- .
. €
& = -
-
-
-

~ Antonio Celesti -

Communications in Computer and Information Science 567

\

Workshops of ESOCC 2015
Taormina, Italy, September 15-17, 2015
Revised Selected Papers

@ Springer

Communications
in Computer and Information Science

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Slezak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil
Phoebe Chen
La Trobe University, Melbourne, Australia
Xiaoyong Du
Renmin University of China, Beijing, China
Joaquim Filipe
Polytechnic Institute of Setubal, Setubal, Portugal
Orhun Kara

567

TUBITAK BILGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko

St. Petersburg Institute for Informatics and Automation of the Russian

Academy of Sciences, St. Petersburg, Russia
Ting Liu

Harbin Institute of Technology (HIT), Harbin, China
Krishna M. Sivalingam

Indian Institute of Technology Madras, Chennai, India
Takashi Washio

Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Antonio Celesti - Philipp Leitner (Eds.)

Advances in
Service-Oriented
and Cloud Computing

Workshops of ESOCC 2015
Taormina, Italy, September 15-17, 2015
Revised Selected Papers

@ Springer

Editors

Antonio Celesti Philipp Leitner

DICIEAMA Software Evolution and Architecture Lab
University of Messina University of Ziirich

Messina Ziirich

Italy Switzerland

ISSN 1865-0929 ISSN 1865-0937 (electronic)

Communications in Computer and Information Science

ISBN 978-3-319-33312-0 ISBN 978-3-319-33313-7 (eBook)

DOI 10.1007/978-3-319-33313-7
Library of Congress Control Number: 2016936647

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the technical papers presented at the six high-quality workshops
associated with ESOCC 2015 (European Conference on Service-Oriented and Cloud
Computing), held in Taormina, Messina, September 15-17, 2015. The workshops
focused on specific topics in service-oriented and cloud computing-related domains:
Third International Workshop on CLoud for IoT (CLIoT 2015), 5th International
Workshop on Adaptive Services for the Future Internet (WAS4FI 2015), Second
Workshop on Seamless Adaptive Multi-Cloud Management of Service-Based Appli-
cations (SeaClouds 2015), First International Workshop on Cloud Adoption and
Migration (CloudWay 2015), First International Workshop on Digital Enterprise
Architecture and Engineering (IDEA 2015), the First Workshop on Federated Cloud
Networking (FedCloudNet 2015).

Moreover, this volume also includes papers presented at the European Projects
Track (EU Projects 2015) in conjunction with ESOCC 2015.

There were a total of 48 submissions, from which 24 papers were accepted giving an
acceptance rate of 50 %. The review and selection process was performed rigorously,
with each paper being reviewed by at least two Program Committee (PC) members.
Here, a brief description of each workshop is given.

The CLIoT 2015 workshop aimed at discussing the limits and/or advantages of
existing cloud solutions for IoT and at proposing original and innovative contributions
for enhancing real-world resources over cloud environments. Smart connectivity with
existing networks and context-aware computation is becoming indispensable for IoT.
Cloud computing provides a very strategic virtual infrastructure that integrates moni-
toring devices, storage devices, analytics tools, virtualization platforms, and client
delivery. It supports enormous amounts of data generated for IoT purposes, which have
to be stored, processed, and presented in a seamless, efficient, and easily interpretable
form. The first part of this volume includes all the technical papers of CLIoT 2015.

The W4S4FI 2015 workshop focused on Future Internet (FI) technologies. The FI
has emerged as a new initiative to pave a novel infrastructure linked to objects (things)
of the real world to meet the changing global needs of business and society. It offers
Internet users a standardized, secure, efficient, and trustable environment, which allows
open and distributed access to global networks, services, and information. There is a
need for both researchers and practitioners to develop platforms made up of adaptive FI
applications. In this sense, the emergence and consolidation of service-oriented
architectures (SOA), cloud computing, and wireless sensor networks (WSN) give
benefits, such as flexibility, computing, scalability, security, interoperability, and
adaptability for building these applications. FI systems will need to sense and respond
to a huge amount of signals sourced from different entities in real time. WAS4FI
addresses different aspects of adaptive FI applications, emphasizing the importance of
governing the convergence of contents, services, things, and networks to achieve
building platforms for efficiency, scalability, security, and flexible adaptation. WAS4FI

VI Preface

2015 covered the foundations of these technologies as well as new emerging proposals.
The second part of this volume includes all the technical papers of WAS4FI 2015.

The SeaCloud 2015 workshop focuses on enabling an efficient and adaptive
deployment and management of service-based applications across multiple clouds.
Deploying and managing in an efficient and adaptive way complex service-based
applications across multiple heterogeneous clouds is one of the problems that have
emerged with the cloud revolution. The current lack of universally accepted standards
supporting cloud interoperability is severely affecting the portability of cloud-based
applications across different platforms. At the same time, even at the level of a single
cloud, adaptation of cloud services to their execution environment is strongly desirable
in order to take appropriate actions in response to changes in the highly dynamic
environment of the cloud. Adaptations can be performed at runtime (dynamic adap-
tation) and at development time. In the latter case runtime and contextual data provided
to business application developers can allow them to enhance their applications based
on the actual operating conditions. The SeaCloud 2015 workshop covered solutions
and perspectives of the ongoing research activities aimed at enabling an efficient and
adaptive management of service-based applications across multiple clouds. The third
part of this volume includes all the technical papers of SeaCloud 2015.

The CloudWay 2015 workshop focused on novel cloud service migration practices
and solutions, and aims to identify future cloud migration challenges and dimensions.
Major IT companies and start-ups envision cloud computing as an economic strategy to
meet business objectives cost effectively and a way to remain competitive by exploiting
technical resources efficiently. Given the potential benefits of cloudification, an
increasing number of organizational business-critical applications — so-called legacy
systems — are being migrated to cloud environments. Regardless of the benefits of
cloudification, many organizations still rely on legacy software systems developed over
the lifetime of an organization using traditional development methods. Therefore,
migrating legacy systems toward cloud-based platform allows organizations to leverage
their existing systems deployed (over publicly available resources) as scalable cloud
services. The CloudWay 2015 workshop covered novel cloud migration practices and
solutions to identify future cloud migration challenges and dimensions. The fourth part
of this volume includes all the technical papers of CloudWay 2015.

The IDEA 2015 workshop focused on the digitization of enterprises in the cloud
computing era in order to advance digital enterprise architectures. Digitization is the
use of digital technologies for creating innovative digital business models and trans-
forming existing business models and processes. On a technological level, digitization
embraces the automation of processes and decisions. Advanced analytics provides the
automation of decisions hitherto made by human beings. Typical elements of digital
enterprise architectures are the use of decision automation, predictive or even pre-
scriptive analytics. In this way, digital technologies such as service orientation, cloud
computing, big data, mobile or the Internet of Things enable the creation of new
options for enterprises and organizations. Owing to the high diversity of concepts, the
complexity of systems involved, and the heterogeneity of stakeholders, a method-
ological foundation is crucial to the success of digitization. The IDEA 2015 workshop
covered business with technological themes and applied methodical and engineering

Preface VII

principles to the design of digital enterprise architectures (EA). The fifth part of this
volume includes all the technical papers of IDEA 2015.

The FedCloudNet 2015 workshop focused on federated cloud networking services.
Cloud federation enables cloud providers to collaborate and share their resources to
create a large virtual pool of resources at multiple network locations. In order to support
this scenario, it is necessary to research and develop techniques to federate cloud
network resources, enabling the instantiation and provision of overlay networks across
geographically dispersed clouds, and to derive the integrated management cloud layer
that enables an efficient and secure deployment of federated cloud applications.
Emerging topics in this research area includes cloud network federation models and
architectures, cross-data-center software-defined networking (SDN), network function
virtualization (NFV), data center interconnection, overlay networks, virtual private
networks (VPNs), federated cloud network security, geographic location-aware net-
works with high availability and elasticity. The FedCloudNet 2015 workshop covered
the latest research results on traffic engineering for cloud network federation. The sixth
part of this volume includes all the technical papers of FedCloudNet 2015.

EU Projects Track 2015 aimed at presenting the major running European-funded
projects highlighting the main industrial and academic trends in terms of research and
innovation. The seventh part of this volume includes all poster papers of EU Projects
2015.

October 2015 Antonio Celesti
Philipp Leitner

Organization

ESOCC 2015 was organized by the Department of Engineering and by the Mobile and
Distributed System Laboratory (MDSLAB) of the University of Messina (Italy).

Contents

CLIoT Workshop Papers

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data

Marco Cavallo, Lorenzo Cusma, Giuseppe Di Modica, Carmelo Polito,
and Orazio Tomarchio

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks. . .

Luiz Angelo Steffenel and Manuele Kirch Pinheiro

Design of an IoT Cloud System for Container Virtualization

on Smart ODJECES vt e

Davide Mulfari, Maria Fazio, Antonio Celesti, Massimo Villari,
and Antonio Puliafito

A Federated System for MapReduce-Based Video Transcoding to Face

the Future Massive Video-Selfie Sharing Trend

Alfonso Panarello, Antonio Celesti, Maria Fazio, Antonio Puligfito,
and Massimo Villari

Internet Service Provision and Content Services: Peering and Service

Differentiation e

Alexei A. Gaivoronski, Per Jonny Nesse, Olai-Bendik Erdal,
and Finn-Tore Johansen

Security Requirements in a Federated Cloud Networking Architecture

Philippe Massonet, Anna Levin, Antonio Celesti, and Massimo Villari

W4S4F1 Workshop Papers

A Lightweight Method for Analysing Performance Dependencies

Between Services

Arjan Lamers and Marko van Eekelen

Automated Prediction of the QoS of Service Orchestrations: PASO

at Work e

Leonardo Bartoloni, Antonio Brogi, and Ahmad Ibrahim

A Workflow Service Mediator for Automated Information Processing

and Scheduling Delivery to an Archive

Salvatore D’ Antonio, Giuliano Gugliara, Carlo Francesco Romano,
and Luigi Romano

20

33

48

63

79

93

http://dx.doi.org/10.1007/978-3-319-33313-7_1
http://dx.doi.org/10.1007/978-3-319-33313-7_2
http://dx.doi.org/10.1007/978-3-319-33313-7_3
http://dx.doi.org/10.1007/978-3-319-33313-7_3
http://dx.doi.org/10.1007/978-3-319-33313-7_4
http://dx.doi.org/10.1007/978-3-319-33313-7_4
http://dx.doi.org/10.1007/978-3-319-33313-7_5
http://dx.doi.org/10.1007/978-3-319-33313-7_5
http://dx.doi.org/10.1007/978-3-319-33313-7_6
http://dx.doi.org/10.1007/978-3-319-33313-7_7
http://dx.doi.org/10.1007/978-3-319-33313-7_7
http://dx.doi.org/10.1007/978-3-319-33313-7_8
http://dx.doi.org/10.1007/978-3-319-33313-7_8
http://dx.doi.org/10.1007/978-3-319-33313-7_9
http://dx.doi.org/10.1007/978-3-319-33313-7_9

XII Contents

Adaptive Architectural Model for Future Internet Applications 141
Marina Mongiello, Luigi Alfredo Grieco, Massimo Sciancalepore,
and Elvis Vogli

SeaCloud Workshop Papers

A Model-Based Approach for the Pragmatic Deployment of Service

Choreographies.t 153
Raphael Gomes, Junio Lima, Fabio Costa, Ricardo da Rocha,
and Nikolaos Georgantas

Supporting Cloud Service Selection with a Risk-Driven
Cost-Benefit Analysis 166
Aida Omerovic

Multi-level Adaptations in a CloudWave Infrastructure: A Telco Use Case. .. 175
Dario Bruneo, Francesco Longo, and Boris Moltchanov

Axe: A Novel Approach for Generic, Flexible, and Comprehensive
Monitoring and Adaptation of Cross-Cloud Applications 184
Jorg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur

CloudWay Workshop Papers

Migrating to Cloud-Native Architectures Using Microservices:
An Experience Report L 201
Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi

Cloud Computing for e-Sciences at Université Sorbonne Paris Cité. 216
Leila Abidi, Christophe Cérin, Danielle Geldwerth-Feniger,
and Marie Lafaille

Resource Distribution Estimation for Data-Intensive Workloads:

Alireza Khoshkbarforoushha, Rajiv Ranjan, and Peter Strazdins

Supporting Partial Database Migration to the Cloud Using Non-intrusive

Software Adaptations: An Experience Report 238
Caio H. Costa, Paulo H.M. Maia, Nabor C. Mendonga,
and Lincoln S. Rocha

Cloud Adoption by Fine-Grained Resource Adaptation: Price
Determination of Diagonally Scalable IaaS. 249
Kevin Laubis, Viliam Simko, and Alexander Schuller

http://dx.doi.org/10.1007/978-3-319-33313-7_10
http://dx.doi.org/10.1007/978-3-319-33313-7_11
http://dx.doi.org/10.1007/978-3-319-33313-7_11
http://dx.doi.org/10.1007/978-3-319-33313-7_12
http://dx.doi.org/10.1007/978-3-319-33313-7_12
http://dx.doi.org/10.1007/978-3-319-33313-7_13
http://dx.doi.org/10.1007/978-3-319-33313-7_14
http://dx.doi.org/10.1007/978-3-319-33313-7_14
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_16
http://dx.doi.org/10.1007/978-3-319-33313-7_17
http://dx.doi.org/10.1007/978-3-319-33313-7_17
http://dx.doi.org/10.1007/978-3-319-33313-7_18
http://dx.doi.org/10.1007/978-3-319-33313-7_18
http://dx.doi.org/10.1007/978-3-319-33313-7_19
http://dx.doi.org/10.1007/978-3-319-33313-7_19

Contents

IDEA Workshop Papers

Digitization — Perspectives for Conceptualization

Rainer Schmidt, Alfred Zimmermann, Michael Mohring, Selmin Nurcan,
Barbara Keller, and Florian Bdr

A Scientometric Analysis of Cloud Computing and QoE Literature

to Design a Cloud Platform of Experience for Digital Business.

Maurizio Giacobbe, Maria Fazio, Antonio Celesti, Tindara Abbate,
and Massimo Villari

Enabling Digital Transformation Using Secure Decisions as a Service.

Hans-Joachim Hof, Rainer Schmidt, and Lars Brehm

Exploring Requirements for Multipurpose Crowd Computing Framework. . . .

Alexander Smirnov and Andrew Ponomarev

Adaptive Enterprise Architecture for Digital Transformation.

Alfred Zimmermann, Rainer Schmidt, Dierk Jugel, and Michael Mohring

FedCloudNet Workshop Papers

BEACON: A Cloud Network Federation Framework.

Rafael Moreno-Vozmediano, Eduardo Huedo, Ignacio M. Llorente,
Rubén S. Montero, Philippe Massonet, Massimo Villari,

Giovanni Merlino, Antonio Celesti, Anna Levin, Liran Schour,
Constantino Vazquez, Jaime Melis, Stefan Spahr, and Darren Whigham

Federated Networking Services in Multiple OpenStack Clouds

Antonio Celesti, Anna Levin, Philippe Massonet, Liran Schour,
and Massimo Villari

Networking Introspection and Analysis for Virtual Machine Migration

in Federated Clouds. i i

Giuseppe Andronico, Filippo Bua, Marco Fargetta, Emidio Giorgio,
Alessio Guglielmo, Salvatore Monforte, Maurizio Paone,
and Massimo Villari

SHYAM: A System for Autonomic Management of Virtual Clusters

in Hybrid Clouds

Daniela Loreti and Anna Ciampolini

A Database-Specific Pattern for Multi-cloud High Availability

and Disaster Recovery.

Huanhuan Xiong, Frank Fowley, and Claus Pahl

XIII

363

http://dx.doi.org/10.1007/978-3-319-33313-7_20
http://dx.doi.org/10.1007/978-3-319-33313-7_21
http://dx.doi.org/10.1007/978-3-319-33313-7_21
http://dx.doi.org/10.1007/978-3-319-33313-7_22
http://dx.doi.org/10.1007/978-3-319-33313-7_23
http://dx.doi.org/10.1007/978-3-319-33313-7_24
http://dx.doi.org/10.1007/978-3-319-33313-7_25
http://dx.doi.org/10.1007/978-3-319-33313-7_26
http://dx.doi.org/10.1007/978-3-319-33313-7_27
http://dx.doi.org/10.1007/978-3-319-33313-7_27
http://dx.doi.org/10.1007/978-3-319-33313-7_28
http://dx.doi.org/10.1007/978-3-319-33313-7_28
http://dx.doi.org/10.1007/978-3-319-33313-7_29
http://dx.doi.org/10.1007/978-3-319-33313-7_29

X1V Contents

An OpenStack-Based Implementation of a Volunteer Cloud 389
Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito

Cloud Services Composition Through Semantically Described Patterns:
ACase Study 404
Beniamino di Martino, Giuseppina Cretella, and Antonio Esposito

EU Projects Track

Adaptive Application Management over Multiple Clouds. 422
M. Barrientos, A. Brogi, M. Buccarella, J. Carrasco, J. Cubo,
F. D’Andria, E. Di Nitto, A. Nieto, M. Oriol, D. Pérez, E. Pimentel,
and S. Zenzaro

TAP: A Task Allocation Platform for the EU FP7 PANACEA Project. 425
Erol Gelenbe and Lan Wang

Towards Quality-Aware Development of Big Data Applications with DICE . . . 427
Giuliano Casale, Elisabetta Di Nitto, and Ilias Spais

On MODAC]Iouds’ Toolkit Support for DevOps 430
Elisabetta Di Nitto, Giuliano Casale, and Dana Petcu

CloudWave — Leveraging DevOps for Cloud Management

and Application Development. L L. 432
Dario Bruneo, Aryan Dadashi, Philipp Leitner, Avi Miron,
Boris Moltchanov, Francesco Javier Nieto De-Santos, Eliot Salant,
Amir Molzam Sharifloo, Karl Wallbom, and Chris Woods

AppHub — The European Open Source Market Place (Extended Abstract) ... 435
Peter H. Deussen, Majid Salehi Ghamsari, Alexandre Lefebvre,
Alban Richard, Cédric Thomas, Olivier Bouzereau, and Catherine Nuel

Cloud Application Modelling and Execution Language (CAMEL)
and the PaaSage Workflow 437
Alessandro Rossini

Broker@Cloud: Enabling Continuous Quality Assurance and Optimisation
in Future Enterprise Cloud Service Brokers 440
Simeon Veloudis and Iraklis Paraskakis

BEACON - Enabling Federated Cloud Networking. 442
Philippe Massonet and Craig Sheridan

EUBrazil Cloud Connect: A Federated e-Infrastructure
for Cross-Border Science e 444
Roberto G. Cascella, Stephanie Parker, and Silvana Muscella

http://dx.doi.org/10.1007/978-3-319-33313-7_30
http://dx.doi.org/10.1007/978-3-319-33313-7_31
http://dx.doi.org/10.1007/978-3-319-33313-7_31
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7

Contents XV

CLIPS — CLoud Approach for Innovation in Public Services 447
Roberto Di Bernardo and Marco Alessi

FrontierCities: Leveraging FIWARE for Advantages in Smart Mobility 450
Antonio Celesti and Massimo Villari

Author Index 453

http://dx.doi.org/10.1007/978-3-319-33313-7
http://dx.doi.org/10.1007/978-3-319-33313-7

CLIoT Workshop Papers

Preface of CLIoT 2015

A new generation of embedded devices provide an opportunity to create new business
and social models by exploiting a strong interaction with the environment. At the same
time, the Internet of Things (IoT) seem to change the way we interact with the world
around us. The IoT conceptual base aims to represent the physical world through
uniquely identifiable and interconnected objects (things). These things have the
capacity for sensing, processing, or actuating information about entities available from
within the real world. They allow interactions or generate events about them. The
generated information travels along heterogeneous systems, such as routers, databases,
information systems, and the Internet. Consequently, there are enormous amounts of
data that have to be stored, processed, and presented in a seamless, efficient, and easily
interpretable form.

Cloud computing represents a very flexible technology, able to offer theoretically
unlimited computing and storage capabilities and efficient communication services for
transferring terabyte flows between data centers. Cloud technologies address two
important goals for distributed system: high scalability and high availability. These
features make cloud computing a promising choice for supporting IoT services. IoT has
the potential to offer the killer applications of cloud computing, where the cloud allows
one to access IoT-based resources and capabilities, to process and manage IoT envi-
ronments, and to deliver on-demand utility of IoT services such as sensing/actuation as
a service.

CLIoT 2015 was the third edition of the International Workshop on Cloud for IoT.
It aims at bringing together scientists, practitioners, and PhD students in order to
discuss the limits and/or advantages of existing cloud solutions for IoT, and to propose
original and innovative contributions for enhancing real-world resources over cloud
environments. The topics of interest for CLIoT 2015 included but were not limited to:

— Innovative models and system architectures for cloud-based IoT
— IoT Data abstraction and processing

— Mobile cloud

— Cloud storage for IoT

— Interaction between sensor networks and the cloud

— Discovery Service for IoT

— Cloud computing-based IoT technologies

— Wireless sensor networks into the cloud

— Big data management using clouds

— Smart environments for IoT

— Ubiquitous computing/pervasive computing for IoT

— Real-time communication with smart objects

— Applications based on IoT and the cloud

— Inter-cloud management: cloud federation serving IoT
— Security and privacy in clouds and IoT

Preface of CLIoT 2015 3

All submissions were peer-reviewed by an international Program Committee, with
the objective of having at least three reviews for each paper. The final acceptance rate
of the manuscripts was 62 %.

The contributions accepted for presentation at the workshop include the work of
Cavallo et al., who designed a context-aware Hadoop framework able to schedule and
distribute tasks among geographically distant clusters minimizing the overall job
execution time. Such a framework can be successfully used to process huge amounts of
data generated in IoT scenarios.

Steffenel et al. presented CloudFIT, a PaaS middleware for the creation of private
clouds over pervasive environments. Using a Map Reduce application as an example,
the authors showed how CloudFIT provides both storage and data aggregation/analysis
capabilities at the service of IoT networks.

Panarello et al. proposed a cloud federation-based system to support the increasing
usage of mobile devices and social networks, where photo selfie sharing is gradually
turning into video selfie. The proposed solution exploits the Hadoop-MapReduce
paradigm to perform video transcoding in multiple formats and in a fast and efficient
way.

Gaivoronski et al. presented modeling tools for evaluating business models of ISPs
in the Internet ecosystem, also discussing some results of this analysis. In particular,
they modeled the relationship between a content provider (CP) with significant market
power and an ISP. Such a relationship is very important in the establishment of a real
interconnection between IoT environments and cloud providers.

Massonet et al. presented the main security requirements of a generic federated
cloud netwoking architecture analyzed in the Horizon 2020 BEACON project that aims
to research and develop techniques to federate cloud network resources in order to
derive an integrated cloud management layer that enables an efficient and secure
deployment of federated cloud applications.

The workshop program also included a short paper presenting the research activity
of Mulfari et al. on container virtualization on Linux embedded IoT devices. In par-
ticular, the work presents a tool designed to compose cloud facilities by means of a
flexible federation-enabled communication system.

Moreover, the workshop program included a joint panel with the CloudWay
Workshop, titled “Migrating to Cloud and IoT Solutions: Challenges and Perspec-
tives,” where several different approaches and features in the field were discussed.

Maria Fazio
Dana Petcu

Organization

Workshop Organizers

Maria Fazio University of Messina, Italy

Dana Petcu West University of Timisoara, Romania
Steering Committee

Nik Bessis University of Derby, UK

Massimo Villari University of Messina, Italy

Technical Program Committee

Liz Bacon Greenwich University, UK

Francisco J. Blaya Gonzalvez University of Murcia, Spain

Antonio Celesti University of Messina, Italy

Erik Elmroth Umea University, Sweden

Teodor-Florin Fortis West University of Timisoara, Romania

Horacio Gonzalez-Velez National College of Ireland, Ireland

Brian Lee Athlone IT, Ireland

Juan Manuel Murillo Rodriguez ~ University of Extremadura, Spain

Tommi Mikkonen Tampere University of Technology,
Tampere, Finland

Victor Muntés-Mulero Universitat Politécnica de Catalunya, Spain

Zsolt Nemeth MTA SZTAKI, Hungary

Bogdan Nicolae IBM Research, Ireland

Leire Orue-Echevarria Tecnalia Research and Innovation, Spain

Jose Luis Vazquez-Poletti Universidad Complutense de Madrid, Spain

A Scheduling Strategy to Run Hadoop
Jobs on Geodistributed Data

Marco Cavallo, Lorenzo Cusma, Giuseppe Di Modica, Carmelo Polito,
and Orazio Tomarchio™

Department of Electrical, Electronic and Computer Engineering,
University of Catania, Catania, Italy
{marco.cavallo,lorenzo.cusma,giuseppe.dimodica, carmelo.polito,
orazio.tomarchio}@dieei.unict.it

Abstract. Internet-of-Things scenarios will be typically characterized
by huge amounts of data made available. A challenging task is to effi-
ciently manage such data, by analyzing, elaborating and extracting use-
ful information from them. Distributed computing framework such as
Hadoop, based on the MapReduce paradigm, have been used to process
such amounts of data by exploiting the computing power of many cluster
nodes. However, as long as the computing context is made of clusters of
homogeneous nodes interconnected through high speed links, the benefit
brought by the such frameworks is clear and tangible. Unfortunately, in
many real big data applications the data to be processed reside in many
computationally heterogeneous data centers distributed over the planet.
In those contexts, Hadoop was proved to perform very poorly. The pro-
posal presented in this paper addresses this limitation. We designed a
context-aware Hadoop framework that is capable of scheduling and dis-
tributing tasks among geographically distant clusters in a way that min-
imizes overall jobs’ execution time. The proposed scheduler leverages on
the integer partitioning technique and on an a-priori knowledge of big
data application patterns to explore the space of all possible task sched-
ules and estimate the one expected to perform best. Final experiments
conducted on a scheduler prototype prove the benefit of the approach.

1 Introduction

While the first wave of IoT has focused on delivering frameworks on which
“smart” sensors can be implemented and connected to the Internet, focus now
has shift towards the definition of backend services capable of managing the huge
amount of data that those sensing frameworks, as well as the sensors that billions
of portable devices are equipped with, produce every day [9]. The Cloud has
been evoked by many as the “right place” where sensed data ought to be stored
and mined [12]. The Cloud can scale very well with respect to both the data
dimension and the computing power that is required for elaboration purposes.
If on the one hand there is a strong trend that pushes for executing some data
processing (such as filtering, cleaning, etc.) close to the place where they have
© Springer International Publishing Switzerland 2016

A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 5-19, 2016.
DOI: 10.1007/978-3-319-33313-7_1

6 M. Cayvallo et al.

been sensed (on the smart sensing frameworks, indeed), on the other one there
is still the need to run computationally heavy mining procedures on the Cloud,
where data are conveyed after sensing, and may even happen to reside on data
centers which are geographically distant to each other’s [11].

Devising efficient mechanisms for storage, manipulation and analysis of such
huge amount of data is currently one of the main research and technological
challenges [14]. Application parallelization and divide-and-conquer strategies are
natural computational paradigms for approaching big data problems, addressing
scalability and high performance. The availability of grid and cloud computing
technologies, which have lowered the price of on-demand computing power, have
spread the usage of parallel paradigms, such as the MapReduce [3], for big data
processing. But, despite getting additional computing resources has become very
simple by using cloud computing technologies, in many big data scenarios several
challenges are still not adequately solved. It is not uncommon the need to process
data which are geographically distributed. In these scenarios, the data required
to perform a task is often non-local. This may severely affect the performance of
a MapReduce application. Hadoop, one of the most widespread implementation
of the MapReduce paradigm, has been designed mainly to work on clusters of
homogeneous computing nodes belonging to the same local area network; thus,
data locality is one of the crucial factors affecting its performance.

In our work we address just this issue, trying to take into account the actual
heterogeneity of nodes, network links and data distribution in order to optimize
the job execution time [2]. Our solution follows a hierarchical approach, where
a top-level entity will take care of serving a submitted job: the job is split into
a number of bottom-level, independent MapReduce sub-jobs that are scheduled
to run on the sites where data natively reside or have been ad-hoc moved to.
The designed job scheduling algorithm aims to exploit fresh information continu-
ously sensed from the distributed computing context (available sites computing
capacity and inter-site bandwidth) to estimate each jobs optimum execution
flow. Main focus of this work is on a study conducted on the “profile” of appli-
cations, i.e., the set of application features that may impact on the phases of the
job execution, and on the definition of a job scheduling strategy that leverages
on the integer partitioning technique to search for the best task schedule that
guarantees the job’s shortest execution time.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
the overall system design. Section 3 provides the details of the job scheduling
algorithm and discusses the application profiling. Section4 presents some pre-
liminary results of the proposed job scheduling run on well known MapReduce
applications. Finally, Sect.5 presents related work, while Sect.6 concludes the
work.

2 Design of a Hierarchical Hadoop Approach

According to the MapReduce paradigm, a generic computation is called job [3].
Upon a job submission, a scheduling system is responsible for splitting the job in

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 7

several tasks and mapping the tasks to a set of available nodes within a cluster.
The performance of a job execution is measured by its completion time (some
refers to it with the term makespan), i.e., the time for a job to complete. Apart
from the size of the data to be processed, that time heavily depends on the job’s
execution flow determined by the scheduling system (the sequence of tasks that
the job is split in) and the computing power of the cluster nodes where the tasks
are actually executed.

In a scenario where computing nodes reside in distributed clusters that are
geographically distant to each other’s, there is an additional parameter that
may affect the job performance. Communication links among clusters (inter-
cluster links) are often disomogeneous and have a much lower capacity than
communication links among nodes within a cluster (intra-cluster links). Also,
clusters are not designed to have similar or comparable computing capacity,
therefore they might happen to be heterogeneous in terms of computing power.
Third, it is not rare that the data set to be processed are unevenly distributed
over the clusters. So basically, if a scheduling system does not account for this
threefold unbalancement (nodes capacity, communication links capacity, data
set distribution) the overall job’s performance may degrade dramatically.

To face these issues, we propose a hierarchical MapReduce framework where
a top-level scheduling system sits on top of a bottom-level distributed computing
context and is continuously kept informed about the dynamic conditions of the
underlying computing context. Information retrieved from the computing con-
text is then used to drive the generation of each job’s optimum execution flow
(or execution path).

The basic reference scenario addressed by our proposal is depicted in Fig. 1.
Sites (data centers) populate the bottom level of the hierarchy. A Site may be
composed of one or more cluster nodes that provide the overall Site’s computing
power. Each Site stores a certain amount of data and is capable of running
plain Hadoop jobs. Upon receiving a job, a Site transparently performs the
whole MapReduce process chain on the local cluster(s) and returns the result
of the elaboration. The system’s business logic devoted to the management of
the geo-distributed computing resides in the top-level of the hierarchy. When a
new Hadoop job is submitted that requires to process the data distributed over
the Sites, the business logic splits the job into a set of sub-jobs, pushes them
to the distributed context, gathers the sub-job results and packages the overall
computation result.

Hierarchical MapReduce approaches are not new in the literature [5,7,13].
The novelty introduced by this work is the adoption of a scheduling strategy
based on the integer partitioning technique and the inclusion of the application
profile among the parameters that may influence the determination of the job’s
optimum execution flow. Such a novelty will be thoroughly discussed in Sect. 3.

The system’s business logic is composed of the following entities:

— Orchestrator. It is responsible for the generation of a Top-level Job Execu-
tion Plan (TJEP). A TJEP contains the following information:

8 M. Cayvallo et al.

Result 11

Top-Level Job Top Level

1

[

2 getTJEP

O 1

Em—
— Orchestrator
PushResult »

3 TJEP
Bottom Level
e
5
y Execute Top-Level
MapReduce | ',' s oo MapTask
7
Push Top-Level
$ <¢— — — Map Result
@
, — Data Transfer

Output Data
-

—
Local Hadoop Job

@

Lo® ©oo

Fig. 1. Overall architecture

e the Data Logistic Plan (DLP), which states how data targeted by the job
have to be re-organized (i.e., shifted) among Sites;

e the Sub-job Scheduling Plan (SSP), which defines the set of Hadoop sub-
jobs to be submitted to the Sites holding the data.

— Master. It is the entity to which Hadoop jobs are submitted. It calls on the
Orchestrator for the generation of the TJEP, and is in charge of enforcing the
TJEP according to the information contained in the DLP and the SSP.

— Global Reducer. It performs the top-level reduction of the results obtained
from the execution of Hadoop sub-jobs.

At design time two important assumptions are made. First, only one Global
Reducer is responsible for collecting and reducing the data elaborated by bottom-
level Sites. One may argue that this choice might impact on the job performance,
nevertheless it does not invalidate the approach. Anyway, in the future this
assumption is going to be relaxed. Second, being this a pure hierarchical app-
roach, the top-level MapReduce job must be implemented in such a way that
the applied operations are “associative”, i.e., may be performed recursively at
each level of the hierarchy and the execution order of the operations does not
affect the final result [5].

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 9

In the scenario of Fig.1 four geo-distributed Sites are depicted that hold
company’s business data sets. The numbered arrows describe a typical execution
flow triggered by the submission of a top-level job. This specific case envisioned
a shift of data from Site! to Site4, and the run of local MapReduce sub-jobs on
two Sites (Site2 and Sites).

One of the Orchestrator’s tasks is to monitor the distributed context’s
resources, i.e., the Sites’ available computing capacity and the inter-site band-
width capacity. As for the monitoring of the computing capacity, each Site peri-
odically advertises its capacity to the Orchestrator. Such capacity represents the
overall computing capacity of the Site for MapReduce purposes (overall nominal
capacity). Since the amount of computing capacity potentially allocable to a
single job (slot capacity) may differ from Site to Site, Sites are also requested to
communicate that amount along with the overall nominal capacity. The avail-
able inter-site link capacity is instead “sensed” through a network infrastruc-
ture made of SDN-enabled [10] switches. Switches are capable of measuring the
instant bandwidth occupied by incoming and outgoing data flows. The Orches-
trator periodically enquires the switches to retrieve the bandwidth consumption
and elaborates statistics on the inter-site bandwidth consumption.

3 Job Scheduling Strategy

As mentioned in the previous section, the Orchestrator is the component in
charge of generating the TJEP, which contains some directives on how data
have to be re-distributed among Sites and the articulation of sub-jobs that have
to be run on the Sites. In order to compute the TJEP, the Orchestrator will call
on a scheduling strategy that explores the universe of all feasible execution paths
for that specific distributed computing context. Each execution path is assigned
a score, which is a function of its estimated completion time (the shorter the
estimated completion time, the higher the score), and finally the execution path
with the best score will be appointed TJEP.

If it may appear clear that the sites’ computing capacity and the inter-site
bandwidth affect the overall path’s completion time, some words have to be
spent on the impact that the type of MapReduce application may have on that
time. We argue that if the scheduling system is aware of the application behavior
in terms of the data produced in output with respect to the data taken in input,
it can use this information to take important decisions. In a geo-distributed
context, moving big amounts of data back and forth among Sites is a “costly”
operation. If the size of the data produced by a certain application can be known
in advance, this information will help the scheduling system to decide on which
execution path is best for the application.

In [4] the authors introduce the « expansion/compression factor, that repre-
sents the ratio of the size of the output data of the Map task of a MapReduce
job to the size of its input data. In our system focus is on the MapReduce
process (not just on the Map phase) that takes place in a Site. Therefore we are
interested in profiling applications as a whole.

10 M. Cavallo et al.

We then introduce the data Compression factor 3,,,, which represents
the ratio of the output data size of an application to its input data size:

OutputDatagyp,
ﬁapp = 5 I~ .

(1)

The Bqpp parameter may be used to calculate the amount of data that is
produced by a MapReduce job at a Site, traverses the network and reaches
the Global Reducer. Depending on that amount, the data transfer phase may
seriously impact on the overall top-level job performance. The exact value of 34,
for a submitted application may not be known a priori: Sect. 3.2 will discuss on
how to get a good estimate of it.

We adopt a graph model to represent the job’s execution path. Basically, a
graph node may represent either a Data Computing Element (site) or a Data
Transport Element (network link). Arcs between nodes are used to represent the
sequence of nodes in an execution path. A node is the place where a data flow
arrives (input data) and another data flow is generated (output data). Nodes
are characterized by two parameters. The (3,;,,, that is used to estimate the
data produced by a node, and the Throughput, defined as the amount of
data that the node is able to process per time unit. The §,,, value for Data
Transport Elements is equal to 1, because there is no data computation occurring
in a data transfer. As for the Data Computing Element, instead, Bqpp strictly
depends on the type of application to be executed. In the case of Data Transports
Element, the Throughput is equal to the link capacity. The Throughput of a
Data Computing Elements depends again on both the application type and the
Site’s computing capacity. Like for the B, value, the exact Throughput value
is not a priori known; Sect. 3.2 discusses a sample-based procedure employed to
derive the Throughput of a computing node for a certain application. Finally,
arcs between nodes are labeled with a number representing the size of the data
leaving a node and reaching the next node.

The label value of the arc connecting node j — th to node (j + 1) — th is
given by:

InputDatagy,,

DataSize; j41 = DataSize;_1 j X [; (2)

In Fig. 2 an example of a graph branch made of two nodes and a connecting
arc is depicted:

DataSize _ . DataSize . .
1. j+1,j+2

DataSize,
g

[Throfg;hpu(.] [T'HOL‘S;‘:)u_]
i +1

Fig. 2. Nodes’ data structure

A generic node j’s execution time is defined as:

T DataSizej_1 ;
7 Throughput;

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 11

Legend

Nod
ode O DataBlock

Input Data
=) Node /)

Lx Link

Mapper

B Node
Router
< Gilobal Reducer
Node

[Th = 3VB/s] [Th = 50MB/s] [Th = 2MB/s] [Th = 50MB/s]

5GB 5GB 3GB
- [Th = 1MB/s] [Th = 50MB/s] [Th = 50MB/s]
5GB 3GB 3GB
[Th = 10MB/s] [Th = 1MB/s] [Th = 50MBY/s]

Fig. 4. Graph modeling a potential execution path

An execution path is then modeled as a graph of nodes. The hard part of
the scheduling system’s work is the generation of all the potential execution
paths. The algorithm used to generate potential execution paths is discussed
in Sect. 3.1. We now put the focus on how to calculate the execution time of a
specific execution path.

Figure 3 depicts a scenario of four sites (Sp through S3) and a geographic
network interconnecting the sites. A top-level job need to process a 15 GB data
set distributed this way: 5 GB located in Site Sy and 10 GB located in Site Ss. Let
us assume that one of the execution-paths generated by the scheduling system
involves the movement of 5 GB of data from S; to S3, and that three MapReduce
sub-jobs will be executed at Sy, Se and S3 respectively. The Global reducing of
the data produced by the MapReduce sub-jobs will be performed at S3.

In Fig. 4 the graph that models a potential execution path for the just dis-
cussed configuration is represented. Basically, a graph has as many branches as
the number of bottom-level MapReduce (three, in our case). Every branch starts
at the root node (initial node) and ends at the Global reducer’s node. Next to
node [is the node where the data interested by the MapReduce computation
initially resides. In the example, the branch in the bottom models the elaboration
of data initially residing in node S5, that are map-reduced by node S5 itself, and
results are finally pushed to node S5 (the Global reducer) through the links L4 o
and L4 3. In the graph, only the L 4 o node is represented as it is slower than L 4 3
and will impose its speed in the overall path So — Lao — R4 — L3 — Ss.
Similarly, in the top-most branch the data residing in node Sy are moved to

12 M. Cavallo et al.

node S7 through link L4 o, are map-reduced by node S; and results are pushed
to node S through link L 4 3.

We define the execution time of a branch to be the sum of the execution
times of the nodes belonging to the branch; the Global reducer node’s execution
time is left out of this sum. Note that execution carried out through branches
are independent of each other’s, so branches will have different execution times.
In order for the Global reducing to start, all branches will have to produce and
move their results to the reducer Site. Therefore the longest among the branches’
execution times determines when the global reducing is allowed to start.

The execution time of a branch is computed as the sum of the execution
times of all the branch’s nodes:

N-1 .
DataSizej j11

(4)

Tbranch =

= Throughput ;1

being N the number of nodes in the branch.
In particular, the execution time of the top-most branch of Fig. 4 is:

5GB 5GB = 3GB

3
S5 T oars + gam = 327 x 1075

Ttop =

The execution time of the Global reducer is given by the summation of the
sizes of the data sets coming from all the branches over the node’s estimated
throughput. Let DataSize(K)n—_1,n be the data size of the k-th branch reaching
the Global reducer node. The execution time for the Global reducer will be:

Zi:l DataSize(K)N_1,N
Throughputgr

Tor = (5)
being P the total number of branches in the graph. In the considered case,
the execution time of the Global reducer (node S3) will be:
3GB+3GB+3GB

Ter = 50@ =180s

Finally, the overall execution time estimated for the specific execution path
represented by the graph is defined to be the sum of Global reducer’s execution
time and the maximum among the branches’ execution times:

Tpath = 1glKa§P(T(K)branch) + ThroughPUtGR (6)

This concludes the computation of the execution time of the considered

graph. We remind that the scheduling system is able to generate many job’s

execution paths, for each of which the execution time is calculated. In the end,

the best path to schedule will be, of course, the one showing the shortest time.

In Sect.4 a more complex scenario is shown and the result of experiments
conducted on a real use case application are discussed.

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 13

3.1 Execution Path Generation

The scheduling system’s strategy to identify the best execution path for specific
top-level job is to generate all potential execution paths and find out the one
with the shortest execution time. The scheduling algorithm just needs a few
parameters in input: the network’s topology, the list of Sites holding the data
to be processed, parameters related to the MapReduce application (8,p, and
Throughput). All potential execution paths are explored by applying combina-~
torics operation. First, the algorithm analyzes all computing nodes (Sites) to find
the best mapper nodes’ combination. A combination is a way of selecting map-
per nodes from the collection of all available Sites. The algorithm computes a
k-combination of all nodes with k ranging from 1 to the number of available Sites,
where K is the number of mappers. The overall number of k-combination is:

Z Cn,k = Z m (7)
k=1 k=1

For each k-combination, the algorithm computes the needed data transfers.
Those transfers consists in moving data blocks from the Sites that hold them
to the mapper nodes. The basic assumption we make is that overall data to be
processed must be divided into equally sized data blocks. Therefore, Sites holding
data will hold one or more data blocks. Those blocks need to be re-distributed
to mapper nodes. Of course, a Site holding data may also be a mapper, therefore
will happen to be assigned one or more data blocks. In order to represent all pos-
sible assignments of data blocks to mappers, we call on the Integer Partitioning
technique [1]. A partition of a positive integer n, also called an integer partition,
is a way of writing n as a sum of positive integers. It is possible to partition n
as a sum of m addenda, in which case we will refer to it as a partition of the
number n of order m. Finally, our objective is to compute the partitions of the
integer n of order m, where n is the total number of data blocks and m is the
number of nodes candidates to become mappers.

By the notation P(n,m) we refer to the number of partitions of the integer
number n in the order m. The overall number of partitions of a number n in all
the orders m=1, 2,..,n is:

P(n) = Z P(n,m) (8)
m=1

Of course, the data blocks configuration tells us just the ways to “group” data
blocks for distribution, but the distribution phase complicates the problem, as
there are many possible ways to distribute group of data blocks among sites. So
for the distribution of data blocks we have to call on the permutation theory.
In the end, the calculus of the number of all the execution paths for a
certain application must consider both the block data distribution configuration
(Eq.8) and the combination of mappers (Eq.7). For example, in the case of
n =7 the number of generated paths will be around 18.000. For n =8 more than
150.000 configurations were obtained. Treating the problem of the generation

14 M. Cavallo et al.

of execution paths as an integer partitioning problem allowed us to apply well
known algorithms working in constant amortized time that guarantee acceptable
time also on off-the-shelf PCs [15].

3.2 Application Profiling

The generation and evaluation of the best execution path is highly dependent on
the data processing pattern of an application. The way an application manipu-
lates data affects both the computing phase and the transfer phase of the overall
job execution.

The parameters that can be used to best represent the application profile
are the B4pp and the Throughput discussed in the previous section. Since the
exact values of those application parameters are not known at job submission
time, we have to provide an accurate estimate. The estimate process consists in
asking the Sites holding the data to run the job on a small portion of their data
and provide back the nominal 3., and nominal Throughput computed on those
data. Since the nominal Throughput indicates the amount of data processed per
time unit, all Sites will have to compute it on a reference machine having an
agreed computing power (e.g., equal to 1 Gflops). At the end of the nominal val-
ues estimate, the involved Sites send their estimates to the Orchestrator, where
they will be appropriately averaged. The averaged values will be considered the
application’s official profile, and will be used in the definition of the graph.

The Throughput of a given computing node is computed by multiplying the
application’s official Throughput by the node’s computational power expressed
in Gflops. This estimate makes the assumption that the node’s Throughput is
a linear function of the computing power. To estimate the (3,,, we assume this
parameter is not influenced by both the heterogeneity of the input data used for
its estimate and the size of the data blocks that a node has to process. In order
to support our assumption, we investigated on the behavior of this parameter in
the case of two typical Hadoop applications: WordCount and InvertedIndex.
The object of the investigation was to prove the independence of the 3,,, from
the type and the size of the input data.

