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Multimodal Behavioral Analytics
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Systems
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Abstract As the boundary blurs between the real and the virtual in today’s
learning environments, there is a growing need for new assessment tools that
capture behavioral aspects key to evaluating skills such as problem solving, com-
munication, and collaboration. A key challenge is to capture and understand student
behavior at fidelity sufficient to estimate cognitive and affective states as they
manifest through multiple media, including speech, body pose, gestures and gaze.
However, analyzing each of these modalities in isolation may result in incon-
gruities. In addition, the affective states of a person show significant variations in
time. To address these technical challenges, this paper presents a framework for
developing hierarchical computational models that provide a systematic approach
for extracting meaningful evidence from noisy, unstructured data. This approach
utilizes multimodal data, including audio, video, and activity log files and models
the temporal dynamics of student behavior patterns. To demonstrate the efficacy of
our methodology, we present two pilot studies from the domains of collaborative
learning and in vivo assessments of nonverbal behavior where this approach has
been successfully implemented.

Keywords Machine learning � Multimodal fusion � Hierarchical processing
models

11.1 Introduction

To be successful in today’s rapidly evolving, technology-mediated world, students
must not only possess strong skills in areas such as reading, math, and science, but
they must also be adept at 21st-century skills such as critical thinking, communi-
cation, problem solving, persistence, and collaboration (Farrington et al., 2012).
These skills have been demonstrated to improve learning outcomes and are being
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rapidly incorporated in a number of high-stakes standardized assessment systems
(Smarter Balanced Assessment Consortium, n.d.). However, the assessment of
skills such as collaboration and communication is difficult because often it involves
understanding the process used to arrive at a conclusion rather than simply the end
product (Bejar, 1984; Romero & Ventura, 2007). Analyzing these processes
requires tracking not only the cognitive processes but also noncognitive behaviors,
for example, motivation, self-control, and emotional and affective states that
influence interpersonal interactions. In addition, much of the infrastructure of
assessment design has come of age around traditional multiple-choice tests and
self-reports. In contrast, educational simulations and games provide opportunities to
expose students to authentic educational tasks and allow them to interact with and
explore complex representations of serious academic content (Fisch, 2005; National
Research Council, 2011). They do so in a manner that is amenable to capturing rich
process data in vivo, that is, during the execution of a task involving collaboration,
problem solving, and other complex tasks. These data can be multimodal, that is,
they can include multiple sensory modalities such as audio, video, and 3D (using
depth-sensing devices such as Microsoft Kinect), in addition to traditional forms of
computer interaction data such as mouse click streams and keystrokes. The key
advantage of using such multimodal data is that it enables high fidelity sensing and
tracking of a user’s cognitive and noncognitive states, which would otherwise be
missed in traditional log files. However, extracting relevant features from these data
that can be used as evidence to infer competency in complex constructs such as
collaboration is a significant technical challenge for a number of reasons. First, the
raw time series of multimodal data often does not have any direct semantic meaning
and may not be interpretable by humans as such. As mentioned earlier, it may
constitute simulation log files, audio, and visual data, which, without sophisticated
computational models, cannot be analyzed for meaningful information. Second,
building pattern recognition approaches to detect and recognize sequences and
combinations in raw data requires “training data” that may not be readily available.
And finally, the inferences and corresponding interpretations from raw multimodal
data may contain information at vastly different levels of semantic meaning and
abstraction that may not be easily combined in a scoring model, for example,
specific facial expressions versus turn taking or user’s level of engagement.

