
Chapter 3
Dynamical Analysis of Cournot Oligopoly
Models: Neimark-Sacker Bifurcation
and Related Mechanisms

Anna Agliari, Nicolò Pecora and Alina Szuz

Abstract This chapter describes some properties of the nonlinear dynamics emerg-
ing from two oligopoly models in discrete time. The target of this chapter is the
investigation of some local and global bifurcations which are responsible for the
changes in the qualitative behaviors of the trajectories of discrete dynamical systems.
Two different kinds of oligopoly models are considered: the first one deals with the
presence of differentiated goods and gradient adjustment mechanism, while the sec-
ond considers the demand function of the producers to be dependent on advertising
expenditures and adaptive adjustment of themoves. In bothmodels the standard local
stability analysis of the Cournot-Nash equilibrium points is performed, as well as the
global bifurcations of both attractors and (their) basins of attraction are investigated.

3.1 Introduction

The object of the present chapter is to describe some properties of nonlinear dynam-
ics emerging from oligopoly models in discrete time. The target of our analysis is
the investigation of some bifurcations which are responsible for the changes in the
qualitative behaviors of the trajectories of the iterative process.

We consider two different kinds of oligopoly models: the first one deals with
the presence of differentiated goods and gradient adjustment mechanism, while the
second considers the demand function of the producers to be dependent on advertising
expenditures and adaptive adjustment of the moves. In both models, we perform the
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local stability analysis of the Cournot-Nash equilibrium point as well as a global
analysis of dynamics to study bifurcations of both attractors and basins of attraction.

Being the dynamics of such models described by maps of the family T : X → X ,
X ⊂ R

2, we will see that a particular kind of bifurcation may occur, related to a
pair of complex conjugated eigenvalues which crosses the unit circle, namely the
Neimark-Sacker bifurcation (NS henceforth). The NS bifurcation is associated with
the existence of closed invariant curves around the bifurcating fixed point.

In the nonlinear map describing the Cournotian competition with differentiated
products and gradient adjustment mechanism the steady state may be destabilized
via supercritical NS bifurcation. Such a bifurcation gives rise to an attracting closed
curve around the unstable equilibrium and, through global analysis, we shall also
show that different multistability situations (i.e., coexistence of attractors) may arise.

On the other hand, the oligopolymodel with advertising costs allows us to analyze
the effects of the occurrence of a subcritical NS bifurcation in which the destabi-
lization of the equilibrium point is due to its merging with a repelling closed curve
existing when the point is still stable. The occurrence of a subcritical NS bifurcation
has important implications in economic models since it can be associated with cor-
ridor stability, due to the bounded basin of attraction of the stable equilibrium (its
boundary being the repelling closed curve), and to catastrophic effects, since after
the bifurcation the trajectories may either jump to a different attractor far from the
equilibrium or diverge. Moreover, the map describing this second oligopoly setting
is piecewise smooth (PW henceforth), and we shall show that even border collision
bifurcations (BCB henceforth) may cause multistability phenomena as well. We
recall that BCB are typical occurrences in PW map and are related to invariant sets,
such as attractors or manifolds, having a contact with the border of a region where
the map changes its definition. Such a contact can cause abrupt changes either in the
structure or in the stability property of the colliding invariant set. Seminal papers on
such topic are by Nusse et al. [16] and Nusse and Yorke [17, 18].

3.2 Some Remarks on Neimark-Sacker Bifurcations

The aim of this section is to briefly illustrate some theoretical aspects associated
with the occurrence of NS bifurcation and the appearance/disappearance of closed
invariant curves, that will be the objects of the analysis developed in the following
parts.

To this extent, we first recall that generally a steady state loses stability through a
NS bifurcation when its Jacobian matrix has two complex eigenvalues lying on the
unit circle. Two kind of NS bifurcations can be distinguished:

• supercritical when, immediately after the bifurcation, the unstable steady state
is surrounded by an attracting closed curve corresponding to periodic or quasi-
periodic dynamics;
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• subcritical when, immediately before the bifurcation, the stable equilibrium is
surrounded by a repelling closed curvewhich shrinks and at the bifurcationmerges
with the fixed point leaving a repelling focus.

A typical way of investigating the occurrence of a NS bifurcation is to start
from the analysis of a two-dimensional bifurcation diagram.1 In so doing we can
detect the kind of the occurring NS bifurcation and, sometimes, to find the so-called
Chenciner points. These points correspond to the degeneracy of the NS bifurcation,
they belong to the bifurcation curve and separate cases in which either a subcritical
or a supercritical bifurcation occurs. Moreover, a typical and well-known structure
of the bifurcation diagram, in a two-dimensional parameter plane, is given by the so-
calledArnold’s tongues issuing from aNS bifurcation curve (on this we refer to some
classical texts, e.g. [10, 15], and other works like [1, 6, 8], to cite a few). Inside any
tongue at least 2 cycles exist, one stable and a saddle, and a closed invariant curve
exists, made up by the unstable set of the saddle cycle that connects the periodic
points of the stable cycle. These periodicity regions follow the Farey summation
rule, which is also known in the literature as “adding rule” [9]. This implies that
the tongues are organized so that between any two periodicity regions related to the
rotation numbers, say m1/n1 and m2/n2, there exists a periodicity region related to
the rotation number (m1 + m2)/(n1 + n2). The rational rotation is not generic only
for parameter values taken exactly on the NS bifurcation curve, while soon after
the bifurcation the rational rotation becomes generic: infinitely many periodicity
regions fill the parameter plane densely [9]. Generally, inside any tongue we have
an attracting set formed by a saddle-node connection, that is, the unstable set of the
saddle n-cycle reaches the node n-cycle thus forming a closed attracting curve. The
boundaries of a m/n tongue are saddle-node bifurcation curves in the case of smooth
maps and BCB curve if we are dealing with PW maps.