WordCount reads text files and counts how often words occur. The input and
the output data are both text files. The output file is a list of words each followed
by its occurrence in the input file. WordCount was executed on an input text
file of a 4 GB Wikipedia dump. We started with a 500 MB sample, and then we
considered samples of 1 GB, 2 GB and 4 GB size respectively. The observed result
for the (,pp are shown in Fig.5(a). The graph shows that the variance between
the maximum and minimum of (3,,, is negligible, so we can deduce that size of
the input data does not affect the compression factor in an appreciable way. Let
us now consider the analysis of the 3,,, evaluated on different data samples. We
want to verify that whatever the particular data sample (split, in the figure),
the Bapp value is not influenced. The input data was then divided into splits of
same size each time, and the compression factor for each sample was computed.
Results are shown in Fig. 5(b). The experiment was run several times, each time

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 15

with a different split size (from 500 MB up to 4 GB). Again, no appreciable
variation of (3,5, can be observed.

0.035 0.035 T
500MB —+—
1GB ——
0.03 4 0.03 2GB .
4GB
0.025 F B 0.025 A 4
A T ~ -
—~ -+ —t —t
0.02 | 4 0.02 e X g
— K¢
0.015 - T — 4 0.015 4
0.01 E 0.01 E
0.005 B 0.005 B
0 0 T T S S S S S S S S S
0.5 1 1.5 2 2.5 3 35 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
input data size [GB] split #
(a) (b)

Fig. 5. Variations of beta in the WordCount application

InvertedIndex is a word-oriented mechanism for indexing a text collection in
order to speed up the searching task. The inverted file structure is composed
of two elements: the vocabulary and the occurrences. The vocabulary is the
set of words in the text. For each word, a list of all the positions where the
word appears is stored. The set of all those lists is called the occurrences. These
positions can refer to either words or characters. We analyzed the execution of the
InvertedIndex application on an input file originated from a 8 GB StackOverFlow
dump. Figure 6(a) and (b) reports the obtained results. The considerations made
for the WordCount application apply for the InvertedIndex as well.

To conclude, the investigation showed that the (,,, is invariant to both the
size and the type of the considered input data. This fact support the assumption
made in Sect. 3 that the value of 8,,, computed on whatever small-sized data
sample can be reasonably used as a good estimate of the (,,, of a big data set
as well.

0.00075 T T T T T T 0.00075 —————F———T—T————"——T—T—

500MB ——

1GB —»—
0.000625 4 0.000625 268 4

i 4GB
—f—
L S~ +— e
00005 R 0.0005 7 olion SRV R S s S B U R g
— e

0.000375 B e g 0.000375 - g
0.00025 |- . 0.00025 |- .
0.000125 g 0.000125 g

0 i i i i i i Y T N N T T T T N W S S S

0.5 1 15 2 25 3 3.5 4 0123456 7 8 9101112131415161718
input data size [GB] split #
(a) (b)

Fig. 6. Variations of beta in the InvertedIndex application

16 M. Cavallo et al.

4 Prototype Implementation and Test Case

We implemented a prototype of the scheduling system in Java. With the proto-
type, we ran a few experiments in order to test the effectiveness and efficiency
of our scheduling approach. This section explains how a TJEP is generated for
real use case applications. We chose to run experiments on the WordCount and
the InvertedIndex applications, that we analyzed in Sect. 3.2, for which the esti-
mated compression factors turned out to be Bqp, = 0.015 and B4pp = 0.0005
respectively. The reference computing context is the network topology depicted
in Fig. 7.

Fig. 7. Use case topology

The links connecting the computing nodes were configured to have the fol-
lowing capacity: La o = Lao = L3 = Lap = 10 MB/S; Lay=Lpys=Lps
= 5MB/s. Sites were assigned unbalanced computing capabilities in terms of
Gflops. The Sites’ computing power (Throughput) were estimated in a prelim-
inary profiling phase (see Sect.3.2). In the case of the WordCount, it gave the
following results: Throughputsg = Throughputss = Throughputsy = 10 MB/s;
Throughputs1 = Throughputss = Throughputss = 50 MB/s. The input data
that both the applications need to process are organized in 10 data blocks of
128 MB. Data blocks reside in the network with this distribution: Sy stores 2
data blocks; S, stores 3 data blocks; Sy stores 5 data blocks.

When fed with the run the WordCount configuration, the scheduler generated
56376 potential execution paths in about 50s'. The objective of the experiment
was to compare the performance of the best execution path generated by our
scheduler with that of the execution path of a plain hierarchical MapReduce,
i.e., an execution path that makes use of no data transfer among sites, but just
envisions to run MapReduce sub-jobs on the Sites holding the data and send
the results to another Site for the Global reduce. Figure 8(a) depicts the graph
representing the execution path of the no-data-transfer case for the Wordcount
application. In Fig. 8(b) the graph modeling the best execution path (having the
shortest completion time) is shown.

! The scheduler is a Java7 program running on PC with a 2.4 Ghz CPU and a 8 GB
RAM.

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 17

Fig. 8. Variations of beta in the WordCount application for (a) the no-transfer case
and (b) the best case

Table 1. Completion time comparison.

No-data-transfers case | Best case
WordCount 66.112s 38.6304 s
InvertedIndex | 64.0704 s 38.40768 s

The experiment result is condensed in Table 1. The result confirms that our
scheduler is capable of finding an execution path which performs much better.
In particular, in the WordCount case, the estimated completion time found by
the scheduler is 58 % shorter than that of the standard path. In the case of
the InvertedIndex application, the observed performance improvement is about
60 %.

5 Related Work

In the literature two main approaches are followed by researchers to efficiently
process geo-distributed data: (a) enhanced versions of the plain Hadoop imple-
mentation which account for the nodes and the network heterogeneity (Geo-
hadoop approach); (b) hierarchical frameworks which gather and merge results
from many Hadoop instances locally run on distributed clusters (Hierarchical
approach). The former approach aims at optimizing the job performance through
the enforcement of a smart orchestration of the Hadoop steps. The latter’s phi-
losophy is to exploit the native potentiality of Hadoop on a local base and then
merge the results collected from the distributed computation. In the following a
brief review of those works is provided.

Geo-hadoop approaches reconsider the phases of the job’s execution flow
(Push, Map, Shuffle, Reduce) in a perspective where data are distributed at a

18 M. Cavallo et al.

geographic scale, and the available resources (compute nodes and network band-
width) are not homogeneous. In the aim of reducing the job’s average makespan,
phases and the relative timing must be adequately coordinated. Some researchers
have proposed enhanced version of Hadoop capable of optimizing only a single
phase [6,8]. Heintz et al. [4] analyze the dynamics of the phases and address the
need of making a comprehensive, end-to-end optimization of the job’s execution
flow. To this end, they present an analytical model which accounts for parame-
ters such as the network links, the nodes capacity and the applications profile,
and transforms the makespan minimization problem into a linear programming
problem solvable with the Mixed Integer Programming technique.

Hierarchical approaches tackle the problem from a perspective that envisions
two (or sometimes more) computing levels: a bottom level, where several plain
MapReduce computations occur on local data only, and a top level, where a
central entity coordinates the gathering of local computations and the packaging
of the final result. In [7] authors present a hierarchical MapReduce architecture
and introduces a load-balancing algorithm that makes workload distribution
across multiple clusters. The balancing is guided by the number of cores available
on each cluster, the number of Map tasks potentially runnable at each cluster and
the nature (CPU or I/O bound) of the application. The authors also propose to
compress data before their migration from one data center to another. Jayalath
et al. [5] make an exhaustive analysis of the issues concerning the execution
of MapReduce on geo-distributed data. The particular context addressed by
authors is the one in which multiple MapReduce operations need to be performed
in sequence on the same data.

6 Conclusion

The gradual increase of the information daily produced by devices connected to
the Internet, such as smartphones, sensors, cameras and so on, combined with the
enormous data stores found in traditional databases, has led to the definition of
the Big Data concept. To efficiently process these heterogeneous data on a large
scale, many distributed computing paradigms have been proposed, among which
MapReduce stands out. In this paper we describe a solution based on hierarchical
MapReduce that allows to process big data located in geodistributed datasets.
Our approach involves the design of a scheduling system that, considering the
available computational resources, the capacity of the links and the type of job
applications to execute, is able to generate an execution plan that optimizes
the completion time of a job. A prototype implementation is also discussed that
proves the viability of the approach. Future work will focus on the development
of other components of the presented architecture and on the implementation of
a real large scale test-bed.

A Scheduling Strategy to Run Hadoop Jobs on Geodistributed Data 19

References

10.

11.

12.

13.

14.

15.

Andrews, G.E.: The Theory of Partitions, Encyclopedia of Mathematics and its
Applications, vol. 2 (1976)

Cavallo, M., Di Modica, G., Carmelo, P., Tomarchio, O.: Context-aware mapreduce
for geo-distributed big data. In: Proceedings of the 5th International Conference
on Cloud Computing and Services Science (CLOSER 2015), pp. 414-421, Lisbon
(Portugal), May 2015

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceeding of the 6th Conference on Symposium on Operating Systems Design
and Implementation (OSDI 2004). USENIX Association (2004)

Heintz, B., Chandra, A., Sitaraman, R., Weissman, J.: End-to-end optimization
for geo-distributed mapreduce. IEEE Trans. Cloud Comput. PP (99), 1-14 (2014)
Jayalath, C., Stephen, J., Eugster, P.: From the cloud to the atmosphere: running
mapreduce across data centers. IEEE Trans. Comput. 63(1), 74-87 (2014)

Kim, S., Won, J., Han, H., Eom, H., Yeom, H.Y.: Improving hadoop performance
in intercloud environments. SIGMETRICS Perform. Eval. Rev. 39(3), 107-109
(2011). http://doi.acm.org/10.1145/2160803.2160873

Luo, Y., Guo, Z., Sun, Y., Plale, B., Qiu, J., Li, W.W.: A hierarchical framework
for cross-domain mapreduce execution. In: Proceedings of the Second International
Workshop on Emerging Computational Methods for the Life Sciences (ECMLS
2011), pp. 15-22 (2011). http://doi.acm.org/10.1145/1996023.1996026

Mattess, M., Calheiros, R.N.,; Buyya, R.: Scaling mapreduce applications across
hybrid clouds to meet soft deadlines. In: Proceedings of the 2013 IEEE 27th
International Conference on Advanced Information Networking and Applications
(AINA 2013), pp. 629-636 (2013). http://dx.org/10.1109/AINA.2013.51
Miorandi, D., Sicari, S., Pellegrini, F.D., Chlamtac, I.: Internet of things: vision,
applications and research challenges. Ad Hoc Netw. 10(7), 1497-1516 (2012)
Open Networking Foundation: Software-Defined Networking: The New Norm for
Networks. White paper, Open Networking Foundation, April 2012. http://www.
opennetworking.org/images/stories/downloads/sdn-resources/white-papers/
wp-sdn-newnorm.pdf

Petri, 1., Montes, J.D., Zou, M., Rana, O.F., Beach, T., Li, H., Rezgui, Y.: In-transit
data analysis and distribution in a multi-cloud environment using cometcloud. In:
International Conference on Future Internet of Things and Cloud (FiCloud 2014),
pp. 471-476 (2014)

Wright, P., Manieri, A.: Internet of things in the cloud - theory and practice. In:
CLOSER - Proceedings of the 4th International Conference on Cloud Computing
and Services Science, April 2014, pp. 164-169 (2014)

Yang, H., Dasdan, A., Hsiao, R., Parker, D.S.: Map-reduce-merge: simplified rela-
tional data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2007), pp. 1029-1040
(2007)

Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. McGraw Hill, New York (2011)

Zoghbi, A.; Stojmenovic, I.: Fast algorithms for generating integer partitions. Int.
J. Comput. Math. 80, 319-332 (1994)

http://doi.acm.org/10.1145/2160803.2160873
http://doi.acm.org/10.1145/1996023.1996026
http://dx.org/10.1109/AINA.2013.51
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

CloudFIT, a PaaS Platform for IoT Applications
over Pervasive Networks

Luiz Angelo Steffenel'®™) and Manuele Kirch Pinheiro?

1 CReSTIC Laboratory, SysCom Team,
Université de Reims Champagne-Ardenne, Reims, France
luiz-angelo.steffenelQuniv-reims.fr
2 Centre de Recherche en Informatique,
Université Paris 1 Panthéon-Sorbonne, Paris, France
manuele.kirsch-pinheiro@univ-parisl.fr

Abstract. IoT applications are the next important step towards the
establishment of mobiquitous systems, but at the same time these envi-
ronments raise important challenges when considering data distribution
and processing. While most IoT applications today rely on clouds as
back-end, critical applications that require fast response or enhanced
privacy levels may require proximity services specially tailored to these
needs. The deployment of private cloud services on top of pervasive grids
represent an interesting alternative to traditional cloud infrastructures.
In this work we present CloudFIT, a PaaS middleware that allows the
creation of private clouds over pervasive environments. Using a Map-
Reduce application as example, we show how CloudFIT provides both
storage and data aggregation/analysis capabilities at the service of IoT
networks.

1 Introduction

Today, cloud computing is a widespread paradigm that relies on the external-
ization of services to a distant platform with elastic computing capabilities.
Unsurprisingly, Big Data analytics profits from the computing capabilities from
the cloud, making it the predilection platform for information extraction and
analysis.

The emergence of Internet of Things (IoT) has naturally attired the attention
of developers and companies, which mostly rely on cloud services to interconnect
devices and gather information. Indeed, platforms like Carriots’ or ThinkSpeak?
now propose PaaS APIs to collect information, visualize and control IoT devices.

Contrarily to the case of Wireless Sensor Networks (WSNs), however, IoT
has a much more complex data transfer pattern that is not always tailored for
a cloud. While data from WSNs naturally flows from the sensors to a “sink”
repository that can gather information and handle it to the analytics software,

! https://www.carriots.com/.
2 https://thingspeak.com/.
© Springer International Publishing Switzerland 2016

A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 20-32, 2016.
DOI: 10.1007/978-3-319-33313-7_2

https://www.carriots.com/
https://thingspeak.com/

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 21

ToT devices have M2M (Machine-to-Machine) capabilities beyond simple raw
data transmission, as they are also information consumers and even actuators
to the real environment.

Simply relying on a distant cloud infrastructure for data storage, processing
and control imposes a non-negligible latency, a complete dependency on wide-
area communications and the transmission of potentially sensible data across the
network. From this point of view, it is clear that not all IoT applications would
benefit from an external data handling.

Deploying a privative PaaS cloud for IoT is an interesting alternative to the
complete externalization, as it ensures fast reaction and privacy levels tailored
to the specific needs of an enterprise or application. Indeed, the omnipresence of
ToT devices often raises questions about the dissemination of sensitive data, a
problem that public cloud systems can minimize through the use of heavy layers
of cryptography and anonymization, but never solve.

In this paper we present CloudFIT, a distributed computing middleware
designed for pervasive environments that offers IoT applications both stor-
age, data aggregation and analysis capabilities. In addition, CloudFIT does not
require a dedicated infrastructure as a CloudFIT “grid” can be deployed over
existing resources on the enterprise (desktop PCs, servers, etc.) and perform
both the data aggregation, filtering and analysis required by IoT devices.

After describing CloudFIT, we illustrate its operation through the deploy-
ment of a data intensive application over a cluster. We deploy a MapReduce
application over CloudFIT, and compare its performance against the well-known
Hadoop middleware®, a Big Data platform specially designed for dedicated
clusters.

The paper is structured as follows: Section2 discusses the challenges for
the IoT applications and the reasons why a traditional cloud services is not
always recommended. Instead, we emphasize alternatives for cloud computing
that ensure both efficiency and data privacy. Section 3 focuses on the case of data-
intensive problems and discusses the main challenges for its deployment over
pervasive grids, analyzing some related works. Section4 presents the architec-
ture of CloudFIT and its characteristics related to fault tolerance and volatility
support. This session also discuss how to interface IoT devices and applications
with CloudFIT. Section 5 introduces our implementation of a MapReduce appli-
cation over CloudFIT, discussing both implementation issues and performance
evaluations. Finally, Sect.6 concludes this paper and sets the lines of our next
development efforts.

2 Cloud Services and IoT

2.1 Private Clouds, Cloudlets and the IoT

When the cloud computing paradigm started, we observed the development
of middlewares and tools for the establishment of private and mixed cloud

3 http://hadoop.apache.org/.

http://hadoop.apache.org/

22 L.A. Steffenel and M.K. Pinheiro

infrastructures. Most of these tools, like Eucalyptus [18], Nimbus [12] or Open-
Nebula [17], are designed to provide IaaS on top of dedicated resources like clus-
ters or private data-centers. While extremely powerful, the deployment of these
environments is complex and requires dedicated resources, which minimizes their
advantage against public cloud infrastructures like Amazon EC2.

Establishing on-demand cloud services on top of existing resources is also
alternative to the complete externalization of services in a cloud. For example,
[22] explore the limitations of mobile devices and the inaptitude of current solu-
tions to externalize mobile services through the use of Cloudlets, i.e., virtual
machines deployed on-demand in the vicinity of the demanding devices. Using
cloudlets deployed as Wi-Fi hotspots in coffee shops, libraries, etc., the authors
of [22] suggest a simple way to offer enough computing power to perform com-
plex computations (services) all while limiting the service latency. Please note
that these cloudlets do not work as a single entity/platform but instead act as
detached handlers for specific demands.

Proximity cloud services can also be used to perform an initial processing
on the data. For instance, [20] presents a platform where context information is
collected, filtered and analyzed on several layers. This way, basic context actions
may be decided/performed in a close area range, while a much deep analysis
of the context information may be performed by external servers. This layered
analysis can also be used to ensure privacy properties, for example by anonymiz-
ing the data that will be used to the global context analysis. As context my rep-
resent multiple and heterogeneous kind of information, this approach can also
be implemented to general Big Data analytics on sensor data or access logs, for
example.

Another usage for private clouds relates to the reinforcement of the security
of a network [11]. In a mobile network (as well as in an IoT pervasive network),
devices cannot rely in a single security device in the entrance of the network
because multimodal connections may be established with outside devices via
Wi-Fi, 3G, Bluetooth, etc. If nowadays similar procedures can be implemented
through the use of 802.1x authentication or VPNs, their configuration complex-
ity requires a high technical knowledge. A better alternative relies on a mutual
monitoring system sharing information is created around a confidence zone (com-
munity). Joining a confidence zone is only possible if the device pass some control
checks and, similarly, devices that become “dangerous” due to a virus or a Trojan
can be blocked and removed from the community.

We consider that deploying cloud services for IoT over pervasive networks
is a natural approach, as the heterogeneity and the dynamicity of the devices
impose a frequent adaptation on both network interconnections and computing
requirements.

2.2 Cloud Services over Pervasive Grids

Pervasive grids can be defined as large-scale infrastructures with specific char-
acteristics in terms of volatility, reliability, connectivity, security, etc. According

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 23

to [19], pervasive grids represent the extreme generalization of the grid con-
cept, seamlessly integrating pervasive sensing/actuating instruments and devices
together with classical high performance systems. In the general case, pervasive
grids rely on volatile resources that may appear and disappear from the grid,
according their availability. Indeed, mobile devices should be able to come into
the environment in a natural way as their owner moves [6]. Also, devices from
different natures, from the desktop and laptop PCs until the last generation
tablets, should be integrated in seamlessly way. These environments are there-
fore characterized by three main requirements:

— The volatility of its components, whose participation is a matter of opportu-
nity and availability;

— The heterogeneity of these components, whose capabilities may vary on differ-
ent aspects (platform, OS, memory and storage capacity, network connection,
etc.);

— The dynamic management of available resources, since the internal status of
these devices may vary during their participation into the grid environment.

Such dynamic nature of pervasive grids represents an important challenge for
executing data intensive applications. Context-awareness and nodes volatility
become key aspects for successfully executing such applications over pervasive
grids, but also for the handling and transmission of voluminous datasets.

Our approach to implement cloud-like services over pervasive networks relies
on the use of an overlay network provided by a P2P system. In this approach, the
P2P overlay provides all communication and fault tolerance properties required
for the operation on a pervasive network, as well as some additional services like
DHT storage that can help implementing additional services.

Indeed, if P2P systems are widely known for their use on storage and sharing
applications, they can also be used as platforms for coordination and distribution
of computing tasks. Solutions like CONFIIT [10], DIET [3] have demonstrated
the interest of P2P to support computing problems in distributed and heteroge-
neous environments.

3 Data-Intensive Applications on Pervasive Grids

In spite of a wide tradition on distributed computing projects, most pervasive
grid middlewares have focused on computing-intensive parallel applications with
few I/0O and loose dependencies between the tasks. Enabling these environments
to support data-intense applications is still a challenge, both in performance
and reliability. We believe that MapReduce is an interesting paradigm for data-
intensive applications on pervasive grids as it presents a simple task distribution
mechanism, easily implemented on a pervasive environment, but also a challeng-
ing data distribution pattern. Enabling MapReduce on pervasive grids raises
many research issues, which we can decompose in two subtopics: data distribu-
tion and data processing.

24 L.A. Steffenel and M.K. Pinheiro

There are two approaches to distribute large volume of data to large number
of distributed nodes. The first approach relies on P2P protocols where peers
collaboratively participate to the distribution of the data by exchanging file
chunks [7,15,25]. The second approach is to use a content delivery service where
files are distributed to a network of volunteers [13,16].

Concerning data processing on pervasive grids, some authors have tried to
improve the processing capabilities of Hadoop to take into account the volatility
of the nodes. Indeed, Zaharia et al. [26] Chen et al. [5] or Ahmad et al. [1]
deals with heterogeneity of the supporting infrastructure, proposing different
scheduling algorithms that can improve Hadoop response time. Lin et al. [14]
explore the limitations of Hadoop over volatile, non-dedicated resources. They
propose the use of a hybrid architecture where a small set of reliable nodes are
used to provide resources to volatile nodes.

Due to the simplicity of its processing model (map and reduce phases), data
processing can be easily adapted to a given distributed middleware, which can
coordinate tasks through different techniques (centralized task server, work-
stealing/bag of tasks, speculative execution, etc.). Nevertheless, good perfor-
mances can only be achieved through the minimization of data transfers over
the network, which is one of the key aspects of Hadoop HDFS filesystem. Only
few initiatives associate data-intense computing with large-scale distributed stor-
age on volatile resources. In [4], the authors present an architecture following the
super-peer approach where the super-peers serve as cache data server, handle
jobs submissions and coordinate execution of parallel computations.

4 CloudFIT

In this work we present our efforts to enable MapReduce applications over the
P2P distributed computing middleware CloudFIT [23]. The CloudFIT frame-
work (Fig. 1) is structured around collaborative nodes connected over an overlay
network. CloudFIT was designed to be independent of the underlying overlay,
and the current version supports both Pastry [21] and TomP2P overlay net-
works [2]. Pastry is one of the most known P2P overlays and is widely employed
in distributed computing environments. TomP2P is a more recent P2P library,
enjoying an active development community.

An application for CloudFIT must provide a java class that implements two
basic API methods: how many tasks to solve (setNumberOfBlocks()) and how to
compute an individual task (executeBlock(number, required[])). When execut-
ing, each node owns the different parameters of the current computations (a list
of tasks and associated results) and is able to locally decide which tasks still
need to be computed and can carry the work autonomously if no other node
can be contacted. Access to the storage is also provided through the API, if
required. The status of completed tasks (optionally including the partial results
from these tasks) are distributed among the nodes, contributing therefore to the
coordination of the computing tasks and form a global view of the calculus.

The basic scheduling mechanism simply randomly rearranges the list of tasks
at each node, which helps the computation of tasks in parallel without requiring

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 25
T

WORKER K

® l |

uﬁg(s)n[j APP i VISUALISATION ; | SUBMIT l COMMUNITY

@éf [VVVVVVVVVVVVVVVV

Application

Service
CloudFIT

CORE-ORB

Protocol

[STORAGE ADAPTER] [NETWORK ADAPTER

- -/ -/
Network/
Others

L STORAGE / DHT] L NETWORK OVERLAY

3rd part

loT Devices loT App CloudFIT nodes
Interface

Fig. 1. CloudFIT architecture stack

additional communication between nodes. This simple scheduler mechanism was
designed to allow idle processes to speculatively execute incomplete tasks, reduc-
ing the “tail effect” when a task is computed by a slow node. The scheduling
mechanism supports task dependencies (allowing the composition of DAGs) and
can be also be improved through the use of a context module [24] that provides
additional information about the nodes capacities.

Finally, fault tolerance is ensured both by the overlay (network connections,
etc.) and by the computing platform. Indeed, as long as a task is not completed,
other nodes on the grid may pick it up for execution. In this way, when a node
fails or leaves the grid, other nodes may recover tasks originally started by the
crashed node. Inversely, when a node joins the CloudFIT community, it receives
an update about the tasks current status and the working data, allowing it to
start working on available (incomplete) tasks.

4.1 CloudFIT Services for IoT Devices and Applications

As previously stated, CloudFIT provides a pervasive PaaS for IoT applications.
While we believe that CloudFIT can be deployed directly over IoT devices run-
ning Android (with the TomP2P overlay) or Linux on Raspberry Pi, the hetero-
geneity and limited resources of these devices make this approach very unreliable.
Indeed, a node integrating the CloudFIT network must perform all the routing,
storage and computing tasks as the others, and this can be both overloading and
inefficient (please see Sect. 5.5).

A better approach, instead, is to use CloudFIT as a computing backend for
IoT devices and applications. This mixed architecture, as illustrated in the left
side of Fig. 1, allows an IoT application connected to CloudFIT network to act

26 L.A. Steffenel and M.K. Pinheiro

as an interface to gather data and launch computing tasks according to the
application needs.

While the development of an interface for IoT devices can be provided
through REST/json calls or even a direct a connection to the devices via Blue-
tooth or Wi-Fi, it is outside the scope of this paper. Instead, the next sections
illustrate the deployment of a MapReduce application over CloudFIT. This is
one of several computing intensive tasks that can be performed on CloudFIT to
support IoT applications.

5 MapReduce over CloudFIT

5.1 MapReduce

MapReduce [8] is a parallel programming paradigm successfully used by large
Internet service providers to perform computations on massive amounts of data.
The key strength of the MapReduce model is its inherently high degree of par-
allelism that should enable processing of petabytes of data in a couple of hours
on large clusters.

Computations on MapReduce deal with pairs of key-values (k,V'), and a
MapReduce algorithm (a job) follows a two-step procedure:

1. map: from a set of key/value pairs from the input, the map function generates
a set of intermediate pairs (k1; V1) — {(k2;V2)};

2. reduce: from the set of intermediate pairs, the reduce function merges all
intermediate values associated with the same intermediate key, so that

(ka; {Va}) — {(k3; V3)}.

When implemented on a distributed system, the intermediate pairs for a given
key ko may be scattered among several nodes. The implementation must there-
fore gather all pairs for each key ko so that the reduce function can merge them
into the final result. Additional features that may be granted by the MapReduce
implementation include the splitting of the input data among the nodes, the
scheduling of the jobs’ component tasks, and the recovery of tasks hold by failed
nodes.

Hadoop, one of the most popular implementations of MapReduce, provides
these services through a dual layered architecture where tasks scheduling and
monitoring are accomplished through a master-slave platform, while the data
management is accomplished by a second master-slave platform on top of the
hierarchical HDF'S file-system. Such master-slave architecture makes Hadoop not
suitable for Pervasive Grids.

5.2 Map, Reduce and Task Dependencies

In order to implement a MapReduce application under the FIIT model, tasks
inside a Map or Reduce job must be independent, all while preserving a causal
relation between Map and Reduce. Therefore, several tasks are launched during

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 27

the Map phase, producing a set of (k;, V;) pairs. Each task is assigned to a single
file/data block and therefore may execute independently from the other tasks in
the same phase. Once completed, the results from each task can be broadcasted
to all computing nodes and, by consequence, each node contains a copy of the
entire set of (k;, V;) pairs at the end of the Map phase. At the end of the first
step, a Reduce job is launched using as input parameter the results from the
map phase.

In our prototype, the number of Map and Reduce tasks was defined to roughly
mimic the behavior of Hadoop, which tries to guess the required number of
Map and Reduce processes. For instance, we set the number of Map tasks to
correspond to the number of input files, and the number of Reduce tasks depends
on the size of the dataset and the transitive nature of the data. Please note that
CloudFIT may optionally perform a result aggregation after each job completion,
just like Hadoop combiners.

Because Hadoop relies on specific classes to handle data, we tried to use the
same ones in CloudFIT implementation as a way to keep compatibility with
the Hadoop API. However, some of these classes were too dependent on inner
elements of Hadoop, forcing us to develop our own equivalents, at least for the
moment (further works shall reinforce the compatibility with Hadoop API). For
instance, we had to substitute the OutputCollector class with our own MultiMap
class, while the rest of the application remains compatible with both Hadoop
and CloudFIT.

5.3 Data Management, Storage and Reliability

As stated before, CloudFIT was designed to broadcast the status about com-
pleted tasks to all computing nodes, and this status may include the tasks’
results. By including the results, CloudFIT ensures n — resiliency as all nodes
will have a copy of the data.

This resiliency behavior was mainly designed for computing intensive tasks
that produce a small amount of data as result. On data-intensive appli-
cations, however, n — resiliency may be prohibitive as not only all nodes
need to hold a copy of all task’s data, but also because broadcasting several
megabytes/gigabytes over the network is a major performance issue.

In our efforts to implement MapReduce over CloudFIT we chose a different
approach to ensure the scalability of the network all while preserving good relia-
bility levels. Hence, we rely on the DHT to perform the storage of tasks results as
{task_key, task_result} tuples, while the task status messages broadcast the keys
from each task. As both PAST and TomP2P DHT implement data replication
among the nodes with a predefined replication factor k, we can ensure minimal
fault tolerance levels all while improving the storage performance.

28 L.A. Steffenel and M.K. Pinheiro

5.4 Performance Evaluation Against Hadoop

In order to evaluate the performance of MapReduce over CloudFIT we imple-
mented the traditional WordCount application and compared it against Word-
Count 1.0 application from Hadoop tutorial.

To make this first evaluation fair, we conducted this first experiment over
8 machines from the ROMEO Computing Center*. ROMEO cluster nodes are
composed by bi-Intel Xeon E5-2650 2.6 GHz (Ivy Bridge) 8 cores and 32 GB
of memory, interconnected by an Infiniband QDR network at 40 Gbps. Hadoop
YARN nodes run with default parameters (number of vcores = 8, available
memory = 8 GB), parameters that we reproduced on CloudFIT for fairness (i.e.,
by limiting the number of parallel tasks by node and setting the maximum java
VM memory).

Two different versions of CloudFIT were tested, one using the FreePastry
overlay with the PAST DHT at the storage layer, and the second one with the
TomP2P overlay and its Kademlia-based DHT.

The experiments considered the overall execution time (map + reduce
phases) of both CloudFIT and Hadoop implementations when varying the total
amount of data (512 MB to 2 GB). The data was obtained from a corpus of text-
books from the Gutenberg Project and split in blocks of 64 MB to reproduce the
size of an HDFS data block. The results obtained when running on an 8 nodes
cluster are presented on Fig. 2, which shows the average of 10 executions for each
data size.

450
400 -
= 350
g 300
£ 250 OCloudFIT - TomP2P
(7]
2 200
s OCloudFIT - PAST
T 150
100 - ﬁ_D B Hadoop
50
0+ ‘ : :

0.5GB 1GB 2GB
Data Volume (GBytes)

Fig. 2. WordCount MapReduce performance on 8 nodes

At first glance, we observe that the CloudFIT/TomP2P implementation eas-
ily outperforms both CloudFIT/PAST and Hadoop, which have aproximately
the same performance. A deeper analysis of the CloudFIT/PAST implementa-
tion show that the PAST DHT experimented a performance bottleneck related
to the use of mutable objects. Indeed, mutable objects are useful to gather (k; V)
pairs from different tasks but they force a non-negligible overhead at the DHT

4 https://romeo.univ-reims.fr.

https://romeo.univ-reims.fr

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 29

controller, which must scan the data for changes and trigger replication updates.
One solution to improve the PAST performance is to rely on immutable objects
that do not suffer from this problem, but this requires the usage of alternative
data structures to reproduce the (k; V') associations from MapReduce.

This is an encouraging result as it demonstrates the interest of CloudFIT as
a platform for Big Data applications. Depending on the storage layer, we can
provide good performance levels without sacrificing the platform flexibility. In
addition, the modular organization of CloudFIT allows connecting other stor-
age supports like BitDew [9], external databases, URLSs, etc., according to the
application requirements.

5.5 Performance Evaluation on a Pervasive Grid

As the previous section demonstrate that CloudFIT can execute MapReduce
applications as fast as Hadoop in a HPC cluster, the next step in our experi-
ments considered the creation of a pervasive cluster on top of common desktop
equipments. For instance, we executed CloudFIT/TomP2P over a network com-
posed by three laptop computers connected through a Wi-Fi 802.11 g network.
The specifications for each model are presented in Table 1. Please note that these
machines were not tuned for performance and indeed CloudFIT had to share the
resources with other applications like anti-virus, word processors, etc.

Table 1. Specification of the nodes on the pervasive cluster

Laptop Processor GHz | Cores | Threads | Memory | OS

MacBook Air Intel® Core™ i7-4650U 1.7 |2 4 8GB MacOS 10.10.3
HP Pavillon dv6 | Intel® Core™™ i5-2450M |2.5 |2 4 8GB Windows 7
Lenovo U110 Intel® CoreT™2 Duo L7500 | 1.6 |2 2 4GB Ubuntu Linux 15.4

Figure 3 presents the execution of the WordCount application with three
different data sets, and we compare the execution time obtained on the pervasive
grid with the performance obtained over 3 nodes from the ROMEOQO cluster. Post-
execution analysis indicated that in spite of the processors type and speeds, one
factor that mainly influenced the performance was the network speed. Indeed, as
the MapReduce application performs several read /write operation over the DHT,
the network is a major bottleneck: to write 64 MB of data on the DHT using
the ROMEO cluster (equipped with an Infiniband interconnection) we need in
average 2s, while the Wi-Fi connection used on the pervasive cluster required in
average 15s. Another element that contributes to the reduced performance of the
pervasive environment is the competition between faster and slower nodes: while
both node types have similar chances to draw tasks to execute at the beginning,
faster nodes will complete their tasks first and finally re-execute the tasks from
slower nodes, wasting computing resources.

While comparing both environments is not really fair, the conclusion is that
one does need a dedicated environment to extract enough computing power for

30 L.A. Steffenel and M.K. Pinheiro

several applications. In fact, the flexibility of the pervasive cluster allows nodes
to join or leave the cluster without interfering with the execution, making it a
strategic tool for most organizations that cannot rely neither in a dedicated clus-
ter neither in a distant datacenter/cloud infrastructure. Further, CloudFIT has
the advantage that it can be easily run on Windows, contrarily to Hadoop, which
reinforcing its ability to create pervasive clusters from the available resources.

1200
1000
800
600

400

- -:I

500MB 1GB

Elapsed Time (s)

Data volume (GBytes)

BPervasive Cluster ODedicated Cluster

Fig. 3. WordCount MapReduce on 3 nodes: pervasive vs dedicated cluster

6 Conclusions and Future Work

IoT networks are the next important step towards the establishment of mobig-
uitous systems. Contrarily to Sensor Networks, IoT has a much richer M2M
pattern that is not always adapted to the cloud computing paradigm. Indeed,
moving data to distant platforms for filtering, analysis and decision-making is
both expensive and time consuming, which not always fits the IoT applications
requirements.

In this paper we present CloudFIT, a PaaS middleware that allows the cre-
ation of private clouds at the proximity of the demanding IoT devices. Using a
P2P overlay, CloudFIT offers both storage and computing capabilities on top of
pervasive networks.

We illustrate the usage of CloudFIT through the deployment of a MapReduce
application and the comparative performance analysis with Hadoop. Indeed, we
demonstrate that CloudFIT offers performance levels similar to those of Hadoop
but with a better support for dynamic and heterogeneous environments.

Of course, the possibilities that CloudFIT offers to IoT are not limited to
MapReduce applications. The CloudFIT API and its distributed computing
model allow many other usages, as devices can use the platform as a storage
support, data analysis support, intensive computing support, etc. By coordi-
nating activities over CloudFIT, IoT devices and applications can elaborate a
supply chain from data gathering to reasoning and actuation.

CloudFIT, a PaaS Platform for IoT Applications over Pervasive Networks 31

Acknowledgment. The authors would like to thank their partners in the PER-
MARE project (http://cosy.univ-reims.fr/PER-MARE) and acknowledge the financial
support given to this research by the CAPES/MAEE/ANII STIC-AmSud collaboration
program (project number 13STIC07).

References

1. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.N.: Tarazu: opti-
mizing mapreduce on heterogeneous clusters. SIGARCH Comput. Archit. News
40(1), 61-74 (2012)

2. Bocek, T., et al.: TomP2P, a P2P-based high performance key—value pair storage
library. http://tomp2p.net/

3. Caron, E., Desprez, F., Lombard, F., Nicod, J.-M., Philippe, L., Quinson, M.,
Suter, F.: A scalable approach to network enabled servers. In: Monien, B.,
Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 907-910. Springer,
Heidelberg (2002)

4. Cesario, E., De Caria, N., Mastroianni, C., Talia, D.: Distributed data mining
using a public resource computing framework. In: Desprez, F., Getov, V., Priol,
T., Yahyapour, R. (eds.) Grids, P2P and Service computing, pp. 33-44, Springer
(2010)

5. Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S.: Samr: a self-adaptive mapreduce
scheduling algorithm in heterogeneous environment. In: Proceedings of the 2010
10th IEEE International Conference on Computer and Information Technology,
CIT 2010, pp. 2736-2743. IEEE Computer Society, Washington, D.C. (2010)

6. Coronato, A., Pietro, G.D.: MiPeG: a middleware infrastructure for pervasive grids.
Future Gener. Comput. Syst. 24(1), 17-29 (2008)

7. Costa, F., Silva, L., Fedak, G., Kelley, I.: Optimizing data distribution in desktop
grid platforms. Parallel Process. Lett. 18(3), 391-410 (2008)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

9. Fedak, G., He, H., Cappello, F.: BitDew: a programmable environment for large-
scale data management and distribution. In: SC 2008: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pp. 1-12. IEEE Press, Piscataway
(2008)

10. Flauzac, O., Krajecki, M., Steffenel, L.: CONFIIT: a middleware for peer-to-peer
computing. J. Supercomput. 53(1), 86-102 (2010)

11. Flauzac, O., Nolot, F., Rabat, C., Steffenel, L.: Grid of security: a decentralized
enforcement of the network security. In: Gupta, M., Walp, J., Sharman, R. (eds.)
Threats, Countermeasures and Advances in Applied Information Security, pp. 426—
443. IGI Global, April 2012

12. Keahey, K., Tsugawa, M., Matsunaga, A., Fortes, J.: Sky computing. IEEE Internet
Comput. 13(5), 43-51 (2009). http://dx.doi.org/10.1109/MIC.2009.94

13. Kelley, I., Taylor, I.: A peer-to-peer architecture for data-intensive cycle sharing.
In: Proceedings of the First International Workshop on Network-Aware Data Man-
agement (NDM 2011), pp. 65-72. ACM, New York (2011)

14. Lin, H., Ma, X., Archuleta, J., Feng, W., Gardner, M., Zhang, Z.: Moon: mapreduce
on opportunistic environments. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC 2010), pp. 95—
106 (2010)

http://cosy.univ-reims.fr/PER-MARE
http://tomp2p.net/
http://dx.doi.org/10.1109/MIC.2009.94

32

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

L.A. Steffenel and M.K. Pinheiro

Marozzo, F., Talia, D., Trunfio, P.: A peer-to-peer framework for supporting mapre-
duce applications in dynamic cloud environments. In: Antonopoulos, N.; Gillam, L.
(eds.) Cloud Computing. Computer Communications and Networks, pp. 113-125.
Springer, London (2010)

Mastroianni, C., Cozza, P., Talia, D., Kelley, I., Taylor, I.: A scalable super-peer
approach for public scientific computation. Future Gener. Comput. Syst. 25(3),
213-223 (2009)

Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: IaaS cloud architecture:
from virtualized datacenters to federated cloud infrastructures. Computer 45(12),
65-72 (2012)

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGrid 2009, Shanghai, China, 18-21 May 2009, pp. 124-131 (2009). http://doi.
ieeecomputersociety.org/10.1109/CCGRID.2009.93

Parashar, M., Pierson, J.M.: Pervasive grids: challenges and opportunities. In:
Li, K., Hsu, C., Yang, L., Dongarra, J., Zima, H. (eds.) Handbook of Research
on Scalable Computing Technologies, pp. 14-30. IGI Global (2010)

Rottenberg, S., Leriche, S., Lecocq, C., Taconet, C.: Vers une définition d’'un
systeme réparti multi-échelle. In: UBIMOB 2012 - 8emes Journées Francophones
Mobilité et Ubiquité, pp. 178-183 (2012)

Rowstron, A., Druschel, P.: Pastry: scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pp. 329-350, November 2001
Satyanarayanan, M.: Mobile computing: the next decade. SIGMOBILE Mobile
Comput. Commun. Rev. 15, 2-10 (2011)

Steffenel, L., Flauzac, O., Charao, A.S., Barcelos, P.P., Stein, B., Nesmachnow,
S., Pinheiro, M.K., Diaz, D.: PER-MARE: adaptive deployment of mapreduce
over pervasive grids. In: Proceeding 8th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, October 2013

Steffenel, L., Flauzac, O., Charao, A., Barcelos, P., Stein, B.: Cassales, G.,
Nesmachnow, S.; Rey, J., Cogorno, M., Kirsch-Pinheiro, M., Souveyet, C.: Mapre-
duce challenges on pervasive grids. J. Comput. Sci. 10(11), 2194-2210 (2014)
Vazhkudai, S., Freeh, V., Ma, X., Strickland, J., Tammineedi, N., Scott, S.: Free-
Loader: scavenging desktop storage resources for scientific data. In: Proceedings of
Supercomputing (SC 2005), Seattle (2005)

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: Proceeding of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 29-42. USENIX Association (2008)

http://doi.ieeecomputersociety.org/10.1109/CCGRID.2009.93
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2009.93

Design of an IoT Cloud System for Container
Virtualization on Smart Objects

Davide Mulfari, Maria Fazio, Antonio Celesti®!), Massimo Villari,
and Antonio Puliafito

DICIEAMA, University of Messina,
Contrada Di Dio, 98166 Sant’Agata, Messina, Italy
{dmulfari ,mfazio,acelesti,mvillari,apuliaf ito}@unime .it
http://mdslab.unime.it

Abstract. Nowadays, container virtualization is a lightweight alterna-
tive to the hypervisor-based approach. Recent improvements in Linux
kernel allow to execute containers on smart objects, that are, single
board computers running Linux-based operating systems. By considering
several IoT application scenarios, it is crucial to rely on cloud services
able to deploy and customize pieces of software running on target smart
objects. To achieve this goal, in this paper, we focus our attention on a
Message Oriented Middleware for Cloud (MON4C), a system designed
to compose cloud facilities by means of a flexible federation-enabled com-
munication system. Its objective is to provide Internet of Things (IoT)
services in a complex smart environment, such as a smart city, where
smart objects interact each others and with the cloud infrastructure.
More specifically, we discuss how MOM4C can be extended to support
container virtualization on Linux embedded devices in order to easily
deploy IoT applications in a flexible fashion and we present the design
of related software modules.

Keywords: Cloud computing *+ Container based virtualization - IoT -
Embedded systems - Linux

1 Introduction

Resource virtualization is one of the key concepts in cloud computing and it refers
to the act of creating a virtual (rather than physical) version of “something”,
including but not limited to a virtual computer hardware platform, operating
system (OS), storage device, or computer network resources. Virtualization con-
sists of using an intermediate software layer on top of an underlying system
in order to provide abstractions of multiple virtual resources. The latter soft-
ware components are known as Virtual Machines (VMs) and they can be viewed
as isolated execution contexts. Nowadays, several virtualization techniques are
available. One of the most popular is the hypervisor-based virtualization, which
requires a Virtual Machine Monitor (VMM) software module on top of a “host”
OS that provides a full abstraction of VMs. In this case, each VM has its own

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 33-47, 2016.
DOI: 10.1007/978-3-319-33313-7_3

34 D. Mulfari et al.

“guest” OS that is completely isolated from others. This enables us to execute
multiple different OSs on a single physical host OS. Examples of such software
solutions include: Xen, VMware, Oracle VirtualBox and KVM.

Recently, a lightweight alternative technology is the container-based virtual-
ization, also known as OS level virtualization. This kind of virtualization par-
titions the physical machines resources, creating multiple isolated user-space
instances [1]. Figurel depicts the key difference between the aforementioned
virtualization technologies. While the hypervisor based virtualization provides a
full abstraction for guest OS(s) (one per VM), the container based virtualization
works at the OS level, providing abstractions directly for the “guest” processes.
In essence, hypervisor solutions work at the hardware abstraction level and con-
tainers operate at the system call layer.

Hypervisor based Container based
virtualization virtualization
Guest Guest
Processes Processes
Guest 0S Guest 0S Guest Guest
Processes Processes
Virtualization Layer Virtualization Layer
Host OS Host OS
System Hardware System Hardware
a) b)

Fig. 1. Difference between (a) hypervisor and (b) container based virtualization.

As motivated in [1], all the containers share a single kernel; so the container
based virtualization is supposed to have a weaker isolation when compared to
hypervisor based virtualization. However, from the point of view of the users,
each container looks exactly like a stand-alone OS. Additionally, by considering a
cloud computing scenario, developers can deploy higher densities with containers
than with VMs on the same physical host. Another advantage of containers over
VMs is that starting and shutting down a container is much faster than starting
and shutting down a traditional VM equipped with a guest OS.