This paper is intended to provide a framework and methodology to design and
develop computational models that enable analysis of noisy, unstructured, multi-
modal data for the assessment of complex constructs such as collaboration and
communication. Specifically, this paper describes a hierarchical data processing and
inference methodology that can help bridge the gap between the raw, low-level
multimodal data and the measurement of high-level constructs. To illustrate the
efficacy of such a methodology, two example pilot studies are presented where such
an approach was implemented to study collaborative learning and in vivo mea-
surement of nonverbal behavior using wearable sensors.
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11.2 Multimodal Analytics for Studying Student Behavior

Simulations and games in computerized educational environments offer an exciting
new paradigm to assess knowledge, skills, and abilities that are difficult to capture
with traditional measurement tools such as structured tests and multiple choice
items. Such computerized educational environments enable powerful audiovisual
interfaces that can be utilized to analyze student’s actions, behaviors, and indeed
their process in solving the problem, rather than just their final products. Of par-
ticular interest are moment-by-moment student affective and cognitive states and
how these are related with task performance and learning outcomes in general
(D’Mello & Graesser, 2012; Whitehill, Serpell, Lin, Foster, & Movellan, 2014).

A key advantage of using computerized educational environments is that they
can enable gathering of rich multimodal data in the form of video streams, audio
streams, and simulation log files. These data can be processed and analyzed using
multimodal analytics to study performance at individual and group levels. The term
multimodal analytics (Amer, Siddiquie, Khan, Divakaran, & Sawhney, 2014;
Morency, de Kok, & Gratch, 2010; Siddiquie, Khan, Divakaran, & Swahney, 2013)
refers to the use of advanced sensor technologies and machine learning systems to
track and understand human behaviors. It promises a paradigm shift in learning and
assessment that can afford rich, automated, and grounded inferences about human
performance from large amounts of multiple sensory data, for example, audio and
video. However, developing computational models that can extract meaningful
features indicative of performance and skills from the raw, low-level multimodal
data is a significant technical challenge. In contrast, when human observers rate task
performance, they are quite naturally integrating information from both what they
have seen (visual) and what they have heard (auditory). Moreover, the observers’
brains translate the visual data into information about body postures, facial
expressions, and actions taken. The auditory data are translated into meaningful
communication, multiperson verbal exchanges, and tone-of-voice cues. These
features are further combined to allow the observers to make judgments about the
emotional states, social skills, and technical competencies of the individual
performers.

11.2.1 Hierarchical Inference Framework

To address the challenges outlined above, our approach is to build a hierarchical
processing and inference framework. As illustrated in Fig. 11.1, raw multimodal
data form the first layer of the framework. Data are captured using a multitude of
sensors, including audio, video, 3D, and even simulation log files. These data are
preprocessed to extract machine features, for example, histogram of oriented gra-
dients (HOG) from visual data, Euler angles from 3D skeleton data, and
Mel-frequency cepstral coefficient (MFCC) features from audio data, among others.
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We call such machine features low-level features, and they reside in the second
layer of the hierarchical framework. The output of this layer is descriptive features
that may have semantic meanings, such as facial expressions, gestures, or speech
prosody. Such descriptive features termed mid-level representations reside the next
level up in the hierarchical framework.

In this layer, the temporal dynamics of low-level features and mid-level repre-
sentations are modeled to generate holistic measures of human behavioral states
such as affect, engagement, and flow. At the top level of the hierarchy reside the
features that make up a theoretical model representing the construct of interest such
as communication competency or collaborative skill; these features are called high-
level interpretations. This layer takes as input assessment of mid-level behavioral
features and employs psychometric models to make inference about the compe-
tency of interest.

11.2.2 Using Multimodal Analytics to Study Influence
of Affect and Noncognitive Behavior
on Collaborative Study

Various studies have demonstrated the impact and influence of student affective
state and behaviors such as turn taking (Woolley, Chabris, Pentland, Hashmi, &
Malone, 2010), entrainment (convergence), and mirroring of affect (Lakin, Jefferis,

