation (OSDI 2004). USENIX Association (2004)

4. Heintz, B., Chandra, A., Sitaraman, R., Weissman, J.: End-to-end optimization
for geo-distributed mapreduce. IEEE Trans. Cloud Comput. PP(99), 1–14 (2014)

5. Jayalath, C., Stephen, J., Eugster, P.: From the cloud to the atmosphere: running
mapreduce across data centers. IEEE Trans. Comput. 63(1), 74–87 (2014)

6. Kim, S., Won, J., Han, H., Eom, H., Yeom, H.Y.: Improving hadoop performance
in intercloud environments. SIGMETRICS Perform. Eval. Rev. 39(3), 107–109
(2011). http://doi.acm.org/10.1145/2160803.2160873

7. Luo, Y., Guo, Z., Sun, Y., Plale, B., Qiu, J., Li, W.W.: A hierarchical framework
for cross-domain mapreduce execution. In: Proceedings of the Second International
Workshop on Emerging Computational Methods for the Life Sciences (ECMLS
2011), pp. 15–22 (2011). http://doi.acm.org/10.1145/1996023.1996026

8. Mattess, M., Calheiros, R.N., Buyya, R.: Scaling mapreduce applications across
hybrid clouds to meet soft deadlines. In: Proceedings of the 2013 IEEE 27th
International Conference on Advanced Information Networking and Applications
(AINA 2013), pp. 629–636 (2013). http://dx.org/10.1109/AINA.2013.51

9. Miorandi, D., Sicari, S., Pellegrini, F.D., Chlamtac, I.: Internet of things: vision,
applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

10. Open Networking Foundation: Software-Defined Networking: The New Norm for
Networks. White paper, Open Networking Foundation, April 2012. http://www.
opennetworking.org/images/stories/downloads/sdn-resources/white-papers/
wp-sdn-newnorm.pdf

11. Petri, I., Montes, J.D., Zou, M., Rana, O.F., Beach, T., Li, H., Rezgui, Y.: In-transit
data analysis and distribution in a multi-cloud environment using cometcloud. In:
International Conference on Future Internet of Things and Cloud (FiCloud 2014),
pp. 471–476 (2014)

12. Wright, P., Manieri, A.: Internet of things in the cloud - theory and practice. In:
CLOSER - Proceedings of the 4th International Conference on Cloud Computing
and Services Science, April 2014, pp. 164–169 (2014)

13. Yang, H., Dasdan, A., Hsiao, R., Parker, D.S.: Map-reduce-merge: simplified rela-
tional data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2007), pp. 1029–1040
(2007)

14. Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. McGraw Hill, New York (2011)

15. Zoghbi, A., Stojmenovic, I.: Fast algorithms for generating integer partitions. Int.
J. Comput. Math. 80, 319–332 (1994)

http://doi.acm.org/10.1145/2160803.2160873
http://doi.acm.org/10.1145/1996023.1996026
http://dx.org/10.1109/AINA.2013.51
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

CloudFIT, a PaaS Platform for IoT Applications
over Pervasive Networks

Luiz Angelo Steffenel1(B) and Manuele Kirch Pinheiro2

1 CReSTIC Laboratory, SysCom Team,
Université de Reims Champagne-Ardenne, Reims, France

luiz-angelo.steffenel@univ-reims.fr
2 Centre de Recherche en Informatique,

Université Paris 1 Panthéon-Sorbonne, Paris, France
manuele.kirsch-pinheiro@univ-paris1.fr

Abstract. IoT applications are the next important step towards the
establishment of mobiquitous systems, but at the same time these envi-
ronments raise important challenges when considering data distribution
and processing. While most IoT applications today rely on clouds as
back-end, critical applications that require fast response or enhanced
privacy levels may require proximity services specially tailored to these
needs. The deployment of private cloud services on top of pervasive grids
represent an interesting alternative to traditional cloud infrastructures.
In this work we present CloudFIT, a PaaS middleware that allows the
creation of private clouds over pervasive environments. Using a Map-
Reduce application as example, we show how CloudFIT provides both
storage and data aggregation/analysis capabilities at the service of IoT
networks.

1 Introduction

Today, cloud computing is a widespread paradigm that relies on the external-
ization of services to a distant platform with elastic computing capabilities.
Unsurprisingly, Big Data analytics profits from the computing capabilities from
the cloud, making it the predilection platform for information extraction and
analysis.

The emergence of Internet of Things (IoT) has naturally attired the attention
of developers and companies, which mostly rely on cloud services to interconnect
devices and gather information. Indeed, platforms like Carriots1 or ThinkSpeak2

now propose PaaS APIs to collect information, visualize and control IoT devices.
Contrarily to the case of Wireless Sensor Networks (WSNs), however, IoT

has a much more complex data transfer pattern that is not always tailored for
a cloud. While data from WSNs naturally flows from the sensors to a “sink”
repository that can gather information and handle it to the analytics software,

1 https://www.carriots.com/.
2 https://thingspeak.com/.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 20–32, 2016.
DOI: 10.1007/978-3-319-33313-7 2

https://www.carriots.com/
https://thingspeak.com/

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 21

IoT devices have M2M (Machine-to-Machine) capabilities beyond simple raw
data transmission, as they are also information consumers and even actuators
to the real environment.

Simply relying on a distant cloud infrastructure for data storage, processing
and control imposes a non-negligible latency, a complete dependency on wide-
area communications and the transmission of potentially sensible data across the
network. From this point of view, it is clear that not all IoT applications would
benefit from an external data handling.

Deploying a privative PaaS cloud for IoT is an interesting alternative to the
complete externalization, as it ensures fast reaction and privacy levels tailored
to the specific needs of an enterprise or application. Indeed, the omnipresence of
IoT devices often raises questions about the dissemination of sensitive data, a
problem that public cloud systems can minimize through the use of heavy layers
of cryptography and anonymization, but never solve.

In this paper we present CloudFIT, a distributed computing middleware
designed for pervasive environments that offers IoT applications both stor-
age, data aggregation and analysis capabilities. In addition, CloudFIT does not
require a dedicated infrastructure as a CloudFIT “grid” can be deployed over
existing resources on the enterprise (desktop PCs, servers, etc.) and perform
both the data aggregation, filtering and analysis required by IoT devices.

After describing CloudFIT, we illustrate its operation through the deploy-
ment of a data intensive application over a cluster. We deploy a MapReduce
application over CloudFIT, and compare its performance against the well-known
Hadoop middleware3, a Big Data platform specially designed for dedicated
clusters.

The paper is structured as follows: Section 2 discusses the challenges for
the IoT applications and the reasons why a traditional cloud services is not
always recommended. Instead, we emphasize alternatives for cloud computing
that ensure both efficiency and data privacy. Section 3 focuses on the case of data-
intensive problems and discusses the main challenges for its deployment over
pervasive grids, analyzing some related works. Section 4 presents the architec-
ture of CloudFIT and its characteristics related to fault tolerance and volatility
support. This session also discuss how to interface IoT devices and applications
with CloudFIT. Section 5 introduces our implementation of a MapReduce appli-
cation over CloudFIT, discussing both implementation issues and performance
evaluations. Finally, Sect. 6 concludes this paper and sets the lines of our next
development efforts.

2 Cloud Services and IoT

2.1 Private Clouds, Cloudlets and the IoT

When the cloud computing paradigm started, we observed the development
of middlewares and tools for the establishment of private and mixed cloud

3 http://hadoop.apache.org/.

http://hadoop.apache.org/

22 L.A. Steffenel and M.K. Pinheiro

infrastructures. Most of these tools, like Eucalyptus [18], Nimbus [12] or Open-
Nebula [17], are designed to provide IaaS on top of dedicated resources like clus-
ters or private data-centers. While extremely powerful, the deployment of these
environments is complex and requires dedicated resources, which minimizes their
advantage against public cloud infrastructures like Amazon EC2.

Establishing on-demand cloud services on top of existing resources is also
alternative to the complete externalization of services in a cloud. For example,
[22] explore the limitations of mobile devices and the inaptitude of current solu-
tions to externalize mobile services through the use of Cloudlets, i.e., virtual
machines deployed on-demand in the vicinity of the demanding devices. Using
cloudlets deployed as Wi-Fi hotspots in coffee shops, libraries, etc., the authors
of [22] suggest a simple way to offer enough computing power to perform com-
plex computations (services) all while limiting the service latency. Please note
that these cloudlets do not work as a single entity/platform but instead act as
detached handlers for specific demands.

Proximity cloud services can also be used to perform an initial processing
on the data. For instance, [20] presents a platform where context information is
collected, filtered and analyzed on several layers. This way, basic context actions
may be decided/performed in a close area range, while a much deep analysis
of the context information may be performed by external servers. This layered
analysis can also be used to ensure privacy properties, for example by anonymiz-
ing the data that will be used to the global context analysis. As context my rep-
resent multiple and heterogeneous kind of information, this approach can also
be implemented to general Big Data analytics on sensor data or access logs, for
example.

Another usage for private clouds relates to the reinforcement of the security
of a network [11]. In a mobile network (as well as in an IoT pervasive network),
devices cannot rely in a single security device in the entrance of the network
because multimodal connections may be established with outside devices via
Wi-Fi, 3G, Bluetooth, etc. If nowadays similar procedures can be implemented
through the use of 802.1x authentication or VPNs, their configuration complex-
ity requires a high technical knowledge. A better alternative relies on a mutual
monitoring system sharing information is created around a confidence zone (com-
munity). Joining a confidence zone is only possible if the device pass some control
checks and, similarly, devices that become “dangerous” due to a virus or a Trojan
can be blocked and removed from the community.

We consider that deploying cloud services for IoT over pervasive networks
is a natural approach, as the heterogeneity and the dynamicity of the devices
impose a frequent adaptation on both network interconnections and computing
requirements.

2.2 Cloud Services over Pervasive Grids

Pervasive grids can be defined as large-scale infrastructures with specific char-
acteristics in terms of volatility, reliability, connectivity, security, etc. According

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 23

to [19], pervasive grids represent the extreme generalization of the grid con-
cept, seamlessly integrating pervasive sensing/actuating instruments and devices
together with classical high performance systems. In the general case, pervasive
grids rely on volatile resources that may appear and disappear from the grid,
according their availability. Indeed, mobile devices should be able to come into
the environment in a natural way as their owner moves [6]. Also, devices from
different natures, from the desktop and laptop PCs until the last generation
tablets, should be integrated in seamlessly way. These environments are there-
fore characterized by three main requirements:

– The volatility of its components, whose participation is a matter of opportu-
nity and availability;

– The heterogeneity of these components, whose capabilities may vary on differ-
ent aspects (platform, OS, memory and storage capacity, network connection,
etc.);

– The dynamic management of available resources, since the internal status of
these devices may vary during their participation into the grid environment.

Such dynamic nature of pervasive grids represents an important challenge for
executing data intensive applications. Context-awareness and nodes volatility
become key aspects for successfully executing such applications over pervasive
grids, but also for the handling and transmission of voluminous datasets.

Our approach to implement cloud-like services over pervasive networks relies
on the use of an overlay network provided by a P2P system. In this approach, the
P2P overlay provides all communication and fault tolerance properties required
for the operation on a pervasive network, as well as some additional services like
DHT storage that can help implementing additional services.

Indeed, if P2P systems are widely known for their use on storage and sharing
applications, they can also be used as platforms for coordination and distribution
of computing tasks. Solutions like CONFIIT [10], DIET [3] have demonstrated
the interest of P2P to support computing problems in distributed and heteroge-
neous environments.

3 Data-Intensive Applications on Pervasive Grids

In spite of a wide tradition on distributed computing projects, most pervasive
grid middlewares have focused on computing-intensive parallel applications with
few I/O and loose dependencies between the tasks. Enabling these environments
to support data-intense applications is still a challenge, both in performance
and reliability. We believe that MapReduce is an interesting paradigm for data-
intensive applications on pervasive grids as it presents a simple task distribution
mechanism, easily implemented on a pervasive environment, but also a challeng-
ing data distribution pattern. Enabling MapReduce on pervasive grids raises
many research issues, which we can decompose in two subtopics: data distribu-
tion and data processing.

24 L.A. Steffenel and M.K. Pinheiro

There are two approaches to distribute large volume of data to large number
of distributed nodes. The first approach relies on P2P protocols where peers
collaboratively participate to the distribution of the data by exchanging file
chunks [7,15,25]. The second approach is to use a content delivery service where
files are distributed to a network of volunteers [13,16].

Concerning data processing on pervasive grids, some authors have tried to
improve the processing capabilities of Hadoop to take into account the volatility
of the nodes. Indeed, Zaharia et al. [26] Chen et al. [5] or Ahmad et al. [1]
deals with heterogeneity of the supporting infrastructure, proposing different
scheduling algorithms that can improve Hadoop response time. Lin et al. [14]
explore the limitations of Hadoop over volatile, non-dedicated resources. They
propose the use of a hybrid architecture where a small set of reliable nodes are
used to provide resources to volatile nodes.

Due to the simplicity of its processing model (map and reduce phases), data
processing can be easily adapted to a given distributed middleware, which can
coordinate tasks through different techniques (centralized task server, work-
stealing/bag of tasks, speculative execution, etc.). Nevertheless, good perfor-
mances can only be achieved through the minimization of data transfers over
the network, which is one of the key aspects of Hadoop HDFS filesystem. Only
few initiatives associate data-intense computing with large-scale distributed stor-
age on volatile resources. In [4], the authors present an architecture following the
super-peer approach where the super-peers serve as cache data server, handle
jobs submissions and coordinate execution of parallel computations.

4 CloudFIT

In this work we present our efforts to enable MapReduce applications over the
P2P distributed computing middleware CloudFIT [23]. The CloudFIT frame-
work (Fig. 1) is structured around collaborative nodes connected over an overlay
network. CloudFIT was designed to be independent of the underlying overlay,
and the current version supports both Pastry [21] and TomP2P overlay net-
works [2]. Pastry is one of the most known P2P overlays and is widely employed
in distributed computing environments. TomP2P is a more recent P2P library,
enjoying an active development community.

An application for CloudFIT must provide a java class that implements two
basic API methods: how many tasks to solve (setNumberOfBlocks()) and how to
compute an individual task (executeBlock(number, required[])). When execut-
ing, each node owns the different parameters of the current computations (a list
of tasks and associated results) and is able to locally decide which tasks still
need to be computed and can carry the work autonomously if no other node
can be contacted. Access to the storage is also provided through the API, if
required. The status of completed tasks (optionally including the partial results
from these tasks) are distributed among the nodes, contributing therefore to the
coordination of the computing tasks and form a global view of the calculus.

The basic scheduling mechanism simply randomly rearranges the list of tasks
at each node, which helps the computation of tasks in parallel without requiring

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 25

Fig. 1. CloudFIT architecture stack

additional communication between nodes. This simple scheduler mechanism was
designed to allow idle processes to speculatively execute incomplete tasks, reduc-
ing the “tail effect” when a task is computed by a slow node. The scheduling
mechanism supports task dependencies (allowing the composition of DAGs) and
can be also be improved through the use of a context module [24] that provides
additional information about the nodes capacities.

Finally, fault tolerance is ensured both by the overlay (network connections,
etc.) and by the computing platform. Indeed, as long as a task is not completed,
other nodes on the grid may pick it up for execution. In this way, when a node
fails or leaves the grid, other nodes may recover tasks originally started by the
crashed node. Inversely, when a node joins the CloudFIT community, it receives
an update about the tasks current status and the working data, allowing it to
start working on available (incomplete) tasks.

4.1 CloudFIT Services for IoT Devices and Applications

As previously stated, CloudFIT provides a pervasive PaaS for IoT applications.
While we believe that CloudFIT can be deployed directly over IoT devices run-
ning Android (with the TomP2P overlay) or Linux on Raspberry Pi, the hetero-
geneity and limited resources of these devices make this approach very unreliable.
Indeed, a node integrating the CloudFIT network must perform all the routing,
storage and computing tasks as the others, and this can be both overloading and
inefficient (please see Sect. 5.5).

A better approach, instead, is to use CloudFIT as a computing backend for
IoT devices and applications. This mixed architecture, as illustrated in the left
side of Fig. 1, allows an IoT application connected to CloudFIT network to act

26 L.A. Steffenel and M.K. Pinheiro

as an interface to gather data and launch computing tasks according to the
application needs.

While the development of an interface for IoT devices can be provided
through REST/json calls or even a direct a connection to the devices via Blue-
tooth or Wi-Fi, it is outside the scope of this paper. Instead, the next sections
illustrate the deployment of a MapReduce application over CloudFIT. This is
one of several computing intensive tasks that can be performed on CloudFIT to
support IoT applications.

5 MapReduce over CloudFIT

5.1 MapReduce

MapReduce [8] is a parallel programming paradigm successfully used by large
Internet service providers to perform computations on massive amounts of data.
The key strength of the MapReduce model is its inherently high degree of par-
allelism that should enable processing of petabytes of data in a couple of hours
on large clusters.

Computations on MapReduce deal with pairs of key-values (k, V), and a
MapReduce algorithm (a job) follows a two-step procedure:

1. map: from a set of key/value pairs from the input, the map function generates
a set of intermediate pairs (k1;V1) → {(k2;V2)};

2. reduce: from the set of intermediate pairs, the reduce function merges all
intermediate values associated with the same intermediate key, so that
(k2; {V2}) → {(k3;V3)}.

When implemented on a distributed system, the intermediate pairs for a given
key k2 may be scattered among several nodes. The implementation must there-
fore gather all pairs for each key k2 so that the reduce function can merge them
into the final result. Additional features that may be granted by the MapReduce
implementation include the splitting of the input data among the nodes, the
scheduling of the jobs’ component tasks, and the recovery of tasks hold by failed
nodes.

Hadoop, one of the most popular implementations of MapReduce, provides
these services through a dual layered architecture where tasks scheduling and
monitoring are accomplished through a master-slave platform, while the data
management is accomplished by a second master-slave platform on top of the
hierarchical HDFS file-system. Such master-slave architecture makes Hadoop not
suitable for Pervasive Grids.

5.2 Map, Reduce and Task Dependencies

In order to implement a MapReduce application under the FIIT model, tasks
inside a Map or Reduce job must be independent, all while preserving a causal
relation between Map and Reduce. Therefore, several tasks are launched during

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 27

the Map phase, producing a set of (ki, Vi) pairs. Each task is assigned to a single
file/data block and therefore may execute independently from the other tasks in
the same phase. Once completed, the results from each task can be broadcasted
to all computing nodes and, by consequence, each node contains a copy of the
entire set of (ki, Vi) pairs at the end of the Map phase. At the end of the first
step, a Reduce job is launched using as input parameter the results from the
map phase.

In our prototype, the number of Map and Reduce tasks was defined to roughly
mimic the behavior of Hadoop, which tries to guess the required number of
Map and Reduce processes. For instance, we set the number of Map tasks to
correspond to the number of input files, and the number of Reduce tasks depends
on the size of the dataset and the transitive nature of the data. Please note that
CloudFIT may optionally perform a result aggregation after each job completion,
just like Hadoop combiners.

Because Hadoop relies on specific classes to handle data, we tried to use the
same ones in CloudFIT implementation as a way to keep compatibility with
the Hadoop API. However, some of these classes were too dependent on inner
elements of Hadoop, forcing us to develop our own equivalents, at least for the
moment (further works shall reinforce the compatibility with Hadoop API). For
instance, we had to substitute the OutputCollector class with our own MultiMap
class, while the rest of the application remains compatible with both Hadoop
and CloudFIT.

5.3 Data Management, Storage and Reliability

As stated before, CloudFIT was designed to broadcast the status about com-
pleted tasks to all computing nodes, and this status may include the tasks’
results. By including the results, CloudFIT ensures n − resiliency as all nodes
will have a copy of the data.

This resiliency behavior was mainly designed for computing intensive tasks
that produce a small amount of data as result. On data-intensive appli-
cations, however, n − resiliency may be prohibitive as not only all nodes
need to hold a copy of all task’s data, but also because broadcasting several
megabytes/gigabytes over the network is a major performance issue.

In our efforts to implement MapReduce over CloudFIT we chose a different
approach to ensure the scalability of the network all while preserving good relia-
bility levels. Hence, we rely on the DHT to perform the storage of tasks results as
{task key, task result} tuples, while the task status messages broadcast the keys
from each task. As both PAST and TomP2P DHT implement data replication
among the nodes with a predefined replication factor k, we can ensure minimal
fault tolerance levels all while improving the storage performance.

28 L.A. Steffenel and M.K. Pinheiro

5.4 Performance Evaluation Against Hadoop

In order to evaluate the performance of MapReduce over CloudFIT we imple-
mented the traditional WordCount application and compared it against Word-
Count 1.0 application from Hadoop tutorial.

To make this first evaluation fair, we conducted this first experiment over
8 machines from the ROMEO Computing Center4. ROMEO cluster nodes are
composed by bi-Intel Xeon E5-2650 2.6 GHz (Ivy Bridge) 8 cores and 32 GB
of memory, interconnected by an Infiniband QDR network at 40 Gbps. Hadoop
YARN nodes run with default parameters (number of vcores = 8, available
memory = 8 GB), parameters that we reproduced on CloudFIT for fairness (i.e.,
by limiting the number of parallel tasks by node and setting the maximum java
VM memory).

Two different versions of CloudFIT were tested, one using the FreePastry
overlay with the PAST DHT at the storage layer, and the second one with the
TomP2P overlay and its Kademlia-based DHT.

The experiments considered the overall execution time (map + reduce
phases) of both CloudFIT and Hadoop implementations when varying the total
amount of data (512 MB to 2 GB). The data was obtained from a corpus of text-
books from the Gutenberg Project and split in blocks of 64 MB to reproduce the
size of an HDFS data block. The results obtained when running on an 8 nodes
cluster are presented on Fig. 2, which shows the average of 10 executions for each
data size.

Fig. 2. WordCount MapReduce performance on 8 nodes

At first glance, we observe that the CloudFIT/TomP2P implementation eas-
ily outperforms both CloudFIT/PAST and Hadoop, which have aproximately
the same performance. A deeper analysis of the CloudFIT/PAST implementa-
tion show that the PAST DHT experimented a performance bottleneck related
to the use of mutable objects. Indeed, mutable objects are useful to gather (k;V)
pairs from different tasks but they force a non-negligible overhead at the DHT
4 https://romeo.univ-reims.fr.

https://romeo.univ-reims.fr

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 29

controller, which must scan the data for changes and trigger replication updates.
One solution to improve the PAST performance is to rely on immutable objects
that do not suffer from this problem, but this requires the usage of alternative
data structures to reproduce the (k;V) associations from MapReduce.

This is an encouraging result as it demonstrates the interest of CloudFIT as
a platform for Big Data applications. Depending on the storage layer, we can
provide good performance levels without sacrificing the platform flexibility. In
addition, the modular organization of CloudFIT allows connecting other stor-
age supports like BitDew [9], external databases, URLs, etc., according to the
application requirements.

5.5 Performance Evaluation on a Pervasive Grid

As the previous section demonstrate that CloudFIT can execute MapReduce
applications as fast as Hadoop in a HPC cluster, the next step in our experi-
ments considered the creation of a pervasive cluster on top of common desktop
equipments. For instance, we executed CloudFIT/TomP2P over a network com-
posed by three laptop computers connected through a Wi-Fi 802.11 g network.
The specifications for each model are presented in Table 1. Please note that these
machines were not tuned for performance and indeed CloudFIT had to share the
resources with other applications like anti-virus, word processors, etc.

Table 1. Specification of the nodes on the pervasive cluster

Laptop Processor GHz Cores Threads Memory OS

MacBook Air IntelR© CoreTM i7-4650U 1.7 2 4 8GB MacOS 10.10.3

HP Pavillon dv6 IntelR© CoreTM i5-2450M 2.5 2 4 8GB Windows 7

Lenovo U110 IntelR© CoreTM2 Duo L7500 1.6 2 2 4GB Ubuntu Linux 15.4

Figure 3 presents the execution of the WordCount application with three
different data sets, and we compare the execution time obtained on the pervasive
grid with the performance obtained over 3 nodes from the ROMEO cluster. Post-
execution analysis indicated that in spite of the processors type and speeds, one
factor that mainly influenced the performance was the network speed. Indeed, as
the MapReduce application performs several read/write operation over the DHT,
the network is a major bottleneck: to write 64 MB of data on the DHT using
the ROMEO cluster (equipped with an Infiniband interconnection) we need in
average 2 s, while the Wi-Fi connection used on the pervasive cluster required in
average 15 s. Another element that contributes to the reduced performance of the
pervasive environment is the competition between faster and slower nodes: while
both node types have similar chances to draw tasks to execute at the beginning,
faster nodes will complete their tasks first and finally re-execute the tasks from
slower nodes, wasting computing resources.

While comparing both environments is not really fair, the conclusion is that
one does need a dedicated environment to extract enough computing power for

30 L.A. Steffenel and M.K. Pinheiro

several applications. In fact, the flexibility of the pervasive cluster allows nodes
to join or leave the cluster without interfering with the execution, making it a
strategic tool for most organizations that cannot rely neither in a dedicated clus-
ter neither in a distant datacenter/cloud infrastructure. Further, CloudFIT has
the advantage that it can be easily run on Windows, contrarily to Hadoop, which
reinforcing its ability to create pervasive clusters from the available resources.

Fig. 3. WordCount MapReduce on 3 nodes: pervasive vs dedicated cluster

6 Conclusions and Future Work

IoT networks are the next important step towards the establishment of mobiq-
uitous systems. Contrarily to Sensor Networks, IoT has a much richer M2M
pattern that is not always adapted to the cloud computing paradigm. Indeed,
moving data to distant platforms for filtering, analysis and decision-making is
both expensive and time consuming, which not always fits the IoT applications
requirements.

In this paper we present CloudFIT, a PaaS middleware that allows the cre-
ation of private clouds at the proximity of the demanding IoT devices. Using a
P2P overlay, CloudFIT offers both storage and computing capabilities on top of
pervasive networks.

We illustrate the usage of CloudFIT through the deployment of a MapReduce
application and the comparative performance analysis with Hadoop. Indeed, we
demonstrate that CloudFIT offers performance levels similar to those of Hadoop
but with a better support for dynamic and heterogeneous environments.

Of course, the possibilities that CloudFIT offers to IoT are not limited to
MapReduce applications. The CloudFIT API and its distributed computing
model allow many other usages, as devices can use the platform as a storage
support, data analysis support, intensive computing support, etc. By coordi-
nating activities over CloudFIT, IoT devices and applications can elaborate a
supply chain from data gathering to reasoning and actuation.

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 31

Acknowledgment. The authors would like to thank their partners in the PER-
MARE project (http://cosy.univ-reims.fr/PER-MARE) and acknowledge the financial
support given to this research by the CAPES/MAEE/ANII STIC-AmSud collaboration
program (project number 13STIC07).

References

1. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.N.: Tarazu: opti-
mizing mapreduce on heterogeneous clusters. SIGARCH Comput. Archit. News
40(1), 61–74 (2012)

2. Bocek, T., et al.: TomP2P, a P2P-based high performance key–value pair storage
library. http://tomp2p.net/

3. Caron, E., Desprez, F., Lombard, F., Nicod, J.-M., Philippe, L., Quinson, M.,
Suter, F.: A scalable approach to network enabled servers. In: Monien, B.,
Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 907–910. Springer,
Heidelberg (2002)

4. Cesario, E., De Caria, N., Mastroianni, C., Talia, D.: Distributed data mining
using a public resource computing framework. In: Desprez, F., Getov, V., Priol,
T., Yahyapour, R. (eds.) Grids, P2P and Service computing, pp. 33–44, Springer
(2010)

5. Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S.: Samr: a self-adaptive mapreduce
scheduling algorithm in heterogeneous environment. In: Proceedings of the 2010
10th IEEE International Conference on Computer and Information Technology,
CIT 2010, pp. 2736–2743. IEEE Computer Society, Washington, D.C. (2010)

6. Coronato, A., Pietro, G.D.: MiPeG: a middleware infrastructure for pervasive grids.
Future Gener. Comput. Syst. 24(1), 17–29 (2008)

7. Costa, F., Silva, L., Fedak, G., Kelley, I.: Optimizing data distribution in desktop
grid platforms. Parallel Process. Lett. 18(3), 391–410 (2008)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

9. Fedak, G., He, H., Cappello, F.: BitDew: a programmable environment for large-
scale data management and distribution. In: SC 2008: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pp. 1–12. IEEE Press, Piscataway
(2008)

10. Flauzac, O., Krajecki, M., Steffenel, L.: CONFIIT: a middleware for peer-to-peer
computing. J. Supercomput. 53(1), 86–102 (2010)

11. Flauzac, O., Nolot, F., Rabat, C., Steffenel, L.: Grid of security: a decentralized
enforcement of the network security. In: Gupta, M., Walp, J., Sharman, R. (eds.)
Threats, Countermeasures and Advances in Applied Information Security, pp. 426–
443. IGI Global, April 2012

12. Keahey, K., Tsugawa, M., Matsunaga, A., Fortes, J.: Sky computing. IEEE Internet
Comput. 13(5), 43–51 (2009). http://dx.doi.org/10.1109/MIC.2009.94

13. Kelley, I., Taylor, I.: A peer-to-peer architecture for data-intensive cycle sharing.
In: Proceedings of the First International Workshop on Network-Aware Data Man-
agement (NDM 2011), pp. 65–72. ACM, New York (2011)

14. Lin, H., Ma, X., Archuleta, J., Feng, W., Gardner, M., Zhang, Z.: Moon: mapreduce
on opportunistic environments. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC 2010), pp. 95–
106 (2010)

http://cosy.univ-reims.fr/PER-MARE
http://tomp2p.net/
http://dx.doi.org/10.1109/MIC.2009.94

32 L.A. Steffenel and M.K. Pinheiro

15. Marozzo, F., Talia, D., Trunfio, P.: A peer-to-peer framework for supporting mapre-
duce applications in dynamic cloud environments. In: Antonopoulos, N., Gillam, L.
(eds.) Cloud Computing. Computer Communications and Networks, pp. 113–125.
Springer, London (2010)

16. Mastroianni, C., Cozza, P., Talia, D., Kelley, I., Taylor, I.: A scalable super-peer
approach for public scientific computation. Future Gener. Comput. Syst. 25(3),
213–223 (2009)

17. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: IaaS cloud architecture:
from virtualized datacenters to federated cloud infrastructures. Computer 45(12),
65–72 (2012)

18. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGrid 2009, Shanghai, China, 18–21 May 2009, pp. 124–131 (2009). http://doi.
ieeecomputersociety.org/10.1109/CCGRID.2009.93

19. Parashar, M., Pierson, J.M.: Pervasive grids: challenges and opportunities. In:
Li, K., Hsu, C., Yang, L., Dongarra, J., Zima, H. (eds.) Handbook of Research
on Scalable Computing Technologies, pp. 14–30. IGI Global (2010)

20. Rottenberg, S., Leriche, S., Lecocq, C., Taconet, C.: Vers une définition d’un
système réparti multi-échelle. In: UBIMOB 2012 - 8èmes Journées Francophones
Mobilité et Ubiquité, pp. 178–183 (2012)

21. Rowstron, A., Druschel, P.: Pastry: scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pp. 329–350, November 2001

22. Satyanarayanan, M.: Mobile computing: the next decade. SIGMOBILE Mobile
Comput. Commun. Rev. 15, 2–10 (2011)

23. Steffenel, L., Flauzac, O., Charao, A.S., Barcelos, P.P., Stein, B., Nesmachnow,
S., Pinheiro, M.K., Diaz, D.: PER-MARE: adaptive deployment of mapreduce
over pervasive grids. In: Proceeding 8th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, October 2013

24. Steffenel, L., Flauzac, O., Charao, A., Barcelos, P., Stein, B.: Cassales, G.,
Nesmachnow, S., Rey, J., Cogorno, M., Kirsch-Pinheiro, M., Souveyet, C.: Mapre-
duce challenges on pervasive grids. J. Comput. Sci. 10(11), 2194–2210 (2014)

25. Vazhkudai, S., Freeh, V., Ma, X., Strickland, J., Tammineedi, N., Scott, S.: Free-
Loader: scavenging desktop storage resources for scientific data. In: Proceedings of
Supercomputing (SC 2005), Seattle (2005)

26. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: Proceeding of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 29–42. USENIX Association (2008)

http://doi.ieeecomputersociety.org/10.1109/CCGRID.2009.93
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2009.93

Design of an IoT Cloud System for Container
Virtualization on Smart Objects

Davide Mulfari, Maria Fazio, Antonio Celesti(B), Massimo Villari,
and Antonio Puliafito

DICIEAMA, University of Messina,
Contrada Di Dio, 98166 Sant’Agata, Messina, Italy

{dmulfari,mfazio,acelesti,mvillari,apuliafito}@unime.it
http://mdslab.unime.it

Abstract. Nowadays, container virtualization is a lightweight alterna-
tive to the hypervisor-based approach. Recent improvements in Linux
kernel allow to execute containers on smart objects, that are, single
board computers running Linux-based operating systems. By considering
several IoT application scenarios, it is crucial to rely on cloud services
able to deploy and customize pieces of software running on target smart
objects. To achieve this goal, in this paper, we focus our attention on a
Message Oriented Middleware for Cloud (MON4C), a system designed
to compose cloud facilities by means of a flexible federation-enabled com-
munication system. Its objective is to provide Internet of Things (IoT)
services in a complex smart environment, such as a smart city, where
smart objects interact each others and with the cloud infrastructure.
More specifically, we discuss how MOM4C can be extended to support
container virtualization on Linux embedded devices in order to easily
deploy IoT applications in a flexible fashion and we present the design
of related software modules.

Keywords: Cloud computing · Container based virtualization · IoT ·
Embedded systems · Linux

1 Introduction

Resource virtualization is one of the key concepts in cloud computing and it refers
to the act of creating a virtual (rather than physical) version of “something”,
including but not limited to a virtual computer hardware platform, operating
system (OS), storage device, or computer network resources. Virtualization con-
sists of using an intermediate software layer on top of an underlying system
in order to provide abstractions of multiple virtual resources. The latter soft-
ware components are known as Virtual Machines (VMs) and they can be viewed
as isolated execution contexts. Nowadays, several virtualization techniques are
available. One of the most popular is the hypervisor-based virtualization, which
requires a Virtual Machine Monitor (VMM) software module on top of a “host”
OS that provides a full abstraction of VMs. In this case, each VM has its own
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 33–47, 2016.
DOI: 10.1007/978-3-319-33313-7 3

34 D. Mulfari et al.

“guest” OS that is completely isolated from others. This enables us to execute
multiple different OSs on a single physical host OS. Examples of such software
solutions include: Xen, VMware, Oracle VirtualBox and KVM.

Recently, a lightweight alternative technology is the container-based virtual-
ization, also known as OS level virtualization. This kind of virtualization par-
titions the physical machines resources, creating multiple isolated user-space
instances [1]. Figure 1 depicts the key difference between the aforementioned
virtualization technologies. While the hypervisor based virtualization provides a
full abstraction for guest OS(s) (one per VM), the container based virtualization
works at the OS level, providing abstractions directly for the “guest” processes.
In essence, hypervisor solutions work at the hardware abstraction level and con-
tainers operate at the system call layer.

Fig. 1. Difference between (a) hypervisor and (b) container based virtualization.

As motivated in [1], all the containers share a single kernel; so the container
based virtualization is supposed to have a weaker isolation when compared to
hypervisor based virtualization. However, from the point of view of the users,
each container looks exactly like a stand-alone OS. Additionally, by considering a
cloud computing scenario, developers can deploy higher densities with containers
than with VMs on the same physical host. Another advantage of containers over
VMs is that starting and shutting down a container is much faster than starting
and shutting down a traditional VM equipped with a guest OS.

Recent technological developments have allowed container-based virtualiza-
tion technology to support Single Board Computer (SBC) devices equipped with
a modern Linux kernel supporting a suitable virtualization layer. In these sce-
narios, container based software seems to be an interesting approach to deploy
and to customize software applications running on a SBC. More specifically,

Container Virtualization on Smart Objects 35

in the present paper, we focus on Internet of Things (IoT) application scenarios
and we define “smart object” a SBC embedded device equipped with a Linux
based OS that runs specialized pieces of software in order to grab and process
data from external sensors. We intend to distribute multiple smart objects in a
complex environment, such as a smart city, where it is crucial to rely on a cloud
service able to deploy and to customize pieces of software running on target
smart objects.

In order to pursue our goals, we consider a Message Oriented Middleware for
Cloud (MOM4C) [2], a piece of middleware able to arrange customizable Cloud
facilities by means of a flexible federation-enabled communication system. The
considered middleware has very innovative features, that make efficient, scal-
able and versatile the Cloud service provisioning. In addition, MOM4C enables
the development of distributed services over an asynchronous instant-messaging
architecture, which can be used for intra/inter-domain communications. In Cloud
computing environments, MOM4C allows to compose Cloud facilities according
to client requirements. MOM4C has been designed to act as a “planetary system
model”, where the central star includes the core, i.e., all the basic communica-
tion functionalities of the piece of middleware and the planets are the Cloud
utilities that can be used. Such a service provisioning model guarantees high
scalability and customization of the required service. In addition, besides the
basic communication functionalities, the core includes security mechanisms for
guaranteeing secure data exchange.

More specifically the main contribution of this paper is to discuss how
MOM4C can support Linux based smart objects in order to allow software archi-
tects to dynamically deploy pieces of software on them by means of container-
based virtualization techniques. The proposed hardware/software infrastructure
uses Docker as containers engine platform; within the last year, such a soft-
ware has emerged as a standard runtime, image format, and “build system” for
containers on several distributed Linux environments.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related works. In Sect. 3, we provide an overview about the container based
virtualization for Linux environments and IoT devices. In Sect. 4, we discuss
how we extended MOM4C in order to support the container virtualization in
IoT devices. A system prototype with implementation highlights is discussed in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

Nowadays, containers represents an interesting alternative to VMs in the Cloud
scenarios [3]. Although the concepts underlying containers such as namespaces
are very mature, only recently containers have been adopted and standardized
in mainstream OS(s), leading to a renaissance in the use of containers to provide
isolation and resource control. Linux is the preferred OS for cloud environments
due to its zero price, large ecosystem, good hardware support, good performance,
and reliability. The kernel namespace feature needed to implement containers in

36 D. Mulfari et al.

Linux has only become mature in the last few years since it was first discussed
in 2006 [4]. Several articles have focused on container based virtualization tech-
nologies by considering Cloud computing scenarios. Docker [5] is a lightweight
virtualization based on Linux Containers (LXC) that can completely encapsu-
late an application and its dependencies within a virtual container. In [6], the
authors discuss the design and the implementation of Cloud system based on
Docker, especially intended for a Platform as a Service (PaaS). As motivated in
[7], Docker has been deployed within a platform for bioinformatics computing
that exploits advanced Cloud services. Authors investigate the security level of
Docker by considering two main areas: (1) the internal security of Docker, and
(2) how Docker interacts with the security features of the Linux kernel, such
as SELinux and AppArmor, in order to harden the host system. The proposed
analysis shows that Docker provides a high level of isolation and resource limiting
for its containers using namespaces, cgroups, and its copy-on-write file system,
even with the default configuration. It also supports several kernel security fea-
tures, which help in hardening the security of the host [8].

Nowadays, Cloud computing has emerged in different application fields
including energy efficiency [9], storage [10], Assistive Technology [11], dataweb
[12] and so on. Several manuscripts deal with the development of Cloud pieces
of middleware, addressing specific issues and exploiting different technologies.
To support application execution in the Cloud, in [13], authors present Cloud-
Scale. It is a piece of middleware for building Cloud applications like regular Java
programs and easily deploy them into IaaS Clouds. It implements a declarative
deployment model, in which application developers specify the scaling require-
ments and policies of their applications using the Aspect-Oriented Programming
(AOP) model. A different approach is proposed in [14], which presents a low
latency fault-tolerance piece of middleware for supporting distributed applica-
tions deployment within a Cloud environment. It is based on the leader/follower
replication approach for maintaining strong replica consistency of the replica
states. If a fault occurs, the reconfiguration/recovery mechanisms implemented
in the middleware ensure that a backup replica obtains all the information it
needs to reproduce the actions of the application. The piece of middleware pre-
sented in [15] has been designed aiming at mission assurance for critical Cloud
applications across hybrid Clouds. It is centered on policy-based event moni-
toring and dynamic reactions to guarantee the accomplishment of “end-to-end”
and “cross-layered” security, dependability and timeliness. In [16], the authors
present a piece of middleware for enabling “media-centered” cooperation among
home networks. It allows users to join their home equipments through a Cloud,
providing a new content distribution model that simplifies the discovery, classifi-
cation, and access to commercial contents within a home networks. Mathias and
Baude [17] focus on the integration of different types of computational environ-
ments. In fact, they propose a lightweight component-based piece of middleware
intended to simplify the transition from clusters, to Grids and Clouds and/or a
mixture of them. The key points of such a system are a modular infrastructure,
that can adapt its behaviour to the running environment, and application con-
nectivity requirements. The problem of integrating multi-tenancy into the Cloud

Container Virtualization on Smart Objects 37

is addressed in [18]. The authors propose a Cloud architecture for achieving
multi-tenancy at the Service Oriented Architecture (SOA) level by virtualizing
the middleware servers running SOA artifacts and allowing a single instance to
be securely shared between tenants or different customers. The key idea of the
work is that the combination between virtualization, elasticity and multi-tenancy
makes it possible an optimal usage of data center resources (i.e., CPU, memory,
and network). A piece of middleware designed for monitoring Cloud resources is
proposed in [19]. The presented architecture is based on a scalable data-centric
publish/subscribe paradigm to disseminate data in multi-tenant Cloud scenarios.
Furthermore, it allows to customize both granularity and frequency of received
monitored data according to specific service and tenant requirements. The work
proposed in [20] aims to support mobile applications with processing power and
storage space, moving resource-intensive activities into the Cloud. It abstracts
the API of multiple Cloud vendors, thus providing a unique JSON-based inter-
face that responds according to the REST-based Cloud services. The current
framework considers the APIs from Amazon EC2, S3, Google and some open
source Cloud projects like Eucalyptus. In [21], the authors present a piece of
middleware to support fast system implementation and ICT cost reduction by
making use of private Clouds. The system includes application servers that run
a Java Runtime Environment (JRE) and additional modules for service man-
agement and information integration, designed according to a Service Oriented
Architecture (SOA).

3 Container Virtualitation for Linux Environments

Container-based virtualization can be considered as an approach in which the
virtualization layer runs within an application on top of the OS. In this app-
roach, the OS’s kernel runs on the hardware node with several isolated guest
virtual environments called containers. In this Section, we describe the pieces of
software needed to support the container virtualization by considering a generic
Linux system. Looking at Fig. 2, a Linux host OS is normally deployed on the
top of system hardware layer (including CPU, RAM, peripherals, etc.) and its
kernel needs to work with a suitable virtualization layer. In this way, the OS-level
virtualization does not require an additional hypervisor layer since the virtual-
ization capabilities are part of the host OS. This technique allows to virtualize
applications on top of the host OS itself. Therefore, the overhead produced by
the hypervisor mediation is eliminated enabling near native performances. In
addition, the host kernel provides process isolation and performs resource man-
agement. This means that even though all the containers are running under the
same kernel, each container is a virtual environment that has its own file system,
processes, memory, devices, etc. There are different host applications located on
top of the Linux kernel. In particular, we focus our attention on the contain-
ers engine component that automates the deployment of any application as a
lightweight, portable, self-sufficient container that will run virtually anywhere.

By considering several IoT services and applications, in this paper we mainly
focus our attention on considering Linux-based Single Board Computers (SBCs)

38 D. Mulfari et al.

Fig. 2. Container-based virtualization.

that include several General Purpose Input Output (GPIO) extensions allowing
our IoT device to interact with many different external sensors and actuators.
More specifically, we consider the software structure shown in Fig. 3. Starting
from bottom, our system hardware consists of a Raspberry Pi B+ model [22].
While the latter board is, in essence, a very inexpensive Linux computer, there
are a few things that distinguish it from a general purpose machine. One of the
main differences is that the Raspberry Pi can be directly used in electronics
projects because it includes GPIO pins on the board. These GPIO hardware
extensions can be accessed for controlling hardware such as LEDs, motors, and
relays, which are all examples of outputs. As for inputs, the used Raspberry Pi
can read the status of buttons, switches, and dials, or it can read data coming
from sensors like temperature, light, motion, or proximity [23]. Our Raspberry
Pi board is equipped with the Raspbian distribution that is the most popular
OS for the considered piece of hardware; it also includes customizations that are
designed to make the Raspberry Pi easier to use and includes many different
software packages out of the box. In particular, in this paper, we are considering
Raspbian 3.18.8 Linux kernel version that comes with the LXC extensions. As
discussed in [24], this extension represents container-based OS virtualization and
one of its major benefits is that it can run multiple Linux instances on a single
physical host. With reference to the Fig. 3, host applications are deployed on the
top of Raspbian OS and Linux kernel.

We consider the Docker Platform as container engine, which is an open plat-
form for developers and system administrators to build, ship, and run distrib-
uted applications. Being the Docker Engine, a lightweight portable, runtime, and
packaging tool it represents a valuable solution to implement a cloud service for
sharing applications and automating workflows. In fact, Docker Hub enables apps
to be quickly assembled from components and fulfil the gap between development

Container Virtualization on Smart Objects 39

Fig. 3. Software architecture for container-based virtualization deployed on a Rasp-
berry Pi board.

and production environments. As a result, cloud providers can fast ship and run
the same application and service on VMs and IoT devices. Docker is also an
open-source implementation of the deployment engine which powers dotCloud,
a popular Platform-as-a-Service (PaaS). It directly benefits from the experience
accumulated over several years of large-scale operation and support to hundreds
of thousands of applications and databases. It relies on a different sandboxing
method known as containerization. Most modern OS kernels now support the
primitives necessary for containerization, including Linux with openvz, vserver
and recently LXC containment features. Through a powerful API and simple
tools, it lets Linux users to create and manage system or application containers.

In our context, at the same Docker’s level, we can consider several services
and applications allowing IoT devices to interact with the cloud, as it will be
discussed in the next Section.

4 MOM4C Extension for IoT and Container Support

The MOM4Cloud architecture and its design choices have been already discussed
in [2]. In this paper, our major contribution is to extend the piece of middleware’s
functionalities in order to support the management of container based environ-
ment on SBCs Linux devices, also known as smart objects or IoT devices. We
can consider the container-based virtualization as a method for making avail-
able services and applications on IoT systems. For these reasons, our reference
scenario includes a set of physical hardware resources i.e., embedded systems,
where several types of container images are dynamically loaded according to
their workload and other parameters. In this way, we aim to provide services

40 D. Mulfari et al.

into a complex smart environment, like a smart city where the objects can also
interact with each others. Such environments are often pictured as constellations
of instruments across many scales that are connected through multiple networks
which provide continuous data regarding the movements of people and materials
in terms of the flow of decisions about the physical and social form of the city.
Cities however can only be smart if there are intelligent functions that are able
to integrate and synthesise this data to some purposes, with the aim of improv-
ing the efficiency, equity, sustainability and quality of life in cities [25]. From a
technical point of view, our cloud system has to guarantee the following basic
operations:

– Monitoring the container environments behaviour and performance, in terms
of CPU, memory and storage usage.

– Managing the container images, providing functions to destroy, commit,
migrate and set network parameters.

– Managing the container resources, i.e., images discovery, uploading and down-
loading via a FTP repository.

Figure 4 summarizes our reference scenario and it shows a cluster of two
kinds of nodes. Blade servers execute a cluster level management module, called
Cluster Manager (CM), while each SBC piece of hardware supports both a host
level management module, the Host Manager (HM), and a specialized Containers
Engine component, like Docker. All these entities interact exchanging informa-
tion by means of the communication system based on the Extensible Messaging
and Presence Protocol (XMPP). The dataset necessary to enable the middle-
ware functioning is stored within a specific Database deployed in a distributed
fashion such as MongoDB; in addition, the depicted software infrastructure is
equipped with a container repository that works with the FTP protocol. More

Fig. 4. Reference scenario. MOM4C architecture extended for IoT devices and con-
tainer support.

Container Virtualization on Smart Objects 41

specifically, core components of our infrastructure can be split into two logical
categories: the software agents (typical of the architecture itself) and the tools
they exploit. To the former set belong both the Host Manager and the Cluster
Manager: The CM consists in as an interface between administrators (software
entities, which can exploit the cloud services) and the HM agents. A CM receives
commands from administrators, performs operations on the HM agents (or on
the database) and finally sends information to administrators. It also performs
the management of container images and the monitoring of the overall state
of the cluster. According to our idea, at least one CM has to be deployed on
each cluster but, in order to ensure higher fault tolerance, many of them should
exist. A master CM will exist in active state while the other ones will remain
in a monitoring state, although admin messages are listened whatever operation
is performed. The HM performs the operations needed to monitor the physical
resources and the instantiated container images: it interacts with the containers
engine, the SBC’s operating system and the FTP repository where the images
are stored.

4.1 Architecture Overview

In this part, we focus our attention on the design of CM and HM software mod-
ules. Regarding CM, Fig. 5 highlights its functional blocks and their organization:
the main components are described as follows:

– Database Manager: such a component interacts with the database employed
to store information needed to the cluster handling. Database Manager must
maintain the data strictly related to the cluster state.

– Performance Estimator: it analyses the performance dataset collected from
physical assets (physical IoT devices), in order to provide a trend of perfor-
mance estimation.

– Image Manager: it manages both registrations and uploads within the Cluster
Storage System of the Docker images.

– Storage Manager: it manages the internal cluster distributed file system.

As previously mentioned, HM modules are deployed on each SBC piece of hard-
ware. The HM’s architecture is shown in Fig. 6. Its main components include:

– Monitor: it provides resource usage monitoring for each SBC. The pieces of
information are organized and made available to the HM coordinator.

– Container engine interface: it is the middleware back-end of the container
engine running on the SBC, for example the Docker Platform.

– Image Manager: it supplies to the container engine interface the needed con-
tainer images by means of the FTP protocol.

– Network Manager: it gathers information about the host network state and
it manages host network (at OS level) according to the guidelines provided
by the HM Coordinator.

42 D. Mulfari et al.

Fig. 5. Cluster Manager architecture.

Fig. 6. Host Manager architecture.

Container Virtualization on Smart Objects 43

Fig. 7. Steps needed to load a container image on a smart object.

Fig. 8. Sequence diagram that shows the designed processes.

4.2 Technical Details

By looking at the Fig. 7, the dynamic load management of container images
on a smart object requires six separate steps. Starting from left, the MOM4C
administrator is a person who interacts with our piece of middleware by using a
computer console program. The shell program sends user requests to the active
CM running on a specialized blade server. More specifically, at the first step
the Virtualization manager agent works on the received commands (step 1) and
forwards the query to the Storage manager agent (step 2). The latter software

44 D. Mulfari et al.

module is responsible for managing the FTP repository that stores the required
container image. If such an operation concludes successfully, an ACK message
is sent to the Virtualization manager agent (step 3). After that, the active CM
queries the Host Manager agent that executes on the smart object (step 4). The
Virtualization manager agent sends suitable requests to the Containers manager
agent to invoke the download of the required container images. Then, the SBC
system connects to the Storage manager agent (step 5) in order to retrieve the
needed data and information. Finally (step 6), the Containers manager agent
calls the container engine (e.g., Docker) in a suitable way. In Fig. 8, we present
the sequence diagram of the described process.

Fig. 9. Docker shell commands running on our embedded device.

Container Virtualization on Smart Objects 45

5 System Prototype

A HM prototype was implemented on a Raspberry Pi B+ embedded system by
using the Python high-level programming language. Our SBC device executes
a custom Raspbian OS image with Docker 1.5 version, which adds support for
IPv6, read-only containers and advanced statistics. Considering this environ-
ment, we relied on a standard Docker’s command-line console as shown in Fig. 9
in order to monitor containers. In particular, our HM consists of a specialized
XMPP client that accepts and processes container management messages com-
ing from a CM deployed in blade server and that forward them to the container
manager interface. This kind of communication has been managed through the
XMPPPY libraries. In particular, the container manager interface interacts with
the underlying Docker engine. In this way, the following basic operations can be
performed on container images:

– Download an image from a FTP repository available on a blade server;
– Upload an image to a FTP repository available on a blade server;
– Start, stop, delete a given container image available on the embedded device.

6 Conclusion

Nowadays, container-based virtualization is a kind of OS-level virtualization that
allows us to run multiple instances of the same OS user workspace sharing the
kernel of the host OS. Technological developments have allowed such a technol-
ogy to support SBCs, i.e., smart IoT devices equipped with a modern Linux
kernel supporting a suitable virtualization layer. Considering multiple applica-
tion scenarios, it is important to rely on cloud services able to deploy and to
customize pieces of software running on target smart objects. To achieve such
a goal, in this paper, we focused our attention on MOM4C, a flexible solution
able to arrange customizable cloud facilities by means of a federation-enabled
communication system. In this way, we aim to provide services into a complex
smart environment, like a smart city, where objects interact each others and
with the cloud. Therefore, we have discussed how MOM4C can be extended to
support container-based virtualization on Linux embedded IoT devices. More
specifically, we designed the two main software modules constituting our soft-
ware infrastructure.

Since our prototype implementation is still at an early stage, we are already
working to further extend the system functionalities according to our reference
architecture. In future work, we plan to perform a set of experiments in order
to evaluate the behaviour of the piece middleware and its performance when
managing multiple containers on the same IoT device.

Acknowledgments. The research leading to the results presented in this paper has
received funding from the Project “Design and Implementation of a Community Cloud
Platform aimed at SaaS services for on-demand Assistive Technology”.

46 D. Mulfari et al.

References

1. Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T., De Rose, C.: Performance
evaluation of container-based virtualization for high performance computing envi-
ronments. In: 2013 21st Euromicro International Conference on Parallel, Distrib-
uted and Network-Based Processing (PDP), pp. 233–240 (2013)

2. Fazio, M., Celesti, A., Villari, M.: Design of a message-oriented middleware for
cooperating clouds. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393,
pp. 25–36. Springer, Heidelberg (2013)

3. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172
(2015)

4. Biederman, E.W., Networx, L.: Multiple instances of the global linux namespaces.
In: Proceedings of the Linux Symposium, Citeseer (2006)

5. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1, 81–84 (2014)

6. Liu, D., Zhao, L.: The research and implementation of cloud computing platform
based on docker. In: 2014 11th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), pp. 475–
478 (2014)

7. Kacamarga, M.F., Pardamean, B., Wijaya, H.: Lightweight virtualization in cloud
computing for research. In: Intan, R., Chi, C.-H., Palit, H.N., Santoso, L.W. (eds.)
Intelligence in the Era of Big Data. CCIS, vol. 516, pp. 439–445. Springer, Heidel-
berg (2015)

8. Bui, T.: Analysis of docker security. arXiv preprint arXiv:1501.02967 (2015)
9. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy

management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438–452 (2015)

10. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208–218 (2016)

11. Mulfari, D., Celesti, A., Villari, M.: A computer system architecture providing
a user-friendly man machine interface for accessing assistive technology in cloud
computing. J. Syst. Softw. 100, 129–138 (2015)

12. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73–79
(2012)

13. Leitner, P., Satzger, B., Hummer, W., Inzinger, C., Dustdar, S.: Cloudscale: a novel
middleware for building transparently scaling cloud applications. In: SAC 2012, pp.
434–440 (2012)

14. Wenbing, Z., Melliar-Smith, P., Moser, L.: Fault tolerance middleware for cloud
computing. In: IEEE 3rd CLOUD 2010, pp. 67–74 (2010)

15. Campbell, R., Montanari, M., Farivar, R.: A middleware for assured clouds. J.
Internet Serv. Appl. 3, 87–94 (2012)

16. Diaz-Sanchez, D., Almenarez, F., Marin, A., Proserpio, D., Cabarcos, P.A.: Media
Cloud: an open cloud computing middleware for content management. IEEE Trans.
Consum. Electron. 57, 970–978 (2011)

http://arxiv.org/abs/1501.02967
http://arXiv.org/abs/1501.02967

Container Virtualization on Smart Objects 47

17. Manias, E., Baude, F.: A component-based middleware for hybrid grid/cloud com-
puting platforms. Concurrency Comput. Pract. Exp. 24, 1461–1477 (2012)

18. Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,
Weerawarana, S., Fremantle, P.: Multi-tenant SOA middleware for cloud comput-
ing. In: IEEE CLOUD 2010, pp. 458–465 (2010)

19. Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A., Foschini,
L.: Dargos: a highly adaptable and scalable monitoring architecture for multi-
tenant clouds. Future Gener. Comput. Syst. 29, 2041–2056 (2013)

20. Flores, H., Srirama, S.N.: Dynamic re-configuration of mobile cloud middleware
based on traffic. In: IEEE MASS 2012 (2012)

21. Nagakura, H., Sakurai, A.: Middleware for creating private clouds. Fujitsu Sci.
Tech. J. (FSTJ) 47, 263–269 (2011)

22. Maksimović, M., Vujović, V., Davidović, N., Milošević, V., Perǐsić, B.: Raspberry
Pi as internet of things hardware: performances and constraints. Des. Issues 3, 8
(2014)

23. Richardson, M., Wallace, S.: Getting Started with Raspberry Pi. O’Reilly Media,
Inc., Sebastopol (2012)

24. Memari, N., Hashim, S.J.B., Samsudin, K.B.: Towards virtual honeynet based on
LXC virtualization. In: 2014 IEEE Region 10 Symposium, pp. 496–501 (2014)

25. Batty, M., Axhausen, K., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz,
M., Ouzounis, G., Portugali, Y.: Smart cities of the future. Eur. Phys. J. 214, 481–
518 (2012)

A Federated System for MapReduce-Based
Video Transcoding to Face the Future Massive

Video-Selfie Sharing Trend

Alfonso Panarello, Antonio Celesti(B), Maria Fazio, Antonio Puliafito,
and Massimo Villari

DICIEAMA, University of Messina,
Contrada Di Dio (S. Agata), 98166 Messina, Italy

{apanarello,acelesti,mfazio,apuliafito,mvillari}@unime.it
http://mdslab.unime.it

Abstract. The massive use of mobile devices and social networks is
causing the birth of a new compulsive users’ behaviour. The activity
photo selfie sharing is gradually turning into video selfie. These videos
will be transcoded into multiple formats to support different visualization
mode. We think there will be the need to have systems that can support,
in a fast, efficient and scalable way, the millions of requests for video
sharing and viewing. We think that a single Cloud Computing services
provider cannot alone cope with this huge amount of incoming data (Big
Data), so in this paper we propose a Cloud Federation-based system
that exploiting the Hadoop MapReduce paradigm performs the video
transcoding in multiple format and its distribution in a fastest and most
efficient possible way. Experimental results highlight the major factors
involved for job deployment in a federated Cloud environment and the
efficiency of the proposed system and show how the Federation improves
the performances of a MapReduce Job execution acting on a additional
parallelization level.

Keywords: Cloud Computing · Horizontal federation · IEEE P2302 ·
CLEVER · Big Data · MapReduce · Apache Hadoop · HDFS · Adaptive
streaming

1 Introduction

Surely, one of the most tangible consequences of the advent of social networks
has been their ability to replace the information brokerage with a direct, fast,
emotional and one to one communication. This sudden innovation has brutally
swamped the traditional media, journalism, brand communication and it has
hugely accelerate the contents ageing. As just said acquires even more truth-
fulness if we go to consider the birth of applications that promise to broadcast
live the life of every people belonging to a SN. The most famous examples are
the new apps like Periscope purchased and launched by Twitter and Meerkat.
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 48–62, 2016.
DOI: 10.1007/978-3-319-33313-7 4

MapReduce Video Transcoding in Cloud Federation 49

Periscope, substantially, opens a virtual window through which it possible to
observe the reality: the users only need to start Periscope, to keep active the
smartphone cam, broadcasting live right now in social streaming at time and any
place. Other apps, that work apparently in a very similar manner to Periscope,
are YouNow and Meerkat. Another kind of video applications that is following
the current trend is the well-known Dubsmash1 tool. It is a simple video grub
mobile application allowing you to mix video and audio together for a funny
composition. These videos are easily shared among the SNs. We have foreseen
the current trend of making selfies with photos will become the future trend to
accomplishing selfies of video so, for this reason, clouds have to deal with the
exigence to convert many videos at the same time for satisfying the even more
increasing number of mobile customers. Therefore, to fulfil high adaptability of
the systems to variable workloads, an elastic approach for resource management
is required. Cloud computing, offers such a feature, by means of virtualization of
resources that can easily scaled up/down. Parallelization capabilities of a com-
puting system strongly depend on available resources into the working cluster.
However, to overcome the problem of the strict link among available virtual
resources/physical assets a CP can take part to a federated environment.

To this end, in this paper, we present a new solution to perform a MapRe-
duce2 video transcoding in a Federated Cloud ecosystem which is able to
face the future massive Video-Selfie sharing trend. Our solution integrates the
Hadoop functionalities into a Cloud middleware for federated environments
called CLEVER [1].

To show the goodness of our approach, we tested it leveraging a video
transcoding application on Apache Hadoop. Indeed, the video management use
case provides us a real test case through which we drive our assessments.

The paper is organized as follows. In Sect. 2, we provide a brief overview of
current works on the topic dealt in the paper. In Sect. 3, we highlight the bene-
fits in adopting Hadoop in a federated Cloud environment in a context of video
transcoding and distribution management. In Sect. 4 we introduce the technolo-
gies adopted in this work to arrange a real federated environment. Section 5
presents the proposed distributed processing service and one of many possible
use cases, that is the video transcoding application. In Sect. 6, we analyse costs,
in terms of delay and overhead, introduced by the federation management. In
Sect. 7, our experimental results show the effective advantages of the processing
in a federated environment. Section 8 concludes the paper.

2 Related Work

In the near future, but already from some time, the massive use of mobile devices
and Social Networks (SN) have led to the explosion in the amount of data to be
1 http://www.dubsmash.com/.
2 Hadoop MapReduce is one of the most adopted implementations of the MapReduce

paradigm developed and is maintained by the Apache Hadoop project, that also
works on the parallel Hadoop File System (HDFS). http://hadoop.apache.org/index.
pdf.

http://www.dubsmash.com/
http://hadoop.apache.org/index.pdf
http://hadoop.apache.org/index.pdf

50 A. Panarello et al.

stored and elaborated. This problem, known as the Big Data problem, is becom-
ing a crucial issue in the ICT world. The Cloud Computing Infrastructure as a
Service (IaaS) level can be seen as a possible solution to solve the above men-
tioned Big Data problem. The computing power of the Cloud Computing, which
is based on the virtualization concept, stands for the ideal solution to meet the
management of these Big Data. In particular Big Data processing platforms, like
Hadoop, can leverage the computation capabilities of Clouds relying on VMs. An
example is given in [2], where Hadoop is installed into VMs exploiting the Public
Cloud as Amazon EC2. Here the authors re-modelled the resources provisioning
of the VMs in public Cloud platforms for Big Data applications. Hadoop uses
the MapReduce paradigm, an high-level programming model for data-intensive
applications using transparent fault detection and recovery, widely adopted in
Cloud data-centers such as Microsoft, Google, Yahoo, and Facebook. Hadoop
is an open-source implementation firstly developed by Yahoo. In our work, we
advance the existing researches on that topic using the MapReduce high-level
programming model even in federated and heterogeneous Clouds. Deploying
VMs with Hadoop in federated scenarios is a challenge, as shown in [3]. Some
authors in the past tried to optimize the Hadoop computation in heterogeneous
environments, as discussed in “PIKACHU” [4], which looks at the paradigm
attempting to optimize all processing tasks and, in particular, to the three main
phases: map, shuffle and reduce.

Zhuo Tang et al. in [5] presents an algorithm that can dynamically determine
the optimal to start time of the reduce tasks. This scheduling algorithm reduces
the wastefulness of the time slots assigned to a reduced task thereby reducing
the time needed to complete the job. “An Adaptive Auto-configuration” [6] faces
the problem with the right Hadoop configuration. In the authors opinion this
could easily lead to performance loss due to some misconfigurations. The [6]
presents an adaptive automatic configuration tool (AACT), based on mathe-
matical model, for Hadoop to achieve performance optimization. This model
accurately learns the relationship that exists between system performance and
configuration parameters and then configures Hadoop adapting the hardware
and software dynamically.

All of the previous works have the common goal to optimize an Hadoop
MapReduce job execution into a single cluster. Our work, following a similar
approach to [2], has their same aims but we believe is much more challenging
to set-up and to optimize a Hadoop environment in Federated Clouds. We get
the optimization of the job execution going to split it on several clusters. Cloud
Federation [7] represents a compelling opportunity in which IaaS Cloud Oper-
ators might achieve great business benefits, renting to others cloud operators
the computation resources on-demand [8]. The well-know Hadoop platform can
represent an appealing opportunity in this way because its architecture is well
consolidated and widely used. Any Cloud Operator might offer Hadoop com-
putation resources on-fly joining a federated cloud environment. In this way
our work should not be considered only as an alternative to the previous works
but as a new additional solution that works at a higher layer. The Federation

MapReduce Video Transcoding in Cloud Federation 51

adds another parallelization level to that already provided by a single hadoop
cluster [9].

Another important aspect of the Federation is also the capability to leverage
the communication infrastructure of Carrier Operators. The Federation might
affect also these operators and mobile users might benefit of it. This paper looks
even to Federation for Distribution (CFfD).

3 Motivation and Reference Scenario

In recent days we are watching a battle for the social live streaming application
leadership. Periscope and Meerkat are fighting. Often when there is a battle
there is economic interest too: just to think about the millions of users that
populate the SN. Twitter now has about 302 million users of which about 80 %
of the active users use a mobile device. Sharing live of videos through mobile
devices is unquestionably the new trend. But besides sharing live, the users are
interested to create “viral” videos and to share them with the virtual world so
that they can be seen and seen again in off-line and on demand way. The latest
smartphone generation has hardware resources that allow to watch and record
High Definition videos. But not all users have got the latest model available on
the market that has the high network transmission rate or HD support. More-
over the users do not in every moment have sufficient available bandwidth. So
there is the need to allow all users to watch the shared video in the best format
possible considering both their mobile hardware power and the network avail-
able bandwidth. We are talking about Adaptive− bitrate−Streaming which is
a technique used in multimedia stream over computer networks that, detecting
user’s hardware capabilities and bandwidth, onfly adjusts the quality of a video
stream accordingly. An important example is HTTP Live Streaming (HLS)3

designed by Apple. Besides HLS we can cite other proprietary adaptive stream-
ing technologies such as Adobe HTTP Dynamic Streaming (Adobe HDS)4, and
Microsoft Smooth Streaming5 or not proprietary like MPEG-DASH6.

Taking into consideration the on-demand provisioning videos, it is needed to
transcode these shared videos in multiple formats. We are therefore talking about
a panorama where millions and millions of users produce videos and share them
at any time and each video has to be transcoded in several formats: in other
words we are talking about Big Data in Video Domain. In order to keep up
of this future trend, distributed computations, efficient data storage and aimed
systems for manipulating of the greatest possible number of videos in the shortest
possible time are extremely needed. One of the main problems of Video Big Data
management is proving meaningful techniques able to process a huge amount of

3 https://developer.apple.com/library/ios/documentation/NetworkingInternet/
Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf.

4 http://www.images.adobe.com/content/dam/Adobe/en/products/
hds-dynami-streaming/pdfs/hds datasheet.pdf.

5 https://msdn.microsoft.com/en-us/library/ff469518.aspx.
6 https://www.iso.org/obp/ui/#iso:std:iso-iec:23009:-1:ed-2:v1:en.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://www.images.adobe.com/content/dam/Adobe/en/products/hds-dynami-streaming/pdfs/hds_datasheet.pdf
http://www.images.adobe.com/content/dam/Adobe/en/products/hds-dynami-streaming/pdfs/hds_datasheet.pdf
https://msdn.microsoft.com/en-us/library/ff469518.aspx
https://www.iso.org/obp/ui/#iso:std:iso-iec:23009:-1:ed-2:v1:en

52 A. Panarello et al.

data involving even more computation resources in a distributed and scalable
manner. Nowadays, Cloud Federation is emerging in different application fields
including, for example, energy efficiency [10], storage [11], dataweb [12] and so on.
We believe that Cloud Federation may provide advance features and capabilities
useful for dealing with the massive data computation.

4 Integration of Hadoop in CLEVER

To deal with federated environments, the overall framework presented hereby is
compounded from more complex parts. The core is represented by the CLEVER
cloud. It is a challenging middleware because it fulfill many IEEE directives in
the context of Cloud federation (see7 and [13]). CLEVER accomplishes many
features presented in these references. Other Cloud platforms like, OpenNebula
or OpenStack have a weak approach in satisfying the federation. In this section
we include a few information on Hadoop framework and how it is integrated
with CLEVER.

4.1 CLEVER Overview

The CLoud-Enabled Virtual EnviRonment (CLEVER) is a Message-Oriented
Middleware for Cloud computing (MOM4C), able to support several Cloud-
based services [14]. Each CLEVER Cloud includes several distributed hosts orga-
nized in a cluster. Each Physical Machine (PM) is controlled by a management
module, called Host Manager (HM), and only one host runs a cluster manage-
ment module, called Cluster Manager (CM) that acts as interface between Cloud
and clients. CM receives commands from clients, gives instructions to HMs, elab-
orates information and sends back results to clients. It also performs tasks for
cluster orchestration. A CLEVER Cloud makes use of XMPP to exchange all
communication messages and presence information in a near-real time fashion.
A Jabber/XMPP server provides basic messaging, presence, and XML routing
features within the Cloud.

In a federated environment, specific mechanisms for dynamic identification
and service discovery have to be employed. We believe that the best way to
accomplish all the above features is the adoption of strategic communication
technologies, able to interconnect many different distributed entities and to pro-
vide an integrated platform. To this aim, we make use of the XMPP protocol.
In fact it natively supports federation capabilities. With CLEVER, each Cloud
involved in the federation is identified by a Jabber ID (JID). The utilization of a
central server which maintains a list of JIDs can be avoided by structuring each
JID as e-mail addresses, with username and domain names. In order to set up a
federation, CMs belonging to Cloud Brokers of different administrative domains
exchange messages through the Multi User Chat (MUC) with the unique room

7 IEEE P2302TM/D0.2. https://www.oasis-open.org/committees/download.php/
46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf.

https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf
https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf

MapReduce Video Transcoding in Cloud Federation 53

ID Federation. Only authenticated CMs, relying on XMPP Federated servers can
access the MUC. The XMPP servers are responsible to manage the Federation
Rooms and they can be entrusted by third part entities.

4.2 Hadoop Overview

Hadoop is a framework that allows for the distributed processing of large data
sets across clusters of computers using simple programming models. It is designed
to scale up from single servers to thousands of machines, each offering local com-
putation and storage. Hadoop MapReduce is able to write and run applications
in processing in parallel huge amounts of data (e.g., terabyte of datasets) on
large clusters in a reliable, fault tolerant manner. A MapReduce job usually
splits the input data set into independent chunks, which are processed by the
map tasks in a completely parallel manner. Both the input and the output of
the job are stored in a distributed file system, that is the Hadoop File System
(HDFS). MapReduce components consist of a single master JobTracker and one
slave TaskTracker per cluster-node. The master is responsible for scheduling the
jobs’ component tasks on the slaves, monitoring them and re-executing the failed
tasks. The slaves execute the tasks as directed by the master. The master node
of the HDFS is called NameNode whereas the slave node of the HDFS is called
DataNode.

4.3 Hadoop and CLEVER

As we remarked above, to make the Hadoop functionalities Cloud-like, we make
use of a virtual infrastructure provided by CLEVER. VMs run on HMs and
work as slaves of the Hadoop cluster. Virtual Hadoop slaves are coordinated by
the Hadoop Master arranged at the CLEVER CM. The first advantage of the
integration of Hadoop in CLEVER is that, typically, Hadoop uses the TCP/IP
layer for communication, and it is a problem during the inter-domain commu-
nication due to heavy usage of firewalls by each domain which take part to
federation. In fact usually firewalls block inter-domain communications. So, inte-
grating Hadoop in CLEVER, federation messages can be sent on port 80 thanks
to XMPP technology. The second one advantage is that the system can auto-
matically scale according to real time requirements. In CLEVER, the Cluster
Coordinator (CC), inside the CM, is responsible for the cluster management
and service provisioning. To this aim, it interacts with both the HMs into the
cluster, by means of a HMs interface, and the Cloud clients which request a
specific service by means of the Client interface. All these interactions are based
on XML message exchange into XMPP MUCs. Through the HMs interface, the
CC communicates with all the HMs in the cluster, exchanging information on
available resources, running tasks, work specifications and offered services. The
CC makes use of the Client interface to interact with Cloud clients, in order to
receive client’s requests, and to give back inquired services. The HM agent specif-
ically designed to support the Hadoop activities in the Cloud is the HMN Agent.
It provides the configuration settings to all the virtual nodes in the Hadoop

54 A. Panarello et al.

cluster. The CLEVER HMN works as master for Hadoop cluster. Specifically,
it implements the Hadoop functionalities to manage the Hadoop system. The
Network Manager (NM) Agent allows to implement the virtual communications
among Hadoop nodes through Notifications that arrives to the CM via the Dis-
patcher Agent. These notifications inform the HMN Agent about the presence
or the absence of a host within the cluster.

4.4 Amazon S3

The Hybrid Cloud is accomplished using the Amazon S3 as Public Cloud storage
service. It is designed to make web-scale computing easier for developers. Ama-
zon S3 provides a simple web-services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives
any developer access to the same highly scalable, reliable, secure, fast, inexpen-
sive infrastructure that Amazon uses to run its own global network of web sites.
The service aims to maximize benefits of scale and to pass those benefits on to
developers. In our work S3 represents the common storage shared among the
Federated Cloud Providers.

5 Distributed Processing in Cloud Federation

Social Networks’ (SNs) users have begun to abandon the photo selfies sharing,
turning their interest toward a new way to share their life. The new trend is the
movie selfies sharing, live or not, who allows to show virtual small fragments of
their own daily lives to the friends. Mobile users want to share their produced
video in the SN such as Twitter, Google+, Facebook, etc. In the work-flow we
are considering here, all the time users require to share their videos. We are
talking about hundreds of millions of users that will put their selfie videos into
the web, and just as many users that will wish to follow one o more specific
shared videos. The Social Network Cloud (SNC), received the users’ requests for
a video sharing, interacts with Clouds Storage Providers (CSPs) such as Amazon
S3, Google Drive, Dropbox, etc. for storing these users’ acquisitions. In this work
we have adopted Amazon s3 only for practical reasons and because Amazon is
at moment considered the most advanced Cloud Storage Provider. Only the
selected Cloud Provider (CP) handles the entire work-flow; in the paper this CP
is defined Cloud Broker. The choice to rely on external Public CSP as Amazon
S38 was made to minimize the overhead associated to the data transmission
between the federated CPs hence to be able to evaluate only the cost due to the
federation management.

This scenario focuses on the off-line video sharing. The idea behind such
a service is shown in Fig. 1. When an user requests to share a video-selfie, he
contacts his Social Network (i.e. Twitter in the example in Fig. 1) and uploads his
video. Twitter, in the future could not be able to fulfil all his user’s video upload

8 http://aws.amazon.com/it/documentation/s3/.

http://aws.amazon.com/it/documentation/s3/

MapReduce Video Transcoding in Cloud Federation 55

Fig. 1. Processing and distribution service management.

request, so we are supposing that it will vertically exploit the storage services
of others CSPs (i.e., Amazon S3 depicted in Fig. 1) to face, in a scalable way,
this growing demand for these kind of activities. We are supposing that CSP has
multi-part download features. The SCN, after the storing, in order to allow to his
users to watch the shared video in the best format possible, considering not only
the users’ mobile hardware power but also the network available bandwidth at
a given time and place, has to transcode these shared videos in multiple formats
and it has to be able to manipulate the greatest possible number of videos in
the shortest possible time. To this end a processing service in Cloud Federation
has been identified and exploited. In a federated Cloud environment, a CP can
benefit of the storage and computational resources other CPs acting on other
administrative domains. To satisfy the clients’ requests, the SNs taking part to
the Federation ask for available resources to the other federated CPs, which offer

56 A. Panarello et al.

their unused resources at that time. In the examined case several CPs belonging
to a Cloud Federation, can offer this kind of Processing Service. In Fig. 1 we call
this Federation “Cloud Federation for Transcoding” (CFfT). There is a second
Federation, called “Cloud Federation for Distribution” (CFfD) which aims to
handle millions of requests for video visualisation, shifting his both hardware
and software burden to the mobile operators that manage the users have made
that request. To exploit this Federation service, after the storing of the video
on Amazon, the SN contacts the broker to submit the transcoding task. For
simplicity, in our scenario the broker(CP A in Fig. 1) plays only the role of
communication mediator, but it could have his own resources to be used for the
transcoding tasks. More over we assume that each CP in the CFfT has an image
of the VM including the piece of middleware for processing the task. The CP A
plays the role of broker. It retrieves information about the resources’ availability
of the federated CPs and sends them the instructions to fulfil their tasks. As
soon as CP n receives the file’s URL information, it starts to downloads the file
chunks and put them (HDFS-upload) in its HDFS cluster for local processing.
At the end of the processing step, CP n stores the result of its processing in the
CSP and sends to CP A an end task notification. Once CP A has received all the
end task notifications from all the involved CPs, it communicates to the SNC the
new URLs of the multiple video streams and the necessary information for the
client’s player to reach the desired video streams. As it is possible to see in Fig. 1,
and as previously mentioned, our scenario envisages the implementation of two
different Federation. CFfD aims to lighten the system from the management of
the video displaying requests. The current trend will lead to millions for video
sharing requests, and an even greater number of video visualization requests.
So a solution to make the system scalable has to be implemented. To this end,
we decided to implement a second kind of Federation. When a user requests
to view a specific shared video on “Twitter”, he will first make a search for a
specific #hashtag, and after he has found that video, he will attempt to display
it. To avoid that, in the distribution process, Twitter will become the bottle
neck of the system, it does not handle the transmission of the video streams
in first person, but it redirects the that burden to the Mobile Phone Services
Providers (MPSP) that has in managing the users requiring that service. Each
provider to optimize the vision quality of the video, according to the user’s actual
hardware resources and network bandwidth, will manage the delivery by means
of a Adaptive Stream Protocol (e.g., HLS or Microsoft Smooth Streaming). Also
in this way, the provider will act as a cache for the system, going to download
and locally store only the required video stream fragments, thereby significantly
reducing the number of the accesses to the CSP (e.g., Amazon).

6 Cost Estimation of the Federation

With reference to the previous section, it is possible to identify eight steps of that
federated transcoding process. It starts at time tt0 when a user sends a video
sharing request to his SN to which he has a valid registered ID. At time tt1 the

MapReduce Video Transcoding in Cloud Federation 57

SN, exploiting a software CLEVER agent that makes Twitter able to speak the
XMPP language, contacts the broker of the Federation to communicate the need
to transcode a video and all the necessary informations to correctly perform that
task and at the same time it places the video to share and to transcode into the
CSP Amazon S3. At time tt2 broker asks to the Federation, how many VMs each
domain can provide. At tt3, the Broker performs a task assignment involving the
whole federated environment. At tt4 each involved federated CLEVER Cloud
exactly downloads only a specific part of the movie file, using the multi-part
download mechanism provided by Amazon APIs. At the time tt5 each domain
starts to transcode the downloaded part. The tt6 indicates the starting time when
each CLEVER Cloud begins to upload the transcoded part in multiple format
on Amazon S3 and finally at the tt7 the broker, after receiving all responses
from the foreign CPs, notifies the end of the transcoding process. As regards
the distribution process, instead, it is possible to identify three steps: At td0 the
user, after made a #hashtag search, clicks on the video’s previews to watch the
movie. At td1 the SNP (Social Network Provider), by analysing the users’s IP,
redirects the visualisation task to the appropriate MPSP. The MPSP a the td2
begins the download from Amazon of the required stream, adapting it to the
users’ bandwidth by means e.g., the HLS protocol. Each MPSP stores in his
own data-center only the required video stream chunks at the request time. The
basic steps of the two processes are listed below:

• Federation Set-up: This step was not pursued in the previous section as it
takes one-off at the time of taking part in the federation and therefore it does
not affect the process previously described.

• Service Discovery: This step, albeit critical, has a negligible impact in
terms of time. Our measurements show that this time increases by about
0.084 s for each participating domain in the Federation. It is negligible when
compared to the sum of the downloads, computational, writing on HDSF and
upload times process lifetime. This is a time that regards only the “Cloud
Federation for Transcoding”. In fact in the “Cloud Federation for Distribu-
tion” there is not the need of a discovery phase: the participants are statically
known. In fact it is a dynamic environment where the CPs can take part and
leave the Federation whenever they want. Regarding the Cloud Federation for
Distribution, how we have already said, it is not true anymore because it is
an a priori federated environment where all of the participants are statically
known.

• Communication Cost: This is the time that a XMPP message takes to
reach its destination. It is independent from the number of the federated
CPs, therefore it is a negligible time.

• Download + Upload from and to Amazon Costs: These two phases of
the process together have the strongest impact for the process. We are con-
sidering steps to download and upload together as both have similar features
and despite some small difference in terms of time the two quantities are com-
parable. Considering a download speed of about 3 MB/s and file size equal to
512 MB we have download times about to 200 s. While considering a speed

58 A. Panarello et al.

of 2 MB/s we have a upload times that are in the neighbourhood of 270 s.
Obviously increasing the number of the federated CPs these values of time
decrease according to a pattern which can be approximated to the following
function y = a ∗ x−c (where y are the seconds and x is the considered chunk
size).

• Hadoop Cost: This cost is related to the time needed to write data on HDFS
and that one necessary to read from HDSF and write on the physical FS. It is
well known that Hadoop works better with a few large files rather than with
many small files. In other words, from the point of view of the performance
is better to write a 1 GB file size instead to make 10 upload of 100 MB file
size [15,16]. From our measurements it was observed that with files smaller
than 20 MB and with block size equal to 64 MB (default Hadoop) the upload
times into HDFS get highly comparable each others and therefore we do not
get any more benefit from horizontal parallelization in terms of Hadoop cost.

• Computational Costs: This step of our analysis is just the cost due to the
transcoding time. In our tests nevertheless, because the our paper’s goal is not
to do a video transcoding, but to demonstrate how the Cloud Federation can
bring advantages if applied to whatever system which aims to provide a such
service, we have not yet performed the video transcoding times measurements.
However, we used the timing of OpenCV transcoding reported in [17], that
focuses on measuring the total transcoding time varying several data’s and
cluster’s parameters and Hadoop configuration files’ values (block size and
replication). The magnitudes involved are those ones that have the main
impact on the whole federated transcoding process.

In the next section we analyse the times of the three phases of the process which,
in our opinion, have the main impact on the entire transcoding federated flow.

7 Experiments

This section analyses several real experimental test-bed taking in consideration
thirteen different CLEVER/Hadoop administrative domains. Twelve of them act
as federated Cloud providers and only one of them acts as broker. This section
also shows that by adding domains to the Federation the process’ total time
tends to the communication time between the broker and the CPs. So video
transcoding is obtained in a time which is much smaller than it would have
obtained without federation system. In fact, the federation allows to horizon-
tally spread the workloads, significantly reducing the overhead and delays that
the transcoding process as a whole introduces. Specifically, our studies show that
only using the parallel processing provided by Hadoop it is possible to achieve
a reduction of the computation time, instead by means more federated Hadoop-
based environments, adding a horizontal cooperation, it is possible not only to
reduce the computational time related to the video-transcoding but also that
ones related to the delays and overheads introduced from the other phases of
the process. With our testing we studied the behavior of the whole environment.
We considered a parallel video transcoding use case involving several federated

MapReduce Video Transcoding in Cloud Federation 59

cloud providers. In particular, we arranged the test-bed taking in consideration
13 physical servers (one per CP). Each node of each cluster is a VM with the fol-
lowing virtual hardware and software: 1 CPU (1.3 GHz), 768 MB RAM, Ubuntu
OS (12.04 server (32 bit)), CLEVER middleware including the Hadoop plug-in;
Experiments were conducted with the following physical hardware configura-
tion: CPU: AMD Opteron 2218 HE Santa Rosa with two Dual-Core 2.6 GHz
processors; 8 GB RAM, running Linux Ubuntu 12.04 x86 64 OS and VirtualBox
(version 4.1.12). The transcoding tool we are using in Hadoop (version 1.0.4)
is the OpenCV framework converted in MapReduce shape. This physical hard-
ware is located at the DICIEAMA department of the University of Messina.
We redid each experiment 30 times in order to consider mean values and a low
confidence intervals. In the following, we summarize the main phases involved
in our experiments.

Fig. 2. Average time required to forward a request to Federated Clouds.

Figure 2 highlights that all the communications between Twitter and the bro-
ker and between the broker and the federated CPs have a very small magnitude.
In others words Fig. 2 shows the time required to forward the video transcoding
request to the other federated CLEVER Clouds domains. The CLEVER bro-
ker, obtained the network information regarding the federated CPs (by means a
Discovery phase), distributes simultaneously the tasks that each of them has to
accomplish. Thanks to the simultaneity of the communication, the forwarding
time, that does not change if the number of the foreign domains does, assumes an
average value of about 0, 075 s. How we said demonstrates that the Federation,
by means of the XMPP communication technology, does not add any signifi-
cant overhead. At phase tt5 − tt4 each domain performs two tasks, at the first
it downloads the assigned file block and then writes it into HDFS. Observing
the Fig. 3(a) we can notice that, if there are more than one domains into the
federation, each of them has to retrieve only a part of the original file. The Bro-
ker knows the number of the federated domains, and assigns to each of them a
different block of the file. In particular Fig. 3(a), shows the download time from
Amazon S3 varying both the file size and the number of the chunks. Observing

60 A. Panarello et al.

the graphs, we can note that the download time for the whole 512 MB file takes
roughly 200 s, while the times needed to download an eighth of file (64 MB) take
roughly 30 s. Each download takes place in parallel, so we have a double benefit,
the first one due to the smaller blocks size that a domain has to be download,
the second one due to the parallelization of the download of these blocks. The
Fig. 3(b), instead, shows the time needed to upload the transcoded files into
Amazon S3 repository. The trend of such times is the same as that one shown
in the graph in the Fig. 3(a). The upload time is not dependent on the number
of chunks of the block.

(a) Average download time of file
blocks from Amazon S3.

(b) Average Upload time of file blocks
into Amazon S3.

Fig. 3. Average S3 download and upload time.

Fig. 4. Download time of file blocks from HDFS.

Figure 4 highlights that when the file size of the considered block decreases
the time to read from HDFS and to write into the local FS decreases too but
the obtained gain gradually lessens when the blocks become too small. A similar
consideration is made for the upload to HDFS.

MapReduce Video Transcoding in Cloud Federation 61

At the phase tt6−tt5, each federated domain performs the video transcoding.
We have obtained from the paper [17] that, from the computational point of view,
to have one domain with 4 available processing nodes is the same that to have 4
domains with only one available processing node. However, it is very important
to emphasize that as just we said is true only from the computational point of
view, in fact considering the whole federated transcoding process it is not true
any more because in both cases the computational time is the same but in the
first one the download from S3, the writing into HDFS and the upload to S3
times considerably increase.

It is clear that while the discovery time and the forward request time are
small and negligible, the download + upload, Hadoop and transcoding time by
means OpenCV tools are the most important impact for the examined scenario.
At the phase Ends − tt7 the broker sends a notification to the SN’s CLEVER
agent, that will communicate to SN to make available the video visualisation.
Regarding the three steps of the distribution phase, we can assert that, a part
the step td0 − td1 that is outside of the federation scope, the steps td1 − td2 and
td2− td3 can be discussed similarly to the tt4− tt3 and tt5− tt4 of the transcoding
federated process.

8 Conclusion

In this paper, we presented a federated Cloud environment which copes with
future and just begun user trend to frantically share “viral” selfie videos. Our
scenario hypothesizes two different Federations: CFfT and CFfD. The first one
helps to achieve, as soon as possible, the video transcoding and sharing tasks.
We applied the MapReduce paradigm exploiting the advantage of a Federation
establishing between several CPs (managed by CLEVER) demonstrating how,
by means of it, is possible to optimize the MapReduce Job execution and conse-
quently to streamline and to speed the multiple video transcoding and sharing
processes. The second one aims to face the increasing number of the “offline/on-
demand” visualization requests for shared videos, assigning the transmission task
of the video streams to the MPSP, avoiding that the SNC becomes the bottleneck
of the system. In the future we will apply the Federation to other interesting use
cases, so as to continue to demonstrate that the Federation in Cloud Computing
environment is the key word for the future, and its advantages are not tangible
only in the use case inspected in this paper.

References

1. Panarello, A., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: A requirements
analysis for IaaS cloud federation. In: 4th International Conference on Cloud Com-
puting and Services Science, Barcelona (2014)

2. Yuan, Y., Wang, H., Wang, D., Liu, J.: On interference-aware provisioning for
cloud-based big data processing. In: 2013 IEEE/ACM 21st International Sympo-
sium on Quality of Service (IWQoS), pp. 1–6 (2013)

62 A. Panarello et al.

3. Gahlawat, M., Sharma, P.: Survey of virtual machine placement in federated clouds.
In: IEEE IACC 2014, pp. 735–738 (2014)

4. Gandhi, R., Xie, D., Hu, Y.C.: Pikachu: how to rebalance load in optimizing
MapReduce on heterogeneous clusters. In: USENIX ATC 2013, pp. 61–66. USENIX
Association, Berkeley (2013)

5. Tang, Z., Jiang, L., Zhou, J., Li, K., Li, K.: A self-adaptive scheduling algorithm
for reduce start time. Futur. Gener. Comput. Syst. 43–44, 51–60 (2015)

6. Li, C., Zhuang, H., Lu, K., Sun, M., Zhou, J., Dai, D., Zhou, X.: An adaptive auto-
configuration tool for hadoop. In: 19th International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 69–72 (2014)

7. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K.,
Tordsson, J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A.,
Massonet, P., Munoz, H., Tofetti, G.: Reservoir - when one cloud is not enough.
Computer 44, 44–51 (2011)

8. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: challenges, taxonomy, and survey. ACM Comput. Surv. 47, 7:1–7:47 (2014)

9. Panarello, A., Fazio, M., Celesti, A., Puliafito, A., Villari, M.: Cloud federation
to elastically increase MapReduce processing resources. In: Lopes, L., et al. (eds.)
Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 97–108. Springer, Heidelberg (2014)

10. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438–452 (2015)

11. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208–218 (2016)

12. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73–79
(2012)

13. Bernstein, D., Demchenko, Y.: The IEEE intercloud testbed - creating the global
cloud of clouds. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, pp. 45–50 (2013)

14. Fazio, M., Celesti, A., Puliafito, A., Villari, M.: A message oriented middleware
for cloud computing to improve efficiency in risk management systems. Scalable
Comput. Pract. Exp. (SCPE) 14, 201–213 (2013)

15. Dong, B., Zheng, Q., Tian, F., Chao, K.M., Ma, R., Anane, R.: An optimized
approach for storing and accessing small files on cloud storage. J. Netw. Comput.
Appl. 35, 1847–1862 (2012)

16. Dong, B., Qiu, J., Zheng, Q., Zhong, X., Li, J., Li, Y.: A novel approach to improv-
ing the efficiency of storing and accessing small files on hadoop: a case study by
powerpoint files. In: 2010 IEEE International Conference on Services Computing
(SCC), pp. 65–72 (2010)

17. Kim, M., Cui, Y., Han, S., Lee, H.: Towards efficient design and implementation
of a hadoop-based distributed video transcoding system in cloud computing envi-
ronment. Int. J. Multimed. Ubiquitous Eng. 8, 213–224 (2013)

Internet Service Provision and Content Services:
Peering and Service Differentiation

Alexei A. Gaivoronski1(B), Per Jonny Nesse1,2, Olai-Bendik Erdal2,
and Finn-Tore Johansen2

1 Norwegian University of Science and Technology, Trondheim, Norway
Alexei.Gaivoronski@iot.ntnu.no

2 Telenor AS, Bærum, Norway

Abstract. We consider the relationship of Internet service providers
(ISP) like network operators and content service providers in the Inter-
net ecosystem. Currently the position of ISPs is challenged by the emer-
gence of powerful content service providers, especially with the spreading
of bandwidth demanding video services. One issue here is that the fur-
ther investment in the network capacity may be hindered by prevailing
business models that largely exclude the ISPs from sharing in the major
cash flows resulting from content provision.

We develop modeling tools for evaluation of business models of ISPs
in Internet ecosystem and present some results of this analysis. In par-
ticular, we model the relationship between content provider (CP) with
significant market power and an ISP. We show that it can be profitable
for content provider to resort to paid content peering, thus transferring to
ISP a part of his content provision revenue. The resulting business model
may provide substantial benefits to all major participants in this ecosys-
tem: network providers, content and service providers and end users. In
addition, we consider the situation when ISP also engages in content
provision.

Keywords: Business models for service provision · Connectivity provi-
sion · Content provision · Peering

1 Introduction

The current state of Internet ecosystems presents substantial challenges to tel-
cos/network operators in their capacity of Internet Service Providers (ISP). Due
to the introduction and explosive growth of services that are heavy on con-
tent (like video related services) their fast and mobile networks are experiencing
substantial growth of traffic requiring more investment in network infrastruc-
ture [8]. At the same time the current Internet business models direct revenue
streams towards content service providers, in particular those in possession of
Content Delivery Networks and utilizing content peering. As the result, this rev-
enue stream bypasses to a large extent the network providers (see, for example,

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-33313-7 5

64 A.A. Gaivoronski et al.

[7,9]). The growth of cloud based services has a potential to aggravate this situa-
tion even more. This jeopardizes the market position of ISP, which may result in
future overall deterioration of network infrastructure due to lack of investment,
something that will be detrimental to all the involved actors.

These issues has generated recently a substantial interest in academic and
industrial literature, see [7–9] where one can find additional references and fur-
ther discussion of policies for exchange of Internet traffic like peering. Proposals
directed towards enhancement of position of providers of Internet connectivity
(ISP) involve paid content peering, when content providers (CP) share their con-
tent provision revenue with respective ISP (By peering are usually understood
agreements and principles that regulate the traffic exchange between different
networks that comprise the Internet). Different ISPs consider introduction of
policies that infringe on network neutrality (by which is understood the equal
treatment by ISP of data packets from different sources), but allows them to
collect additional revenue by differentiation of subscription fees according to
usage. For example, [13] reports that Deutche Telecom considers differentiation
of subscription fees that will limit the usage of video services from external CP,
but not from its own video service. For in depth discussion of the economical
network neutrality issues we refer to [1,4–6,10].

The literature cited above tries to find analytical relationships between dif-
ferent parameters of Internet ecosystem and understand to which actors the
relaxation of the network neutrality is beneficial. We, instead, focus here on a
relationship between ISPs and content service providers and develop tools for
numerical analysis of their business models and policies. Another novelty is that
we study the effects of uncertainty (particularly in demand), focusing on the
analysis of paid content peering. First, we consider an important case: the rela-
tionship between a powerful CP and an ISP (Sect. 2). In such case the content
provider can decide whether to transfer to the ISP part of his content provision
revenue through paid content peering and the ISP accepts this decision.

We show that it can be profitable for the content provider to resort to paid
content peering, stimulating the ISP to expand capacity. We show that this can
happen in the case of efficient ISP (in terms of maintenance and expansion costs),
not excessively high demand uncertainty and high elasticity innovative services.
After this we proceed in Sect. 3 to analysis of business model, where ISP also
engages in content provision, modeling the case of Deutsche Telecom, reported
in [13]. We show that also in this case the paid peering can be beneficial to both
ISP and CP and, in addition, removes part of the incentive to challenge the
network neutrality.

This paper is motivated by the current largest source of traffic growth: real
time video services and studies economic relationship between content provider of
such services and ISP. For example, the results of the paper allow to evaluate the
parameters of recent agreements between Netflix and Comcast [15] and between
Netflix and some European ISPs. However, our results are also applicable to
likely future sources of traffic growth and in particular to services in the context
of the future Internet of Things (IoT). For example, survey [2] lists a number of

Internet Service Provision and Content Provision 65

applications of IoT which will contribute substantially to the growth of traffic.
Our results can be used to analyze business models and economic relationships
between providers of such services and providers of Internet connectivity.

2 Paid Content Peering with Strong Content Service
Provider

Here we develop the leader-follower model based on Stackelberg game [14]. This
model assumes that the leader annouces his decisions to the follower, which
optimizes his objective using this knowledge. The leader chooses his decisions,
taking into account this behavior of the follower. For transparency we begin with
the case of a single service. The model considered here can be seen as a tool for
approximate analysis of the agreement between Netflix and Comcast [15]. The
case of several interacting services is considered in the next section.

1. Profit model of the content provider. We assume that the content provider
maximizes his profit, which is the difference between content provision revenue
net of paid peering fraction and costs. There are two types of costs: provision
costs and opportunity costs resulting from not satisfaction of demand. This
results in the following profit function.

PCP = (p (1 − x) − c)Eω min {W0 + W,D (p, ω)}
− eEω max {0,D (p, ω) − W0 − W} (1)

where p is the service price; c is service provision costs; x is fraction of the
revenue transferred to the ISP; W0 is existing network capacity and W is a
possible capacity expansion. Besides:

e - opportunity cost for not satisfied demand; this cost is comprized of two
parts: revenue immediately lost and part of the customer value that can be
lost to churn (customer deserting to other provider or satisfying her needs in
an alternative way), which is proportional to unsatisfied demand;

D (p, ω) - demand for service at price p. Besides the price, it depends on
random variable ω that describes the demand uncertainty.

Here price p and paid peering revenue fraction x are the decisions of content
provider that he takes in order to maximize his profit, W is the decision of
ISP, demand D (p, ω) results from decisions of service users and c, e,W0 are
parameters.

2. Profit model of ISP. We assume that he takes the role of Internet Service
Provider (ISP). His profit is the difference between his revenue (fixed sub-
scription fees from customers plus the share of content provider’s revenue
obtained through paid peering) and his costs (network maintenance costs
and network expansion costs). This yields the following profit function.

PISP = C + pxEmin {W0 + W,D (p, ω)} − rW − q (W0 + W) (2)

66 A.A. Gaivoronski et al.

where C is subscription fee (we assume that all the user population is sub-
scribed to Internet for flat fee); r is the cost of unit capacity expansion; q is
the cost of unit capacity maintenance.

The ISP maximizes his profit by choosing the level W of capacity expansion.
3. Demand function of user population. There exists substantial empirical evi-

dence that the demand function for ICT products and services exhibits con-
stant elasticity γ with respect to price (see [12]). Then

D =
M

pγ

where M is population specific parameter that is interpreted as available
budget. We modify this function in the following way

D (p, ω) =
M

(a + p)γ
(1 + ω) (3)

where a is opportunity price that plays the role of the stabilization parameter
that prevents the demand function from excessive growth for small values
of price p. Parameters a,M, γ are all uncertain and should be described by
random variables with appropriate probability distributions. In order to admit
the analytical treatment, we simplify the description of uncertainty here by
assuming that a,M, γ are deterministic, but the demand function is multiplied
by the term 1+ω, where ω is a random variable with cumulative distribution
function H (·) that has density h (·) .

4. Governance of the system. We assume that the content provider due to his
market power has the leading role in this relationship. Consequently, the
decision sequence is the following.
i. Content provider selects the service price p and the share x of his service

provision revenue to be transferred to the ISP in the framework of content
peering agreement.

ii. Knowing price p, the users generate the demand for the service as in (3).
iii. Knowing his revenue share x and the demand for the service D (p, ω) up to

the random variable ω with known distribution H, the ISP decides the
volume W of the network expansion that maximizes his expected profit.

iv. The content provider selects at point i his decisions x and p in such a
way, as to maximize his profit, taking into account the reactions of other
actors described in ii, iii.

Now we can analyze the relationship of content provider and ISP, following
the governance just described. The analysis consists of the following steps.
1. Maximization the profit of ISP (2), substituting there the demand func-

tion (3), this will yield the dependence W (p, x) of the optimal network
expansion on the decisions (p, x) of the content provider.

2. Maximization of the profit of the content provider (1), substituting there
the demand function (3) and the optimal expansion function W (p, x)
obtained on the previous step. This yields the optimal policy (p, x) of
content provider, his best profit and resulting profit of the ISP.
Resulting optimization problems are the following.

Internet Service Provision and Content Provision 67

1. The optimal expansion program W (p, x) of ISP. It is obtained by solving:

max
W≥0

{
pxEmin

{
W0 + W,

M

a + pγ
(1 + ω)

}
− (r + q) W

}
(4)

Compared to (2) we have omitted here the constant components of revenue
and costs that do not depend on decision W of the ISP. Due to simplifying
assumptions about the demand uncertainty, it is possible to derive its explicit
solution.

Theorem 1. The solution W (p, x) of problem (4) is given by

W (p, x) = max
{

0,
M

a + pγ

(
1 + H−1

(
1 − r + q

px

))
− W0

}
(5)

2. The optimal pricing p∗ and paid content peering share x∗ of content provider.
They are obtained by substituting (3), (5) into (1) and solving the resulting
optimization problem:

max
p,x

(p (1 − x) − c + e)Emin
{

W0 + max
{

0,
M

a + pγ
×

(
1 + H−1

(
1 − r + q

px

))
− W0

}
,

M

a + pγ
(1 + τ)

}
− Me

a + pγ
(6)

p ≥ 0, 0 ≤ x ≤ 1.

The proof of the theorem is obtained by analytical solution of optimization
problem formulated above. This problem does not admit explicit solution like
problem (4) and therefore we have to resort to numerical methods. We obtain
the dependence of actors’ profits and policies on significant parameters of the
problem by solving this problem repeatedly.

2.1 Results of Numerical Analysis

We have solved the optimization problem from Theorem 1 numerically for differ-
ent values of parameters and provide below a sample of representative results.

Free Versus Paid Peering: Efficiency of ISP. We illustrate here the follow-
ing finding: paid peering can be beneficial to content provider, but only if ISP
is efficient enough in terms of provision costs.

The relationship between free and paid content peering and their connection
with the efficiency of ISP can be illustrated by looking at the dependence of
profit of content provider on the service price on Fig. 1. The thin solid curve
shows the profit of content provider with infinite available capacity, while the
thick dashed line shows the case of limited capacity W0 when only free content
peering is admitted by the content provider. Both curves coincide when the
price exceeds a certain level because the actual capacity needed for demand

68 A.A. Gaivoronski et al.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

10

20

30

40

50

60

service price

pr
of

it
of

 c
on

te
nt

 p
ro

vi
de

r

Dependence of profit of content provider on service price

no capacity bound
free peering
paid peering

Fig. 1. Current cash flows and
prospective cash flows

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

service price

re
ve

nu
e

sh
ar

e
of

 c
on

ne
ct

iv
ity

 p
ro

vi
de

r

Revenue share of connectivity provider on price

Fig. 2. Revenue share of ISP in paid
peering

satisfaction becomes smaller than W0. Both curves show a typical pattern of
dependence of profit on price: the sharp increase in the region of low prices
followed by slower decrease after attaining the maximal value.

The solid thick curve on Fig. 1 shows the case of paid content peering. It is
positioned between the first two curves, coinciding with them in the region of
high prices. Unlike the first two curves, it has a camel like appearance, having
two maxima. The first maximum is found in the region of lower prices where it
is profitable for content provider to resort to paid content peering, stimulating
demand by aggressive pricing and stimulating the ISP to expand capacity to
accommodate this demand. Another maximum is found in the region of the
higher prices, where the content peering is unprofitable and the content provider
admits only free content peering. For this reason in the region of higher prices
this curve coincides with the curve of free content peering.

Whether the paid content peering will be actually employed by the content
provider, depends on which of the to maxima is higher. One can see that on Fig. 1
the first maximum is indeed somewhat higher than the second one, so that it
is profitable in this case for the content provider to admit the paid content
peering because it yields about 6 % higher profit than the free peering. Figure 2
shows how the optimal share of the revenue accorded to the ISP changes with
the service price in this case. One can observe that this share drops with the
price increase because the demand decreases with the increase in price and less
capacity is needed for its satisfaction, resulting in less stimulation of the ISP by
the content provider. After the price passes a certain threshold it becomes no
more profitable for content provider to resort to paid content peering and the
share of the ISP abruptly drops to zero.

However, this advantage of paid peering exists only when the ISP is efficient
enough in terms of expansion and maintenance costs. With less efficient ISP the
left maximum drops below the right one which means that paid peering becomes
unattractive to CP.

Internet Service Provision and Content Provision 69

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

demand uncertainty

re
ve

nu
e

sh
ar

e
of

 c
on

ne
ct

iv
ity

 p
ro

vi
de

r

Fig. 3. Optimal revenue share of ISP
on demand uncertainty

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

demand elasticity

se
rv

ic
e

pr
ic

e

Fig. 4. Dependence of service price
on demand elasticity

Dependence of Profits, Prices and Revenue Shares on Demand uncer-
tainty. Here we show that high demand uncertainty induces risk averse behavior
of content provider, caution with pricing and less interest towards paid peering.

We have studied the dependence of actor’s profits and policies on the dif-
ferent problem parameters: costs c, e, r, q, initial available capacity W0, demand
parameters a,M, demand elasticity γ and variability σ. We show here these
dependencies on the demand uncertainty/variability σ.

Figure 3 shows the dependence of optimal content provider’s policy on
demand uncertainty. When the uncertainty increases the content provider tries
to hedge increasing risk by rising the price for his services. This has an effect of
decreasing the demand and, consequently, also decreasing the demand variability
and uncertainty as can be seen from the demand function (3). For low to mod-
erate levels of uncertainty the content provider utilizes the paid peering because
it is profitable to him to induce the ISP to expand the network capacity. In this
uncertainty range the revenue share accorded to ISP is approximately constant
and substantial. After the level of uncertainty passes a certain threshold the risk
inherent in expanding capacity becomes too high and content provider rises his
price substantially to limit the demand to already existing capacity, thus denying
the ISP from any share of his revenue.

The profit of content provider decreases with increasing uncertainty. This is
due to the combined effect of two causes. Firstly, the increase of price due to
the effort to reduce risk leads to decreasing demand that has as a consequence
contracted profits. Secondly, even for the constant demand the profit will decline
with the increase of uncertainty. This is because in order to serve the same per-
centage of demand the content provider needs more capacity when the variation
of demand increases. If, instead he lets the percentage of served demand to go
down then he gets penalized by the opportunity costs. At the same time he gets
the same or declining revenue because he get paid for the actual volume of ser-
vice. To the contrary, the profit of the ISP grows because he gets incentivated
more in order to install more capacity per unit of served demand. This is accom-
panied also by growth of his return on investment measured by the ratio of the

70 A.A. Gaivoronski et al.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

demand elasticity

re
ve

nu
e

sh
ar

e
of

 c
on

ne
ct

iv
ity

 p
ro

vi
de

r

Fig. 5. Revenue share of ISP on
demand elasticity

1 1.5 2 2.5 3 3.5 4
0

5

10

15

demand elasticity

pr
of

it

content provider
connectivity provider

Fig. 6. Dependence of actors’ profits
on demand elasticity

profit and expansion costs. But, this happens only in the region of paid peering.
After the content provider switches to the free peering the profit of ISP abruptly
disappears and the profit of content provider continues to decline, albeit more
slowly, because no part of his revenue goes to the ISP.

Dependence of Profits, Prices and Revenue Shares on Demand elas-
ticity. Here we show that content peering is beneficial in the case of innovative
high elasticity services.

Demand elasticity γ in the context of ICT services can be related to the
relationship between basic, established, traditional services and innovative new
services. For traditional services that cater to very basic communication needs
viewed as indispensable, the demand elasticity is low. For example, there is
considerable evidence in the literature that demand elasticity for the basic fixed
net telephony is only marginally larger than 1. For new, innovative services that
serve discretionary interests, like video on demand, demand elasticity can be
high, exceeding 2 or more.

Figures 4 and 5 show how the optimal policies of the content provider change
with increasing of the demand elasticity. If he caters to the basic services in the
low to medium elasticity range then he sets the price relatively high. There is
no need for paid peering in this elasticity range because the existing capacity is
sufficient for their provision. While elasticity increases and the service consump-
tion becomes more discretionary, the optimal price gradually drops. When the
elasticity crosses a certain threshold, it becomes more profitable to the content
provider to resort to paid peering in order to stimulate the ISP to install more
capacity and obtain the capability to drop the price substantially in order to
stimulate the demand. After the substantial initial drop the price continues to
decrease slowly as the elasticity grows. The share of revenue accorded to the ISP
starts from a relatively high level on crossing the threshold to paid peering and
continues to increase slowly afterwards.