Recent technological developments have allowed container-based virtualiza-
tion technology to support Single Board Computer (SBC) devices equipped with
a modern Linux kernel supporting a suitable virtualization layer. In these sce-
narios, container based software seems to be an interesting approach to deploy
and to customize software applications running on a SBC. More specifically,

Container Virtualization on Smart Objects 35

in the present paper, we focus on Internet of Things (IoT) application scenarios
and we define “smart object” a SBC embedded device equipped with a Linux
based OS that runs specialized pieces of software in order to grab and process
data from external sensors. We intend to distribute multiple smart objects in a
complex environment, such as a smart city, where it is crucial to rely on a cloud
service able to deploy and to customize pieces of software running on target
smart objects.

In order to pursue our goals, we consider a Message Oriented Middleware for
Cloud (MOMA4C) [2], a piece of middleware able to arrange customizable Cloud
facilities by means of a flexible federation-enabled communication system. The
considered middleware has very innovative features, that make efficient, scal-
able and versatile the Cloud service provisioning. In addition, MOM4C enables
the development of distributed services over an asynchronous instant-messaging
architecture, which can be used for intra/inter-domain communications. In Cloud
computing environments, MOMA4C allows to compose Cloud facilities according
to client requirements. MOM4C has been designed to act as a “planetary system
model”, where the central star includes the core, i.e., all the basic communica-
tion functionalities of the piece of middleware and the planets are the Cloud
utilities that can be used. Such a service provisioning model guarantees high
scalability and customization of the required service. In addition, besides the
basic communication functionalities, the core includes security mechanisms for
guaranteeing secure data exchange.

More specifically the main contribution of this paper is to discuss how
MOMA4C can support Linux based smart objects in order to allow software archi-
tects to dynamically deploy pieces of software on them by means of container-
based virtualization techniques. The proposed hardware/software infrastructure
uses Docker as containers engine platform; within the last year, such a soft-
ware has emerged as a standard runtime, image format, and “build system” for
containers on several distributed Linux environments.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related works. In Sect.3, we provide an overview about the container based
virtualization for Linux environments and IoT devices. In Sect.4, we discuss
how we extended MOM4C in order to support the container virtualization in
ToT devices. A system prototype with implementation highlights is discussed in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

Nowadays, containers represents an interesting alternative to VMs in the Cloud
scenarios [3]. Although the concepts underlying containers such as namespaces
are very mature, only recently containers have been adopted and standardized
in mainstream OS(s), leading to a renaissance in the use of containers to provide
isolation and resource control. Linux is the preferred OS for cloud environments
due to its zero price, large ecosystem, good hardware support, good performance,
and reliability. The kernel namespace feature needed to implement containers in

36 D. Mulfari et al.

Linux has only become mature in the last few years since it was first discussed
in 2006 [4]. Several articles have focused on container based virtualization tech-
nologies by considering Cloud computing scenarios. Docker [5] is a lightweight
virtualization based on Linux Containers (LXC) that can completely encapsu-
late an application and its dependencies within a virtual container. In [6], the
authors discuss the design and the implementation of Cloud system based on
Docker, especially intended for a Platform as a Service (PaaS). As motivated in
[7], Docker has been deployed within a platform for bioinformatics computing
that exploits advanced Cloud services. Authors investigate the security level of
Docker by considering two main areas: (1) the internal security of Docker, and
(2) how Docker interacts with the security features of the Linux kernel, such
as SELinux and AppArmor, in order to harden the host system. The proposed
analysis shows that Docker provides a high level of isolation and resource limiting
for its containers using namespaces, cgroups, and its copy-on-write file system,
even with the default configuration. It also supports several kernel security fea-
tures, which help in hardening the security of the host [8].

Nowadays, Cloud computing has emerged in different application fields
including energy efficiency [9], storage [10], Assistive Technology [11], dataweb
[12] and so on. Several manuscripts deal with the development of Cloud pieces
of middleware, addressing specific issues and exploiting different technologies.
To support application execution in the Cloud, in [13], authors present Cloud-
Scale. It is a piece of middleware for building Cloud applications like regular Java
programs and easily deploy them into IaaS Clouds. It implements a declarative
deployment model, in which application developers specify the scaling require-
ments and policies of their applications using the Aspect-Oriented Programming
(AOP) model. A different approach is proposed in [14], which presents a low
latency fault-tolerance piece of middleware for supporting distributed applica-
tions deployment within a Cloud environment. It is based on the leader /follower
replication approach for maintaining strong replica consistency of the replica
states. If a fault occurs, the reconfiguration/recovery mechanisms implemented
in the middleware ensure that a backup replica obtains all the information it
needs to reproduce the actions of the application. The piece of middleware pre-
sented in [15] has been designed aiming at mission assurance for critical Cloud
applications across hybrid Clouds. It is centered on policy-based event moni-
toring and dynamic reactions to guarantee the accomplishment of “end-to-end”
and “cross-layered” security, dependability and timeliness. In [16], the authors
present a piece of middleware for enabling “media-centered” cooperation among
home networks. It allows users to join their home equipments through a Cloud,
providing a new content distribution model that simplifies the discovery, classifi-
cation, and access to commercial contents within a home networks. Mathias and
Baude [17] focus on the integration of different types of computational environ-
ments. In fact, they propose a lightweight component-based piece of middleware
intended to simplify the transition from clusters, to Grids and Clouds and/or a
mixture of them. The key points of such a system are a modular infrastructure,
that can adapt its behaviour to the running environment, and application con-
nectivity requirements. The problem of integrating multi-tenancy into the Cloud

Container Virtualization on Smart Objects 37

is addressed in [18]. The authors propose a Cloud architecture for achieving
multi-tenancy at the Service Oriented Architecture (SOA) level by virtualizing
the middleware servers running SOA artifacts and allowing a single instance to
be securely shared between tenants or different customers. The key idea of the
work is that the combination between virtualization, elasticity and multi-tenancy
makes it possible an optimal usage of data center resources (i.e., CPU, memory,
and network). A piece of middleware designed for monitoring Cloud resources is
proposed in [19]. The presented architecture is based on a scalable data-centric
publish/subscribe paradigm to disseminate data in multi-tenant Cloud scenarios.
Furthermore, it allows to customize both granularity and frequency of received
monitored data according to specific service and tenant requirements. The work
proposed in [20] aims to support mobile applications with processing power and
storage space, moving resource-intensive activities into the Cloud. It abstracts
the API of multiple Cloud vendors, thus providing a unique JSON-based inter-
face that responds according to the REST-based Cloud services. The current
framework considers the APIs from Amazon EC2, S3, Google and some open
source Cloud projects like Eucalyptus. In [21], the authors present a piece of
middleware to support fast system implementation and ICT cost reduction by
making use of private Clouds. The system includes application servers that run
a Java Runtime Environment (JRE) and additional modules for service man-
agement and information integration, designed according to a Service Oriented
Architecture (SOA).

3 Container Virtualitation for Linux Environments

Container-based virtualization can be considered as an approach in which the
virtualization layer runs within an application on top of the OS. In this app-
roach, the OS’s kernel runs on the hardware node with several isolated guest
virtual environments called containers. In this Section, we describe the pieces of
software needed to support the container virtualization by considering a generic
Linux system. Looking at Fig.2, a Linux host OS is normally deployed on the
top of system hardware layer (including CPU, RAM, peripherals, etc.) and its
kernel needs to work with a suitable virtualization layer. In this way, the OS-level
virtualization does not require an additional hypervisor layer since the virtual-
ization capabilities are part of the host OS. This technique allows to virtualize
applications on top of the host OS itself. Therefore, the overhead produced by
the hypervisor mediation is eliminated enabling near native performances. In
addition, the host kernel provides process isolation and performs resource man-
agement. This means that even though all the containers are running under the
same kernel, each container is a virtual environment that has its own file system,
processes, memory, devices, etc. There are different host applications located on
top of the Linux kernel. In particular, we focus our attention on the contain-
ers engine component that automates the deployment of any application as a
lightweight, portable, self-sufficient container that will run virtually anywhere.
By considering several IoT services and applications, in this paper we mainly
focus our attention on considering Linux-based Single Board Computers (SBCs)

38 D. Mulfari et al.

Host Applications Containers Engine

Linux Host Operating system
&

Kernel with virtualization layer

Fig. 2. Container-based virtualization.

that include several General Purpose Input Output (GPIO) extensions allowing
our IoT device to interact with many different external sensors and actuators.
More specifically, we consider the software structure shown in Fig. 3. Starting
from bottom, our system hardware consists of a Raspberry Pi B+ model [22].
While the latter board is, in essence, a very inexpensive Linux computer, there
are a few things that distinguish it from a general purpose machine. One of the
main differences is that the Raspberry Pi can be directly used in electronics
projects because it includes GPIO pins on the board. These GPIO hardware
extensions can be accessed for controlling hardware such as LEDs, motors, and
relays, which are all examples of outputs. As for inputs, the used Raspberry Pi
can read the status of buttons, switches, and dials, or it can read data coming
from sensors like temperature, light, motion, or proximity [23]. Our Raspberry
Pi board is equipped with the Raspbian distribution that is the most popular
OS for the considered piece of hardware; it also includes customizations that are
designed to make the Raspberry Pi easier to use and includes many different
software packages out of the box. In particular, in this paper, we are considering
Raspbian 3.18.8 Linux kernel version that comes with the LXC extensions. As
discussed in [24], this extension represents container-based OS virtualization and
one of its major benefits is that it can run multiple Linux instances on a single
physical host. With reference to the Fig. 3, host applications are deployed on the
top of Raspbian OS and Linux kernel.

We consider the Docker Platform as container engine, which is an open plat-
form for developers and system administrators to build, ship, and run distrib-
uted applications. Being the Docker Engine, a lightweight portable, runtime, and
packaging tool it represents a valuable solution to implement a cloud service for
sharing applications and automating workflows. In fact, Docker Hub enables apps
to be quickly assembled from components and fulfil the gap between development

Container Virtualization on Smart Objects 39

Contatner 1

Host Manager for
Linux SBC Docker Platform

Raspbian OS
& Linux kernel

Fig. 3. Software architecture for container-based virtualization deployed on a Rasp-
berry Pi board.

and production environments. As a result, cloud providers can fast ship and run
the same application and service on VMs and IoT devices. Docker is also an
open-source implementation of the deployment engine which powers dotCloud,
a popular Platform-as-a-Service (PaaS). It directly benefits from the experience
accumulated over several years of large-scale operation and support to hundreds
of thousands of applications and databases. It relies on a different sandboxing
method known as containerization. Most modern OS kernels now support the
primitives necessary for containerization, including Linux with openvz, vserver
and recently LXC containment features. Through a powerful API and simple
tools, it lets Linux users to create and manage system or application containers.

In our context, at the same Docker’s level, we can consider several services
and applications allowing IoT devices to interact with the cloud, as it will be
discussed in the next Section.

4 MOMA4C Extension for IoT and Container Support

The MOM4Cloud architecture and its design choices have been already discussed
in [2]. In this paper, our major contribution is to extend the piece of middleware’s
functionalities in order to support the management of container based environ-
ment on SBCs Linux devices, also known as smart objects or IoT devices. We
can consider the container-based virtualization as a method for making avail-
able services and applications on IoT systems. For these reasons, our reference
scenario includes a set of physical hardware resources i.e., embedded systems,
where several types of container images are dynamically loaded according to
their workload and other parameters. In this way, we aim to provide services

40 D. Mulfari et al.

into a complex smart environment, like a smart city where the objects can also
interact with each others. Such environments are often pictured as constellations
of instruments across many scales that are connected through multiple networks
which provide continuous data regarding the movements of people and materials
in terms of the flow of decisions about the physical and social form of the city.
Cities however can only be smart if there are intelligent functions that are able
to integrate and synthesise this data to some purposes, with the aim of improv-
ing the efficiency, equity, sustainability and quality of life in cities [25]. From a
technical point of view, our cloud system has to guarantee the following basic
operations:

— Monitoring the container environments behaviour and performance, in terms
of CPU, memory and storage usage.

— Managing the container images, providing functions to destroy, commit,
migrate and set network parameters.

— Managing the container resources, i.e., images discovery, uploading and down-
loading via a FTP repository.

Figure4 summarizes our reference scenario and it shows a cluster of two
kinds of nodes. Blade servers execute a cluster level management module, called
Cluster Manager (CM), while each SBC piece of hardware supports both a host
level management module, the Host Manager (HM), and a specialized Containers
Engine component, like Docker. All these entities interact exchanging informa-
tion by means of the communication system based on the Extensible Messaging
and Presence Protocol (XMPP). The dataset necessary to enable the middle-
ware functioning is stored within a specific Database deployed in a distributed
fashion such as MongoDB; in addition, the depicted software infrastructure is
equipped with a container repository that works with the FTP protocol. More

SBC 1

ontainers
engine

SBC 2

ontainers
engine

SBC 3

ontainers
engine

al
Server 2

luster
Manager
Passive

i !

a
Server 1

Cluster
Manager
Active

(L

XMPP Containers

Distributed

Database repository

Fig. 4. Reference scenario. MOMA4C architecture extended for IoT devices and con-
tainer support.

Container Virtualization on Smart Objects 41

specifically, core components of our infrastructure can be split into two logical
categories: the software agents (typical of the architecture itself) and the tools
they exploit. To the former set belong both the Host Manager and the Cluster
Manager: The CM consists in as an interface between administrators (software
entities, which can exploit the cloud services) and the HM agents. A CM receives
commands from administrators, performs operations on the HM agents (or on
the database) and finally sends information to administrators. It also performs
the management of container images and the monitoring of the overall state
of the cluster. According to our idea, at least one CM has to be deployed on
each cluster but, in order to ensure higher fault tolerance, many of them should
exist. A master CM will exist in active state while the other ones will remain
in a monitoring state, although admin messages are listened whatever operation
is performed. The HM performs the operations needed to monitor the physical
resources and the instantiated container images: it interacts with the containers
engine, the SBC’s operating system and the FTP repository where the images
are stored.

4.1 Architecture Overview

In this part, we focus our attention on the design of CM and HM software mod-
ules. Regarding CM, Fig. 5 highlights its functional blocks and their organization:
the main components are described as follows:

— Database Manager: such a component interacts with the database employed
to store information needed to the cluster handling. Database Manager must
maintain the data strictly related to the cluster state.

— Performance Estimator: it analyses the performance dataset collected from
physical assets (physical IoT devices), in order to provide a trend of perfor-
mance estimation.

— Image Manager: it manages both registrations and uploads within the Cluster
Storage System of the Docker images.

— Storage Manager: it manages the internal cluster distributed file system.

As previously mentioned, HM modules are deployed on each SBC piece of hard-
ware. The HM’s architecture is shown in Fig. 6. Its main components include:

— Monitor: it provides resource usage monitoring for each SBC. The pieces of
information are organized and made available to the HM coordinator.

— Container engine interface: it is the middleware back-end of the container
engine running on the SBC, for example the Docker Platform.

— Image Manager: it supplies to the container engine interface the needed con-
tainer images by means of the FTP protocol.

— Network Manager: it gathers information about the host network state and
it manages host network (at OS level) according to the guidelines provided
by the HM Coordinator.

42 D. Mulfari et al.

Other Monitoring
Cluster of CM room

XMPP \

Encoder /
Decoder

cM
Monitor

Clients

Encoder [
Decoder

XMPP
Encoder /
Decoder

Cluster
Room

Fig. 5. Cluster Manager architecture.

To Cluster To Utility
Room

T T

XMPP
Encoder /
Decoder

To Cluster
oom

XMPP
Encoder /
Decoder

Fig. 6. Host Manager architecture.

Container Virtualization on Smart Objects 43

Blade Server Smart Object

MOM4CLOUD Admin

Manager Agent Agent Agent Agent Manager Agent
I I I I I
| | | | |
() createContiIMG ,_L ,J_ ,L. -J—

Generate UUID image

existNode {IMG name}

[1f true]
existNode {IMG name}

query {IMG Descriptor}

{Diski

discoveryPath
storagelM

[List IMG Params

psertNode IMG info}

l@¢———Phisical disk file.
heck {Phisical disk file}

createContiIMG

bool

Fig. 8. Sequence diagram that shows the designed processes.

4.2 Technical Details

By looking at the Fig.7, the dynamic load management of container images
on a smart object requires six separate steps. Starting from left, the MOM4C
administrator is a person who interacts with our piece of middleware by using a
computer console program. The shell program sends user requests to the active
CM running on a specialized blade server. More specifically, at the first step
the Virtualization manager agent works on the received commands (step 1) and
forwards the query to the Storage manager agent (step 2). The latter software

44 D. Mulfari et al.

module is responsible for managing the FTP repository that stores the required
container image. If such an operation concludes successfully, an ACK message
is sent to the Virtualization manager agent (step 3). After that, the active CM
queries the Host Manager agent that executes on the smart object (step 4). The
Virtualization manager agent sends suitable requests to the Containers manager
agent to invoke the download of the required container images. Then, the SBC
system connects to the Storage manager agent (step 5) in order to retrieve the
needed data and information. Finally (step 6), the Containers manager agent
calls the container engine (e.g., Docker) in a suitable way. In Fig. 8, we present
the sequence diagram of the described process.

HypriotOS: pi@black-pearl in ~
$ docker info
Containers: 14

Images: 18

Storage Driver: overlay

Backing Filesystem: extfs

Execution Driver: native-0.2

Kernel Version: 3.18.8-hypriotos+

Operating System: Raspbian GNU/Linux 7 (wheezy)
CPUs: 1

Total Memory: 434.4 MiB

|Name: black-pearl

ID: SKKS:E62Q:6MUW:GLBM:SRON:MAXX:BEDP:LEDW:3YLO:HBLO:WDQJ:TPSQ
Debug mode (server): true

Debug mode (client): false

Fds: 10

Goroutines: 14

EventsListeners: 0

Init SHAl: 6£77311608d545807a397d65468a964df6a37519
Init Path: /usr/lib/docker/dockerinit

Docker Root Dir: /var/lib/docker

HypriotOS: pi@black-pearl in ~

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

leggera latest 4c5995006deb 2 weeks ago
1.11 MB

busybox buildroot-2014.02 8c2e06607696 12 weeks ago
2.43 MB

busybox latest 8c2e06607696 12 weeks ago
2.43 MB

sander85/rpi-busybox latest 02c195031cf0 3 months ago
1.109 MB

hypriot/rpi-node latest 4490de05a81f 4 months ago
120.4 MB

hypriot/rpi-node 0.12.0 4490de05a81f 4 months ago
120.4 MB

pi@black-pearl in ~

Fig. 9. Docker shell commands running on our embedded device.

Container Virtualization on Smart Objects 45

5 System Prototype

A HM prototype was implemented on a Raspberry Pi B4+ embedded system by
using the Python high-level programming language. Our SBC device executes
a custom Raspbian OS image with Docker 1.5 version, which adds support for
IPv6, read-only containers and advanced statistics. Considering this environ-
ment, we relied on a standard Docker’s command-line console as shown in Fig.9
in order to monitor containers. In particular, our HM consists of a specialized
XMPP client that accepts and processes container management messages com-
ing from a CM deployed in blade server and that forward them to the container
manager interface. This kind of communication has been managed through the
XMPPPY libraries. In particular, the container manager interface interacts with
the underlying Docker engine. In this way, the following basic operations can be
performed on container images:

— Download an image from a FTP repository available on a blade server;
— Upload an image to a F'TP repository available on a blade server;
— Start, stop, delete a given container image available on the embedded device.

6 Conclusion

Nowadays, container-based virtualization is a kind of OS-level virtualization that
allows us to run multiple instances of the same OS user workspace sharing the
kernel of the host OS. Technological developments have allowed such a technol-
ogy to support SBCs, i.e., smart IoT devices equipped with a modern Linux
kernel supporting a suitable virtualization layer. Considering multiple applica-
tion scenarios, it is important to rely on cloud services able to deploy and to
customize pieces of software running on target smart objects. To achieve such
a goal, in this paper, we focused our attention on MOM4C, a flexible solution
able to arrange customizable cloud facilities by means of a federation-enabled
communication system. In this way, we aim to provide services into a complex
smart environment, like a smart city, where objects interact each others and
with the cloud. Therefore, we have discussed how MOM4C can be extended to
support container-based virtualization on Linux embedded IoT devices. More
specifically, we designed the two main software modules constituting our soft-
ware infrastructure.

Since our prototype implementation is still at an early stage, we are already
working to further extend the system functionalities according to our reference
architecture. In future work, we plan to perform a set of experiments in order
to evaluate the behaviour of the piece middleware and its performance when
managing multiple containers on the same IoT device.

Acknowledgments. The research leading to the results presented in this paper has
received funding from the Project “Design and Implementation of a Community Cloud
Platform aimed at SaaS services for on-demand Assistive Technology”.

46

D. Mulfari et al.

References

10.

11.

12.

13.

14.

15.

16.

. Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T., De Rose, C.: Performance

evaluation of container-based virtualization for high performance computing envi-
ronments. In: 2013 21st Euromicro International Conference on Parallel, Distrib-
uted and Network-Based Processing (PDP), pp. 233-240 (2013)

Fazio, M., Celesti, A., Villari, M.: Design of a message-oriented middleware for
cooperating clouds. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393,
pp. 25-36. Springer, Heidelberg (2013)

Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 171-172
(2015)

. Biederman, E.W., Networx, L.: Multiple instances of the global linux namespaces.

In: Proceedings of the Linux Symposium, Citeseer (2006)
Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1, 81-84 (2014)

. Liu, D., Zhao, L.: The research and implementation of cloud computing platform

based on docker. In: 2014 11th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), pp. 475—
478 (2014)

Kacamarga, M.F., Pardamean, B., Wijaya, H.: Lightweight virtualization in cloud
computing for research. In: Intan, R., Chi, C.-H., Palit, H.N.; Santoso, L.W. (eds.)
Intelligence in the Era of Big Data. CCIS, vol. 516, pp. 439-445. Springer, Heidel-
berg (2015)

Bui, T.: Analysis of docker security. arXiv preprint arXiv:1501.02967 (2015)
Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438-452 (2015)

Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208-218 (2016)

Mulfari, D., Celesti, A., Villari, M.: A computer system architecture providing
a user-friendly man machine interface for accessing assistive technology in cloud
computing. J. Syst. Softw. 100, 129-138 (2015)

Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73-79
(2012)

Leitner, P., Satzger, B., Hummer, W., Inzinger, C., Dustdar, S.: Cloudscale: a novel
middleware for building transparently scaling cloud applications. In: SAC 2012, pp.
434-440 (2012)

Wenbing, Z., Melliar-Smith, P., Moser, L.: Fault tolerance middleware for cloud
computing. In: IEEE 3rd CLOUD 2010, pp. 67-74 (2010)

Campbell, R., Montanari, M., Farivar, R.: A middleware for assured clouds. J.
Internet Serv. Appl. 3, 87-94 (2012)

Diaz-Sanchez, D., Almenarez, F., Marin, A., Proserpio, D., Cabarcos, P.A.: Media
Cloud: an open cloud computing middleware for content management. IEEE Trans.
Consum. Electron. 57, 970-978 (2011)

http://arxiv.org/abs/1501.02967
http://arXiv.org/abs/1501.02967

17.

18.

19.

20.

21.

22.

23.

24.

25.

Container Virtualization on Smart Objects 47

Manias, E., Baude, F.: A component-based middleware for hybrid grid/cloud com-
puting platforms. Concurrency Comput. Pract. Exp. 24, 1461-1477 (2012)
Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,
Weerawarana, S., Fremantle, P.: Multi-tenant SOA middleware for cloud comput-
ing. In: IEEE CLOUD 2010, pp. 458465 (2010)

Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A., Foschini,
L.: Dargos: a highly adaptable and scalable monitoring architecture for multi-
tenant clouds. Future Gener. Comput. Syst. 29, 2041-2056 (2013)

Flores, H., Srirama, S.N.: Dynamic re-configuration of mobile cloud middleware
based on traffic. In: IEEE MASS 2012 (2012)

Nagakura, H., Sakurai, A.: Middleware for creating private clouds. Fujitsu Sci.
Tech. J. (FSTJ) 47, 263-269 (2011)

Maksimovié¢, M., Vujovié, V., Davidovié¢, N., Milosevié¢, V., Perisi¢, B.: Raspberry
Pi as internet of things hardware: performances and constraints. Des. Issues 3, 8
(2014)

Richardson, M., Wallace, S.: Getting Started with Raspberry Pi. O’Reilly Media,
Inc., Sebastopol (2012)

Memari, N., Hashim, S.J.B., Samsudin, K.B.: Towards virtual honeynet based on
LXC virtualization. In: 2014 TEEE Region 10 Symposium, pp. 496-501 (2014)
Batty, M., Axhausen, K., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz,
M., Ouzounis, G., Portugali, Y.: Smart cities of the future. Eur. Phys. J. 214, 481—
518 (2012)

A Federated System for MapReduce-Based
Video Transcoding to Face the Future Massive
Video-Selfie Sharing Trend

Alfonso Panarello, Antonio Celesti®?), Maria Fazio, Antonio Puliafito,
and Massimo Villari

DICIEAMA, University of Messina,
Contrada Di Dio (S. Agata), 98166 Messina, Italy
{apanarello ,acelesti,mfazio,apuliafito ,mvillari}@unime .it
http://mdslab.unime.it

Abstract. The massive use of mobile devices and social networks is
causing the birth of a new compulsive users’ behaviour. The activity
photo selfie sharing is gradually turning into video selfie. These videos
will be transcoded into multiple formats to support different visualization
mode. We think there will be the need to have systems that can support,
in a fast, efficient and scalable way, the millions of requests for video
sharing and viewing. We think that a single Cloud Computing services
provider cannot alone cope with this huge amount of incoming data (Big
Data), so in this paper we propose a Cloud Federation-based system
that exploiting the Hadoop MapReduce paradigm performs the video
transcoding in multiple format and its distribution in a fastest and most
efficient possible way. Experimental results highlight the major factors
involved for job deployment in a federated Cloud environment and the
efficiency of the proposed system and show how the Federation improves
the performances of a MapReduce Job execution acting on a additional
parallelization level.

Keywords: Cloud Computing - Horizontal federation - IEEE P2302 -
CLEVER - Big Data - MapReduce + Apache Hadoop - HDF'S - Adaptive
streaming

1 Introduction

Surely, one of the most tangible consequences of the advent of social networks
has been their ability to replace the information brokerage with a direct, fast,
emotional and one to one communication. This sudden innovation has brutally
swamped the traditional media, journalism, brand communication and it has
hugely accelerate the contents ageing. As just said acquires even more truth-
fulness if we go to consider the birth of applications that promise to broadcast
live the life of every people belonging to a SN. The most famous examples are
the new apps like Periscope purchased and launched by Twitter and Meerkat.
© Springer International Publishing Switzerland 2016

A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 48-62, 2016.
DOI: 10.1007/978-3-319-33313-7_4

MapReduce Video Transcoding in Cloud Federation 49

Periscope, substantially, opens a virtual window through which it possible to
observe the reality: the users only need to start Periscope, to keep active the
smartphone cam, broadcasting live right now in social streaming at time and any
place. Other apps, that work apparently in a very similar manner to Periscope,
are YouNow and Meerkat. Another kind of video applications that is following
the current trend is the well-known Dubsmash! tool. It is a simple video grub
mobile application allowing you to mix video and audio together for a funny
composition. These videos are easily shared among the SNs. We have foreseen
the current trend of making selfies with photos will become the future trend to
accomplishing selfies of video so, for this reason, clouds have to deal with the
exigence to convert many videos at the same time for satisfying the even more
increasing number of mobile customers. Therefore, to fulfil high adaptability of
the systems to variable workloads, an elastic approach for resource management
is required. Cloud computing, offers such a feature, by means of virtualization of
resources that can easily scaled up/down. Parallelization capabilities of a com-
puting system strongly depend on available resources into the working cluster.
However, to overcome the problem of the strict link among available virtual
resources,/physical assets a CP can take part to a federated environment.

To this end, in this paper, we present a new solution to perform a MapRe-
duce? video transcoding in a Federated Cloud ecosystem which is able to
face the future massive Video-Selfie sharing trend. Our solution integrates the
Hadoop functionalities into a Cloud middleware for federated environments
called CLEVER [1].

To show the goodness of our approach, we tested it leveraging a video
transcoding application on Apache Hadoop. Indeed, the video management use
case provides us a real test case through which we drive our assessments.

The paper is organized as follows. In Sect. 2, we provide a brief overview of
current works on the topic dealt in the paper. In Sect. 3, we highlight the bene-
fits in adopting Hadoop in a federated Cloud environment in a context of video
transcoding and distribution management. In Sect. 4 we introduce the technolo-
gies adopted in this work to arrange a real federated environment. Section5
presents the proposed distributed processing service and one of many possible
use cases, that is the video transcoding application. In Sect. 6, we analyse costs,
in terms of delay and overhead, introduced by the federation management. In
Sect. 7, our experimental results show the effective advantages of the processing
in a federated environment. Section 8 concludes the paper.

2 Related Work

In the near future, but already from some time, the massive use of mobile devices
and Social Networks (SN) have led to the explosion in the amount of data to be

! http://www.dubsmash.com/.

2 Hadoop MapReduce is one of the most adopted implementations of the MapReduce
paradigm developed and is maintained by the Apache Hadoop project, that also
works on the parallel Hadoop File System (HDFS). http://hadoop.apache.org/index.
pdf.

http://www.dubsmash.com/
http://hadoop.apache.org/index.pdf
http://hadoop.apache.org/index.pdf

50 A. Panarello et al.

stored and elaborated. This problem, known as the Big Data problem, is becom-
ing a crucial issue in the ICT world. The Cloud Computing Infrastructure as a
Service (IaaS) level can be seen as a possible solution to solve the above men-
tioned Big Data problem. The computing power of the Cloud Computing, which
is based on the virtualization concept, stands for the ideal solution to meet the
management of these Big Data. In particular Big Data processing platforms, like
Hadoop, can leverage the computation capabilities of Clouds relying on VMs. An
example is given in [2], where Hadoop is installed into VMs exploiting the Public
Cloud as Amazon EC2. Here the authors re-modelled the resources provisioning
of the VMs in public Cloud platforms for Big Data applications. Hadoop uses
the MapReduce paradigm, an high-level programming model for data-intensive
applications using transparent fault detection and recovery, widely adopted in
Cloud data-centers such as Microsoft, Google, Yahoo, and Facebook. Hadoop
is an open-source implementation firstly developed by Yahoo. In our work, we
advance the existing researches on that topic using the MapReduce high-level
programming model even in federated and heterogeneous Clouds. Deploying
VMs with Hadoop in federated scenarios is a challenge, as shown in [3]. Some
authors in the past tried to optimize the Hadoop computation in heterogeneous
environments, as discussed in “PIKACHU” [4], which looks at the paradigm
attempting to optimize all processing tasks and, in particular, to the three main
phases: map, shuffle and reduce.

Zhuo Tang et al. in [5] presents an algorithm that can dynamically determine
the optimal to start time of the reduce tasks. This scheduling algorithm reduces
the wastefulness of the time slots assigned to a reduced task thereby reducing
the time needed to complete the job. “An Adaptive Auto-configuration” [6] faces
the problem with the right Hadoop configuration. In the authors opinion this
could easily lead to performance loss due to some misconfigurations. The [6]
presents an adaptive automatic configuration tool (AACT), based on mathe-
matical model, for Hadoop to achieve performance optimization. This model
accurately learns the relationship that exists between system performance and
configuration parameters and then configures Hadoop adapting the hardware
and software dynamically.

All of the previous works have the common goal to optimize an Hadoop
MapReduce job execution into a single cluster. Our work, following a similar
approach to [2], has their same aims but we believe is much more challenging
to set-up and to optimize a Hadoop environment in Federated Clouds. We get
the optimization of the job execution going to split it on several clusters. Cloud
Federation [7] represents a compelling opportunity in which IaaS Cloud Oper-
ators might achieve great business benefits, renting to others cloud operators
the computation resources on-demand [8]. The well-know Hadoop platform can
represent an appealing opportunity in this way because its architecture is well
consolidated and widely used. Any Cloud Operator might offer Hadoop com-
putation resources on-fly joining a federated cloud environment. In this way
our work should not be considered only as an alternative to the previous works
but as a new additional solution that works at a higher layer. The Federation

MapReduce Video Transcoding in Cloud Federation 51

adds another parallelization level to that already provided by a single hadoop
cluster [9].

Another important aspect of the Federation is also the capability to leverage
the communication infrastructure of Carrier Operators. The Federation might
affect also these operators and mobile users might benefit of it. This paper looks
even to Federation for Distribution (CF{D).

3 Motivation and Reference Scenario

In recent days we are watching a battle for the social live streaming application
leadership. Periscope and Meerkat are fighting. Often when there is a battle
there is economic interest too: just to think about the millions of users that
populate the SN. Twitter now has about 302 million users of which about 80 %
of the active users use a mobile device. Sharing live of videos through mobile
devices is unquestionably the new trend. But besides sharing live, the users are
interested to create “viral” videos and to share them with the virtual world so
that they can be seen and seen again in off-line and on demand way. The latest
smartphone generation has hardware resources that allow to watch and record
High Definition videos. But not all users have got the latest model available on
the market that has the high network transmission rate or HD support. More-
over the users do not in every moment have sufficient available bandwidth. So
there is the need to allow all users to watch the shared video in the best format
possible considering both their mobile hardware power and the network avail-
able bandwidth. We are talking about Adaptive — bitrate — Streaming which is
a technique used in multimedia stream over computer networks that, detecting
user’s hardware capabilities and bandwidth, on fly adjusts the quality of a video
stream accordingly. An important example is HTTP Live Streaming (HLS)?
designed by Apple. Besides HL'S we can cite other proprietary adaptive stream-
ing technologies such as Adobe HTTP Dynamic Streaming (Adobe HDS)*, and
Microsoft Smooth Streaming® or not proprietary like MPEG-DASHS.

Taking into consideration the on-demand provisioning videos, it is needed to
transcode these shared videos in multiple formats. We are therefore talking about
a panorama where millions and millions of users produce videos and share them
at any time and each video has to be transcoded in several formats: in other
words we are talking about Big Data in Video Domain. In order to keep up
of this future trend, distributed computations, efficient data storage and aimed
systems for manipulating of the greatest possible number of videos in the shortest
possible time are extremely needed. One of the main problems of Video Big Data
management is proving meaningful techniques able to process a huge amount of

3 https://developer.apple.com/library /ios/documentation /NetworkingInternet/
Conceptual /StreamingMediaGuide/StreamingMediaGuide.pdf.

4 http://www.images.adobe.com/content /dam/Adobe/en/products/
hds-dynami-streaming/pdfs/hds_datasheet.pdf.

5 https://msdn.microsoft.com/en-us/library /ff469518.aspx.

5 https://www.iso.org/obp/ui/#iso:std:iso-iec:23009:- 1:ed-2:v1:en.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://www.images.adobe.com/content/dam/Adobe/en/products/hds-dynami-streaming/pdfs/hds_datasheet.pdf
http://www.images.adobe.com/content/dam/Adobe/en/products/hds-dynami-streaming/pdfs/hds_datasheet.pdf
https://msdn.microsoft.com/en-us/library/ff469518.aspx
https://www.iso.org/obp/ui/#iso:std:iso-iec:23009:-1:ed-2:v1:en

52 A. Panarello et al.

data involving even more computation resources in a distributed and scalable
manner. Nowadays, Cloud Federation is emerging in different application fields
including, for example, energy efficiency [10], storage [11], dataweb [12] and so on.
We believe that Cloud Federation may provide advance features and capabilities
useful for dealing with the massive data computation.

4 Integration of Hadoop in CLEVER

To deal with federated environments, the overall framework presented hereby is
compounded from more complex parts. The core is represented by the CLEVER
cloud. It is a challenging middleware because it fulfill many IEEE directives in
the context of Cloud federation (see’” and [13]). CLEVER accomplishes many
features presented in these references. Other Cloud platforms like, OpenNebula
or OpenStack have a weak approach in satisfying the federation. In this section
we include a few information on Hadoop framework and how it is integrated
with CLEVER.

4.1 CLEVER Overview

The CLoud-Enabled Virtual EnviRonment (CLEVER) is a Message-Oriented
Middleware for Cloud computing (MOMA4C), able to support several Cloud-
based services [14]. Each CLEVER Cloud includes several distributed hosts orga-
nized in a cluster. Each Physical Machine (PM) is controlled by a management
module, called Host Manager (HM), and only one host runs a cluster manage-
ment module, called Cluster Manager (CM) that acts as interface between Cloud
and clients. CM receives commands from clients, gives instructions to HMs, elab-
orates information and sends back results to clients. It also performs tasks for
cluster orchestration. A CLEVER Cloud makes use of XMPP to exchange all
communication messages and presence information in a near-real time fashion.
A Jabber/XMPP server provides basic messaging, presence, and XML routing
features within the Cloud.

In a federated environment, specific mechanisms for dynamic identification
and service discovery have to be employed. We believe that the best way to
accomplish all the above features is the adoption of strategic communication
technologies, able to interconnect many different distributed entities and to pro-
vide an integrated platform. To this aim, we make use of the XMPP protocol.
In fact it natively supports federation capabilities. With CLEVER, each Cloud
involved in the federation is identified by a Jabber ID (JID). The utilization of a
central server which maintains a list of JIDs can be avoided by structuring each
JID as e-mail addresses, with username and domain names. In order to set up a
federation, CMs belonging to Cloud Brokers of different administrative domains
exchange messages through the Multi User Chat (MUC) with the unique room

TIEEE P2302™/D0.2. https://www.oasis-open.org/committees/download.php/
46205/p2302-12-0002-00-DRF T-intercloud-p2302-draft-0-2.pdf.

https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf
https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf

MapReduce Video Transcoding in Cloud Federation 53

ID Federation. Only authenticated CMs, relying on XMPP Federated servers can
access the MUC. The XMPP servers are responsible to manage the Federation
Rooms and they can be entrusted by third part entities.

4.2 Hadoop Overview

Hadoop is a framework that allows for the distributed processing of large data
sets across clusters of computers using simple programming models. It is designed
to scale up from single servers to thousands of machines, each offering local com-
putation and storage. Hadoop MapReduce is able to write and run applications
in processing in parallel huge amounts of data (e.g., terabyte of datasets) on
large clusters in a reliable, fault tolerant manner. A MapReduce job usually
splits the input data set into independent chunks, which are processed by the
map tasks in a completely parallel manner. Both the input and the output of
the job are stored in a distributed file system, that is the Hadoop File System
(HDFS). MapReduce components consist of a single master JobTracker and one
slave TaskTracker per cluster-node. The master is responsible for scheduling the
jobs’ component tasks on the slaves, monitoring them and re-executing the failed
tasks. The slaves execute the tasks as directed by the master. The master node
of the HDFS is called NameNode whereas the slave node of the HDFS is called
DataNode.

4.3 Hadoop and CLEVER

As we remarked above, to make the Hadoop functionalities Cloud-like, we make
use of a virtual infrastructure provided by CLEVER. VMs run on HMs and
work as slaves of the Hadoop cluster. Virtual Hadoop slaves are coordinated by
the Hadoop Master arranged at the CLEVER CM. The first advantage of the
integration of Hadoop in CLEVER is that, typically, Hadoop uses the TCP /TP
layer for communication, and it is a problem during the inter-domain commu-
nication due to heavy usage of firewalls by each domain which take part to
federation. In fact usually firewalls block inter-domain communications. So, inte-
grating Hadoop in CLEVER, federation messages can be sent on port 80 thanks
to XMPP technology. The second one advantage is that the system can auto-
matically scale according to real time requirements. In CLEVER, the Cluster
Coordinator (CC), inside the CM, is responsible for the cluster management
and service provisioning. To this aim, it interacts with both the HMs into the
cluster, by means of a HMs interface, and the Cloud clients which request a
specific service by means of the Client interface. All these interactions are based
on XML message exchange into XMPP MUCs. Through the HMs interface, the
CC communicates with all the HMs in the cluster, exchanging information on
available resources, running tasks, work specifications and offered services. The
CC makes use of the Client interface to interact with Cloud clients, in order to
receive client’s requests, and to give back inquired services. The HM agent specif-
ically designed to support the Hadoop activities in the Cloud is the HMN Agent.
It provides the configuration settings to all the virtual nodes in the Hadoop

54 A. Panarello et al.

cluster. The CLEVER HMN works as master for Hadoop cluster. Specifically,
it implements the Hadoop functionalities to manage the Hadoop system. The
Network Manager (NM) Agent allows to implement the virtual communications
among Hadoop nodes through Notifications that arrives to the CM via the Dis-
patcher Agent. These notifications inform the HMN Agent about the presence
or the absence of a host within the cluster.

4.4 Amazon S3

The Hybrid Cloud is accomplished using the Amazon S3 as Public Cloud storage
service. It is designed to make web-scale computing easier for developers. Ama-
zon S3 provides a simple web-services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. It gives
any developer access to the same highly scalable, reliable, secure, fast, inexpen-
sive infrastructure that Amazon uses to run its own global network of web sites.
The service aims to maximize benefits of scale and to pass those benefits on to
developers. In our work S3 represents the common storage shared among the
Federated Cloud Providers.

5 Distributed Processing in Cloud Federation

Social Networks’ (SNs) users have begun to abandon the photo selfies sharing,
turning their interest toward a new way to share their life. The new trend is the
movie selfies sharing, live or not, who allows to show virtual small fragments of
their own daily lives to the friends. Mobile users want to share their produced
video in the SN such as Twitter, Google+, Facebook, etc. In the work-flow we
are considering here, all the time users require to share their videos. We are
talking about hundreds of millions of users that will put their selfie videos into
the web, and just as many users that will wish to follow one o more specific
shared videos. The Social Network Cloud (SNC), received the users’ requests for
a video sharing, interacts with Clouds Storage Providers (CSPs) such as Amazon
S3, Google Drive, Dropbox, etc. for storing these users’ acquisitions. In this work
we have adopted Amazon s3 only for practical reasons and because Amazon is
at moment considered the most advanced Cloud Storage Provider. Only the
selected Cloud Provider (CP) handles the entire work-flow; in the paper this CP
is defined Cloud Broker. The choice to rely on external Public CSP as Amazon
S3% was made to minimize the overhead associated to the data transmission
between the federated CPs hence to be able to evaluate only the cost due to the
federation management.

This scenario focuses on the off-line video sharing. The idea behind such
a service is shown in Fig.1. When an user requests to share a video-selfie, he
contacts his Social Network (i.e. Twitter in the example in Fig. 1) and uploads his
video. T'witter, in the future could not be able to fulfil all his user’s video upload

8 http://aws.amazon.com /it /documentation /s3/.

http://aws.amazon.com/it/documentation/s3/

MapReduce Video Transcoding in Cloud Federation 55

I LQ Version
'/.J_‘-__J VLQ Version
T

n

N

o 1 \
| Storing the ™, file ™| e file \

/s - |video on N download'\.\ \'\.l:.p,load ‘\-‘ .\\.
- \ g
\“ L EAmazon \“ A\
=2l - \ \ '4\
 Client :I N A
: ' B 2}
'. Lo
:] v
;Publishinq B
‘on Twitter, Vo
h 1 s
F
Doy
L
Dy
s
e
% Cloud Federation A
@, L for Transcoding ./'/_g/
F . e
\."“,- .77 -"Select different
. N chunks with
P A . e) R i
\._,,’« - A \ //: different qualty
Visualitazion 7 it
. requests for the . \ oo Sy
. published Video D= XMPP Message
Download

Sending video
stream to the
user

Cloud Federation
for Distribution

Fig. 1. Processing and distribution service management.

request, so we are supposing that it will vertically exploit the storage services
of others CSPs (i.e., Amazon S3 depicted in Fig. 1) to face, in a scalable way,
this growing demand for these kind of activities. We are supposing that CSP has
multi-part download features. The SCN, after the storing, in order to allow to his
users to watch the shared video in the best format possible, considering not only
the users’ mobile hardware power but also the network available bandwidth at
a given time and place, has to transcode these shared videos in multiple formats
and it has to be able to manipulate the greatest possible number of videos in
the shortest possible time. To this end a processing service in Cloud Federation
has been identified and exploited. In a federated Cloud environment, a CP can
benefit of the storage and computational resources other CPs acting on other
administrative domains. To satisfy the clients’ requests, the SNs taking part to
the Federation ask for available resources to the other federated CPs, which offer

56 A. Panarello et al.

their unused resources at that time. In the examined case several CPs belonging
to a Cloud Federation, can offer this kind of Processing Service. In Fig. 1 we call
this Federation “Cloud Federation for Transcoding” (CFfT). There is a second
Federation, called “Cloud Federation for Distribution” (CFfD) which aims to
handle millions of requests for video visualisation, shifting his both hardware
and software burden to the mobile operators that manage the users have made
that request. To exploit this Federation service, after the storing of the video
on Amazon, the SN contacts the broker to submit the transcoding task. For
simplicity, in our scenario the broker(CP_A in Fig.1) plays only the role of
communication mediator, but it could have his own resources to be used for the
transcoding tasks. More over we assume that each CP in the CFfT has an image
of the VM including the piece of middleware for processing the task. The CP_A
plays the role of broker. It retrieves information about the resources’ availability
of the federated CPs and sends them the instructions to fulfil their tasks. As
soon as CP_n receives the file’s URL information, it starts to downloads the file
chunks and put them (HDFS-upload) in its HDFS cluster for local processing.
At the end of the processing step, CP_n stores the result of its processing in the
CSP and sends to CP_A an end task notification. Once CP_A has received all the
end task notifications from all the involved CPs, it communicates to the SNC the
new URLs of the multiple video streams and the necessary information for the
client’s player to reach the desired video streams. As it is possible to see in Fig. 1,
and as previously mentioned, our scenario envisages the implementation of two
different Federation. CFfD aims to lighten the system from the management of
the video displaying requests. The current trend will lead to millions for video
sharing requests, and an even greater number of video visualization requests.
So a solution to make the system scalable has to be implemented. To this end,
we decided to implement a second kind of Federation. When a user requests
to view a specific shared video on “Twitter”, he will first make a search for a
specific #hashtag, and after he has found that video, he will attempt to display
it. To avoid that, in the distribution process, Twitter will become the bottle
neck of the system, it does not handle the transmission of the video streams
in first person, but it redirects the that burden to the Mobile Phone Services
Providers (MPSP) that has in managing the users requiring that service. Each
provider to optimize the vision quality of the video, according to the user’s actual
hardware resources and network bandwidth, will manage the delivery by means
of a Adaptive Stream Protocol (e.g., HLS or Microsoft Smooth Streaming). Also
in this way, the provider will act as a cache for the system, going to download
and locally store only the required video stream fragments, thereby significantly
reducing the number of the accesses to the CSP (e.g., Amazon).

