Chapter 10
Convex Feasibility Problems

We use subgradient projection algorithms for solving convex feasibility problems.
We show that almost all iterates, generated by a subgradient projection algorithm
in a Hilbert space, are approximate solutions. Moreover, we obtain an estimate of
the number of iterates which are not approximate solutions. In a finite-dimensional
case, we study the behavior of the subgradient projection algorithm in the presence
of computational errors. Provided computational errors are bounded, we prove that
our subgradient projection algorithm generates a good approximate solution after a
certain number of iterates.

10.1 Iterative Methods in Infinite-Dimensional Spaces

Let (X, (-,-)) be a Hilbert space with an inner product (,-), which induces a
complete norm || - ||. For each x € X and each nonempty set A C X put

d(x,A) ;= inf{||x—y|| : y €A}
For each x € X and each r > 0O set
Blx,r)={yeX: [|x—yll =r}

It is well known that the following proposition holds (see Fact 1.5 and Lemma 2.4
of [7]).

Proposition 10.1. Let C be a nonempty, closed and convex subset of X. Then, for
each x € X, there is a unique point Pc(x) € C satisfying

Ix = Pc@)|| = d(x. C).
© Springer International Publishing Switzerland 2016 341

A. Zaslavski, Approximate Solutions of Common Fixed-Point Problems, Springer
Optimization and Its Applications 112, DOI 10.1007/978-3-319-33255-0_10



342 10 Convex Feasibility Problems

Moreover, |Pc(x) — Pc(y)|| < llx—y| forall x,y € X and, for each x € X and each
z€C,

{z—=Pc(x).x = Pc(x)) <0,
lz=Pe)I? + llx = Pc@)* < llz— x> (10.1)
Letf : X — R' be a continuous and convex function such that
{xeX: f(x) <0} £0. (10.2)
Let yp € X. Then the set

o) :={eX: f(y) =f(v) = {l.y—yo) forally € X} (10.3)

is the subdifferential of f at the point yo [72, 77]. For any [ € 9f(yo), in view
of (10.3),

xeX: fx) <0 C{xeX: f(yo) + (I, x—y) <0} (10.4)

It is well known that the following lemma holds (see Lemma 7.3 of [7]).

Lemma 10.2. Letyg € X, f(yo) > 0, [ € 9f (yo) and let
D:={xeX: f(yo) + (L.x—yo) = 0}

Then | # 0 and Pp(yo) = yo — f (yo) |1]| 2.

Denote by N the set of all nonnegative integers. Let m be a natural number,
I={1,....m}and f; : X — R!, i € T, be convex and continuous functions. For
eachi € I set

Cii={xeX: filx) =0},
C:= NierCi = Nierfx € X @ fi(x) < 0}.

Suppose that
C#0.

A point x € C is called a solution of our feasibility problem. For a given € > 0, a
point x € X is called an e-approximate solution of the feasibility problem if f;(x) <
€ for all i € 1. We apply the subgradient projection method in order to obtain a good
approximative solution of the feasibility problem.

Consider a natural number p > m. Denote by S the set of all mappings S : N — 1
such that the following property holds:
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(P1) For each integer N € N and each i € I, thereisn € {N,...,N +p — 1}
such that S(n) = i.

We want to find approximate solutions of the inclusion x € C. In order to meet
this goal we apply algorithms generated by S € S.

For each x € X, each number € > 0 and each i € I set

Ai(x,e) == {x}if fi(x) <€ (10.5)
and, in view of Lemma 10.2,
Ai(x, €) = x— )72 : e Ofi(x)} if fi(x) > €. (10.6)

We associate with any S € S the algorithm which generates, for any starting point
Xo € X, a sequence {x,}°2, C X such that, for each integer n > 0,

Xn41 € AS(n) (xm O)

Note that by Lemma 10.2 the sequence {x,}°2, is well defined, and that for each
integer n > 0, if fs,) (x,) > 0, then x,41 = Pp, (x,,), where

D, ={xeX: f(x,) + {ln,x —x,) <0} and I, € s (xn).

We will prove the following result (Theorem 10.3) which shows that, for the
subgradient projection method considered in the chapter, almost all iterates are good
approximate solutions. Denote by Card(A) the cardinality of the set A.

Theorem 10.3. Let

b>0,ec(0,1, A>0, y€[0,€], (10.7)
ceB(0,b)NC, (10.8)
Ifi(w) — fi(v)| < Allu—v||, u,v € B(0,3b+ 1), i €I (10.9)

let a positive number € satisfy
€ <eA™! (10.10)
and let a natural number ny satisfy
4pe; b < ny. (10.11)
Assume that

SeS, xo € B(0,b), (10.12)



344 10 Convex Feasibility Problems

and that for each integer n > 0,
Xnt1 € As) (Xns V). (10.13)
Then
lx. || < 3b for all integers n > 0 (10.14)
and
Card({N € N : max{||x,41—x,|| : n=N,...,N+p—1} > €}) <np. (10.15)
Moreover, if an integer N > 0 satisfies
[ X041 —Xull < €0, m=N,....N+p—1,

then, for all integers n,m € {N,...,N + p}, |x, — x| < p€o and for all integers
n=N,...,N+pandeachicl, fi(x,) <e(lp+1).

Theorem 10.3 was obtained in [96].

10.2 Proof of Theorem 10.3

By (10.5), (10.6), and (10.13), there exists a sequence {/,}52, C X such that

Xn+1 = Xn iffS(n)(xn) =V (10.16)

and

if fs(uy (x4) > y, then I, € dfs (x,) and
Xnt 1 = Xn — s ) 11| =L (10.17)

By (10.16), (10.17), (10.8), (10.12), (10.4), Lemma 10.2, and Proposition 10.1
for all integers n > 0,

e =Xpt1ll = lle —xall < 2b, (10.18)
|l || < 3b for all integers n > 0. (10.19)

Assume that an integer N > 0 and that

X1 —xn|| < €oforn=N,....N+p—1. (10.20)
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This implies that for all n,m € {N, ... ,N + p},
l[xn — x|l < peo. (10.21)
Leti € I. By (P1), thereism € {N,...,N + p — 1} such that

S(m) = i. (10.22)
We show that
JiGm) = fsm (xm) < €. (10.23)
Assume the contrary. Then
fi(xm) > €. (10.24)

By (10.20), (10.24), (10.7), (10.16), (10.17), and (10.22),

€ = ”xm-i-l _xm” = ”fS(m)(xm)”lm”_zlm” > 6”lm”_l- (1025)

By (10.24), (10.22), (10.16), (10.17), and (10.7), I, € Ofsm) (xy). Combined
with (10.19) and (10.9) this implies that

Il < A. (10.26)

In view of (10.25) and (10.26), €y > € A~". This inequality contradicts (10.10). This
contradiction proves (10.23).

Letn € {N,...,N+p}. It follows from (10.22), (10.23), (10.19), (10.9), (10.21),
and (10.10) that

fi(xn) ffS(m) (xm) + VS(m) (xn) _fS(m) (xm)|
< e+ Alx, —xp|| <€+ Apeg <€+ 1)

and
filxy) <e(@+ 1) forn=N,...,N+p, (10.27)

for all integers i € IL.
Thus we have shown that the following property holds:
(P2) if an integer N > 0 and (10.20) holds, then (10.27) is valid for all i € I.
Set
Ei={neN: |x,—xq1l < €}, (10.28)
E, =N \E, (10.29)
Ey={neN:{n....n+p—1}NE, # 0} (10.30)
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By (10.18), (10.29), (10.28), (10.16), (10.17), (10.8), Lemma 10.2, and Proposi-
tion 10.1 (see (10.1)), for any natural number n,

4? = Jle = x0l” = lle = xolI” = lle = x>

1

2 2 2 2
=Y lle=xull? = lle=xu 1= D [le=xul* = llc = xms1 %]
0 m€E,N[0,n—1]

=
|

3
Il

> > xm =X l? = € Card(E, N [0.n — 1])
m€E>N[0,n—1]

and
Card(E; N [0,n — 1]) < 4¢e;2b*.
Since the inequality above holds for any natural number n, we conclude that
Card(E,) < 4¢;°Db”. (10.31)
By (10.31), (10.30), and (10.11),
Card(E;) < Card(Ey)p < 4€;°b*p < ny.