Fig. 11.1 Our framework to bridge the gap between low-level digital data and the measurement
of complex constructs. HMM hidden Markov model, HOG histogram of oriented gradients,
JHCRF joint hidden conditional random fields, MFCC mel-frequency cepstral coefficient, SVM
support vector machine
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Cheng, & Chartrand, 2003) on higher group intelligence and learning outcomes.
Here a pilot study is presented that utilizes multimodal analytics to understand the
incidence, dynamics, and influence of affect in collaborative problem solving (Luna
Bazaldua et al., 2015). Our hypothesis is that performance on collaborative tasks is
closely related to participant affective states and behaviors. Therefore, information
about such states and behaviors can be important evidence for assessing the overall
success of collaboration and individual ability to collaborate, as well as how well
different tasks encourage collaboration. To test this approach a study was conducted
involving 12 unique dyads collaborating in an online game-like science assessment,
Tetralogue (Liu, Hao, von Davier, Kyllonen, & Zapata-Rivera, 2016; Zapata-Rivera
et al., 2014). This platform includes both traditional assessment components, such
as a set of multiple-choice items on general science topics, a simulation-based
assessment, a personality test, and a set of background questionnaires. The simu-
lation task relates to geology topics. The simulation-based task was developed as a
task for individual test takers who will interact with two avatars, and as a collab-
orative task that requires collaboration among two human participants and two
avatars in order to solve geology problems. The participants, who may be in dif-
ferent locations, interact through an online chat box and system help requests (i.e.,
opting to view educational videos on the subject matter).

Figure 11.2 illustrates the use of the Tetralogue collaborative activity platform
and data capture system. Multimodal data, including video and activity log files, of
each participating dyad were captured. The log files contain behavior that included
frequency and content of chat messages between dyads, response to science
questions both individually and as a dyad (jointly as a group), and system help
requests (i.e., the participant asks to view educational videos on the subject matter
to better answer assessment questions). The video data, on the other hand, recorded
participant nonverbal behavior, which was analyzed on a frame-by-frame basis
using automated facial expression classifiers and annotated by trained human raters
on high-level noncognitive behaviors, including: affect display gestures, engage-
ment, anxiety, and curiosity. The data were analyzed at individual and dyad levels
and results derived using hierarchical clustering analysis demonstrated statistically
significant evidence of cognitive and noncognitive behavioral convergence among
dyads (see Sect. 3.2 for details).

11.2.3 Multimodal Data and Low-Level Features

Facial expression analysis of the video data was performed using the FACET SDK,
a commercial version of the Computer Expression Recognition Toolbox (CERT;
Littlewort et al., 2011). This tool recognizes fine-grained facial features, or facial
action units (AUs), described in the Facial Action Coding System (Ekman, Friesen,
& Hager, 1977). FACET detects human faces in a video frame, locates and tracks
facial features, and uses support vector machine-based classifiers to output
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frame-by-frame detection probabilities of a set of facial expressions: anger, joy,
contempt, and surprise.

In addition, seven trained coders reviewed and coded the videos using Anvil
software (Kipp, 2001). The video data for each participant were assigned to two
raters for annotation; however, in three cases there were three raters coding the
same video file, and in two cases only a single rater was available for annotation.
The raters followed the same coding scheme during the annotation process, that is,
coding data with the labels: hand touching face, expressing engagement, expressing
anxiety, or expressing curiosity. The behaviors were coded on a binary scale,
reflecting whether the behaviors were absent or present. As an outcome of the
annotation process, the Anvil software produced extensible markup language
(XML) files that were parsed using the XML package (Lang, 2013) in R.

Engagement, anxiety, and curiosity were included in the annotation scheme
because of the incidence and relevance with which these three noncognitive states
occur in simulation games and online learning systems (Baker, D’Mello, Rodrigo,
& Graesser, 2010; Calvo & D’Mello, 2010; D’Mello & Graesser, 2012; Woolf
et al., 2009). The coding also included hand touching face, an affect display gesture
that has been linked to affective and cognitive states such as boredom, engagement,
and thinking (Mahmoud & Robinson, 2011; Whitehill et al., 2014).