Let us recall that the stable and unstable sets of a saddle S∗ are defined as

W s(S∗) =
{

x : lim
n→+∞ T n(x) = S∗

}
,

W u(S∗) =
{

x : lim
n→+∞ T −n

jn (x) = S∗
}

,

respectively, where T −n
jn means a suitable sequence of inverses.

In the subcritical case, the periodicity regions exist when the fixed point is still sta-
ble, implying multistability situations, but generally immediately after their appear-
ance no saddle-node connection exists. The repelling closed curve involved with the
subcritical NS bifurcation appears at the crossing of a (global) bifurcation curve γ

together with an attracting one (Chenciner bifurcation). The curve γ originates from
a Chenciner point and enters the region in which the fixed point is stable, crossing
the periodicity regions. The global bifurcations occurring at the crossing of γ are an
interesting and challenging field of research.

1Obviously the map has to depend on at least two parameters.
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In particular, in the case of smooth maps, the appearance/disappearance of closed
invariant curves is associated with a saddle-connection. This particular configuration
is defined as a closed invariant curve formed by the merging of a branch of the stable
set of a periodic point of a saddle cycle with the unstable branch of another periodic
point of the same saddle, thus forming a closed connection among the periodic points
of the saddle. We shall call such a situation homoclinic loop that can also involve a
saddle cycle of period k, being related to the forward iterate map T k , but in this case
we can also obtain a heteroclinic loop: indeed, the map T k exhibits k saddles points
and a branch of the stable set of a saddle maymerge with a branch of another periodic
point of the saddle cycle. Stated in other words, if Si , i = 1, . . . , k, are the periodic
points of the saddle cycle and α1,1 ∪ α2,i (ω1,i ∪ ω2,i ) are the unstable (stable) sets
of Si , then a heteroclinic loop is given by the merging, for example, of the unstable
branch α1,i of Si with the stable branch ω1, j of a different periodic point Sj (see
Fig. 3.1). Then each periodic point of the saddle cycle is connected with another
one, and an invariant closed curve is so created connecting the periodic points of the
saddle cycle.

Dealing with discrete maps homoclinic and heteroclinic loops are frequently
replaced by homoclinic tangles. This means that a tangency between an unstable
branch W u

1 (S∗) = ∪α1,i with a stable one W s
1 (S) = ∪ω1,i occurs, followed by trans-

verse crossings of the two sets, followed by another tangency of the same sets, but
on opposite side. For major details see [1, 7, 12].

For PW maps only a few works devoted their attention to the investigation on
how invariant curves appear/disappear in these peculiar contexts. Below we shall
show that not only homoclinic bifurcations are involved, but also border collision
bifurcations may occur at the crossing of the curve γ .

3.3 A Cournot Duopoly Model with Differentiated
Products: Supercritical NS Bifurcation

In the first oligopoly model we analyze, we consider a Cournotian game with dif-
ferentiated goods in which boundedly rational firms apply a gradient adjustment
mechanism to update the quantity produced in each period (see [2] for a complete
investigation).

The demand functions of the two players are derived from an underlying CES
utility function

U (q1, q2) = qα
1 + qα

2 , 0 < α ≤ 1, (3.1)

which is maximized subject to the budget constraint

p1q1 + p2q2 = 1, (3.2)
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(a) (b)

(c) (d)

Fig. 3.1 The bifurcation mechanism associated with appearance of two closed invariant curves.
a Stable/unstable sets before the bifurcation. b Two closed curves appear. c Heteroclinic loop.
d Homoclinic tangle

where α gives the degree of substitutability/differentiation among the commodities,
p1 and p2 are the prices of good 1 and 2 respectively and we assume the consumer’s
exogenous income equal to 1.

Maximizing (3.1) subject to (3.2) results in the inverse demand functions

p1 = qα−1
1

qα
1 + qα

2

, p2 = qα−1
2

qα
1 + qα

2

(3.3)

for goods 1 and 2 respectively.2 From the inverse demand functions, we observe
that if α = 1 the commodities are indistinguishable and, accordingly, the consumers
regard them as identical; lower values of α makes the commodities conceived as
interchangeable but not quite identical. Decreasing the exponent parameter α makes

2We refer to [5] (Appendix A) for the mathematical computations that lead to the demand functions
represented by (3.3).
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the goods less close substitutes and as α → 0 the commodities become independent
(see also [14]). Further, we assume linear cost functions given by

ci (qi ) = ci qi , i = 1, 2, (3.4)

where ci are constant marginal costs.
Then the profit of the i-th firm becomes

Πi
(
qi , q j

) = pi
(
qi , q j

)
qi − ci qi , i, j = 1, 2, i �= j. (3.5)

From the profit maximization we are able to compute the Nash equilibrium, which
is unique and it is given by

E∗ =
(

αcα−1
1 cα

2

(cα
1 + cα

2 )
2
,

αcα
1 cα−1

2

(cα
1 + cα

2 )
2

)
.

Boundedly rational players update their quantities by an adjustmentmechanismbased
on a local estimate of the marginal profit

Φi
(
qi , q j

) = ∂Πi

∂qi
.