This completes the proof of Theorem 10.3. O

10.3 Iterative Methods in Finite-Dimensional Spaces

We use all the notation and the definitions introduced in Sect. 10.1 and suppose that
all the assumptions made in Sect. 10.1 hold. In this section, we suppose that the
space X is finite-dimensional. The results presented in the section were obtained in
[96].

We prove the following result, which describes the asymptotic behavior of the
subgradient projection method without computational errors.

Theorem 10.4. Letb > 0, € € (0, 1] and

ceB(0,b)NC. (10.32)
Then there exist a natural number ny and yy € (0,€] such that the following
assertion holds.

Assume that

Yy € [O, )/()], S e S, X0 € B(O, b) (1033)
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and that, for each integer n > 0,
Xot1 € Agin(ins ). (10.34)
Then ||x,|| < 3b for all integers n > 0,
fi(x,) < € foralli €1 and all integers n > ng
and d(x,, C) < € for all integers n > ny.

Theorem 10.4 is proved in Sect. 10.5.
Foreachx € X, eaché > 0,each § > 0 and each i € I set

Ai(x,8,8) := {x} if fi(x) <6, (10.35)
and, if f;(x) > 8, then set
Ai(x.8.8) = {x—f|I1) 722 1 € dfi(x) + B(0,5), [ # 0} + B(0,5).  (10.36)

The following theorem is one of our main results of this chapter. It describes the
behavior of iterates under the presence of computational errors which occur in the
calculations of subgradients as well in the calculations of iterates themselves.

Theorem 10.5. Letb > 0, € € (0, 1], (10.32) hold and let
ci € B(0,b) and fi(c;) <0, i € I (10.37)

Then, there exist a natural number ny and § > 0 such that the following assertion
holds.
Assume that

§,€[0,8]. ne N, S€S, xo € B(0,b), (10.38)
and that, for each integer n > 0,
X1 € Astr) (s 81, 8). (10.39)

Then ||x,|| <3b+1, n=0,...,n0, d(xy,, C) < € and fi(x,,) < € foralli e L.

This result is proved in Sect. 10.6. Theorem 10.5 easily implies the following
result.

Theorem 10.6. Let b > 0, € € (0,1], (10.32), and (10.37) hold and let a natural
number ny and § > 0 be given, as guaranteed by Theorem 10.5.
Assume that (10.38) holds, for each integer n > 0, (10.39) holds and that a

sequence X5 —o C ,D). en, for all integers n = ny,
% C B(0,b). Th i

d(x,, C) < € and fi(x,) < eforalliel.

Theorem 10.6 easily implies the following result.
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Theorem 10.7. Let b > 0, (10.32) and (10.37) hold, {3,}°2, be a sequence of
positive numbers such that lim,_,., 6, = 0 and let € € (0, 1]. Then there exists a
natural number n. such that the following assertion holds.

Assume that §, € [0,8,] foralln e N, S € S, {x,}°2, C B(0,b) and that, for
each integer n > 0,

Xnt1 € Asn) (X, Ss 60).

Then, for all integers n > ne, d(x,, C) < € and f;(x,) < € foralli € 1.
In the last two theorems we consider the case when the set C is bounded.

Theorem 10.8. Suppose that the set C is bounded, (10.32) and (10.37) hold with
b > 0 and by, € > 0. Then there exist a natural number ny and § > 0 such that the
following assertion holds.

Assume that

5,€[0.8], neN, SES, (10.40)
X0 € B(0, by) (10.41)

and that, for each integer n > 0,
Xnt1 € As(n)(Xns 1, 6). (10.42)

Then, for all integers n > ny, d(x,,, C) < € and fi(x,) < € forall i € 1.

Proof. We may assume without any loss of generality that
bo>sup{llzl|l: z€ C}+4, by > |ci|l, i€l, b>3byg+1ande <1. (10.43)

By Theorem 10.5, there exist a natural number n; and §; > 0 such that the following
property holds:

(P3) for each 8, € [0,8;], n € N, each S € S, each {x,}°2, C X such that
lxo|l < bo and that, for each integer n > 0,

Xn+1 € AS(n)(xns gns 51)»

we have ||x,]| <3bo+ 1,n=0,...,n; and d(x,,,C) < €.

By Theorem 10.6, there exist a natural number ny and § € (0, §;) such that the
following property holds:

(P4) if (10.38) holds and if for each integer n > 0, (10.39) holds and if {x,}°2, C
B(0, b), then for all integers n > ny,

d(x,,C) <eandfi(x,) <eforalliel (10.44)
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Assume that Sn €[0,8],neN,SeS, {xa}o2, C X, (10.41) holds and (10.42)
holds for each integer n > 0. By (P3), (10.41)—(10.43) and the inequality § < 61,

1%, || < bo, n € N and ||x,|| <3by + 1, ne N. (10.45)
By (10.45), (10.43), (10.41), (10.42), and (P4), (10.44) holds for all integers n > ny.
This completes the proof of Theorem 10.8. O

Theorems 10.7 and 10.8 easily imply the following result.

Theorem 10.9. Let (10.32) and (10.37) hold with b > 0 and the set C be bounded.
Then there exists § > 0 such that the following assertion holds.

Assume that a sequence {8,}52, C [0, 8] satisfy lim, o0 8, = 0 and let € > 0.
Then there exists a natural number n¢ such that, for each 8, € [0,68,], n € N, each
S € S and each {x,}2, C X which satisfies ||xo|| < b and

Xng1 € Asm) (X, g,,, 8,) for each integer n > 0,
the following relations hold:

d(x,, C) < € and fi(x,) < € foralli € I and all integers n > n..

10.4 Auxiliary Results

We use the notation and the definitions introduced in Sect. 10.3 and suppose that all
the assumptions made there hold.

Lemma 10.10. Let M > 0O, y; > 0. Then there exists y, > 0 such that, for each
x € B(0, M) satisfying fi(x) < ya, i € 1, the inequality d(x, C) < y; holds.