The profit of the content provider shown on Fig. 6 decreases with increasing of
elasticity in the region of low to medium elasticities. This is because the decline

Internet Service Provision and Content Provision 71

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

demand elasticity

re
tu

rn
 o

n
in

ve
st

m
en

t o
f c

on
ne

ct
iv

ity
 p

ro
vi

de
r

Fig. 7. Return on investment of ISP
on demand elasticity

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

expansion cost

re
ve

nu
e

sh
ar

e
of

 c
on

ne
ct

iv
ity

 p
ro

vi
de

r

Fig. 8. Revenue share of ISP on the
network expansion and maintenance
cost

of prices is not offset sufficiently by increase of volume that remains capped by
already installed capacity W0 due to the absence of incentive to expand for the
ISP due to free peering. When the content provider switches to paid peering
the profit starts to grow with increasing elasticity because ever more capacity is
becoming available. Also the profit of the ISP grows with increasing elasticity in
the case of paid peering, even though not as steep as the profit of the content
provider, while his return on investment shown on Fig. 7 decreases due to ever
larger volume of capacity required to install.

Dependence of Profits, Prices and Revenue Shares on the Network
expansion and Maintenance Costs. Here we come back to considering the
dependence of actors’ policies and profits on the efficiency of the ISP measured
by the sum of the network expansion and maintenance costs r + q.

Similarly to Sect. 2.1, we observe that in the case of efficient ISP with low
to medium expansion costs it is profitable to the content provider to accept
paid peering. While the expansion costs of the ISP grow, he introduces less and
less of additional capacity for the same share of the content provision revenue
obtained. The content provider reacts to this in two ways. Firstly, he increases the
service price in order to make the demand match the smaller available capacity.
Secondly, he tries to incentivate the ISP more, transferring to him the gradually
increasing share of his revenue (Fig. 8). Both these measures result in steep
decline of his profit.

3 Content Peering and Service Differentiation

In this section we consider the situation when the ISP offers several internet
provision services, which differ by the connection speeds and, consequently, dif-
fer by Quality of Experience (QoE) for the customers, which consume video
services with high bandwidth requirements. More specifically, the connection

72 A.A. Gaivoronski et al.

speed decreases substantially for the basic connection package users after they
exceed a specified download limit. Connection options without download limits
are also available, but for higher price. In addition, the ISP provides his own
content service in competition with existing video content providers (CP), but
this service is exempt from bounds on downloading. This policy of ISP chal-
lenges the principles of network neutrality because it treats differently the data
streams generated by similar services of different origin. It is similar to the policy
announced recently by Deutsche Telekom regarding its own video service versus
rival services like YouTube from Google, as described in [13].

We describe this situation by considering the population of customers to
which three services si, i = 1 : 3 are offered. Each service is composed from two
components, which together create the QoE for the end user: content and con-
nectivity. Content can be provided by both ISP and CP, while the connectivity
is provided only by ISP. More specifically:

– Service s1, with content provided by CP. It is available to subscribers to the
basic Internet connectivity package for a flat price C1 with high speed V1

until download limit d̄ is reached and low speed V2 beyond this limit.
– Service s2 with the same content as in s1 provided by CP. It is available

to subscribers to the enhanced Internet connectivity package for a flat price
C2 > C1 with high speed V1 irrespective of download quantity.

– Service s3 with competing content to s1, s2 provided by ISP. It is available to
subscribers to the basic connectivity package for a flat price C1, but the high
speed V1 is kept for this particular service without any download limit.

3.1 Service Selection by a Single Subscriber

Let us consider first services s2 and s3 taken in isolation. Suppose that p is a price
that respective providers charge for the unit of content measured in bandwidth.
Similarly to Sect. 2 we assume that demand d, generated by a single subscriber,
has a constant elasticity dependence on the service price

di (p) =
M

(a + p)γ , i = 2, 3 (7)

which conforms well with empirical data [12]. Here a < 1 is an opportunity cost
for customer, associated with consumption of service unit, M is proportional to
the income of subscriber, and γ = γ1 for service s2 and γ = θ for service s3. We
assume that elasticity γ describes the QoE, that is, the larger γ the better is
the QoE. Indeed, with larger γ the consumption grows faster with the decrease
in the service price and the limit consumption with p = 0 is higher, while for
small γ the consumption will be low even for small prices. Thus, a service with
larger γ is more attractive to consumers than a service with smaller γ. Let us
assume further that QoE for service s2 is higher than QoE for s3. Indeed, they
are provided with the same connection speed and one can expect that content
of s2 is in average superior to content of s3 because content provision is a core
business of CP. Thus, we assume that γ1 > θ.

Internet Service Provision and Content Provision 73

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

price

de
m

an
d

Service S1
Service S3

Fig. 9. Demand functions for ser-
vices s1 and s3 with γ1 = 2, γ2 = 0.1,
θ = 1.8, M = 1, a = 0.1, d̄ = 5

0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

7

8

9

10

price p1

de
m

an
d

Service S1
Service S2
Service S3

Fig. 10. Dependence of population
demand functions on price p1 with
p2 = 0.2, γ1 = 2, γ2 = 0.1, θ = 1.8,
a = 0.1, d̄ = 5

Let us consider now service s1. Until demand is smaller than d̄, it is the same
service as s2, therefore its demand function is described by (7) with γ = γ1. After
demand exceeds d̄ the connection speed drops, leading to substantially inferior
QoE. Therefore we describe the demand function of s3 when demand exceeds d̄
by (7) with γ = γ2, γ2 < θ < γ1. This yields the following demand function

d1 (p) =

⎧
⎨

⎩
M

(a+p)γ1 if p ≥ (
M
d̄

) 1
γ1 − a

M
(a+p)γ2 − M1− γ2

γ1 d̄
γ2
γ1 + d̄ otherwise

(8)

These demand functions are shown on Fig. 9.
So far we have considered these services in isolation. The next step is to

describe how a subscriber selects between these services, depending on their
respective prices. Let us assume that consumer subscribes for just one of the
services si, i = 1 : 3 and follow the approach of consumption theory of microeco-
nomics [11]. This theory associates the consumption of service si with individual
utility function of a consumer ϕi (p, d). He selects the amount d of service to con-
sume by maximizing this utility function with respect to d for given unit price
p. For a risk neutral consumer this utility function can be further structured as
follows:

ϕi (p, d) = ψi (d) − (a + p) d − C (9)

where ψi (d) is utility of consumption of amount d of service si, (a + p) d is the
cost of amount d of service and C is subscription fee. Demand function di (p)
is obtained from (9) by maximizing ϕi (p, d) with respect to d. Substituting
demand function di (p) into ϕi (p, d) we obtain the maximal consumer utility
βi (p) = ϕi (p, d (p)) associated with consumption of service si at price p. Having
these functions for each service si, we can obtain the demand of consumer for
service si by the following rule.

Consumption of services by single consumer. Suppose that services s1, s2 are
offered at unit price p1 and service s3 is offered at unit price p2. Then

74 A.A. Gaivoronski et al.

– Find the highest value among β1 (p1) , β2 (p1) , β3 (p2) , suppose that it is
attained for service sk.

– The demand dk, for service sk will be dk (p1) if k = 1, 2 and dk (p2) if k = 3.
The demand for services si, i �= k is zero.

Observe that this operation of taking maximum between three utilities makes
demand di = di (p,C,M) for service si dependent on both prices p = (p1, p2)
and both subscription fees C = (C1, C2) .

In order to implement this rule we need to know expressions for utilities
βi (p) and these are obtained from expressions for ϕi (p, d) . These expressions
are obtained taking into account that demand functions di (p) from (7), (8) are
obtained by maximization of (9). They are summarized in the following theorem.

Theorem 2. Suppose that demand functions di (p) , i = 2 : 3 are defined by (7).
Then functions ψi (d) from (9) that yield these demand functions are

ψi (d) =

{
1

1− 1
γ

M
1
γ d1− 1

γ if γ �= 1

M ln d otherwise
, i = 2, 3 (10)

βi (p) =

{ 1
γ−1

M
(a+p)γ−1 − C if γ �= 1

M
(
ln M

a+p − 1
)

− C otherwise
(11)

with (γ,C) = (γ1, C2) for i = 2 and (γ,C) = (θ, C1) for i = 3.

Functions ψ1 (d) , β1 (p) are obtained similarly to (8) by gluing together at

point p =
(

M
d̄

) 1
γ1 −a pieces of functions (10), (11) with γ = γ1, γ2. This theorem

is proved by substitution of (10) into (9) and finding the maximum of obtained
function with respect to d.

3.2 Demand Functions of Population of Subscribers

In order to obtain these functions Di (p,C) for the population of subscribers from
demand functions di (p,C,M) of individual subscribers let us recall that these
latter functions depend on parameter M from (7), which is a proxy for the income
of a given subscriber. Assuming that the subscriber income is representative of
the household income in a given country, we can recover the distribution H(y) of
parameter M from the national statistics. For example, data reported in [3] show,
that income of US households is approximated reasonably well by unimodal
distribution with piecewise linear density h(y), if we neglect the households in
the top 5% bracket.

h(y) =

⎧
⎪⎨

⎪⎩

0 if y < 0, y > (1 + kM) M̄
y 2
(kM+1)M̄2 if 0 ≤ y ≤ M̄

2
(kM+1)M̄

(
1 + 1

kM
− y 1

kM M̄

)
otherwise

Internet Service Provision and Content Provision 75

Here M̄ is the maximal point of this density. This distribution is skewed to the
right with kM � 5. Integrating the individual demand functions with respect to
this density we obtain the population demand functions and shares Si (p,C) of
subscribers to different services

Di = U

∫
di (p,C, y) h(y)dy, Si =

∫
Idi(p,C,y)h(y)dy. (12)

where U is the total number of customers and Iz = 1 if z > 0 and zero otherwise.
Figure 10 shows an example of dependence of demand functions on p1 for fixed
p2, which can be obtained through numerical integration.

3.3 Profit Maximization Problems for Actors

We assume here that the share of fixed subscription equal to the share of not sat-
isfied demand is lost. Then the satisfied demands D+

i and respective subscription
shares S+

i can be expressed as follows

D+
1 = min {D1,max {0, w − D2 − D3}} , S+

1 =
D+

1

D1
S1

D+
2 = min {D2,max {0, w − D3}} , S+

2 =
D+

2

D2
S2

D+
3 = min {D3, w} , S+

3 =
D+

3

D3
S3

Similarly, we define nonsatisfied potential demand and missing subscription
shares for i = 1 : 3 as

D−
i = Di (p,C) − D+

i (p,C,w) , S−
i = Si (p,C) − S+

i (p,C,w)

Let us define the following opportunity costs resulting from not meeting potential
demand and possible churn

e1 - opportunity cost for CP for not meeting potential demand for services
s1, s2

e2 - opportunity cost for ISP for not meeting potential demand for service s3
gi - opportunity cost for ISP for not meeting subscriptions for service si

Besides we have
c1 - provision cost for CP for provision of content for services s1, s2
c2 - provision cost for ISP for provision of content for service s3
The service provision revenue of CP is

RCP = RCP (p,C,W) = p1
(
D+

1 + D+
2

)

and we assume that share x of this revenue CP transfers to ISP in the context of
paid content peering. Then the profit of content provider is expressed as follows

PCP = (p1 (1 − x) − c1)
(
D+

1 + D+
2

) − e1
(
D−

1 + D−
2

)
(13)

76 A.A. Gaivoronski et al.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

peering share

su
bs

cr
ip

tio
n

fe
e

s2

Fig. 11. Dependence of subscription
fee for service s2 on paid peering
share

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

peering share

pr
of

it

CP profit
ISP profit

Fig. 12. Dependence of actor’s
profit on paid peering share

The revenue of ISP consists of revenue for provision of service s3, subscription
revenue and transfer of revenue from CP:

RISP = p2D
+
3 + C1

(
S+
1 + S+

3

)
+ C2S

+
2 + p1x

(
D+

1 + D+
2

)

and its profit is equal to revenue minus provision, opportunity, expansion and
maintenance costs:

PISP = RISP − c2D
+
3 − e2D

−
3 −

3∑

i=1

giS
−
i − rW − q (W0 + W) (14)

System governance. In order to evaluate the possible impact of the paid
content peering, we assume again that CP moves first, exercising his superior
market power, selects price p1 for his content and share x (if any) of his content
provision revenue that he voluntarily transfers to ISP. ISP responds by selecting
capacity expansion program W = W (x, p1), price for his content p2 = p2(x, p1)
and subscription fee C2 = C2(x, p1) by solving the profit maximization problem

max
W,p2,C2

PISP (x, p, C,W) . (15)

Anticipating these decisions of ISP, the CP selects his decisions (p1, x) by max-
imizing his profit

max
p1,x

PCP (x, p, C,W (x, p1)) | p2 = p2(x, p1), C2 = C2(x, p1) (16)

Thus, this is again the leader-follower Stackelberg game [14].

3.4 Some Results

We have solved the problems (15), (16) for different values of problem parame-
ters, always keeping the attractiveness of content of the service s3 provided by

Internet Service Provision and Content Provision 77

ISP smaller than for the content of services s1, s2 provided by CP. The patterns
obtained in the simpler case of a single service from Sect. 2 were confirmed and
additional patterns emerged, regarding the impact of paid content peering on
the degree of network neutrality. The main findings are the following.

1. ISP has an incentive to extract additional subscription fee for allowing cus-
tomers to have the similar QoE for content provision service of CP as for his
own content service. Thus, in the absence of regulation the network neutrality
will be challenged (see Fig. 11). However, the extent of violation of network
neutrality can be reduced substantially by resort to paid content peering. The
difference between subscription fees can be halved, as shown on Fig. 11.

2. This increase of grade of network neutrality happens in parallel with increase
in profit for both actors. One can see on Fig. 12 that profit of CP increases
substantially with the share of content provision revenue accorded to ISP in
the range of 0.3–0.4, compared to the absence of such share.

4 Conclusion

We have developed several game theoretical models for analysis of relationship
between ISPs and content providers in Internet ecosystem. These models were
used for analysis of paid versus free content peering and analysis of relationship
between peering and network neutrality. We have shown that content peering can
be mutually beneficial to content and ISPs even when the content provider has
the market power to force the ISP to accept free content peering. We have pro-
vided an insight as to when this will happen: efficient enough ISP, not excessively
high demand uncertainty/variability and innovative new services with high price
elasticity. We have shown also that paid peering removes part of the incentive
to challenge the principle of network neutrality.

References

1. Altman, E., Legout, A., Xu, Y.: Network non-neutrality debate: an economic analy-
sis. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.)
NETWORKING 2011, Part II. LNCS, vol. 6641, pp. 68–81. Springer, Heidelberg
(2011)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Bureau, U.C.: Current Population Survey. Annual Social and Economic Supple-
ment (2011)

4. Cheng, H.K., Bandyopadhyay, S., Guo, H.: The debate on net neutrality: a policy
perspective. Inf. Syst. Res. 22(1), 60–82 (2011)

5. Economides, N., T̊ag, J.: Network neutrality on the internet: a two-sided market
analysis. Inf. Econ. Policy 24(2), 91–104 (2012)

6. Krämer, J., Wiewiorra, L., Weinhardt, C.: Net neutrality: a progress report.
Telecommun. Policy 37, 794–813 (2013)

7. Krogfoss, B., Sofman, L., Weldon, M.: Internet architecture evolution and the
complex economies of content peering. Bell Labs Tech. J. 17(1), 163–184 (2012)

78 A.A. Gaivoronski et al.

8. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: SIGCOMM 2010, New Delhi, India, pp. 75–86 (2010)

9. Liebenau, J., Karrberg, P., Elaluf-Calderwood, S.: A Critical Analysis of the Effects
of Internet Traffic on Business Models of Telecom Operators: A White Paper of
the Lse-etno Research Collaboration Programme. The London School of Economics
and Political Science, London (2011)

10. Maille, P., Tuffin, B.: Telecommunication Network Economics: From Theory to
Applications. Cambridge University Press, Cambridge (2014)

11. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Uni-
versity Press, New York (1995)

12. Mitra, D., Ramakrishnan, K.G., Wang, Q., Combined economic modeling, traf-
fic engineering: joint optimization of pricing and routing in multi-service net-
works. In: Proceedings of 17th International Teletraffic Congress, Salvador, Brasil,
Amsterdam. Elsevier (2001)

13. O’Brien, K.J.: Limiting Data Use in Germany. The New York Times, Berlin (2013)
14. Stackelberg, H.V.: The Theory of Market Economy. Oxford University Press, Lon-

don (1952)
15. Wyatt, E., Cohen, N.: Comcast and Netflix Reach Deal on Service. The New York

Times, New York (2014)

Security Requirements in a Federated Cloud
Networking Architecture

Philippe Massonet1(B), Anna Levin2, Antonio Celesti3, and Massimo Villari3

1 Cetic, Charleroi, Belgium
philippe.massonet@cetic.be

2 HLR, IBM Haifa, Haifa, Israel
lanna@il.ibm.com

3 DICIEAMA, University of Messina, Messina, Italy
{acelesti,mvillari}@unime.it
http://www.beacon-project.eu/

Abstract. Cloud federation enables cloud providers to collaborate in
order to create a large pool of virtual resources at multiple network
locations. Different types of federated cloud architectures have been pro-
posed and implemented up to now. In this context, an effective, agile
and secure federation of cloud networking resources is a key aspect for
the deployment of federated applications. This paper presents the pre-
liminary security requirements analyzed in the H2020 BEACON Project
that aims at researching techniques to federate cloud network resources
and defining an integrated cloud management layer that enables an effi-
cient and secure deployment of federated cloud applications. The paper
analyses both how to protect the cloud networking infrastructure, and
how cloud users can customize the network security for their distributed
applications.

Keywords: Cloud computing · Federation · SDN · NFV · Security

1 Introduction

Federation enables cloud providers to collaborate and share their resources to
create a large pool of virtual resources placed in multiple network locations.
Different types of federated architectures for clouds and datacenters have been
proposed and implemented so far (e.g., let us thing about cloud bursting, cloud
brokering, and cloud aggregation architectures) with different levels of resource
coupling and interoperability among resources, from loosely coupled to tightly
coupled federation, according to the mechanisms that are involved to share
resources. Typically tightly coupled approaches require more invasive mecha-
nisms than loosely coupled ones. In this context, tenants (i.e., societies using
federated cloud networking services) require to deploy their applications on mul-
tiple federated cloud providers. For this reason, an effective, agile and secure fed-
eration of cloud networking resources is fundamental to address the deployment
of federated cloud applications. In order, to analyse the security requirements of
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 79–88, 2016.
DOI: 10.1007/978-3-319-33313-7 6

80 P. Massonet et al.

federated cloud networking architectures, in this paper, we focus on the Horizon
2020 BEACON project. The main goal of BEACON is two-fold: (i) research and
develop techniques to federate cloud networking resources; (ii) define a cloud
management layer that enables an efficient and secure deployment of federated
cloud applications.

The paper is organized as follows. In Sect. 2, we briefly describe the BEACON
architecture used as model to analyse the security requirements of a federation-
enabled cloud networking system. In Sect. 3, we provide a security analysis con-
sidering both infrastructure and application levels. In Sect. 4, we discuss how to
protect a virtual network infrastructure. In Sect. 5, we discuss how can be pos-
sible to achieve cross-cloud overlay network protection. In Sect. 6, we compare
the BEACON security requirements with respect to other initiatives. Section 7
concludes the paper.

2 BEACON Overview

In this Section, we provide an overview of the BEACON federated architecture
on which our security analysis is based. Figure 1 shows the BEACON federated
architecture. The three main components are: the service manager, the cloud
manager and the network manager. The Service Manager is responsible for the
instantiation of distributed federated services. Each service component is typi-
cally deployed in a Virtual Machine (VM) according to a particular service man-
ifest. The Cloud Manager is responsible for the placement of VMs into physical
hosts. It receives requests from the Service Manager through the cloud interface
in order to create and manage VMs and it finds where the best placement for
these VMs is, satisfying a given set of constraints The Cloud Manager is free
to place and move VMs anywhere, even on remote clouds within the federation,
as long as the placement is done according to constraints. The Network Man-
ager is responsible for allocating network resources to manage federated cloud
virtual overlay networks across geographically distributed sites. Figure 1 shows
two cloud stacks running on different cloud providers. Together they form a
cloud federation. The middle part of the Figure shows that the Cloud Manager
and Network Managers of the two cloud providers communicate to share feder-
ated resources. The top part of Fig. 1 shows two application level case of studies
respectively focusing on flight schedule and cloud orchestration federated cloud
applications. The bottom part of the figure shows the open source projects that
are used to implement the federated architecture. The architecture has to man-
age cloud providers based on heterogeneous pieces of middleware. For example,
the cloud provider on the left part of the picture is using OpenNebula, whereas
the cloud provider on the right part is using OpenStack to manage its cloud
infrastructure. The network managers of both cloud providers are both using
the Open Virtual Network (OVN) technology to manage the network resources
and communications between the two cloud providers by means of different Soft-
ware Defined Networking (SDN) overlay networks.

Security Requirements in a Federated Cloud Networking Architecture 81

Fig. 1. BEACON federated architecture.

3 Security Analysis on the Federated Cloud Networking
Architecture

Security issues are considered at both Cloud Manager and Network Manager lay-
ers. In addition, for each layer, we considered both infrastructure and application
level security requirements. Infrastructure level security deals with securing the
cloud infrastructure services provided by the Cloud Manager and the Network
Manager, and protecting them from an unauthorized access of applications and
users. Application level security deals with the security of the application when
it is deployed in federated clouds. In our opinion, even the security requirements
of the application level needs to be studied at both the Cloud Manager and Net-
work Manager layers. In the following, we review the four categories of security
issues that we identified.

3.1 Application Security at the Cloud Manager Layer

It involves the provisioning of security services from the Cloud Manager to appli-
cations. The Cloud Manager can provide security services for VMs such as an
application level firewall service or a vulnerability analysis service. The applica-
tion can also choose to deploy these services by itself. For example, an applica-
tion can request that a vulnerability analysis has to be performed continuously
on a given VM or could request that all HTTP traffic has to be analysed by
application level firewall rules for a given HTTP session.

3.2 Application Security at the Network Manager Layer

It involves the provisioning of security services from the Network Manager to
applications. The Network Manager can provide network level security services.

82 P. Massonet et al.

Applications have to provide their requirements according the network security
services that they intend to use. The Network Manager will deploy and pro-
vide the security services as Network Functions Virtualization (NFV) and/or
Sequential Function Chart (SFC). This allows applications to select the right
combination of network security services to meet their security requirements.
For example, the application may request either to apply network firewall rules
on one or more overlay networks, to request a vulnerability analysis at the net-
work layer, or to apply network intrusion detection to the application network
traffic.

3.3 Infrastructure Security at the Cloud Manager Layer

It involves the provisioning of security services to secure the Cloud Manager.
The threats to the Cloud Manager are both external and internal in nature. The
Cloud Manager needs to be protected from unauthorised users who could try to
access the Cloud Manager even though they are not authorised. Threats may
also originate from internal sources. Internal threats come from authorised users
deploying applications in the cloud. In this case the Cloud Manager must ensure
a sufficient level of isolation of applications in the multi-tenant environment of
the federated cloud infrastructure. This requires an in-depth analysis on how to
secure the complete VM deployment lifecycle by the federated cloud infrastruc-
ture management, including issues related to credentials management. Internal
threats can also come from the Cloud Manager layer of a provider that might
try to access the federated applications instantiated by other providers without
proper authorizations.

3.4 Infrastructure Security at the Network Manager Layer

It involves the provisioning of security services to secure the Network Manager.
The main components of the virtual networks need to be secured. For example,
the control plane of federated virtual networks need to be protected from appli-
cations. Another security challenge regards how to ensure a sufficient level of
isolation and encryption of network traffic by automating the provisioning and
configuration of secure on-demand SDN according to given security level agree-
ments. From a security perspective, federated cloud networking provides the
opportunity to monitor the virtualized compute, storage, and network resources
across a federation. This provides opportunities to detect attacks to the federa-
tion level that could not be detected at an individual Cloud Manager layer. We
can identify many security issues having a global picture of services deployed and
executed in several federated clouds. The security issues that we are considering
range from Intrusion Detections, to vulnerabilities scanning, even to distributed
denial of service (DDoS) attacks. For example, DDoS attacks might be difficult
to be detected by monitoring activities within a single cloud. However, DDoS
attack patterns could be detected earlier by monitoring data coming from the
cloud federation. In this context, enhanced monitoring capabilities provided by
federated cloud networking systems can improve the detection of security threats.

Security Requirements in a Federated Cloud Networking Architecture 83

4 Protecting the Virtual Network Infrastructure

In this Section, we discuss an access control system integrated into the generic
federated cloud networking architecture depicted in Fig. 2. The main components
of the networking architecture are the Federation SDN Management (MG), the
Federation Agent (FA) and the Federated Data Path (DP). Each of these compo-
nents has an Application Program Interface (API) that needs to be protected. In
the following, we analyse how to protect these APIs in terms of access control.
More specifically, our analysis focuses on these three main networking-related
components and how their respective public APIs are protected. For simplicity,
we assume that internal APIs will be protected by the local domain security
policies. For this reason their description is out of the scope of this paper. The
Federated SDN MG interacts with the FAs that are distributed in different
federated clouds through public REST APIs. Each FA is connected to the SDN
controller of its cloud. This connection does not need to be protected from exter-
nal attacks because it is internal to the cloud. The south bound FA API allows
the FA to configure the network forwarding rules in the Federated DP. The latter
is responsible to query the corresponding FA when information is missing. All
the collected pieces of information are stored by the Federated DP in forwarding
tables that track network segments (e.g., VPN) among different federated cloud
providers’ sites. Since the FA-to-Federated DP interaction is made within the
same domain it does not need to be protected from external attacks. An access
control component may be integrated either within the Federated SDN MG or
distributed among the different federated clouds. It depends on the fact if the
federation is tightly coupled or loosely coupled. Figure 2 shows a cloud federa-
tion scenario where the Federated SDN MG is protected by an access control
Policy Enforcement Point (PEP) and a Policy Decision Point (PDP) as well as
a security policy database. The access control component also protects the FA
API. In particular, Fig. 2 shows an example of cloud federation including two
cloud sites where two network segments have been connected with an overlay
network: network segment “123” from site 1 with “321” from site 2, and network
segment “456” from site 1 with “654” from site 2.

5 Customizing Overlay Network Protection
for the Deployment of Federated Applications

As previously discussed, in order to secure a federated networking application
deployed in multiple federated clouds, a few security considerations have to be
analysed at both the Cloud Manager and Network Manager layers. To this end,
an application service manifest should specify the required security services that
have to be provided by both Cloud and Network Manager layers to ensure that
the federated cloud system meets the security requirements of the deployed fed-
erated cloud application. In doing that, the security requirements for the Cloud
Manager must be separated from the security requirements for the Network Man-
ager. In fact, these security requirements must be separately passed respectively

84 P. Massonet et al.

Fig. 2. Access control architecture.

to the Cloud Manager and Network Manager for enforcement. To this end, the
security requirements must be translated into the appropriate security policies
for the Cloud and Network Manager layers. This implies the Network Manager
analyses of the considered pieces of middleware (e.g., OpenNebula, OpenStack,
etc.) in order to design how they can exchange security policies. Another issue
that has to be analysed is related to the location of the network services, e.g., to
define which NFV firewall must be used when several are available. In addition,
even the security mechanisms that allow VM migration within a federated cloud
scenario have to be planned. In the following, we describe how to specify security
templates for security functions and how to implement network security services
as NFV.

5.1 Specifying Security Templates for Security Functions

In the following, we discuss how the service manifest could be extended to specify
required network security services. The network security requirements could be
passed to the Network Manager layer in order to customize the security services
of each overlay network according to the security requirements of the application.
Different applications have different security requirements on the environment in
which they are executed, i.e. in this case the cloud, both in terms of computing
and network resources. Commonly, it is difficult for a cloud provider to customize
the physical infrastructure according to the applications’ requirements of their
individual clients. In this context the rapid evolution of network virtualisation

Security Requirements in a Federated Cloud Networking Architecture 85

technologies is simplifying things. For example, SDN and other network virtual-
isation technologies allow providers to customize virtual networks according to
application requirements.

Cloud deployment requirements for applications have to be specified in the
service manifest. The service manifest identifies the different application com-
ponents, how they should communicate and how they should be deployed. The
service manifest also specifies the Quality of Service (QoS) and security require-
ments. Figure 3 shows how the service manifest for an application is passed from
a user to the cloud provider for the deployment of a federated application. The
service manifest is parsed by the Service Manager that extracts security require-
ments and forwards them to the Cloud and Network Managers. The latter can
use the network level security requirements to customize the security of the
overlay network that is provisioned on-demand for the application.

Fig. 3. Network security policies.

5.2 Implementing Network Security Services as NFV

Hereby, we discuss how the Network Function Virtualisation (NFV) and Service
Function Chaining (SFC) technologies might be used to deploy virtualised net-
work security services and mash-up them to provide the required level of network
security for each application overlay network. Figure 4 shows how the security
of overlay networks belonging to user A and B can be customised. NFV security
services such as firewall (1), deep packet inspection (2) or intrusion detection (3)
are deployed on the NFV infrastructure. The network security requirements of
each distributed application are passed to the SDN controller. In order to meet
the security requirements of the application, the SDN controller will set up each
overlay network so that network traffic is routed through the required security
services. For example, user A requires his/her network traffic to pass through
security services (1) and (2) before leaving the cloud, whereas User B requires
his network traffic to pass through security services (2) and (3) before leaving
the cloud.

86 P. Massonet et al.

Fig. 4. NFV infrastructure with SFC.

6 Related Work

Cloud federation is a widely debated topic. In fact, there are many scientific
works focusing on different fields including energy efficiency [1], storage [2], Assis-
tive Technology [3], dataweb [4] and so on. A requirement analysis of federated
Infrastructure as a Service (IaaS) clouds is discussed in [5], nevertheless the
authors do not focus on security and virtual networking technologies. In [6], the
authors analyse the main security threats for cloud computing infrastructures, as
well as proposing a novel architecture in charge of reacting to security attacks in
Infrastructure as a Service platforms. The basic idea is to migrate the attacked
virtual appliance and to reconfigure the network by means of Software Defined
Networking approach. The overhead due to data encryption in a message ori-
ented middleware for cloud federation is discussed in [7]. A remote attestation
approach to mitigate threats in cloud mush-up services is discussed in [8].

Currently, there are not so many scientific works focusing on federated cloud
networking architectures. SDN enables the administrators to configure network
resources very quickly and to adjust network-wide traffic flow to meet changing
needs dynamically. However, there are some challenges for implementing a full-
scale carrier SDN. One of the most important challenges is SDN security [9]. In
[10], the authors design open-flow specific security solutions and propose a com-
prehensive security architecture to provide security services such as enforcing
mandatory network policy correctly and receiving network policy securely for
SDN. In [11], an Orchestrator-based architecture that utilizes Network Monitor-
ing and SDN Control functions to develop security applications is proposed. In
[12], the authors analyse the security attributes of the SN-Security Architecture
(SN-SECA). In [13], the authors propose a network security approach which is
aware of all existing systems and services hosted by at least one cloud provider.

Security Requirements in a Federated Cloud Networking Architecture 87

The main idea is to maintain a logically centralized database that provides latest
security related information about each system or service.

7 Conclusion

In this paper, we presented the main security requirements of a federated cloud
networking architecture analysed in the Horizon H2020 BEACON project. The
project aims to provide a homogeneous virtualization layer, on top of heteroge-
neous underlying physical networks, computing and storage infrastructures, even
providing enablement for automated federation of applications across multiple
clouds.

In particular, we first presented the reference federated networking architec-
ture and then, we provided a security analysis of the major requirements. In
addition, we discussed how the public interfaces of both Cloud and Network
Manager layers should be protected. The paper also described how the over-
lay networks can be configured according to particular service manifests for the
deployment of federated applications. In future works, we plan to optimize the
impact of the security for the deployment of federated applications.

Acknowledgment. This research was supported by the European Union’s Horizon
2020 Research and Innovation Programme Project BEACON under Grant Agreement
No. 644048.

References

1. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438–452 (2015)

2. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208–218 (2016)

3. Mulfari, D., Celesti, A., Villari, M.: A computer system architecture providing
a user-friendly man machine interface for accessing assistive technology in cloud
computing. J. Syst. Softw. 100, 129–138 (2015)

4. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73–79
(2012)

5. Panarello, A., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: A requirements-
analysis for IaaS cloud federation. In: Proceedings of the 4th International Confer-
ence on Cloud Computing and Services Science, pp. 584–589 (2014). doi:10.5220/
0004945705840589. ISBN:978-989-758-019-2

6. Carrozza, G., Manetti, V., Marotta, A., Canonico, R., Avallone, S.: Exploiting
SDN approach to tackle cloud computing security issues in the ATC scenario. In:
Vieira, M., Cunha, J.C. (eds.) EWDC 2013. LNCS, vol. 7869, pp. 54–60. Springer,
Heidelberg (2013)

http://dx.doi.org/10.5220/0004945705840589
http://dx.doi.org/10.5220/0004945705840589

88 P. Massonet et al.

7. Celesti, A., Fazio, M., Villari, M.: Se clever: a secure message oriented middleware
for cloud federation. In: IEEE Symposium on Computers and Communications
(ISCC), pp. 35–40 (2013)

8. Celesti, A., Fazio, M., Villari, M., Puliafito, A., Mulfari, D.: Remote and deep
attestations to mitigate threats in cloud mash-up services. In: World Congress on
Computer and Information Technology (WCCIT), pp. 1–6 (2013)

9. Scott-Hayward, S., O’Callaghan, G., Sezer, S.: SDN security: a survey. In: 2013
IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–7 (2013)

10. Hu, Z., Wang, M., Yan, X., Yin, Y., Luo, Z.: A comprehensive security architecture
for SDN. In: 18th International Conference on Intelligence in Next Generation
Networks (ICIN), pp. 30–37 (2015)

11. Zaalouk, A., Khondoker, R., Marx, R., Bayarou, K.: Orchsec: an orchestrator-
based architecture for enhancing network-security using network monitoring and
SDN control functions. In: IEEE Network Operations and Management Sympo-
sium (NOMS), pp. 1–9 (2014)

12. Bernardo, D., Chua, B.B.: Introduction and analysis of SDN and NFV security
architecture (SN-SECA). In: IEEE 29th International Conference on Advanced
Information Networking and Applications (AINA), pp. 796–801 (2015)

13. Seeber, S., Rodosek, G.: Improving network security through SDN in cloud sce-
narios. In: 10th International Conference on Network and Service Management
(CNSM), pp. 376–381 (2014)

W4S4FI Workshop Papers

Preface of WAS4FI 2015

The Future Internet has emerged as a new initiative to pave a novel infrastructure
linked to objects (things) of the real world so as to meet the changing global needs of
business and society. It offers Internet users a standardized, secure, efficient, and
trustable environment, which allows open and distributed access to global networks,
services, and information. There is a need for both researchers and practitioners to
develop platforms made up of adaptive Future Internet applications. In this sense, the
emergence and consolidation of service-oriented architectures (SOA), cloud computing
wireless sensor networks (WSN), and the new paradigm fog computing, give benefits,
such as flexibility, scalability, security, interoperability, and adaptability for building
these applications.

WAS4FI encourages a multidisciplinary perspective and welcomes papers that
address challenges of Future Internet applications. The participation of researchers and
practitioners from academia and industry is encouraged in order to promote
cross-community interactions thereby avoiding disconnection between these groups.
As the proud Organizing Committee and chairs of the 5th International Workshop on
Adaptive Services for the Future Internet, we would like to take this opportunity to
welcome you to the proceedings of WAS4FI 2015.

In this fifth edition, WAS4FI again aimed to bring together the community at
ESOCC and addresses different aspects of adaptive Future Internet applications,
emphasizing the importance of governing the convergence of contents, services, things,
and networks in order to achieve the building of platforms for efficiency, scalability,
security, and flexible adaptation. In this workshop, we cover the foundations of the
aforementioned technologies as well as new emerging proposals for their potential in
Future Internet services. To promote collaboration, WAS4FI has a highly interactive
format with short technical sessions complemented by discussions on adaptive services
in the Future Internet applications.

The broad scope of WAS4FI is reflected in the wide range of topics covered by the
workshop, and the 21 members of the WAS4FI Program Committee from both aca-
demic and industrial research labs. During the workshop, four papers (three long and
one short) were presented:

• “A Lightweight Method for Analyzing Performance Dependencies Between Ser-
vices,” by Arjan Lamers and Marko Van Eekelen (long paper). In this paper, the
authors propose a methodology to describe and analyze performance dependencies
between services.

• “Adaptive Architectural Model for Future Internet Applications,” by Luigi Alfredo
Grieco, Marina Mongiello, Massimo Sciancalepore, and Elvis Vogli (short paper).
This paper proposes a model for runtime composition of software applications in
sensors networks based on data, processes, and technology to design on the fly and
architectures of a software system.

• “Automated Prediction of the QoS of Service Orchestrations: PASO at Work,” by
Leonardo Bartoloni, Antonio Brogi and Ahmad Ibrahim (long paper). In this paper,
the authors illustrate the practical usefulness of a probabilistic analyzer of service
orchestrations (PASO) by showing how it can be exploited to predict the QoS of
service orchestrations.

• “A Workflow Service Mediator for Automated Information Processing and
Scheduling Delivery to an Archive,” by Salvatore D’Antonio, Giuliano Gugliara,
Carlo Francesco Romano, and Luigi Romano (long paper). This paper describes a
service mediator that addresses real-life digital preservation problems and an
overview of the project’s progress to date.

We believe this workshop was an enjoyable and productive opportunity for
attendees to meet and discuss various adaptive services and Future Internet issues with
their counterparts from other countries and other industrial segments.

We would like to thank all the people who contributed to make this workshop a
reality, including the WAS4FI Program Committee, the ESOCC 2015 Workshop
Organizers, Philipp Leitner and Antonio Celesti, and all the presenters, authors, and
participants.

Javier Cubo
Juan Boubeta-Puig

Winfried Lamersdorf
Nadia Gámez

Marc Oriol

Preface of WAS4FI 2015 91

Organization

Organizing Committee

Javier Cubo University of Málaga, Spain
Juan Boubeta-Puig University of Cádiz, Spain
Winfried Lamersdorf University of Hamburg, Germany
Nadia Gámez University of Málaga, Spain
Marc Oriol University of Pisa, Italy

Program Committee

Marco Aiello University of Groningen, The Netherlands
Vasilios Andrikopoulos University of Stuttgart, Germany
Antonio Brogi University of Pisa, Italy
Florian Daniel University of Trento, Italy
Valeria de Castro Universidad Rey Juan Carlos, Spain
Gregorio Díaz Universidad de Castilla La Mancha, Spain
Schahram Dustdar Vienna University of Technology, Austria
Laura González Universidad de la República, Uruguay
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Massimo Mecella University of Rome La Sapienza, Italy
Andreas Metzger University of Duisburg-Essen, Germany
Claus Pahl Dublin City University, Ireland
Ernesto Pimentel University of Málaga, Spain
Pascal Poizat Université Paris Ouest, France
Franco Raimondi Middlesex University, UK
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Romain Rouvoy University of Lille 1, France
Quanzheng Sheng The University of Adelaide, Australia
Massimo Tivoli University of L’Aquila, Italy
Gianluigi Zavattaro University of Bologna, Italy

A Lightweight Method for Analysing
Performance Dependencies Between Services

Arjan Lamers1,2 and Marko van Eekelen2,3(B)

1 First8 BV, Nijmegen, The Netherlands
a.lamers@first8.nl

2 Open University of the Netherlands, Heerlen, The Netherlands
3 Radboud University Nijmegen, Nijmegen, The Netherlands

marko@cs.ru.nl

Abstract. For many applications, performance is paramount. For exam-
ple, to improve conversion rates in e-commerce applications or to comply
with service level agreements. Current trends in enterprise level archi-
tecture focus on designing and orchestrating services. These services are
typically designed to be functionally isolated from each other up to a
certain degree. During the design phase as well as when the application
is deployed, choices have to be made how services interact and where
they need to be deployed. These choices have a profound impact on
the responsiveness of an application as well as on which performance
can be made. In this paper we propose a methodology to describe and
analyse performance dependencies between services. The resulting model
can then be used to assist in designing a service oriented architecture and
improving existing solutions by pointing out performance dependencies
of services.

Keywords: Services · Deployment · Architecture · Design

1 Introduction

Current trends in enterprise level architecture are focused on delivering true
components. Service Oriented Architecture (SOA) and Microservices are trends
that aim at delivering components (services) [7,8,14,16] that can be used as
ready-made parts. Building software products should then become a matter of
orchestrating these services. A service in SOA is defined by OASIS [14] as a
mechanism to enable access to one or more capabilities, where the access is pro-
vided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the service description. Typically services are grouped
together in a domain and each domain is isolated to some degree from other
domains. This degree of isolation can mean that different domains are managed
by different companies or departments, that they are hosted in different data
centres, on different machines or that they don’t share e.g. the same database
schema. This degree of isolation has profound impact on the resulting software

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 93–110, 2016.
DOI: 10.1007/978-3-319-33313-7 7

94 A. Lamers and M. van Eekelen

product: it impacts how software changes can be managed but also has an effect
on performance issues [11] such as latency and scalability.

The main goal of the methodology described in this paper is to analyse
performance dependencies of services in an architecture. In general, not all parts
of an architecture have the same performance constraints. Some areas can be
more focused on latency, others on throughput. Some services may be governed
by a service level agreement (SLA) while others are less business critical. If
parts of a system can be isolated and have their own constraints, the resulting
product can be simpler and cheaper. Moreover, to be able to guarantee that
a specific part of a system has a certain level of performance, it cannot be
influenced by parts of the system that are not under full control (e.g. public
API’s). This method does not attempt to quantify performance aspects; doing
so would require a detailed knowledge on the actual implementation. These are
either not yet known (in the design phase) or prone to change due to functional
or hardware changes. Furthermore, not all services may be owned by the owner
of the architecture or are exposed to third parties. For example, traffic on public
API’s might be possible to be estimated, but in the event of marketing campaigns
or DDOS attacks, these averages are not representative anymore. In these events,
even a low order relationship between the API and other services might still be
enough to degrade the system performance as a whole. It emphasises latency
(responsiveness) although it reveals information about throughput bottlenecks
as well.

The method has been used by the author at different stages of various
projects. During design it helped to determine how to design interaction between
services as well as to define domain boundaries. It was also helpful with inves-
tigating performance problems in an existing architecture. Proposed changes
were again validated using the model. Fellow architects in those projects were
able to quickly explain performance issues more concisely using the methodol-
ogy without having to invest in expensive tests or complex modelling. Business
stakeholders were able to understand performance consequences of decisions and
understand the reasoning behind the proposed changes. The methodology gives
a more concise and formal output than the ‘gut feeling’ that a proposed change
might improve the performance of an architecture.

The model assumes a given set of services. Higher level abstractions such as
processes, or lower abstractions such as components are all flattened to basic
services. By modelling the way the services interact it is possible to predict
potential performance issues and solve them. It also helps in determine which
services can be grouped together from performance point of view and as such can
help in (re)defining domains. The interaction between services is described by
making a distinction between a flow of information and a flow of initiative: is the
information pushed or pulled? Rather than focusing on describing an algorithm
or optimising a protocol between services, the method focuses on questioning
if two services should be connected at all and, if so, which service should take
initiative. In any sufficiently complex architecture, information can take a signif-
icant amount of time to travel through the system. Optimising that information

A Lightweight Method for Analysing Performance Dependencies 95

latency while at the same time managing performance constraints is not trivial.
The method first focuses on trying to solve this issue on the architecture level.
The proposed abstraction is simple enough to allow discussion between software
architects and domain experts, negotiating on performance aspects, while still
expressive enough to meaningfully guide an architecture. Local optimisations
can follow afterwards.

The methodology consists of three steps. First an architecture is defined in
Sect. 2. This describes the services and their interactions. Also, isolation con-
straints can be formulated. Next, these services have to be run on machines,
potentially having more than one instance of a service. This is described in
the deployment allocation (Sect. 3) of the model. In Sect. 4 managing state is
discussed. Based on the resulting optionality of connections, this deployment
allocation can be configured by choosing which connections between machines
are optimal. This results in a deployment configuration as described in Sect. 5.
In each step, the isolation constraints of a service can be verified.

2 Architecture Layer

2.1 Service Interaction

In SOA, services are consumed by work flows or processes. Services can also be
composed out of other services, making the model fractal. In this methodology,
everything is flattened to a service. If a service consists of components that can
be deployed by themselves (e.g. a service using a database), those components
are considered services as well.

A service is considered a vertex in a graph. The edges represent calls from one
service to another. There are two properties to be considered when describing
interaction between two services. The first property is the flow of information,
the second defines which service takes initiative. If service a has information that
is required by service b, that information can be pushed from a to b (Fig. 1).

a b

Fig. 1. a pushes to b

ab

Fig. 2. b pulls from a

The initiative can also originate from service b. In this case, a is pulled by b
(Fig. 2). Information still flows in the same direction, but the initiative is placed
with the receiver instead of the sender.

A push from a to b is considered a fire-and-forget operation. It is assumed
that even if b is busy, a can continue its work without significant delay. If a
confirmation of a push which can have a significant delay (e.g. the confirma-
tion contains a business result) is required information flows back from b to a.
Therefore, an additional edge is required: a pulls from b.

96 A. Lamers and M. van Eekelen

gui db

Fig. 3. Gui and db

gui db

Fig. 4. Information graph

gui db

Fig. 5. Initiative graph

As an example throughout the paper, consider an online bookstore. In its
basic form, it consists of a web application consisting of a graphical user interface
(gui) and a database (db), as shown in Fig. 3.

In this scenario, the user interface allows users to enter new information or
change information in the database. Thus, it pushes information as entered by
the user to the database. The user interface also can query the database so it
also pulls information from the database. Information flows in both directions
(Fig. 4). All initiative, however, always originates from the user interface. In
other words, this is a classical client-server setup; without a client, the server
(db in this case) has nothing to do (Fig. 5).

Formally, an architecture A consists of a vertex set S for the services and
an edge set CA representing the calls between services. A typed edge (p, s, t)
with p ∈ {push, pull} going from source s to target t is defined as having s as
the source of information. Thus, in the example above, S = {gui, db}, CA =
{(push, gui, db), (pull, db, gui)}.

This model can be translated to two different graphs, an information flow
graph and an initiative graph:

The information graph Iinf for a given architecture A is defined as:
Iinf (A) = (S,E), where S is the same service set of A. The edge set E is

defined as: Einf (A) = {(s, t)|(p, s, t) ∈ CA}.
The initiative graph Iint for a given architecture A is defined as:
Iint(A) = (S,E), where S is the same service set of A. The edge set E is

defined as: Eint(A) = {(s, t)|(p, s, t) ∈ CA∧p = push}∪{(t, s)|(p, s, t) ∈ CA∧p =
pull}, reversing the pull edges.

2.2 Stress and Responsiveness

In this model, a couple of properties can be defined.
The first property is stress. The stress graph (Fig. 6) of a service s is defined

as the subgraph of vertices that can reach the service s in the initiative graph,
including s itself. This means that the amount of work to be done on that service
s is influenced by all the services in the stress graph. For the example above, the
stress set STR of vertices in the stress graph are: STR(gui) = gui, STR(db) =
{gui, db}. This can be interpreted as follows: an increased load on gui will lead
to an increased load on db, but an increase in load on db does not lead to more
load on gui.

More formally, for a service S in an architecture A, the stress set STR is
defined as:

STR(s) = {s} ∪ STRpush(s) ∪ STRpull(s), with:
STRpush(s) =

⋃
(p′,s′,t′)∈CA{STR(s′)|s′ = s ∧ p′ = push}

A Lightweight Method for Analysing Performance Dependencies 97

STRpull(s) =
⋃

(p′,s′,t′)∈CA{STR(t′)|t′ = s ∧ p′ = pull}
To determine if a service can quickly respond to a request, the above prop-

erties are not enough. The stress indicates what impacts resource usage but
the service might also require information from another service. If the database
has a high load, it will still impact the user interface: retrieving information
will be slower. To represent this a second property is introduced, responsive-
ness (Fig. 7), combining the stress on the service s with the stress of the ser-
vices from which it pulls. For the example above, the responsiveness RES is
RES(gui) = RES(db) = {gui, db}.

The responsiveness set (Fig. 7) is thus more formally defined as follows:
RES(s) = STR(s) ∪ ⋃

(p′,s′,t′)∈CA{RES(s′)|p′ = pull}

a

c b

e d

g f

i h

Fig. 6. STR(a) = {a, b, c, d}

a

c b

e d

g f

i h

Fig. 7. e /∈ RES(a)

2.3 Analysing an Architecture

In any architecture, different services have different non-functional requirements.
Typically, a user interface has to respond quickly to an end-user’s actions. The
model cannot give a quantitative measurement. However, it can reveal which ser-
vices impact the user interface. This allows us to define constraints that enforce
a disconnect in performance between two services. For example, consider a sys-
tem with, amongst other services, a user interface and a public API. A typical
constraint might be that the user interface should always be responsive, no mat-
ter the (uncontrolled) load on the public API. This constraint can be proven in
the model by showing that the public API is not in the responsiveness set of the
user interface.

We can thus define the following two constraints:

Definition 1. A service a is weakly isolated from b if b /∈ STR(a).

Definition 2. A service a is strongly isolated from b if b /∈ RES(a).

98 A. Lamers and M. van Eekelen

3 Deployment Allocation

The next step is to describe the machines on which the services will be deployed.
Larger systems might require multiple (virtual) machines. If multiple machines
are available, the option arises to deploy services isolated on machines or to
combine a subset of them on a single machine. A service can even be deployed
multiple times to be able to handle more traffic.

If two services are deployed on the same machine, they will share resources
and thus their stress will be shared. A perfectly scalable architecture might thus
be deployed in such a way that it looses its responsiveness properties. On the
other hand, deploying two communicating services on separate machines will
introduce additional network latency. Furthermore, since it is typically assumed
that a network might fail, the two services will have to deal with CAP problems.
To analyse this, a deployment layer will be added to the model.

A deployment allocation for an architecture A is a set of machines with each
machine running a subset of A’s services. The calls made between services in A
are expanded to connections in the deployment: for each call from s to t in the
architecture, a similar connection is made between every machine that runs s
and every machine that runs t (Fig. 8).

Back to the bookstore example application. Initially, it might be deployed on
a single machine, running both the gui and the db. If the bookstore is successful,
the traffic to the website will increase. At some point, the single machine does
not have enough resources to manage the traffic. Typically, the easiest way to
scale up is to vertically scale by buying bigger hardware, or dividing the services
over multiple machines as in Fig. 9. A next step, assuming that the bottleneck
is the gui as it often is, could be to horizontally scale by deploying more than
one instance of a service on multiple machines, as seen in Fig. 10.

In this example, machine 1 and 2 contain a deployment of the service gui.
Machine 3 contains a deployment of the service db.

A deployed service σ for service s on machine m is defined as σ = (s,m) ∈ Σ.
A deployment allocation D is graph with vertex set Σ of deployed services and
an edge set of connections CD.

1

gui db

Fig. 8. 1 = {gui, db}

1 2

gui db

Fig. 9. 1 = {gui}, 2 = {db}

1

2

3

gui1

gui2

db

Fig. 10. 1 = 2 =
{gui}, 3 = {db}

A Lightweight Method for Analysing Performance Dependencies 99

For convenience, the set of machines within D is defined as M = {m|(s,m) ∈
Σ}. The deployment set of a service s is defined as the set of machines that deploy
s: DEP (s) = {m|(m, s) ∈ Σ}.

A machine holds a subset of services and all services should be deployed:
∀(s,m) ∈ Σ : s ∈ S and ∀s ∈ S : ∃(s,m) ∈ Σ.
The edge set is derived from the services and holds a reference to the original

call:
CD =

⋃
(pa,sa,ta)∈CA{((pa, sa, ta), sd, td)|sd = (sa,m) ∧ m ∈ DEP (sa), td =

(ta, n) ∧ n ∈ DEP (ta)}.

3.1 Analysing a Deployment Allocation

Similar to the properties STR and RES as defined in the context of an architec-
ture, we can define analogue properties for machines and services in the context
of a deployment. Services deployed on the same machine share resources such as
memory or cpu. Therefore they share stress.

The isolated stress of a deployed service (s,m), i.e. the stress without con-
sidering other services on the same machine, is defined in a similar way to the
stress of a service:

str(σ) = {σ} ∪ strpush(σ) ∪ strpull(σ)
strpush(σ) =

⋃
((p′,s′,t′),σ′,ς′)∈CD{str(ς ′)|σ′ = σ ∧ p′ = push}

strpull(σ) =
⋃

((p′,s′,t′),σ′,ς′)∈CD{str(ς ′)|ς ′ = σ ∧ p′ = pull}
The actual stress of a service s on machine m is thus simply the stress of

machine m, STR(s,m) = STR(m) =
⋃

(s′,m)∈D str((s′,m)).
We can now also define the responsiveness of a service on a machine. While

stress is automatically shared between services (since they share resources), the
responsiveness of two services on a different machine might still be different
since they can pull from different sources. The responsiveness of a service s
on the machine m is thus defined as the stress of the machine m united with
the responsiveness of all deployed services that are pulled from service s. More
formally,

RES(s,m) = STR(m) ∪ ⋃
((p′,s′,t′),σ′,ς′)∈CD{RES(σ′)|p′ = pull}

We can thus redefine the isolation constraints on deployment allocation level:

Definition 3. A service a is weakly isolated from a service b if
∀m∈DEP (a)∀(s′,m′)∈STR(m)s

′ �= b.

Definition 4. A service a is strongly isolated from a service b if
∀m∈DEP (a)∀(s′,m′)∈RES(m)s

′ �= b.

As an example, consider Fig. 10 again. The gui’s have been horizontally
scaled, but how effective is that? The stress of the machines in this example is:

STR(1) = {(gui1, 1)}, STR(2) = {(gui2, 2)}, STR(3) = {(gui1, 1), (gui2, 2),
(db, 3)}

The responsiveness of the deployed services are:
RES(gui1, 1) = RES(gui2, 2) = RES(db, 3) = {(gui1, 1), (gui2, 2), (db, 3)}.

The stress property indicates that all machines provide stress on the db, making

100 A. Lamers and M. van Eekelen

it a likely bottleneck. Furthermore, while the gui deployments don’t share stress,
they still influence each other in responsiveness: if one gui puts a high load on
the db, it will impact the other gui ’s responsiveness.

Thus, both gui services are only weakly isolated from each other, not strongly
isolated.

There are also some new properties to be discussed. In a distributed deploy-
ment (a deployment with |M | > 1), communication between two machines is
done via network calls. These are orders of magnitude slower than local calls.
Therefore, to reduce latency in a system, it is necessary to reduce the number
of network hops. Secondly, since network connections are more prone to break,
it is more important to define a consistency model which allows for faulty com-
munication channels. To avoid network hops, one could collocate two services on
the same machine. This, however, will result in them sharing stress.

A network hop or non-local connection is a connection that has its source
and target services on different machines.

Thus for a connection c, with c = (c′,m′, n′):

local(c) =

{
0 when m′ = n′

1 when m′ �= n′

There are two important properties that are impacted by the network hops.
Firstly, the responsiveness is not only impacted by stress on the machines, net-
work latency is an important factor as well: responsiveness network depth. The
responsiveness network depth RNET (s,m) for a service s on a machine m is
defined as the maximum number of network hops to any other service which can
be reached by s via pull requests. Note that if there are cycles in the graph, the
network depth is defined to be infinite. More formally, assume a pull-graph P
for (m, s) is a weighed graph derived from a deployment D with the same vertex
set M . The edge set for P is defined as all the pull edges for s as well as all pull
edges for the source vertices of those edges. An edge c in the pull-graph derived
from edge c′ in the deployment has weight local(c′). RNET (s,m) is now the
maximum of the sum of weights of each branch from s. If the graph is not a tree,
RNET (s,m) = ∞.

Secondly, to accurately define a consistency model allowing for failing net-
work connections, one needs to take into account the full source of information:
consistency network depth. The first property to discuss is consistency. As with
any system, there is a delay whenever information is passed from one point to
another. As such, for a service to have a world view on its state consistent with
the whole chain, any and all change in information it requires has to have reached
the service. The subgraph of all vertices that can reach a service s in an archi-
tecture, including s itself, in the information graph is defined as the consistency
graph for s. The consistency set for s is the set of vertices within the consistency
graph. For the group of services in this set, consistency model limitations will
hold (e.g. CAP limits). Either these services are deployed on a non-partitionable
system, or availability/consistency limitations will arise. More formally, for a
service s in an architecture A, the consistency set CON is defined as the set of
vertices including s that can reach s in the information graph Iinf (A):

A Lightweight Method for Analysing Performance Dependencies 101

CON(s) = {s} ∪ ⋃
(p′,s′,t′)∈CA{CON(s′)|s′ = s}

Similar to RNET , the consistency network depth CNET (s,m) is defined as
the maximum number of network hops to any service that provides information
for s. The same definition applies, only using the information graph Iinf (A)
instead of the pull graph.

These properties can be used to analyse and reduce the number of network
calls for a specific service. CNET gives an indication from how far information
has to come, thus increasing consistency model complexity, whereas RNET
indicates how much the network impacts the responsiveness.

4 State

When distributing a service, there is always the matter of synchronizing state.
Changes in one instance of a service might impact another instance of a service.
This impacts how an application can be deployed and which calls and connections
are required. To reflect this, the model supports three kinds of statefulness for
a service, stateless, stateful and partitionable.

These are defined as follows:
A service is stateless if, when there are multiple instances deployed of that

service, they do not require any exchange of information between those instances
to be able to fulfil all requests. In other words, each instance can be deployed
fully isolated while still be able to serve all requests.

A service is partitionable if, when there are multiple instance deployed of
that service, a specific instance can handle the request in isolation. The instance
that is able to handle a specific call must be determined based on the content of
that call. Each instance holds its own subset of the state and can manage that
independently. A call is called routable if the correct instance can be determined
based on the parameters of the call.

A service is stateful if, when there are multiple instance deployed of that ser-
vice, they do require to synchronise state in order to be consistent with each other.

Recall that an architecture A has a vertex set of services S. A service
s ∈ S with name n and statefulness p is defined as a tuple (n, z) with
z ∈ {stateful, stateless, partitionable}. For a partitionable service, it is further
relevant on which dimensions it can be partitioned. To simplify, it is assumed
there is only a single dimension on which a service can be partitioned if it is
partitionable. If s = (n, z), z = partitionable then its partitioning dimension
should also be defined as PART (z).

In the bookstore example, the architecture could be further refined to include
an explicit business layer service. This might be deemed necessary due to an
increase in features or due to a need for different front ends. The bookstore’s
architecture will then look like the following classical 3-tier architecture:

The graphical user interface can be scaled to have multiple instances. When a
user logs in, he or she has a session at a specific instance and as such all requests
related to that session can be managed by that single instance in isolation. Thus,
the gui is partitioned by sessions.

102 A. Lamers and M. van Eekelen

b dg

Fig. 11. Partitioned gui (g), stateless business layer (b) and stateful database (d)

The business layer handles requests from the gui, interprets them, applies
business rules and uses the database to store information. It does not keep any
state between calls so if there are multiple instances of the business layer service,
they can act isolated. The business layer is thus stateless.

The database stores the information as requested by the business layer. If
there is more than one instance, these instances need to be synchronized in order
to stay consistent. Thus, the database is stateful.

4.1 Deploying with State

When an architecture is deployed, the statefulness of a service determines how it
affects the different connections resulting from calls between services. A call can
be given as either routable or a broadcast in this model. Routable means that a
single instance of a service is sufficient to handle the request and that it is known
which instance this is. A broadcast means that all instances of a service need to
handle the request. A routable call to a stateless or stateful service means that the
request can be handled locally, a broadcast to these services is probably a cache
invalidation or some other global effect. A routable call to a partitioned service
means that by the nature of the request or its payload it can be determined which
partition holds the subset of data required to process the request. A broadcast
is necessary if it is unknown which partition holds the data, or all partitions are
required to process the request. Graphically, this is indicated by the color of the
service s (based on PART (s)) and the color of the connection (again based on
PART (s)) where s is the source in the information graph.

Recall that an architecture A has an edge set CA with a call c = (p, s, t) ∈ CA.
To represent the routability property, the tuple is redefined as c = (p, s, t, r) ∈
CA where r ∈ {routable, broadcast}.

When there is more than one instance of a stateful service, these instances
need to synchronize. For that to happen, information has to be exchanged and
that means that broadcast calls between all instances exist. By convention, these
calls are designated as broadcasting push connections. For the properties as
defined until now, it does not matter if it is push or pull since the call is from a
service to itself. To indicate if a call is a broadcast or if it is routable, respectively
double and single arrow heads are used in an architecture graph as in Fig. 12.

In extending a deployment graph from an architecture graph, connections
are derived from calls. The connections will derive a new property optionality
which can be deployment optional, runtime optional or compulsary, based on the
type of service and if the call is routable or not.

A connection is by definition compulsary if the call is a broadcast, since all
instances of a service have to be reached.

A Lightweight Method for Analysing Performance Dependencies 103

d

Fig. 12. Stateful database (d) needs to synchronize using a broadcast

A connection is deployment optional when, for all the connections in a deploy-
ment for a specific call, only one is necessary for the system to function correctly.
All others can be left out of the deployment. If the target of a call in the ini-
tiative graph is either stateless or stateful, any of the deployed instances can be
the target for the connection. Each instance can handle the request. This type
of connection is considered deployment optional. A push to or a pull from any
stateless or stateful service is considered deployment optional by default.

A connection is runtime optional when, for all the connections in a deploy-
ment for a specific call, only one connection is used in a specific instance. Which
one it is, is determined at runtime. Other connections may be used for different
calls. If the target of a call in the initiative graph is partitioned and the call
is routable, only one connection is used runtime to the specific instance of the
partitioned service. This type of connection is considered runtime optional.

A connection c ∈ CD is now defined as c = (c′, σ, ς, o), with as before
c′ ∈ CA and having a deployed service σ ∈ Σ as a source of information and
ς ∈ Σ as a target. The new property o ∈ {runtime − optional, deployment −
optional, compulsary} is added.

As an example, consider deployments for the architecture as defined in the
bookstore’s 3-tier architecture (Fig. 11). If two instances for each service are
created, the deployment as seen in Fig. 13 is the result. Here the dotted lines are
deployment optional, the solid lines are compulsary. The two database instances
are synchronized in what is generally called a master-master replication. Other
database replication scheme’s would require a change in architecture first. For

1

2

3

4

5

6

d2

d1g1

g2

b1

b2

Fig. 13. Deployed partitioned gui (g), stateless business layer (b) and stateful data-
base (d)

104 A. Lamers and M. van Eekelen

example, read-only slave configurations require that the client (in this case the
business layer) knows which database to use for writes and which for reads.
Thus, without changing the architecture, this is the resulting deployment.

If the statefulness of the business layer is changed, the connections will
change as well. For example, assuming the business layer is partitioned as well,
the graph will look like Fig. 14, where the dashed lines represent the runtime
optional connections. Imagine for example that each business layer instance ser-
vices different payment options (e.g., mastercard transactions go to b1 and visa
to b2). In this example, the g and b services use different partitioning dimensions
(PART (g) �= PART (b)): the gui is partitioned by user sessions whereas the
business layer by payment options. The connections from g to b thus have to
be routable on PART (b). As a last example, if the statefulness of the business
layer is stateful, the graph will look like Fig. 15. This is quickly the case if the
business layer manages its own state instead of delegating to the database.

1

2

3

4

5

6

d2

d1g1

g2

b1

b2

Fig. 14. Partitioned business layer

1

2

3

4

5

6

d2

d1g1

g2

b1

b2

Fig. 15. Stateful business layer

5 Deployment Configuration

The deployment allocation assignes services to machines. Given a deployment
allocation, the optionality of the connections between machines is known and
some of those connections are redundant. Based on this, non optimal connec-
tions can be pruned and configuration choices can be made. Some of these choices
are obvious improvements, while others have both advantages and disadvan-
tages. Choosing which connections to actually configure results in a deployment
configuration.

5.1 Deployment Optional Pruning

In case of deployment optional connections, if one of the connections is local
than that one is generally preferred; there is no obvious reason to use a non-local
connection since all are equal. By picking the local connection, that connection is
no longer deployment optional, there is nothing else to choose from. For example,
considering the bookstore 3-tier architecture (Fig. 11). Due to budget constraints

A Lightweight Method for Analysing Performance Dependencies 105

or other reasons, the gui and the business layer are to be deployed together on
the same machine, resulting in a deployment allocation that will initially look
like the graph in Fig. 16.

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 16. Initial

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 17. Static load balancing

1

2

3

5

4lb

d2

d1
g1

g2

b1

b2

Fig. 18. Dynamic load balancing

The connections on the left side are all deployment optional and result from
g and b having multiple instances. As such, all possible connections are derived
from the architecture into the deployment allocation. However, since only one
connection for each call is required, non-local connections can be removed, avoid-
ing network calls when not required. For the deployment optional calls between
the business services b1 and b2 to the databases instances d1 and d2, a couple
of options are possible. One obvious choice is to assign each business service
its own database. This would lead to Fig. 17 with each business service having
compulsary connections to a dedicated database. Another is to dynamically load
balance request between the databases. That would require an additional load-
balancer service (lb) which routes the traffic to one of the database instances
(Fig. 18). The connections from the business service to the loadbalancer become
compulsary, while the connections from the loadbalancer to the database will
be runtime optional; only one is required. While having a load balancer might
lead to a more evenly distributed load over both database instances, the load
balancer by itself is another bottleneck and network hop.

106 A. Lamers and M. van Eekelen

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 19. Initial

1

2

3

4

d2

d1g1

g2

b1

b2

Fig. 20. Pruned as processing units

5.2 Pruning Runtime Optionals

For runtime optional connections resulting from partitioned services, some prun-
ing options are possible as well. If both the source s and the target t of a con-
nection are partitionable, share the same partitioning dimension and are always
codeployed, the deployment configuration can exploit that by assigning the same
partitions for instances of s and t. The assumption here is that a call does not
change routing. If the use case requires a different routing, it should be marked
as a broadcast. If this assumption holds, the machine which holds both s and t
can be treated as a “processing unit” which deliver all functionality for a subset
of partitions.

As an example, recall the partitioned business layer architecture in Fig. 14.
Each business layer served a subset of payment methods (e.g. mastercard to b1
and visa to b2). It might be beneficial to partition the database in a similar way,
storing only mastercard transactions in one instance, and visa transactions in the
other. This way, both database instances can operate independently, resulting
in the deployment allocation as found in Fig. 19. The consuming services, in this
case a differently partitioned user interface g, should be able to route its calls
to one of the processing units formed by machines 3 or 4. Pruned, this could be
reduced to Fig. 20.

6 Architectural Patterns

To resolve performance issues, there are a number of technical patterns available
that will isolate service performance to some degree. In this section common
patterns like caches and queues are discussed, modeled and compared using the
method. The most basic patterns, push and pull have been discussed in the first
chapter as they are the building blocks of the model.

A cache pattern is used to keep state readily available if it has been calculated
or received before. This way, the consumer is decoupled from the performance
of the producer. A cache can behave in a lazy way, and only retrieve values
when they are requested as modelled in Fig. 21. Here, the consumer c pulls the
information from a cache store (cdb). If this store does not contain the value,

A Lightweight Method for Analysing Performance Dependencies 107

it retrieves it from the producer. While the stress of the consumer is decoupled
from the producer, the model shows that the responsiveness is still dependent on
the producer. In effect, the cache has no effect in the model since the producer
and consumer are not fully isolated in the case of a cache miss.

Caches can also behave in an eager fetching way as modelled in Fig. 22. Here
the cdb cache store is filled by an independent cache reader which pulls the orig-
inal information from the producer. This can be a scheduled or an asynchronous
task. In this scenario, the consumer’s stress is isolated but the producers stress
is depending on cr. The responsiveness of the consumer is now only dependent
on cr and cdb. The cr service can thus be tuned to balance the stress on the
producer versus the responsiveness of the consumer.

1 2

p ccdb

Fig. 21. Typical lazy cache

1 2

p ccdbcr

Fig. 22. Typical eager cache

A queue pattern is used to decouple a flow between services. One service
pushes a message onto the queue, another service can pick it up at any time. See
Fig. 23. The producer p can always deliver its messages and as such is unaffected
by the performance of the consumer c. The model shows this as well: the stress
and the responsiveness of p only depends on p itself. The consumer c also only
receives stress from itself, but the responsiveness is impacted by both the queue
(q) itself as well as the producer p. A queue reader or writer might be added
(similar to the cache reader above, or even by adding a complete cache) to be
able to improve responsiveness of the consumer.

1 2 3

qp c

Fig. 23. A queue between p and c

In Table 1 presents a summary on how these architectural patterns behave
according to this model. Note that the more performance isolation a pattern
offers, the more elements are involved in maintaining consistency. For a queue,
the consistency network depth also increases. As can be predicted, caches and
push calls are excellent for improving responsiveness since they decrease the
distance of accessing data (decreasing RNET (s)).

108 A. Lamers and M. van Eekelen

Table 1. Isolation levels of patterns

Pattern p c RNET (c, 2) CON(c, 2) CNET (c, 2)

Push Strong - 0 {c,p} 1

Pull - Weak 1 {c,p} 1

Lazy cache - Weak 0 {c,p,cdb} 1

Eager cache Strong Strong 0 {c,p,cdb, cr} 1

Queue Strong Weak 1 {c,p,qdb} 2

7 Related Work

In this paper we have presented a novel notation. Other notations, such as UML
sequence diagrams or Petri nets, also exist. Sequence diagrams can express par-
allelism and ordering of actions, expressing interaction between services quite
detailed. Petri nets allow concurrency and synchronisation analysis in distrib-
uted systems and as such require details on how state is synchronised. These
details are very useful within a specific service or domain but less useful between
domains since these are, by definition, reasonably isolated. Instead, our notation
leaves out algorithmic details and focuses on expressing the distinction between
the source of information and initiative on a higher abstraction. This allow a
focus on the question whether the architecture or the deployment needs to change
or whether some latency requirements can be loosened, before trying to optimise
it in the implementation.

Research has been done which focuses on predicting a quantified throughput
of a (workflow in a) Service Oriented Architecture, e.g. [3,4,6,10,17]. In general,
these models require load functions, detailed descriptions or actual implementa-
tions for each service. Determining load functions and finding reasonable values
for parameters of these models can be quite demanding and might be possible
only quite late in the development process. Additionally, calculating the perfor-
mance of the architecture might not be instant but requires a (relatively) long
simulation. Instead, our work focuses on finding performance isolation between
services without quantifying it. The properties can be quickly derived, even man-
ually up to a certain complexity, and future tooling could extensively compare
alternatives. SLAng [15] provides a precise way of defining SLA’s for services. It
would be interesting to see if some properties could be guaranteed by the model.

Software defined networks [13] decouple the network control decisions from
the actual hardware, making it easier to change deployment configurations, either
manually or automatically.

8 Conclusion

The described method gives insight into how services influence each other with
regards to performance. This can be used to validate and assist in decisions both

A Lightweight Method for Analysing Performance Dependencies 109

on architectural level as well as on deployment. Since the model does not require
concrete details it can be used as a light weight method to drive discussion
and validate performance requirements. Multiple implementations of a simple
example, a bookstore website, were modeled and analysed, providing insight in
difference in performance behaviour. Here the method provides a tangible result
for performance related issues within an architecture. Possible solutions on both
architectural (software) level as well as on deployment level can be compared
and weighed.

Future Work

The methodology described can be applied to both small and larger architec-
tures. For small architectures, this can be done by hand and the results are nat-
ural. For larger architecture tooling is required to derive results and these might
be surprising. A tool is being build to automate calculation of the properties.
This should aid in quickly discovering and analysing deployment scenario’s and
weighing the advantages and disadvantages such as balancing isolation versus net-
work latency. It should also be able to point out possible areas where changes in
the architecture could be beneficial and potentially detect (a subset of) perfor-
mance anti-patterns [5]. Changing the initiative from one service to another, or
edges that are suitable candidates for static or dynamic loadbalancing, could be
auto detected and then alternatives could be compared. Other “Middlepipes” [9]
related products such as circuit breakers as shown in e.g. [12] could be modelled
as well, either as concrete specialisations or by deriving REO connectors [1]. The
properties could be further formalised to derive optimisations for e.g. nested archi-
tectures and deployments. More research is to be carried out to see if we can help
discover consistency models between services based on the initiative and informa-
tion graphs, e.g. to help derive application invariants for [2].

To further validate the approach, the methodology should be applied at full
scale projects in different stages of development or production.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14, 329–366 (2004). http://journals.cambridge.org/
article S0960129504004153

2. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Coor-
dination avoidance in database systems. Proc. VLDB Endow. 8(3), 185–196 (2014).
http://dx.org/10.14778/2735508.2735509

3. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)

4. Brebner, P.C.: Real-world performance modelling of enterprise service oriented
architectures: delivering business value with complexity and constraints. In: ACM
SIGSOFT Software Engineering Notes, vol. 36, pp. 85–96. ACM (2011)

5. Cortellessa, V., Di Marco, A., Trubiani, C.: An approach for modeling and detect-
ing software performance antipatterns based on first-order logics. Softw. Syst.
Model. 13(1), 391–432 (2014)

http://journals.cambridge.org/article_S0960129504004153
http://journals.cambridge.org/article_S0960129504004153
http://dx.org/10.14778/2735508.2735509

110 A. Lamers and M. van Eekelen

6. Ferrer, A.J., Hernández, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C.,
Sirvent, R., Guitart, J., Badia, R.M., Djemame, K., et al.: Optimis: a holistic
approach to cloud service provisioning. Future Gener. Comput. Syst. 28(1), 66–77
(2012)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000). aAI9980887

8. Fowler, M.: Microservices. http://martinfowler.com/articles/microservices.html
9. Jamjoom, H., Williams, D., Sharma, U.: Don’t call them middleboxes, call them

middlepipes. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, pp. 19–24. ACM (2014)

10. Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Trans. Softw. Eng. 32(7), 486–502 (2006)

11. Kratzke, N.: About microservices, containers and their underestimated impact on
network performance. In: Proceedings of CLOUD COMPUTING 2015 (6th Inter-
national Conference on Cloud Computing, GRIDS and Virtualization) (2015)

12. Netflix: Hystrix. https://github.com/Netflix/Hystrix
13. Nunes, B., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T., et al.: A sur-

vey of software-defined networking: past, present, and future of programmable
networks. IEEE Commun. Surv. Tutorials 16(3), 1617–1634 (2014)

14. OASIS: Oasis soa reference model tc. https://www.oasis-open.org/committees/tc
home.php?wg abbrev=soa-rm

15. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In:
Proceedings of the 26th International Conference on Software Engineering, pp.
179–188. IEEE Computer Society (2004)

16. The Open Group: Service oriented architecture: What is soa? http://www.
opengroup.org/soa/source-book/soa/soa.htm#soa definition

17. Zhu, L., Liu, Y., Bui, N.B., Gorton, I.: Revel8or: model driven capacity planning
tool suite. In: 29th International Conference on Software Engineering, ICSE 2007,
pp. 797–800. IEEE (2007)

http://martinfowler.com/articles/microservices.html
https://github.com/Netflix/Hystrix
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition

Automated Prediction of the QoS of Service
Orchestrations: PASO at Work

Leonardo Bartoloni, Antonio Brogi, and Ahmad Ibrahim(B)

Department of Computer Science, University of Pisa, Pisa, Italy
{bartolon,brogi,ahmad}@di.unipi.it

Abstract. Predicting the QoS of a service orchestration is not easy
because of the a priori undetermined behaviour of invoked services,
and because of the non-determinism (alternatives, unbounded iterations,
fault handling) and complex structure (dependencies, correlations) of the
workflow defining a service orchestration. In this paper we illustrate the
practical usefulness of a probabilistic analyser of service orchestrations
(PASO) by showing how it can be fruitfully exploited to predict the QoS
of service orchestrations.

Keywords: QoS · Service orchestrations · Probabilistic analysis ·
WS-BPEL

1 Introduction

Service orchestrations [1] provide an effective way to implement business
processes [2] by suitably combining the functionalities offered by other (pos-
sibly third party) services. Quality of Service (QoS) [3,4] plays an important
role in service-oriented computing, where it can be a key driver for customers’
service selection and determine the achievement of business goals of both service
customers and service providers. It is important to observe that the QoS of a
service orchestration does depend on the QoS of the services it invokes. And the
QoS of a (invoked) service can vary depending on different run-time conditions
[5] such as servers’ workload or network congestion [4]. The ability of predicting
the QoS of a service orchestration is hence of primary importance both during
the design of a service orchestration and for the definition of its Service Level
Agreement (SLA) [6].

Unfortunately, predicting the QoS of service orchestration is not easy, mainly
because of four characteristics of service orchestrations.

1. Different results of service invocations. Each invoked service can return
a successful reply, a fault notification, or even no reply at all. If a fault is
returned, the orchestration will execute a fault handling routine instead of
the normal control flow. If no reply is received, the orchestration may get

Work partly supported by the EU-FP7-ICT-610531 SeaClouds project.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 111–125, 2016.
DOI: 10.1007/978-3-319-33313-7 8

112 L. Bartoloni et al.

stuck waiting for a reply (unless some parallel branch throws a fault). In
either case, the QoS of the orchestration will differ from the case of successful
reply.

2. Non-determinism in the orchestration workflow. Different runs of the
same orchestration can yield different QoS values since the control-flow of the
orchestration workflow is non-deterministic. On the one hand, different runs of
the orchestration can get different service invocation results (success/fault/no
reply). On the other hand, some control-flow structures (alternatives and
iterations) depend on input data which may differ in different runs.

3. Correlations among workflow activities. The above two characteris-
tics suggest to employ a probabilistic approach. However, it is important
to observe that the naive solution of assigning independent probabilities to
workflow activities (e.g., as in [7]) can lead to incorrect results. For exam-
ple, consider the case of a diamond dependency (Fig. 1a). We see that, after
activity A will be executed, either B or C will trigger with 50 % probability,
and then D will be executed with 100 % probability in either case. However,
if the correlation among A, B and C is ignored (Fig. 1b), then there would be
a 25 % probability that neither B nor C will be executed, which would lead
to only a 75 % probability of D being executed — which is incorrect.

4. Complex dependencies among workflow activities. The control flow
imposed by synchronizations on parallel activities (i.e., when a task needs to
wait for another to complete before starting) is more expressive than what
is allowed by parallel execution only (with synchronization barriers at the
end of parallel tasks). This means that workflows which have complex syn-
chronization structures (e.g., as those that can be specified with WS-BPEL
synchronization links [8]) cannot be always decomposed in terms of parallel
and sequential compositions [9].

A

either

B C

D

50% 50%

100

(a) With correlation. (b) Without correlation.

%

100%

B C

D

50% 50%

75%

Fig. 1. Example of correlation among activities.

In [10,11] we have presented an algorithm that employs Monte Carlo sim-
ulations to probabilistically predict the QoS of service orchestrations defined
via WS-BPEL workflows. We have implemented such algorithm in F#.Net

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 113

in an open source application named PASO (Probabilistic Analyser of Service
Orchestrations).

In this paper we aim at illustrating the practical usefulness of PASO by show-
ing how it can be fruitfully exploited to predict the QoS of service orchestrations.
In particular, we will show how PASO can provide answers to various interesting
questions.

– As we already anticipated, a first natural question is what will be the overall
QoS of a service orchestration. For instance, what will be the response time,
reliability, and cost of a given orchestration.

– A second type of interesting questions concerns assessing the effects on the
QoS of an orchestration of replacing one or more of the invoked services with
alternative services, e.g., offered by different providers.

– A further type of questions concerns assessing whether and how modifying
the workflow of an orchestration impacts on its overall QoS.

It is worth observing that workflow designers are not interested only in getting
estimated average values for the aforementioned questions (e.g., “What is the
average response time of this orchestration?”). They are also typically interested
in the distribution of values for such answers (e.g., “What is the probability that
the response time of this orchestration will be more than 2 s?”).

To illustrate the practical usefulness of PASO we will describe PASO at work
on two examples of service orchestrations: A simple orchestration implementing
a cloud-based storage service, and a business process defining how to start a
manufacturing business. Although the two examples are deliberately simple, they
illustrate how the analysis of the QoS of workflows defining service orchestrations
is a time-consuming and error-prone activity even for simple workflows, and how
such analysis can be fruitfully automated by PASO.

The rest of the paper is organized as follows. The two motivating examples of
orchestrations are introduced in Sect. 2, along with a list of QoS-related questions
on them. The PASO analyser is introduced in Sect. 3, and the results obtained
by applying PASO to the motivating examples are presented in Sect. 4. Related
work is discussed in Sect. 5, while some concluding remarks are drawn in Sect. 6.

2 Motivating Examples

2.1 Example 1: A Cloud-Based Storage Service

Let us consider a simple service orchestration (Fig. 2) that allows customers to
store and retrieve data.

The orchestrator exploits two cloud storage services (C1 and C2) as follows:

– If the customer sends a store request, the orchestrator tries in parallel to store
the data both on C1 and C2. If the first storage request on Ci fails (viz., a fault
is returned), the orchestrator retries once (after some time) to store on Ci. If
the data are successfully stored on both C1 and C2, the orchestrator replies
positively to the customer. Otherwise it returns a fault to the customer.

114 L. Bartoloni et al.

Flow

Scope Scope

Link: retrieve

Flow

Link: store

!isStore isStore

Fault Handler

Catch All
Reply Fault

Scope

Invoke C1

Fault Handler

Catch All

Wait (random)

Invoke C1

Scope

Invoke C2

Fault Handler

Catch All
Wait (random)

Invoke C2

Reply

Link: C1Complete Link: C2Complete

Invoke C1

Reply

Fault Handler
Catch All

Scope

Invoke C2

Fault Handler

Catch All
Reply Fault

Sequence

Receive User Request

Assign isStore =
“Request.Action=store”

Reply

Fig. 2. A cloud-based storage service.

Flow

Scope

Scope

Link: retrieve

Flow

Link: store

!isStore isStore

Fault Handler

Catch All
Reply
Fault

Scope
Invoke C1

Fault Handler

Catch All
Wait

(random)

Invoke C1

Scope

Invoke C2

Reply

Link: C1Complete
Link: C2Complete

Invoke C1

Reply

Fault Handler
Catch All

Scope
Invoke C2

Fault Handler
Catch All

Sequence
Receive User Request

Assign isStore =
“Request.Action=store”

Scope

Invoke C3

Link: C3Complete
Fault Handler

Catch All
Reply
Fault

Scope
Invoke C3

Reply

Reply

Fault Handler

Catch All
Wait

(random)

Invoke C2

Fault Handler

Catch All
Wait

(random)

Invoke C3

Fig. 3. Extended cloud-based storage service.

– If the customer sends a retrieve request, the orchestrator first looks up the
data in C1. If the invocation to C1 fails, it looks up the data in C2. If both invo-
cations (to C1 and C2) fail, the orchestrator returns a fault to the customer.
Otherwise it returns to the customer the result of the lookup.

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 115

Table 1. Probability distributions for the cloud storage services.

Success Fault

C1 (99 %, 0.03$, 1 sec) (1 %, 0$, 2 sec)

C2 (90 %, 0.02$, 1 sec) (10 %, 0$, 2 sec)

Let us assume the following probability distributions (Table 1) for the behaviour
of the cloud storage services C1 and C2, in particular for their reliability, cost,
and response time:

– C1 cost is 0.03$ per invocation (for both store and retrieve requests), it is
highly reliable and it completes almost always (99 %) in 1 s. Only in very few
cases (1 %), it returns a fault in 2 s at no cost (0$).

– C2 cost is 0.02$ per invocation, slightly cheaper than C1, it is less reliable than
C1, and in most cases (90 %) it completes in 1 s. Only in few cases (10 %), it
returns a fault in 2 s at no cost (0$).

Let us also assume that:

– 40 % of customer requests are store requests, and 60 % are retrieve requests,
and that

– the random wait (before retrying to store on Ci) will last 0, 1, 2, 3, or 4 s,
each with probability 20 %.

A first natural question is:

(Q1) What are the estimated reliability, cost, and response time of the orches-
trator using services C1 and C2 of Table 1?

Other interesting questions on the QoS of the orchestrator of Fig. 2 are, for
instance:

(Q2) What is the probability that the response time of the orchestrator will be
more than 5 s using services C1 and C2 of Table 1?

(Q3) Will the cost of the orchestrator exceed 0.04$ on average using services C1

and C2 of Table 1?

Another class of interesting questions concerns assessing how the QoS of different
external services may impact on the overall QoS of an orchestrator. Consider for
instance the two alternative offerings for C1 and C2 illustrated in Table 2. An
example of such questions is:

(Q4) Which offering of Table 2 will yield the best QoS (reliability, cost, response
time) for the orchestrator of Fig. 2?

A further class of interesting questions concerns assessing whether and how mod-
ifying the workflow of an orchestrator will impact on the overall QoS of the
orchestrator. For instance:

(Q5) Extending the orchestrator (Fig. 3) so as to exploit one more cloud storage
service C3 (e.g., like the one described in Table 3) will increase the reliability
of the orchestrator?

116 L. Bartoloni et al.

Table 2. Two alternative offerings for the cloud storage services.

Table 3. Probability distribution of a third cloud storage service.

Success Fault

C3 (81 %, 0.01$, 1 sec) (19 %, 0$, 2 sec)

2.2 Example 2: Starting a Manufacturing Business

Let us consider a business process defining how to start a manufacturing business
(Fig. 4). The process, after receiving a user request, starts three activities in
parallel:

– It invokes a RentalAgency service to find a suitable location for manufacturing
the desired product,

– It invokes a LoanAgent service to ask for a loan to fund the business start up,
and

– It invoke a HumanResourceAgency service to find personnel with relevant
skills.

Only after the LoanAgent secures the loan, a BuySupplies service will be invoked.
Furthermore, the process will invoke a RentLocation service only after both
invocations to the RentalAgency service and to the LoanAgent service will have
completed.

Similarly, the process will invoke a HireStaff service only after both invoca-
tions to the HumanResourceAgency service and to the LoanAgent service will
have completed.

Finally, the process will reply to the user only after the invocations to the
RentLocation service, to the BuySupplies service and to the HireStaff service
will have completed.

Let us assume the following probability distributions (Table 4) for the com-
pletion time of the aforementioned activities: For instance, the HireStaff service
is guaranteed to complete within 2 to 15 days. In most of cases (35 %), it is com-
pletes in 4 days. It can also complete in 2, 6, 7, 10, 12 or 15 days with probability
of 10 %, 10 %, 15 %, 15 %, 10 %, 5 % respectively.

A natural question for this example is to estimate the time needed to complete
the execution of the whole business process. It is worth observing that, since

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 117

Flow

Invoke
RentalAgency

Receive User Request

Reply

Invoke
LoanAgent

Invoke
HumanResource

Agency

Invoke
RentLocation

Invoke
BuySupplies

Invoke
HireStaff

Fig. 4. Business process to start a manufacturing business.

Table 4. Probability distributions for the services invoked by the process of Fig. 4.

1 day 2 days 4 days 6 days 7 days 10 days 12 days 15 days

RentalAgency 10 % 30 % 40 % 20 %

LoanAgent 5 % 20 % 35 % 20 % 10 % 5 % 5 %

HumanResourceAgency 10 % 30 % 10 % 30 % 20 %

RentLocation 10 % 40 % 10 % 40 %

BuySupplies 20 % 15 % 35 % 20 % 10 %

HireStaff 10 % 35 % 10 % 15 % 15 % 10 % 5 %

all the invoked services have complex dependencies with each other, answering
questions such as:

(Q6) What is the expected time needed to execute the business process of Fig. 4
under the hypotheses of Table 4?

(Q7) What is the probability that the business process will not complete in time
for the advertised launch date (e.g., in 24 days)?

may be not easy.

3 Overview of PASO

PASO (Probabilistic Analyser of Service Orchestrations) is an open source
application1 developed in F#.Net which implements the probabilistic analysis

1 The source code of PASO is available at https://github.com/upi-bpel/paso.

https://github.com/upi-bpel/paso

118 L. Bartoloni et al.

described in [10,11] to predict the QoS of service orchestrations. Unfortunately,
space limitations allow us to include here only a very brief description of PASO2.

In terms of input/output behaviour (Fig. 5), PASO inputs:

– A WS-BPEL [8] workflow3 defining a service orchestration, and
– A file containing annotations of probabilities4 for outcomes and costs of service

invocations, as well as for the truth of the guards of if and while activities,

and it can output histograms and pie charts summarizing the results of the
performed analysis.

PASO employs a structurally recursive function that associates each WS-
BPEL activity with a cost structure, which is used to compositionally determine
the QoS of structured activities. It is worth noting that, while determining the
cost of a sequence of activities is pretty straightforward, the same does not hold
for instance for flows, which cannot be always decomposed in terms of parallel
and sequential compositions, as shown in [10,11].

To properly model complex dependencies among workflow activities,
PASO employs two different cost composition functions: Both and Delay. Intu-
itively speaking, Both(A,B) denotes the cost of independently executing activ-
ities A and B, while Delay(A,B) denotes how to increase the cost of executing
A with the cost of executing another activity B from which A depends. For
instance, PASO models the cost of flow(A,B) as Both(A,B) only if A and B
are not dependent one another, and it models the cost of sequence(A,B) as
Both(A,Delay(A,B)).

To model different results of service invocations, PASO employs an
outcome and an environment structure to store the outcome (success, fault,
stuck) and the effects of previously executed activities.

Last, but not least, PASO models the non-determinism in the orchestra-
tion workflow and the correlations among workflow activities by employ-
ing Monte Carlo simulations to sample outcome and effects of service invocations
as well as the conditions of alternatives and iterations. Monte Carlo simulation
is useful for our algorithm in two ways. First, at each iteration of Monte Carlo
we can sample the conditions of branches and loops (by using the sampling func-
tion) and deterministically decide what to execute. This, along with recursive
sampling, allows us to address correlations, non-determinism and different invo-
cation results. Second, many QoS properties (e.g., reliability, average cost and
time) can be written as expectation queries.

2 The interest reader can refer to [11] for a thorough description of the analysis imple-
mented by PASO.

3 PASO is able to analyse a subset of WS-BPEL structural (sequence, flow, if, while,
scope, and faultHandlers) and basic (invoke and assign) activities. Other basic
activities (like receive or reply) are considered by PASO successfully executable
with zero cost.

4 These probabilities may be deduced from Service Level Agreements (SLAs), or sta-
tistically inferred from data such as logs or performance counters if available.

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 119

Workflow
(.bpel)

PASO
analyser

QoS and
Probabilities

(Annotations.xml)

Monte Carlo Simulation

uses

Input Output

Fig. 5. Bird-eye view of the input-output behaviour of PASO.

4 PASO at Work on the Motivating Examples

In this section we show how the PASO analyser can be fruitfully exploited to
get answers for the questions that we raised on the two motivating examples
presented in Sect. 2.

4.1 Example 1: A Cloud-Based Storage Service

The first three questions raised in Sect. 2 concerned the quality of service of the
orchestrator of Fig. 2:

(Q1) What are the estimated reliability, cost, and response time of the orches-
trator using services C1 and C2 of Table 1?

(Q2) What is the probability that the response time of the orchestrator will be
more than 5 s using servicesl C1 and C2 of Table 1?

(Q3) Will the cost of the orchestrator exceed 0.04$ on average using services C1

and C2 of Table 1?

The results obtained by running PASO5 on the orchestrator of Fig. 2 and on the
offerings of Table 1 are illustrated in Table 5 and Fig. 6. The results reported in
Table 5 are interesting as, for instance, we see that the estimated reliability of
the orchestrator (99.53 %) is higher than the reliability of both C1 (99 %) and
C2 (90 %). This is due to the fact that in the (less frequent, 40 % of times) case
of store requests the orchestrator tries twice to store on each Ci (if needed), and
in the (more frequent, 60 % of times) case of retrieve requests it succeeds if just
one the Ci responds.

Moreover, the histogram of Fig. 6 shows that:
5 We performed one million iterations of PASO for each group of questions.

120 L. Bartoloni et al.

Fig. 6. Snapshot of PASO results for (Q1), (Q2) and (Q3).

Table 5. Results of PASO for (Q1).

Reliability Cost Time

99.53 % 0.038$ 1.21 sec

– The response time of the orchestrator will be almost always (97.0 %) less than
5 s and that there is a noticeable probability (about 3 %) that it will exceed
the maximum allowed time. Please note that this information is not evident
just by looking at the average response time (1.21 s).

– The average cost is 0.038$, which is slightly below the target average expense
of 0.04$.

Another class of interesting questions mentioned in Sect. 2 concerns comparing
the effects of employing different external services on the QoS of an orchestrator:

(Q4) Which offering of Table 2 will yield the best QoS (reliability, cost, response
time) for the orchestrator of Fig. 2?

The results obtained by running PASO on the orchestrator of Fig. 2 and on the
offerings of Table 2 are summarised in Table 6. Also in this case the results are
interesting as for instance, despite the different reliabilities of the two offerings
(90 % and 90 % vs. 99 % and 81 %), we see that the reliability of the orchestrator
is practically the same with either offering (while cost and response time differ).

A further class of interesting questions mentioned in Sect. 2 concerns assessing
whether and how modifying the workflow of an orchestrator will impact on the
overall QoS of the orchestrator:

(Q5) Extending the orchestrator so as to exploit one more cloud storage service
C3 (e.g., like the one described in Table 3) will increase the reliability of the
orchestrator?

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 121

Table 6. Results of PASO for (Q4).

Reliability Cost Time

Offer 1 98.3 % 0.027$ 1.48 sec

Offer 2 98.4 % 0.034$ 1.36 sec

Table 7. Results of PASO for (Q5).

Reliability Cost Time

Offer 1 96.9 % 0.032$ 1.82 sec

Offer 2 97.1 % 0.037$ 1.66 sec

To answer this question, we used two alternative offerings for C1 and C2

(Table 2) and one offering for C3 (Table 3). The results obtained by running
PASO are summarised in Table 7. By comparing Tables 6 and 7, it is easy to
conclude that adding a third storage service to the workflow is not a good idea
as it decreases the QoS of the orchestrator.

4.2 Example 2: Starting a Manufacturing Business

The two questions raised in Sect. 2 for the orchestrator of Fig. 4 were:

(Q6) What is the expected time needed to execute the business process of Fig. 4
under the hypotheses of Table 4?

(Q7) What is the probability that the business process will not complete in time
for the advertised launch date (e.g., in 24 days)?

The results obtained by running PASO on the orchestrator of Fig. 4 and on the
offerings of Table 4 are illustrated in Fig. 7 and summarised in Table 8.

Table 8. Summary of the results of PASO for (Q6) and (Q7).

Probability of failing deadline Average time

13.7 % 18.68 days

The results are interesting as, for instance, we see that the estimated comple-
tion time of the orchestrator is 18.68 days. The results also show that while the
probability that the business process will complete in 24 days is 86.3 %, there is
a noticeable probability (13.7 %) that it will not do so.

122 L. Bartoloni et al.

Fig. 7. Snapshot of PASO results for (Q6) and (Q7).

5 Related Work

QoS Prediction is not new and many approaches (e.g., [12,13]) and tools (e.g.,
Palladio [14], Kieker [15], Descartes [16]) have been proposed. We briefly discuss
here only the work more closely related to ours.

Cardoso [17] proposed an algorithm to compute the QoS of a workflow com-
position. His approach employs a set of reduction rules to iteratively remove
parallel, sequence, alternative and iterative structures until only one activity
remains. A limitation of that approach is that some complex dependency work-
flow structures cannot be always decomposed in terms of parallel and sequential
compositions, as shown in [9].

Mukherjee et al. [7,9] proposed a algorithm to estimate the QoS of WS-BPEL
compositions. They convert a WS-BPEL workflow into an activity dependency
graph, and assign probabilities of being executed to each activity. While the pro-
posed algorithm can treat arbitrarily complex dependency structures, including
fault handling, it does not take into account correlations among activities which
do not have a direct dependency, and this may lead to incorrect results in some
cases, as shown in Sect. 1.

Zheng et al. [18] studied QoS estimation for compositions represented by
service graphs. They transform a service graph to remove loops, and then cal-
culate probabilities of execution and QoS parameters for each path. Their app-
roach however does not take into account fault handling and only partially deals
with parallelism, not considering arbitrary synchronization links (only flow -like
structures that can be decomposed in terms of parallel and sequential composi-
tions are considered, as in [17]).

Ivanovic et al. [19] proposed a language to represent service compositions, and
they address the problem of correlations. Some of the questions raised in this

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 123

paper, for instance, what is the probability that response time of the orchestrator
is between certain values or exceed a value, can be answered by their approach.
However their language does not account for parallel execution.

Summing up, to the best of our knowledge, our approach advances the state
of the art by handling workflows containing arbitrary dependency structures
and fault handling, and by featuring a more accurate treatment of correlations
among activities. Moreover, differently from all previous work, our approach is
also able to handle unbounded loops.

6 Concluding Remarks

As we observed in Sect. 1, the ability of predicting the QoS of a service orchestra-
tion is of primary importance both during the design of a service orchestration
and for the definition of its SLA.

In this paper we have tried to illustrate the practical usefulness of the proba-
bilistic analysis featured the PASO analyser to predict the QoS of service orches-
trations by answering interesting questions concerning the overall QoS of a ser-
vice orchestration, the effects of replacing one or more of the invoked services
with alternative services as well as of modifying the workflow of an orchestra-
tion. To illustrate the results of putting PASO at work, we have used two gen-
eral examples of service orchestrations — a simple orchestration implementing
a cloud-based storage service, and a business process defining how to start a
manufacturing business — that show how the analysis of the QoS of workflows
defining service orchestrations is, if performed manually, a time-consuming and
error-prone activity even for simple workflows.

We see different possible directions for future work. One of them is to extend
our approach to model other WS-BPEL constructs that we have not discussed
in this paper, like pick or eventHandlers. It is also worth observing that while
PASO currently inputs WS-BPEL workflows, the analysis it implements is not
bound to WS-BPEL and it can be extended to analyse other similar workflow
languages. Another direction for future work is to extend the number of QoS
properties (beyond response time, reliability, and cost) supported by PASO. A
further direction for future work is to improve the efficiency of Monte Carlo
simulations performed by PASO by exploiting some of techniques proposed for
instance in [20,21].

References

1. Papazoglou, M.: Web Services: Principles and Technology, 2nd edn. Pearson Edu-
cation, Toronto (2012)

2. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, New York (2007)

3. Kim, E., et al.: Web Services Quality Factors. Candidate OASIS Standard
Version 1.0. http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cos01/
WS-Quality-Factors-v1.0-cos01.html

http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cos01/WS-Quality-Factors-v1.0-cos01.html
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cos01/WS-Quality-Factors-v1.0-cos01.html

124 L. Bartoloni et al.

4. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S.,
Brandic, I., Kertész, A., Parkin, M., Carro, M.: A survey on service quality descrip-
tion. ACM Comput. Surv. (CSUR) 46(1), 1–64 (2013)

5. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I.,
Hempel, A., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., et al.: Software
engineering meets control theory. In: Proceedings of the 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (2015)

6. Ravishankar, V., Baskaran, R.: A compendium on service oriented architecture
and service level agreements. Int. J. Comput. Appl. 40(1), 13–17 (2013)

7. Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL com-
positions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 378–393. Springer, Heidelberg (2008)

8. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11, April 2007

9. Mukherjee, D.: QOS IN WS-BPEL PROCESSES. Master’s thesis, Indian Institute
of Technology, Delhi, May 2008

10. Bartoloni, L., Brogi, A., Ibrahim, A.: Probabilistic prediction of the QoS of ser-
vice orchestrations: a truly compositional approach. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 378–385. Springer,
Heidelberg (2014)

11. Bartoloni, L., Brogi, A., Ibrahim, A.: Predicting the QoS of service orchestrations.
Technical report, Dipartimento di Informatica, University of Pisa, Italy, March
2015. http://eprints.adm.unipi.it/2329/1/Unipi TR.pdf (Submitted for publica-
tion)

12. Bouillard, A., Rosario, S., Benveniste, A., Haar, S.: Monotonicity in service orches-
trations. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606,
pp. 263–282. Springer, Heidelberg (2009)

13. Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-driven and automated
prediction of service level agreement violations in service compositions. Distrib.
Parallel Databases 31(3), 447–470 (2013)

14. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: Proceedings of the 6th International Workshop
on Software and Performance, pp. 54–65. ACM (2007)

15. van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S.,
Kieselhorst, D.: Continuous monitoring of software services: design and applica-
tion of the kieker framework. Research report, Kiel University, November 2009

16. Kounev, S., Brosig, F., Huber, N.: The Descartes Modeling Language. Technical
report, Department of Computer Science, University of Wuerzburg, October 2014

17. Cardoso, A.J.S.: Quality of service and semantic composition of workflows. Ph.D.
thesis, University of Georgia (2002)

18. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: QoS analysis for web service
compositions with complex structures. IEEE Trans. Serv. Comput. 6(3), 373–386
(2013)

19. Ivanović, D., Carro, M., Kaowichakorn, P.: Towards QoS prediction based on com-
position structure analysis and probabilistic models. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 394–402. Springer,
Heidelberg (2014)

http://eprints.adm.unipi.it/2329/1/Unipi_TR.pdf

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 125

20. Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density
functions from probabilistic functional programs. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 508–522. Springer,
Heidelberg (2013)

21. Stuhlmüller, A., Goodman, N.D.: A dynamic programming algorithm for inference
in recursive probabilistic programs. In: Second Statistical Relational AI workshop
at UAI 2012 (StaRAI-12) (2012)

A Workflow Service Mediator for Automated
Information Processing and Scheduling

Delivery to an Archive

Salvatore D’ Antonio1, Giuliano Gugliara2,
Carlo Francesco Romano1(&), and Luigi Romano1

1 Dipartimento di Ingegneria,
Università degli Studi di Napoli “Parthenope”, Naples, Italy
{salvatore.dantonio,carlofrancesco.romano,

luigi.romano}@uniparthenope.it
2 Comune di Afragola, Afragola, NA, Italy

g.gugliara@comune.afragola.na.it

Abstract. This paper describes our experience in building a service mediator to
address real-life digital preservation problems and an overview of the project’s
progress to date. This article introduces the motivation for this work, describes
the extensible technical architecture and places its approach into the context of
the long term archive. The proposed framework is composed of configurations
and control panels based on Restful WEB technologies, a data-analysis engine
based on stream processing paradigms, and an asynchronous message delivery
service which provides definition task types and effort driven scheduling. The
framework has been implemented as a pilot application in Afragola, a munici-
pality in Napoli (Italy).

Keywords: Stream processing � Message Driven � Long term archiving �
REST � Business process manager � Grammar based parsing

1 Introduction

This paper describes our experience in building a service mediator designed to integrate
heterogeneous document workflow into a long-term archive.

The impetus for our team comes from P.A. (Public Administration) and long term
archives across Italy which have the legal responsibility to safeguard digital documents.
While much progress has been made in digital preservation research, the current state
of the art has shown a lack of integrated solutions for preservation of large-scale digital
collections. A fundamental problem is that all workflow engines exist as stand-alone
applications and are not geared to preserve digital objects. The main goal of this
framework is to provide a common interface for document workflow engines that
delivers the final record (eventually digitally signed) to achieve digital preservation and
long-term archiving.

The rest of the paper is organized as follows. Section 2 reviews the technical
approach especially the REST API design [1]. Section 3 presents the detail of a control

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 126–140, 2016.
DOI: 10.1007/978-3-319-33313-7_9

Panel, that supports a number of key preservation functions to provide an easily
managed preservation system. Section 4 discusses the implementation of REST. With
Sect. 5 we will provide an overview of related work in relevant areas and what we add
in term of contribution to their work and we conclude with Sect. 6.

2 Technical Approach

The software architecture is rooted in the vision of a system that fully decouples any
workflow from the archive, acting as a service mediator that translates the incoming
document into a file compliant with the long term storage. A conceptual view of the
framework is depicted in Fig. 1.

The whole process is divided into these transactional phases that characterize the
life cycle of documents to upload:

1. A File including all records (eventually digitally signed) has to be generated
2. Temporary file mirroring to the Service Mediator database (local database),

returning a receipt with an id-key
3. File delivery scheduling to an entrusted third-part

The engine key design concept is divided into three components: a documents
acceptance system, a queuing and scheduling system and the connection interface to an
archive. This decouples the workflow engine from the outsourced archival hub.
A modular three-tier system is depicted in Fig. 2.

Fig. 1. A conceptual view of the framework

Fig. 2. Framework model

A Workflow Service Mediator 127

We have designed the system as a Restful (Representational State Transfer) [2]
application rather than other architectural forms (such as SOA - Service Oriented
Architecture) especially because it is XML-independent [3]. This allows exchanging
information without adding overhead (i.e. encapsulation of several files within a soap
message, encoded in base64). Due to the lightweight message format feature, REST
also gives more space to system performance optimization. Furthermore the effort
required to build a client to a RESTful service is very small as developers can test such
services from an ordinary Web browser. In the Italian P.A. scenario, where consumer
clients are mostly unknown, REST is a good choice because RESTful interface is more
flexible to meet integration requirements and data are combined easily among different
kinds of applications. A more in-depth discussion of these technologies is given by
Pautasso et al. [4].

There are three kinds of actors in this scenario that can interact with the main
resource “Archive”:

• Uploader: can upload in certain category
• User: can search into certain category
• Operator: he is responsible for the long-term conservation. With the help of the

dashboard described in Sect. 3, the operator must alert for problems and, in some
cases, mitigate the criticality.

2.1 Documents Acceptance System

This layer collects the various document parts and its metadata [5], validates them,
creates a file with an archive-compliant metadata and sends a receipt to the client (the
upload technology is the multipart-form data over the HTTPS).

Entity “File”. The “File” is the entity that abstracts away records and metadata to
archive. The main metadata fields are referenced into a File column and XML data type
is used to store metadata.

Upload Engine. As discussed above, we use a Restful approach to load and search
documents. The upload service is invoked by the specific HTTP action POST:

POST /ServiceMediator/archive/insert/collectionX
Host: localhost:8080
URL:https://localhost:8080/ServiceMediator/archive/Collect
ionX/insert

Every “uploader” is linked to a specific workflow and the system will use the
specific processor to perform further operations on it. A valid multipart/form-data
contains these fields:

1. Text. User, Password
2. Text. Metadata
3. Binary/Octet. Record

128 S. D’ Antonio et al.

The type of the message body is defined by a corresponding header field using
MIME media types [6]. In this example /ServiceMediator/archive/CollectionX/insert/
calls the CollectionX processor and <<multipart/form-data>> is the record to process
and validate. Hence, the CollectionX processor build the entity “File” to be stored
locally (Service Mediator database), generate an unique ID (database side) and starts an
asynchronous task (scheduled delivery); the client has a tracking device to get more
details about the running task that is a resource with its own URI [7]. The server answer
follows:

POST /ServiceMediator/archive/insert/
Server: GlassFish Server Open Source Edition 3.1.2.2
Host: localhost:8080
Content-Type: application/xml
...
<file id=3750>
<deliveryOutcome>0</deliveryOutcome>
<state>1</state>
<stateDescription>...</stateDescription>
<metadataXML>....</metadataXML>
<user>UploaderXY</user>
<timestamp>2015-02-23T13:21:20.449+01:00</timestamp>
<MainRecord>
<fileName>test.out</fileName>
<mime>application/octet-stream</mime>
<filesize>70304</filesize>
<gzipcompression>true</gzipcompression>

</MainRecord>
<number>2</number>
<year>2015</year>
<type_registry>GENERIC</type_registry>

</file>
202 Accepted
Location:
https://localhost:8080/ServiceMediator/archive/Collection
X/3750

The response contains the marshalled entity “File” formatted in a variety of rep-
resentation media types (i.e. the JavaScript Object Notation (JSON) [8] and the
Extensible Markup Language XML) and the URI location, in this way each uploaded
File is traceable. The client can execute a GET to the inserted URI to know the file
current state or even use a DELETE to cancel it.

Search Engine. An authenticated User can retrieve easily a document into a File that
belongs to CollectionX. A typical query is:

A Workflow Service Mediator 129

https://localhost:8080/ServiceMediator/archive/collection
X/query?year=2015&author=John Snow

It does retrieve all files based on query:
QUERY correlateInfo:
SELECT
file name, metadata, blob_pointer,

FROM collectionX
WHERE
year=’2015’ and author=’John Snow’
Blob_pointer is the pointer to the actual raw data.

Cataloging System. We have developed three Collection processors: Collec-
tionSUAP, CollectionSUE and CollectionDigitalContract used in the following
applications.

1. SUAP workflow: a system used by local authority to register new business in Italy.
2. SUE workflow: a manage Planning Permission System.
3. DigitalContract workflow: contracts manager between local authority and

third-parties.

Figure 3 shows the client upload schema.

Once the file is uploaded a validation task takes place. This task can be easily
upgraded to meet future requirements. In our case a syntactic engine (parser) analyses
the correspondences between different information, such as.

• Number of attachments/annexes/annotations cited into the XML and number of
them all actually uploaded.