A firm increases (decreases) its quantity if it perceives positive (negative) marginal
profit, according to

qi (t + 1) = qi (t) + kiΦi
(
qi , q j

)
, (3.6)

where ki > 0, i = 1, 2, is a coefficient that “tunes” the speed of adjustment of firm
i’s quantity at time t + 1 with respect to a marginal change in profits when qi varies
at time t .

Therefore, under the above assumptions, the two-dimensional system that charac-
terizes the dynamics of the differentiated Cournot duopoly can be written as follows:

T =

⎧⎪⎪⎨
⎪⎪⎩

q
′
1 = q1 + k1

(
αqα−1

1 qα
2 −c1(qα

1 +qα
2 )

2

(qα
1 +qα

2 )
2

)
,

q
′
2 = q2 + k2

(
αqα−1

2 qα
1 −c2(qα

1 +qα
2 )

2

(qα
1 +qα

2 )
2

)
,

(3.7)

where ′ denotes the unit-time advancement operator, i.e., if qi is quantity produced
at time t then q

′
i is production at time t + 1.

Due to the presence of the denominator, it is obvious that T is defined only at
points such that (q1, q2) �= (0, 0); furthermore from an economic point of view we
are only interested in the study of positive trajectories, i.e. with points belonging to
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the positive quadrant of the plane R2. Indeed we will consider the feasible region as
the set of points in the plane defined by

F = {(q1, q2) : q1 > 0, q2 > 0}. (3.8)

3.3.1 Local Stability Analysis

In order to study the local stability of the unique Nash equilibrium we localize the
eigenvalues of the Jacobian matrix of T evaluated at E∗. Making use of the Jury’s
conditions, we can state that the Nash equilibrium is locally asymptotically stable if

{
−A3k1k2 + D1Bk2 + D2Ck1 > 0,

A4k1k2 − 2D1Bk2 − 2D2Ck1 + D1D2 > 0,
(3.9)

where A = cα
1 + cα

2 , B = [cα
2 (α − 1) − cα

1 (α + 1)], C = [cα
2 (1 + α) + cα

1 (1 − α)],
D1 = αcα−2

1 cα
2 and D2 = αcα−2

2 cα
1 . The two conditions (3.9) define a region in the

plane of the speeds of adjustment (k1, k2) whose shape is like the shaded area in
Fig. 3.2.3 This region is bounded by the two branches of hyperbola, whose equation
is given by the vanishing of the left hand side of

−A3k1k2 + D1Bk2 + D2Ck1 > 0,

and the curve represented by the vanishing of the left hand side of

A4k1k2 − 2D1Bk2 − 2D2Ck1 + D1D2 > 0.

For values of (k1, k2) inside the stability region the Nash equilibrium E∗ is a stable
steady state. The boundaries given by two branches of hyperbola on the left and on
the right represent bifurcation curves at which E∗ loses its stability through a period
doubling (or flip) bifurcation. The hyperbola in the central portion represents the
bifurcation curve at which the Nash equilibrium is destabilized via NS bifurcation.
The lines O I1 and O I2 of Fig. 3.2 represent pairs of (k1, k2) for which T r2 J −
4det J = 0 and separate real and complex eigenvalues regions.4 From the stability
conditions we can obtain direct information on the effects of the speed of adjustment,
k1 and k2, on the local stability of E∗. In particular, an increase of the parameters ki ,
with the other parameters fixed, may turn the Nash equilibrium unstable through a
flip or a NS bifurcation.

3We computed the stability region for c1 = 0.1 and c2 = 0.9 to better visualize the NS bifurcation
curve. With different values of marginal costs, the structure of the stability region does not change
and only the stable focus region becomes smaller and smaller.
4When c1 = c2 = c, such a condition reduces to (16c4 (k2 − k1)2)/α2 < 0 which is never satisfied.
Hence no NS bifurcation can occur in the case of symmetric game.
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Fig. 3.2 Stability region of the Nash equilibrium. The shaded gray area represents the region of
local asymptotic stability of the Nash equilibrium in the parameter plane of speeds of adjustment
(k1, k2). It is noteworthy that if c1 = c2, the two intersection points I1 and I2 coincides

Fig. 3.3 2D bifurcation
diagram of the map T in the
(k1, k2) parameter plane. The
different colors are
associated with cycles of
different period. White points
correspond to cycles of large
period, quasi-periodic
trajectories (when close to
the NS bifurcation curve) or
to complex dynamics. Gray
points correspond to
unfeasible trajectories

Numerical simulations allow us to find out that the NS bifurcation is of supercrit-
ical type and it gives rise to an attractive closed invariant curve around the unstable
equilibrium, which is a focus. In the 2D bifurcation diagram of Fig. 3.3 the so-called
Arnold’s tongues issue from the NS bifurcation curve, as we said in Sect. 3.2.
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Fig. 3.4 Enlargement of the
bifurcation diagram around
the co-dimension 2
bifurcation point R1 : 2. The
dots on the arrow correspond
to the sequence of Fig. 3.5

3.3.2 Co-dimension 2 Bifurcation

As the 2D bifurcation diagram of Fig. 3.3 shows, many periodicity regions exist,
which are organized following the Farey structure. In order to show some dynamic
features that take place in this Cournot setting with differentiated goods, we analyze
two portions of the 2D bifurcation diagram, highlighted through squares in Fig. 3.3.
In particular we first analyze the dynamics around the intersection point I1 between
the NS and the flip bifurcation curves (see Fig. 3.2). In so doing, we study the global
bifurcations occurring around the co-dimension 2 bifurcation, the strong resonance
R1 : 2 (see [13]), where the eigenvalues are λ1,2 = −1 (an enlargement is reported
in Fig. 3.4).