Proof. Assume the contrary. Then, for any natural number n, there is x,, € B(0, M)
such that

fi(xp) < 1/n, i € land d(x,, C) > y;. (10.46)
Extracting a subsequence and re-indexing, if necessary, we may assume without any
loss of generality that there is x = lim, o X,. It is easy to see that x € B(0, M),
fi(x) <0Oforalli € Tand x € C. Clearly,
d(xm C) = ||xn —.X” < ]/]/2

for all sufficiently large natural numbers #. This contradicts (10.46). The contradic-
tion we have reached completes the proof of Lemma 10.10. O
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10.5 Proof of Theorem 10.4

Since the functions f;, i € I are convex [50], there exists A > 0 such that
Ifi(w) — f;(v)| < Allu—v|| forallu,v € B(0,3b+ 1), i € I (10.47)
Choose a positive number y; < € such that
Ay, <e. (10.48)

By Lemma 10.10, there exists y, € (0, €) such that the following property holds:
(P5) for each y € B(0, 3b + 1) satisfying f;(y) < y», i € [ we have d(y, C) < y;.
Choose a positive number y, such that

Yo <yrand yo(p + 1) < ys. (10.49)

By (10.47) and Theorem 10.3 (with € = y;), there exists a natural number rg such
that the following property holds:
(P6) Let y € [0, 0], S € S, xo € B(0, b) and let for each integer n > 0,

Xnt1 € Asiy (Xns V).
Then
||z || < 3b for all integers n > 0, (10.50)
and there is an integer g € [0, ny] such that
Jikg) =v(+1), iel (10.51)

Assume that (10.33) holds and that (10.34) holds for each integer n > 0. Together
with (P6) this implies that (10.50) holds and that there is an integer ¢ € [0, ng] such
that (10.51) holds. By (10.49) and (10.51), fi(x,) < y» for all i € I. Together with
(P5) and (10.51), this implies that d(x,, C) < y; and that there is Z € X such that

zZe Cand ||lx; —Z|| < 1. (10.52)

By (10.52), (10.33), (10.34), (10.5), (10.6), (10.4). Lemma 10.2, and Proposi-
tion 10.1 (see (10.1)),

X, —Z|| < y1 < € torall integersn > q. .
[0 =21l for all integ (10.53)

In view of (10.53) and (10.50), ||Z|| < 3b+1. Together with (10.52), (10.47), (10.53),
(10.50), and (10.48), this implies that for all integers n > ny and all i € T,

file) = i@ + lfitx) = fi@] = Al — 2] < Ap1 <e.

This completes the proof of Theorem 10.4. O
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10.6 Proof of Theorem 10.5

Put
r = min{—f;(¢c;) : i €1} (10.54)
By (10.54) and (10.37),
r> 0. (10.55)
Since the functions f;, i € I are convex [50], there exists A > 0 such that

lfitw) — fi(v)| < A|lu—v|| forall u,v € B(0,3b +2), i €1, (10.56)
Ifi(u)] < Aforallu € B(0,3b+2), i el (10.57)
By Theorem 10.4, there exist a natural number ny and y, € (0, €] such that the
following property holds:
PTHIfy €[0,7%], S €S, xo € B(0,b) and, if for each integer n > 0,

Xn41 € AS(n) (X0, ),

then
||z, || < 3b for all integers n > 0, (10.58)
fi(x,) < €/4forallic I and all integers n > ny, (10.59)
d(x,, C) < €/4 for all integers n > ny. (10.60)

By (10.56), for each u € B(0,3b + 1), all i € I and each g € 9df;(u),
lell < A. (10.61)
Let
ueB0,3b+1), i€l fi(u) >0, g e dfi(u). (10.62)
By (10.62), (10.54), (10.55), and (10.37),
—r = fi(ci) > fi(ci) — filw) = (g.ci —u) = —|g[(4b + 1)
and

lgll > r(4b+ 1)~ (10.63)
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We have shown that the following property holds:
(P8)ifu € B(0,3b+ 1),i €1, fi(u) > 0 and if g € X satisfies

d(g, ofi(w)) < r(4b+ 1)~ 147",
then ||g|| > r(4b + 1)~1271,
For each y > 0 denote by M, the set of all sequences {x,}°2, C X for which
|lxoll < b, and there exist 7, € [0,y], n € N, S € S such that, for each integer

n=>0,

Xn+1 € AS(n) (Xn, ?n» V)
By induction we show that for all m = 0, . . ., ny the following assertion holds.
(A) For each y > 0 there exists § > 0 such that, for each {x,}°2, € Mj, there is
{ntpeo € Mo such that [ly, —x,| <y, n=0,....,m.
Clearly, for m = 0 this assertion holds. Assume that assertion (A) holds for
m = g where g € [0,ny — 1] is an integer. We show that (A) holds form = g + 1.
Since (A) holds for m = g, it follows from (P7) and (10.58) that there is yy > 0
such that
Yo <2 Vand yy < 47 r(4b + 1) (10.64)
and that, for each {y,}°2, € M,,,
Ivall <3b+1/2, n=0,...,q. (10.65)

Assume that assertion (A) does not hold for m = ¢ + 1. Then there exists y > 0
such that for each natural number j there is

12y € My, (10.66)
such that
max{|ly, —x?| : n=0,...,¢+ 1} > y for each {y,}>, € M. (10.67)
By (10.66) and the choice of y; (see (10.65)), for all natural numbers j,
X <3b+1/2, n=0,....q. (10.68)

By the definition of M,,, y > 0, (10.36), (10.37), and (10.66), for each integer j > 1
there is

Tin €0, 00/j], neN, S; eS8, {g912, CcX (10.69)
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such that, for each integer n € {0, ..., g + 1} satisfying f;») (x,(,j)) > Vins
g? # 0and d(g¥, fs;on (<)) < vo/j, (10.70)
s = 02 = Fon D) 182120 < 70/ (10.71)

and that, for each integer n € {0, ..., g + 1} satisfying fs,(,) (x,(f)) < Vins

g =0, 3]y, =, (10.72)
Extracting a subsequence and re-indexing, if necessary, we may assume that

S;(n) = Si(n) for all natural numbers j and all n € N. (10.73)
Put

S(n) = Si(n), neN. (10.74)

By (10.74), (10.73), (10.70), (10.68), (10.64), (P8), and (10.61), forallj = 1,2, ...
andalln=0,...,q,

if fsny (x9) > 750 then 271 (@b 4+ )7 r < g9 < A + 1. (10.75)

Assume that j is a natural number. We estimate ||)cg)+1 Il If fsqq) (xg )) < ¥4 then, in
view of (10.74), (10.72), and (10.68),

I W

Dl =191 < 3b+27" (10.76)

If fs) &) > iy then by (10.70), (10.71), (10.74), (10.64), (10.68), (10.57),
and (10.75),

< v+ 150 = fo ) 12917289
<1+3b+27" + Alg?| ™ <3/2+3b+2A(4b+ Dr .

Thus forallj =1,2,...,

167 < 3/2 4+ 3b + 24(4b + 1" (10.77)

By (10.77) and (10.68), extracting a subsequence and re-indexing, if necessary, we
may assume without any loss of generality that for any n € {0,...,q + 1} there is

Yo = lim x¥ (10.78)

j—>00
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and that for any n € {0, ..., g + 1} one of the following cases holds:

fswm) (xg)) < Vjn for all natural numbers j, (10.79)
s (xy) ) > ¥; for all natural numbers j. (10.80)
Foralln =0,1,2,...,g+ landallj=1,2,... chooseg,(f) € X as follows:
20 = 0if oo () < Fim, (10.81)
if fs () > i then 30 € Ufsn (), 180 — ¢V <2v". (10.82)

In view (10.69)—(10.74), g,({), n=20,1,2,....,q+1,j=1,2,... are well-defined.
Set

E={nef0,....q}: fs@) > 7, forallj=1,2,...} (10.83)

By (10.75), (10.83), (10.79), and (10.80), extracting a subsequence and re-indexing,
if necessary, we may assume without any loss of generality that, for each n € E
there is

gn = lim g¥. (10.84)

j—oo

Foreachn € {0,...,q + 1} \ E set

gn=0. (10.85)

Letn € {0,...,q}. There are two cases:
Ssamy(n) > 0; (10.86)
fsamyn) < 0. (10.87)

Consider the case (10.86). By (10.78), we may assume without any loss of generality
that

Jsm) (xflj) ) > 21 fsm)(yn) > 0 for all natural numbers j. (10.88)

Then, in view of (10.69)—(10.72) and (10.88) for all sufficiently large natural
numbers j,

159, = G2 — fsn GO I8P 172N < o/ (10.89)

By (10.78)—(10.80), (10.88), (10.82), and (10.84) for each u € X,
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Fson @) — fsey ) = jﬁg&(fsm) (1) — fsy (x9))

