
Chapter 1
Introduction

In this book we study approximate solutions of common fixed point problems and
of convex feasibility problems in the presence of computational errors. A convex
feasibility problem is to find a point which belongs to the intersection of a given
finite family of subsets of a Hilbert space. This problem is a special case of a
common fixed point problem which is to find a common fixed point of a finite
family of nonlinear mappings in a Hilbert space. Our goal is to obtain a good
approximate solution of the problem in the presence of computational errors. We
show that the algorithm generates a good approximate solution, if the sequence of
computational errors is bounded from above by a constant. In this section we discuss
several algorithms which are studied in the book.

1.1 Common Fixed Point Problems in a Hilbert Space

In Chap. 2 we study the convergence of dynamic string-averaging methods which
were introduced for solving a convex feasibility problem, when a given collection
of sets is divided into blocks and the algorithms operate in such a manner that all
the blocks are processed in parallel. Iterative methods for solving common fixed
point problems is a special case of dynamic string-averaging methods with only one
block. Iterative methods and dynamic string-averaging methods are important tools
for solving common fixed point problems in a Hilbert space [1, 3, 5–7, 10, 12, 13,
15, 16, 22, 23, 26, 27, 30–35, 37–41, 43, 45–49, 52–54, 67, 74, 75, 84, 85, 89, 95].

Let .X; h�; �i/ be a Hilbert space with an inner product h�; �i which induces a
complete norm k � k.

For each x 2 X and each nonempty set E � X put

d.x; E/ D inffkx � yk W y 2 Eg:
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2 1 Introduction

For every point x 2 X and every positive number r > 0 set

B.x; r/ D fy 2 X W kx � yk � rg:
Suppose that m is a natural number, Nc 2 .0; 1/, Pi W X ! X, i D 1; : : : ; m, for

every integer i 2 f1; : : : ; mg,

Fix.Pi/ WD fz 2 X W Pi.z/ D zg 6D ;

and that the inequality

kz � xk2 � kz � Pi.x/k2 C Nckx � Pi.x/k2

holds for every integer i 2 f1; : : : ; mg, every point x 2 X, and every point z 2
Fix.Pi/. Set

F D \m
iD1Fix.Pi/:

For every positive number � and every integer i 2 f1; : : : ; mg set

F�.Pi/ D fx 2 X W kx � Pi.x/k � �g;
QF�.Pi/ D F�.Pi/ C B.0; �/;

F� D \m
iD1F�.Pi/

and

QF� D \m
iD1

QF�.Pi/

A point belonging to the set F is a solution of our common fixed point problem
while a point which belongs to the set QF� is its �-approximate solution.

In Chap. 2 we obtain a good approximative solution of the common fixed point
problem applying a dynamic string-averaging method with variable strings and
weights which is described below.

By an index vector, we a mean a vector t D .t1; : : : ; tp/ such that ti 2 f1; : : : ; mg
for all i D 1; : : : ; p.

For an index vector t D .t1; : : : ; tq/ set

p.t/ D q; PŒt� D Ptq � � � Pt1 :

It is not difficult to see that for each index vector t

PŒt�.x/ D x for all x 2 F;

kPŒt�.x/ � PŒt�.y/k D kx � PŒt�.y/k � kx � yk
for every point x 2 F and every point y 2 X.
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Denote by M the collection of all pairs .˝; w/, where ˝ is a finite set of index
vectors and

w W ˝ ! .0; 1/ satisfies
X

t2˝

w.t/ D 1:

Let .˝; w/ 2 M. Define

P˝;w.x/ D
X

t2˝

w.t/PŒt�.x/; x 2 X:

It is easy to see that

P˝;w.x/ D x for all x 2 F;

kP˝;w.x/ � P˝;w.y/k D kx � P˝;w.y/k � kx � yk

for every point x 2 F and every point y 2 X.
The dynamic string-averaging method with variable strings and variable weights

can now be described by the following algorithm.
Initialization: select an arbitrary point x0 2 X.
Iterative step: given a current iteration vector xk pick a pair

.˝kC1; wkC1/ 2 M

and calculate the next iteration vector xkC1 by

xkC1 D P˝kC1;wkC1
.xk/:

Fix a number

� 2 .0; m�1�

and an integer

Nq � m:

Denote by M� the set of all .˝; w/ 2 M such that

p.t/ � Nq for all t 2 ˝;

w.t/ � � for all t 2 ˝:

Fix a natural number NN.
In the studies of the common fixed point problem the goal is to find a point x 2 F.