In region 1, the Nash equilibrium E∗ is a saddle and coexists with a stable cycle
C of period 2 (created at the crossing of the curve Fl1). Its stable set separates the
basins of attraction of the two stable fixed points of the second iterate of the map.
Following the path indicated by the arrow in Fig. 3.4, the crossing of the curve Fl2
causes a second flip bifurcation of the equilibrium point E∗, that becomes an unstable
node, and a saddle cycle C̃ of period 2 appears. In Fig. 3.5a, the Nash equilibrium E∗
is turned into an unstable focus. The attractor of the map is still the 2-cycle C , and
the two fixed points of T 2 (second iterate of T ) have basins of attraction separated
by the stable set of C̃ . The unstable set of C̃ , which is depicted in gray, gives rise to
a saddle-node connection: in particular, in Fig. 3.5a, the branch α1(C̃2) converges to
C1 while the branch α2(C̃2) converges to C2 and the two branches of α(C̃1) behave
analogously. We also observe that a branch of the unstable set of the saddle 2-cycle
issuing from the point C̃2, i.e. α1(C̃2), approaches the point C̃1 before converging
to C1, signaling that a global bifurcation is likely to occur. In fact, as the parameter
k2 slightly increases, we observe the coexistence of the stable 2-cycle C with an
attractive closed invariant curve (see Fig. 3.5b). The appearance of such a curve may
be due to a saddle-connection: the unstable set issuing from the point C̃1 (previously
converging toC2) reaches the periodic point C̃2 (becoming one of its stable branches)
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(a) (b)

(c) (d)

Fig. 3.5 Global bifurcation leading to the appearance of an attracting closed curve. The basins of
attraction of the second iterate of the map are represented in order to show the invariant sets of the
saddles. a Saddle node connection made up by the unstable set of C̃ . b An attracting closed curve
coexists with the stable 2-cycle C . c A qualitative sketch of the saddle connection associated with
the appearance of the curve. dNew fractal portions of the basin of attraction suggesting the possible
occurrence of a homoclinic tangle

and, vice versa, the unstable set issuing from the point C̃2 (previously converging to
C1) reaches the periodic point C̃1 (becoming one of its stable branches) leading to a
closed curve (this is shown qualitatively in Fig. 3.5c). As a confirm, one can notice
that before the bifurcation the basin of attraction (for the map T 2) of the point C1

(and similarly for C2) includes the stable sets of both C̃1 and C̃2 while, after the
bifurcation, for the second iterate of the map the basin of each attracting node is
bounded by the stable set of only one saddle fixed point. Moving towards the NS
bifurcation curve denoted by N S in Fig. 3.4, the cycles C and C̃ merge and disappear
in a saddle-node bifurcation. The closed invariant curve remains the unique attractor
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and becomes smaller and smaller. Finally, at the crossing of the N S curve, a reverse
supercritical NS bifurcations occurs and it leaves the Nash equilibrium E∗ as the
unique attractor.

Before concluding, we observe that the bifurcation mechanism sketched in
Fig. 3.5c is simply a schematic representation. Indeed we are dealing with a dis-
crete model and thus it is possible that a homoclinic tangle occurs, that is in a certain
parameter range the contact between the stable and unstable set is opened by their
quadratic tangency, at which homoclinic orbits appear (and related complex dynam-
ics), followed by transverse intersection and closed by a second quadratic tangency
at the opposite side which destroys all the homoclinic orbits. Figure3.5d seems to
suggest this occurrence: the basins of attraction may have a fractal structure close to

(a) (b)

(c) (d)

Fig. 3.6 A route to chaotic dynamics. The parameter values are chosen close to the periodicity
region of the 5-cycle. The green circles denote the period 5 saddle cycle. a 5 cyclical attracting
closed curves due to NS bifurcation. b 40-piece chaotic attractor due to a period doubling sequence.
c Cyclical attractor made up of 5 weakly chaotic rings. d A unique annular chaotic attractor
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the saddles and to their preimages. These particular basins’ regions are similar to the
ones that can be already observed in Fig. 3.5a, but they appear only in the portions of
the phase-space that will become the basin of attraction of the closed curve (compare
Fig. 3.5b, d).

3.3.3 A Route to Chaos

We now analyze the dynamics of the model when the parameters are chosen close to
the tongue associatedwith a 2/5 attracting cycle, as highlighted through the red square
in Fig. 3.3. This allows us to show that besides the period doubling sequence, the
model exhibits also a different route to chaotic dynamics. In such a periodicity region,
a stable 5-cycle exists as well as a saddle cycle of the same period. Keeping the value
of k1 fixed at 16.2, we increase the value of k2 and at the crossing of the boundary
of the periodicity region indicated by an arrow in Fig. 3.3 we observe the occurrence
of a supercritical NS bifurcation of the period 5 stable cycle. Then, immediately
after such a crossing, 5 cyclical attracting closed curves exist in the phase space,
as shown in Fig. 3.6a. If the parameter k2 further increases, different phase locking
situations take place and one of them (associated with 5 saddle-node connections
of two cycles of period 8) undergoes a period doubling sequence that gives rise
to the 40 pieces chaotic attractor shown in Fig. 3.6b with its enlargement. Then a
homoclinic bifurcation of the 5 saddle cycle of period 8 causes the appearance of
the cyclical attractor shown in Fig. 3.6c; the enlargement of one piece of the attractor
allows us to appreciate that each closed curve exhibits loops and self-intersections.
This means that the cyclical attractor is made up of 5 weakly chaotic rings (see
[15]) that merge in a unique annular chaotic attractor when k2 is further increased
and a homoclinic bifurcation of the saddle cycle of period 5 occurs, as shown in