• Digital signatures validity and/or double digital signatures.

Fig. 3. Clients upload their documents

130 S. D’ Antonio et al.

The Documents acceptance system, through Collection processors, can generate
from the original XML a new one for digital repositories interaction, integrating it with
descriptive, administrative, and structural metadata. A Collection processor provides an
engine (metadata-engine) for incorporating these various components from various
sources under one structure and also makes it possible to aggregate these pieces
together in a record in sync with METS (Metadata Encoding and Transmission Stan-
dard [9]). The core of this engine is based on JAXB (Java Architecture for XML
Binding), a Data binding API that allows the programming to manipulate XML. JAXB
can constitute the tree of Java content objects using an XML as input. The applications
can access directly the Java objects, data content and structure. The whole process is
called unmarshalling. Marshalling is opposite to unmarshalling. Marshalling is a pro-
cess of generating XML instance document according to the Java content tree. The
Collection processor unmarshalls the incoming XML, validate all digital records
uploaded, and store and integrate information into a new Java Object. Hence the
processor marshalls a single XML for interactions with long-term archive.

This functionality is depicted into Fig. 4.

Another problem solved is that each original metadata source provider may have
used different metadata schemas, so it’s possible to have a unified search engine that
provides a single method and language of accessing data.

Finally, the file (records and metadata) is created and stored in the local database
(Fig. 5).

2.2 Queuing and Scheduling System

The second layer allows delegating the message exchange management with server
storage. Files are enveloped and a task is programmed, in order to send the message in
a specified time. A simple schema is depicted in Fig. 6.

Fig. 4. Unmarshaller/Marshaller engine

A Workflow Service Mediator 131

2.3 Connection Interface with Long-Term Archive

The last layer provides the communication interface to the archive, as depicted in
Fig. 7.

As a timer programmed by the queuing and scheduling system expires, the system
connects through the driver interface to the Archive, and then performs the upload.

The envelope contains information about destination, based on its metadata.

Fig. 5. Documents acceptance system schema

Fig. 6. Queuing and scheduling system schema

132 S. D’ Antonio et al.

2.4 File State and Delivery Outcome

The system is capable to make a self-decision and corrective action in case of failure,
deciding whether to take further action. Every decision is logged. Possible states are:

1. INITIALIZED (0) file is initialized with empty parameters.
2. IN_PROGRESS (1), file has just been created with validated input and stored onto

local database. The system will try to deliver it according configuration parameters.
3. SENT (2), the file has been sent to the archive.
4. PAUSE (3), the system will not take further action until the file state is in pause.
5. ERROR (4), the system will not take further action, whose is entrusted to an

operator.
6. INITIALIZATION_ERROR (5); file is not properly initialized and will be never

sent.

If an error occurs during transfer (connection error, network uplink down, etc.) the
system updates the log with the exception information and reschedules delivery. After
three errors logged, the system turns file state into “error”. Possible states of delivery
outcome are

1. TO BE SENT (0), File initialized.
2. SENT CORRECTLY (1), File sent without error.
3. SENT WITH WARNING (2), The archive receipt contains some warnings.
4. ERROR (3); an error occurred during transmission.

3 Control Panel

This system can be easily monitored through a control panel by Operators. It contains a
web dashboard that provides visual control of different events, such as:

• Checking conservation status of each file proved by the Archive receipt.
• Managing conservation transaction and acting appropriate corrective action (e.g.

forcing upload) in case of a negative outcome.

Fig. 7. Connection interface with long-term archive schema

A Workflow Service Mediator 133

• Managing users and roles.
• Check scheduled task.

4 A Real Implementation

A bird’s eye view of the entire system is depicted in Fig. 8.

A client interacts with the system through a Jersey Restful service, consuming its
resources (control panel and upload engine). An Enterprise JavaBeans (EJB) run in the
EJB container, a runtime environment within the GlassFish Server. The EJB container
provides system-level services, such as transactions and security, to its enterprise
beans, which form the core of transactional Java EE application. After the file gener-
ation (see Fig. 8.) a validation task takes place. In case of success the file is sent into a
Java Message Driven Bean (MDB) that mediates between the client and the long term
archive [10]. The client always gets a receipt (in case of success or failure) and can
track the state of its request from an URI that point to the task resource. This service
mediator has been built with three goals in mind:

Fig. 8. Bird’s eye view of the entire system

134 S. D’ Antonio et al.

1. Modularity and Aspect-Oriented Programming (AOP): modularize crosscutting
concerns, by using a concept called aspects [11].

2. Transactionality: the needs are to divide the entire project into transactional phases
(upload and delivery).

3. Restful capabilities: REST does not allow for the overhead over a lightweight
transport protocol such as HTTP and permits easy future system evolution with
regard to scalability, performance, adaptability, etc.

For these reasons Enterprise Java Beans 3.1 and Glassfish have been the techno-
logical choices.

As depicted in Fig. 8, representation of identity and credentials are provided by the
JAAS module (Java Authentication and Authorization Service) implemented in
AOP. This modularization can ease the burden on developers, developing more secure
applications faster. Whenever a client tries to access a protected resource, the appli-
cation container activates the authentication mechanism. If the client is authenticated,
he must be in role to consume that specific resource. Users and Roles are defined into
the local DB.

4.1 Documents Acceptance System Implementation

The resource Archive, responsible for upload and search engine, is exposed by a Jersey
Restful Web service framework that abstracts away the low-level details of the
client-server. This framework decouples client-server interaction because it hides
remote procedure calls. The client needs just the URL that represents the system state.
This resource is implemented by a class FileService and exposed through the URL
“https://localhost:8080/ServiceMediator/archive/”. For every collection there is a
processor that, with the help of an Unmarshaller Helper, validates the incoming record
(s) and its metadata. Then the entity File is created (cf. Sect. 2.1). A scratch of code
follows:

A Workflow Service Mediator 135

@Stateless
@Path("/CollectionX/")
public class FileService {

@EJB
Archive archive;
@POST
@Path("/insert")
@Consumes(MediaType.MULTIPART_FORM_DATA)
@Produces({"application/xml", "application/json"})
public File insertFile(
FormDataMultiPart formParams,
@Context HttpServletRequest req) {
//entity
File initializedFile = inizializeFile();
try {

//check user and password
if (!logged) {(req.login(user, pass));
}
//check role
if (req.isUserInRole(role)) {
//validate stream

validateCollectionXRecords(metadataXML, record);
//build the file
initializedFile = do_buildFile(metadataXML,

record);
//update the entity File with a local primary key
archive.persist(initializedFile);

// send the inizialized File to the Queuing and
scheduling system

addQueue(initializedFile);
}

}
// catch and finally blocks

}
return initializedFile ;}

Validation is composed by a set of rules, such as:

• Number of attachments/annexes/annotations cited into the XML and number of
them all actually uploaded.

• Digital signatures validity and/or double digital signatures.

136 S. D’ Antonio et al.

4.2 Queuing and Scheduling System Implementation

This component has been implemented using Java EJB Message Driven Beans
(MDB) and Java Timer technologies.

The message listener MessagingEngine implements the abstract method onMessage
(Message message) which takes the file encapsulated into a java Message and sched-
ules an intelligent delivery, driven by some configurable parameters:

• Weight: file with a blob less than X MB can be archived at the moment.
• Hand driven: an operator can manually activate delivery (e.g. after a failed

transition).

Message Listener implementation sample code follows below:

//ScheduleDelivery is an EJB reosurce
@EJB
ScheduleDelivery scheduleDelivery;
public void onMessage(Message message) {
ObjectMessage objectMessage = (ObjectMessage) message;
FileMessage fileMessage= new FileMessage();
try {

fileMessage = (FileMessage) objectMesage.getObject ();
/*
The ActiveTask helper class is useful for scheduled deli -
very. It defines when deliver a File; it’s driven by many
parameters
*/
ActiveTask at = new Activeask(fileMessage.getIdFile());
scheduleDelivery.insertCalendarTask(at);

} catch (JMSException jmse) {
jmse.printStackTrace();
context.setRollbackOnly();

} catch (Exception e) {
e.printStackTrace();

}}

ScheduleDelivery implements a method “sendFile” with the annotation @Timeout.
On timeout “sendFile” connects through the driver interface (DeliveryService) to

the Archive, and then performs the upload.

4.3 Connection Interface with Long-Term Archive Implementation

This layer is implemented by an EJB resource, DeliveryService. It does accept a File,
then marshalls its metadata into a new archive dependant XML-schema and delivers
data through the right driver. This local resource is provided by Singleton Class which
contains a @Lock (LockType WRITE) method. Below follows a sample code:

A Workflow Service Mediator 137

@Singleton
@Interceptors(CallAudit.class)
@TransactionAttribute(TransactionAttributeType.MANDATORY)
public class DeliveryService {
@EJB
Archive archive;
private AtomicBoolean busy = new AtomicBoolean(false);
//set lock in read
@Lock(LockType.WRITE)
public void send(long idFile)

throws InterruptedException {
if (!busy.compareAndSet(false, true)) {

System.out.println("Busy resource. ");
return; }

File file = archive.find(idFile);
try {

/translate metadata into the archive-dependent XML-schema
String metadataXML =
GenericDriver.translateMetadata(file.getMetadataXml());
//get the answer from the Synchonous upload
String archive_receipt =
SynchronousUploader.uploadFileToArchive(file,
metadataXML);
//updating State and delivery outcome
file.updateFile(GenericDriver.translate_archive_receipt

(archive_receipt));
//add a log of transaction
LogDelivery logDelivery = new LogDelivery(file);
file.getLogCollection().add(logDelivery);
} catch (Exception ex) {

} finally {
//update file into local DB
archive.update(file);
//Release resource as soon as task complete
busy.set(false);

During the busy time (resource locked), any other
scheduled delivery is discarded. The system retries as
soon as the task is completed.

138 S. D’ Antonio et al.

4.4 The Control Panel Implementation

Every interaction with REST services in the control panel are done by a jquery
interface using the Ajax common framework. For example, to retrieve all files, client
must call the following function:

$("#result").load(
"/https://localhost:8080/ServiceMediator/archive/all",
function(response, status, xhr) {
if (status == "error") {
var msg = "Sorry but there was an error: ";
$("#error").html(msg + xhr.status + " " +
xhr.statusText);}});

5 Related Work

A common theme in much of this work is cataloging and hence recovering archived
records using a search engine. Marcia Lei Zeng and Lois Mai Chan presented a
comparative analysis between results of interoperability improvement efforts at dif-
ferent levels (Schema level, Record level, Repository level) [12]. In our work, the
design rules responsible for dealing with interoperability are mapped at the Record
Level. Hassan Mathkour and Ameur Touir presented XMed [13], a mediator that helps
to aggregate heterogeneous data sources.

Our work consolidates these theories into an environment as end-product choosing
technologies and a model, as adaptable as possible, in view of further tools/services
developments that software vendors and service providers can implement and augment.

We built a system with additional functionalities and that fully decouples the
internal workflow from the Digital Archive. It supports a number of key preservation
functions adding these new features:

• The long-term archival hub might stop for maintenance, so we built a system that
acts as buffer for on-line uploading.

• The system has been built with bandwidth optimization in mind, acting during
non-peak hours.

• A mediation service integrates original XML schema into a new one in sync with
METS (Metadata Encoding & Transmission Standard) for supporting long-term
access requirements. Moreover, metadata can be refined according to business
needs or future law compliances.

• The archival hub might change so we modularized the system adding a layer with a
storage driver interface, then there’s no need to rewrite code for the workflow
engines.

• A monitoring panel has been designed to easily check records preservation state and
performances.

A Workflow Service Mediator 139

6 Conclusion

A first prototype of the proposed framework has been implemented in Afragola, a small
municipality in Napoli. This pilot application helps the management of long-term
archive for digitally signed documents. It became a core application for all their
workflow software as it integrates the workflow with:

1 The ability to schedule documents delivery that allows packets traffic optimization
over the network, using continuously and optimally bandwidth.

2. Validation feature that can be made increasingly intelligent and adaptive, as it helps
to identify human mistakes within the document generation chain.

3. A dashboard delivering greater visibility and control at a higher level into the
process.

4. The presence of an aggregator node allowing homogenizing and adjusting hetero-
geneous document flows, making maintenance easier.

References

1. Haupt, F., et al.: A Model-driven approach for REST compliant services. In: 2014 IEEE
International Conference on Web Services (ICWS), pp. 129–136 (2014)

2. Vinoski, S.: REST eye for the SOA guy. IEEE Internet Comput. 11(1), 82–84 (2007)
3. W3C: Extensible Markup Language (XML) 1.0, 5th edn., 26 November 2008. http://www.

w3.org/TR/REC-xml
4. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web services:

making the right architectural decision. In: Proceedings of the 17th International Conference
on World Wide Web, pp. 805–814. ACM, New York (2008)

5. Perlin, N.: Introduction to metadata. In: 2006 IEEE International Professional Communi
cation Conference, pp. 153–155 (2006)

6. Freed, N., Borenstein, N.: Multipurpose internet mail extensions (MIME) part two: Media
types. RFC 2046. http://www.ietf.org/rfc/rfc2046.txt

7. Masinter, L., Berners-Lee, T., Fielding, R.T.: Uniform resource identifier (URI): Generic
syntax. RFC 3986. http://www.ietf.org/rfc/rfc3986.txt

8. JSON.org: Introducing JSON, 11 Desember 2002. http://www.json.org/
9. IEEE: Recommended Practice for Learning Technology – Metadata Encoding and

Transmission Standard (METS) Mapping to the Conceptual Model for Resource
Aggregation. IEEE Std 1484.13.2-2013, pp. 1–73, 30 December 2013

10. Lohr, K.P.: Automatic mediation between incompatible component interaction styles. In:
Proceedings of the 36th Annual Hawaii International Conference on System Sciences, p. 10
(2003)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–354. Springer,
Heidelberg (2001)

12. Chan, L.M., Zeng, M.L.: Metadata interoperability and standardization - a study of
methodology Part I: achieving interoperability at the schema level. D-Lib Mag. 12 (2006).
http://www.dlib.org/dlib/june06/chan/06chan.html

13. Mathkour, H., Touir, A.: An intelligent mediator for heterogeneous data sources. In: The 9th
Asia-Pacific Conference on Communications, APCC 200, vol. 3, pp. 1002–1006 (2003)

140 S. D’ Antonio et al.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.json.org/
http://www.dlib.org/dlib/june06/chan/06chan.html

Adaptive Architectural Model for Future
Internet Applications

Marina Mongiello(B), Luigi Alfredo Grieco, Massimo Sciancalepore,
and Elvis Vogli

Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
{marina.mongiello,alfredo.grieco,massimo.sciancalepore,

elvis.vogli}@poliba.it

Abstract. Interoperability, flexibility and adaptability are key require-
ments of Future Internet applications. Convergence of contents, services,
things and networks seems to be the cornerstone to fulfill these require-
ments. In this paper we propose a model for runtime composition of
software applications in sensors networks based on data, processes and
technology, in order to design an “on the fly” architecture of a soft-
ware system. The model is graph-based and composed by two control
levels: a formal model and the instantiation level. An algorithm extracts
a subgraph that identifies the applications to be executed according to
changes in the external context. The proposed approach has been instan-
tiated in a use case example in a smart home environment, to evaluate
the usefulness of the approach and the applicability of the model in actual
scenarios.

Keywords: Formal model · Runtime architectural model · Sensor
networks

1 Introduction and Motivation

Future Internet applications should be able to handle dynamic changes in
user experience and interoperability between different technologies, data, and
processes. Convergence of contents, services, things, and networks seems to be
the relevant direction taken by these applications [2,4].

Such complex and composite source of data ranging from signals, raw data,
events and complex events needs technological and theoretical formalization. In
the light of all these novelties, adaptive mechanisms to develop and orchestrate
services and applications are emerging [3,5].

A formal approach for runtime composition of software applications in sensor
networks is proposed hereby. The approach is made of two control levels: a
technology independent level and an instantiation one. The first level catches
different configurations of adaptive software modeled using a graph structure.
Each node in the graph can be classified as a data or a process or a technology.
A data node represents information derived from the external context (e.g., a
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 141–148, 2016.
DOI: 10.1007/978-3-319-33313-7 10

142 M. Mongiello et al.

data detected by a sensor). Data trigger processing of software applications,
i.e. process node. Finally, technology node specify features of the devices (for
example the state of the device where the application will be executed, the state
of the memory of the device or the state of the middleware used to make software
application interact with each other). At the instantiation level, instead, the
graph model is contextualized to application context that are platform dependent
and belong for example to Java, Android, and any other technology environment.

Data processing and technologies selection and management is driven by
specification of operational requirements. On the graph model, hence at the first
control level, we also define an algorithm to extract a subgraph from the graph
by minimizing a cost function. The algorithm finds the best sequences of (data,
process, technology) terns minimizing the cost due to resources utilization. Such
sequences of nodes and the related paths correspond to the selected orchestra-
tion of services or application in response to the context behavior. The main
advantage of the proposed approach is to possibility to delay architectural deci-
sions at run-time and to build the architecture “on the fly”, depending on the
specified requirements.

The proposed approach has been instantiated in a use case example in a
smart home environment, to evaluate the usefulness of the approach and the
applicability of the model in realistic scenarios.

The remaining of this paper is organized as follows. Section 2 introduces back-
ground information needed for clarifying the proposed approach. The proposed
formal model is defined in Sect. 3. Instantiation of the model with respect to a
realistic use case scenario is described in Sect. 4. Conclusions and future works
close the paper.

2 Background

In this section we introduce techniques and notions that will be used in the
remaining of the paper. Specifically, Sect. 2.1 introduces the adaptive systems,
Sect. 2.2 describes goals and operational requirements, and finally, Sect. 2.3 intro-
duces REST Middleware.

2.1 Adaptive Systems

An adaptive system is an open system able to adapt its behavior according to
changes in the environment or in parts of the system itself. Hence the adaptability
is the ability of a software system to adapt efficiently and rapidly to any changes
in the context or in the requirements.

Typically the development of a software system is completed within the life
cycle where before delivery, requirements engineers, software designers and devel-
opers realize the system components. In modern software systems it is always
difficult to predict the needs of users, so a single optimal configuration of the
system is difficult to model and design.

Adaptive Architectural Model for Future Internet Applications 143

It may be necessary to vary requirements run-time and then design the com-
ponents of the application and implementation, all the same, always on the basis
of changes arising from the external environment and the context, of course. For
example, moving along a sensor network determines changes in the external
environment that might trigger the execution of applications and software com-
ponents not provided at design time.

2.2 Operational Requirements

Goals are objectives the system is intended to achieve through the cooperation
of agents in the envisioned software and its environment [6]. A requirement is
a goal assigned to an agent in the software design [1]. While functional require-
ments specify the functionalities to be implemented, generally non-functional
requirements can determine decisions on the architectural model: for example,
if the system must ensure security it is good to use a proxy to access protected
data, if the system must integrate existing components it is good that has a
distributed objects architecture and so on. A Operational Requirement captures
the conditions under which a system component may or must perform an opera-
tion to achieve a goal. The operational requirements eventually belong to the set
of non-functional requirements and describe the behavior of the system. They
can be described by formal or semi-formal languages. Definition of operational
requirements is basic in defining and describing the system analyzed in terms of
the behavior more then the functionality to be provided.

2.3 REST Middleware

Nowadays many vertical M2M solutions have been designed independently for
different applications, making the current M2M market very fragmented, which
inevitably hinders a large-scale M2M deployment. To decrease the market frag-
mentation there have been many efforts from different standardization bodies to
define horizontal service layers.

The European Telecommunications Standards Institute (ETSI) has defined
with the SmartM2M standard a middleware which has a RESTful architecture
[9]. On the other side, OneM2M, where are collaborating more than 200 stan-
dardization bodies and companies, is defining a RESTful middleware which will
have a global validity [8].

The proposed solutions provide RESTful middlewares which separate the
applications from communication domain. The middlewares are accessible via
open interfaces and enable the development of services and applications inde-
pendently of the underlying network. In addition they provide several service
capabilities to enable machine registration, synchronous and asynchronous com-
munication, resource discovery, access rights management, group broadcast, etc.

All the resources in the RESTful middlewares are organized in standardized
resource trees and can be uniquely addressed by a Uniform Resource Identifier
(URI). Their representations can be transferred and manipulated with verbs
(i.e., retrieve, update, delete, and execute).

144 M. Mongiello et al.

3 Model for Adaptive Applications Composition

In this section we propose a formal model for runtime composition of software
applications in a sensor network.

The model is a graph based structure. The purpose of using a graph struc-
ture is to determine which apps to execute and how and where they will be
executed, depending on variation in the contest and hence on data detected by
the sensor. The main advantage of using a graph structure is the possibility
to use rewriting or grammar graph techniques for extracting subgraphs satisfy-
ing a given requirement. Requirements to be satisfied are high level requirements
(mainly Operational), that are hence modeled on the graph structure. The graph
describes a snapshot of all the available software plugins mainly characterized
by the data detected by a sensor in the network (Data), the functionality to
be executed (Process) and by the state of the device where it will be executed
(Technology). Each transition has a cost due to parameters involved in the con-
text. Hence we can assume that each plugin is modeled as a triple of elements
with a function cost associated.

Definition 1 (Resource Super Graph (RSG)). A Resource Super Graph
is a direct Acyclic Graph G = {N,A}, where nodes N are resources – N =
D ∪ P ∪ T (D = Data,P = Process,T = Technology) – and arcs a ∈ A are
such that:

1. A ⊆ (D × P) ∪ (P × T), i.e. “arcs connect data with process, process with
technology, technology with data”;

2. a ∈ D × P defines the variable cost vc
a ∈ P × T defines the fixed cost fc
a ∈ T × D detection of a new data variation

Each node in the graph can be distinguished as: Data, Process, Technology.
Data are those detected by a sensor network; Process is the operation performed
on the data that can belong to one among the following: preprocessing, process-
ing plugins, etc. Technology identifies the network type and the characteristics
of the mobile devices. Arcs in the graph link pairs of nodes based on the value
of a cost function. The cost computation depends on several parameters, that
can be the type of node, the cost of the process and so on.

The cost function associated with the triple (Data, Process, Technology)
depends on the features of the given plugin but also on the state of the devices. It
is defined as fc(DPT) of the triple (DPT), and is given by the sum of the cost of
the two arcs connecting respectively D with P and P with T, fc = vc + fxc. The
contribution of the variable cost depends on the characteristics of the available
network and of the devices on which it is calculated. Where vc = devicec +
networkc. The cost of the network includes information about the state of the
network at the time of receipt of the request of a plugin execution, such as
connection delay, network bit rate, packet size, etc. The cost of the device is
given by the amount of available RAM on the middleware, due to the number of

Adaptive Architectural Model for Future Internet Applications 145

active connections and by the cost of forwarding information when for example a
middleware is not available so the request must be forwarded to another one. So
devicec = middlewarec − forwardingc. On the other hand, the costs of mobile
device is given by the amount of available RAM and mass memory, the level
of the device battery, as well as the geographic location (used to choose which
middleware register).

The contribution of fixed cost fxc depends on the characteristics of the
plugin, such as size in bytes, computational complexity and so on. It remains
unchanged if the plugin runs on the mobile device or if runs on the middleware.

Moreover, given a pair of starting and destination nodes, there are multi-
ple paths connecting them, hence we can extract more “sub-graphs” from a
SuperGraph. A path in the graph, i.e., a subgraph, identifies a sequence of apps
to be executed with specifications concerning the features of the technology –
the kind of network or of device–, and the type of process to execute each of
them – where and how the app is executed. We need an algorithm to extract
a subgraph according to the optimum condition, for example for extracting the
subgraph that minimizes a cost function according to parameters depending on
the nodes features.

A Resource SubGraph (RSubG) is the graph extracted by RSG by executing
the DPT() algorithm to select the path in the RSG with minimum cost. Among
all the possible subgraphs of RSG, hence all the possible sequences of plugins to
be executed we need to find the best path, with minimum cost function in order
to determine the best sequence of plugins as triggered by a set of data detected
by sensors.

DPT Algorithm. Let us now define the proposed algorithm. The Data Process
Technology (DPT) algorithm schedules, manages and monitors the data,
technologies and processes execution on the devices. Suppose the hardware
infrastructure of the sensor network is made up as described below. It is com-
posed by motes, with a limited memory and computation capabilities. Physical
motes are mapped onto logical ones, and have a virtual image at middleware
level. The features of the middleware are those of a REST middleware whose
functionalities can be extended through the implementation of adhoc plugins.
Each plugin will encode functionalities that can be run-time loaded, depend-
ing on the specific requirement triggered by an event that occurred. Sensors
detection is managed at middleware level, where subscribers have to registered
and where updated data can be sent. At master level a scheduler plugin has
to check and manage variations in the context and in data perceived from the
sensors to decide which plugin or sequence of plugins to activate. The master
plugin manages a runtime composition of plugins able to perform functionalities
depending on data retrieved by sensors, but at the same time satisfying high
level requirements modeled by triggering of events or being in a given state.

Communication among plugin occurs through the middleware that forwards
requests, data, responses among pluging and sensors according to low level pro-
tocols while interaction is scheduled and managed by the high level master
application.

146 M. Mongiello et al.

To extract the shortest paths of the graph, and then the sets of nodes or
sequence of plugins, we define the DPT algorithm to extract the shortest path
made up of terns (Data, Process, Technology).

Data: A Resource SuperGraph (RSG)
Result: Resource SubGraph (RSubG)

1 D ← data nodes;
2 P ← process nodes;
3 T ← technology nodes;
4 foreach i = 1 to min(D length, P length, T length,) do
5 ShortestPath(D,P);
6 ShortestPath(P, T, costt);
7 select next data node;
8 ShortestPath(P,D, costd);
9 Evaluate plugin sequence;

10 end

Algorithm 1. Algorithm Data Process Technology DPT()

Step 1 computes the shortest path following a stating node of Data type,
Step 2 computes the shortest path following node of type P, step 4 computes
shortest path following node of type T. Each step has as a parameter the function
cost computed till the previous node. Shortest path extraction follows Djikstra
algorithm [7].

The hardware infrastructure of the network is composed by motes, with
a limited memory and computation capabilities. Physical motes are mapped
onto logical ones, and have a virtual image at middleware level. The features
of the middleware are those of a REST middleware whose functionalities can
be extended through the implementation of adhoc plugins. Each plugin will
encode functionalities that can be run-time loaded, depending on the specific
requirement triggered by an event that occurred. Sensors detection is managed
at middleware level, where subscribers have to registered and where updated
data can be sent. At master level a scheduler plugin has to check and manage
variations in the context and in data perceived from the sensors to decide which
plugin or sequence of plugins to activate. The master plugin manages an run-
time composition of plugins able to perform functionalities depending on data
retrieved by sensors, but at the same time satisfying high level requirements
modeled by triggering of events or being in a given state.

4 Model Instantiation

In this section we instantiate the model defined in Sect. 3 on the use case scenario
that follows.

It is a cold winter evening, the temperature in the house is low, the heating
system is activated to reach soon a temperature that will ensure comfort and
well-being to Bob and Mary that are going to come back to after a busy working
day. The blinds close to avoid the dispersion of heat. As soon as they get into

Adaptive Architectural Model for Future Internet Applications 147

the house the lights turn on. Mary goes into the kitchen and set about making
dinner; she turns the oven on that will soon to bake tasty pork shank, in the
laundry the washer and dryer are temporarily suspended to avoid overload. Bob
comes into the living room where the lights turn on. He is very tired so decide
to sprawl on the sof and enjoy some videos. So he prepares the projector for
watching the video taken by of his GoPRO while skying the previous Sunday on
mountain holiday. The video projection begins and the lights turn dim to create
soft lights. Later, Mary later went – as every evening – to the basement to train
on sports equipment while waiting for dinner to be ready. The daily news flow
on the monitor of the tapis roulant on which Mary is training. Through headset
she listens directives of the exercises to be carried out according to the training
program as a result of the control of the calories consumed in the days and of
the physical activity already performed. Mary wears her heart rate and distance
walked monitors for physical activity. When the goal of training daily is going to
be reached, in the bathroom the heating is switched on, the whirlpool is switched
on to enable Mary to practice proper relaxation after physical activity. Mary goes
into the bathroom and the lights turn on while the basement lights and sports
equipment are turned off. Meanwhile, in the garden, video surveillance cameras
found two suspicious individuals climbing on the first floor and forcing a window
to enter the house, despite the presence of people in the house. The images sent
to the nearby police station trigger the alarm that promptly active forces to stop
the thieves intrusion. A spark caused by a failure of the electrical systems in the
garage makes burst fire and soon the garage is filled with dense smoke. The high
level of smoke triggers the fire alarm that immediately reaches the nearest fire
department to active the necessary reliefs.

The Use case scenario is modeled in a Resource Super Graph with all the
possible triples of Data Process and Technology nodes. The algorithm DPT()
“on-the-Fly” extracts triples of nodes and hence activates plugins execution
depending on the function cost.

For example the first situation: It is a cold winter evening, the temperature in
the house is low, the heating system is activated to reach soon a temperature that
will ensure comfort and well-being to Bob and Mary that are going to come back
to after a busy working day. The blinds close to avoid the dispersion of heat.
We have different paths that can be followed to orchestrate plugins. Modeled
data node is temperature variation, but can also be light variation and position
variation. Besides for each data node there exists different process nodes: if data
retrieved is the temperature variation, process may be that of turning the heating
system on, but can also be that of closing the blinds for avoiding dispersion of
heat. After that, technology can be wi-fi, and the application can run on the
house middleware or on the smartphone. Considering light variation as data
node the process node can be the turning light on but also the closing of binds.
So technology may be the execution of the process on the mobile phone or on a
different device, the choice between several alternatives depends on the function
cost. Different values of retrieved data and of function cost evaluation would
determine different selections of path in the graph this means that the plugins
to be executed and their orchestration is different depending on context behavior.

148 M. Mongiello et al.

5 Conclusion and Future Work

In this paper we introduced a model for building “on-the-Fly” architecture of
software systems based on data, processes and technology in context-aware envi-
ronments.

The model is based on a graph structure to represent data, processing of
context aware application and technological features and by an algorithm for
extracting the sequence of applications to be executed.

We instantiated the model on a sensor network environment and validated
the algorithm on a running example in a smart home use case scenario. We are
currently working on performing wide and complex experiments to validate and
test the model.

References

1. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: Proceedings of ICSE 2009, pp. 265–275. IEEE Computer
Society (2009)

2. Cubo, J., Ortiz, G., Boubeta-Puig, J., Foster, H., Lamersdorf, W.: Adaptive ser-
vices for the future internet. J. UCS 20(8), 1046–1048 (2014)

3. Guinard, D., Ion, I., Mayer, S.: In search of an internet of things service archi-
tecture: REST or WS-*? A developers’ perspective. In: Puiatti, A., Gu, T. (eds.)
MobiQuitous 2011. LNICST, vol. 104, pp. 326–337. Springer, Heidelberg (2012)

4. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (IOT), 2010, pp. 1–8. IEEE (2010)

5. Ben Hamida, A., Kon, F., Oliva, G.A., Dos Santos, C.E.M., Lorré, J.-P., Autili, M.,
De Angelis, G., Zarras, A., et al.: An integrated development and runtime environ-
ment for the future internet. In: Álvarez, F., Cleary, F., Daras, P., Domingue, J.,
Galis, A., Garcia, A., Gavras, A., Karnourskos, S., et al. (eds.) FIA 2012. LNCS,
vol. 7281, pp. 81–92. Springer, Heidelberg (2012)

6. Letier, E., van Lamsweerde, A.: Deriving operational software specifications from
system goals. In: Proceedings of SIGSOFT 2002/FSE-10, pp. 119–128. ACM (2002)

7. Skiena, S.: Dijkstra’s algorithm. In: Implementing Discrete Mathematics: Com-
binatorics and Graph Theory with Mathematica, pp. 225–227. Addison-Wesley,
Reading (1990)

8. Swetina, J., Lu, G., Jacobs, P., Ennesser, F., Song, J.: Toward a standardized com-
mon M2M service layer platform: introduction to oneM2M. IEEE Wirel. Commun.
21(3), 20–26 (2014)

9. Vogli, E., Alaya, M.B., Monteil, T., Grieco, L.A., Drira, K.: An efficient resource
naming for enabling constrained devices in smartM2M architecture. In: IEEE Inter-
national Conference on Industrial Technology (ICIT 2015), pp. 1832–1837, March
2015

SeaCloud Workshop Papers

Second Workshop on Seamless Adaptive Multi-Cloud
Management of Service-Based Applications

Preface

The Second Workshop on Seamless Adaptive Multi-Cloud Management of
Service-Based Applications took place on September 15, 2015, in Taormina,
co-located with the 4th European Conference on Service-Oriented and Cloud Com-
puting (ESOCC). The workshop was jointly organized by the CloudWave
(EC-FP7-ICT-610802) and SeaClouds (EC-FP7-ICT-610531) European FP7 projects,
represented by Dr. Francesco Longo and Prof. Ernesto Pimentel, respectively.

Deploying and managing in an efficient and adaptive way complex service-based
applications across multiple heterogeneous clouds is one of the problems that have
emerged with the cloud revolution. The current lack of universally accepted standards
supporting cloud interoperability is severely affecting the portability of cloud-based
applications across different platforms.

At the same time, even at the level of a single cloud, adaptation of cloud services to
their execution environment is strongly desirable in order to take appropriate actions in
response to changes in the highly dynamic environment of the cloud. Adaptations can
be performed at runtime (dynamic adaptation) and at development time. In the latter
case, runtime and contextual data provided to business application developers can
allow them to enhance their applications based on the actual operating conditions.

The objective of the workshop was to provide a forum to discuss problems,
solutions, and perspectives of the ongoing research activities aimed at enabling an
efficient and adaptive management of service-based applications across multiple
clouds.

The Program Committee of the workshop (please see later) included 20 interna-
tionally recognized experts from ten different countries (France, Germany, Ireland,
Israel, Italy, Norway, Portugal, Romania, Spain, Sweden). Seven contributions were
submitted in response to the call for papers. The originality and relevance of these
contributions were evaluated during a peer-review process carried out by the Program
Committee, which unanimously decided to accept three of those contributions as
regular papers, and one more contribution was accepted as a presentation of work in
progress.

The program of the workshop edition included an opening session with a brief
discussion about cloud-focused European projects and the future of ICT in Europe. One
of the conclusions of this discussion, also inspired by the earlier plenary round table
organized within the main conference, is that start-ups and university spin-offs repre-
sent a precious resource for future European projects providing use cases and real
business scenarios.

There was also an invited talk from Lan Wang (Imperial College, London) about
“Cognitive Packet Network for Self-Aware Adaptive Clouds.” The talk was indeed
very interesting, focusing on the use of neural networks as a tool for intelligent and
adaptive scheduling policies in cloud computing. After the talk, the four accepted
papers were presented: three regular papers, and one short paper (on-going work).

The short paper, “Supporting Cloud Service Selection with a Risk-Driven Cost–
Benefit Analysis,” proposed a practical and simple approach to choosing a concrete
cloud service (or a set of thereof) when several alternatives are available.

The paper “Axe: A Novel Approach for Generic, Flexible, and Comprehensive
Monitoring and Adaptation of Cross-Cloud Applications” introduced a novel approach
to monitoring and adaptation management that is able to flexibly gather various
monitoring data from virtual machines distributed across cloud providers, to dynami-
cally aggregate the data in the cheapest possible manner, and, finally, to evaluate the
processed data in order to adapt the application according to user-defined rules.

The paper “A Model-Based Approach for the Pragmatic Deployment of Service
Choreographies” discussed the problem of managing multiple choreographies in
multi-cloud environments and advocated that sharing-aware deployment is a more
effective and resource-efficient approach.

Finally, the paper “Multi-level Adaptations in a CloudWave Infrastructure: A Telco
Use Case” described the CloudWave telecommunications application use case pro-
viding a proof-of-concept on how the QoS experienced by the application users can be
improved thanks to the technologies provided by CloudWave.

The workshop concluded with a final wrap-up session highlighting how adaptive
management of cloud infrastructures still represents a hot and promising topic as
demonstrated by the number of submission and the high quality of the accepted papers.

We would like to thank all the people who contributed to the success of the
workshop: the authors of the contributed papers, the Program Committee members, and
the invited speaker.

Ernesto Pimentel
Francesco Longo
Program Chairs

Second Workshop on Seamless Adaptive Multi-Cloud Management 151

Organization

Program Chairs

Antonio Brogi University of Pisa, Italy
Ernesto Pimentel University of Malaga, Spain

Program Committee

Marcos Almeida Softeam, France
Antonio Brogi University of Pisa, Italy
Dario Bruneo University of Messina, Italy
Martin Chapman Oracle, Ireland
Javier Cubo University of Malaga, Spain
Francesco D’Andria ATOS, Spain
Elisabetta Di Nitto Politecnico di Milano, Italy
Nicolas Ferry SINTEF, Norway
Giovanni Merlino University of Messina, Italy
Andreas Metzger Universität Duisburg-Essen, Germany
Boris Moltchanov Strategy & Innovation, Telecom Italia, Italy
Simon Moser IBM, Germany
Eliot Salant IBM, Israel
Francisco J. Nieto de Santos ATOS, Spain
Marc Oriol University of Pisa, Italy
Dana Petcu West University of Timisoara, Romania
Achim Streit Karlsruhe Institute of Technology, Germany
Karl Wallbom Cloudmore, Sweden
Chris Woods Intel, Ireland
Marcel Zalmanovici IBM, Israel

Publicity Chair

Giovanni Merlino University of Messina, Italy

Webmaster

Adrian Nieto University of Malaga, Spain

A Model-Based Approach for the Pragmatic
Deployment of Service Choreographies

Raphael Gomes1,2(B), Júnio Lima1, Fábio Costa1, Ricardo da Rocha1,
and Nikolaos Georgantas2

1 Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil
raphael.gomes@ifg.edu.br, junio.lima@ifgoiano.edu.br,

{fmc,ricardo}@inf.ufg.br
2 MiMove Team Inria Paris, Rocquencourt, France

nikolaos.georgantas@inria.fr

Abstract. The development of applications using service choreogra-
phies is becoming one of the de facto standards for the Future Internet.
However QoS-aware management of service compositions is usually per-
formed without considering service sharing. This simplifying assumption
makes choreography deployment less feasible in real scenarios, in which
a single service is typically shared in many scenarios. In this paper we
discuss the problem of managing multiple choreographies in multi-cloud
environments and we advocate that sharing-aware deployment is a more
effective and resource-efficient approach. We propose a model for the
combined deployment of multiple choreographies on top of a shared set
of services, and we further investigate the problem through experiments.

1 Introduction

Among its new features, the Future Internet is characterized by the evolution
from content sharing to service sharing. In this new scenario, mainly facilitated
by the adoption of cloud technologies, software modules of different complexities
are provided on top of virtualized servers and consumed via the Internet [1].

Keeping centralized coordinators for these new types of applications is unfea-
sible due to requirements like fault tolerance, availability, heterogeneity and
adaptability. For this reason, a promising solution is the use of decentralized and
distributed services through choreographies. Choreographies are service com-
positions that implement distributed business processes in order to reduce the
number of exchanged control messages and distribute business logic, without the
need for centralized coordinators [2]. Building a choreography is usually a two-
step task [3]. Firstly, the functionalities required from the participating services,
i.e., their operations, are identified. Secondly, for each operation an appropri-
ate implementation is selected and bound to it. The activity of performing the
interactions and getting the expected results is named choreography enactment.

In most cases, service selection and choreography enactment are not based
solely on functional criteria. Instead, they aim to satisfy non-functional require-
ments as well, in terms of Quality of Service (QoS) properties, which in turn
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 153–165, 2016.
DOI: 10.1007/978-3-319-33313-7 11

154 R. Gomes et al.

poses many challenges. For implementation selection, the growing number of
alternative web services that provide the same functionality but differ in qual-
ity parameters makes service selection an NP-hard optimization problem [4]. On
the other hand, along with choreography enactment, resource allocation plays an
important role in QoS since almost all non-functional requirements are related
to the resources used to deploy the services.

The problem of QoS-aware choreography enactment is usually solved using
variations of the Knapsack Problem [5]. However, all these solutions assume
that there are no conflicts between the services that are part of a choreogra-
phy, such as heterogeneous communication protocols. They also do not take into
account the fact that a given service may be part of more than one choreogra-
phy, which in turn means that requests for the same operation of a service may
come concurrently from different sources and with different QoS requirements.
As a consequence, service implementation selection and resource management
typically take into account QoS requirements that are specific to a single chore-
ography. This is far from ideal, given the combined QoS-related constraints that
arise from the sharing of services among multiple and diverse choreographies.

We argue that a pragmatic view of choreography deployment, based on ser-
vice sharing and on management on a per operation basis, represents a more real-
istic perspective since each service can have different QoS requirements for the
same operation depending on which choreography is generating calls to it. With
this in mind, we propose a model-based approach that encompasses both chore-
ography deployment and resource management. We first formalize a working
terminology (Sect. 2) and discuss the effects of service sharing in choreographies
based on some experimental results (Sect. 3). We then examine related work
(Sect. 4), and propose a formal model (Sect. 5) to represent service choreogra-
phies taking into account a global view of service utilization and the associated
non-functional requirements. We aim to use this model as part of a adaptive app-
roach for choreography enactment, which is discussed in Sect. 6. Finally, Sect. 7
presents some final remarks.

2 Terminology

In our work, an application is a web-based computer program designed for a
specific use, such as an application for setting up a doctor’s appointment in the
public health system. An application is composed using one or more services.
A service, in turn, is an independent software component that executes one or
more operations. An operation defines some action performed by the service.
It requires some amount of computing power to be processed.

The composition of several services by means of their provided operations
forms a choreography. As pointed out before, a choreography is a form of ser-
vice composition where the interaction protocol (among services) is defined in a
global way using a peer-to-peer approach. The services that compose a choreog-
raphy can be described in an abstract way by means of the expected role that
each service plays in the interaction. Such abstract services can be realized using

A Model-Based Approach for the Pragmatic Deployment 155

concrete entities, i.e., by identifying a target implementation for each service.
Abstracting services is particularly important in multi-cloud environments, as
some implementations can be specific to a cloud provider/technology. In such
environments, composition deployment may become overly constrained if con-
crete services are used instead to specify a choreography.

User refers to the person(s) responsible for application composition and
administration, which includes service selection and resource allocation. Both
tasks must be performed with the aim of satisfying the functional and non-
functional requirements of clients. Another task performed by the user is to man-
age adaption of service selection and resource allocation in the face of changes
in the system’s conditions and in the client’s expectations. The client in turn is
an entity that interacts with the application. It mainly refers to the end-user.

Finally, a system is a set of interacting or interdependent components form-
ing an integrated whole. We use this term to refer to the set of managed appli-
cations, together with the components required to implement our approach.

3 The Effect of Service Sharing

Nowadays applications are developed mainly by means of preexisting service
compositions. QoS management in this composite scenario is even more difficult
if we consider that a service may be used by many applications at the same
time. For instance, a maps service can be used in applications such as driving
directions guides, picture location tagging, and partner matching by location.
For each of these applications, the service may have different QoS requirements.

As illustrated in Fig. 1, this scenario is equivalent to managing a dancer par-
ticipating in a music mash-up choreography: she must be able to properly handle
the multiple requests and perform the different dance rhythms with an expected
quality. In the same sense, for a given application (which is analogous to the
mash-up in our metaphor) there can be several choreographies (rhythms in our
metaphor), with the same services (analogous to dancers) being shared among
them with different QoS requirements. Therefore, it is not possible to manage
services without considering all the choreographies in which they participate. To
achieve this goal, we need to act upon resource allocation, as the majority of
non-functional properties are related to the use of resources.

Fig. 1. Mash-up metaphor.

156 R. Gomes et al.

Thus, in our approach, QoS specification is done at two different levels: ser-
vice and choreography. The first level specifies requirements regarding a specific
service/operation, without taking into account end-to-end QoS. The second level
concerns the quality of the choreography as a whole (i.e., end-to-end) and is eval-
uated in terms of the composition of all participating services.

We have performed a set of experiments to demonstrate the effect of service
sharing on choreography QoS. Thereby, we aim to demonstrate the need for
global resource management across choreographies for the effective satisfaction
of QoS requirements. The experiments show that service concurrency does not
make QoS satisfaction unfeasible, provided that proper resource management is
performed. We present our analysis results in the following.

3.1 Evaluating the Effects of Service Sharing

Our analysis of the effects of service sharing is based on queueing theory. For
this purpose, we used JINQS [6], a library for simulating multiclass queuing
networks. We evaluated the execution of different choreographies composed by
non-intersecting service sets, as well as choreographies that use shared services.
In our experiment we generated random choreography topologies with sequential
and branching control flow patterns. For simplicity, we assume that each service
provides only one operation, whose processing time follows an exponential distri-
bution with rate parameter μ taking values between 2 and 200 (meaning that the
mean processing time is between 0.5 and 0.005 time units). By putting together
generated choreography topologies, we create sets of choreographies. Considering
the choreography topologies of a set separately and in combination, we model
them as queueing networks and simulate them on JINQS. To each choreogra-
phy we apply an external input load following a Poisson distribution with rate
parameter λ = 50 requests per time unit.

We simulated different levels of service sharing among the choreographies,
varying from 0 % (no sharing) to 100 % (all services are shared). With this in
mind, we generated a service base of available services, from which we randomly
selected 10 services each time in order to compose the choreographies, accord-
ing to the chosen service sharing level. Note that this parameter only indicates
the probability of having a specific number of services shared among the chore-
ographies (it does not mean that all services are necessarily shared among all
choreographies). We also analyzed different numbers of choreographies combined
together, with 2, 4, 8 and 16 choreographies being enacted at same time.

As target metrics we first measured the number of served (completed)
requests and the average response time (RT). The results are presented in
Tables 1 and 2, which show the mean of the differences in the two metrics for
running the choreographies in isolation and in combination, with a confidence
interval of 95 %. Positive values indicate loss of QoS when executing choreogra-
phies in combination. Hence, negative values indicate better QoS. As expected,
service sharing causes loss of QoS since both metrics are worse when we execute
a higher number of choreographies concurrently. Another interesting result is
that the number of served requests is less influenced by changes in the level of

A Model-Based Approach for the Pragmatic Deployment 157

Table 1. Mean difference (%) between the numbers of completed requests when run-
ning the choreographies in isolation and in combination.

Sharing/# Chor. 2 4 8 16

0 % −0.02 ± 0.11 −0.04 ± 0.06 0.03 ± 0.05 −0.02 ± 0.03

25 % −0.11 ± 0.11 −0.04 ± 0.07 0.00 ± 0.05 56.19 ± 0.05

50 % −0.02 ± 0.12 −0.01 ± 0.08 41.32 ± 0.08 101.06 ± 0.05

75 % 0.01 ± 0.11 0.04 ± 0.07 41.34 ± 0.07 101.03 ± 0.05

100 % −0.08 ± 0.09 −0.02 ± 0.07 63.20 ± 0.07 117.47 ± 0.06

Table 2. Mean difference (%) between the response times when running the chore-
ographies in isolation and in combination.

Sharing/# Chor. 2 4 8 16

0 % −9.88 ± 0.05 −12.20 ± 0.03 −13.32 ± 0.03 −13.42 ± 0.02

25 % −7.68 ± 0.06 −4.31 ± 0.04 42.11 ± 0.18 199.94 ± 0.00

50 % −2.80 ± 0.09 22.12 ± 0.11 199.93 ± 0.00 199.96 ± 0.00

75 % 3.60 ± 0.07 43.37 ± 0.11 199.93 ± 0.00 199.96 ± 0.00

100 % 13.46 ± 0.10 121.74 ± 1.16 199.95 ± 0.00 199.96 ± 0.00

Table 3. Mean difference (%) between the numbers of completed requests when run-
ning the choreographies in isolation and in combination (with the addition of more
resources when running them in combination).

Sharing/# Chor. 2 4 8 16

0 % −0.01 ± 0.12 −0.05 ± 0.07 −0.01 ± 0.04 −0.01 ± 0.03

25 % −0.06 ± 0.10 −0.01 ± 0.06 −0.04 ± 0.05 0.02 ± 0.03

50 % −0.12 ± 0.11 0.04 ± 0.07 −0.00 ± 0.04 3.77 ± 0.04

75 % 0.11 ± 0.13 0.06 ± 0.07 −0.04 ± 0.05 3.75 ± 0.05

100 % 0.04 ± 0.13 −0.00 ± 0.06 0.00 ± 0.05 27.07 ± 0.06

Table 4. Mean difference (%) between the response times when running the chore-
ographies in isolation and in combination (with the addition of more resources when
running them in combination).

Sharing/# Chor. 2 4 8 16

0 % −9.96 ± 0.05 −12.22 ± 0.04 −13.30 ± 0.03 −13.42 ± 0.02

25 % −25.68 ± 0.07 −28.79 ± 0.04 −28.61 ± 0.03 −24.13 ± 0.02

50 % −43.85 ± 0.07 −46.98 ± 0.04 −43.54 ± 0.03 199.34 ± 0.01

75 % −74.58 ± 0.06 −76.48 ± 0.04 −66.42 ± 0.03 199.36 ± 0.01

100 % −106.46 ± 0.05 −101.48 ± 0.03 −77.25 ± 0.05 199.89 ± 0.00

158 R. Gomes et al.

sharing, while RT doesn’t change significantly as the number of choreographies
increases.

We also analyzed the impact of resource allocation. To this end we carried out
the same experiment, now increasing resource allocation by a factor of 1 to 3 for
combined choreography execution. Tables 3 and 4 show the results. The behav-
ior is similar, although with a smaller difference between separately executing
each choreography and executing all of them in combination. This reinforces the
motivation for using a more precise resource allocation.

Motivated by these results, our proposal is to automate the management of
service selection and resource allocation in multi-cloud environments taking into
account service sharing. We propose the representation of services and resources
in abstract models which are dynamically interpreted by the system. In the next
section we discuss how this aspect is considered in related work. We then present
the first step towards defining our approach, which consists in eliciting a formal
model to represent combined choreographies.

4 Related Work

A number of research efforts reported in the literature have focused on the
problem of providing QoS guarantees for service compositions [3–5]. However,
most of these studies focus on service selection for a single composition. To the
best of our knowledge, Nguyen et al. [7] carried out one of the first studies to
deal with QoS guarantees for multiple inter-related compositions. The authors
argue that if a service engages in a number of compositions, there will be a
dependency between the levels of QoS that the service can contribute to these
compositions. In the approach proposed by Ardagna and Mirandola [8], service
composition is carried out based on groups of invocations where multiple requests
are generated by multiple users. However, they assume that each service provider
has fixed resources, thus not proposing resource adaptability.

Furtado et al. [9] present a middleware to support the enactment of web
service choreographies in the cloud. Similarly to our work, resource adaptation
is proposed to maintain the expected levels of QoS. However, they do not handle
service selection. Huang and Shen [10] propose an approach for the deployment of
multiple services in the cloud. They developed two types of graphs to model the
communication costs and potential parallelism among the services of different
compositions. However, unlike our approach, which focuses on service sharing,
they aim at minimizing communication costs and maximizing parallelism.

In contrast, we propose an approach to deal with multiple inter-related service
choreographies, taking into account their associated non-functional requirements
and a global view of service utilization. We analyze the role each service plays in
several choreographies and estimate the amount of resources needed to deploy
each service in order to ensure the expected level of QoS.

A Model-Based Approach for the Pragmatic Deployment 159

5 Formal Model for Choreography Deployment

In this section we present a formalization of the problem of combined deployment
of multiple choreographies. We focus on non-functional properties, although our
formalization can handle functional properties as well. Our representation of
choreographies is language-independent but contains the main components of
commonly adopted choreography definition languages, such as BPMN2 [11].

The set of available services used to compose choreographies is defined as
S, which contains n services {s1, s2, . . . , sn}, each represented by a group of
operations O. Each operation o ∈ O has resource demand d, which represents
the amount of resources, e.g., number of CPU cores and their capacity, needed to
compute the operation. Moreover, the set of available resources is represented as
V, which contains t virtual machine (VM) configurations {v1, v2, . . . , vt}. Each
resource v has ρ resource units, each one with resource capacity ζ and a cost c for
using it for a given time slice. The topology of a choreography can be abstracted
using a process graph [12], which is defined as follows:

Definition 1 (Predecessor and Successor Nodes). Let N be a set of nodes
and E ⊆ N × N a binary relation over N defining the edges. For each node
n ∈ N we define the set of predecessor nodes •n = {x ∈ N |(x, n) ∈ E} and the
set of successor nodes n• = {x ∈ N |(n, x) ∈ E}.
Definition 2 (Process Graph). A process graph PG consists of a tuple
(b, Z,S, L, t, E) where:

– b denotes the start point, |b • | = 1 ∧ | • b| = 0.
– Z denotes the set of end events, |Z| ≥ 1 and ∀z ∈ Z : | • z| ≥ 1 ∧ |z • | = 0.
– S denotes the set of services, ∀s ∈ S : | • s| = 1 ∧ |s • | = 1.
– L denotes the set of connectors, ∀l ∈ L : (| • l| > 1 ∧ |l • | = 1) ∨ (| • l| =

1 ∧ |l • | > 1).
– t is a mapping t : L → {AND, XOR, OR}, which specifies the type of a

connector l ∈ L as either a conjunction (AND), a disjunction (OR) or a
mutually exclusive disjunction (XOR).

– E is a set of edges that define the flow as a simple and directed graph. Each
edge e ∈ E is a tuple (e−→,−→e , o), where e−→ ⊆ (b ∪ S ∪ L) is the origin of
this edge, −→e ⊆ (Z ∪ S ∪ L) is the end of this edge, and o is the operation
being requested. If −→e ∈ {Z ∪ L}, then o is null. Being a simple graph implies
that ∀n ∈ (b ∪ Z ∪ S ∪ L) : (n, n)
∈ E (no reflexive edges) and that ∀x, y ∈
(b ∪ Z ∪ S ∪ L) : |{(x, y)|(x, y) ∈ E}| = 1 (no multiple edges).

In our approach, each expected non-functional requirement is described in
terms of a QoS property, which in turn is represented by one or more QoS
metrics. These concepts are formalized in the following.

Our representation for QoS metrics is based on Rosario et al. [13]:

Definition 3 (QoS Metric). A QoS metric is a tuple m = (D,≤,⊕,∧,∨,U):

– (D,≤) is a QoS domain with a corresponding set of ordered QoS values.

160 R. Gomes et al.

– ⊕ : D → D defines how QoS gets incremented by each new event. It satisfies
the following conditions: (i) ⊕ possesses a neutral element 0 satisfying ∀l ∈
D ⇒ l ⊕ 0 = 0 ⊕ l = l; (ii) ⊕ is monotonic: l1 ≤ l′1 and l2 ≤ l′2 implies
(l1 ⊕ l2) ≤ (l′1 ⊕ l′2).

– (∧,∨) represents the lower and upper lattices, meaning that any l ⊆ D has
unique lower and upper values (∧l,∨l). When taking the best result with
respect to the ordering ≤, the lowest QoS is taken with ∧. When synchro-
nizing events, the operator ∨ takes the worst QoS as per the ordering ≤.

– U is a utility function U : (S,V) → D, that gives the expected QoS value when
a service s ∈ S is deployed on a specific resource v ∈ V.

Definition 4 (Non-Functional Requirement). A non-functional require-
ment (NFR) is represented using one of the following tuples:

(1) (s, o, k, φ), where s ∈ S is a service, o is the operation being requested, k is
a QoS metric, and φ is the target average value for this metric (φ ∈ D(k));

(2) (k, φ), where k is a QoS metric and φ is the target average value for this met-
ric, with φ ∈ D(k). This tuple is used to represent end-to-end NFRs, which
means that the target value must be somehow split among the operations
(and respective services) in the possible execution flows.

To allow QoS-aware choreography enactment, we propose the representation
of choreographies and NFRs in a structure called QoS-Aware Process Graph.

Definition 5 (QoS-Aware Process Graph). A QoS-aware process graph
consists in a process graph that is annotated with the expected load for each
operation, along with the NFRs associated with the related service composition.

Figure 2 shows two choreographies specified using this notation. At this stage,
services are specified in an abstract way. They will be subsequently replaced by
concrete implementations as a result of service selection.

Our proposal for choreography enactment is based on the combined repre-
sentation of multiple choreographies using a structure called QoS-Aware Depen-
dency Graph. This structure represents the services that are part of the chore-
ographies, the dependencies among those services, and their NFRs.

Definition 6 (QoS-Aware Dependency Graph). A QoS-aware dependency
graph G is a directed graph represented by a tuple (P,E,Q):

– P = {b ∪ z ∪ S} is a set of vertices, where b and z represent the initial and
end vertices, respectively.

– E is the set of directed edges. Each edge e ∈ E is a tuple (ps, pr, o), where
ps ∈ {P − z} is the send vertex, pr ∈ {P − b} is the receive vertex, and o is
the operation being requested.

– Q is a set of QoS properties. Each q ∈ Q is a tuple (k,Ω, λ, φ), where k is a
QoS metric, λ is the load (λ > 0), φ ∈ Dk is the target average value for this
metric, and Ω is a set of pairs (s ∈ S, o) that represent the services and the
target operations to which the metric must be applied.

A Model-Based Approach for the Pragmatic Deployment 161

b1 s1 s2 z1

k1(s1, o1) φ1

k2(s1, o1) φ2

k1(s2, o2) φ3

k2(s2, o2) φ2

k3 φ4

o1, λ1 o2, λ1

b2 s1

s2

s3

z2

k1(s1, o3) φ6

k1(s2, o2) φ7

k2(s2, o2) φ2

k1(s3, o6) φ8

k2(s3, o6) φ2

k3 φ9

k4 φ5

o3, λ2

o2, λ2.1

o6, λ2.2

Fig. 2. Two choreographies specified using the QoS-Aware process graph notation.

b s1

s2

s3

z

o1

o3

o2

o6

k1{(s1, o1)} λ1, φ1

k1{(s1, o3)} λ2, φ6

k2{(s1, o1)} λ1, φ2

k1{(s2, o2)} λ1, φ3

k1{(s2, o2)} λ2.1, φ7

k2{(s2, o2)} λ1 + λ2.1, φ2

k1{(s3, o6)} λ2.2, φ8

k2{(s3, o6)} λ2.2, φ2

k3{(s1, o1), (s2, o2)} λ1, φ4

k3{(s1, o3), (s2, o5),
(s3, o6)}

λ2, φ9

k4{(s1, o3), (s2, o5),
(s3, o6)}

λ2, φ5

Fig. 3. QoS-aware dependency graph for the choreographies shown in Fig. 2.

162 R. Gomes et al.

Figure 3 illustrates the QoS-aware dependency graph for the two annotated
choreographies shown in Fig. 2. We can find elements that remain the same as in
the original choreographies (shown in lighter shades of gray) as well as elements
that had some change in their load and target values (highlighted in darker
tones). Changes are due to the increased load on services and to the aggregation
of NFRs when they have the same target. In this structure the services represent
concrete chosen implementations.

This formalization enables the representation of combined choreographies
and the execution of more realistic service selection and resource allocation.
Additionally, these aspects must be reexamined (i.e., adapted) during choreog-
raphy enactment (at runtime). In the next section we outline the approach we
are developing to do this using the model described here.

6 Adaptive Approach to Choreography Deployment

The preceding sections discuss the issue of managing multiple choreographies at
the same time in the presence of service sharing. Users in charge of choreography
management must take into account the different roles of services and select the
resources needed to run each service. This must be done at deployment time,
and needs to be constantly reviewed at runtime to match QoS requirements.

The formalization presented in the previous section can be used to deal with
the service sharing issue during choreography enactment. It facilitates the initial
resource allocation and its adaptation at runtime as outlined next.

Fig. 4. Scenario of manual choreography enactment management.

As illustrated in Fig. 4, according to feedback from clients, such as regarding
the level of satisfaction, or from the system, e.g., number of aborted requests,
the user must manage service and resource allocation and adaptation. Every
time some QoS violation is detected, the first attempt to deal with it is through
adaptation of resource allocation. In cases where it is not possible to achieve
the needed QoS by acting (solely) at this level, another strategy is to perform
adaptation on service selection and resource configuration. As a last attempt,
the user may be required to adapt the choreography and/or accept lower QoS.

A Model-Based Approach for the Pragmatic Deployment 163

Our approach to automate the above scenario is to use models at runtime [14].
The use of models at runtime allows the specification of services and resource
requirements based on the current needs of applications; it also allows more
precise management of the available computing power, especially compared to
the allocation of resources based simply on profiles of virtual machines (VM).
In doing so, service selection and resource allocation can be performed auto-
matically according to abstract models and monitored data, thus facilitating
adaptation.

Fig. 5. Runtime models.

As can be seen in Fig. 5, our proposal relies on three different entities that are
abstracted using models. The choreography model (upper left side in the figure)
is represented using the QoS-aware process graph notation and is the input in
our approach. It is then used to generate the deployment model (upper middle
part in the figure), which is represented using the QoS-aware dependency graph
notation (with concrete service selection). The dependency graph, in turn, is
used to select the resources used to deploy/run the services. Moreover, the cloud
resources model (upper right side) represents available resource configurations
and is used as input for resource selection. The formalization proposed in this
paper can be used to specify the first two levels of modeling. We aim to extend
this formalization to represent cloud resources as well.

Although there is reification1 of the running system in all models, direct
absorption4 only applies to the deployment model, since changes on it are directly
reflected on the running system. Nevertheless, changes in the other two models
are also reflected in a indirect way since they are used as input for service and
resource selection. Note that this is ongoing work and an implementation of the

1 Reification is the action of exposing the representation of a system in terms of
programming entities that can be manipulated at runtime. The opposite process,
absorption, consists in effecting the changes made to these entities into the sys-
tem [15].

164 R. Gomes et al.

proposed approach is currently being developed. We are currently implementing
the generation of dependency graphs by means of the combination of the target
process graphs. Service and resource selection in turn are being implemented
using a variation of the multiple-choice multi-dimension knapsack problem [16].

7 Final Remarks

The sharing of services among multiple service compositions has a significant
effect on the overall provided QoS. Based on this observation, we advocate that
performing choreography enactment without taking this into account is not a
realistic approach. We present some experiments that demonstrate the problem
and propose a formal model to represent QoS-aware service compositions.

We aim to use the formal model presented here to represent abstract service
compositions. Taking these abstract compositions as input, we can automatically
select the best services in order of satisfy associated non-functional requirements.
Another important ongoing work is to extend the formalization presented here
with a cloud resources model in order to provide a basis to implement the allo-
cation of resources to run the selected services in a multi-cloud environment.

Acknowledgments. This work is supported by the Brazilian foundations FAPEG
(calls # 04/2011, 12/2012 and 03/2013) and CNPq (grants # 249809/2013-3 and
473939/2012-6).

References

1. Strunk, A.: QoS-aware service composition: a survey. In: 2010 IEEE 8th European
Conference on Web Services (ECOWS), pp. 67–74. IEEE (2010)

2. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE Tran.
Serv. Comput. 2(2), 152–166 (2009)

3. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Software Eng. 30(5),
311–327 (2004)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of
composite web services. In: Proceedings of IEEE International Conference on Web
Services, ICWS 2005, Proceedings, pp. 121–129. IEEE (2005)

5. Peng, X., Changsong, L.: ESCA: evolution-strategy based service composition algo-
rithm for multiple QoS constrained cloud applications. Int. J. Future Gener. Com-
mun. Netw. 7(1), 249–260 (2014)

6. Field, T.: JINQS: an extensible library for simulating multiclass queueing net-
works, v1.0 user guide (2006). http://www.doc.ic.ac.uk/ajf/Software/manual.pdf.
Accessed 30 March 2015

7. Nguyen, X.T., Kowalczyk, R., Han, J.: Using dynamic asynchronous aggregate
search for quality guarantees of multiple web services compositions. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 129–140. Springer, Hei-
delberg (2006)

8. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services
based processes. J. Syst. Softw. 83(8), 1512–1523 (2010)

http://www.doc.ic.ac.uk/ajf/Software/manual.pdf

A Model-Based Approach for the Pragmatic Deployment 165

9. Furtado, T., Francesquini, E., Lago, N., Kon, F.: A middleware for reflective web
service choreographies on the cloud. In: Proceedings of the 13th Workshop on
Adaptive and Reflective Middleware, vol. 9. ACM (2014)

10. Huang, K.C., Shen, B.J.: Service deployment strategies for efficient execution of
composite SaaS applications on cloud platform. J. Syst. Softw. 107, 127–141 (2015)

11. OMG: Documents Associated with Business Process Model and Notation (BPMN),
Version 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/

12. Mendling, J., Lassen, K.B., Zdun, U., et al.: Transformation strategies between
block-oriented and graph-oriented process modelling languages. In: Multikonferenz
Wirtschaftsinformatik, vol. 2, unknown, pp. 297–312 (2006)

13. Rosario, S., Benveniste, A., Jard, C.: Flexible probabilistic QoS management of
transaction based web services orchestrations. In: IEEE International Conference
on Web Services, ICWS 2009, pp. 107–114. IEEE (2009)

14. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27
(2009)

15. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware.
Commun. ACM 45(6), 33–38 (2002)

16. Khan, S., Li, K.F., Manning, E.G., Akbar, M.M.: Solving the knapsack problem
for adaptive multimedia systems. Stud. Inform. Univ. 2(1), 157–178 (2002)

http://www.omg.org/spec/BPMN/2.0/

Supporting Cloud Service Selection
with a Risk-Driven Cost-Benefit Analysis

Aida Omerovic(B)

SINTEF, Trondheim, Norway
Aida.Omerovic@sintef.no

Abstract. Our earlier work indicates feasibility of eliciting multi-cloud
requirements and thus identifying selectable cloud services based on a
risk-driven approach. Once an overview of the selectable services that
treat a specific risk is obtained, a decision needs to be taken regarding
the final selection. This position paper focuses on providing a practical
and simple approach to choosing a concrete cloud service (or a set of
thereof) when several alternatives are available. We propose a risk-driven
cost-benefit analysis approach and exemplify how a decision maker, such
as a business analyst or a multi-cloud architecture designer, can apply
it in the context of cloud service selection. The strength of the approach
is in its simplicity, since the approach is based on a set of relatively
comprehensible guidelines. Still, we consider this to be work in progress,
since an analysis of how to combine a set of interdependent cloud services
(which address several respective risks) is necessary for enabling a full-
scale design of a multi-cloud based architecture.

Keywords: Cloud service selection · Multi-cloud applications · Cost-
benefit analysis · Requirements elicitation · Design · Decision support

1 Introducion

We have earlier reported on result that indicate feasibility of applying a risk-
driven approach to identify selectable cloud services in the context of multi-cloud
architecture design (Gupta et al. 2015b). The method is also supported by a tool
which a decision maker can use to perform a risk-driven identification of the cloud
services which are to be composed in a multi-cloud architecture (Gupta et al.
2015a). The services presented by the tool are those that meet the requirements
which address the identified risks. We have moreover evaluated an approach to
estimate and analyze cost, risk and quality when designing a system architecture
(Singh et al. 2014). Based on this earlier work, we can perform a risk analysis
and eventually obtain a set of risks as well as treatments that mitigate or reduce
the respective risks. The treatments in our case will be requirements to cloud
services which address concerns such as cost, quality or functionality. These
requirements are then matched to the properties of the known cloud services
(or cloud providers in general). Thus, for each risk, up to several independent

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 166–174, 2016.
DOI: 10.1007/978-3-319-33313-7 12

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 167

cloud services are suggested. The challenge in such a case is how to select the
appropriate cloud service (or treatment alternative consisting of one or more
cloud services that address a specific risk).

This position paper proposes a cloud service selection approach based on
a risk-driven cost-benefit analysis. We provide guidance and exemplify how to
select a specific cloud service when several alternative (independent) cloud ser-
vices have been proposed in order to treat a specific risk. We assume two kinds
of input:

1. A specification of risk and its treatment alternatives, both of which are iden-
tified through a risk analysis. The treatment alternatives are presented in the
form of different cloud services.

2. A cost estimate of the original risk, a cost estimate of each treatment alter-
native, as well as a cost estimate of the associated remaining risk (that is,
the risk that is left if we assume that the treatment alternative in question is
adopted).

For both kinds of input, the existing state of the art provides guidance and
models. For the cost estimation of risks and treatments, there are several exist-
ing models and approaches. COCOMO (Fenton and Pfleeger 1997) and SLIM
(Fenton and Pfleeger 1997) are among the well-known models. For analysis of
security economics, some of the known approaches are Net Present Value (NPV)
(Daneva 2006), Return on Security Investment (ROSI) (Sonnenreich et al. 2006),
the Cost Benefit Analysis Method (CBAM) (Kazman et al. 2002) and the Secu-
rity Solution Design Trade-Off Analysis (Houmb et al. 2005). For risk analy-
sis, some of the well known approaches include CORAS (Lund et al. 2011),
CRAMM (Barber and Davey 1992), OCTAVE (Alberts and Davey 2004), Event
Tree Analysis (IEC 1995), Cause-Consequence Analysis (Nielsen 1971) and Fault
Tree Analysis (IEC 2006). For quality and architecture analysis, approaches such
as PREDIQT (Omerovic 2012) and ATAM (Kazman et al. 2000) can be applied.
One major challenge in the context of risk and cost models, is the uncertainty
of the risk levels and the cost estimates. Uncertainty handling has, for exam-
ple, been reviewed in (Omerovic et al. 2012a). There exists state of the art
that we could adopt for uncertainty handling, based on various types of scales
and approaches. Main distinction is made between possibilistic and probabilistic
approaches. In PREDIQT, for example, uncertainty is handled based on intervals
(Omerovic and Stølen 2011).

The target group of the approach is a business analyst or an architecture
designer who needs a comprehensible decision support for service selection.
Therefore, our objective has been to provide a practical and simple approach
to choosing a concrete cloud service (or a set of thereof) when several alterna-
tives are available. Note that the aim of the approach is not to provide a finite
answer or choose the cloud service on behalf of the decision maker. Rather, the
approach assists the user in making a more informed decision with respect to
the goals specified through the risks and the acceptance criteria. Our approach
is agnostic to the choice of the risk analysis method, or the approach to cost esti-
mation. We argue that the strength of the approach is in its simplicity, since it is

168 A. Omerovic

based on a set of relatively comprehensible guidelines. Still, we consider this to
be work in progress, since an analysis of how to combine a set of interdependent
cloud services (which address several respective risks) is necessary for enabling
a full-scale design of a multi-cloud based architecture.

This paper is structured as follows. In Sect. 2 we outline the approach itself,
including the guidelines to be followed during a cost-benefit analysis. In Sect. 3
we illustrate the application of the approach on an example. A discussion of the
results is given in Sect. 4, before concluding in Sect. 5.

2 The Approach

This section presents the approach in general. We start by characterizing the
input and prerequisites, and then provide guidelines for conducting a cost-benefit
analysis which eventually proposes one treatment alternative (that is, one cloud
service or a combination of thereof in case the treatment alternative is repre-
sented by more than one cloud service) to a specific risk which is not acceptable
and needs to be reduced. Our approach is partially based on experiences from
various case studies which have addressed treatment selection (Singh et al. 2014,
2015; Omerovic et al. 2012b).

Our starting point is a specific risk RN (identified by a natural number N)
and its original cost CRN (i.e., cost of risk N). The risk is characterized by
its known factors such as frequency of occurrence, consequence, type of threat
that initiates it, etc. Based on a risk function which is an expression of how
to deduce a risk level of risk based on the risk factors, we obtain level of risk
N, that is, RLN . Acceptance criteria, that is, a statement of to what degree
a risk level is acceptable, need to be available1. We assume that the risk in
question, according to the pre-defined risk acceptance criteria, is not acceptable
and needs to be treated. The risk itself can be a textual description of how an
incident caused by a threat scenario (that is, a threat exploiting a vulnerability
and triggering a scenario) impacts something of value (a goal or an asset). Once
the risk is described and the factors are denoted, we use the cost estimation
approaches to estimate the expected cost of the risk (CRN), that is the cost of
the impact it may have on the goal or the asset.

In addition to the risk characterization and its cost, we assume that the cloud
services SX,N (each identified by a natural number X) that treat the risk N are
identified, along with their respective cost estimates CSX,N . The cost of a cloud
service should include all cost factors, such as licensing, operation, retirement,
etc. Each cloud service represents an independent treatment alternative that
addresses the risk. Only one treatment alternative is needed. Surely, some of the

1 Best known acceptance criteria in practical use are colors shaded on a two-
dimensional risk matrix – a table with frequency and consequence levels on the
two respective axes, where the fields of combinations of the two factors are col-
ored by for example green (acceptable), yellow (should be examined closer) and red
(unacceptable).

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 169

services suggested can be dependent or one may wish to adopt several indepen-
dent ones in order to achieve redundancy; in that case, the desired combination
would be treated as one treatment alternative. For simplicity, we refer to each
treatment alternative as an independent cloud service (although several could
be combined to represent a treatment alternative). We also specify how much we
can afford paying for a service that treats a risk and express that value as ACSN .
Each independent cloud service reduces the risk to some degree, resulting in a
related risk level estimate RLX,N (that is, the estimated level of risk provided
that service SX,N is adopted). The cost of the remaining risk (CRX,N) (pro-
vided that the service X is adopted) is also estimated. Hence, for each selectable
service, we will know how much it costs, what the resulting level of the related
risk will be, as well as what the cost of the remaining risk will be. Hence, we
operate with the following variables:

– RN : risk identified by number N
– CRN : expected cost of risk RN without any treatment (that is, without adop-

tion of any cloud service)
– RLN : original level of untreated risk RN . The risk level is based on a pre-

defined function which combines risk factors such as frequency and conse-
quence, to calculate risk level.

– SX,N : a cloud service which is identified by a natural number X and addressing
risk RN

– ACSN : affordable cost of a service that treats risk RN

– CSX,N : expected cost of cloud service SX,N

– RLX,N : expected level of risk RN provided that service is adopted
– CRX,N : expected cost of the remainder of risk RN provided that service is

adopted

With this as input, the following pseudo-code expresses our guideline for
service selection:

If there exists one or more cloud services SX,N such that
(RLX,N is acceptable) AND (CSX,N ≺ CRN) AND (CSX,N ≺ ACSN)
then choose the cloud service SX,N which has Min(CSX,N)
else (that is, there is no cloud service reducing the risk to an acceptable
level, or the alternatives which reduce the risk to an acceptable level are not
affordable)
If there are other cloud services that reduce the risk to some degree such that
(RLX,N ≺ RLN) AND (CSX,N ≺ ACSN) AND ((CSX,N + CRX,N) ≺
CRN)
then Min(CSX,N + CRX,N) (that is, choose the cloud service which gives
lowest sum of cost of service and cost of remaining risk).

3 Applying the Approach to an Example

In this section, we exemplify the application of the approach on an example. We
describe the target of the analysis and define acceptance criteria for our asset or

170 A. Omerovic

goal. Then we consider one single risk and three independent cloud services that
have been identified as possible alternatives for handling the risk in question.
Finally, we apply the approach presented in Sect. 2 to select one of the three
cloud service alternatives.

Our asset is performance of an online grocery store, and the risk analysis
is performed from the point of view of the service provider. As a part of the
context description (which is the first step of a risk analysis), we assume that
the scales for consequence and frequency are defined with respect to the asset.
Risk acceptance criteria are then defined through a matrix shown in Fig. 1.
The red fields indicate the combinations of frequency and consequence of a risk
that are not acceptable and must be treated. Similarly, the green fields show
the acceptable risk levels, while the yellow fields show the risk levels that do
not have to be treated but should be considered closer. Of course, the number of
colors (risk acceptance levels) and their representation is specific to this example
and can vary. The plotted values should be overseen at this stage and will be
introduced later in the example.

Fig. 1. Acceptance criteria for risks related to performance (Color figure online)

Assume that we have identified a risk to performance, namely: “R1: Perfor-
mance degradation due to inefficient storage”. Frequency of R1 is estimated to
Possible and consequence is estimated to Major. We plot the original level of risk
(RL1) on the matrix that defines our acceptance criteria (Fig. 1) and see that
the risk R1 has a level which is not acceptable. Hence, a treatment is needed.
Assume that cost of this risk is estimated to be 5000 EUR. Assume also that we
can afford paying 3000 EUR for a cloud service that would treat the risk. Thus,
RL1 = (possible, major); ACS1 = 3000 EUR; CR1 = 5000 EUR.

Assume that we have identified three possible cloud services that can address
the risk R1:

– S1,1: An SQL database from “ProviderX”
– S2,1: A NoSQL database from “ProviderY”
– S3,1: A hybrid database from “ProviderZ”

The corresponding estimates for cost of the service, cost of the remaining risk
(assuming that the service is adopted) and remaining risk level after adoption
of the service, are respectively:

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 171

– CS1,1 = 1500 EUR; CR1,1 = 3000 EUR; RL1,1 = (unlikely, major);
– CS2,1 = 2500 EUR; CR2,1R = 1500 EU; RL2,1 = (likely, minor);
– CS3,1 = 6000 EUR; CR3,1 = 200 EUR; RL3,1 = (unlikely, minor);

The estimated remaining levels of risk R1 after adoption of each cloud service,
are plotted on Fig. 1. Applying the guideline for service selection from Sect. 2,
we find that:

– S3,1 would make the risk acceptable, but it is more expensive than the original
risk and it is not affordable. Therefore, we advise against S3,1.

– In the case of S1,1 and S2,1, we see that both services reduce the risk level to
the yellow area of Fig. 1 and both services are affordable. Hence, we consider
the respective sums of cost of the service and the cost of the remaining risk.
CS1,1 + CR1,1 = 4500 EUR while CS2,1 + CR2,1 = 4000 EUR. The sum of
cost of service and cost of remaining risk is lowest in the case of S2,1. Thus,
we recommend adopting the cloud service S2,1.

4 Discussion

Although the example indicates feasibility of applying the approach proposed in
Sect. 2, there are threats to validity and reliability of the approach that need to
be pointed out. To thoroughly assess the reliability of the approach, empirical
evaluation of a realistic case is needed. In a practical setting, our original goals of
comprehensibility and practical usefulness of the approach would be evaluated.
Scalability of the approach with respect to the number of the cloud service
alternatives, would also be better assessed in a practical setting.

Uncertainty of the risk frequency and therefore its likelihood of occurrence,
makes it difficult to treat cost of adopting a cloud service and cost of risk equally.
Naturally, it is more certain that the cost of adopting a cloud service will be
materialized, than the cost of risk, since the risk does not have to occur while
a treatment is assumed to be adopted as soon as a decision is made. Moreover,
factors characterizing the risk are often to some degree uncertain since their
estimates are based on incomplete empirical knowledge. At the same time, cost
of a service is often made available by a service provider. That is also why the
estimates of service adoption cost may be more certain than the estimates of
risk.

In our example, both S1,1 and S2,1 ended in the different parts of the yellow
area of the risk matrix. Their acceptance level was considered equal. However,
in practice one risk level may have been preferred over the other. The example
did not distinguish explicitly between the possible variations of the resulting
risk within the same acceptance level. We did, however, take into account the
differences of the remaining cost, that is the different values of CR1,1 and CR2,1

before providing the final recommendation.
One limitation of the current state of the approach, is that it does not take

into account the multi-cloud aspects when performing the cost-benefit analysis.
Only one risk is considered at a time. An obvious next step, is therefore to

172 A. Omerovic

provide support for cost-benefit analysis when several interdependent services
addressing multiple risks need to be combined in a multi-cloud architecture.

Once a cloud service is selected, new risks may be introduced. Some of those
new risks also have to be treated. Hence, our approach also needs to support
incorporating into the original model and handling of the new risks that occur
due to the services selected.

Another challenge is how to take into account the risk attitude of the decision
maker in the context of a cost-benefit analysis. A common way of expressing the
risk attitude is through the acceptance criteria, which in the case of our example
are expressed in the form of the colored risk matrix. The risk matrix of a risk
averse decision maker would be more dominated by the red color, while the
risk matrix of a risk seeking decision maker would be more dominated by green
color. A risk neutral decision maker would define his or her risk matrix in a
rather balanced manner. Note that, unless there exists a baseline definition of
thresholds for risk attitude, it only makes sense to distinguish and compare the
three attitudes and their respective acceptance criteria relative to each other.
Risk attitude may be expressed in many forms through so-called risk function.
Other (and more) factors than frequency and consequence may be involved. More
than ove decision maker with varying risk attitudes may also be involved. Our
approach should also be refined with more detailed guidelines which take into
account varying risk attitudes.

Hence, we have managed to specify the guidelines and demonstrate feasibility
of the approach, while the support for aspects such as multi-cloud handling and
varying risk attitude still need to be included. Nevertheless, we consider the
current results to be a first step towards a full-scale cost-benefit analysis for
cloud service selection.

5 Conclusions

We have in this position paper proposed a risk-driven approach to cost-benefit
analysis for selection of cloud services. The application of the approach has been
illustrated on an example. The initial results indicate feasibility of specifying a
guideline of the approach and applying it. The main strength of the approach is
considered to be its simplicity and assumed comprehensibility for non-technical
users. We have through the application of the approach on the example also iden-
tified several needs for improvement, such as support for analysis of multi-cloud
aspects and better expressiveness with respect to uncertainty and risk attitude.
Thus, our further work should be two-fold: (1) empirical evaluation on a realistic
case to evaluate its practical usefulness and identify further requirements, and
(2) extension of the approach with support for multi-cloud aspects handling,
uncertainty handling, as well as capability of supporting a richer risk attitude
function in the cost-benefit analysis.

Acknowledgments. This work has been supported by the MODAClouds project
(Grant Agreement FP7-318484) funded by European Commission within the 7th
Framework Programme.

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 173

References

Alberts, C.J., Davey, J.: OCTAVE criteria version 2.0. Technical report CMU/SEI-
2001-TR-016, Carnegie Mellon University (2004)

Barber, B., Davey, J.: The use of the CCTA risk analysis and management methodology
cramm in health information systems. In: 7th International Congress on Medical
Informatics (1992)

Daneva, M.: Applying real options thinking to information security in networked orga-
nizations. CTIT Report TR-CTIT-06-11. Technical report, University of Twente
(2006)

Fenton, N.E., Pfleeger, S.L.: A Rigorous and Practical Approach, 2nd edn. PWS Pub-
lishing Company, Boston (1997)

Gupta, S., Dominiak, J., Matthews, P., Mulero, V.M., Omerovic, A.: Decision Making
Toolkit Prototype - Final Version. MODAClouds project deliverable D 2.3.3 (2015a)

Gupta, S., Muntes-Mulero, V., Matthews, P., Dominiak, J., Omerovic, A., Aranda, J.,
Seycek, S.: Risk-driven framework for decision support in cloud service selection. In:
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CC-GRID 2015), Shenzhen, Guangdong, China. IEEE/ACM (2015b)

Houmb, S.H., Georg, G., France, R., Bieman, J., Jürjens, J.: Cost-benefit trade-off
analysis using BBN for aspect-oriented risk-driven development. In: 10th Interna-
tional Conference on Engineering of Complex Computer Systems, pp. 195–204. IEEE
Computer Society (2005)

IEC: International Electrotechnical Commission. IEC 60300-3-9 Dependability man-
agement - Part 3: Application guide - Section 9: Risk analysis of technological sys-
tems - Event Tree Analysis. International Electrotechnical Commission (1995)

IEC: International Electrotechnical Commission. IEC 61025 Fault Tree Analysis Edi-
tion 2.0 (FTA). Technical report, International Electrotechnical Commission (2006)

Kazman, R., Asundi, J., Klein, M.: Making architecture design decisions: an economic
approach. Technical report CMU/SEI-2002-TR-035. Carnegie Mellon (2002)

Kazman, R., Klein, M., Clements, P.: Method for architecture evaluation. Technical
report CMU/SEI-2000-TR-004. Carnegie Mellon (2000)

Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis - The CORAS App-
roach. Springer, Heidelberg (2011)

Nielsen, D.S.: The cause/consequence diagram method as basis for quantitative acci-
dent analysis. Technical report RISO-M-1374. Danish Atomic Energy Commission
(1971)

Omerovic, A.: PREDIQT: a method for model-based prediction of impacts of archi-
tectural design changes on system quality. Doctoral dissertation, Faculty of Mathe-
matics and Natural Sciences, University of Oslo, Oslo (2012)

Omerovic, A., Karahasanovic, A., Stølen, K.: Uncertainty handling in weighted depen-
dency trees: a systematic literature review. In: Dependability and Computer Engi-
neering: Concepts for Software-Intensive Systems. IGI Global (2012a)

Omerovic, A., Solhaug, B., Stølen, K.: Assessing practical usefulness and performance
of the PREDIQT method: an industrial case study. Inf. Softw. Technol. 54(12),
1377–1395 (2012b)

Omerovic, A., Stølen, K.: A practical approach to uncertainty handling and estimate
acquisition in model-based prediction of system quality. Int. J. Adv. Syst. Meas.
4(1–2), 55–70 (2011)

Singh, A.G., Omerovic, A., Chauvel, F., Ferry, N.: An experience report. In: Proceed-
ings of the 13th Workshop on Adaptive and Reflective Middleware, ARM 2014, pp.
7:1–7:6. ACM, New York (2014)

174 A. Omerovic

Singh, A.G., Omerovic, A., Chauvel, F., Ferry, N.: Towards feature-driven goal fulfill-
ment analysis - a feasibility study. In: Proceedings of the 3rd International Confer-
ence on Model-Driven Engineering and Software Development, pp. 193–204 (2015)

Sonnenreich, W., Albanese, J., Stout, B.: Return on security investment (ROSI)-a
practical quantitative model. J. Res. Pract. Inf. Technol. 38(1), 45–56 (2006)

Multi-level Adaptations in a CloudWave
Infrastructure: A Telco Use Case

Dario Bruneo1, Francesco Longo1(B), and Boris Moltchanov2

1 Dipartimento di Ingegneria, Università degli Studi di Messina,
Viale F. Stagno d’Alcontres, 31, 98166 Messina, ME, Italy

{dbruneo,flongo}@unime.it
2 Telecom Italia, Via G. Reiss Romoli, 274, 10148 Torino, TO, Italy

boris.moltchanov@telecomitalia.it

Abstract. CloudWave is a FP7 EU project whose aim is delivering novel
technologies and methods for improving both the development of Cloud
services and the management of their operation and execution. Such
goal is reached by providing mechanisms and policies for coordinating
multiple adaptations both at the level of the Cloud infrastructure and
at the level of the hosted applications. In this paper, we describe the
CloudWave Telco application use case and we provide a proof of concept
discussing how the QoS experienced by the application users can be
improved thanks to the technologies provided by CloudWave.

1 Introduction

Currently within ICT, cloud computing plays a key role and is recognized as one
of the most significant technologies for boosting productivity, economic growth
and job development [1]. As cloud computing takes hold, the challenges of fully
realizing its potential become evident. In fact, nowadays, IT leaders increasingly
consider the improvement of business agility as well as faster innovation the
major strategic reasons for adopting this paradigm. Yet, the engineering methods
and tools used to develop cloud services have not yet made the leap towards these
expectations. Thus, there is a need to improve agility in designing software and
operating cloud based service as well as to increase the cloud infrastructure
adaptivity and the interaction between the higher level software & service goals
and the lower level infrastructure (see NESSI [2]).

Moreover, cloud applications are often designed with incomplete knowledge
about their actual usage profile, delivery model, and the reliability of the cloud
infrastructure. This may lead to unforeseen runtime situations, resource uti-
lization inefficiencies, and even performance degradation that can cause out-
ages. These can result in loss of competitive advantage for service providers
due to current and potential client’s concerns about Quality of Service (QoS)
and usage risks [3]. We believe that this issues are fundamental consequences
of both application-level and infrastructure-level deficiencies: applications are
not designed to explore the distribution, characteristics, and dynamic behavior

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 175–183, 2016.
DOI: 10.1007/978-3-319-33313-7 13

176 D. Bruneo et al.

of cloud infrastructure while existing cloud technology stacks (such as Open-
Stack [4]) do not provide concrete mechanisms to facilitate such cloud application
development.

Thus, new, holistic, cloud-specific engineering methods are required. Such a
novel paradigm should facilitate design and delivery of reliable cloud services
and should support their continuous adaptation to changing environment condi-
tions and market requirements, speeding up innovation cycles. The CloudWave
project [5–7] represents an attempt to address this challenge by delivering novel
technologies and methods for improving both the development of Cloud services
and the management of their operation and execution. This new development
and management paradigm is built upon new technologies and open standards,
while leveraging assets and outcomes of other relevant FP7 EU projects, e.g.,
RESERVOIR [8], FI-WARE [9], Optimis [10].

In this paper, we provide a description of one of the use cases that the Cloud-
Wave project is developing to prove the effectiveness of the proposed solutions.
The use case is based on a Telco application that has been ported to a CloudWave
infrastructure and adapted to leverage coordinated adaptation mechanisms both
at the level of the Cloud infrastructure and at the level of the application itself.
We discuss how the QoS experienced by the application users can be improved
thanks to the CloudWave technologies and how we plan to actually implement
the vision in future work.

2 Agile Software and Feedback-Driven Developments:
The CloudWave Project

CloudWave: Agile Service Engineering for the Future Internet [5] is a European
Commission Seventh Framework Programme (FP7/2006–2013) funded Inte-
grated Project started at the beginning of November 2013 and still in progress.

In its mission, CloudWave takes inspiration from the emerging DevOps par-
adigm [11]. DevOps promotes communication, collaboration, and integration
between software development and IT operations, recognizing the increasing
necessity of more alignment between such two disciplines and their stakehold-
ers for the production of high quality software ready for the Future Internet.
CloudWave is the first holistic solution leveraging DevOps’ principles, as shown
in Fig. 1.

Specifically, the vision of the CloudWave project is based on three main
innovation pillars that together contribute to the realization of a new generation
software development environment, an innovative process, and powerful tools
and methods for engineering high quality Future Internet applications.

Execution Analytics. (Monitoring in Fig. 1) - CloudWave exploits program-
mable mechanisms and specialized algorithms in order to dynamically introspect
and analyze both the Cloud infrastructure and the application behavior. Data
pertaining to physical resources, virtualized resources, IoT elements, exploited
platforms, and the applications themselves will be integrated, supporting both
application run-time adaptations and an agile incremental development process.

Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case 177

Fig. 1. The DevOps paradigm as adopted by CloudWave

Coordinated Adaptation. (Ops in Fig. 1) - CloudWave proposes and eval-
uates new distributed algorithms and data models that will enable Cloud
infrastructures and applications to take coordinated adaptation actions across
the system stack in response to dynamic changes in their execution environment.
This will allow to optimize the quality of service and the resource utilization,
while providing feedback on runtime adaptations to developers.

Feedback-Driven Development. (Dev in Fig. 1) - CloudWave is also a novel
engineering paradigm and a set of modular platform services for agile develop-
ment of new generation Future Internet applications. Developers will be provided
with easy access to runtime data allowing them to enhance business applications
for the sake of superior customer experience, based on observed user needs and
context as well as application/infrastructure behavior and adaptations.

Based on those novel ideas, CloudWave goes significantly beyond the state-
of-art in Cloud computing, investigating into emerging capabilities and mecha-
nisms such as Cloud-aware applications, dynamic offloading of application code
between Cloud, on-premise servers, and IoT devices, dynamic binary optimiza-
tion of application code to support migration across the Cloud, integrated and
coordinated multi-layer adaptations complementary addressing aspects such as
service stability, availability, reliability, fail-safe provisioning, security and pri-
vacy. Overall, the project will provide solutions for delivering services in an
effective, efficient and reliable manner across the future computing continuum
embracing Clouds and IoT devices that the Future Internet represents, while uti-
lizing and extending already existing, open-source, de-facto standard approaches
such as OpenStack [4,12].

3 CloudWave Telco Use Case

3.1 Application Architecture

One of the use cases selected for the project is a mobile telecommunication ser-
vice scenario, which is built in the recommender class of services. This service
accessible through a web-browser in a mobile terminal shows to the customer
multimedia content chosen and selected based on the customers text or URI

178 D. Bruneo et al.

input and available data-bases connected to the services backend. The complex-
ity of the service and its dependency on external data-sources explains significant
delays in the service response given a certain text by the customers. The cus-
tomers are equipped with mobile terminals connected to the mobile network and
requests the service application via the same internet services URI. Potentially
the number of the customers sending the request to the service at the same time
could be extremely large. Each service request is processed separately; therefore
the overall response time grows with the number of the customers using the
service. The customers could be of two types: premium - paying customers, who
pays for the service usage and so pretend to have certain QoS within certain
Service Level Agreement (SLA) - and freemium - who are using the service for
free and therefore are not guaranteed for any QoS. Although the freemium cus-
tomers use full service functionalities, their service quality is not guaranteed as
they are served by minimum resources allocated for the freemium customers.
The service concept is shown in the Fig. 2.

Fig. 2. Telco use case service scenario.

The premium customers are served with increasing service power, guaran-
teeing contracted by SLA QoS, nevertheless under certain conditions the ser-
vice could degrade into a smaller set of mandatory features and breaks the
SLA if increase further certain limit of numbers of requests per second. The
power of underlying infrastructure allocated per service depends on the max-
imum infrastructural cost defined by the service provider within CloudWave
platform. Therefore the overall service performance is limited by the limited
IaaS resources dedicated to the service within the maximum allowed cup cost.

Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case 179

3.2 Application Deployment

The service is built in a way that its modular structure runs over many Vir-
tual Machines (VMs) under CloudWave control, which measures the response
time and, when the service usage increases, it tries first to split the customers
traffic into Premium and Freemium VMs (PVM and FVM respectively), then
instantiate new PVM until the total allowed expense is reached, then disables
some optional features in the premium customers service and finally applies the
QoS filtering rejecting the customers if requests numbers continues to grow.
This behavior is possible due to the total control by CloudWave over the ser-
vice components and number of requests, applying scale out/in techniques and
application adaptation.

Detailed service integration into the CloudWave platform is shown in Fig. 3.

Fig. 3. Telco use case integrated into the CloudWave platform.

The CloudWave platforms components shown in the upper right corner of
above picture receives the monitored metrics from the service components and
once the monitored event is detected the CloudWaves Adaptation Engine release
adaptation action corresponding to the detected condition at the infrastructural
level (IaaS). Initial metrics coming from the monitored service components and
VMs are intercepted by the appESPER module acting on the application level
(PaaS/SaaS), which derives the aggregated metrics relevant for the CloudWaves
internal ceiloESPER module, but could be also the adaptation requests released
to the service components at the application level.

This scenario allows to split the total service control into two realms: applica-
tion and infrastructural, where corresponding ESPER module activates actions
for adaptation at the service application or the service infrastructure level. This
permits to have application sensitive data hidden from the IaaS management
and fetch the CloudWave underlying IaaS environment only with filtered data
relevant for the IaaS level of actuations. The SLA defines the rules to be provided

180 D. Bruneo et al.

for both appESPER and ceiloESPER reasoners in order to take correspondent
actions on separated respective SaaS/PaaS and IaaS levels, making the overall
solution very fast reacting when each level is controlled by its own metrics, rules
and action management tools.

4 Multi-level Adaptations: A Proof of Concept

In this section, we provide a proof of concept showing how multi-level adaptations
can improve the overall QoS experienced by the Telco application users.

The state machine and the state transitions of the service behavior under
different load conditions (L) defined by different threshold levels (L1..L4) is
shown in Fig. 4.

Fig. 4. States and state transitions of the use case.

The use case scenario run consists of the progressive scale up of the overall
service performance by the following steps, as shown in Fig. 5:

1. run of a dedicated FVM and traffic split to the freemium and premium flows
over dedicated FVM and PVM respectively;

2. run of an addition PVM serving increased number of the premium customers;
3. service degrade for the premium customers for reduced but mandatory (con-

tracted) service functionality;
4. applying the QoS filter for the premium customers in order to serve certain

number of the customers defined per allocated IaaS nodes.

The freemium customers are served at the best effort basis with very limited
IaaS resources are their SLA is not defined.

The scenario behavior in case of the traffic reduction is straight backward,
therefore the following adaptation steps are performed following the traffic
decrease, as shown in Fig. 6:

Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case 181

Fig. 5. Scale up use case run.

1. deactivation of the QoS filter;
2. restoring the full functionality and full features set for the premium customers;
3. removing of the second PVM;
4. joining the freemium and premium traffic in the same PVM and removing

the FVM.

The adaptation actions configured in this use case scenario are on two levels:

– SaaS/PaaS: for the traffic split and QoS filter activation/deactivation;
– IaaS: for the launch of new VM and scale out and scale in of existing

infrastructural resources.

This use case integrated into the CloudWave platform demonstrates the plat-
form capability to monitor an application at the different cloud levels SaaS, PaaS
and IaaS as far as generate decisions and take actions on its respective monitored
levels. The decision making and action points are split into separated modules
acting on their respective levels increasing the adapting flexibility and fine-tuning
of the overall solution. Decoupling of the application and infrastructural level
increased the reaction time of the controlled platform as application actions
don’t load the IaaS level and the decision making and action execution occur
much faster performed totally in the SaaS/PaaS level without need to send raw
application service data into the IaaS modules. Only IaaS metrics and actions
are handled by the IaaS level as only there IaaS adaptations are possible due
to the specificity of the hypervirtualization environment. However, at the end,
this is only a first prototyping of a service use case in the CloudWave platform
therefore the most relevant elements and actions are shown. A more powerful

182 D. Bruneo et al.

Fig. 6. Scale down use case run.

and more flexible use case run is a future work as well as the service trial and
performance evaluation.

5 Conclusions

In this paper, we provided a high level view of the CloudWave project main
innovation pillars. Then, we provided a description of one of the project use
cases, namely the Telco application use case showing how it can take advantages
of multi-level adaptations. Such adaptations can take place at the level of the
infrastructure and at the level of the application itself and can be coordinated
thanks to the mechanisms and policies provided by the CloudWave infrastruc-
ture. Future work will be devoted to the implementation of the use case and its
evaluation from both a functional and non-functional point of view.

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement Nr. 610802 (CloudWave).

References

1. Communication from the Commission to the European Parliament: Unleashing the
Potential of Cloud Computing in Europe (2012). http://ec.europa.eu/information
society/activities/cloudcomputing/docs/com/com cloud.pdf

2. NESSI Cloud White Paper. http://www.nessieurope.com/Files/Private/120718
NESSI Cloud WhitePaper July.pdf

http://ec.europa.eu/information_society/activities/cloudcomputing/docs/com/com_cloud.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/com/com_cloud.pdf
http://www.nessieurope.com/Files/Private/120718_NESSI_Cloud_WhitePaper_July.pdf
http://www.nessieurope.com/Files/Private/120718_NESSI_Cloud_WhitePaper_July.pdf

Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case 183

3. Chang, W., Abu-Amara, H., Sanford, J.: Challenges of enterprise cloud services.
Transforming Enterprise Cloud Services, pp. 133–187. Springer, The Netherlands
(2010)

4. OpenStack Open Source Cloud Computing Software. www.openstack.org
5. CloudWave Project, funded by the European Commission Seventh Framework

Programme (FP7/2006-2013) under grant agreement n. 610802. http://
cloudwave-fp7.eu/

6. Longo, F., Bruneo, D., Villari, M., Puliafito, A., Salant, E., Wolfsthal, Y.: From
vision cloud to cloudwave: towards the future internet and a new generation of
services. In: 2014 International Conference on Intelligent Networking and Collab-
orative Systems (INCoS), pp. 641–646, September 2014

7. Bruneo, D., Fritz, T., Keidar-Barner, S., Leitner, P., Longo, F., Marquezan, C.,
Metzger, A., Pohl, K., Puliafito, A., Raz, D., Roth, A., Salant, E., Segall, I.,
Villari, M., Wolfsthal, Y., Woods, C.: CloudWave: where adaptive cloud manage-
ment meets DevOps. In: 2014 IEEE Symposium on Computers and Communication
(ISCC), Workshops, pp. 1–6, June 2014

8. Rochwerger, B., et al.: Reservoir - when one cloud is not enough. Computer 44,
44–51 (2011)

9. Fi-ware: an innovative, open cloud-based infrastructure (2014). http://www.
fi-ware.org/

10. Optimis - optimized infrastructure service (2014). http://www.optimis-project.eu/
11. Debois, P.: Devops: a software revolution in the making? J. Inf. Technol. Manag.

24, 3–39 (2011)
12. The open source, open standards cloud, innovative, open source cloud computing

software for building reliable cloud infrastructure. http://openstack.org/. Accessed
Jan 2014

www.openstack.org
http://cloudwave-fp7.eu/
http://cloudwave-fp7.eu/
http://www.fi-ware.org/
http://www.fi-ware.org/
http://www.optimis-project.eu/
http://openstack.org/

Axe: A Novel Approach for Generic, Flexible,
and Comprehensive Monitoring and Adaptation

of Cross-Cloud Applications

Jörg Domaschka, Daniel Seybold(B), Frank Griesinger, and Daniel Baur

Institute of Information Resource Management, University of Ulm,
Albert-Einstein-Allee 43, 89081 Ulm, Germany

{joerg.domaschka,daniel.seybold,frank.griesinger,
daniel.baur}@uni-ulm.de

http://www.uni-ulm.de/in/omi

Abstract. The vendor lock-in has been a major problem since cloud
computing has evolved as on the one hand side hinders a quick tran-
sition between cloud providers and at the other hand side hinders an
application deployment over various clouds at the same time (cross-cloud
deployment). While the rise of cross-cloud deployment tools has to some
extend limited the impact of vendor lock-in and given more freedom
to operators, the fact that applications now are spread out over more
than one cloud platform tremendously complicates matters: Either the
operator has to interact with the interfaces of various cloud providers
or he has to apply custom management tools. This is particularly true
when it comes to the task of auto-scaling an application and adapting it
to load changes. This paper introduces a novel approach to monitoring
and adaptation management that is able to flexibly gather various mon-
itoring data from virtual machines distributed across cloud providers,
to dynamically aggregate the data in the cheapest possible manner, and
finally, to evaluate the processed data in order to adapt the application
according to user-defined rules.

1 Introduction

Since the beginning of cloud computing, vendor lock-in has been a major prob-
lem. It is still around mainly due to the fact that cloud standards such as
CIMI [6] and OCCI [16] have not been widely adopted by cloud providers. Tools
abstracting the differences between cloud providers, and thus allowing multi-
cloud deployment—the capability to deploy one application at different cloud
platforms using the same application specification—have been a first step to
overcome vendor lock-in. Yet, it is only cross-cloud deployment—the capabil-
ity to spread a single application instance across different cloud providers—that
enables users to take full advantage of different providers and their capabilities.
In particular, it enables trading off the properties of application requirements
against the offerings on a per-component or even per-component instance basis.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 184–196, 2016.
DOI: 10.1007/978-3-319-33313-7 14

Axe: A Novel Approach 185

This for instance allows a hybrid-cloud deployment where a database containing
sensitive data is deployed in a private cloud, while the rest of the application
resides in different public clouds.

Both approaches, multi-cloud and cross-cloud, give the application opera-
tor the chance to change its current application deployment and to adapt to
changed conditions such as the workload, e.g., more load than originally antici-
pated, and changed environmental conditions, e.g., the prices of other operators
have changed. In order to benefit from these features, however, the application
operators need to be able to actively judge the quality of the current deploy-
ment. For pure multi-cloud systems the application operator may refer to the
monitoring tools of the currently selected cloud operator. While basic monitoring
data may come for free on some cloud providers, often the user needs advanced
metrics that either cost (Amazon, Rackspace) or require him to set up own mon-
itoring tools. In addition to that, he has to familiarise with the user interfaces
of various cloud providers.

For cross-cloud deployment using the providers’ monitoring infrastructure is
technically feasible, but tremendously increases the effort as multiple tools have
to be used in parallel. Moreover, it is difficult to access metrics that involve
the crossing of provider domains (such as network traffic from provider A to
provider B). Furthermore is hard to access application-specific or component-
specific metrics. Also, a sophisticated and configurable aggregation on the met-
rics is currently not easily possible. Finally, while most cloud providers support
a simple approach to auto-scaling for application adaptation, e.g. metrics-based
scale-out, there is currently no built-in mechanism that supports a cross-cloud
adaptation of applications.

In this paper, we address these issues by introducing Axe, a generic, flexible,
and extensible monitoring and adaptation engine for cross-cloud deployments.
Besides the fact, that we introduce the tool, our contributions are as follows: (i)
We present a powerful API that enables the specification of rules independent
of the concrete deployment. (ii) We discuss a heuristic of how to reduce the
cross-cloud provider network traffic and hence reduce costs. (iii) We introduce
the first engine to deal with the Scalability Rule Language (SRL) [8,12]. All
of the features are embedded in Cloudiator, our cross-cloud, multi-tenancy
deployment and application management tool [2,7].

This document is structured as follows: Sect. 2 introduces background on
Cloudiator and Scalability Rule Language (SRL) and further defines require-
ments towards our approach. Section 3 introduces our approach by presenting the
individual tools of our platform and their configuration. It also discusses archi-
tectural options and introduces our architecture as well as the API. Section 4
exhibits the current status and upcoming tasks. Section 5 discusses related work,
before we conclude with a report on our current status and open issues.

2 Background

The design of Axe has been heavily driven by constraints of cross-cloud environ-
ments. In addition to that, Axe builds heavily on earlier work. In the following,

186 J. Domaschka et al.

we first introduce the constraints and derive requirements from them. In the
next step, we present our Cloudiator tool that we use as the basis for the
Axe implementation [7]. Finally, we roughly describe the Scalability Rule Lan-
guage that constitutes the meta-model for our monitoring and scaling solution.

2.1 Requirements and Constraints

For supporting in-depth analyses of existing deployments, several requirements
have to be considered: (a) The fact that on the one hand, the monitoring of
large-scale applications does generate huge amounts of data and on the other
hand cloud providers usually charge for network traffic that leaves their data
centre gives motivation that as much of data processing shall happen within the
domain of individual cloud providers. (b) In order to avoid single points of fail-
ures, the architecture of a monitoring solution should not rely on a centralised
approach, but rather favour distributed approaches with no central entity. As
the amount of monitoring data usually increases with the number of allocated
virtual machines (VMs), the resources assigned to monitoring shall increase with
the size of the application. (c) The operators of a cloud application may discover
that they have to monitor further high-level or even low-level metrics or need
monitoring to happen at a higher resolution. Hence, it is necessary that monitor-
ing properties can be changed also after an application has been deployed. (d)
The same considerations that hold for monitoring, have to hold for scaling rules.
In addition, it is necessary that rules can be defined in a generic way without
having to know the exact number of instances per component in advance. (e)
The monitoring platform has to be able to capture application-specific metrics.

2.2 The Cloudiator Tool

Cloudiator1 is a cross-cloud deployment tool that also supports adaptation
and re-deployment. In this section, we present the Cloudiator architecture
to the extend necessary to understand how it embeds Axe. Figure 1 sum-
marises the architecture as of the original Cloudiator tool (green), but also
the enhancements of Axe (yellow). The Axe specific components Aggregation,
Scaling Engine, and Visor are introduced in detail in Sect. 3.

The figure shows that Cloudiator consists of a home domain for which
Colosseum is the entry point offering a JSON-based REST interface. This is
used by a graphical Web-based user interface, but can also be used by adapters
and automatisation tools. It also comprises various registries that store the
Cloudiator users, information about cloud providers, the cloud accounts of
the users, and meta-information about cloud offerings such as the operating sys-
tems of images. Moreover, the home domain contains a repository of application
components together with their life-cycle handlers as well as applications com-
posed of these components. In addition, the registries contain information about
started VMs and the component instances deployed on them as well as about the

1 https://github.com/cloudiator.

https://github.com/cloudiator

Axe: A Novel Approach 187

Fig. 1. The Cloudiator architecture (Color figure online)

wiring between the component instances. Finally, they hold the workers syncing
the registries with the cloud provider information, and executing the provision-
ing of virtual machines or the installation of application components on virtual
machines. The Sword abstraction layer realises the communication with the
various cloud provider APIs based on Apache jclouds2.

The remote domain comprises all VMs at various cloud providers as well
as the component instances running on them. In addition to that it contains
Cloudiator’s life cycle agent on each of the VMs that the home domain uses
in order to distribute component instances over VMs and to poll the status of
the component instances when it needs to be shown in the user interface.

2.3 Scalability Rule Language

The SRL [8] is a provider-agnostic description language. It provides expressions
to define the monitoring raw metric values from VMs and component instances
and also mechanisms to compose higher-level metrics from raw metrics. More-
over, it comprises mechanisms to express events and event patterns on metrics
and metric values. Finally, SRL captures thresholds on the events and actions
to be executed when thresholds are violated. A simple SRL rule in prose may be
add a new instance of this distributed database if (i) all instances have a 5min
average CPU load > 60%, (ii) at least one instance has a 1min average CPU
load > 85%, and (iii) the total number of instances is < 6.

