
Valentina Tamma
Mauro Dragoni
Rafael Gonçalves
Agnieszka Ławrynowicz (Eds.)

 123

LN
CS

 9
55

7

12th International Experiences and Directions Workshop
on OWL, OWLED 2015, co-located with ISWC 2015
Bethlehem, PA, USA, October 9–10, 2015
Revised Selected Papers

Ontology
Engineering

Lecture Notes in Computer Science 9557

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Valentina Tamma • Mauro Dragoni
Rafael Gonçalves • Agnieszka Ławrynowicz (Eds.)

Ontology
Engineering
12th International Experiences and Directions Workshop
on OWL, OWLED 2015, co-located with ISWC 2015
Bethlehem, PA, USA, October 9–10, 2015
Revised Selected Papers

123

Editors
Valentina Tamma
University of Liverpool
Liverpool
UK

Mauro Dragoni
Fondazione Bruno Kessler
Povo, Trento
Italy

Rafael Gonçalves
BMIR, Stanford Center for Biomedical
Informatics Research

Stanford, CA
USA

Agnieszka Ławrynowicz
Poznan University of Technology
Poznan
Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-33244-4 ISBN 978-3-319-33245-1 (eBook)
DOI 10.1007/978-3-319-33245-1

Library of Congress Control Number: 2016937518

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The OWL: Experiences and Directions Workshop series is an international forum for
the OWL community, where practitioners in industry and academia, tool developers
and others interested in making use of OWL present research advances, real and
potential applications, share experiences, and discuss requirements for language
extensions/modifications. OWLED 2015 was the 12th edition of this workshop and
was held during October 9–10, in Bethlehem, Pennsylvania, USA, co-located with the
International Semantic Web Conference (ISWC 2015).

The technical program featured 20 presentations of accepted full and short papers
and two invited talks:

– James Hendler (Rensselaer Polytechnic Institute (RPI)): “On Beyond OWL:
Real-World Challenges for Ontologies on the Web”

– Bijan Parsia (University of Manchester): “Two Challenges for OWL”

This year, for the first time we decided to include in the program an ontology track,
presenting ontologies that pose interesting modelling problems or that can generate
challenging tasks with respect to OWLED topics (e.g., ontologies that are challenging
for reasoners to handle). There were 30 paper submissions to the workshop, which
were reviewed by at least three Program Committee members. Reviews were aimed at
constructive feedback and inclusiveness, in order to foster and strengthen the com-
munity spirit that characterizes OWLED. Twelve submissions were accepted as full
paper with presentation, and three short papers were accepted as short paper with
presentation, while five papers were accepted in the ontology track. Among the 20
accepted papers, 18 were accepted for publication in the proceedings volume. We
thank the Program Committee for their hard work in reviewing the submitted papers
and for the useful feedback they gave to the authors. We would also like to thank the
authors for submitting their papers and responding to the reviewers’ comments in the
final version. We further wish to thank the invited speakers for their inspiring talks. Our
thanks also go to Lehigh University, the local organizers of the 14th International
Semantic Web Conference for helping us with the logistic organization of OWLED
2015, and the ISWC Organizing Committee. Finally, we would like to thank the
development team of the EasyChair conference management system.

October 2015 Valentina Tamma
Mauro Dragoni

Rafael Gonçalves
Agnieszka Ławrynowicz

Organization

Executive Committee

General Chair

Valentina Tamma University of Liverpool, UK

Program Chairs

Mauro Dragoni Fondazione Bruno Kessler, Italy
Rafael Gonçalves Stanford University, USA
Agnieszka Ławrynowicz Poznan University of Technology, Poland

OWLED Steering Committee

Melanie Courtot BCCRC, Canada
Matthew Horridge Stanford University, USA
Pavel Klinov University of Ulm, Germany
Simon Jupp EBI, UK
Mariano

Rodriguez-Muro
IBM, USA

Bijan Parsia University of Manchester, UK
Valentina Tamma University of Liverpool, UK

Program Committee

Valentina Tamma University of Liverpool, UK
Mauro Dragoni Fondazione Bruno Kessler, Italy
Agnieszka Ławrynowicz Poznan University of Technology, Poland
Rafael Gonçalves Stanford University, USA
Michael Gruninger University of Toronto, Canada
Marco Rospocher Fondazione Bruno Kessler, Italy
Krzysztof Janowicz University of California, Santa Barbara, USA
Vojtěch Svátek University of Economics, Prague, Czech Republic
Monika Solanki University of Oxford, UK
Robert Stevens University of Manchester, UK
Michel Dumontier Stanford University, USA
Aldo Gangemi Université Paris 13, France; ISTC-CNR, Italy
Silvio Peroni University of Bologna and ISTC-CNR, Italy
Rinke Hoekstra University of Amsterdam/VU University Amsterdam,