In order to meet this goal we apply an algorithm generated by

f.˝i; wi/g1
iD1 � M�
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such that for each natural number j,

f1; : : : ; mg � [jC NN�1
iDj .[t2˝ift1; : : : ; tp.t/g/:

This algorithm generates, for any starting point x0 2 X, a sequence fxkg1
kD0 � X,

where

xkC1 D P˝kC1;wkC1
.xk/:

According to the results known in the literature, this sequence should converge
to an element of F. In Chap. 2, we study the behavior of the sequences generated
by f.˝i; wi/g1

iD1 taking into account computational errors which always present in
practice. These computational errors are bounded from above by a small constant
depending only on our computer system which is denoted by ı. This computational
error ı presents in all calculations which we do using our computer system. For
example, if x 2 X and i 2 f1; : : : ; mg and we need to calculate Pi.x/, then using our
computer system we obtain a point y 2 X satisfying

ky � Pi.x/k � ı:

If k is a natural number, yi 2 X, i D 1; : : : ; k, ˛i > 0, i D 1; : : : ; k satisfyingPk
iD1 ˛i D 1 and if need to calculate

Pk
iD1 ˛iyi, then by using our computer system

we obtain a point y 2 X satisfying

ky �
kX

iD1

˛iyik � ı:

Surely, in this situation one cannot expect that the sequence of iterates generated by
our algorithm converges to the set F. Our goal is to understand what approximate
solutions of the common fixed point problem can be obtained.

In Chap. 2 we prove Theorem 2.1, which shows that in the presence of computa-
tional errors bounded from above by a constant ı, an �-approximate solution can be
obtained after n NN iterations of the algorithm. Note that � D c1ı1=2 and n D bc2ı�1c,
where c1 and c2 are positive constants which do not depend on ı and buc denotes
the integer part of u.

1.2 Proximal Point Algorithm

Proximal point method is an important tool in solving optimization problems
[4, 42, 44, 56, 59, 61, 68, 69, 78, 88]. It is also used for solving variational inequalities
with monotone operators [2, 8, 11, 17–21, 25, 57, 60, 62–64, 79, 82, 83, 91, 92]
which is an important topic of nonlinear analysis and optimization [9, 14, 28, 29,
36, 51, 55, 58, 65, 66, 80, 81, 86, 87, 90]. In Chap. 8 we study the convergence of
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an iterative proximal point method to a common zero of a finite family of maximal
monotone operators in a Hilbert space, under the presence of computational errors.
Most results known in the literature establish the convergence of proximal point
methods, when computational errors are summable. In Chap. 8, the convergence
of the method is proved for nonsummable computational errors. We show that the
proximal point method generates a good approximate solution, if the sequence of
computational errors is bounded from above by a constant. Moreover, for a known
computational error, we find out what an approximate solution can be obtained and
how many iterates one needs for this.

Let .X; h�; �i/ be a Hilbert space equipped with an inner product h�; �i which
induces the norm k � k.

A multifunction T W X ! 2X is called a monotone operator if and only if

hz � z0; w � w0i � 0 8z; z0; w; w0 2 X

such that w 2 T.z/ and w0 2 T.z0/:

It is called maximal monotone if, in addition, the graph

f.z; w/ 2 X � X W w 2 T.z/g

is not properly contained in the graph of any other monotone operator T 0 W X ! 2X .
A fundamental problem consists in determining an element z such that 0 2 T.z/. For
example, if T is the subdifferential @f of a lower semicontinuous convex function
f W X ! .�1; 1�, which is not identically infinity, then T is maximal monotone
(see [71, 73]), and the relation 0 2 T.z/ means that z is a minimizer of f .

Let T W X ! 2X be a maximal monotone operator. The proximal point algorithm
generates, for any given sequence of positive real numbers and any starting point
in the space, a sequence of points and the goal is to show the convergence of this
sequence. Note that in a general infinite-dimensional Hilbert space this convergence
is usually weak. The proximal algorithm for solving the inclusion 0 2 T.z/ is based
on the fact established by Minty [70], who showed that, for each z 2 X and each
c > 0, there is a unique u 2 X such that

z 2 .I C cT/.u/;

where I W X ! X is the identity operator (Ix D x for all x 2 X).
The operator

Pc;T WD .I C cT/�1

is therefore single-valued from all of X onto X (where c is any positive number). It
is also nonexpansive:

kPc;T.z/ � Pc;T.z0/k � kz � z0k for all z; z0 2 X
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and

Pc;T.z/ D z if and only if 0 2 T.z/:

Following the terminology of Moreau [73] Pc;T is called the proximal mapping
associated with cT .