3 Approach

This section sketches our approach in order to realise a flexible monitoring
and adaptation tool that satisfies the requirements imposed on cross-cloud
tooling (cf. Sect. 2). Basically, our auto-scaling process maps to the MAPE
loop [11,15] consisting of the following phases: monitoring, analysis, planning,
and execution of changes. With respect to our setting, this means that first,
2 https://jclouds.apache.org/.

https://jclouds.apache.org/

188 J. Domaschka et al.

we have to retrieve monitoring data from the virtual machines and component
instances. In a second step, the raw data gathered there has to be aggregated
and processed. Third, the rule processing has to happen on the aggregated data
and finally, the resulted rule has to be executed.

3.1 Visor: Gathering Monitoring Data

In order to be able to gather the raw monitoring data from the VMs and compo-
nent instances, we introduce Visor as a monitoring agent to the remote domain.
Just as the life-cycle agent, Visor is deployed on every VM and provides a
remote interface the home domain uses in order to configure a particular Visor
instance. This allows Visor to adopt to the application and to only collect
the required metrics, thus saving space and bandwidth. Visor supports the
capturing of data on a per component instance basis as well as on a per-VM
basis. The sooner is achieved by sensors monitoring basic system properties on
virtual machine level, e.g. by accessing system properties such as CPU load.
The latter is done by exploiting the fact that all component instances are run
inside a Docker3 container and the resource consumption can be retrieved on a
per-container basis. By default, Visor offers various sensors supporting system
metrics such as CPU load, memory consumption, disk I/O, and network I/O.

In order to support custom metrics, Visor supports the implementation of
custom sensors, by providing an easy-to-implement Java interface. It exploits
the dynamic class loading properties of Java in order to be able to add those
implementations at runtime. For supporting application-specific metrics that can
only be retrieved from within an application such as the length of queues or the
degree to which buffers have been filled, Visor offers a telnet-based interface
where applications can push their metrics data to. This interface is compatible
with the carbon daemon of graphite4, thus allowing an easy migration to Visor.

3.2 Buffering Monitoring Data

A key element when computing higher-level metrics especially over larger
time-windows is the need to buffer raw monitoring data. Time-series data-
bases (TSDBs) have been designed to store timestamped data in an efficient
way and also to provide quick access to the stored data. Many TSDB imple-
mentations support applying functions on stored data right out of the box what
makes them a perfect match not only for buffering, but also for aggregation
(cf. Sect. 3.3). The following paragraphs first derive a strategy on how to imple-
ment buffering including the constraints and then compares TSDBs found in lit-
erature and the open source community with respect to the required properties.

3 http://www.docker.io.
4 http://graphite.readthedocs.org/en/latest/carbon-daemons.html.

http://www.docker.io
http://graphite.readthedocs.org/en/latest/carbon-daemons.html

Axe: A Novel Approach 189

Strategy. With respect to our requirements (cf. Sect. 2) the buffering and there-
fore the TSDB approach needs to be able to work with limited resources, have no
single point of failure, and increase available resources when more VMs are being
used. In order to cope with these requirements, we use the following approach:
from each VM acquired for an application, we reserve a configurable amount
of memory and storage (e.g. 10 %) that we further split between a local storage
area and a shared storage area. Both storage areas are managed by a TSDB
instance running on the VM. The Visor instance running on this VM will then
feed all monitoring data to the TSDB. The TSDB will store data from its local
Visor in the local storage area and further relay the data to other TSDBs
where it is stored in the shared storage area. This feature avoids that a TSDB
becomes a single point of failure, but still enables quick access to local data.
In order to keep network traffic between cloud providers low, any TSDB will
only select other TSDBs running in the same cloud to replicate its data. If not
enough instances are available to reach the desired replication degree, the max-
imum possible degree is used. Hence, this concludes to a ring-like topology that
has been introduced in peer-to-peer systems [3] and is also used by distributed
databases [13].

Selection of TSDB. Table 1 shows a comparison of established TSDB imple-
mentations [10] and several of their properties. The results are intermediate as
our evaluation is this ongoing (cf. Sect. 4.1).

Table 1. Details of considered times series databases

Name KairosDB OpenTSDB InfluxDB

Version 1.0.0 2.1.0 0.9.0

Datastore H2/Cassandra HBase BoltDB

Distributed no/yes yes yes

InMemory yes/no no yes

The for us relevant details of the TSDBs are its maturity, available datastores,
support of distribution and in memory storage. The TSDB should be in some
mature state in order to provide a stable version, client libraries and an available
documentation. Following the strategy exposed in Sect. 3.2 the datastores shall
be lightweight and ideally support an in memory mode. Also they have to offer
a distributed architecture to ensure horizontal scaling and replication.

OpenTSDB offers the best maturity regarding the version number. The
underlying datastore HBase supports distribution but regarding the architec-
ture of HBase [9] an in-memory mode is missing. Also, it is not a lightweight
datastore [10] and an automated set-up as required in our scenario is not a trivial
task and hard to script. Consequently, OpenTSDB is not an applicable solution.

190 J. Domaschka et al.

From its capabilities InfluxDB seems suited for the outlined approach. Yet,
the recently released version 0.9.0 comes with extensive changes in the stor-
age architecture and API design compared to 0.8.05. Given these changes there
currently are no client implementations for version 0.9.0 available.

KairosDB also provides a mature version 1.0.0. It supports the single-site,
in-memory datastore H2 and the distributed Cassandra datastore supporting
scalable to a hundreds of instances [13]. While Cassandra’s resource usage can
be limited, in-memory storage is only supported in the commercial version6.

Following this comparison KairosDB is currently the most appropriate TSDB
to use in Axe based on maturity, distribution and the possibility to limit the
resource consumption of Cassandra.

3.3 Aggregation

In order to make use of the time series produced by the various raw metrics,
these have to be aggregated. Aggregation includes for instance the computation
of average values, of maxima, minima, or simply the normalisation of values. In
addition to that, aggregation may include merging of metrics, e.g. when comput-
ing the average of averages. Hence, aggregation is always application-specific.

Strategy. The strategy followed by Axe is based on the metric and metric
aggregation concepts provided by SRL (cf. Sect. 2). In particular, it supports
the hierarchical aggregation of metrics with an unlimited depth. In addition,
it supports the use of time-bound or element-bound windows specifying the
interval of a time series to be used for computations. Finally, the user may
specify a schedule for each metric that defines how often a value of a metric
shall be computed.

In order to satisfy the requirement for minimum network traffic and scale of
the monitoring system, Axe performs aggregation as close to the data source as
possible. Hence, all aggregations that require input data from a single VM will be
performed on this VM. We refer to this computation to happen in the host scope.
For this approach only the local storage is accessed and no communication is
required which further reduces latency. Aggregations that need input only from
VMs from a particular cloud are performed in cloud scope. Such computations
exclusively access the shared space spanning a cloud. While it is desirable to dis-
tribute all computations of a particular cloud scope amongst the affected VMs
the definition of a suitable heuristic is currently work in progress. Finally, com-
putations that require input from multiple clouds happen in cross-cloud scope
(or global scope). These are performed in the home domain of Cloudiator.

It is important to note that values for higher-level aggregated, metrics have
to be buffered just as the values of any other metric as well. Here, we use the
following strategy to write to our storage platform: Values from local scope

5 https://influxdb.com/docs/v0.9/introduction/overview.html.
6 http://www.datastax.com/.

https://influxdb.com/docs/v0.9/introduction/overview.html
http://www.datastax.com/

Axe: A Novel Approach 191

computations are treated just like values from raw metrics. Values from compu-
tations in cloud scope are written to the shared store of their cloud. The results
from cross-cloud scope computations are stored in a possibly distributed TSDB
operated at the home domain.

Using this set of hierarchical scopes, we expect to have effectively minimised
latency and network traffic while at the same time having equally loaded all
VMs with monitoring tasks and hence also equally spread the risk of failures.
The deployment of the aggregation tasks onto the Aggregators residing in the
system, and hence the decision which scope to use for it, is handled by the Scaling
Engine component.

API. The API provided by Colosseum in order to configure the monitoring
and aggregation functionality of Axe as described above mainly supports the
power of SRL. Yet, in order to ease the specification of sensors and aggregation
functions independent from the number of deployed virtual machines and the
cloud they are currently deployed on, we offer a richer interface.

Monitor doMonitorVms(AppInst app, Component comp, SensorDescription sens);

Fig. 2. API example. This method will trigger the monitoring of all VMs of this appli-
cation instance where component comp has been installed using sensor sens.

The methods (cf. Fig. 2 for an example) for defining raw metrics consist of
filters (e.g. by the component type) specifying all instances to be monitored, and
a sensor description defining what to monitor. The sensor description consists
of scheduling information and information which sensor type to be deployed on
Visor. The return value of such an invocation can be used in further methods
to define higher-level metrics (cf. Fig. 3). Here, a map functionality is used to
specify the high level metric: That is, for each ingoing (raw) metric a new metric
is created (e.g. average CPU usage in the last 5 min). The API also supports
reduce-like semantics where a single metric is generated from all input metrics
(e.g. average of above averages).

Monitor mapAggregatedMonitors(FormulaQuantifier quantifier,
Schedule schedule, Window window, FormulaOperator op,
List<Monitor> monitors);

Fig. 3. API example. This method will install an aggregation triggered according to a
schedule, based on an operator, and using a window of elements operating.

192 J. Domaschka et al.

3.4 Auto-Scaling

In general, auto-scalers can be categorised in five different classes [14]. For Axe
we adopt SRL which mainly belongs to the threshold-based rules as well as time
series analysis class. SRL links a set of threshold-based conditions with each
other using binary operators. In addition, any set of thresholds may be linked
to the values produced by the metrics. Furthermore, any of such constructs has
attached a set of scaling actions to be executed whenever the condition has been
satisfied. So far, Axe supports to trigger the scale out and scale in of components.
Yet, the implementation of further actions is underway. The triggering of rules
leads to an invocation of the Cloudiator functionality to bring up a new or
shut down an existing VM.

Strategy. The auto-scaling functionality of Axe builds on top of the monitoring
capabilities. In particular any of the conditions connected via Boolean operators
is considered to be a metric on its own taking the values 0 or 1. When the metric
turns to 1 the respective action will be triggered and forwarded as request to the
other Cloudiator tools, in particular Colosseum. These tasks are executed
by the Scaling Engine component.

API. The scaling API provides the capability to attach an action to a monitor.
The action itself is described in terms of the component to deal with, the scaling
type, and its parameters. For instance for horizontal scaling, the parameters are
the amount of instances to add/remove, and the allowed maximum and minimum
number of instances of that component.

3.5 Architecture

Above descriptions and discussions lead to the architecture from Fig. 1 and
whose main components are (i) the Scaling Engine, (ii) the Aggregator, and
(iii) Visor. The latter has already been introduced in earlier work [2].

The Scaling Engine is the central managing environment of Axe that con-
trols the distribution and outsourcing of the computation-heavy work to highly
scalable and loosely coupled components, the Aggregators. Nevertheless, it is
possible to scale the Scaling Engine up to having one instance per scaling rule.

The aggregations are managed and executed by the Aggregators in the sys-
tem. Due to the design of the system, this can be done in parallel. Also, for their
implementation, the focus has been set to minimise latency.

4 Current Status and Future Work

The following presents the current status and gives an outlook on our planned
work. We distinguish these aspects for data collection in a TSDB, data aggrega-
tion, and scaling.

Axe: A Novel Approach 193

4.1 Time-Series Database

The current version of Axe uses KairosDB with the Cassandra as a datastore.
Cassandra is configured to use only a low portion of a VM’s resources to keep
the impact on the components running on that VM small. Upcoming work com-
prises a performance-oriented evaluation of InfluxDB and other NoSQL data-
bases focusing on their capabilities for managing time-series data. Further, the
Zipkin framework7 will be evaluated on its suitability for cross-cloud applica-
tions.

4.2 Aggregators

Currently, the aggregation functionality is implemented for KairosDB and sup-
ports aggregation from and to arbitrary KairosDB instances. We plan to extend
these capabilities to fit all predefined operators of SRL. We currently implement
aggregators for other databases as well to support the TSDB evaluation.

4.3 Scaling Engine

So far Axe supports horizontal scaling actions. Vertical scaling is currently
being implemented. Furthermore, we work reducing the burden for the user
when implementing scaling rules. Therefore, we plan to encapsulate SRL’s com-
plexity in a simpler language possible inspired from complex-event-processing
languages [17].

While SRL and with it Axe adopts concepts from auto-scaling concepts based
on threshold-based and time series analysis, other concepts exist that include
queuing theory, control theory, and reinforcement learning [14]. Accordingly,
Axe borrows all its strengths from SRL, but also the weaknesses and could profit
from the integration of other techniques. For instance, reinforcement learning
might be handled in external processing tools, that constantly adjust the scaling
rules. Future work includes the evaluation of such approaches.

5 Related Work

We compare related work with respect to monitoring and auto-scaling.

Cloud Monitoring. Lifting monitoring to the cloud comes along with vari-
ous requirements compared to traditional server monitoring [1]. Tools provided
by cloud providers, such as Amazon’s CloudWatch8 suffer from vendor lock-
in. Also, additional tools are required when data from different cloud providers
shall be aggregated. Established open source monitoring tools such as Ganglia9

7 https://github.com/openzipkin/zipkin.
8 http://aws.amazon.com/en/cloudwatch/.
9 http://ganglia.sourceforge.net/.

https://github.com/openzipkin/zipkin
http://aws.amazon.com/en/cloudwatch/
http://ganglia.sourceforge.net/

194 J. Domaschka et al.

or Nagios10 are designed to monitor large distributed systems, but struggle with
the dynamic of cloud environments. More cloud-aware monitoring systems such
as Zipkin—which is based on Dapper [18]—can cope with the dynamic cloud
environment and offer a rich functionality. Yet, in order to scale the monitor-
ing system manual actions or additional tools are necessary. Compared to Axe
none of the mentioned tools supports a reduction of communication overhead
for cross-cloud applications.

Auto-Scaling Techniques. In contrast to similar scaling engines [4], Axe is
not tied to a specific language, but targets to be open for various approaches.

Cloud orchestration tools such as Apache Brooklyn11, the rules are simple
threshold-based and any more complex rules have to be defined in an exter-
nal monitoring tool. Axe in Cloudiator goes beyond this, as it provides an
integrated and easy-to-use solution that even allows changes of the scalability
configuration at runtime.

Several projects deal with integrated auto-scaling mechanisms for cloud ser-
vices. One of them is the EU project CELAR [5]. Auto-scaling in CELAR is
based on a multi-level description of combined metrics. By that metrics are
assigned to a certain level and when violations occur, the scaling is based on
the top level of the topology. While Axe also supports a multi-level description
of metrics, it goes beyond the CELAR approach due to the fact that it realises
metric aggregation and analysis in a distributed and hierarchical manner.

6 Conclusions

The integrated scaling solutions of current cloud orchestration tools lack an sup-
port for sophisticated implementations of auto-scaling techniques. Only such a
solution can achieve highly dynamic applications, with the ability to adjust their
configuration at runtime in order to cope with unexpected changes of workload.
In this paper, we introduced Axe, a novel, cloud provider-independent app-
roach of cloud application monitoring and application adaptation management.
Axe supports distributed monitoring of cross-cloud applications and also comes
with a distributed, hierarchical aggregation of monitored metrics reducing the
network traffic across cloud providers. The adaptation of the Scalability Rules
Language (SRL) enables the expression of powerful scaling rules based on hier-
archical metrics, complex events and threshold. The platform is scalable in itself
and hence also supports large-scale applications. It has been integrated in our
Cloudiator deployment tool12.

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) under

10 https://www.nagios.org/.
11 http://brooklyn.incubator.apache.org/.
12 https://github.com/cloudiator.

https://www.nagios.org/
http://brooklyn.incubator.apache.org/
https://github.com/cloudiator

Axe: A Novel Approach 195

grant agreement number 317715 (PaaSage) and from the European Community’s
Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-2014)
under grant agreement number 644690 (CloudSocket).

References

1. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

2. Baur, Daniel, Wesner, Stefan, Domaschka, Jörg: Towards a model-based execution-
ware for deploying multi-cloud applications. In: Ortiz, Guadalupe, Tran, Cuong
(eds.) ESOCC 2014. CCIS, vol. 508, pp. 124–138. Springer, Heidelberg (2015)

3. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001)

4. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an extensible language
for controlling elasticity in cloud applications. In: 2013 13th International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119, May 2013

5. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level elasticity con-
trol of cloud services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.)
ICSOC 2013. LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-45005-1 31

6. DMTF: Cloud Infrastructure Management Interface (CIMI) Model and RESTful
HTTP-based Protocol (2013)

7. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: a cross-cloud,
multi-tenant deployment and runtime engine. In: 9th Symposium and Summer
School on Service-Oriented Computing (2015)

8. Domaschka, J., Kritikos, K., Rossini, A.: Towards a generic language for scalability
rules. In: Proceedings of CSB 2014: 2nd International Workshop on Cloud Service
Brokerage (2014, to appear)

9. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media, Sebastopol
(2011)

10. Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., Breivold, H.P.: Scala-
bility and robustness of time-series databases for cloud-native monitoring of indus-
trial processes. In: 2014 IEEE 7th International Conference on Cloud Computing,
Anchorage, AK, USA, June 27–July 2, 2014, pp. 602–609 (2014)

11. Jacob, B., Lanyon-Hogg, R., Nadgir, D., Yassin, A.: A practical guide to the
IBM autonomic computing toolkit. IBM redbooks, IBM Corporation, International
Technical Support Organization (2004)

12. Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-
cloud environments. In: 2014 IEEE 6th International Conference on CloudCom, pp.
1–9, December 2014

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

14. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

15. Maurer, M., Breskovic, I., Emeakaroha, V., Brandic, I.: Revealing the mape loop
for the autonomic management of cloud infrastructures. In: ISCC 2011, pp. 147–
152, June 2011

http://dx.doi.org/10.1007/978-3-642-45005-1_31

196 J. Domaschka et al.

16. Open Grid Forum: Open Cloud Computing Interface - Core (2011)
17. Paschke, A., Kozlenkov, A., Boley, H.: A homogeneous reaction rule language for

complex event processing. In: 33rd VLDB 2007 (2007)
18. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,

D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google, Inc. (2010)

CloudWay Workshop Papers

Preface of CloudWay 2015

Cloud computing has recently been the focus of attention both as academic research
and industrial initiatives. From a business point of view, organizations can benefit from
the on-demand and pay-per-use model offered by cloud services rather than an upfront
purchase of costly and over-provisioned infrastructure. From a technological per-
spective, the scalability, interoperability, and efficient (de-)allocation of resources
through cloud services can enable a smooth execution of organizational operations.

Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications – so-called legacy systems – developed over a long period
of time using traditional development methods. In spite of maintainability issues,
(on-premise) legacy systems are still crucial as they support core business processes
that cannot simply be replaced. Therefore, migrating legacy systems toward
cloud-based platforms allows organizations to leverage their existing systems deployed
(over publicly available resources) as scalable cloud services.

The First International Workshop on Cloud Adoption and Migration (CloudWay
2015) was held on September 15, 2015, in Taormina (Messina), Italy, as a satellite
event of ESOCC 2015. The workshop’s goals were to bring together cloud migration
experts from both academia and industry; to promote discussions and collaboration
amongst participants; to help disseminate novel cloud migration practices and solu-
tions; and to identify future cloud migration challenges and dimensions.

In this first edition, four full papers and one short paper were accepted for pre-
sentation during the workshop. The first paper, “Migrating to Cloud-Native Archi-
tectures Using Microservices: An Experience Report,” by Armin Balalaie, Abbas
Heydarnoori, and Pooyan Jamshidi, reports on the experience and lessons learned in an
ongoing project on migrating a monolithic on-premise software to a microservice-based
cloud architecture. The second paper, “Cloud Computing for e-Sciences at Université
Sorbonne Paris Cité,” by Christophe Cerin, Leila Abidi, Marie Lafaille, and Danielle
Geldwerth-Feniger, presents a methodology to assist e-Science researchers in assessing
and adopting cloud technologies. The third paper, “Resource Distribution Estimation
for Data-Intensive Workloads: Give Me My Share & No One Gets Hurt!,” by Alireza
Khoshkbarforoushha, Rajiv Ranjan, and Peter Strazdins, describes a machine-learning
framework for resource distribution estimation of data-intensive workloads in a shared
cluster. The fourth paper, “Supporting Partial Database Migration to the Cloud Using
Non-Intrusive Software Adaptations: An Experience Report,” by Caio Costa, Paulo
Maia, Nabor Mendonça, and Lincoln Rocha, reports on an early experience of partially
migrating a legacy application’s relational database to a NoSQL storage service in the
cloud. Finally, the fifth (short) paper, “Cloud Adoption by Fine-Grained Resource
Adaptation: Price Determination of Diagonally Scalable IaaS,” by Kevin Laubis,
Viliam Simko, and Alexander Schuller, examines the resource reduction potential of
diagonal scaling in comparison with conventional horizontal approaches.

In addition to the presentation of the accepted papers, a panel was jointly organized
with participants of the Cloud for IoT (CLIoT) Workshop focusing on the challenges

and perspectives of migrating to “Cloud and IoT Solutions.” The panel members were
Pooyan Jamshidi, from Imperial College London, UK, and IC4, Ireland; Maria Fazio,
from the University of Messina, Italy; Orazio Tormachio, from the University of
Catania, Italy; Luiz Angelo Steffenel, from Université de Reims Champagne-Ardenne,
France, and Nabor Mendonça, from the University of Fortaleza, Brazil, as moderator.

We take this opportunity to thank all authors, members of the Program Committee,
and workshop attendees, whose participation was invaluable to the success of the
event. We also acknowledge the financial support provided by The Irish Centre for
Cloud Computing and Commerce (IC4) and the University of Fortaleza (UNIFOR).

Claus Pahl
Nabor Mendonça
Pooyan Jamshidi

Preface of CloudWay 2015 199

Organization

Program Committee

Aakash Ahmad IT University of Copenhagen, Denmark
Vasilios Andrikopoulos University of Stuttgart, Germany
Thais Batista Federal University of Rio Grande do Norte, Brazil
William Campbell Birmingham City University, UK
Fei Cao University of Central Missouri, USA
Schahram Dustdar Technical University of Vienna, Austria
So ̈ren Frey Daimler TSS, Germany
Wilhelm (Willi) Hasselbring Kiel University, Germany
Tomayess Issa Curtin University, Australia
Pooyan Jamshidi Imperial College London, UK (Co-chair)
Ali Khajeh-Hosseini RightScale, Inc., UK
Xiaodong Liu Napier University, Edinburgh, UK
Theo Lynn Dublin City University, Ireland
Paulo Henrique Maia State University of Ceará, Brazil
Nabor Mendonc ̧a University of Fortaleza, Brazil (Co-chair)
Claus Pahl Dublin City University, Ireland (Co-chair)
Dana Petcu West University of Timisoara, Romania
Américo Sampaio University of Fortaleza, Brazil
Amir Sharifloo University of Duisburg-Essen, Germany
Giovanna Sissa Università degli Studi di Genova, Italy
Steve Strauch University of Stuttgart, Germany
Michelle Zhu Southern Illinois University, USA

Sponsors

Migrating to Cloud-Native Architectures
Using Microservices: An Experience Report

Armin Balalaie1, Abbas Heydarnoori1(B), and Pooyan Jamshidi2

1 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

armin.balalaie@gmail.com, heydarnoori@sharif.edu
2 Department of Computing, Imperial College London, London, UK

p.jamshidi@imperial.ac.uk

Abstract. Migration to the cloud has been a popular topic in indus-
try and academia in recent years. Despite many benefits that the cloud
presents, such as high availability and scalability, most of the on-premise
application architectures are not ready to fully exploit the benefits of this
environment, and adapting them to this environment is a non-trivial task.
Microservices have appeared recently as novel architectural styles that
are native to the cloud. These cloud-native architectures can facilitate
migrating on-premise architectures to fully benefit from the cloud envi-
ronments because non-functional attributes, like scalability, are inher-
ent in this style. The existing approaches on cloud migration does not
mostly consider cloud-native architectures as their first-class citizens. As
a result, the final product may not meet its primary drivers for migration.
In this paper, we intend to report our experience and lessons learned
in an ongoing project on migrating a monolithic on-premise software
architecture to microservices. We concluded that microservices is not a
one-fit-all solution as it introduces new complexities to the system, and
many factors, such as distribution complexities, should be considered
before adopting this style. However, if adopted in a context that needs
high flexibility in terms of scalability and availability, it can deliver its
promised benefits.

Keywords: Cloud migration · Microservices · Cloud-native
architectures · Software modernization

1 Introduction

In recent years, with the emergence of cloud computing and its promises, many
companies from large to small and medium sizes are considering cloud as a target
platform for migration [9]. Despite motivations for migrating to the cloud, most
of the applications could not benefit from the cloud environment as long as their
main intention is to simply dump the existing legacy architecture to a virtualized
environment and call it a cloud application.

One of the main characteristics of the cloud environment is that failures can
happen at any time, and the applications in this environment should be designed
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 201–215, 2016.
DOI: 10.1007/978-3-319-33313-7 15

202 A. Balalaie et al.

in a way that they can resist such uncertainties. Furthermore, application scala-
bility would not be possible without a scalable architecture. Cloud-native archi-
tectures like microservices are the ones that have these characteristics, i.e., avail-
ability and scalability, in their nature and can facilitate migrating on-premise
architectures to fully benefit from the cloud environments.

Microservices is a novel architectural style that has been proposed to over-
come the shortcomings of a monolithic architecture [16] in which the application
logic is within one deployable unit. For small systems, the monolithic architec-
ture could be the most appropriate solution and could become highly available
and scalable using simple load balancing mechanisms. However, as the size of
the system starts growing, problems like difficulties in understanding the code,
increased deployment time, scalability for data-intensive loads, and a long-term
commitment to a technology stack would start to appear [16]. This is where
microservices come to help by providing small services that are easy to under-
stand, could be deployed and scaled independently, and could have different
technology stacks.

Most of the current approaches on cloud migration are focused on automated
migration via applying model-driven approaches [1,2], and reusing of knowledge
by migration patterns [5,10,12] without having cloud-native architectures as their
first-class citizens. Furthermore, microservices is a new concept and thus, only a
few technical reports can be found about using them in the literature [15,17].

Migrating an application’s architecture to microservices brings in many com-
plexities that make this migration a non-trivial task. In this paper, we report
our experience on an ongoing project in PegahTech Co.1, on migrating an on-
premise application named SSaaS to microservices architecture. Although the
migration steps that we describe in this paper are specific to our project, the
necessity of performing these migration activities could be generalized to other
projects as well. Furthermore, we summarize some of the challenges we faced
and the lessons learned during this project.

The rest of this paper is organized as follows: Sect. 2 briefly explains the
background behind the microservices architecture. Section 3 describes the archi-
tecture of SSaaS before its migration to microservices. The target architecture
to which we migrated SSaaS is described in Sect. 4. Section 5 then discusses our
migration plan and the steps that we followed in our migration project. Next,
Sect. 6 summarizes the lessons learned in this project. Finally, Sect. 7 concludes
the paper.

2 Background

Microservices is a new trend that binds closely to some other new concepts like
Continuous Delivery and DevOps. In this section, we first explain these concepts
followed by the background on microservices architecture.

1 http://www.pegahtech.ir.

http://www.pegahtech.ir

Migrating to Cloud-Native Architectures Using Microservices 203

2.1 Continuous Delivery and DevOps

Continuous Delivery [8] is a software development discipline that enables on
demand deployment of a software to any environment. With Continuous Deliv-
ery, the software delivery life cycle will be automated as much as possible. It
leverages techniques like Continuous Integration and Continuous Deployment
and embraces DevOps. The DevOps is a culture that emphasizes the collabo-
ration between developers and operations teams from the beginning of every
project in order to reduce time to market and bring agility to all the phases of
the software development life cycle. By adopting microservices, the number of
services will be increased. Consequently, we need a mechanism for automating
the delivery process.

2.2 Microservices

Microservices is a new architectural style [6] that aims to realize software sys-
tems as a package of small services, each deployable on a different platform,
and running in its own process while communicating through lightweight mech-
anisms like RESTFull APIs. In this setting, each service is a business capability
which can utilize various programming languages and data stores. A system has
a microservices architecture when that system is composed of several services
without any centralized control [11]. Resilience to failure is another character-
istic of microservices as every request in this new setting will be translated to
several service calls through the system. The Continuous Delivery and DevOps
are also needed to be agile in terms of development and deployment [6].

To have a fully functional microservices architecture and to take advantage
of all of its benefits, the following components have to be utilized. Most of these
components address the complexities of distributing the business logic among
the services:

– Configuration Server: It is one of the principles of Continuous Delivery to
decouple source code from its configuration. It enables us to change the con-
figuration of our application without redeploying the code. As a microservices
architecture have so many services, and their re-deployment is going to be
costly, it is better to have a configuration server so that the services could
fetch their corresponding configurations.

– Service Discovery: In a microservices architecture, there exist several services
that each of them might have many instances in order to scale themselves to
the underlying load. Thus, keeping track of the deployed services, and their
exact address and port number is a cumbersome task. The solution is to use
a Service Discovery component in order to get the available instances of each
service.

– Load Balancer: In order to be scalable, an application should be able to
distribute the load on an individual service among its many instances. This is
the duty of a Load Balancer, and in this case, it should get available instances
from the Service Discovery component.

204 A. Balalaie et al.

– Circuit Breaker: Fault tolerance should be embedded in every cloud-native
application, and it makes more sense in a microservices architecture where
lots of dependent services are working together. Failure in each of this services
may result in the failure of the whole system. Leveraging patterns like Circuit
Breaker [14] can mitigate the corresponding loss to the lowest level.

– Edge Server: The Edge Server is an implementation of the API Gateway
pattern [16] and a wall for exposing external APIs to the public. All the
traffic from outside should be routed to internal services through this server.
In this way, the clients would not be affected if the internal structures of
system’s services have changed afterwards.

3 The Architecture of SSaaS Before the Migration

The SSaaS (Server Side as a Service) application was initially started at
PegahTech Co. to be a service that provides mobile application developers a
facility for doing the server side programming part of their applications without
knowing any server side languages. The PegahTech Co. envisions SSaaS as a
service that could be scaled to millions of users. The first functionality of SSaaS
was a RDBMS as a Service. Developers could define their database schema in the
SSaaS website, and the SSaaS service provides them an SDK for their desired
target platform (e.g., Android or iOS). Afterwards, the developers can only code
in their desired platforms using their domain objects, and the objects would
make some service calls on their behalf in order to fulfill their requests. As time
goes on, new services are being added to SSaaS like Chat as a Service, Indexing
as a Service, NoSQL as a Service, and so on.

SSaaS is written in Java using the Spring framework. The underlying RDBMS
is an Oracle 11g. Maven is used for fetching dependencies and building the
project. All of the services were in a Git repository, and the modules feature of
Maven was used to build different services. At the time of writing this paper,
there were no test cases for this project. The deployment of services in develop-
ment machines was done using the Maven’s Jetty plugin. However, the deploy-
ment to the production machine was a manual task that had many disadvan-
tages [8].

In Fig. 1, solid arrows and dashed arrows respectively illustrate service calls
direction and library dependencies. Figure 1 also indicates that SSaaS consisted
of the following five components before the migration:

– CommonLib: This is a place for putting shared functionalities, like utility
classes, that are going to be used by the rest of the system.

– DeveloperData: This holds the information of developers who are using the
SSaaS service and their domain model metadata entities that are shared
between the DeveloperServices and the ContentServices components.

– DeveloperServices: This is where the services related to managing the domain
model of developers’ projects reside in. Using these services, developers could
add new models, edit existing ones, and so on.

Migrating to Cloud-Native Architectures Using Microservices 205

Fig. 1. The architecture of SSaaS before the migration

– ContentServices: This holds the services that the target SDK is using in order
to perform the CRUD operations on the model’s objects.

– DeveloperWebsite: This is an application written in HTML and JQuery and
acts as a dashboard for developers. For this purpose, it leverages the Devel-
operServices component.

3.1 Why Did We Plan to Migrate Towards the Microservices?

What motivated us to perform a migration to a microservices architecture was
a problem raised with a requirement for a Chat as a Service. To implement
this requirement, we chose ejabberd2 due to its known built-in scalability and
its ability to run on clusters. To this end, we wrote a script in python that
enabled ejabberd to perform authentications using our system. After preparing
everything, the big issue in our service was the on demand capability, otherwise
our service was useless. In the following, we discuss the reasons that motivated
us to choose the microservices architecture:

The need for reusability: To address the above issue, we started to automate
the process of setting up a chat service. One of these steps was to set up a
database for each user. We were hoping that this was also a step in creating
RDBMS projects that we can reuse. After investigating the RDBMS service
creation process, we recognized that there was not anything to satisfy our new
requirement. To clarify further, there was a pool of servers in place. Each of
these servers had an instance of the Oracle DBMS installed and an instance of
DeveloperServices running. During the creation of a RDBMS project, a server
was selected randomly and related users and tablespaces were created in the
Oracle server. The mentioned design had several issues since it was just designed
to fulfill the RDBMS service needs, and it was tightly coupled to the Oracle
server. Nevertheless, we needed MySQL database for ejabberd and we should
add this functionality to the system. After struggling a bit with the system, we
recognized that we were just revamping the current bad design. What we needed

2 https://www.ejabberd.im/.

https://www.ejabberd.im/

206 A. Balalaie et al.

was a database reservation system that both of our services could make use of.
Thinking more generally, we needed a backing resources reservation system. This
was the first step towards making cohesive services that can be reused by other
parts of the system.

The need for decentralized data governance: Another problem was that every
time anyone wanted to add some metadata about different services, they were
added to the DeveloperData. In other words, it was kind of an integration point
among the services. It was not a good habit because services were independent
units that were only sharing their contracts with other parts of the system.
Consequently, another step was to re-architect the system so that any services
could govern its own metadata and data by themselves.

The need for automated deployment: As the number of services was growing,
another problem was to automate the deployment process and to decouple the
build life cycle of each service from other services as much as possible. This can
happen using the Configuration Server and the Continuous Delivery components.

The need for built-in scalability: As mentioned before, the vision of SSaaS
is to serve millions of users. By increasing the number of services, we needed
a new approach for handling this kind of scalability because scaling services
individually needs a lot of work and can be error-prone. Therefore, to handle
this problem, our solution was to locate service instances dynamically through
the Service Discovery component and balancing the load among them using the
internal Load Balancer component.

To summarize, new requirements pushed us to introduce new services, and
new services brought in new non-functional requirements as mentioned above.
Hence, we got advantage of microservices to satisfy these new requirements.

4 The Target Architecture of SSaaS After the Migration

In order to realize microservices architecture and to satisfy our new requirements,
we transformed the core architecture of our system to a target architecture by
undergoing some architectural refactorings. These changes included introducing
microservices-specific components as explained in Sect. 2 and re-architecting the
current system as will be discussed in this section. The final architecture is
depicted in Fig. 2.

The new technology stack for the development was including the Spring
Boot3 for its embedded application server, fast service initialization, using
the operating system’s environment variables for configuration, and the Spring
Cloud4 Context and the Config Server to separate the configuration from the
source code as recommended by Continuous Delivery. Additionally, we chose
the Netflix OSS5 for providing some of the microservices-specific components,
i.e. Service Discovery, and the Spring Cloud Netflix that integrates the Spring

3 http://projects.spring.io/spring-boot.
4 http://projects.spring.io/spring-cloud.
5 http://netflix.github.io.

http://projects.spring.io/spring-boot
http://projects.spring.io/spring-cloud
http://netflix.github.io

Migrating to Cloud-Native Architectures Using Microservices 207

Fig. 2. Target architecture of SSaaS after the migration

framework with the Netflix OSS project. We also chose Eureka for Service Dis-
covery, Ribbon as Load Balancer, Hystrix as Circuit Breaker and Zuul as Edge
Server, that all are parts of the Netflix OSS project. We specifically chose Ribbon
among other load balancers, i.e. HAProxy6, because of its integration with the
Spring framework and other Netflix OSS projects, in particular Eureka. Addi-
tionally, it is an internal load balancer, so we do not need to deploy an external
one.

4.1 How Did We Re-Architect the System and Refactor the Data?

In the state-of-the-art about microservices [13,18], Domain Driven Design [4,19]
and Bounded Context [4,19] are introduced as common practices to transform the
system’s architecture into microservices. As we did not have a complex domain,
we decided to re-architect the system based on domain entities in DeveloperData.
We put every set of cohesive entities into a service, such that the only one which
can create and update that entity would be that service. For example, only the
ChatServices service could update or create the chat metadata entities. Other
services can only have copies of the data that they do not own, e.g., for the
purpose of caching. However, they should be careful about synchronization with
the master data as their copy could be stale. With respect to this discussion, the
list of architectural changes to reach the target architecture is the following:

– Letting the ChatServices service handle its metadata by itself and not inside
the DeveloperData.

– Introducing a new Resource Manager service in order to reserve resources like
databases. The entities related to Oracle server instances will be moved from
DeveloerData to this service.

6 http://www.haproxy.org.

http://www.haproxy.org

208 A. Balalaie et al.

– Introducing a new service to handle developer’s information and its registered
services.

– Transforming DeveloperData from a library to a service. Therefore, Develop-
erServices and ContentServices have to be adapted such that they can make
service calls to DeveloperData instead of method calls. Please note that the
remaining data in DeveloperData are just RDBMS entities like Table and
Column.

5 Migration Steps

Migrating the system towards the target architecture is not a one-step procedure
and should be done incrementally and in several steps without affecting the end-
users of the system. Furthermore, as the number of services is growing, we need
a mechanism for automating the delivery process. In this section, we describe
how we migrated SSaaS using the following eight steps:

Fig. 3. Transforming DeveloperData to a service

5.1 Preparing the Continuous Integration Pipeline

Continuous integration is the first step for having an effective Continuous Deliv-
ery. It allows developers to integrate their work with the others’ early and often,
and helps to prevent future conflicts [8]. To this end, a continuous integration
(CI) server, an as-a-service or self-hosted code repository, and an artifact repos-
itory is needed. We chose Jenkins7 as the CI server, self-hosted Gitlab8 as the
code repository, and Artifactory9 as the artifact repository (cf. Fig. 8).

By adopting microservices, the number of services will increase. As each of
these services can have a number of instances running, deploying them by virtu-
alization is not cost-effective and can introduce a lot of computational overhead.
7 https://jenkins-ci.org.
8 https://about.gitlab.com.
9 http://www.jfrog.com/open-source.

https://jenkins-ci.org
https://about.gitlab.com
http://www.jfrog.com/open-source

Migrating to Cloud-Native Architectures Using Microservices 209

Furthermore, we may need to use Configuration Management systems in order
to create the exact test and production environments. Containerization is a new
trend that is well suited for microservices. By utilizing containers, we can deploy
service instances with lower overheads than the virtualization, and in isolation.
Additionally, we would not hear phrases like “this works on my machine” any-
more because we are using the exact environments and artifacts in both of the
development and production environments. Another major benefit is portabil-
ity since we can deploy anywhere that supports containerization without any
changes to our source codes or container images. Many public cloud providers
such as Google and Amazon now have a support for containerization.

Docker10 is a tool for containerization of applications, and it is now becoming
the de-facto standard for containerization in industry. There is a pool of ready
to use images in the Docker Hub, the central docker image repository, that can
be pulled and customized based on specific needs. Docker Registry11 is another
project that let organizations to have a private docker image repository. As we
are going to use Docker, we need Docker Registry to be in our pipeline as well.

To summarize, in this step, we installed and integrated the Gitlab, Jenkins,
Artifactory and Docker Registry as a CI pipeline.

5.2 Transforming DeveloperData to a Service

In this step, we changed DeveloperData to use Spring Boot because of its advan-
tages (see Sect. 4). Furthermore as shown in Fig. 3, we changed it to expose its
functionalities as a REST API. In this way, its dependent services would not be
affected when the internal structure of DeveloperData changes. Since they have
service-level dependency, the governance of DeveloperData entities will be done
by a single service and DeveloperData would not act as an Integration Data-
base [7] for its dependent services anymore. Accordingly, we adapted Develop-
erServices and ContentServices to use DeveloperData as a service and not as a
Maven dependency.

5.3 Introducing Continuous Delivery

A best practice in the Continuous Delivery is to separate the source code, the
configuration, and the environment specification so that they can evolve inde-
pendently [8]. In this way, we can change the configuration without redeploying
the source code. By leveraging Docker, we removed the need for specifying envi-
ronments since the Docker images produce the same behavior in different envi-
ronments. In order to separate the source code and the configuration, we ported
every service to Spring Boot and changed them to use the Spring Cloud Con-
figuration Server and the Spring Cloud Context for resolving their configuration
values (cf. Fig. 4). In this step, we also separated services’ code repositories to
have a clearer change history and to separate the build life cycle of each service.

10 https://www.docker.com.
11 https://docs.docker.com/registry.

https://www.docker.com
https://docs.docker.com/registry

210 A. Balalaie et al.

Fig. 4. Introducing configuration server

We also created the Dockerfile for each service that is a configuration for creating
Docker images for that service. After doing all of the mentioned tasks, we created
a CI job per service and ran them in order to populate our repositories. Having
the Docker image of each service in our private Docker registry, we were able to
run the whole system with Docker Compose12 using only one configuration file.
Starting from this step, we had an automated deployment on a single server.

5.4 Introducing Edge Server

As we were going to re-architect the system and it was supposed to change
the internal service architecture, in this step, we introduced Edge Server to the
system to minimize the impact of internal changes on end-users as shown in
Fig. 5. Accordingly, we adapted DeveloperWebsite.

Fig. 5. Introducing edge server

12 https://docs.docker.com/compose.

https://docs.docker.com/compose

Migrating to Cloud-Native Architectures Using Microservices 211

5.5 Introducing Dynamic Service Collaboration

In this step, we introduced Service Discovery, Load Balancer and Circuit Breaker
to the system as shown in Fig. 6. Dependent services should locate each other via
the Service Discovery and Load Balancer; and the Circuit Breaker will make our
system more resilient during the service calls. By introducing these components
to the system sooner, we made our developers more comfortable with these new
concepts, and it increased our speed for the rest of the migration and of course,
in introducing new services.

Fig. 6. Introducing dynamic service collaboration

5.6 Introducing Resource Manager

In this step, we introduced the Resource Manager by factoring out the entities
that were related to servers, i.e. AvailableServer, from DeveloperData and intro-
ducing some new features, i.e. MySQL database reservation, for satisfying our
chat service requirements (cf. Fig. 7). Accordingly, we adapted DeveloperServices
to use this service for database reservations.

5.7 Introducing ChatServices and DeveloperInfoServices

As the final step in re-architecting the system, we introduced the following ser-
vices:

– DeveloperInfoServices by factoring out developer related entities (e.g., Devel-
oper) from DeveloperData.

212 A. Balalaie et al.

Fig. 7. Introducing resource manager

– ChatServices for persisting chat service instances metadata and handling chat
service instance creations.

This led us to the target architecture as depicted in Fig. 2.

5.8 Clusterization

Compared to virtualization, one of the main features of containerization is its
low overhead. Due to this feature, people started to make it more efficient by
introducing lightweight operating systems, like CoreOS13 and Project Atomic,
that only have the minimal parts to host many containers. Google Kubernetes14,
that has a good integration with the CoreOS, is a tool for easy deployments of
containers on a cluster. Using Kubernetes, a container can be easily fetched
from a private repository and deployed to a cluster with different policies. For
example, a service can be deployed with three always available instances.

In this step, we set up a cluster of CoreOS instances with Kubernetes agents
installed on them. Next, we deployed our services on this cluster instead of a
single server. The final delivery pipeline is shown in Fig. 8.

In Sect. 5, we described the incremental process of migrating the SSaaS appli-
cation towards the microservices architecture. This migration was actually per-
formed in three dimensions: re-architecting the current system, introducing new
supporting services, and enabling Continuous Delivery in the system. The impor-
tant point to note is that how we incrementally evolved the system in all these
three dimensions together. Despite the smoothness of the explained process, we
13 https://coreos.com.
14 http://kubernetes.io.

https://coreos.com
http://kubernetes.io

Migrating to Cloud-Native Architectures Using Microservices 213

Fig. 8. The final delivery pipeline

faced several challenges in this process as well. Section 6 discusses some of the
lessons we learned during this process.

6 Lessons Learned

Migrating an on-premise application to a microservices architecture is a non-
trivial task. During this migration, we faced several challenges that we were able
to solve. In the following, we share some of the lessons we learned in this process
that we think might be helpful for others who are also trying to migrate to
microservices:

– Deployment in the development environment is difficult: Introducing new ser-
vices to the system will put a big burden on developers. It is true that the
application’s code is now in isolated services. However, to run those services
in their machines, developers need to deploy the dependent services as well.
For example, the service registry should be deployed as well in order to have
a working system. These kinds of deployment complexities are not normal for
a novice developer. Hence, there should be a facility in place for setting up
such a development environment with a minimum amount of effort. In our
case, we chose the Docker Compose to easily deploy dependent services from
our private Docker registry.

– Service contracts are double important: Changing so many services that only
expose their contracts to each other could be an error-prone task. Even a
small change in the contracts can break a part of the system or even the
system as a whole. Service versioning is a solution. Nonetheless, it could
make the deployment procedure of each service even more complex. Therefore,
people usually do not recommend service versioning in microservices. Thus,
techniques like Tolerant Reader [3] are more advisable in order to avoid service
versioning. Consumer-driven contracts [3] could be a great help in this regard,
as the team responsible for the service can be confident that most of their
consumers are satisfied with their service.

– Distributed system development needs skilled developers: Microservices is a
distributed architectural style. Furthermore, in order for it to be fully func-
tional, it needs some supporting services like service registry, load balancer,

214 A. Balalaie et al.

and so on. Hence, to get the most out of microservices, those team members
are needed who are familiar with these concepts and are comfortable with
this type of programming.

– Creating service development templates is important: Polyglot persistence and
the usage of different programming languages are promises of microservices.
Nevertheless, in practice, a radical interpretation of these promises could
result in a chaos in the system and make it even unmaintainable. Conse-
quently, having standards is a must in order to avoid chaos. Different lan-
guages and data stores can be used, but it should be in a controlled and
standard way. As a solution, having service development templates for each
leveraged language is essential. It would reduce the burden of development
since people can easily fork the template and just start developing.

– Microservices is not a silver bullet: Microservices was beneficial for us because
we needed that amount of flexibility in our system, and that we had the Spring
Cloud and Netflix OSS that made our migration and development a lot easier.
However, as mentioned before, by adopting microservices so many complex-
ities would be introduced to the system that require a lot of effort to be
addressed. Therefore, these challenges should be considered before the adop-
tion of microservices. In other words, maybe our problems could be solved
more easily by applying another architectural style or solution.

7 Conclusions and Future Work

In this paper, we explained our experience during the migration of an on-premise
application to the microservices architectural style. In particular, we provided
the architecture of our system before and after the migration and the steps
that we followed for this migration. Furthermore, we highlighted the importance
of Continuous Delivery in the process of adopting microservices. Finally, we
discussed the lessons learned during this migration.

In future, we plan to consolidate these practices and develop a set of reusable
patterns for migrating on-premise applications to microservices architectural
style. These patterns should generalize the process that we used in this paper,
but in a well-defined structure that can be instantiated independently, similarly
to the approach that we devised in [10].

Acknowledgments. The work of Pooyan Jamshidi has been supported by the Irish
Centre for Cloud Computing and Commerce (IC4) and by the Horizon 2020 project
no. 644869 (DICE).

References

1. Ardagna, D., di Nitto, E., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria,
F., Casale, G., Matthews, P., Nechifor, C.S., Petcu, D., Gericke, A., Sheridan, C.:
Modaclouds: a model-driven approach for the design and execution of applica-
tions on multiple clouds. In: 4th International Workshop on Modelling in Software
Engineering (MISE), pp. 50–56, June 2012

Migrating to Cloud-Native Architectures Using Microservices 215

2. Bergmayr, A., Bruneliere, H., Canovas Izquierdo, J., Gorronogoitia, J., Kousiouris,
G., Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria, L., Pezuela, C., Wim-
mer, M.: Migrating legacy software to the cloud with artist. In: 17th European
Conference on Software Maintenance and Reengineering (CSMR), pp. 465–468,
March 2013

3. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and Restful Web Services. Addison-Wesley Professional, Reading
(2011)

4. Evans, E.: Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Reading (2004)

5. Fehling, C., Leymann, F., Ruehl, S., Rudek, M., Verclas, S.: Service migration
patterns - decision support and best practices for the migration of existing service-
based applications to cloud environments. In: 6th IEEE International Conference
on Service-Oriented Computing and Applications (SOCA), pp. 9–16, December
2013

6. Fowler, M., Lewis, J.: Microservices. http://martinfowler.com/articles/
microservices.html. Accessed 15 Jun 2015

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2004)

8. Humble, J., Farley, D.: Continuous delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, Reading
(2010)

9. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

10. Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud migration patterns: a
multi-cloud service architecture perspective. In: Toumani, F., et al. (eds.) Service-
Oriented Computing - ICSOC 2014 Workshops. LNCS, vol. 8954, pp. 6–9. Springer,
Switzerland (2015)

11. Martin, R.: Clean micro-service architecture. http://blog.cleancoder.com/
uncle-bob/2014/10/01/CleanMicroserviceArchitecture.html. Accessed 15 June
2015

12. Mendonca, N.: Architectural options for cloud migration. Computer 47(8), 62–66
(2014)

13. Newman, S.: Building Microservices. O’Reilly Media, Sebastopol (2015)
14. Nygard, M.: Release It!: Design and Deploy Production-Ready Software. Pragmatic

Bookshelf, Raleigh (2007)
15. Calçado, P.: Building products at soundcloud. https://developers.soundcloud.

com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith.
Accessed 15 June 2015

16. Richardson, C.: Microservices architecture (2014). http://microservices.io/.
Accessed 15 June 2015

17. Borsje, S.: How we build microservices at karma. https://blog.yourkarma.com/
building-microservices-at-karma. Accessed 15 June 2015

18. Stine, M.: Migrating to Cloud-Native Application Architectures. O’Reilly Media,
Sebastopol (2015)

19. Vernon, V.: Implementing Domain-driven Design. Addison-Wesley Professional,
Reading (2013)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://blog.cleancoder.com/uncle-bob/2014/10/01/CleanMicroserviceArchitecture.html
http://blog.cleancoder.com/uncle-bob/2014/10/01/CleanMicroserviceArchitecture.html
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
http://microservices.io/
https://blog.yourkarma.com/building-microservices-at-karma
https://blog.yourkarma.com/building-microservices-at-karma

Cloud Computing for e-Sciences at Université
Sorbonne Paris Cité

Leila Abidi1, Christophe Cérin1(B), Danielle Geldwerth-Feniger2,
and Marie Lafaille1,2

1 Université de Paris 13, LIPN UMR CNRS 7030, UMR CNRS 7244,
99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
{leila.abidi,christophe.cerin}@lipn.univ-paris13.fr

2 Université de Paris 13, UMR CNRS 7030 - CSPBAT, UMR CNRS 7244,
99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

{danielle.geldwerth-feniger,marie.lafaille}@univ-paris13.fr

Abstract. The present paper relates the involvement towards migra-
tion and adoption of cloud computing at Université Sorbonne Paris Cité
(USPC), a major french consortium of universities and higher education
and research institutes. Migration to the cloud for a wide and diverse
community of actors is nevertheless not straightforward. The ambitious
interdisciplinary program ‘Imageries du Vivant’ (IDV or ‘Life Imaging’)
at USPC, a key program dedicated to the development and use of life
and biomedical imaging, constitutes our use case. It allows to sketch
how cloud computing may change scientific practices and the landscape
of computing, and to specify the steps to be followed for such purposes.
The outcome of the paper is a methodology for accompanying adequate
technological choices and acceptance by the users of the cultural changes
when they migrate to cloud technologies. In short, we provide useful
guidance for cloud adoption based on observations made for the IDV
project.

Keywords: Cloud computing · Inter/multi-disciplinary projects ·
e-Sciences engineering · Methodologies for cloud migration and
adoption

1 Introduction

Cloud computing technology potentially offers permanent access to data and
services, from any device and anywhere at any time. Basically, it considers
everything ‘as a service’: computing, storage, network, and infrastructure. As
a generic term, cloud computing also describes a category of sophisticated, on-
demand Internet Technology (IT) services, popularized through providers such
Amazon, Google and Microsoft. Cloud computing puts the individual users at
the center of the system, and allows him to deploy, on-demand, software, devel-
opment platforms or even the infrastructure he needs.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 216–227, 2016.
DOI: 10.1007/978-3-319-33313-7 16

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 217

Cloud computing may help to meet many challenges within educational insti-
tutions and research laboratories: data storage, computing, collaborative work,
communication, mobility, on-line education, technical supports, costs, human
resources management. Therefore, Université Sorbonne Paris Cité (USPC), a
major consortium of french universities, decided to join efforts and to develop a
capacity in the promising cloud computing technology area. To this end, USPC
is currently funding several projects related to infrastructure and e-Sciences.

Our paper relates our experience in constructing the cloud technology for
USPC, mainly by depicting current thinking related to cloud usage in our com-
munities (researchers, teachers, technicians and engineers, decision makers). The
paper deals with two main points. How - from a technical point of view - can
we migrate to the cloud? To what extent do we share conception on cloud tech-
nologies in order to be able to design and adopt a cloud? This work focuses
on migration towards the cloud for an ambitious interdisciplinary program at
USPC, the Imageries du Vivant (IDV or ‘Life Imaging’) program.

The organization of the paper is as follows. In Sect. 2, we motivate our work
by presenting the general objectives of cloud migration and adoption. In Sect. 3,
we introduce the institutional context at USPC. We also present and analyze
a survey related to the IDV program and summarize current pieces of work on
cloud adoption. In Sect. 4, we present the main architectural choices of the USPC
cloud infrastructure, and their adequacy to meet the needs of the IDV program.
Section 5 concludes the paper.

2 The General Context of Cloud Adoption and Migration

The cloud industry forum1 focused on the current individual practices that orga-
nizations need to address while designing their processes towards cloud migration
and adoption. Four categories cleared up:

1. IT and data governance, which deals with maintaining data integrity and
measuring data safety.

2. Architect solution, which deals with designing private/public cloud service
provisions, architectures, technical standards and management tools.

3. Adoption process, which addresses the critical factors and steps towards
ensuring effective cloud adoption

4. Security, which addresses access for remote users, and key factors like data
privacy, device safety, regulatory compliance, business continuity.

Our empirical work mainly focuses on the category of Adoption process, and
implements some of the recommendations from the cloud industry forum. We put
emphasis on individual current practices i.e. the ways people use computers in
their daily work, how they behave and on whom they rely. We are conducting this
study because we are faced to a lack of methods for accompanying the changes
associated with cloud adoption. USPC, as a big university and the Conférence des

1 http://cloudindustryforum.org/knowledge-hub/preparation.

http://cloudindustryforum.org/knowledge-hub/preparation

218 L. Abidi et al.

Présidents d’Université (CPU2) formulated in May 2015 ten general proposals
for the digital area. Among those, the following items underline the relevance
of our study and constitute our research gap: Establishing infrastructure to deal
with public data produced by research, teaching and training; Organizing open and
participative sciences with data flows for research and innovation; Appropriating
the new ways of work organization that are generated by the digital era.

One limitation of our work is that we are not the decision makers at all the
different steps of the process leading to cloud adoption. For instance, people man-
aging the computing facilities are also legitimate to promote cloud technologies
because they have technical skills in the choice of cloud middleware as well as
in the administration of such large scale systems. USPC staff members manage
the different budgets and allocate them not only for cloud platforms but also for
other platforms. We are representing one large community (IDV members) and
we need to negotiate and seek consensus with others. This explain why in this
study we focus mainly on the discussions with the IDV members. One outcome
of these discussions is a big picture of needs in order to calibrate in part the
cloud infrastructure and the budget to allocate and to negotiate. Our current
methodology is now reused to explore the needs of people in Social Sciences.
Another outcome is the working group on data management setup in the spirit
of what we are doing for the IDV project. New insights into technical and legal
issues are under concern for data related to patients in hospitals.

3 The Université Sorbonne Paris Cité and the IDV
Interdisciplinary Program Use Case

3.1 Institutional Context at Université Sorbonne Paris Cité

Université Sorbonne Paris Cité (USPC) is one of the major consortium of french
universities. It gathers four Parisian universities and four institutes for higher
education and research. In addition to 120.000 students, USPC hosts numerous
research teams most often also affiliated to the different french public research
institutions. USPC puts strong emphasis on the quality of training and on
research development, and gathers approximately 17.000 researchers, teachers,
engineers and technicians. The USPC infrastructures dedicated to experimental
sciences present strengths and weaknesses that directly arise from the wide inter-
nal diversity. Some institutes greatly call for scientific computing, have access to
national super-computing facilities, and have been using cluster/grid computing
for a while. This is the case for IPGP but it is far less developed for practi-
tioners from life and health sciences, that constitute most members of the IDV
community.

3.2 The IDV Program and Network

Program Partnership and Organization. The IDV program is a multidis-
ciplinary and interdisciplinary program centered on the development and use of
2 http://www.cpu.fr/actualite/colloque-annuel-de-la-cpu-les-10-propositions/.

http://www.cpu.fr/actualite/colloque-annuel-de-la-cpu-les-10-propositions/

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 219

Fig. 1. The location of the different IDV participants working on image generation
(non exhaustive list).

life imaging. It was founded at the end of 2014 for a 4 years period, and currently
gathers approximately 200 researchers from USPC. USPC partly supports the
operational expenses of the program, and the costs of some human resources,
such as master and PhD students, post-docs, or support engineers.

The various partner teams belong either to academic research laboratories,
to private chemical and pharmaceutical companies, to in vivo (clinical and pre-
clinical) and cellular imaging core-facilities, as well as to hospital imaging depart-
ments (radiology, nuclear medicine, anatomy and histo-pathology). They are
geographically widely scattered, as illustrated by the map on Fig. 1 which pre-
cises the location of the groups dedicated to image generation (i.e. developments
in physical imaging set-ups and chemical imaging agents).

The Three Main Objectives of IDV. Building a smart multi-modality and
multi-scale life imaging atlas is the first main objective of the IDV program. An
integrative and advanced intelligent atlas should help unifying the growing body
of images generated among the various partners of USPC, and should improve re-
use of the data. It should allow to extract information from large image data-sets,
as well as to integrate data from various individuals and instrumental origins,
levels and complexities, connecting the project to the challenges and expectations
of the ‘Big Data’.

Validating imaging biomarkers for personal health and education constitutes
a second main objective of IDV. Reflecting knowledge transfer from the level of
a general population to the individual level, biomarker validation relies on large
data sets analysis which warrants the development of precision medicine and
education.

220 L. Abidi et al.

The third objective of IDV aims at providing ethical, legal and economical
recommendations, and grounding the frameworks for using individual biomedical
and imaging information.

Benefits Expected from Increasing Cloud Usage and Migration. Indi-
vidual image annotations constitute the background work for constructing an
advanced intelligent atlas. The various professionals within the IDV network
have - from their individual training and/or with the help of loadable dedicated
software - the technical skills and expertise to annotate their own images. Such
annotation aims at defining high level semantic features that describe a given
image or image set in a way that goes beyond extracting parameters strictly
related to the image content as are pixel histograms, texture and morphological
information.

The annotations produce semantic information associated with a given data
set, and constitute the background for appropriately structuring knowledge in a
given application field, most frequently by relying on the use of field dedicated
ontologies. By associating detailed annotations at various levels of a common
data base, and seeking for relevance feedback on a given query from others
experts in a network, connected experts within the network become able not
only to personalize their production, but also to improve the global performances
of the community because of crowdsourcing and resulting mobilization of the
collective intelligence.

The discovery and validation of imaging biomarkers generally require that
researchers start from pre-clinical development on animal models, and further
go on to translation towards clinical applications. Here also, fusion of data com-
ing from different scales and/or imaging methods directly contributes to reach
valuable and pertinent translation.

Last, acceding to and sharing data concerning individual human beings meet
ethical and legal concerns. Besides technological solutions, it is necessary to
elaborate guidelines to be taken into account while setting the rules that govern
access to databases and defining their indexations.

3.3 Dedicated Survey for the IDV Program

Survey Settings. We set up a survey of our use case at USPC with the aim to
provide, at the beginning of the project, an overview of all the scientific activ-
ities, methods and tools used by the IDV members, as well as the current life
cycle(s) of the data used in their daily work. The 200 members belong to 30 dif-
ferent teams from research laboratories, imaging core facilities and departments
from 14 hospitals. This community is very diverse in terms of initial training,
background disciplinary fields and practice. The following fields are represented
among the members: physics, chemistry, biology, medicine, psychology, phar-
macy, mathematics and computer sciences for image processing, data sciences
and humanities like law and applied ethics. The survey was divided into 3 main

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 221

parts: the identity of the members, their scientific approach (what are the impor-
tant processes in your work?) and the life cycle of their data (how, where, how
much, whom is data produced? and how long is it conserved?).

The answers from participating members were collected using the Sphinx-
Online (v3.1.2) platform which contains management tools of the survey such
as a WYSIWYG editor, revivals by emails, classification of answers, statistics
and tools for automatic chart drawing. The results presented below have been
obtained during a seventeen-week period covering questioning to final analysis.

Survey Analysis. By mid-April 2015, we had collected answers from different
structures which are well representative of the wide disciplinary diversity within
the IDV program. Answers were indeed obtained from 20 teams in 18 academic
research laboratories, 4 teams from 3 imaging core facilities and hospital depart-
ments, and one small company specialized in ethical and legal issues while using
personal data.

What is the typical profile of an IDV member? Most IDV members (75 %) are
researchers from public academic laboratories. Some teams are affiliated to the
CNRS (47 %), to the INSERM (28 %) and to the ‘Assistance Publique Hôpitaux
de Paris - AP-HP’ (16 %). The community can roughly be divided into 2 popu-
lations: on one hand, a ‘biologist population’, for whom experiences, observation
and statistical analyzes are central to the research process; on the other hand, a
‘computer scientist population’, who very routinely uses theoretical calculations,
models and numerical simulations. Respectively, half of the IDV members, and
more than one third, work in teams from 3 to 5 and 5 to 10 researchers. Collab-
oration among scientists from different teams or even laboratories is widespread
practice. Indeed, more than 70 % of answers confirmed that they needed sharing
data with other teams in their daily work.

Image Formats and Software. Because of the wide disciplinary field coverage
and because so many different structures are involved, many image formats as
well software elements are currently used within the IDV community. Among the
20 different image formats counted, TIFF and DICOM are the most commonly
used. More than 70 different software elements are daily used, with Matlab and
ImageJ by far the most popular.

Data Characteristics, Storage Location and Data Preservation. In most cases
(64 %), the volume of data annually produced by individual members is quite
low (< 1 TB) and it rarely exceeds 100 TB (for 7 % of collected answers). Half
of the image data contain tags or meta-data; image data mostly require post-
treatment for full interpretation (80 %). Some kind of images are thoroughly
analyzed (more than 14 extracted parameters, for 17 % of collected answers).
Other images could be sources of additional information. Less than 5 parameters
are indeed extracted for almost half of the images.

For data storage, local physical supports (i.e. hard drives) are widely used
(more than 70 % of collected answers) at each step of the research process,

222 L. Abidi et al.

i.e. before, during and after the data treatment. This practice does not allow
easy nor efficient data sharing among scientists and laboratories. The spatial
fragmentation leads to frequently under-exploited data, and hard drive crashes
often generate data loss. Only few IDV members use online solutions, i.e. clouds
(around 10 % of collected answers). Long term data preservation is far from cur-
rent practices, with approximately one half of all the data produced by the IDV
members deleted within the 10 years following production.

3.4 Current Reference Surveys About Cloud Adoption

Our IDV survey has been setup to avoid major overlapping according to what
we know about the expectation of e-Sciences communities like with the XSEDE
survey we now introduce. In our context, two surveys dedicated to cloud adoption
technology and a research paper were used as general guidelines for gaining
insight into the needs and practices of the IDV community. This selection of
related works also allows a clear positioning of our work which is more focused
and less general because the community has been identified by USPC before the
project on cloud adoption.

The first work is the retrospective study carried out by the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE) on a large community
of researchers in the USA. The second one is an advance poll recently initi-
ated for educational purposes in Arab countries. It is designed by The Arab
League Educational, Cultural and Scientific Organization (ALECSO), the Arab
Regional Office of ITU (the United Nations agency specialized for information
and communication technologies) and the Arab Telecom Regulators Network
(AREGNET).

A previous analysis of the researchers practices and needs was carried out
from September 2012 to April 2013, through XSEDE, a virtual system that sci-
entists use to interactively share computing resources and expertise. The infor-
mation collected therefore only concerns researchers, albeit from 80 different
projects related to a wide range of knowledge and disciplines (sciences, engi-
neering, humanities and fine arts). Reasons that emerged for using the cloud
were mainly: (1) on-demand access for bursting resources; (2) high throughput
scientific workflows and data analysis; (3) enhanced collaboration through data
sharing and deployment of the individual Web sites of the research teams.

The qualitative feedback about benefits and challenges when using the cloud
was inferred. Some technical dimensions of cloud usage were also quantified
(number of cores used at peak/steady state, bandwidth in/out of the cloud,
amount of data stored in the cloud). Building domain-specific computing envi-
ronments emerged as one of the programming models sought in the cloud, with
others such as high throughput, embarrassingly parallel workloads, academic
research and teaching tools, current software, scientific portals, real-time event-
driven sciences. Our proposal for cloud adoption by the IDV program at USPC
mainly corresponds to the construction of a domain specific computing environ-
ment, relying on virtual machines for image analysis, as we will develop below.

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 223

The second survey, very recently started (June 2015), aims to anticipate
the needs for computing based infrastructure, software and services for educa-
tional purposes. It focuses on a wider public than the XSEDE survey since it
concerns not only researchers but all stake-holders in relation to education and
research, namely also teachers and students, IT managers and decision-makers.
Researchers, teachers and students all need to access to services and resources
from any device, anywhere, at any time. IT managers are especially concerned by
simplification in management and monitoring, as well as by the associated tech-
nical operations. Last but not least, decision-makers want to control the costs
and to have actual plan and policies to concretely display the infrastructures,
all purposes for which our own expertise was requested.

Reference paper [16] introduces scenario to illustrate how the researchers,
teachers and engineers can benefit from the grid infrastructure.

4 Building the Dedicated IDV-USPC Cloud
Infrastructure

4.1 Details of the Proposed Infrastructure for IDV

At least three big instruments related to computing coexist at USPC because
of historical reasons: the S-Capad cluster at IPGP, the MAGI cluster at Paris
13 and the Cumulus cloud system located at Paris 5. The USPC board of gov-
ernors decided to call for a common project aimed at federating all existing
infrastructures.

USPC universities and institutes were asked to express their needs for com-
mon infrastructures and for sharing ‘more than in the past’. A round table
was organized to depict common needs from individual answers. Three projects
aimed at consolidating the S-Capad, MAGI and Paris 5 infrastructures. S-Capad
and MAGI received budgets to increase their nodes number for a total of about
2500 and 1000 cores respectively. Paris 5 received a budget for the Cumulus
cloud for a storage capacity of about 1.5 PB, extensible to 2.3 PB, and for the
production of approximately 500 virtual machines (VM). The choice of the cloud
middleware for the Paris 5 infrastructure is OpenNebula3. Moreover, providing
some technical support for OpenNebula is also a matter of negotiation.

The administrators of the three systems are presently working together to
federate identities and procedures, in order to facilitate individual access and
registration to the future pooled infrastructure. The current procedure for get-
ting an account onto the MAGI cluster is very straightforward, and requires no
authorization from the system administrator, even for requesters that are extra-
neous to Paris 13 university. In this later case, the requester is only required to
provide the name, email and agreement of a sponsoring godfather to obtain an
account. For historical reasons, the access procedure to the S-Capad cluster is
less flexible, and requires validations by several intermediaries.

3 http://opennebula.org.

http://opennebula.org

224 L. Abidi et al.

USPC also hired a research engineer to perform the scientific animation of the
pooled infrastructure, in particular for public not yet familiar with cloud usage.
The research engineer will also propose social networking-like tools for the users
of the infrastructure, federate the existing Web sites, and propose new policies.
Last, he will also build the development policies of the pooled infrastructure,
and analyze the whole bunch of accommodated data. Dealing with anonymous
data from the patients in hospitals remains a hot topic, nevertheless out of the
scope of this paper.

4.2 Impact of Cloud Migration on the IDV Program

The survey and discussions with the IDV members clearly indicate the necessity
to focus first on image display and archiving. Image analysis and treatment, as
well as matching between images, will be developed secondly. Thus, we consider
below the storage and the VM system only (and not the renovated cluster sys-
tems available at USPC). This choice helps us to build a base to be enriched
later on and to solve all remaining problems.

Basically, image visualization is straightforward: all you need is the right
software for the right image format. This is easy when you work on your local
computer with only two or three software packages. But, in a collaborative net-
work with over twenty different formats and seventy different software packages,
sharing image visualization becomes a problem. A first alternative consists to
‘cloudify’ all the software in order to be able to deal with all formats. This is tech-
nically feasible but costly in time and human resources. Moreover, the result is
not guaranteed, especially in the case of proprietary software and the constraints
on studying, distributing and modifying the source code. A second alternative
consists to ‘cloudify’ a selection from the most frequently used software, such as
ImageJ or OsiriX. ImageJ can display, edit, analyze, process and save images.
It can read many image file formats, including TIFF, PNG, GIF, JPEG, BMP,
DICOM and FITS, as well as raw formats [13]. OsiriX is the most widely used
DICOM viewer in the world [14]. A third alternative would consist to display
all the image formats with a single software, but this is highly challenging, if
not unrealizable. We chose the second alternative and we are developing it as
follows.

Cloudification. Our cloudification consists in providing software and infrastruc-
ture as services in the distributed architecture of the cloud. Technically, we chose
to connect and make accessible pre-defined templates of VMs that will contain a
certain number of pre-installed tools, the most frequently used ones, as depicted
from our initial survey, like ImageJ. Nevertheless, we do not exclude the possibil-
ity for each individual user to further install other tools, and customize his own
VM. We should thus be able to customize every working environment, starting
from the tools provided by the operating system, and integrating individually
all personal tools. Linux, in one of its versions, will be the operating system by
default. The communication for downloading images between the VMs and our
data center will occur through a secure protocol.

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 225

Presently, we are investigating which configurations are best suited to the
future pooled infrastructure. We must decide how the desktop applications - for
instance developed under the Java framework - will be worked out. There are
indeed two possibilities for running them out. Either on the client browser, with
data pushed from the server/to the client; or on the server side, through a VM
in the cloud, and with transfer of all the computation work to the client browser
through the network.

Atlas. As underlined above, the intelligent atlas should increase the a posteriori
exploitation of the huge mass of images generated within USPC. Individual users
should be able to perform queries for similarity to a given image or image set
(so called the query image). The procedure for searching and extracting images
as an answer to a given query should be intuitive, fast, pertinent and deliver the
most relevant images from the data base.

All the query (question/answer) systems rely on: (1) query analysis; (2) ded-
icated search within the database; (3) display/extraction of the most matching
documents. Using keywords for image searching and matching requires a good
adequacy between those keywords referring to the various images in the data-
base, and those provided by the user for a given query. The development of the
so-called ‘semantic approach’ has offered a solution to this strong constraint.
Indeed, the tools of traditional search engines are not efficient enough for life
imaging clinical/pre-clinical data, because of the large amount of information
contained in the digital images and their associated meta-data. The addition of
sense to stored data, and creation of links - based on the additional pieces of
sense - between all the data, not only strengthen the requirement for sophis-
ticated search tools but also make them possible. Further enriched pertinent
information becomes available for practitioners on their queries, like for diagno-
sis purposes, by enlarging the search for similar images and ensuring relevance
feedback from connected experts within the network.

Our proposed global architecture offers to make VMs facilities available, in
addition to the data storage system. Through these VM, access will be given to
XNAT (eXtensible Neuroimaging Archive Toolkit), a server dedicated to images
visualization and treatment. XNAT4 is a web-based software platform that facil-
itates current management and routine tasks related to life images and associ-
ated data, thus increasing productivity for life imaging studies. It consists of an
image repository to store raw and post-processed images, a database for stor-
age of meta-data and non-imaging measures, and several user interface tools for
accessing, querying, visualizing, and exploiting the data.

In order to use the XNAT tool, migration to a cloud is required, with col-
lection of the data from multiple sources, centralized access and data treatment
through a secure Web portal.

Positioning. The IDV program has the same goal as the Cloud and Auto-
nomic Computing Center - CAC5, namely to develop computational middleware
4 http://www.xnat.org/.
5 http://nsfcac.rutgers.edu/CometCloud/CometCloud/applications/imagereg.

http://www.xnat.org/
http://nsfcac.rutgers.edu/CometCloud/CometCloud/applications/imagereg

226 L. Abidi et al.

and services for medical and life imaging. The IDV cloud program focuses on
image acquisition and visualization tools. CAC is rather interested in mapping
together images and data acquired in different conditions or through different
methods and with ‘traditional’ architecture. Despite this difference, the archi-
tectures of two projects do present similarities. They share the same constraints
and requirements, namely gathering a great number of collaborating research
teams, dealing with many tasks to process, supplying medical images record-
ings, storage and visualization. The two infrastructures are designed on cloud
conception, migration and adoption. Moreover, CAC and IDV both call on data
centers and research teams that are able to develop new tools for the infrastruc-
ture exploitation. However, while CAC may use a public cloud for various tasks,
the nature of IDV program requires only the use of a private, well secured and
controlled infrastructure.

5 Conclusion

We thus share in this paper our experience in changing practices for doing
e-Sciences at the scale of a large institution consortium, Université Sorbonne
Paris Cité (USPC). USPC federates over 17.000 actors from several presti-
gious Parisian organizations. It also acts as a research agency that funds vari-
ous programs for education, research and innovation, like the multi-disciplinary
‘Imageries du Vivant’ (IDV or ‘Life Imaging’) program. Sharing common com-
puting infrastructure and daily-work services is especially important for all
actors: users (researchers, teachers and students), system administrators and
decision makers. The survey we initiated at the level of the IDV community
(∼ 200 individuals) allowed us to analyze the wishes, daily practices and the life
cycle of data produced by the IDV members. The results convinced us to choose
and set up a cloud infrastructure with a common storage repository, individu-
ally customizable VMs and access through a secure protocol. Such design, taking
into account the needs of all the different actors, should allow increasing mutual
sharing and understanding. We pretend that our work may serve as a use case
reference to all actors working for cloud migration and adoption. The later is
invaluable at the present and forthcoming digital era, especially at the scale of
geographically distributed institutions.

Acknowledgments. Leila Abidi is supported by the IDV program and works with
Laboratoire de Recherche en Informatique de Paris Nord, Institut Galilée, university
of Paris 13, France. Marie Lafaille is supported by USPC for the scientific coordination
and promotion of the digital infrastructures.

References

1. XSEDE Cloud Use Survey (2013). http://xsede.org/CloudSurvey/
2. National Science Foundation: Cyberinfrastructure for 21st Century Science and

Engineering Advanced Computing Infrastructure: Vision and Strategic Plan, NSF
12-051, February 2012. http://www.nsf.gov/pubs/2012/nsf12051/nsf12051.pdf

http://xsede.org/CloudSurvey/
http://www.nsf.gov/pubs/2012/nsf12051/nsf12051.pdf

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité 227

3. Distributed and Parallel Systems Group: Cloud Computing (n.d.), University of
Innsbruck. http://www.dps.uibk.ac.at/en/projects/cloud/

4. Intel Cloud Finder: service provider quick search (n.d.). http://www.
intelcloudfinder.com/quicksearch

5. Foster, I.: CERN, Google, and the future of global science initiatives. HPC in the
Cloud, 21 May 2013. http://www.hpcinthecloud.com/hpccloud/2013-05-21/cern
google and the future of global science initiatives.html

6. Kar, S.: Gartner hype cycle for cloud computing: SaaS most promising technology,
CloudTimes, 21 Aug 2012. http://cloudtimes.org/2012/08/21/gartner-hype-cycle-
cloud-computing-saas/

7. Allen, B., Bresnahan, J., Childers, L., Foster, I., Kanadaswamy, G., Kettimuthu,
R., Kordas, J., Link, M., Martin, S., Pickett, K., Tuecke, S.: Globus Online: Radical
Simplification of Data Movement via SaaS, July 2011. https://www.globusonline.
org/files/2011/07/Globus-Online-SaaS-Simplification-of-Data-Movement.pdf

8. Agee, A., Rowe, T., Woo, M.: Building research cyberinfrastructure at
small/medium research institutions. Educause Review, 22 Sep 2010. http://www.
educause.edu/ero/article/building-research-cyberinfrastructure-smallmedium-
research-institutions

9. National Institute of Standards and Technology: Cloud Computing Synopsis and
Recommendations (by Badger, L., Grance,T., Patt-Comer, R., Voas, J.), May 2012.
NIST Publication 800-146. http://csrc.nist.gov/publications/nistpubs/800-146/
sp800-146.pdf

10. High-throughput medical image registration on Comet framework(n.d.) Rut-
gers: The Cloud and Automatic Computing Center. http://nsfcac.rutgers.edu/
CometCloud/CometCloud/applications/imagereg

11. Tudoran, R.: A-Brain: using the cloud to understand the impact of genetic vari-
ability on the brain [Web PPT] (2012). http://research.microsoft.com/en-us/um/
redmond/events/cloudfutures2012/mondayLifeSciencesA-BrainRaduTudoran.pdf

12. NIST cloud specific terms and definitions, 31 Mar 2011. http://collaborate.nist.
gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxono
my/TaxonomyTermsandDefinitionsversion1.pdf

13. http://imagej.net/
14. http://www.osirix-viewer.com/
15. Syed, J., Ghanem, M., Guo, Y.: Supporting scientific discovery processes in discov-

ery net. Concurrency Comput. Pract. Experience 19(2), 167 (2007). doi:10.1002/
cpe.1049

16. Jin, H., Shi, X., Qi, L.: Use case study of grid computing with CGSP. In:
Shimojo, S., Ichii, S., Ling, T.-W., Song, K.-H. (eds.) HSI 2005. LNCS, vol.
3597, pp. 94–103. Springer, Heidelberg (2005). http://link.springer.com/chapter/
10.1007/11527725 11

http://www.dps.uibk.ac.at/en/projects/cloud/
http://www.intelcloudfinder.com/quicksearch
http://www.intelcloudfinder.com/quicksearch
http://www.hpcinthecloud.com/hpccloud/2013-05-21/cern_google_and_the_future_of_global_science_initiatives.html
http://www.hpcinthecloud.com/hpccloud/2013-05-21/cern_google_and_the_future_of_global_science_initiatives.html
http://cloudtimes.org/2012/08/21/gartner-hype-cycle-cloud-computing-saas/
http://cloudtimes.org/2012/08/21/gartner-hype-cycle-cloud-computing-saas/
https://www.globusonline.org/files/2011/07/Globus-Online-SaaS-Simplification-of-Data-Movement.pdf
https://www.globusonline.org/files/2011/07/Globus-Online-SaaS-Simplification-of-Data-Movement.pdf
http://www.educause.edu/ero/article/building-research-cyberinfrastructure-smallmedium-research-institutions
http://www.educause.edu/ero/article/building-research-cyberinfrastructure-smallmedium-research-institutions
http://www.educause.edu/ero/article/building-research-cyberinfrastructure-smallmedium-research-institutions
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
http://nsfcac.rutgers.edu/CometCloud/CometCloud/applications/imagereg
http://nsfcac.rutgers.edu/CometCloud/CometCloud/applications/imagereg
http://research.microsoft.com/en-us/um/redmond/events/cloudfutures2012/mondayLifeSciencesA-BrainRaduTudoran.pdf
http://research.microsoft.com/en-us/um/redmond/events/cloudfutures2012/mondayLifeSciencesA-BrainRaduTudoran.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/TaxonomyTermsandDefinitionsversion1.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/TaxonomyTermsandDefinitionsversion1.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/TaxonomyTermsandDefinitionsversion1.pdf
http://imagej.net/
http://www.osirix-viewer.com/
http://dx.doi.org/10.1002/cpe.1049
http://dx.doi.org/10.1002/cpe.1049
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/11527725_11
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/11527725_11

Resource Distribution Estimation
for Data-Intensive Workloads: Give Me

My Share & No One Gets Hurt!

Alireza Khoshkbarforoushha1,2(B), Rajiv Ranjan1,2, and Peter Strazdins1

1 Australian National University, Canberra, Australia
peter.strazdins@cs.anu.edu.au

2 CSIRO, Canberra, Australia
{alireza.khoshkbarforoushha,raj.ranjan}@csiro.au

Abstract. Robust resource share estimation of data-intensive work-
loads is integral to efficient workload management in a (virtualized) clus-
ter where multiple systems co-exist and share the same infrastructure.
However, developing a reliable resource estimator is quite challenging due
to (i) heterogeneity of workloads (e.g. stream processing, batch process-
ing, transactional, etc.) in a multi-system shared cluster, (ii) limited (in
batch processing) or complete uncertainties (in stream processing) on
input data size or arrival rates, and (iii) changing configurations from
run to run. To address above challenges, we propose an inclusive frame-
work and related techniques for workload profiling, similar job identi-
fication, and resource distribution prediction in a cluster. Our analysis
shows that the framework can successfully estimate the whole spectrum
of resource usage as probability distribution functions for wide ranges of
data-intensive workloads.

Keywords: Resource estimation · Big data workload · Multi-cluster
workload management · Distribution prediction · Data-intensive systems

1 Introduction

Datacenter-scale computing for big data analytics workloads has seen a surge
in adoption due to availability and affordability of large-scale data processing
systems which transform the traditional data mining and machine learning tech-
niques into easy to program and deploy distributed analytics applications. In
such an environment, robust resource usage prediction of data-intensive jobs is
integral to make efficient workload management decisions in different scenarios
such as workload migration between clouds or workload scheduling in a multi-
system cluster.

Cost reduction is one of the main drivers for migrating the workloads between
cloud providers (e.g. Amazon AWS) [10]. For example, the Azure Cost Estima-
tor1 has been designed to assist the infrastructure manager to either assess the
1 http://www.microsoft.com/en-us/download/details.aspx?id=43376.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 228–237, 2016.
DOI: 10.1007/978-3-319-33313-7 17

http://www.microsoft.com/en-us/download/details.aspx?id=43376

Resource Distribution Estimation for Data-Intensive Workloads 229

running cost of the existing on-premises workloads or analyse how much she can
save by moving the hosted servers on other cloud platforms (e.g. AWS) to Azure.
This class of tools typically does analysis irrespective of the workload resource
usage patterns, thereby is not able to extrapolate the analysis beyond the current
conditions of the workloads. However, robust resource usage prediction paves the
way for predictive analysis of workload migration costs betweens clouds. From
another standpoint, such estimation is integral to efficient workload scheduling
in a multi-system cluster.

In a multi-system cluster, data-intensive workloads are typically classified as
either productions or best effort jobs [5]. Production jobs (e.g. Oozie), unlike the
best-effort ad-hoc jobs, are business-critical, meaning that missing their service
level agreements (SLAs) can have substantial financial impact. State of the art
workload scheduling techniques [5,8,14] focus on guaranteeing the SLAs for this
class of workload subject to fairness, capacity, priority, and throughput maxi-
mization. Majority of these techniques [5,8] need the cost of the workload to be
specified a priori to be able to define appropriate resource sharing policies.

However, developing a reliable resource estimator for production jobs is a
hard research problem due to: (i) heterogeneity of workloads pertaining to each
class of big data systems, (ii) limited (in batch processing) or complete uncer-
tainties (in stream processing) on input data size/arrival rates and schema, and
(iii) changing configurations (e.g. number of mappers/reducers or spouts/bolts
respectively in Hadoop and Storm) from run to run. To address above prob-
lems, we propose an inclusive framework and related techniques for resource
distribution estimation of heterogeneous big data workloads in a shared cluster.

To this end, the proposed framework first generates a set of data-intensive
specific job templates (JT) by applying a clustering technique on a set of job
characteristics. These templates are then used to identify similar jobs. Once the
templates are generated, an statistical machine learning (ML) model is built for
each of them by exploiting the past execution traces within the template. We
argue that the existing single point resource estimator is not adequate for describ-
ing the whole spectrum of resource usage of big data workloads. Therefore, we
introduce the novel approach of applying mixture density networks (MDN) as an
underlying ML technique to approximate the probability distributions by means
of finite mixture of Gaussians.

Therefore, the main contributions of the proposed resource estimation frame-
work for big data analytics workload are: (i) Introducing appropriate techniques
to profile and identify similar jobs within a heterogeneous workloads from both
batch and stream data processing systems, (ii) Proposing a novel approach of
estimating the full spectrum of resource usage in form of probability density
functions (pdfs).

The reminder of the paper is organized as follows: The next section explores
the related work. Section 3 presents the overview of the proposed framework. In
this section, we propose our ideas on how to define templates for similar jobs
identification, and how to build resource distribution prediction models. Section 4
presents initial results on distribution based resource modelling along with some

230 A. Khoshkbarforoushha et al.

discussions on how the predicted pdfs can be utilized in workload management
scenarios. The paper ends with some concluding remarks and the plan for future
work in Sect. 5.

2 Related Work

In this section we present a high level discussion on the past research done in
the domain of job performance estimation. Following that, discussion of related
work including performance estimation of declarative (SQL-style) and procedural
(MapReduce style) data-intensive workload is presented.

Job Performance Estimation. Job performance estimation, in general, using
historical information of similar job has been studied in the past in domain of
parallel computing [17,18]. The key difference among the existing approaches is
the way they tackle the problem of identifying similar jobs. In particular, authors
in [18] focus on application characteristics such as user of jobs, jobs’ submission
time, jobs’ arguments and on the number of physical servers on which the jobs
are submitted for the definition of application similarity. Recently, authors in
[17] propose the novel use of clone detection technique to determine the clone
level of a newly submitted job with respect to the jobs in the execution history
and to predict the resource requirement of the new job depending on its clone
level.

High-Level Data Intensive Frameworks. There are a number of related
work on runtime and resource usage estimation in the context of DBMS [1,13].
In the majority of related work, different statistical ML techniques are applied
for estimating query performance. These approaches typically build statistical
models using past query executions and a representative set of query features
(query plan and/or operator level features) which possibly have the high predic-
tive power in terms of resource or performance measures.

When it comes to MapReduce ecosystem, a major fraction of big data clus-
ter workloads are generated by a handful of high-level frameworks such as Hive,
Pig, Giraph [4]. This opens up an opportunity to train ML techniques against a
set of finite recurring operators to estimate workload performance. For example,
authors in [7] apply the Kernel Canonical Correlation Analysis (KCCA) to the
Hive execution plan operators. They conclude that only a set of low level features
pertaining to Hive query execution such as the number of maps and reduces,
bytes read locally, bytes read from HDFS lead to accurate performance mod-
elling. However, the provided low level features are not available before actual
query execution. Therefore, above technique cannot be applied for performance
prediction of new incoming workloads.

Similarly, authors in [16] propose a technique that predicts the runtime per-
formance for a fixed set of queries running over varying input data sets. Specif-
ically, it splits each query into several segments where each segment’s perfor-
mance is estimated using uni-variate linear regression. Next the estimates are
plugged into a global analytical model to predict the overall query runtime. Since

Resource Distribution Estimation for Data-Intensive Workloads 231

modelling a small and finite space of relational operators might not be adequate
for all MapReduce workloads (e.g. iterative analytics), several studies focused on
more fine-grained analysis of MapReduce job performance analysis as discussed
next.

Procedural Data Intensive Workload. Herodotou et al. [9] propose a self-
tunning system for Hadoop that uses performance models with the goal of work-
load tuning, finding the best configuration settings for a given workload and a
cluster infrastructure. Along these lines, the authors in [20] first build the job
profile from the job past executions or by executing the workload on a smaller
data set using an automated profiling tool. Then, they apply the performance
bounds of completion time of different job phases to predict the job completion
time as a function of the input dataset size and allocated resources.

In terms of runtime prediction of ML algorithms executing on top of MapRe-
duce ecosystem, authors in [15] present an experimental methodology for pre-
dicting the runtime of iterative algorithms written in Apache Giraph. To do so,
they conduct sample runs for capturing the algorithm’s convergence trend and
per-iteration key input features.

Concluding Remarks. In summary, all of the above studies focused on sin-
gle type of workload in particular Hadoop, while in reality big data workloads
are heterogeneous consisting of multiple types of systems (e.g. Apache Hive,
Apache Storm, etc.) and jobs. In contrast, our framework considers heteroge-
neous workloads where different jobs and queries from either batch or stream
data processing systems running side by side. Moreover, existing approaches esti-
mate resource and performance as a single point value which is neither expressive
enough nor does it capture the possible variances due to resource contentions
and interferences from other workloads. In contrast, we use a distribution pre-
diction technique that describes the resource usage as conditional distribution
functions.

3 Overview of the Proposed Framework

The problem of resource requirement estimation for future job in a multi-system
cluster is decomposed in (i) characterizing the similar jobs that have executed in
the past, and (ii) building a prediction model based on the collected statistics.
The workflow in the proposed framework, as shown in Fig. 1, is as follows. Firstly,
workload profiling is conducted in order to collect required information for defin-
ing similar jobs and building resource models. Secondly, a set of job templates
are generated based on the collected features and their corresponding values.
Finally, a distribution ML model is trained and built for each job templates
which is responsible for resource prediction of a new incoming workload.

3.1 Similarity Definition and Template Generation

The routine nature of productions jobs allows us to build the resource model
based on the past execution profiles of the same or similar jobs. Thus, building

232 A. Khoshkbarforoushha et al.

Fig. 1. Comprehensive framework for performance distribution prediction of heteroge-
neous data-intensive workloads.

profiles is the first step. Our framework considers both batch and streaming
workloads, thereby the profiles will be logged as either categorical or time series
files respectively. We next look into what to profile.

Resource usage r is the function of a job j that is executed on input data
(stream) d using configuration parameter settings c:

r = f(j, d, c) (1)

This means that resource modelling requires logging appropriate information
about job, its data flow and configurations along with the resources in use, as
follows:

– Job Profile
• Input Data Stats: such as number of Input Records/Bytes (e.g. in Hive

tables), Average arrival rates (in Stream processing), Data file format,
etc.

• Job Metadata: including Job Name, User who submitted the job, Sub-
mission time, File input path, and so on.

• Runtime Stats: such as number of mappers and reducers per stage (as in
Hive), Response time, Latency/Throughput (in stream processing).

– Resource Profile including CPU time and utilization, Memory usage,
local/network I/O.

Resource Distribution Estimation for Data-Intensive Workloads 233

– Configuration Profile
• Compact2 job configs: such as number of reducers in Hive which can be

set for a specific query using mapred.reduce.tasks property and override
the cluster wide settings.

• Compact cluster configs: such as the number of virtual CPU cores for
each reduce task of a job which is set by mapreduce.reduce.cpu.vcores
property in Apache Yarn [19].

The job profiling is a recurrent process, means that the mentioned profiles
will be generated for every submitted job. However, to avoid any performance
degradation, two design principles need to be realized. First, statistics should
be collected passively, without affecting the performance. For example, in [12]
we used dstat (http://dag.wiee.rs/home-made/dstat/) as a lightweight python-
based tool that collects OS and system statistics non-intrusively. Second, profil-
ing process should be tractable via enabling a feature to on/off profiling process.
This means that every job is profiled unless it is deactivated by the user of the
final prototype.

Upon extracting required information from job history and big data cluster
logs, we now focus on the second challenge, that is characterizing the similar
jobs that have executed in the past. We need to identify a set of classes of jobs
(i.e. job templates) that exhibit a similar resource usage pattern.

Modern big data clusters run a diverse mix of applications and production
workloads [19], thereby characterizing similar jobs is challenging. Although diffi-
cult, we argue that appropriate clustering techniques along with the proper job
execution and big data system configuration profiles lead to formation of fitting
templates.

In our problem domain the clusters (i.e. candidate job templates) need not
be disjoint, and the same job can be associated to several classes. Because
two jobs can be compared in many ways. For example, our initial analy-
sis on synthetic MapReduce workloads of Facebook3 [4] demonstrates that
the (submit time seconds, hdfs input path) is a proper candidate job template
since jobs with the close submission time and same input path have roughly
same map input byte size, shuffle bytes, etc. Yet another template is (user,
submit time seconds, hdfs input path) which is more restricted. Intuitively, a
certain job can be assigned to both of these templates with respect to its char-
acteristics.

Therefore, we use a probabilistic clustering technique, Expectation Maxi-
mization (EM) algorithm [6] which is a soft clustering technique. EM finds
clusters by determining a mixture of Gaussians that fit a given data set. Each
Gaussian has a mean and covariance matrix. The prior probability for each
Gaussian is the fraction of points in the cluster defined by that Gaussian. These
parameters can be either initialized by randomly selecting means of the Gaus-
sians or by using the output of K-means algorithms for the initial centres.
2 Due to the large number of configuration parameters, only a subset of settings which

have substantial impacts on resource and performance measures need to be logged.
3 https://github.com/SWIMProjectUCB/SWIM/wiki.

http://dag.wiee.rs/home-made/dstat/
https://github.com/SWIMProjectUCB/SWIM/wiki

234 A. Khoshkbarforoushha et al.

EM converges on a locally optimal solution by iteratively updating means and
variances.

Once the candidate job templates (i.e. clusters) becomes available, different
validity measures which falls broadly into internal, relative, and external valida-
tions are used to evaluate clustering results. The output of this step is a set of
final job templates through which we are able to identify who belongs to whom.
To do so, for a new job, the template membership probability is calculated.
The higher probability seemingly shows the more the templates match the job’s
characteristics.

3.2 Distribution Prediction

Many workload scheduling studies [5,8] formulate and optimize the policies sub-
ject to fairness, capacity, and priority, conditioned on having the cost of a work-
load a priori in a multidimensional space representing different resources. In
contrast, there exists criticism of the off-line predictions [14] due to the interfer-
ences from other workloads concurrently running and sharing the same resources
at runtime.

As stressed in related work, the state of the art resource and performance
estimation techniques for data intensive workloads only provide the conditional
mean of the point of interest. However, even running the same query on the
same data with constant configuration show different performance and resource
behaviour. In response, we argue that the distribution estimation provides an
expressive description of the target values (e.g. runtime, CPU time) and the
possible variances due to resource contention.

We adopt a novel approach of workload resource distribution prediction using
Mixture Density Networks (MDN) [3]. An MDN fuses a Gaussian mixture model
(GMM) with feed-forward neural networks. In MDN, the distribution of the
outputs t is described by a parametric model whose parameters are determined
by the output of a neural network, which takes x as inputs. Specifically, an MDN
maps a set of input features x to the parameters of a GMM including mixture
weights αi, mean μi, and variance σ2 which in turn produces the full pdf of
an output feature t, conditioned on the input vector. Detailed discussion on the
proposed approach are available in accompanying technical reports [11,12] which
discuss how to predict the resource and performance distribution for batch (Hive
workloads) [11] and stream data processing (i.e. continuous queries) [12]. We will
show the efficacy of distribution as opposed to existing techniques in workload
resource modelling in the next section.

Note that due to the large number of profiles and historical logs, building
a model could be prohibitively expensive, though we already showed [11] that
the training time of the MDN linearly grows with respect to the training data
size. Thus, enabling a maximum history feature as in [18] which indicates the
maximum number of data points to be used for building/refreshing a model is
inevitable.

Once the model is built and trained, it can then be invoked when a similarity
measures assign a new job to one of the existing classes. Since the job templates

Resource Distribution Estimation for Data-Intensive Workloads 235

overlap, a single job may be associated to multiple job templates and their
corresponding ML model. Therefore, the prediction with the smallest confidence
interval will be selected.

4 Initial Results

In this section, we present some compact yet lucid results on how the distribution
prediction look like and how one can utilize them for appropriate policy setting
across a shared big data cluster.

Fig. 2. (a) a sample predicted pdf for CPU Time of an input test from Hive workload.
(b) a sample predicted pdf for CPU Utilization, selected from a test dataset of linear
road benchmark (Color figure online).

Figure 2(a) plots a sample predicted pdf for CPU time for one of the experi-
ments conducted on TPC-H in [11]. The predicted pdf is corresponding to a test
input from Template-7 (Q7) of TPC-H against 100 GB database size. To demon-
strate the whole possible range of CPU time values under Q7, the histograms
for 30 instance queries based on Q7 from test set are shown as well.

As we can see, the predicted distribution adequately estimates the CPU time
distribution in which they show high probability around the target value. More
importantly, they provide information about the whole spectrum of resource
usage. In particular, the predicted pdf shows highly probable CPU time in ranges
(0.25, 0.4) which are consistent with the actual distribution. Note that the pre-
dicted pdf is concerned with one single input, thereby the resulted uncertainty
of pdf for the range (0.6, 0.9) is justifiable.

In a similar manner, Fig. 2(b) depicts a sample predicted pdf and actual CPU
usage in terms of normalized histogram for one of the experiments on linear road
benchmark [2] queries conducted in [12]. As the figure indicates, the estimated
pdf approximates the actual resource usage closely. The predicted pdf provides a
complete description of the statistical properties of the CPU utilization through
which we are not only able to capture the observation point, but also the whole
spectrum of the resource usage. In contrast, a best estimation from the existing
resource estimation techniques [1,7,9,13,20] merely provides the point which is

236 A. Khoshkbarforoushha et al.

visualized by solid red vertical line. Unlike pdfs, with such estimation we are
not able to directly calculate any valuable statistical measures (e.g. variance,
expectation) about the target data. Detailed evaluation of the proposed approach
and its comparison with the state of the art single point estimator can be found
in accompanying technical reports [11,12].

Once the resource usage distribution becomes available, it can then be used
to define appropriate resource pool policy for critical SLA-driven workloads. For
example, Cloudera Manager4 provides the ability to statically allocate resources
using Linux control groups through which one can allocate services (e.g. Hive,
Storm) a percentage of total resources. Static resource pools isolate the services
in the cluster from one another, so that load on one service has a bounded
impact on the others. With distribution based resource estimation, we are able
to determine appropriate percentage of resource shares for a workload before
actual execution, without sacrificing the cluster throughputs and utilization.

5 Conclusions and Future Work

This paper proposed an inclusive framework and related techniques for resource
usage distribution prediction of heterogeneous big data workloads in a cluster. To
this end, our framework uses the clustering techniques along with the statistical
machine learning algorithm to identify similar jobs and build a distribution-
based prediction models. The initial results show that the approach is capable
of estimating resource usage distribution accurately, through which we are able
to define more reliable resource sharing policies aiming at guaranteeing SLA
subject to fairness, capacity, priority, and throughput maximization.

As an ongoing work, we plan to complete and evaluate the template genera-
tion phase using real-world workload traces collected from our private CSIRO big
data cluster and possibly more traces from other companies. Following that, we
also plan to accommodate the distribution predictions in cost-optimized resource
provisioning of big data analytics flows in a datacenter cloud.

References

1. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based
query performance modeling and prediction. In: 2012 IEEE 28th International
Conference on Data Engineering (ICDE), pp. 390–401. IEEE (2012)

2. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E.,
Stonebraker, M., Tibbetts, R.: Linear road: a stream data management bench-
mark. In: Proceedings of the Thirtieth International Conference on Very Large
Data Bases, vol. 30, pp. 480–491. VLDB Endowment (2004)

3. Bishop, C.M.: Mixture density networks (1994)
4. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data

systems: a cross-industry study of mapreduce workloads. VLDB 5(12), 1802–1813
(2012)

4 http://www.cloudera.com/content/cloudera/en/products-and-services/
cloudera-enterprise/cloudera-manager.html.

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html

Resource Distribution Estimation for Data-Intensive Workloads 237

5. Curino, C., Difallah, D.E., Douglas, C., Krishnan, S., Ramakrishnan, R., Rao, S.:
Reservation-based scheduling: if you’re late don’t blame us! In: Proceedings of the
ACM Symposium on Cloud Computing, pp. 1–14. ACM (2014)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39, 1–38 (1977)

7. Ganapathi, A., Chen, Y., Fox, A., Katz, R., Patterson, D.: Statistics-driven work-
load modeling for the cloud. In: 2010 IEEE 26th International Conference on Data
Engineering Workshops (ICDEW), pp. 87–92. IEEE (2010)

8. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: NSDI, vol. 11,
p. 24 (2011)

9. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization
of mapreduce programs. VLDB 4(11), 1111–1122 (2011)

10. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

11. Khoshkbarforoushha, A., Ranjan, R.: Resource and performance distributionpre-
diction for large scale analytics queries. TR-2015-01, ANU Technical report (2015)

12. Khoshkbarforoushha, A., Ranjan, R., Gaire, R., Jayaraman, P.P., Hosking, J.,
Abbasnejad, E.: Resource usage estimation of data stream processing workloads in
datacenter clouds. arXiv preprint arXiv:1501.07020 (2015)

13. Li, J., König, A.C., Narasayya, V., Chaudhuri, S.: Robust estimation of resource
consumption for sql queries using statistical techniques. Proc. VLDB Endowment
5(11), 1555–1566 (2012)

14. Mace, J., Bodik, P., Fonseca, R., Musuvathi, M.: Retro: targeted resource manage-
ment in multi-tenant distributed systems. In: NSDI. USENIX (2015)

15. Popescu, A.D., Balmin, A., Ercegovac, V., Ailamaki, A.: Predict: towards predict-
ing the runtime of large scale iterative analytics. Proc. VLDB Endowment 6(14),
1678–1689 (2013)

16. Popescu, A.D., Ercegovac, V., Balmin, A., Branco, M., Ailamaki, A.: Same queries,
different data: Can we predict runtime performance? In: 2012 IEEE 28th Interna-
tional Conference on Data Engineering Workshops (ICDEW), pp. 275–280. IEEE
(2012)

17. Sarkar, M., Mondal, T., Roy, S., Mukherjee, N.: Resource requirement predic-
tion using clone detection technique. Future Gener. Comput. Syst. 29(4), 936–952
(2013)

18. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS
1998, and JSSPP 1998. LNCS, vol. 1459, pp. 122–142. Springer, Heidelberg (1998)

19. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al.: Apache hadoop yarn: yet another
resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud Com-
puting, p. 5. ACM (2013)

20. Verma, A., Cherkasova, L., Campbell, R.H.: Aria: automatic resource inference and
allocation for mapreduce environments. In: Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing, pp. 235–244. ACM (2011)

http://arxiv.org/abs/1501.07020

Supporting Partial Database Migration
to the Cloud Using Non-intrusive Software

Adaptations: An Experience Report

Caio H. Costa1, Paulo H.M. Maia1(B), Nabor C. Mendonça2,
and Lincoln S. Rocha3

1 State University of Ceará, Fortaleza, Brazil
caiohc@gmail.com, pauloh.maia@uece.br
2 University of Fortaleza, Fortaleza, Brazil

nabor@unifor.br
3 Federal University of Ceará, Fortaleza, Brazil

lincolnrocha@ufc.br

Abstract. This paper reports on an early experience of partially migrat-
ing a legacy systems’ relational database to a NoSQL database in the
Amazon cloud. The migration process involved converting part of the
relational database data to the schema-less format supported by the tar-
get NoSQL database, and adapting the two software applications that
make up the system (developed using Grails and Groovy, respectively)
to transparently access both the relational database on-premise and the
NoSQL database in the cloud. The required software adaptations were
performed using a non-intrusive approach based on aspect-oriented pro-
gramming (in the case of the Grails application) and meta-programming
features (in the case of the Groovy application). This approach allowed
the system to be easily adapted and tested, without the need to change
its source code directly.

Keywords: Cloud · Database migration · Non-intrusive adaptation

1 Introduction

This paper reports on the partial migration of the relational database of a legacy
system to a cloud NoSQL database aiming at solving performance issues origi-
nated from the exponential growth of its bigger and most important table. The
system concerns vehicle monitoring and is composed by two applications: Ras-
troBR, a Grails Web application, and RBRDriver, a Groovy standalone applica-
tion. When this migration was carried out, the first author of this work was the
system analyst of the company that developed the system and was responsible
for performing maintenance tasks in both applications.

The applications share the concept of position in their domains. A position
regards the georeferenced localization of a vehicle monitored by the system. The
data corresponding to the vehicle position is constantly sent to the database
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 238–248, 2016.
DOI: 10.1007/978-3-319-33313-7 18

Supporting Partial Database Migration to the Cloud 239

within intervals of one minute-time. As a consequence, the data volume stored
in the Position table grew very fast and reached, at the time this paper was
being written, approximately 200 GB. Due to this, database search and insert
operations became slower.

The first attempt to mitigate this problem consisted of performing verti-
cal scaling procedures in the database server, i.e., increasing the server’s mem-
ory size. Although that solution attenuated the performance bottleneck, it
was expensive and presented practical limitations to be implemented, since it
demanded frequently memory improvement.

Another alternative considered was to apply a horizontal scaling to the data-
base server, which comprises distributing the data among servers in a cluster.
According to Costa et al. [1], if correctly implemented, that solution should pro-
vide read an write scalability. However, according to [2], relational databases
have not been designed to be horizontally scaled. On the other hand, aggregate-
oriented NoSQL databases can support great data volume through that kind of
scaling. In addition, the resource elasticity feature brought by the cloud com-
puting made the process of setting up a NoSQL server in the cloud easier and
cheaper. Therefore, using a cloud NoSQL database was the most viable alter-
native to tackle the aforementioned problem. The Amazon DynamoDB [3] has
been chosen as the NoSQL database server.

After that, it was necessary to adequate and migrate the Position table’s
data to a collection in the DynamoDB and to adapt the two applications that
compose the system such that both of them could access the new database.
However, the system adaptation should be as less intrusive as possible, since
changing the application code directly could introduce new errors and could
make future software maintenance more difficult. In addition, the programmers
who developed both applications no longer worked for the company, making the
process of adapting the applications more difficult for the new developers. The
solution relied on using aspect-oriented programming (in the case of the Grails
application) and meta-programming features (in the case of the Groovy appli-
cation). Thus, the original code could be preserved without any modifications,
making the tests and migration easier.

The rest of the paper is divided as follows: Sect. 2 discusses the main related
work. Section 3 presents the architecture of the two applications that make up
the system. Section 4 details the data migration from the Position table to a
DynamoDB collection and the adaptions performed in the applications. Finally,
Sect. 5 brings the conclusion, lessons learned, and suggestions of future work.

2 Related Work

Lessons learned during the transition of a big relational database to a hybrid
model, which combines a relational and a NoSQL database, are reported in [5].
The system addressed in that paper is composed of services that collect and
analyze information from Twitter posts related to natural disasters. The per-
sistence layer of that system is a bottleneck due to performance issues of the

240 C.H. Costa et al.

Hibernate framework when dealing with large volumes of data. Like the adap-
tation discussed in this paper, the adaptation described in [5] is preceded by
the adaptation of the data previously stored in the relational database MySql in
order to be inserted in the NoSQL data store. That system was adapted using a
less intrusive approach which consisted of using the Spring’s dependency injec-
tion mechanism to inject concrete implementation in references of abstract types
at runtime. Although the RastroBR application also uses the Spring framework,
its adaptation was performed using aspect-oriented programming in order to
make the modifications more specific and granular.

In [4], a systematic review is conducted in order to identify, classify and com-
pare research focused on plan, execute and validate migration of legacy appli-
cations to the cloud. Through a rigorous process, 23 studies were identified and
classified. The authors classify the migration in: replacement, partial migration,
whole stack migration, and cloudification. According to that classification, the
migration presented here can be seen as a replacement. None of the studies
discussed in the [4] is described as such.

In one of the works listed in [5], Vu and Asar [6] show an analysis of the main
cloud platforms available in the market. A guide based on the lessons learned
is presented and three examples of migration are described like concept proofs.
Differently from our approach, those examples used intrusive adaptations, since
they were not real running applications.

The paper in [7] describes the whole stack migration of the Hackystat tool to
the cloud. The services that compose the tool are deployed separately in Amazon
EC2 instances that use the cloud elasticity feature. The authors conclude that
systems that divide the business logic between the application and the database
layers (by using triggers or other functionalities) are more difficult to be migrated
because the cloud should offer a database that allows the same artifacts to be
executed. This is one of the reasons that imposed a partial migration of the
RBRDriver and RastroBR’s database, since it contains triggers that implement
the business logic.

In [8], Vasconcelos et al. addresses the considerable development effort to
adapt a legacy application to the cloud environment, which may contain many
restrictive constraints, and the fact that the necessary changes in the source code
can insert errors. Vasconcelos et al. suggests an event based non-intrusive app-
roach to adapt the legacy application to the new cloud environment. That article
mentions an example which consists in migrating the database of an application
to a nosql datastore in the cloud, in order to achieve a better scalability.

3 System Architecture

In this section is described the architecture of the two applications that make up
the system: RBRDriver and RastroBR. The former is a Groovy [9] standalone
application whose main goal is to decode the packages sent by the monitored
vehicles containing their current position and to persist that information in the
Position table of a PostgreSQL relational database. In addition, it queries the

Supporting Partial Database Migration to the Cloud 241

Fig. 1. RBRDriver’s interfaces and DAO classes related to insert positions.

same database to extract the commands to be sent to the equipments installed
in the vehicles.