6 Cost Estimation of the Federation

With reference to the previous section, it is possible to identify eight steps of that
federated transcoding process. It starts at time t;; when a user sends a video
sharing request to his SN to which he has a valid registered ID. At time ¢4 the

MapReduce Video Transcoding in Cloud Federation 57

SN, exploiting a software CLEVER agent that makes Twitter able to speak the
XMPP language, contacts the broker of the Federation to communicate the need
to transcode a video and all the necessary informations to correctly perform that
task and at the same time it places the video to share and to transcode into the
CSP Amazon S3. At time t;2 broker asks to the Federation, how many VMs each
domain can provide. At t;3, the Broker performs a task assignment involving the
whole federated environment. At t;4 each involved federated CLEVER Cloud
exactly downloads only a specific part of the movie file, using the multi-part
download mechanism provided by Amazon APIs. At the time ¢;5 each domain
starts to transcode the downloaded part. The ;4 indicates the starting time when
each CLEVER Cloud begins to upload the transcoded part in multiple format
on Amazon S3 and finally at the t;7 the broker, after receiving all responses
from the foreign CPs, notifies the end of the transcoding process. As regards
the distribution process, instead, it is possible to identify three steps: At tqo the
user, after made a #hashtag search, clicks on the video’s previews to watch the
movie. At ¢4 the SNP (Social Network Provider), by analysing the users’s IP,
redirects the visualisation task to the appropriate MPSP. The MPSP a the t42
begins the download from Amazon of the required stream, adapting it to the
users’ bandwidth by means e.g., the HLS protocol. Each MPSP stores in his
own data-center only the required video stream chunks at the request time. The
basic steps of the two processes are listed below:

e Federation Set-up: This step was not pursued in the previous section as it
takes one-off at the time of taking part in the federation and therefore it does
not affect the process previously described.

e Service Discovery: This step, albeit critical, has a negligible impact in
terms of time. Our measurements show that this time increases by about
0.084 s for each participating domain in the Federation. It is negligible when
compared to the sum of the downloads, computational, writing on HDSF and
upload times process lifetime. This is a time that regards only the “Cloud
Federation for Transcoding”. In fact in the “Cloud Federation for Distribu-
tion” there is not the need of a discovery phase: the participants are statically
known. In fact it is a dynamic environment where the CPs can take part and
leave the Federation whenever they want. Regarding the Cloud Federation for
Distribution, how we have already said, it is not true anymore because it is
an a priori federated environment where all of the participants are statically
known.

e Communication Cost: This is the time that a XMPP message takes to
reach its destination. It is independent from the number of the federated
CPs, therefore it is a negligible time.

e Download 4+ Upload from and to Amazon Costs: These two phases of
the process together have the strongest impact for the process. We are con-
sidering steps to download and upload together as both have similar features
and despite some small difference in terms of time the two quantities are com-
parable. Considering a download speed of about 3 MB/s and file size equal to
512 MB we have download times about to 200s. While considering a speed

58 A. Panarello et al.

of 2MB/s we have a upload times that are in the neighbourhood of 270s.
Obviously increasing the number of the federated CPs these values of time
decrease according to a pattern which can be approximated to the following
function y = a *x ~¢ (where y are the seconds and z is the considered chunk
size).

e Hadoop Cost: This cost is related to the time needed to write data on HDFS
and that one necessary to read from HDSF and write on the physical FS. It is
well known that Hadoop works better with a few large files rather than with
many small files. In other words, from the point of view of the performance
is better to write a 1 GB file size instead to make 10 upload of 100 MB file
size [15,16]. From our measurements it was observed that with files smaller
than 20 MB and with block size equal to 64 MB (default Hadoop) the upload
times into HDF'S get highly comparable each others and therefore we do not
get any more benefit from horizontal parallelization in terms of Hadoop cost.

e Computational Costs: This step of our analysis is just the cost due to the
transcoding time. In our tests nevertheless, because the our paper’s goal is not
to do a video transcoding, but to demonstrate how the Cloud Federation can
bring advantages if applied to whatever system which aims to provide a such
service, we have not yet performed the video transcoding times measurements.
However, we used the timing of OpenCV transcoding reported in [17], that
focuses on measuring the total transcoding time varying several data’s and
cluster’s parameters and Hadoop configuration files’ values (block size and
replication). The magnitudes involved are those ones that have the main
impact on the whole federated transcoding process.

In the next section we analyse the times of the three phases of the process which,
in our opinion, have the main impact on the entire transcoding federated flow.

7 Experiments

This section analyses several real experimental test-bed taking in consideration
thirteen different CLEVER/Hadoop administrative domains. Twelve of them act
as federated Cloud providers and only one of them acts as broker. This section
also shows that by adding domains to the Federation the process’ total time
tends to the communication time between the broker and the CPs. So video
transcoding is obtained in a time which is much smaller than it would have
obtained without federation system. In fact, the federation allows to horizon-
tally spread the workloads, significantly reducing the overhead and delays that
the transcoding process as a whole introduces. Specifically, our studies show that
only using the parallel processing provided by Hadoop it is possible to achieve
a reduction of the computation time, instead by means more federated Hadoop-
based environments, adding a horizontal cooperation, it is possible not only to
reduce the computational time related to the video-transcoding but also that
ones related to the delays and overheads introduced from the other phases of
the process. With our testing we studied the behavior of the whole environment.
We considered a parallel video transcoding use case involving several federated

MapReduce Video Transcoding in Cloud Federation 59

cloud providers. In particular, we arranged the test-bed taking in consideration
13 physical servers (one per CP). Each node of each cluster is a VM with the fol-
lowing virtual hardware and software: 1 CPU (1.3 GHz), 768 MB RAM, Ubuntu
OS (12.04 server (32 bit)), CLEVER middleware including the Hadoop plug-in;
Experiments were conducted with the following physical hardware configura-
tion: CPU: AMD Opteron 2218 HE Santa Rosa with two Dual-Core 2.6 GHz
processors; 8 GB RAM, running Linux Ubuntu 12.04 x86_64 OS and VirtualBox
(version 4.1.12). The transcoding tool we are using in Hadoop (version 1.0.4)
is the OpenCV framework converted in MapReduce shape. This physical hard-
ware is located at the DICIEAMA department of the University of Messina.
We redid each experiment 30 times in order to consider mean values and a low
confidence intervals. In the following, we summarize the main phases involved
in our experiments.

— -Forward Time =——Average Time
0,11

0,1
0,09 ~
0,08 S

0,07 - - = -=

Seconds
]

0,06
0,05
0,04

Domains

Fig. 2. Average time required to forward a request to Federated Clouds.

Figure 2 highlights that all the communications between Twitter and the bro-
ker and between the broker and the federated CPs have a very small magnitude.
In others words Fig. 2 shows the time required to forward the video transcoding
request to the other federated CLEVER Clouds domains. The CLEVER bro-
ker, obtained the network information regarding the federated CPs (by means a
Discovery phase), distributes simultaneously the tasks that each of them has to
accomplish. Thanks to the simultaneity of the communication, the forwarding
time, that does not change if the number of the foreign domains does, assumes an
average value of about 0,075s. How we said demonstrates that the Federation,
by means of the XMPP communication technology, does not add any signifi-
cant overhead. At phase t;5 — t;4 each domain performs two tasks, at the first
it downloads the assigned file block and then writes it into HDFS. Observing
the Fig.3(a) we can notice that, if there are more than one domains into the
federation, each of them has to retrieve only a part of the original file. The Bro-
ker knows the number of the federated domains, and assigns to each of them a
different block of the file. In particular Fig. 3(a), shows the download time from
Amazon S3 varying both the file size and the number of the chunks. Observing

60 A. Panarello et al.

the graphs, we can note that the download time for the whole 512 MB file takes
roughly 200s, while the times needed to download an eighth of file (64 MB) take
roughly 30s. Each download takes place in parallel, so we have a double benefit,
the first one due to the smaller blocks size that a domain has to be download,
the second one due to the parallelization of the download of these blocks. The
Fig.3(b), instead, shows the time needed to upload the transcoded files into
Amazon S3 repository. The trend of such times is the same as that one shown
in the graph in the Fig. 3(a). The upload time is not dependent on the number
of chunks of the block.

M 1-Chunk E4-Chunks [8-Chunks 7 Average Upload Time

nd.

Sec:

| Remes——

128 64 20 12 7 5 512 256 128 64 20 15 7 5
File Size (MB) Size (MB)

=
=
=
=

(a) Average download time of file (b) Average Upload time of file blocks
blocks from Amazon S3. into Amazon S3.

Fig. 3. Average S3 download and upload time.

128 64 32 16
SizeMB

Fig. 4. Download time of file blocks from HDFS.

Figure 4 highlights that when the file size of the considered block decreases
the time to read from HDFS and to write into the local F'S decreases too but
the obtained gain gradually lessens when the blocks become too small. A similar
consideration is made for the upload to HDFS.

MapReduce Video Transcoding in Cloud Federation 61

At the phase t;5 —t5, each federated domain performs the video transcoding.
We have obtained from the paper [17] that, from the computational point of view,
to have one domain with 4 available processing nodes is the same that to have 4
domains with only one available processing node. However, it is very important
to emphasize that as just we said is true only from the computational point of
view, in fact considering the whole federated transcoding process it is not true
any more because in both cases the computational time is the same but in the
first one the download from S3, the writing into HDFS and the upload to S3
times considerably increase.

It is clear that while the discovery time and the forward request time are
small and negligible, the download + upload, Hadoop and transcoding time by
means OpenCV tools are the most important impact for the examined scenario.
At the phase Ends — t;7 the broker sends a notification to the SN’s CLEVER
agent, that will communicate to SN to make available the video visualisation.
Regarding the three steps of the distribution phase, we can assert that, a part
the step tqo — tq1 that is outside of the federation scope, the steps tq1 — tgo and
tgo —tgs can be discussed similarly to the ¢;4 —t¢3 and t;5 — ty4 of the transcoding
federated process.

8 Conclusion

In this paper, we presented a federated Cloud environment which copes with
future and just begun user trend to frantically share “viral” selfie videos. Our
scenario hypothesizes two different Federations: CFfT and CFfD. The first one
helps to achieve, as soon as possible, the video transcoding and sharing tasks.
We applied the MapReduce paradigm exploiting the advantage of a Federation
establishing between several CPs (managed by CLEVER) demonstrating how,
by means of it, is possible to optimize the MapReduce Job execution and conse-
quently to streamline and to speed the multiple video transcoding and sharing
processes. The second one aims to face the increasing number of the “offline/on-
demand” visualization requests for shared videos, assigning the transmission task
of the video streams to the MPSP, avoiding that the SNC becomes the bottleneck
of the system. In the future we will apply the Federation to other interesting use
cases, so as to continue to demonstrate that the Federation in Cloud Computing
environment is the key word for the future, and its advantages are not tangible
only in the use case inspected in this paper.

References

1. Panarello, A., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: A requirements
analysis for TaaS cloud federation. In: 4th International Conference on Cloud Com-
puting and Services Science, Barcelona (2014)

2. Yuan, Y., Wang, H., Wang, D., Liu, J.: On interference-aware provisioning for
cloud-based big data processing. In: 2013 IEEE/ACM 21st International Sympo-
sium on Quality of Service (IWQoS), pp. 1-6 (2013)

62

10.

11.

12.

13.

14.

15.

16.

17.

A. Panarello et al.

Gahlawat, M., Sharma, P.: Survey of virtual machine placement in federated clouds.
In: IEEE IACC 2014, pp. 735-738 (2014)

Gandhi, R., Xie, D., Hu, Y.C.: Pikachu: how to rebalance load in optimizing
MapReduce on heterogeneous clusters. In: USENIX ATC 2013, pp. 61-66. USENIX
Association, Berkeley (2013)

. Tang, Z., Jiang, L., Zhou, J., Li, K., Li, K.: A self-adaptive scheduling algorithm

for reduce start time. Futur. Gener. Comput. Syst. 43—44, 51-60 (2015)

Li, C., Zhuang, H., Lu, K., Sun, M., Zhou, J., Dai, D., Zhou, X.: An adaptive auto-
configuration tool for hadoop. In: 19th International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 69-72 (2014)

Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K.,
Tordsson, J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A.,
Massonet, P., Munoz, H., Tofetti, G.: Reservoir - when one cloud is not enough.
Computer 44, 44-51 (2011)

Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: challenges, taxonomy, and survey. ACM Comput. Surv. 47, 7:1-7:47 (2014)
Panarello, A., Fazio, M., Celesti, A., Puliafito, A., Villari, M.: Cloud federation
to elastically increase MapReduce processing resources. In: Lopes, L., et al. (eds.)
Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 97-108. Springer, Heidelberg (2014)
Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438-452 (2015)

Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208-218 (2016)

Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73-79
(2012)

Bernstein, D., Demchenko, Y.: The IEEE intercloud testbed - creating the global
cloud of clouds. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, pp. 45-50 (2013)

Fazio, M., Celesti, A., Puliafito, A., Villari, M.: A message oriented middleware
for cloud computing to improve efficiency in risk management systems. Scalable
Comput. Pract. Exp. (SCPE) 14, 201-213 (2013)

Dong, B., Zheng, Q., Tian, F., Chao, K.M., Ma, R., Anane, R.: An optimized
approach for storing and accessing small files on cloud storage. J. Netw. Comput.
Appl. 35, 1847-1862 (2012)

Dong, B., Qiu, J., Zheng, Q., Zhong, X., Li, J., Li, Y.: A novel approach to improv-
ing the efficiency of storing and accessing small files on hadoop: a case study by
powerpoint files. In: 2010 IEEE International Conference on Services Computing
(SCC), pp. 65-72 (2010)

Kim, M., Cui, Y., Han, S., Lee, H.: Towards efficient design and implementation
of a hadoop-based distributed video transcoding system in cloud computing envi-
ronment. Int. J. Multimed. Ubiquitous Eng. 8, 213-224 (2013)

Internet Service Provision and Content Services:
Peering and Service Differentiation

Alexei A. Gaivoronski!®) | Per Jonny Nesse!2, Olai-Bendik Erdal?,
and Finn-Tore Johansen?

! Norwegian University of Science and Technology, Trondheim, Norway
Alexei.Gaivoronski@iot.ntnu.no
2 Telenor AS, Baerum, Norway

Abstract. We consider the relationship of Internet service providers
(ISP) like network operators and content service providers in the Inter-
net ecosystem. Currently the position of ISPs is challenged by the emer-
gence of powerful content service providers, especially with the spreading
of bandwidth demanding video services. One issue here is that the fur-
ther investment in the network capacity may be hindered by prevailing
business models that largely exclude the ISPs from sharing in the major
cash flows resulting from content provision.

We develop modeling tools for evaluation of business models of ISPs
in Internet ecosystem and present some results of this analysis. In par-
ticular, we model the relationship between content provider (CP) with
significant market power and an ISP. We show that it can be profitable
for content provider to resort to paid content peering, thus transferring to
ISP a part of his content provision revenue. The resulting business model
may provide substantial benefits to all major participants in this ecosys-
tem: network providers, content and service providers and end users. In
addition, we consider the situation when ISP also engages in content
provision.

Keywords: Business models for service provision - Connectivity provi-
sion - Content provision - Peering

1 Introduction

The current state of Internet ecosystems presents substantial challenges to tel-
cos/network operators in their capacity of Internet Service Providers (ISP). Due
to the introduction and explosive growth of services that are heavy on con-
tent (like video related services) their fast and mobile networks are experiencing
substantial growth of traffic requiring more investment in network infrastruc-
ture [8]. At the same time the current Internet business models direct revenue
streams towards content service providers, in particular those in possession of
Content Delivery Networks and utilizing content peering. As the result, this rev-
enue stream bypasses to a large extent the network providers (see, for example,

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 63-78, 2016.
DOI: 10.1007/978-3-319-33313-7_5

64 A.A. Gaivoronski et al.

[7,9]). The growth of cloud based services has a potential to aggravate this situa-
tion even more. This jeopardizes the market position of ISP, which may result in
future overall deterioration of network infrastructure due to lack of investment,
something that will be detrimental to all the involved actors.

These issues has generated recently a substantial interest in academic and
industrial literature, see [7-9] where one can find additional references and fur-
ther discussion of policies for exchange of Internet traffic like peering. Proposals
directed towards enhancement of position of providers of Internet connectivity
(ISP) involve paid content peering, when content providers (CP) share their con-
tent provision revenue with respective ISP (By peering are usually understood
agreements and principles that regulate the traffic exchange between different
networks that comprise the Internet). Different ISPs consider introduction of
policies that infringe on network neutrality (by which is understood the equal
treatment by ISP of data packets from different sources), but allows them to
collect additional revenue by differentiation of subscription fees according to
usage. For example, [13] reports that Deutche Telecom considers differentiation
of subscription fees that will limit the usage of video services from external CP,
but not from its own video service. For in depth discussion of the economical
network neutrality issues we refer to [1,4-6,10].

The literature cited above tries to find analytical relationships between dif-
ferent parameters of Internet ecosystem and understand to which actors the
relaxation of the network neutrality is beneficial. We, instead, focus here on a
relationship between ISPs and content service providers and develop tools for
numerical analysis of their business models and policies. Another novelty is that
we study the effects of uncertainty (particularly in demand), focusing on the
analysis of paid content peering. First, we consider an important case: the rela-
tionship between a powerful CP and an ISP (Sect.2). In such case the content
provider can decide whether to transfer to the ISP part of his content provision
revenue through paid content peering and the ISP accepts this decision.

We show that it can be profitable for the content provider to resort to paid
content peering, stimulating the ISP to expand capacity. We show that this can
happen in the case of efficient ISP (in terms of maintenance and expansion costs),
not excessively high demand uncertainty and high elasticity innovative services.
After this we proceed in Sect.3 to analysis of business model, where ISP also
engages in content provision, modeling the case of Deutsche Telecom, reported
in [13]. We show that also in this case the paid peering can be beneficial to both
ISP and CP and, in addition, removes part of the incentive to challenge the
network neutrality.

This paper is motivated by the current largest source of traffic growth: real
time video services and studies economic relationship between content provider of
such services and ISP. For example, the results of the paper allow to evaluate the
parameters of recent agreements between Netflix and Comcast [15] and between
Netflix and some European ISPs. However, our results are also applicable to
likely future sources of traffic growth and in particular to services in the context
of the future Internet of Things (IoT). For example, survey [2] lists a number of

Internet Service Provision and Content Provision 65

applications of IoT which will contribute substantially to the growth of traffic.
Our results can be used to analyze business models and economic relationships
between providers of such services and providers of Internet connectivity.

2 Paid Content Peering with Strong Content Service
Provider

Here we develop the leader-follower model based on Stackelberg game [14]. This
model assumes that the leader annouces his decisions to the follower, which
optimizes his objective using this knowledge. The leader chooses his decisions,
taking into account this behavior of the follower. For transparency we begin with
the case of a single service. The model considered here can be seen as a tool for
approximate analysis of the agreement between Netflix and Comcast [15]. The
case of several interacting services is considered in the next section.

1. Profit model of the content provider. We assume that the content provider
maximizes his profit, which is the difference between content provision revenue
net of paid peering fraction and costs. There are two types of costs: provision
costs and opportunity costs resulting from not satisfaction of demand. This
results in the following profit function.

Pep=(pQ—2)—c)E, min{Wy+ W, D (p,w)}
—eE, max {0, D (p,w) — Wy — W} (1)

where p is the service price; c is service provision costs; x is fraction of the
revenue transferred to the ISP; W is existing network capacity and W is a
possible capacity expansion. Besides:

e - opportunity cost for not satisfied demand; this cost is comprized of two
parts: revenue immediately lost and part of the customer value that can be
lost to churn (customer deserting to other provider or satisfying her needs in
an alternative way), which is proportional to unsatisfied demand;

D (p,w) - demand for service at price p. Besides the price, it depends on
random variable w that describes the demand uncertainty.

Here price p and paid peering revenue fraction = are the decisions of content
provider that he takes in order to maximize his profit, W is the decision of
ISP, demand D (p,w) results from decisions of service users and ¢, e, Wy are
parameters.

2. Profit model of ISP. We assume that he takes the role of Internet Service
Provider (ISP). His profit is the difference between his revenue (fixed sub-
scription fees from customers plus the share of content provider’s revenue
obtained through paid peering) and his costs (network maintenance costs
and network expansion costs). This yields the following profit function.

Prsp = C+ prEmin {Wy + W, D (p,w)} —rW — q(Wo + W) (2)

66

A.A. Gaivoronski et al.

where C' is subscription fee (we assume that all the user population is sub-
scribed to Internet for flat fee); r is the cost of unit capacity expansion; ¢ is
the cost of unit capacity maintenance.

The ISP maximizes his profit by choosing the level W of capacity expansion.
Demand function of user population. There exists substantial empirical evi-
dence that the demand function for ICT products and services exhibits con-
stant elasticity v with respect to price (see [12]). Then

M

D=—

p’Y
where M is population specific parameter that is interpreted as available
budget. We modify this function in the following way

D(p,w) = (1+w) 3)

(a+p)7
where a is opportunity price that plays the role of the stabilization parameter
that prevents the demand function from excessive growth for small values
of price p. Parameters a, M,~ are all uncertain and should be described by
random variables with appropriate probability distributions. In order to admit
the analytical treatment, we simplify the description of uncertainty here by
assuming that a, M, v are deterministic, but the demand function is multiplied
by the term 1+ w, where w is a random variable with cumulative distribution
function H (-) that has density A (-).

Governance of the system. We assume that the content provider due to his
market power has the leading role in this relationship. Consequently, the
decision sequence is the following.

i. Content provider selects the service price p and the share x of his service
provision revenue to be transferred to the ISP in the framework of content
peering agreement.

ii. Knowing price p, the users generate the demand for the service as in (3).

iii. Knowing his revenue share x and the demand for the service D (p,w) up to
the random variable w with known distribution H, the ISP decides the
volume W of the network expansion that maximizes his expected profit.

iv. The content provider selects at point i his decisions = and p in such a
way, as to maximize his profit, taking into account the reactions of other

Now we can analyze the relationship of content provider and ISP, following

the governance just described. The analysis consists of the following steps.
1. Maximization the profit of ISP (2), substituting there the demand func-

tion (3), this will yield the dependence W (p,z) of the optimal network
expansion on the decisions (p,) of the content provider.

2. Maximization of the profit of the content provider (1), substituting there
the demand function (3) and the optimal expansion function W (p, z)
obtained on the previous step. This yields the optimal policy (p,z) of
content provider, his best profit and resulting profit of the ISP.
Resulting optimization problems are the following.

Internet Service Provision and Content Provision 67

1. The optimal expansion program W (p,z) of ISP. It is obtained by solving:

max {px]E min {Wo + W,
W>0

(4w} row) (1)

Compared to (2) we have omitted here the constant components of revenue
and costs that do not depend on decision W of the ISP. Due to simplifying
assumptions about the demand uncertainty, it is possible to derive its explicit
solution.

a+p7

Theorem 1. The solution W (p,x) of problem (4) is given by

W(p,x):maX{O,CLj_Jm<1+H_l (1—7";;(1» —WO} (5)

2. The optimal pricing p* and paid content peering share x™* of content provider.
They are obtained by substituting (3), (5) into (1) and solving the resulting
optimization problem:

M
Inax(p(l—z)—C—i—e)IEmin{VVo—|—max{07 X

Py a—+p7Y

<1+H—1 (1_T;q)>_W0}vafpw (1+r)}—aﬂf§ﬂ (6)

p>20,0<z< L

The proof of the theorem is obtained by analytical solution of optimization
problem formulated above. This problem does not admit explicit solution like
problem (4) and therefore we have to resort to numerical methods. We obtain
the dependence of actors’ profits and policies on significant parameters of the
problem by solving this problem repeatedly.

2.1 Results of Numerical Analysis

We have solved the optimization problem from Theorem 1 numerically for differ-
ent values of parameters and provide below a sample of representative results.

Free Versus Paid Peering: Efficiency of ISP. We illustrate here the follow-
ing finding: paid peering can be beneficial to content provider, but only if ISP
is efficient enough in terms of provision costs.

The relationship between free and paid content peering and their connection
with the efficiency of ISP can be illustrated by looking at the dependence of
profit of content provider on the service price on Fig.1. The thin solid curve
shows the profit of content provider with infinite available capacity, while the
thick dashed line shows the case of limited capacity W, when only free content
peering is admitted by the content provider. Both curves coincide when the
price exceeds a certain level because the actual capacity needed for demand

68 A.A. Gaivoronski et al.

Dependence of profit of content provider on service price Revenue share of connectivity provider on price

no capacity bound
- - -free peering 0.9
50 —paid peering

profit of content provider
revenue share of connectivity provider
o
o

04
0.3
0.2
0.1
. 2 2 00 0.5 1 15 2 25 3 35 4
service price service price
Fig.1. Current cash flows and Fig. 2. Revenue share of ISP in paid
prospective cash flows peering

satisfaction becomes smaller than Wj. Both curves show a typical pattern of
dependence of profit on price: the sharp increase in the region of low prices
followed by slower decrease after attaining the maximal value.

The solid thick curve on Fig. 1 shows the case of paid content peering. It is
positioned between the first two curves, coinciding with them in the region of
high prices. Unlike the first two curves, it has a camel like appearance, having
two maxima. The first maximum is found in the region of lower prices where it
is profitable for content provider to resort to paid content peering, stimulating
demand by aggressive pricing and stimulating the ISP to expand capacity to
accommodate this demand. Another maximum is found in the region of the
higher prices, where the content peering is unprofitable and the content provider
admits only free content peering. For this reason in the region of higher prices
this curve coincides with the curve of free content peering.

Whether the paid content peering will be actually employed by the content
provider, depends on which of the to maxima is higher. One can see that on Fig. 1
the first maximum is indeed somewhat higher than the second one, so that it
is profitable in this case for the content provider to admit the paid content
peering because it yields about 6 % higher profit than the free peering. Figure 2
shows how the optimal share of the revenue accorded to the ISP changes with
the service price in this case. One can observe that this share drops with the
price increase because the demand decreases with the increase in price and less
capacity is needed for its satisfaction, resulting in less stimulation of the ISP by
the content provider. After the price passes a certain threshold it becomes no
more profitable for content provider to resort to paid content peering and the
share of the ISP abruptly drops to zero.

However, this advantage of paid peering exists only when the ISP is efficient
enough in terms of expansion and maintenance costs. With less efficient ISP the
left maximum drops below the right one which means that paid peering becomes
unattractive to CP.

Internet Service Provision and Content Provision 69

1 3
_09
5
S 08 25
g
g 0.7 2
So6 3
g &
805 815
5] E
004 8
2 1
203
E]
2
% 0.2 05
T o1
0 0,
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1 1.5 2 25 35 4
demand uncertainty demand elasticity
Fig. 3. Optimal revenue share of ISP Fig. 4. Dependence of service price
on demand uncertainty on demand elasticity

Dependence of Profits, Prices and Revenue Shares on Demand uncer-
tainty. Here we show that high demand uncertainty induces risk averse behavior
of content provider, caution with pricing and less interest towards paid peering.

We have studied the dependence of actor’s profits and policies on the dif-
ferent problem parameters: costs c, e, r, g, initial available capacity Wy, demand
parameters a, M, demand elasticity v and variability c. We show here these
dependencies on the demand uncertainty/variability o.

Figure3 shows the dependence of optimal content provider’s policy on
demand uncertainty. When the uncertainty increases the content provider tries
to hedge increasing risk by rising the price for his services. This has an effect of
decreasing the demand and, consequently, also decreasing the demand variability
and uncertainty as can be seen from the demand function (3). For low to mod-
erate levels of uncertainty the content provider utilizes the paid peering because
it is profitable to him to induce the ISP to expand the network capacity. In this
uncertainty range the revenue share accorded to ISP is approximately constant
and substantial. After the level of uncertainty passes a certain threshold the risk
inherent in expanding capacity becomes too high and content provider rises his
price substantially to limit the demand to already existing capacity, thus denying
the ISP from any share of his revenue.

The profit of content provider decreases with increasing uncertainty. This is
due to the combined effect of two causes. Firstly, the increase of price due to
the effort to reduce risk leads to decreasing demand that has as a consequence
contracted profits. Secondly, even for the constant demand the profit will decline
with the increase of uncertainty. This is because in order to serve the same per-
centage of demand the content provider needs more capacity when the variation
of demand increases. If, instead he lets the percentage of served demand to go
down then he gets penalized by the opportunity costs. At the same time he gets
the same or declining revenue because he get paid for the actual volume of ser-
vice. To the contrary, the profit of the ISP grows because he gets incentivated
more in order to install more capacity per unit of served demand. This is accom-
panied also by growth of his return on investment measured by the ratio of the

70 A.A. Gaivoronski et al.

I —— content provider

. 09 = = - connectivity provider
5
S 08
g
207
=3
806
< P
£ =
805 g
5
© 04
s
03 °
El
So2r -
goz L

0.1

o 15 2 25 3 35 4 o 15 25 35 4
demand elasticity demand elasticity

Fig.5. Revenue share of ISP on Fig. 6. Dependence of actors’ profits
demand elasticity on demand elasticity

profit and expansion costs. But, this happens only in the region of paid peering.
After the content provider switches to the free peering the profit of ISP abruptly
disappears and the profit of content provider continues to decline, albeit more
slowly, because no part of his revenue goes to the ISP.

Dependence of Profits, Prices and Revenue Shares on Demand elas-
ticity. Here we show that content peering is beneficial in the case of innovative
high elasticity services.

Demand elasticity v in the context of ICT services can be related to the
relationship between basic, established, traditional services and innovative new
services. For traditional services that cater to very basic communication needs
viewed as indispensable, the demand elasticity is low. For example, there is
considerable evidence in the literature that demand elasticity for the basic fixed
net telephony is only marginally larger than 1. For new, innovative services that
serve discretionary interests, like video on demand, demand elasticity can be
high, exceeding 2 or more.

Figures 4 and 5 show how the optimal policies of the content provider change
with increasing of the demand elasticity. If he caters to the basic services in the
low to medium elasticity range then he sets the price relatively high. There is
no need for paid peering in this elasticity range because the existing capacity is
sufficient for their provision. While elasticity increases and the service consump-
tion becomes more discretionary, the optimal price gradually drops. When the
elasticity crosses a certain threshold, it becomes more profitable to the content
provider to resort to paid peering in order to stimulate the ISP to install more
capacity and obtain the capability to drop the price substantially in order to
stimulate the demand. After the substantial initial drop the price continues to
decrease slowly as the elasticity grows. The share of revenue accorded to the ISP
starts from a relatively high level on crossing the threshold to paid peering and
continues to increase slowly afterwards.

The profit of the content provider shown on Fig. 6 decreases with increasing of
elasticity in the region of low to medium elasticities. This is because the decline

Internet Service Provision and Content Provision 71

.103 . 09
§ 0.6 g
; § 0.8
Z05 >07
8 =
8 H
g 04 é 0.6
5 05
g 0.3 004
73 @
% 02 %03
= 2
g g 0.2
5 0.1 15
g 0.1
0 0
1 15 2 25 3 35 4 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
demand elasticity expansion cost
Fig. 7. Return on investment of ISP Fig. 8. Revenue share of ISP on the
on demand elasticity network expansion and maintenance
cost

of prices is not offset sufficiently by increase of volume that remains capped by
already installed capacity Wy due to the absence of incentive to expand for the
ISP due to free peering. When the content provider switches to paid peering
the profit starts to grow with increasing elasticity because ever more capacity is
becoming available. Also the profit of the ISP grows with increasing elasticity in
the case of paid peering, even though not as steep as the profit of the content
provider, while his return on investment shown on Fig.7 decreases due to ever
larger volume of capacity required to install.

Dependence of Profits, Prices and Revenue Shares on the Network
expansion and Maintenance Costs. Here we come back to considering the
dependence of actors’ policies and profits on the efficiency of the ISP measured
by the sum of the network expansion and maintenance costs r + q.

Similarly to Sect.2.1, we observe that in the case of efficient ISP with low
to medium expansion costs it is profitable to the content provider to accept
paid peering. While the expansion costs of the ISP grow, he introduces less and
less of additional capacity for the same share of the content provision revenue
obtained. The content provider reacts to this in two ways. Firstly, he increases the
service price in order to make the demand match the smaller available capacity.
Secondly, he tries to incentivate the ISP more, transferring to him the gradually
increasing share of his revenue (Fig.8). Both these measures result in steep
decline of his profit.

3 Content Peering and Service Differentiation

In this section we consider the situation when the ISP offers several internet
provision services, which differ by the connection speeds and, consequently, dif-
fer by Quality of Experience (QoE) for the customers, which consume video
services with high bandwidth requirements. More specifically, the connection

72 A.A. Gaivoronski et al.

speed decreases substantially for the basic connection package users after they
exceed a specified download limit. Connection options without download limits
are also available, but for higher price. In addition, the ISP provides his own
content service in competition with existing video content providers (CP), but
this service is exempt from bounds on downloading. This policy of ISP chal-
lenges the principles of network neutrality because it treats differently the data
streams generated by similar services of different origin. It is similar to the policy
announced recently by Deutsche Telekom regarding its own video service versus
rival services like YouTube from Google, as described in [13].

We describe this situation by considering the population of customers to
which three services s;, i = 1 : 3 are offered. Each service is composed from two
components, which together create the QoE for the end user: content and con-
nectivity. Content can be provided by both ISP and CP, while the connectivity
is provided only by ISP. More specifically:

— Service s1, with content provided by CP. It is available to subscribers to the
basic Internet connectivity package for a flat price Cy with high speed V;
until download limit d is reached and low speed Va beyond this limit.

— Service s with the same content as in s; provided by CP. It is available
to subscribers to the enhanced Internet connectivity package for a flat price
Cy > (4 with high speed V; irrespective of download quantity.

— Service s3 with competing content to si, so provided by ISP. It is available to
subscribers to the basic connectivity package for a flat price C7, but the high
speed V1 is kept for this particular service without any download limit.

3.1 Service Selection by a Single Subscriber

Let us consider first services so and s3 taken in isolation. Suppose that p is a price
that respective providers charge for the unit of content measured in bandwidth.
Similarly to Sect. 2 we assume that demand d, generated by a single subscriber,
has a constant elasticity dependence on the service price

M .
dz(p)_(a+p)’yv 1_273 (7)
which conforms well with empirical data [12]. Here a < 1 is an opportunity cost
for customer, associated with consumption of service unit, M is proportional to
the income of subscriber, and v = ~; for service sy and v = 6 for service s3. We
assume that elasticity v describes the QoE, that is, the larger v the better is
the QoE. Indeed, with larger v the consumption grows faster with the decrease
in the service price and the limit consumption with p = 0 is higher, while for
small v the consumption will be low even for small prices. Thus, a service with
larger v is more attractive to consumers than a service with smaller . Let us
assume further that QoE for service s, is higher than QoE for s3. Indeed, they
are provided with the same connection speed and one can expect that content
of so is in average superior to content of s3 because content provision is a core

business of CP. Thus, we assume that v; > 6.

Internet Service Provision and Content Provision 73

—Service S1 —Service S1
= = =Service S3 = = =Service S2
"

Service S3

demand
demand

2 0.25 03 035 04 045 05
price price p1

Fig. 9. Demand functions for ser- Fig. 10. Dependence of population

vices s1 and s3 with y1 = 2,72 = 0.1, demand functions on price p; with

0=18 M=1,a=01,d=5 p2 =02, 71 =2, 72 =0.1, § = 1.8,
a=01,d=5

Let us consider now service s;. Until demand is smaller than d, it is the same
service as sq, therefore its demand function is described by (7) with v = ~;. After
demand exceeds d the connection speed drops, leading to substantially inferior
QoE. Therefore we describe the demand function of s3 when demand exceeds d
by (7) with v = 2, 72 < 8 < 1. This yields the following demand function

1
M if op > (M) -
d1(p)= (a+p)7L ! p—(d) a

M 1-22 772 7 .
W - M 1 dm + d otherwise

(®)

These demand functions are shown on Fig. 9.

So far we have considered these services in isolation. The next step is to
describe how a subscriber selects between these services, depending on their
respective prices. Let us assume that consumer subscribes for just one of the
services s;, 4 = 1 : 3 and follow the approach of consumption theory of microeco-
nomics [11]. This theory associates the consumption of service s; with individual
utility function of a consumer ; (p, d). He selects the amount d of service to con-
sume by maximizing this utility function with respect to d for given unit price
p. For a risk neutral consumer this utility function can be further structured as
follows:

¢i(p,d) =i (d) = (a+p)d-C 9)

where 9; (d) is utility of consumption of amount d of service s;, (a + p) d is the
cost of amount d of service and C' is subscription fee. Demand function d; (p)
is obtained from (9) by maximizing ¢; (p,d) with respect to d. Substituting
demand function d; (p) into ¢; (p,d) we obtain the maximal consumer utility
Gi (p) = i (p,d (p)) associated with consumption of service s; at price p. Having
these functions for each service s;, we can obtain the demand of consumer for
service s; by the following rule.

Consumption of services by single consumer. Suppose that services s, sy are
offered at unit price p; and service s3 is offered at unit price ps. Then

74 A.A. Gaivoronski et al.

— Find the highest value among 1 (p1),02 (p1),0s (p2), suppose that it is
attained for service sg.

— The demand dj, for service sy will be di (p1) if k = 1,2 and dj, (p2) if k= 3.
The demand for services s;, i # k is zero.

Observe that this operation of taking maximum between three utilities makes
demand d; = d; (p,C, M) for service s; dependent on both prices p = (p1,p2)
and both subscription fees C' = (Cy, Cy).

In order to implement this rule we need to know expressions for utilities
0 (p) and these are obtained from expressions for ¢; (p,d). These expressions
are obtained taking into account that demand functions d; (p) from (7), (8) are
obtained by maximization of (9). They are summarized in the following theorem.

Theorem 2. Suppose that demand functions d; (p), i = 2 : 3 are defined by (7).
Then functions 1; (d) from (9) that yield these demand functions are

141)
wz(d): 1_1%M’Yd1 ~ ’Lf 7#1771:2,3 (10)
Mlnd otherwise
1 M .
5, (p) _ =1 (atp) T C if y#1 (11)
! M <ln #p — 1) — C otherwise

with (v,C) = (71,C3) for i =2 and (v,C) = (0,C1) fori=3.

Functions 5 (d), 81 (p) are obtained similarly to (8) by gluing together at
1

point p = (%) 71 — g pieces of functions (10), (11) with v = 71, ¥2. This theorem

is proved by substitution of (10) into (9) and finding the maximum of obtained
function with respect to d.

3.2 Demand Functions of Population of Subscribers

In order to obtain these functions D; (p, C') for the population of subscribers from
demand functions d; (p, C, M) of individual subscribers let us recall that these
latter functions depend on parameter M from (7), which is a proxy for the income
of a given subscriber. Assuming that the subscriber income is representative of
the household income in a given country, we can recover the distribution H(y) of
parameter M from the national statistics. For example, data reported in [3] show,
that income of US households is approximated reasonably well by unimodal
distribution with piecewise linear density h(y), if we neglect the households in
the top 5% bracket.

0ify <0, y> (1+kn)M

2 : Y

h(y) = y(kM+1)M2 if 0<y<M
2 1 1
(Eam+1)M L+ kv yk?MM

) otherwise

Internet Service Provision and Content Provision 75

Here M is the maximal point of this density. This distribution is skewed to the
right with kj; ~ 5. Integrating the individual demand functions with respect to
this density we obtain the population demand functions and shares S; (p, C) of
subscribers to different services

Di=U / d; (p, C,) h(y)dy, S; = / L, (p.c b (9) . (12)

where U is the total number of customers and I, = 1 if z > 0 and zero otherwise.
Figure 10 shows an example of dependence of demand functions on p; for fixed
p2, which can be obtained through numerical integration.

3.3 Profit Maximization Problems for Actors

We assume here that the share of fixed subscription equal to the share of not sat-
isfied demand is lost. Then the satisfied demands Dj and respective subscription
shares S; can be expressed as follows

D+
D = min {Dy, max {0,w — Dy — D3}}, S = D—lSl
1

D+
D = min { Dy, max {0,w — D3}}, Si = D—QSQ
2

D+
D;‘ = min { D3, w}, S;‘ =33
D3

Similarly, we define nonsatisfied potential demand and missing subscription
shares for i =1: 3 as

Let us define the following opportunity costs resulting from not meeting potential
demand and possible churn

ey - opportunity cost for CP for not meeting potential demand for services
S1,82

eo - opportunity cost for ISP for not meeting potential demand for service s3

g; - opportunity cost for ISP for not meeting subscriptions for service s;

Besides we have

¢y - provision cost for CP for provision of content for services s1, so

¢y - provision cost for ISP for provision of content for service sg

The service provision revenue of CP is

Rcp = Rep (p,C,W) = p1 (DY + DY)

and we assume that share x of this revenue CP transfers to ISP in the context of
paid content peering. Then the profit of content provider is expressed as follows

Pep=(p1(1—2)—c1) (DY + DF) — ey (Dy +D3) (13)

76 A.A. Gaivoronski et al.

~

——CP profit
- - -ISP profit

@
o
©

>

o

@
‘

S
o
2

i
o
@

subscription fee s2

o o o

2 5 & o
profit

o o o o

U

)
iy
o

0 0.1 02 03 04 05 06 (] 0.1 02 03 04 05 06
peering share peering share

Fig. 11. Dependence of subscription Fig.12. Dependence of actor’s
fee for service sz on paid peering profit on paid peering share
share

The revenue of ISP consists of revenue for provision of service sz, subscription
revenue and transfer of revenue from CP:

Risp =paDi + Cy (ST + S5) 4+ C2S55 + pra (DY + DY)

and its profit is equal to revenue minus provision, opportunity, expansion and
maintenance costs:

3
Prsp = Risp — oD — ea Dy — Zgz’S{ W —qg(Wo+W) (14
i=1

System governance. In order to evaluate the possible impact of the paid
content peering, we assume again that CP moves first, exercising his superior
market power, selects price p; for his content and share z (if any) of his content
provision revenue that he voluntarily transfers to ISP. ISP responds by selecting
capacity expansion program W = W (x,p;), price for his content ps = pa(z,p1)
and subscription fee Cy = Ca(x, p1) by solving the profit maximization problem

P, C,W). 15
W{rpli)éQ ISP(xvpa)) ()

Anticipating these decisions of ISP, the CP selects his decisions (p1,) by max-
imizing his profit

ma'XPCP (xapa Caw(xapl)) | b2 = pQ(xapl)a CQ = CZ(xapl) (16)

p1,T

Thus, this is again the leader-follower Stackelberg game [14].

3.4 Some Results

We have solved the problems (15), (16) for different values of problem parame-
ters, always keeping the attractiveness of content of the service s3 provided by

Internet Service Provision and Content Provision 7

ISP smaller than for the content of services s1, so provided by CP. The patterns
obtained in the simpler case of a single service from Sect. 2 were confirmed and
additional patterns emerged, regarding the impact of paid content peering on
the degree of network neutrality. The main findings are the following.

1. ISP has an incentive to extract additional subscription fee for allowing cus-
tomers to have the similar QoE for content provision service of CP as for his
own content service. Thus, in the absence of regulation the network neutrality
will be challenged (see Fig. 11). However, the extent of violation of network
neutrality can be reduced substantially by resort to paid content peering. The
difference between subscription fees can be halved, as shown on Fig. 11.

2. This increase of grade of network neutrality happens in parallel with increase
in profit for both actors. One can see on Fig. 12 that profit of CP increases
substantially with the share of content provision revenue accorded to ISP in
the range of 0.3-0.4, compared to the absence of such share.

4 Conclusion

We have developed several game theoretical models for analysis of relationship
between ISPs and content providers in Internet ecosystem. These models were
used for analysis of paid versus free content peering and analysis of relationship
between peering and network neutrality. We have shown that content peering can
be mutually beneficial to content and ISPs even when the content provider has
the market power to force the ISP to accept free content peering. We have pro-
vided an insight as to when this will happen: efficient enough ISP, not excessively
high demand uncertainty /variability and innovative new services with high price
elasticity. We have shown also that paid peering removes part of the incentive
to challenge the principle of network neutrality.