> 1im (39, u —x9) = (g.u— y,)

Jj—>00
and
gn € sy (n)- (10.90)
By (10.78), (10.89), (10.84), (10.75), (10.88), (10.79), and (10.80),
o )
Yn+1 _j1—1>rgl;loxn+1
= lim [x9 — fyo 59) 182 ¢Y]
Jj—00
= Yn _fS(n)(yn)||gn||_2gn- (1091)

Consider the case _(10'87)1 If n ¢ E, then by (10.78)—(10.80), (10.83),
and (10.69)—(10.72), qu’j_l = x,({) for all natural numbers j and

Yor1 = lim x| = lim x¥ = y,. (10.92)
j—00 n Jj—>o0o n
Assume that
nekE. (10.93)

By (10.83) and (10.93), for each natural numbers j,
Fsmy (YY) > F0. (10.94)

By (10.87), (10.94), (10.78), and (10.69),

Ssmy ) =0, ,ETO fs @) = 0. (10.95)
By (10.78), (10.94), (10.69)—(10.72), (10.74), (10.95), and (10.75),

a1 = lim x% = lim x9 — fs) 291911 7269]
]—)OO j—)OO
= lim x% — [1im fs) xD)[g9(|72¢P)] = lim x9 = y,.
j—o0 j—>o0 Jj—>o0o

Thus in both cases (10.87) implies that

Yn+1 = Yn- (1096)
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Thus (10.86) implies (10.90), (10.91), and (10.87) implies (10.96). Clearly, there
are y, € X for all integers n > g + 1 such that {y,}°2, € M,. By (10.78), for all

sufficiently large natural numbers j, we have ||x,@ -yl <y/2,n=0,1,...,qg+ 1.
This contradicts (10.67). The contradiction we have reached proves that assertion
(A) holds with m = g + 1. Thus by induction we have shown that assertion (A)
holds with m = ny.
Fix a positive number y; such that
yi <€/d, y1 <1/2, y1 < (e/2)A7". (10.97)

By (A) with m = ny, there is 6 > 0 such that, for each {x,}°2, € M; there is
{)’n}:io C M, for which

Ve = xull < y1, n=0,....n. (10.98)
Let
{Xndnzo € Ms. (10.99)
By (10.99) and the choice of § there is
Dnbnzo € Mo (10.100)

such that (10.98) holds. By (10.100), (P7), and the definition of M,

ly. |l < 3b for all integers n > 0, (10.101)
filvmy) < €/4, i €1, (10.102)
d(yn,. C) < €/4. (10.103)

By (10.98), (10.103), and (10.97),
Ay, €) = %y — Yy l| + Ay €) < €/2. (10.104)
By (10.101), (10.98), and (10.97),
Ixall <3b+1/2, n=0,....n. (10.105)
By (10.102), (10.101), (10.105), (10.56), (10.98), and (10.97), for any i € I,

fi(xno) sz(yno) + lfi(xno) _fi(yno)| = 6/4 + A”xno _yno”
<e/d+yiA<e/2+4€/4.

Theorem 10.5 is proved. O
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10.7 Dynamic String-Averaging Methods
in Infinite-Dimensional Spaces

Let (X, (-,-)) be a Hilbert space with an inner product (,-), which induces a
complete norm || - ||. For each x € X and each nonempty set A C X put

d(x,A) == inf{[|[x—y| : y € A}.
For each x € X and each r > 0 set
Bx,r)={yeX: [lx—yll =r}

We use the notation, definitions, and assumptions introduced in Sect. 10.1.
Letf : X — R! be a continuous and convex function such that

{xeX: f(x) <0} #0. (10.106)
Let yo € X. Recall that the set

f (o) :={l€ X1 f(») —f(yo) = (L.y—yo) forall y € X} (10.107)

is the subdifferential of f at the point yy [72, 77]. For any g € df(yo), in view
of (10.107),

xeX: fx) <0} C{xeX: f(yo)+ (g, x—yo) <0}. (10.108)
Let m be a natural number and f; : X — R, i = 1,...,m, be convex and
continuous functions. For each i € {1,...,m} set
Ci:={xeX: filx) <0}, (10.109)
C=nNLC=nNL{xeX: fi(x) <0} (10.110)
Suppose that
C # 0.

A point x € C is called a solution of our feasibility problem. For a given € > 0, a
point x € X is called an e-approximate solution of the feasibility problem if f;(x) < €
foralli = 1,....m. We apply the dynamic string-averaging subgradient projection
method in order to obtain a good approximative solution of the feasibility problem.
Denote by A the set of all nonnegative integers.
By an index vector, we mean a vector t = (f,...,t,) such that ; € {1,...,m}
foralli=1,...,p.
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For an index vector t = (1, ...,1,) set

p(1) = q. (10.111)

Denote by M the collection of all pairs (§2, w), where £2 is a finite set of index
vectors and

w: §£2 — (0, 00) be such that Zw(t) =1. (10.112)
e

Fix a number
Ae (0,m™Y] (10.113)
and an integer
q > m. (10.114)

Denote by M. the set of all (£2, w) € M such that

p(t) < q forallt € £2, (10.115)
w(t) > Aforallt € £2. (10.116)
Fix a natural number N.
For each x € X, each number € > 0 and each i € {1,...,m} set
Ai(x,€) = {x}iffi(x) <€ (10.117)
and, in view of Lemma 10.2,
Ai(x.€) = x—fi({llgl ?g : g € Ufi()}iffi(x) > e. (10.118)
Lete > 0,x € Xandlett = (11,..., 1) be an index vector. Define

Ao(t,x,€) = {(y,A) € X xR' : there is a sequence {yi}fi% C X such that

Yo =X, (10.119)

foreachi = 1,...,p(),
Yi € Ay (i-1,€), (10.120)
Y = Ypys (10.121)

A=max{|lyi—yi—1ll : i=1,...,p(0}}. (10.122)
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Lete > 0, x € X and let (£2,w) € M. Define

A(x, (£2,w),€) = {(y.A) € X xR : there exist

(1, A1) € Ag(t, x,€), t € §2 such that

y= Z w(t)yr,

teR

A =max{A,: t € 2}}.

359

(10.123)

(10.124)

Denote by Card(A) the cardinality of a set A. Suppose that the sum over empty

set is zero.

Theorem 10.11. Let

My >0, e €(0,1), M| >0, y €[0,€],
B(0,My) N C # 0,

Ifi(w) — fi(v)| < My|lu—v||, u,v € B(0,3My + 1), i € {1,...,m},

€0 € (0,eM; ']
and let a natural number ny satisfy
ng > 4Mie; 2 AT'N.
Assume that
{(2:, w12, C My,

satisfies for each natural number j,

{1, e ,m} C Uﬁ:]]'v_l(uteﬂi{tl’ cee tp(l)})a
X0 € B(O, M()),
i} 2y C X, {A2) C [0,00)
satisfy for each natural number i,
(xi, A1) € A(xi—1, ($2i, W), 7).
Then

llx:]| < 3M, for all integers i > 0

(10.125)
(10.126)
(10.127)

(10.128)

(10.129)

(10.130)

(10.131)
(10.132)
(10.133)

(10.134)

(10.135)
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and
Cardne N : max{A;: i=n+1,....,n+ N} > €}) < ny. (10.136)
Moreover, if an integer n > 0 satisfies
Ai<e,i=n+1,....,n+N, (10.137)

then, for all integers i,j € {n,....n+ N}, lxi — x| < NZ]GO and for all integers
jein,...,n+ N}andeachs € {1,...,m},

fi(x) <e@N + 1)+ 1).