Fig. 11.2 Multimodal data capture including video and action log files while participants engage
in collaborative activity on the Tetralogue platform
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11.2.4 Mid-level Features and Construct Inference

In order to study evidence of behavioral convergence, features from log files and
video data of each of the 24 study participants were represented as a multidimen-
sional behavioral feature vector composed of both the cognitive behaviors: num-
ber_of_messages and number_of_help_requests and the noncognitive behaviors
(i.e., fraction of the time each participant exhibited the behavior): engagement,
hand_on_face, anxiety, curiosity, anger, joy, contempt, and surprise.

An unsupervised, agglomerative hierarchical cluster analysis using an average
linkage function was performed on a Euclidean distance matrix (i.e., a similarity
matrix) computed from the multidimensional behavioral feature data of the study
participants. Our hypothesis is that behavioral convergence will manifest in the
cognitive and noncognitive features such that members of the same dyad will tend
to group together from the beginning of the clustering process, that is, they will be
closer to each other in the feature space than to others.

The similarity matrix of behavioral feature distances for participants within and
outside dyad clusters was analyzed. Behavioral convergence would imply that, for
dyad members, the average distances in feature space is smaller in a statistically
significant manner than those of nominal dyad members. Moreover, to study the
relative impact of cognitive and noncognitive features, two additional similarity
matrices were computed: one using exclusively the cognitive features from log files
(number of chat messages and number of system help requests) and the other using
exclusively noncognitive features produced from the video data (the four facial
expression detectors, and the four features from the coding scheme). All features
were normalized to present equivalent scaled values between 0 and 1.

Table 11.1 shows the means and standard deviations of feature similarity dis-
tances of participants in dyad and nominal dyad populations. The results consis-
tently show smaller average distances for the dyads (i.e., members within dyads
displayed behavior that was more similar to each other than to others), supporting
the convergence premise. Additionally, Student’s t test was used to evaluate the
statistical significance of these results. The results show that, when using both
cognitive and noncognitive features together, the feature distance between partici-
pants belonging to the same dyad was smaller than the corresponding distance

Table 11.1 Average and standard deviation of behavioral feature distances within and outside
dyads

Features Populations Mean SD

Cognitive and noncognitive Dyads 0.572 0.228

Nominal dyads 0.730 0.243

Cognitive only Dyads 0.365 0.216

Nominal dyads 0.571 0.209

Noncognitive only Dyads 0.411 0.178

Nominal dyads 0.414 0.225
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between nominal-dyads in a statistically significant manner: t = 2.335, df = 11.7,
p < 0.02. However, when using noncognitive features alone, a statistically signif-
icant pattern of behavioral convergence was not found.

11.3 In Vivo Assessments of Nonverbal Behavior Using
Multimodal Wearable Sensors

Human behavior modeling has been studied in a variety of disciplines such as
behavioral science, social science, cognitive science, and artificial intelligence,
among others. Several researchers have developed models of human behavior, from
cognitive and affective states to human activities. This research has also explored
the impact and influence of individual personality traits on outcomes of collective
group activity. The traditional approach has been to create personality profiles using
tools such as Big Five (Tosi, Mero, & Rizzo, 2000) or FACETS (Kyllonen,
Lipnevich, Burrus, & Roberts, 2014) and analyzing the outcomes of the group
interaction task vis-à-vis individual personality traits. Typically, this entails par-
ticipants completing pretask or posttask questionnaires, an activity that is time
intensive, expensive, and may induce subjective and social biases. Moreover,
moment-by-moment activities and interactions in the group task are not captured,
and the data are usually too sparse and coarse for an exploratory behavioral anal-
ysis. In contrast to this, some exciting new research has focused on measuring and
modeling interpersonal behavior using low-level nonverbal behavioral data from
environmental and wearable sensors (Olguin & Pentland, 2010). Of particular
interest is research on assessing interpersonal skills in tasks such as negotiations,
collaboration, leaderless tasks, and so forth, by tapping into a nonverbal, subcon-
scious channel of human communication that Pentland calls honest signals
(Pentland, 2008).