The proximal point algorithm generates, for any given sequence fckg1
kD0 of

positive real numbers and any starting point z0 2 X, a sequence fzkg1
kD0 � X, where

zkC1 WD Pck ;T.zk/; k D 0; 1; : : :

It is not difficult to see that the

graph.T/ WD f.x; w/ 2 X � X W w 2 T.x/g

is closed in the norm topology of X � X.
Set

F.T/ D fz 2 X W 0 2 T.z/g:

Usually algorithms considering in the literature generate sequences which
converge weakly to an element of F.T/. In Chap. 8, for a given � > 0, we are
interested to find a point x for which there is y 2 T.x/ such that kyk � �. This point
x is considered as an �-approximate solution.

For every point x 2 X and every nonempty set A � X define

d.x; A/ WD inffkx � yk W y 2 Ag:

For every point x 2 X and every positive number r put

B.x; r/ D fy 2 X W kx � yk � rg:

We denote by Card.A/ the cardinality of the set A.
We apply the proximal point algorithm in order to obtain a good approximation

of a point which is a common zero of a finite family of maximal monotone operators
and a common fixed point of a finite family of quasi-nonexpansive operators.

Let L1 be a finite set of maximal monotone operators T W X ! 2X and L2 be a
finite set of mappings T W X ! X. We suppose that the set L1 [ L2 is nonempty.
(Note that one of the sets L1 or L2 may be empty.)

Let Nc 2 .0; 1� and let Nc D 1, if L2 D ;.
We suppose that

F.T/ 6D ; for any T 2 L1
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and that for every mapping T 2 L2,

Fix.T/ WD fz 2 X W T.z/ D zg 6D ;;

kz � xk2 � kz � T.x/k2 C Nckx � T.x/k2

for all x 2 X and all z 2 Fix.T/:

Let N� > 0 and let N� D 1 and N��1 D 0, if L1 D ;. Let a natural number

l � Card.L1 [ L2/:

Denote by R the set of all mappings

S W f0; 1; 2; : : : g ! L2 [ fPc;T W T 2 L1; c 2 Œ N�; 1/g
such that the following properties hold:

(P1) for every nonnegative integer p and every mapping T 2 L2 there exists an
integer i 2 fp; : : : ; p C l � 1g satisfying S.i/ D T;

(P2) for every nonnegative integer p and every monotone operator T 2 L1 there
exist an integer i 2 fp; : : : ; pCl�1g and a number c � N� satisfying that S.i/ D Pc;T .

Suppose that

F WD .\T2L1F.T// \ .\Q2L2Fix.Q// 6D ;:

Let � > 0. For every monotone operator T 2 L1 define

F�.T/ D fx 2 X W T.x/ \ B.0; �/ 6D ;g

and for every mapping T 2 L2 set

Fix�.T/ D fx 2 X W kT.x/ � xk � �g:

Define

F� D .\T2L1F�.T// \ .\Q2L2Fix�.Q//;

QF� D .\T2L1fx 2 X W d.x; F�.T// � �g/
\.\Q2L2fx 2 X W d.x; Fix�.Q// � �g/:

We are interested to find solutions of the inclusion x 2 F. In order to meet
this goal we apply algorithms generated by mappings S 2 R. More precisely,
we associate with every mapping S 2 R the algorithm which generates, for every
starting point x0 2 X, a sequence of points fxkg1

kD0 � X such that

xkC1 WD ŒS.k/�.xk/; k D 0; 1; : : : :
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According to the results known in the literature, this sequence should converge
weakly to a point of the set F. In Chap. 8, we study the behavior of the sequences
generated by mappings S 2 R taking into account computational errors which
are always present in practice. Namely, in practice the algorithm associate with
a mapping S 2 R generates a sequence of points fxkg1

kD0 such that for every
nonnegative integer k the inequality

kxkC1 � ŒS.k/�.xk/k � ı

holds with a positive constant ı which depends only on our computer system.
Surely, in this situation one cannot expect that the sequence fxkg1

kD0 converges to
the set F. Our goal is to understand what subset of X attracts all sequences fxkg1

kD0

generated by algorithms associated with mappings S 2 R. The main result of
Chap. 8 (Theorem 8.1) shows that this subset of X is the set QF� with some � > 0

depending on ı.
In this result ı is the computational error made by our computer system, we

obtain a point of the set QF� and in order to obtain this point we need n0l iterations.
Note that � D c1ı1=2 and n0 D bc2ı�1c, where c1 and c2 are positive constants
which do not depend on ı.

1.3 Subgradient Projection Algorithms

In Chap. 10 we use subgradient projection algorithms for solving convex feasibility
problems. We show that almost all iterates, generated by a subgradient projection
algorithm in a Hilbert space, are approximate solutions. Moreover, we obtain an
estimate of the number of iterates which are not approximate solutions. In a finite-
dimensional case, we study the behavior of the subgradient projection algorithm in
the presence of computational errors. Provided computational errors are bounded,
we prove that our subgradient projection algorithm generates a good approximate
solution after a certain number of iterates.