10.8 Proof of Theorem 10.11
Let n be a natural number. In view of (10.134),
(xm An) € A(xnfl’ (*Qn, Wn)a V)- (10.138)

By (10.124) and (10.124), for any r € £2,, there exists

Ons Ani) € Ao(t, Xn—1,¥) (10.139)
such that
X =Y Wa(O)Yus, (10.140)
€2,
Ay =max{A,;: t € 2,}. (10.141)
Let
t=(t1,....typ) € 25 (10.142)

By (10.119), (10.139), and (10.142), there is a sequence {yn,,_i}fg) C X such that

Ynr0 = Xn—1, (10.143)
Vi € Ay Wnri—1,¥), i =1,...,p(?), (10.144)
Yt = Yntp(t), (10.145)

Ay = MaxX{||ynri — Ynrizill : i=1,...,p(0)}. (10.146)
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In view of (10.126), there exists
7€ B(0,My) N C. (10.147)
Let n be a natural number,
t=(t,....typ) €82y, i=1,...,p(@). (10.148)
By (10.117), (10.118), and (10.144), the following properties hold:
P if fi; Gnri—1) <y, then yu i = yuri-t
(P2) if f;,(ynri—1) > v, then there is
8nri € Ofy Vnsi1) (10.149)
such that
Yuti = Ynaiot —fu Onri-0) | 8nsill 7 gnei- (10.150)
If (P1) holds, the we set g,,;; = 0. Set
Dpi={xeX: fiOnri-1) + (8nrisX — Ynri—1) < 0}. (10.151)
Clearly, if f;, (Ynri—1) < ¥, then
Iz = Ynsill = llz = Ynsi=ll- (10.152)
Assume that
JiOnrim1) > .

Property (P2), Lemma 10.2 and (10.149)—(10.151) imply that

gn,t,i 7& 07
Ynri = Pp, Vnri-1)- (10.153)

It follows from (10.108), (10.110), (10.147), (10.149), and (10.151) that
zeCC{xeX: f,(x) <0} C Dy, (10.154)
Proposition 10.1, (10.151), and (10.153) imply that
Iz = nail® + I¥nsi = Yasimt I < Iz = it (10.155)

Thus we have shown that the following property holds:
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(P3)if f;,(Yunr.i—1) > v, then (10.155) holds.
In view of (10.152) and (10.153),

Iz = Yneill < 11z = yurit|l forall £ = 1,....p(). (10.156)
By (10.143), (10.147), and (10.156), forall i = 1,...., p(),

Iyncill < lynei =zl + llzll
< ynro — 2l + Mo < |Ixp—1 — 2|l + Mo. (10.157)
It follows from (10.143), (10.145), and (10.156) that

1z = Xu—1ll = Iz = Ynroll = ”Z_yn,t,p(t)” = ||z = Y.l (10.158)

for all t € £2,. By (10.112), (10.140), (10.158) and the convexity of the norm,

lz—x:l = llz— Z Wi (D)Yn|

€2,
< Y a2 =yl = 2= ol
1€,
Thus
|z = x|l < llz— xu—1]| for all integers n > 1. (10.159)
In view of (10.132) and (10.147),
Iz =xoll =< 2Mo. (10.160)
It follows from (10.159) and (10.160) that
lz — x.|l < 2M, for all integers n > 0. (10.161)

By (10.157) and (10.161), for all natural numbers n, all + € £2, and all i €
{L....p(0}

IVnrill < Mo + [|x0—1 — z|| < 3M. (10.162)
Relations (10.132) and (10.161) that
x|l < 3Mgforalln e N. (10.163)
Assume that n > 0 is an integer such that

A <€, k=n+1,....,n+N. (10.164)
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In view of (10.141), (10.146), and (10.164), for each k € {n + 1,...,n + N}, each
t=(t,....tyy) € k41 andeachi € {l,...,p()},

Vk.ri = Yrri-1ll < €o. (10.165)

By (10.115), (10.143), and (10.165), foreach k € {n + 1,...,n + N}, eacht =
(t1,....tpw) € S2k41andeachi € {1,...,p(1)},

-1 = Yeaill < geo. (10.166)
Relations (10.112), (10.140), (10.145), and (10.166) imply that
[xk—1 — x|l < geo- (10.167)
It follows from (10.164) and (10.167) that for all k,m € {n,...,n + N}

Il — xll < Ngeo. (10.168)
Let
se{l,...,m}.
By (10.131), there exist
ke{n+1,....n+ N}, t=(t,....t0) € (10.169)
such that
se{tl,. . hp) (10.170)
In view of (10.170), there is i € {1,..., p(¢)} such that
s=t.
We show that
fsOki-1) < €. (10.171)
Assume the contrary. Then by (10.125),
JiOkaim1) > € = y. (10.172)
Property (P2), (10.150), (10.165), (10.169), and (10.172) imply that

€0 > |yiri — Yerietll

= |If,, ki) N1 8kill > 8rill > llgrill €. (10.173)
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It follows from (10.143), (10.162), (10.163), and (10.169) that
IVksi—1ll < 3Mo. (10.174)
By (10.127), (10.149), and (10.174),
lgr.sill < M. (10.175)
In view of (10.173) and (10.175),
€ > eM; "

This contradicts (10.128). The contradiction we have reached proves (10.171).
Relations (10.143), (10.162), (10.163), (10.166), and (10.169) imply that

Iykriz1ll < 3Mo, |lxi—1ll < 3Mo, (10.176)
1X—1 — Yrri=1ll < geo. (10.177)

By (10.127), (10.128), (10.170), (10.171), (10.176), and (10.177),

Ifs Cek—1) = fsOkri-1)| < Migeo,
FsG=1) <fiOrrim1) + Migeo < €(@+ 1). (10.178)

Letj € {n,...,n+ N}. In view of (10.168) and (10.169),
% — 21 ]| < Ngeo. (10.179)
It follows from (10.127), (10.128), (10.163), (10.178), and (10.179) that

£:(x) < fi(xi—1) + MiNgeg

<e(@+1)+Nge <e(@N+1)+1) (10.180)
foralls € {1,...,m}.
Set
Ei={neN: A <€l (10.181)
E» = N\ Ey, (10.182)
Ezs={neN:{n....n+N—1}NE)} #0. (10.183)
Let

n € E,. (10.184)
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In view of (10.181), (10.182), and (10.184),
An+l > €p. (10185)
By (10.112), (10.140) and the convexity of the function || - ||,

Iz =2 l1? = llz = X117

= le—xl?=llz= D warsOyusrdl?
ZE.Q,,+1

> lz=xl> = D war1®llz = yatral® (10.186)
IEQ"+]

In view of (10.141) and (10.185), there exists
1€ 2441 (10.187)
such that
€0 < Apt1 = Apgipe (10.188)
It follows from (10.112), (10.143), (10.145), (10.156), (10.186), and (10.187) that

Iz =2 l1% = llz = X117

2 2
> 3 w1 Oz = %l = 12 = yar1al?]
tEQ,H_l

= Z Wt Oz = Yt 100> = 12 = Yat 1090 7]
1€Q2, 41

> W1 Dz = Yar170l” = 12 = Va1 5,6 17 (10.189)

Property (P3), (10.116), (10.152), (10.155), (10.156), and (10.189) imply that

Iz =21 = llz = X1 17

z A[”Z - yn+1,?,0”2 - ”Z — Yn+1ip@) ”2]
p@
= A Z[”Z ~ Yurrzict P = 12 = Vg1 2401%]
i=1
p()
> AN Wntigimt = Yarraill™ (10.190)

i=1
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By (10.146), (10.188), and (10.190),
2= xa1? = |z = Xus1]1* = A€ for all t € E,. (10.191)
In view of (10.159), (10.160), and (10.191), for any natural number 7,

AM? > |z —xol* = llz— xolI* = llz = Xut1 |12
n
> iz = xill* = llz = xi41 1171
i=0

> Y fllz—xil> = llz—xipa[* i € [0.7] N Ea}
> Card([0, n] N Ez)AGS,
Card([0, n] N Ey) < 4MZ}(Aed)™".