The application uses the Data Access Object (DAO) and Abstract Factory
patterns to access the database’s tables. Particularly, the class PositionCodec,
which is responsible for decoding and persisting the received data, requires to
its DAOFactory attribute a concrete DAO object to query and store the vehicle
positions in the Position table.

The concrete type of the DAO factory, which is the class SqlFactory, is
defined in a configuration file as the standard factory of DAO objects. There-
fore, all DAO objects returned by DaoFactory objects are specific DAOs that
interact with a relational database (see Fig. 1). It is not possible to change this
configuration such that a specific factory implementation of a particular NoSQL
database can be used since this would imply in changing all DAO object family.
This is not an interesting solution since the application, besides storing the vehi-
cle localizations, also executes other functionalities that need the relationships
and integrity offered only by the relational database.

RastroBR is a Grails Web application that allows the users to keep track of
the vehicles routes, maintains the customers, users and vehicles information, and
provides statistics and route reports. Likewise RBRDriver, RastroBR uses both
DAO and Abstract Factory patterns to implement the database access layer. In
RastroBR, the DAO classes uses the Grails Object-Relational Mapping (GORM)
framework [10], which is implemented as an additional layer of abstraction upon
the Spring and Hibernate frameworks.

The reports produced by RastroBR apply business rules on records of the
Position table, having its performance affected by that table size. The report’s
services classes have a DaoFactory attribute, which is used to return specific
DAO classes to access the database’s tables. Due to the Spring’s dependency
injection capacity, the concrete class that implements the DaoFactory interface
can be easily changed using a configuration script. At runtime, the obtained

242 C.H. Costa et al.

Fig. 2. RastroBR’s interfaces and DAO classes related to query positions.

PositionDao reference is a GormPositionDao object that queries the positions
contained in the Position table to create the required reports (see Fig. 2).

4 The Migration and Adaptation Process

In this section, the data migration from the relational to the NoSQL database
and the adaptations performed in the applications are detailed.

4.1 Data Migration

It is possible to partition tables of relational databases to reduce the amount
of data that must be searched when a query is submitted. The table partition-
ing also benefits insert operations because is easier for the Relational Database
Management Systems (RDBMS) to find the correct position for the new data to
be inserted when the volume of data is smaller. Even indexed table can benefit
from the partition of a table because the index space will be smaller too.

But there is a limitation with this approach. In this type of partitioning,
the wholes table, with all its partitions, still reside in the same node. Therefore,
memory, CPU, and network resources are limited. So, even when a relational
database table is partitioned, if the RDBMS is concurrently serving too many
cliens, the limitaion of the aforementioned resources become a bottleneck.

Relational databases were not designed to be horizontally scaled. The features
like referential integrity and ACID (Atomicity, Consistency, Isolation, Durabil-
ity) properties makes difficult to distributed the database data among nodes of
nothing shared system.

NoSQL datastores, since its conception, were designed to distribute its data
among many nodes of a cluster. Consequently, to increase the database scalability
new nodes can be added, as many as necessary to achieve the desire load balance.

Supporting Partial Database Migration to the Cloud 243

The DynamoDB [3], an Amazon NoSQL aggregate-oriented database, has
been chosen as a target migration database. The aggregate concept is quite
appropriate to support horizontal scaling. An aggregate provides information to
the database about what data should be handled as a single indivisible unit.
Therefore, such data should be kept on the same server. However, two different
aggregates, even belonging to the same table, do not need to follow that rule
and can reside in different nodes of a NoSQL database cluster.

The lack of relationship among aggregates, such as those held by foreign keys
in relational databases, makes possible the data partitioning and distribution
across multiple sites. However, due to that data distribution, it is not possible,
in a single query, performing joins between aggregates that belong to different
collections. In the original version of the system, the data persistence was totally
dependent on the relationship among entities provided by the relational model.

Fig. 3. Adapting the data of Position table to a NoSQL collection.

Despite of its importance, the Position table stores only not editable his-
torical data. This particularity made possible the adaptation of its data to a
NoSQL collection. The Position table has foreign keys which reference records
in others tables as can be seen in Fig. 3. The data adequacy was carried out by
joining in a single aggregate each record of the Position table and the necessary
fields from records of other tables referenced by the its foreign keys1. Thus, the
aggregates of the resulting collection provide, in a single query, all necessary data
to produce the system reports. Figure 3 illustrates, in a simplified way2, records

1 It is out of the scope of this paper to address the consequences of the data normal-
ization loss.

2 The other table fields were left out since they are irrelevant to understand the solu-
tion.

244 C.H. Costa et al.

from the Position table referencing records of other tables, and how their data
have been adapted to form a new collection.

4.2 System Adaptation

The Spring Aspect Oriented Programming (AOP)3 framework has been cho-
sen as the aspect-oriented programming tool to support the adaptation of the
RastroBR Web application because the Grails framework uses the Spring frame-
work to implement many of its functionalities. In Spring AOP, the aspects are
implemented as ordinary Java classes. An XML configuration file is employed to
describe which classes implement aspects. In addition, inside each class, anno-
tations are used to specify join points and advices.

In RastroBR, a DaoFactory implementation is injected in the dependent
classes using the Spring dependency injection mechanism. Hence, when a depen-
dent class requests a DAO instance, it is obtained from the same DAO “family”
(i.e., instances that access the same relational database). The adopted strategy
consists of creating an aspect containing an around advice that intercepts the
getPositionDao method of the DaoFactory interface. This advice returns an
appropriate DAO instance to access the DynamoDB, instead of an instance that
accesses a relational database like the others DAO implementations.

In order to change the application’s original behavior, an aspect was imple-
mented to intercept method calls originated only from service classes that are
dependent from the Position table. This aspect, named DaoFactoryAspect,
contains an around advice that intercepts the pointcut corresponding to the
getPositionDao invocation. Thus, the advice code changes the normal system
behavior returning an instance of the PositionDao specific to deal with the
Position collection in the DynamoBD rather than an instance designed to access
a relational database. Figure 4 shows the aspect code snippet containing such
advise. Line 13 of Fig. 4 shows the pointcut intercepting the getPositionDao
invocation, while line 15 shows the instantiation and returning of a specific DAO
implementation for DynamoBD.

Fig. 4. Advice returning a DynamoDB DAO rather than a relational DAO.

Considering the DaoFactoryAspect (Fig. 4) implementation in the system,
a ReportService object calls the method getPositionDao of the DaoFactory

3 http://projects.spring.io/spring-framework/.

http://projects.spring.io/spring-framework/

Supporting Partial Database Migration to the Cloud 245

object to obtain an instance of PositionDao suitable to access the Position
table. In that moment, the DaoFactoryAspect advice intercepts that call and,
instead of returning an expected PositionDao instance (i.e., instance that
access the relational database), returns a DynamoDbPositionDao instance, which
also implements the PositionDao interface. This process is depicted by the
Sequence Diagram in Fig. 5. Therefore, no incompatibility is introduced and
the ReportService code did not need to be changed.

Fig. 5. Sequence diagram illustrating the behaviour of the aspect’s around advice.

In order to make the aspect intercepting the pointcuts specified in its advices,
it is necessary to indicate to Spring AOP which classes are aspects. This is carried
out by the bean definition in the application Spring beans configuration script.

Similarly to the solution for RastroBR, an aspect was implemented in RBR-
Driver, but now using the AspectJ framework [11]. It contained an around advice
to catch the calls to the method getPositionDao of the DaoFactory interface.
However, the advice was executed several times rather than only once for each
method call. This was caused by the Groovy’s dynamic functionalities that did
not allow the correct working of the aspect.

A possible solution for that problem was pointed out in [12]. In a Groovy
application, for each class loaded in memory there exists a correspondent meta-
class that has the same properties and method implementations of the class that
it is related to. According to the Groovy Meta Object protocol (MOP), a method
call to an object is redirected to a metaclass instance of that object rather than
to the method of the object itself.

An illustration of that process can be seen in Fig. 6. When an instance of the
GroovySource class calls, through its "caller" method, the "called" method
in an instance of the GroovyTarget class, the MOP layer redirects that method
call to the invokeMethod method of the target metaclass. The invokeMethod
calls the method which has the same signature of the originally called method.

Groovy also allows to replace a metaclass at runtime, thus dynamically chang-
ing the behavior of all instances of its corresponding class without modifying its

246 C.H. Costa et al.

Fig. 6. Example of the Groovy metaobject protocol.

source code. One way to do it is to put the surrogate metaclass, adequately
named, in a specific package, whose name and position in the package hierarchy
depends on the class that will have its metaclass replaced.

Hence, considering the SqlPositionDao class, responsible for storing the
vehicle positions in the Position table in the RBRDriver application, when
its save method is called, what in fact happens is a call to the method
invokeMethod of its metaclass, that calls the metaclass save method. There-
fore, it was necessary to replace the standard metaclass provided by the Groovy
compiler with a new one that accesses the DynamoDB. This was carried out by

Fig. 7. Replacement of the standard metaclass by an appropriate metaclass for access-
ing the DynamoDB.

Supporting Partial Database Migration to the Cloud 247

following the aforementioned steps: the SqlPositionDaoMetaClass metaclass
was created and placed in the appropriate package; that surrogate class
has a save method with the same signature of the save method from the
SqlPositionDao, as illustrated by Fig. 7. But the new metaclass has a different
implementation which used an instance of the DynamoDbPositionDao class to
store the vehicle positions in the DynamoDB datastore. Therefore, that strategy
simulated an around advice in an AOP language.

5 Conclusion

Aspect-oriented programming turned out to be a valid approach for non-
intrusively adapting the RastroBR application. Although AOP was used to deal
with a common crosscutting concern (persistence), it was not applied to inter-
cept the calls to all tables of the original database, but rather to only one that
had an expressive size and that was continuously growing.

It is difficult to adapt an application such that its relational database is com-
pletely migrated to a NoSQL database. According to [2], when an application
uses a NoSQL database, its domain should be originally modeled taking into
account the particular characteristics of that database, like the fact that NoSQL
databases do not have many of the resources regarding relationship among enti-
ties and integrity rules available as in its relational counterparts. However, as
shown in this experience report, it is possible to partially migrate the data that
does not depends on the referential integrity feature.

The Groovy metaclasses have been used in a very similar way of aspects in
order to achieve the objective of modifying an application non-intrusively. The
Groovy’s dynamic functionalities can be used as aspects in Groovy applications,
thus avoiding adding an extra framework to the application code.

This work presented an experience report on partially migrating a relational
database accessed by two legacy applications to a cloud NoSQL database via
non-intrusive adaptations. For the Grails Web application, the Aspect-oriented
Programming was the adopted solution, while for the Groovy application, the
own Groovy metaclasses were used to promote the application adaptation. As a
result, the two applications ended up being able to access both the relational or
the NoSQL database, depending on whether the adaptions are active.

As future work, we plan to apply the techniques used in the migration
described in this report to other NoSQL database servers and to carry out a
comparison among them concerning performance and implementation facility,
for instance. Other interesting work consists of using only the Groovy’s features
to catch the application’s pointcuts and compare that approach to the current
one reported here.

248 C.H. Costa et al.

References

1. Costa, C.H., Filho, J., Maia, P.H.M., Oliveira, F.: Sharding by Hash partitioning.
A database scalability pattern to achieve evenly sharded database clusters. In:
International Conference on Enterprise Information Systems (2015)

2. Sadalage, P., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley, Reading (2013)

3. Sivasubramanian, S.: Amazon dynamoDB: a seamlessly scalable non-relational
database service. In: ACM SIGMOD International Conference on Management
of Data (2012)

4. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1, 142–157 (2013)

5. Schram, A., Anderson, K.M.: MySQL to NoSQL: data modeling challenges in
supporting scalability. In: 3rd Annual Conference on Systems, Programming, and
Applications: Software for Humanity (2012)

6. Vu, Q.H., Asal, R.: Legacy application migration to the cloud: practicability and
methodology. In: IEEE Eighth World Congress on Services (2012)

7. Chauhan, M.A., Babar, M.A.: Migrating service-oriented system to cloud com-
puting: an experience report. In: IEEE 4th International Conference on Cloud
Computing (2011)

8. Vasconcelos, M., Mendonça, N.C., Maia, P.H.M.: Cloud detours: a non-intrusive
approach for automatic software adaptation to the cloud. In: Dustdar, S., et al.
(eds.) ESOCC 2015. LNCS, vol. 9306, pp. 181–195. Springer, Heidelberg (2015)

9. Knig, D., Laforge, G., King, P., Champeau, C., D’Arcy, H., Pragt, E., Skeet, J.:
Groovy in Action. Manning Publications Co., Greenwich (2007)

10. Fischer, R.: Grails Persistence with GORM and GSQL. Apress, Berkeley (2009)
11. Kiselev, I.: Aspect-Oriented Programming with AspectJ. Sams, Indianapolis (2012)
12. McClean, J.: Painless AOP with Groovy. InfoQ, October 2006. http://www.infoq.

com/articles/aop-with-groovy. Accessed on 28 March 2016

http://www.infoq.com/articles/aop-with-groovy
http://www.infoq.com/articles/aop-with-groovy

Cloud Adoption by Fine-Grained Resource
Adaptation: Price Determination

of Diagonally Scalable IaaS

Kevin Laubis(B), Viliam Simko, and Alexander Schuller

FZI Research Center for Information Technology,
Haid-und-Neu-Straße 10–14, 76131 Karlsruhe, Germany

{laubis,simko,schuller}@fzi.de

Abstract. Cloud computing is a suitable solution for addressing the
uncertainty of resource demand by allowing dynamic resource adjust-
ment. However, most IaaS cloud providers offer their services with a lim-
ited granularity at rather slow scaling speeds and flat pricing schemes.
Diagonal scaling techniques can offer a more adaptive and fine-grained
service with a likewise granular pricing model. Before offering such an
adaptive service, cloud providers need a comparison between horizon-
tal and diagonal scaling models to estimate how resource prices can be
increased while still staying competitive. In this paper we examine the
resource reduction potential of diagonal scaling in comparison to conven-
tional horizontal approaches. Given an empirical load pattern of a web
application provider we find a CPU allocation reduction potential of
8.05 % compared to the conventional service. Given a more fine-grained
pricing model, we find an additional revenue potential for diagonal scal-
ing of 9.01 % when following a competitor based pricing regime.

Keywords: Cloud computing · IaaS · Scaling · Adoption · Pricing

1 Introduction and Background

Cloud computing is an omnipresent concept that is still about to reach its envi-
sioned potential in the business domain [16,20]. Flexible resource adaptation to
fluctuating computing demand is one of the main benefits of cloud usage and
likewise a main reason for Infrastructure as a Service (IaaS) cloud adoption [1,3].

Resource scaling in cloud computing can be performed horizontally, vertically
or diagonally. The former, also currently the most common approach [4,23],
adjusts the resource capacity by adding or removing whole virtual machines
(VMs) to or from the deployment. Vertical scaling, instead, adjusts the capac-
ity within a VM [6]. Obviously, vertical scaling can be more fine-grained and

This work has been developed in the project CLoUd Services Scalability (CLUSS)
that is partly funded by the German ministry of education and research (ref. num.:
01IS13013A-D).

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 249–257, 2016.
DOI: 10.1007/978-3-319-33313-7 19

250 K. Laubis et al.

usually performs much faster than horizontal scaling [18,25]. However, vertical
scaling has severe economic and physical limitations compared to its horizontal
counterpart. Diagonal scaling, as a combination of both approaches, mitigates
the disadvantages of only one scaling dimension [9]. It is capable of increasing
the adaptability of IaaS deployments and therefore has the potential to reduce
resource allocation under fluctuating loads.

The flexibility of cloud computing requires a fine-grained pricing model. This
is especially true, since usage-based pricing is a further important determinant
of cloud adoption beside scalability [12,17]. Nevertheless, current usage-based
pricing models often have shortcomings in terms of granularity because of their
minimum contract duration (e. g. one hour). That makes them quite coarse-
granular and in fact nearly flat priced models if shorter time horizons are relevant
for the application. Combining diagonal scaling techniques with a real usage-
based pricing increases the benefits of IaaS clouds and further fosters cloud
adoption. Since there is uncertainty as to which amount the price of such a
service could be set, this work presents an approach and preliminary results of
determining the upper price limit an IaaS provider could charge for a fine-grained
diagonally scaling service.

Following a similar path, Jin et al. describe how the maximum user-accepted
price and the optimal billing cycle for a given cloud pricing scheme can be deter-
mined [14]. However the approach does not consider different scaling techniques
like horizontal and vertical scaling. In [5] a vertical scaling architecture is pro-
posed for overcoming the limitations of coarse-granular pricing. However, no
considerations were given to a suitable pricing scheme in connection with this
architecture.

The main contribution of this paper is thus the assessment of potential pricing
schemes for IaaS providers that implement fine-grained scaling techniques.

The remainder of the paper is structured as follows: in Sect. 2 we intro-
duce the basic scaling model. Section 3 presents the fine-grained pricing model.
Thereafter, we evaluate how the scaling model is used to determine the resource
reduction potential of diagonal scaling and its price limits in Sect. 4. Section 5
discusses limitations and Sect. 6 concludes on the implications of the results.

2 Scaling Model

To compare horizontal and diagonal scaling alternatives we used a generic scaling
model based on threshold-based auto-scaling. The model drives the allocation of
VMs and associated virtual CPUs in accordance with the number of requests for
a web application. Besides the threshold-based scaling technique, as presented
in [9], there are other alternatives based on: reinforcement learning [24], queuing
theory [23], control theory [13,15] or time-series analysis [6,10]. Since threshold-
based scaling is very popular, as pointed out in [10], and supported by most
main IaaS providers such as Amazon Web Services (AWS)1 or Rackspace2, we
1 http://aws.amazon.com/autoscaling, last visit 23.06.2015.
2 http://rackspace.com/cloud/auto-scale, last visit 23.06.2015.

http://aws.amazon.com/autoscaling
http://rackspace.com/cloud/auto-scale

Cloud Adoption by Fine-Grained Resource Adaptation 251

Table 1. Overview of scaling parameters and variables

Parameter Unit Description

φ req · s−1 · cpu−1 Served number of requests per CPU per second

q % Common QoS criterion

wh s Decision time window for horizontal scaling

wv s Decision time window for vertical scaling

θh out % CPU utilization threshold for horizontal scale out

θh in % CPU utilization threshold for horizontal scale in

θv up % CPU utilization threshold for vertical scale up

θv down % CPU utilization threshold for vertical scale down

ncpu max cpu Maximum number of CPUs per VM

dprov s Provision duration for scaling up

dcont s Minimum contract period

Variable Unit Description

nreq req · s−1 Number of incoming requests per second

ncpu dem cpu Number of CPUs required to serve requests

ncpu alloc cpu Number of actually allocated CPUs

nvm alloc vm Number of allocated VMs

u % CPU utilization

also used this approach for our study. The parameters and variables considered
are shown in Table 1.

We considered the CPU demand of a service for making threshold-based scal-
ing decisions [11]. We assume an almost linear relation (φ) between the number
of requests in a defined period of time (nreq) and the number of CPUs (ncpu dem)
required for serving them within a given response time [21]. By applying this
constant performance, we are able to calculate the CPU demand at all times
of the investigated pattern by the formula: ncpu dem(t) = �nreq(t) · 1

φ�. We con-
sider CPU as the main determinant of VM capacity, thus other aspects such as
memory are neglected in this first step.

For simulating the actual resource allocation (ncpu alloc and nvm alloc) for a
previously determined CPU demand pattern, the scaling model provides con-
tinuous monitoring of the CPU utilization (u). A fully utilized CPU is able to
serve exactly the amount of requests determined by φ while meeting the defined
response time for each request. The average CPU utilization of a sliding moni-
toring window (wh and wv) serves as criterion for the scaling thresholds (θh out,
θh in, θv up and θv down) and is calculated each second. In both techniques, scal-
ing steps always involve a single CPU, i.e. for vertical scenario the unit is a single
CPU, while for horizontal scenario the unit is a VM with a single CPU. For dis-
tinguishing between horizontal and vertical scaling steps within the diagonal
scaling scenario, a maximum number of CPUs per VM (ncpu max) is taken into

252 K. Laubis et al.

account. As mentioned in Sect. 1, the resource reduction potential of diagonal
scaling techniques is mainly achieved by shorter provisioning durations (dprov)
and can further be increased by shorter contract periods (dcont), reflected by the
corresponding parameters. To make a comparison, we chose a common quality
of service (QoS) criterion q. Thus, both scenarios have to serve requests within
a given response time in a defined fraction of time [19].

3 Pricing Model

In order to define a pricing model based on diagonal scaling techniques that is
more usage-based than current IaaS solutions the pricing curve has to be fitted
better to the resource consumption curve. Thus, an even closer alignment to the
clients’ needs can be achieved by avoiding the minimum contract duration which
is still common by most of the IaaS providers such as AWS3 or Rackspace4. For
achieving a sufficient granularity in terms of time, a pricing model with a res-
olution of one second and no initial fees has been chosen [2]. Furthermore, for
mapping the granularity of diagonal scaling techniques as accurately as possible
to the pricing model, the technical scaling units are reflected in the pricing model
directly. In case of the proposed scaling model in Sect. 2, scaling units are single
CPUs. Since a bundled pricing model was chosen for acceptance and simplicity
reasons as discussed in [8], each bundle represents a single CPU. The uniform
bundles consist of further corresponding resources such as memory, storage, net-
work, etc. – similar to AWS EC2 instances. To the best authors’ knowledge at the
time of writing this paper, there is no IaaS provider offering a diagonal scalable
and simultaneously real usage-based priced service as described.

4 Evaluation

In this section we first describe how we determined the resource reduction poten-
tial of a threshold-based diagonally scalable IaaS compared to a common hor-
izontally scalable IaaS by simulation. Based on this comparison, we show the
preliminary results of a competitive price determination for a fine-grained pric-
ing model. The overall approach is outlined in Fig. 1.

Table 2 shows the parameter values for the reduction determination process.
The evaluation was performed by comparing the scenarios, given an eleven-

day load pattern (with a one-day heat-up phase) of gloveler5 – a German web
application provider for offering and booking private accommodation. The load
pattern is shown in Fig. 1.

We took account of the application tier exclusively [7]. The value of φ reflects
the performance of an AWS EC2 m3 general purpose instance mapped to the
requests of the load pattern. The mapping is based on the CPU performance

3 http://aws.amazon.com/ec2/pricing/, last visit 23.06.2015.
4 http://rackspace.com/cloud/servers/, last visit 23.06.2015.
5 http://gloveler.de/, last visit 23.06.2015.

http://aws.amazon.com/ec2/pricing/
http://rackspace.com/cloud/servers/
http://gloveler.de/

Cloud Adoption by Fine-Grained Resource Adaptation 253

Fig. 1. Outline of our approach

Table 2. Values of scaling parameters used for simulation

Parameter Value horizontal Value diagonal

φ 6.8152 req · s−1 · cpu−1 6.8152 req · ıs−1 · cpu−1

q .98 .98

ncpu max 1 cpu 8 cpu

dcont 1 min, 1 h 1 s

Horizontal Vertical

w 600 s 600 s 30 s

dprov 97 s 97 s 1 s

determination6 of the actual web application servers of gloveler by matching
the average CPU utilization per day with the corresponding average CPU load.
The CPU performance was chosen for the calculation of the resource demand.
6 http://cpubenchmark.net/compare.php?cmp[]=834&cmp[]=896&cmp[]=1220, last

visit 23.06.2015.

http://cpubenchmark.net/compare.php?cmp[]=834&cmp[]=896&cmp[]=1220

254 K. Laubis et al.

Following an example of the AWS Auto Scaling Groups documentation7 the
monitoring window w is 600 s for horizontal scaling and 30 s for vertical scaling.
For staying comparable in terms of scaling units the maximum number of CPUs
per VM nmax cpu for horizontal scaling is one, which is possible with AWS EC2.
For diagonal scaling the maximum number is equal to the biggest AWS EC2 m3
general purpose instances, which currently is eight instances.8 The provisioning
duration dprov for horizontal scaling was determined according to an AWS EC2
Linux VM [18] and according to [25] for diagonal scaling. The minimum contract
duration dcont for the horizontal scenario was determined according to the con-
tract duration of AWS EC2 on-demand instances and for a more conservative
calculation a duration of one minute was chosen as well. For the diagonal scaling
scenario we defined the minimum contract duration of one second since vertical
scaling would allow this.

For both scenarios and for each day of the load pattern several simulation
runs were performed for different thresholds θ of 5 %, 10 %, 15 %, . . . , 95 %. The
thereby determined resource allocations and QoS were used for selecting the
threshold combinations with the lowest resource consumption while meeting the
common QoS criterion q of 98 % for each day [19]. Thus, a fair comparison of
both scenarios was possible.

Fig. 2. Resource reduction and potential price increase of diagonal scaling for a mini-
mum contract period (dcont) of 60 and 3600 s

Figure 2a shows the average CPU allocation relative to the demand of all
ten days and for both scenarios. A mean CPU reduction of 8.05 % was achieved
by the diagonal scenario as shown in Fig. 2b. For determining how much an
IaaS provider could charge for a single CPU bundle as described in Sect. 3 we
calculated a competitive price based on the resource reduction.

A mean price increase potential of 9.01 % per CPU bundle was calculated as
shown in Fig. 2c. An IaaS provider of a fine-grained service as described in this
paper could charge for a single CPU bundle up to 0.0861 $/h while still being
competitive to equivalent AWS EC2 m3 on-demand instances which are priced

7 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
example-templates-autoscaling.html, last visit 23.06.2015.

8 http://aws.amazon.com/ec2/instance-types/, last visit 23.06.2015.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/example-templates-autoscaling.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/example-templates-autoscaling.html
http://aws.amazon.com/ec2/instance-types/

Cloud Adoption by Fine-Grained Resource Adaptation 255

with 0.0790 $/h. Assuming a minimum contract duration of one minute for the
horizontal scenario a reduction of still 4.16 % was achieved and a price increase
potential of 4.46 % was possible.

Fig. 3. Allocation and insufficiently served requests of gloveler.de from 24.07.2014 [22]

Figure 3a shows the one-day load pattern of the 24.07.2014 for exemplary
reasons. Figure 3b and c show the corresponding resource allocation and the
number of requests that were not served in time for both scenarios by using
the determined thresholds for this day. Comparing the allocations, a quicker
response to load fluctuation for the diagonal scenario is indicated. This increase
of elasticity leads to a notable reduction in the violation of the QoS criterion
between 5 and 7 a.m.

5 Discussion

We have presented a scenario-independent generic scaling model and a like-
wise fine-grained pricing model. Using our exemplary real life load pattern, we
demonstrated a substantial resource reduction potential. That allows the cloud
provider to increase prices while staying competitive. Since the research result-
ing in the described approach and findings is still in progress, our current work
has some limitations. So far, we have covered a rather short load pattern within
a single application disregarding long term trends. In addition, we currently
neglect different types of requests by applying an averaged load per request to
the simulation which can be addressed in further work.

256 K. Laubis et al.

6 Conclusion and Outlook

In this paper we build on an automated diagonal resource scaling procedure and
propose an appropriate fine-grained CPU-bundled pricing regime for this case.
Such a fine-grained service aims at main determinants of cloud adoption, i.e.
adaptation and usage-based pricing. Based on an exemplary real life load pattern
of a German web application provider, we compared the resource consumption
of a common horizontal scaling approach with a diagonal one. While providing
a higher granularity for possible scaling steps, savings in resource consumption
of 8.05 % were achieved. With respect to the competitive price range for the
CPU bundle price we see that in the analyzed load pattern the upper price limit
is 0.0861 $/h. Compared to an analogous AWS EC2 instance, this means an
average increase of 9.01 %.

Next steps in our research will be to consider more uncertainty in the load
patterns, and to analyze the impact of the load variations over longer time hori-
zons with the goal of determining a valid corridor for the upper price limit.
Further future work can go into various directions. Work with a focus on an
improved economic assessment for longer time frames could consider the upfront
investment costs of different alternatives. This is also likely to better show the
advantages of dynamically and fine-grained scalable resources. Finally, the pric-
ing regime could be evaluated from the perspective of the cloud provider, which
in turn has to determine the cost-covering lower price limit.

References

1. Andrade, P., et al.: Improving business by migrating applications to the cloud using
cloudstep. In: Proceedings of WAINA 2015, pp. 77–82, March 2015

2. Berndt, P., Maier, A.: Towards sustainable IaaS pricing. In: Altmann, J., Van-
mechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 173–184.
Springer, Heidelberg (2013)

3. Chebrolu, S.B.: Assessing the relationships among cloud adoption, strategic align-
ment and information technology effectiveness. JITM 22(2), 13–29 (2011)

4. Chieu, T., Mohindra, A., Karve, A., Segal, A.: Dynamic scaling of web applications
in a virtualized cloud computing environment. In: Proceedings of the ICEBE 2009,
pp. 281–286, October 2009

5. Dawoud, W., Takouna, I., Meinel, C.: Elastic virtual machine for fine-grained cloud
resource provisioning. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom
2011, Part I. CCIS, vol. 269, pp. 11–25. Springer, Heidelberg (2012)

6. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: automatic application
scaling in enterprise clouds. In: Proceedings of the IEEE CLOUD 2012, pp. 221–228
(2012)

7. Eckerson, W.W.: Three tier client/server architectures: achieving scalability, per-
formance, and efficiency in client/server applications. Open Inf. Syst. 3(20), 46–50
(1995)

8. El Kihal, S., Schlereth, C., Skiera, B.: Price comparison for infrastructure-as-a-
service. In: Proceedings of the ECIS 2012, June 2015, pp. 1–12 (2012)

9. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for cloud
applications. In: Proceedings of IEEE/ACM CCGrid 2014, pp. 644–651 (2012)

Cloud Adoption by Fine-Grained Resource Adaptation 257

10. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling techniques for
elastic data stream processing. In: Proceedings of ICDE 2014, pp. 296–302 (2014)

11. Iqbal, W., et al.: Adaptive resource provisioning for read intensive multi-tier appli-
cations in the cloud. Future Gener. Comput. Syst. 27, 871–879 (2011)

12. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

13. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-
based software. In: Proceedings of SEAMS 2014, pp. 95–104. ACM, New York,
NY, USA (2014)

14. Jin, H., Wang, X., Wu, S., Di, S., Shi, X.: Towards optimized fine-grained pricing
of IaaS cloud platform. IEEE Trans. Cloud Comput. 3(4), 1 (2014)

15. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured
CPU resource provisioning for virtualized servers using kalman filters. In:
Proceedings of the ICAC 2009, pp. 117–126. ACM, New York (2009)

16. Leavitt, N.: Is cloud computing really ready for prime time? Computer 42(1),
15–20 (2009)

17. Lin, G., Fu, D., Zhu, J., Dasmalchi, G.: Cloud computing: IT as a service. IT Prof.
11(2), 10–13 (2009)

18. Mao, M., Humphrey, M.: A performance study on the VM startup time in the
cloud. In: Proceedings of the IEEE CLOUD 2012, pp. 423–430 (2012)

19. Menascé, D.A.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75
(2002)

20. Raza, M.H., Adenola, A.F., Nafarieh, A., Robertson, W.: The slow adoption of
cloud computing and IT workforce. Procedia Comput. Sci. 52, 1114–1119 (2015)

21. Sedaghat, M., Hernandez-Rodriguez, F., Elmroth, E.: A virtual machine re-packing
approach to the horizontal vs. vertical elasticity trade-off for cloud autoscaling. In:
CAC, p. 1 (2013)

22. Sperber, A.P.: Diagonale Skalierung verteilter Webanwendungen am Beispiel von
gloveler. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe (2014)

23. Urgaonkar, B., et al.: An analytical model for multi-tier internet services and its
applications. SIGMETRICS Perform. Eval. Rev. 33(1), 291–302 (2005)

24. Vasić, N., Novaković, D., Miučin, S., Kostić, D., Bianchini, R.: Dejavu: accelerating
resource allocation in virtualized environments. In: Proceedings of the ASPLOS
2012, pp. 423–436 (2012)

25. Yazdanov, L., Fetzer, C.: Vertical scaling for prioritized VMs provisioning. In:
Proceedings of the CGC 2012, pp. 118–125. IEEE Computer Society, Washington,
DC (2012)

IDEA Workshop Papers

Preface of IDEA 2015

Digitization is the use of digital technologies for creating innovative digital business
models and transforming existing business models and processes. Information is
captured and processed without human intervention using digital means. Digitization
creates profound changes in the economy and society. Digitization has both business
and technological perspectives. Digital business models and processes are essential for
many companies to achieve their strategic goals.

Digitization impacts the product, customer, and the value-creation perspective.
Digitized products are dynamic; their functionality can be extended on the fly by using
external services. They are capable of reflecting on their own status and thus morph the
selling of physical assets to services. Digitization changes the relationships with the
customer significantly. Personal interaction is replaced by self-service and proactive
action. The customer interacts with the enterprise using a multitude of implicit touch
points provided by the Internet of Things. Digitization fosters new models of value
creation such as service-dominant logic. Value is also created by platform and network
effects.

The goal of the workshop was to identify challenges from digitization for enter-
prises and organizations and to advance digital enterprise engineering and architecture
to cope with these challenges. The workshop allowed us to identify and develop
concepts and methods that assist the engineering and the management of digital
enterprise architectures and the software systems supporting them.

To achieve the goals of the workshop, the following themes of research were
pursued:

• Methods for the design and management of digital enterprises
• Alignment of the enterprise goals and strategies with the digital enterprise

architecture
• Digital strategy and governance
• Architectural patterns for value co-creation, dynamic and servitized products
• Service in digital enterprises
• Business process management in digital enterprises
• Advanced analytics for the support of digital enterprises
• Self-service and automation in digital enterprises
• Customer journeys and relationship management in digital enterprises
• Internet of Things and digital enterprises
• Impact of digitization on society and economy
• Security in digital architectures

In the first paper, “Digitization – Perspectives for Conceptualization,” Rainer
Schmidt, Alfred Zimmermann, Selmin Nurcan, Michael Möhring, Florian Bär, and
Barbara Keller develop a framework to conceptualize digitization by introducing
several perspectives.

Maurizio Giacobbe, Maria Fazio, Antonio Celesti, Tindara Abbate, and Massimo
Villari in their paper – “A Scientometric Analysis of Cloud Computing and QoE
Literature to Design a Cloud Platform of Experience for Digital Business” – provide
some guidelines to digital business companies for addressing the issues related to QoE
that have to be taken into account in order to maximize their business.

In “Enabling Digital Transformation Using Secure Decisions as a Service,”
Hans-Joachim Hof, Rainer Schmidt, and Lars Brehm introduce a new, secure, and
layered architecture that separates the process from the decision model in order to react
quickly to changed requirements. It provides flexibility by separating three aspects of
decision-making: foundations, methods, and data.

Alexander Smirnov and Andrew Ponomarev collect and analyze all the require-
ments for crowd computing frameworks that drove the development of these frame-
works recently in the paper titled “Exploring Requirements for Multipurpose Crowd
Computing Framework.”

In the paper “Adaptive Enterprise Architecture for Digital Transformation,” Alfred
Zimmermann, Rainer Schmidt, Dierk Jugel, and Michael Möhring investigate mech-
anisms for flexible adaptation and evolution for the next digital enterprise architecture
systems in the context of digital transformation. The aim is to support flexibility and
agile transformation for both business and related enterprise systems through adapta-
tion and dynamical evolution of digital enterprise architectures.

We wish to thank all the people who submitted papers to IDEA 2015 for having
shared their work with us, as well as the members of the IDEA 2015 Program Com-
mittee, who made a remarkable effort in reviewing the submissions. We also thank the
organizers of ESOCC 2015 for their help with the organization of the event.

Selmin Nurcan
Rainer Schmidt

Alfred Zimmermann

Preface of IDEA 2015 261

Organization

Program Committee

Said Assar Institut Mines-Telecom, France
Lars Brehm Munich University of Applied Science, Germany
Eman El-Sheikh University of West Florida, USA
Peter Mandl University of Applied Sciences Munich, Germany
Michael Möhring Aalen University, Germany
Selmin Nurcan Université de Paris 1 Panthéon – Sorbonne, France
Gunther Piller University of Applied Sciences Mainz, Germany
Kurt Sandkuhl The University of Rostock, Germany
Rainer Schmidt Munich University of Applied Sciences, Germany
Samira Si-Said Cherfi CEDRIC – Conservatoire National des Arts et

Métiers, France
Alfred Zimmermann Reutlingen University, Germany

Digitization – Perspectives for Conceptualization

Rainer Schmidt1(✉), Alfred Zimmermann2, Michael Möhring1, Selmin Nurcan4,
Barbara Keller3, and Florian Bär1

1 Munich University of Applied Sciences, Lothstrasse 64, 80335 Munich, Germany
Rainer.Schmidt@hm.edu

2 Reutlingen University, Reutlingen, Germany
3 Aalen University of Applied Sciences, Munich, Germany

4 University Paris 1 Panthéon-Sorbonne, Paris, France

Abstract. Digitization is more than using digital technologies to transfer data
and perform computations and tasks. Digitization embraces disruptive effects of
digital technologies on economy and society. To capture these effects, two
perspectives are introduced, the product and the value-creation perspective. In
the product perspective, digitization enables the transition from material, static
products to interactive and configurable services. In the value-creation perspec‐
tive, digitization facilitates the transition from centralized, isolated models of
value creation, to bidirectional, co-creation oriented approaches of value creation.

Keywords: Digitization · Value co-creation · Digital business processes · Digital
enterprise

1 Introduction

Digitization has a disruptive impact both on markets and the world of work and social
structures [1]. The impact of digitization on the economy can be observed by the emer‐
gence of new companies [2] and the demise of established companies [3]. Therefore, it
does not surprise that digitization is one of the most intensively discussed concepts
today. Digitization is considered as an integral concept of modern management [4] and
in the center of public interest [5]. Digitization is also top-priority topic of IT-Manage‐
ment [6] and business process management [7]. Numerous studies from renowned
organizations and companies develop strategies in order to drive digitization [8, 9].
Studies predict enormous benefits through the introduction of digitization [8, 10]. An
economy shaped by digitization, a digital economy, has already been sketched in [11].
Furthermore, digitization shall improve business processes in many industry sectors
outside the information technology like the manufacturing industry [12]. Innovative
approaches using digital technologies can also be found in areas such as tourism [13].

There are many definitions that consider digitization as a primarily technical term
[14]. Technologies often associated with digitization [15] are: cloud computing [16],
big data [17] and [18] advanced analytics, social software [19], and the Internet of things
[20]. Also some new technologies are associated with digitization. For example, deep
learning [21] allows computing to be applied to activities that were considered as

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 263–275, 2016.
DOI: 10.1007/978-3-319-33313-7_20

exclusive to human beings [22]. Digitization is also tightly connected to the flexible
execution of business processes [23]. Some authors consider digitization as caused by
the exponential growth of computing, storage and networks that have surpassed certain
limits [22].

Despite the widespread use of the term digitization there are only few definitions
that try to capture the nature of digitization beyond the technological level. Nevertheless,
the first approaches to analyze the non-technical perspectives of digitization are also
rather old [24]. The definition in [1] identifies two aspects of digitization: the networking
of people and things, second the convergence of real and virtual worlds. Other definitions
[14] associate digitization with the creation of new opportunities that break down
industry barriers and at the same time destroy existing business models [14]. Key
elements of digital transformation strategies are described in [25]. In [26] scope, scale,
speed and the sources of value creation and capture are identified as key themes for
digital business strategy.

Our thesis is, that a definition of the term digitization requires multiple perspectives
beyond the technical one. To do so, we introduce two new perspectives, the product and
a value-creation perspective into the definition of digitization: Digitization changes the
nature of what is called an product. It also transforms value-creation.

Our research method is a conceptual (non empirical) driven research approach [27]
based on the current literature in the field of information systems, computer science and
management with the focus on digitization. Adapted from the analyzed literature with
regards to different influencing factors and basic principles, we create a framework of
digitization.

The paper proceeds as follows; first, the technologies enabling digitization are
described. Then we introduce two new perspectives for the definition of digitization.
First we investigate how digitization impacts the notion of a product. In the following
section, the transformation of value-creation will be analyzed. In the following chapter,
some effects of the present wave of digitization will be depicted. Finally, an outlook and
conclusion is given.

2 Technological Enablers of Digitization

Digital technologies exist since the 1940s. The digital representation of information, its
processing and the term digitization, is in use since years [11]. Since the 1960 there is
an ongoing exponential growth of the processing, storage and communication skills of
modern IT systems [22].

The growth dynamics is described by Moore’s law [28] formulated in the 1960s and
1975. It postulates a doubling of chip complexity every two years [28]. Moore’s law is
still applicable and Intel estimates it will be valid 10 years down to a structure width of
5 nm [29]. Significant economic benefits are associated with these technological
advances. For example, an Internet application that caused costs of $150,000 a year of
the year 2000, cost only about $1,500 in 2011 [30].

Digitization today is associated with a number of technologies, the most prominent
are: Big data [17] and advanced analytics [16, 18] cloud computing [16], social software

264 R. Schmidt et al.

[19], and the Internet of things [20]. In the future, it is expected that new potential for
digitization is created by the automation of supporting tasks that require dexterity,
natural language understanding, pattern recognition and case based problem
solving [31].

2.1 Big Data and Advanced Analytics

Big data [17] and advanced analytics [18] have received much attention in industry and
research [32]. Big data is not a specific technology or platform such as Hadoop [33], but
describes a series of technological advances that made possible a significant improve‐
ment of decision support in business. Big Data can help organizations to improve current
business processes and to be more competitive [34]. Before the emergence of Big Data,
decision support was based on structured data from internal sources, as shown in Fig. 1.
This data typically originate from business transactions and are usually maintained in
an ERP system. Due to their normalized [35] structure, these data are of limited used
for analytics. Therefore approaches such as business analytics [36] and business intel‐
ligence [37] move and transform these data using into a data warehouse using an extract,
transform and load approach. The use of intermediate data creates considerable latency
from the emergence of data to their visibility into the data warehouse. Therefore, the
analyses carried out are mainly backwards oriented and have a descriptive perspective.
On the contrary, the approach is of limited use for decisions that require an immediate
response.

Fig. 1. Big Data extending Volume, Variety and Velocity based on [38]

These constraints and the emergence of always larger sources of unstructured and
semi-structured data led to the development of big data and NoSQL technologies [39].
Semi structured data, e.g. log files of Web servers, have no explicit schema as data in a
relational database [35]. Unstructured files, e.g. customer comments in a Web blog, have
no schema that can be reconstructed. Semantic heterogeneity is another characteristic
of semi- and unstructured data.

Digitization – Perspectives for Conceptualization 265

The processing of semi- and unstructured data is very computing-intensive. There‐
fore classic database concepts with a centralized architecture [33, 35] are quickly over‐
whelmed. On the contrary, highly distributed approaches such as Hadoop, allow to
process semi- and unstructured data in the Petabyte range [33]. An important effect of
distributed computing is the significant reduction of latency between the emergence of
the data and the analysis. The inclusion of large amounts of data allows to create also
predictive or even recommending analyses. Due to the reduced latency decisions on
tactical and even operational level are supported.

2.2 Cloud-Computing

Cloud computing is implementing the vision, that computation and storage is available
in the same way as the electricity and water supply, also called “utility computing” [40].
A significant increase in efficiency is achieved by economies of scale. The most widely
used definition of cloud-computing from the National Institute of standards (NIST) [16]
identifies five characteristics: self-service, a high-performance network access, resource
pooling, elasticity, and billing after consumption. The NIST definition distinguishes
three service models: software, platform, and infrastructure as a service. In addition,
four usage models are defined, namely the private, public, hybrid, and community cloud.
Cloud-Computing also generates new economic advantages for enterprises [41] and can
be used to be more customer-oriented as well as improve customer relationship manage‐
ment [42].

2.3 Social Software

Social software and its underlying concepts can be found today in many areas, both in
the public sector, in the form of social networks [43] as same as in organizations applying
approaches like Enterprise 2.0 [44]. The success of social software is based essentially
on three basic concepts that significantly reject existing organizational concepts. There
are weak ties [45], egalitarian structures [46] and social production [47].

In social production, the role of the individual during production is not defined in
advance by management. Instead, the individual makes his contributions in the interest
of a high social reputation. No hierarchical structures are necessary to coordinate work
or to ensure a high quality. Weak ties [45] are links between people, created by incident
outside the established organizational structures. An example is the use of the same
blogs. Weak ties can be used to assess the impact of a negative statement about a product.
Egalitarian [46] structures assure, that no important contribution is excluded due to a
low hierarchical position of the contributor.

2.4 Internet of Things

“Internet of Things” is according to Gartner, the most hyped term 2014 [5]. The basis
is that growing miniaturization allows implementing always-richer functionality in a
small space. Sensors, actuators and RFID [48] are the starting points of the development
of the internet of things. Today powerful processing, storage and communication

266 R. Schmidt et al.

capabilities have been added, allowing the performance of office PCs of the early 2000s
on a credit card to assemble machines such as the raspberry pi 2 [49].

3 Product Perspective

3.1 Digitized Products

Digitized products differ significantly from the physical products shaped by the para‐
digms of Taylorism [50] and Fordism [51]. An often-standardized hardware captures
the environment using sensors and acts through actuators on them. It is controlled via
software, which is updatable and in this way customizable and extensible. The device
is in connection with other devices or Cloud-based systems via communication
networks. The device may use the services provided in the cloud and sends data to these
services (Fig. 2).

Fig. 2. Digitized products

To enable future extensions, hardware capabilities are designed in a generic way:
the functionality of the device is shaped by the software and the cloud services as far as
possible. The hardware provides only the necessary processing, storage, and commu‐
nication skills. Furthermore, external devices are used to complement functionality in
quickly evolving technologies. An example is the use of tablets and mobile phones as a
substitute for attached displays.

3.2 Digitized Products Are Reflective

Digitized products are constantly in communication with the manufacturer. In this way,
the manufacturer can collect genuine information about the use of the product. This
collection of data can be done with involvement of the customer. Important information
for the development of new products can be obtained. In addition, it is possible to identify
up- and cross-selling chances. Based on the data collected higher value offerings or
additional offerings can be identified, which are beneficial to customers. The fact that
the customer did not realize these needs on its own will also strengthen the relationship
of trust with the manufacturer. In the same way, functionality can be identified that is
no longer needed by the customer. This information can be used to submit a cheaper

Digitization – Perspectives for Conceptualization 267

deal based on a reduced functionality to the customer. Abstracted from the individual
customer, important information can be collected. It is possible to use these data for the
segmentation of customers and the identification of customer needs.

3.3 Digitized Products Are Dynamic

The classic industrial products are static [52]. After production, you cannot change the
product at all or only to a limited extent. Digitization creates products containing soft‐
ware that can be upgraded via network connections. In addition, digitized products can
use external services. Software and especially services are easier to update. New soft‐
ware functions can be added; additional services can be integrated. Therefore, the func‐
tionality of products is no longer static, but can be adapted to changing requirements.
In particular, it is possible to create step-by-step or temporarily unlockable functional‐
ities of the product. So, customers whose requirements have risen can add functions
without hardware modification.

3.4 Digitized Products Are Servitized

The digitization enables products to capture their own state and communicate it to the
vendor. By this means, the vendor is able to determine remotely whether the product is
still functional and encourage, when appropriate, maintenance and repairs. This is the
basis on which the product can be offered as a service, instead of the physical product.
This transformation is called servitization [53]. Such services will be measured based
on their availability. Examples are guaranteed machine availability, energy savings or
crop yields.

By providing a service to the user and not selling a product to a consumer, usage-
based billing models can be established (related to public cloud computing [41]). In
addition to the usage information also the condition of the product by the manufacturer
can be queried and the product informs the manufacturer about critical status changes.

In this context, concepts of preventive maintenance can be developed. These have
the objective of to avoid unscheduled stoppages whenever possible. Evaluation of status
information and analysis of the history of use of the product allow to predict, when a
malfunction of the product is likely. Then, a maintenance or replacement of the product
can be performed before the respective date. In this context, the collected data can also
be used to provide preparatory information for a repair, so that a high first time solution
rate can be achieved. At the same time, storage of spare parts can be minimized.

4 Value-Creation Perspective

To encompass digitization from a value creation perspective, one has to start with the
paradigms that governed industrial production before digitization: Taylorism [54] and
Fordism [51]. Both paradigms coined the character of industrial products: They are
produced isolated from the customer in huge quantities in order to create economies of
scale. The single point of interaction between vendor and customer is the exchange of

268 R. Schmidt et al.

the product against the payment. After the payment the vendor has normally no contact
with the product anymore. The product preserves its configuration until it is broken our
decommissioned. Products created in such a setting do not communicate either with the
producer, among each other or with other objects. Digitized products however, are able
to communicate with the producer and their environment. Thus a number of new mech‐
anisms for value creation are provided.

4.1 Platforms

Platforms are complementary products, which cooperate via standardized interfaces
[55]. Software platforms support the collection, analysis and exchange of data [52].
Platforms significantly speed-up the development time of new solutions, since the
development of new functionality is distributed on different partners [56]. At the same
time also a distribution of the development effort and risks takes place [56].

Up- and downward spirals are characteristic of platforms [34]. Attractive platforms
attract many customers. This in turn makes the development of additional functionality
through new partner attractive. Newly developed capabilities in turn increase the attrac‐
tiveness of the platform for customers, etc. On the other hand, unattractive platforms
lose customers, which, reduce the incentive to develop extensions for these platforms,
in turn.

The physical devices in a platform [34] also significantly increase the switching costs
for customers. The customer cannot move his equipment to another platform. He loses
not only his device, but he must write off the purchases of additional functionalities such
as apps. Finally, the customer loses the individual adjustments made by him such as
configurations and settings etc.

4.2 Network Effects

By linking devices on networks, benefits are generated from two areas. Both the func‐
tionality increases and there are positive effects arising from the overarching data use.
Network effects grow exponentially, because they are based on the number of partici‐
pants, but on the number of possible connections.

The possibility to connect devices of the network increases the possibilities of the
individual device, because the number of potential partners increases. By these means,
extra value is created that increases faster as the number of devices, since the number
of possible connections grows faster as the device number [57]. Furthermore, this makes
it easy to provide integrated solutions to the customer that provides solutions over the
whole lifecycle. Services provided by a lot of partners with complementary skills [52]
may create extra value.

4.3 Networked Intelligence

By linking data from different sources [58], it is possible to detect correlations that would
not have been possible to detect with the data of a single device. This effect increases
with the number of devices. Therefore, network effects become apparent not only in

Digitization – Perspectives for Conceptualization 269

functionality, but also in the scope of the data. These effects are called network intelli‐
gence [24]. Trends can be detected much earlier and more accurately by bringing
together data from different network nodes. A characteristic is the involvement of indi‐
vidual product in an information system, which accelerates the learning and knowledge
processes across all products [18]. In this way, a number of other beneficial effects can
be achieved as network optimization, maintenance optimization, improved restore capa‐
bilities, and additional evidence against the consideration of individual systems. Further‐
more, extraction of relevant information can be also improved by integrating external
data sources.

4.4 Co-creation of Value

The prevalent model of the economy is based on physical goods. Starting point of
thinking is the consideration by Adam Smith in his work “The Wealth of Nations” [59].
Here, the market-based exchange of goods enables the specialization and the division
of labor production, which leads to a higher overall efficiency. Following this basic
orientation also the Taylorism [50] and Fordism [51] are designed.

Central to this thinking is the idea that the producer of goods creates value. The value
is determined at the moment of exchange of goods. It had been tried to transfer this idea
on services. However, this led to a service definition, which considers services as a
negation of physical goods [60]. E.g. services are not material, they are also not divisible,
i.e. they must be provided as a whole. Services are also not durable; they cannot be stored
and are provided only at the moment of need.

To break this thinking, Vargo and Lusch have developed an alternative design. In
the service-dominant logic [61, 62] not goods, but service is the center of economic
exchange. Goods hide only the fact that economic exchange actually concerns an
exchange of services. Goods are used to materialize services [62]. An example of this
is the television set, it used to be for a long time synonymous with television. Today,
there are very many different ways to watch TV.

Consequently, the view changed how to determine the value of the service. In
contrast to the goods dominant logic the value is determined during use of the service
instead of the moment of purchase [62].

Basis for the implementation of service-dominant logic by digitization is the contin‐
uous connection of the products with the manufacturer. The manufacturer can win
genuine information about the use of the product. Important information for the devel‐
opment of new products can be obtained in this way. The consumer becomes a prosumer
[63]. Furthermore, digitization allows collecting information about the customer’s pref‐
erences. This information can be used to facilitate choice for the customer. An example
is Amazon [31] that is offering nearly 10 million different products but enables the
customer to quickly find a product and select a vendor by giving recommendations to
the customer, collecting evaluations, customer reviews and vendor evaluations. Another
example for a sector, which could generate a high advantage is tourism [13]. Modern
technologies like VR and also AR could help to improve the service through data driven
applications and increase the additional value for the customer [13]. Combining these

270 R. Schmidt et al.

entire tools enable the customer to find the desired product more easily than in a physical
shop (Fig. 3).

Fig. 3. GD-Logic versus SD-Logic

One could assume that an abundant offer of products and services is valued by the
customer. However even small experiments show, that much choice both attracts the
customer but also reduces his propensity to make a deal [64, 65]. In general complexity
is perceived as negative from a customer’s perspective [31]. In consequence, there is a
trade-off between complexity and the value created [31]. Digitization is able to reduce
complexity especially for the customer and thus increase value-creation by decoupling
product and process complexity [31].

In former times, it was assumed, that the direct and personal contact with the
customer is the best approach for increasing customer loyalty and revenues. Nowadays
an increasing percentage of customer, especially between 20 and 30 years old prefer
online touchpoints [31].

5 Conclusion

Digitized products have new capabilities to interact with their environment and the
customer. These capabilities embrace sensing, physical interaction, data-exchange and
service delivery. We designed a framework for digitization in this paper to get a better
understanding. Based on technologies such as Big Data, Cloud-Computing or the
Internet of Things, digitization enables the creation of dynamic products that appear
more as a service than a device to the customer. Digitized products can be used as data
hubs for collecting information about themselves and their environment. The connec‐
tivity of digitized products enables network effects and networked intelligence. A
significant change of value creation is initiated by digitized products. The so-called
Service-Dominant Logic becomes more and more the governing paradigm of economy.
Value-creation becomes bidirectional.

We contributed to the current information systems literature in different ways. We
defined important aspects of digitization and linked it to each other. Furthermore,

Digitization – Perspectives for Conceptualization 271

researchers can start to empirically evaluate our framework and get a better under‐
standing of digitization. Managers can use our framework to evaluate their business
work to become a more competitive organization trough digitization. This is of particular
importance because strategy, culture and talent development are more decisive for digi‐
tization than technology [66]. Management should focus on reconfiguring the business
to take advantage of digital technologies instead of trying to find the most appropriate
technology. Winners in this environment will be companies, enable network effects to
create value for the customers [52]. Digitization also affects economy and society as a
whole [67].

There are some limitations to discuss. Our framework is based on literature work.
There is no deep empirical validation until now. Furthermore, industry-specific differ‐
ences are not described in a detailed way. Therefore, future research should validate our
framework trough qualitative and quantitative methods (e.g. expert interviews, experi‐
ments, and survey) and explore industry-specific differences.

References

1. Kagermann, P.D.H.: Change through digitization—value creation in the age of industry 40.
In: Albach, H., Meffert, H., Pinkwart, A., Reichwald, R. (eds.) Management of Permanent
Change, pp. 23–45. Springer Fachmedien Wiesbaden, Wiesbaden (2015)

2. Fortune, Inc.: Fortune 500 firms in 1955 vs. 2014; 89 % are gone, and we’re all better off
because of that dynamic “creative destruction”. http://www.aei.org/publication/fortune-500-
firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-
creative-destruction/

3. Locker, M.: 8 iconic brands that have disappeared – Fortune. http://fortune.com/2014/11/09/
defunct-brands/

4. Manyika, J., McAfee, A.: Why Every Leader Should Care About Digitization and
Disruptive Innovation. McKinsey & Company (2014). http://www.mckinsey.com/
insights/business_technology/why_every_leader_should_care_about_digitization_and_
disruptive_innovation

5. Gartner’s 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business.
http://www.gartner.com/newsroom/id/2819918

6. Andersson, H., Tuddenham, P.: Reinventing IT to Support Digitization. McKinsey, San
Francisco (2014)

7. Markovitch, S., Willmott, P.: Accelerating the Digitization of Business Processes. McKinsey
& Company, San Francisco (2014)

8. Capgemini Consulting, MIT Sloan Managment: Digital Transformation: A Road-Map
for Billion-Dollar Organizations (2011). http://www.capgemini.com/resources/digital-
transformation-a-roadmap-for-billiondollar-organizations

9. Fitzgerald, M., Kruschwitz, N., Bonnet, D., Welch, M.: Embracing digital technology: a new
strategic imperative. MIT Sloan Manage. Rev. 55, 1–12 (2013)

10. Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D.: The Internet
of Things: Mapping the Value Beyond the Hype. McKinsey & Company, San Francisco
(2015)

11. Brynjolfsson, E.: Understanding the Digital Economy: Data, Tools, and Research: Data, Tools
and Research. The MIT Press, Cambridge (2000)

272 R. Schmidt et al.

http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
http://fortune.com/2014/11/09/defunct-brands/
http://fortune.com/2014/11/09/defunct-brands/
http://www.mckinsey.com/insights/business_technology/why_every_leader_should_care_about_digitization_and_disruptive_innovation
http://www.mckinsey.com/insights/business_technology/why_every_leader_should_care_about_digitization_and_disruptive_innovation
http://www.mckinsey.com/insights/business_technology/why_every_leader_should_care_about_digitization_and_disruptive_innovation
http://www.gartner.com/newsroom/id/2819918
http://www.capgemini.com/resources/digital-transformation-a-roadmap-for-billiondollar-organizations
http://www.capgemini.com/resources/digital-transformation-a-roadmap-for-billiondollar-organizations

12. Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., Jozinović, P.:
Industry 4.0 - potentials for creating smart products: empirical research results. In:
Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 16–27. Springer, Heidelberg (2015)

13. Keller, B., Möhring, M., Schmidt, R.: Augmented reality in the travel industry: a perspective
how modern technology can fit consumer’s needs in the service industry. Presented at the
Naples Forum on Services 2015, Naples (2015)

14. Weill, P., Woerner, S.: Thriving in an increasingly digital ecosystem. MIT Sloan Manage.
Rev. 56(4), 27–34 (2015)

15. Westerman, G., Bonnet, D.: Revamping Your Business Through Digital Transformation.
http://sloanreview.mit.edu/article/revamping-your-business-through-digital-transformation/

16. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. http://csrc.nist.gov/
groups/SNS/cloud-computing/

17. Agrawal, D., Das, S., El Abbadi, A.: Big data and cloud computing: current state and future
opportunities. In: Proceedings of the 14th International Conference on Extending Database
Technology, pp. 530–533. ACM (2011)

18. Evans, P.C., Annunziata, M.: Industrial internet: pushing the boundaries of minds and
machines. General Electric (2012)

19. Schmidt, R., Nurcan, S.: BPM and social software. In: Ardagna, D., Mecella, M., Yang, J.,
Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C. (eds.) BPM 2008
Workshop. LNBIP, vol. 17, pp. 649–658. Springer, Heidelberg (2009)

20. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54, 2787–
2805 (2010)

21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

22. Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in
a Time of Brilliant Technologies. W. W. Norton & Company, New York (2014)

23. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of flexibility in business processes. In:
Proceedings Seventh Workshop on Business Process Modeling, Development, and Support
(BPMDS 2006). Requirements for Flexibility and the Ways to Achieve It, Luxemburg, pp.
S.90–S.93 (2006)

24. Tapscott, D.: The Digital Economy: Promise and Peril in the Age of Networked Intelligence.
McGraw-Hill, New York (1996)

25. Matt, C., Hess, T., Benlian, A.: Digital transformation strategies. Bus Inf. Syst. Eng. 57, 339–
343 (2015)

26. Bharadwaj, A., El Sawy, O.A., Pavlou, P.A., Venkatraman, N.: Digital business strategy:
toward a next generation of insights. MIS Q. 37, 471–482 (2013)

27. Steenkamp, A.L., Kraft, T.: Integrating conceptual and empirical approaches for software
engineering research. In: Research Methodologies, Innovations and Philosophies in Software
Systems Engineering and Information Systems, pp. 298–320 (2012)

28. Moore, G.E.: Moore’s Law at 40. In: David, C. (ed.) Understanding Moore’s Law: Four
Decades of Innovation. Chemical Heritage Foundation, Philadelphia (2006)

29. Ever more from Moore (2015). http://www.economist.com/news/business/21648683-
microchip-pioneers-prediction-has-bit-more-life-left-it-ever-more-moore?
fsrc=scn/tw/te/pe/ed/evermorefromMoore

30. Andreessen, M.: Why Software Is Eating the World (2011). http://www.wsj.com/articles/
SB10001424053111903480904576512250915629460

31. Mocker, M., Weill, P., Woerner, S.: Revisiting Complexity in the Digital Age (2015). http://
sloanreview.mit.edu/article/revisiting-complexity-in-the-digital-age/

Digitization – Perspectives for Conceptualization 273

http://sloanreview.mit.edu/article/revamping-your-business-through-digital-transformation/
http://csrc.nist.gov/groups/SNS/cloud-computing/
http://csrc.nist.gov/groups/SNS/cloud-computing/
http://www.economist.com/news/business/21648683-microchip-pioneers-prediction-has-bit-more-life-left-it-ever-more-moore%3ffsrc%3dscn/tw/te/pe/ed/evermorefromMoore
http://www.economist.com/news/business/21648683-microchip-pioneers-prediction-has-bit-more-life-left-it-ever-more-moore%3ffsrc%3dscn/tw/te/pe/ed/evermorefromMoore
http://www.economist.com/news/business/21648683-microchip-pioneers-prediction-has-bit-more-life-left-it-ever-more-moore%3ffsrc%3dscn/tw/te/pe/ed/evermorefromMoore
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://sloanreview.mit.edu/article/revisiting-complexity-in-the-digital-age/
http://sloanreview.mit.edu/article/revisiting-complexity-in-the-digital-age/

32. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and
the path from insights to value. MIT Sloan Manage. Rev. 52, 21–32 (2011)

33. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Sebastopol (2012)
34. Schmidt, R., Möhring, M., Maier, S., Pietsch, J., Härting, R.-C.: Big data as strategic enabler

- insights from central european enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS
2014. LNBIP, vol. 176, pp. 50–60. Springer, Heidelberg (2014)

35. Codd, E.F.: Relational Completeness of Data Base Sublanguages. IBM Corporation, San Jose
(1972)

36. Davenport, T.: The New World of “Business Analytics”. International Institute for Analytics
(2010)

37. Kemper, H.-G., Baars, H., Lasi, H.: An integrated business intelligence framework. In:
Rausch, P., Sheta, A.F., Ayesh, A. (eds.) Business Intelligence and Performance
Management, pp. 13–26. Springer, London (2013)

38. Schmidt, R., Sotzki, M.W., Jugel, D., Möhring, M., Sandkuhl, K., Zimmermann, A.: Towards
a framework for enterprise architecture analytics. In: Grossmann, G., Hallé, S.,
Karastoyanova, D., Reichert, M., Rinderle-Ma, S. (eds.) 18th IEEE International Enterprise
Distributed Object Computing Conference Workshops and Demonstrations, EDOC
Workshops 2014, Ulm, Germany, 1–2 September 2014, pp. 266–275. IEEE Computer Society
(2014)

39. Friedland, A., Hampe, J., Brauer, B., Brückner, M., Edlich, S.: NoSQL: Einstieg in die Welt
nichtrelationaler Web 2.0 Datenbanken. Carl Hanser Verlag GmbH & CO. KG, Munich
(2011)

40. McCarthy, J.: The Computer Utility Could Become the Basis of a New and Important
Industry. MIT Centennial, Harvard (1961)

41. Möhring, M., Koot, C., Schmidt, R., Stefan, M.: Public-Cloud-Angebote: Kostenorientierte
Entscheidungskriterien für kleine und mittlere Unternehmen. Controlling - Zeitschrift für
erfolgsorientierte Unternehmensteuerung 25, 619–624 (2013)

42. Härting, R.-C., Möhring, M., Schmidt, R., Reichstein, C., Keller, B.: What drives users to
use CRM in a public cloud environment? – insights from European experts. In: Proceedings
of the 49th Hawaii International Conference on System Sciences (HICSS), Kauai. IEEE
(forthcoming)

43. Facebook: Facebook 2012 Annual Report. Facebook (2012)
44. Andrew, P.: McAfee: Enterprise 2.0: the dawn of emergent collaboration. MIT Sloan Manage.

Rev. 47, 21–28 (2006)
45. Granovetter, M.: The strength of weak ties: a network theory revisited. Sociol. Theor. 1, 201–

233 (1983)
46. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and

Freedom. Yale University Press, New Haven (2006)
47. Tapscott, D., Williams, A.: Wikinomics: How Mass Collaboration Changes Everything.

Penguin, New York (2006)
48. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska, M.,

Borriello, G.: Building the Internet of Things using RFID: the RFID ecosystem experience.
IEEE Internet Comput. 13, 48–55 (2009)

49. Richardson, M., Wallace, S.P.: Getting Started with Raspberry Pi. O’Reilly Media,
Sebastopol (2012)

50. O’Halloran, D., Kvochko, E.: Industrial Internet of Things: Unleashing the Potential of
Connected Products and Services. World Economic Forum

274 R. Schmidt et al.

51. Baines, T., Lightfoot, H., Smart, P.: Servitization within manufacturing: exploring the
provision of advanced services and their impact on vertical integration. J. Manuf. Technol.
Manage. 22, 947–954 (2011)

52. Taylor, F.W.: The Principles of Scientific Management, vol. 202. Harper & Brothers,
New York (1911)

53. Shiomi, H., Wada, K.: Fordism Transformed: The Development of Production Methods in
the Automobile Industry. Oxford University Press, Oxford (1995)

54. Baldwin, C.Y., Woodard, C.J.: The architecture of platforms: a unified view. In: Gawer, A.
(ed.) Platforms, Markets and Innovation, pp. 19–44. Edward Elgar, Cheltenham (2009)

55. Eisenmann, T.R.: Managing proprietary and shared platforms. Calif. Manage. Rev. 50,
31–53 (2008)

56. Metcalfe, B.: Invention is a flower, innovation is a weed. Technol. Rev. 102, 54–57 (1999)
57. Provost, F., Fawcett, T.: Data Science for Business: What You Need to Know about Data

Mining and Data-Analytic Thinking. O’Reilly Media, Sebastopol (2013)
58. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. Methuen, London

(1776/1937)
59. Taylor, F.W.: The Principles of Scientific Management. General Books LLC, Memphis

(2010)
60. Vargo, S.L., Lusch, R.F.: The four service marketing myths: remnants of a goods-based

manufacturing model. J. Serv. Res. 6, 324–335 (2004)
61. Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J. Mark. 68,

1–17 (2004)
62. Vargo, S., Lusch, R.: Service-dominant logic: continuing the evolution. J. Acad. Mark. Sci.

36, 1–10 (2008)
63. Ritzer, G., Jurgenson, N.: Production, consumption, prosumption the nature of capitalism in

the age of the digital “prosumer”. J. Consum. Cult. 10, 13–36 (2010)
64. Iyengar, S.S., Lepper, M.R.: When choice is demotivating: can one desire too much of a good

thing? J. Pers. Soc. Psychol. 79, 995 (2000)
65. Shah, A.M., Wolford, G.: Buying behavior as a function of parametric variation of number

of choices. Psychol. Sci. 18, 369–370 (2007)
66. Technology, C.©.M.I. of, reserved, 1977–2015 All rights: Is Your Business Ready for a Digital

Future? http://sloanreview.mit.edu/article/is-your-business-ready-for-a-digital-future/
67. Morozov, E.: Why the internet of things could destroy the welfare state. http://

www.theguardian.com/technology/2014/jul/20/rise-of-data-death-of-politics-evgeny-
morozov-algorithmic-regulation

Digitization – Perspectives for Conceptualization 275

http://sloanreview.mit.edu/article/is-your-business-ready-for-a-digital-future/
http://www.theguardian.com/technology/2014/jul/20/rise-of-data-death-of-politics-evgeny-morozov-algorithmic-regulation
http://www.theguardian.com/technology/2014/jul/20/rise-of-data-death-of-politics-evgeny-morozov-algorithmic-regulation
http://www.theguardian.com/technology/2014/jul/20/rise-of-data-death-of-politics-evgeny-morozov-algorithmic-regulation

A Scientometric Analysis of Cloud Computing
and QoE Literature to Design a Cloud

Platform of Experience for Digital Business

Maurizio Giacobbe(B), Maria Fazio, Antonio Celesti,
Tindara Abbate, and Massimo Villari

University of Messina, 98166 Messina, Italy
{mgiacobbe,mfazio,acelesti,abbatet,mvillari}@unime.it

http://mdslab.unime.it

Abstract. Cloud computing is rapidly evolving due to social and cul-
tural influences that are changing the necessary Cloud services. Indeed,
an increasing number of application and service providers use Cloud
computing to adapt their products to customer needs, by addressing the
requirements arisen by the customer Quality of Experience (QoE, QoX
or simply QX) evaluation. QoE is a fast emerging multidisciplinary field
based on social psychology, cognitive science, management, and engi-
neering science, focused on understanding overall human quality require-
ments. In order to help Digital Business architects to understand how
Cloud computing can help them to increase their business, we present
a scientometric analysis of Cloud computing and QoE. Analyzing the
current state of the art, we provide some guidelines to Digital Business
companies for addressing the issues related to QoE that have to be taken
into account in order to maximize their business.

Keywords: Cloud computing · Digital business · Platform of
Experience · Quality of Experience · QoE · QoX · QX

1 Introduction

The current financial situation, together with the new market opportunities and
the advent of Cloud technologies, has led to major changes both in the Informa-
tion and Communication Technology (ICT) world and in the consumer’s inter-
ests over the last few years. Latest economic changes, in fact, have conducted
new socio-cultural transformations with great impact on the customer’s needs.
These changes are significantly influencing also the evolution of Cloud services,
and how digital enterprises can use Cloud technologies to achieve many advan-
tages both in their internal and external activities. This trend results in a new
digital business scenario, where Cloud computing play a fundamental role to
develop new business strategies by integrating digital and physical worlds. It
differs from traditional e-business models thanks to an unprecedented integra-
tion of people, business and smart things allowing an optimal convergence with
the promising Internet of Things (IoT) paradigm [1,2].
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 276–288, 2016.
DOI: 10.1007/978-3-319-33313-7 21

A Scientometric Analysis of Cloud Computing and QoE 277

On this regard, Quality of Experience (QoE, QoX or simply QX) is a fast
emerging multidisciplinary field based on social psychology, cognitive science,
management, and engineering science, focused on understanding overall human
quality requirements. Traditionally, technology-centric approaches based on QoS
parameters have been employed to ensure service quality to end users. QoE
expands this horizon to capture people’s aesthetic and even hedonistic needs.

In short, QoE provides an assessment of human expectations, feelings, per-
ceptions, cognition and satisfaction with respect to a particular product, service
or application [3]. The concept of QoE in computer science is also known as
perceived Quality of Service, in the sense of the QoS as it is finally perceived by
the end-user adopting software solutions. It is a personal evaluation, that can
be expressed through different degrees of appreciation. For example, the evalua-
tion of the perceived QoS for audio-video content provisioning can be expressed
by low, medium or high quality level. Then, the service provider can adapt the
storage and network resources to obtain a specific level of user satisfaction, thus
optimizing resource management.

As an important measure of the end-to-end performance at the services level
from the user’s perspective the QoE is an important metric for the design of
systems and engineering processes. Thus, when designing systems the expected
output, i.e. the expected QoE, is often taken into account also as a system
output metric. Even though, QoE was originally conceived as concept for several
multimedia applications [4], nowadays it becomes a fundamental metric to plan
ahead new application and service deployment, with several advantages both
for customers and providers. In this context, an increasing number of providers
start to adopt Cloud computing services to form a competition market based on
customer experience in order to maximize their profits. Customers became active
part of a new digital business scenario where Cloud technologies allows them
to share their experience to improve services and therefore the same customer
experience in a virtuous cycle. A digital enterprise can use Cloud technologies to
collect data from its customers devices (e.g., mobile devices, public dashboards).
Therefore, data processing allows providers to measure the level of satisfaction
of their customers.

In order to help Digital Business architects to understand the impact of Cloud
technologies in the assessment of QoE, in this paper, we present a scientometric
analysis of Cloud computing strategies in QoE management. The objective of
this paper are the following: (1) analyzing the state of the art on QoE and
Cloud computing; (2) providing guidelines to digital enterprises to understand
how QoE should be taken into account in order to maximize profits; (3) providing
a guideline to develop a Cloud based Platform of Experience (PoE) based on a
Multi-Input-Multi-Output (MIMO) architecture.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents a scientometric analysis of Cloud computing and QoE. In
Sect. 4, we highlight several relevant aspects related to the topic. Then, in Sect. 5,
we present a requirement analysis for the development of an efficient Cloud
based Platform of Experience (PoE), describing in Sect. 6 several design aspects.
Section 7 concludes the paper.

278 M. Giacobbe et al.

2 Related Work

This Section introduces several interesting contributions concerning the use of
Cloud computing for QoE measurement and evaluation. Wang et al. [5] analyze
the factors affecting the Quality of user Experience using the Cloud Mobile Gam-
ing (CMG) approach, including the game genres, video settings, the conditions
of server and client, and the conditions of the wireless network. Moreover, the
authors present a Mobile Gaming User Experience (MGUE) model they assert
will be helpful for researchers and service providers to develop and assess the
performance of future Cloud mobile gaming techniques and services.

Colonnese et al. [6] present a Cloud-assisted procedure to improve the user’s
Quality of Experience in HTTP Adaptive Streaming (HAS) services. The pro-
posal procedure exploits information on the encoded video content available at
the Cloud side to control the client-originated download requests.

Vandenbroucke et al. [7] provide insights for future QoE-aware Cloud services.
They refer to what they assert to be the most important mobile contextual
factors (e.g., connectivity, location, social, device), and how they affect users’
experiences while using such services on their mobile devices. To this end, the
authors present the results of a 2-week follow-up study focused on investigating
Cloud storage users’ Quality of Experience on mobile devices. They use a mobile-
based Experience Sampling Method (ESM) questionnaire to real-time monitor
the mobile Cloud service usage on tablets and smartphones.

Huang et al. [8], by real experiments, demonstrate the potential of network-
aware Clouds on improving the QoE of Massively Multiuser Virtual Environ-
ments (MMVEs).

Saiz et al. [9] present their QoXcloud platform: a Cloud platform for the mea-
surement and evaluation of the Quality of Experience (QoE) which is based on
the QoXphere model to ensure the user satisfaction. However, this measurement
is in terms of QoS, and QoE is included as assessed QoS. The authors also refer
to the Quality of user Perception (QoP) as a perceived QoS.

Zhang et al. [10] propose a novel Cloud-assisted approach, they name Cloud-
Assisted Drug REcommendation (CADRE), for enriching end-user Quality of
Experience of drug recommendation.

The above contributions are very interesting to understand the uptrend on
the use of Cloud computing for QoE measurement and evaluation, thus to help
providers to increase their competitiveness based on customer experience in order
to maximize their profits.

3 Scientometric Analysis of Cloud Computing and QoE

In this paper we highlight the importance of the relationship between QoE and
Cloud analyzing the state of the art (sota) on QoE and Cloud by using the
methodological approach organized in the following steps:

A Scientometric Analysis of Cloud Computing and QoE 279

– choice of several keywords and their meaningful combinations;
– selection of different electronic databases refining our research at Computer
Science discipline. This last also includes Engineering, Business and Man-
agement, Mathematics and Physics;

– execution of the research;
– skimming of results of the research on the basis of a correct correspondence

of the researched terms;
– download and saving the results in form of Bibtex references;
– survey draft of references.

Each one of the above mentioned combinations results in a different number
of references to skim.

Table 1. Highlight on some important numerical results for each selected electronic
database.

References Database URL %

91 IEEE xplore http://ieeexplore.ieee.org 67.41
13 ACM digital library http://portal.acm.org 9.63
12 Springer link http://link.springer.com/ 8.89
10 ScienceDirect http://www.sciencedirect.com 7.41
7 ISI web of science http://apps.webofknowledge.com/ 5.18
2 Google scholar http://scholar.google.com 1.48
0 HCI bibliography http://hcibib.org 0 (*)
0 Scopus http://www.scopus.com/ 0 (*)
Total= 135 - - 100

(*) The result refers to the added value of the Database compared to the
previous ones in the list.

Table 1 shows some important numerical results which are related to each one
of the selected electronic database for the following researched terms (i.e. key-
words) and their meaningful combinations: ‘QoE and Cloud’, ‘Quality of Expe-
rience and Cloud’, ‘QoE’ and ‘Cloud’, ‘Quality of Experience’ and ‘Cloud’.

Starting from the first row of Table 1, in each row, we consider the contri-
bution of an electronic database in terms of references that are not included in
the previous selected databases. More specifically, starting from consider IEEE
Xplore the first database in our approach, each one of the following (ACM Dig-
ital Library is the first one of these considered) does not include the references
that are already included in the previously considered database. For example,
the HCI database reports a number of ten results, these results are also included
in the previous Database (i.e. ACM Digital Library Link and to Digital Content
at Springer). Thus, we consider a zero added value for HCI.

Table 1 consists of the following columns:

http://ieeexplore.ieee.org
http://portal.acm.org
http://springerlink.bibliotecabuap.elogim.com/
http://www.sciencedirect.com
http://apps.webofknowledge.com/
http://scholar.google.com
http://hcibib.org
http://www.scopus.com/

280 M. Giacobbe et al.

before 2009 2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

40

45

Y ear

R
ef

er
en

ce
s

IEEEXplore

ACMDigitalLibrary

SpringerLink

ScienceDirect

ISIWoS

GoogleScholar

Total

Fig. 1. Trend of the references which are present in the electronic databases in the last
years.

– References: indicates how many references are resulting from the execution
of our method, i.e. form our selection for each electronic database.

– Database: shows the names of the electronic databases.
– URL: indicates the Uniform Resource Locator of each electronic database.
– % : shows the percentage quota of the selected references for each electronic

database.

The number of references on Cloud and QoS during the last years has the
trend drawn in Fig. 1, where we can notice that the electronic Databases report
most of references by 2014.

4 QoE Evaluation Based on Cloud Computing
Approaches

The sota on QoE and Cloud gives us several very interesting hints that are
objects of a further in-depth analysis. A first interesting point is the number of
references focused on the use of Cloud computing for measurement and evalua-
tion of QoE, as shown in Table 2. Compared to the results in Table 1, it means
that the most of contributions on Cloud and QoS in literature are not focused
on QoE evaluation issues, and, hence, a lot of work can be done.

The uptrend of the scientific literature on the use of Cloud computing for
QoE evaluation is shown in Fig. 2, that shows the increasing interest in such kind
of application field of Cloud.

Therefore, on the basis of the sota and of the above mentioned consideration,
we look to a new perspective, where QoS and QoE complement each other and

A Scientometric Analysis of Cloud Computing and QoE 281

Table 2. A summary of the references on the use of Cloud computing for QoE mea-
surement and evaluation.

Num. Database References

4 ACM digital library [5–8]
1 IEEE xplore [9]
1 Springer link [10]
1 Google scholar [11]
0 ScienceDirect -
0 ISI web of science -
0 HCI bibliography -
0 Scopus -
Total= 7 of 135 (5.18%) - -

the user perception is part of the user experience. More specifically, we focus
on the design of a Cloud based Platform of Experience (PoE) and introduce an
approach for the analysis of its requirements.

before 2012 2013 2014
0

1

2

3

4

5

Y ear

R
ef

er
en

ce
s

Fig. 2. The uptrend on the use of Cloud computing for QoE measurement and evalu-
ation.

282 M. Giacobbe et al.

5 Requirements Analysis for a Cloud Based Platform of
Experience

In this Section, we focus on the requirements analysis for a Cloud based Platform
of Experience (PoE), in prospect of an experimental marketing.

5.1 Motivation

Many enterprises equipped with traditional ICT assets have a difficult time deliv-
ering customer experiences, this fact due to the unavailability of the necessary
connections among ICT systems. For example, customer data storage is often
centralized and includes informations from several sources that are often uncor-
related, e.g., social networks, e-mail, web questionnaires and much more. This is
a serious problem that prevents a coherent view of customer experiences and can
results in an undesirable inconsistency especially in the monitored marketplace
context.

Our investigation focus on converting anonymous audiences into known
active customers (i.e., members of one or more platforms), whose QoE can be
weighted in a digital business context. This goal mainly requires a rich data
gathering and a high level of granularity for each customer information, i.e., two
requirements which is not always possible to meet with traditional Information
Technology (IT) systems especially for billion people and devices connected to
the Internet.

To this end, we present an approach which is oriented to use Cloud comput-
ing and No-SQL databases [12]. Specifically, a Cloud Infrastructure-as-a-Service
(IaaS) platform beats the traditional IT systems because it provides web ser-
vices and not only information, based on best reliability, flexibility and scalabil-
ity. Moreover, we refer to MongoDB [13] No-SQL database, because the growing
interest of the scientific community [14,15] to it. The traditional Relational Data
Base Management Systems (RDBMS) analytics, in effect, can get very compli-
cated or rather played out in presence of semi-structured or unstructured data.

Cloud virtualization [16] simplifies the use of virtual contexts, i.e. a set of
virtual devices which are managed by companies with the objective to identify
new inputs and ideas to produce new services/products. Virtual contexts act like
experiential providers in order to develop, enrich and therefore make unique
the user experience. In this way a company would stimulate several typologies of
experiences, such as by involving the five human senses, even though the PoEs
would generate great value experiences (e.g., act, think and relate). Companies,
and therefore the PoEs they refer, concern different market or business sectors,
and a comparison between different companies through the results provided by
the PoEs would allow to identify significant affinities and differences. These are
in turn essentially attributable to the logics and the dynamics which are typical
of the respective sectors.

Based on these motivations, through our scientometric analysis we identify
the following priorities to investigate to design a Cloud PoE for digital business:

A Scientometric Analysis of Cloud Computing and QoE 283

– Seamless: a platform without interruption across multiple channels and
devices, including mobile.

– Ad-hoc customized: Input/Output data, both in terms of right information
and context (i.e. marketplace), should be delivered to the right audience at
the right time.

– Coherent: platform controls information provided by its members to prevent
unreliable data, e.g., market attacks by people engaged by possible competi-
tors.

– Collaborative: user-to-company and user-to-user relationship and collabo-
ration. This issue involves a stake-holding phase due to many subjects which
act as experts and join into the platform through community features. A
market-oriented approach in which Cloud providers leverage Cloud services
from other Cloud providers for seamless provisioning is well discussed in [17].

– Interactive: directly and immediately contents exchange between users. This
action would provide for project rooms (e.g., social multi-chat rooms) which
are oriented to achieve this issue. The interactive concept [18] should be
deepened on the base of two main topics, i.e. textual interaction and personal
interaction, and their possible integration. This is very significant especially
for virtual environments where it is possible to relate different community
members and contemporary to access different contents.

– Multimedial: it consists of recognition and involvement actions (i.e. func-
tionalities) [19,20] of new possible PoE members which are handy at web and
social networks, thus to simplify the correlation between the PoE members
and to increase the PoE quality.

– Articulate: well-structured to simplify the information research by platform
visual instruments (e.g., the web-interface), thus to speed the procedures.

– Navigable: the information research should be executed by combining sev-
eral search options, such as keywords, categories and additional filtering
options, thus to maximize the usability, to influence user’s first impression
and to obtain an appropriate reply as fast as possible. Both this aspect and
the above mentioned ‘articulate’ characteristic, are well discussed in [21].

– Cloud based: a flexible and on-demand resource provisioning in a pay-as-
you-go manner, that is based on Service Level Agreements (SLAs) between
customers and Cloud providers [22]. Where the world wide web makes infor-
mation available everywhere and to everyone, Cloud makes storage and com-
puting available everywhere and to everyone and, through Cloud networking
mechanisms, without the cost and the constraints of the traditional IT sys-
tems.

Moreover, a PoE should be accessible for people with disabilities [23]. The
above mentioned characteristics can be enhanced on the basis of the human
development, and contemporary fulfill new requirements.

As introduced, the in-depth investigation of the above mentioned issues is
oriented to set up a Cloud based platform to evaluate its member’s experience.
Specifically, we think to a Cloud Platform of Experience which is based on a
multi-level platform scale, i.e. to model a ranking list r to evaluate the experience
gained at every level.

284 M. Giacobbe et al.

6 Design of a Cloud Platform of Experience: A Reference
Model

Starting from the previous Section where we introduced our requirements analy-
sis, in this Section we present a possible Cloud based PoE reference model for
digital business purposes (Fig. 3).

Fig. 3. Cloud Platform of Experience in digital business scenario.

More specifically, we introduce three main figures:

– Users, i.e., Customers that uses digital products and provide the evaluation
of their experience;

– Things, i.e., Smart Sensors/Devices, that provide information on the envi-
ronment or on the systems where digital products are exploited;

– Service Providers, i.e., Digital Enterprises, that provide new digital prod-
ucts.

In particular, both Users and Service Providers are able to use Cloud services
with the common goal to improve customer experience, becaming theselves active
part of a common Cloud based PoE. Things increase the knowledge of monitored
phenomena, by integrating customers experience in the automatic process man-
agement.

A Scientometric Analysis of Cloud Computing and QoE 285

This mainly results in:

– An ‘optimum’ level of customer satisfaction, that balances the quality of
experience and the costs to provide the product;

– A customer loyalty to assure the maximum profit for digital enterprises.

More specifically, as shown in Fig. 3, Users access the PoE after a prelimi-
nary registration step, to became ‘Members’. Once logged in, they can interact
with other Members, providing several types of feedback, such as replying to
questions or quoting ideas. Moreover, Members gradually access to higher Lev-
els of experience evaluation, on the basis of their activity and scores obtained
by an evaluation process by the same Members of the PoE. PoE gathers Users
experience through a ‘Reader’ module and compare ‘U data’ (i.e., data from
Members) with ‘T data’ (i.e., data from Things) in order to verify the coherence
of information or to plan automatic activities.

Things can bee considered as ‘customizable smart devices’ and Cloud can
collect data and also dynamically configure smart devices, by using policies of
dynamic provisioning and versioning of products (P&V module in our digital
business scenario). On the basis of a quality of experience evaluation, a digital
provider can track and remotely upgrade a on-device software component, i.e.
the agent in Fig. 3. Our approach leverages the dynamic deployment of virtual
containers [24] to customize the behavior of things. Each agent customize a
container as a Containers of Experience (CoE), i.e., an abstraction of the device
which collect data from the surrounding environment. For Cloud providers, this
also means to assume that computational cost for this operation is strongly
related to the availability and performance at the specific smart device.

At the same time, by applying PoE business policies, a QoE evaluation is
expressed in terms of numerical value and assigned at each level thus to make
experiences available for data visualization. Therefore, each Service Provider that
pay-to-use Cloud PoE can access, through Internet, several levels to visualize
and use data for its business purposes. For all these reasons, we watch to a
Multi-Input-Multi-Output (MIMO) set up where Inputs are several typologies
of Users and Things experience contributes and Outputs are several QoE levels
and contents for business purpose data visualization. Moreover, if we consider the
most general use-case where a marketplace offers several services and interests
of end-users and vendors, we can consider a general schema including several
platforms.

6.1 Cloud PoE Usability: Discussion of a Use Case

This Section discusses one possible application of a Cloud PoE developed by
following our guidelines. It supports business process management based on cus-
tomer experience in a supermarket chain.

Monitoring customer experience thus to misure QoE and improve it implies
the processing of a set of information useful to characterize the context, both

286 M. Giacobbe et al.

objective and subjective (whose difference has been already explained) with pos-
sible correlations. For example, with objectives we refer to the measured temper-
ature of internal areas, presences, motion by Things. With subjectives instead
we refer to the comfort level by gathering data from people in terms of customer
experience such as availability of sought-after products, perceived temperature
(more or less hot or cold), satisfaction level referred to the merchandise alloca-
tion, cleaning, prices competitiveness, parking, but not only.

This management process performs three main tasks:

– Data collection, to gather data from the supermarket environment and its
activities both thanks to Things and Users;

– Event classification, to specify which events may be influential and the
impact (QoE) on customer experience due to their occurrence;

– Fulfillment of the customer demand, to improve QoE for a greater and
greater customer experience.

To this end, we have developed a Cloud PoE testbed environment where we
emulated several smart devices to gather observations from monitored areas in a
supermarket, and contemporary collecting informations from Internet connected
Users devices at different levels of experience. Table 3 shows several interesting
results, pointing out where improvements are needed on the basis of a threshold
of acceptability (i.e., less than 3/5).

Table 3. Several interesting results from our Cloud PoE testbed environment

Event Obj data Sbj data QoE level Acceptable (Y/N)

Temperature (refrigerated section) 4 ◦C ‘too cold’ 1/5 N

Midrange beer price 1,60 e ‘too expensive’ 1/5 N

Average bread price 3,00 e ‘acceptable’ 3/5 Y

Average parking lots (10.00–12.00) 10/300 free ‘poor’ 1/5 N

Employees’ courteousness - ‘good’ 3/5 Y

For each event (i.e., monitored phenomenon) of the ‘Event’ column, Table
reports, left to right, objective data gathered from sensing (Things), subjec-
tive/perceived data from PoE Members, an evaluation of QoE based on the
implemented business policies, a Yes/No acceptance rating.

7 Conclusions and Future Developments

In a worldwide competitive market scenario, Cloud computing play a fundamen-
tal role to develop new business designs by integrating the digital and physical
worlds. An increasing number of Cloud providers deliver services which are ori-
ented to achieve the maximum profit for digital enterprises and contemporary
satisfying the user’s demand for several marketplaces. Therefore, a best knowl-
edge of the customer experience, through a measurement and evaluation of its
quality level is needed.

A Scientometric Analysis of Cloud Computing and QoE 287

To meet this goal, we introduce an approach which is oriented to help Cloud
architects to clarify this important topic thus to achieve the above mentioned
objectives. Specifically, our scientometric analysis of Cloud computing and QoE
shows an uptrend on the use of Cloud computing for QoE measurement and
evaluation. On the basis of the state-of-the-art like so resulting from our sci-
entometric analysis, we propose a Multi-Input-Multi-Output (MIMO) reference
model to design a Cloud based Platform of Experience (PoE).

Both users and service providers are considered part (i.e. members) of the
PoE. Our approach allows Cloud providers to ‘weigh’ customer experiences thus
to model a ranking list to evaluate the experience gained at every level. It can
be replicated in order to compute several QoE ranking lists for a wide variety of
services/products and for several marketplaces.

We think that this research field should be worth considering, because the
time is ripe and Cloud computing bodes to efficiently answer to the above men-
tioned goals in a digital business world, especially due to the increase of mobile
devices and contemporary of mobile services customers. We plan to improve our
research work through the implementation phase. This step should be shared
with the community, by adopting open source technologies, thus to improve
business policies and customer quality of experience respecting the main priori-
ties and characteristics indicated in this study.

References

1. Chao, H.-C.: Internet of things and cloud computing for future internet. In: Hsu,
C.-H., Yang, L.T., Ma, J., Zhu, C. (eds.) UIC 2011. LNCS, vol. 6905, p. 1. Springer,
Heidelberg (2011)

2. Fazio, M., Celesti, A., Villari, M., Puliafito, A.: The need of a hybrid storage
approach for IoT in PaaS cloud federation. In: 28th International Conference on
Advanced Information Networking and Applications Workshops (WAINA), pp.
779–784 (2014)

3. ur Rehman Laghari, K., Crespi, N., Molina, B., Palau, C.: QoE aware service deliv-
ery in distributed environment. In: IEEE Workshops of International Conference
on Advanced Information Networking and Applications (WAINA), pp. 837–842
(2011)

4. ITU-T Recommendation P.10. https://www.itu.int/rec/T-REC-P.10
5. Wang, S., Dey, S.: Cloud mobile gaming: modeling and measuring user experience

in mobile wireless networks. SIGMOBILE Mob. Comput. Commun. Rev. 16, 10–21
(2012)

6. Colonnese, S., Cuomo, F., Melodia, T., Guida, R.: Cloud-assisted buffer man-
agement for http-based mobilevideo streaming. In: Proceedings of the 10th ACM
Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous
Networks, PE-WASUN 2013, pp. 1–8. ACM, New York (2013)

7. Vandenbroucke, K., Ferreira, D., Goncalves, J., Kostakos, V., De Moor, K.: Mobile
cloud storage: a contextual experience. In: Proceedings of the 16th International
Conference on Human-Computer Interaction with Mobile Devices & Services,
MobileHCI 2014, pp. 101–110. ACM, New York (2014)

https://www.itu.int/rec/T-REC-P.10

288 M. Giacobbe et al.

8. Huang, Y.S., Hsu, C.H., El Zarki, M., Erbad, A., Venkatasubramanian, N.: On opti-
mizing MMVEs in network-aware clouds. In: Proceedings of International Work-
shop on Massively Multiuser Virtual Environments, GPGPU-7, pp. 6:1–6:2. ACM,
New York (2014)

9. Saiz, E., Ibarrola, E., Cristobo, L., Taboada, I.: A cloud platform for QoE evalu-
ation: QoXcloud. In: Proceedings of the ITU Kaleidoscope Academic Conference:
Living in a Converged World - Impossible Without Standards?, pp. 241–247 (2014)

10. Zhang, Y., Zhang, D., Hassan, M., Alamri, A., Peng, L.: CADRE: cloud-assisted
drug recommendation service for online pharmacies. Mob. Netw. Appl. 20, 1–8
(2014)

11. Hausheer, D., Rückert, J.: Report on initial system architecture. NaDA 1 (2013)
G3

12. Dharmasiri, H., Goonetillake, M.: A federated approach on heterogeneous NoSQL
data stores. In: International Conference on Advances in ICT for Emerging Regions
(ICTer), pp. 234–239 (2013)

13. MongoDB. http://www.mongodb.org/
14. Kanade, A., Gopal, A., Kanade, S.: A study of normalization and embedding in

MongoDB. In: IEEE International Advance Computing Conference (IACC), pp.
416–421 (2014)

15. Lawrence, R.: Integration and virtualization of relational SQL and NoSQL systems
including MySQL and MongoDB. In: International Conference on Computational
Science and Computational Intelligence (CSCI), vol. 1, pp. 285–290 (2014)

16. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: An approach to enable cloud service
providers to arrange IaaS, PaaS, and SaaS using external virtualization infrastruc-
tures. In: IEEE World Congress on Services (SERVICES), pp. 607–611 (2011)

17. Hassan, M., Huh, E.: Dynamic Cloud Collaboration Platform: A Market-Oriented
Approach. Springer Briefs in Computer Science. Springer, Heidelberg (2012)

18. Wilder, B.: Cloud Architecture Patterns. Oreilly and Associate Series. O’Reilly,
Sebastopol (2012)

19. Li, Z., Drew, M., Liu, J.: Fundamentals of Multimedia. Texts in Computer Science.
Springer, Heidelberg (2014)

20. Hausenblas, M.: Building Scalable and Smart Multimedia Applications on the
Semantic Web. GRIN Verlag, Berlin (2011)

21. Casteleyn, S., Rossi, G., Winckler, M. (eds.): ICWE 2014. LNCS, vol. 8541.
Springer, Heidelberg (2014)

22. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Achieving
flexible SLA and resource management in clouds. In: Achieving Federated and
Self-manageable Cloud Infrastructures Theory and Practice. IGI Global (2012)

23. Henry, S.L., Abou-Zahra, S., Brewer, J.: The role of accessibility in a universal
web. In: Proceedings of the 11th Web for All Conference, W4A 2014, pp. 17:1–17:4
(2014)

24. Dua, R., Raja, A., Kakadia, D.: Virtualization vs containerization to support PaaS.
In: IEEE International Conference on Cloud Engineering (IC2E), pp. 610–614
(2014)

http://www.mongodb.org/

Enabling Digital Transformation Using Secure
Decisions as a Service

Hans-Joachim Hof1, Rainer Schmidt2(&), and Lars Brehm3

1 MuSe - Munich IT Security Research Group, Munich University
of Applied Sciences, Lothstrasse 64, 80335 Munich, Germany

hof@hm.edu
2 Munich University of Applied Sciences,
Lothstrasse 64, 80335 Munich, Germany

Rainer.Schmidt@hm.edu
3 Munich University of Applied Sciences,
Am Stadtpark 20, 81243 Munich, Germany

Lars.Brehm@hm.edu

Abstract. Digital Transformation is of crucial importance for many enterprises
and creates new challenges both on the conceptual and architectural level.
Therefore, a new, secure, and layered architecture is introduced that separates
the process from the decision model in order to quickly react to changed
requirements. It provides flexibility by separating three aspects of
decision-making: foundations, methods, and data. Security and reliability is
achieved by using a reputation system to judge data sources and data contrib-
utors. The reputation system offers a score for trustworthiness of a data source
that could be used for the selection of appropriate data sources for decisions as
well as a basis to calculate a confidence score of a decision.

Keywords: Digital transformation � Business process � Innovation � Decision
as a Service � Security

1 Introduction

The Digital Transformation of Enterprise Architectures [1] and business processes is an
issue of paramount importance for many enterprises [2]. Enormous benefits by digital
transformation are predicted [3, 4]. Digital transformation creates new opportunities for
enterprises [5], breaks down industry barriers but also destroys existing business
models [5]. Serious disruptions take place, new companies emerge [6] and established
companies disappear [7]. A number of strategies have been developed in order to drive
digitization [4, 8].

In order to improve the capability of enterprise to react quickly to customer and
market requirements, a cornerstone of digital transformation is the improvement of
decision support within enterprise. Means both include the speed-up of decisions by
automation and the increase of decision precision. To speed up decisions, enterprises
replace human decisions by automated decision systems. The precision of decisions is
increased by taking into account more data and data from more sources. An example is

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 289–298, 2016.
DOI: 10.1007/978-3-319-33313-7_22

the analysis of data from social software [9] such as social media. It allows measuring
the customer sentiment faster and with more precision than traditional means, e.g.
surveys.

Big Data receives a great deal of attention in industry and research for improving
decision making [10]. The largest benefits of Big Data can be leveraged by companies
engaged in the business areas of IT and technology development and marketing [11].
Big Data is not a specific technology or technology platform such as Hadoop [12], but
embraces a series of technological advances creating a significant expansion of the
analytical capabilities.

Today Big Data technologies are often integrated into Decision as a Service [13]
offerings. Decision as a Service relieves companies of duties as the data collection and
the continuous improvement of decision models. Additional, companies have the
option to select the best offers from an emerging market. A further benefit of Decision
as a Service arises from the fact that the service provider who provides the services has
access to more data, as the company due to his aggregator role. In this way, the
decision quality can be increased and the time to improve decision-making processes
can be shortened.

To enable faster and more precise decisions, many enterprises use Big Data [10] to
exploit also external data sources. In this approach, data from different sources are
combined during decision-making. Unfortunately, this creates a new security threats.
Malicious contributors could distort data in order to influence the final decision in their
interest.

The contribution of this paper is to introduce a new architecture for decision as a
service that includes a reputation system that could be used to protect against these
attacks. The reputation system imposes a goodness score on each contributor, judging
on the trustworthiness of the contributor.

The paper proceeds as follows, first decision support technologies in digitized
enterprise are introduced. Then an architecture for secure decision as a service is
introduced. The reputation system that allows evaluating contributors is defined in the
following section. The next chapter shows up the use of decision as a service for digital
transformation. After discussing related, a conclusion and outlook is given.

2 Basic Architecture for Secure Decision as a Service

The proposed architecture supports decisions using three essential elements. Founda-
tions such as Laws define the basic rules of decisions. Methods define the way to create
these decisions. Data are used to make concrete decisions. Foundations, Methods and
Data evolve at different speeds. Foundations are the slowest, data are the quickest
element. There our architecture differentiates these elements and thus enables their
independent evolution (Fig. 1).

Decisions are based on a number of data sources in the proposed architecture. Each
data source provides data from one or more data contributors. For example, a hotel
rating website may be a single data source, users writing reviews of hotels are the
contributors associated with this data source.

290 H.-J. Hof et al.

With Decision-as-a-Service models, data from different sources are mixed together
to come to a decision. Hence, each data source and each contributor of a data source
has the possibility to influence the final decision. In addition, it is expected that the
proposed architecture is open and dynamic, i.e. data sources can be added, and con-
tributors are not known in advance. Sources are very likely dynamic, meaning that new
content is constantly added to the data source and those new contributors appear and
more mature contributors do not contribute anymore to a data source. A Reputation
Modell allows to evaluate the Security, Quality and the Meta-Services [14] of services
providing foundation, methods or data.

3 Reputation System

Reputation systems are quite common in dynamic and open systems that allow inter-
action between before unknown parties. A reputation score helps humans to decide
whom they will trust. Such a score also allows for automated decisions by machines.
One popular example of a reputation system for human interaction is the eBay repu-
tation system (see [15] for a thorough discussion). In [16], a current overview of
reputation systems is given. One can notice in [16], that current reputation systems
usually only focus on one single domain, hence are limited in their use. The
Decision-as-a-Service architecture proposed in this paper however, uses data sources
from multiple domains, hence calls for a reputation system that is not limited to one
single domain.

For a Decision-as-a-Service provider, it is of crucial importance that decisions are
reliable for the customers of the provider. The reliability of a decision can be negatively
affected by the following actions:

• Attack 1: A contributor of a data source provides fake data.
• Attack 2: Contributors of a data source cooperate to provide faked data and to

discredit other contributors (e.g. a large number of paid reviews at a hotel review
site).

Fig. 1. Layered Decision as a Service

Enabling Digital Transformation Using Secure Decisions 291

• Attack 3: An adversary influences the selection of data sources a Decision-
as-a-Service service is based on.

• Attack 4: An adversary manipulates data of a data source, either during storage or
during transfer of data.

To avoid the last attack of this list, authenticity and integrity of all data must be
guaranteed during transfer and storage. Several methods are available to achieve
authenticity and integrity, e.g. secure communication protocols like HTTP over TLS
(https, see [17] for details). A correct implementation (including certificate validity
checking) assumed, these solution works well and have the potential to avoid the last
attack of the list.

Avoiding the first three attacks of the list above is harder to achieve. This paper
presents a reputation system that could be used to protect against these attacks. The
reputation system imposes a goodness score g(contributor) on each contributor, judging
on the trustworthiness of the contributor. For all contributors, it is defined that

0� gðcontributorÞ� 1

where a goodness store of 0 denotes a totally untrustable contributor whereas a
goodness score of 1 means that a contributor is fully trusted.

Using the goodness scores of all contributors of a single data source (one domain),
a goodness score for the data source itself can be calculated, e.g. by using a weighted
sum of the goodness sources of all n contributors of this data source:

g sourceð Þ ¼
Xn

i¼1

ðwi � contributoriÞ

The weight wi of a contributori expresses the degree a contributor contributes to the
data of a data source. For example, the weight could be the number of reviews a
contributor has written on a hotel review site. The weights wi should be selected such
that

Xm

i¼1

wi ¼ 1

In the hotel review site example, m is the total number of reviews and the wi for a
contributori is calculated from the number of reviews (nor) this contributor has written:

wi ¼ nor
m

With these definitions, it is ensured that

0� g sourceð Þ� 1

292 H.-J. Hof et al.

The goodness score of a data source may be enriched using other information about
a data source. For example, the identifiability of contributors plays an important role in
our model, as it is otherwise not possible to use individual goodness scores to calculate
the overall score of a data source. Another aspect is the authentication method used by
the data source to authenticate contributors. If the authentication method is weak, it
may be easy for an attacker to impersonate other contributors and insert fake data. Yet
another aspect is the ease of creating new contributors in a data source. If it is easy for
an attacker to create a huge number of new contributors and then only once contribute
data to the data source for each created contributor, an attacker can spoil the data of the
data source. A quality factor is introduced to address the issues described in this
paragraph:

g sourceð Þ ¼ quality �
Xn

i¼1

ðwi � g contributorið ÞÞ

Where

quality ¼
Xn

i¼1

ðui � qaiÞ:

In this equation, qai is one quality aspect that applies for this type of data source and
ui is a weight factor that reflects the importance of the associated quality aspect.

With

qai 2 0; 1½ �

ui 2 0; 1½ �
Xn

i¼1

ui ¼ 1

it is ensured that

0� quality� 1;

hence

0� g sourceð Þ� 1

The knowledge of goodness scores of data sources helps Decision-as-a-Service
services to select appropriate data sources for the decision process. Rules may define a
lower boundary for the goodness score of data sources to be used. In addition, the
goodness score could be used as primary input for a confidence score of a decision. The
calculation of the goodness score for a contributor is the heart of the reputation system.
All other scores rely on this score. First, it is necessary to have a way to identify

Enabling Digital Transformation Using Secure Decisions 293

reliably the contributors of a single data source. IDs for identification may for example
be published (verified) email addresses. If no IDs are available, the only way to use this
data source is to assume it is a data source with only one contributor. However, in this
case it is very likely that the associated goodness score will be only average or lower.

The goodness score of a contributor should take into consideration that a con-
tributor may appear in more than one data source (domain). For example, a contributor
rating hotels on a hotel review website may also rate restaurants on a restaurant review
website. A reputation system that works on a potentially unlimited number of domains
(data sources) is a significant advance to the state of the art of reputation systems.

To address the problem of multiple data sources, it is necessary, to identify the
appearance of one single contributor in multiple data sources. Each data source may
use a different ID for this single contributor, for example, one site may use the email
address, another site may use a self-selected username (distinct from email addresses),
yet another side may use the full name of users. To address this issue, the proposed
reputation system associates a randomly chosen GUID (Global Unique ID) with one or
more IDs of contributors. For each ID, the confidence that this ID really belongs to the
GUID is also stored. This is important in the case of ambiguities. For example, there
may be more than one person named “Hans Maier” as the first name Hans and the last
name Maier are very common in Germany. In addition, depending of the authentication
method and the validation method at registration, it may be possible to impersonate a
contributor. The confidence about an association may change over time, hence the
goodness score of a contributor may be very dynamic over time. Finding a good and
secure way of associating different IDs will be an important part of the proposed
reputation system.

Criteria for judgment of the goodness of a contributor are specific for each data
source. These criteria may include

• Existing reputation mechanisms from data sources, e.g. user voting systems, user
rating systems, …

• Past behavior of a user.
• Characteristics that are appropriate to detect fake content (e.g. typical wording of

paid advertisments).
• …

The goodness score of a contributor is calculated using the n data sources a user
appears in with the best confidence score

g contributorð Þ ¼
Pn

i¼1ðconfidencei � gðcontributor@sourceiÞÞ
n

:

The goodness score of a contributor in one single data source is

g contributor@sourceið Þ ¼
Xn

i¼1

ðvi � gciÞ;

where gci is one criteria for goodness, and vi reflects the importance of this goodness
criteria.

294 H.-J. Hof et al.

With

qci 2 0; 1½ �

vi 2 ½0; 1�
Xn

i¼1

ui ¼ 1

it is ensured that

0� g contributor@sourceið Þ� 1;

hence

0� g contributorð Þ� 1:

The same semantic (0 = not trustworthy, 1 = fully trustworthy) as above applies.

4 Using Decision as a Service in Digital Transformation

Decision as a service in general and the reputation system in particular are critical
elements for the digital transformation of enterprises. Digital transformation is defined
according to [4] as “the use of technology to radically improve performance or reach of
enterprises” and affects the areas customer experience, operational processes and
business models. (see also [18, 19].

Four digital capabilities build the foundation layer for the improvements in these
areas and encompass unified processes and data, analytics capability, business and IT
integration and solution delivery [4]. While the last two capabilities are more concerned
with the realization of effective, solutions for the digital transformation are the first two
capabilities directly linked to decision as a service and the reputation system. Unified
processes and data are especially difficult to archive in an age of massive volatile
processes and unstructured data as described earlier and additionally, it is required to
include these processes and unstructured data as sources into the business analytics.
The recommended layer architecture for Decision as a service helps to overcome these
difficulties.

In the following some potential application of Decision as a service and the rep-
utation system in the areas customer experience, operational processes, and business
models will be described.

The area of customer experience provides several opportunities for application.

• Decision as a service can support the customer segmentation by providing relevant
information, e.g. from even divers social media contents, to define better customer
segments

• In the digital selling process decisions are constantly required to provide customers
with individualized marketing information and specific offers with better quality due

Enabling Digital Transformation Using Secure Decisions 295

to the usage of the reputation system. Additionally, Decision as a service can also
support a much leaner, streamlined customer process by eliminating non-relevant
alternatives, like in service add-ons, payment options. This also applies to service
processes with the customers or retailers.

• Cross-channel coherence can also profit from Decision as a service by ensuring that
the marketing content and offers are consistent across the channels.