References

1. Altman, E., Legout, A., Xu, Y.: Network non-neutrality debate: an economic analy-
sis. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.)
NETWORKING 2011, Part II. LNCS, vol. 6641, pp. 68-81. Springer, Heidelberg
(2011)

2. Atzori, L., Tera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787-2805 (2010)

3. Bureau, U.C.: Current Population Survey. Annual Social and Economic Supple-
ment (2011)

4. Cheng, H.K., Bandyopadhyay, S., Guo, H.: The debate on net neutrality: a policy
perspective. Inf. Syst. Res. 22(1), 60-82 (2011)

5. Economides, N., Tag, J.: Network neutrality on the internet: a two-sided market
analysis. Inf. Econ. Policy 24(2), 91-104 (2012)

6. Kramer, J., Wiewiorra, L., Weinhardt, C.: Net neutrality: a progress report.
Telecommun. Policy 37, 794-813 (2013)

7. Krogfoss, B., Sofman, L., Weldon, M.: Internet architecture evolution and the
complex economies of content peering. Bell Labs Tech. J. 17(1), 163-184 (2012)

78

10.

11.

12.

13.
14.

15.

A.A. Gaivoronski et al.

Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: SIGCOMM 2010, New Delhi, India, pp. 75-86 (2010)
Liebenau, J., Karrberg, P., Elaluf-Calderwood, S.: A Critical Analysis of the Effects
of Internet Traffic on Business Models of Telecom Operators: A White Paper of
the Lse-etno Research Collaboration Programme. The London School of Economics
and Political Science, London (2011)

Maille, P., Tuffin, B.: Telecommunication Network Economics: From Theory to
Applications. Cambridge University Press, Cambridge (2014)

Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Uni-
versity Press, New York (1995)

Mitra, D., Ramakrishnan, K.G., Wang, Q., Combined economic modeling, traf-
fic engineering: joint optimization of pricing and routing in multi-service net-
works. In: Proceedings of 17th International Teletraffic Congress, Salvador, Brasil,
Amsterdam. Elsevier (2001)

O’Brien, K.J.: Limiting Data Use in Germany. The New York Times, Berlin (2013)
Stackelberg, H.V.: The Theory of Market Economy. Oxford University Press, Lon-
don (1952)

Wyatt, E., Cohen, N.: Comcast and Netflix Reach Deal on Service. The New York
Times, New York (2014)

Security Requirements in a Federated Cloud
Networking Architecture

Philippe Massonet'®™) Anna Levin?, Antonio Celesti®, and Massimo Villari®

L Cetic, Charleroi, Belgium
philippe.massonet@cetic.be
2 HLR, IBM Haifa, Haifa, Israel
lanna@il.ibm.com
3 DICIEAMA, University of Messina, Messina, Italy
{acelesti,mvillari}@unime.it
http://wuw.beacon-project.eu/

Abstract. Cloud federation enables cloud providers to collaborate in
order to create a large pool of virtual resources at multiple network
locations. Different types of federated cloud architectures have been pro-
posed and implemented up to now. In this context, an effective, agile
and secure federation of cloud networking resources is a key aspect for
the deployment of federated applications. This paper presents the pre-
liminary security requirements analyzed in the H2020 BEACON Project
that aims at researching techniques to federate cloud network resources
and defining an integrated cloud management layer that enables an effi-
cient and secure deployment of federated cloud applications. The paper
analyses both how to protect the cloud networking infrastructure, and
how cloud users can customize the network security for their distributed
applications.

Keywords: Cloud computing * Federation - SDN - NFV - Security

1 Introduction

Federation enables cloud providers to collaborate and share their resources to
create a large pool of virtual resources placed in multiple network locations.
Different types of federated architectures for clouds and datacenters have been
proposed and implemented so far (e.g., let us thing about cloud bursting, cloud
brokering, and cloud aggregation architectures) with different levels of resource
coupling and interoperability among resources, from loosely coupled to tightly
coupled federation, according to the mechanisms that are involved to share
resources. Typically tightly coupled approaches require more invasive mecha-
nisms than loosely coupled ones. In this context, tenants (i.e., societies using
federated cloud networking services) require to deploy their applications on mul-
tiple federated cloud providers. For this reason, an effective, agile and secure fed-
eration of cloud networking resources is fundamental to address the deployment
of federated cloud applications. In order, to analyse the security requirements of

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 79-88, 2016.
DOI: 10.1007/978-3-319-33313-7_6

80 P. Massonet et al.

federated cloud networking architectures, in this paper, we focus on the Horizon
2020 BEACON project. The main goal of BEACON is two-fold: (i) research and
develop techniques to federate cloud networking resources; (4i) define a cloud
management layer that enables an efficient and secure deployment of federated
cloud applications.

The paper is organized as follows. In Sect. 2, we briefly describe the BEACON
architecture used as model to analyse the security requirements of a federation-
enabled cloud networking system. In Sect. 3, we provide a security analysis con-
sidering both infrastructure and application levels. In Sect. 4, we discuss how to
protect a virtual network infrastructure. In Sect. 5, we discuss how can be pos-
sible to achieve cross-cloud overlay network protection. In Sect. 6, we compare
the BEACON security requirements with respect to other initiatives. Section 7
concludes the paper.

2 BEACON Overview

In this Section, we provide an overview of the BEACON federated architecture
on which our security analysis is based. Figure 1 shows the BEACON federated
architecture. The three main components are: the service manager, the cloud
manager and the network manager. The Service Manager is responsible for the
instantiation of distributed federated services. Each service component is typi-
cally deployed in a Virtual Machine (VM) according to a particular service man-
ifest. The Cloud Manager is responsible for the placement of VMs into physical
hosts. It receives requests from the Service Manager through the cloud interface
in order to create and manage VMs and it finds where the best placement for
these VMs is, satisfying a given set of constraints The Cloud Manager is free
to place and move VMs anywhere, even on remote clouds within the federation,
as long as the placement is done according to constraints. The Network Man-
ager is responsible for allocating network resources to manage federated cloud
virtual overlay networks across geographically distributed sites. Figure 1 shows
two cloud stacks running on different cloud providers. Together they form a
cloud federation. The middle part of the Figure shows that the Cloud Manager
and Network Managers of the two cloud providers communicate to share feder-
ated resources. The top part of Fig. 1 shows two application level case of studies
respectively focusing on flight schedule and cloud orchestration federated cloud
applications. The bottom part of the figure shows the open source projects that
are used to implement the federated architecture. The architecture has to man-
age cloud providers based on heterogeneous pieces of middleware. For example,
the cloud provider on the left part of the picture is using OpenNebula, whereas
the cloud provider on the right part is using OpenStack to manage its cloud
infrastructure. The network managers of both cloud providers are both using
the Open Virtual Network (OVN) technology to manage the network resources
and communications between the two cloud providers by means of different Soft-
ware Defined Networking (SDN) overlay networks.

Security Requirements in a Federated Cloud Networking Architecture 81

Use Case 1 Use Case 2 | |
! NAEEE
J | |
9 [[|
Service Service
Manager [ELET T
: / X
Cloud Cloud
Manager Manager
Network Network
Manager OVN Manager
,
OpenNebulQ SDN Overlay Networks n OpenSta(

Fig. 1. BEACON federated architecture.

3 Security Analysis on the Federated Cloud Networking
Architecture

Security issues are considered at both Cloud Manager and Network Manager lay-
ers. In addition, for each layer, we considered both infrastructure and application
level security requirements. Infrastructure level security deals with securing the
cloud infrastructure services provided by the Cloud Manager and the Network
Manager, and protecting them from an unauthorized access of applications and
users. Application level security deals with the security of the application when
it is deployed in federated clouds. In our opinion, even the security requirements
of the application level needs to be studied at both the Cloud Manager and Net-
work Manager layers. In the following, we review the four categories of security
issues that we identified.

3.1 Application Security at the Cloud Manager Layer

It involves the provisioning of security services from the Cloud Manager to appli-
cations. The Cloud Manager can provide security services for VMs such as an
application level firewall service or a vulnerability analysis service. The applica-
tion can also choose to deploy these services by itself. For example, an applica-
tion can request that a vulnerability analysis has to be performed continuously
on a given VM or could request that all HI'TP traffic has to be analysed by
application level firewall rules for a given HT'TP session.

3.2 Application Security at the Network Manager Layer

It involves the provisioning of security services from the Network Manager to
applications. The Network Manager can provide network level security services.

82 P. Massonet et al.

Applications have to provide their requirements according the network security
services that they intend to use. The Network Manager will deploy and pro-
vide the security services as Network Functions Virtualization (NFV) and/or
Sequential Function Chart (SFC). This allows applications to select the right
combination of network security services to meet their security requirements.
For example, the application may request either to apply network firewall rules
on one or more overlay networks, to request a vulnerability analysis at the net-
work layer, or to apply network intrusion detection to the application network
traffic.

3.3 Infrastructure Security at the Cloud Manager Layer

It involves the provisioning of security services to secure the Cloud Manager.
The threats to the Cloud Manager are both external and internal in nature. The
Cloud Manager needs to be protected from unauthorised users who could try to
access the Cloud Manager even though they are not authorised. Threats may
also originate from internal sources. Internal threats come from authorised users
deploying applications in the cloud. In this case the Cloud Manager must ensure
a sufficient level of isolation of applications in the multi-tenant environment of
the federated cloud infrastructure. This requires an in-depth analysis on how to
secure the complete VM deployment lifecycle by the federated cloud infrastruc-
ture management, including issues related to credentials management. Internal
threats can also come from the Cloud Manager layer of a provider that might
try to access the federated applications instantiated by other providers without
proper authorizations.

3.4 Infrastructure Security at the Network Manager Layer

It involves the provisioning of security services to secure the Network Manager.
The main components of the virtual networks need to be secured. For example,
the control plane of federated virtual networks need to be protected from appli-
cations. Another security challenge regards how to ensure a sufficient level of
isolation and encryption of network traffic by automating the provisioning and
configuration of secure on-demand SDN according to given security level agree-
ments. From a security perspective, federated cloud networking provides the
opportunity to monitor the virtualized compute, storage, and network resources
across a federation. This provides opportunities to detect attacks to the federa-
tion level that could not be detected at an individual Cloud Manager layer. We
can identify many security issues having a global picture of services deployed and
executed in several federated clouds. The security issues that we are considering
range from Intrusion Detections, to vulnerabilities scanning, even to distributed
denial of service (DDoS) attacks. For example, DDoS attacks might be difficult
to be detected by monitoring activities within a single cloud. However, DDoS
attack patterns could be detected earlier by monitoring data coming from the
cloud federation. In this context, enhanced monitoring capabilities provided by
federated cloud networking systems can improve the detection of security threats.

Security Requirements in a Federated Cloud Networking Architecture 83

4 Protecting the Virtual Network Infrastructure

In this Section, we discuss an access control system integrated into the generic
federated cloud networking architecture depicted in Fig. 2. The main components
of the networking architecture are the Federation SDN Management (MG), the
Federation Agent (FA) and the Federated Data Path (DP). Each of these compo-
nents has an Application Program Interface (API) that needs to be protected. In
the following, we analyse how to protect these APIs in terms of access control.
More specifically, our analysis focuses on these three main networking-related
components and how their respective public APIs are protected. For simplicity,
we assume that internal APIs will be protected by the local domain security
policies. For this reason their description is out of the scope of this paper. The
Federated SDN MG interacts with the FAs that are distributed in different
federated clouds through public REST APIs. Each FA is connected to the SDN
controller of its cloud. This connection does not need to be protected from exter-
nal attacks because it is internal to the cloud. The south bound FA API allows
the FA to configure the network forwarding rules in the Federated DP. The latter
is responsible to query the corresponding FA when information is missing. All
the collected pieces of information are stored by the Federated DP in forwarding
tables that track network segments (e.g., VPN) among different federated cloud
providers’ sites. Since the FA-to-Federated DP interaction is made within the
same domain it does not need to be protected from external attacks. An access
control component may be integrated either within the Federated SDN MG or
distributed among the different federated clouds. It depends on the fact if the
federation is tightly coupled or loosely coupled. Figure2 shows a cloud federa-
tion scenario where the Federated SDN MG is protected by an access control
Policy Enforcement Point (PEP) and a Policy Decision Point (PDP) as well as
a security policy database. The access control component also protects the FA
API. In particular, Fig.2 shows an example of cloud federation including two
cloud sites where two network segments have been connected with an overlay
network: network segment “123” from site 1 with “321” from site 2, and network
segment “456” from site 1 with “654” from site 2.

5 Customizing Overlay Network Protection
for the Deployment of Federated Applications

As previously discussed, in order to secure a federated networking application
deployed in multiple federated clouds, a few security considerations have to be
analysed at both the Cloud Manager and Network Manager layers. To this end,
an application service manifest should specify the required security services that
have to be provided by both Cloud and Network Manager layers to ensure that
the federated cloud system meets the security requirements of the deployed fed-
erated cloud application. In doing that, the security requirements for the Cloud
Manager must be separated from the security requirements for the Network Man-
ager. In fact, these security requirements must be separately passed respectively

84 P. Massonet et al.

Federated SDN MG

123 VMA@H1 E . ecurity
Pollc /—\(_\
I vmz@m

123 321
SDN 456 | 654

Controller1 . - S

& = = = »\® fFederation Agent lq--.... Controller2
A

VRN i H2

$ 2222

172.25.8.241 172.25.8.246 vm2

Site1 Site2
172.25.8.242 172.25.8.119

Fig. 2. Access control architecture.

to the Cloud Manager and Network Manager for enforcement. To this end, the
security requirements must be translated into the appropriate security policies
for the Cloud and Network Manager layers. This implies the Network Manager
analyses of the considered pieces of middleware (e.g., OpenNebula, OpenStack,
etc.) in order to design how they can exchange security policies. Another issue
that has to be analysed is related to the location of the network services, e.g., to
define which NFV firewall must be used when several are available. In addition,
even the security mechanisms that allow VM migration within a federated cloud
scenario have to be planned. In the following, we describe how to specify security
templates for security functions and how to implement network security services
as NFV.

5.1 Specifying Security Templates for Security Functions

In the following, we discuss how the service manifest could be extended to specify
required network security services. The network security requirements could be
passed to the Network Manager layer in order to customize the security services
of each overlay network according to the security requirements of the application.
Different applications have different security requirements on the environment in
which they are executed, i.e. in this case the cloud, both in terms of computing
and network resources. Commonly, it is difficult for a cloud provider to customize
the physical infrastructure according to the applications’ requirements of their
individual clients. In this context the rapid evolution of network virtualisation

Security Requirements in a Federated Cloud Networking Architecture 85

technologies is simplifying things. For example, SDN and other network virtual-
isation technologies allow providers to customize virtual networks according to
application requirements.

Cloud deployment requirements for applications have to be specified in the
service manifest. The service manifest identifies the different application com-
ponents, how they should communicate and how they should be deployed. The
service manifest also specifies the Quality of Service (QoS) and security require-
ments. Figure 3 shows how the service manifest for an application is passed from
a user to the cloud provider for the deployment of a federated application. The
service manifest is parsed by the Service Manager that extracts security require-
ments and forwards them to the Cloud and Network Managers. The latter can
use the network level security requirements to customize the security of the
overlay network that is provisioned on-demand for the application.

Internet

Fig. 3. Network security policies.

5.2 Implementing Network Security Services as NFV

Hereby, we discuss how the Network Function Virtualisation (NFV) and Service
Function Chaining (SFC) technologies might be used to deploy virtualised net-
work security services and mash-up them to provide the required level of network
security for each application overlay network. Figure4 shows how the security
of overlay networks belonging to user A and B can be customised. NF'V security
services such as firewall (1), deep packet inspection (2) or intrusion detection (3)
are deployed on the NFV infrastructure. The network security requirements of
each distributed application are passed to the SDN controller. In order to meet
the security requirements of the application, the SDN controller will set up each
overlay network so that network traffic is routed through the required security
services. For example, user A requires his/her network traffic to pass through
security services (1) and (2) before leaving the cloud, whereas User B requires
his network traffic to pass through security services (2) and (3) before leaving
the cloud.

86 P. Massonet et al.

Virtualized
network
functions

o—
Securit

—

Controller
Securit

Ihternet

Security Services

- Firewall

- Deep packet inspection
- Intrusion detection

Fig. 4. NFV infrastructure with SFC.

6 Related Work

Cloud federation is a widely debated topic. In fact, there are many scientific
works focusing on different fields including energy efficiency [1], storage [2], Assis-
tive Technology [3], dataweb [4] and so on. A requirement analysis of federated
Infrastructure as a Service (IaaS) clouds is discussed in [5], nevertheless the
authors do not focus on security and virtual networking technologies. In [6], the
authors analyse the main security threats for cloud computing infrastructures, as
well as proposing a novel architecture in charge of reacting to security attacks in
Infrastructure as a Service platforms. The basic idea is to migrate the attacked
virtual appliance and to reconfigure the network by means of Software Defined
Networking approach. The overhead due to data encryption in a message ori-
ented middleware for cloud federation is discussed in [7]. A remote attestation
approach to mitigate threats in cloud mush-up services is discussed in [8].
Currently, there are not so many scientific works focusing on federated cloud
networking architectures. SDN enables the administrators to configure network
resources very quickly and to adjust network-wide traffic flow to meet changing
needs dynamically. However, there are some challenges for implementing a full-
scale carrier SDN. One of the most important challenges is SDN security [9]. In
[10], the authors design open-flow specific security solutions and propose a com-
prehensive security architecture to provide security services such as enforcing
mandatory network policy correctly and receiving network policy securely for
SDN. In [11], an Orchestrator-based architecture that utilizes Network Monitor-
ing and SDN Control functions to develop security applications is proposed. In
[12], the authors analyse the security attributes of the SN-Security Architecture
(SN-SECA). In [13], the authors propose a network security approach which is
aware of all existing systems and services hosted by at least one cloud provider.

Security Requirements in a Federated Cloud Networking Architecture 87

The main idea is to maintain a logically centralized database that provides latest
security related information about each system or service.

7 Conclusion

In this paper, we presented the main security requirements of a federated cloud
networking architecture analysed in the Horizon H2020 BEACON project. The
project aims to provide a homogeneous virtualization layer, on top of heteroge-
neous underlying physical networks, computing and storage infrastructures, even
providing enablement for automated federation of applications across multiple
clouds.

In particular, we first presented the reference federated networking architec-
ture and then, we provided a security analysis of the major requirements. In
addition, we discussed how the public interfaces of both Cloud and Network
Manager layers should be protected. The paper also described how the over-
lay networks can be configured according to particular service manifests for the
deployment of federated applications. In future works, we plan to optimize the
impact of the security for the deployment of federated applications.

Acknowledgment. This research was supported by the European Union’s Horizon
2020 Research and Innovation Programme Project BEACON under Grant Agreement
No. 644048.

References

1. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Towards energy
management in cloud federation: a survey in the perspective of future sustainable
and cost-saving strategies. Comput. Netw. 91, 438-452 (2015)

2. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208-218 (2016)

3. Mulfari, D., Celesti, A., Villari, M.: A computer system architecture providing
a user-friendly man machine interface for accessing assistive technology in cloud
computing. J. Syst. Softw. 100, 129-138 (2015)

4. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How the dataweb can support
cloud federation: service representation and secure data exchange. In: 2012 Second
Symposium on Network Cloud Computing and Applications (NCCA), pp. 73-79
(2012)

5. Panarello, A., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: A requirements-
analysis for IaaS cloud federation. In: Proceedings of the 4th International Confer-
ence on Cloud Computing and Services Science, pp. 584-589 (2014). doi:10.5220/
0004945705840589. ISBN:978-989-758-019-2

6. Carrozza, G., Manetti, V., Marotta, A., Canonico, R., Avallone, S.: Exploiting
SDN approach to tackle cloud computing security issues in the ATC scenario. In:
Vieira, M., Cunha, J.C. (eds.) EWDC 2013. LNCS, vol. 7869, pp. 54—60. Springer,
Heidelberg (2013)

http://dx.doi.org/10.5220/0004945705840589
http://dx.doi.org/10.5220/0004945705840589

88

10.

11.

12.

13.

P. Massonet et al.

Celesti, A., Fazio, M., Villari, M.: Se clever: a secure message oriented middleware
for cloud federation. In: IEEE Symposium on Computers and Communications
(ISCC), pp. 35-40 (2013)

Celesti, A., Fazio, M., Villari, M., Puliafito, A., Mulfari, D.: Remote and deep
attestations to mitigate threats in cloud mash-up services. In: World Congress on
Computer and Information Technology (WCCIT), pp. 1-6 (2013)

Scott-Hayward, S., O’Callaghan, G., Sezer, S.: SDN security: a survey. In: 2013
IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1-7 (2013)

Hu, Z., Wang, M., Yan, X., Yin, Y., Luo, Z.: A comprehensive security architecture
for SDN. In: 18th International Conference on Intelligence in Next Generation
Networks (ICIN), pp. 30-37 (2015)

Zaalouk, A., Khondoker, R., Marx, R., Bayarou, K.: Orchsec: an orchestrator-
based architecture for enhancing network-security using network monitoring and
SDN control functions. In: IEEE Network Operations and Management Sympo-
sium (NOMS), pp. 1-9 (2014)

Bernardo, D., Chua, B.B.: Introduction and analysis of SDN and NFV security
architecture (SN-SECA). In: IEEE 29th International Conference on Advanced
Information Networking and Applications (AINA), pp. 796-801 (2015)

Seeber, S., Rodosek, G.: Improving network security through SDN in cloud sce-
narios. In: 10th International Conference on Network and Service Management
(CNSM), pp. 376-381 (2014)

W4S4F1 Workshop Papers

Preface of WAS4FI 2015

The Future Internet has emerged as a new initiative to pave a novel infrastructure
linked to objects (things) of the real world so as to meet the changing global needs of
business and society. It offers Internet users a standardized, secure, efficient, and
trustable environment, which allows open and distributed access to global networks,
services, and information. There is a need for both researchers and practitioners to
develop platforms made up of adaptive Future Internet applications. In this sense, the
emergence and consolidation of service-oriented architectures (SOA), cloud computing
wireless sensor networks (WSN), and the new paradigm fog computing, give benefits,
such as flexibility, scalability, security, interoperability, and adaptability for building
these applications.

WASA4FI encourages a multidisciplinary perspective and welcomes papers that
address challenges of Future Internet applications. The participation of researchers and
practitioners from academia and industry is encouraged in order to promote
cross-community interactions thereby avoiding disconnection between these groups.
As the proud Organizing Committee and chairs of the Sth International Workshop on
Adaptive Services for the Future Internet, we would like to take this opportunity to
welcome you to the proceedings of WAS4FI 2015.

In this fifth edition, WAS4FI again aimed to bring together the community at
ESOCC and addresses different aspects of adaptive Future Internet applications,
emphasizing the importance of governing the convergence of contents, services, things,
and networks in order to achieve the building of platforms for efficiency, scalability,
security, and flexible adaptation. In this workshop, we cover the foundations of the
aforementioned technologies as well as new emerging proposals for their potential in
Future Internet services. To promote collaboration, WAS4FI has a highly interactive
format with short technical sessions complemented by discussions on adaptive services
in the Future Internet applications.

The broad scope of WASA4FI is reflected in the wide range of topics covered by the
workshop, and the 21 members of the WAS4FI Program Committee from both aca-
demic and industrial research labs. During the workshop, four papers (three long and
one short) were presented:

e “A Lightweight Method for Analyzing Performance Dependencies Between Ser-
vices,” by Arjan Lamers and Marko Van Eekelen (long paper). In this paper, the
authors propose a methodology to describe and analyze performance dependencies
between services.

e “Adaptive Architectural Model for Future Internet Applications,” by Luigi Alfredo
Grieco, Marina Mongiello, Massimo Sciancalepore, and Elvis Vogli (short paper).
This paper proposes a model for runtime composition of software applications in
sensors networks based on data, processes, and technology to design on the fly and
architectures of a software system.

Preface of WAS4FI 2015 91

e “Automated Prediction of the QoS of Service Orchestrations: PASO at Work,” by
Leonardo Bartoloni, Antonio Brogi and Ahmad Ibrahim (long paper). In this paper,
the authors illustrate the practical usefulness of a probabilistic analyzer of service
orchestrations (PASO) by showing how it can be exploited to predict the QoS of
service orchestrations.

e “A Workflow Service Mediator for Automated Information Processing and
Scheduling Delivery to an Archive,” by Salvatore D’Antonio, Giuliano Gugliara,
Carlo Francesco Romano, and Luigi Romano (long paper). This paper describes a
service mediator that addresses real-life digital preservation problems and an
overview of the project’s progress to date.

We believe this workshop was an enjoyable and productive opportunity for
attendees to meet and discuss various adaptive services and Future Internet issues with
their counterparts from other countries and other industrial segments.

We would like to thank all the people who contributed to make this workshop a
reality, including the WAS4FI Program Committee, the ESOCC 2015 Workshop
Organizers, Philipp Leitner and Antonio Celesti, and all the presenters, authors, and
participants.

Javier Cubo

Juan Boubeta-Puig
Winfried Lamersdorf
Nadia Gamez

Marc Oriol

Organization

Organizing Committee

Javier Cubo

Juan Boubeta-Puig
Winfried Lamersdorf
Nadia Gamez

Marc Oriol

Program Committee

Marco Aiello

Vasilios Andrikopoulos
Antonio Brogi

Florian Daniel

Valeria de Castro
Gregorio Diaz
Schahram Dustdar
Laura Gonzalez
Alberto Lluch Lafuente
Massimo Mecella
Andreas Metzger
Claus Pahl

Ernesto Pimentel
Pascal Poizat

Franco Raimondi
Gustavo Rossi

Romain Rouvoy
Quanzheng Sheng
Massimo Tivoli
Gianluigi Zavattaro

University of Malaga, Spain
University of Cadiz, Spain
University of Hamburg, Germany
University of Malaga, Spain
University of Pisa, Italy

University of Groningen, The Netherlands
University of Stuttgart, Germany
University of Pisa, Italy

University of Trento, Italy

Universidad Rey Juan Carlos, Spain
Universidad de Castilla La Mancha, Spain
Vienna University of Technology, Austria
Universidad de la Republica, Uruguay
Technical University of Denmark, Denmark
University of Rome La Sapienza, Italy
University of Duisburg-Essen, Germany
Dublin City University, Ireland
University of Malaga, Spain

Université Paris Ouest, France
Middlesex University, UK

Universidad Nacional de La Plata, Argentina

University of Lille 1, France
The University of Adelaide, Australia
University of L’Aquila, Italy
University of Bologna, Italy

A Lightweight Method for Analysing
Performance Dependencies Between Services

Arjan Lamers'? and Marko van Eekelen?3(®™)
! First8 BV, Nijmegen, The Netherlands
a.lamers@first8.nl
2 Open University of the Netherlands, Heerlen, The Netherlands
3 Radboud University Nijmegen, Nijmegen, The Netherlands
marko@cs.ru.nl

Abstract. For many applications, performance is paramount. For exam-
ple, to improve conversion rates in e-commerce applications or to comply
with service level agreements. Current trends in enterprise level archi-
tecture focus on designing and orchestrating services. These services are
typically designed to be functionally isolated from each other up to a
certain degree. During the design phase as well as when the application
is deployed, choices have to be made how services interact and where
they need to be deployed. These choices have a profound impact on
the responsiveness of an application as well as on which performance
can be made. In this paper we propose a methodology to describe and
analyse performance dependencies between services. The resulting model
can then be used to assist in designing a service oriented architecture and
improving existing solutions by pointing out performance dependencies
of services.

Keywords: Services * Deployment - Architecture - Design

1 Introduction

Current trends in enterprise level architecture are focused on delivering true
components. Service Oriented Architecture (SOA) and Microservices are trends
that aim at delivering components (services) [7,8,14,16] that can be used as
ready-made parts. Building software products should then become a matter of
orchestrating these services. A service in SOA is defined by OASIS [14] as a
mechanism to enable access to one or more capabilities, where the access is pro-
vided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the service description. Typically services are grouped
together in a domain and each domain is isolated to some degree from other
domains. This degree of isolation can mean that different domains are managed
by different companies or departments, that they are hosted in different data
centres, on different machines or that they don’t share e.g. the same database
schema. This degree of isolation has profound impact on the resulting software
© Springer International Publishing Switzerland 2016

A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 93-110, 2016.
DOI: 10.1007/978-3-319-33313-7_7

94 A. Lamers and M. van Eekelen

product: it impacts how software changes can be managed but also has an effect
on performance issues [11] such as latency and scalability.

The main goal of the methodology described in this paper is to analyse
performance dependencies of services in an architecture. In general, not all parts
of an architecture have the same performance constraints. Some areas can be
more focused on latency, others on throughput. Some services may be governed
by a service level agreement (SLA) while others are less business critical. If
parts of a system can be isolated and have their own constraints, the resulting
product can be simpler and cheaper. Moreover, to be able to guarantee that
a specific part of a system has a certain level of performance, it cannot be
influenced by parts of the system that are not under full control (e.g. public
APT’s). This method does not attempt to quantify performance aspects; doing
so would require a detailed knowledge on the actual implementation. These are
either not yet known (in the design phase) or prone to change due to functional
or hardware changes. Furthermore, not all services may be owned by the owner
of the architecture or are exposed to third parties. For example, traffic on public
APT’s might be possible to be estimated, but in the event of marketing campaigns
or DDOS attacks, these averages are not representative anymore. In these events,
even a low order relationship between the API and other services might still be
enough to degrade the system performance as a whole. It emphasises latency
(responsiveness) although it reveals information about throughput bottlenecks
as well.

The method has been used by the author at different stages of various
projects. During design it helped to determine how to design interaction between
services as well as to define domain boundaries. It was also helpful with inves-
tigating performance problems in an existing architecture. Proposed changes
were again validated using the model. Fellow architects in those projects were
able to quickly explain performance issues more concisely using the methodol-
ogy without having to invest in expensive tests or complex modelling. Business
stakeholders were able to understand performance consequences of decisions and
understand the reasoning behind the proposed changes. The methodology gives
a more concise and formal output than the ‘gut feeling’ that a proposed change
might improve the performance of an architecture.

The model assumes a given set of services. Higher level abstractions such as
processes, or lower abstractions such as components are all flattened to basic
services. By modelling the way the services interact it is possible to predict
potential performance issues and solve them. It also helps in determine which
services can be grouped together from performance point of view and as such can
help in (re)defining domains. The interaction between services is described by
making a distinction between a flow of information and a flow of initiative: is the
information pushed or pulled? Rather than focusing on describing an algorithm
or optimising a protocol between services, the method focuses on questioning
if two services should be connected at all and, if so, which service should take
initiative. In any sufficiently complex architecture, information can take a signif-
icant amount of time to travel through the system. Optimising that information

A Lightweight Method for Analysing Performance Dependencies 95

latency while at the same time managing performance constraints is not trivial.
The method first focuses on trying to solve this issue on the architecture level.
The proposed abstraction is simple enough to allow discussion between software
architects and domain experts, negotiating on performance aspects, while still
expressive enough to meaningfully guide an architecture. Local optimisations
can follow afterwards.

The methodology consists of three steps. First an architecture is defined in
Sect. 2. This describes the services and their interactions. Also, isolation con-
straints can be formulated. Next, these services have to be run on machines,
potentially having more than one instance of a service. This is described in
the deployment allocation (Sect.3) of the model. In Sect.4 managing state is
discussed. Based on the resulting optionality of connections, this deployment
allocation can be configured by choosing which connections between machines
are optimal. This results in a deployment configuration as described in Sect. 5.
In each step, the isolation constraints of a service can be verified.

2 Architecture Layer

2.1 Service Interaction

In SOA, services are consumed by work flows or processes. Services can also be
composed out of other services, making the model fractal. In this methodology,
everything is flattened to a service. If a service consists of components that can
be deployed by themselves (e.g. a service using a database), those components
are considered services as well.

A service is considered a vertex in a graph. The edges represent calls from one
service to another. There are two properties to be considered when describing
interaction between two services. The first property is the flow of information,
the second defines which service takes initiative. If service a has information that
is required by service b, that information can be pushed from a to b (Fig.1).

e] L]

Fig. 1. a pushes to b Fig. 2. b pulls from a

The initiative can also originate from service b. In this case, a is pulled by b
(Fig. 2). Information still flows in the same direction, but the initiative is placed
with the receiver instead of the sender.

A push from a to b is considered a fire-and-forget operation. It is assumed
that even if b is busy, a can continue its work without significant delay. If a
confirmation of a push which can have a significant delay (e.g. the confirma-
tion contains a business result) is required information flows back from b to a.
Therefore, an additional edge is required: a pulls from b.

96 A. Lamers and M. van Eekelen

i+, @ ® @ W

Fig. 3. Gui and db Fig. 4. Information graph Fig. 5. Initiative graph

As an example throughout the paper, consider an online bookstore. In its
basic form, it consists of a web application consisting of a graphical user interface
(gui) and a database (db), as shown in Fig. 3.

In this scenario, the user interface allows users to enter new information or
change information in the database. Thus, it pushes information as entered by
the user to the database. The user interface also can query the database so it
also pulls information from the database. Information flows in both directions
(Fig.4). All initiative, however, always originates from the user interface. In
other words, this is a classical client-server setup; without a client, the server
(db in this case) has nothing to do (Fig.5).

Formally, an architecture A consists of a vertex set S for the services and
an edge set C4 representing the calls between services. A typed edge (p, s, 1)
with p € {push, pull} going from source s to target ¢ is defined as having s as
the source of information. Thus, in the example above, S = {gui,db},C* =
{(push, gui, db), (pull, db, gui)}.

This model can be translated to two different graphs, an information flow
graph and an initiative graph:

The information graph I, for a given architecture A is defined as:

Lins(A) = (S, E), where S is the same service set of A. The edge set E is
defined as: Ej,(A) = {(s,1)|(p, s,t) € CA}.

The initiative graph I;;; for a given architecture A is defined as:

Iint(A) = (S, E), where S is the same service set of A. The edge set E is
defined as: E;,i(A) = {(s,1)|(p, s,t) € CAAp = push}U{(t,s)|(p, s,t) € CAAp =
pull}, reversing the pull edges.

2.2 Stress and Responsiveness

In this model, a couple of properties can be defined.

The first property is stress. The stress graph (Fig.6) of a service s is defined
as the subgraph of vertices that can reach the service s in the initiative graph,
including s itself. This means that the amount of work to be done on that service
s is influenced by all the services in the stress graph. For the example above, the
stress set STR of vertices in the stress graph are: STR(gui) = gui, STR(db) =
{gui,db}. This can be interpreted as follows: an increased load on gui will lead
to an increased load on db, but an increase in load on db does not lead to more
load on gus.

More formally, for a service S in an architecture A, the stress set STR is
defined as:

STR(S) = {S} @] STRpush(S) @] STRpull(S), with:

STRpush(s) = U(p’,s’,t/)eCA{STR(SI)‘S, =S /\p/ = push}

A Lightweight Method for Analysing Performance Dependencies 97

STRpuu(s) = Uy s 1neca {STR()|Y = s Ap' = pull}

To determine if a service can quickly respond to a request, the above prop-
erties are not enough. The stress indicates what impacts resource usage but
the service might also require information from another service. If the database
has a high load, it will still impact the user interface: retrieving information
will be slower. To represent this a second property is introduced, responsive-
ness (Fig.7), combining the stress on the service s with the stress of the ser-
vices from which it pulls. For the example above, the responsiveness RES is
RES(gui) = RES(db) = {gui, db}.

The responsiveness set (Fig.7) is thus more formally defined as follows:

RES(s) = STR(s) UUy ¢ 1yeca {RES(S)|p = pull}

Fig.6. STR(a) = {a,b,c,d}

2.3 Analysing an Architecture

In any architecture, different services have different non-functional requirements.
Typically, a user interface has to respond quickly to an end-user’s actions. The
model cannot give a quantitative measurement. However, it can reveal which ser-
vices impact the user interface. This allows us to define constraints that enforce
a disconnect in performance between two services. For example, consider a sys-
tem with, amongst other services, a user interface and a public API. A typical
constraint might be that the user interface should always be responsive, no mat-
ter the (uncontrolled) load on the public API. This constraint can be proven in
the model by showing that the public API is not in the responsiveness set of the
user interface.
We can thus define the following two constraints:

Definition 1. A service a is weakly isolated from b if b ¢ STR(a).
Definition 2. A service a is strongly isolated from b if b ¢ RES(a).

98 A. Lamers and M. van Eekelen

3 Deployment Allocation

The next step is to describe the machines on which the services will be deployed.
Larger systems might require multiple (virtual) machines. If multiple machines
are available, the option arises to deploy services isolated on machines or to
combine a subset of them on a single machine. A service can even be deployed
multiple times to be able to handle more traffic.

If two services are deployed on the same machine, they will share resources
and thus their stress will be shared. A perfectly scalable architecture might thus
be deployed in such a way that it looses its responsiveness properties. On the
other hand, deploying two communicating services on separate machines will
introduce additional network latency. Furthermore, since it is typically assumed
that a network might fail, the two services will have to deal with CAP problems.
To analyse this, a deployment layer will be added to the model.

A deployment allocation for an architecture A is a set of machines with each
machine running a subset of A’s services. The calls made between services in A
are expanded to connections in the deployment: for each call from s to t in the
architecture, a similar connection is made between every machine that runs s
and every machine that runs t (Fig. 8).

Back to the bookstore example application. Initially, it might be deployed on
a single machine, running both the gui and the db. If the bookstore is successful,
the traffic to the website will increase. At some point, the single machine does
not have enough resources to manage the traffic. Typically, the easiest way to
scale up is to wvertically scale by buying bigger hardware, or dividing the services
over multiple machines as in Fig.9. A next step, assuming that the bottleneck
is the gui as it often is, could be to horizontally scale by deploying more than
one instance of a service on multiple machines, as seen in Fig. 10.

In this example, machine 7 and 2 contain a deployment of the service gus.
Machine 3 contains a deployment of the service db.

A deployed service o for service s on machine m is defined as o = (s,m) € X.
A deployment allocation D is graph with vertex set X' of deployed services and
an edge set of connections C'P.

1 1 2
) | |)
Fig. 8. 1 = {gui, db} Fig.9. 1 = {gui}, 2 = {db} Fig.10. 1 = 2 =

{gui}, 3 = {db}

A Lightweight Method for Analysing Performance Dependencies 99

For convenience, the set of machines within D is defined as M = {m/|(s,m) €
X'}. The deployment set of a service s is defined as the set of machines that deploy
s: DEP(s) = {m|(m,s) € X}

A machine holds a subset of services and all services should be deployed:

V(s,m)e X :se€ SandVse S:3(s,m) € X.

The edge set is derived from the services and holds a reference to the original
call:

cP = Utpe.sertayeca{((Pas S, ta)s sasta)|sa = (sa,m) Am € DEP(sq),ta =
(ta;n) An € DEP(t,)}.

3.1 Analysing a Deployment Allocation

Similar to the properties ST R and RE'S as defined in the context of an architec-
ture, we can define analogue properties for machines and services in the context
of a deployment. Services deployed on the same machine share resources such as
memory or cpu. Therefore they share stress.

The isolated stress of a deployed service (s,m), i.e. the stress without con-
sidering other services on the same machine, is defined in a similar way to the
stress of a service:

str(o) = {o} U strpush(c) U strpull(o)

strpush(o) = U (.5 17,00 cyeco{str(<)|o’ = o Ap" = push}

strpull(0) = U (s 111,00 cyecp 1str(S)[c" = o Ap' = pull}

The actual stress of a service s on machine m is thus simply the stress of
machine m, STR(s,m) = STR(m) = Uy ep str((s’,m)).

We can now also define the responsiveness of a service on a machine. While
stress is automatically shared between services (since they share resources), the
responsiveness of two services on a different machine might still be different
since they can pull from different sources. The responsiveness of a service s
on the machine m is thus defined as the stress of the machine m united with
the responsiveness of all deployed services that are pulled from service s. More
formally,

RES(s,m) = STR(m) UU (5 11),00,cyecr {IRES (") |p" = pull}

We can thus redefine the isolation constraints on deployment allocation level:

Definition 3. A service a is weakly isolated from a service b if
vmeDEP(a)V(s',m')esTR(m)S' 75 b.

Definition 4. A service a is strongly isolated from a service b if
VmeDEP(a)V(s',m')eRES(m)SI #b.

As an example, consider Fig.10 again. The gui’s have been horizontally
scaled, but how effective is that? The stress of the machines in this example is:

STR(1) = {(guir, 1)}, STR(2) = {(guiz, 2)}, STR(3) = {(guin, 1), (guia,),
(db, 3)}

The responsiveness of the deployed services are:

RES(guiy,1) = RES(guiz,2) = RES(db,3) = {(gui1, 1), (guia, 2), (db,3)}.
The stress property indicates that all machines provide stress on the db, making

100 A. Lamers and M. van Eekelen

it a likely bottleneck. Furthermore, while the gui deployments don’t share stress,
they still influence each other in responsiveness: if one gui puts a high load on
the db, it will impact the other gui’s responsiveness.

Thus, both gusi services are only weakly isolated from each other, not strongly
isolated.

There are also some new properties to be discussed. In a distributed deploy-
ment (a deployment with |M| > 1), communication between two machines is
done via network calls. These are orders of magnitude slower than local calls.
Therefore, to reduce latency in a system, it is necessary to reduce the number
of network hops. Secondly, since network connections are more prone to break,
it is more important to define a consistency model which allows for faulty com-
munication channels. To avoid network hops, one could collocate two services on
the same machine. This, however, will result in them sharing stress.

A network hop or non-local connection is a connection that has its source
and target services on different machines.

Thus for a connection ¢, with ¢ = (¢/,m/,n’):

0 when m' =n’
local(c) = 1 when m' #n’

There are two important properties that are impacted by the network hops.
Firstly, the responsiveness is not only impacted by stress on the machines, net-
work latency is an important factor as well: responsiveness network depth. The
responsiveness network depth RNET(s,m) for a service s on a machine m is
defined as the maximum number of network hops to any other service which can
be reached by s via pull requests. Note that if there are cycles in the graph, the
network depth is defined to be infinite. More formally, assume a pull-graph P
for (m, s) is a weighed graph derived from a deployment D with the same vertex
set M. The edge set for P is defined as all the pull edges for s as well as all pull
edges for the source vertices of those edges. An edge ¢ in the pull-graph derived
from edge ¢’ in the deployment has weight local(¢’). RNET(s,m) is now the
maximum of the sum of weights of each branch from s. If the graph is not a tree,
RNET(s,m) = oc.

Secondly, to accurately define a consistency model allowing for failing net-
work connections, one needs to take into account the full source of information:
consistency network depth. The first property to discuss is consistency. As with
any system, there is a delay whenever information is passed from one point to
another. As such, for a service to have a world view on its state consistent with
the whole chain, any and all change in information it requires has to have reached
the service. The subgraph of all vertices that can reach a service s in an archi-
tecture, including s itself, in the information graph is defined as the consistency
graph for s. The consistency set for s is the set of vertices within the consistency
graph. For the group of services in this set, consistency model limitations will
hold (e.g. CAP limits). Either these services are deployed on a non-partitionable
system, or availability/consistency limitations will arise. More formally, for a
service s in an architecture A, the consistency set CON is defined as the set of
vertices including s that can reach s in the information graph I;,, ;(A):

A Lightweight Method for Analysing Performance Dependencies 101

CON(5) = {3} UUjy o e {CON(S)|s' = 51

Similar to RNET, the consistency network depth CNET (s, m) is defined as
the maximum number of network hops to any service that provides information
for s. The same definition applies, only using the information graph I;,;(A)
instead of the pull graph.

These properties can be used to analyse and reduce the number of network
calls for a specific service. CN ET gives an indication from how far information
has to come, thus increasing consistency model complexity, whereas RN ET
indicates how much the network impacts the responsiveness.

4 State

When distributing a service, there is always the matter of synchronizing state.
Changes in one instance of a service might impact another instance of a service.
This impacts how an application can be deployed and which calls and connections
are required. To reflect this, the model supports three kinds of statefulness for
a service, stateless, stateful and partitionable.

These are defined as follows:

A service is stateless if, when there are multiple instances deployed of that
service, they do not require any exchange of information between those instances
to be able to fulfil all requests. In other words, each instance can be deployed
fully isolated while still be able to serve all requests.

A service is partitionable if, when there are multiple instance deployed of
that service, a specific instance can handle the request in isolation. The instance
that is able to handle a specific call must be determined based on the content of
that call. Each instance holds its own subset of the state and can manage that
independently. A call is called routable if the correct instance can be determined
based on the parameters of the call.

A service is stateful if, when there are multiple instance deployed of that ser-
vice, they do require to synchronise state in order to be consistent with each other.

Recall that an architecture A has a vertex set of services S. A service
s € S with name n and statefulness p is defined as a tuple (n,z) with
z € {stateful, stateless, partitionable}. For a partitionable service, it is further
relevant on which dimensions it can be partitioned. To simplify, it is assumed
there is only a single dimension on which a service can be partitioned if it is
partitionable. If s = (n, 2),z = partitionable then its partitioning dimension
should also be defined as PART(z).

In the bookstore example, the architecture could be further refined to include
an explicit business layer service. This might be deemed necessary due to an
increase in features or due to a need for different front ends. The bookstore’s
architecture will then look like the following classical 3-tier architecture:

The graphical user interface can be scaled to have multiple instances. When a
user logs in, he or she has a session at a specific instance and as such all requests
related to that session can be managed by that single instance in isolation. Thus,
the gui is partitioned by sessions.