Since the inequality above holds for any natural number 7,
Card(Ey) < 4M3(Aed)™".
In view of the relation above, (10.129) and (10.183),
Card(E;) < NCard(E,) < 4M§(Ae§)_11§/ < ny.

This completes the proof of Theorem 10.11. O

10.9 Dynamic String-Averaging Methods
in Finite-Dimensional Spaces

We use the notation, definitions, and assumptions introduced in Sects. 10.1 and 10.7.
Suppose that the space X is finite-dimensional. We prove the following result.

Theorem 10.12. Let My > 0, € € (0, 1),

B(0,My) N C # 0, (10.192)
Then there exist a natural number ny and yy € (0,€) such that the following
assertion holds.

Assume that

¥ € [0, w0l (10.193)
{(Q2i, w2 C My, (10.194)
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satisfies for each natural number j,

{L....m} CUZ T Ut ...ty ) (10.195)
xo € B(0, My), (10.196)
(12, C X, {42, C [0, 00) (10.197)

satisfy for each natural number i,
(xi, A1) € A(xi—1, ($2i, wi), 7). (10.198)
Then
I ]| < 3My for all integers i > 0,
fiCen) < eforallie{l,...,m}and all integers n > n,

d(x,, C) < ¢ for all integers n > ny.

10.10 Proof of Theorem 10.12

Since the functions f;, i € {1,..., m} are convex [50], there exists M; > 0 such that
[fi(u)—f;(v)| < M |lu—v] for all u,v € B(0,3Mo+1), i € {1,....m}.  (10.199)

Choose a positive number
y1 < min{e, M;'e}. (10.200)

By Lemma 10.10, there exists y, € (0, €) such that the following property holds:
(P4) for each y € B(0,3M, + 1) satisfying f;(y) < y», i € {1,...,m}, the
inequality d(y, C) < y;/2 holds.
Choose a positive number y, such that

Yo < yiand (N 4+ Dyo(@ + 1) < ys. (10.201)

By (10.199) and Theorem 10.11 (with € = yy), there exists a natural number ng
such that the following property holds:
(P5) let y € [0, yol,

{(Q,’, Wi)}?i] C M*7
for each natural number j, (10.195) hold,

X0 € B(O, M()),
itz € X, {42, C [0,00),
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for each natural number i (10.198) hold. Then
|lx. |l < 3M, for all integers n > 0 (10.202)
and there exists an integer g € [0, np| such that
f[ix) <vo@N+1)+1), ie{l,...,m}. (10.203)
Let
y €10, 70], {20 w)}Z, C M, (10.204)
for each natural number j, (10.195) holds, (10.196) is true,
2, € X, {Ai}2, € [0,00)
and for each natural number i (10.198) holds. Property (P5), (10.196), (10.198),
and (10.204) imply that (10.202) holds and there exists an integer ¢ € [0, np] such
that (10.203) holds. It follows from (10.201) to (10.203) and (P4) that
d(x,, C) <27 'y. (10.205)
In view of (10.205), there exists 7 € X such that

zeC |x,—Z <n. (10.206)

Proposition 10.1, Lemma 10.2, (10.119), (10.124), (10.198), (10.200), and (10.206)
imply that

lx, =2l < llxg —Zll < y1 <e. (10.207)
By (10.200), (10.202), and (10.206),
IZ]l < 3Mo + 1. (10.208)

In view of (10.124), (10.199), (10.200), (10.202), (10.206), and (10.208), for all
integers n > ng and all i € {1,...,m},

filx) = £i@) + lfi(x) = iR

< Millx, =z < Myy) <e.

Theorem 10.12 is proved. O
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10.11 Problems in Finite-Dimensional Spaces
with Computational Errors

We use all the notation, definitions, and assumptions introduced in Sects. 10.7
and 10.9. In particular, we assume that the space X is finite-dimensional.
For each x € X, each € > 0, each€ > Oand eachi € {1,...,m} set
Ai(x,€,¢) == {x}if fi(x) <€ (10.209)
and if f;(x) > €, then set
Ai(x, €, €) = x—fi(x)||gl|2g : g € Ifi(x)+B(0,€), g #0}+B(0,¢). (10.210)

Letx € Xand lett = (1, ..., %) be an index vector, € > 0, € > 0. Define

Ao(t,x,€,€) = {(y.A) € X xR : there is a sequence {y,-}fi% C X such that

Yo = X, (10.211)
foreachi=1,...,p(1),
Yi € Ay (yi-1, €, €), (10.212)
Y = Yp@, (10.213)
A=max{|ly;—yi—1ll : i=1,...,p()}}. (10.214)

Letx e X, (2,w) € M, e >0, € > 0. Define
A(x, (82,w),é,€) = {(v.A) € X xR' : there exist
(v, Ay) € Ap(t, x, €, €), t € §2 such that

ly =Y " w@yll e A =max{}, : t€ 2} (10.215)
€

We prove the following result.

Theorem 10.13. Let My > 0, € € (0, 1),

B(0,My) N C # 0, (10.216)
(zeX: f(z) <0y NBO, M) # @ foralli=1,...,m. (10.217)

Then there exist a natural number ny and § > 0 such that the following assertion
holds.
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Assume that

5, €10.8], ne N\ {0},
{(Qi?wi)}?il C M*,

satisfies for each natural number j,

{I....m} CUL Ueattn.....to0)}).
Xy € B(O, M()),
iz, C X, {42, C[0,00)

and that for each natural number i,
(i A1) € Axim1, (82i,w1), 61, 6).

Then

||l < 3Mo + 1 for all integersn =0, . ..

d(xn(]s C) S Ea

fi(xm)) <€, i€ {1,,}’]1}

10.12 Proof of Theorem 10.13

In view of (10.217), for each i € {1, ..., m}, there exists
zi € B(0, My)
such that
fi(z) <O.
Set

r=min{—fi(z;) : i € {l,...,m}}.

By (10.225) and (10.226),

r>0.

, o,

(10.218)
(10.219)

(10.220)

(10.221)
(10.222)

(10.223)

(10.224)

(10.225)

(10.226)

(10.227)
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Since the functions f;, i = 1,...,m are convex [50], there exists A > 0 such that

Ifi(uw) — fi(v)| < Allu—v| forall u,v € B(0,3My +2), i=1,...,m,
(10.228)

[fi(u)| < Aforallu € B(0,3My+2), i=1,...,m. (10.229)

By Theorem 10.12, there exist a natural number ny and Yy € (0, €) such that the
following property holds:
(P6) For each y € [0, y], each
{2, wi)}2) C My

i=1

satisfying (10.220) for all integers j > 1, each pair of sequences

()2 € X, {42, C [0, 00)

i=1

which satisfy

Xy € B(0, M), (10.230)
(xi, A}) € A(xi—1, (£2;, w;), ) for all natural numbers i (10.231)

we have
lx: ]l < 3M, for all integers n > 0, (10.232)
filx,) < ¢€/4forallie {l,...,m}and all integers n > ny, (10.233)
d(x,,C) < ¢/4 for all integers n > ny. (10.234)

By the choice of A (see (10.228)), for each u € B(0,3My+1),alli € {1,...,m},
dfi(u) C B(0, A). (10.235)

We show that the following property holds:

(P7) for each M > My, each i € {1,...,m}, each u € B(0,3M + 1) satisfying
fi(u) > 0 and each g € X which satisfies

d(g, dfi(u)) < r(4M + 1)~'471,
we have
lell > r(M + 17127

Let

M>M,, ueBO3M+1), ief{l,....m} fiu)>0 (10.236)
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and let g € X satisfy (10.235). Let
& € ofi(u). (10.237)

By (10.224), (10.226), (10.236), and (10.237),

—r = fiz) > fiz) — fiw) = (§.zi —u)

> —[§lllzi — ull = =[1EN(4M + 1),
IEN = r(4m + 17!

and

ofi(w) CHE X &l = r@4M + 1)~
Together with (10.235) this implies that

lgll > 27 r(aM + 1)~

Thus (P7) holds.
Property (P7) implies that the following property holds:
P8) let M > My, i € {1,...,m},u € B(0,3M + 1) satisfy fi(u) > 0, g € X
satisfy
d(g, ofi(w) < r(4M +1)~"47!
and
W € u—fiwgl g + BO,1).
Then

|| <3M 42+ 2(4M + 1)r~'fi(u).