The Netherlands

Antoine Isaac Europeana and VU University Amsterdam,
The Netherlands

Larisa Soldatova Brunel University, UK
Loris Bozzato Fondazione Bruno Kessler, Italy
C. Maria Keet University of Cape Town, South Africa
Pascal Hitzler Wright State University, USA
Raul Palma Poznan Supercomputing and Networking Center, Poland
Joaquin Vanschoren K.U. Leuven, Belgium

VIII Organization

Contents

General Terminology Induction in OWL . 1
Viachaslau Sazonau, Uli Sattler, and Gavin Brown

OBOWLMorph: Starting Ontology Development from PURO Background
Models . 14

Marek Dudáš, Tomáš Hanzal, Vojtěch Svátek, and Ondřej Zamazal

A Similarity Based Approach to Omission Finding in Ontologies 21
Tahani Alsubait, Bijan Parsia, and Uli Sattler

An Ontology for Supporting the Evolution of Virtual Reality Scenarios 33
Mauro Dragoni, Chiara Ghidini, Paolo Busetta, Mauro Fruet,
and Matteo Pedrotti

Collaborative Editing of Ontologies Using Fluent Editor and Ontorion. 45
A. Seganti, P. Kapłański, and P. Zarzycki

Integrating Ontology Negotiation and Agent Communication 56
Marlo Souza, Alvaro Moreira, Renata Vieira, and John-Jules Ch. Meyer

Lifting EMMeT to OWL Getting the Most from SKOS 69
Bijan Parsia, Tahani Alsubait, Jared Leo, Veronique Malaisé,
Sophie Forge, Michelle Gregory, and Andrew Allen

Experiences with Aber-OWL, an Ontology Repository with OWL EL
Reasoning . 81

Luke Slater, Miguel Ángel Rodríguez-García, Keiron O’Shea,
Paul N. Schofield, Georgios V. Gkoutos, and Robert Hoehndorf

Towards a Rule Based Distributed OWL Reasoning Framework 87
Raghava Mutharaju, Prabhaker Mateti, and Pascal Hitzler

Improving OWL RL Reasoning in N3 by Using Specialized Rules 93
Dörthe Arndt, Ben De Meester, Pieter Bonte, Jeroen Schaballie,
Jabran Bhatti, Wim Dereuddre, Ruben Verborgh, Femke Ongenae,
Filip De Turck, Rik Van de Walle, and Erik Mannens

On the Capabilities and Limitations of OWL Regarding Typecasting
and Ontology Design Pattern Views . 105

Adila A. Krisnadhi, Pascal Hitzler, and Krzysztof Janowicz

http://dx.doi.org/10.1007/978-3-319-33245-1_1
http://dx.doi.org/10.1007/978-3-319-33245-1_2
http://dx.doi.org/10.1007/978-3-319-33245-1_2
http://dx.doi.org/10.1007/978-3-319-33245-1_3
http://dx.doi.org/10.1007/978-3-319-33245-1_4
http://dx.doi.org/10.1007/978-3-319-33245-1_5
http://dx.doi.org/10.1007/978-3-319-33245-1_6
http://dx.doi.org/10.1007/978-3-319-33245-1_7
http://dx.doi.org/10.1007/978-3-319-33245-1_8
http://dx.doi.org/10.1007/978-3-319-33245-1_8
http://dx.doi.org/10.1007/978-3-319-33245-1_9
http://dx.doi.org/10.1007/978-3-319-33245-1_10
http://dx.doi.org/10.1007/978-3-319-33245-1_11
http://dx.doi.org/10.1007/978-3-319-33245-1_11

How to Keep a Reference Ontology Relevant to the Industry:
A Case Study from the Smart Home . 117

Laura Daniele, Frank den Hartog, and Jasper Roes

An INSPIRE-Based Vocabulary for the Publication of Agricultural Linked
Data . 124

Raúl Palma, Tomas Reznik, Miguel Esbrí, Karel Charvat,
and Cezary Mazurek

Towards a Core Ontology of Occupational Safety and Health 134
Agnieszka Ławrynowicz and Ilona Ławniczak

Towards a Visual Notation for OWL: A Brief Summary of VOWL. 143
Steffen Lohmann, Florian Haag, and Stefan Negru

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL . . . 154
Matthew Horridge and Mark Musen

An Application Ontology to Help Users of a Geo-decision Software
Understanding Their Data . 166

Perrine Pittet and Jérôme Barthélémy

Ontology Engineering: From an Art to a Craft: The Case of the Data Mining
Ontologies . 174

Larisa Soldatova, Panče Panov, and Sašo Džeroski

Author Index . 183

X Contents

http://dx.doi.org/10.1007/978-3-319-33245-1_12
http://dx.doi.org/10.1007/978-3-319-33245-1_12
http://dx.doi.org/10.1007/978-3-319-33245-1_13
http://dx.doi.org/10.1007/978-3-319-33245-1_13
http://dx.doi.org/10.1007/978-3-319-33245-1_14
http://dx.doi.org/10.1007/978-3-319-33245-1_15
http://dx.doi.org/10.1007/978-3-319-33245-1_16
http://dx.doi.org/10.1007/978-3-319-33245-1_17
http://dx.doi.org/10.1007/978-3-319-33245-1_17
http://dx.doi.org/10.1007/978-3-319-33245-1_18
http://dx.doi.org/10.1007/978-3-319-33245-1_18