Let .X; h�; �i/ be a Hilbert space with an inner product h�; �i, which induces a
complete norm k � k. For each x 2 X and each nonempty set A � X put

d.x; A/ WD inffkx � yk W y 2 Ag:
For each x 2 X and each r > 0 set

B.x; r/ D fy 2 X W kx � yk � rg:
It is well known (see Fact 1.5 and Lemma 2.4 of [7]) that for each nonempty,

closed, and convex subset C of X and for each x 2 X, there is a unique point PC.x/ 2
C satisfying

kx � PC.x/k D d.x; C/:
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Let f W X ! R1 be a continuous and convex function such that

fx 2 X W f .x/ � 0g 6D ;:

Let y0 2 X. Then the set

@f .y0/ WD fl 2 X W f .y/ � f .y0/ � hl; y � y0i for all y 2 Xg

is the subdifferential of f at the point y0 [72, 77]. It is not difficult to see that for any
l 2 @f .y0/,

fx 2 X W f .x/ � 0g � fx 2 X W f .y0/ C hl; x � y0i � 0g:

It is well known that the following lemma holds (see Lemma 7.3 of [7]).

Lemma 1.1. Let y0 2 X, f .y0/ > 0, l 2 @f .y0/ and let

D WD fx 2 X W f .y0/ C hl; x � y0i � 0g:

Then l 6D 0 and PD.y0/ D y0 � f .y0/klk�2l.

Denote by N the set of all nonnegative integers. Let m be a natural number,
I D f1; : : : ; mg and fi W X ! R1, i 2 I, be convex and continuous functions. For
each i 2 I set

Ci WD fx 2 X W fi.x/ � 0g;
C WD \i2ICi D \i2Ifx 2 X W fi.x/ � 0g:

Suppose that

C 6D ;:

A point x 2 C is called a solution of our feasibility problem. For a given � > 0,
a point x 2 X is called an �-approximate solution of the feasibility problem if
fi.x/ � � for all i 2 I. We apply the subgradient projection method in order to obtain
a good approximative solution of the feasibility problem.

Consider a natural number Np � m. Denote by S the set of all mappings S W N ! I

such that the following property holds:
(P1) For each integer N 2 N and each i 2 I, there is n 2 fN; : : : ; N C Np � 1g

such that S.n/ D i.
We want to find approximate solutions of the inclusion x 2 C. In order to meet

this goal we apply algorithms generated by S 2 S.
For each x 2 X, each number � � 0 and each i 2 I set

Ai.x; �/ WD fxg if fi.x/ � �
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and

Ai.x; �/ WD x � fi.x/fklk�2l W l 2 @fi.x/g if fi.x/ > �:

We associate with any S 2 S the algorithm which generates, for any starting point
x0 2 X, a sequence fxng1

nD0 � X such that, for each integer n � 0,

xnC1 2 AS.n/.xn; 0/:

It is not difficult to see that the sequence fxng1
nD0 is well defined, and that for each

integer n � 0, if fS.n/.xn/ > 0, then xnC1 D PDn.xn/; where

Dn D fx 2 X W f .xn/ C hln; x � xni � 0g and ln 2 @fS.n/.xn/:

In Chap. 10 we prove the following result which shows that, for the subgradient
projection method considered in the chapter, almost all iterates are good approxi-
mate solutions. Denote by Card.A/ the cardinality of the set A.

Theorem 1.2. Let

b > 0; � 2 .0; 1�; � > 0; � 2 Œ0; ��;

c 2 B.0; b/ \ C;

jfi.u/ � fi.v/j � �ku � vk; u; v 2 B.0; 3b C 1/; i 2 I;

let a positive number �0 satisfy

�0 � ���1

and let a natural number n0 satisfy

4Np��2
0 b2 � n0:

Assume that

S 2 S; x0 2 B.0; b/;

and that for each integer n � 0,

xnC1 2 AS.n/.xn; �/:

Then

kxnk � 3b for all integers n � 0
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and

Card.fN 2 N W maxfkxnC1 � xnk W n D N; : : : ; N C Np � 1g > �0g/ � n0:

Moreover, if an integer N � 0 satisfies

kxnC1 � xnk � �0; n D N; : : : ; N C Np � 1;

then, for all integers n; m 2 fN; : : : ; N C Npg, kxn � xmk � Np�0 and for all integers
n D N; : : : ; N C Np and each i 2 I, fi.xn/ � �.Np C 1/.
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