Fig. 3.7 1D bifurcation
diagram with respect to k2.
As the parameter k2
increases, different
bifurcations occur which
finally give rise to a unique
annular chaotic attractor
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Fig. 3.6d. The bifurcation diagram in Fig. 3.7 shows the latter bifurcation path and
summarizes the sequence of bifurcations leading to the appearance of the annular
chaotic attractor.

3.4 An Advertising Cournot Model: Subcritical NS
Bifurcation

The second examplewe propose is a particular case of a Cournot triopolywhere firms
face markets in several countries. The basic features of this model are the unimodal
reaction functions, obtained with the assumptions of isoelastic demand function,
constant marginal costs, and an adaptive adjustment of the strategic variable.

The model is based on the following assumptions:

(i) there are three firms on the market that produce perfect substitute goods; they
produce the commodity quantities qi and distribute their products in several
countries making use of xi quantities of advertising (i = 1, 2, 3);

(ii) xi is the strategic variable, to focus on the marketing issue; we disregard the
production costs and ci is the cost per unit of advertisement;

(iii) two of the competing firms produce the same commodity, equally behave in
production and marketing policy, (i.e., q1 = q3 and x1 = x3) and have equal
advertisement cost.

Further, we assume that the exponents of the Cobb-Douglas utility functions
depend on advertising expenditures by the competitors, more precisely that the expo-
nents are the shares of each firm in total advertising expenditures of all competitors.
Then the consumers’ demand is:

U = q
x1

x1+X1
1 q

x2
x2+X2
2 q

x3
x3+X3
3 , (3.10)

where Xi , i = 1, 2, 3, denotes the advertising expenditure of competitors of firm i .
Therefore, utility maximizing consumer disposing of one monetary unit in the

budget spends

pi qi = xi

xi + Xi
(3.11)

on each commodity. From the producer point of view, (3.11) represents the revenue
of the firm. In this way, we can consider both the situation when the producers set
prices or quantities, as this will not affect the results.

Finally, the optimization of profit of producer i leads to the reaction functions
depending on the expected productions of competitors (X (e)

i ):

ri (X (e)
i ) =

√
X (e)

i

ci
− X (e)

i . (3.12)
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From the economic point of view (3.12) only makes sense as long as 0 ≤ X (e)
i ≤

1/ci , otherwise reaction and profit become negative and the producer can decide
either to withdraw or to modify his strategy.

To close themodel, we assume that competitors movemaking use of the “adaptive
expectation” mechanism. They give a weight θ ∈ [0, 1] to the best calculated reply
for their competitors (3.12) and (1 − θ) to their own previous move xi . Thus any
competitor moves according

x ′
i =

{
θ

(√
Xi
ci

− Xi

)
+ (1 − θ) xi , 0 ≤ Xi ≤ 1

ci
,

(1 − θ) xi , Xi > 1
ci
,

(3.13)

with i = 1, 2, 3.
Now, considering assumption (i i i) the model (3.13) becomes a 2D map with

X1 = x1 + x2, X2 = 2x1. Then the object of our study is the 2D nonlinear map:

T :
{

x
′ = T1(x, y),

y
′ = T2(x, y),

(3.14)

where

T1(x, y) =
{

θ
(√

x+y
c1

− (x + y)
)

+ (1 − θ)x, 0 ≤ x + y ≤ 1
c1

,

(1 − θ)x, x + y > 1
c1

,
(3.15)

and

T2(x, y) =
{

θ
(√

2x
c2 − 2x

)
+ (1 − θ)y, 0 ≤ x ≤ 1

2c2
,

(1 − θ)y, x > 1
2c2

.
(3.16)

For a sake of simplicity in (3.14) we have denoted with x and y the phase variables
x1 and x2.

To have meaningful trajectories from the economic point of view, we restrict the
analysis of T to the positive orthant of R2 (feasible region).

The map T in (3.14) depends on three parameters, the two marginal costs, c1 > 0
and c2 > 0, and the “adaptive” coefficient θ ∈ [0; 1]. However a simple change of
coordinates5 allows us to show that only two parameters, (c2/c1; θ ), are essential to
study the dynamics of T . Then in the following, without loss of generality, we shall
consider the map T with c1 = 1 and the parameter c2 has to be interpreted as the
ratio of the marginal costs.

5The coordinate change is Ψ (x, y) = (c1x, c1y).
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Fig. 3.8 The PW smoothmap T . The different branches of the map T and related definition regions

The map T is a continuous piecewise map, then there exist four regions in which
T assume a different definition. They are

R11 =
{
(x1, x2) : 0 ≤ x1 ≤ 1

2c2
, 0 ≤ x1 + x2 ≤ 1

}
, (3.17)

R12 =
{
(x1, x2) : x1 >

1

2c2
, 0 ≤ x1 + x2 ≤ 1

}
, (3.18)

R21 =
{
(x1, x2) : 0 ≤ x1 ≤ 1

2c2
, x1 + x2 > 1

}
, (3.19)

R22 =
{
(x1, x2) : x1 >

1

2c2
, x1 + x2 > 1

}
(3.20)

and are illustrated in Fig. 3.8.