Multimodal analytics to conduct such assessments during in vivo group exer-
cises (real world, in person) in a noninvasive manner using wearable sensors. These
honest signals influence the outcome of group tasks, and therefore information
about such states and behaviors can be important evidence for assessing the overall
success of collaboration, individual ability, and interpersonal skills, as well as an
alternative way to measure personality traits in and of themselves.

11.3.1 Analyzing Nonverbal Behavior

The subtle, unconscious patterns in which humans interact reveal their attitudes
toward each other. These honest signals, as characterized by Pentland, are com-
posed of patterns in physical activity, speech activity, and proximity, among other
low-level behavioral cues. This research (Pentland, 2008; Woolley et al., 2010) has
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delineated a number of noncognitive, nonverbal behaviors that influence interper-
sonal interactions and will be the focus of this study. In particular we are interested
in the following:

• Mimicry: The extent to which people in a conversation are reflexively mirroring
each other.

• Conversational turn-taking: Participation balance and dominance.
• Activity: Measured as body movement or speech energy; increased activity

often indicates interest and excitement.

One of the first attempts to measure face-to-face interactions between people using
wearable sensors was the sociometer (Choudhury & Pentland, 2003). This wearable
sensor package was used to learn social interactions from sensory data and model the
structure and dynamics of social networks. Pentland described several statistical
learning methods that use wearable sensor data to make reliable estimates of users’
interactions. He presented a detailed description of behavior modeling for learning
and classifying user behavior from proximity and location data, and influence
modeling for predicting the behavior of a subject from another subject’s data.

In an ongoing pilot study conducted at ETS, wearable sensors, specifically the
Sociometric Badge (Olguin & Pentland, 2010) are utilized to measure nonverbal
behavior in human interactions. The Sociometric Badge is a wearable sensing
device that can be used to study human behavior and social interactions.
Specifically, the badge collects information on (a) speech features such as volume,
tone of voice, and speaking time; (b) body movement features such as energy and
consistency; (c) information regarding people nearby wearing a Sociometric Badge;
(d) the proximity of Bluetooth-enabled devices; and (e) approximate location
information. The badges will not record speech or conversational content (unless
this option is manually enabled). Figure 11.3 shows an image of the wearable
badge. The study consisted of 24 participants that were divided into groups of four
to work on a decision-making task. Each group member was given a role (e.g., Vice
President [VP] of Finance, VP of Operations) of a hypothetical company, and the
groups were tasked with choosing a store location that would be best for their
company as it moves into a foreign market. Each member was given positive,
negative, and neutral information about each of three potential store locations.
Participants wore Sociometric Badges that recorded features from speech and body
motion. Figure 11.4 illustrates preliminary analysis that easily shows evidence of
turn taking and dominance of social interactivity. In the top left image, each par-
ticipant is represented by a node (colored circle) in a connected graph. The
thickness of the edges connecting any pair of nodes represents the number of
speaking turns between the participant pair. It can be clearly seen that the indi-
viduals represented by the red, blue, and orange nodes had more turns between
themselves than with the person represented by the green node. A similar picture
emerges in the top right image, which shows a pie chart of individual speaking
time, and the bottom image, which shows a timeline of speech onsets and offset
from each of the four participants.
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11.4 Concluding Remarks

This paper presents a framework to design and develop computational models that
enable analysis of noisy, unstructured, multimodal data for the capture, analysis,
and measurement of complex human behavior. This approach utilizes multimodal
data including audio, video, and activity log files and constructs a hierarchical
analysis methodology to model temporal dynamics of human behavior and the
integration of multiple data modalities. The efficacy of such a methodology is

Fig. 11.3 The wearable sociometric badge

Fig. 11.4 Speech frequency and segments of a four-person group measured with sociometric
badges
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demonstrated with two pilot studies where this approach was implemented to study
collaborative learning and in vivo measurement of nonverbal behavior using
wearable sensors.