The area of operational processes is a natural use-case for Decision as a service.

• Process improvements require often decisions within certain activities, but also the
decision, which process variant is applicable to a specific case (e.g. case based
routing). Decision as a service helps here to include not just company internal, but
also external sources with high data quality.

• As performance management needs higher operational transparency and the
decision-making process will more and more on data-drive the same reasoning also
applies to this building block of digital transformation

Also in the area of business model for Decision as a service can help to support the
digital transformation.

• Digital modified business in the form of product/service augmentation or digital
wrapper to existing products rely heavily on larger and more divers data sources and
high data quality about products, services, customer and other partners to provide
the right solution in time. Decision as a service help to fulfill this needs

• New digital business is by definition linked to digital services and with that
Decision as a service can also become an import part on new digital products. On
example might be trustworthy recommendation in share economy applications.

• With the digital globalization Decision as a service helps to foster a global network
and build transparency even for quite distant partners.

These applications show how the recommended layer architecture for Decision as a
service helps to successfully digital transform an existing enterprise.

5 Related Work

A more strategic view on Decision as a Service as means for Transformation is dis-
cussed in [13]. The positive effects of data-driven decision making on firm performance
are analyzed in [20]. Also in [21] the positive effects of analytics are discussed. In [22]
the basic concept of Decision as a Service is introduced.

A general introduction into reputation systems is given in [16]. The role of trust in
the internet is analyzed in [15]. The first use of reputation as metric for data quality has
been defined in [23]. The use of reputation in peer to peer networks is suggested in
[24]. The positive effects on separating different aspects of business processes are
discussed in [25].

296 H.-J. Hof et al.

6 Conclusion

Many enterprises and organizations improve their decisions making processes by
automation and the integration of more data sources. Although this approach increases
the velocity and precision of decision-making, it also creates new risks, because it
implies to integrate many more external data sources as before. This creates new
challenges to information system security. External data could be forged and leading to
false decision. Therefore, a reputation system for Decision-as-a-Service is presented.
The reputation system provides a score for the trustworthiness of a data source used for
Decision-as-Service. The reputation system is not limited to one domain but can be
used on a potentially unlimited number of domains, hence offers a high degree of
flexibility for the Decision-as-a-Service service. The output of the reputation system
may be used for selection of appropriate data sources as well as for the calculation of a
confidence score for the decision of a Decision-as-a-Service service. Future work will
have to further detail our reputation model and system architecture.

References

1. Andersson, H., Tuddenham, P.: Reinventing IT to Support Digitization. McKinsey,
New York (2014)

2. Markovitch, S., Willmott, P.: Accelerating the Digitization of Business Processes. McKinsey
& Company, New York (2014)

3. Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D.: The
Internet of Things: Mapping the Value Beyond the Hype. McKinsey & Company, San
Francisco (2015)

4. Capgemini Consulting, MIT Sloan Managment: Digital Transformation: A Road-Map
for Billion-Dollar Organizations (2011). http://www.capgemini.com/resources/digital-
transformation-a-roadmap-for-billiondollar-organizations

5. Weill, P., Woerner, S.: Thriving in an increasingly digital ecosystem. MIT Sloan Manage.
Rev. 56(4), 26–34 (2015)

6. Fortune, Inc.: Fortune 500 firms in 1955 vs. 2014; 89 % are gone, and we’re all better off
because of that dynamic “creative destruction,” http://www.aei.org/publication/fortune-500-
firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-
destruction/

7. Locker, M.: 8 iconic brands that have disappeared – Fortune. http://fortune.com/2014/11/09/
defunct-brands/

8. Fitzgerald, M., Kruschwitz, N., Bonnet, D., Welch, M.: Embracing digital technology: a new
strategic imperative. MIT Sloan Manage. Rev. 55, 1–12 (2013)

9. Schmidt, R., Nurcan, S.: BPM and social software. In: Ardagna, D., Mecella, M., Yang, J.,
Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C. (eds.) Business Process
Management Workshops, pp. 649–658. Springer, Heidelberg (2009)

10. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and
the path from insights to value. MIT Sloan Manage. Rev. 52, 21–32 (2011)

11. Schmidt, R., Möhring, M., Maier, S., Pietsch, J., Härting, R.-C.: Big data as strategic enabler -
insights from central European enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS
2014. LNBIP, vol. 176, pp. 50–60. Springer, Heidelberg (2014)

Enabling Digital Transformation Using Secure Decisions 297

http://www.capgemini.com/resources/digital-transformation-a-roadmap-for-billiondollar-organizations
http://www.capgemini.com/resources/digital-transformation-a-roadmap-for-billiondollar-organizations
http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
http://fortune.com/2014/11/09/defunct-brands/
http://fortune.com/2014/11/09/defunct-brands/

12. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Sebastopol (2012)
13. Schmidt, R., Möhring, M., Koot, C.: Data-centered cloud-environments as enabler for

decision as a service in small and medium enterprises. In: 2013 NAPLES Forum on Service,
Ischia, Napoli (2013)

14. Schmidt, R.: Meta-services as third dimension of service-oriented enterprise architecture. In:
Presented at the 2010 14th IEEE International Enterprise Distributed Object Computing
Conference Workshops (EDOCW) (2010)

15. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empirical
analysis of ebay’s reputation system. Econ. Internet E-commerce 11, 23–25 (2002)

16. Hendrikx, F., Bubendorfer, K., Chard, R.: Reputation systems: a survey and taxonomy.
J. Parallel Distrib. Comput. 75, 184–197 (2015)

17. Rescorla, E.: Http Over TLS (2000)
18. Fichman, R.G., Dos Santos, B.L., Zheng, Z.: (Eric): digital innovation as a fundamental and

powerful concept in the information systems curriculum. MIS Q. 38(2), 329–343 (2014)
19. Safrudin, N., Rosemann, M., Recker, J.C., Genrich, M.: A typology of business

transformations. 360° Bus. Transform. J. 2014, 24–41 (2014)
20. Brynjolfsson, E., Hitt, L., Kim, H.: Strength in numbers: how does data-driven

decisionmaking affect firm performance? (2011)
21. Davenport, T.H., Harris, J.G., Morison, R.: Analytics at Work: Smarter Decisions, Better

Results. Harvard Business Press, Cambridge (2010)
22. Delen, D., Demirkan, H.: Data, information and analytics as services. Decis. Support Syst.

55, 359–363 (2013)
23. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM 40, 103–110

(1997)
24. Oliver, H., Daanen, J.: Management of peer-to-peer networks using reputation data. Google

Patents (2004)
25. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of flexibility in business processes. In:

Proceedings Seventh Workshop on Business Process Modeling, Development, and Support
(BPMDS 2006), Requirements for Flexibility and the Ways to Achieve It, p. S. 90–93.
Luxemburg (2006)

298 H.-J. Hof et al.

Exploring Requirements for Multipurpose Crowd
Computing Framework

Alexander Smirnov1,2(✉) and Andrew Ponomarev1

1 St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,
39, 14th Liniya, St. Petersburg 199178, Russia
{smir,ponomarev}@iias.spb.su

2 ITMO University, 49, Kronverksky Pr., St. Petersburg 197101, Russia

Abstract. Crowd computing is a common name for variety of methods to solve
problems with a help of large, undefined groups of people communicating via
Internet. It is becoming widely used nowadays, but there still are many questions
about how to effectively program distributed scalable systems, employing human
information processing abilities. Crowd computing frameworks described in the
literature often focus only on several unique features leaving other almost without
attention, making it hard to render a systematic view of all the aspects of the
design. The goal of this paper is to collect and analyze all the requirements for
crowd computing frameworks that drove the development of these frameworks
recently. The united and unified set of requirements is meant to provide a basis
for further development of crowd computing frameworks and applications and,
at the same time, it can serve as a basis for comparison of that kind of products.

Keywords: Crowd computing · Crowdsourcing · Hybrid cloud · Requirements

1 Introduction

Distributed scalable systems allowing humans as one of the elements of information
processing loop help to address problems that still cannot be solved in fully automated
way. Crowd computing is a research field aimed on development of such systems. It is
agreed, that programming for this kind of hybrid human-machine systems requires new
approaches and techniques, different from (or extending) classical computer program‐
ming [1]. Frameworks for crowd computing provide tools to address the complexity of
this new kind of programming.

Crowd computing frameworks described in the literature often focus only on several
unique features leaving other almost without attention, making it hard to render a
systematic view of all the aspects of the design. The purpose of this paper is to design
a complete implementation-independent set of requirements for crowd computing plat‐
form. It also aims to explicate and articulate the set of assumptions and reflect on different
features that are required for such kind of systems, as well as features that are not required
but may be beneficent and why. Each implementation of crowd computing framework
is free to implement all of the proposed requirements or a subset of them, and that is a

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 299–307, 2016.
DOI: 10.1007/978-3-319-33313-7_23

design choice that reflects the purpose of the crowd computing platform and allows to
position it among other ones.

The proposed set of requirements can also play a role of a comparison framework,
a kind of a coordinate system to explore features and characteristics of particular crowd
computing frameworks.

The collection of requirements is sometimes referred as a set, however the word “set”
does not entirely express the idea, because the artifact that is the aim of this research not
only enumerates individual requirements, it also shows different kinds of relationship
between them, hence it is more a system of requirements, than a mere set.

Research methodology is the following:

1. Identify the set of research papers about platforms for crowd computing. To perform
this step three full-text scientific databases were used: ScienceDirect®, ACM Digital
Library, and SpringerLink. These databases were searched for papers published in
the last ten years (2005–2014) and presenting frameworks and platforms for crowd
computing.

2. Examine the selected papers looking for explicit requirements (e.g. in [2]), design
goals (e.g. in [3]) or distinctive features. All found requirements, goals and distinc‐
tive features were put into a non-uniform list of objects of obviously varying gran‐
ularity – a “raw” list of 83 items.

3. Aggregate and conceptualize the list obtained in the previous step.

The approach bears two main limitations. The first one is that primary search
keywords in all the explored databases were “crowd computing”, however, there are
several other terms highly related to human-powered computations: e.g., human compu‐
tations and crowdsourcing. Extending the list of keywords (by including “crowd‐
sourcing”, for example) could have resulted in a more broad set of requirements. The
second limitation is the focus on research publications. There are many commercial
systems (Amazon Mechanical Turk, CloudFactory, CrowdComputing Systems to name
a few) which are closed-source, and no details are available about how they are designed
and what kinds of workflows are used. The requirements analysis would benefit a lot if
accompanied by that systems examination.

2 Requirements Structure

All the identified requirements are divided into five topics. This mostly follows the
accentuation made by the authors of the analyzed papers, who mainly focus on specific
issues of human-powered systems. It should be stressed, that this set of topics and
requirements beneath each topic do not form a complete set of requirements, as it
construed in software engineering, it is a crowd computing-specific template that should
be extended for any particular system. The mentioned topics are:

Programming methods and tools. This topic contains all the requirements related to
how a program for a crowd computer should be composed, what features need to be
implemented by a programming environment to make the process of programming for
a crowd-based system versatile, effective and convenient.

300 A. Smirnov and A. Ponomarev

Quality. This is the most prominent concern in any crowd-based system [4–6]. This
topic covers all the requirements aimed on providing high quality output for crowd-
based information processing procedures.

User interface. There are at least two types of user interfaces in most crowd-based
systems: one that is exposed to crowd member, participating in some solution process
and the other that is used by problem setter and/or system administrator to monitor the
process of task execution. Existing crowd computing frameworks and research proto‐
types on various hardware platforms allow to generalize some common requirements
for both types of user interfaces.

Incentivization and rewarding mechanics. The need for incentive is an important
distinctive feature of crowd-based systems, as it was highlighted, e.g. by Bernstein
et al. in [1].

Interoperability. Versatile and convenient framework for programming and execu‐
tion of crowd computing tasks is important, but it is useless without access to a large
enough pool of human solvers, that will actually accomplish human tasks embedded in
the workflow. Currently, there are several platforms (Amazon Mechanical Turk is prob‐
ably the most well-known) where all crowd resources are concentrated. Building a new
crowd pool can be a complex and long process; therefore, in many cases it is reasonable
to be able to use existing crowds through an access to the respective platform.

In the rest of this section, each of these requirements topics will be discussed in detail.
Key requirements along with papers where they are mentioned are summarized in Table 1.

Table 1. Requirements and references mentioning them

Topic Requirement Source
Programming methods and tools Expressiveness [2, 3]

Support for structuring and pattern
orientation

[3, 5, 7]

Conceptial simplicity [3, 4, 8, 9]
Adaptability [7]

Quality Crowd member selection [3–5, 10–12]
Results processing [5, 6, 9, 10, 13]
Fraud detection [4]

User interface Task execution monitoring and control [4, 14]
Crowd member interface for mobile

devices
[2, 15]

Incentivization and rewarding Reward calculation and transfer [4]
Interoperability Interface to existing crowd platforms [3, 8]

2.1 Programming Methods and Tools

This topic organizes requirements to the language (as, for example, Dog in [3], Crowd‐
Flower Markup Language in [4]), which is provided by the framework to describe tasks
and information processing workflows.

Exploring Requirements for Multipurpose Crowd Computing Framework 301

Following generic requirements were detected during the analysis of existing
systems:

Expressiveness. As programming for a crowd-based system is significantly different
from programming for an ordinary hardware/software system, the programming tech‐
nology itself should be able to define not only the sequence of operations that must be
accomplished, but also additional information that is used in assigning a task to specific
human solver, his/her incentivization, rewarding and verification of the produced results.
Specifically expressiveness includes the ability to define:

Routing policy. The ability to specify crowd member features that are relevant in
deciding whether to allow a particular crowd member to try a task or not (e.g., [3, 10]).

Time-to-live specification. The ability to specify a timespan, when the solution of a
task is accepted (e.g., [11]).

Incentivization and rewarding. The ability to associate some reward with a task, and
describe conditions in which this reward (or its part) can be granted to the task executor
and how it is shared among several crowd members participating in task execution if it
is the case (for a thorough review of incentivization strategies, see [16]).

Verification rules. The ability to specify a verification procedure for a task.

Support for Structuring and Pattern Orientation. The ability to structure
programming code by extracting frequently used pieces of code and pieces of code
that accomplish some well-scoped task into separate entities – functions, proce‐
dures, methods – is inextricable from any modern programming language. Program‐
ming for crowd computing is not much different in this way, it is also convenient to
structure program in some way, leaving details in the lower layers of abstraction
[2–4]. However, there is more about structure. Much research has been performed
about which type of crowd output processing leads to the most reliable result in
which task and which crowd platform (crowd platform may matter because of
different demography) (e.g., [17–19]). The results of these studies, expressed in some
formalized form may result in a library of crowd computing procedures.

Conceptual Simplicity. This general requirement is explicitly declared in [3], other
proposals also take it into consideration, for example by sticking to well-known business
modeling language (BPMN) for describing an information processing routine for crowd
computing [5]. The rationale is, first, to manage the complexity of crowd computing caused
by human in the loop, second, to allow non-programmers to compose crowd computing
routines, making way for ad hoc crowd tasks. One of the already explored ways for
conceptual simplicity is graphical representation of the crowd computing routine, imple‐
mented, for example, in [4]. It means that workflow composition is performed by some
visual diagramming tool (CASE tool). The usage of BPMN (as in [5]) can also be classi‐
fied as using graphical representation (reusing a well-known one). Another, and almost the
opposite in some sense way of reaching conceptual simplicity is sticking to some well-
known formal representation, for example, first-order logics [7].

302 A. Smirnov and A. Ponomarev

Adaptability. This requirement is less agreed upon than others listed in this section. It
means that the program itself can be changed during execution if it occurs that changing
some part of it may lead to better quality results or be cheaper maintaining the same
quality level. The examples of research work focused on building adaptive crowd
computing workflows are [20, 21]. It should be noted, that this requirement matches
well with support for structuring and pattern orientation, as adaptability may be imple‐
mented as automatic switching implementations of the high-level library of building
blocks based on gathered performance metrics.

2.2 Quality

This topic contains all the requirements aimed on providing reliable output from crowd
members. The topic itself can also be interpreted as a high-level requirement of making
a quality management procedure a part of human-powered computing process.

We distinguish three middle-level requirements clarifying this high-level one: crowd
member selection, results processing and fraud detection.

Crowd Member Selection. Crowd member selection means that crowd computing
system should accept responses to a task only from some subset of available crowd
members, who are most likely to give the correct answer. There are multiple ways to
define that subset, and those ways can be seen as possible implementations of crowd
member selection requirement. The first branch of member selection implementations
leverage rich member profile. Profile here is understood in a wide way and can be
described as consisting of two parts: static part and dynamic part. The key difference
between them is that static part does not change as a result of task completion by crowd
member, whereas dynamic part does. Static part, contrary to literal interpretation, can
change; it can be changed by the crowd member himself, or refreshed as a result of some
internet robot collecting information about crowd member etc. Important point is that
updates of static member profile part are not results of task execution, but happen inde‐
pendently. Examples of information constituting static part of crowd member profile
include demographic data, education, location, interests and skills, social relations etc.
Dynamic part of crowd member profile contains information about completed tasks and
results of their validation if it was performed either in the form of raw data or in the form
of some aggregate model. This aggregate model is used to predict how reliable crowd
member would be at certain kind of tasks. The concrete structure of the model is out of
the scope of this paper, there are many models proposed in the literature (see, e.g.,
[13, 22, 23]). The second type of crowd member selection is done by addressing crowd
members specially prepared questions before assigning task. The answers to these ques‐
tions are known in advance and if the crowd member gives correct answers, the task
(with unknown answer) is assigned to him under the assumption that the crowd member
is qualified enough to execute it. This type of crowd member selection is used, for
example, by AMT. It is also very similar to the concept of “gold” used by Crowd‐
Flower [4].

Exploring Requirements for Multipurpose Crowd Computing Framework 303

Results Processing. Another middle-level requirement that falls into quality manage‐
ment topic is results processing. In some sense, results processing is opposite to crowd
member selection because the aim of the former is to raise the quality of answers received
from unreliable crowd members, and the aim of the latter is to assign task only to reliable
ones. In reality, however, these two ways of quality management are complementary to
each other. On one hand, crowd member selection is always done in uncertainty and
may result in false positives, i.e. assigning tasks to crowd members that are not able to
accomplish them with the required level of quality; on the other hand, relying only on
results processing may be reasonable for some tasks, but may result in significant growth
of cost for others, because of excessive duplication needed to overcome absence of
specific skill or knowledge from average crowd member. Example methods imple‐
menting results processing requirement range from simple ones like majority voting or
averaging to elaborate ones like probabilistic models. Special type of results processing
is testing through the experiment. This is applicable when it is hard to programmatically
find the answer of the task but easy to check.

Fraud Detection. The last middle-level requirement in this topic is fraud detection
[4, 24]. It is very close to results processing in that during fraud detection credibility of
the results received from crowd members is analyzed. However, difference is that fraud
detection tries to distinguish purposeful falsification performed by crowd member in
order to increase profit (as a function from the number of completed tasks) from low-
quality answer caused by insufficient competence. Implementation can be based on
various empirical rules and signals of unfair game (e.g., too quick replies [4]).

2.3 User Interface

There are at least three types of interfaces that should be provided by crowd computing
system: for developers, for end users, and for crowd members.

Interface for developers should contain various tools that help to assemble informa‐
tion processing workflow for particular crowd-based application. In several crowd
computing frameworks visual workflow construction is advocated as a way to simplify
crowd application development and make it available for non-programmers (e.g., [9]).

End user of a crowd computing system is a person who posts a problem (using
application). In case of unique problem, an end user may also share the role of a devel‐
oper, first, building information processing workflow, then, running this workflow with
the problem instance. Interface for the end user should include blocks for task definition,
result, and task execution monitoring and control.

User interface for crowd members allows to display task description to the crowd
member and to receive answer from crowd member. There are two major factors iden‐
tified during the analysis of existing crowd computing frameworks that influence crowd
member interface. First, crowd computing today actively used to process audio and
image data, so crowd member interface should be able to display and playback popular
media types and formats. Second, geo-enabled types of crowd computing become more
and more widespread making a separate class of applications: crowd sensing, partici‐
patory sensing applications. The point of this paper is that multipurpose crowd

304 A. Smirnov and A. Ponomarev

computing framework should be flexible enough to allow building crowd sensing appli‐
cations, along with more typical data processing applications. That means, that crowd
member interface for mobile platforms is necessary. This, however leads to a number
of sub-requirements and clarifications related to energy management efficiency of
mobile devices, addressed, for instance, in [2].

2.4 Incentivization and Rewarding Mechanics

In a general perspective, an end user should be able to associate some resource with the
new problem instance, and this resource is split among the crowd members involved in
the process of problem solving. The most popular type of resource in crowd computing
(and in social computing in general) systems is money, but other options are available,
e.g. reputation points (see, e.g., [16]). This topic is inextricably interwoven with the
respective requirement in “Programming methods and tools”. The difference is that in
“Programming methods and tools” it is required that there should be a way to express
incentivization and rewarding policy and associate it with information processing work‐
flow, and here it is required that crowd computing framework should be able to hold
and process rewarding information during execution of the workflow.

2.5 Interoperability

Setting aside technological features of the platform, the success of problem solution via
crowd computing depends highly on the availability of human solvers with the required
skills. There are many services nowadays, each manages its own pool of crowd workers.
A newly developed platform may choose a subset of following options: (a) to form its
own pool of crowd workers, highlighting its difference from other platforms (e.g., [4]);
(b) use programming interfaces (APIs) of existing platforms to have an access to their
crowd pools (e.g., [3, 8, 14, 25]). Interoperability, construed here as a possibility to build
crowd computing workflows crossing boundaries of single platform is a complex
problem. It inevitably affects features of quality and profile management offered by the
original system.

3 Conclusion

The paper contains a conceptualization of general high-level requirements for crowd
computing frameworks, collected from scientific papers describing original frameworks
and arranged into five aggregate topics. These requirements are intended to serve, first,
as a template for specific, low-level set of requirements driving the development of some
crowd computing framework, second, as a structure that can help to compare different
frameworks.

An interesting finding of the performed literature analysis is that there is only one
publication [4] that explicitly discusses incentivization and rewarding functionality of
the crowd computing framework. It can be explained by a selection bias, as only research
crowd computing frameworks (prototypes) were analyzed; commercial frameworks

Exploring Requirements for Multipurpose Crowd Computing Framework 305

probably pay much more attention to it. The only exception only supports the noticed
lack of attention to this topic from the research community, as [4] is actually a publication
about commercial system (CrowdFlower).

Major limitations of this paper are the accent on literally “crowd computing” frame‐
work descriptions and scientific papers. Relaxing any of these restrictions (for example,
considering papers dedicated to crowdsourcing framework design or commercial
systems) could have resulted in a more complete set of requirements. This is essentially
one of two future research directions of the authors. There are several closely connected
terms expressing the idea of human-powered computations: crowdsourcing, human
computations, crowd computing, and it seems fruitful to analyze existing frameworks
in each of those areas. However, it rises the number of papers to analyze to a very high
level, demanding a development of the appropriate methodology to deal with it. The
other future research direction is to design a crowd computing framework based on the
identified requirements.

Acknowledgements. The research was partially supported by projects funded by grants
13-07-00271, # 14-07-00345, # 14-07-00363 of the Russian Foundation for Basic Research,
project 213 (program 8) of the Presidium of the Russian Academy of Sciences, project # 2.2 of
the basic research program “Intelligent information technologies, system analysis and
automation” of the Nanotechnology and Information Technology Department of the Russian
Academy of Sciences, and Grant 074-U01 of the Government of the Russian Federation.

References

1. Bernstein, A., Klein, M., Malone, T.W.: Programming the global brain. Commun. ACM 55,
41 (2012)

2. Ra, M., Liu, B., Porta, T. La, Govindan, R.: Medusa: a programming framework for crowd-
sensing applications categories and subject descriptors. In: Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services, MobiSys 2012, pp.
337–350 (2012)

3. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment
for structured social computing. In: Proceedings of the 24th Annual ACM Symposium User
interface Software Technology, UIST 2011, pp. 53–64 (2011)

4. Van Pelt, C., Sorokin, A.: Designing a scalable crowdsourcing platform. In: Proceedings of
the 2012 International Conference on Management Data, SIGMOD 2012, p. 765 (2012)

5. Kucherbaev, P., Tranquillini, S., Daniel, F., Casati, F., Marchese, M., Brambilla, M.,
Fraternali, P.: Business processes for the crowd computer. In: Rosa, M., Soffer, P. (eds.) BPM
Workshops 2012. LNBIP, vol. 132, pp. 256–267. Springer, Heidelberg (2013)

6. Dai, P., Mausam, Weld, D.S.: Artificial intelligence for artificial artificial intelligence. In:
The 25th AAAI Conference on Artificial Intelligence, pp. 1153–1159 (2011)

7. Morishima, A., Shinagawa, N., Mitsuishi, T.: CyLog/Crowd4U: a declarative platform for
complex data-centric crowdsourcing. Proc. VLDB Endow. 5, 1918–1921 (2012)

8. Franklin, M., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries
with crowdsourcing. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, pp. 1–12 (2011)

306 A. Smirnov and A. Ponomarev

9. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing complex work.
In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology, UIST 2011 (2011)

10. Horowitz, D., Kamvar, S.D.: The anatomy of a large-scale social search engine. In:
Proceedings of the 19th International Conference on World Wide Web, WWW 2010, p. 431
(2010)

11. Phuttharak, J., Loke, S.W.: LogicCrowd: A declarative programming platform for mobile
crowdsourcing. In: Proceedings of the 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, TrustCom 2013, pp. 1323–1330 (2013)

12. Phuttharak, J., Loke, S.W.: Towards declarative programming for mobile crowdsourcing:
P2P aspects. In: 1st International Workshop on Mobile Collaborative Crowdsourcing and
Sensing (M-CROS) in conjunction with the 15th IEEE International Conference on Mobile
Data Management (2014)

13. Dai, P., Lin, C.H., Weld, D.S.: POMDP-based control of workflows for crowdsourcing. Artif.
Intell. 202, 52–85 (2013)

14. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with
turkomatic. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, CSCW 2012, p. 1003. ACM Press, New York (2012)

15. Ra, M., Liu, B., La Porta, T., Govindan, R.: Demo – medusa: a Programming Framework for
Crowd-Sensing Applications. In: Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys 2012, pp. 481–482 (2012)

16. Scekic, O., Truong, H.-L., Dustdar, S.: Incentives and rewarding in social computing.
Commun. ACM 56, 72 (2013)

17. Hirth, M., Hoßfeld, T., Tran-Gia, P.: Analyzing costs and accuracy of validation mechanisms
for crowdsourcing platforms. Math. Comput. Model. 57, 2918–2932 (2013)

18. Kazai, G., Kamps, J., Milic-Frayling, N.: Worker types and personality traits in
crowdsourcing relevance labels. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM 2011, pp. 1941–1944 (2011)

19. Okubo, Y., Kitasuka, T., Aritsugi, M.: A preliminary study of the number of votes under
majority rule in crowdsourcing. Procedia Comput. Sci. 22, 537–543 (2013)

20. Zhang, H.: Computational Environment Design (2012)
21. Barowy, D., Curtsinger, C., Berger, E., McGregor, A.: AutoMan: a platform for integrating

human-based and digital computation. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA 2012,
pp. 639–654 (2012)

22. Tarasov, A., Delany, S.J., Mac Namee, B.: Dynamic estimation of worker reliability in
crowdsourcing for regression tasks: making it work. Expert Syst. Appl. 41, 6190–6210 (2014)

23. Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient crowdsourcing of unknown
experts using bounded multi-armed bandits. Artif. Intell. 214, 89–111 (2014)

24. Yang, Y., Zhu, B.B., Guo, R., Yang, L., Li, S., Yu, N.: A comprehensive human computation
framework – with application to image labeling. In: Proceedings of the 16th ACM
International Conference on Multimedia Pages, pp. 479–488 (2008)

25. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: TurKit: human computation algorithms
on mechanical turk. In: Proceedings of the 23rd Annual ACM Symposium on User Interface
Software and Technology, pp. 57–66. ACM, New York (2010)

Exploring Requirements for Multipurpose Crowd Computing Framework 307

Adaptive Enterprise Architecture for Digital
Transformation

Alfred Zimmermann1,2, Rainer Schmidt1,2(✉), Dierk Jugel1,2,3, and Michael Möhring2,4

1 Reutlingen University, Reutlingen, Germany
{alfred.zimmermann,dierk.jugel}@reutlingen-university.de

2 Munich University, Munich, Germany
Rainer.Schmidt@hm.edu

3 Rostock University, Rostock, Germany
dierk.jugel@uni-rostock.de
4 Aalen University, Rostock, Germany

michael.moehring@htw-aalen.de

Abstract. The Internet of Things, Enterprise Social Networks, Adaptive Case
Management, Mobility systems, Analytics for Big Data, and Cloud services envi‐
ronments are emerging to support smart connected products and services and the
digital transformation. Biological metaphors of living and adaptable ecosystems
provide the logical foundation for self-optimizing and resilient run-time envi‐
ronments for intelligent business services and related distributed information
systems with service-oriented enterprise architectures. We are investigating
mechanisms for flexible adaptation and evolution for the next digital enterprise
architecture systems in the context of the digital transformation. Our aim is to
support flexibility and agile transformation for both business and related enter‐
prise systems through adaptation and dynamical evolution of digital enterprise
architectures. The present research paper investigates digital transformations of
business and IT and integrates fundamental mappings between adaptable digital
enterprise architectures and service-oriented information systems. We are putting
a spotlight with the example domain – Internet of Things.

Keywords: Digital transformation · Internet of Things · Digital enterprise
architecture · Architectural integration method · Adaptable services and systems

1 Introduction

Smart connected products and services expand physical components from their tradi‐
tional core by adding information and connectivity services using the Internet. Smart
products and services amplify the basic value and capabilities and offer exponentially
expanding opportunities [1]. Smart connected products combine three fundamental
elements: physical components, smart components, and connectivity components. A
challenging example of digital transformation for smart products results from capabil‐
ities of the Internet of Things [2].

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 308–319, 2016.
DOI: 10.1007/978-3-319-33313-7_24

Information, data and knowledge are fundamental concepts of our everyday activi‐
ties. Social networks, smart portable devices, and intelligent cars, represent only a few
instances of a pervasive, information-driven vision [1] for the next wave of the digital
economy and the digital transformation. The digital transformation of our society
changes the way we live, work, learn, communicate, and collaborate. This disruptive
change interacts with all information processes and systems that are important business
enablers for the digital transformation since years.

Major trends for the digital enterprise transformation are investigated by [3]: (i)
digitization of products and services: products and services are enriched with value-
added services or are completely digitized, (ii) context-sensitive value creation: though
popularity of mobile devices location contexts are used more frequently and enable on
demand customized solutions, (iii) consumerization of IT: one of the challenges is the
safe integration of mobile devices into a managed enterprise architecture for both busi‐
ness and IT, (iv) digitization of work: today it is much easier to work together over large
distances, which allows often an uncomplicated outsourcing of business tasks, and (v)
digitization of business models: businesses need to adapt and have to rethink their busi‐
ness models to develop innovative business models according to employees’ current
skills and competencies.

Enterprise Architecture Management [4] for Services Computing is the approach of
choice to organize, build and utilize distributed capabilities for Digital Transformation
[5]. They provide flexibility and agility in business and IT systems. The development
of such applications integrates the Internet of Things, Web and REST Services, Cloud
Computing and Big Data management, among other frameworks and methods, like
architectural semantic support. Today’s information systems span a broad range of
domains including: intelligent mobility systems and services, intelligent energy support
systems, smart personal health-care systems and services, intelligent transportation and
logistics services, smart environmental systems and services, intelligent systems and
software engineering, intelligent engineering and manufacturing.

The Internet of Things enables a large number of physical devices to connect each
other to perform wireless data communication and interaction using the Internet as a
global communication environment. Information and data are central components of our
everyday activities. Social networks, smart portable devices, and intelligent cars, repre‐
sent a few instances of a pervasive, information-driven vision of current enterprise
systems with IoT and service-oriented enterprise architectures. Social graph analysis
and management, big data, and cloud data management, ontological modeling, smart
devices, personal information systems, hard non-functional requirements, such as loca‐
tion-independent response times and privacy, are challenging aspects of the above soft‐
ware architecture [6].

Novel technologies demand an increased permeability between “inside” and
“outside” of the borders of the classic enterprise system with traditional Enterprise
Architecture Management. In this paper we are concentrating on following research
questions to support the digital transformation by flexible architectural environments:

RQ1: What are novel architectural elements, compositions, and constraints usable for
digitization?

Adaptive Enterprise Architecture for Digital Transformation 309

RQ2: What is the blueprint for an extended Enterprise Reference Architecture, which
is able to host even new and small types of architectural descriptions, e.g. for the
Internet of Things?

RQ3: How can we integrate a dynamically growing number of architectural elements
for digitized products and services into an evolutionary architecture?

In our current research we are extending our first version of the Enterprise Services
Architecture Reference Cube (ESARC) [4, 7, 8] by mechanisms for architectural inte‐
gration and evolution to support adaptable information systems and architectural trans‐
formations for changing business models. ESARC is an extendable classification frame‐
work, which sets a conceptual baseline for digital architectural models. ESARC makes
it possible to verify, define and track the improvement path of different business and IT
changes considering alternative business operating models, business functions and busi‐
ness processes, enterprise services and systems, their architectures and related technol‐
ogies. The novelty in our current research about digital enterprise architectures
comprises new aspects for architectural evolution and integration methods as an instru‐
ment to guide digital transformation endeavors.

The following Sect. 2 sets the architectural context for Digital Transformation with
the Internet of Things. Section 3 describes our research platform for Digital Enterprise
Architecture, which is a starting point of our mapping approach and scope for agile and
adaptable information systems. Section 4 revisits and extends our Architecture Meta‐
model Integration Method and covers the seeding research for agile adaptable and trans‐
formable enterprise architectures and systems. Finally, we summarize in Sect. 5 our
research findings and sketch our future research plans.

2 Digital Transformation with the Internet of Things

The Internet of Things maps and integrates real world objects into the virtual world, and
extends the interaction with mobility systems, collaboration support systems, and
systems and services for big data and cloud environments. Sensors, actuators, devices
as well as humans and software agents interact and communicate data to implement
specific tasks or more sophisticated business or technical processes. Therefore, smart
products as well as their production are supported by the Internet of Things and can help
enterprises to create more customer-oriented products. Furthermore, the Internet of
Things is an important influence factor of the potential use of Industry 4.0 [9].

In the context of current fast changing markets [2] the Internet of Things (IoT)
fundamentally revolutionizes today’s digital strategies with disruptive business oper‐
ating models [10] and holistic governance models for business and IT [Ro06]. Reasons
for strategic changes by the Internet of Things [2] are: (i) information of everything –
enables information about what customers really demand, (ii) shift from the thing to the
composition – the power of the IoT results form the unique composition of things in an
always-on always-connected environment, (iii) convergence – integrates people, things,
places, and information, and (iv) next-level business – the Internet of Things is changing
existing business capabilities by providing a way to interact, measure, operate, and
analyze business. With the huge diversity of Internet of Things technologies and

310 A. Zimmermann et al.

products organizations have to leverage and extend previous enterprise architecture
efforts to enable business value by integrating the Internet of Things into their classic
business and computational environments.

The Internet of Things supports many connected physical devices over the Internet
as a global communication platform. The Internet of Things is the result of a convergence
of visions [11] like, a Things-oriented vision, an Internet-oriented vision, and a
Semantic-oriented vision. A cloud centric vision for architectural thinking of a ubiqui‐
tous sensing environment is provided by [12]. The typical configuration of the Internet
of Things includes besides many communicating devices a cloud-based server archi‐
tecture, which is required to interact and perform remote data management and calcu‐
lations.

A main question of current and further research is, how the Internet of Things archi‐
tecture fits in a context of a services-based enterprise-computing environment? A
service-oriented integration approach for the Internet of Things was elaborated in [13].
The core idea for millions of cooperating devices is, how they can be flexibly connected
to form useful advanced collaborations within the business processes of an enterprise.
The research in [13] proposes the SOCRADES architecture for an effective integration
of Internet of Things in enterprise services. The architecture from [13] abstracts the
heterogeneity of embedded systems, their hardware devices, software, data formats and
communication protocols. A layered architecture structures following bottom-up func‐
tionalities and prepares these layers for integration within an Internet of Things focused
enterprise architecture: Devices Layer, Platform Abstraction Layer, Security Layer,
Device Management Layer with Monitoring and Inventory Services, and Service Life‐
cycle Management, Service Management Layer, and the Application Interface Layer.

Today, the Internet of Things includes a multitude of technologies and specific
application scenarios of ubiquitous computing [11], like wireless and Bluetooth sensors,
Internet-connected wearable systems, low power embedded systems, RFID tracking,
smartphones, which are connected with real world interaction devices, smart homes and
cars, and other SmartLife scenarios. To integrate all aspects and requirements of the
Internet of Things is difficult, because no single architecture can support today the
dynamics of adding and extracting these capabilities. A first Reference Architecture
(RA) for the Internet of Things is proposed by [14] and can be mapped to a set of open
source products. This Reference Architecture covers aspects like: cloud server-side
architecture, monitoring and management of Internet of Things devices and services, a
specific lightweight RESTful communication system, and agent and code on often-small
low power devices, having probably only intermittent connections.

The Internet of Thing architecture has to support a set of generic as well as some
specific requirements [14, 15]. Generic requirements result from the inherent connection
of a magnitude of devices via the Internet, often having to cross firewalls and other
obstacles. Having to consider so many and a dynamic growing number of devices we
need an architecture for scalability. Because these devices should be active in a 24 × 7
timeframe we need a high-availability approach [16], with deployment and auto-
switching across cooperating datacenters in case of disasters and high scalable
processing demands. Additionally an Internet of Thing architecture has to support auto‐
matic managed updates and remotely managed devices. Often connected devices collect

Adaptive Enterprise Architecture for Digital Transformation 311

and analyze personal or security relevant data. Therefore it is mandatory to support
identity management, access control and security management on different levels: from
the connected devices through the holistic controlled environment.

Specific architectural requirements [11, 14] result from key categories, such as
connectivity and communications, device management, data collection and analysis,
computational scalability, and security. Connectivity and communications groups
existing protocols like HTTP, which could be an issue on small devices, due to the
limited memory sizes and because of power requirements. A simple, small and binary
protocol can be combined with HTTP-APIs, and has the ability to cross firewalls. Typical
devices of the Internet of Things are currently not or not well managed by device
management functions of the current Enterprise Architecture Management.

Desirable requirements of device management [14] include the ability to locate or
disconnect a stolen device, update the software on a device, update security credentials
or wiping security data from a stolen device. Internet of Things systems can collect data
streams from many devices, store data, analyze data, and act. These actions may happen
in near real time, which leads to real-time data analytics approaches. Server infrastruc‐
tures and platforms should be high scalable to support elastic scaling up to millions of
connected devices, supporting alternatively as well smaller deployments. Security is a
challenging aspect of this high-distributed typical small environment of Internet of
Things. Sensors are able to collect personalized data and can bring these data to the
Internet.

3 Digital Enterprise Architecture

Our contribution is an extended approach about the systematic composition and inte‐
gration of architectural data, models, metamodels, and ontologies using adaptable
service-oriented enterprise architecture frameworks by means of different integrated
service types and architecture capabilities. ESARC - Enterprise Services Architecture
Reference Cube, [4, 7, 17] is an integral service-oriented enterprise architecture cate‐
gorization framework, which sets a classification scheme for main enterprise architec‐
ture models, as a guiding instrument for concrete decisions in architectural engineering
viewpoints. We are currently integrating metamodels for EAM and the Internet of
Things.

The ESARC – Enterprise Services Architecture Reference Cube [4, 7] (see Fig. 1)
completes existing architectural standards and frameworks in the context of EAM –
Enterprise Architecture Management [18–21] and extends these architecture standards
for services and cloud computing in a more specific practical way. ESARC is an original
architecture reference model, which provides a holistic classification model with eight
integral architectural domains. ESARC abstracts from a concrete business scenario or
technologies, but is applicable for concrete architectural instantiations.

Metamodels and their architectural data are the core part of the Enterprise Archi‐
tecture. Enterprise architecture metamodels [21, 22] should support decision support
[23] and the strategic [8] and IT/Business [20] alignment. Three quality perspectives are
important for an adequate IT/Business alignment and are differentiated as: (i) IT system

312 A. Zimmermann et al.

qualities: performance, interoperability, availability, usability, accuracy, maintaina‐
bility, and suitability; (ii) business qualities: flexibility, efficiency, effectiveness, inte‐
gration and coordination, decision support, control and follow up, and organizational
culture; and finally (iii) governance qualities: plan and organize, acquire and implement
deliver and support, monitor and evaluate.

Architecture Governance, as in [10] sets the governance frame for well aligned
management practices within the enterprise by specifying management activities: plan,
define, enable, measure, and control. The second aim of governance is to set rules for
architectural compliance respecting internal and external standards. Architecture Gover‐
nance has to set rules for the empowerment of people, defining the structures and proce‐
dures of an Architecture Governance Board, and setting rules for communication.

A layered Reference Architecture for the Internet of Things is proposed in [14] and
(Fig. 2). Layers can be instantiated by suitable technologies for the Internet of Things.
A current holistic approach for the development for the Internet of Things environments
is presented in [15]. This research has a close link to our work about leveraging the
integration of the Internet of Things into a framework of digital enterprise architectures.
The main contribution from [15] considers a role-specific development methodology,
and a development framework for the Internet of Things. The development framework
contains a set of modeling languages for a vocabulary language to describe domain-
specific features of an IoT application, an architecture language for describing applica‐
tion-specific functionality, and a deployment language for deployment features.

Associated with this language set are suitable automation techniques for code gener‐
ation, and linking to reduce the effort for developing and operating device-specific code.

Fig. 1. Enterprise Services Architecture Reference Cube [Zi11], [Zi13b], [Zi14]

Adaptive Enterprise Architecture for Digital Transformation 313

The metamodel for Internet of Things applications from [15] defines elements of an
Internet of Things architectural reference model like, IoT resources of type: sensor,
actuator, storage, and user interface. Internet of Thing resources and their associated
physical devices are differentiated in the context of locations and regions. A device
provides the capability to interact with users or with other devices. The base functionality
of Internet of Things resources is provided by software components, which are handled
in a service-oriented way by using computational services.

Fig. 2. Internet of Things Reference Architecture [14]

4 Architectural Integration and Adaptation

We have developed the architectural evolution approach to integrate and adapt valuable
parts of existing EA frameworks and metamodels from theory and practice [24]. Addi‐
tionally to a new building mechanism for dynamically extending core metamodels we
see a chance to integrate small-decentralized mini-metamodels, models and data of
architectural descriptions coming from small devices and new decentralized architec‐
tural element, which traditionally are not covert by enterprise architecture environments.

Our focused model integration approach is based on special correlation matrixes
(Fig. 3) to identify similarities between analyzed model elements from different prove‐
nience and integrate them according their most valuable contribution for an integrated
model. According to [25] we are building the conceptualization of EA in 4 steps – from
stakeholders’ needs, to the concerns of stakeholders, then the extraction of stakeholder
relevant concepts, and last but not least the definition of relationships for new tailored
architectural metamodels.

314 A. Zimmermann et al.

Fig. 3. Correlation analysis and integration matrix

First we analyze and transform given architecture resources with concept maps and
extract their coarse-grained aspects in a standard way [24] by delimiting architecture
viewpoints [20, 26], architecture models [27, 28] their elements, and illustrating these
models by a typical example. Architecture viewpoints are representing and grouping
conceptual business and technology functions regardless of their implementation
resources like people, processes, information, systems, or technologies. They extend
these information by additional aspects like quality criteria, service levels, KPI, costs,
risks, compliance criteria a. o. We have adopted modeling concepts from ISO/IEC 42010
[26, 29] like Architecture Description, Viewpoint, View, and Model. Architectural
metamodels are composed of their elements and relationships, and are represented by
architecture diagrams.

To integrate a huge amount of dynamically growing Internet of Things architectural
descriptions into a consistent enterprise architecture is a considerable challenge.
Currently we are working on the idea of integrating small EA descriptions (Fig. 4) for
each relevant IoT object. EA-IoT-Mini-Descriptions consists of partial EA-IoT-Data,
partial EA-IoT-Models, and partial EA-IoT-Metamodels associated with main IoT
objects like IoT-Resource, IoT-Device, and IoT-Software-Component [14, 15]. Our
research in progress main question asks, how we can federate these EA-IoT-Mini-
Descriptions to a global EA model and information base by promoting a mixed automatic
and collaborative decision process [30, 31]. For the automatic part we currently extend
model federation and transformation approaches [32–34] by introducing semantic-
supported architectural representations, e.g. by using partial and federated ontologies
[35] and associated mapping rules - as universal enterprise architectural knowledge
representation, which are combined with special inference mechanisms.

Adaptive Enterprise Architecture for Digital Transformation 315

Fig. 4. Structure of EA-IoT-Mini-Description

We are extending architecture metamodels as an abstraction for architectural
elements and relate them to architectural ontologies [24, 36]. Ontologies are a base for
semantic modeling of digital enterprise architectures in a most flexible way. As
mentioned in this section, integration of enterprise architectural elements is a complex
task, which is today mainly supported by human effort and integration methodologies,
and only additionally by some challenging federated approaches [33, 34] for automated
Enterprise Architecture model maintenance. We believe that a part of this manual inte‐
gration can be automated or additionally supported by human decisions using architec‐
tural cockpits, if we better understand the analysis approaches [28] and collaborative
architectural decision mechanisms [19, 23, 30, 37] for adaptable digital enterprise archi‐
tectures as a base for the digital business transformation.

We have adopted an agile manageable spectrum of multi-attribute analysis meta‐
models and related architectural viewpoints from [20, 23] to support adaptable enterprise
architectures. We have extracted the idea of digital ecosystems from [38] and linked this
with main strategic drivers for system development and their evolution. Core concepts
of ecosystem’s enterprise architectures are based in our approach on specific micro‐
architectures, which are placed in the context of Internet systems. The preferred mech‐
anisms for modularization rely on decoupling and on interface standardization. Archi‐
tecture governance models show the way to achieve adaptable ecosystems and to
orchestrate the platform evolution.

Adaptation drives the survival [38] of enterprise architectures, platforms and appli‐
cation ecosystems. Adapting rapidly to new technology and market contexts improves
the fitness of adaptive ecosystems. Volatile technologies and markets typically drive the
evolution of ecosystems. Also we have to consider internal factors. Most important for
supporting the evolution of ecosystems is the systematic architecture-governance align‐
ment. Both are critical factors, which affect the ecosystem-wide motivation and the
ability to innovate ecosystem structures and change processes. The alignment of Archi‐
tecture-Governance shapes resiliency, scalability and composability of components and
services for distributed information systems.

316 A. Zimmermann et al.

5 Conclusion

From our research in progress work on integrating Internet of Things architectures into
Enterprise Architecture Management results some interesting theoretical and practical
implications. By considering the context of service-oriented enterprise architecture, we
have set the foundation for integrating metamodels and related ontologies for orthogonal
architecture domains within our Enterprise Architecture Management approach for the
Internet of Things. Architectural decisions for Internet of Things objects (see RQ1), like
IoT-Resource, Device, and Software Component, are closely linked with code imple‐
mentations. Therefore, researchers can use our approach for integrating and evaluating
Internet of Things in the field of enterprise architecture management. Our results can
help practical users to understand the integration of EAM and Internet of Things as well
as can support architectural decision making in this area. Limitations can be found e.g.
in the field of practical multi-level evaluation of our approach as well as domain-specific
adoptions.

In this paper, we have introduced a new perspective for adaptable digital enterprise
architectures (see RQ2), which is model-based and extends main standards, technologies
and agile business models. We have developed a metamodel-based EA model extraction
and integration approach for enterprise architecture viewpoints, models, standards,
frameworks and tools for EAM towards consistent semantic-supported service-oriented
reference enterprise architectures in cloud environments.

The presented architectural classification and integration approach (see RQ3)
supports new architectural integration aspects for the Internet of Things and other small
or mobile environments as well. Our goal is to be able to better support architecture
development, assessments, architecture diagnostics, monitoring with decision support,
and optimization of the business, information systems, and technologies. We intend to
provide a unified and consistent ontology-based EAM-methodology for the architecture
management models of relevant information resources, especially for service-oriented
and cloud computing systems. Today we additionally observe companies adopting a
three level architecture: On the basic level the classic systems of records, on a further
level the systems of differentiation, and at the third level new IT opportunities for the
systems of innovation. Expanding the classical EAM agenda thru ontology support with
business rules and metamodel updating we see the chance for future work and research.

We contribute to the current IS literature by introducing this new perspective for
adaptable digital enterprise architectures. EA managers can benefit from new knowledge
about adaptable enterprise architectures and can use it for decision support and can
reduce operational risks. Some limitations (e.g. use and adoption in different sectors)
must be considered. Future research can adopt and evaluate our results for EAM and
can take a look at the use in different industry sectors.

Adaptive Enterprise Architecture for Digital Transformation 317

References

1. Porter, M.E., Heppelmann, J.E.: How smart connected products are transforming competition.
Harv. Bus. Rev. 92, 64–88 (2014)

2. Walker, M.J.: Leveraging Enterprise Architecture to Enable Business Value With IoT
Innovations Today. Gartner Research (2014). http://www.gartner.com/analyst/49943

3. Leimeister, J.M., et al.: Research program “Digital Business Transformation HSG”. In:
Working Paper Services of University of St. Gallen’s Institute of Information Management,
No. 1, St. Gallen, Switzerland (2014)

4. Zimmermann, A., et al.: Capability diagnostics of Enterprise Service Architectures using a
dedicated Software Architecture Reference Model. In: IEEE International Conference on
Services Computing (SCC 2011), Washington DC, USA, pp. 592–599 (2011)

5. Aier, S., et al.: Towards a more integrated EA planning: linking transformation planning with
evolutionary change. In: Proceedings of EMISA 2011, Hamburg, Germany, pp. 23–36 (2011)

6. Bass, C., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley,
Massachusetts (2013)

7. Zimmermann, A., et al.: Towards service-oriented enterprise architectures for big data
applications in the cloud. In: EDOC 2013 with SoEA4EE, Vancouver, BC, Canada, 9–13
September 2013, pp. 130–135 (2013)

8. Schmidt, R., Möhring, M.: Strategic alignment of cloud-based architectures for big data. In:
Proceedings of the 17th IEEE International Enterprise Distributed Object Computing
Conference Workshops EDOCW, Vancouver, Canada, pp. 136–143 (2013)

9. Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., Jozinović, P.:
Industry 4.0 - potentials for creating smart products: empirical research results. In:
Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 16–27. Springer, Heidelberg (2015)

10. Weill, P., Ross, J.W.: IT Governance: How Top Performers Manage It Decision Rights for
Superior Results. Harvard Business School Press, Boston (2004)

11. Atzori, L., et al.: The Internet of Things: a survey. J. Comput. Netw. 54, 2787–2805 (2010)
12. Gubbi, J., et al.: Internet of Things (IoT): a vision, architectural elements, and future

directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)
13. Spiess, P., et al.: SOA-based integration of the Internet of Things in enterprise services. In:

ICWS 2009, pp. 968–975 (2009)
14. WSO2 White Paper: A reference architecture for the Internet of Things. Version 0.8.0 (2015).

http://wso2.com
15. Patel, P., Cassou, D.: Enabling high-level application development for the Internet of Things.

CoRR abs/1501.05080, J. Syst. Softw. (2015, submitted)
16. Ganz, F., et al.: A resource mobility scheme for service-continuity in the Internet of Things.

In: GreenCom 2012, pp. 261–264 (2012)
17. Zimmermann, A., et al.: Adaptable enterprise architectures for software evolution of

SmartLife ecosystems. In: Proceedings of the 18th IEEE International Enterprise Distributed
Object Computing Conference Workshops (EDOCW), Ulm, Germany, pp. 316–323 (2014)

18. The Open Group: TOGAF Version 9.1. Van Haren Publishing, Zaltbommel (2011)
19. Bente, S., et al.: Collaborative Enterprise Architecture. Morgan Kaufmann, Waltham (2012)
20. Lankhorst, M., et al.: Enterprise Architecture at Work: Modelling, Communication and

Analysis. Springer, Heidelberg (2013)
21. The Open Group: Archimate 2.0 Specification. Van Haren Publishing, Zaltbommel (2012)
22. Saat, J., Franke, U., Lagerström, R., Ekstedt, M.: Enterprise architecture meta models for IT/

Business Alignment Situations. In: IEEE-EDOC Conference 2010, Vitoria, Brazil (2010)
23. Johnson, P., et al.: IT Management with Enterprise Architecture. KTH, Stockholm (2014)

318 A. Zimmermann et al.

http://www.gartner.com/analyst/49943
http://wso2.com

24. Zimmermann, A., et al.: Towards an integrated service-oriented reference enterprise
architecture. In: ESEC/ WEA 2013 on Software Ecosystem Architectures, St. Petersburg,
Russia, pp. 26–30 (2013)

25. Buckl, S., et al.: Modeling the supply and demand of architectural information on enterprise
level. In: 15th IEEE International EDOC Conference 2011, Helsinki, Finland, pp. 44–51
(2011)

26. ISO/IEC/IEEE: Systems and Software Engineering – Architecture Description. Technical
Standard (2011)

27. Iacob, M.-E., et al.: Delivering Business Outcome with TOGAF® and ArchiMate®. eBook
BiZZdesign (2015)

28. Buckl, S., Matthes, F., Schweda, C.M.: Classifying enterprise architecture analysis
approaches. In: Poler, R., van Sinderen, M., Sanchis, R. (eds.) IWEI 2009. LNBIP, vol. 38,
pp. 66–79. Springer, Heidelberg (2009)

29. Emery, D., Hilliard, R.: Every architecture description needs a framework: expressing
architecture frameworks using ISO/IEC 42010. In: IEEE/IFIP WICSA/ECSA, pp. 31–39
(2009)

30. Jugel, D., Schweda, C.M., Zimmermann, A.: Modeling decisions for collaborative enterprise
architecture engineering. In: 10th Workshop Trends in Enterprise Architecture Research
(TEAR), held on CAISE 2015, Stockholm, Sweden (2015)

31. Johnson, P., Ekstedt, M.: Enterprise Architecture – Models and Analyses for Information
Systems Decision Making. Studentliteratur, Pozkal (2007)

32. Breu, R., et al.: Living models – ten principles for change-driven software engineering. Int.
J. Softw. Inform. 5(1–2), 267–290 (2010)

33. Farwick, M., et al.: A meta-model for automated enterprise architecture model maintenance.
In: EDOC 2012, pp. 1–10 (2012)

34. Trojer, T., Farwick, M., Häusler, M., Breu, R.: Living modeling of IT architectures:
challenges and solutions. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS,
vol. 8950, pp. 458–474. Springer, Heidelberg (2015)

35. Khan, N.A.: Transformation of enterprise model to enterprise ontology. Master thesis,
Linköping University, Sweden (2011)

36. Antunes, G., et al.: Using ontologies for enterprise architecture analysis. In: 17th IEEE
International Enterprise Distributed Object Computing Conference Workshops 2013, pp.
361–368 (2013)

37. Jugel, D., Schweda, C.M.: Interactive functions of a cockpit for enterprise architecture
planning. In: International Enterprise Distributed Object Computing Conference Workshops
and Demonstrations (EDOCW), Ulm, Germany, 2014, pp. 33–40 (2014)

38. Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy. Morgan
Kaufmann, San Francisco (2013)

Adaptive Enterprise Architecture for Digital Transformation 319

FedCloudNet Workshop Papers

Preface of FedCloudNet 2015

Cloud federation enables cloud providers to collaborate and share their resources to
create a large virtual pool of resources at multiple network locations. To support this
scenario, it is necessary to research and develop techniques to federate cloud network
resources, enabling the instantiation and provision of overlay networks across geo-
graphically dispersed clouds, and to derive the integrated management cloud layer that
enables an efficient and secure deployment of federated cloud applications. This
workshop allowed researchers to present their latest research results on federated cloud
networking, including software defined networking (SDN) technology, network
overlays, and traffic engineering.

In “BEACON: A Cloud Network Federation Framework,” Moreno et al. present
the BEACON Framework, which will enable the provision and management of
cross-site virtual networks for federated cloud infrastructures in order to support the
automated deployment of applications and services across different clouds and data
centers.

In “Federated Networking Services in Multiple OpenStack Clouds” Celesti et al.
focus on federated cloud networking services considering multiple OpenStack clouds.
In particular, they present a preliminary outcome of an innovative design of a feder-
ation management system acting as an external service provider dealing with federated
networking services among multiple federated OpenStack clouds.

In “Networking Introspection and Analysis for Virtual Machine Migration in
Federated Clouds,” Andronico et al. explore a way to use dynamically provided
resources migrating virtual machines (VMs). In particular, they discuss some reference
use cases and required tools and present a concrete implementation of an advanced
monitoring agent.

In “SHYAM: A System for Autonomic Management of Virtual Clusters in Hybrid
Clouds,” Loreti et al. discuss SHYAM, a software layer for the autonomic deployment
and configuration of virtual clusters on a hybrid cloud. This system can be used to face
the temporary (or permanent) lack of computational resources on the private cloud,
allowing cloud bursting in the context of big data applications.

In “A Database-Specific Pattern for Multi-Cloud High Availability and Disaster
Recovery,” Xiong et al. present an architectural pattern describing the integration of
high availability and disaster recovery (HADR). This HADR pattern for database
cluster replication implements both synchronous and asynchronous replication con-
currently for high availability and disaster recovery purposes. In particular, the authors
focus on database cluster replication between private cloud and public cloud
environments.

In “An OpenStack-Based Implementation of a Volunteer Cloud,” Distefano et al.
focus on the intersection between volunteering and cloud computing. In particular they
propose a blueprint of a Cloud@Home implementation starting from OpenStack. The

reference, layered architecture and the preliminary implementation of a Cloud@Home
framework based on OpenStack are discussed.

In “Cloud Services Composition Through Semantically Described Patterns: A Case
Study,” Di Martino et al. present a methodology, based on the semantic representation
of cloud patterns, cloud services, and applications, to support users in developing
cloud-oriented software meeting their explicit requirements.

We wish to thank all the people who submitted papers to FedCloudNet 2015 for
having shared their work with us, as well as the members of the FedCloudNet 2015
Program Committee, who made a remarkable effort in reviewing the submissions. We
also thank the organizers of ESOCC 2015 for their help with the organization of the
event.

Antonio Puliafito
Ignacio M. Llorente
Philippe Massonet

Preface of FedCloudNet 2015 323

Organization

Workshop Organizers

Antonio Puliafito University of Messina, Italy
Ignacio M. Llorente Complutense University of Madrid, Spain
Philippe Massonet CETIC, Belgium

Steering Committee

Philippe Massonet CETIC, Belgium
Antonio Celesti University of Messina, Italy

Program Committee

Antonio Puliafito University of Messina, Italy
Ignacio M. Llorente Universidad Complutense de Madrid, Spain
Philippe Massonet CETIC, Belgium
Eduardo Huedo Universidad Complutense de Madrid, Spain
Francesco Longo University of Messina, Italy
Jens Jensen Science and Technology Facilities Council, UK
Rubén S. Montero Universidad Complutense de Madrid, Spain
Anna Levin IBM Research, Israel
Rafael Moreno Universidad Complutense de Madrid, Spain
Luciano Barreto Federal University of Santa Catarina, Brazil
Tino Vázquez OpenNebula Systems, Spain
Giovanni Merlino University of Messina, Italy
Bruno Crispo University of Trento, Italy
Dean Lorenz IBM Research, Israel
Zsolt Nemeth MTA SZTAKI, Hungary
Yaniv Ben-Itzhak IBM Research, Israel
Chrysa Papagianni National Technical University of Athens, Greece
Stella Kafetzoglou National Technical University of Athens, Greece
Luis Muñoz University of Cantabria, Spain

Publicity Chairs

James Bowater Flexiant, UK

Sponsors

BEACON: A Cloud Network Federation
Framework

Rafael Moreno-Vozmediano1(B), Eduardo Huedo1, Ignacio M. Llorente1,
Rubén S. Montero1, Philippe Massonet2, Massimo Villari3,

Giovanni Merlino3, Antonio Celesti3, Anna Levin4, Liran Schour4,
Constantino Vázquez5, Jaime Melis5, Stefan Spahr6, and Darren Whigham7

1 Universidad Complutense de Madrid, Madrid, Spain
{rmoreno,ehuedo,llorente,rubensm}@ucm.es

2 Centre D’excellence en Technologies de L’information
et de la Communication (CETIC), Charleroi, Belgium

philippe.massonet@cetic.be
3 Università di Messina, Messina, Italy

{mvillari,gmerlino,acelesti}@unime.it
4 IBM Israel - Science and Technology Ltd, Petah Tikva, Israel

{lanna,lirans}@il.ibm.com
5 OpenNebula Systems, Madrid, Spain

{cvazquez,jmelis}@opennebula.systems
6 Lufthansa Systems, Kelsterbach, Germany

stefan.spahr@lhsystems.com
7 Flexiant Limited, London, UK

dwhigham@flexiant.com

Abstract. This paper presents the BEACON Framework, which will
enable the provision and management of cross-site virtual networks for
federated cloud infrastructures in order to support the automated deploy-
ment of applications and services across different clouds and datacenters.
The proposed framework will support different federation architectures,
going from tightly coupled (datacenter federation) to loosely coupled
(cloud federation and multi-cloud orchestration) architectures, and will
enable the creation of Layer 2 and Layer 3 overlay networks to inter-
connect remote resources located at different cloud sites. A high level
description of the main components of the BEACON framework is also
introduced.

1 Introduction

There is a strong industry demand for automated solutions to federate cloud
network resources, and to derive the integrated management cloud layer that
enables an efficient and secure deployment of resources and services independent
of their location across distributed infrastructures. From big companies and large

This research was supported by the European Union’s Horizon 2020 Research and
Innovation Program under the Grant Agreement No. 644048.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 325–337, 2016.
DOI: 10.1007/978-3-319-33313-7 25

326 R. Moreno-Vozmediano et al.

cloud providers interested in unifying and consolidating multiple datacenters
or cloud sites to SMEs building hybrid cloud configurations, federated cloud
networking is needed to support the automated deployment of applications across
different clouds and datacenters.

Many big companies (e.g. banks, hosting companies, etc.) and also many
large Government institutions maintain several distributed datacenters or server
farms, for example to serve to multiple geographically distributed offices, to
implement HA (High Availability), or to guarantee server proximity to the end
user. Federated cloud networking is needed to unify and consolidate datacenters
in a virtual way, so that different distributed datacenters can be exposed as a
single cloud-like virtual datacenter, and networks of different datacenters can
be interconnected in a virtual overlay. Some large cloud providers offer differ-
ent, geographically dispersed regions, so that users can choose to deploy their
infrastructures and services in one particular region attending to different cri-
teria, such as proximity, prices, or available resources. Usually these regions
are isolated from other regions inside the same provider, to achieve fault tol-
erance and stability, and there is no interaction or cooperation between them.
Federated cloud networking is needed to support distributed services, and pro-
vide the overlay networks needed to interconnect servers on different regions, so
freeing the service administrator from manually configuring these remote con-
nections. Many SMEs have their own on-premise private cloud infrastructures
to support the internal computing necessities and workloads. These infrastruc-
tures are often oversized to satisfy peak demand periods, and avoid performance
slowdown. Hybrid cloud (or cloud-bursting) model is a solution to reduce the
on-premise infrastructure size, so that it can be dimensioned for an average load,
and it is complemented with external resources from a public cloud provider to
satisfy peak demands. Federated cloud networking is needed to improve this
kind of hybrid configurations, so that local and remote resources can be seen as
they belonged to the same cloud, and communication channels between these
resources can be automatically configured.

Different types of federation architectures for clouds and datacenters have
been proposed and implemented [9] (e.g. cloud bursting, cloud brokering or cloud
peering) with different level of resource coupling and interoperation among the
cloud resources, from loosely coupled, typically involving different administrative
and legal domains, to tightly coupled federation, usually spanning multiple dat-
acenter locations within an organization. In both situations, an effective, agile
and secure federation of cloud networking resources is key to impact the deploy-
ment of federated applications. An integrated cloud management platform able
to leverage a federated cloud network will be able to deliver to applications a
reliable and secure access to a large geographically dispersed pool of resources.

This paper presents the BEACON Framework1, funded by an European
project (H2020 Program), which will enable the provision and management of
cross-site virtual networks for federated cloud infrastructures, to support the
automated deployment of applications and services across different clouds and

1 http://www.beacon-project.eu.

http://www.beacon-project.eu

BEACON: A Cloud Network Federation Framework 327

datacenters. BEACON is fully committed to open source software. Cloud net-
working aspects will be based on OpenDaylight2, a collaborative project under
The Linux Foundation, and specifically it will leverage and extend the Open-
DOVE3 project with new rich inter-cloud APIs to provision cross-site virtual
networks overlays. The new inter-cloud network capabilities will be leveraged by
existing open source cloud platforms, OpenNebula4 and OpenStack5, to deploy
multi-cloud applications. In particular, different aspects of the platforms will be
extended to accommodate the federated cloud networking features like multi-
tenancy, federated orchestration of networking, compute and storage manage-
ment or the placement and elasticity of the multi-cloud applications.

2 Architectures for Cloud Network Federation

Most cloud federation scenarios can be classified into three main federation
architectures: datacenter federation (peer cloud architecture), cloud federation
(hybrid cloud architecture), and multi-cloud orchestration (cloud broker archi-
tecture). In this section, we describe these three main federation architectures,
and introduce some security considerations both at application level and archi-
tecture level. The BEACON framework will support these different federation
architectures, and will enable the creation of different kind of cross-site virtual
networks (e.g. Layer 2 or Layer 3 overlay networks), according to the user needs,
to interconnect remote resources located at different cloud sites.

2.1 Datacenter Federation and Interconnection

Datacenter federation architecture (see Fig. 1) corresponds to a tightly coupled
federated cloud scenario [10], also called peer cloud federation, consisting of
several private cloud premises (or datacenters) usually belonging to the same
organization (or closely coordinated), and normally governed by the same Cloud
Manager (CM) type, such as OpenNebula or OpenStack. In this scenario, each
CM instance can have full control over remote resources (e.g., placement control,
full monitoring, or VM life-cycle management and migration control). In addi-
tion, other advanced features can be allowed, including the creation of cross-site
networks, the support for cross-site migration of Virtual Machines (VMs), the
implementation of high-availability techniques among remote cloud instances,
the creation of virtual storage systems across site boundaries, etc. The interaction
between CM is usually implemented using private cloud interfaces (administra-
tion level APIs) and data models (e.g., OpenNebula XML-RPC6 or OpenStack
component APIs7). On top of the CM there could be a SM to simplify service
definition, deployment and management.
2 http://www.opendaylight.org.
3 http://wiki.opendaylight.org/view/Open DOVE.
4 http://www.opennebula.org.
5 http://www.openstack.org.
6 http://docs.opennebula.org/4.4/integration/system interfaces/api.html.
7 http://developer.openstack.org/api-ref.html.

http://www.opendaylight.org
http://wiki.opendaylight.org/view/Open_DOVE
http://www.opennebula.org
http://www.openstack.org
http://docs.opennebula.org/4.4/integration/system_interfaces/api.html
http://developer.openstack.org/api-ref.html

328 R. Moreno-Vozmediano et al.

Within this architecture, the Network Manager (NM) is responsible for man-
aging virtual networks, both inside and among datacenters. The NM can be inte-
grated with the CM (e.g. OpenNebula Network Manager) or can be a separated
component (e.g. OpenDove). NMs in different datacenters interact and cooperate
using (possibly private) inter-cloud northbound APIs and protocols (e.g. Open-
DayLight Controller REST API8 or the OpenNebula VirtualNetwork XML-RPC
API9) that enable the instantiation and management of cross-datacenter net-
works, mainly based on SDN (Software Defined Networks) and NFV (Network
Functions Virtualization) technologies.

Fig. 1. Architecture for datacenter federation and interconnection.

These cross-site networks are commonly implemented as Layer 2 (L2) or
Layer 3 (L3) overlay virtual networks on top of the physical interconnection
network, which can be a public network (i.e., a L3 insecure network, such as
Internet) or a dedicated high-performance link (usually a private L2 or L3 net-
work). In this context, the most challenging situation is deploying a cross-site
secure L2 virtual network over an insecure L3 public connection.

2.2 Cloud Federation and Interconnection

Cloud federation architecture (see Fig. 2) corresponds to a loosely coupled feder-
ated cloud scenario that combines multiple independent cloud (both public and
8 http://wiki.opendaylight.org/view/OpenDaylight Controller:REST Reference and

Authentication.
9 http://docs.opennebula.org/4.12/integration/system interfaces/api.html#

actions-for-virtual-network-management.

http://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_and_Authentication
http://wiki.opendaylight.org/view/OpenDaylight_Controller:REST_Reference_and_Authentication
http://docs.opennebula.org/4.12/integration/system_interfaces/api.html#actions-for-virtual-network-management
http://docs.opennebula.org/4.12/integration/system_interfaces/api.html#actions-for-virtual-network-management

BEACON: A Cloud Network Federation Framework 329

private clouds). A typical realization of this architecture is a hybrid cloud [7,11]
or inter-cloud federation, also called cloud bursting model, which combines the
existing local cloud infrastructure (e.g., a private cloud managed by a CM, such
as OpenNebula or OpenStack) with external resources from one or more remote
clouds, which can be either public clouds (e.g. Amazon EC2, FlexiScale, Digital
Ocean, etc.), or partner clouds (managed by the same or a different CM).

The main goal of this hybrid model is to provide extra capacity to the
local cloud to satisfy peak demand periods, and transforming the local data-
center in a highly scalable application hosting environment. This architecture is
loosely coupled, since the local cloud has no advanced control over the virtual
resources deployed in external clouds, beyond the basic operations allowed by
these providers. The interaction between the local CM and the various remote
clouds is usually implemented using public cloud interfaces (user level APIs)
and data models (e.g. Amazon AWS EC2 API10 or OCCI11). As in the previous
architecture, on top of the CM there could be a SM.

Fig. 2. Architecture for cloud federation and interconnection.

Due to the heterogeneity of network managers (NMs) in different clouds, each
cloud can provide different capabilities to interconnect with external resources,
regarding the possibility of creating L2 or L3 overlay networks, VPNs, secure
channels, or even high level network functions like balancers. In some clouds,
VMs are seen as independent resources (e.g., Amazon EC2-Classic platform),
that can be accessed using a public IP, so the final user is responsible for config-
uring the appropriate communication channels (e.g. overlay tunnels or VPNs).
Other clouds provide private networking to interconnect VMs inside the cloud

10 http://aws.amazon.com/ec2.
11 http://occi-wg.org.

http://aws.amazon.com/ec2
http://occi-wg.org

330 R. Moreno-Vozmediano et al.

(e.g. Amazon EC2-VPC platform) and also some kind of VPN capabilities to
implement a L3 overlay between local network and remote resources. However,
methods to instantiate and configure these VPNs differ from one provider to
another. Regarding the creation of L2 overlay networks between independent
clouds, currently there are not any cloud technology offering this kind of capa-
bilities, so this is one of the most important challenges in cloud federation and
interconnection.

2.3 Multi-cloud Orchestration and Interconnection

Multi-cloud orchestration architecture (see Fig. 3), also called cloud brokering
architecture [6], usually consists of a central broker or orchestrator, which has
access to several public independent clouds. This orchestrator can deploy vir-
tual resources in the different clouds, according to criteria specified by the user,
such as location restrictions, cost restrictions, etc., and should also provide net-
working capabilities to enable the interconnection of different resources deployed
in geographically dispersed clouds. There could be also decentralized brokering
schemes, with several brokers interacting to each other. We assume that, as in
the previous architectures, the orchestrator is basically a multi-cloud SM, which
is responsible for managing application and network services across clouds.

Fig. 3. Architecture for multi-cloud orchestration and interconnection.

Similar to the cloud federation architecture, this architecture is also loosely
coupled, since the orchestrator interacts with the different clouds using public

BEACON: A Cloud Network Federation Framework 331

cloud interfaces (user level APIs, such as Amazon AWS EC2 API12 or OCCI13),
which usually do not allow advanced control over the virtual resources deployed.

Regarding networking issues, the orchestrator must be able to deal with dif-
ferent network managers with different network capabilities, hence it is respon-
sible for creating the required interconnection topologies (e.g. L2/L3 overlay
networks) on top of these heterogeneous cloud network services. These overlay
networks will be based on virtualized network functions (VNFs) and services,
such as bridges, routers, load balancers or firewalls, deployed on the different
clouds involved.

2.4 Security Considerations

In BEACON we can have a privileged environment where to enforce and test
new security features. Indeed, from the security perspective federated cloud net-
working provides the opportunity to monitor the virtualized compute, storage
and network resources across a federation. This provides opportunities to detect
attacks at the federation level that could not be detected at the individual cloud
level. We can identify many security issues having a global picture of services
deployed and executed in more federated Clouds. The security issues we are con-
sidering range from the Intrusion Detections, to vulnerabilities scanning, even to
the distributed denial of service (DDoS). For example the DDoS attacks might
be difficult to detect by monitoring activity within a single cloud. However DDoS
attack patterns could be detected earlier by monitoring data from the cloud fed-
eration. Within the BEACON project we will identify opportunities for improv-
ing detection of threats thanks to the enhanced monitoring capabilities provided
by federated cloud networking.

To summarize the work we are providing in BEACON, in Table 1 we classify
our security considerations in four different categories for the BEACON archi-
tecture. The table considers security issues at the level of the cloud manager and
the network manager on the vertical axis, and distinguishes between application
level security and infrastructure level security requirements on the horizontal
axis. Application level security deals with the security of the application when it
is deployed in a federated cloud. Infrastructure level security deals with securing
the cloud infrastructure services, i.e. the cloud manager and the network man-
ager, and protecting them from unauthorized access from applications and users.
We review the four categories of security issues identified and then conclude that
the requirements from the BEACON case studies indicate that application level
security needs to be studied at both the cloud manager and network manager
levels.

The requirements from the different case studies of BEACON essentially
refer to application level security considerations at both the cloud manager level
and the network manager level. The application service manifest should specify
required security services to be performed by the cloud manager and the network

12 http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html.
13 http://occi-wg.org/about/specification.

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
http://occi-wg.org/about/specification

332 R. Moreno-Vozmediano et al.

Table 1. Application and infrastructure level security considerations.

Component Application level security Infrastructure level security

Cloud manager Applications should be able
to request security
services from the cloud
manager, e.g., to perform
vulnerability analysis on a
given VM or to apply
application level firewall
rules to a given HTTP
session.

The cloud manager services
must be secured with
respect to applications
running in the cloud and
system administrators.

Network manager Applications should be able
to request security
services from the network
manager, e.g., to apply
firewall rules on one or
several network layers,
vulnerability analysis at
the network level or to
apply network intrusion
detection.

The network manager
services must be secured
from unauthorized access,
e.g. access to the network
controller must be
controlled, the
communication between
the controller and the
virtual switches must be
encrypted.

managers to ensure that the federated cloud meets the security requirements of
the application. To guarantee security at cloud and network management at
infrastructure levels, it is necessary to analyze the network managers provided
by OpenNebula, OpenStack/Neutron and OpenDaylight/OpenDove, to see how
they can be integrated and exchange security policies. It cloud be also interesting
to analyze the issues related to the location of the network services, e.g. to decide
which firewall NFV must be used when several instances are available. This
question of which security function to use will also have to take into account live
migration of VM within the cloud federation.

3 The BEACON Framework

The main goal of BEACON project is to define and implement a federated cloud
network framework that enables the provision of federated cloud infrastructures,
with special emphasis on inter-cloud networking and security issues, to support
the automated deployment of applications and services across different clouds
and datacenters. The implementation of these new federated cloud network-
ing features, that will leverage on Software Defined Network (SDN) technol-
ogy, include both, the configuration of overlay networks inside different cloud
providers, and the interconnection of these overlays among geographically dis-
persed sites based on various cloud technologies.

One of the key points of this project is that it is fully driven by real industry
uses cases proposed by different cloud actors, such as cloud providers, cloud
technology developers, and cloud-user companies and institutions, which are

BEACON: A Cloud Network Federation Framework 333

represented by the different partners of the project consortium. These use cases
address the different federation architectures described in previous section, such
as datacenter federation (peer cloud architecture), cloud federation (hybrid cloud
architecture), and multi-cloud orchestration (cloud broker architecture).

Figure 4 depicts a high level view of the BEACON framework architecture,
the main components, and the open source projects that will be extended and
integrated to implement the BEACON architecture in the case of cloud federa-
tion. The proposed network federation model addresses the challenge of feder-
ating clouds based on different network technologies in their network backbone
as well as in their cloud management platforms.

Fig. 4. BEACON federated architecture.

The three main components of the BEACON middleware are the Service
Manager, the Cloud Manager and the Network Manager. The Service Manager
is responsible for the instantiation of the service application by requesting the
creation and configuration of VMs for each service component included in the
service definition, using the Cloud interfaces exposed by the cloud manager. The
Cloud Manager is responsible for the placement of VMs into physical hosts. It
receives requests from the Service Manager through the cloud interface to create
and resize VMs, and finds what is the best placement for these VMs that satis-
fies a given set of constraints (set by the Service Manager) and optimizes a site
total utility function. The Cloud Manager is free to place, and move, the VMs
anywhere, even on remote sites within the federation, as long as the placement is
done within the constraints. The Network Manager is responsible for allocating
network resources to manage federated cloud virtual network and overlay net-
works across geographically dispersed sites. The left and right parts of the figure
show two different cloud stacks running on different cloud providers. Together

334 R. Moreno-Vozmediano et al.

they form a cloud federation with two cloud providers. The middle part of the
figure shows that the cloud manager and network managers of the two cloud
providers communicate to share resources and manage the cloud federation. The
top of the figure shows two application level case studies that are deployed on
the cloud federation (a highly scalable airline application distributed over mul-
tiple cloud providers, and multi-cloud security use case). The bottom part of
the figure shows the open source projects that are used to implement the fed-
erated architecture. The cloud provider on the left part of the figure is using
OpenNebula to manage its cloud infrastructure. The cloud provider on the right
is using OpenStack to manage its cloud infrastructure. The network managers
of both cloud providers are both using OpenDaylight to manage the network
resources and supports communications between the two cloud providers. This
is an example of heterogeneous cloud federation because two different cloud mid-
dleware technologies, i.e. OpenNebula and OpenStack, are being used.

BEACON will develop and integrate OpenDaylight drivers for the overlay
network managers of OpenNebula and OpenStack. They will be part of the
BEACON framework. This will allow cloud providers, who use either OpenNeb-
ula or OpenStack, to form federations and share resources. By forming cloud
network federations, the users of these cloud providers will thus automatically
benefit from an increased pool of virtualized resources for their applications.

4 State-of-the-Art in Cloud and Network Federation

Cloud federation has been an important research field and is still an open issue
in cloud computing. Different initiatives have been presented so far regarding
energy efficiency [16], storage [17], Assistive Technology [18], dataweb [19] and
so on. In the literature, we can find many different realizations, and research
works focussed on the different federation architectures. Regarding the tightly
coupled peer cloud architecture, some of the most interesting initiatives are the
RESERVOIR project [10], which enables the federation and interoperability of
infrastructure providers, taking advantage of their aggregated capabilities to pro-
vide a seemingly infinite service computing utility, and the Contrail system [2],
which provides collaboration, migration, and SLA management across multiple
heterogeneous clouds that can be exploited as a single cloud. There are also
various research works that show the advantages of hybrid cloud architectures
[7,11,12,15], which enable the transformation the local data center in a highly
scalable application hosting environment, by combining the existing corporate
infrastructure with remote extra resources from one or more public clouds. This
is also the case of the StratusLab initiative, which use the hybrid capabilities of
the OpenNebula Cloud Manager to support and provision scalable grid services.
Finally, cloud brokering has been one of the most explored federation architec-
tures, both in industry and academia. There are various commercial cloud bro-
kers (e.g. RightScale14, SpotCloud15 or Kavoo16, among others), open-source
14 http://www.rightscale.com.
15 http://www.spotcloud.com.
16 http://www.kavoo.com.

http://www.rightscale.com
http://www.spotcloud.com
http://www.kavoo.com

BEACON: A Cloud Network Federation Framework 335

initiatives (e.g. Aeolus17 or CompatibleOne18), and many other research works
[4,6,13,14] and projects [3,5] on cloud brokering, that help cloud customers to
cope with a variety of cloud interfaces, instance types, and pricing models, by
providing intermediation, arbitrage, and aggregation capabilities. Regarding the
networking capabilities of the above mentioned federated platforms (based on
peer, hybrid, or broker architectures), most of them rely on public IP addressing
to access compute instances deployed in different clouds, or use VPN tunnel-
ing mechanisms to improve security that usually are manually configured by
the user. However, none of them provides any automatic method or interface to
allow a user to instantiate and provision an overlay network across geographically
dispersed clouds to interconnect virtual machines deployed in different clouds.

To provide federated networking capabilities, it is necessary a virtual net-
work management system supporting seamless infrastructure, in which services
can be deployed on demand across different network platforms and architectures.
There are various solutions that provide tools for cloud network management,
such as OpenDaylight [8], Contrail controller [2] and federated SDN controller
for network virtualization overlays [1]. OpenDaylight is a collaborative project
under The Linux Foundation created by leading industry partners with a goal
to foster innovation and create an open and transparent approach to Software
Defined Networking (SDN). An OpenDaylight controller provides flexible man-
agement of both physical and virtual networks. The network management capa-
bilities implemented in OpenDaylight controller allow efficient integration with
cloud computing platforms. For example, OpenDaylight is already integrated
with Neutron, which provides SDN-based networking solution for OpenStack
clouds. In order for OpenDaylight being able to manage heterogeneous networks
spread over different cloud computing platforms, it has to be integrated with
additional platforms, e.g. OpenNebula. With all the advantages the existing
OpenDaylight solution brings to cloud network management, it does not provide
a solution for federated cloud network management at its current state. There-
fore, it lacks necessary federated cloud management interfaces both to the phys-
ical and virtual network elements. In order for the system being able to create
and manage simultaneous virtual networks on demand with arbitrary topologies
on a loosely coupled federated cloud systems, an additional extension must be
defined and implemented in OpenDaylight controller that will allow its integra-
tion with federated cloud management systems. This integration should enable
virtual network services across federated clouds. The Contrail Controller is a
logically centralized but physically distributed SDN controller that is responsi-
ble for providing the management of the virtualized network. While the Contrail
controller provides control plane, the forwarding plane of the Contrail system
is represented by Contrail’s virtual routers. Even though Contrail’s virtual net-
work management system is integrated with OpenStack, it is limited to the
use of the specific virtual routers and does not support commonly deployed
open virtual switches (vSwitch). In addition, in order for Contrail controller to

17 http://www.aeolusproject.org.
18 http://www.compatibleone.com.

http://www.aeolusproject.org
http://www.compatibleone.com

336 R. Moreno-Vozmediano et al.

provide full solution for federated virtualized cloud network management, it
needs to be extended to support additional cloud platforms, such as OpenNeb-
ula for example. The federated SDN controller for network virtualization overlays
is defined in [1]. It addresses the VXLAN and NVGRE overlays managed by fed-
erated SDN controller. This controller definition should be extended to support
heterogeneous clouds, in order to be able to work in a federated cloud based on
different cloud technologies. Also, the controller must include interfaces to the
federated cloud management system, which exposes federated cloud services to
applications.

5 Conclusions and Future Work

This paper has analyzed three main types of federation architectures: datacen-
ter federation (peer cloud architecture), cloud federation (hybrid cloud archi-
tecture), and multi-cloud orchestration (cloud broker architecture). The paper
presented the BEACON federated cloud network framework that enables the
provision of federated cloud infrastructures, with special emphasis on inter-
cloud networking and security issues. The challenge is to design and develop
a framework that can be integrated into different cloud middleware and yet pro-
vide support virtual networking and security for the different federation types
mentioned above. Future work first involves integrating the BEACON feder-
ated cloud network framework into OpenNebula and OpenStack, and experi-
menting with OpenNebula and OpenStack based cloud federations. In a second
phase experimentation will focus on the heterogeneous case where the BEACON
framework provides interoperability between OpenNebula and OpenStack clouds
within the same federation.

References

1. Balus, F., Stiliadis, D., Bitar, N.: Federated SDN-based controllers for NVO3
(2012). http://tools.ietf.org/html/draft-sb-nvo3-sdn-federation-00

2. Contrail White Paper. Overview of the contrail system, components and usage
(2014). http://contrail-project.eu

3. Ferrer, A., Hernandez, F., Tordsson, J., Elmroth, E., et al.: Optimis: a holistic
approach to cloud service provisioning. Future Gener. Comput. Syst. 28, 66–77
(2012)

4. Guzek, M., Gniewek, A., Bouvry, P., Musial, J., Blazewicz, J.: Cloud brokering:
current practices and upcoming challenges. IEEE Cloud Comput. 2, 40–47 (2015)

5. Kavoussanakis, K., Hume, A., Martrat, J., Ragusa, C., et al.: BonFIRE: the clouds
and services testbed. In: 5th IEEE International Conference on Cloud Computing
Technology and Science (Cloudcom), pp. 321–326 (2013)

6. Lucas-Simarro, J., Aniceto, I.S., Moreno-Vozmediano, R., Montero, R.S., Llorente,
I.M.: A cloud broker architecture for multicloud environments, pp. 359–376. Wiley,
Hoboken (2014). Chap. 15

7. Montero, R., Moreno-Vozmediano, R., Llorente, I.: An elasticity model for high
throughput computing clusters. J. Parallel Distrib. Comput. 71, 750–757 (2011)

http://tools.ietf.org/html/draft-sb-nvo3-sdn-federation-00
http://contrail-project.eu

BEACON: A Cloud Network Federation Framework 337

8. Linux Foundation Collaborative Projects: OpenDaylight - an open source com-
munity and meritocracy for software-defined networking (2013). http://www.
opendaylight.org

9. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: IaaS cloud architecture:
from virtualized data centers to federated cloud infrastructures. Computer 45,
65–72 (2013)

10. Rochwerger, B., Caceres, J., Montero, R., Breitgand, D., Elmroth, E., Galis, A.,
Levy, E., Llorente, I., Nagin, K., Wolfsthal, Y.: The reservoir model and architec-
ture for open federated cloud computing. IBM J. Res. Dev. 53, 4–11 (2009)

11. Sotomayor, B., Montero, R., Llorente, I., Foster, I.: Virtual infrastructure manage-
ment in private and hybrid clouds. Internet Comput. 13, 14–22 (2010)

12. Sturrus, E., Kulikova, O.: Orchestrating hybrid cloud deployment: an overview.
IEEE Comput. 47, 85–87 (2014)

13. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28, 358–367 (2012)

14. Wang, W., Niu, D., Liang, B., Li, B.: Dynamic cloud instance acquisition via IaaS
cloud brokerage. IEEE Trans. Parallel Distrib. Syst. 26, 1580–1593 (2015)

15. Zhang, H., Jiang, G., Yoshihira, K., Haifeng, C.: Proactive workload management
in hybrid cloud computing. IEEE Trans. Netw. Serv. Manage. 11, 90–100 (2014)

16. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438–452 (2015)

17. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208–218 (2016)

18. Mulfari, D., Celesti, A., Villari, M.: A computer system architecture providing
a user-friendly man machine interface for accessing assistive technology in cloud
computing. J. Syst. Softw. 100, 129–138 (2015)

19. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73–79
(2012)

http://www.opendaylight.org
http://www.opendaylight.org

Federated Networking Services in Multiple
OpenStack Clouds

Antonio Celesti1(B), Anna Levin2, Philippe Massonet3, Liran Schour2,
and Massimo Villari1

1 DICIEAMA, University of Messina, Messina, Italy
{acelesti,mvillari}@unime.it
2 HLR, IBM Haifa, Haifa, Israel
{lanna,LIRANS}@il.ibm.com
3 Cetic, Charleroi, Belgium

philippe.massonet@cetic.be

http://www.beacon-project.eu/

Abstract. Cloud federation refers to a mesh of Cloud providers that are
interconnected by using agreements and protocols necessary to provide a
decentralized computing environment. Federation is raising many chal-
lenges in different research fields but is also creating new business oppor-
tunities. Nowadays, the combination between Cloud federation, Software
Defined Networking (SDN), and Network Function Virtualization (NFV)
technologies offers new business opportunities to Cloud providers that
are able to offer new innovative federated Cloud networking services to
customers. In this paper, we focus on federated Cloud networking ser-
vices considering multiple OpenStack Clouds. In particular, we present
a preliminary outcome of an innovative design of a Federation Manage-
ment system acting as an external service provider dealing with federated
networking services among multiple federated OpenStack Clouds. More
specifically, we describe how virtual resources, virtual networking, and
security management can be accomplished.

Keywords: Cloud computing · Federation · SDN · OpenStack

1 Introduction

Cloud federation refers to a mesh of Cloud providers that are interconnected
according to agreements and protocols providing a decentralized computing
environment. Nowadays, the combination between Cloud federation and Soft-
ware Defined Networking (SDN) technologies offers new business opportunities
to providers that are able to carry out new innovative federated Cloud network-
ing services to customers. However, the development of such an ecosystem is not
trivial and many challenges must be addressed.

SDN can enhance Cloud federation scenarios. It is an approach to com-
puter networking that allows network administrators to manage network services
through the abstraction of lower-level functionalities. This is done by decoupling
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 338–352, 2016.
DOI: 10.1007/978-3-319-33313-7 26

Federated Networking Services in Multiple OpenStack Clouds 339

the system that makes decisions about where traffic is sent (the control plane)
from the underlying systems that forward traffic to the selected destination (the
data plane). In this way, it is possible to simplify networking. SDN requires some
methods for the control plane to communicate with the data plane. Thanks to
SDN it is possible to accomplish networking federation between Virtual Machines
(VMs) belonging to multiple Cloud providers managed by different administra-
tive domains.

This scientific work took into account interoperability requirements specified
by the IEEE Standard Association defined in the P2302 - Standard for Inter-
cloud Interoperability and Federation (SIIF) project [1] which aims at developing
standard methodologies for Cloud-to-Cloud interworking. It represents the basis
for new Cloud requirements in federation.

In this paper, we focus on federated Cloud networking services consider-
ing multiple OpenStack Clouds. In particular, according to SIIF, we analysed
how federated networking services can be instantiated on multiple OpenStack
instances belonging to different administrative domains. More specifically, we
present a preliminary outcome of an innovative design of a Federation Man-
agement system acting as an external service provider or Broker dealing with
federated networking services among multiple Openstack-based Clouds. More
specifically, we describe how virtual resources, virtual networking, and security
management can be accomplished. In addition, we discuss how our system suits
the requirements of a tightly coupled federation scenario.

The paper is organized as follows. In Sect. 2, we present an overview of
the Openstack architecture. The main aspects that have to be considered to
design federated Cloud networking services in multiple Openstack Clouds are
discussed in Sect. 3. The Federation Management architecture is discussed in
Sect. 4. Section 5 summarizes related works. Section 6 concludes the paper.

2 OpenStack Architecture

In this Section, we provide an overview of the OpenStack architecture and we
introduce the concepts of tenants, users, and roles.

2.1 Architecture Overview

Openstack provides Cloud Infrastructure as a Service (IaaS) using the coopera-
tion of several services each one dedicated to the provisioning of a specific service.
Most of the services are composed by agents that use different plugins to add
new features compliant with a specific technologies. Basically the infrastructure
provides three kinds of resources: compute, storage, and network. This goal is
accomplished with these projects/services:

– Nova (compute service): manages the VMs controlling and supervising the
hypervisors distributed in a dedicated compute node with the hardware com-
putational resource.

340 A. Celesti et al.

– Neutron (networking service): provides an API for users to define networks
and the attachment to VMs. The agents also provides typical network services
such as routing (between VMs and between a VM and an external network),
DHCP, firewall, load-balancing.

– Keystone (identity service): provides an authentication and authorization ser-
vice for the other Openstack service. Every external request (the REST ones)
must be validated using a token generated by Keystone in accordance to the
role of the user (service or human) who is trying to communicate with the
infrastructure.

– Glance (image service): stores and provides the images used as a base for the
VMs that are managed by Nova. Those four services represent the main core
of Openstack. It means that a minimal Openstack scenario can be created
with just Nova, Neutron, Keystone, and Glance.

A more complete and powerful infrastructure can be set up using these other
services:

– Horizon (dashboard service): provides a web-based GUI for the administra-
tion. It uses the REST API of each service in order to send commands to
them in more friendly way.

– Cinder (block storage service): provides and manages the persistent storage
by means of volumes that can be directly attached on the running VMs.

– Swift (object storage service): it is a pure storage of object that can be
exported using a REST API. It provides mechanisms of redundancy in a
scalable architecture.

– Ceilometer (telemetry service): provides the monitoring of the Openstack
resources and services for billing, scalability and statistical purposes.

– Heat (orchestration service): provides the orchestration of the resources using
a file (HOT template format). With this service, different virtual scenarios
and applications can be created, configured and monitored automatically by
just editing the file which describes the resources and their interaction.

Trove (database service): provides a Database as a service using both relational
and non-relational database engines.

2.2 Tenants, Users, and Roles

The Compute system is designed to be used by different consumers by means of
tenants managing shared resources according to role-based access assignments.
They consist of an individual VLAN, volumes, instances, images, keys, and users.
Roles control the actions that a user is allowed to perform. Tenants are isolated
resource containers that form the principal organizational structure within the
Compute service. For each tenant, it is possible to use quota controls to limit:

– Number of volumes that can be launched;
– Number of processor cores and the amount of RAM that can be allocated;
– Floating IP addresses assigned to any instance when it launched. This allows

instances to have the same publicly accessible IP addresses;

Federated Networking Services in Multiple OpenStack Clouds 341

– Fixed IP addresses assigned to the same instance when it launches. This allows
instances to have the same publicly or privately accessible IP addresses.

By default, most actions do not require a particular role, but it is possible to
configure them by editing policies for user roles. For example, a rule can be
defined so that a user must have the admin role in order to be able to allocate
a public IP address.

3 Towards OpenStack Federation

Cloud federation is widely considered as a new way for deploying and managing
multiple external and internal Cloud computing services to meet business needs.
One of the main features of Cloud federation is the ability to share resources
allowing providers to maintain their internal administrative policies and rules.
In this Section, firstly we present some general concepts related to federation.
After that, we discuss the main features of federated Cloud networking services.
Then, we describe two possible scenarios of Cloud federation, i.e., loosely coupled
and tightly coupled. In the end, we discuss the limits of the current federation
features in OpenStack Clouds.

3.1 Main Actors

In the following, we describe the main actors involved in a federated Cloud
environment. Starting from the NIST white paper [2] we can consider: Cloud
Service Providers or Cloud Vendor (CV), Cloud Consumers (CCs) and Cloud
Brokers (CBs). CVs includes people, organizations, or entities responsible for
making a service available to CCs. Instead, NIST defines a CB as an entity
that manages the use, performance, and delivery of Cloud services, as well as
the relationship negotiation between CVs. A Federator and/or Federation Agent
refers to a software module/component inside each CV that is in charge for
actuating the federation procedures inside the alliance.

3.2 Loosely and Tightly Coupled Cloud Federation Scenarios

Cloud federation can be seen under many perspectives according to the level of
modification and setup that a CV can achieve. To simplify our analysis, in this
scientific work, we consider only two scenarios: Loosely and Tightly Coupled
federations. The first one guarantees a minimum level of dependency between
Cloud Vendors, whereas the second one determines a strong involvement of CVs
in terms of low-level functionalities. Figure 1 shows such scenarios. In Fig. 1(a),
the Federator is able to interact with the APIs of the CV along with a possi-
ble hidden Agent installed inside each VM deployed in the CV’s virtualisation
infrastructure. The VM should provide the Network and Security facilities con-
sidering the CV as a Black Box. This approach is similar to use the resources
delivered by Public Cloud Vendor like Amazon (Cloud bursting). In particular,

342 A. Celesti et al.

(a) The loosely coupled version. (b) The tightly coupled version.

Fig. 1. Difference between loosely and tightly coupled federation architectures.

Fig. 1(a) shows two rings of communication through APIs through an ad-hoc
channel of communication with VMs deployed in different Clouds. The CV is
not aware of the current configuration/deployment of all VMs and their use.

In Fig. 1(b) more rings are depicted. From the smallest to the biggest, the
first ring deals with communications through APIs and it is depicted as in the
previous case. The second one is related to the possibility to interact with an
installed Agent for configuring the Network facilities (look at Network Feder-
ation Agent - NetFA), and the third one, an Agent that deals with Security
facilities (look at Security Agent - SecA). The NetFA is able to interact with the
Network Controller of the CV. In particular, the SecA is able to interact with the
infrastructure for both, applying security policies and collecting Data inside the
Cloud Vendor useful for security analysis. NetFA and SecA are directly owned/-
controlled by CVs. The Federation Management module is in charge for orches-
trating resources, networks and security features inside the federation among the
Cloud Vendors.

3.3 Federated Cloud Networking Services

The reference scenario considered in this paper is depicted in Fig. 2. Looking at
the top part of the Figure, three possible tenants are interacting with the Fed-
eration Management system of a CB for negotiating/using IaaS Cloud services
belonging to different CVs. The CB respectively interacts with CV A, B and C.
In this way, by means of the Federation Management system, Tenant 1 is able to
control VM instances, indicated with label T.1.A, that are running in CV A. At
the same time, Tenant 2 is able to control the VM instances, indicated with label
T.2.A, running in CV A and Tenant 3 is able to control VM instances, indicated
with label T.3.A, running in CV A. A Similar situation occurs in Cloud Vendors
B and C. Considering a Tightly Coupled scenario, the Federation Management
system interacting by means of NetFAs can create federated SDN network among

Federated Networking Services in Multiple OpenStack Clouds 343

Fig. 2. Reference scenario.

Cloud Vendors A, B and C. In this way Federated Networks 1, 2, and 3 are estab-
lished respectively for Tenants 1, 2, and 3. In addition, it is possible to observe
that each Cloud Vendor is able to manage both internal and external VMs. This
means that each Cloud Vendor maintains the full control of its own domain.

3.4 Current Federation Features in OpenStack

In OpenStack [4] a Federation Alliance is defined as reported in [3]. The cur-
rent OpenStack federation scenario is shown in Fig. 3. Essentially, OpenStack
enforces the federation in terms of Identity and Access Management (IAM).
Our work follows this approach and uses the outcome of the OpenStack devel-
opment in order extend the federation facilities in a tightly coupled federation
scenario specifically focusing on virtual resources, virtual networking, and secu-
rity management.

4 Federation Management System

In order to deal with virtual resources, virtual networking and security manage-
ment in an OpenStack federation, we present a Federation Management system
acting between tenants and multiple federated OpenStack CVs. In order to setup
federated Cloud networking services in multiple federated OpenStack Clouds it
is required to: (I) setup VMs on multiple federated Cloud Vendors; (II) setup
networks; (III) enforce security mechanisms. Figure 7 shows the Federation Man-
agement architecture. The Federator module inside the Federation Management
system consists of three main sub-modules respectively responsible for Virtual
Resources, Virtual Networking and Security Management. Inside each Vendor

344 A. Celesti et al.

Fig. 3. OpenStack vision on federation (see [3]).

Cloud, the dashed-edge shapes highlights the new modules included in our pro-
posal. Others parts/shapes in Clouds (look at the APIs-rectangle) show the
existing modules own/controlled by Cloud Vendors. The Federation Cloud API
is a RESTful interface the allows tenants to control their assets instantiated
in the Cloud Vendor. The secure access is allowed thanks to the in-querying
of the security module. The Federation Coordinator is responsible for Virtual
Resources, Virtual Networking, and Security management. More specifically, it
allows tenants to arrange federated Cloud networking services. The Federation
Coordinator is the only entity aware of all tenants, their services (i.e., virtual
resources), networks and their security requirements. In fact, it store data regard-
ing the configurations of all tenant’s federated services. The Federation Manage-
ment data model adopts a NoSQL approach in order to simplify the management
of Big Data related to resources, networks, and security policies. We prefer to use
a Big Data approach leveraging a well known No-SQL database such as Mon-
goDB, HBase, Cassandra, etc. In order to simplify the information management,
data should be cross-correlated with TAGs and made available for all tenants.
As previously described, for each tenant of the Federation Management system
a corresponding tenant on multiple Cloud Vendors is created. The Interactions
among the Federation Management system and Cloud Vendors is performed by
means of Virtual Resource Management, Network Management, and Security
Management components respectively using VRM, VNET, and SEC drivers.
Drivers allows to control computational/storage resources, networks, and secu-
rity policies on particular Cloud Vendors. In particular the VRM driver inter-
acts with the APIs of different Cloud Instances. On behalf of each tenant, it is
responsible to manage a set of VMs on different Cloud Vendors. The VNM driver
interacts with the Network Federation Agents (FAs) of different Cloud Vendors.
It is responsible to setup SDN mechanisms among different Cloud Vendors in
order to federate the network connecting different VMs. Finally, the Sec driver

Federated Networking Services in Multiple OpenStack Clouds 345

Fig. 4. Internal composition of the Federation Management and its interactions in
tightly coupled scenario.

interacts with the Sec Agents of different Cloud Vendors in order to enforce
access control policies on each federated Cloud. In a heterogeneous scenario we
can have different drives simultaneously (Fig. 4).

4.1 Virtual Resource Management

Considering Cloud federation, OpenStack only supports AIM and several mech-
anisms for segregating Cloud resources such as cells, regions, availability zones,
or host aggregates, as well as Cloud bursting, through either vendor-specific
offerings. Instead, the OpenStack networking subsystem (Neutron) does not pro-
vide any support for networking federation. This Section, deals with the Virtual
Resource Management to setup and manage VMs on multiple OpenStack Clouds.
In particular, considering Fig. 7, we discuss a possible VRM driver solution based
on jClouds.

Apache JClouds is an open source Multi-Cloud toolkit for the Java platform
that gives you the freedom to create applications that are portable across Clouds
while giving you full control to use Cloud-specific features. It is an open source
library that allows third-party systems to control the specific functionalities of
different Virtual Infrastructure Management (VIM) systems by means of a set
of APIs. jClouds supports more than 30 cloud providers and pieces of middle-
ware including Abiquo, Amazon, Azure, CloudSigma, CloudStack, DigitalOcean,
Docker, Google Cloud Platform, GoGrid, Ninefold, Rackspace, and OpenStack.
The key concept of jClouds are:

– View are portable abstractions that are designed to allow you to write code
that uses cloud services without tying yourself to a specific vendor. Take JDBC
as an example: rather than writing code directly for a specific type of database,

346 A. Celesti et al.

you can make generic database requests, and the JDBC specification and
drivers translate these into specific commands and statements for a certain
type of database.

– APIs describe the actual calls (often, but not always, HTTP requests) that
can be executed against a specific cloud service to “do stuff”. In the case of
popular APIs, such as the EC2 compute API, or the S3 storage API, there
may be multiple vendors with cloud services that support that particular API.
For example, EC2 is supported by Amazon and OpenStack, amongst others.

– A Provider represents particular Cloud Vendor that supports one or more
APIs;

– A Context represents a specific connections to a particular provider. From
the perspective of our database analogy, this would be broadly similar to a
database connection against a specific DB. Once you have created a context
via the ContextBuilder and are “connected” to a particular cloud service, you
can either get any of the views that are supported by that provider, or go
straight to the API or even to the provider level.

Figure 5 shows how the Virtual Resource Management component can interact
through JClouds APIs with several Clouds including Openstack. Developing a
software layer by means of JClouds Views it is possible to run the same applica-
tion on multiple Cloud providers. Furthermore, it is possible it is also possible
to control specific Cloud providers accessing specific functionalities. The main
high-level services include compute and blobstore.

Fig. 5. JClouds scenario.

Federated Networking Services in Multiple OpenStack Clouds 347

Furthermore, since JClouds support the Docker container engine, if we con-
sider a Cloud system (for example OpenStack) deployed on container images, it
is possible to deploy on physical server an overall Cloud infrastructure.

4.2 Virtual Network Management

Virtual Network Management (VNM) provides tenants an interface and the
global view of the whole network spread among the parts of a federated cloud
environment. In this section we discuss a possible implementation of the VNet
driver. VNM allows Federation Management APIs that allow to configure net-
work specific requirements, such as availability, reliability, isolation, locality, etc.
The network view provided by the VNM to tenants may vary from the view of a
single virtual network, disregarding of VMs actual deployment, to the exact net-
works and physical machines deployment at the most detailed level. Lastly, VNM
coordinates identities and access control for cross-clouds connectivity, including
management and configuration of the control plane entities located at each Cloud
Vendor.

Network Federation Agent (NFA) has both control and management roles. In
the control plane it receives control requests from the local data plane and replies
by communicating with the local SDN controller, such as OVN [5]. It also listens
to the local SDN control requests and resolves them by communicating with the
other clouds’ NFAs. In the management plane, the NFA exports a management
API to share virtual networks with other Clouds Vendor. NFA is also respon-
sible to negotiate network sharing with its peers in other Cloud Vendors and
pass the tunneling information down to the data plane, configures datapath for-
warding rules and controls tunnel establishment commands by specifying tunnel

Fig. 6. Internal Virtual Network Management along with the interaction with a feder-
ated party.

348 A. Celesti et al.

endpoint locations and the Cloud vendor supported technology (e.g. VXLAN,
GRE, GENEVE).

In the following we describe the interfaces between federated network archi-
tecture components. Figure 6 summarizes NFA’s internal and external interac-
tions with other components, such as SDN controller, datapath and the Federa-
tion Management system (by means of the Virtual Network Management and a
particular VNM driver). The depicted architecture shows both network configu-
ration and management of network facilities in federated Cloud. For simplicity,
the internal component of the Federation Management have been omitted.

The REST-based API between VNM and NFAs allows the Federation Man-
agement system to configure the agents with the federated network information,
such as tenants’ properties in the different sites (e.g., tenant ID, name, cre-
dentials), tenant networks (e.g. list of the networks and mapping between their
IDs in the sites), and cross site communication parameters (e.g., distant NFA
location).

Another REST-based API represents the communication between NFAs
located in different Cloud Vendors. The main functions of this communication
include handshake between NFAs, which provides a basis to the tunnel establish-
ment and control information exchange, which allows to extend virtual networks
across Clouds. During the handshake, NFAs validate the control information
which they received from the management and establish communication tunnels
between them. In addition, the API between different NFAs is used to exchange
control information in order to connect, by means of a single virtual network,
two communicating end-points located in different Clouds Vendors.

An additional interface allows NFA to communicate with the network SDN
controller. This interface is specific for each SDN controller and may vary
depending on technology used in each Cloud. For example, a possible VNET
driver implementation can be based on OVN controller. The management plane
communication with OVN is used to initialize the system and to register new
virtual networks that are being shared by the FA. The control plane communi-
cation is used to request the location of VMs and to update the controller about
new VMs located on external federated Clouds.

The datapath can be implemented using Open vSwitch (OvS), which employs
the data plane of the solution by forwarding packets between Clouds over feder-
ation tunnel and towards destination VM inside destination Cloud. The respon-
sibility of NFA is to set the correct flows in the datapath and forward packets to
VMs located on remote Clouds via federation tunnels. The API to the datapath
are typically based on the OpenFlow protocol and OvS Database for forwarding
rules for configuration and tunnel creation.

4.3 Security Management

The main goal of the Security Management of the Federation Management sys-
tem to enforce authentication, authorization, and accounting tasks by means of
particular drivers interacting with Security Agent installed in the Cloud Vendor.

Federated Networking Services in Multiple OpenStack Clouds 349

Fig. 7. Security representation in the Architecture: The Security Management in the
Federation Management and The Security Agent deployed in each Cloud.

(a) Cloud Site Level Access Control. (b) Federation Level Access Control.

Fig. 8. Access Control system.

The authentication process can be accomplished by using the federation fea-
tures available in the keystone component natively integrated in OpenStack.

The Access Control system can be based on the XACML OASIS standard.
Policy based management is one of the most widely used approaches followed
in network and distributed computing. Access Policy management specifies how
to deal with situations that are likely to occur via priorities and access control
rules for system resources. The system will have a policy decision point (PDP)
for interpreting the policies and a policy enforcement point (PEP) for applying
the policies. The XACML directives and policies provide a guideline for formalize
all the XML messages and rules necessary to exchange and enforce the access
control among the parties. Figure 8 shows how the XACML standard works. The
different pictures show the same kind of architecture but at Federation Level and
Cloud Level respectively. Both LDAPs in the picture are considered in master-
slave configuration. All rules and policies are set at global level (Federation
Management) for affecting the local Level (Security Agents).