3.4.1 Local Stability Analysis

To look at the fixed points of the map M in (3.13) we consider separately the four
regions Ri j (i, j = 1, 2) defined in (3.20). We shall denote with Mi j the map defined
in Ri j .

The maps M22 and M21 admit a unique fixed point O = (0, 0) ∈ R11, then they
have a “virtual” steady state; moreover the eigenvalues of the Jacobian matrix are
λ1 = λ2 = 1 − θ . This means that any trajectory either in R22 or R21 leaves the
regions in a finite number of steps.
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In region R12, besides the origin O , the map M12 admits the fixed point P∗ =
(1/4, 0), alwayswith eigenvaluesλ1 = λ2 = 1 − θ . Thenwhen c2 > 2, P∗ is a stable
equilibrium of M and when c2 = 2 it has a border collision, entering R11. This means
that when c2 < 2 the trajectories in R12 enter R11 in a finite number of steps and,
from an economic point of view, are unfeasible since y < 0.

Finally, we consider the region R11. The not trivial equilibrium of M11 is the
Cournot equilibrium point (intersection of the two reaction curves (3.12)) given by
E∗ = (

2c2/(2 + c2)
2, 2 (2 − c2)/(2 + c2)

2
)
. The fixed point E∗ is feasible only if

c2 ≤ 2 and, when feasible, belongs to R11, since the constraint x1 + x2 < 1 is always
satisfied by E∗. While, when c2 = 2, E∗ belongs to the constraint x1 = 1/2c2 and
to x2 = 0, and if c2 increases the Cournot equilibrium enters the region R12 and
becomes unfeasible.

The analysis just performed allows us to conclude that the map M admits a unique
not trivial equilibrium:

1. The Cournot equilibrium E∗ if c2 < 2;
2. P∗ if c2 > 2, which is always stable.

When c2 = 2 the two fixed points merge and belong to the border line separating
regions R11 and R12.

Henceforth,we restrict our analysis to the case c2 < 2 toonly consider the dynamic
behaviors associated with the Cournot equilibrium point. The localization of the
eigenvalues of the Jacobian matrix J (E∗) of T evaluated at E∗ allows us to state the
following

Proposition 3.1 Let (θ, c2) ∈ Ω = [0, 1] × (0, 2). The fixed point

E∗ =
(

2c2
(c2 + 2)2

,
2(2 − c2)

(c2 + 2)2

)

is locally stable if

θ < θns := 2c2(10 − c2)

(c2 + 2)2
.

Proof See [3]. �

Moreover, it is possible to obtain that the eigenvalues of J (E∗) are complex

conjugated in Ω̃ =
{
(θ, c2) : 0 < θ < 1 ∧ 0 < c2 < 13 − 3

√
17

}
. Following [11]

(Theorem 3.5.2) it is possible to prove the following

Proposition 3.2 If

1. (θ, c2) ∈ Ω̃ with c2 /∈
{
10 − 4

√
6, c̄2

}
, where

c̄2 = 16

3
+ 16

√
7

3
cos

arctan (ψ) + 2π

3
with ψ = 27

√
47

563
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2. and P6 (c2) < 0, where P6 (c2) = 5c62 + 120c52 − 1372c42 + 4224c32 − 4752c22 +
2176c2 − 320,

then at

θ = θns = 2c2(10 − c2)

(c2 + 2)2
(3.21)

the fixed point E∗ undergoes a subcritical Neimark-Sacker bifurcation.

Proof Proposition 3.1 states that if θ < θns the fixed point is a stable focus (the two
eigenvalues forming a complex conjugated pair) and it becomes an unstable focus
when θ exceeds θns . Then the complex eigenvalues of J (E∗) havemodulus onewhen

(3.21) holds.Moreover, it is possible to verify that if c2 /∈
{
10 − 4

√
6, c̄2

}
then λn �=

1, n = 1, 2, 3, 4. Thus strong resonance cases are excluded. Finally, computing the
coefficients d and a of Theorem 3.5.2 in [11, p. 162], we obtain d = (10 − c2)/8 > 0
and a > 0 if P6(c2) < 0.6 This proves that a subcritical NS bifurcation takes place
at θ = θns . �

From Proposition 3.2, we also obtain that the parameter value (θns (c̄2) , c̄2) ∈ Ω̃

corresponds to a 1 : 3 resonant case and
(
θns

(
10 − 4

√
6
)

, 10 − 4
√
6
)

∈ Ω̃ to a

1 : 4 resonant case. This means that at these parameter values the closed invariant
curve might appear in a very peculiar way, or there might be several invariant curves
bifurcating from the fixed point.

Numerical investigation allows us to find out that condition (b) holds if c2 <

ĉch , with ĉch ≈ 0.2769. The parameter values Ĉ = (
θns

(
ĉch

)
, ĉch

)
correspond to a

Chenciner point. This means that in the parameter space Ω̃ a (global) bifurcation
curve γ originates from Ĉ and enters the region in which E∗ is stable. The crossing of
such a curve causes the appearance of two invariant closed curves, one attracting and
one repelling, the latter being involved in the occurring NS bifurcation. The study of
the global bifurcations occurring along the curve γ is our present aim.