102 A. Lamers and M. van Eekelen

Fig. 11. Partitioned gui (g), stateless business layer (b) and stateful database (d)

The business layer handles requests from the gui, interprets them, applies
business rules and uses the database to store information. It does not keep any
state between calls so if there are multiple instances of the business layer service,
they can act isolated. The business layer is thus stateless.

The database stores the information as requested by the business layer. If
there is more than one instance, these instances need to be synchronized in order
to stay consistent. Thus, the database is stateful.

4.1 Deploying with State

When an architecture is deployed, the statefulness of a service determines how it
affects the different connections resulting from calls between services. A call can
be given as either routable or a broadcast in this model. Routable means that a
single instance of a service is sufficient to handle the request and that it is known
which instance this is. A broadcast means that all instances of a service need to
handle the request. A routable call to a stateless or stateful service means that the
request can be handled locally, a broadcast to these services is probably a cache
invalidation or some other global effect. A routable call to a partitioned service
means that by the nature of the request or its payload it can be determined which
partition holds the subset of data required to process the request. A broadcast
is necessary if it is unknown which partition holds the data, or all partitions are
required to process the request. Graphically, this is indicated by the color of the
service s (based on PART(s)) and the color of the connection (again based on
PART(s)) where s is the source in the information graph.

Recall that an architecture A has an edge set C4 with a call ¢ = (p, s,t) € C4.
To represent the routability property, the tuple is redefined as ¢ = (p, s,t,7) €
C#4 where r € {routable, broadcast}.

When there is more than one instance of a stateful service, these instances
need to synchronize. For that to happen, information has to be exchanged and
that means that broadcast calls between all instances exist. By convention, these
calls are designated as broadcasting push connections. For the properties as
defined until now, it does not matter if it is push or pull since the call is from a
service to itself. To indicate if a call is a broadcast or if it is routable, respectively
double and single arrow heads are used in an architecture graph as in Fig. 12.

In extending a deployment graph from an architecture graph, connections
are derived from calls. The connections will derive a new property optionality
which can be deployment optional, runtime optional or compulsary, based on the
type of service and if the call is routable or not.

A connection is by definition compulsary if the call is a broadcast, since all
instances of a service have to be reached.

A Lightweight Method for Analysing Performance Dependencies 103

Fig. 12. Stateful database (d) needs to synchronize using a broadcast

A connection is deployment optional when, for all the connections in a deploy-
ment for a specific call, only one is necessary for the system to function correctly.
All others can be left out of the deployment. If the target of a call in the ini-
tiative graph is either stateless or stateful, any of the deployed instances can be
the target for the connection. Each instance can handle the request. This type
of connection is considered deployment optional. A push to or a pull from any
stateless or stateful service is considered deployment optional by default.

A connection is runtime optional when, for all the connections in a deploy-
ment for a specific call, only one connection is used in a specific instance. Which
one it is, is determined at runtime. Other connections may be used for different
calls. If the target of a call in the initiative graph is partitioned and the call
is routable, only one connection is used runtime to the specific instance of the
partitioned service. This type of connection is considered runtime optional.

A connection ¢ € CP is now defined as ¢ = (¢, 0,5,0), with as before
¢ € C4 and having a deployed service o € X as a source of information and
¢ € X as a target. The new property o € {runtime — optional, deployment —
optional, compulsary} is added.

As an example, consider deployments for the architecture as defined in the
bookstore’s 3-tier architecture (Fig.11). If two instances for each service are
created, the deployment as seen in Fig. 13 is the result. Here the dotted lines are
deployment optional, the solid lines are compulsary. The two database instances
are synchronized in what is generally called a master-master replication. Other
database replication scheme’s would require a change in architecture first. For

2 S 2 b1
)
tommes 7 r
2 4
(CTTTT N
1 >
92 z b2

Fig. 13. Deployed partitioned gui (g), stateless business layer (b) and stateful data-
base (d)

104 A. Lamers and M. van Eekelen

example, read-only slave configurations require that the client (in this case the
business layer) knows which database to use for writes and which for reads.
Thus, without changing the architecture, this is the resulting deployment.

If the statefulness of the business layer is changed, the connections will
change as well. For example, assuming the business layer is partitioned as well,
the graph will look like Fig. 14, where the dashed lines represent the runtime
optional connections. Imagine for example that each business layer instance ser-
vices different payment options (e.g., mastercard transactions go to b; and visa
to be). In this example, the g and b services use different partitioning dimensions
(PART(g) # PART(b)): the gui is partitioned by user sessions whereas the
business layer by payment options. The connections from g to b thus have to
be routable on PART(b). As a last example, if the statefulness of the business
layer is stateful, the graph will look like Fig. 15. This is quickly the case if the
business layer manages its own state instead of delegating to the database.

T
I
T
N AV

Fig. 14. Partitioned business layer Fig. 15. Stateful business layer

5 Deployment Configuration

The deployment allocation assignes services to machines. Given a deployment
allocation, the optionality of the connections between machines is known and
some of those connections are redundant. Based on this, non optimal connec-
tions can be pruned and configuration choices can be made. Some of these choices
are obvious improvements, while others have both advantages and disadvan-
tages. Choosing which connections to actually configure results in a deployment
configuration.

5.1 Deployment Optional Pruning

In case of deployment optional connections, if one of the connections is local
than that one is generally preferred; there is no obvious reason to use a non-local
connection since all are equal. By picking the local connection, that connection is
no longer deployment optional, there is nothing else to choose from. For example,
considering the bookstore 3-tier architecture (Fig. 11). Due to budget constraints

A Lightweight Method for Analysing Performance Dependencies 105

or other reasons, the gui and the business layer are to be deployed together on
the same machine, resulting in a deployment allocation that will initially look
like the graph in Fig. 16.

b1

AV

Fig. 16. Initial

2 4 3
1
S — e, »)
77777 R —_— =] -
- L -
= u» =
1 5 = ST
I T
Fig. 17. Static load balancing Fig. 18. Dynamic load balancing

The connections on the left side are all deployment optional and result from
g and b having multiple instances. As such, all possible connections are derived
from the architecture into the deployment allocation. However, since only one
connection for each call is required, non-local connections can be removed, avoid-
ing network calls when not required. For the deployment optional calls between
the business services b; and by to the databases instances d; and ds, a couple
of options are possible. One obvious choice is to assign each business service
its own database. This would lead to Fig. 17 with each business service having
compulsary connections to a dedicated database. Another is to dynamically load
balance request between the databases. That would require an additional load-
balancer service (Ib) which routes the traffic to one of the database instances
(Fig. 18). The connections from the business service to the loadbalancer become
compulsary, while the connections from the loadbalancer to the database will
be runtime optional; only one is required. While having a load balancer might
lead to a more evenly distributed load over both database instances, the load
balancer by itself is another bottleneck and network hop.

106 A. Lamers and M. van Eekelen

1 3 1 3

[L R N L - ST | [- - - ST T |

S I I L9 2 T 2 di

77777 Ay 7y I /'7/’7”" s
> />/ >

2 p 4 2 N 4

> > N e

oot ~A A ety A N - N
N SN N

L9 - B j: by 2 d | LY ! - @ dy |

Fig. 19. Initial Fig. 20. Pruned as processing units

5.2 Pruning Runtime Optionals

For runtime optional connections resulting from partitioned services, some prun-
ing options are possible as well. If both the source s and the target ¢ of a con-
nection are partitionable, share the same partitioning dimension and are always
codeployed, the deployment configuration can exploit that by assigning the same
partitions for instances of s and t. The assumption here is that a call does not
change routing. If the use case requires a different routing, it should be marked
as a broadcast. If this assumption holds, the machine which holds both s and ¢
can be treated as a “processing unit” which deliver all functionality for a subset
of partitions.

As an example, recall the partitioned business layer architecture in Fig. 14.
Each business layer served a subset of payment methods (e.g. mastercard to by
and visa to by). It might be beneficial to partition the database in a similar way,
storing only mastercard transactions in one instance, and visa transactions in the
other. This way, both database instances can operate independently, resulting
in the deployment allocation as found in Fig. 19. The consuming services, in this
case a differently partitioned user interface g, should be able to route its calls
to one of the processing units formed by machines 3 or 4. Pruned, this could be
reduced to Fig. 20.

6 Architectural Patterns

To resolve performance issues, there are a number of technical patterns available
that will isolate service performance to some degree. In this section common
patterns like caches and queues are discussed, modeled and compared using the
method. The most basic patterns, push and pull have been discussed in the first
chapter as they are the building blocks of the model.

A cache pattern is used to keep state readily available if it has been calculated
or received before. This way, the consumer is decoupled from the performance
of the producer. A cache can behave in a lazy way, and only retrieve values
when they are requested as modelled in Fig. 21. Here, the consumer c¢ pulls the
information from a cache store (cdb). If this store does not contain the value,

A Lightweight Method for Analysing Performance Dependencies 107

it retrieves it from the producer. While the stress of the consumer is decoupled
from the producer, the model shows that the responsiveness is still dependent on
the producer. In effect, the cache has no effect in the model since the producer
and consumer are not fully isolated in the case of a cache miss.

Caches can also behave in an eager fetching way as modelled in Fig. 22. Here
the cdb cache store is filled by an independent cache reader which pulls the orig-
inal information from the producer. This can be a scheduled or an asynchronous
task. In this scenario, the consumer’s stress is isolated but the producers stress
is depending on cr. The responsiveness of the consumer is now only dependent
on cr and cdb. The cr service can thus be tuned to balance the stress on the
producer versus the responsiveness of the consumer.

1 2 1 2

P L,; cdb ’> c P L,; cr cdb ’> c
Fig. 21. Typical lazy cache Fig. 22. Typical eager cache

A queue pattern is used to decouple a flow between services. One service
pushes a message onto the queue, another service can pick it up at any time. See
Fig. 23. The producer p can always deliver its messages and as such is unaffected
by the performance of the consumer c¢. The model shows this as well: the stress
and the responsiveness of p only depends on p itself. The consumer c also only
receives stress from itself, but the responsiveness is impacted by both the queue
(q) itself as well as the producer p. A queue reader or writer might be added
(similar to the cache reader above, or even by adding a complete cache) to be
able to improve responsiveness of the consumer.

2
e nEl,

Fig. 23. A queue between p and ¢

In Table1 presents a summary on how these architectural patterns behave
according to this model. Note that the more performance isolation a pattern
offers, the more elements are involved in maintaining consistency. For a queue,
the consistency network depth also increases. As can be predicted, caches and
push calls are excellent for improving responsiveness since they decrease the
distance of accessing data (decreasing RN ET(s)).

108 A. Lamers and M. van Eekelen

Table 1. Isolation levels of patterns

Pattern D c RNET(c,2) | CON(c,2) |CNET(c,2)
Push Strong | - 0 {c,p} 1
Pull - Weak |1 {c,p} 1
Lazy cache |- Weak |0 {c,p,cdb} 1
Eager cache | Strong | Strong | 0 {c,p,cdb, cr} |1
Queue Strong | Weak |1 {c,p,qdb} 2

7 Related Work

In this paper we have presented a novel notation. Other notations, such as UML
sequence diagrams or Petri nets, also exist. Sequence diagrams can express par-
allelism and ordering of actions, expressing interaction between services quite
detailed. Petri nets allow concurrency and synchronisation analysis in distrib-
uted systems and as such require details on how state is synchronised. These
details are very useful within a specific service or domain but less useful between
domains since these are, by definition, reasonably isolated. Instead, our notation
leaves out algorithmic details and focuses on expressing the distinction between
the source of information and initiative on a higher abstraction. This allow a
focus on the question whether the architecture or the deployment needs to change
or whether some latency requirements can be loosened, before trying to optimise
it in the implementation.

Research has been done which focuses on predicting a quantified throughput
of a (workflow in a) Service Oriented Architecture, e.g. [3,4,6,10,17]. In general,
these models require load functions, detailed descriptions or actual implementa-
tions for each service. Determining load functions and finding reasonable values
for parameters of these models can be quite demanding and might be possible
only quite late in the development process. Additionally, calculating the perfor-
mance of the architecture might not be instant but requires a (relatively) long
simulation. Instead, our work focuses on finding performance isolation between
services without quantifying it. The properties can be quickly derived, even man-
ually up to a certain complexity, and future tooling could extensively compare
alternatives. SLAng [15] provides a precise way of defining SLA’s for services. It
would be interesting to see if some properties could be guaranteed by the model.

Software defined networks [13] decouple the network control decisions from
the actual hardware, making it easier to change deployment configurations, either
manually or automatically.

8 Conclusion

The described method gives insight into how services influence each other with
regards to performance. This can be used to validate and assist in decisions both

A Lightweight Method for Analysing Performance Dependencies 109

on architectural level as well as on deployment. Since the model does not require
concrete details it can be used as a light weight method to drive discussion
and validate performance requirements. Multiple implementations of a simple
example, a bookstore website, were modeled and analysed, providing insight in
difference in performance behaviour. Here the method provides a tangible result
for performance related issues within an architecture. Possible solutions on both
architectural (software) level as well as on deployment level can be compared
and weighed.

Future Work

The methodology described can be applied to both small and larger architec-
tures. For small architectures, this can be done by hand and the results are nat-
ural. For larger architecture tooling is required to derive results and these might
be surprising. A tool is being build to automate calculation of the properties.
This should aid in quickly discovering and analysing deployment scenario’s and
weighing the advantages and disadvantages such as balancing isolation versus net-
work latency. It should also be able to point out possible areas where changes in
the architecture could be beneficial and potentially detect (a subset of) perfor-
mance anti-patterns [5]. Changing the initiative from one service to another, or
edges that are suitable candidates for static or dynamic loadbalancing, could be
auto detected and then alternatives could be compared. Other “Middlepipes” [9]
related products such as circuit breakers as shown in e.g. [12] could be modelled
as well, either as concrete specialisations or by deriving REO connectors [1]. The
properties could be further formalised to derive optimisations for e.g. nested archi-
tectures and deployments. More research is to be carried out to see if we can help
discover consistency models between services based on the initiative and informa-
tion graphs, e.g. to help derive application invariants for [2].

To further validate the approach, the methodology should be applied at full
scale projects in different stages of development or production.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14, 329-366 (2004). http://journals.cambridge.org/
article_.S0960129504004153

2. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Coor-
dination avoidance in database systems. Proc. VLDB Endow. 8(3), 185-196 (2014).
http://dx.org/10.14778,/2735508.2735509

3. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10-15 (2009)

4. Brebner, P.C.: Real-world performance modelling of enterprise service oriented
architectures: delivering business value with complexity and constraints. In: ACM
SIGSOFT Software Engineering Notes, vol. 36, pp. 85-96. ACM (2011)

5. Cortellessa, V., Di Marco, A., Trubiani, C.: An approach for modeling and detect-
ing software performance antipatterns based on first-order logics. Softw. Syst.
Model. 13(1), 391-432 (2014)

http://journals.cambridge.org/article_S0960129504004153
http://journals.cambridge.org/article_S0960129504004153
http://dx.org/10.14778/2735508.2735509

110

10.

11.

12.
13.

14.

15.

16.

17.

A. Lamers and M. van Eekelen

Ferrer, A.J., Herndndez, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C.,
Sirvent, R., Guitart, J., Badia, R.M., Djemame, K., et al.: Optimis: a holistic
approach to cloud service provisioning. Future Gener. Comput. Syst. 28(1), 6677
(2012)

Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000). aAI9980887
Fowler, M.: Microservices. http://martinfowler.com/articles/microservices.html
Jamjoom, H., Williams, D., Sharma, U.: Don’t call them middleboxes, call them
middlepipes. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, pp. 19-24. ACM (2014)

Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Trans. Softw. Eng. 32(7), 486-502 (2006)
Kratzke, N.: About microservices, containers and their underestimated impact on
network performance. In: Proceedings of CLOUD COMPUTING 2015 (6th Inter-
national Conference on Cloud Computing, GRIDS and Virtualization) (2015)
Netflix: Hystrix. https://github.com/Netflix/Hystrix

Nunes, B., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T., et al.: A sur-
vey of software-defined networking: past, present, and future of programmable
networks. IEEE Commun. Surv. Tutorials 16(3), 1617-1634 (2014)

OABSIS: Oasis soa reference model tc. https://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=soa-rm

Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In:
Proceedings of the 26th International Conference on Software Engineering, pp.
179-188. IEEE Computer Society (2004)

The Open Group: Service oriented architecture: What is soa? http://www.
opengroup.org/soa/source-book/soa/soa.htm#soa_definition

Zhu, L., Liu, Y., Bui, N.B., Gorton, I.: Revel8or: model driven capacity planning
tool suite. In: 29th International Conference on Software Engineering, ICSE 2007,
pp. 797-800. IEEE (2007)

http://martinfowler.com/articles/microservices.html
https://github.com/Netflix/Hystrix
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition

Automated Prediction of the QoS of Service
Orchestrations: PASO at Work

Leonardo Bartoloni, Antonio Brogi, and Ahmad Ibrahim()

Department of Computer Science, University of Pisa, Pisa, Italy
{bartolon,brogi,ahmad}@di.unipi.it

Abstract. Predicting the QoS of a service orchestration is not easy
because of the a priori undetermined behaviour of invoked services,
and because of the non-determinism (alternatives, unbounded iterations,
fault handling) and complex structure (dependencies, correlations) of the
workflow defining a service orchestration. In this paper we illustrate the
practical usefulness of a probabilistic analyser of service orchestrations
(PASO) by showing how it can be fruitfully exploited to predict the QoS
of service orchestrations.

Keywords: QoS - Service orchestrations - Probabilistic analysis -
WS-BPEL

1 Introduction

Service orchestrations [1] provide an effective way to implement business
processes [2] by suitably combining the functionalities offered by other (pos-
sibly third party) services. Quality of Service (QoS) [3,4] plays an important
role in service-oriented computing, where it can be a key driver for customers’
service selection and determine the achievement of business goals of both service
customers and service providers. It is important to observe that the QoS of a
service orchestration does depend on the QoS of the services it invokes. And the
QoS of a (invoked) service can vary depending on different run-time conditions
[5] such as servers’ workload or network congestion [4]. The ability of predicting
the QoS of a service orchestration is hence of primary importance both during
the design of a service orchestration and for the definition of its Service Level
Agreement (SLA) [6].

Unfortunately, predicting the QoS of service orchestration is not easy, mainly
because of four characteristics of service orchestrations.

1. Different results of service invocations. Each invoked service can return
a successful reply, a fault notification, or even no reply at all. If a fault is
returned, the orchestration will execute a fault handling routine instead of
the normal control flow. If no reply is received, the orchestration may get

Work partly supported by the EU-FP7-ICT-610531 SeaClouds project.

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 111-125, 2016.
DOI: 10.1007/978-3-319-33313-7_8

112 L. Bartoloni et al.

stuck waiting for a reply (unless some parallel branch throws a fault). In
either case, the QoS of the orchestration will differ from the case of successful
reply.

2. Non-determinism in the orchestration workflow. Different runs of the
same orchestration can yield different QoS values since the control-flow of the
orchestration workflow is non-deterministic. On the one hand, different runs of
the orchestration can get different service invocation results (success/fault/no
reply). On the other hand, some control-flow structures (alternatives and
iterations) depend on input data which may differ in different runs.

3. Correlations among workflow activities. The above two characteris-
tics suggest to employ a probabilistic approach. However, it is important
to observe that the naive solution of assigning independent probabilities to
workflow activities (e.g., as in [7]) can lead to incorrect results. For exam-
ple, consider the case of a diamond dependency (Fig. 1la). We see that, after
activity A will be executed, either B or C will trigger with 50 % probability,
and then D will be executed with 100 % probability in either case. However,
if the correlation among A, B and C is ignored (Fig. 1b), then there would be
a 25 % probability that neither B nor C will be executed, which would lead
to only a 75 % probability of D being executed — which is incorrect.

4. Complex dependencies among workflow activities. The control flow
imposed by synchronizations on parallel activities (i.e., when a task needs to
wait for another to complete before starting) is more expressive than what
is allowed by parallel execution only (with synchronization barriers at the
end of parallel tasks). This means that workflows which have complex syn-
chronization structures (e.g., as those that can be specified with WS-BPEL
synchronization 1inks [8]) cannot be always decomposed in terms of parallel
and sequential compositions [9].

(a) With correlation. (b) Without correlation.

Fig. 1. Example of correlation among activities.

In [10,11] we have presented an algorithm that employs Monte Carlo sim-
ulations to probabilistically predict the QoS of service orchestrations defined
via WS-BPEL workflows. We have implemented such algorithm in F#.Net

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 113

in an open source application named PASO (Probabilistic Analyser of Service
Orchestrations).

In this paper we aim at illustrating the practical usefulness of PASO by show-
ing how it can be fruitfully exploited to predict the QoS of service orchestrations.
In particular, we will show how PASO can provide answers to various interesting
questions.

— As we already anticipated, a first natural question is what will be the overall
QoS of a service orchestration. For instance, what will be the response time,
reliability, and cost of a given orchestration.

— A second type of interesting questions concerns assessing the effects on the
QoS of an orchestration of replacing one or more of the invoked services with
alternative services, e.g., offered by different providers.

— A further type of questions concerns assessing whether and how modifying
the workflow of an orchestration impacts on its overall QoS.

It is worth observing that workflow designers are not interested only in getting
estimated average values for the aforementioned questions (e.g., “What is the
average response time of this orchestration?”). They are also typically interested
in the distribution of values for such answers (e.g., “What is the probability that
the response time of this orchestration will be more than 2s7”).

To illustrate the practical usefulness of PASO we will describe PASO at work
on two examples of service orchestrations: A simple orchestration implementing
a cloud-based storage service, and a business process defining how to start a
manufacturing business. Although the two examples are deliberately simple, they
illustrate how the analysis of the QoS of workflows defining service orchestrations
is a time-consuming and error-prone activity even for simple workflows, and how
such analysis can be fruitfully automated by PASO.

The rest of the paper is organized as follows. The two motivating examples of
orchestrations are introduced in Sect. 2, along with a list of QoS-related questions
on them. The PASO analyser is introduced in Sect. 3, and the results obtained
by applying PASO to the motivating examples are presented in Sect. 4. Related
work is discussed in Sect. 5, while some concluding remarks are drawn in Sect. 6.

2 DMotivating Examples

2.1 Example 1: A Cloud-Based Storage Service

Let us consider a simple service orchestration (Fig.2) that allows customers to
store and retrieve data.
The orchestrator exploits two cloud storage services (Cy and Cy) as follows:

— If the customer sends a store request, the orchestrator tries in parallel to store
the data both on Cy and Cs. If the first storage request on C; fails (viz., a fault
is returned), the orchestrator retries once (after some time) to store on C;. If
the data are successfully stored on both C; and C5, the orchestrator replies
positively to the customer. Otherwise it returns a fault to the customer.

114

L. Bartoloni et al.

Flow

Sequence

Receive User Request

-

Link: store
isStore —
Assign isStore =
“Request.Action=store”
Scope

-

Link: retrieve

lisStore

Scope

Fault Handler
Fault Handler Fault Handler Catch All
Catch All Catch All Scope
Fault Handler
Link: C1Complete Link: C2Complete F‘(*:ll': l:*:::ﬂel' Cateh Al
atcl
Reply Fault
[Reply Fault]
Fig. 2. A cloud-based storage service.
Flow
Sequence
. Receive User Request
Link: store Link: retrieve
isStore Assign isStore = lisStore
“Request.Action=store” Scope
| Invoke Ci |
Scope Reply l
Flow
Scope Scope Scope Fault Handler
[Invoke C1] [Invoke C:] [Invoke C3] Catch All
Scope
Fault Handler Fault Handler Fault Handler
Catch All Catch All Catch All
random random random Fault Handler
[Invoke C1 | [Invoke C2 | [Invoke G | Catch Al
Scope —
ink: Fault Handler|
. Link: C2Complete Fault Handler
Link: CiComplete Link: C3Complete Catch All Catch All
l T — el)| L e]
{_Reply | Fault Reply Reply
Fault

— If the customer sends a retrieve request, the orchestrator first looks up the
data in C4. If the invocation to C1 fails, it looks up the data in Cs. If both invo-
cations (to Cy and C3) fail, the orchestrator returns a fault to the customer.

Fig. 3. Extended cloud-based storage service.

Otherwise it returns to the customer the result of the lookup.

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 115

Table 1. Probability distributions for the cloud storage services.

Success Fault
Cy1 | (99%, 0.03%, 1sec) | (1%, 0%, 2sec)
Cs | (90 %, 0.028, 1sec) | (10 %, 0%, 2sec)

Let us assume the following probability distributions (Table 1) for the behaviour
of the cloud storage services C; and Cs, in particular for their reliability, cost,
and response time:

— C; cost is 0.03$ per invocation (for both store and retrieve requests), it is
highly reliable and it completes almost always (99 %) in 1s. Only in very few
cases (1 %), it returns a fault in 2s at no cost (0$).

— (4 cost is 0.02% per invocation, slightly cheaper than Cj, it is less reliable than
(4, and in most cases (90 %) it completes in 1s. Only in few cases (10 %), it
returns a fault in 2s at no cost (0%).

Let us also assume that:

— 40 % of customer requests are store requests, and 60 % are retrieve requests,
and that

— the random wait (before retrying to store on C;) will last 0, 1, 2, 3, or 4s,
each with probability 20 %.

A first natural question is:

(Q1) What are the estimated reliability, cost, and response time of the orches-
trator using services Cp and Cs of Table 17

Other interesting questions on the QoS of the orchestrator of Fig.2 are, for
instance:

(Q2) What is the probability that the response time of the orchestrator will be
more than 5s using services Cp and Co of Table 17

(Q3) Will the cost of the orchestrator exceed 0.04% on average using services Cy
and Cy of Table1?

Another class of interesting questions concerns assessing how the QoS of different
external services may impact on the overall QoS of an orchestrator. Consider for
instance the two alternative offerings for C; and Cy illustrated in Table2. An
example of such questions is:

(Q4) Which offering of Table 2 will yield the best QoS (reliability, cost, response
time) for the orchestrator of Fig. 2%

A further class of interesting questions concerns assessing whether and how mod-
ifying the workflow of an orchestrator will impact on the overall QoS of the
orchestrator. For instance:

(Q5) Extending the orchestrator (Fig. 3) so as to exploit one more cloud storage
service C3 (e.g., like the one described in Table 3) will increase the reliability
of the orchestrator?

116 L. Bartoloni et al.

Table 2. Two alternative offerings for the cloud storage services.

Success Fault
C1[(90%, 0.028, 1 sec)[(10%, 0%, 2 sec)
C2[(90%, 0.028, 1 sec)|(10%, 03, 2 sec)

(a) Offering 1.

Success Fault
C1[(99%, 0.038, 1 sec)| (1%, 08, 2 sec)
C2[(81%, 0.018, 1 sec)[(19%, 08, 2 sec)

(b) Offering 2.

Table 3. Probability distribution of a third cloud storage service.

Success Fault
Cs | (81 %, 0.018, 1sec) | (19 %, 0%, 2sec)

2.2 Example 2: Starting a Manufacturing Business

Let us consider a business process defining how to start a manufacturing business
(Fig.4). The process, after receiving a user request, starts three activities in
parallel:

— It invokes a RentalAgency service to find a suitable location for manufacturing
the desired product,

— It invokes a LoanAgent service to ask for a loan to fund the business start up,
and

— It invoke a HumanResourceAgency service to find personnel with relevant
skills.

Only after the LoanAgent secures the loan, a BuySupplies service will be invoked.
Furthermore, the process will invoke a RentLocation service only after both
invocations to the RentalAgency service and to the LoanAgent service will have
completed.

Similarly, the process will invoke a HireStaff service only after both invoca-
tions to the HumanResourceAgency service and to the LoanAgent service will
have completed.

Finally, the process will reply to the user only after the invocations to the
RentLocation service, to the BuySupplies service and to the HireStaff service
will have completed.

Let us assume the following probability distributions (Table4) for the com-
pletion time of the aforementioned activities: For instance, the HireStaff service
is guaranteed to complete within 2 to 15 days. In most of cases (35 %), it is com-
pletes in 4 days. It can also complete in 2, 6, 7, 10, 12 or 15 days with probability
of 10%, 10%, 15%, 15%, 10 %, 5% respectively.

A natural question for this example is to estimate the time needed to complete
the execution of the whole business process. It is worth observing that, since

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 117

Flow
Receive User Request
A 4
Invoke Invoke Invoke
RentalA. LoanA gent HumanResource
entalAgency oanAgen Agency
' / I \ |
Invoke Invoke Invoke
RentLocation BuySupplies HireStaff
! /
Reply

Fig. 4. Business process to start a manufacturing business.

Table 4. Probability distributions for the services invoked by the process of Fig. 4.

1 day | 2 days | 4 days | 6 days | 7 days | 10 days | 12 days | 15 days
RentalAgency 10% |30% |40% 20 %
LoanAgent 5% [20% [35% |20% 10% 5% 5%
HumanResourceAgency | 10% |30% |10% 30% |20%
RentLocation 10% 140% |10% 40 %
BuySupplies 20% 15% |35% 20 % 10 %
HireStaff 10% |35% 10% 15% 15% 10% 5%

all the invoked services have complex dependencies with each other, answering
questions such as:

(Q6) What is the expected time needed to execute the business process of Fig. 4
under the hypotheses of Table 47

(QT7) What is the probability that the business process will not complete in time
for the advertised launch date (e.g., in 24 days)?

may be not easy.

3 Overview of PASO

PASO (Probabilistic Analyser of Service Orchestrations) is an open source
application' developed in F#.Net which implements the probabilistic analysis

! The source code of PASO is available at https://github.com/upi-bpel/paso.

https://github.com/upi-bpel/paso

118 L. Bartoloni et al.

described in [10,11] to predict the QoS of service orchestrations. Unfortunately,
space limitations allow us to include here only a very brief description of PASO?.
In terms of input/output behaviour (Fig.5), PASO inputs:

— A WS-BPEL |[8] workflow? defining a service orchestration, and
— A file containing annotations of probabilities* for outcomes and costs of service
invocations, as well as for the truth of the guards of if and while activities,

and it can output histograms and pie charts summarizing the results of the
performed analysis.

PASO employs a structurally recursive function that associates each WS-
BPEL activity with a cost structure, which is used to compositionally determine
the QoS of structured activities. It is worth noting that, while determining the
cost of a sequence of activities is pretty straightforward, the same does not hold
for instance for flows, which cannot be always decomposed in terms of parallel
and sequential compositions, as shown in [10,11].

To properly model complex dependencies among workflow activities,
PASO employs two different cost composition functions: Both and Delay. Intu-
itively speaking, Both(A,B) denotes the cost of independently executing activ-
ities A and B, while Delay(A,B) denotes how to increase the cost of executing
A with the cost of executing another activity B from which A depends. For
instance, PASO models the cost of flow(A,B) as Both(A,B) only if A and B
are not dependent one another, and it models the cost of sequence(A,B) as
Both(A,Delay(A,B)).

To model different results of service invocations, PASO employs an
outcome and an enwvironment structure to store the outcome (success, fault,
stuck) and the effects of previously executed activities.

Last, but not least, PASO models the non-determinism in the orchestra-
tion workflow and the correlations among workflow activities by employ-
ing Monte Carlo simulations to sample outcome and effects of service invocations
as well as the conditions of alternatives and iterations. Monte Carlo simulation
is useful for our algorithm in two ways. First, at each iteration of Monte Carlo
we can sample the conditions of branches and loops (by using the sampling func-
tion) and deterministically decide what to execute. This, along with recursive
sampling, allows us to address correlations, non-determinism and different invo-
cation results. Second, many QoS properties (e.g., reliability, average cost and
time) can be written as expectation queries.

2 The interest reader can refer to [11] for a thorough description of the analysis imple-
mented by PASO.

3 PASOQ is able to analyse a subset of WS-BPEL structural (sequence, flow, if, while,
scope, and faultHandlers) and basic (invoke and assign) activities. Other basic
activities (like receive or reply) are considered by PASO successfully executable
with zero cost.

* These probabilities may be deduced from Service Level Agreements (SLAs), or sta-
tistically inferred from data such as logs or performance counters if available.

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 119

Input Output
Reliability: 99.50%
Workflow Average price/ill 0.03
(.bpel)
PASO B e e
Cost ($)
analyser -~
somo-|
QOS and x:: Alerage fime| (set): 122
Probabilities o L A i
: 038 138 235 33 45 553 653 753 255 955
(Annotations.xml) Time(sec)
uses

Monte Carlo Simulation

Fig. 5. Bird-eye view of the input-output behaviour of PASO.

4 PASO at Work on the Motivating Examples

In this section we show how the PASO analyser can be fruitfully exploited to
get answers for the questions that we raised on the two motivating examples
presented in Sect. 2.

4.1 Example 1: A Cloud-Based Storage Service

The first three questions raised in Sect. 2 concerned the quality of service of the
orchestrator of Fig. 2:

(Q1) What are the estimated reliability, cost, and response time of the orches-
trator using services C7 and Cs of Table 17

(Q2) What is the probability that the response time of the orchestrator will be
more than 5s using servicesl C; and Co of Table 17

(Q3) Will the cost of the orchestrator exceed 0.04$ on average using services Cq
and Co of Table 17

The results obtained by running PASO® on the orchestrator of Fig. 2 and on the
offerings of Table1 are illustrated in Table 5 and Fig. 6. The results reported in
Table5 are interesting as, for instance, we see that the estimated reliability of
the orchestrator (99.53 %) is higher than the reliability of both C; (99 %) and
C3 (90 %). This is due to the fact that in the (less frequent, 40 % of times) case
of store requests the orchestrator tries twice to store on each C; (if needed), and
in the (more frequent, 60 % of times) case of retrieve requests it succeeds if just
one the C; responds.
Moreover, the histogram of Fig. 6 shows that:

5 We performed one million iterations of PASO for each group of questions.

120 L. Bartoloni et al.

Reliability: 99.53% 600000
Average price|($): 0.038

400000

200000

0
-0.0075 0.0025 0.0125 0.0225 0.0325 0.0425 0.0525

Cost ($)

1000000

800000

Avefrage ftime [sec)] 1.21
600000

400000

200000

0.33 1.33 2.33 3.33 4.33 533 6.33 7.33 833 9.33

Time (sec)

Fig. 6. Snapshot of PASO results for (Q1), (Q2) and (Q3).

Table 5. Results of PASO for (Q1).

Reliability | Cost | Time
99.53 % 0.038% | 1.21 sec

— The response time of the orchestrator will be almost always (97.0 %) less than
5s and that there is a noticeable probability (about 3 %) that it will exceed
the maximum allowed time. Please note that this information is not evident
just by looking at the average response time (1.21s).

— The average cost is 0.0383%, which is slightly below the target average expense
of 0.04$.

Another class of interesting questions mentioned in Sect. 2 concerns comparing
the effects of employing different external services on the QoS of an orchestrator:

(Q4) Which offering of Table 2 will yield the best QoS (reliability, cost, response
time) for the orchestrator of Fig. 27

The results obtained by running PASO on the orchestrator of Fig.2 and on the
offerings of Table2 are summarised in Table 6. Also in this case the results are
interesting as for instance, despite the different reliabilities of the two offerings
(90 % and 90 % vs. 99 % and 81 %), we see that the reliability of the orchestrator
is practically the same with either offering (while cost and response time differ).

A further class of interesting questions mentioned in Sect. 2 concerns assessing
whether and how modifying the workflow of an orchestrator will impact on the
overall QoS of the orchestrator:

(Q5) Extending the orchestrator so as to exploit one more cloud storage service
C3 (e.g., like the one described in Table 3) will increase the reliability of the
orchestrator?

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 121

Table 6. Results of PASO for (Q4).

Reliability | Cost | Time
Offer 1{98.3% 0.027$ | 1.48 sec
Offer 2|98.4% 0.034$ | 1.36 sec

Table 7. Results of PASO for (Q5).

Reliability | Cost | Time
Offer 1{96.9% 0.032$ | 1.82sec
Offer 2|97.1% 0.037$ | 1.66 sec

To answer this question, we used two alternative offerings for C; and Cy
(Table2) and one offering for C5 (Table3). The results obtained by running
PASO are summarised in Table7. By comparing Tables6 and 7, it is easy to
conclude that adding a third storage service to the workflow is not a good idea
as it decreases the QoS of the orchestrator.

4.2 Example 2: Starting a Manufacturing Business
The two questions raised in Sect. 2 for the orchestrator of Fig. 4 were:

(Q6) What is the expected time needed to execute the business process of Fig. 4
under the hypotheses of Table 4%

(Q7) What is the probability that the business process will not complete in time
for the advertised launch date (e.g., in 24 days)?

The results obtained by running PASO on the orchestrator of Fig.4 and on the
offerings of Table4 are illustrated in Fig.7 and summarised in Table 8.

Table 8. Summary of the results of PASO for (Q6) and (QT).

Probability of failing deadline | Average time
13.7% 18.68 days

The results are interesting as, for instance, we see that the estimated comple-
tion time of the orchestrator is 18.68 days. The results also show that while the
probability that the business process will complete in 24 days is 86.3 %, there is
a noticeable probability (13.7 %) that it will not do so.

122 L. Bartoloni et al.

Probability of failing the deadline: 13.7% 200000
Average time |(days): 18.68

150000

Deadline failed

100000

50000

CLLIE) «

7.68333333 12.6833333 17.6833333 22.6833333 27.6833333

Time (days)

Fig. 7. Snapshot of PASO results for (Q6) and (Q7).

5 Related Work

QoS Prediction is not new and many approaches (e.g., [12,13]) and tools (e.g.,
Palladio [14], Kieker [15], Descartes [16]) have been proposed. We briefly discuss
here only the work more closely related to ours.

Cardoso [17] proposed an algorithm to compute the QoS of a workflow com-
position. His approach employs a set of reduction rules to iteratively remove
parallel, sequence, alternative and iterative structures until only one activity
remains. A limitation of that approach is that some complex dependency work-
flow structures cannot be always decomposed in terms of parallel and sequential
compositions, as shown in [9].

Mukherjee et al. [7,9] proposed a algorithm to estimate the QoS of WS-BPEL
compositions. They convert a WS-BPEL workflow into an activity dependency
graph, and assign probabilities of being executed to each activity. While the pro-
posed algorithm can treat arbitrarily complex dependency structures, including
fault handling, it does not take into account correlations among activities which
do not have a direct dependency, and this may lead to incorrect results in some
cases, as shown in Sect. 1.

Zheng et al. [18] studied QoS estimation for compositions represented by
service graphs. They transform a service graph to remove loops, and then cal-
culate probabilities of execution and QoS parameters for each path. Their app-
roach however does not take into account fault handling and only partially deals
with parallelism, not considering arbitrary synchronization 1links (only flow-like
structures that can be decomposed in terms of parallel and sequential composi-
tions are considered, as in [17]).

Tvanovic et al. [19] proposed a language to represent service compositions, and
they address the problem of correlations. Some of the questions raised in this

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 123

paper, for instance, what is the probability that response time of the orchestrator
is between certain values or exceed a value, can be answered by their approach.
However their language does not account for parallel execution.

Summing up, to the best of our knowledge, our approach advances the state
of the art by handling workflows containing arbitrary dependency structures
and fault handling, and by featuring a more accurate treatment of correlations
among activities. Moreover, differently from all previous work, our approach is
also able to handle unbounded loops.

6 Concluding Remarks

As we observed in Sect. 1, the ability of predicting the QoS of a service orchestra-
tion is of primary importance both during the design of a service orchestration
and for the definition of its SLA.

In this paper we have tried to illustrate the practical usefulness of the proba-
bilistic analysis featured the PASO analyser to predict the QoS of service orches-
trations by answering interesting questions concerning the overall QoS of a ser-
vice orchestration, the effects of replacing one or more of the invoked services
with alternative services as well as of modifying the workflow of an orchestra-
tion. To illustrate the results of putting PASO at work, we have used two gen-
eral examples of service orchestrations — a simple orchestration implementing
a cloud-based storage service, and a business process defining how to start a
manufacturing business — that show how the analysis of the QoS of workflows
defining service orchestrations is, if performed manually, a time-consuming and
error-prone activity even for simple workflows.

We see different possible directions for future work. One of them is to extend
our approach to model other WS-BPEL constructs that we have not discussed
in this paper, like pick or eventHandlers. It is also worth observing that while
PASO currently inputs WS-BPEL workflows, the analysis it implements is not
bound to WS-BPEL and it can be extended to analyse other similar workflow
languages. Another direction for future work is to extend the number of QoS
properties (beyond response time, reliability, and cost) supported by PASO. A
further direction for future work is to improve the efficiency of Monte Carlo
simulations performed by PASO by exploiting some of techniques proposed for
instance in [20,21].

References

1. Papazoglou, M.: Web Services: Principles and Technology, 2nd edn. Pearson Edu-
cation, Toronto (2012)

2. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, New York (2007)

3. Kim, E.; et al.. Web Services Quality Factors. Candidate OASIS Standard
Version 1.0. http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cos01/
WS-Quality-Factors-v1.0-cos01.html

http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cos01/WS-Quality-Factors-v1.0-cos01.html
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/cos01/WS-Quality-Factors-v1.0-cos01.html

124

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Bartoloni et al.

Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S.,
Brandic, I., Kertész, A., Parkin, M., Carro, M.: A survey on service quality descrip-
tion. ACM Comput. Surv. (CSUR) 46(1), 1-64 (2013)

Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I.,
Hempel, A., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., et al.: Software
engineering meets control theory. In: Proceedings of the 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (2015)
Ravishankar, V., Baskaran, R.: A compendium on service oriented architecture
and service level agreements. Int. J. Comput. Appl. 40(1), 13-17 (2013)
Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL com-
positions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 378-393. Springer, Heidelberg (2008)

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11, April 2007

Mukherjee, D.: QOS IN WS-BPEL PROCESSES. Master’s thesis, Indian Institute
of Technology, Delhi, May 2008

Bartoloni, L., Brogi, A., Ibrahim, A.: Probabilistic prediction of the QoS of ser-
vice orchestrations: a truly compositional approach. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 378-385. Springer,
Heidelberg (2014)

Bartoloni, L., Brogi, A., Ibrahim, A.: Predicting the QoS of service orchestrations.
Technical report, Dipartimento di Informatica, University of Pisa, Italy, March
2015. http://eprints.adm.unipi.it/2329/1/Unipi_TR.pdf (Submitted for publica-
tion)

Bouillard, A., Rosario, S., Benveniste, A., Haar, S.: Monotonicity in service orches-
trations. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606,
pp. 263-282. Springer, Heidelberg (2009)

Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-driven and automated
prediction of service level agreement violations in service compositions. Distrib.
Parallel Databases 31(3), 447-470 (2013)

Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: Proceedings of the 6th International Workshop
on Software and Performance, pp. 54-65. ACM (2007)

van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S.,
Kieselhorst, D.: Continuous monitoring of software services: design and applica-
tion of the kieker framework. Research report, Kiel University, November 2009
Kounev, S., Brosig, F., Huber, N.: The Descartes Modeling Language. Technical
report, Department of Computer Science, University of Wuerzburg, October 2014
Cardoso, A.J.S.: Quality of service and semantic composition of workflows. Ph.D.
thesis, University of Georgia (2002)

Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: QoS analysis for web service
compositions with complex structures. IEEE Trans. Serv. Comput. 6(3), 373-386
(2013)

Ivanovié, D., Carro, M., Kaowichakorn, P.: Towards QoS prediction based on com-
position structure analysis and probabilistic models. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 394-402. Springer,
Heidelberg (2014)

http://eprints.adm.unipi.it/2329/1/Unipi_TR.pdf

Automated Prediction of the QoS of Service Orchestrations: PASO at Work 125

20.

21.

Bhat, S., Borgstrom, J., Gordon, A.D., Russo, C.: Deriving probability density
functions from probabilistic functional programs. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 508-522. Springer,
Heidelberg (2013)

Stuhlmiiller, A., Goodman, N.D.: A dynamic programming algorithm for inference
in recursive probabilistic programs. In: Second Statistical Relational Al workshop
at UAT 2012 (StaRAI-12) (2012)

A Workflow Service Mediator for Automated
Information Processing and Scheduling
Delivery to an Archive

Salvatore D’ Antonio’, Giuliano Gugliaraz,
Carlo Francesco Romanol(g), and Luigi Romano'

! Dipartimento di Ingegneria,

Universita degli Studi di Napoli “Parthenope”, Naples, Italy
{salvatore.dantonio, carlofrancesco. romano,
luigi. romano}@uniparthenope. it
2 Comune di Afragola, Afragola, NA, Italy
g.gugliara@comune. afragola.na.it

Abstract. This paper describes our experience in building a service mediator to
address real-life digital preservation problems and an overview of the project’s
progress to date. This article introduces the motivation for this work, describes
the extensible technical architecture and places its approach into the context of
the long term archive. The proposed framework is composed of configurations
and control panels based on Restful WEB technologies, a data-analysis engine
based on stream processing paradigms, and an asynchronous message delivery
service which provides definition task types and effort driven scheduling. The
framework has been implemented as a pilot application in Afragola, a munici-
pality in Napoli (Italy).

Keywords: Stream processing + Message Driven * Long term archiving -
REST - Business process manager + Grammar based parsing

1 Introduction

This paper describes our experience in building a service mediator designed to integrate
heterogeneous document workflow into a long-term archive.

The impetus for our team comes from P.A. (Public Administration) and long term
archives across Italy which have the legal responsibility to safeguard digital documents.
While much progress has been made in digital preservation research, the current state
of the art has shown a lack of integrated solutions for preservation of large-scale digital
collections. A fundamental problem is that all workflow engines exist as stand-alone
applications and are not geared to preserve digital objects. The main goal of this
framework is to provide a common interface for document workflow engines that
delivers the final record (eventually digitally signed) to achieve digital preservation and
long-term archiving.