350 A. Celesti et al.

Regarding the accounting tasks, a flow of data (aggregated and raw) com-
ing from Cloud Vendor is sent to the Federation Management system. Figure 8
shows the overall functionalities of the Security Management. The setup is a
master/slave configuration where the global security control of the federation
is concentrate in the top part. Security Agents are aware of what is happening
internally to Cloud Vendors but only for the part relaying with the federation
capabilities. As it is possible to observe, the Security Agent is able to interact
with the Network Federation Agent and others elements of the Cloud Vendor
system (e.g., the Data Path module) for analysing their behaviour according to
security needs and constrains.

In the following, we list the major tasks that the Security Management and
the Security Agent have to accomplish for satisfying the security requirements
of users, Clouds, and tenants.

– Access Control XACML based:
• Cloud Site Level Access Control (see Fig. 8(a))
• Federation Level Access Control (see Fig. 8(b))

– Vulnerability Checks:
• Vulnerability Scanning
• Thread Identification
• Malware Identification
• ...

– Monitoring and Analysis for Security purposes:
• Federation Level Monitoring (i.e., Inter-Cloud e., DDoS identification)
• Cloud Site Level Monitoring (i.e., DDoS and PortScan Intra-cloud identi-

fication)
• Cloud Site Level Data Analysis (raw data and aggregated data).

The list above is susceptible of modifications according new customers needs,
however the Agent will be designed for easily changing its behaviour and work.

5 Related Work

Many Intercloud initiatives have been presented so far regarding energy effi-
ciency [6], storage [7], Assistive Technology [8], dataweb [9] and so on. One of
the first initiatives in the field of Cloud federation was the FP7 European Project
RESERVOIR [10]. RESERVOIR introduced modular, extensible and open Cloud
architecture that supports business-driven Cloud federation. The RESERVOIR
framework enables Cloud infrastructure providers belonging to different admin-
istrative domains, to collaborate with each other in order to create a vast pool of
resources while technological and resource management decisions on each domain
are made autonomously by the provider. The experience acquired in RESER-
VOIR leads up to the latest EU initiative known as FI-Ware [11]. In particular,
the EC is encouraging a federated framework based on Fi-Ware platform called
XI-FI Federation [12]. XI-FI federates homogeneous FI-Ware systems based on
OpenStack framework. The above mentioned initiatives are interesting, the not

Federated Networking Services in Multiple OpenStack Clouds 351

consider federated networking services. Below we mention relevant research in
the networking area and emphasize our novelty. In [13] the authors present a
cross-communication architecture and protocol. This architecture is based on a
distribution layer, which consists of several D-nodes managed by single O-node
for each cloud. The D-nodes establish cross-cloud logical communication, con-
figured by the O-nodes. This solution requires the employment of the special
nodes at each cloud. Hence, it is restricted and might result in great effort in
order to integrate the architecture among the federated clouds. Cloud network-
ing [14] is based-on the SAIL EU-project, and focuses on provisioning virtual
infrastructure in a federated-cloud environment. In order to address the del-
egation of infrastructure provision, the authors introduce a model of virtual
networks, termed flash network slice (FNS). The FNS is a network resource type
that can be linked across administrative boundaries, providing the ability to
partition virtual infrastructures into isolated administrative domains. Another
industrial solution is presented by Nuage Networks [15]. Their solution is also
closed and consists of Virtualised Services Controllers (VSC), and distributed
virtual routing and switching (dVRS) software agents. Moreover, the Virtualised
Services Controllers require MP-BGP for synchronization, which complicates the
integration of their solution over federated-cloud environments.

However, the aforementioned networking solutions do not consider the emerg-
ing SDN technology. In this context, Juniper Networks presents the Contrail
system [16], which consists of SDN Controller and vRouter. The Contrail SDN
Controller is a logically centralized but physically distributed SDN controller
that is responsible for providing the management, control, and analytical func-
tions of the virtualized network. The Contrail solution is closed and proprietary;
it is limited to the use of the specific virtual routers and does not support com-
monly deployed open virtual switches.

6 Conclusion

In this paper we presented an architecture able to create advanced Federated
Networks related to OpenStack installations. The design takes into consideration
more aspects in terms of resource management than the security constrains of
Cloud Costumers. In particular, we presented a Federation Management system
that allow tenants to deploy federated Cloud networking services on multiple
Cloud Vendors. Drivers connected to Cloud Instance APIs, NF Agents, and Sec
Agents allow to achieve a high-level of flexibility and scalability.

Acknowledgment. This research was supported by the European Union’s Horizon
2020 Research and Innovation Programme Project BEACON under Grant Agreement
No. 644048.

352 A. Celesti et al.

References

1. IEEE: P2302 - The IEEE standards association (2014). http://standards.ieee.org/
develop/project/2302.html

2. NIST: Nist cloud computing standards radmap (2013). http://www.nist.gov/itl/
cloud/upload/NIST SP-500-291 Version-2 2013 June18 FINAL.pdf

3. OpenStack Inter Cloud Resource Federation (2015). https://wiki.openstack.org/
wiki/InterCloudResourceFederation

4. The Open Source, Open Standards Cloud, Innovative, open source cloud computing
software for building reliable cloud infrastructure, January 2015. http://openstack.
org/

5. OVN architecture, January 2015. http://openvswitch.org/pipermail/dev/
2015-January/050380.html

6. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438–452 (2015)

7. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208–218 (2016)

8. Mulfari, D., Celesti, A., Villari, M.: A computer system architecture providing
a user-friendly man machine interface for accessing assistive technology in cloud
computing. J. Syst. Softw. 100, 129–138 (2015)

9. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73–79
(2012)

10. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson,
J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P.,
Munoz, H., Toffetti, G.: Reservoir - when one cloud is not enough. Computer 44,
44–51 (2011)

11. FI-WARE: Open APIs for Open Minds (2015). http://www.fi-ware.org
12. FI-XIFI: Joining the federation scenario exploiting fi-ware framework (2015).

http://wiki.fi-xifi.eu/Public:Joining the Federation scenario
13. Lloret, J., Garcia, M., Tomas, J., Rodrigues, J.J.: Architecture and protocol for

intercloud communication. Inf. Sci. 258, 434–451 (2014)
14. Murray, P., Sefidcon, A., Steinert, R., Fusenig, V., Carapinha, J.: Cloud network-

ing: an infrastructure service architecture for the wide area. In: Future Network &
Mobile Summit (FutureNetw), 2012, pp. 1–8 (2012)

15. Ferro, G.: Packet pushers white paper. Nuage Networks, White Paper (2013)
16. Contrail Architecture, Juniper Networks, White Paper (2013). http://www.

juniper.net/us/en/products-services/sdn/contrail/

http://standards.ieee.org/develop/project/2302.html
http://standards.ieee.org/develop/project/2302.html
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
https://wiki.openstack.org/wiki/InterCloudResourceFederation
https://wiki.openstack.org/wiki/InterCloudResourceFederation
http://openstack.org/
http://openstack.org/
http://openvswitch.org/pipermail/dev/2015-January/050380.html
http://openvswitch.org/pipermail/dev/2015-January/050380.html
http://www.fi-ware.org
http://wiki.fi-xifi.eu/Public:Joining_the_Federation_scenario
http://www.juniper.net/us/en/products-services/sdn/contrail/
http://www.juniper.net/us/en/products-services/sdn/contrail/

Networking Introspection and Analysis
for Virtual Machine Migration

in Federated Clouds

Giuseppe Andronico1, Filippo Bua1, Marco Fargetta1,
Emidio Giorgio1, Alessio Guglielmo1, Salvatore Monforte1,

Maurizio Paone1(B), and Massimo Villari2

1 Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy
{giuseppe.andronico,flippo.bua,marco.fargetta,emidio.giorgio,

alessio.guglielmo,salvatore.monforte,maurizio.paone}@ct.infn.it
2 Università degli Studi di Messina, Messina, Italy

mvillari@unime.it

Abstract. Cloud computing demonstrates an effective paradigm to
optimise data center management and resources provisioning. A further
way to optimize resource exploitation relies on cloud federation. The
federation idea introduces into the cloud the possibility to dynamically
increase the number of physical resources exploiting external facilities.
These are provided by federated cloud providers having different admin-
istration domains and access rules but cooperating under the federation
regulation.

In this work we explore a way to use dynamically provided resources:
migrating Virtual Machines (VMs). We discuss some reference use cases
and required tools and we present a concrete implementation of an
advanced monitoring agent.

1 Introduction

The business behind the cloud technology has increased at an incredible pace
in the last few years creating a huge market with many opportunities for users
and companies. Currently, several big companies, operating world-wide, have
emerged as market leaders but these work side by side with a myriad of small
players specialised in niche markets based on geographical location, specific
deployment scenarios, different cloud models or any combination of these ele-
ments.

The adoption rate of cloud solutions pushes these small players toward a
continuous infrastructure expansion, in order to support peak requests from
their customers. They need to satisfy the demand of new resources to avoid
the risk of loosing customers who would be seeking for more capable providers.
However, to increase the number of available resources can be costly, and can
also be complex, considering that configuration of new physical resources within
an infrastructure requires a longer time with respect to what is really requested

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 353–362, 2016.
DOI: 10.1007/978-3-319-33313-7 27

354 G. Andronico et al.

and allocated by customers. Physical resources should be prepared in advance
and maintained in stand-by until they are requested, resulting in idle resources
for the most of the time.

Federation of resources across small providers could be a smart approach for
dealing with demand peaks from customers. Federation of resources has to be
transparent to users; as they typically have agreement with a single provider,
this is responsible to hide aggregation of resources from federated partners.

Cloud federation allows small providers to better support their customers and
gives them more flexibility on deciding when and how upgrade their infrastruc-
tures like described by the authors in [2]. However, several issues are still asso-
ciated with the creation and management of a federation. Skipping all the
administrative and technical steps involved with the creation, we will focus on
how federated providers can maximize the benefit of the federation in terms of
customers’ support and resources management. In more detail, in this paper we
evaluate how and when the resources available in the federation should be used.

When a request for allocation of a new virtual machine (VM) shows up,
a federated cloud provider has to consider the possibility to allocate the VM
on a partner infrastructure, depending on the current status of its resources.
Allocating the VM in a partner could have an impact on the execution in terms
of QoS, accessibility, security and so on, and it is difficult to evaluate these in
advance. As an example, if the machine has to run a long analysis and requires
to access a large data set stored in the provider infrastructure then it is better
to have the machine deployed in the same infrastructure. Nevertheless, if the
data set is stored in a different place and remotely accessed then the VM could
execute in a different cloud without any penalty for the user.

In this paper we provide a different approach to the scheduling in a federated
cloud. VMs are always allocated in the Home infrastructure but a dedicated
daemon is responsible to evaluate the current load of the resources and if needed
migrate the VMs towards remote partners (Foreign Cloud). This approach makes
use of extensive monitoring to identify VMs eligible for the migration. The goal is
to identify VMs performing activities not influenced by relocation in a different
infrastructure. Of course, the features and settings of the machine have to be
maintained and this is part of the federation mechanism put in place.

Additionally, monitoring will collect information from the VMs deployed
remotely and these will be used when they have to return back. In a federa-
tion, allocate a VM in a partner organisation has a cost and it is important to
minimise the number of VMs distributed to the partners in order to better use
the own infrastructure and minimise the overall costs. Therefore, when the peak
load is over, the VMs should come back from the partner infrastructure.

The remainder of this paper is organised as follows: in Sect. 2 we will present
some related work relevant to the presented approach. In order to provide a
description of requirements in the VMs’ migration process, a very simple tech-
nique suitable for this issue is discussed in Sect. 3. In Sect. 4 the mechanism avail-
able for the migration and the related penalty for the execution are described.
In Sect. 5 the monitoring architecture created to monitor the VMs as long as

Networking Introspection and Analysis for Virtual Machine Migration 355

the more important parameters used by the migration algorithm are presented.
Finally, Sect. 6 will provide some conclusion and describe the next steps of this
activity.

2 Related Work

In literature different metrics have been proposed to define how to deploy a
virtual machine, decide how and when to migrate and the requirements that a
migration algorithm should satisfy. All the metrics and approaches examined in
this section are related on a single data center.

Many of the available metrics could be used for the federation approach
proposed but the impact of each metric into the resource allocation is not the
same. Table 1 summarises the most relevant metrics identified which could have a
big impact on the allocation. Collecting these metrics, a VM can be characterised
in relation to its ability to move. The VMs migration will take this information
as input for the decision algorithm.

Table 1. Table of measurements

CPU Network Disk

User Space % Packets/sec Requests/sec

Kernel % Bytes/sec Blocks/sec

I/O Wait %

For the CPU, it is necessary to consider the percentage of time spent by CPU
in user space, in kernel space and I/O waiting, For the network, the parameters
to consider are the used bandwidth in terms of both packets and bytes either
received and sent. Finally, for the disk, it is only taken in account the number
of read/write requests and reads/writes of disk blocks.

The requirements to satisfy with the proposed approach are common in the
cloud scenario and they have been well defined by Buyya et al. [3] as follows:

Decentralisation and parallelism: to eliminate SPF (Single Point of Failure)
and provide scalability.

High performance: the system has to be able to quickly respond to changes
in the workload.

Guaranteed QoS: the algorithms have to provide reliable QoS by meeting
SLA.

Independence of the workload type: the algorithms have to be able to
perform efficiently in mixed-application environments.

In [1] it is noted that typically a cloud provider establishes agreements with
its customers to ensure the agreed SLA levels of QoS depending on the estab-
lished policy whereby you choose the host that takes care of a given VM. These

356 G. Andronico et al.

agreements generally are defined as a minimum or maximum function or the
highest throughput delay in the response time. Since these may vary depending
on the application, cloud providers set different metrics and, according to them,
the system rates the number of violations found, named SLAV (SLA Violation)
which determines when is necessary to proceed with the migration.

In [7] Wood and others define a technique on how to determine overloaded
hosts. Once defined metrics (CPU usage, network bandwidth utilization, page
faults rate and, if available, memory usage of specific VM, packet drop rate,
number of request and request service time) measurements are made on them at
regular intervals of time. A mobile observation window is built and used to calcu-
late a probability distribution and a time series. The probability distribution is
the probability of resource utilization within the window and it is obtained from
the values of use taken at fixed intervals by building the histogram represent-
ing observation window. The distribution probability is obtained by histogram
normalization within considered window. Differently, the observation series is
obtained by collecting all the metric values within the observation window.

The distribution probability is used to know how resource usage probability
changes inside the observation window. The series is then used to check whether
a system is in an overload state or not. This condition is calculated by checking
whether a resource (CPU, network or memory) exceeds a defined threshold.
In particular, to avoid the selection of isolated peaks, a system is classified as
overloaded if the resource usage exceeds k times the threshold on n observations.
By setting the values of k and n is possible to adopt a more aggressive or
conservative strategy in the detection process.

An alternative strategy is based on the definition of two threshold values –
high and low – for CPU usage [3]. If the CPU usage exceeds the upper threshold,
the migration process is started to reduce the risk of SLA violations. If the value
is underneath than minimum threshold, all VMs are migrated in order to switch
off host machine to free memory space and saving energy consumption (VM
Consolidation). This policy shows excellent results both as energy consumption
and as SLA violations inside a single farm.

This policy is very flexible and, entering more permissive SLA values, could
result in increased energy efficiency and can be adapted to different hardware
types and workload of VMs running on. Once established the presence of an
host overload, the system must proceed to choose which are best candidates
for VM migration to reduce the load. This selection is performed using special
algorithms classified according to the technique used:

– Approach based on fixed criteria.
– Approach based on multiple criteria.

The first is based on specific criteria, the most relevant are:

Dynamic Management Algorithm (DMA) which selects the VM with min-
imal CPU usage.

Minimum Time Migration Policy (MMT) that guarantees the shortest
migration time needed.

Networking Introspection and Analysis for Virtual Machine Migration 357

Random Choice Policy (RC) in which the VM is chosen randomly according
to a uniform distribution.

Maximum Correlation Policy (MC) which starts from the consideration
that the higher is the correlation between running applications and resource
usage on a host, the higher is the probability that host is in overloading state.
Therefore, this rule establishes that the VM which will be migrated presents
the greatest correlation rate with the considered resource.

The latter uses the Fuzzy Q-Learning algorithm that, starting from a set
of different strategies, applies fuzzy logic to dynamically choose which is more
suitable for each particular case.

Selecting the machine is only the first step in the migration process. The
second step is to identify the destination, among all the available candidates,
which provide the best distribution according to some parameters. In [4] the
host selection takes into account the correlation between the resource usage in
the physical machines and the performance of applications running in VM exe-
cuting on these machines. This approach, using a solution based on knowledge
of the application running on a given VM, correlates the performance of appli-
cation (e.g. for Apache httpd daemon it considers the number of requests per
second) with some parameters on the physical host, like CPU load, allocated
memory, disk reads and writes. The technique used to correlate this information
is the canonical correlation analysis. For example you can maximise performance
approaching a machine that needs access to the data to run their operations.
This approach, reported in [8], allows to reduce the execution time of each task,
according to the result of CloudSim based simultations.

3 Migration Technique

In the scenario of federated cloud providers, a VM migration process introduces
particular issues that are not experienced in a single-site scenario. Live migration
with performance optimization, typically adopted in environments with homoge-
neous virtualisation infrastructures and overall control of the infrastructure, are
hardly exploited in multi-sites scenarios. In these latter, the architectures are
heterogeneous in terms of hypervisor implementations (Xen, KVM, VMWare,
etc.), hosts OSs, coordinators middleware.

The issues introduced by this heterogeneity do not allow sophisticated mem-
ory migration techniques, like Pure demand-migration or Managed migration
implemented by Xen hypervisor (for a brief survey see [5]), then a more limited
approach must be used.

Without being exhaustive on this topic, a very simple migration technique
is described below, while a more detailed design needs to be investigated. The
mechanism is based on (i) hibernation at guest OS level, and (ii) snapshot of
VMs images, in order to avoid the adoption of cloud-site specific features. The
only requirement that each site must comply with is the capability of managing
QCOW images. Each site will be assumed to share the templates of the VMs.

The steps involved in VM migration are:

358 G. Andronico et al.

1. VM hibernation - The guest OS saves the memory state and poweroff the
VM.

2. VM image snapshot - An incremental snapshot of VM instance is created.
3. Delivery of incremental snapshot - The original site sends the snapshot

to the target site.
4. VM creation on target site - A new VM instance on target site is created

using the image template and incremental snapshot.
5. Start of migrated VM - the target site starts the VM instance and, on

success, informs the original site.
6. Old VM instance destruction - The original site destroys old VM instance.

Fig. 1. VM migration scheme. Dotted lines refer to event on VM migration

To optimize the migration process a viable solution consists in sending a
chain of incremental snapshots, in order to rebuild the VM to be migrated.
If a mechanism of shared storage, more precisely a data dissemination system,
is available across the cloud sites, an improved algorithm can be adopted (see
Fig. 1). In such case each site periodically performs live snapshot of each VM
instance image and shares it with all federated sites. In this manner, each site
is provided with a chain of incremental snapshots of the VM instances. Thus, in
order to create the image of a VM to be migrated, the target site will only need
the last VM snapshot, and the migration process will be faster. As a drawback,
this approach might require at each site larger storage volumes for maintaining
the snapshot chain, if the I/O is particularly relevant. Hence, a trade-off between
storage size and migration performance should be found.

Several preliminary trials were performed with QCOW image format, and
the results were quite satisfactory.

4 Migration Policy

Our approach is to measure the performance of a host using a mobile window in
which the metrics considered are measured at regular intervals. This approach

Networking Introspection and Analysis for Virtual Machine Migration 359

considers at least virtual CPU load, reads and writes on disk and network band-
width usage. We define two usage thresholds: the former indicates underused
host that could be turned off (migrating VMs currently active on it) ensuring
smaller energy consumption. The latter indicates that the physical machine is
near to an overloading state and implies a migration of VM in order to prevent
SLA violations, which happens when a cloud provider allocate on the physical
machine multiple VMs making a resource overbooking [6]. More specifically at
least k within n observations are needed to start a migration in order to filter
temporary situations.

The choice of the VM to migrate can be made through an estimate of the
type of operation executed by the VM. Therefore, a virtual machine which has
a high CPU usage but low loads of disk and network is a good candidate for
migration, being very likely that all the data required for processing are stored
in memory and therefore a possible reallocation does not involve a performance
degradation due to data access over a wide area network. Vice versa a virtual
machine that performs a high network traffic can be a good candidate only if
the traffic is directed outside of data center. In this case it does not matter
the location of the VM, because data are always accessed via Internet. Instead,
the performance of a VM with high network traffic inside the region will be
degraded if it is migrated in another one or in federated providers. The last case
is a group of VM which collaborate each other to perform some operations. In
this situation all VM must be migrated in order to ensure SLA maintenance.
This last consideration is also valid in the case of a high use of the block device
associated with VM instance.

5 Monitoring

In adopting clouds, users sign an agreement with cloud providers before accessing
the resources and this defines the legal and technical condition to be satisfied
by the requested resources. The cloud scheduler can use these conditions and
the parameters1 of the resources to estimate if the allocation in a different cloud
is acceptable. However, many external factors contribute to the performance
of a resource leading to a difference between the estimation and the real use
of the resources. This mismatch could create a sub-optimal allocation with the
risk of degrading the user experience. For maintaining a good user experience a
continuous monitoring of resource status, and related usage metering is required.
Indeed, monitoring enhances infrastructure reliability, for instance warning when
a resource becomes unavailable. On the other side, usage metering facilitates
the optimisation of infrastructure utilisation, for instance providing information
about load peaks. This latter scenario is very similar to the one outlined in this
paper, where VM usage metering is used as information source to decide which
instances have to be migrated under certain conditions. As detailed in Sect. 4,
1 As an example of the difference between condition and parameter it is possible to

consider the allocation of a VM. A condition could define the CPU Unit and its
tolerance whereas the parameter would be the number of CPU units requested.

360 G. Andronico et al.

migrating VMs are chosen according to their CPU load, disk usage (in terms of
read/write request) and their networking activity. CPU load and disk requests
are simple to extract from the VM and use for the above mentioned purposes but
the network analysis required the development of an additional packet sniffer.
This section describes the solution developed to perform the network analysis of
the VMs deployed.

The challenge in this work is to link the low level network data with the
highest level of services data, adopting a packet sniffer and storing all data on
NoSQL database, as it is described in the following section.

5.1 The Packet Sniffer

The VMs network traffic is monitored by means of a packet sniffer implemented
using PCAP, that is a library specifically designed on this purpose. In more
details, PCAP API is exploited to capture traffic to/from the virtual machine;
in order to estimate a specific service usage, captured traffic statistics are fil-
tered according to the specific TCP port number within the matched packets.
A prototype version of the sniffer has been implemented in Java using a NoSQL
database back-end to store data. MongoDB database has been chosen in order
to exploit capabilities such as horizontal scaling, replication facility and high
performance. This latter feature is very important in our scenario, because we
handle a huge quantity of data which must be quickly copied on persistent stor-
age. For each monitored host, the informations extracted from captured packets
are:

– source and destination IP address,
– source and destination TCP ports,
– the packet arrival time and date and,
– the count of packets which belong to same flows.

The latter parameter is the main indicator of a service usage inside a virtual
machine. As an example, high traffic on port 80 would very likely indicate the
presence of a web server supporting many users. Destination IP address is impor-
tant as well, because it’s used to distinguish whether or not the VM network
traffic is directed outside the data center (and the machine would be therefore
a suitable candidate for migration).

Figure 2 shows the main parts compounding the sniffer agent. It is possible to
identify the Sniffer Class along with a specific implementation where the HTTP
traffic is monitored.

5.2 Virtual Machine Monitoring

The monitoring infrastructure is based on Zabbix, a full-featured network mon-
itoring solution, because the high level of customisation and the availability of
REST APIs to interact with the server.

For each monitored host, there is a list of items that have to be monitored
through agents. A Zabbix agent is a kind of client for the server: it runs on

Networking Introspection and Analysis for Virtual Machine Migration 361

Fig. 2. Zabbix agent class diagram

the monitored host and periodically retrieves from the server the list of checks
to be performed, eventually returning check results to the server which store
them and trigger associated events. Additionally, Zabbix supports templates
and discovery processes, which allows to generically define hosts and related
items, and finalise their definition according with the actual host features. In the
scenario analysed, a specific template to monitor the VMs has been developed.
The template contains items for CPU load, disk I/O requests and prototypes
for the network ports. The template is applied to each monitored host (one for
each VM); therefore, VMs have to carry out a Zabbix agent and the sniffer. The
first time that the Zabbix agent runs on the VM, hooks for CPU load and disk
I/O requests are activated, while discovery processes retrieves the network ports
being monitored by the sniffer. Furthermore it creates the hooks corresponding
to the network traffic ongoing in the monitored ports (each port would logically
corresponding to a network service). The discovery process is repeated with a
regular pace, such to dynamically capture new traffic flows on different ports,
while subsequent runs of the Zabbix agent updates the hooks with the current
resources usage. Finally, via the Zabbix API, the controller can check at any
time the VM usage details, and use this info for decisions about possible VM
migrations. The Zabbix agent is extended with capabilities for aggregating all
data retrieved by the sniffer, which are eventually sent to the central Zabbix
server.

6 Conclusions

Cloud federation is an important topic for the future of cloud made by a mix of
public and private clouds working together as a single entity.

362 G. Andronico et al.

One of the benefit provided by the federation is the possibility of exploiting
resources made available from cloud federation by migrating VMs with SLA
that are not violated from this operation. We analysed some simple use cases
and tools useful to establish policies and define procedures to minimize SLA
violations and, at the same time, optimise resource exploitation.

Nevertheless, despite technical refinements yet needed with the VM migration
practicality, the power of this procedure in federated cloud emerges clearly.

Future work will focus on extending the use cases to better define migration
policies and evaluating the impact of VM migration between federated clouds in
a real scenario.

References

1. Abdelsamea, A., Hemayed, E.E., Eldeeb, H., Elazhary, H.: Virtual machine con-
solidation challenges: a review. Int. J. Innov. Appl. Stud. 8(4), 1504–1516 (2014).
http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-14-245-14

2. Andronico, G., Fargetta, M., Monforte, S., Paone, M., Villari, M.: A model for
accomplishing and managing dynamic cloud federations. In: Proceedings of the
2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
UCC 2014, Washington, D.C., USA, pp. 744–749 (2014). http://dx.doi.org/10.
1109/UCC.2014.121

3. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized
cloud data centers. In: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), pp. 826–831. IEEE (2010)

4. Do, A.V., Chen, J., Wang, C., Lee, Y.C., Zomaya, A.Y., Zhou, B.B.: Profiling appli-
cations for virtual machine placement in clouds. In: 2013 IEEE Sixth International
Conference on Cloud Computing, pp. 660–667 (2011)

5. Venkatesha, S., Sadhu, S., Kintali, S.: Survey of virtual machine migration tech-
niques. http://www.academia.edu/760613/Survey of Virtual Machine Migration
Techniques

6. Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through over-
booking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Con-
ference, CAC 2013, pp. 5:1–5:10. ACM, NY (2013). http://doi.acm.org/10.1145/
2494621.2494627

7. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box
strategies for virtual machine migration. In: Proceedings of the 4th USENIX Con-
ference on Networked Systems Design & #38; Implementation, NSDI 2007, p. 17.
USENIX Association, Berkeley, CA, USA (2007). http://dl.acm.org/citation.cfm?
id=1973430.1973447

8. Yan, J.: A network-aware virtual machine placement and migration approach in
cloud computing. In: 2010 9th International Conference on Grid and Cooperative
Computing (GCC), pp. 87–92. IEEE (2010)

http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-14-245-14
http://dx.doi.org/10.1109/UCC.2014.121
http://dx.doi.org/10.1109/UCC.2014.121
http://www.academia.edu/760613/Survey_of_Virtual_Machine_Migration_Techniques
http://www.academia.edu/760613/Survey_of_Virtual_Machine_Migration_Techniques
http://doi.acm.org/10.1145/2494621.2494627
http://doi.acm.org/10.1145/2494621.2494627
http://dl.acm.org/citation.cfm?id=1973430.1973447
http://dl.acm.org/citation.cfm?id=1973430.1973447

SHYAM: A System for Autonomic Management
of Virtual Clusters in Hybrid Clouds

Daniela Loreti(B) and Anna Ciampolini

DISI - Department of Computer Science and Engineering,
Università di Bologna, Viale del Risorgimento 2, Bologna, Italy

{daniela.loreti,anna.ciampolini}@unibo.it

Abstract. While the public cloud model has been vastly explored over
the last few years to face the demand for large-scale distributed com-
puting capabilities, many organizations are now focusing on the hybrid
cloud model, where the classic scenario is enriched with a private (com-
pany owned) cloud – e.g., for the management of sensible data. In this
work, we propose SHYAM, a software layer for the autonomic deploy-
ment and configuration of virtual clusters on a hybrid cloud. This system
can be used to face the temporary (or permanent) lack of computational
resources on the private cloud, allowing cloud bursting in the context of
big data applications. We firstly provide an empirical evaluation of the
overhead introduced by SHYAM provisioning mechanism. Then we show
that, although the execution time is significantly influenced by the inter-
cloud bandwidth, an autonomic off-premise provisioning mechanism can
significantly improve the application performance.

Keywords: Autonomic · Hybrid cloud · Big data · MapReduce

1 Introduction

Offering “the illusion of infinite computing resources available on demand” [5],
cloud computing is the ideal enabler for high computing power demanding appli-
cations. While the public cloud scenario had been well explored in the past, many
organization are now focusing on the hybrid cloud model. Combining both on-
premise (company owned) and off-premise (owned by a third party provider) cloud
infrastructures, the hybrid scenario can indeed capture a broader use-case [19].
Recently, the exponential increase in the use of mobile devices and the wide-spread
employment of sensors across various domains has created large volumes of data
that need to be processed to extract knowledge. The pressing need for fast analysis
of large amount of data calls the attention of the research community and fosters
new challenges in the big data research area [10]. Since data-intensive applications
are usually costly in terms of CPU and memory utilization, a lot of work has been
done to simplify the distribution of computational load among several physical or
virtual nodes and take advantage of parallelism [12]. Nevertheless, the execution

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 363–373, 2016.
DOI: 10.1007/978-3-319-33313-7 28

364 D. Loreti and A. Ciampolini

of data-intensive applications requires a high degree of elasticity in resource provi-
sioning. In this scenario, a widespread choice is to relay on a cloud infrastructure
to take advantage of its elasticity in virtual resource provisioning.

In this paper, we focus on the autonomic management of virtual machines
(VMs) in the context of hybrid clouds. To this purpose, we present SHYAM
(System for HYbrid clusters with Autonomic Management), a system for the
autonomic management of VMs in hybrid clouds able to manage virtual clusters
using both on-premise (i.e., computing nodes in a private internal cloud IC) and
off-premise (i.e. in a public external cloud EC) hardware resources. The system
is able to dynamically react to load peaks – due, for instance, to virtual machine
(VM) contention on shared computing nodes – by redistributing the VMs on
less loaded nodes (either migrating inside IC or crossing the cloud boundaries
towards EC). As a case study, we consider the execution of data-intensive appli-
cations over clusters of VMs initially deployed on IC. If a physical node hosting
a VM for data-processing becomes overloaded in terms of CPU, memory or disk
utilization, the performance of the virtual cluster may dramatically decrease,
thus slowing down the whole distributed application. In this case, if another less
loaded physical machine is available on-premise, the best solution would be to
migrate the VM on that physical node. However, the private cloud has a finite
amount of resources and it may happen that all the physical machines in IC
are too loaded to receive the VM: in this case, we can provide resources on EC
and perform application-level load redistribution; in SHYAM we automated this
mechanism. As this work tests the SHYAM system on data-intensive applica-
tions, it also explores the drawbacks and shortcomings of the hybrid scenario,
primarily due to data movement crossing on-/off-premise boundaries. Although
data-processing is significantly influenced by the limited inter-cloud bandwidth,
our work shows that an autonomic off-premise provisioning mechanism could
allow the user to significantly increase the application performance.

The paper is organized as follows. Section 2 presents the architecture of the
proposed autonomic system, illustrating the data-processing scenario and man-
agement policy adopted, as well as practical details about the implementation.
Section 3 discusses the experimental results obtained by testing our solution in
the chosen data-intensive scenario. Related work and conclusion follow.

2 Framework Architecture

We focus on a hybrid scenario composed of two separated cloud installations: the
on-premise IC, owned and managed by a private company, and the off-premise
EC, a collection of resources owned by a cloud provider and rented to customers
according to a predefined price plan. Having their own cloud management soft-
ware and offering their virtualized resources to final users (e.g., customers, com-
pany employees, etc.), both IC and EC implement the cloud paradigm at the
Infrastructure as a Service (IaaS) level.

As shown in Fig. 1a, the key component of SHYAM is Hybrid Infrastructure
as a Service (HyIaaS), a software layer that allows integration between IC and

SHYAM: A System for Autonomic Management of Virtual Clusters 365

EC infrastructures. The layer interacts with both on- and off-premise cloud with
the goal of providing hybrid clusters of VMs. Each cluster is dedicated to the exe-
cution of a particular distributed application (e.g., distributed data-processing).
If there are enough resources available, all the VMs of a cluster are allocated
on-premise to minimize the costs introduced by the public cloud and the latency
of data transferred between the virtual nodes. If on-premise resources are not
sufficient to host all the VMs, a part is provisioned on IC and the others on EC.
This partitioning should be transparent to the final user of the virtual cluster,
allowing her to access all the VMs in the same way, regardless to the physical
allocation. We call hybrid cluster the result of this operation.

(a) (b)

Fig. 1. Figure 1a: Hybrid cloud scenario. SHYAM is an on-premise software component
able to collect information about the current status of IC and dynamically add off-
premise resources if needed. Figure 1b: Hybrid Infrastructure as a Service layer in detail.
Subcomponents are displayed in grey.

HyIaaS is also responsible for autonomously handling to changes in the cur-
rent utilization level of the on-premise physical machines hosting the VMs of the
cluster. To avoid the application slowdown due to the poor performance of these
VMs, HyIaaS layer is in charge of dynamically spawning new VMs on EC and
providing them to the above Application layer (Fig. 1a). This layer is responsible
for installing and configuring a specific distributed application on the newly pro-
vided VMs. SHYAM’s main goal is to unify on- and off-premise resources while
keeping a strong separation between the infrastructure and application levels. It
must be installed on IC, so that it can collect monitoring information about the
utilization level of the on-premise machines. According to a specific user-defined
policy, the HyIaaS layer can perform cloud bursting toward EC by translating
generic spawning and scale-down requests into specific off-premise provisioning
and de-provisioning commands. If both IC and EC have a centralized archi-
tecture, SHYAM makes them able to cooperate by communicating with their
central controllers. In the following, we will use the term compute nodes to refer
all the physical machines (of IC or EC) able to host VMs and not in charge of any
cloud management task. HyIaaS layer consists of three components (Fig. 1b): the
Monitoring Collector (MC), the Logic and the Translation component. MC is in

366 D. Loreti and A. Ciampolini

charge of fetching information about the current resource utilization level of the
on-premise compute node. The Logic component uses the information read by
MC and implements a custom-defined spawning policy. Given the current status
of the on-premise cluster and additional constraints possibly introduced by the
customer (e.g., deadline for the execution of a certain job), the output of the
Logic component is a new allocation of the VMs over the physical nodes, possibly
including new VMs spawned off-premise. The Logic component has been split
into two subcomponents: Node Logic and Cloud Logic. The Node Logic (one for
each compute), responsible for analyzing the monitoring data from MC, detecting
if a critical situation occurred on that physical machine (e.g., the compute node
is too loaded) and sending notifications to the Cloud Logic. The Cloud Logic
(installed on IC’s controller node), in charge of autonomously taking spawn-
ing/migration decisions given the monitoring alerts received from Node Logic.
The alerts from Node Logic and the policy of Cloud Logic can be defined by the
IC system administrator. The rationale behind splitting the Logic component
into two parts is to minimize the amount of information exchanged between the
on-premise cloud controller and the physical nodes hosting VMs: the Node Logic
sends notifications to the Cloud Logic only if a critical condition at node-level
is detected. Having a wider vision of the state of the cloud, the Cloud Logic can
combine the received information to implement a more elaborate policy. This
should be taken into account by the IC system administrator, as she implements
the spawning/migration policy. If the new VM allocation produced by the Logic
involves EC, the Translation component is used to convert the directives into
EC-specific APIs.

2.1 Applicative Scenario

HyIaaS invokes the Application Layer functionalities via a standard interface.
In particular, after HyIaaS has produced and deployed a new hybrid cluster
structure, it calls the configure operation offered by the specific Application
Layer involved, which is in charge of installing and configuring the applicative
software on the newly provided virtual nodes.

As a case study, we focus on the data-intensive scenario, in which the applica-
tion load can be distributed among several computing nodes. We adopt MapRe-
duce [12], a widespread programming model to simplify the implementation of
data intensive distributed applications. Following this approach, the input data-
set is partitioned into an arbitrary number of parts, each exclusively processed
by a different computing task, the mapper. Each mapper produces intermedi-
ate results (in the form of key/value pairs) that are collected and processed by
other tasks, called reducers, in charge of calculating the final results by merging
the values associated to the same key. The programs implemented according to
this model can be automatically parallelized and easily executed on a distrib-
uted infrastructure. The MapReduce model is implemented by several platforms:
one of the most popular is Apache Hadoop [1], an open source implementation
consisting of two components: Hadoop Distributed File System (HDFS) and
MapReduce runtime. The input files for MapReduce jobs are split into fixed

SHYAM: A System for Autonomic Management of Virtual Clusters 367

size blocks (default is 64 MB) and stored in HDFS. MapReduce runtime fol-
lows a master-worker architecture. The master (Job-Tracker) assigns tasks to
the worker nodes. Each worker node runs a Task-Tracker that manages the cur-
rently assigned tasks. Each worker node can have up to a predefined number of
mappers and reducers simultaneously running. We execute the Hadoop work-
load over a virtual cluster that can be deployed on the hybrid cloud (partitioned
between IC and EC) in case the on-premise resources are not enough. Therefore,
the first Application Layer we implement for SHYAM is responsible for installing
and configuring Hadoop on the newly provided VMs and allows us to evaluate
the performance of operating MapReduce in a hybrid cloud setup.

2.2 Logic Component Policy

We implemented a first example of policy for the Logic component executed
on every compute node of IC: the SPAN policy (Algorithm1). The algorithm
aims to maintain the load of each compute node under a parametric threshold:
THRU . It periodically checks the resource utilization of the compute node h
(line 2 in Algorithm 1). If the load exceeds THRU , the procedure selects to move
a subset of the VMs currently on h (line 3 in Algorithm 1). The selectToMove
function is implemented according to Minimization of Migrations algorithm from
Beloglazov et al. [6]. This policy ensures to always move the minimum number of
VMs that brings h utilization back under THRU . For each vm selected, if there
is another on-premise node that can host the VM, a migration is performed
(line 7 in Algorithm 1). Otherwise, if no IC’s compute node can host the VM, a
new one is spawned off-premise and the specific application level configuration is
performed (line 10 in Algorithm1). As mentioned in Sect. 2.1, we chose Hadoop
as an example of distributed data-processing application. For this reason, the

Algorithm 1. SPAN policy
Input: h,AL,ONmanager,OFFmanager,THRU ,Δt.

1: while true do
2: if h.getUtil() > THRU then
3: vmsToMove = selectToMove(h.getV Ms())
4: for each vm in vmsToMove do
5: d = ONmanager.getAnotherAllocation(vm)
6: if d! = null then
7: ONmanager.migrate(vm, d)
8: else
9: vmnew = OFFmanager.provideLike(vm)

10: AL.configure(vm, vmnew)
11: vmnew = ONmanager.remove(vm)
12: end if
13: end for
14: end if
15: sleep(Δt)
16: end while

368 D. Loreti and A. Ciampolini

code of AL.configure(vm, vmnew) mainly consists of two operations, as show
in Algorithm 2. First of all vmnew is included in Hadoop virtual cluster (cl in
line 1), then the old vm is decommissioned causing its data to be sent to other
nodes of the cluster. Focusing on the first operation (cl.include(vmnew) in line
2), we must consider that Hadoop’s Job-Tracker (running on the master node)
assigns jobs to the workers according to the part of data currently allocated on
the worker’s portion of HDFS. Having no data initially allocated on the newly
provided off-premise workers, they will be scarcely useful for the computation,
because the Job-Tracker will not assign any task to them. Nevertheless, our
solution relays on a well known Hadoop behavior: when the on-premise vm is
decommissioned and its data are replicated, Hadoop prefers the workers with
low utilization of HDFS as destinations. Initially having 0 % HDFS utilization,
off-premise vmnew is likely to be preferred and no other data balancing is needed
to give vmnew an effective role in computation. Therefore, cl.exclude(vm) in line
3 of Algorithm 2 is enough to trigger the data replication process and avoid the
drawbacks of launching Hadoop Balancer process (which is high time-consuming
mechanism [1] for equally redistribute data across the workers). It also produces
the benefits of an inter-cloud VM migration (i.e., only vm’s portion of HDFS is
moved to EC) without performing the whole VM snapshot transfer.

Algorithm 2. AL.configure procedure for Hadoop virtual cluster
Input: vm, vmnew.

1: cl = vm.getV irtualCluster()
2: cl.include(vmnew)
3: cl.exclude(vm)

2.3 Implementation

We implemented HyIaaS layer by extending OpenStack Sahara [3] component
to allow cluster scaling operations in a hybrid scenario. OpenStack [2] is an open
source platform for cloud computing with a modular architecture and Sahara is
the OpenStack module specific to data processing. It allows the user to quickly
deploy, configure and scale virtual clusters dedicated to data intensive applica-
tions like MapReduce. We modified the Sahara scaling mechanism to allow the
spawning of new VMs on a remote cloud. The MC component is a simple dae-
mon process running on each compute node. It checks the CPU, memory and
disk utilization and compares them with THRU . When the virtual cluster needs
to be scaled by providing new off-premise VMs, the command is issued through
the Translation component to EC. In our test scenario, the off-premise cloud
runs another OpenStack installation, therefore the Translation component sim-
ply forwards the provisioning command to EC’s Nova component (the central
module for VM management in OpenStack infrastructure). Finally, the Appli-
cation layer configures Hadoop and launches its daemons by connecting to the
newly provided VMs.

SHYAM: A System for Autonomic Management of Virtual Clusters 369

3 Experimental Results

Our setup is composed of two OpenStack clouds to emulate IC and EC. The
on-premise cloud has five physical machines, each one with a Intel Core Duo
CPU (3.06 GHz), 4GB RAM and 225 GB HDD. EC is composed of three phys-
ical machines, each one with 32 cores Opteron 6376 (1.4 GHz), 32 GB RAM
and 2.3 TB HDD. On both IC and EC we provide adhoc VMs with two virtual
CPUs, 4 GB RAM and 20 GB of disk. The intra-cloud bandwidth of IC and EC
is 1000 Mbit/s, while the inter-cloud bandwidth (between the two) is 100 Mbit/s.
Our initial scenario is composed of 4 VMs allocated on IC. In order to character-
ize the performance of the computation on the hybrid cluster, we first analyze
the time to provide one or more new Hadoop workers on EC. Figure 2a shows
the average time to obtain a single Hadoop worker up and running as we vary
the number of VMs spawned at a time on EC. As we expected, the trend of
the curve suggests that there is a constant overhead caused by SHYAM pro-
visioning mechanism, but the trend of total time is approximately linear with
the number of VMs requested. Furthermore, we can easily verify from the graph
in Fig. 2a that provisioning time is independent from the characteristics of the
specific VM spawned. Given SHYAM’s autonomic provisioning mechanism, we
can evaluate the performance of operating MapReduce in a hybrid cloud setup.
To this purpose, we assume to have four on-premise VMs already configured to
run Hadoop jobs and provided with a certain amount of data D on HDFS, and
we consider the time to execute a word count Hadoop job [12] over Wikipedia
datasets of different size D [4]. Figure 2b compares the execution time trends
of three scenarios. The first one (Te I in Fig. 2b) represents the ideal situa-
tion of having each Hadoop VM allocated on an on-premise dedicated physical
machine. Since no other physical or virtual load is affecting the execution, we can
obtain good performance (execution time is linear in D). The second scenario
(Te Istress in Fig. 2b) shows the performance degradation when one of the four
Hadoop workers is running on a overloaded physical machine and no VM redis-
tribution mechanism is adopted. As we can see in Fig. 2b, the execution time
is considerably higher when compared to Te I because the VM on the stressed
physical node sensibly slows down the whole distributed computation. The third
scenario (Te Hstress in Fig. 2b) repeats the second scenario and adopts SHYAM
redistribution with SPAN policy. THRU and THRD are fixed at 90 % and 10 %
respectively. In this case, a new VM is spawned off-premise and the on-premise
worker running on the stressed machine is decommissioned (i.e., excluded from
Hadoop cluster after its data have been copied on other worker nodes). This oper-
ation causes a part of data to cross on-/off-premise boundaries. As we can see in
Fig. 2b, the adoption of SPAN policy can considerably improve the performance
for low values of D. However, the trends show that in the third scenario the exe-
cution time is not linear in the volume of data involved and, for high values of D,
we can have a lower execution time by avoiding the off-premise spawning. This
is mainly due to data movement across the on-/off-premise boundaries, which
is usually over a higher latency medium when compared to a fully on-premise
computation. Figure 2c shows the gain in execution time obtained with SHYAM.

370 D. Loreti and A. Ciampolini

Although for high volumes of data crossing on-/off-premise boundaries the gain
is low, the graph suggests that the autonomic provisioning and configuration of
VMs on EC can represent a good solution to face critical conditions of stress in
private clouds. In the case of a word count application, the graphic in Fig. 2c
suggests a pseudo linear correlation between the amount of data D and the gain
obtained by providing a new off-premise VM and decommissioning the slow on-
premise worker. This property can be useful to a priori estimate the advantage
of SHYAM’s cloud bursting given a certain volume of data D to be processed.

(a) (b) (c)

Fig. 2. Figure 2a shows the time to provide a certain number N of new off-premise
VMs with different characteristics (small, medium, large and xlarge are the default
VM configurations offered by OpenStack). Figure 2b compares the time to perform
Hadoop word count on a fully on-premise cluster – with (Te I) or without (Te I stress)
a stressing condition on a physical node –, with the performance on a hybrid cluster
created by the HyIaaS. Figure 2c shows the percentage gain obtained by our solution.

4 Related Work

Cloud computing is currently used for a wide and heterogeneous range of tasks.
According to the classification introduced in [5], in this work we especially focus
on the cloud from the IaaS perspective, intending it as an elastic provider of
virtual resources, able to contribute to heavy computing tasks. Data-intensive
applications are an example of resource demanding tasks. A widely adopted
programming model for this scenario is MapReduce [12], whose execution can
be supported by platforms such as Hadoop [1], possibly in a cloud computing
infrastructure. We tested our system with MapReduce applications, choosing
Hadoop as execution engine. Recently, a lot of work has focused on cloud com-
puting for the execution of big data applications: as pointed out in [11], the
relationship between big data and the cloud is very tight, because collecting
and analyzing huge and variable volumes of data require infrastructures able to
dynamically adapt their size and their computing power to the application needs.
The work by Chen et al. [9] presents an accurate model for optimal resource pro-
visioning useful to operate MapReduce applications in public clouds. Similarly,
Palanisamy et al. [17] deal with optimizing the allocation of VMs executing
MapReduce jobs in order to minimize the infrastructure cost in a cloud datacen-
ter. In the same single-cloud scenario, Rizvandi et al. [18] focus on the automatic

SHYAM: A System for Autonomic Management of Virtual Clusters 371

estimation of MapReduce configuration parameters, while Verma et al. [20] pro-
pose a resource allocation algorithm able to estimate the amount of resources
required to meet MapReduce-specific performance goals. However, these models
were not intended to address the challenges of the hybrid cloud scenario, which
is the target environment of our work.

The choice of primarily relay on a small (e.g., private) cloud and then use
the extra-capacity offered by a public cloud for opportunistic scale-out has been
investigated by several authors [7,8]. According to the classification in [19], our
work mainly deals with the hybrid cloud approach for cloud interoperability,
because the main motivation of our system is allowing cloud bursting to EC.
However, our proposal could also be classified as a Federation mechanism for
cloud aggregation because – as in federated clouds – the interoperation between
clouds is completely transparent to end-users. The works in [13,16] focus on
enabling cloud bursting through inter-cloud migration of VMs, which is generally
a time and resource expensive mechanism. In particular, [13] optimizes the over-
head of migration using an intelligent pre-copying mechanisms that proactively
replicates VMs before the migration. Our work doesn’t take into consideration
the VM migration, but only the dynamic instantiation of new compute nodes on
EC, thus to avoid the unnecessary movement of the whole VM snapshot across
the cloud boundaries. As we shown, this technique is particularly suitable for
the MapReduce model because the Hadoop provisioning and decommissioning
mechanism intrinsically contributes to simplify the cloud bursting process. The
hybrid scenario is also investigated in the work by Zhang et al. [21] by focusing
on the workload factoring and management across federated clouds. More sim-
ilarly to our approach, cloud bursting techniques has been adopted for scaling
MapReduce applications in the work by Mattess et al. [15], which presents an
online provisioning policy to meet a deadline for the Map phase. Differently from
our approach, [15] does not consider the time to balance data across the hybrid
virtual cluster, which, as we showed, has a consistent role in determining the
opportunity of cloud bursting towards the public cloud. Also the work presented
by Kailasam et al. [14] deals with cloud bursting for big data applications. It
proposes an extension of the MapReduce model to avoid the shortcomings of
high latencies in inter-cloud data transfer: the computation inside IC follows the
batch MapReduce model, while in EC a stream processing platform called Storm
is used. The resulting system shows significant benefits. Differently from [14], we
have chosen to keep complete transparency and uniformity in working node
allocation and configuration. However, as in [14], our system allows the user to
constrain the allocation of mappers/reducers in order to optimize the cost of
data transfer between these tasks.

5 Conclusion

In this paper we presented SHYAM, a software component to allow VM auto-
nomic management in a hybrid cloud scenario. We illustrated the architecture
and the internal structure of the system and we evaluate its performance by exe-
cuting a Hadoop data-intensive application on a virtual cluster and stressing one

372 D. Loreti and A. Ciampolini

of IC’s physical machines. In the given scenario, SHYAM autonomously spawns
new VMs on EC and configures them as workers of the Hadoop cluster. Our
results show that the time to provide a new off-premise worker is not influenced
by the characteristics of the VM requested and the hybrid cluster obtained can
sensibly improve the performance of a benchmark Hadoop word count applica-
tion, although the performance of the hybrid cluster decreases as the inter-cloud
bandwidth is saturated. Since this drawback could be also influenced by the kind
of application executed (e.g., word count in our case study), we plan to further
investigate SHYAM performance with different Hadoop workloads. Neverthe-
less, this work represents a first prototype of an autonomic infrastructure for
hybrid clouds able to detect critical conditions on IC and autonomously request
resources to EC.

As regards SPAN policy, we trigger the spawning/migration mechanism if the
physical machine’s CPU utilization exceeds THRU . However, the policy could
be easily modified to take into account the utilization of other resources (RAM,
disk, etc.). Furthermore, in case of spawning new VMs towards EC our approach
lacks a mechanism for bringing back on IC the off-premise VMs once the critical
condition is solved. Therefore, for the future, we plan to enrich the policy with a
similar threshold mechanism to detect underloaded hosts in IC. This mechanism
will have to be equipped with memory of the past actions taken in order to avoid
the continuous provisioning and de-provisioning of VMs (moving data back and
forth between IC and EC) due to small variations on the load of the physical
machine.

References

1. Apache hadoop. https://hadoop.apache.org/
2. Openstack: Opensource cloud computing software. https://www.openstack.org/
3. Openstack sahara. https://wiki.openstack.org/wiki/Sahara
4. Puma datasets. https://engineering.purdue.edu/puma/datasets.htm
5. Armbrust, M., Fox, O.: Above the clouds: a Berkeley view of cloud computing.

Electrical Engineering and CS University of California, Technical report (2009)
6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-

tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

7. Bicer, T., Chiu, D., Agrawal, G.: A framework for data-intensive computing with
cloud bursting. In: IEEE International Conference on Cluster Computing (2011)

8. Cardosa, M., Wang, C., Nangia, A., Chandra, A., Weissman, J.: Exploring mapre-
duce efficiency with highly-distributed data. In: Proceedings of the Second Inter-
national Workshop on MapReduce and Its Applications. ACM (2011)

9. Chen, K., Powers, J., Guo, S., Tian, F.: Cresp: towards optimal resource provi-
sioning for mapreduce computing in public clouds. IEEE Trans. Parallel Distrib.
Syst. 25(6), 1403–1412 (2014)

10. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209
(2014)

11. Collins, E.: Intersection of the cloud and big data. IEEE Cloud Comput. 1(1),
84–85 (2014)

https://hadoop.apache.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Sahara
https://engineering.purdue.edu/puma/datasets.htm

SHYAM: A System for Autonomic Management of Virtual Clusters 373

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. Guo, T., Sharma, U., Shenoy, P., Wood, T., Sahu, S.: Cost-aware cloud bursting
for enterprise applications. ACM Trans. Internet Technol. 13(3), 10 (2014)

14. Kailasam, S., Dhawalia, P., Balaji, S.: Extending mapreduce across clouds with
bstream. IEEE Trans. Cloud Comput. 2(3), 362–376 (2014)

15. Mattess, M., Calheiros, R., Buyya, R.: Scaling mapreduce applications across
hybrid clouds to meet soft deadlines. In: IEEE 27th International Conference on
Advanced Information Networking and Applications, pp. 629–636 (2013)

16. Nagin, K., Hadas, D.: Inter-cloud mobility of virtual machines. In: Proceedings of
the 4th Annual International Conference on Systems and Storage. ACM (2011)

17. Palanisamy, B., Singh, A., Liu, L.: Cost-effective resource provisioning for mapre-
duce in a cloud. IEEE Trans. Parallel Distrib. Syst. 26(5), 1265–1279 (2015)

18. Rizvandi, N., Taheri, J.: A study on using uncertain time series matching algo-
rithms for mapreduce applications. Concurrency Comput. 25(12), 1699–1718
(2013)

19. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: challenges, taxonomy, and survey. ACM Comput. Surv. 47(1), 7 (2014)

20. Verma, A., Cherkasova, L., Campbell, R.H.: Resource provisioning framework for
mapreduce jobs with performance goals. In: Kon, F., Kermarrec, A.-M. (eds.) Mid-
dleware 2011. LNCS, vol. 7049, pp. 165–186. Springer, Heidelberg (2011)

21. Zhang, H., Jiang, G., Yoshihira, K.: Proactive workload management in hybrid
cloud computing. IEEE Trans. Netw. Serv. Manage. 11(1), 90–100 (2014)

A Database-Specific Pattern for Multi-cloud
High Availability and Disaster Recovery

Huanhuan Xiong(B), Frank Fowley, and Claus Pahl

IC4 - The Irish Centre for Cloud Computing and Commerce,
Dublin City University, Dublin 9, Ireland

h.xiong@cs.ucc.ie

Abstract. High availability and disaster recovery (HADR) are often
discussed in highly critical business systems for business function recov-
ery and continuity concerns. With the development of cloud computing,
virtual cloud services are perfectly matched to HADR scenarios, and
interoperability is a significant aspect to help users to use HADR ser-
vice across different cloud platforms and providers. In this paper, we
present an architectural pattern describing the integration of high avail-
ability and disaster recovery. We focus on database cluster replication
between private cloud and public cloud environments. This HADR pat-
tern for database cluster replication implements both synchronous and
asynchronous replication concurrently for high availability and disaster
recovery purposes. To evaluate the effectiveness of this pattern, we sim-
ulate a MySQL-database-cluster HADR scenario under three strategies:
hot standby, warm standby and cold standby, and analyze the perfor-
mance, business continuity features and cost.

Keywords: Multi-cloud · Architecture pattern · High availability ·
Disaster recovery · Clustering · Database replication

1 Introduction

Business continuity (BC) is the capability of a business to withstand outages and
continue to operate services normally and without interruption in accordance
with predefined SLAs [10]. High availability and disaster recovery are both sub-
sets of business continuity [25]. High availability (HA) is the characteristic of a
system to protect against or recover from minor outage in a short time frame
with largely automated means. High availability addresses service availability
mostly via redundancy and flexible load balancing so that if one infrastructure
component (network, servers, and processes) becomes unavailable, overall service
remains available. The architecture of a typical HA system is shown in Fig. 1(a).
Disaster recovery (DR) is the ability to continue services in the case of outages,
often with reduced capabilities or performance, and typically involving manual
activities. Disaster recovery addresses service recovery and continuity through
two independent environments (primary site and standby site), typically in sep-
arate and distinct facilities, each containing their own data and executables. The
architecture of a typical DR system is shown in Fig. 1(b).
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 374–388, 2016.
DOI: 10.1007/978-3-319-33313-7 29

A Database-Specific Pattern for Multi-cloud HADR 375

Fig. 1. HA and DR architectures

The effectiveness of BC can be controlled via the key features recovery time
objective (RTO) and recovery point objective (RPO) [1]. RTO is the duration
of time needed until the service is usable again after a major outage, and RPO
refers the point in time from which data will be restored to be usable. To reduce
the downtime (RTO) and data loss (RPO) of a system with an outage, it is
common to replicate data (e.g., database, application, or system meta-data) to
another standby site or another provider. Recently, virtualized cloud platforms
have been used to provide scalable HADR solutions. Moreover, the pay-as-you-
go pricing mode can reduce the operating cost of infrequently used IT resources
over the Internet [4].

A challenge for HADR in the cloud is to implement the system recovery and
business continuity across different cloud platforms or providers. A typical use
case would be a business has its own private cloud infrastructure for providing
services, but does not want to invest in additional infrastructure that is rarely
used (e.g., disaster recovery). Taking a public cloud for disaster recovery can help
to reduce the capital expenditures. In addition, HADR can happen in different
levels, like VMs, storage, or applications. While currently most across-cloud DR
solutions focus on infrastructure level, the HADR solution for application data,
especially relational databases across multi-cloud is the problem we address here.

We present a database-specific pattern describing the integration of high
availability and disaster recovery into a database cluster architecture between

376 H. Xiong et al.

private cloud and public cloud environments – addressing a need to look at the
cloud from a software architecture perspective [20]. As a case study, we deployed
two MySQL database clusters on an OpenStack private cloud as the primary site
and Windows Azure public cloud as the backup site separately. We used load
balancing to monitor and manage the traffic between the two clouds. The pattern
generalizes our specific experience, implementing synchronous replication inside
of each database cluster to achieve high availability, as well as asynchronous repli-
cation between the primary-database-cluster and the standby-database-cluster
to complete fail-over and fail-back.

This paper is organized as follows. We introduce background and related work
in Sect. 2, including database clustering and replication techniques, as well as
HADR with cloud computing. In Sect. 3, we present the architectural pattern for
hybrid database-cluster replication solution for multi-cloud. Then, we implement
the HADR pattern based on OpenStack and Windows Azure in Sect. 4 and show
the result of the evaluation in Sect. 5. We give the conclusion in Sect. 6.

2 Background and Related Work

A database cluster is based on a group of linked computers, working together
closely [32]. In the database context, clustering means that the application sees a
single database, while under the covers there are two or more computers process-
ing the data. Generally, there are two predominant node configurations for HA
clustering: active/passive (master-slave) and active/active (multi-master). The
active/passive mode provides a fully redundant instance of each node, which is
only brought on-line when its associated primary node fails. The active/active
mode is widely used in a homogeneous software configuration, where traffic
intended for the failed node is either passed onto an existing node or load bal-
anced across the remaining nodes.

Database replication is frequent data copying from one database to
another. Database replication is widely used in distributed database systems
– see Table 1. There are two techniques to affect database replication [28]: eager
and lazy. In eager replication, updates are propagated within the boundaries of
a transaction which usually uses locking for maintaining the data consistency
[19], which means all replicas are active and consistent all the time. Lazy repli-
cation updates the local copy first and then propagates the update transaction
to other database replicas, which is well known for low data consistency and
high scalability and performance (short response times) [12].

A cluster replication strategy can be selected based on two basic char-
acteristics: when and where [24]. The when characteristic is based on when is
the data updated, which can be described with replication methods: eager (syn-
chronous) and lazy (asynchronous). The where characteristic is based on where
the updates can take place, which can be presented by the clustering nodes:
master-slave and multi-master.

The primary objective of high availability and disaster recovery
(HADR) solutions [2,8,14] is disaster recovery to restore critical business system

A Database-Specific Pattern for Multi-cloud HADR 377

Table 1. Database replication models

Master-slave Multi-master

Synchronous No updates are made at the
primary (master) node
until all secondary (slave)
nodes have also received
the update.

The same data has been updated in
different nodes at the same time:
using locking techniques to avoid
concurrent transactions on the
same data or atomic broadcast to
determine the total order when
conflicting transactions happen.

Asynchronous When the primary node
receives an update
transaction, it is executed
and committed. Then it
propagates a new copy to
the secondary nodes.

The same data could have been
updated at different nodes at the
same time, but a problem during
the synchronization might arise,
e.g., some decision might need to
be made on which transaction to
keep and which transaction to
undo.

to a normal or near-normal condition following a disruptive incident and high
availability management to minimize downtime and help to achieve very low or
near-zero RTOs. Popular strategies for recovering systems are high availability
cluster [13], remote backup [11] and database replication [28].

Virtual servers have been used in high available clusters [5,6]. A HA cluster
has two or more nodes (VMs), each node runs one or more services. When one of
the nodes fails, the services or workloads are transparently transferred to other
nodes by a load balancer. However, a single load balancer also could become the
bottleneck of the system. Thus, virtual IP technology [33] can be used between
load balancers for high availability and failure tolerance. Remus [5] is a project
that provides a virtualization-based HA solution by allowing a group of VMs
to be replicated across different data centers over WAN. SecondSite [23] extends
high availability to disaster tolerance, allowing the backup VM to take over
in a completely transparent manner to implement both fail-over recovery and
seamless fail-back. For HADR in cloud environments, Wood et al. [31] analyze
the economic benefits and deployment challenges of disaster recovery as a cloud
service, exploring the traditional functionality with current cloud platforms in
order to minimize cost, data loss and recovery time in cloud based DR services.

There are a number of commercial HADR solutions. Amazon (AWS) [7]
provides three recovery methods using combination of AWS services: cold DR,
pilot-light DR and warm DR. Window Azure [15] offers end-to-end highly avail-
able DR using Microsoft virtualization (hyper-v) and failover capabilities com-
plemented by data replication products. VMware Site Recovery Manager (SRM)
[27] is widely used for storage-based replication to provide centralized manage-
ment of recovery plans, enable non-disruptive testing, and automate site recov-
ery and migration processes. Zerto Virtual Replication [32] is a hypervisor-based

378 H. Xiong et al.

replication solution for tier-one applications, which can replace traditional array-
based DR that was not built for virtual environments. OpenStack also provides
both HA and DR as a service [17], HA for continued operations within a sin-
gle cloud environment (one deployment of OpenStack in a single or multiple
locations), DR for continued operations for multiple cloud environments (multi-
ple deployments in various locations). However, these HADR solutions generally
focus on backup of applications from on-premise to cloud or between different
locations, but for the same cloud platform [22]. Interoperability across different
cloud platforms and providers is still a major challenge for HADR.

3 HADR Pattern: Hybrid Multi-cloud Cluster
Replication

Generally, as described above, synchronous replication aims at high data con-
sistency, which requires a reliable network and low latency, while asynchro-
nous replication can adapt to long-distance and high network latency environ-
ments better at lower cost. The primary purposes of multi-master clustering are
increased availability and faster server response time, while master-slave cluster-
ing is usually used for failover scenarios rather than high availability purpose.

Thus, for our HADR pattern, we propose synchronous multi-master repli-
cation inside of a database cluster to achieve system high availability and data
consistency, and use asynchronous master-slave replication between primary and
secondary database cluster to ensure the backup/replication operations does not
impact the normal performance of primary system.

The presentation of the HADR pattern in this section follows the way archi-
tecture patterns are described in [3]: first a definition of problem and context is
given, followed by the description of the solution and strategies, and completed
with a discussion of comments and limitations. We also discuss concrete technolo-
gies to illustrate the implementation of the pattern. The technology discussion
extends the pattern and is crucial to demonstrate its feasibility.

3.1 Problem and Context

While both HA and DR strive to achieve business continued operations in the
face of failures, HA usually deals with individual component failures based on
local area network (LAN) and DR deals with large-scale failures across wide-
area network (WAN). Generally, HA and DR would be considered as separate
problems and would be addressed separately. We aim at integrating HA and
DR into one system, implementing HA across WAN contexts and achieving DR
across multi-cloud platforms. As discussed in Sect. 2, most HADR solutions focus
on backup of the applications from on-premise to cloud, or between different
locations but the same cloud platform. Thus, our HADR pattern addresses:

– Integration of HA and DR. Our HADR pattern integrates the existing
HA architectures (i.e., clustering and load balancing) with DR processes

A Database-Specific Pattern for Multi-cloud HADR 379

(i.e., backup, fail-over and fail-back), which aims to implement the best-
practice to provide the required HA and DR, supporting various degrees of
automated fail-over and availability concepts.

– Multi-cloud HADR. Our pattern supports HA and DR across different cloud
platforms/providers, such as having the primary HA infrastructure running in
a private cloud and implementing DR in a public cloud across the Internet.

We focus the HADR pattern on database clusters, aiming at synchronous repli-
cation for local high availability within the primary database cluster, and asyn-
chronous replication for disaster recovery across a remote standby cluster.

3.2 Solution

In our setup, cf. Fig. 2, two virtual server clusters are used to provide HADR for
the databases. The primary site could host an OpenStack private cloud, which
handles all client requests during the normal operations. The standby site, hosted
in the Azure public cloud provides the database service when a failure happens in
the primary site. In addition, we use load balancers (active/passive) to manage
the workload between these two sites. Note that OpenStack and Azure are used
for illustration, but are not part of the actual pattern.

Fig. 2. The architecture of HADR solution

Technically, the HADR pattern architecture includes site-to-site VPN and
MySQL cluster replication (synchronous and asynchronous). Here, site-to-site

380 H. Xiong et al.

VPN is a private virtual cloud network that overlays the Internet to connect
different cloud infrastructures, which is the networking precondition of the data-
base cluster replication. Then the cluster provides shared-nothing clustering and
auto-sharding for the MySQL database system, which consists of multi-master
synchronous replication and master-slave asynchronous replication techniques.

– Synchronous replication is implemented using Galera, which a multi-master
cluster for MySQL/InnoDB databases. The application can write to any node
in a Galera replication [26] cluster, and transaction commits (RBR events) are
then applied on all servers, via a certification-based replication using group
communication and transaction ordering techniques.

– Asynchronous replication is implemented by Global Transaction Identifiers
(GTID) [16], which provides a better master-slave transactions mapping across
nodes. The slave can see a unique transaction coming in from several masters,
which can easily being mapped into the slave execution list if it needs to restart
or resume replication.

The MySQL cluster replication reference architecture is shown in Fig. 3.

Fig. 3. MySQL cluster replication reference architecture

A Database-Specific Pattern for Multi-cloud HADR 381

3.3 Strategies

We selected three use cases to comprehensively match different common DR
strategies [29]: hot standby, warm standby and cold standby.

– Hot standby. This is a duplicate of the primary site, with full computer sys-
tems as well as near-complete backups of user data. Real-time synchronization
between the two sites may be used to completely mirror the data environment
of the primary site via VPN.

– Warm standby. This is a compromise between hot and cold, where the basic
infrastructures have already been established, though on a smaller scale than
the primary production site, e.g., keep one VM running in the backup site,
and real-time data synchronization between the two sites via VPN.

– Cold standby. This is the least expensive type of backup site for an organiza-
tion to operate, which is designed to provide the basic infrastructure needed
to run a data center for long-term outages of the primary one. In cold standby,
there is no VM running in the backup site, only VM snapshots are transferred
from primary site to backup site on a regular basis.

3.4 Comments and Limitations

As discussed in Sect. 2, both synchronous and asynchronous replication are
widely used in high availability and fault tolerance for databases. Both of them
have pros and cons, as discussed. Our cluster reference architecture in the pat-
tern is integrating synchronous and asynchronous replication into one HADR
system, using Galera for local database cluster high availability and applying
GTID for remote backup across different platforms as the implementation. In
addition, GTID allows a slave to have more than one master, which means if
the failure happens at one master, others can continually send the transaction
to the slave. This novel master-slave mapping mechanism can help to maximize
the flexibility and reduce data loss.

However, the architecture implementation also has some limitations. For
example, at the slave side, the Galera cluster service needs to be stopped until
the GTID configuration is done, but this only happens in the hot standby sce-
nario where Galera and GTID services are running at the same time. Thus,
the most efficient way to handle these two techniques together is to keep only
one slave node alive during the normal operations, and start the Galera cluster
service only when scaling out to more nodes (e.g., warm standby use case).

4 Pattern Implementation and Evaluation Setup

To implement the HADR pattern, we used, as discussed, an OpenStack private
cloud as primary site and an Azure public cloud as the backup site. To prepare
an evaluation testbed, in each VM, we used WordPress as the testing application
for the evaluation with an Apache web server and a MySQL database on Linux
OS (LAMP stack), which can be considered a standard application. Each VM

382 H. Xiong et al.

Fig. 4. HADR pattern implementation

is then a web server node as well as a database node. Furthermore, we use
the open-source HAproxy as the load balancer, monitoring and controlling the
workload between primary site and backup site. The load balancer ensures that
the primary cloud is managed and monitored, the HA and DR mode is activated
and the update of the backup site is triggered (automated fail-back is enabled).
The overall HADR implementation is shown in Fig. 4.

– VPN tunnel between OpenStack and Azure. We used Openswan to build up
a VPN tunnel between OpenStack and Azure cloud. Openswan is based on
the IPsec protocol that encrypts the IP traffic before packets are transferred
from source to destination. Since encapsulation, de-capsulation, encryption
and decryption take place at the router, the processing overhead and CPU
utilization increases would reduce communication speed.

– Master-slave-master replication. Global Transaction Identifiers (GTID)
released in MySQL 5.6 enables replicated events to be easily tracked through
a replication topology of masters and slaves. Thus, any two nodes in primary
site and backup site can be configured as master and slave. Rather than the
traditional one-to-one mapping mechanism, GTID allows a slave to have more
than one master, which helps to maximize the flexibility and reduces data loss.
In addition, we implemented bi-directional (master-slave-master) replication
between masters and slaves, which achieves automatic fail-over and fail-back
between the primary site and backup site.

– Multi-master replication. It aims to achieve high availability inside each site.
Here, we use the MySQL Galera technique to implement the multi-master
synchronous replication in the primary site to enable HA function, as well
as in the backup site with the hot standby strategy. In warm standby mode,

A Database-Specific Pattern for Multi-cloud HADR 383

there is only one node alive in the backup site during the normal operations,
and the Galera service is be started when it scales out to another nodes.

5 Evaluation

We have implemented the pattern as an abstract architectural template through
an implementation based on current technologies achieving the desired structural
properties. This has been illustrated in Sects. 3 and 4. What needs a further
investigation is the demonstration that an implemented pattern actually meets
the HA and DR quality requirements and also cost and performance needs. This
will also guide the mapping of the pattern to an implementation by selecting the
best suitable strategy.

5.1 Objectives and Criteria

For the evaluation of the HADR pattern, we will measure the availability for
HA, RPO and RTO for DR, cost (financial constraint) and response time (for
system performance) in terms of most company concerns.

The evaluation results vary across to the different DR standby strategies.
Selecting an appropriate DR strategy is one of the most important decisions
made during the disaster recovery planning (DRP). It is important to carefully
consider the specific business needs along with the costs and capabilities (such
as RPO and RTO) when identifying the best approach for business continuity.

5.2 Experiment

We carried out experiments with the three different DR strategies on a cloud
application service: hot standby, warm standby and cold standby.

– Hot standby. Two VMs run in Azure as the backup, VPN runs and connects
with OpenStack, data is asynchronously replicated between two sites and syn-
chronously replicated in the backup site.

– Warm standby. One VM runs in Azure as backup, VPN runs and connects
with OpenStack, data is asynchronously replicated between two sites.

– Cold standby. No VM runs in Azure; VPN is created, but not running.

5.3 Results

Availability. Availability can be defined as a ratio of the expected value of the
uptime of a system to the aggregate of the expected values of up and down time:

A =
E[uptime]

E[uptime] + E[downtime]
(1)

Here, we assure the total time of a functional unit (uptime + downtime)
is a year (typical SLA value), which is equal to 365× 24× 60 min, while the

384 H. Xiong et al.

downtime varies over the different DR strategies. The availability results of hot,
warm and cold DR strategies are presented in Table 2.

RTO and RPO. RTO is the period from the disaster happening (the service
becoming unavailable) to the service being available again, which is the same
as the downtime in availability. RPO is the point in time from that data will
be restored, which indicates the period from the latest backup version until the
disaster happens. The results of RTO and RPO with hot, warm and cold DR
strategies are presented in Table 2.

Cost. To give an indicative costing (according to Windows Azure pricing as of
April 2015), we assume the following VM and storage costs for DR resources
(cost summaries for the three DR strategies are also shown in Table 2):

– Virtual machine for computing (small size VM): 6.70 Cents per hour or 49
Euros per month

– Networking: virtual network (gateway hours): 2.68 cent per hour or 15.75 euro
per month

– Storage: 5 cent per GB per month, or 50 euro per TB per month

Table 2. Performance and business impact analysis results with three DR strategies

Description Availability RTO RPO COST

(per year) (per month)

Hot standby Automated 1 (zero

downtime)

0 (zero down-

time)

0 (no data loss) 113.75 euro

Warm standby Starting another VM

and configure the

load balancer and

multi-master

database cluster

0.99999 (5min

downtime)

5min 0 (no data loss) 64.75 euro

Cold standby Creating two VMs based

on the latest

snapshot, starting

VMS, and

configuring load

balancer and

multi-master

database cluster

0.99994

(30min

downtime)

30min Depends on

checkpoint-

ing

interval

15.75 euro

Response time. For web applications, the response time is the time it takes
servers to respond when a user sends a query through a client to the servers. We
used jmeter to simulate the workload (including browsing home page, logging
in and making comments to our testing application) for the primary site with
different DR strategies as well as the response time when the backup site takes
over. The response time results of cold, warm and hot DR strategies are shown
in Fig. 5.

Here, the top three graphs present the response time (in milliseconds) from
the primary site with three common operations of our Wordpress application:

A Database-Specific Pattern for Multi-cloud HADR 385

Fig. 5. Response time with cold, warm and hot DR strategies (Color figure online)

386 H. Xiong et al.

browse home page, login and comment, while the last one shows the response
time (in milliseconds) from the backup site with the same operations. As we have
seen in Fig. 4, the average response times of the different DR strategies from
the primary site (see Graphs a,b,c) are similar, which indicates that database
replication rarely impacts on response time and user experience. However, the
average and maximum response time from the backup site (see Graph d) are
slightly higher than the values from the primary site, which is actually expected
due to the network latency and cross-cloud load balancing.

Guidelines. For the experimental evaluation, we only run 2 VMs as full-size
applications, which makes the differences of recovery time and cost between the
three DR strategies not very substantial. However, if we were to run hundreds
of VMs for the service, and each VM costs 49 Euros per month, the hot standby
would cost significantly more than the warm standby solution. Considering the
RPO and RTO, warm standby has the same RPO as the hot standby solution,
but the RTO of warm standby depends on the capacity (e.g., cloud bursting
and auto scaling) of cloud platforms, ranging from a few minutes to dozens of
minutes. In fact, we would not recommend to use cold standby for emergency
disaster recovery in real business scenarios, which is quite inexpensive comparing
to other two strategies, but extremely inefficient regarding recovery time and
data loss. Therefore, warm standby for DR would be an ideal strategy for most
organizations in terms of the combination of RPO, RTP and financial concerns.

6 Conclusions

In this paper, we presented a multi-cloud HADR architectural pattern, applied to
relational database clusters across different cloud platforms, which targets high
availability, reliability and interoperability as quality concerns. We introduced
the replication techniques and models for the cloud environment as part of the
pattern definition, which helps to minimize cost, data loss and recovery time
for business continuity. We suggested a number of core cloud and distributed
systems technologies and implemented the abstract HADR pattern based on
a real-world cloud environment. As a sample solution, we chose an OpenStack
private cloud and a Windows Azure public cloud.

In order to evaluate the pattern and its sample implementation, we sim-
ulated three DR scenarios for the commonly used DR strategies hot standby,
warm standby and cold standby, and analyzed the availability, RPO and RTO,
cost and response time in terms of most SMEs concerns. The system perfor-
mance results indicate that the database replication rarely impacts the response
time and user experience, while the other results show that hot standby is the
most expensive and most efficient solution and that cold standby is inexpensive
compared to other two strategies, but inefficient for the recovery time and data
loss prevention. Warm standby has the same RPO as the hot standby solution,
but the RTO of warm standby actually depends on the capacity of the cloud
platforms (e.g., depending on cloud bursting and auto scaling strategies). We

A Database-Specific Pattern for Multi-cloud HADR 387

propose warm standby for DR as an ideal strategy for most organizations in
terms of the comprehensive analysis of RPO, RTP and financial issues.

There are a number of cloud providers offering DR as a service (DRaaS),
including the DR strategies we discussed. However, they mostly focus on backup
of the application or of data from on-premise to the cloud, or in between their
own clouds (which means different locations, but the same cloud platforms).
In this HADR pattern, we developed a general database-cluster architecture
pattern focusing on the interoperability across different clouds, here specifically
between an OpenStack and a Windows Azure cloud. In this investigation, we are
focused on relational databases, which is still less available than VM-oriented DR
solutions. As a next step, we will investigate cloud storage, developing a pattern
allowing multi-cloud configurations for managing different cloud storages and a
possible (semi-)automated migration between different providers [9,21].

Acknowledgments. The research described here was supported by the Irish Centre
for Cloud Computing and Commerce, an Irish national Technology Centre funded by
Enterprise Ireland and the Irish Industrial Development Authority.

References

1. Benton, D.: Disaster recovery: a pragmatist’s viewpoint. Disaster Recovery J.
20(1), 79–81 (2007)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, New York (1987)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad,
P., Stal, M.: Pattern-Oriented Software Architecture: A System of Patterns, vol.
1. Wiley, New York (1996)

4. Creeger, M.: Cloud computing: an overview. ACM Queue 7(5), 2 (2009)
5. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus:

high availability via asynchronous virtual machine replication. In: Proceedings of
the USENIX Symposium on Networked Systems Design and Implementation, pp.
161–174 (2008)

6. Fu, S.: Failure-aware resource management for high-availability computing clusters
with distributed virtual machines. J. Parallel Distrib. Comput. 70(4), 384–393
(2010)

7. Robinson, G., Narin, A., Elleman, C.: Using Amazon Web Services for disas-
ter recovery. http://media.amazonwebservices.com/AWS Disaster Recovery.pdf.
Accessed October 2014

8. Gray, J., Siewiorek, D.P.: High-availability computer systems. Computer 24(9),
39–48 (1991)

9. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

10. Kandukuri, B.R., Paturi, V.R., Rakshit, A.: Cloud security issues. In: IEEE Inter-
national Conference on Services Computing, SCC 2009, pp. 517–520 (2009)

11. King, R.P., Halim, N., Garcia-Molina, H., Polyzois, C.A.: Management of a remote
backup copy for disaster recovery. ACM Trans. Database Syst. (TODS) 16(2), 338–
368 (1991)

http://media.amazonwebservices.com/AWS_Disaster_Recovery.pdf

388 H. Xiong et al.

12. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Trans. on Comput. Syst. (TOCS) 10(4), 360–391 (1992)

13. Lewis, P.: A high-availability cluster for Linux. Linux J. 64 (1999)
14. Lumpp, T., Schneider, J., Holtz, J., Mueller, M., Lenz, N., Biazetti, A., Petersen,

D.: From high availability and disaster recovery to business continuity solutions.
IBM Syst. J. 47(4), 605–619 (2008)

15. Microsoft: High availability and disaster recovery for SQL Server in Azure vir-
tual machines (2014). http://msdn.microsoft.com/en-us/library/azure/jj870962.
aspx. Accessed 12 June 2014

16. MySQL: Replication with global transaction identifiers. http://dev.mysql.com/
doc/refman/5.6/en/replication-gtids.html

17. Openstack Wiki: Openstack disaster recovery solution. https://wiki.openstack.org/
wiki/DisasterRecovery

18. Openswan: Openswan official website. https://www.openswan.org/
19. Pacitti, E., Özsu, M.T., Coulon, C.: Preventive multi-master replication in a cluster

of autonomous databases. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.)
Euro-Par 2003. LNCS, vol. 2790, pp. 318–327. Springer, Heidelberg (2003)

20. Pahl, C., Jamshidi, P.: Software architecture for the cloud – a roadmap towards
control-theoretic, model-based cloud architecture. In: Weyns, D., Mirandola, R.,
Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 212–220. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-23727-5 17

21. Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architectural
concerns. In: IEEE International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems (MESOCA 2013), pp. 86–91 (2013)

22. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013)

23. Rajagopalan, S., Cully, B., O’Connor, R., Warfield, A.: Secondsite: disaster toler-
ance as a service. In: ACM SIGPLAN Notices, vol. 47, pp. 97–108. ACM (2012)

24. Sapate, S., Ramteke, M.: Survey on comparative analysis of database replication
techniques. Int. J. IT Eng. Appl. Sci. Res. (IJIEASR) 2(3), 72–80 (2013)

25. Schmidt, K.: High Availability and Disaster Recovery. Springer, Heidelberg (2006)
26. Severalnines: ClusterControl for MySql Galera tutorial. http://www.severalnines.

com/clustercontrol-mysql-galera-tutorial
27. Vmware: vCenter site recovery manager 5.5 (2014). http://www.vmware.com/

files/pdf/products/SRM/VMware vCenter Site Recovery Manager 5.5.pdf
28. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Database replica-

tion techniques: a three parameter classification. In: Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems, SRDS 2000, pp. 206–215 (2000)

29. Wikipedia: Business continuity planning. http://en.wikipedia.org/wiki/Business
continuity planning#Business impact analysis .28BIA.29

30. Wikipedia: Virtual private network. http://en.wikipedia.org/wiki/Virtual private
network

31. Wood, T., Cecchet, E., Ramakrishnan, K., Shenoy, P., Van Der Merwe, J.,
Venkataramani, A.: Disaster recovery as a cloud service: Economic benefits &
deployment challenges. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing, p. 8 (2010)

32. Zerto: Zerto virtual replication. http://www.zerto.com/
33. Zhang, W.: Linux virtual server for scalable network services. In: Ottawa Linux

Symposium (2000)

http://msdn.microsoft.com/en-us/library/azure/jj870962.aspx
http://msdn.microsoft.com/en-us/library/azure/jj870962.aspx
http://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html
http://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html
https://wiki.openstack.org/wiki/DisasterRecovery
https://wiki.openstack.org/wiki/DisasterRecovery
https://www.openswan.org/
http://dx.doi.org/10.1007/978-3-319-23727-5_17
http://www.severalnines.com/clustercontrol-mysql-galera-tutorial
http://www.severalnines.com/clustercontrol-mysql-galera-tutorial
http://www.vmware.com/files/pdf/products/SRM/VMware_vCenter_Site_Recovery_Manager_5.5.pdf
http://www.vmware.com/files/pdf/products/SRM/VMware_vCenter_Site_Recovery_Manager_5.5.pdf
http://en.wikipedia.org/wiki/Business_continuity_planning#Business_impact_analysis_.28BIA.29
http://en.wikipedia.org/wiki/Business_continuity_planning#Business_impact_analysis_.28BIA.29
http://en.wikipedia.org/wiki/Virtual_private_network
http://en.wikipedia.org/wiki/Virtual_private_network
http://www.zerto.com/

An OpenStack-Based Implementation
of a Volunteer Cloud

Salvatore Distefano1,2(B), Giovanni Merlino3,4, and Antonio Puliafito3

1 Social and Urban Computing Group, Kazan Federal University, Kazan, Russia
s distefano@it.kfu.ru

2 Department of Mathematics and Computer Science,
University of Messina, Messina, Italy

sdistefano@unime.it
3 Department of Engineering, University of Messina, Messina, Italy

{gmerlino,apuliafito}@unime.it
4 Department of Engineering, University of Catania, Catania, Italy

giovanni.merlino@dieei.unict.it

Abstract. Recent developments in Cloud computing technology pro-
vide capabilities for an extensible, reliable, effective and dynamic
infrastructure to technology-enabled enterprises, in order to efficiently
leverage (or even monetize) their on-premise equipment. Furthermore,
the virtualization technologies powering the Cloud revolution expand
their reach by the day, and are nowadays commonly available, nearly
household, capabilities. In this light, the intersection between volunteer-
ing and Cloud computing may bring massive and ubiquitous compute
power for IaaS users. For instance, scientists and researchers, as a cat-
egory of very demanding users, may benefit from such an enlargement
of the pool of resources to tap into for high complexity computational
workloads and big data problems without concern for the setup and
maintenance of the underlying infrastructure. We have investigated this
concept in the past under the Cloud@Home project, aimed at implement-
ing a desktop-powered Cloud. In this paper we propose a blueprint of
a Cloud@Home implementation starting from OpenStack, a well-known
platform for Cloud solutions, a de-facto standard with variety of fea-
tures, high interoperability and Open Source support. The reference, lay-
ered architecture and the preliminary implementation of a Cloud@Home
framework based on OpenStack are discussed in the paper.

Keywords: Cloud · Volunteer computing · Crowd computing · Software
Defined Infrastructure

1 Introduction

Cloud computing success is mainly due to capabilities such as the provisioning of
a wide range of flexible, customizable, resilient and cost effective infrastructure,
platforms and applications, on-demand, QoS guaranteed, as a service.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 389–403, 2016.
DOI: 10.1007/978-3-319-33313-7 30

390 S. Distefano et al.

Cloud is already an effective technology, plenty of real (business) applications
and services have been developed so far and a new digital economy has arisen
from it, focused on the utility perspective considering IT resources as commodi-
ties, to be provided as a service according to customer needs and wills [12].
Despite the overwhelming success and widespread adoption of Cloud and simi-
lar/related paradigms such as service oriented engineering, software defined and
virtualized ecosystems, ubiquitous and autonomic computing, there is still room
for improving and extending them with novel ideas, towards new directions.

One such avenue is crowdsourcing, as well as resource sharing or volunteer
approaches, aimed at exploiting the power and the wisdom of crowds, involv-
ing people that may (voluntarily) contribute to a given IT-related project or
application by sharing their own (computing, storage, network, sensing, data)
resources. Specifically, to adopt this idea in Cloud computing contexts, we have
to think about a Cloud system as a collector of resources shared by single con-
tributors, companies, and/or communities contributing to the assembly of an
IT infrastructure, bottom-up, following the volunteer computing approach [1,9].
This is at the basis of Cloud@Home [7], a project aimed at implementing a vol-
unteer Cloud infrastructure on top of resources shared (for free or by charge)
by their owners or administrators and to provide those to users through an
on-demand, service-oriented interface.

The main challenge of Cloud@Home is to deal with volunteer contributions,
requiring mechanisms both at node and at Cloud-infrastructure level for engag-
ing, enrolling, indexing, discovering and managing the contributed nodes as a
whole. In particular, the node churn issue due to random and unpredictable join
and leave of contributors should be properly addressed. The goal of this paper
is to propose a solution to deal with all the above issues at different levels. To
this purpose, a reference architecture including the modules of the Cloud@Home
software stack providing mechanisms to address these issues is specified. Then,
in the design of the Cloud@Home stack, we start from existing solutions already
in place and working. In particular we base our implementation on a well-know
open source software for creating and managing private and public Clouds, Open-
Stack [17], a de-facto standard Cloud management software. This way, existing
and effective solutions for most of Cloud computing issues, such as security, pri-
vacy, accounting, indexing, could be used as they are or anyway extended to the
problem at hand, i.e. dealing with the contributor dynamics.

With regard to the existing literature, Cloud@Home was the first and fore-
most attempt towards a volunteer-based Cloud infrastructure. After that, the
idea of volunteer Clouds emerged as one of the most interesting topic in Cloud
computing, as for example in [6] where a form of dispersed Cloud or “nebulas”
based on voluntarily shared resources is proposed mainly for testing environ-
ments. Another interesting attempt in such direction is BoincVM [16], a platform
based on BOINC to harness volunteer resources into a computing infrastruc-
ture for CPU intensive scientific applications. In P2P Cloud [3,11] a totally dis-
tributed, peer-to-peer paradigm is proposed to gather and manage a volunteer
Cloud infrastructure. Similarly, Crowd computing [13,14] aims at implementing

An OpenStack-Based Implementation of a Volunteer Cloud 391

a computing infrastructure involving “crowds” of contributors, in a crowdsourc-
ing approach. They mainly share their “power”, i.e., their computing nodes as in
volunteer computing [1] or devices as in participatory, opportunistic and mobile
crowdsensing approaches [10]. Anyway, the client-server model is a limitation on
the suitability of these paradigms to Cloud computing scenarios.

These works mainly propose new approaches, based on resource sharing,
contribution and crowdsourcing, providing some high level directions for dealing
with related issues. None of them gets into implementation details. In this paper
we go a step beyond towards a real and effective implementation of a volunteer,
P2P, desktop Cloud infrastructure, proposing a software stack based on Open-
Stack, properly customized and extended to deal with contribution issues. To
the best of our knowledge this is the first actual attempt in such direction, e.g.,
a Cloud@Home OpenStack.

Details on that are provided in the remainder of the paper, organized as
follows: Sect. 2 provides an overview of preliminary concepts, i.e. Cloud@Home
and Openstack. Then, Sect. 3 proposes the Cloud@Home reference architecture
identifying main functionalities and modules. The Cloud@Home software stack
design though OpenStack is described in Sect. 4, while details on its preliminary
implementation are provided in Sect. 5. Some remarks and objectives for future
work are reported in Sect. 6.

2 Overview

2.1 Cloud@Home

The Cloud@Home goal is to use “domestic” computing resources to build desk-
top Clouds made of voluntarily contributed resources. Therefore, following the
volunteer computing wave [1], across Grid computing and desktop Grids [2,5],
we think about desktop Cloud platforms able to engage and retain contributors
for providing virtual (processing, storage, networking, sensing) resources as a ser-
vice, in the Infrastructure as a Service (IaaS) fashion. This novel, revised view
of Cloud computing could perfectly fit with private and community needs, but
our real, long-term challenge is to exploit it in hybrid and especially in business
contexts towards public deployment models.

On this premise, the overall scenario we have in mind is highlighted in Fig. 1.
Three actors are identified: the C@H service provider, building up the Cloud
infrastructure by engaging contributing nodes; contributors that share their
resources; and end users, interacting with the Cloud as customers, submitting
requests to “rent” (virtual) resources from C@H.

This way, the infrastructure is mainly made of contributing nodes shared by
their owners or admins, acting as Cloud@Home contributors. The C@H provider
gathers and collects these resources, managing, abstracting and virtualizing them
to be provided as a service, through a specific C@H management system. These
resources are therefore provided to end users as virtual ones (machines, storage)

392 S. Distefano et al.

Fig. 1. Cloud@Home scenario.

by the management system. There are no specific boundaries between contrib-
utor and end user roles, just different duties, and it is possible a contributor is
at the same time end user and vice-versa.

2.2 OpenStack

OpenStack is an OpenSource Cloud computing platform mostly used for devel-
opment and deployment of IaaS solutions, managed by a non-profit foundation
and supported by more than 200 companies and 10,000 community members in

Fig. 2. OpenStack: conceptual architecture.

An OpenStack-Based Implementation of a Volunteer Cloud 393

nearly 100 countries. OpenStack is highly flexible since it supports most of the
existing hypervisors thus enabling a variety of virtualization modes and usage
scenarios. OpenStack features a growing number of components to build up its
services, a core subset of which is depicted in Fig. 2, where arrows describe the
relationships and interactions among subsystems. To implement a fully working
Cloud environment, to deploy each and every of the depicted components is not
strictly required. In particular Swift and Cinder are needed only if object and
block storage services are required somehow for the users of the cloud. Same con-
siderations apply for Horizon, if users may do without a Web UI and may recur to
a CLI instead of a graphical dashboard. Heat is needed insofar orchestration ser-
vices are required, and Ceilometer only for billing purposes or other monitoring
duties. That leaves only Keystone, Glance, Nova and Neutron as core services,
where Keystone provides authentication and authorization facilities, Neutron is
in charge of all the networking mechanisms and Nova of the instantiation and
lifecycle management of compute virtual machines. Glance provides Nova VMs
with the requested images.

3 Cloud@Home Reference Architecture

To implement the Cloud@Home vision, a specific solution framework is required.
It has to deal with the interactions among the volunteered resources as well as
with the desktop Cloud management and other (federated) Clouds, taking into
account their contribution dynamics. Indeed, a contributor can join and leave the
system randomly and unpredictably, thus implying node churning. Therefore, a
solution should be adaptive to such random events, providing elastic mecha-
nisms promptly reacting to the latter in a transparent way for the end users.
Furthermore, interoperability [4] is one of the issue to address in Cloud@Home,
as well as placement and orchestration also taking into account end-users QoS
requirements on resource provisioning.

Apart the basic fuctionalities, the main (non-functional) properties
Cloud@Home services have to provide are:

– scalability - the impact of a variation in the number of contributing resources
on the performance and the other QoS requirements agreed by the parties has
to be hided by the system to the customer;

– adaptability - churn management: the algorithm has to be able to detect
changes in the logic organization of nodes and to react to these changes in
real-time;

– elasticity - the algorithm has to specify reconfiguration policies to optimize
the Cloud@Home infrastructure after contributors’ join and leave;

– dependability, resilience, fault tolerance, security and privacy - to deal with the
degradation of performance and availability of the whole infrastructure due
to unpredictable join and leave of contributors, redundancy techniques and
job status tracking and monitoring have to be developed, as well as security

394 S. Distefano et al.

and privacy mechanisms since virtualization provides isolation of services, but
does not provide protection from local access, i.e. insider threats and abuses.

Cloud

Node
Manager

Hypervisor

Cloud
Enabler

Physical

Infrastructure
Policy

Manager

Node

S
ec

ur
ity

 a
nd

 P
riv

ac
y

Fig. 3. The Cloud@Home stack reference architecture.

According to these (functional and non-functional) requirements, and based
on the well-known Cloud service layering [8,15], the Cloud@Home stack reference
architecture shown in Fig. 3 has been identified. Specifically, the Cloud@Home
physical layer is composed of a “Cloud” of geographically distributed contribut-
ing nodes. They provide to the upper layers the (physical and virtual) resources
for implementing the Cloud@Home infrastructure services. It usually includes
the operating system, protocols, packages, libraries, compilers, programming
and development environments, etc. Moreover, to adequately manage physical
resources a virtual resource manager has to be installed into the contributing
node for virtualizing physical resources. Abstraction and virtualization of phys-
ical resources provide a uniform, interoperable and customizable view of Cloud
services and resources. This way, at infrastructure layer, the Cloud@Home stack
groups mechanisms and tools for virtualizing physical (computing, storage, sens-
ing, networking, etc.) resources into virtual resources (VR).

The infrastructure layer provides mechanisms, policies and tools for locally
and globally managing the Cloud resources to implement the Cloud@Home ser-
vice. It mainly provides end users with facilities to manage the Cloud@Home
system. Indeed, the infrastructure layer is in charge of the resource and service

An OpenStack-Based Implementation of a Volunteer Cloud 395

management (enrolling, discovery, allocation, coordination, monitoring, place-
ment, scheduling, etc.) from the Cloud perspective. It also provides enhanced
mechanisms and policies for improving the quality of service (QoS), dealing
with churning, managing complex/multiple resource request in an orchestrated
way, interacting and brokering with other Clouds.

Specifically, this implements a two-level Software Defined Infrastructure
(SDI) model, where basic mechanisms and tools at “data plane” are provided to
the “control plane” for implementing advanced management facilities, ranging
from orchestration to QoS and churn management.

The core modules of the Cloud@Home Management System are reported in
the layered model of Fig. 3. A security and privacy cross-layer module is included
into this Cloud@Home reference architecture to provide mechanisms addressing
related issues. The core module deployment in either the contributing node or in
the infrastructure side is also highlighted and detailed in the following according
to the deployment, bottom up.

3.1 Node-Side

Considering a generic Cloud service built on top of a contributing resource, the
node-side Cloud@Home framework provides tools for managing virtual resources
considering, on one hand, contribution policies from contributors and, on the
other, requests and requirements coming from the higher Cloud side. To this
purpose, two modules are identified and deployed on the contributing node, at
the bottom of the stack: the Hypervisor and the Node Mananager.

Fig. 4. The Cloud@Home hypervisor modules.

The Hypervisor is a core component of Cloud@Home since it introduces layers
of abstraction and mechanisms for virtualization in the contributing resource. It
mainly provides the primitives, the API for managing a virtual resource. In the
case of processing resources, it is the Virtual Machine Manager while in the case
of storage resources it could be a distributed file system module, or for sensors
and actuators it corresponds to the SAaaS Hypervisor [7]. It is composed of thee
main building blocks, i.e. Adapter, Abstraction Unit and Virtualization Unit as
reported in Fig. 4.

At the bottom there is the Adapter, which plays several distinct roles, such
as converting the high-level directives in native commands, processing requests
for reconfiguration of the resource and providing mechanisms for establishing an
out-of-band channel to the system, for direct interaction with the resources.

396 S. Distefano et al.

The Abstraction Unit operates on top of the Adapter, mainly implementing
abstraction of underlying physical-hardware resources towards open and well-
known standards and interfaces, also dealing with networking issues. The Virtu-
alization Unit, name after the Virtual Machine Monitor to highlight its role as a
manager of the lifecycle of virtualized resource instances. This includes APIs and
functionalities for virtual instance creation, reaping and repurposing, as well as
for boot- (defined statically) and run-time (dynamically) parameters discovery
and tuning in accordance with contextualization requests. It can work either
directly on the Adapter in the case the resource provides generic, standard,
abstracted interfaces by itself, or on the Abstraction Unit otherwise.

Fig. 5. The Cloud@Home node manager modules.

The other component of the Cloud@Home stack deployed into a node is
the Node Manager, which can be considered as the brain of a node. Indeed,
it implements a first step towards a volunteer Cloud merging local and global
mechanisms and policies. It is the bridge between virtual nodes and the Cloud,
allowing the node to join a Cloud@Home to expose its resources as services. This
is therefore implemented in a collaborative and decentralized way, interacting
with neighboring nodes and adopting autonomic self-managing approaches.

This way, the main blocks composing a Node Manager are showed in Fig. 5.
The Provisioning System implements functions for allocating, managing, migrat-
ing and destroying a virtual resource on the node. The Monitoring System allows
to take under control the local resources. Together with the resource provider
they establishes whether a virtual resource allocation request can be satisfied or
should be rejected, also alerting the higher Cloud level on crash or shortage of
resources in the node.

The Policy Coordinator selects and enforces the node management strategy,
taking into account Cloud policies coming from the higher level and contribution
directives, based on the current status of the node. To perform this task, the
Policy Coordinator interacts with the Cloud layer and with the Subscription
Manager, coordinating their inputs. Specifically, the Subscription Manager is
in charge of storing and carrying out the subscriptions of the node to all the
Cloud@Home it contributes, since a contributor can be involved in more than
one Cloud@Home. For each of them a contribution profile should be specified,
also allowing the system to choose the Cloud@Home to contribute in case of
overlapped incoming requests from different sources. Moreover, it also locally
manages the credits assigned by the different Cloud credit reward systems (if
any), transferring and exchanging them as required.

An OpenStack-Based Implementation of a Volunteer Cloud 397

Then, the Cloud Overlayer provides mechanisms and tools for joining and
leaving a Cloud@Home. From a node perspective the Cloud@Home can be con-
sidered as an overlay-opportunistic-P2P network on top of the node resources.
A possible way for implementing such mechanism could be through distributed
hash tables or similar peer to peer approaches that also provide the concept of
neighborhood as well as enrolment, indexing and discovery facilities. This way
the Cloud Overlayer is just a client for such kind of systems, also allowing to
interact with the high-levele management system, if required. Anyway, different
implementations are possible, by choosing the P2P Cloud one the Cloud@Home
system is autonomous and can also provide basic Cloud functionalities without
requiring advanced, high level mechanisms.

3.2 Cloud Side

This way, on the Cloud side there are mainly mechanisms and tools for man-
aging the Cloud infrastructure as a whole. To this purpose a Software Defined
Infrastructure approach has been adopted, splitting basic Cloud mechanisms and
functionalities from policies.

Fig. 6. The Cloud@Home cloud enabler modules.

At the bottom, the Cloud Enabler could be considered as the counterpart,
server/Cloud-side, of the Cloud Overlayer on the node, implementing basic
mechanism and tools for the (centralized) management of the Cloud@Home
infrastructure. Its main modules are depicted in Fig. 6: the Indexing, Discov-
ery and Monitoring (IDM) service and the Placement and Scheduling (P&S)
one. The former is in charge of enrolling, indexing, and monitoring contributing
nodes. The P&S is a peripheral resource broker of the Cloud@Home infrastruc-
ture, allocating a resource to an incoming request, moreover it is in charge of
moving and managing services and data (for example VM migrations).

On top of the basic infrastructure mechanisms, advanced ones are imple-
mented in the Policy Manager. It is composed of the 5 modules shown in Fig. 7.
The Resource Engine is the hearth of Cloud@Home, acing as a resource coor-
dinator at Cloud infrastructure layer. To achieve such goal, the resource engine
adopts a hierarchical policy in synergy with the P&S, also interacting with all
the other Policy Manager components.

The Incentive Mechanism aims at increasing the availability and reliability of
volunteered resources by assigning credit and reward or penalties to contribut-
ing nodes in a P2P-volunteer fashion. The SLA Manager enforces the SLAs
negotiated and agreed by the parties (providers and end users), if any. It aims

398 S. Distefano et al.

Fig. 7. The Cloud@Home policy manager modules.

at implementing more reliable services on an infrastructure made up of sen-
sors contributed on an otherwise just best-effort basis. Therefore it also specifies
the Cloud policies to be actuated in case of SLA violations. The QoS Man-
ager provides the service quality management framework at single Cloud level,
through metrics and means to measure the underlying Cloud@Home infrastruc-
ture, directly interacting with the IDM service and contributing nodes through
the latter.

The Cloud broker collects and manages information about the available
Clouds and the services they provide (both functional and non-functional para-
meters, such as QoS, costs and reliability, request formats’ specifications for
Cloud@Home-foreign Clouds translations, etc.). Moreover, the Cloud broker col-
laborates with the resource engine to fulfil resource discovery, becoming “inter-
clouds”.

4 Cloud@Home OpenStack-Based Architecture

In our effort to extend OpenStack to support the Cloud@Home volunteer-
powered Cloud model, we map here the concepts and the modules explored in
the previous sections in light of the current status of the OpenStack architecture.

In particular, following a derived logical architecture of Nova as depicted
in Fig. 8, starting from the bottom up, we may essentially identify in LibVirt
(or other Nova plugin-enabled VMM) the role of the Cloud@Home Hypervi-
sor. Apart from the Hypervisor, also the Queue is depicted in green, to high-
light components which are part of the architecture, but not specific of the
OpenStack framework. Magenta-colored blocks are instead Nova-specific compo-
nents. Nova-api, nova-console, nova-consoleauth and nova-cert are not involved
in the mapping, because those are either interfaces (-api), authorization-related
(-consoleauth for access to the console of any instance, and -cert for client cer-
tificates), or specific to certain technologies (-console, as proxy for Xen-based
consoles).

The Cloud@Home Provisioning System would be covered by functionalities
exposed by the Nova Compute service and the Monitoring system would map
to a monitoring subsystem for nodes, which we’ll describe later on in the follow-
ing. It is important to remark that another monitoring subsystem, Ceilometer,
is available for OpenStack, but in a different role, i.e., metering for billing pur-
poses, and thus focused on VM-relevant metrics, not on the health of the hosting
subsystem, i.e., Compute nodes.

An OpenStack-Based Implementation of a Volunteer Cloud 399

Fig. 8. The Cloud@Home logical architecture.

The Cloud@Home Policy Coordinator instead is not easy to map to the
current OpenStack architecture, as it implies some node-mandated restrictions
to contribution are in place and need to be mediated with Cloud-level directives,
even if a simplified scheme may just be devised where the contributor statically
chooses certain constraints, e.g., both temporal ones and resource quotas, and
let the subscription phase expose the subset of instance flavors compatible with
those, and switch node (or specific resources) availability on or off accordingly.
The same considerations apply to the Subscription Manager, which entail for a
node to potentially be part of multiple Clouds, and to the Cloud Overlayer as
well, in this case implying a different, Controller-less (or distributed Controller),
flavor of OpenStack, thus relying on a fully P2P topology.

Within the Cloud@Home Cloud Enabler, the IDM essentially enables the
enrollment of volunteering nodes to the Cloud and should actually “enable”
nodes to be exploited as Compute ones, i.e., should provision the dynamic pool
of resources by deploying essential node-side services, e.g., Nova Compute, on the
remote hosts. The Cloud@Home P&S may be considered more or less overlapping
with the Nova Scheduler, and the Resource Engine may thus play the role of a
(generalized) Nova Conductor. Upwards the Resource Engine, we may consider
all components outside the scope of the current (and announced) OpenStack
architectural choices and efforts, thus material for future investigations.

Anote has to bemade about our neglectingmore details about the storage/ net-
working subsystems and the corresponding workflows: this is intentional, as our
design of the Cloud@Home framework on top of OpenStack is to be considered
either totally transparent (in the case of networking) or not relevant, as with stor-
age, considering the choice remains the same, i.e., node-local images or volumes vs.

400 S. Distefano et al.

remote ones, where the only difference lies in the expected performance of remote
image/volume-backed instances, thus the need to warn the user about the impli-
cations of such a choice when served with volunteered nodes, and to craft suitable
SLAs accordingly.

Moreover, while the Scheduler may be left as is, and the policies just imple-
mented by resorting to suitable (reliability/churn-aware) filters and weights, fur-
ther investigation may point to a more granular mechanism under the guise of a
hierarchy of schedulers or, conversely, a specific segregation of the pool of nodes
in suitable aggregates, e.g., OpenStack availability zones or possibly even cells,
the latter oriented to more granular pooling, but unfortunately not supporting
inter-cell migration yet.

5 Preliminary Implementation

In an effort to not lose generality of the solution where feasible, we envisioned
volunteering nodes running heterogeneous host Operating Systems (e.g., Win-
dows, MacOS, Linux), thus leading to a nested approach to virtualization, where
a VM gets deployed, in the host OS-native (or otherwise preferred) VMM, as
Compute Node, in turn able to accomodate the instantiation of either fully
virtualized (e.g., Linux KVM-based) VMs as user-requested instances, or even
(better) containerized ones, by means of, e.g., Nova LXC/LXD plugin. It is now
more clear that the monitoring system needs to actually track the status and
health of first-level, remotely hosted, VMs, as exemplified above.

From a deployment perspective, which means that the IDM would operate
on what would be abstracted as remote nodes but actually consisting of “virtu-
alized” bare metal the host OS VMM (and a suitable virtual network) exposes.
We believe Fuel may be a suitable candidate for such automatic deployment and
provisioning of the additional compute nodes, as already one of the community-
blessed frameworks for whole OpenStack instances deployment on bare metal. In
particular, whereas Fuel is especially meant for deployment of an instance from
scratch, the setup of additional nodes to any existing (up and running) instance
is still possible, as long as it has already been deployed by Fuel itself, in order to
have the deployment recipe ready and let the Fuel monitoring subsystem track
the availability of the underlying resources, i.e., the virtualized bare metal.

Moreover, Fuel comprises a dashboard for visual point-and-click administra-
tion, but its core, Nailgun, exposes REST APIs and a CLI, so interaction on the
side of the administrator, graphical or through the APIs, is actually not required
after the setup of a Cloud instance by means of an initial configuration phase or
the upload of a template.

The node-side core of the Subscription Manager may thus consist in an out-
of-band, minimal service running on the host OS, i.e., a bootstrapping exe-
cutable, which upon first execution: starts up the first-level VM and sets up
one TAP-based GRE tunnel between the VMM bridge and each endpoint in
the Cloud, corresponding to any unique and essential centralized service behind
such endpoint, e.g., at least the Nova Compute in charge of the node, as well as

An OpenStack-Based Implementation of a Volunteer Cloud 401

the Neutron Controller, if available on separate machines. Obviously this step
includes registering both VM and (at least a control) channel for execution at
boot-time for subsequent reboots, as well as to be always-on, via the relevant
OS-dependent VMM and networking facilities.

In particular with regard to the control channel for command streams and
monitoring services, we modeled such a facility as WebSocket-based. Web Appli-
cation Messaging Protocol (WAMP), our choice of asynchronous transport and
delivery system for message-encapsulated commands, is a sub-protocol of Web-
Socket, in its turn a standard HTTP-based protocol providing a full-duplex
TCP communication channel over a single HTTP-based persistent connection.
WAMP specifies a communication semantic for messages sent over WebSocket,
and is natively based on WebSocket (even if it also allows for different transport
protocols), providing both publish/subscribe (pub/sub) and remote procedure
call (RPC) mechanisms. A WAMP router is responsible of brokering pub/sub
messages and routing remote calls, together with results/errors.