Acknowledgements This research has benefited from help in data collection efforts, technical
insight and valuable feedback the author received from colleagues including Diego Luna
Bazaldua, Alina von Davier, Jiangang Hao, Robert Mislevy and Ketly Jean Pierre.

References

Amer, M. R., Siddiquie, B., Khan, S., Divakaran, A., & Sawhney, H. (2014). Multimodal fusion
using dynamic hybrid models. In Institute of Electrical and Electronics Engineers (Ed.), 2014
IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 556–563). Los
Alamitos, CA: IEEE.

Baker, R. S., D’Mello, S. K., Rodrigo, M. M. T., & Graesser, A. C. (2010). Better to be frustrated
than bored: The incidence, persistence, and impact of learners’ cognitive-affective states during
interactions with three different computer-based learning environments. International Journal
of Human-Computer Studies, 68(4), 223–241.

Bejar, I. I. (1984). Educational diagnostic assessment. Journal of Educational Measurement, 21
(2), 175–189.

Calvo, R. A., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models,
methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37.

Choudhury, T., & Pentland, A. (2003). Sensing and modeling human networks using the
sociometer. In Institute of Electrical and Electronics Engineers (Ed.), Proceedings of the
7th IEEE International Symposium on Wearable Computers (pp. 216–222). Los Alamitos, CA:
IEEE.

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning.
Learning and Instruction, 22(2), 145–157.

Ekman, P., & Friesen, W. V. (1977). Facial action coding system.
Farrington, C. A., Roderick, M., Allensworth, E., Nagaoka, J., Keyes, T. S., Johnson, D. W., et al.

(2012). Teaching adolescents to become learners: The role of noncognitive factors in shaping
school performance: A critical literature review. Chicago, IL: Consortium on Chicago School
Research.

Fisch, S. M. (2005). Making educational computer games “educational.” In Association for
Computing Machinery (Ed.), Proceedings of the 4th International Conference for Interaction
Design and Children (pp. 56–61). New York, NY: Association for Computing Machinery.

Kipp, M. (2001) Anvil—A generic annotation tool for multimodal dialogue. In Proceedings of the
7th European Conference on Speech Communication and Technology (Eurospeech)
(pp. 1367–1370).

Kraiger, K., Ford, J. K., & Salas, E. (1993). Application of cognitive, skill based, and affective
learning outcomes to new methods of training evaluation. Journal of Applied Psychology, 78,
311–328.

Kyllonen, P. C., Lipnevich, A. A., Burrus, J., & Roberts, R. D. (2014). Personality, motivation,
and college readiness: A prospectus for assessment and development (Research Report
No. RR-14-06). Princeton, NJ: Educational Testing Service.

Lakin, J. L., Jefferis, V. E., Cheng, C. M., & Chartrand, T. L. (2003). The chameleon effect as
social glue: Evidence for the evolutionary significance of nonconscious mimicry. Journal of
Nonverbal Behavior, 27(3), 145–162.

Lang, D. T. (2013). XML: Tools for parsing and generating XML within R and S-Plus (R package
version 3.98–1.1). Retrieved from http://CRAN.R-project.org/package=XML

11 Multimodal Behavioral Analytics in Intelligent Learning … 183

http://CRAN.R-project.org/package%3dXML


Littlewort, G., Whitehill, J., Wu, T., Fasel, I., Frank, M., Movellan, J. R., et al. (2011). The
computer expression recognition toolbox (CERT). In Institute of Electrical and Electronics
Engineers (Ed.), Proceedings of the IEEE International Conference on Automatic Face and
Gesture Recognition (pp. 298–305). Los Alamitos, CA: IEEE.

Liu, L., Hao, J., von Davier, A., Kyllonen, P., & Zapata-Rivera, D. (2016). A tough nut to crack:
Measuring collaborative problem solving. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.),
Handbook of research on computational tools for real-world skill development. Hershey, PA:
IGI-Global.