As in Sect. 3.3, we start our analysis looking at a 2D-bifurcation diagram, shown
in Fig. 3.9. In such a figure we can observe that the Arnold’s tongues have a particular
“sausage” shape, typical of PW maps. Indeed, the boundaries of these periodicity
regions are given by BCB’s and their “narrowed” portions correspond to the crossing
of one periodic point through a boundary of a region Ri j , associated with a border
collision which preserves the existing attractor.

Comparing Fig. 3.9 with Fig. 3.3 a second peculiarity emerges: in the former
figure the Arnold tongues appear when the fixed point is still stable and intersect
the θns bifurcation curve. As we said in Sect. 3.2, this is due to the Neimark-Sacker
bifurcation (NS) of subcritical type, as we proved, and indicates that a pair of cycles
must appear in the phase-space and coexists with the stable fixed point E∗ (see
also [4]).

6For major details see [3].
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Fig. 3.9 2D bifurcation
diagram. The Arnold’s
tongues of the PW map T
have the “sausage” structure

To investigate the bifurcation mechanisms leading to the appearance of the invari-
ant closed curves, at the crossing of the curve γ , we follow the bifurcation paths
indicated with an arrow in Fig. 3.9, since simple cycles of period 5 will be involved.

3.4.2 Appearance of Curves Due to Homoclinic Bifurcation

We start considering the bifurcation path bp1 in which c2 = 0.1306. At the crossing
of the boundary of the region P5 a pair of cycles of period 5 appears, a saddle cycle
S and an attracting one C . As shown in Fig. 3.10a, at their appearance the two cycles
are very close to each other and close to the line separating region R11 from region
R21. This suggests that the appearance of the cycles may be due to a “saddle-node”
BCB.

The basins of attraction of the two coexisting attractors are separated by the
stable set W s(S) = ω1 ∪ ω2 of the saddle cycle S and no invariant curve exists
immediately after the occurrence of the BCB. Indeed, the branch α1 of the unstable
set W u(S) = α1 ∪ α2 of S goes to E∗ while α2 converges to the cycle C . Increasing
the parameter θ the stable branch ω1 approaches the unstable branch α1, as we can
observe in Fig. 3.10b. More precisely, if we consider separately the periodic points
Ss , with s = 1, . . . , 5, of the saddle cycle S andωi = ⋃5

s=1 ωi,s , αi = ⋃5
s=1 αi,s with

i = 1, 2, we have thatω1,s is closer and closer to α1,s+1 (s = 1, . . . , 5 and α1,6=α1,1 ).
This means that a heteroclinic connection (or “heteroclinic loop”) between the peri-
odic points of the saddle cycle may be near to occur. This seems exactly the same
situation described in Sect. 3.2. Indeed, if we slightly increase θ as in Fig. 3.10c
(passing from 0.5635 to 0.5636), we observe that two invariant closed curves appear,
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(a) (b)

(c)

Fig. 3.10 Appearance of two invariant closed curves. Along the bifurcation path bp1 a homoclinic
bifurcation occurs. a θ = 0.562683. The cycle of period 5 appears via BCB. b θ = 0.5635. No
closed curves exist. c θ = 0.5636. Two invariant closed curves appear

one stable made up by the unstable set W u(S) which connects the periodic points of
C and one unstable which bounds the basin of attraction of E∗. This means that the
curve γ associated with the Chenciner point has been crossed.
To confirm that a homoclinic bifurcation occurs, we propose two further figures.

Figure3.11 represents the phase-plane immediately before the bifurcation: no invari-
ant closed curve exists but we can observe that both stable and unstable set are wan-
dering and quite tangent (see the enlargements in Fig. 3.11b). Then a homoclinic
tangle start to develop and transverse crossing between the two invariant sets arise
in a small parameter range. At the closure of the homoclinic tangle, the branches
α1 and ω1 are again tangent, but at the opposite side, as Fig. 3.12 shows, and two
invariant curves appear. To sum up, we remark that along the bifurcation curve bp1
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(a) (b)

Fig. 3.11 Homoclinic tangle. The first tangential contact between the stable and unstable sets of
the saddle cycle S. a θ = 0.56357725. The branches α1 and ω1 exhibit many oscillation and are
quite tangent. b Enlargement of stable and unstable sets

(a) (b)

Fig. 3.12 Homoclinic tangle. The second tangential contact between the stable and unstable sets
of the saddle cycle S. a θ = 0.56357729. The branches α1 and ω1 have exchanged their mutual
position and two invariant closed curves exist, very close each other. b Enlargement of the stable
and unstable sets
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(a) (b)

Fig. 3.13 Appearance of two invariant closed curves. Along the bifurcation path bp2 a BCB
causes the appearance of two invariant closed curves. a θ = 0.5825. Three coexisting attractors.
b θ = 0.5795. Appearance of the closed invariant curves

the crossing of the curve γ (that is, the appearance of two invariant closed curves)
occurs when a homoclinic bifurcation takes place.

3.4.3 Appearance of Curves Due to BCB

A different bifurcation mechanism arises along the bifurcation path bp2 where c2 =
0.135. Indeed, as shown in Fig. 3.13a, when the two cycles of period 5 appear, at
θ = 0.5825, the two curves Γ and Γ u already exist. The bifurcation leading to the
appearance of C and S seems again a “saddle-node” BCB and after its occurrence
we have the coexistence of three attractors: the period 5 cycle C whose basin of
attraction is bounded by the stable set of the saddle cycle S, the attracting closed
curve Γ and the Cournot equilibrium E∗. A repelling closed curve Γ u separates the
basins of attraction of these two last attractors. This means that the bifurcation curve
γ do not intersect the periodicity region P5 along bp2.