Figure 9 shows the C@H node-side architecture. The Subscription Manager
interacts with the Cloud by connecting to a centralized WAMP router through
a WebSocket full-duplex channel, sending and receiving data to/from the Cloud
and executing commands provided by the users via the Cloud. Such commands
are mostly related to the host-level Virtual Machine Monitor subsystem, and in
particular about monitoring its state and ensuring the first-level VM is up and
running at all times. Moreover, a set of WebSocket tunneling libraries allows
the Subscription Manager to also act as a WebSocket reverse tunneling server,
connecting to a specific WebSocket server running in the Cloud. This enables
internal (host-level) services to be directly accessed by external users through
the WebSocket tunnel whose incoming traffic is automatically forwarded to the
relevant resident processes, e.g., hypervisor services such as the remote video
console, either unmediated or through a specific local proxy service.

The aforementioned GRE tunnels, needed for communication with central-
ized services, get instantiated over WebSocket-based reverse tunnels which get
activated on demand. Outgoing traffic is redirected to the WebSocket tunnel and
eventually reaches the relevant Cloud endpoints.

As soon as the setup of the “bare metal” is ready, the Subscription Manager
should let the IDM (i.e., Nailgun) mark the new node as ready to be deployed as
soon as reachable by polling for its presence through Nailgun APIs, and afterward
request the IDM to set its role as a Compute node, and at last trigger deployment
of the modifications to the Cloud due to the node just being appended.

Now we can see that Fuel may also tackle churn by an automated node
“evacuation” process, i.e., migrating VMs, when some form of advance warning
is conveyed from the volunteer to the Cloud (“the node is going to shut down in
10 min from now”), or otherwise instantiating suitable replacements in place of
(abruptly) missing ones. Evacuation is an already available primitive in Open-
Stack, but it is currently meant to be operated (manually or via scripts) by an
administrator. We envision then the design of an extension to Nailgun which
monitors the centrally available logs to react on the event of one or more nodes,
either signaling imminent churn or outright gone missing, with reaction set as a
full evacuation workflow.

402 S. Distefano et al.

Fig. 9. Stack@Home node-side architecture.

6 Conclusions

In this paper, a novel Cloud paradigm is proposed merging volunteer-crowd
computing with service oriented infrastructure. It shifts the traditional Cloud
paradigm enabled by the availability of datacenters and server farms a step for-
ward into an ecosystem able to connect any device or node contributing to a
complex IT infrastructure by sharing its processing, storage, networking and/or
sensing resources. To implement the Cloud@Home paradigm thus proposed, a
reference architecture of a software stack has been first defined, and then mapped
on top of the OpenStack framework. In the design of the Cloud@Home stack we
chose to start from the de-facto standard for IaaS Cloud frameworks, OpenStack,
adapting and customizing related modules to the volunteer contribution context.
This allowed us to demonstrate the feasibility of the Cloud@Home vision, lever-
aging off-the-shelf, open source components. Further efforts are thus required
to implement a full fledged Cloud@Home system, which have to mainly man-
age node churn, on one hand improving node reliability by motivating/retaining
contributors through specific incentive mechanisms, on the other by implement-
ing mechanisms for dealing with service level agreements and related quality of
service guarantees to meet end user/customer requirements.

References

1. Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer
computing. In: CCGRID 2006, pp. 73–80 (2006)

2. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: an approach to
easily assemble grids with equitable resource sharing. In: Feitelson, D.G., Rudolph,
L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer,
Heidelberg (2003)

3. Babaoglu, O., Marzolla, M.: The people’s cloud. IEEE Spectr. 51(10), 50–55 (2014)

An OpenStack-Based Implementation of a Volunteer Cloud 403

4. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

5. Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V.,
Lodygensky, O.: Computing on large-scale distributed systems: xtrem web archi-
tecture, programming models, security, tests and convergence with grid. Future
Gener. Comput. Syst. 21(3), 417–437 (2005)

6. Chandra, A., Weissman, J.: Nebulas: using distributed voluntary resources to build
clouds. In: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing,
p. 2. USENIX Association (2009)

7. Cunsolo, V., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and
desktop cloud: the cloud@home paradigm. In: 2009 Eighth IEEE International
Symposium on Network Computing and Applications, NCA 2009, pp. 134–139,
July 2009

8. Distefano, S., Cunsolo, V.D., Puliafito, A.: A taxonomic specification of
Cloud@Home. In: Huang, D.-S., Zhang, X., Reyes Garćıa, C.A., Zhang, L. (eds.)
ICIC 2010. LNCS, vol. 6216, pp. 527–534. Springer, Heidelberg (2010)

9. Fedak, G., Germain, C., Neri, V., Cappello, F.: Xtremweb: a generic global com-
puting system. In: Proceedings of the First IEEE/ACM International Symposium
on Cluster Computing and the Grid, pp. 582–587 (2001)

10. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

11. Graffi, K., Stingl, D., Gross, C., Nguyen, H., Kovacevic, A., Steinmetz, R.: Towards
a p2p cloud: Reliable resource reservations in unreliable p2p systems. In: 2010 IEEE
16th International Conference on Parallel and Distributed Systems (ICPADS), pp.
27–34, December 2010

12. Kleinrock, L.: A vision for the internet. ST J. Res. 2(1), 4–5 (2005)
13. Murray, D.G., Yoneki, E., Crowcroft, J., Hand, S.: The case for crowd comput-

ing. In: Proceedings of the Second ACM SIGCOMM Workshop on Networking,
Systems, and Applications on Mobile Handhelds (MobiHeld 2010), NY, USA, pp.
39–44 (2010). http://doi.acm.org/10.1145/1851322.1851334

14. Parshotam, K.: Crowd computing: A literature review and definition. In: Pro-
ceedings of the South African Institute for Computer Scientists and Information
Technologists Conference (SAICSIT 2013), NY, USA, pp. 121–130 (2013). http://
doi.acm.org/10.1145/2513456.2513470

15. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST Special
Publication 800–145, January 2014

16. Segal, B., Buncic, P., Quintas, D., Gonzalez, D., Harutyunyan, A., Rantala, J.,
Weir, D.: Building a volunteer cloud. In: Conferencia Latinoamericana de Com-
putación de Alto Rendimiento., September 2009

17. The Openstack Community: OpenStack Cloud Software: open source software for
building private and public clouds, November 2011. http://www.openstack.org/

http://doi.acm.org/10.1145/1851322.1851334
http://doi.acm.org/10.1145/2513456.2513470
http://doi.acm.org/10.1145/2513456.2513470
http://www.openstack.org/

Cloud Services Composition Through
Semantically Described Patterns: A Case Study

Beniamino di Martino, Giuseppina Cretella(B), and Antonio Esposito

Second University of Naples, Via Roma 29, Aversa, CE, Italy
beniamino.dimartino@unina.it,

{giuseppina.cretella,antonio.esposito}@unina2.it

Abstract. With the proliferation of Cloud services and the huge num-
ber of Cloud offers currently available in the IT market, it can be diffi-
cult for customers to understand which one fits their need. Patterns, if
correctly applied to the design and development of Cloud applications,
can ease programmers’ burden and reduce errors and bugs in applica-
tion implementation. In this paper we use a methodology, based on the
semantic representation of Cloud patterns, Cloud services and applica-
tions, to support users in developing Cloud oriented software meeting
their explicit requirements.

Keywords: Cloud computing · Services composition · Cloud patterns ·
Semantics · Ontology · OWL

1 Introduction

The Cloud Computing scenario is a plethora of always new and changing Cloud
proposals, platforms and capabilities. Furthermore, each provider tends to use
its own terminology in order to differentiate itself from others and try to gain
new market shares. Thus, it can be difficult for users to clearly understand which
services are more suitable for their requirements and needing. In such a situa-
tion, also portability and interoperability of Cloud applications and services is
badly influenced, making it difficult to make services and resources from dif-
ferent providers to cooperate in order to provide specific functionalities. In this
paper we show how, by using a semantic-based representation of Patterns, Cloud
services and Virtual appliances, based on the work presented in [16,17,20], it is
possible to describe a classical application and support users in deploying it
to the Cloud. Such a uniform, integrated and machine-readable representation
aims at supporting the migration of applications to the Cloud and at easing the
procedures needed to port them across different platforms.

The paper is organized as follows: Sect. 2 reports related works and offers
some insight on the technologies used in our representation; Sect. 3 briefly
describes the methodology we have applied to the description of patterns and
services; Sect. 4 describes the use case and the application of our methodology;
finally, in Sect. 5 we report some consideration on the present work and address
future directions of research.
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 404–418, 2016.
DOI: 10.1007/978-3-319-33313-7 31

Cloud Services Composition Through Semantically Described Patterns 405

2 State of the Art

The classification and categorization of Cloud Services has been the topic of
many research efforts [12,13], which have tried to systematize their exposed
functionalities, operations, parameters and service models. A freely navigable
online taxonomy has been provided by the OpenCrowd [6] consortium, which
categorizes Cloud Services according to both their service model (IaaS, PaaS or
SaaS) and application context. Nevertheless the criteria followed to categorize
each service are not clear, as well as the limitations and controls under which the
taxonomy creation is performed. Machine readable standards for services’ rep-
resentation and orchestration have been proposed and approved: among these,
remarkable results have been accomplished by the Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA - an OASIS standard)
and by the orchestration template language HOT, developed by Openstack [7]
within the HEAT project. TOSCA describes both a topology of Cloud based
web services, consisting in their components, relationships, and the processes
that manage them, and the orchestration of such services. HOT is a new tem-
plate format, compliant with the CloudFormation Template defined by Ama-
zon, which details everything that is required for orchestration and it is written
in YAML. A Comparison of such formats is available in [19]. Semantic based
approaches have been considered and applied in order to overcome limits related
to automated processing and reasoning, caused by differences in semantics and
syntactic. A semantic ontology is a formal, machine readable knowledge rep-
resentation of a set of domain-related concepts and the relationships between
them. It is used to reason about the properties of that domain and may be used
to efficiently describe it by providing a shared vocabulary. The Web Ontology
Language (OWL) [30] is a semantic mark-up language for publishing and sharing
ontologies on the World Wide Web. A number of ontologies related to cloud com-
puting emerged in the past few years. The authors of [10] provide an overview
of Cloud Computing ontologies, their applications and focuses. Some ontologies
are used to describe Cloud resources and services, classify the current services
and pricing models or define new types of Cloud services [15,34]. Many research
efforts have been carried-out to develop ontologies to achieve interoperability
among different Cloud providers and their services: different solutions have been
discussed in [32]. A remarkable result has been reached by the mOSAIC cloud
ontology [31] developed for the mOSAIC platform [21]. Such an ontology has
also been adopted by the IEEE P2302 Working Group (Intercloud) [4] for the
development of the Intercloud Interoperability and Federation (SIIF). In [11]
Bernstein and Vij present the InterCloud Directories and Exchanges mediator
to allow collaboration among Cloud vendors which work on an ontology of Cloud
Computing resources to deal with providers heterogeneity. In [33], the authors
propose a resource selection mechanism based on the users’ requirements regard-
less of where the services are hosted. Han and Sim [25] propose a Cloud service
discovery system that uses Cloud ontologies, matchmaking and agents to deter-
mine the similarities between and among services. In [14] the author present
an ontology-based discovery system to help users in deploying their virtual

406 B. di Martino et al.

appliances on the most appropriate IaaS providers, based on their definition
of QoS requirements.

2.1 Cloud Patterns

Design Patterns, defined as a general and reusable solution to a common and
recurrent problem within a given context [23], have been used for a long time in
software design and development. Their objective is to support developers in the
design of their application, reducing design and developing time, known errors
and bugs. As of today, a number of Design Patterns catalogues exist for several
purposes, like ontology creation [5,24] and definition of SOA-oriented applica-
tions [8,22]. Recently both Cloud vendors and independent researchers have
developed catalogues of Cloud Patterns, which define architectural solutions for
designing and developing efficient applications on the Cloud. Remarkable exam-
ples are represented by the vendor specific catalogues developed by Microsoft
[9] for Azure and by Amazon for Amazon Web Services [1]. Independent
catalogues are instead retrievable at [2,3]. In the remainder of this paper, we
will refer to the formers as to Vendor Specific patterns, since they are bound
to the specific platform they have been designed for. The latter will be referred
to as Agnostic patterns, since they provide generic solutions, which are not
bound to a specific platform and are therefore more flexible and applicable to
different targets. The use of Cloud patterns for the design, implementation and
management of Cloud Applications has been widely discussed in the literature
[26,27,29].

Our semantic representation focuses on Patterns, and Cloud Patterns in par-
ticular, because they can provide the necessary information to build an applica-
tion’s architecture on a platform and, in the case of vendor-specific ones, also to
deploy such an application and configure the services which compose it. As an
instance, suppose that a user needs to monitor a certain applications, which is
running on a server owned by a Cloud Provider. Without knowing which provider
hosts the server, it is possible to leverage an agnostic Cloud pattern to know in
advance the components needed. The pattern Usage Monitoring provided in
[3] defines the main components needed to monitor the usage of a simple Cloud
Service, by providing access to a set of collected metrics via a portal, which
collects information through a ad-hoc monitoring service. The different possible
interactions between the user and the system are also described in the pattern,
as shown in Fig. 1.

Since the agnostic pattern is extremely general, it is possible to determine
a whole set of possible implementations for a certain Cloud platform, each one
addressing a specific issue. For example, if we consider the AWS platform and we
want to deploy a generic monitoring application on it, the Monitoring Inte-
gration Pattern describes the architecture and the components needed. As it
is shown in Fig. 2, the pattern points out the Amazon services needed to deploy a
monitoring application and also shows how to actually connect it to the services
to monitor.

Cloud Services Composition Through Semantically Described Patterns 407

Fig. 1. Usage Monitoring pattern

Fig. 2. Monitoring Integration Pattern

3 Methodology Description

In this section we briefly introduce the integrated representation of cloud ser-
vices, appliances and cloud patterns we have devised. For a more detailed descrip-
tion of such a semantic representation, please refer to [16].

The model we use to describe Cloud related concept is based on a graph
representation, which can be divided into five conceptual levels. Each level is

408 B. di Martino et al.

Fig. 3. The Conceptual Layers Fig. 4. Application Pattern Composition

connected to the others through relationships, which enable the Cloud services
discovery and composition. Figure 3 reports the layered organization of our rep-
resentation:

– The Parameters Level contains the semantic description of the data types
exchanged among Cloud services as input and output of their exposed opera-
tions.

– The Operations Level provides a syntactic description of the operations and
functionalities exposed by a cloud service, in a machine readable format. In
this way, it is possible to automatically retrieve information on how to call the
service and interact with it.

– The Services Level provides a semantic annotation of Cloud services, which
are organized according to a hierarchical classification described in [18]. Both
vendor specific services and agnostic ones are represented at this level.

– The Cloud Patterns Level represents the semantic description of agnos-
tic and vendor dependent Cloud patterns realized through an OWL repre-
sentation. The patterns described here are composed of services delivered at
infrastructure and platform level.

– The Application Patterns Level contains information on high level pat-
terns, which describe entire applications with their components. Such patterns
are general enough to be applied to different contexts, not necessarily Cloud
related: in this way, it is possible to describe a generic application through
one or more of Application patterns and then retrieve the components to be
used for its implementation using the lower levels of our representation. The

Cloud Services Composition Through Semantically Described Patterns 409

organization of such components and how they should interact to achieve the
required functionality in Cloud are described in the Cloud Pattern level.

3.1 Pattern Representation

The core element of our representation is the Application Pattern, which is
used to describe general applications with their architectural details and infor-
mation on the interactions taking place among their components. Application
patterns can consist of multiple Design/Cloud patterns, and their components
are connected through relationships expressing the equivalence between their
participants and potential implementing services. As shown in Fig. 4, each of
the application patterns’ participants is connected to a Cloud/Design patterns’
component: the matching is not necessarily one to one, since two elements
of an Application pattern could be embodied by the same participant in a
composing Cloud pattern and vice-versa. The same applies to the mapping
between Cloud/Design patterns’ participants and application components. In
the semantic-based representation we use to describe Patterns, the participants
are represented by individuals of the OWL class ComponentTemplate, while
the connections between elements of different layers is obtained via instances of
an object property equivalent. The connections existing within the same layer,
representing workflow and interactions among patterns’ participants, are repre-
sented via OWL-S [28] native constructs. In order to keep trace of the Patterns
involved, of their interconnections and participants, each pattern is represented
by an instance of the Pattern OWL class, while the object properties hasPar-
ticipant and includes are used to connect a pattern to its owned elements and
to other contained patterns, respectively. The representation we use for pattern
description is applied to both vendor specific and agnostic patterns, in order to
have a homogeneous definition of them. The only difference between agnostic and
vendor specific pattern representations resides in the nature of the application
components used to realize them: vendor specific patterns will be connected to
real components, while agnostic patterns will be composed of agnostic services.

3.2 Services Representation

As we have stated in Sect. 3.1, patterns are connected to application compo-
nents which can be potentially used to implement them. In particular, since we
are addressing a Cloud-oriented implementation, such components will be rep-
resented by Cloud Services or Virtual Appliances. Such components are defined
in the Services layer, which contains both representation of vendor specific and
agnostic services. Agnostic services act as place-holders for services’ functionali-
ties, and constitute a hierarchical architecture against which vendor services are
annotated. In this way, equivalences between several services and their function-
alities can be automatically inferred, through the explicitly declared equivalence
with agnostic concepts and logical rules.

410 B. di Martino et al.

Physically, the agnostic services are all defined within a single Cloud Service
ontology; vendor specific services are organized in self-contained ontologies, inde-
pendent of each other, which import the agnostic one to annotate their services.
The annotation is possible via a set of three object properties:

– exactEquivalence defines and exact correspondence between the vendor spe-
cific and agnostic service.

– plugin is used if a service has not a single correspondence, but it exposes
functionalities offered by more than one service.

– subsumes represents the inverse situation of plugin, that is when the func-
tionality exposed by a service can be obtained only by composing two or more
different agnostic or vendor specific services.

All these are sub-properties of a more generic equivalent object property. The
description of the input and output parameters of vendor specific services relies
on OWL-S descriptions, which also leverage an underlying parameter ontology
for the disambiguation of similar variable types and the support to logical infer-
ences.

Figure 5 reports a schematic representation of the different ontologies
involved in the services representation: the top Agnostic Service Descrip-
tion Ontology contains abstract descriptions of services, parameters, opera-
tions and resources, which are used as a common ground for comparisons among
concepts described in the bottom Cloud Provider Ontologies and Cloud
Services OWL-S Descriptions which, instead, contain platform-specific infor-
mation. Our knowledge base contains a specific Cloud Provider ontology and
OWL-S description for each Cloud platform (AWS, Azure, OpenStack, Google
AppEngine, BlueMix) we have considered. Categorization of services is provided
by the Cloud Services Categorization Ontology, which is used as a bridge
between the agnostic descriptions and the OWL-S representations. The connec-
tions shown in the figure are obtained through OWL object properties which
assess the equivalence among services, parameters and operations. Such proper-
ties enable the free navigation of the ontology framework, making it possible to
rapidly determine how to replace one or more services and operation calls when
necessary.

4 Case Study

The application of Design and Cloud pattern to software development can ease
and speed-up programmers’ work: common problems that can be encountered in
designing and developing a new application can find immediate solutions in the
appropriate pattern. The case study we propose in this section aims at showing
how, with our semantic base representation, it is possible to effectively support
programmers in choosing and applying the needed patterns to the development
of a new Cloud-oriented software and/or the migration of an existing application
to a Cloud platform.

Cloud Services Composition Through Semantically Described Patterns 411

Fig. 5. Ontology Organization

Each of the steps we are showing is executed through a prototype graphical tool,
which hides all the SPARQL queries which are automatically run against our
knowledge base. Such a tool is still at its early stages of development and will
not be shown here.

The example we are taking in consideration regards the complex informa-
tion system needed to manage a railway reservation web-site. Figure 6 reports a
schematic representation of the main components of such a system:

– the Reservation front-end that provides a user friendly web interface to
customers, allowing them to interact with the system.

– the Back-end system, a complex component which in turn consists of an
Availability Checker system (responsible to check tickets availability), a
Reservation system (in charge of making the actual reservations) and a
Payment system (that validates online transactions).

– a Database that holds information on trains, stations, timetables, purchased
tickets and reservations.

4.1 Step 1: Selection of the Application Pattern

Using a graphical interface, a user can select the type of application she wants to
build and deploy on the Cloud: for each application category there will be one or
more specific application patterns which will be presented to the user, who can
then refine the selection. The software we want to develop in our case study can
be easily represented through a very generic Application Pattern, namely the

412 B. di Martino et al.

Fig. 6. The railway reservation system example

Reservation System pattern, whose components and correspondence with the
agnostic Three-Tier Cloud Application Pattern [2] are shown in Fig. 7. The
Reservation System application pattern can be easily applied to other similar
applications, since it is sufficiently general and does not impose specific require-
ments. Our semantic-based representation can be also extended, so that new
patterns can be built from the existing ones to add functionalities.

As soon as the user chooses the application type and a corresponding Appli-
cation pattern is selected, the system automatically maps its components to an
agnostic high-level Cloud pattern, which will represent the starting point for fur-
ther refinements. The mapping shown in Fig. 7 simply matches the components
of the application pattern, corresponding to the Reservation System used as an
example, to the three major layers composing a three-tier application on Cloud:
the correspondence is not one-to-one, as the Back-end system’s components are
all automatically matched with the Business Logic layer, where all the processing
components belong to. At this point, the user can select one of the components
of the high-level Cloud pattern in order to refine it further.

4.2 Step 2: Refinement of the Pattern’s Components

Each of the three layers of the selected Three-Tier Cloud Application Pattern
can be further refined via a mapping to other agnostic Cloud Patterns, which
provide better instructions regarding the possible implementation of the needed

Cloud Services Composition Through Semantically Described Patterns 413

Fig. 7. Mapping between application pattern and agnostic cloud pattern

infrastructure. For each tier a composition of cloud patterns is suggested to
implement and improve the single tier performance.

– the presentation tier (Fig. 8) can be implemented using a combination of an
Elastic Load Balancer pattern (providing application scalability), a Stateless
Component pattern (managing the status of the application’s components)
and a User Interface pattern (serving as a bridge between the synchronous
access of the human user and the asynchronous communications used with
other application components).

– the Business Logic tier (Fig. 9) is built via the combination of a Process-
ing Component Pattern (providing elaboration capabilities), a Stateless
Component Pattern and a Data Access Component Pattern (which
guarantees access to the needed data).

– the Data Tier (Fig. 10) is the simplest of the three different layers as it is com-
posed by a single agnostic patterns, namely the Data Access Component
Pattern

Composing patterns can be shared among the different layers (the Data Access
Component Pattern is used in both the Business Logic and Data tiers) and can
also share participants: in the considered Presentation layer the Elastic Load
Balancer participant is shared among two of its composing patterns.

4.3 Step 3: Selection of a Target Platform

The patterns used to compose the application layers are all agnostic ones: their
components are not immediately implemented, as they need to be connected to
an existing target platform. By following our pattern-based approach, it is pos-
sible to further refine the application composition by identifying vendor specific
patterns with more detailed information regarding the implementation of the

414 B. di Martino et al.

Fig. 8. Presentation tier composing patterns

Fig. 9. Business tier composing patterns

Fig. 10. Data tier composing patterns

different components. In this example, we will refer to Amazon Web Services
as a possible target for the application deployment. By automatically analysing
the semantic-based representation of the Amazon Cloud patterns catalogue [1]

Cloud Services Composition Through Semantically Described Patterns 415

we have devised, it is possible to retrieve equivalent patterns and to determine
correspondences between their components. Figure 11 shows how the agnostic
patterns and components identified for the Presentation tier are mapped to cor-
responding Amazon Cloud Patterns and services. In particular:

– Corresponding patterns are connected with black arrows: Stateless Component
Pattern with State Sharing Pattern; Elastic Load Balancer Pattern with Scale-
out Pattern.

– Blue arrows connect corresponding services/components: Stateless Compo-
nent, Elastic Infrastructure and User Interface with EC2; Elastic Infrastruc-
ture with AutoScaling; Monitor with CloudWatch; Load Balancer with Elastic
Load Balancer; Message Queue with Simple Queue Service.

Fig. 11. Implementation of the Presentation tier with AWS patterns

The User Interface pattern does not correspond to any Amazon Cloud pat-
tern, so the system simply identifies suitable services from the target vendor
to implement them, without applying a specific pre-defined configuration. In
this way, we can avoid the restrictions that the use of vendor specific Cloud
patterns could impose to the implementation of an application. Once all the
pattern elements have been mapped to a potential implementing Cloud service,
the system supports users in making them interact, thanks to the information
on the parameters and the operations they expose, which are contained in our
semantic-enabled knowledge base. All the correspondences and mappings shown
in figures are retrieved by means of SPARQL queries, which are run against our
OWL-based knowledge base. Such queries leverage the properties described in
Sects. 3.1 and 3.2, and are described in more details in [16]. Here we report,
in Listing 1.1, an example of the SPARQL query used to retrieve all the ven-
dor specific services which are equivalent to the agnostic Elastic Load Balancer
used in the use case. The query first retrieves the category to which the Elastic
Load Balancer service belongs, using the equivalent property defined in the pat-
tern ontology (hence the prefix patternOntology we have used). Than, using the
service category (Type in the query) we retrieve all the corresponding services
via the equivalent property defined in the Cloud service ontology (hence the

416 B. di Martino et al.

cloudOntology prefix). The vendor name is retrieved via the hasVendor prop-
erty. Table 1 reports the results of the query. Please note that all the retrieved
components are Cloud services, apart from ZeusExtensibleTrafficManager
which is a Virtual Appliance. The knowledge base contains information on the
resource requirements needed to run the virtual appliance on a virtual machine
and supports users in selecting the best suited offer on the target platform. The
first three Cloud services belong to two different service categories, regarding
balancing of application and network loads.

SELECT ?Component ?Vendor ?Type
WHERE {patternOntology:ElasticLoadBalancer

patternOntology:equivalent ?Type.
?Component cloudOntology:equivalent ?Type
?Component cloudOntology:hasVendor ?Vendor.
}

Listing 1.1. SPARQL query to retrieve equivalent patterns’ components from multiple
vendors

Table 1. Partial results from query in Listing 1.1

Component Vendor Type

Openstack Neutron Redhat NetworkLoadBalancing, ApplicationBalancing

Azure Trafficmanager WindowsAzure NetworkLoadBalancing, ApplicationBalancing

Amazon ElasticLoadBalancing Amazon NetworkLoadBalancing, ApplicationBalancing

ZeusExtensibleTrafficManager Riverbed NetworkLoadBalancing

5 Conclusion and Future Work

In this paper we have applied a semantic-based approach for the description of
Cloud Patterns and services to a simple use case, in order to demonstrate the
capability of such an approach to support users in developing Cloud oriented
applications, without a deep and extensive knowledge of the entire Cloud Com-
puting panorama. The different steps needed to deploy the example application
to the Cloud have been described, and an example of the queries run against the
proposed semantic knowledge-base has been provided. In the future, we are plan-
ning to develop the user friendly graphical interface to ease users’ interactions
with the system, and to include further services and patterns in our description.

Acknowledgements. This research has been supported by the European Commu-
nity’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n
256910 (mOSAIC Project), by PRIST 2009, “Fruizione assistita e context aware di
siti archeologici complessi mediante dispositivi mobili”and CoSSMic (Collaborating
Smart Solar-powered Micro-grids - FP7-SMARTCITIES-2013).

Cloud Services Composition Through Semantically Described Patterns 417

References

1. Aws cloud design patterns. http://en.clouddesignpattern.org
2. Cloud computing patterns. http://cloudcomputingpatterns.org
3. Cloud patterns. http://cloudpatterns.org
4. Ieee p2302 working group (intercloud). http://grouper.ieee.org/groups/2302/
5. Ontology design patterns. http://ontologydesignpatterns.org/
6. Opencrowd: Cloud computing vendors taxonomy. http://cloudtaxonomy.

opencrowd.com/
7. Openstack services. http://www.openstack.org/software
8. Soa patterns. http://www.soapatterns.org/
9. Windows azure application patterns. http://blogs.msdn.com/b/jmeier/archive/

2010/09/11/windows-azure-application-patterns.aspx
10. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review.

In: The Third International Conference on Models and Ontology-Based Design of
Protocols, Architectures and Services, MOPAS 2012, pp. 9–14 (2012)

11. Bernstein, D., Vij, D.: Intercloud directory and exchange protocol detail using
XMPP and RDF. In: 2010 6th World Congress on Services (SERVICES-1), pp.
431–438. IEEE (2010)

12. Buyya, R., Vecchiola, C., Thamarai Selvi, S.: Mastering cloud computing: founda-
tions and applications programming, 1st edn. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2013)

13. Catteddu, D.: Cloud Computing: benefits, risks and recommendations for infor-
mation security. In: Serrão, C., Dı́az, V.A., Cerullo, F. (eds.) IBWAS 2009. CCIS,
vol. 72, p. 17. Springer, Heidelberg (2010)

14. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: An effective architecture for auto-
mated appliance management system applying ontology-based cloud discovery. In:
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 104–112. IEEE (2010)

15. Deng, Y., Head, M., Kochut, A., Munson, J., Sailer, A., Shaikh, H.: Introducing
semantics to cloud services catalogs. In: 2011 IEEE International Conference on
Services Computing (SCC), pp. 24–31, July 2011

16. Di Martino, B., Esposito, A., Cretella, G.: Semantic representation of cloud pat-
terns and services with automated reasoning to support cloud application portabil-
ity. IEEE Trans. Cloud Comput. PP(99), 1 (2015). doi:10.1109/TCC.2015.2433259

17. Di Martino, B., Cretella, G., Esposito, A.: Semantic and agnostic representation
of cloud patterns for cloud interoperability and portability. In: Proceedings of the
IEEE Fifth International Conference on Cloud Computing Technology and Science
(CloudCom 2013) (2013)

18. Di Martino, B., Cretella, G., Esposito, A.: Towards an unified owl ontology of
cloud vendors appliances and services at PaaS and SaaS level. In: Proceedings
of the 8th International Conference on Computational Intelligence in Security for
Information Systems (CISIS 2014), pp. 570–575 (2014)

19. Di Martino, B., Cretella, G., Esposito, A.: Defining cloud services workflow: a
comparison between TOSCA and OpenStack hot. In: Proceedings of the 9th Inter-
national Conference on Complex, Intelligent, and Software Intensive Systems, July
8th–July 10th 2015. IEEE (2015)

20. Di Martino, B., Esposito, A.: Towards a common semantic representation of design
and cloud patterns. In: Proceedings of International Conference on Information
Integration and Web-Based Applications & Services, p. 385. ACM (2013)

http://en.clouddesignpattern.org
http://cloudcomputingpatterns.org
http://cloudpatterns.org
http://grouper.ieee.org/groups/2302/
http://ontologydesignpatterns.org/
http://cloudtaxonomy.opencrowd.com/
http://cloudtaxonomy.opencrowd.com/
http://www.openstack.org/software
http://www.soapatterns.org/
http://blogs.msdn.com/b/jmeier/archive/2010/09/11/windows-azure-application-patterns.aspx
http://blogs.msdn.com/b/jmeier/archive/2010/09/11/windows-azure-application-patterns.aspx
http://dx.doi.org/10.1109/TCC.2015.2433259

418 B. di Martino et al.

21. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 571–578. Springer, Heidelberg (2011)

22. Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M.,
Newling, T.: Patterns: service-oriented architecture and web services. IBM Corpo-
ration, International Technical Support Organization (2004)

23. Catteddu, D.: Cloud Computing: Benefits, Risks and Recommendations for Infor-
mation Security. In: Serrão, C., Aguilera Dı́az, V., Cerullo, F. (eds.) IBWAS 2009.
CCIS, vol. 72, p. 17. Springer, Heidelberg (2010)

24. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262–276. Springer, Heidelberg (2005)

25. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Proceedings of the International Multiconference of Engineers and Computer Sci-
entists, vol. 1, pp. 17–19 (2010)

26. Homer, A., Sharp, J., Brader, L., Narumoto, M., Swanson, T.: Cloud Design Pat-
terns: Prescriptive Architecture Guidance for Cloud Applications. Microsoft Pat-
terns & Practices (2014). ISBN:1621140369 9781621140368

27. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns Fundamentals to Design, Build, and Manage Cloud Applications. Springer
(2014). doi:10.1007/978-3-7091-1568-8, ISBN: 9783709115671, 9783709115688

28. Mark, B., Jerry, H., Ora, L., Drew, M., Sheila, M., Srini, N., Massimo, P., Bijan,
P., Terry, P., Evren, S., Naveen, S., Katia, S.: OWL-s: Semantic markup for web
services. http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

29. Martino, B.D., Cretella, G., Esposito, A.: Semantic and agnostic representation of
cloud patterns for cloud interoperability and portability. In: 2013 IEEE 5th Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
vol. 2, pp. 182–187. IEEE (2013)

30. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
In: W3C Recommendation, vol. 10, no. 10 (2004)

31. Moscato, F., Aversa, R., Di Martino, B., Fortis, T., Munteanu, V.: An analysis of
mosaic ontology for cloud resources annotation. In: 2011 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 973–980. IEEE (2011)

32. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: challenges, taxonomy, and survey. ACM Comput. Surv. (CSUR) 47(1), 7
(2014)

33. Xu, B., Wang, N., Li, C.: A cloud computing infrastructure on heterogeneous
computing resources. J. Comput. 6(8), 1789–1796 (2011)

34. Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud com-
puting. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10. IEEE
(2008)

http://dx.doi.org/10.1007/978-3-7091-1568-8
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

EU Projects Track

Preface of EU Projects Track

Following the success of the session devoted to presenting ongoing EU projects on
cloud and services, which was held at the ESOCC 2014 SeaClouds Workshop in
Manchester, ESOCC 2015 decided to run a “EU Projects Track” on September 15 in
Taormina, Italy.

The track was organized in a two-hour general session entirely devoted to presenting
the status and perspectives of ongoing EU research projects on cloud and services.

The presentation of the 12 selected ongoing projects – SeaClouds, Panacea, Dice,
MODAClouds, CloudWave, AppHub, PaaSage, Broker@Cloud, Beacon, EUBrazil,
Clips, and FrontierCities – succeeded in providing an up-to-date view of the
achievements and challenges of EU-funded research activities on the cloud and
services.

A two-page description of each project presented is included in this volume.

Antonio Brogi
Silvana Muscella

Organization

Program Committee

Antonio Brogi University of Pisa, Italy
Silvana Muscella CloudWATCH Coordinator, Italy

Adaptive Application Management
over Multiple Clouds

M. Barrientos1, A. Brogi2, M. Buccarella2, J. Carrasco1, J. Cubo1,
F. D’Andria3, E. Di Nitto4, A. Nieto1, M. Oriol2, D. Pérez4, E. Pimentel1,

and S. Zenzaro2

1 Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain

2 Department of Computer Science, University of Pisa, Pisa, Italy
3 ATOS, Barcelona, Spain

4 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milano, Italy

Abstract. SeaClouds is a European FP7 research project, whose goal is
to provide a novel open source platform to enable application developers
to configure, deploy, and manage complex applications across multiple
heterogeneous IaaS and PaaS clouds in an efficient and adaptive way.

The SeaClouds project1 aims at supporting application developers during all
phases of the cloud application management lifecycle. Users provide as input to
the SeaClouds platform the application they wish to deploy on the cloud together
with different types of requirements — namely, technical, Quality of Service
(QoS) and Quality of Business (QoB) requirements — for the modules compos-
ing their application as well as for the whole application. SeaClouds employs
OASIS TOSCA2 to represent the topology and the requirements of the applica-
tion to be deployed. SeaClouds users can both interactively specify (in a TOSCA
transparent way) the topology and requirements of their application via a graph-
ical user interface featured by the SeaClouds Dashboard (Fig. 1) and/or directly
provide a TOSCA specification of their application via the SeaClouds API.

Given the application to be deployed, the SeaClouds Planner generates a set
of possible deployment plans satisfying the requirements specified by the user.
To achieve that, the Planner first performs a matchmaking step, to select the
available could offerings (periodically fetched by the Discoverer from different
IaaS and PaaS providers) that satisfy the user requirements. After that, a multi-
objective optimization step is performed to determine the best deployment plans
satisfying the user requirements.

The deployment plan chosen by the user is then passed to the Deployer, that
exploits Apache Brooklyn3 to perform the actual deployment of all application

1 EU-FP7-ICT-610531 “Seamless adaptive multi-cloud management of service-based
applications”. http://www.seaclouds-project.eu.

2 https://www.oasis-open.org/committees/tosca.
3 https://brooklyn.incubator.apache.org.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 422–424, 2016.
DOI: 10.1007/978-3-319-33313-7

http://www.seaclouds-project.eu
https://www.oasis-open.org/committees/tosca
https://brooklyn.incubator.apache.org

Adaptive Application Management over Multiple Clouds 423

Fig. 1. Main components of the Seaclouds architecture.

modules on the chosen target clouds. Right after the application is deployed, the
SeaClouds Monitor starts to perform a distributed monitoring over the target
clouds in order to detect possible violations of the application requirements or
of the Service License Agreement (SLA) devised by the SLA Service. In case of
violations that can be repaired without need to migrate application modules,
the Monitor directly triggers the Deployer. In case of violations that require to
migrate some application module(s), the Monitor asks the Planner to generate
a reconfiguration plan.

SeaClouds features two case studies: A gaming application whose deploy-
ment dynamically adapts depending on the number and location of users, and
a healthcare application exploiting SeaClouds SLA management and, possibly,
cloud bursting.

Besides the aforementioned relations with OASIS TOSCA and Apache
Brooklyn, SeaClouds is collaborating also with the MODAClouds project4. In
particular SeaClouds monitoring relies on and extends the monitoring method-
ology developed by MODAClouds. Last, but not least, a cross-fertilization effort
is currently ongoing with the Alien4Cloud project5 to assess the feasibility for
SeaClouds to use Alien4Cloud TOSCA YAML parser and for Alien4Cloud to
use SeaClouds Deployer.

SeaClouds adopted from the very beginning of the project an open source
strategy, which includes transparent development and Apache 2.0 licensing.
Such strategy is intended to serve as enabler for three main impact paths:
(1) To exploit SeaClouds-extended Apache Brooklyn application management

4 http://www.modaclouds.eu.
5 http://alien4cloud.github.io.

http://www.modaclouds.eu
http://alien4cloud.github.io

424 M. Barrientos et al.

framework as a vehicle for SeaClouds post-project value proposition, with new
TOSCA, PaaS and multi-cloud support extending a solution already present
in the market, (2) To provide a European platform compliant with the OASIS
TOSCA standard that is emerging in the PaaS segment, and (3) To allow indus-
trial SeaClouds members — in particular ATOS and Cloudsoft — to integrate
SeaClouds open source assets into their commercial offerings.

TAP: A Task Allocation Platform for the EU
FP7 PANACEA Project

Erol Gelenbe and Lan Wang

Intelligent Systems and Networks,

Department of Electrical and Electronic Engineering,

Imperial College, London SW72AZ, UK

Abstract. The EU FP7 PANACEA project has designed a QoS driven
smart Task Allocation Platform for varied QoS objectives in the Cloud.

The Cloud [9] supports diverse workloads [1, 2, 6, 7, 10] and simple schemes are
needed to allocate jobs with satisfactory QoS and low overhead. The PANACEA
project’s Task Allocation Platform (TAP) uses on-line observation of the servers
in a Cloud system to dynamically allocate tasks. TAP is a Linux kernel mod-
ule which embeds measurement agents into hosts. We illustrate its usage with a
smart algorithm inspired by the Cognitive Packet Network (CPN) [3, 5, 8] which
uses reinforcement learning [11], and with a “sensible” policy [4] that probabilis-
tically selects the host whose measured QoS is the best. TAP is a practical system
shown in Fig. 1 which exploits several different task allocation algorithms such
as the two we mention. It is implemented as a Linux kernel module on PCs with
Linux OS.

Task Allocation
Algorithm

Collect
Measurements

Measurement
Agent

MailBox

MailBox

SPs

ACKs

DPs

ACKs

Launch Jobs

Jobs

Kernel Space

User Space

Controller Hosts

Task
Allocation
Algorithm

Collect
Measurements

Measure-
ment
Agent

Mail
Box

Mail
Box

Launch
Jobs

Jobs

Kernel Space

User Space

Controller

Hosts

Job request

Job
Request
Generator

Host1

Host2

Host3

Fig. 1. Architecture of the Task Allocation Platform (left) and its test-bed (right).

A synthetic benchmark is generated, and jobs are sent at fixed intervals
denoted by CR, or according to a Poisson process with a fixed rate denoted
by EXP. The QoS goals used here are either (i) the minimization of either the
execution time on the host, or (ii) the minimization of the response time at
TAP, which includes the message sent to activate the job at a host and the
time it takes for an ACK to provide information back to TAP. The CPN based
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 425–426, 2016.
DOI: 10.1007/978-3-319-33313-7

426 E. Gelenbe and L. Wang

0 5 10 15 20 25 30 35 40
50

100

150

200

250

300

350

400

450

The Average Job Arrival Rate (per second)

Av
er

ag
e

jo
b

Ex
ec

ut
io

n
tim

e(
m

s)

Random Neural Network(RT) with CR
Random Neural Network(RT) with EXP
Random Neural Network(ET) with CR
Random Neural Network(ET) with EXP
Sensible Decision with CR
Sensible Decision with EXP

(a)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

The Average Job Arrival Rate (per second)

Av
er

ag
e

jo
b

re
sp

on
se

 ti
m

e(
m

s)
 a

t t
he

 H
os

ts Random Neural Network(RT) with CR
Random Neural Network(RT) with EXP
Random Neural Network(ET) with CR
Random Neural Network(ET) with EXP
Sensible Decision with CR
Sensible Decision with EXP

(b)

0 5 10 15 20 25 30 35 40
100

200

300

400

500

600

700

800

The Average Job Arrival Rate (per second)

Av
er

ag
e

jo
b

re
sp

on
se

 ti
m

e(
m

s)
 a

t t
he

 c
on

tro
lle

r

Random Neural Network(RT) with CR
Random Neural Network(RT) with EXP
Random Neural Network(ET) with CR
Random Neural Network(ET) with EXP
Sensible Decision with CR
Sensible Decision with EXP

(c)

Fig. 2. Average job execution time and average job response time at the hosts, and
average job response time at TAP for different job arrival rates.

scheme was tested with both (i) and (ii), whereas the sensible decision approach
only used (ii). The experiments are carried out for average job arrival rates of
1, 2, 4, 8, 12, 16, 20, 25, 30, 40 jobs/sec with each experiment lasting 5 mins. As
the average job arrival rates grows, the sensible decision algorithm outperforms
the RNN, as shown in Fig. 2. Also the RNN algorithm with online measurement
of job execution time performs better than the RNN with the metric of job
response time, and the sensible decision is always best under high job arrival
rates.

References

1. Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,
Pentikousis, K.: Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051
(2010)

2. Delimitrou, C., Kozyrakis, C.: Qos-aware scheduling in heterogeneous data-
centers with paragon. ACM Trans. Comput. Syst. 31(4), 12:1–12:34 (2013).
http://doi.acm.org/10.1145/2556583

3. Gelenbe, E.: The first decade of g-networks. Europ. J. Operational Res. 126(2),
231–232 (2000)

4. Gelenbe, E.: Sensible decisions based on qos. CMS 1(1), 1–14 (2003)
5. Gelenbe, E.: Steps toward self-aware networks. Commun. ACM 52(7), 66–75 (2009)
6. Gelenbe, E., Lent, R.: Energy-qos trade-offs in mobile service selection. Future

Internet 5(2), 128–139 (2013). http://dx.doi.org/10.3390/fi5020128
7. Gelenbe, E., Lent, R.: Optimising server energy consumption and response time.

Theor. Appl. Inform. (4), 257–270 (2013)
8. Gelenbe, E., Timotheou, S.: Random neural networks with syn-

chronized interactions. Neural Comput. 20(9), 2308–2324 (2008).
http://dx.doi.org/10.1162/neco.2008.04-07-509

9. Mell, P., Grance, T.: The nist definition of cloud computing. NIST Spec. Publ.
800–145 (2009)

10. Pradeep, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Salem, K.: Adaptive control of virtualized resources in utility computing environ-
ments. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pp. 289–302. EuroSys 2007, NY, USA (2007). http://
doi.acm.org/10.1145/1272996.1273026

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

http://doi.acm.org/10.1145/2556583
http://dx.doi.org/10.3390/fi5020128
http://dx.doi.org/10.1162/neco.2008.04-07-509
http://doi.acm.org/10.1145/1272996.1273026
http://doi.acm.org/10.1145/1272996.1273026

Towards Quality-Aware Development of Big
Data Applications with DICE

Giuliano Casale1(B), Elisabetta Di Nitto2, and Ilias Spais3

1 Imperial College London, London, UK
g.casale@imperial.ac.uk

2 Politecnico di Milano, Milano, Italy
3 ATC Technologies, Chalandri, Greece

Abstract. Model-driven engineering (MDE) has been extended in
recent years to account for reliability and performance requirements since
the early design stages of an application. While this quality-aware MDE
exists for both enterprise and cloud applications, it does not exist yet
for Big Data systems. DICE is a novel Horizon2020 project that aims
at filling this gap by defining the first quality-driven MDE methodology
for Big Data applications. Concrete outputs of the project will include a
data-aware UML profile capable of describing Big Data technologies and
architecture styles, data-aware quality prediction methods, and continu-
ous delivery tools.

Keywords: Quality-driven development · Big Data · UML

1 Overview

Big Data systems [4] are rapidly emerging and their popularity on the ICT mar-
ket calls for novel software engineering methods to support their development.
In particular, independent software vendors (ISVs) need to create novel data-
intensive products, but this is complicated by the lack of expertise in technologies
such as NoSQL databases, MapReduce/Hadoop analytics, or real-time process-
ing. Pressure to hit the market first can therefore shift the development focus
primarily on functional aspects, at the expense of non-functional properties such
as reliability, performance or safety of the resulting applications.

The goal of the DICE project is to deliver a methodology and a toolchain to
help ISVs develop Big Data applications without compromising on quality. DICE
proposes innovations concerning both functional and non-functional properties of
data-intensive software systems. For what concerns functional properties, DICE
wants to extend model-driven engineering approaches based on UML with a
novel profile to annotate properties of data such as volume, velocity, location
or data transformations. The traditional ecosystem of models used in MDE,

This paper has been supported by the European Unions Horizon 2020 research and
innovation programme under grant agreement No. 644869.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 427–429, 2016.
DOI: 10.1007/978-3-319-33313-7

428 G. Casale et al.

which encompasses model ranging from platform-independent to technology-
specific, will also consider technologies and architecture styles that are specific
to Big data, such as the lambda architecture1. The main challenge of this gen-
eralization is to develop the model annotations, a consistent methodology, and
the underpinning model-to-model transformations. Furthermore, DICE aims at
translating such high-level design models into a concrete deployment plan and
execute it.

On the non-functional side, the extended UML models will be annotated with
performance and reliability requirements using specific annotations, such as the
UML MARTE and UML DAM profiles [1, 3], but also with novel annotations
that describe the data used by the application. Then, tools will be developed to
predict the fulfillment of these requirements before and during application devel-
opment. In particular, DICE envisions the co-existence of multiple simulation,
verification, and testing tools that can guide the developer through the qual-
ity assessment of early prototypes of the Big Data application. For example, a
developer could initially describe the application architecture, an expected user
behaviour, and the technologies to be used; based on this specification, he could
then explore the forecasted response times under increasing volumes or rates of
data intakes. This information can be helpful to assess if a given architecture
design is appropriate to meet customer requirements. The novelty is the explicit
accounting for the data volumes or rates in the predictions.

Application Domains. The DICE development environment will offer a gen-
eral methodology, that can be useful in a number of application domains. In
particular, the project plans to develop demonstrators in the areas of News &
Media, e-Government, and Maritime Operations. In News & Media, streaming
solutions that connect to social platforms will need to be modelled, together
with Hadoop/MapReduce processing of the acquired social data. The case of
e-Government provides a test scenario for the DICE methodology to apply in
an environment with legacy data systems, where decision-making related to the
best Big data technologies to adopt is complex. Lastly, Maritime Operations is
a sector where streaming data related to vessel movement needs to be processed
and analyzed in real-time to guarantee safe and correct port operations.

Future Work. The DICE project has started in February 2015 and a first public
release of the DICE MDE tools is scheduled for Spring 2016. News and updates
on the project are available at http://www.dice-h2020.eu and a detailed project
vision can be found in [2].

References

1. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of
software systems specified with UML. ACM Comput. Surv. 45(1), Article no. 2
(2012)

1 https://en.wikipedia.org/wiki/Lambda architecture.

http://www.dice-h2020.eu
https://en.wikipedia.org/wiki/Lambda_architecture

Towards Quality-Aware Development of Big Data Applications with DICE 429

2. Casale, G., et al.: DICE: quality-driven development of data-intensive cloud appli-
cations. In: Proceedings of the 7th International Workshop on Modeling in Software
Engineering (MiSE 2015) (2015)

3. Soley, R., et al.: Modeling and Analysis of Real-Time and Embedded Systems with
UML and MARTE. MK/OMG Press (2013)

4. Zikopoulos, P., et al.: Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. McGraw-Hill Osborne Media (2011)

On MODAClouds’ Toolkit Support for DevOps

Elisabetta Di Nitto1, Giuliano Casale2, and Dana Petcu3

1 Politecnico di Milano, Milano, Italy
2 Imperial College London, London, UK

3 Institute e-Austria Timişoara and West University of Timişoara,
Timişoara, Romania

Abstract. We have recently experimented the enhancement of model-
driven development with the possibility of exploit models not only as part
of design but also as part of the runtime. Through this enhancement
the system model becomes a live object that evolves with the system
itself and sends back to the designers powerful information that enables
a continuous improvement of the system. This approach goes into the
direction of offering a valid tool to support development and operation
in a seamless way, i.e. to support DevOps concepts. In this short note we
present the MODAClouds Toolkit which helps lowering existing barriers
between development and operations teams and therefore smooths the
way to DevOps practice.

The main goal of MODAClouds project1 is to provide methods, a decision sup-
port system, an open source integrated development environment (IDE) and run-
time environment for the high-level design, early prototyping, semi-automatic
code generation, and automatic deployment of applications on Multi-Clouds
with guaranteed Quality-of-Service (QoS). The concept aligned with this goal
was introduced in the early paper [1]. The approach was described in several
papers enumerated on the project web site2.

The MODAClouds model-driven approach is supported by the MODAClouds
Toolbox3. It consists in there main components (see Fig. 1): (1) Creator4Clouds,
an IDE for high-level application design; (2) Venues4Clouds, a decision sup-
port system that helps decision makers to identify and select the best execution
venue for Cloud applications, by considering technical and business requirements;
(3) Energizer4Clouds, a Multi-Cloud run-time environment energized to provide
automatic deployment and execution of applications with guaranteed QoS on
compatible Clouds.

Creator4Clouds includes plugins focusing on: (i) analysing the QoS/cost
trade-offs of various possible application configurations (SpaceDev4Clouds);
(ii) mapping high level data models into less expressive but more scalable
NoSQL (DataMapping4Clouds); (iii) deploying the resulting application on

1 MODAClouds project, partially funded by the European Commission through the
FP7-ICT Grant agreement 318484.

2 List of publications available at http://www.modaclouds.eu/publications/.
3 All tools are available as open source, see http://www.modaclouds.eu/software/.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 430–431, 2016.
DOI: 10.1007/978-3-319-33313-7

http://www.modaclouds.eu/publications/
http://www.modaclouds.eu/software/

On MODAClouds’ Toolkit Support for DevOps 431

Fig. 1. Main components of the MODAClouds’ Toolkit

Multi-Clouds by exploiting the CloudML language. Overall, Creator4Clouds is
a unique tool supporting design, development, deployment and resource pro-
visioning for Multi-Cloud applications. It provides features to assess the QoS
guarantees required by the application and offers support to the definition of
the application SLA.

Energizer4Clouds includes the frameworks to support monitoring (Tower4-
Clouds) and self-adaptation (SpaceOps4Clouds), together with utilities that per-
form ancillary tasks in the platform (ADDapters4Clouds). Energizer4Clouds is
one of the few existing solutions that addresses, in a single framework, the needs
of operators willing to run their applications in a Multi-Cloud environment.
Through Tower4Clouds, operators are able to perform complex monitoring and
data analyses from multiple sources. Moreover, thanks to SpaceOps4Clouds, it
identifies and actuates proper self-adaptation actions that take into account the
current and foreseen state of the system under control.

All three main components of MODAClouds Toolbox are built with the idea to
reduce the gap between development and operations teams, according to DevOps
philosophy. Therefore, we have included in the design of the MODAClouds archi-
tecture what we call Feed-Back Loop technologies that extend capabilities offered
by Creator, Venues and Energizer4Clouds. Thanks to the Feed-Back Loop app-
roach, Tower4Clouds connects with Creator4Clouds and Venues4Clouds, respec-
tively. The first connector is responsible for providing developers and the QoS
engineers with the perspective of the application behavior at runtime to improve
the development process and incorporate DevOps techniques and tools into the
process. The second connector allows Venues4Clouds to adapt its knowledge base
according to real live data. This helps in offering to users an updated vision of ser-
vices quality for future recommendations. The capability of the runtime to influ-
ence the design time is in line with current research and is a very important feature
to empower Multi-Cloud application developers.

Reference

1. Ardagna, D., et al.: A Model-driven approach for the design and execution of appli-
cations on multiple clouds. In: Proceedings of MISE 2012, pp. 50–56 (2012)

CloudWave – Leveraging DevOps for Cloud
Management and Application Development

Dario Bruneo, Aryan Dadashi, Philipp Leitner, Avi Miron, Boris Moltchanov,
Francesco Javier Nieto De-Santos, Eliot Salant, Amir Molzam Sharifloo,

Karl Wallbom, and Chris Woods

The CloudWave Project Consortium

1 Introduction

DevOps describes the convergence of application development and operation
activities. In a DevOps team, software developers and system administrators
collaborate in joint task forces and work towards common goals. The vision of
the CloudWave project1 is that a full-stack DevOps approach to cloud manage-
ment can lead to more efficient usage of clouds as well as to better applications.
This is achieved by aligning the goals of cloud application developers and cloud
operators, and by allowing developers to leverage deeper knowledge of the cloud
hosting environment. For cloud operators, the CloudWave model enables more
efficient instance management, as application developers collaborate with the
cloud provider, for example by exposing adaptation enactment points or emit-
ting relevant business metrics. In return, cloud application developers gain deep
insight into the internals of the cloud system, and can hence build and tune
their application based on real-time feedback from the cloud. Similar to DevOps,
the collaborative model of CloudWave removes friction between cloud opera-
tors and software developers by breaking up the black boxes that clouds and
applications traditionally are to each other. CloudWave will provide a reference
implementation of these ideas based on Openstack2.

2 Project Consortium

CloudWave (full title Agile Service Engineering for the Future Internet) is an
FP7 ICT Call 10 funded European research project. The project is coordinated
by Eliot Salant (IBM Research Israel). In addition, the CloudWave consortium
consists of SAP SE, Intel Ireland, Telecom Italia, Atos, Cloudmore, University
of Duisburg-Essen, University of Messina, Technion, and University of Zurich.

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 610802 (CloudWave).

1 http://cloudwave-fp7.eu/.
2 http://www.openstack.org.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 432–434, 2016.
DOI: 10.1007/978-3-319-33313-7

http://cloudwave-fp7.eu/
http://www.openstack.org

CloudWave – Leveraging DevOps for Cloud Management 433

3 Project Overview

A high-level outline of CloudWave is sketched in Fig. 1. At the heart of the
project, monitoring data is generated, analyzed, and aggregated on all levels of
the cloud stack, i.e., on physical, virtual, network, and application level. This
data is further enriched with information coming from external sources. We refer
to this monitoring approach as 3-D monitoring [1]. 3-D monitoring fuels two
primary use cases, coordinated adaptation and feedback-driven development.

Fig. 1. High-level overview of the CloudWave project

Coordinated adaptation is to improve the quality of adaptation decisions,
taken by the infrastructure and application, through reasoning on the global
state of the cloud stack provided by 3-D monitoring. By taking decisions in
a coordinated manner, more effective adaptations are taken and operated by
different components [2]. To this aim, adaptation models of the application (e.g.,
turning optional application features on or off based on load) and infrastructure
(e.g., scaling up or out) are captured by Feature-based models and adaptation
plans are derived by an intelligent engine.

Conversely, feedback-driven development (FDD) aims to bring 3-D monitor-
ing data to software developers, giving them a better understanding of how
the application is actually operated (and adapted) at runtime. This goes way
beyond traditional application performance monitoring (APM) solutions, as the
CloudWave monitoring solution integrates data from the application stack with
infrastructure metrics, information on triggered adaptations, and data from
other applications launched by the same tenant. CloudWave demonstrates how
this data can provide added value to software developers, for instance via visu-
alizing (and warning about) performance-critical code directly in the Integrated
Development Environment (IDE), or by enabling what if analysis of performance
and costs for different deployment options [3].

References

1. Marquezan, C.C., Bruneo, D., Longo, F., Wessling, F., Metzger, A., Puliafito, A.:
3-D cloud monitoring: enabling effective cloud infrastructure and application man-
agement. In: 10th International Conference on Network and Service Management,
pp. 55–63 (2014)

434 D. Bruneo et al.

2. Marquezan, C.C., Wessling, F., Metzger, A., Pohl, K., Woods, C., Wallbom, K.:
Towards exploiting the full adaptation potential of cloud applications. In: Proceed-
ings of the 6th International Workshop on Principles of Engineering Service-Oriented
and Cloud Systems (2014)

3. Cito, J., Leitner, P., Gall, H.C., Dadashi, A., Keller, A., Roth, A.: Runtime metric
meets developer - building better cloud applications using feedback. In: Proceedings
of the 2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software. ACM, New York (2015)

AppHub – The European Open
Source Market Place

(Extended Abstract)

Peter H. Deussen1, Majid Salehi Ghamsari1, Alexandre Lefebvre2,
Alban Richard2, Cédric Thomas3, Olivier Bouzereau3,

and Catherine Nuel3

1 Fraunhofer Institute for Open Communication Systems, Berlin, Germany
{peter.deussen,majid.salehi.ghamsar}

@fokus.fraunhofer.de
2 UShareSoft, Grenoble, France

{alexandre.lefebvre,alban.richard}@usharesoft.com
3 OW2, Paris, France

{cedric.thomas,olivier.bouzereau,

catherine.nuel}@ow2.org

Abstract. This short paper describes the AppHub project, an EU funded ini-
tiative that supports open source software providers to facilitate the adoption of
their products by making them ready for the cloud.

Keywords: Open source software � Cloud computing

1 A Market Outreach Accelerator

As the current context of IT budget restriction creates business opportunities for open
source software (OSS) the market is becoming increasingly competitive. To be suc-
cessful, vendors must differentiate themselves through their pre-sales services, their
ability to quickly deliver operational business solutions. With current information
systems migrating toward virtual and cloud environments, vendors must be able to
manage several kinds of deployments and cloud technologies. And in the OSS market
specifically, vendors must show a community of contributors, and demonstrate ade-
quate project governance. AppHub helps collaborative projects and SMEs meet these
demands in a few hours instead of weeks.

AppHub, the European Open Source Market Place, provides a neutral distribution
channel for trustworthy software developed by EU-supported projects and OSS SMEs
in general. It showcases SMEs and European collaborative projects best practices and
pre-sales services to facilitate the adoption of their OSS. It leverages a breakthrough
software technology to offer easy-to-download software and online pre-sales services.
With AppHub, software vendors and services providers can show suitable
Proof-of-Concept to their potential customers very quickly, adapting them to the right
physical, virtual or cloud environment. AppHub helps accelerate the adoption of cloud

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 435–436, 2016.
DOI: 10.1007/978-3-319-33313-7

and multi-clouds solutions by both enterprise and cloud service providers. AppHub
also helps reduce the learning curve for new cloud infrastructure, and the time required
by successive stages of software development, adaptation and testing.

2 The AppHub Platform

AppHub is comprised of three main parts: the Directory, the Factory and the Store:

• The AppHub Directory helps software architects and developers identify the right
OSS components for their needs. As of June 2015, the Directory lists 51 projects
and 122 assets coming from European SMEs and EC-funded collaborative projects.

• The AppHub Factory provides services to model and build ready-to-deploy and
ready-to-use applications for a large diversity of environments. As of June 2015, the
Factory supports 12 virtual formats and 12 cloud formats.

• The AppHub Store addresses OSS consumers. It exposes the software either as a
template, or as images built with the AppHub Factory. Images can be deployed to
any cloud environment, templates can be customized by the consumer if needed.

3 Services That Foster Software Adoption

The AppHub Factory generates image formats suitable for a variety of deployment
environments. Because it supports many different environments, AppHub facilitates the
migration of OSS applications between them. It enables SaaS software vendors to
address the entire market represented by the deployment environments and distribu-
tions provided by AppHub.

For cloud service brokers and end-user companies it speeds up the adaptation of
any software to any specific environment. With AppHub, they can by quickly cus-
tomize the complete stack by incorporating additional scripts, easily changing an OS or
software package version, adding packages, adding their own middleware, adapting the
installation profile of the application, etc.

The AppHub Factory automates the production of images and software clones
regardless of the deployment model: private cloud, public cloud or hybrid cloud. The
complete stack and its settings can be adapted.

4 The AppHub Project

AppHub is a Horizon 2020 support action funded by the European Commission. The
partners that run and promote AppHub, the OW2 open source organization, the
Fraunhofer FOKUS research institute and the UShareSoft ISV, combine unparalleled
expertise in community management, EU research projects and a breakthrough tech-
nology in software asset management. AppHub builds on the experience gained by
developing the directory for open source cloud computing during the FP7 OCEAN
project.

436 P.H. Deussen et al.

Cloud Application Modelling and Execution
Language (CAMEL) and the PaaSage Workflow

Alessandro Rossini

SINTEF, Oslo, Norway
alessandro.rossini@sintef.no

Model-driven engineering (MDE) is a branch of software engineering that aims
at improving the productivity, quality, and cost-effectiveness of software develop-
ment by promoting models and model transformations as the primary assets in
software development. Models can be specified using general-purpose languages
like the Unified Modeling Language (UML). However, to fully unfold the poten-
tial of MDE, models are frequently specified using domain-specific languages
(DSLs), which are tailored to a specific domain of concern.

The PaaSage project1 delivers a platform to support the modelling, exe-
cution, and adaptation of multi-cloud applications (i.e., applications deployed
across multiple private, public, or hybrid cloud infrastructures). In order to cover
the necessary aspects of the modelling and execution of multi-cloud applica-
tions, PaaSage adopts the Cloud Application Modelling and Execution Language
(CAMEL) [5].

CAMEL integrates and extends existing DSLs, namely the Cloud Modelling
Language (CloudML) [1], Saloon [4], and the Organisation part of CERIF [2].
In addition, CAMEL integrates new DSLs developed within the project, such as
the Scalability Rule Language (SRL) [3].

CAMEL enables PaaSage users to specify multiple aspects of multi-cloud
applications, such as provisioning and deployment topology, provisioning and
deployment requirements, service-level objectives, metrics, scalability rules,
providers, organisations, users, roles, security controls, execution contexts, exe-
cution histories, etc.

In order to facilitate the integration across the components managing the life-
cycle of multi-cloud applications, PaaSage leverages upon CAMEL models that
are progressively refined throughout the modelling, deployment, and execution
phases of the PaaSage workflow (see Fig. 1):

– Modelling Phase: The PaaSage users design a cloud-provider independent
model (CPIM), which specifies the deployment of a multi-cloud application
along with its requirements and objectives in a cloud provider-independent
way.

– Deployment Phase: The Profiler component consumes the CPIM, matches
this model with the profile of cloud providers, and produces a constraint prob-
lem. The Reasoner component solves the constraint problem (if possible) and
produces a cloud-provider specific model (CPSM), which specifies the deploy-
ment of a multi-cloud application along with its requirements and objectives

1 http://www.paasage.eu.

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 437–439, 2016.
DOI: 10.1007/978-3-319-33313-7

http://www.paasage.eu

438 A. Rossini

Fig. 1. CAMEL models in the PaaSage workflow

in a cloud provider-specific way. The Adapter component consumes the CPSM
and produces deployment plans, which specify platform-specific details of the
deployment.

– Execution Phase: The Executionware consumes the deployment plans and
enacts the deployment of the application components on suitable cloud
infrastructures. Finally, the Executionware records monitoring data about the
application execution, which allows the Reasoner to look at the performance
of previous CPSMs when producing a new one.

By leveraging upon CAMEL models not only at design-time but also run-
time, PaaSage enables self-adaptive multi-cloud applications (i.e., multi-cloud
applications that automatically adapt to changes in the environment).

Acknowledgements. The research leading to these results has received funding from
the European Commission’s Seventh Framework Programme (FP7/2007–2013) under
grant agreement number 317715 (PaaSage).

References

1. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying MDE
to Tame the complexity of managing multi-cloud applications. In: 7th IEEE/ACM
International Conference on Utility and Cloud Computing. UCC 2014, pp. 269–277.
IEEE CS (2014)

2. Jeffery, K., Houssos, N., Jörg, B., Asserson, A.: Research information management:
the CERIF approach. IJMSO 9(1), 5–14 (2014)

3. Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-
cloud environments. In: 6th IEEE International Conference on Cloud Computing
Technology and Science. CloudCom 2014, pp. 1–9. IEEE CS (2014)

CAMEL and the PaaSage Workflow 439

4. Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with con-
straints: a pragmatic approach. In: 17th International Software Product Line Con-
ference. SPLC 2013, pp. 162–166. ACM (2013)

5. Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D.,
Romero, D.: D2.1.3 - CAMEL Documentation. Paasage project deliverable, October
2015

Broker@Cloud: Enabling Continuous Quality
Assurance and Optimisation in Future

Enterprise Cloud Service Brokers

Simeon Veloudis and Iraklis Paraskakis

South East European Research Centre (SEERC),
International Faculty of the University of Sheffield, CITY College,

24 Proxenou Koromila St, 54622 Thessaloniki, Greece

Abstract. We outline Broker@Cloud – a project which offers methods and
mechanisms for facilitating two types of cloud service brokerage, namely
Quality Assurance Service brokerage and Service Optimisation brokerage.

Keywords: Cloud computing � Cloud service brokerage � Governance and
quality control � Optimisation � Failure prevention and recovery � Service
description

1 Setting the Context

The Internet of Services brings about significant advantages for enterprises by reducing
upfront investment costs and diminishing risks in pursuing innovative ideas. Never-
theless, at the same time, it transforms the enterprise IT environment into a complex
ecosystem of interwoven and variably-sourced infrastructure, platform, and application
services. In order to deal effectively with this complexity, future enterprises are
anticipated to increasingly rely on cloud service brokerage (CSB). In this respect, the
Broker@Cloud project sets out to construct a generic brokerage framework which
provides capabilities with respect to two dimensions of CSB, namely Quality Assur-
ance Service Brokerage, and Service Optimisation Brokerage.

2 Broker@Cloud in a Nutshell

Broker@Cloud offers brokerage mechanisms that provide capabilities that are organ-
ised around three general themes: (i) governance and quality control; (ii) failure
prevention and recovery, and (iii) optimisation. The 1st theme is concerned with
checking the compliance of services with pre-specified policies constraining technical,
business and legal aspects of service delivery and deployment. It is also concerned with
testing services for conformance with their expected behaviour, and with continuously
monitoring their operation for conformance to SLAs. The 2nd theme is concerned with
the reactive and proactive detection of cloud service failures, and the selection of
suitable adaptation strategies to prevent, or recover, from failures. The 3rd theme is
concerned with continuously identifying opportunities to optimise service consumption

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 440–441, 2016.
DOI: 10.1007/978-3-319-33313-7

with respect to such consumer preferences as, for example, cost, quality, and
functionality.

Clearly, in the context of a generic CSB framework, such as the one offered by
Broker@Cloud, the aforementioned capabilities must be offered orthogonally to any
particular cloud service delivery platform. In this respect, a 4th theme is discerned,
namely platform-neutral description of cloud services. This is concerned with the
development of methods underpinning the Broker@Cloud framework and which
enable the expression of such artefacts as service descriptions, policies and consumer
preferences in a manner generic and platform-agnostic.

3 Broker@Cloud Methods and Mechanisms

We briefly outline progress achieved with respect to the aforementioned themes.
Concerning the 1st theme, the Service Completeness-Compliance Checker (SC3) has
been developed. SC3 is an ontology-driven mechanism which continuously evaluates
the quality of services by checking their compliance with pre-specified policies con-
cerning their deployment and delivery; in addition, SC3 evaluates the correctness of the
policies themselves. A governance registry system for dynamically managing the
service lifecycle has also been developed. With respect to testing, an XML-based
service specification language has been constructed and tools have been created to
interpret this language, including verification and validation tools and automatic
test-generation tools.

Concerning the 2nd theme, prototype software has been developed to support
continuous failure prevention and recovery. The prototype incorporates a CEP engine
which derives higher-order events relating to impending service failures from low-level
events detected, through monitoring, at the infrastructure level. It also incorporates a
reasoner for determining suitable adaptation or recovery actions.

Concerning the 3rd theme, the PuLSaR mechanism has been devised to support
continuous optimisation of cloud service delivery, based on the fuzzy AHP (analytic
hierarchy process) approach. This offers a unified method for performing an optimal
multi-criteria decision making, based on precise (i.e. measurable) and imprecise (i.e.
fuzzy) decision criteria. Service consumers may express their preferences for service
optimisation using exact numerical or imprecise linguistic terms.

Concerning the 4th theme, an ontological framework has been developed for the
generic and platform-agnostic specification of service descriptions, business policies,
and consumer preferences. The framework draws upon Linked USDL, a lightweight
easily-extensible RDF vocabulary for describing services and their pertinent artefacts.

As a means to validate the methods and mechanisms outlined above, two prototype
service brokerage platforms have been built. The one is hosted by CAS Software AG
(Karlsruhe), as an extension to the CAS Open platform, whilst the other is hosted by
Singular Logic (Athens), as an extension of the Orbi platform.

Acknowledgements. This research is funded by the EU 7th Framework Programme under the
Broker@Cloud project (www.broker-cloud.eu), grant agreement n°328392.

Broker@Cloud: Enabling Continuous Quality Assurance 441

http://www.broker-cloud.eu

BEACON – Enabling Federated
Cloud Networking

Philippe Massonet1 and Craig Sheridan2

1 CETIC, Charleroi, Belgium
Philippe.massonet@cetic.be

2 Flexiant, Edinburgh, Scotland
csheridan@flexiant.com

Abstract. Cloud federation enables cloud providers to collaborate and share
their resources to create a large virtual pool of resources at multiple network
locations. Different types of federation architectures for clouds and datacenters
have been proposed and implemented. An effective, agile and secure federation
of cloud networking resources is key to impact the deployment of federated
applications. The main goal of this project is two-fold: research and develop
techniques to federate cloud network resources, and to derive the integrated
management cloud layer that enables an efficient and secure deployment of
federated cloud applications.

Keywords: Cloud computing � Network virtualization � Cloud federation �
Security

1 Introduction

The BEACON H2020 project [1] aims at enabling federated cloud networking. The
recent development of software defined networking and network virtualization tech-
nologies has created the opportunity to fully integrate network virtualization tech-
nologies into cloud middleware. This will enable management of advanced hybrid
clouds and heterogeneous cloud federations. Network virtualization technologies from
the OpenDove project will be integrated with open source cloud middleware Open-
Nebula and OpenStack.

2 BEACON Federated Cloud Networking Architecture

The BEACON project aims to enhance cloud middleware market with network vir-
tualization technology to support the management of hybrid clouds and cloud feder-
ations. Our proposal will deliver a homogeneous virtualization layer, on top of
heterogeneous underlying physical networks, computing and storage infrastructures,
providing enablement for automated federation of applications across different clouds
and datacenters. The figure below shows the BEACON federated cloud architecture.
The service manager is responsible for the instantiation of the application by requesting
the creation and configuration of virtual machines for each service component included

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 442–443, 2016.
DOI: 10.1007/978-3-319-33313-7

in the service definition, using the interfaces exposed by the cloud manager. The Cloud
Manager is responsible for the placement of VMs into VM Hosts. It receives requests
from the Service Manager through the Cloud interface to create and resize VMs, and
finds the best placement that satisfies a given set of constraints. The Cloud Manager is
free to place, and move, the VMs anywhere, even on remote sites within the federation,
as long as the placement satisfies the constraints. The network manager is responsible
for allocating network resources to manage federated cloud virtual network and overlay
networks across geographically dispersed sites. The right part of the figure shows a
second cloud stack running on a different cloud provider. Together they form a fed-
eration with two cloud providers. The middle part of the figure shows that the cloud
manager and network managers of the two cloud providers communicate to share
resources and manage the federation.

3 Open Source Results

Cloud networking aspects will be based on OpenDove, a collaborative project under
The Linux Foundation. We will extend the OpenDOVE project with new rich
inter-cloud APIs to provision cross-site virtual network overlays. The new inter-cloud
network capabilities will be leveraged by existing open source cloud platforms,
OpenNebula and OpenStack, to deploy multi-cloud applications. Different aspects of
the platforms will be extended to accommodate the federated cloud networking features
like multi-tenancy, federated orchestration of networking, compute and storage man-
agement or the placement and elasticity of the multi-cloud applications.

Reference

1. BEACON web site. http://www.beacon-project.eu/

Fig. 1. BEACON Federated cloud networking architecture

BEACON – Enabling Federated Cloud Networking 443

http://www.beacon-project.eu/

EUBrazil Cloud Connect: A Federated
e-Infrastructure for Cross-Border Science

Roberto G. Cascella(B), Stephanie Parker, and Silvana Muscella

Trust-IT Services Ltd, Middlesex, UK
{r.cascella,s.parker,s.muscella}@trust-itservices.com

Abstract. EUBrazil Cloud Connect is an international co-operation
project aimed at accelerating scientific discovery to advance knowledge
on several challenges with high social impact. It provides a user-centric,
federated e-infrastructure for European & Brazilian research communi-
ties. Major outputs over 24months include the design and implementa-
tion of new programming models and tools enabling the deployment of
three scientific use cases on heterogeneous computing resources. It has
also deployed multiple federated cloud services based on open stan-
dards, successfully meeting the needs of scientific users and also analysing
business competencies for sustainable usage. Thanks to the high impact
results achieved in the project, the scientific community and industry
can now benefit from stable components for big data analysis.

1 EUBrazilCC: A Federated Cross-Atlantic
Infrastructure

Cloud computing has profoundly changed the way in which business services are
created and how we conduct scientific research to tackle challenges of significant
socio-economic impact by meeting needs such as intense computation capacity,
data access, and elastic management of resources. However, major advances are
still needed to create novel cloud technologies applicable to a large set of scientific
problems in different fields, such as biodiversity, climate, & medical informatics.

EUBrazil Cloud Connect (EUBrazilCC) (www.eubrazilcloudconnect.eu) is a
transatlantic open source project federating heterogeneous cloud resources in
Brazil and Europe, and facilitating cross border co-operation by implementing
innovative programming models and tools for the development of scientific appli-
cations. This new joint cloud infrastructure has built on European and Brazilian
excellence in cloud technology, standardisation efforts and scientific applications
with the availability of large data sets provided by diverse ecosystems.

EUBrazilCC focuses on an interoperable-by-design approach to manage a
heterogeneous infrastructure, which includes private clouds, supercomputing and
opportunistic desktop resources, using different middleware to manage the IaaS
resources. Interoperability is achieved by implementing cloud computing open

This work was supported by the EU FP7 EUBrazilCC Project (Grant Agreement
614048), and CNPq/Brazil (Grant Agreement 490115/2013-6).

c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 444–446, 2016.
DOI: 10.1007/978-3-319-33313-7

www.eubrazilcloudconnect.eu

EUBrazil Cloud Connect: A Federated e-Infrastructure 445

standards for the design of the architecture, federation and high level services,
including customised scientific gateways and programming models to efficiently
use the infrastructure and foster data sharing. The implementation of relevant
standards, with interoperability testing, eases the integration of the tools in other
systems while contributing to standardisation initiatives globally.

EUBrazilCC architecture adopts the European Grid Infrastructure (EGI)
federated cloud model by supporting open standards: OCCI for IaaS manage-
ment and VOMS for resource level authorisation management. These standards
are essential for help manage heterogeneous resources and deploy on differ-
ent cloud middleware, such as OpenStack, OpenNebula, which are federated
using Fogbow. Fogbow is a middleware that provides a very lightweight busi-
ness model for the federation of private IaaS providers, based on the exchange
of resources. The execution and provision of services can also be performed via
the Infrastructure Manager (IM) and CSGrid. IM provides a high-level service
to customise and deploy independently from the underlying platform. CSGrid
offers the abstraction of the computational resources to facilitate scientific appli-
cations’ management and transparent access to supercomputers.

The EUBrazilCC approach to the deployment and execution of large-scope
scientific use cases on federated cloud resources mainly focuses on including in the
architecture high-level services. COMPSs and e-Science Central programming
frameworks provide functionalities to run complex workflow managers on top
of different infrastructures, while reducing the use cases’ development cycle.
Parallel Data Analysis Service (PDAS) manages large volume of scientific data
for big data analytics. Data access and transfer is done by means of graphical
interfaces developed via the mc2 framework for scientific gateways.

These tools are the foundation of the EUBrazil Cloud Connect assets that
will ensure long-term sustainability through dedicated exploitation plans.

2 Impact and Innovation via Scientific Use Cases

The main impact of EUBrazilCC is the close collaboration between European
and Brazilian institutions, in the area of eScience applications on virtualised
infrastructures, to demonstrate the efficiency and cost-effectiveness of tools via
3 use cases with high socio-economic impact with mutual benefit to EU & Brazil.

The Leishmaniasis Virtual Lab (LeishVL) is a web-based application that
offers a dedicated set of tools and services to data sources and powerful com-
puting systems to run experiments for the surveillance of Leishmaniasis, a dis-
ease affecting the poorest of the poor. The Vascular System Simulation involves
simulations of the heart and the arterial system to model pathologies and test
therapies under development, which can be examined in-silico, reducing design
costs and times. The Climate Change and Biodiversity studies the mutual inter-
actions (status and changes) between biodiversity dynamics and climate change,
by using earth observation and ground level data together with simulated data.

EUBrazilCC has a high impact to international associations and industries
thanks to the use of project assets and establishment of synergies. COMPSs

446 R.G. Cascella et al.

is already adopted in the EGI Federation Cloud, while mc2, e-Science Central,
and LeishVL are available on EGI marketplace. The Fogbow component is being
considered by RNP, the Brazilian research network, for federating their cloud
infrastructure and under testing by SERPRO.

EUBrazilCC has demonstrated a consolidated representation as an important
vehicle driving ICT policy dialogue between Europe and Brazil and contributing
cloud technologies to interoperability, e-infrastructure and scientific applications.

CLIPS – CLoud Approach for Innovation
in Public Services

Roberto Di Bernardo and Marco Alessi

Engineering Ingegneria Informatica SpA, R&D Laboratory, Palermo, Italy
{roberto.dibernardo,marco.alessi}@eng.it

Nowadays, Public Sector is facing two external factors conflicting and apparently
irreconcilable: the reduction of budget available and the growing demand for inno-
vation in public services. In this situation, Public Authorities find in the Cloud [1] a
valuable ally such as management model of IT infrastructure and SaaS environment
[3], but it is not enough. There is the need for new approaches and business models that
enable the delivery of value-added IT services for public utility, built on top of those
provided by Public Authorities, thanks to the involvement of new actors (e.g. SMEs,
Services Providers) [4], so empowering a real, sustainable business ecosystem. Even
though the cloud computing advantages are relevant and clear, security and privacy
issues are the primary obstacles to wide adoption in public sector [6]. In this frame, the
research project CLIPS (www.clips-project.eu), co-funded under CIP-ICT-PSP (Grant
621083), wants to provide city community with a methodology and a set of techno-
logical assets that allow public administration, citizens and enterprises to cooperate in
the development and provisioning of new and innovative public services. In this way
the final aim of CLIPS is to build an ecosystem in which all the actors can play an
active role providing a strong cooperation.

In order to support “cloudization” of PA legacy IT systems and the reuse of
resources, overcoming the aforementioned obstacles, CLIPS project makes use of the
micro-service concept, introduces the micro-proxy one and leverages a hybrid inte-
gration approach [2]. More in details (Fig. 1): (1) a micro-service represents a service
providing atomic business functionality and is located on the cloud. Being atomic, this
maximizes its reusability. All the micro-services deployed in CLIPS ecosystem are
resources potentially sharable (building blocks); (2) a micro-proxy represents a service
creating the connection between CLIPS cloud environment and PA IT systems. It
represents a sort of last mile integration element, on the one hand leaving the full
control on personal/sensible data to the single PA and, the other hand, providing access
to them according to CLIPS platform dictates.

CLIPS proposes [10]: (1) a Visual Service Mash-up tool, making potentially all
stakeholders capable to identify available building blocks (i.e. micro-services and Open
Data) and to compose them in a visual way to create new value added services. This
represents the adaptative part of the integration approach (called also citizen integra-
tion); (2) an integration framework, based on Talend [11], in order to overcome more
sophisticated integration (in particular dealing with the creation of micro-proxies). This
represents the systematic part of the approach.

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 447–449, 2016.
DOI: 10.1007/978-3-319-33313-7

http://www.clips-project.eu

Moreover, to face security issues, CLIPS architecture [4, 10] includes four modules
each one operating at different levels: (1) a set of security best practices to be followed
by each CLIPS component design; (2) the integration with Secure idenTity acrOss
boRders linKed (STORK) [6] framework; (3) the employment of the Remote Attes-
tation [8] (feature provided by the Trusted Computing technology) in order to enforce
the trustworthiness of CLIPS infrastructure; (4) a cloud-oriented logging component to
monitor the events occurring within the infrastructure.

CLIPS will be piloted in several European cities around a common the scenario of a
“family moving across countries/cities” facing with typical complexities such move
could entail. CLIPS pilot cities are: Bremerhaven (DE), Lecce (IT), Novi Sad (RS), and
Santander (ES). The services to be piloted belong to several fields (e.g. kindergarten
registration, payment services, register with administration, get licenses and permis-
sions) and will be run also in cross-border situations paying attention to privacy and
ethical issue, being analysed and investigated during the project [9].

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)
2. Thompson, J.: How to Use Hybrid Integration Platforms Effectively. Gartner (2014)
3. Staten, J.: Hollow Out The MOOSE: Reducing Cost with Strategic Rightsourcing. Forrester

Research, Inc. (2009)
4. CLIPS deliverable: D4.1 Security Architecture and API
5. Wojciech, C., Strykowski, S.: E-government based on cloud computing and service-oriented

architecture (2009)
6. Marijn, J., Joha, A.: Challenges for adopting cloud-based SAAS in the public sector (2011)
7. STORK Consortium: Stork Project. https://www.eidCstork.eu
8. Trusted Computing Group. https://www.trustedcomputinggroup.org/about_tcg

Fig. 1. CLIPS approach

448 R. Di Bernardo and M. Alessi

https://www.eidCstork.eu
https://www.trustedcomputinggroup.org/about_tcg

9. CLIPS deliverable: D7.1.1 Policy, privacy and technological constraints analysis report
10. CLIPS deliverable: D5.1 CLIPS Architecture and specifications
11. Talend ESB. https://www.talend.com/resource/open-source-esb.html

CLIPS – CLoud Approach for Innovation in Public Services 449

https://www.talend.com/resource/open-source-esb.html

FrontierCities: Leveraging FIWARE
for Advantages in Smart Mobility

Antonio Celesti and Massimo Villari

DICIEAMA, University of Messina, Contrada Di Dio (S. Agata),
98166 Messina, Italy

{acelesti,mvillari}@unime.it

Abstract. FIWARE represents a new European Cloud platform that
aims to land on the international ICT market bringing prominent novel
advantages for societies. In fact, it provides new compelling and novel
software components, available through APIs, able to give developers
new valuable Cloud platform functionalities. FrontierCities “European
Cities Driving the Future Internet” is an European FP7 founded project
related to the FI-PPP Phase 3 CP-CSA call. It aims to leverage the
FIWARE technology in order to support SMEs and start-ups in devel-
oping new innovative smart mobility applications for the cities of the
future.

Keywords: Cloud computing · Internet of Things · FIWARE · Smart
mobility

1 FIWARE at Glance

Cloud computing and Internet of Things (IoT) are enabling key technologies for
Future Internet (FI). In this context, the European Commission (EC) envisioned
the possibility to foster the wide adoption of such technologies, in total open-
ness, avoiding vendor lock-in and simplifying the composition of new services.
To this end, the EC has started the Future Internet Private Public Partnership
(FI-PPP) program [1] that has brought to the delivery of a new complex Euro-
pean Cloud platform, called FIWARE. The aim of FIWARE is to yield an open
standard platform and an open, sustainable, global ecosystem. The FIWARE
reference architecture includes a set of general-purpose platform functions called
Generic Enablers (GEs) [2]. GEs are related to network and device interfaces,
advanced web-based user interfaces, application/service ecosystems and delivery
networks, Cloud hosting, data/context management, IoT service enablement,
and security. FIWARE provides GE Open Specifications (that are public and
royalty-free) and their implementations (GEi). Moreover, FIWARE provides at
least one open source reference implementation of each GE (GEri) with a well-
known open source license. The advantage in using FIWARE is that software
architects can rely on a consolidated set of open source general-purpose platform
functions that are supported by a world-wide community. In fact, there are GEs
c© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 450–451, 2016.
DOI: 10.1007/978-3-319-33313-7

FrontierCities: Leveraging FIWARE for Advantages in Smart Mobility 451

for many specific needs that allow developers to apply agile development strate-
gies. In order to promote the FIWARE Techonogy, the EC has promoted the
Future Internet Accelerator Programme including 16 accelerators related to dif-
ferent application fields. FrontierCities [3] is one these 16 accelerators specifically
focusing on smart mobility.

2 FrontierCities

FrontierCities “European Cities Driving the Future Internet” is a proposal pre-
sented for the FI-PPP Phase 3 CP-CSA call. The project is built on the FI-PPP
Phase I and II, and it is directly linked to the work carried out in FI-Phase II
instant mobility and outsmart use cases. Mobility and transport are essential
for the proper functioning of a city. A smart city should be easily accessible
to visitors and residents, and travelling across a city should be problem-free.
The aim is to provide a multifaceted, efficient, safe, and comfortable transport
system, which is linked to ICT infrastructures and open data. FrontierCities
aims to support SMEs and start-ups for the development of innovative smart
mobility applications. While building upon Phase II, FrontierCities is however
in line with the significant change in focus required under Phase III, and repre-
sents an ambitious, market-focussed project. Core objectives are to solicit and
select high-calibre grant applications from SMEs and start-ups through a mix
of strategies and market the results to a pan-European audience of cities. The
main objective of the project is to support grantee projects for a secure market
commercialisation of their applications and services considering both cities and
wider private sector uptakers and enablers (e.g., corporations and investors). In
particular, the project aims to disburse EUR 3.92 million in grant funding to
SMEs and start-ups through a streamlined two-step application process. The
frontierCities consortium is made up of seven partners (New Frontier Services,
Engineering – Ingegneria Informatica SPA, University of Surrey, European Busi-
ness and Innovation Centre Network, InnovaBic, Energap, Università degli Studi
di Messina), each one bringing experience and expertise in management, tech-
nology and business development.

3 Preliminary Results

Currently, the assessment of proposals in step 1 is completed. We were thrilled
to see such a strong interest in our call with 594 submitted and finalised appli-
cations. In particular, we had 201 successful step 1 applicants, who have been
invited to participate in step 2.

References

1. FI-Ppp. program. https://www.fi-ppp.eu/projects/fi-ware
2. Generic Enabler (GE) Catalogue. http://catalogue.fiware.org/enablers
3. FrontierCities. http://www.fi-frontiercities.eu/

https://www.fi-ppp.eu/projects/fi-ware
http://catalogue.fiware.org/enablers
http://www.fi-frontiercities.eu/

Author Index

Abbate, Tindara 276
Abidi, Leila 216
Alessi, Marco 448, 451
Andronico, Giuseppe 353

Balalaie, Armin 201
Bär, Florian 263
Barrientos, M. 422
Bartoloni, Leonardo 111
Baur, Daniel 184
Bouzereau, Olivier 435
Brehm, Lars 289
Brogi, Antonio 111, 422
Bruneo, Dario 175, 432
Bua, Filippo 353
Buccarella, M. 422

Carrasco, J. 422
Casale, Giuliano 427, 430
Cascella, Roberto G. 444
Cavallo, Marco 5
Celesti, Antonio 33, 48, 79, 276, 325,

338, 450
Cérin, Christophe 216
Ciampolini, Anna 363
Costa, Caio H. 238
Costa, Fábio 153
Cretella, Giuseppina 404
Cubo, J. 422
Cusmà, Lorenzo 5

Dadashi, Aryan 432
D’Andria, F. 422
D’ Antonio, Salvatore 126
da Rocha, Ricardo 153
De-Santos, Francesco Javier Nieto 432
Deussen, Peter H. 435
Di Bernardo, Roberto 447, 451
di Martino, Beniamino 404
Di Modica, Giuseppe 5
Di Nitto, Elisabetta 422, 427, 430
Distefano, Salvatore 389
Domaschka, Jörg 184

Erdal, Olai-Bendik 63
Esposito, Antonio 404

Fargetta, Marco 353
Fazio, Maria 33, 48, 276
Fowley, Frank 374

Gaivoronski, Alexei A. 63
Geldwerth-Feniger, Danielle 216
Gelenbe, Erol 425
Georgantas, Nikolaos 153
Ghamsari, Majid Salehi 435
Giacobbe, Maurizio 276
Giorgio, Emidio 353
Gomes, Raphael 153
Grieco, Luigi Alfredo 141
Griesinger, Frank 184
Gugliara, Giuliano 126
Guglielmo, Alessio 353

Heydarnoori, Abbas 201
Hof, Hans-Joachim 289
Huedo, Eduardo 325

Ibrahim, Ahmad 111

Jamshidi, Pooyan 201
Johansen, Finn-Tore 63
Jugel, Dierk 308

Keller, Barbara 263
Khoshkbarforoushha, Alireza 228

Lafaille, Marie 216
Lamers, Arjan 93
Laubis, Kevin 249
Lefebvre, Alexandre 435
Leitner, Philipp 432
Levin, Anna 79, 325, 338
Lima, Júnio 153
Llorente, Ignacio M. 325
Longo, Francesco 175
Loreti, Daniela 363

Maia, Paulo H.M. 238
Massonet, Philippe 79, 325, 338, 442
Melis, Jaime 325
Mendonça, Nabor C. 238
Merlino, Giovanni 325, 389
Miron, Avi 432
Möhring, Michael 263, 308
Moltchanov, Boris 175, 432
Monforte, Salvatore 353
Mongiello, Marina 141
Montero, Rubén S. 325
Moreno-Vozmediano, Rafael 325
Mulfari, Davide 33
Muscella, Silvana 444

Nesse, Per Jonny 63
Nieto, A. 422
Nuel, Catherine 435
Nurcan, Selmin 263

Omerovic, Aida 166
Oriol, M. 422

Pahl, Claus 374
Panarello, Alfonso 48
Paone, Maurizio 353
Paraskakis, Iraklis 440
Parker, Stephanie 444
Petcu, Dana 430
Pérez, D. 422
Pimentel, E. 422
Pinheiro, Manuele Kirch 20
Polito, Carmelo 5
Ponomarev, Andrew 299
Puliafito, Antonio 33, 48, 389

Ranjan, Rajiv 228
Richard, Alban 435

Rocha, Lincoln S. 238
Romano, Carlo Francesco 126
Romano, Luigi 126
Rossini, Alessandro 437

Salant, Eliot 432
Schmidt, Rainer 263, 289, 308
Schour, Liran 325, 338
Schuller, Alexander 249
Sciancalepore, Massimo 141
Seybold, Daniel 184
Sharifloo, Amir Molzam 432
Sheridan, Craig 442
Simko, Viliam 249
Smirnov, Alexander 299
Spahr, Stefan 325
Spais, Ilias 427
Steffenel, Luiz Angelo 20
Strazdins, Peter 228

Thomas, Cédric 435
Tomarchio, Orazio 5

van Eekelen, Marko 93
Vázquez, Constantino 325
Veloudis, Simeon 440
Villari, Massimo 33, 48, 79, 276, 325, 338,

353, 450
Vogli, Elvis 141

Wallbom, Karl 432
Wang, Lan 425
Whigham, Darren 325
Woods, Chris 432

Xiong, Huanhuan 374

Zenzaro, S. 422
Zimmermann, Alfred 263, 308

454 Author Index

	Preface
	Organization
	Contents
	CLIoT Workshop Papers�
	Preface of CLIoT 2015
	Workshop Organizers
	Steering Committee
	Technical Program Committee

	A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data
	1 Introduction
	2 Design of a Hierarchical Hadoop Approach
	3 Job Scheduling Strategy
	3.1 Execution Path Generation
	3.2 Application Profiling

	4 Prototype Implementation and Test Case
	5 Related Work
	6 Conclusion
	References

	CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks
	1 Introduction
	2 Cloud Services and IoT
	2.1 Private Clouds, Cloudlets and the IoT
	2.2 Cloud Services over Pervasive Grids

	3 Data-Intensive Applications on Pervasive Grids
	4 CloudFIT
	4.1 CloudFIT Services for IoT Devices and Applications

	5 MapReduce over CloudFIT
	5.1 MapReduce
	5.2 Map, Reduce and Task Dependencies
	5.3 Data Management, Storage and Reliability
	5.4 Performance Evaluation Against Hadoop
	5.5 Performance Evaluation on a Pervasive Grid

	6 Conclusions and Future Work
	References

	Design of an IoT Cloud System for Container Virtualization on Smart Objects
	1 Introduction
	2 Related Work
	3 Container Virtualitation for Linux Environments
	4 MOM4C Extension for IoT and Container Support
	4.1 Architecture Overview
	4.2 Technical Details

	5 System Prototype
	6 Conclusion
	References

	A Federated System for MapReduce-Based Video Transcoding to Face the Future Massive Video-Selfie Sharing Trend
	1 Introduction
	2 Related Work
	3 Motivation and Reference Scenario
	4 Integration of Hadoop in CLEVER
	4.1 CLEVER Overview
	4.2 Hadoop Overview
	4.3 Hadoop and CLEVER
	4.4 Amazon S3

	5 Distributed Processing in Cloud Federation
	6 Cost Estimation of the Federation
	7 Experiments
	8 Conclusion
	References

	Internet Service Provision and Content Services: Peering and Service Differentiation
	1 Introduction
	2 Paid Content Peering with Strong Content Service Provider
	2.1 Results of Numerical Analysis

	3 Content Peering and Service Differentiation
	3.1 Service Selection by a Single Subscriber
	3.2 Demand Functions of Population of Subscribers
	3.3 Profit Maximization Problems for Actors
	3.4 Some Results

	4 Conclusion
	References

	Security Requirements in a Federated Cloud Networking Architecture
	1 Introduction
	2 BEACON Overview
	3 Security Analysis on the Federated Cloud Networking Architecture
	3.1 Application Security at the Cloud Manager Layer
	3.2 Application Security at the Network Manager Layer
	3.3 Infrastructure Security at the Cloud Manager Layer
	3.4 Infrastructure Security at the Network Manager Layer

	4 Protecting the Virtual Network Infrastructure
	5 Customizing Overlay Network Protection for the Deployment of Federated Applications
	5.1 Specifying Security Templates for Security Functions
	5.2 Implementing Network Security Services as NFV

	6 Related Work
	7 Conclusion
	References

	W4S4FI Workshop Papers�
	Organizing Committee
	Program Committee

	A Lightweight Method for Analysing Performance Dependencies Between Services
	1 Introduction
	2 Architecture Layer
	2.1 Service Interaction
	2.2 Stress and Responsiveness
	2.3 Analysing an Architecture

	3 Deployment Allocation
	3.1 Analysing a Deployment Allocation

	4 State
	4.1 Deploying with State

	5 Deployment Configuration
	5.1 Deployment Optional Pruning
	5.2 Pruning Runtime Optionals

	6 Architectural Patterns
	7 Related Work
	8 Conclusion
	References

	Automated Prediction of the QoS of Service Orchestrations: PASO at Work
	1 Introduction
	2 Motivating Examples
	2.1 Example 1: A Cloud-Based Storage Service
	2.2 Example 2: Starting a Manufacturing Business

	3 Overview of PASO
	4 PASO at Work on the Motivating Examples
	4.1 Example 1: A Cloud-Based Storage Service
	4.2 Example 2: Starting a Manufacturing Business

	5 Related Work
	6 Concluding Remarks
	References

	A Workflow Service Mediator for Automated Information Processing and Scheduling Delivery to an Archive
	Abstract
	1 Introduction
	2 Technical Approach
	2.1 Documents Acceptance System
	2.2 Queuing and Scheduling System
	2.3 Connection Interface with Long-Term Archive
	2.4 File State and Delivery Outcome

	3 Control Panel
	4 A Real Implementation
	4.1 Documents Acceptance System Implementation
	4.2 Queuing and Scheduling System Implementation
	4.3 Connection Interface with Long-Term Archive Implementation
	4.4 The Control Panel Implementation

	5 Related Work
	6 Conclusion
	References

	Adaptive Architectural Model for Future Internet Applications
	1 Introduction and Motivation
	2 Background
	2.1 Adaptive Systems
	2.2 Operational Requirements
	2.3 REST Middleware

	3 Model for Adaptive Applications Composition
	4 Model Instantiation
	5 Conclusion and Future Work
	References

	SeaCloud Workshop Papers�
	Second Workshop on Seamless Adaptive Multi-Cloud Management of Service-Based Applications Preface
	Program Chairs
	Program Committee
	Publicity Chair
	Webmaster

	A Model-Based Approach for the Pragmatic Deployment of Service Choreographies
	1 Introduction
	2 Terminology
	3 The Effect of Service Sharing
	3.1 Evaluating the Effects of Service Sharing

	4 Related Work
	5 Formal Model for Choreography Deployment
	6 Adaptive Approach to Choreography Deployment
	7 Final Remarks
	References

	Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis
	1 Introducion
	2 The Approach
	3 Applying the Approach to an Example
	4 Discussion
	5 Conclusions
	References

	Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case
	1 Introduction
	2 Agile Software and Feedback-Driven Developments: The CloudWave Project
	3 CloudWave Telco Use Case
	3.1 Application Architecture
	3.2 Application Deployment

	4 Multi-level Adaptations: A Proof of Concept
	5 Conclusions
	References

	Axe: A Novel Approach for Generic, Flexible, and Comprehensive Monitoring and Adaptation of Cross-Cloud Applications
	1 Introduction
	2 Background
	2.1 Requirements and Constraints
	2.2 The Cloudiator Tool
	2.3 Scalability Rule Language

	3 Approach
	3.1 Visor: Gathering Monitoring Data
	3.2 Buffering Monitoring Data
	3.3 Aggregation
	3.4 Auto-Scaling
	3.5 Architecture

	4 Current Status and Future Work
	4.1 Time-Series Database
	4.2 Aggregators
	4.3 Scaling Engine

	5 Related Work
	6 Conclusions
	References

	CloudWay Workshop Papers�
	Program Committee
	Sponsors

	Migrating to Cloud-Native Architectures Using Microservices: An Experience Report
	1 Introduction
	2 Background
	2.1 Continuous Delivery and DevOps
	2.2 Microservices

	3 The Architecture of SSaaS Before the Migration
	3.1 Why Did We Plan to Migrate Towards the Microservices?

	4 The Target Architecture of SSaaS After the Migration
	4.1 How Did We Re-Architect the System and Refactor the Data?

	5 Migration Steps
	5.1 Preparing the Continuous Integration Pipeline
	5.2 Transforming DeveloperData to a Service
	5.3 Introducing Continuous Delivery
	5.4 Introducing Edge Server
	5.5 Introducing Dynamic Service Collaboration
	5.6 Introducing Resource Manager
	5.7 Introducing ChatServices and DeveloperInfoServices
	5.8 Clusterization

	6 Lessons Learned
	7 Conclusions and Future Work
	References

	Cloud Computing for e-Sciences at Université Sorbonne Paris Cité
	1 Introduction
	2 The General Context of Cloud Adoption and Migration
	3 The Université Sorbonne Paris Cité and the IDV Interdisciplinary Program Use Case
	3.1 Institutional Context at Université Sorbonne Paris Cité
	3.2 The IDV Program and Network
	3.3 Dedicated Survey for the IDV Program
	3.4 Current Reference Surveys About Cloud Adoption

	4 Building the Dedicated IDV-USPC Cloud Infrastructure
	4.1 Details of the Proposed Infrastructure for IDV
	4.2 Impact of Cloud Migration on the IDV Program

	5 Conclusion
	References

	Resource Distribution Estimation for Data-Intensive Workloads: Give Me My Share & No One Gets Hurt!
	1 Introduction
	2 Related Work
	3 Overview of the Proposed Framework
	3.1 Similarity Definition and Template Generation
	3.2 Distribution Prediction

	4 Initial Results
	5 Conclusions and Future Work
	References

	Supporting Partial Database Migration to the Cloud Using Non-intrusive Software Adaptations: An Experience Report
	1 Introduction
	2 Related Work
	3 System Architecture
	4 The Migration and Adaptation Process
	4.1 Data Migration
	4.2 System Adaptation

	5 Conclusion
	References

	Cloud Adoption by Fine-Grained Resource Adaptation: Price Determination of Diagonally Scalable IaaS
	1 Introduction and Background
	2 Scaling Model
	3 Pricing Model
	4 Evaluation
	5 Discussion
	6 Conclusion and Outlook
	References

	IDEA Workshop Papers�
	Program Committee

	Digitization – Perspectives for Conceptualization
	Abstract
	1 Introduction
	2 Technological Enablers of Digitization
	2.1 Big Data and Advanced Analytics
	2.2 Cloud-Computing
	2.3 Social Software
	2.4 Internet of Things

	3 Product Perspective
	3.1 Digitized Products
	3.2 Digitized Products Are Reflective
	3.3 Digitized Products Are Dynamic
	3.4 Digitized Products Are Servitized

	4 Value-Creation Perspective
	4.1 Platforms
	4.2 Network Effects
	4.3 Networked Intelligence
	4.4 Co-creation of Value

	5 Conclusion
	References

	A Scientometric Analysis of Cloud Computing and QoE Literature to Design a Cloud Platform of Experience for Digital Business
	1 Introduction
	2 Related Work
	3 Scientometric Analysis of Cloud Computing and QoE
	4 QoE Evaluation Based on Cloud Computing Approaches
	5 Requirements Analysis for a Cloud Based Platform of Experience
	5.1 Motivation

	6 Design of a Cloud Platform of Experience: A Reference Model
	6.1 Cloud PoE Usability: Discussion of a Use Case

	7 Conclusions and Future Developments
	References

	Enabling Digital Transformation Using Secure Decisions as a Service
	Abstract
	1 Introduction
	2 Basic Architecture for Secure Decision as a Service
	3 Reputation System
	4 Using Decision as a Service in Digital Transformation
	5 Related Work
	6 Conclusion
	References

	Exploring Requirements for Multipurpose Crowd Computing Framework
	Abstract
	1 Introduction
	2 Requirements Structure
	2.1 Programming Methods and Tools
	2.2 Quality
	2.3 User Interface
	2.4 Incentivization and Rewarding Mechanics
	2.5 Interoperability

	3 Conclusion
	Acknowledgements
	References

	Adaptive Enterprise Architecture for Digital Transformation
	Abstract
	1 Introduction
	2 Digital Transformation with the Internet of Things
	3 Digital Enterprise Architecture
	4 Architectural Integration and Adaptation
	5 Conclusion
	References

	FedCloudNet Workshop Papers�
	Workshop Organizers
	Steering Committee
	Program Committee
	Publicity Chairs
	Sponsors

	BEACON: A Cloud Network Federation Framework
	1 Introduction
	2 Architectures for Cloud Network Federation
	2.1 Datacenter Federation and Interconnection
	2.2 Cloud Federation and Interconnection
	2.3 Multi-cloud Orchestration and Interconnection
	2.4 Security Considerations

	3 The BEACON Framework
	4 State-of-the-Art in Cloud and Network Federation
	5 Conclusions and Future Work
	References

	Federated Networking Services in Multiple OpenStack Clouds
	1 Introduction
	2 OpenStack Architecture
	2.1 Architecture Overview
	2.2 Tenants, Users, and Roles

	3 Towards OpenStack Federation
	3.1 Main Actors
	3.2 Loosely and Tightly Coupled Cloud Federation Scenarios
	3.3 Federated Cloud Networking Services
	3.4 Current Federation Features in OpenStack

	4 Federation Management System
	4.1 Virtual Resource Management
	4.2 Virtual Network Management
	4.3 Security Management

	5 Related Work
	6 Conclusion
	References

	Networking Introspection and Analysis for Virtual Machine Migration in Federated Clouds
	1 Introduction
	2 Related Work
	3 Migration Technique
	4 Migration Policy
	5 Monitoring
	5.1 The Packet Sniffer
	5.2 Virtual Machine Monitoring

	6 Conclusions
	References

	SHYAM: A System for Autonomic Management of Virtual Clusters in Hybrid Clouds
	1 Introduction
	2 Framework Architecture
	2.1 Applicative Scenario
	2.2 Logic Component Policy
	2.3 Implementation

	3 Experimental Results
	4 Related Work
	5 Conclusion
	References

	A Database-Specific Pattern for Multi-cloud High Availability and Disaster Recovery
	1 Introduction
	2 Background and Related Work
	3 HADR Pattern: Hybrid Multi-cloud Cluster Replication
	3.1 Problem and Context
	3.2 Solution
	3.3 Strategies
	3.4 Comments and Limitations

	4 Pattern Implementation and Evaluation Setup
	5 Evaluation
	5.1 Objectives and Criteria
	5.2 Experiment
	5.3 Results

	6 Conclusions
	References

	An OpenStack-Based Implementation of a Volunteer Cloud
	1 Introduction
	2 Overview
	2.1 Cloud@Home
	2.2 OpenStack

	3 Cloud@Home Reference Architecture
	3.1 Node-Side
	3.2 Cloud Side

	4 Cloud@Home OpenStack-Based Architecture
	5 Preliminary Implementation
	6 Conclusions
	References

	Cloud Services Composition Through Semantically Described Patterns: A Case Study
	1 Introduction
	2 State of the Art
	2.1 Cloud Patterns

	3 Methodology Description
	3.1 Pattern Representation
	3.2 Services Representation

	4 Case Study
	4.1 Step 1: Selection of the Application Pattern
	4.2 Step 2: Refinement of the Pattern's Components
	4.3 Step 3: Selection of a Target Platform

	5 Conclusion and Future Work
	References

	EU Projects Track
	Preface of EU Projects Track
	Organization

	Adaptive Application Management over Multiple Clouds
	TAP: A Task Allocation Platform for the EU FP7 PANACEA Project
	References

	Towards Quality-Aware Development of Big Data Applications with DICE
	1 Overview
	References

	On MODAClouds' Toolkit Support for DevOps
	Reference

	CloudWave -- Leveraging DevOps for Cloud Management and Application Development
	1 Introduction
	2 Project Consortium
	3 Project Overview
	References

	AppHub -- The European Open Source Market Place (Extended Abstract)
	Abstract
	1 A Market Outreach Accelerator
	2 The AppHub Platform
	3 Services That Foster Software Adoption
	4 The AppHub Project

	Cloud Application Modelling and Execution Language (CAMEL) and the PaaSage Workflow
	References

	Broker@Cloud: Enabling Continuous Quality Assurance and Optimisation in Future Enterprise Cloud Service Brokers
	Abstract
	1 Setting the Context
	2 Broker@Cloud in a Nutshell
	3 Broker@Cloud Methods and Mechanisms
	Acknowledgements

	BEACON – Enabling Federated Cloud Networking
	Abstract
	1 Introduction
	2 BEACON Federated Cloud Networking Architecture
	3 Open Source Results
	Reference

	EUBrazil Cloud Connect: A Federated e-Infrastructure for Cross-Border Science
	1 EUBrazilCC: A Federated Cross-Atlantic Infrastructure
	2 Impact and Innovation via Scientific Use Cases

	CLIPS -- CLoud Approach for Innovation in Public Services
	References

	FrontierCities: Leveraging FIWARE for Advantages in Smart Mobility
	1 FIWARE at Glance
	2 FrontierCities
	3 Preliminary Results
	References

	Author Index