For each y > 0 denote by KC, the set of all sequences {x,}°2, C X such that

l[xoll < Mo
and there exist {1;}2, C [0, 00),
7n €[0,y], n e N\ {0}, (10.238)
{(Q2i, w2 C M, (10.239)

satisfying (10.220) such that

(xi, A)) € A(xi—1, (£2;,wy), Vi, y) for all integers i > 1. (10.240)
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By induction we show that for all m = O, . .., ny the following assertion holds.
(A) For each y > 0 there exists § > 0 such that, for each {x,}°2, € Ks, there is
ntozo € Ko such that ||y, —x,|| <y, n=0,...,m.
Clearly, for m = 0 this assertion holds. Assume that assertion (A) holds for
m = g where g € [0,ny — 1] is an integer. We show that (A) holds form = g + 1.
Set
My = (My+ 1)(1 47 (10.241)

and for each integer i > 1 set

My = 18(M; + 1)(1 4+ r~")(1 + sup{[fi(h)| :
heB(0,3M; + 1), s=1,...,m}). (10.242)

Since (A) holds for m = g, it follows from (P8) that there is yy > 0 such that
Yo <2 ' and yy < 47'r(dM, + 1) (10.243)
and that, for each {y,}72, € K},
lyall <3My+1/2, n=0,...,q. (10.244)

Assume that assertion (A) does not hold for m = ¢ + 1. Then there exists y > 0
such that for each natural number j there is

02 € Ky (10.245)
such that
max{|ly, —x9| : n=0,....qg+ 1} > y foreach {y,}%2, € Ko.  (10.246)
By (10.245) and the choice of yy (see (10.244)), for all natural numbers j,
x| <3Mo +1/2. n=0.....q. (10.247)
By the definition of IC,,, y > 0, for each integer j > 1 there exist

2%, c [0, 00), (10.248)
)7]',}1 € [0» VO/]]» ne N\ {0}» (10249)
(2P wie, c M, (10.250)
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such that for each natural number s,

(L.omy CUZNY U _ooin.. i), (10.251)

for all integers i > 1.
In view of (10.115) and (10.150), extracting a subsequence and re-indexing if
necessary, we may assume that

V= .Qi(l) for all pairs of natural numbers i, j. (10.253)

Set
2, = .Ql.(l) for all natural numbers i. (10.254)

Let j be a natural number. By (10.215) and (10.252), for each natural number s there
exist

OF AT € Aot xL i vo /i) 1€ 24 (10.255)
such that
A9 = max{A% : 1 e 2, (10.256)
I = > w2y < yo/i (10.257)
1€y

By (10.211)—(10.214) and (10.255), for each natural number s and each

te f2, (10.258)
there exists finite a sequence
DU C x (10.259)
such that
i =2l (10.260)
foreachi=1,...,p(?),
W€ Ay GU Fis vol i) (10.261)
W=y, (10.262)

AP = max{||ly%) —y%2 s i =1, p()) (10.263)
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By (10.209), (10.210), and (10.261), for each natural number s, each ¢t =
(t1, ... tpp) € 2gandeachi € {1,...,p()},if

FGE) < 9. (10.264)
then
W = 30 (10.265)
if
£GE2) > B,

then there exists
g € 9,002 + BO, yo/) \ {0} (10.266)
such that
W ey — £, 052D11g% 17285 + B(O. yo/j).- (10.267)

For each natural number s, each t = (t1,...,t,; € 2, andeach i € {1,...,p(#)}
satisfying (10.264) set

g =o0. (10.268)
Let s be a natural number such that
s<g+landt=(t1,...,t0) € $2. (10.269)
By induction we show that forall i = 1,...,p(¢),
U2 < 3M; + 1. (10.270)

In view of (10.247) and (10.260), (10.270) holds for i = 0.
Assume that an integer i € {1,...,p(7)} satisfies

2 < 3Misy + 1. (10.271)
If (10.264) is true, then by (10.242), (10.265), and (10.271),
V21 = 120 < 3Mimy + 1 < 3M; + 1. (10.272)
Assume that

052 > 7. (10.273)
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By (10.273), there exists gg';s) satisfying (10.266) such that y(iis) satisfies (10.267).

11

It follows from (10.241), (10.242), (10.243), (10.267), (10.271), (10.273), and (P8)
that

V2 < 3Mi—y + 2 4+ 2(Miy + 1)y~ sup{[f, (n)] -
ne€B0,3Mi—1 + 1)} < M,.

Thus (10.270) holds for alli = 0, ..., p(¢). Hence

Iy < 3M; + 1 <3M, + 1 (10.274)
for all natural numbers j, each natural number s < g+1,eacht = (¢1,...,1,)) € £
andalli =0,...,p(>r).

Since the functions f;, i = 1,...,m are Lipschitz on bounded subsets of R”" it

follows fr9m (10.214), (10.266), and (10.268) and property (P8) that there exists a
constant M > 0 such that

g% < m (10.275)
for all natural numbers j, each natural number s < g+1,eacht = (#1,..., %) € £

andalli=1,...,p().
By (10.247), (10.274), and (10.275), extracting a subsequence and re-indexing, if

necessary, we may assume without any loss of generality that for any s € {0, ..., g}
there is
x; = lim x¥ (10.276)
J—>00
and that for every natural number s < g 4+ 1 and every t = (t1,...,#yy) € §2, there
exist
© _ i G L
v,; = lim y/” foralli =0,...,p(), (10.277)
i et
g¥ = 1im g%, i=1,....p@), (10.278)
U X

for all integers s > 1 and all ¢t € £2; there exists

wy(r) = lim w9 (). (10.279)
J—>00
For each natural number s < g + 1 and each ¢ € £2; set

W=y, (10.280)
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In view of (10.112), (10.116), and (10.279), for each integer s > 1,

D wi) = 1. (10.281)

€82,
wy(t) = A, 1 € 2, (10.282)
(2 wy): s=1,2,...} C M. (10.283)

By (10.245) and (10.276),
[[xol < Mo. (10.284)
Assume that

s€{0,....q} (10.285)

It follows from (10.257), (10.276), (10.278), (10.279), and (10.280) that
s— > w0y
1€y

= lim x(’) Z hm w(’) (t) hm yt (t)

j—oo

ze()s
= lim [x(/) > Wy =0 (10.286)
€82,
forall s € {0,...,q}.
Let
s€{0,....q+1} (10.287)
and

t=(t1,. .. ) € 2. (10.288)

In view of (10.260) and (10.276), if
s>1, (10.289)

then

Xs—1 = lim xg’)
j—o0

= Jim y<’ D=y, (10.290)
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Let
ie{l,...,p(®}. (10.291)
There are two cases:
L0V > 0; (10.292)
LY ) <o0. (10.293)