Luna Bazaldua, D. A., Hao, J., Khan, S., Liu, L., von Davier, A. A., & Wang, Z. (2015). On
convergence of cognitive and non-cognitive behavior in collaborative activity. In O. C. Santos,
J. G. Boticario, C. Romero, M. Pechenizkiy, A. Merceron, P. Mitros, … M. Desmarais (Eds.),
Proceedings of the 8th International Conference on Educational Data Mining Conference
(pp. 496–499). Madrid, Spain: International Educational Data Mining Society.

Mahmoud, M., & Robinson, P. (2011). Interpreting hand-over-face gestures. In S. D’Mello, A.
Graesser, B. Schuller, & J-C Martin (Eds.), Proceedings of the International Conference on
Affective Computing and Intelligent Interaction (pp. 248–255). New York, NY: Springer.

Morency, L. P., de Kok, I., & Gratch, J. (2010). A probabilistic multimodal approach for
predicting listener backchannels. Autonomous Agents and Multi-Agent Systems, 20(1), 70–84.

National Research Council. (2011). Assessing 21st century skills. Washington, DC: National
Academies Press.

Olguin, D. O., & Pentland, A. (2010). Assessing group performance from collective behavior. In
Association for Computing Machinery (Ed.), CSCW 2010 Workshop on Collective Intelligence
in Organizations. New York, NY: Association for Computing Machinery.

Pentland, A. (2008). Honest signals: How they shape our world. Cambridge, MA: MIT Press.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert

Systems with Applications, 35, 135–146.
Siddiquie, B., Khan, S., Divakaran, A., & Sawhney, H. (2013, July). Affect Analysis in natural

human interaction using joint hidden conditional random fields. In Institute of Electrical and
Electronics Engineers (Ed.), 2013 IEEE International Conference on Multimedia and Expo
(ICME 2013) (pp. 1–6). Los Alamitos, CA: IEEE.

Smarter Balanced Assessment Consortium. (n.d.). Thermometer crickets: Grade 11 performance
task. Retrieved from http://www.smarterbalanced.org/wordpress/wp-content/uploads/2012/09/
performance-tasks/crickets.pdf

Tosi, H. L., Mero, N. P., & Rizzo, J. R. (2000). Managing organizational behavior (4th ed.).
Cambridge, MA: Blackwell Publishers.

Whitehill, J., Serpell, Z., Lin, Y. C., Foster, A., & Movellan, J. R. (2014). The faces of
engagement: Automatic recognition of student engagement from facial expressions. IEEE
Transactions on Affective Computing, 5(1), 86–98.

Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., & Picard, R. (2009). Affect-aware
tutors: recognizing and responding to student affect. International Journal of Learning
Technology, 4(3–4), 129–164.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a
collective intelligence factor in the performance of human groups. Science, 330(6004),
686–688.

Zapata-Rivera, D., Jackson, T., Liu, L., Bertling, M., Vezzu, M., & Katz, I. R. (2014). Assessing
science inquiry skills using trialogues. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8474,
pp. 625–626). Berlin, Germany: Springer.

184 S.M. Khan

http://www.smarterbalanced.org/wordpress/wp-content/uploads/2012/09/performance-tasks/crickets.pdf
http://www.smarterbalanced.org/wordpress/wp-content/uploads/2012/09/performance-tasks/crickets.pdf

	11 Multimodal Behavioral Analytics in Intelligent Learning and Assessment Systems
	Abstract
	11.1 Introduction
	11.2 Multimodal Analytics for Studying Student Behavior
	11.2.1 Hierarchical Inference Framework
	11.2.2 Using Multimodal Analytics to Study Influence of Affect and Noncognitive Behavior on Collaborative Study
	11.2.3 Multimodal Data and Low-Level Features
	11.2.4 Mid-level Features and Construct Inference

	11.3 In Vivo Assessments of Nonverbal Behavior Using Multimodal Wearable Sensors
	11.3.1 Analyzing Nonverbal Behavior

	11.4 Concluding Remarks
	Acknowledgements
	References