The rest of the paper is organized as follows. Section 2 reviews the technical
approach especially the REST API design [1]. Section 3 presents the detail of a control

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 126-140, 2016.
DOI: 10.1007/978-3-319-33313-7_9

A Workflow Service Mediator 127

Panel, that supports a number of key preservation functions to provide an easily
managed preservation system. Section 4 discusses the implementation of REST. With
Sect. 5 we will provide an overview of related work in relevant areas and what we add
in term of contribution to their work and we conclude with Sect. 6.

2 Technical Approach

The software architecture is rooted in the vision of a system that fully decouples any
workflow from the archive, acting as a service mediator that translates the incoming
document into a file compliant with the long term storage. A conceptual view of the
framework is depicted in Fig. 1.

SERVICE LONG TERM
ROREWEICHE MEDIATOR ARCHIVING

Fig. 1. A conceptual view of the framework

The whole process is divided into these transactional phases that characterize the
life cycle of documents to upload:

1. A File including all records (eventually digitally signed) has to be generated

2. Temporary file mirroring to the Service Mediator database (local database),
returning a receipt with an id-key

3. File delivery scheduling to an entrusted third-part

The engine key design concept is divided into three components: a documents
acceptance system, a queuing and scheduling system and the connection interface to an
archive. This decouples the workflow engine from the outsourced archival hub.
A modular three-tier system is depicted in Fig. 2.

2. Queuing and scheduling

system

4

3. Connection interface with the
long-term archive

Fig. 2. Framework model

128 S. D’ Antonio et al.

We have designed the system as a Restful (Representational State Transfer) [2]
application rather than other architectural forms (such as SOA - Service Oriented
Architecture) especially because it is XML-independent [3]. This allows exchanging
information without adding overhead (i.e. encapsulation of several files within a soap
message, encoded in base64). Due to the lightweight message format feature, REST
also gives more space to system performance optimization. Furthermore the effort
required to build a client to a RESTful service is very small as developers can test such
services from an ordinary Web browser. In the Italian P.A. scenario, where consumer
clients are mostly unknown, REST is a good choice because RESTful interface is more
flexible to meet integration requirements and data are combined easily among different
kinds of applications. A more in-depth discussion of these technologies is given by
Pautasso et al. [4].

There are three kinds of actors in this scenario that can interact with the main
resource “Archive”:

e Uploader: can upload in certain category
User: can search into certain category
Operator: he is responsible for the long-term conservation. With the help of the
dashboard described in Sect. 3, the operator must alert for problems and, in some
cases, mitigate the criticality.

2.1 Documents Acceptance System

This layer collects the various document parts and its metadata [5], validates them,
creates a file with an archive-compliant metadata and sends a receipt to the client (the
upload technology is the multipart-form data over the HTTPS).

Entity “File”. The “File” is the entity that abstracts away records and metadata to
archive. The main metadata fields are referenced into a File column and XML data type
is used to store metadata.

Upload Engine. As discussed above, we use a Restful approach to load and search
documents. The upload service is invoked by the specific HTTP action POST:

POST /ServiceMediator/archive/insert/collectionX

Host: localhost:8080
URL:https://localhost:8080/ServiceMediator/archive/Collect
ionX/insert

Every “uploader” is linked to a specific workflow and the system will use the
specific processor to perform further operations on it. A valid multipart/form-data
contains these fields:

1. Text. User, Password
2. Text. Metadata
3. Binary/Octet. Record

A Workflow Service Mediator 129

The type of the message body is defined by a corresponding header field using
MIME media types [6]. In this example /ServiceMediator/archive/CollectionX/insert/
calls the CollectionX processor and <<multipart/form-data>> is the record to process
and validate. Hence, the CollectionX processor build the entity “File” to be stored
locally (Service Mediator database), generate an unique ID (database side) and starts an
asynchronous task (scheduled delivery); the client has a tracking device to get more
details about the running task that is a resource with its own URI [7]. The server answer
follows:

POST /ServiceMediator/archive/insert/

Server: GlassFish Server Open Source Edition 3.1.2.2
Host: localhost:8080

Content-Type: application/xml

<file id=3750>
<deliveryOutcome>0</deliveryOutcome>

<state>l</state>
<stateDescription>...</stateDescription>
<metadataXML>. ...</metadataXML>

<user>UploaderXY</user>
<timestamp>2015-02-23T13:21:20.449+01:00</timestamp>
<MainRecord>
<fileName>test.out</fileName>
<mime>application/octet -stream</mime>
<filesize>70304</filesize>
<gzipcompression>true</gzipcompression>
</MainRecord>
<number>2</number>
<year>2015</year>
<type_registry>GENERIC</type_ registry>
</file>
202 Accepted
Location:
https://localhost:8080/ServiceMediator/archive/Collection

X/3750

The response contains the marshalled entity “File” formatted in a variety of rep-
resentation media types (i.e. the JavaScript Object Notation (JSON) [8] and the
Extensible Markup Language XML) and the URI location, in this way each uploaded
File is traceable. The client can execute a GET to the inserted URI to know the file
current state or even use a DELETE to cancel it.

Search Engine. An authenticated User can retrieve easily a document into a File that
belongs to CollectionX. A typical query is:

130 S. D’ Antonio et al.

https://localhost:8080/ServiceMediator/archive/collection
X/query?year=2015&author=John Snow

It does retrieve all files based on query:
QUERY correlateInfo:
SELECT
file name, metadata, blob_pointer,
FROM collectionX
WHERE
yvear='2015" and author=’'John Snow’
Blob_pointer is the pointer to the actual raw data.

Cataloging System. We have developed three Collection processors: Collec-
tionSUAP, CollectionSUE and CollectionDigitalContract used in the following
applications.

1. SUAP workflow: a system used by local authority to register new business in Italy.

2. SUE workflow: a manage Planning Permission System.

3. DigitalContract workflow: contracts manager between local authority and
third-parties.

Figure 3 shows the client upload schema.

PDF and metadata

Workflow SUAP
Document Acceptance System
PDF, images and CollectionSUAP
metadata
Workflow SUE CollectionSUE
CollectionDigitalContract
Workflow Digital
Contract PDF digitally signed and
metadata

Fig. 3. Clients upload their documents

Once the file is uploaded a validation task takes place. This task can be easily
upgraded to meet future requirements. In our case a syntactic engine (parser) analyses
the correspondences between different information, such as.

e Number of attachments/annexes/annotations cited into the XML and number of
them all actually uploaded.
e Digital signatures validity and/or double digital signatures.

A Workflow Service Mediator 131

The Documents acceptance system, through Collection processors, can generate
from the original XML a new one for digital repositories interaction, integrating it with
descriptive, administrative, and structural metadata. A Collection processor provides an
engine (metadata-engine) for incorporating these various components from various
sources under one structure and also makes it possible to aggregate these pieces
together in a record in sync with METS (Metadata Encoding and Transmission Stan-
dard [9]). The core of this engine is based on JAXB (Java Architecture for XML
Binding), a Data binding API that allows the programming to manipulate XML. JAXB
can constitute the tree of Java content objects using an XML as input. The applications
can access directly the Java objects, data content and structure. The whole process is
called unmarshalling. Marshalling is opposite to unmarshalling. Marshalling is a pro-
cess of generating XML instance document according to the Java content tree. The
Collection processor unmarshalls the incoming XML, validate all digital records
uploaded, and store and integrate information into a new Java Object. Hence the
processor marshalls a single XML for interactions with long-term archive.

This functionality is depicted into Fig. 4.

Administrative

Administrative

Descriptive -
Repository
Schema

XML —— Descriptive

Structural Structural

Fig. 4. Unmarshaller/Marshaller engine

Another problem solved is that each original metadata source provider may have
used different metadata schemas, so it’s possible to have a unified search engine that
provides a single method and language of accessing data.

Finally, the file (records and metadata) is created and stored in the local database
(Fig. 5).

2.2 Queuing and Scheduling System

The second layer allows delegating the message exchange management with server
storage. Files are enveloped and a task is programmed, in order to send the message in
a specified time. A simple schema is depicted in Fig. 6.

132 S. D’ Antonio et al.

Document Flow
Parser
Check failed
Documents rejected,
raise the alarm D
OCS
< sty
Validation

Creation of an envelope -

for records and metadata
(file) , persisted locally on
DB

Fig. 5. Documents acceptance system schema

File to be
archived

v Sender Service

Message
Listener

Scheduler

-
:
I =
=

Fig. 6. Queuing and scheduling system schema

2.3 Connection Interface with Long-Term Archive

The last layer provides the communication interface to the archive, as depicted in
Fig. 7.
As a timer programmed by the queuing and scheduling system expires, the system
connects through the driver interface to the Archive, and then performs the upload.
The envelope contains information about destination, based on its metadata.

A Workflow Service Mediator 133

= | oA
4 Archive Driver A :

Archive Driver B I:’>
~ == - -
File -
Archive Driver C : (
PA

Fig. 7. Connection interface with long-term archive schema

-©

2.4 File State and Delivery Outcome

The system is capable to make a self-decision and corrective action in case of failure,
deciding whether to take further action. Every decision is logged. Possible states are:

1. INITTIALIZED (0) file is initialized with empty parameters.

2. IN_PROGRESS (1), file has just been created with validated input and stored onto

local database. The system will try to deliver it according configuration parameters.

SENT (2), the file has been sent to the archive.

PAUSE (3), the system will not take further action until the file state is in pause.

5. ERROR (4), the system will not take further action, whose is entrusted to an
operator.

6. INITIALIZATION_ERROR (5); file is not properly initialized and will be never
sent.

B w

If an error occurs during transfer (connection error, network uplink down, etc.) the
system updates the log with the exception information and reschedules delivery. After
three errors logged, the system turns file state into “error”. Possible states of delivery
outcome are

. TO BE SENT (0), File initialized.

. SENT CORRECTLY (1), File sent without error.

. SENT WITH WARNING (2), The archive receipt contains some warnings.
. ERROR (3); an error occurred during transmission.

BN =

3 Control Panel

This system can be easily monitored through a control panel by Operators. It contains a
web dashboard that provides visual control of different events, such as:

e Checking conservation status of each file proved by the Archive receipt.
e Managing conservation transaction and acting appropriate corrective action (e.g.
forcing upload) in case of a negative outcome.

134 S. D’ Antonio et al.

e Managing users and roles.
e Check scheduled task.

4 A Real Implementation

A bird’s eye view of the entire system is depicted in Fig. 8.

Receipt

- — |
Connection Interface for the
File to be Archive
archived
Marshaller Driver for
Marshaller
the Archive XML
-
Update the state of the
Singleton Delivery Entity RD —> DB file and persist
the archive receipt
Service P
Mediator Service 108 Server Entty Manager
-
Positive
Answer
Negative answer
Unmarshaller H
Helper Validator
— -
<
Generation Answer
RESTI)Query of the File
authentication
Control Panel Jersey Restful Service
Envelope to be

mnwsd
T Multipart Form DATA

Web

1. User, Password
2. File: (Metadata and Records)

Uploader
Operator

Uploader

Fig. 8. Bird’s eye view of the entire system

A client interacts with the system through a Jersey Restful service, consuming its
resources (control panel and upload engine). An Enterprise JavaBeans (EJB) run in the
EJB container, a runtime environment within the GlassFish Server. The EJB container
provides system-level services, such as transactions and security, to its enterprise
beans, which form the core of transactional Java EE application. After the file gener-
ation (see Fig. 8.) a validation task takes place. In case of success the file is sent into a
Java Message Driven Bean (MDB) that mediates between the client and the long term
archive [10]. The client always gets a receipt (in case of success or failure) and can
track the state of its request from an URI that point to the task resource. This service

mediator has been built with three goals in mind:

A Workflow Service Mediator 135

1. Modularity and Aspect-Oriented Programming (AOP): modularize crosscutting
concerns, by using a concept called aspects [11].

2. Transactionality: the needs are to divide the entire project into transactional phases
(upload and delivery).

3. Restful capabilities: REST does not allow for the overhead over a lightweight
transport protocol such as HTTP and permits easy future system evolution with
regard to scalability, performance, adaptability, etc.

For these reasons Enterprise Java Beans 3.1 and Glassfish have been the techno-
logical choices.

As depicted in Fig. 8, representation of identity and credentials are provided by the
JAAS module (Java Authentication and Authorization Service) implemented in
AOP. This modularization can ease the burden on developers, developing more secure
applications faster. Whenever a client tries to access a protected resource, the appli-
cation container activates the authentication mechanism. If the client is authenticated,
he must be in role to consume that specific resource. Users and Roles are defined into
the local DB.

4.1 Documents Acceptance System Implementation

The resource Archive, responsible for upload and search engine, is exposed by a Jersey
Restful Web service framework that abstracts away the low-level details of the
client-server. This framework decouples client-server interaction because it hides
remote procedure calls. The client needs just the URL that represents the system state.
This resource is implemented by a class FileService and exposed through the URL
“https://localhost:8080/ServiceMediator/archivel/”. For every collection there is a
processor that, with the help of an Unmarshaller Helper, validates the incoming record
(s) and its metadata. Then the entity File is created (cf. Sect. 2.1). A scratch of code
follows:

136 S. D’ Antonio et al.

@Stateless

@Path("/CollectionX/")

public class FileService {
@QEJB
Archive archive;
@POST
@Path("/insert™")
@Consumes (MediaType.MULTIPART_ FORM_DATA)
@Produces ({"application/xml", "application/json"})
public File insertFile(
FormDataMultiPart formParams,
@Context HttpServletRequest req) {

//entity
File initializedFile = inizializeFile();
try {

//check user and password

if (!logged) {(reqg.login(user, pass));

}
//check role
if (reqg.isUserInRole(role)) {
//validate stream
validateCollectionXRecords (metadataXML, record) ;
//build the file
initializedFile = do_buildFile (metadataXML,
record) ;
//update the entity File with a local primary key
archive.persist(initializedFile) ;
// send the inizialized File to the Queuing and
scheduling system
addQueue (initializedFile) ;
}
}
// catch and finally blocks
}

return initializedFile ;}

Validation is composed by a set of rules, such as:

e Number of attachments/annexes/annotations cited into the XML and number of
them all actually uploaded.
e Digital signatures validity and/or double digital signatures.

A Workflow Service Mediator 137

4.2 Queuing and Scheduling System Implementation

This component has been implemented using Java EJB Message Driven Beans
(MDB) and Java Timer technologies.

The message listener MessagingEngine implements the abstract method onMessage
(Message message) which takes the file encapsulated into a java Message and sched-
ules an intelligent delivery, driven by some configurable parameters:

e Weight: file with a blob less than X MB can be archived at the moment.
e Hand driven: an operator can manually activate delivery (e.g. after a failed
transition).

Message Listener implementation sample code follows below:

//ScheduleDelivery is an EJB reosurce
@QEJB

ScheduleDelivery scheduleDelivery;
public void onMessage (Message message) {

ObjectMessage objectMessage = (ObjectMessage) message;
FileMessage fileMessage= new FileMessage() ;
try {

fileMessage = (FileMessage) objectMesage.getObject () ;
/*

The ActiveTask helper class is useful for scheduled deli -
very. It defines when deliver a File; it’s driven by many
parameters

*/

ActiveTask at = new Activeask(fileMessage.getIdFile());
scheduleDelivery.insertCalendarTask (at) ;

} catch (JMSException jmse) {
jmse.printStackTrace() ;
context.setRollbackOnly () ;

} catch (Exception e) {
e.printStackTrace() ;

1}

ScheduleDelivery implements a method “sendFile” with the annotation @Timeout.
On timeout “sendFile” connects through the driver interface (DeliveryService) to
the Archive, and then performs the upload.

4.3 Connection Interface with Long-Term Archive Implementation

This layer is implemented by an EJB resource, DeliveryService. It does accept a File,
then marshalls its metadata into a new archive dependant XML-schema and delivers
data through the right driver. This local resource is provided by Singleton Class which
contains a @Lock (LockType WRITE) method. Below follows a sample code:

138 S. D’ Antonio et al.

@Singleton
@Interceptors(CallAudit.class)
@TransactionAttribute (TransactionAttributeType.MANDATORY)
public class DeliveryService {
QEJB
Archive archive;
private AtomicBoolean busy = new AtomicBoolean(false);
//set lock in read
@Lock (LockType.WRITE)
public void send(long idFile)
throws InterruptedException {
if (!busy.compareAndSet (false, true)) {
System.out.println("Busy resource. ");
return; }
File file = archive.find(idFile) ;
try {
/translate metadata into the archive -dependent XML-schema
String metadataXML =
GenericDriver.translateMetadata (file.getMetadataXml ()) ;
//get the answer from the Synchonous upload
String archive_receipt =
SynchronousUploader.uploadFileToArchive (file,
metadataXML) ;
//updating State and delivery outcome
file.updateFile (GenericDriver.translate_archive_receipt
(archive_receipt)) ;
//add a log of transaction
LogDelivery logDelivery = new LogDelivery(file);
file.getLogCollection() .add(logDhelivery) ;
} catch (Exception ex) {
} finally {
//update file into local DB
archive.update(file) ;
//Release resource as soon as task complete
busy.set (false) ;

During the busy time (resource locked), any other
scheduled delivery is discarded. The system retries as
soon as the task is completed.

A Workflow Service Mediator 139

4.4 The Control Panel Implementation

Every interaction with REST services in the control panel are done by a jquery
interface using the Ajax common framework. For example, to retrieve all files, client
must call the following function:

S("#result").load(
"/https://localhost:8080/ServiceMediator/archive/all",
function(response, status, xhr) {

if (status == "error") {
var msg = "Sorry but there was an error: ";
S("#error").html(msg + xhr.status + " " +

xhr.statusText); }});

5 Related Work

A common theme in much of this work is cataloging and hence recovering archived
records using a search engine. Marcia Lei Zeng and Lois Mai Chan presented a
comparative analysis between results of interoperability improvement efforts at dif-
ferent levels (Schema level, Record level, Repository level) [12]. In our work, the
design rules responsible for dealing with interoperability are mapped at the Record
Level. Hassan Mathkour and Ameur Touir presented XMed [13], a mediator that helps
to aggregate heterogeneous data sources.

Our work consolidates these theories into an environment as end-product choosing
technologies and a model, as adaptable as possible, in view of further tools/services
developments that software vendors and service providers can implement and augment.

We built a system with additional functionalities and that fully decouples the
internal workflow from the Digital Archive. It supports a number of key preservation
functions adding these new features:

e The long-term archival hub might stop for maintenance, so we built a system that
acts as buffer for on-line uploading.

e The system has been built with bandwidth optimization in mind, acting during
non-peak hours.

e A mediation service integrates original XML schema into a new one in sync with
METS (Metadata Encoding & Transmission Standard) for supporting long-term
access requirements. Moreover, metadata can be refined according to business
needs or future law compliances.

e The archival hub might change so we modularized the system adding a layer with a
storage driver interface, then there’s no need to rewrite code for the workflow
engines.

¢ A monitoring panel has been designed to easily check records preservation state and
performances.

140

6

S. D’ Antonio et al.

Conclusion

A first prototype of the proposed framework has been implemented in Afragola, a small
municipality in Napoli. This pilot application helps the management of long-term
archive for digitally signed documents. It became a core application for all their
workflow software as it integrates the workflow with:

1

2.

The ability to schedule documents delivery that allows packets traffic optimization
over the network, using continuously and optimally bandwidth.

Validation feature that can be made increasingly intelligent and adaptive, as it helps
to identify human mistakes within the document generation chain.

A dashboard delivering greater visibility and control at a higher level into the
process.

The presence of an aggregator node allowing homogenizing and adjusting hetero-
geneous document flows, making maintenance easier.

References

10.

11.

12.

13.

. Haupt, F., et al.: A Model-driven approach for REST compliant services. In: 2014 IEEE

International Conference on Web Services (ICWS), pp. 129-136 (2014)

. Vinoski, S.: REST eye for the SOA guy. IEEE Internet Comput. 11(1), 82-84 (2007)
. 'W3C: Extensible Markup Language (XML) 1.0, 5™ edn., 26 November 2008. http:/www.

w3.org/TR/REC-xml

. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web services:

making the right architectural decision. In: Proceedings of the 17th International Conference
on World Wide Web, pp. 805-814. ACM, New York (2008)

. Perlin, N.: Introduction to metadata. In: 2006 IEEE International Professional Communi

cation Conference, pp. 153-155 (2006)

. Freed, N., Borenstein, N.: Multipurpose internet mail extensions (MIME) part two: Media

types. RFC 2046. http://www.ietf.org/rfc/rfc2046.txt

. Masinter, L., Berners-Lee, T., Fielding, R.T.: Uniform resource identifier (URI): Generic

syntax. RFC 3986. http://www.ietf.org/rfc/rfc3986.txt

. JSON.org: Introducing JSON, 11 Desember 2002. http://www.json.org/
. IEEE: Recommended Practice for Learning Technology — Metadata Encoding and

Transmission Standard (METS) Mapping to the Conceptual Model for Resource
Aggregation. IEEE Std 1484.13.2-2013, pp. 1-73, 30 December 2013

Lohr, K.P.: Automatic mediation between incompatible component interaction styles. In:
Proceedings of the 36th Annual Hawaii International Conference on System Sciences, p. 10
(2003)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of Aspect]. In: Knudsen, J.L.. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327-354. Springer,
Heidelberg (2001)

Chan, L.M., Zeng, M.L.: Metadata interoperability and standardization - a study of
methodology Part I: achieving interoperability at the schema level. D-Lib Mag. 12 (2006).
http://www.dlib.org/dlib/june06/chan/06chan.html

Mathkour, H., Touir, A.: An intelligent mediator for heterogeneous data sources. In: The 9th
Asia-Pacific Conference on Communications, APCC 200, vol. 3, pp. 1002-1006 (2003)

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.json.org/
http://www.dlib.org/dlib/june06/chan/06chan.html

Adaptive Architectural Model for Future
Internet Applications

Marina Mongiello®™) | Luigi Alfredo Grieco, Massimo Sciancalepore,
and Elvis Vogli

Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
{marina.mongiello,alfredo.grieco,massimo.sciancalepore,
elvis.vogli}@poliba.it

Abstract. Interoperability, flexibility and adaptability are key require-
ments of Future Internet applications. Convergence of contents, services,
things and networks seems to be the cornerstone to fulfill these require-
ments. In this paper we propose a model for runtime composition of
software applications in sensors networks based on data, processes and
technology, in order to design an “on the fly” architecture of a soft-
ware system. The model is graph-based and composed by two control
levels: a formal model and the instantiation level. An algorithm extracts
a subgraph that identifies the applications to be executed according to
changes in the external context. The proposed approach has been instan-
tiated in a use case example in a smart home environment, to evaluate
the usefulness of the approach and the applicability of the model in actual
scenarios.

Keywords: Formal model + Runtime architectural model - Sensor
networks

1 Introduction and Motivation

Future Internet applications should be able to handle dynamic changes in
user experience and interoperability between different technologies, data, and
processes. Convergence of contents, services, things, and networks seems to be
the relevant direction taken by these applications [2,4].

Such complex and composite source of data ranging from signals, raw data,
events and complex events needs technological and theoretical formalization. In
the light of all these novelties, adaptive mechanisms to develop and orchestrate
services and applications are emerging [3,5].

A formal approach for runtime composition of software applications in sensor
networks is proposed hereby. The approach is made of two control levels: a
technology independent level and an instantiation one. The first level catches
different configurations of adaptive software modeled using a graph structure.
Each node in the graph can be classified as a data or a process or a technology.
A data node represents information derived from the external context (e.g., a
© Springer International Publishing Switzerland 2016

A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 141-148, 2016.
DOI: 10.1007/978-3-319-33313-7_10

142 M. Mongiello et al.

data detected by a sensor). Data trigger processing of software applications,
i.e. process node. Finally, technology node specify features of the devices (for
example the state of the device where the application will be executed, the state
of the memory of the device or the state of the middleware used to make software
application interact with each other). At the instantiation level, instead, the
graph model is contextualized to application context that are platform dependent
and belong for example to Java, Android, and any other technology environment.

Data processing and technologies selection and management is driven by
specification of operational requirements. On the graph model, hence at the first
control level, we also define an algorithm to extract a subgraph from the graph
by minimizing a cost function. The algorithm finds the best sequences of (data,
process, technology) terns minimizing the cost due to resources utilization. Such
sequences of nodes and the related paths correspond to the selected orchestra-
tion of services or application in response to the context behavior. The main
advantage of the proposed approach is to possibility to delay architectural deci-
sions at run-time and to build the architecture “on the fly”, depending on the
specified requirements.

The proposed approach has been instantiated in a use case example in a
smart home environment, to evaluate the usefulness of the approach and the
applicability of the model in realistic scenarios.

The remaining of this paper is organized as follows. Section 2 introduces back-
ground information needed for clarifying the proposed approach. The proposed
formal model is defined in Sect. 3. Instantiation of the model with respect to a
realistic use case scenario is described in Sect. 4. Conclusions and future works
close the paper.

2 Background

In this section we introduce techniques and notions that will be used in the
remaining of the paper. Specifically, Sect. 2.1 introduces the adaptive systems,
Sect. 2.2 describes goals and operational requirements, and finally, Sect. 2.3 intro-
duces REST Middleware.

2.1 Adaptive Systems

An adaptive system is an open system able to adapt its behavior according to
changes in the environment or in parts of the system itself. Hence the adaptability
is the ability of a software system to adapt efficiently and rapidly to any changes
in the context or in the requirements.

Typically the development of a software system is completed within the life
cycle where before delivery, requirements engineers, software designers and devel-
opers realize the system components. In modern software systems it is always
difficult to predict the needs of users, so a single optimal configuration of the
system is difficult to model and design.

Adaptive Architectural Model for Future Internet Applications 143

It may be necessary to vary requirements run-time and then design the com-
ponents of the application and implementation, all the same, always on the basis
of changes arising from the external environment and the context, of course. For
example, moving along a sensor network determines changes in the external
environment that might trigger the execution of applications and software com-
ponents not provided at design time.

2.2 Operational Requirements

Goals are objectives the system is intended to achieve through the cooperation
of agents in the envisioned software and its environment [6]. A requirement is
a goal assigned to an agent in the software design [1]. While functional require-
ments specify the functionalities to be implemented, generally non-functional
requirements can determine decisions on the architectural model: for example,
if the system must ensure security it is good to use a proxy to access protected
data, if the system must integrate existing components it is good that has a
distributed objects architecture and so on. A Operational Requirement captures
the conditions under which a system component may or must perform an opera-
tion to achieve a goal. The operational requirements eventually belong to the set
of non-functional requirements and describe the behavior of the system. They
can be described by formal or semi-formal languages. Definition of operational
requirements is basic in defining and describing the system analyzed in terms of
the behavior more then the functionality to be provided.

2.3 REST Middleware

Nowadays many vertical M2M solutions have been designed independently for
different applications, making the current M2M market very fragmented, which
inevitably hinders a large-scale M2M deployment. To decrease the market frag-
mentation there have been many efforts from different standardization bodies to
define horizontal service layers.

The European Telecommunications Standards Institute (ETSI) has defined
with the SmartM2M standard a middleware which has a RESTful architecture
[9]. On the other side, OneM2M, where are collaborating more than 200 stan-
dardization bodies and companies, is defining a RESTful middleware which will
have a global validity [8].

The proposed solutions provide RESTful middlewares which separate the
applications from communication domain. The middlewares are accessible via
open interfaces and enable the development of services and applications inde-
pendently of the underlying network. In addition they provide several service
capabilities to enable machine registration, synchronous and asynchronous com-
munication, resource discovery, access rights management, group broadcast, etc.

All the resources in the RESTful middlewares are organized in standardized
resource trees and can be uniquely addressed by a Uniform Resource Identifier
(URI). Their representations can be transferred and manipulated with verbs
(i.e., retrieve, update, delete, and execute).

144 M. Mongiello et al.

3 Model for Adaptive Applications Composition

In this section we propose a formal model for runtime composition of software
applications in a sensor network.

The model is a graph based structure. The purpose of using a graph struc-
ture is to determine which apps to execute and how and where they will be
executed, depending on variation in the contest and hence on data detected by
the sensor. The main advantage of using a graph structure is the possibility
to use rewriting or grammar graph techniques for extracting subgraphs satisfy-
ing a given requirement. Requirements to be satisfied are high level requirements
(mainly Operational), that are hence modeled on the graph structure. The graph
describes a snapshot of all the available software plugins mainly characterized
by the data detected by a sensor in the network (Data), the functionality to
be executed (Process) and by the state of the device where it will be executed
(Technology). Each transition has a cost due to parameters involved in the con-
text. Hence we can assume that each plugin is modeled as a triple of elements
with a function cost associated.

Definition 1 (Resource Super Graph (RSG)). A Resource Super Graph
is a direct Acyclic Graph G = {N, A}, where nodes N are resources — N =
DUPUT (D = Data,P = Process, T = Technology) — and arcs a € A are
such that:

1. AC(DxP)U (P xT), ie “arcs connect data with process, process with
technology, technology with data”;

2. a € D x P defines the variable cost v,
a € P x T defines the fized cost f,
a € T x D detection of a new data variation

Each node in the graph can be distinguished as: Data, Process, Technology.
Data are those detected by a sensor network; Process is the operation performed
on the data that can belong to one among the following: preprocessing, process-
ing plugins, etc. Technology identifies the network type and the characteristics
of the mobile devices. Arcs in the graph link pairs of nodes based on the value
of a cost function. The cost computation depends on several parameters, that
can be the type of node, the cost of the process and so on.

The cost function associated with the triple (Data, Process, Technology)
depends on the features of the given plugin but also on the state of the devices. It
is defined as f.(DPT) of the triple (DPT), and is given by the sum of the cost of
the two arcs connecting respectively D with P and P with T, f. = v. + fxz.. The
contribution of the variable cost depends on the characteristics of the available
network and of the devices on which it is calculated. Where v, = device, +
network,.. The cost of the network includes information about the state of the
network at the time of receipt of the request of a plugin execution, such as
connection delay, network bit rate, packet size, etc. The cost of the device is
given by the amount of available RAM on the middleware, due to the number of

Adaptive Architectural Model for Future Internet Applications 145

active connections and by the cost of forwarding information when for example a
middleware is not available so the request must be forwarded to another one. So
device, = middleware, — forwarding.. On the other hand, the costs of mobile
device is given by the amount of available RAM and mass memory, the level
of the device battery, as well as the geographic location (used to choose which
middleware register).

The contribution of fixed cost fz. depends on the characteristics of the
plugin, such as size in bytes, computational complexity and so on. It remains
unchanged if the plugin runs on the mobile device or if runs on the middleware.

Moreover, given a pair of starting and destination nodes, there are multi-
ple paths connecting them, hence we can extract more “sub-graphs” from a
SuperGraph. A path in the graph, i.e., a subgraph, identifies a sequence of apps
to be executed with specifications concerning the features of the technology —
the kind of network or of device—, and the type of process to execute each of
them — where and how the app is executed. We need an algorithm to extract
a subgraph according to the optimum condition, for example for extracting the
subgraph that minimizes a cost function according to parameters depending on
the nodes features.

A Resource SubGraph (RSubQG) is the graph extracted by RSG by executing
the DPT() algorithm to select the path in the RSG with minimum cost. Among
all the possible subgraphs of RSG, hence all the possible sequences of plugins to
be executed we need to find the best path, with minimum cost function in order
to determine the best sequence of plugins as triggered by a set of data detected
by sensors.

DPT Algorithm. Let us now define the proposed algorithm. The Data Process
Technology (DPT) algorithm schedules, manages and monitors the data,
technologies and processes execution on the devices. Suppose the hardware
infrastructure of the sensor network is made up as described below. It is com-
posed by motes, with a limited memory and computation capabilities. Physical
motes are mapped onto logical ones, and have a virtual image at middleware
level. The features of the middleware are those of a REST middleware whose
functionalities can be extended through the implementation of adhoc plugins.
Each plugin will encode functionalities that can be run-time loaded, depend-
ing on the specific requirement triggered by an event that occurred. Sensors
detection is managed at middleware level, where subscribers have to registered
and where updated data can be sent. At master level a scheduler plugin has
to check and manage variations in the context and in data perceived from the
sensors to decide which plugin or sequence of plugins to activate. The master
plugin manages a runtime composition of plugins able to perform functionalities
depending on data retrieved by sensors, but at the same time satisfying high
level requirements modeled by triggering of events or being in a given state.

Communication among plugin occurs through the middleware that forwards
requests, data, responses among pluging and sensors according to low level pro-
tocols while interaction is scheduled and managed by the high level master
application.

146 M. Mongiello et al.

To extract the shortest paths of the graph, and then the sets of nodes or
sequence of plugins, we define the DPT algorithm to extract the shortest path
made up of terns (Data, Process, Technology).

Data: A Resource SuperGraph (RSG)
Result: Resource SubGraph (RSubG)
D « data nodes;
P « process nodes;
T <« technology nodes;
foreach i = 1 to min(D _length, P_length, T length,) do
ShortestPath(D, P);
Shortest Path(P, T, cost:);
select next data node;
ShortestPath(P, D, costq);
FEvaluate plugin sequence;

© 0O N O Ok W N

end

=
=]

Algorithm 1. Algorithm Data Process Technology DPTY()

Step 1 computes the shortest path following a stating node of Data type,
Step 2 computes the shortest path following node of type P, step 4 computes
shortest path following node of type T. Each step has as a parameter the function
cost computed till the previous node. Shortest path extraction follows Djikstra
algorithm [7].

The hardware infrastructure of the network is composed by motes, with
a limited memory and computation capabilities. Physical motes are mapped
onto logical ones, and have a virtual image at middleware level. The features
of the middleware are those of a REST middleware whose functionalities can
be extended through the implementation of adhoc plugins. Each plugin will
encode functionalities that can be run-time loaded, depending on the specific
requirement triggered by an event that occurred. Sensors detection is managed
at middleware level, where subscribers have to registered and where updated
data can be sent. At master level a scheduler plugin has to check and manage
variations in the context and in data perceived from the sensors to decide which
plugin or sequence of plugins to activate. The master plugin manages an run-
time composition of plugins able to perform functionalities depending on data
retrieved by sensors, but at the same time satisfying high level requirements
modeled by triggering of events or being in a given state.

4 Model Instantiation

In this section we instantiate the model defined in Sect. 3 on the use case scenario
that follows.

It is a cold winter evening, the temperature in the house is low, the heating
system is activated to reach soon a temperature that will ensure comfort and
well-being to Bob and Mary that are going to come back to after a busy working
day. The blinds close to avoid the dispersion of heat. As soon as they get into

Adaptive Architectural Model for Future Internet Applications 147

the house the lights turn on. Mary goes into the kitchen and set about making
dinner; she turns the oven on that will soon to bake tasty pork shank, in the
laundry the washer and dryer are temporarily suspended to avoid overload. Bob
comes into the living room where the lights turn on. He is very tired so decide
to sprawl on the sof and enjoy some videos. So he prepares the projector for
watching the video taken by of his GoPRO while skying the previous Sunday on
mountain holiday. The video projection begins and the lights turn dim to create
soft lights. Later, Mary later went — as every evening — to the basement to train
on sports equipment while waiting for dinner to be ready. The daily news flow
on the monitor of the tapis roulant on which Mary is training. Through headset
she listens directives of the exercises to be carried out according to the training
program as a result of the control of the calories consumed in the days and of
the physical activity already performed. Mary wears her heart rate and distance
walked monitors for physical activity. When the goal of training daily is going to
be reached, in the bathroom the heating is switched on, the whirlpool is switched
on to enable Mary to practice proper relaxation after physical activity. Mary goes
into the bathroom and the lights turn on while the basement lights and sports
equipment are turned off. Meanwhile, in the garden, video surveillance cameras
found two suspicious individuals climbing on the first floor and forcing a window
to enter the house, despite the presence of people in the house. The images sent
to the nearby police station trigger the alarm that promptly active forces to stop
the thieves intrusion. A spark caused by a failure of the electrical systems in the
garage makes burst fire and soon the garage is filled with dense smoke. The high
level of smoke triggers the fire alarm that immediately reaches the nearest fire
department to active the necessary reliefs.

The Use case scenario is modeled in a Resource Super Graph with all the
possible triples of Data Process and Technology nodes. The algorithm DPT()
“on-the-Fly” extracts triples of nodes and hence activates plugins execution
depending on the function cost.

For example the first situation: It is a cold winter evening, the temperature in
the house is low, the heating system is activated to reach soon a temperature that
will ensure comfort and well-being to Bob and Mary that are going to come back
to after a busy working day. The blinds close to avoid the dispersion of heat.
We have different paths that can be followed to orchestrate plugins. Modeled
data node is temperature variation, but can also be light variation and position
variation. Besides for each data node there exists different process nodes: if data
retrieved is the temperature variation, process may be that of turning the heating
system on, but can also be that of closing the blinds for avoiding dispersion of
heat. After that, technology can be wi-fi, and the application can run on the
house middleware or on the smartphone. Considering light variation as data
node the process node can be the turning light on but also the closing of binds.
So technology may be the execution of the process on the mobile phone or on a
different device, the choice between several alternatives depends on the function
cost. Different values of retrieved data and of function cost evaluation would
determine different selections of path in the graph this means that the plugins
to be executed and their orchestration is different depending on context behavior.

148 M. Mongiello et al.

5 Conclusion and Future Work

In this paper we introduced a model for building “on-the-Fly” architecture of
software systems based on data, processes and technology in context-aware envi-
ronments.

The model is based on a graph structure to represent data, processing of
context aware application and technological features and by an algorithm for
extracting the sequence of applications to be executed.

We instantiated the model on a sensor network environment and validated
the algorithm on a running example in a smart home use case scenario. We are
currently working on performing wide and complex experiments to validate and
test the model.

References

1. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: Proceedings of ICSE 2009, pp. 265-275. IEEE Computer
Society (2009)

2. Cubo, J., Ortiz, G., Boubeta-Puig, J., Foster, H., Lamersdorf, W.: Adaptive ser-
vices for the future internet. J. UCS 20(8), 1046-1048 (2014)

3. Guinard, D., Ton, I., Mayer, S.: In search of an internet of things service archi-
tecture: REST or WS-*? A developers’ perspective. In: Puiatti, A., Gu, T. (eds.)
MobiQuitous 2011. LNICST, vol. 104, pp. 326-337. Springer, Heidelberg (2012)

4. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (I0T), 2010, pp. 1-8. IEEE (2010)

5. Ben Hamida, A., Kon, F., Oliva, G.A., Dos Santos, C.E.M., Lorré, J.-P., Autili, M.,
De Angelis, G., Zarras, A., et al.: An integrated development and runtime environ-
ment for the future internet. In: Alvarez, F., Cleary, F., Daras, P., Domingue, J.,
Galis, A., Garcia, A., Gavras, A., Karnourskos, S., et al. (eds.) FIA 2012. LNCS,
vol. 7281, pp. 81-92. Springer, Heidelberg (2012)

6. Letier, E., van Lamsweerde, A.: Deriving operational software specifications from
system goals. In: Proceedings of SIGSOFT 2002/FSE-10, pp. 119-128. ACM (2002)

7. Skiena, S.: Dijkstra’s algorithm. In: Implementing Discrete Mathematics: Com-
binatorics and Graph Theory with Mathematica, pp. 225—227. Addison-Wesley,
Reading (1990)

8. Swetina, J., Lu, G., Jacobs, P., Ennesser, F., Song, J.: Toward a standardized com-
mon M2M service layer platform: introduction to oneM2M. IEEE Wirel. Commun.
21(3), 20-26 (2014)

9. Vogli, E., Alaya, M.B., Monteil, T., Grieco, L.A., Drira, K.: An efficient resource
naming for enabling constrained devices in smartM2M architecture. In: IEEE Inter-
national Conference on Industrial Technology (ICIT 2015), pp. 1832-1837, March
2015

SeaCloud Workshop Papers

Second Workshop on Seamless Adaptive Multi-Cloud
Management of Service-Based Applications

Preface

The Second Workshop on Seamless Adaptive Multi-Cloud Management of
Service-Based Applications took place on September 15, 2015, in Taormina,
co-located with the 4th European Conference on Service-Oriented and Cloud Com-
puting (ESOCC). The workshop was jointly organized by the CloudWave
(EC-FP7-ICT-610802) and SeaClouds (EC-FP7-ICT-610531) European FP7 projects,
represented by Dr. Francesco Longo and Prof. Ernesto Pimentel, respectively.

Deploying and managing in an efficient and adaptive way complex service-based
applications across multiple heterogeneous clouds is one of the problems that have
emerged with the cloud revolution. The current lack of universally accepted standards
supporting cloud interoperability is severely affecting the portability of cloud-based
applications across different platforms.

At the same time, even at the level of a single cloud, adaptation of cloud services to
their execution environment is strongly desirable in order to take appropriate actions in
response to changes in the highly dynamic environment of the cloud. Adaptations can
be performed at runtime (dynamic adaptation) and at development time. In the latter
case, runtime and contextual data provided to business application developers can
allow them to enhance their applications based on the actual operating conditions.

The objective of the workshop was to provide a forum to discuss problems,
solutions, and perspectives of the ongoing research activities aimed at enabling an
efficient and adaptive management of service-based applications across multiple
clouds.

The Program Committee of the workshop (please see later) included 20 interna-
tionally recognized experts from ten different countries (France, Germany, Ireland,
Israel, Italy, Norway, Portugal, Romania, Spain, Sweden). Seven contributions were
submitted in response to the call for papers. The originality and relevance of these
contributions were evaluated during a peer-review process carried out by the Program
Committee, which unanimously decided to accept three of those contributions as
regular papers, and one more contribution was accepted as a presentation of work in
progress.

The program of the workshop edition included an opening session with a brief
discussion about cloud-focused European projects and the future of ICT in Europe. One
of the conclusions of this discussion, also inspired by the earlier plenary round table
organized within the main conference, is that start-ups and university spin-offs repre-
sent a precious resource for future European projects providing use cases and real
business scenarios.

Second Workshop on Seamless Adaptive Multi-Cloud Management 151

There was also an invited talk from Lan Wang (Imperial College, London) about
“Cognitive Packet Network for Self-Aware Adaptive Clouds.” The talk was indeed
very interesting, focusing on the use of neural networks as a tool for intelligent and
adaptive scheduling policies in cloud computing. After the talk, the four accepted
papers were presented: three regular papers, and one short paper (on-going work).

The short paper, “Supporting Cloud Service Selection with a Risk-Driven Cost—
Benefit Analysis,” proposed a practical and simple approach to choosing a concrete
cloud service (or a set of thereof) when several alternatives are available.

The paper “Axe: A Novel Approach for Generic, Flexible, and Comprehensive
Monitoring and Adaptation of Cross-Cloud Applications” introduced a novel approach
to monitoring and adaptation management that is able to flexibly gather various
monitoring data from virtual machines distributed across cloud providers, to dynami-
cally aggregate the data in the cheapest possible manner, and, finally, to evaluate the
processed data in order to adapt the application according to user-defined rules.

The paper “A Model-Based Approach for the Pragmatic Deployment of Service
Choreographies” discussed the problem of managing multiple choreographies in
multi-cloud environments and advocated that sharing-aware deployment is a more
effective and resource-efficient approach.

Finally, the paper “Multi-level Adaptations in a CloudWave Infrastructure: A Telco
Use Case” described the CloudWave telecommunications application use case pro-
viding a proof-of-concept on how the QoS experienced by the application users can be
improved thanks to the technologies provided by CloudWave.

The workshop concluded with a final wrap-up session highlighting how adaptive
management of cloud infrastructures still represents a hot and promising topic as
demonstrated by the number of submission and the high quality of the accepted papers.

We would like to thank all the people who contributed to the success of the
workshop: the authors of the contributed papers, the Program Committee members, and
the invited speaker.

Ernesto Pimentel
Francesco Longo
Program Chairs

Program Chairs

Antonio Brogi
Ernesto Pimentel

Program Committee

Marcos Almeida
Antonio Brogi
Dario Bruneo
Martin Chapman
Javier Cubo
Francesco D’Andria
Elisabetta Di Nitto
Nicolas Ferry
Giovanni Merlino
Andreas Metzger
Boris Moltchanov
Simon Moser
Eliot Salant

Francisco J. Nieto de Santos

Marc Oriol

Dana Petcu

Achim Streit

Karl Wallbom
Chris Woods
Marcel Zalmanovici

Publicity Chair

Giovanni Merlino

Webmaster

Adrian Nieto

Organization

University of Pisa, Italy
University of Malaga, Spain

Softeam, France

University of Pisa, Italy

University of Messina, Italy

Oracle, Ireland

University of Malaga, Spain

ATOS, Spain

Politecnico di Milano, Italy

SINTEF, Norway

University of Messina, Italy

Universitdt Duisburg-Essen, Germany
Strategy & Innovation, Telecom Italia, Italy
IBM, Germany

IBM, Israel

ATOS, Spain

University of Pisa, Italy

West University of Timisoara, Romania
Karlsruhe Institute of Technology, Germany
Cloudmore, Sweden

Intel, Ireland

IBM, Israel

University of Messina, Italy

University of Malaga, Spain

A Model-Based Approach for the Pragmatic
Deployment of Service Choreographies

Raphael Gomes!2(®) | Jinio Limal, Fabio Costal, Ricardo da Rochal,
and Nikolaos Georgantas?