To investigate when the two invariant closed curves appear we decrease the para-
meter θ and we find that at θ = 0.5795 the two curves are quite indistinguishable
(see Fig. 3.13b) and the attracting one appears quite tangent to the border separat-
ing region R11 from region R21. This suggests that a BCB can be the cause of the
appearance of Γ and Γ u .

To show that this is really the casewe consider themap M11, since in the parameter
plane under scrutiny the Cournot equilibrium point is a fixed point of it.

The global analysis of the map M11 allows us to show that when being stable the
fixed point E∗ has a basin of attraction which contains all the feasible trajectories.
If we consider θ = 0.579, very closed to the value previously identified, the basin
of attraction of E∗ is bounded by a repelling closed curve Γ u (see Fig. 3.14a) an its
very small portion (denoted with a white arrow) belongs to region R21. This implies
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(a) (b)

Fig. 3.14 The map M11. A repelling closed curve bounds the set of feasible trajectories. a θ =
0.579. The basin of attraction of E∗. b θ = 0.5795. Border collision of an invariant closed curve

(a) (b)

Fig. 3.15 After the occurrence of the Neimark-Sacker bifurcation. At θ = 0.5895 only two attrac-
tors survive. Their basins of attraction are separated by the stable set of S. a The attracting closed
curve coexists with the period 5 cycle C . b The unstable and stable sets of the saddle cycle S

that when we consider the map M such portion will be iterated with the map M21 and
consequently all the unfeasible points disappear from the phase space of map M .

Coming back to the map M11, when θ increases this portion becomes smaller and
smaller and finally, at θ = 0.5795 it disappears (see Fig. 3.14b). When the portion
disappears, the boundary of the set of feasible trajectories of M11 becomes tangent to
the border line x1 + x2 = 1. This means that Γ u is an invariant set of M11 belonging
to the region R11 and then is an invariant set also of the map M . Moreover the points
of region R21, all unfeasible for M11, have a different behavior when iterated by M ,
that is a further attractor has to be appear. This is exactly what we have observed
in Fig. 3.13b. Then we can conclude that along the bifurcation path bp2 a different
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bifurcation mechanism occurs when the curve γ is crossed, since a BCB has caused
the appearance of two invariant closed curves.

Nevertheless, a homoclinic bifurcation occurs even along bp2. Increasing the
parameter θ , firstly we observe the occurrence of the subcritical NS bifurcation. Then
E∗ becomes an unstable focus and only two attractors survive, the period 5 cycle C
and the closed curve Γ , as in Fig. 3.15a. The basins of attraction are still separated by
the stable set W s(S) of the saddle S. But, as we can observe in Fig. 3.15b, the branch
ω1 of W s(S) exhibits some fluctuations before converging to S and it is very close
to the branch α1 of W u(S). As we have seen above, this is exactly the prelude of the
occurrence of a homoclinic bifurcation. Indeed, if we slightly increase the parameter
θ the branches ω1 and α1 change their reciprocal position and, in particular, ω1 now
come from E∗ (see Fig. 3.16). Then a homoclinic bifurcation has occurred and it has

(a) (b)

(c)

Fig. 3.16 The 5-cycle C is the unique attractor. A homoclinic bifurcation has caused the disap-
pearance of the attracting closed curve Γ . a θ = 58995. The closed curve Γ has disappeared.
b θ = 0.5898. The basins of attraction of the 5 fixed points of the map M5 are strongly mixed.
c θ = 58995. The complex structure of the basins of attraction does not exist
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caused the disappearance of the attracting closed curve Γ . To illustrate the effect
of the occurring homoclinic bifurcation we consider the 5th iterate of the map M .
The map M5 undergoes five simultaneous homoclinic bifurcations, as proved by the
fractal structure of the basins of attraction of its stable fixed points Cs , s = 1, . . . , 5,
due to the presence of a chaotic repellor (see Fig. 3.16b). This particular structure of
the basins immediately disappears when the second tangential contact between ω1

and α1 occurs, as shown in Fig. 3.16.

3.5 Conclusions

Several studies have been devoted to the NS bifurcations of fixed points in two-
dimensional maps describing oligopoly models. In this paper we focused on the
problem related to the mechanism giving rise to the appearance/disappearance of
invariant closed curves, attracting and/or repelling. Considering duopoly models in
which the Cournot equilibrium is destabilized through a supercritical or a subcriti-
cal NS bifurcation, we have shown that such bifurcations may give rise to different
dynamic behavior, depending on the type of map we are dealing with. The first
model deals with a smooth map and, through global analysis, we have shown differ-
ent multistability situations and the occurrence of global bifurcations associated with
the appearance of invariant closed curves and chaotic dynamics. The second model,
instead, is described by a PW map where the Cournot equilibrium point coexists
with an attracting closed curve and it is destabilized through a subcritical NS bifur-
cation. We have shown that the mechanism related to the appearance/disappearance
of invariant closed curves is related to homoclinic and border collision bifurcations.

A final remark is about the economic implication of the global bifurcations: given
the attention paid in the economic literature to the onset of endogenous and long-run
fluctuations, the bifurcation scenario we have detected may find important applica-
tions. Indeed, it implies multistability situations and may deserve to explain phe-
nomena like hysteresis loops and catastrophic transitions.

Acknowledgments Authors thank Ahmad Naimzada and Tönu Puu for their many valuable sug-
gestions and remarks about the two oligopoly settings.
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