Assume that (10.292) holds. By (10.249), (10.266), (10.267), (10.277),
and (10.292), for all sufficiently large natural numbers j,

L0520 > 27165 > /i = T (10.294)

and

I =2 + 050N 18 < v/l (10.295)
By (10.266), (10.277), (10.278), and (10.294), for each u € X,
filw) = £, ) = lim (f, ) — £,6%2)
j—00

> lim (g%, u — 02 > (g u—y0L ),

j—)
gl € o, 0L )). (10.296)
Tt follows from (10.266), (10.274), (10.277), (10.278), (10.293)(10.295), and (P7)
that

(s)

Yoo jhm y(’ :5)

1 (.5) ((B)] G.s) =2, G.5)
_jl_l)rgob}z,i—l +fti(yt,i—1)”gt.i I~ 8 ]

=L, + e I8 f 6. (10.297)

Assume that (10.293) holds. There are two cases:
fi (y?li)l) < ¥ji—1 for infinitely many integers j > 1, (10.298)
Ju (yg;i)]) < ¥;i—1 only for finite numbers of integers j > 1. (10.299)

If (10.298) holds, then by (10.264), (10.265), and (10.277),

i = Jlim v = lim 70 =y
J—>00
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Assume that (10.299) holds. Then there exists jo € A\ {0} such that
S (y“ 1) > y;i—1 for all integers j > jo. (10.300)
By (10.277), (10.293), and (10.300),

O ) = (10.301)

ti—1

It follows from (10.267), (10.277), (10.300), and (10.301) that

()

Vii ]hm Vii U:s)

= lim D% + g 17280 A 07201 = v

Thus
¥ =y (10.302)
in both cases.
Set
1= ) wer (0. (10.303)
1€82,41

In view of (10.257), (10.262), (10.277), (10.279), (10.280), and (10.303),
— Tim @
Xg+1 _jl_lfgoxq+1~
Clearly, there exist x, € X for all integers s > ¢ + 1 such that {x;}72, € XCo. For all
sufficiently large natural numbers j,
[x9 — x| < y/2, n=0,...,q9+ 1.
This contradicts (10.246). The contradiction we have reached proves that (A) holds
for m = g + 1. By induction we showed that (A) holds for m = ny.
Fix a positive number y; such that
yi<e/4 y1 < A7e/4

By (A) with m = ng there is § > 0 such that for each {x,}°2, € K;, there is
{12, € Ko such that

e =Xl <y1, n=0,...,n9. (10.304)
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Let {x,}°2, € Ks. By the choice of §, there is
{yn}:io € ]CO
such that (10.304) hold. Property (P6) and (10.305) imply that

lva|l < 3M, for all integers n > 0,
fiyn) < €/4foralli e {1,...,m} and all integers n > ny,

d(x,,C) < €/4 for all integers n > ny.
In view of (10.304)—(10.308),

d(xnw 0) < ”xno —yn0|| + d(Ynoa C) < €/2,
lxall <3Mo+2"1, n=0,.... 0.

By (10.228), (10.304), (10.306), (10.307), (10.309) and the inequalities
Y1 <€/4, yi < ATe/4,
foralli e {1,...,m},
JiCng) = fiQng) + fiGing) = fim) | = €/4 + Allxng — yu |l < €.

Theorem 10.13 is proved.

10.13 Extensions

Theorem 10.13 implies the following result.
Theorem 10.14. Let My > 0, € € (0, 1),
B(0,My) N C # 9,
{zeX: fi(z) <0} NBO,My) # @ foralli=1,...,m.

(10.305)

(10.306)
(10.307)
(10.308)

(10.309)

Let a natural number ny and § > 0 be as guaranteed by Theorem 10.13. Assume
that (10.218)—(10.223) hold and {x,}2, C B(0, My). Then for all integers n > ny,

d(xnvc) S 6»
filk) <€ ie€fl,....m}.

Theorem 10.14 easily implies the following result.
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Theorem 10.15. Let My > 0,

B(0,My) N C # @,
{zeX: fi(z) <0} NBO,My) # @ foralli=1,...,m,

{8152, C (0,00), lim, 00 8, = 0, € € (0, 1). Then there exist a natural number n,

such that the following assertion holds.
Assume that

8, €[0.8,]. ne N\ {0},
(10.219)—(10.222) hold,
{x:32, C B(0, My)
for each natural number i,
(i, A) € Awiet. (20 7). 81, ).
Then for all integers n > ne,
d(x,,C) <€,
filxpy) <e€,i€{l,...,m}.
Theorem 10.16. Suppose that the set C is bounded, My > 0,
B(0,My) N C # @,
{zeX: fi(z) <0} NBO,My) # B foralli=1,...,m,

M, >0, € € (0,1). Then there exist a natural number ny and § > 0 such that the
following assertion holds.
Assume that

8, €0,8], n e N\ {0}, (10.310)
{(Q2i, w2 C My, (10.311)

satisfies (10.220) for each natural number j,
Xo € B(0,M,), (10.312)
a2 C X, {432, C [0, 00) (10.313)
satisfy for each natural number i,

(xhki) EA(xi—ls(inwi)vgisS)' (10314)
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Then for all integers n > ny,

d(x,,C) <e,

fitxn) <€ i€{l,...,m}.
Proof. Foreachi € {l,...,m}, there exists z; € X such that
zi € B(0, M), fi(z;) < 0.
We may assume without loss of generality that

My > supf|lz]| : z€ C} + 4, (10.315)

By Theorem 10.13, there exist a natural number n; and y; > 0 such that the
following assertion holds.

(i) for each
5, €[0,71], ne N\ {0},
each
{2 w12y C M,
satisfying (10.220) for each natural number j, each
xp € B(0,M,),
each pair of sequences
fihiz) € X, A2, C [0, 00)
satisfying for each natural number i,
(i Ai) € Alxit. (2, wi). 8. y1)
we have

ll:]| < 3M; + 1 for all integers i = O, ..., ny,
d(x,,,C) < e.

By Theorem 10.14, there exist a natural number ng and § € (0, y;) such that the
following property hold:
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(i) for each
8, €10.8], n e N\ {0},
each
{825, W)} 2, C M
satisfying (10.220) for each natural number j and (10.221)—(10.223), and each
{Xntneo C B(0, M),
for all integers n > ny we have

d(x,, C) <€,
filxy) <€, i€ef{l,...,m}.

Assume that (10.310) and (10.311) hold, for all integers j > 1 (10.220) is true
and that (10.312), (10.313) hold. By (i) and (10.315), (10.314) is true for all integers
i>1,

[, | S My, neN, |x,|| <3M; + 1, ne N. (10.317)
In view of property (ii), (10.316), and (10.317), for all integers n > ny,

d(xn,C) <€,
filx) <e iefl,...,m}.

This completes the proof of Theorem 10.16. O
Theorem 10.16 implies the following result.

Theorem 10.17. Let My > 0, the set C be bounded,
{z€X: fi(z) <0} £ @ foralli=1,...,m.

Then there exists § > 0 such that the following assertion holds.
Assume that

{8,322, C (0,8), lim §, =0, € > 0.
n—oo

Then there exists a natural number n. such that for each Sn €[0,8,], n € N\ {0},
each

{(82;, w2, C M,
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satisfying (10.220) for each natural number j, each
xo € B(0, My),
each {x;}2, C X, each {A;}2, C [0, 00) satisfying for each natural number i,
(i i) € A(ximt, (24, w7), 8, 87).

the inequalities

d(xnv C) <€,
filx)) <e ief{l,....,m}

hold for all integers n > ne.
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