! Instituto de Informética, Universidade Federal de Goids, Goiania, Brazil
raphael .gomes@ifg.edu.br, junio.lima@ifgoiano.edu.br,
{fmc,ricardo}@inf .ufg.br
2 MiMove Team Inria Paris, Rocquencourt, France
nikolaos.georgantas@inria.fr

Abstract. The development of applications using service choreogra-
phies is becoming one of the de facto standards for the Future Internet.
However QoS-aware management of service compositions is usually per-
formed without considering service sharing. This simplifying assumption
makes choreography deployment less feasible in real scenarios, in which
a single service is typically shared in many scenarios. In this paper we
discuss the problem of managing multiple choreographies in multi-cloud
environments and we advocate that sharing-aware deployment is a more
effective and resource-efficient approach. We propose a model for the
combined deployment of multiple choreographies on top of a shared set
of services, and we further investigate the problem through experiments.

1 Introduction

Among its new features, the Future Internet is characterized by the evolution
from content sharing to service sharing. In this new scenario, mainly facilitated
by the adoption of cloud technologies, software modules of different complexities
are provided on top of virtualized servers and consumed via the Internet [1].
Keeping centralized coordinators for these new types of applications is unfea-
sible due to requirements like fault tolerance, availability, heterogeneity and
adaptability. For this reason, a promising solution is the use of decentralized and
distributed services through choreographies. Choreographies are service com-
positions that implement distributed business processes in order to reduce the
number of exchanged control messages and distribute business logic, without the
need for centralized coordinators [2]. Building a choreography is usually a two-
step task [3]. Firstly, the functionalities required from the participating services,
i.e., their operations, are identified. Secondly, for each operation an appropri-
ate implementation is selected and bound to it. The activity of performing the
interactions and getting the expected results is named choreography enactment.
In most cases, service selection and choreography enactment are not based
solely on functional criteria. Instead, they aim to satisfy non-functional require-
ments as well, in terms of Quality of Service (QoS) properties, which in turn

© Springer International Publishing Switzerland 2016
A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 153-165, 2016.
DOI: 10.1007/978-3-319-33313-7_11

154 R. Gomes et al.

poses many challenges. For implementation selection, the growing number of
alternative web services that provide the same functionality but differ in qual-
ity parameters makes service selection an NP-hard optimization problem [4]. On
the other hand, along with choreography enactment, resource allocation plays an
important role in QoS since almost all non-functional requirements are related
to the resources used to deploy the services.

The problem of QoS-aware choreography enactment is usually solved using
variations of the Knapsack Problem [5]. However, all these solutions assume
that there are no conflicts between the services that are part of a choreogra-
phy, such as heterogeneous communication protocols. They also do not take into
account the fact that a given service may be part of more than one choreogra-
phy, which in turn means that requests for the same operation of a service may
come concurrently from different sources and with different QoS requirements.
As a consequence, service implementation selection and resource management
typically take into account QoS requirements that are specific to a single chore-
ography. This is far from ideal, given the combined QoS-related constraints that
arise from the sharing of services among multiple and diverse choreographies.

We argue that a pragmatic view of choreography deployment, based on ser-
vice sharing and on management on a per operation basis, represents a more real-
istic perspective since each service can have different QoS requirements for the
same operation depending on which choreography is generating calls to it. With
this in mind, we propose a model-based approach that encompasses both chore-
ography deployment and resource management. We first formalize a working
terminology (Sect.2) and discuss the effects of service sharing in choreographies
based on some experimental results (Sect.3). We then examine related work
(Sect.4), and propose a formal model (Sect.5) to represent service choreogra-
phies taking into account a global view of service utilization and the associated
non-functional requirements. We aim to use this model as part of a adaptive app-
roach for choreography enactment, which is discussed in Sect. 6. Finally, Sect.7
presents some final remarks.

2 Terminology

In our work, an application is a web-based computer program designed for a
specific use, such as an application for setting up a doctor’s appointment in the
public health system. An application is composed using one or more services.
A service, in turn, is an independent software component that executes one or
more operations. An operation defines some action performed by the service.
It requires some amount of computing power to be processed.

The composition of several services by means of their provided operations
forms a choreography. As pointed out before, a choreography is a form of ser-
vice composition where the interaction protocol (among services) is defined in a
global way using a peer-to-peer approach. The services that compose a choreog-
raphy can be described in an abstract way by means of the expected role that
each service plays in the interaction. Such abstract services can be realized using

A Model-Based Approach for the Pragmatic Deployment 155

concrete entities, i.e., by identifying a target implementation for each service.
Abstracting services is particularly important in multi-cloud environments, as
some implementations can be specific to a cloud provider/technology. In such
environments, composition deployment may become overly constrained if con-
crete services are used instead to specify a choreography.

User refers to the person(s) responsible for application composition and
administration, which includes service selection and resource allocation. Both
tasks must be performed with the aim of satisfying the functional and non-
functional requirements of clients. Another task performed by the user is to man-
age adaption of service selection and resource allocation in the face of changes
in the system’s conditions and in the client’s expectations. The client in turn is
an entity that interacts with the application. It mainly refers to the end-user.

Finally, a system is a set of interacting or interdependent components form-
ing an integrated whole. We use this term to refer to the set of managed appli-
cations, together with the components required to implement our approach.

3 The Effect of Service Sharing

Nowadays applications are developed mainly by means of preexisting service
compositions. QoS management in this composite scenario is even more difficult
if we consider that a service may be used by many applications at the same
time. For instance, a maps service can be used in applications such as driving
directions guides, picture location tagging, and partner matching by location.
For each of these applications, the service may have different QoS requirements.

As illustrated in Fig. 1, this scenario is equivalent to managing a dancer par-
ticipating in a music mash-up choreography: she must be able to properly handle
the multiple requests and perform the different dance rhythms with an expected
quality. In the same sense, for a given application (which is analogous to the
mash-up in our metaphor) there can be several choreographies (rhythms in our
metaphor), with the same services (analogous to dancers) being shared among
them with different QoS requirements. Therefore, it is not possible to manage
services without considering all the choreographies in which they participate. To
achieve this goal, we need to act upon resource allocation, as the majority of
non-functional properties are related to the use of resources.

o g
A O Q9 ep

Fig. 1. Mash-up metaphor.

156 R. Gomes et al.

Thus, in our approach, QoS specification is done at two different levels: ser-
vice and choreography. The first level specifies requirements regarding a specific
service/operation, without taking into account end-to-end QoS. The second level
concerns the quality of the choreography as a whole (i.e., end-to-end) and is eval-
uated in terms of the composition of all participating services.

We have performed a set of experiments to demonstrate the effect of service
sharing on choreography QoS. Thereby, we aim to demonstrate the need for
global resource management across choreographies for the effective satisfaction
of QoS requirements. The experiments show that service concurrency does not
make QoS satisfaction unfeasible, provided that proper resource management is
performed. We present our analysis results in the following.

3.1 Evaluating the Effects of Service Sharing

Our analysis of the effects of service sharing is based on queueing theory. For
this purpose, we used JINQS [6], a library for simulating multiclass queuing
networks. We evaluated the execution of different choreographies composed by
non-intersecting service sets, as well as choreographies that use shared services.
In our experiment we generated random choreography topologies with sequential
and branching control flow patterns. For simplicity, we assume that each service
provides only one operation, whose processing time follows an exponential distri-
bution with rate parameter u taking values between 2 and 200 (meaning that the
mean processing time is between 0.5 and 0.005 time units). By putting together
generated choreography topologies, we create sets of choreographies. Considering
the choreography topologies of a set separately and in combination, we model
them as queueing networks and simulate them on JINQS. To each choreogra-
phy we apply an external input load following a Poisson distribution with rate
parameter A\ = 50 requests per time unit.

We simulated different levels of service sharing among the choreographies,
varying from 0% (no sharing) to 100 % (all services are shared). With this in
mind, we generated a service base of available services, from which we randomly
selected 10 services each time in order to compose the choreographies, accord-
ing to the chosen service sharing level. Note that this parameter only indicates
the probability of having a specific number of services shared among the chore-
ographies (it does not mean that all services are necessarily shared among all
choreographies). We also analyzed different numbers of choreographies combined
together, with 2, 4, 8 and 16 choreographies being enacted at same time.

As target metrics we first measured the number of served (completed)
requests and the average response time (RT). The results are presented in
Tables 1 and 2, which show the mean of the differences in the two metrics for
running the choreographies in isolation and in combination, with a confidence
interval of 95 %. Positive values indicate loss of QoS when executing choreogra-
phies in combination. Hence, negative values indicate better QoS. As expected,
service sharing causes loss of QoS since both metrics are worse when we execute
a higher number of choreographies concurrently. Another interesting result is
that the number of served requests is less influenced by changes in the level of

A Model-Based Approach for the Pragmatic Deployment

157

Table 1. Mean difference (%) between the numbers of completed requests when run-
ning the choreographies in isolation and in combination.

Sharing/# Chor. | 2 4 8 16

0% —0.024+0.11| —0.04 + 0.06 | 0.03 £0.05 | —0.02 £ 0.03
25% —0.114+0.11 | —0.04 + 0.07 | 0.00 £ 0.05 | 56.19 £ 0.05
50 % —0.024+0.12 | —0.01 +0.08 | 41.32 £ 0.08 | 101.06 + 0.05
75 % 0.01£0.11 |0.04 +0.07 |41.344+0.07|101.03 £0.05
100 % —0.08 £ 0.09 | —0.02 £0.07 | 63.20 & 0.07 | 117.47 &+ 0.06

Table 2. Mean difference (%) between the response times when

ographies in isolation and in combination.

running the chore-

Sharing/# Chor. | 2 4 8 16

0% —9.88+0.05 | —12.20 £0.03 | —13.32 £ 0.03 | —13.42 £ 0.02
25% —7.68+0.06 —4.31£0.04 '42.11£0.18 |199.94 £ 0.00
50 % —2.80+£0.09]22.12+£0.11 |199.93 £0.00 | 199.96 + 0.00
75 % 3.60£0.07 | 43.37£0.11 |199.93 £0.00 |199.96 + 0.00
100 % 13.46 +£0.10 1 121.74+1.16 1 199.95 + 0.00 | 199.96 + 0.00

Table 3. Mean difference (%) between the numbers of completed requests when run-
ning the choreographies in isolation and in combination (with the addition of more
resources when running them in combination).

Sharing/# Chor. | 2 4 8 16

0% —0.01+0.12| —-0.05+0.07 | —0.01 £ 0.04 | —0.01 £ 0.03
25% —0.06 +£0.10 | —0.01 £ 0.06 | —0.04 £ 0.05 | 0.02 £ 0.03
50 % —0.12+0.110.04 £0.07 | —0.00 +£0.04 | 3.77 £ 0.04
75 % 0.11+0.13 |0.06+£0.07 | —0.04 £0.05|3.75+£0.05
100 % 0.04 £0.13 | —0.00£0.06 0.00£0.05 |27.07£0.06

Table 4. Mean difference (%) between the response times when running the chore-
ographies in isolation and in combination (with the addition of more resources when
running them in combination).

Sharing/# Chor. | 2 4 8 16

0% —9.96 £0.05 —12.224+0.04 | —-13.30£0.03 | —13.42 £0.02
25% —25.68 £0.07 | —28.79£0.04 | —28.61+0.03 | —24.13 £0.02
50 % —43.85£0.07 | —46.98 £0.04 | —43.54 +£0.03 | 199.34 £ 0.01

5% —74.58 £0.06 | —76.48 £0.04 | —66.42 £ 0.03|199.36 £ 0.01

100 % —106.46 £ 0.05 | —101.48 £ 0.03 | —77.25 £ 0.05 | 199.89 £ 0.00

158 R. Gomes et al.

sharing, while RT doesn’t change significantly as the number of choreographies
increases.

We also analyzed the impact of resource allocation. To this end we carried out
the same experiment, now increasing resource allocation by a factor of 1 to 3 for
combined choreography execution. Tables3 and 4 show the results. The behav-
ior is similar, although with a smaller difference between separately executing
each choreography and executing all of them in combination. This reinforces the
motivation for using a more precise resource allocation.

Motivated by these results, our proposal is to automate the management of
service selection and resource allocation in multi-cloud environments taking into
account service sharing. We propose the representation of services and resources
in abstract models which are dynamically interpreted by the system. In the next
section we discuss how this aspect is considered in related work. We then present
the first step towards defining our approach, which consists in eliciting a formal
model to represent combined choreographies.

4 Related Work

A number of research efforts reported in the literature have focused on the
problem of providing QoS guarantees for service compositions [3-5]. However,
most of these studies focus on service selection for a single composition. To the
best of our knowledge, Nguyen et al. [7] carried out one of the first studies to
deal with QoS guarantees for multiple inter-related compositions. The authors
argue that if a service engages in a number of compositions, there will be a
dependency between the levels of QoS that the service can contribute to these
compositions. In the approach proposed by Ardagna and Mirandola [8], service
composition is carried out based on groups of invocations where multiple requests
are generated by multiple users. However, they assume that each service provider
has fixed resources, thus not proposing resource adaptability.

Furtado et al. [9] present a middleware to support the enactment of web
service choreographies in the cloud. Similarly to our work, resource adaptation
is proposed to maintain the expected levels of QoS. However, they do not handle
service selection. Huang and Shen [10] propose an approach for the deployment of
multiple services in the cloud. They developed two types of graphs to model the
communication costs and potential parallelism among the services of different
compositions. However, unlike our approach, which focuses on service sharing,
they aim at minimizing communication costs and maximizing parallelism.

In contrast, we propose an approach to deal with multiple inter-related service
choreographies, taking into account their associated non-functional requirements
and a global view of service utilization. We analyze the role each service plays in
several choreographies and estimate the amount of resources needed to deploy
each service in order to ensure the expected level of QoS.

A Model-Based Approach for the Pragmatic Deployment 159

5 Formal Model for Choreography Deployment

In this section we present a formalization of the problem of combined deployment
of multiple choreographies. We focus on non-functional properties, although our
formalization can handle functional properties as well. Our representation of
choreographies is language-independent but contains the main components of
commonly adopted choreography definition languages, such as BPMN2 [11].

The set of available services used to compose choreographies is defined as
S, which contains n services {si,sa,...,s,}, each represented by a group of
operations O. Each operation o € O has resource demand d, which represents
the amount of resources, e.g., number of CPU cores and their capacity, needed to
compute the operation. Moreover, the set of available resources is represented as
V), which contains ¢ virtual machine (VM) configurations {v1,ve,...,v;}. Each
resource v has p resource units, each one with resource capacity ¢ and a cost ¢ for
using it for a given time slice. The topology of a choreography can be abstracted
using a process graph [12], which is defined as follows:

Definition 1 (Predecessor and Successor Nodes). Let N be a set of nodes
and E C N x N a binary relation over N defining the edges. For each node
n € N we define the set of predecessor nodes en = {x € N|(z,n) € E} and the
set of successor nodes ne = {x € N|(n,z) € E}.

Definition 2 (Process Graph). A process graph PG consists of a tuple
(b,2,8,L,t,E) where:

— b denotes the start point, [be|=1A|eb| =0.

— Z denotes the set of end events, |Z| > 1 andVz € Z :|ez| > 1A |ze|=0.

— S denotes the set of services, Vs €S :|es|=1A[se|=1.

— L denotes the set of connectors, Yl € L : (Jol] > 1A|le|=1)V (Jel] =
IA|le|>1).

-t is a mapping t : L — {AND, XOR, OR}, which specifies the type of a
connector | € L as either a conjunction (AND), a disjunction (OR) or a
mutually exclusive disjunction (XOR).

- FE is a set of edges that define the flow as a simple and directed graph. Fach
edge e € E is a tuple (g,?,o), where e, C (bUS UL) is the origin of
this edge, € C (ZUS U L) is the end of this edge, and o is the operation
being requested. If € € {Z UL}, then o is null. Being a simple graph implies
that Vn € (U ZUSUL) : (n,n) € E (no reflexive edges) and that Vx,y €
BbUZUSUL): {(z,y)|(x,y) € E} =1 (no multiple edges).

In our approach, each expected non-functional requirement is described in
terms of a QoS property, which in turn is represented by one or more QoS
metrics. These concepts are formalized in the following.

Our representation for QoS metrics is based on Rosario et al. [13]:

Definition 3 (QoS Metric). A QoS metric is a tuple m = (D, <, ®, A, V,U):

- (D, <) is a QoS domain with a corresponding set of ordered QoS values.

160 R. Gomes et al.

- @ : D — D defines how QoS gets incremented by each new event. It satisfies
the following conditions: (i) @ possesses a neutral element 0 satisfying VI €
D=1®0=0®1=1; (i) & is monotonic: Iy < I} and Iy < I}, implies
(hel) < (holy).

- (N, V) represents the lower and upper lattices, meaning that any | C D has
unique lower and upper values (A, V)). When taking the best result with
respect to the ordering <, the lowest QoS is taken with A. When synchro-
nizing events, the operator V takes the worst QoS as per the ordering <.

- U is a utility functionU : (S,V) — D, that gives the expected QoS value when
a service s € S is deployed on a specific resource v € V.

Definition 4 (Non-Functional Requirement). A non-functional require-
ment (NFR) is represented using one of the following tuples:

(1) (s,0,k,d), where s € S is a service, o is the operation being requested, k is
a QoS metric, and ¢ is the target average value for this metric (¢ € D(k));

(2) (k,), where k is a QoS metric and ¢ is the target average value for this met-
ric, with ¢ € D(k). This tuple is used to represent end-to-end NFRs, which
means that the target value must be somehow split among the operations
(and respective services) in the possible execution flows.

To allow QoS-aware choreography enactment, we propose the representation
of choreographies and NFRs in a structure called QoS-Aware Process Graph.

Definition 5 (QoS-Aware Process Graph). A QoS-aware process graph
consists in a process graph that is annotated with the expected load for each
operation, along with the NFRs associated with the related service composition.

Figure 2 shows two choreographies specified using this notation. At this stage,
services are specified in an abstract way. They will be subsequently replaced by
concrete implementations as a result of service selection.

Our proposal for choreography enactment is based on the combined repre-
sentation of multiple choreographies using a structure called QoS-Aware Depen-
dency Graph. This structure represents the services that are part of the chore-
ographies, the dependencies among those services, and their NFRs.

Definition 6 (QoS-Aware Dependency Graph). A QoS-aware dependency
graph G is a directed graph represented by a tuple (P,E, Q):

- P={bUzUS} is a set of vertices, where b and z represent the initial and
end vertices, respectively.

— E is the set of directed edges. Each edge e € E is a tuple (ps,pr,0), where
ps € {P — 2z} is the send vertex, p, € {PP — b} is the receive vertex, and o is
the operation being requested.

- Q is a set of QoS properties. Fach q € Q is a tuple (k,2,\, ¢), where k is a
QoS metric, A is the load (A > 0), ¢ € Dy, is the target average value for this
metric, and {2 is a set of pairs (s € S,0) that represent the services and the
target operations to which the metric must be applied.

A Model-Based Approach for the Pragmatic Deployment

kl(sl, 01)
kJQ(Sl, 01)

o1 o3
¢2 b2

01,)\1 I"\ 02,/\1 I"\
S~ ~_7

— (a)

.l{?1 (SQ, 02)

k‘z (82, 02)

ki(sz,02) | é7 |
ka(sz2,02) | ¢2 |
k1(s1,03) 02 ot (\52)
037/\2,"\ \ ks ¢9
() n— e
~_7 4 5
06, A2.2 ,’s‘/
VO3
ki(ss,06) | #s |
ka(s3,06) | b2 |

(b)

161

Fig. 2. Two choreographies specified using the QoS-Aware process graph notation.

ki{(s1,01)}

k1{(s1,03)}

k2{(s1,01)}

k1{(s2,02)} A1, @3
k1{(s2,02)} A2.1, ¢7
o k2{(s2,02)} | A1 + Az1, f2
Az, @
; ¢2 02 @\ ka{(s1,01), (52,02)} | M1, ¢4
o1 ks{(s1,03), (52,05), | A2, o
o)
03 k4{(81703)a(32a05)> A2, @5
06 (s3,06)}
k1{(s3,06)} | A2.2, $s
k2{(s3,06)} | A2.2, P2

Fig. 3. QoS-aware dependency graph for the choreographies shown in Fig. 2.

162 R. Gomes et al.

Figure 3 illustrates the QoS-aware dependency graph for the two annotated
choreographies shown in Fig. 2. We can find elements that remain the same as in
the original choreographies (shown in lighter shades of gray) as well as elements
that had some change in their load and target values (highlighted in darker
tones). Changes are due to the increased load on services and to the aggregation
of NFRs when they have the same target. In this structure the services represent
concrete chosen implementations.

This formalization enables the representation of combined choreographies
and the execution of more realistic service selection and resource allocation.
Additionally, these aspects must be reexamined (i.e., adapted) during choreog-
raphy enactment (at runtime). In the next section we outline the approach we
are developing to do this using the model described here.

6 Adaptive Approach to Choreography Deployment

The preceding sections discuss the issue of managing multiple choreographies at
the same time in the presence of service sharing. Users in charge of choreography
management must take into account the different roles of services and select the
resources needed to run each service. This must be done at deployment time,
and needs to be constantly reviewed at runtime to match QoS requirements.

The formalization presented in the previous section can be used to deal with
the service sharing issue during choreography enactment. It facilitates the initial
resource allocation and its adaptation at runtime as outlined next.

Resource

Allocation

o

Service and Resource

o &8 » W2y

Choreographies =
Specification + Non- @ (SN =]
Functional Requirements Constraints ©

“
User ﬁ
@

Organization's infraestructure
(Private cloud)

Azure, Amazon, ete.
(Public cloud)

&

' 4
Control Monitoring Feedback Clients

Fig. 4. Scenario of manual choreography enactment management.

As illustrated in Fig. 4, according to feedback from clients, such as regarding
the level of satisfaction, or from the system, e.g., number of aborted requests,
the user must manage service and resource allocation and adaptation. Every
time some QoS violation is detected, the first attempt to deal with it is through
adaptation of resource allocation. In cases where it is not possible to achieve
the needed QoS by acting (solely) at this level, another strategy is to perform
adaptation on service selection and resource configuration. As a last attempt,
the user may be required to adapt the choreography and/or accept lower QoS.

A Model-Based Approach for the Pragmatic Deployment 163

Our approach to automate the above scenario is to use models at runtime [14].
The use of models at runtime allows the specification of services and resource
requirements based on the current needs of applications; it also allows more
precise management of the available computing power, especially compared to
the allocation of resources based simply on profiles of virtual machines (VM).
In doing so, service selection and resource allocation can be performed auto-
matically according to abstract models and monitored data, thus facilitating
adaptation.

Choreography and | Deployment Resources
NFRs / Concrete Services

T NE 2 B NB AR
Model &E’a l'.\ ..~ Azu"‘" AB ..D
o0—o0

Reification /
Absorption

T
o | St g | e
@D
Fig. 5. Runtime models.

Cloud Resources

g '3

(Pub\ ic c\oud)

As can be seen in Fig. 5, our proposal relies on three different entities that are
abstracted using models. The choreography model (upper left side in the figure)
is represented using the QoS-aware process graph notation and is the input in
our approach. It is then used to generate the deployment model (upper middle
part in the figure), which is represented using the QoS-aware dependency graph
notation (with concrete service selection). The dependency graph, in turn, is
used to select the resources used to deploy/run the services. Moreover, the cloud
resources model (upper right side) represents available resource configurations
and is used as input for resource selection. The formalization proposed in this
paper can be used to specify the first two levels of modeling. We aim to extend
this formalization to represent cloud resources as well.

Although there is reification! of the running system in all models, direct
absorption? only applies to the deployment model, since changes on it are directly
reflected on the running system. Nevertheless, changes in the other two models
are also reflected in a indirect way since they are used as input for service and
resource selection. Note that this is ongoing work and an implementation of the

! Reification is the action of exposing the representation of a system in terms of
programming entities that can be manipulated at runtime. The opposite process,
absorption, consists in effecting the changes made to these entities into the sys-
tem [15].

164 R. Gomes et al.

proposed approach is currently being developed. We are currently implementing
the generation of dependency graphs by means of the combination of the target
process graphs. Service and resource selection in turn are being implemented
using a variation of the multiple-choice multi-dimension knapsack problem [16].

7 Final Remarks

The sharing of services among multiple service compositions has a significant
effect on the overall provided QoS. Based on this observation, we advocate that
performing choreography enactment without taking this into account is not a
realistic approach. We present some experiments that demonstrate the problem
and propose a formal model to represent QoS-aware service compositions.

We aim to use the formal model presented here to represent abstract service
compositions. Taking these abstract compositions as input, we can automatically
select the best services in order of satisfy associated non-functional requirements.
Another important ongoing work is to extend the formalization presented here
with a cloud resources model in order to provide a basis to implement the allo-
cation of resources to run the selected services in a multi-cloud environment.

Acknowledgments. This work is supported by the Brazilian foundations FAPEG
(calls # 04/2011, 12/2012 and 03/2013) and CNPq (grants # 249809/2013-3 and
473939/2012-6).

References

1. Strunk, A.: QoS-aware service composition: a survey. In: 2010 IEEE 8th European
Conference on Web Services (ECOWS), pp. 67-74. IEEE (2010)

2. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE Tran.
Serv. Comput. 2(2), 152-166 (2009)

3. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Software Eng. 30(5),
311-327 (2004)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of
composite web services. In: Proceedings of IEEE International Conference on Web
Services, ICWS 2005, Proceedings, pp. 121-129. IEEE (2005)

5. Peng, X., Changsong, L.: ESCA: evolution-strategy based service composition algo-
rithm for multiple QoS constrained cloud applications. Int. J. Future Gener. Com-
mun. Netw. 7(1), 249-260 (2014)

6. Field, T.: JINQS: an extensible library for simulating multiclass queueing net-
works, v1.0 user guide (2006). http://www.doc.ic.ac.uk/ajf/Software/manual.pdf.
Accessed 30 March 2015

7. Nguyen, X.T., Kowalczyk, R., Han, J.: Using dynamic asynchronous aggregate
search for quality guarantees of multiple web services compositions. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 129-140. Springer, Hei-
delberg (2006)

8. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services
based processes. J. Syst. Softw. 83(8), 1512-1523 (2010)

http://www.doc.ic.ac.uk/ajf/Software/manual.pdf

10.

11.

12.

13.

14.

15.

16.

A Model-Based Approach for the Pragmatic Deployment 165

Furtado, T., Francesquini, E., Lago, N., Kon, F.: A middleware for reflective web
service choreographies on the cloud. In: Proceedings of the 13th Workshop on
Adaptive and Reflective Middleware, vol. 9. ACM (2014)

Huang, K.C., Shen, B.J.: Service deployment strategies for efficient execution of
composite SaaS applications on cloud platform. J. Syst. Softw. 107, 127-141 (2015)
OMG: Documents Associated with Business Process Model and Notation (BPMN),
Version 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/

Mendling, J., Lassen, K.B., Zdun, U., et al.: Transformation strategies between
block-oriented and graph-oriented process modelling languages. In: Multikonferenz
Wirtschaftsinformatik, vol. 2, unknown, pp. 297-312 (2006)

Rosario, S., Benveniste, A., Jard, C.: Flexible probabilistic QoS management of
transaction based web services orchestrations. In: IEEE International Conference
on Web Services, ICWS 2009, pp. 107-114. IEEE (2009)

Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22-27
(2009)

Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware.
Commun. ACM 45(6), 33-38 (2002)

Khan, S., Li, K.F., Manning, E.G., Akbar, M.M.: Solving the knapsack problem
for adaptive multimedia systems. Stud. Inform. Univ. 2(1), 157-178 (2002)

http://www.omg.org/spec/BPMN/2.0/

Supporting Cloud Service Selection
with a Risk-Driven Cost-Benefit Analysis

Aida Omerovic®9

SINTEF, Trondheim, Norway
Aida.Omerovic@sintef.no

Abstract. Our earlier work indicates feasibility of eliciting multi-cloud
requirements and thus identifying selectable cloud services based on a
risk-driven approach. Once an overview of the selectable services that
treat a specific risk is obtained, a decision needs to be taken regarding
the final selection. This position paper focuses on providing a practical
and simple approach to choosing a concrete cloud service (or a set of
thereof) when several alternatives are available. We propose a risk-driven
cost-benefit analysis approach and exemplify how a decision maker, such
as a business analyst or a multi-cloud architecture designer, can apply
it in the context of cloud service selection. The strength of the approach
is in its simplicity, since the approach is based on a set of relatively
comprehensible guidelines. Still, we consider this to be work in progress,
since an analysis of how to combine a set of interdependent cloud services
(which address several respective risks) is necessary for enabling a full-
scale design of a multi-cloud based architecture.

Keywords: Cloud service selection + Multi-cloud applications + Cost-
benefit analysis - Requirements elicitation - Design + Decision support

1 Introducion

We have earlier reported on result that indicate feasibility of applying a risk-
driven approach to identify selectable cloud services in the context of multi-cloud
architecture design (Gupta et al. 2015b). The method is also supported by a tool
which a decision maker can use to perform a risk-driven identification of the cloud
services which are to be composed in a multi-cloud architecture (Gupta et al.
2015a). The services presented by the tool are those that meet the requirements
which address the identified risks. We have moreover evaluated an approach to
estimate and analyze cost, risk and quality when designing a system architecture
(Singh et al. 2014). Based on this earlier work, we can perform a risk analysis
and eventually obtain a set of risks as well as treatments that mitigate or reduce
the respective risks. The treatments in our case will be requirements to cloud
services which address concerns such as cost, quality or functionality. These
requirements are then matched to the properties of the known cloud services
(or cloud providers in general). Thus, for each risk, up to several independent
© Springer International Publishing Switzerland 2016

A. Celesti and P. Leitner (Eds.): ESOCC 2015 Workshops, CCIS 567, pp. 166-174, 2016.
DOI: 10.1007/978-3-319-33313-7_12

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 167

cloud services are suggested. The challenge in such a case is how to select the
appropriate cloud service (or treatment alternative consisting of one or more
cloud services that address a specific risk).

This position paper proposes a cloud service selection approach based on
a risk-driven cost-benefit analysis. We provide guidance and exemplify how to
select a specific cloud service when several alternative (independent) cloud ser-
vices have been proposed in order to treat a specific risk. We assume two kinds
of input:

1. A specification of risk and its treatment alternatives, both of which are iden-
tified through a risk analysis. The treatment alternatives are presented in the
form of different cloud services.

2. A cost estimate of the original risk, a cost estimate of each treatment alter-
native, as well as a cost estimate of the associated remaining risk (that is,
the risk that is left if we assume that the treatment alternative in question is
adopted).

For both kinds of input, the existing state of the art provides guidance and
models. For the cost estimation of risks and treatments, there are several exist-
ing models and approaches. COCOMO (Fenton and Pfleeger 1997) and SLIM
(Fenton and Pfleeger 1997) are among the well-known models. For analysis of
security economics, some of the known approaches are Net Present Value (NPV)
(Daneva 2006), Return on Security Investment (ROSI) (Sonnenreich et al. 2006),
the Cost Benefit Analysis Method (CBAM) (Kazman et al. 2002) and the Secu-
rity Solution Design Trade-Off Analysis (Houmb et al. 2005). For risk analy-
sis, some of the well known approaches include CORAS (Lund et al. 2011),
CRAMM (Barber and Davey 1992), OCTAVE (Alberts and Davey 2004), Event
Tree Analysis (IEC 1995), Cause-Consequence Analysis (Nielsen 1971) and Fault
Tree Analysis (IEC 2006). For quality and architecture analysis, approaches such
as PREDIQT (Omerovic 2012) and ATAM (Kazman et al. 2000) can be applied.
One major challenge in the context of risk and cost models, is the uncertainty
of the risk levels and the cost estimates. Uncertainty handling has, for exam-
ple, been reviewed in (Omerovic et al. 2012a). There exists state of the art
that we could adopt for uncertainty handling, based on various types of scales
and approaches. Main distinction is made between possibilistic and probabilistic
approaches. In PREDIQT, for example, uncertainty is handled based on intervals
(Omerovic and Stglen 2011).

The target group of the approach is a business analyst or an architecture
designer who needs a comprehensible decision support for service selection.
Therefore, our objective has been to provide a practical and simple approach
to choosing a concrete cloud service (or a set of thereof) when several alterna-
tives are available. Note that the aim of the approach is not to provide a finite
answer or choose the cloud service on behalf of the decision maker. Rather, the
approach assists the user in making a more informed decision with respect to
the goals specified through the risks and the acceptance criteria. Our approach
is agnostic to the choice of the risk analysis method, or the approach to cost esti-
mation. We argue that the strength of the approach is in its simplicity, since it is

168 A. Omerovic

based on a set of relatively comprehensible guidelines. Still, we consider this to
be work in progress, since an analysis of how to combine a set of interdependent
cloud services (which address several respective risks) is necessary for enabling
a full-scale design of a multi-cloud based architecture.

This paper is structured as follows. In Sect. 2 we outline the approach itself,
including the guidelines to be followed during a cost-benefit analysis. In Sect. 3
we illustrate the application of the approach on an example. A discussion of the
results is given in Sect. 4, before concluding in Sect. 5.

2 The Approach

This section presents the approach in general. We start by characterizing the
input and prerequisites, and then provide guidelines for conducting a cost-benefit
analysis which eventually proposes one treatment alternative (that is, one cloud
service or a combination of thereof in case the treatment alternative is repre-
sented by more than one cloud service) to a specific risk which is not acceptable
and needs to be reduced. Our approach is partially based on experiences from
various case studies which have addressed treatment selection (Singh et al. 2014,
2015; Omerovic et al. 2012b).

Our starting point is a specific risk Ry (identified by a natural number N)
and its original cost CRy (i.e., cost of risk N). The risk is characterized by
its known factors such as frequency of occurrence, consequence, type of threat
that initiates it, etc. Based on a risk function which is an expression of how
to deduce a risk level of risk based on the risk factors, we obtain level of risk
N, that is, RLy. Acceptance criteria, that is, a statement of to what degree
a risk level is acceptable, need to be available!. We assume that the risk in
question, according to the pre-defined risk acceptance criteria, is not acceptable
and needs to be treated. The risk itself can be a textual description of how an
incident caused by a threat scenario (that is, a threat exploiting a vulnerability
and triggering a scenario) impacts something of value (a goal or an asset). Once
the risk is described and the factors are denoted, we use the cost estimation
approaches to estimate the expected cost of the risk (CRy), that is the cost of
the impact it may have on the goal or the asset.

In addition to the risk characterization and its cost, we assume that the cloud
services Sx n (each identified by a natural number X) that treat the risk N are
identified, along with their respective cost estimates C'Sx, n. The cost of a cloud
service should include all cost factors, such as licensing, operation, retirement,
etc. Each cloud service represents an independent treatment alternative that
addresses the risk. Only one treatment alternative is needed. Surely, some of the

! Best known acceptance criteria in practical use are colors shaded on a two-
dimensional risk matrix — a table with frequency and consequence levels on the
two respective axes, where the fields of combinations of the two factors are col-
ored by for example green (acceptable), yellow (should be examined closer) and red
(unacceptable).

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 169

services suggested can be dependent or one may wish to adopt several indepen-
dent ones in order to achieve redundancy; in that case, the desired combination
would be treated as one treatment alternative. For simplicity, we refer to each
treatment alternative as an independent cloud service (although several could
be combined to represent a treatment alternative). We also specify how much we
can afford paying for a service that treats a risk and express that value as ACSy.
Each independent cloud service reduces the risk to some degree, resulting in a
related risk level estimate RLx n (that is, the estimated level of risk provided
that service Sx n is adopted). The cost of the remaining risk (CRx n) (pro-
vided that the service X is adopted) is also estimated. Hence, for each selectable
service, we will know how much it costs, what the resulting level of the related
risk will be, as well as what the cost of the remaining risk will be. Hence, we
operate with the following variables:

— Ry risk identified by number N

— CRy: expected cost of risk Ry without any treatment (that is, without adop-
tion of any cloud service)

— RLy: original level of untreated risk Ry. The risk level is based on a pre-
defined function which combines risk factors such as frequency and conse-
quence, to calculate risk level.

— Sx,n: acloud service which is identified by a natural number X and addressing
risk Ry

— ACSy: affordable cost of a service that treats risk Ry

— CSx, n: expected cost of cloud service Sx,n

— RLx n: expected level of risk Ry provided that service is adopted

— CRx, n: expected cost of the remainder of risk Ry provided that service is
adopted

With this as input, the following pseudo-code expresses our guideline for
service selection:

If there exists one or more cloud services Sx n such that

(RLX’N 1S acceptable) AND (CSX’N < CRN) AND (CSX’N < ACSN)
then choose the cloud service Sx y which has Min(CSx n)

else (that is, there is no cloud service reducing the risk to an acceptable
level, or the alternatives which reduce the risk to an acceptable level are not
affordable)

If there are other cloud services that reduce the risk to some degree such that
(RLXJV < RLN) AND (CSX,N < ACSN) AND ((CSX,N “!‘CR)()N) <
CRy)

then Min(CSx n + CRx,n) (that is, choose the cloud service which gives
lowest sum of cost of service and cost of remaining risk).

3 Applying the Approach to an Example

In this section, we exemplify the application of the approach on an example. We
describe the target of the analysis and define acceptance criteria for our asset or

170 A. Omerovic

goal. Then we consider one single risk and three independent cloud services that
have been identified as possible alternatives for handling the risk in question.
Finally, we apply the approach presented in Sect.2 to select one of the three
cloud service alternatives.

Our asset is performance of an online grocery store, and the risk analysis
is performed from the point of view of the service provider. As a part of the
context description (which is the first step of a risk analysis), we assume that
the scales for consequence and frequency are defined with respect to the asset.
Risk acceptance criteria are then defined through a matrix shown in Fig. 1.
The red fields indicate the combinations of frequency and consequence of a risk
that are not acceptable and must be treated. Similarly, the green fields show
the acceptable risk levels, while the yellow fields show the risk levels that do
not have to be treated but should be considered closer. Of course, the number of
colors (risk acceptance levels) and their representation is specific to this example
and can vary. The plotted values should be overseen at this stage and will be
introduced later in the example.

Consequence
Insignificant Moderate Catastrophic

Rare
Unlikely
Possible

Frequency

Certain

Fig. 1. Acceptance criteria for risks related to performance (Color figure online)

Assume that we have identified a risk to performance, namely: “R;: Perfor-
mance degradation due to inefficient storage”. Frequency of R; is estimated to
Possible and consequence is estimated to Major. We plot the original level of risk
(RLy) on the matrix that defines our acceptance criteria (Fig.1) and see that
the risk Ry has a level which is not acceptable. Hence, a treatment is needed.
Assume that cost of this risk is estimated to be 5000 EUR. Assume also that we
can afford paying 3000 EUR for a cloud service that would treat the risk. Thus,
RL; = (possible, major); AC'S; = 3000 EUR; CR; = 5000 EUR.

Assume that we have identified three possible cloud services that can address
the risk Ry:

— 51,11 An SQL database from “ProviderX”
— S2,1: A NoSQL database from “ProviderY”
— S3,1: A hybrid database from “ProviderZ”

The corresponding estimates for cost of the service, cost of the remaining risk
(assuming that the service is adopted) and remaining risk level after adoption
of the service, are respectively:

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 171

- CS1,1 = 1500 EUR; CRy 1 = 3000 EUR; RL;; = (unlikely, major);
- CSs3,1 = 2500 EUR; CRy 1R = 1500 EU; RLy 1 = (likely, minor);
- CS31 = 6000 EUR; CR31 = 200 EUR; RL3; = (unlikely, minor);

The estimated remaining levels of risk R; after adoption of each cloud service,
are plotted on Fig. 1. Applying the guideline for service selection from Sect. 2,
we find that:

— 531 would make the risk acceptable, but it is more expensive than the original
risk and it is not affordable. Therefore, we advise against S3 1.

— In the case of S1,; and S5 1, we see that both services reduce the risk level to
the yellow area of Fig. 1 and both services are affordable. Hence, we consider
the respective sums of cost of the service and the cost of the remaining risk.
CS1,1 + CRy; = 4500 EUR while C'Sy 1 + CRy; = 4000 EUR. The sum of
cost of service and cost of remaining risk is lowest in the case of S5 ;. Thus,
we recommend adopting the cloud service S5 ;.

4 Discussion

Although the example indicates feasibility of applying the approach proposed in
Sect. 2, there are threats to validity and reliability of the approach that need to
be pointed out. To thoroughly assess the reliability of the approach, empirical
evaluation of a realistic case is needed. In a practical setting, our original goals of
comprehensibility and practical usefulness of the approach would be evaluated.
Scalability of the approach with respect to the number of the cloud service
alternatives, would also be better assessed in a practical setting.

Uncertainty of the risk frequency and therefore its likelihood of occurrence,
makes it difficult to treat cost of adopting a cloud service and cost of risk equally.
Naturally, it is more certain that the cost of adopting a cloud service will be
materialized, than the cost of risk, since the risk does not have to occur while
a treatment is assumed to be adopted as soon as a decision is made. Moreover,
factors characterizing the risk are often to some degree uncertain since their
estimates are based on incomplete empirical knowledge. At the same time, cost
of a service is often made available by a service provider. That is also why the
estimates of service adoption cost may be more certain than the estimates of
risk.

In our example, both S1,; and S5; ended in the different parts of the yellow
area of the risk matrix. Their acceptance level was considered equal. However,
in practice one risk level may have been preferred over the other. The example
did not distinguish explicitly between the possible variations of the resulting
risk within the same acceptance level. We did, however, take into account the
differences of the remaining cost, that is the different values of CR; ; and C Ry ;
before providing the final recommendation.

One limitation of the current state of the approach, is that it does not take
into account the multi-cloud aspects when performing the cost-benefit analysis.
Only one risk is considered at a time. An obvious next step, is therefore to

172 A. Omerovic

provide support for cost-benefit analysis when several interdependent services
addressing multiple risks need to be combined in a multi-cloud architecture.

Once a cloud service is selected, new risks may be introduced. Some of those
new risks also have to be treated. Hence, our approach also needs to support
incorporating into the original model and handling of the new risks that occur
due to the services selected.

Another challenge is how to take into account the risk attitude of the decision
maker in the context of a cost-benefit analysis. A common way of expressing the
risk attitude is through the acceptance criteria, which in the case of our example
are expressed in the form of the colored risk matrix. The risk matrix of a risk
averse decision maker would be more dominated by the red color, while the
risk matrix of a risk seeking decision maker would be more dominated by green
color. A risk neutral decision maker would define his or her risk matrix in a
rather balanced manner. Note that, unless there exists a baseline definition of
thresholds for risk attitude, it only makes sense to distinguish and compare the
three attitudes and their respective acceptance criteria relative to each other.
Risk attitude may be expressed in many forms through so-called risk function.
Other (and more) factors than frequency and consequence may be involved. More
than ove decision maker with varying risk attitudes may also be involved. Our
approach should also be refined with more detailed guidelines which take into
account varying risk attitudes.

Hence, we have managed to specify the guidelines and demonstrate feasibility
of the approach, while the support for aspects such as multi-cloud handling and
varying risk attitude still need to be included. Nevertheless, we consider the
current results to be a first step towards a full-scale cost-benefit analysis for
cloud service selection.

5 Conclusions

We have in this position paper proposed a risk-driven approach to cost-benefit
analysis for selection of cloud services. The application of the approach has been
illustrated on an example. The initial results indicate feasibility of specifying a
guideline of the approach and applying it. The main strength of the approach is
considered to be its simplicity and assumed comprehensibility for non-technical
users. We have through the application of the approach on the example also iden-
tified several needs for improvement, such as support for analysis of multi-cloud
aspects and better expressiveness with respect to uncertainty and risk attitude.
Thus, our further work should be two-fold: (1) empirical evaluation on a realistic
case to evaluate its practical usefulness and identify further requirements, and
(2) extension of the approach with support for multi-cloud aspects handling,
uncertainty handling, as well as capability of supporting a richer risk attitude
function in the cost-benefit analysis.

Acknowledgments. This work has been supported by the MODAClouds project
(Grant Agreement FP7-318484) funded by European Commission within the 7th
Framework Programme.

Supporting Cloud Service Selection with a Risk-Driven Cost-Benefit Analysis 173

References

Alberts, C.J., Davey, J.: OCTAVE criteria version 2.0. Technical report CMU/SEI-
2001-TR-016, Carnegie Mellon University (2004)

Barber, B., Davey, J.: The use of the CCTA risk analysis and management methodology
cramm in health information systems. In: 7th International Congress on Medical
Informatics (1992)

Daneva, M.: Applying real options thinking to information security in networked orga-
nizations. CTIT Report TR-CTIT-06-11. Technical report, University of Twente
(2006)

Fenton, N.E., Pfleeger, S.L.: A Rigorous and Practical Approach, 2nd edn. PWS Pub-
lishing Company, Boston (1997)

Gupta, S., Dominiak, J., Matthews, P., Mulero, V.M., Omerovic, A.: Decision Making
Toolkit Prototype - Final Version. MODAC]louds project deliverable D 2.3.3 (2015a)

Gupta, S., Muntes-Mulero, V., Matthews, P., Dominiak, J., Omerovic, A., Aranda, J.,
Seycek, S.: Risk-driven framework for decision support in cloud service selection. In:
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CC-GRID 2015), Shenzhen, Guangdong, China. IEEE/ACM (2015b)

Houmb, S.H., Georg, G., France, R., Bieman, J., Jirjens, J.: Cost-benefit trade-off
analysis using BBN for aspect-oriented risk-driven development. In: 10th Interna-
tional Conference on Engineering of Complex Computer Systems, pp. 195-204. IEEE
Computer Society (2005)

IEC: International Electrote