General Terminology Induction in OWL

Viachaslau Sazonau(B), Uli Sattler, and Gavin Brown

University of Manchester, Oxford Road, Manchester M13 9PL, UK
{sazonauv,sattler,gbrown}@cs.manchester.ac.uk

1 Introduction

An ontology is a machine-processable representation of knowledge about a
domain of interest. Ontologies are encoded in formal languages, such as the Web
Ontology Language [8], OWL, underpinned by expressive Description Logics,
DLs [1]. OWL ontologies are widely-used to represent and share knowledge in
application areas such as medicine, biology, astronomy, defence and others.1 An
ontology can contain data and background knowledge (terminology) where both
may be incomplete. One might benefit from finding informative correlations in
their data taking background knowledge into account. Those correlations may
suggest new axioms for the background knowledge or start new inquiries about
the data.

However, the problem of terminology induction is generally hard. Firstly, an
ideal solution should represent a coherent, self-contained, expert-level modelling.
Due to high expressivity of OWL and its Open World Assumption (OWA), the
search space can be vast or even infinite depending on the language chosen. Sec-
ondly, as usual, the quality of the result depends on the quality of the data which
can be incorrect, noisy or insufficient. Ideally, new knowledge should respect the
existing knowledge along with the data in order to be maximally informative
and avoid contradictions.

Thus, some restrictions and assumptions that simplify the problem are nec-
essary. Another consequence is that any induced knowledge is hypothetical only
and requires a domain expert judgement. The contributions of this paper2 are
as follows.

– We state the problem of general terminology induction, i.e. learning sets,
called hypotheses, of general class inclusions, GCIs, from data (ABox) and
background knowledge (TBox).

– We view the problem as multi-objective and define quality criteria for a
hypothesis: readability, logical quality, and statistical quality. We define
hypothesis quality measures that respect the OWA, interactions between
axioms in the hypothesis, and interaction of the hypothesis with the back-
ground knowledge.

– We have designed and implemented methods to compute the quality measures.

1 http://bioportal.bioontology.org/.
2 This is an abridged version of [14].

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-33245-1 1

http://bioportal.bioontology.org/

2 V. Sazonau et al.

– We have designed, implemented and evaluated an anytime algorithm for gen-
eral terminology induction. We have gained insights into the structure of the
search space and developed heuristics to find out promising hypotheses. The
experiments show that we can indeed learn interesting hypotheses.

2 Preliminaries

We assume the reader to be familiar with DLs [1] and OWL [8]. The following
nomenclature is used throughout this paper. O = T ∪ A is an ontology where
T , A are TBox and ABox, respectively. NC , NR, NI are disjoint and countably
infinite sets of class, property, and individual names, respectively. Σ is a sig-
nature, ˜T , ˜A, ˜O are signatures of T ,A,O, respectively. ind(O) = NI ∩ ˜O is
a set of individual names occurring in O. α is a general class inclusion, GCI,
also called axiom. A,B,X, Y are atomic classes (class names), C,D are complex
classes (class expressions), R is a property, a, b, c, d are individuals. mod(O, Σ)
is a module [7] of an ontology O given a signature Σ. C is a set of (possibly
complex) classes. H is a hypothesis, H is a set of hypotheses. In the following,
ABox and TBox are called data and background knowledge, respectively.

3 Related Work

Ontology learning approaches can be characterised along several dimensions. The
first one is a type of the data source, e.g. texts, RDF(S), an oracle (a domain
expert), positive and negative examples for a class along with the ABox. The sec-
ond one is a type of the output knowledge, e.g. class descriptions, class inclusions,
and its expressivity. The third dimension is methods used: natural language
processing, machine learning, association rules mining, oracle queries, Formal
Concept Analysis (FCA), least common subsumer (LCS) computation, etc. The
fourth dimension is semantics used that can differ from the OWL semantics, e.g.
the Closed World Assumption (CWA). One more characteristic is appreciation
of available background knowledge. Finally, the degree of domain expert involve-
ment in the learning process greatly varies across approaches. A survey can be
found in [12].

We concentrate on learning from instance-level data, i.e. both class and prop-
erty assertions. Among the approaches aimed at this type of input data are class
description learning, CDL [3,5,11], knowledge base completion, KBC [2], asso-
ciation rules mining, ARM [17].

The main method of CDL is machine learning, in particular, Inductive Logic
Programming, ILP [13]. The goal is to find a “good” description (class expres-
sion) of a given class name from a set of positive and negative examples [11] for
it, i.e. learning is supervised. The class description must cover all positive and
none of the negative examples. Learning is essentially a search in the space of
class expressions guided by refinement operators and heuristics. The background
knowledge can be used to optimize the search by exploiting the classification hier-
archy. To supervise learning, a domain expert has to provide additional infor-
mation in form of positive and negative examples for a given class, which can

General Terminology Induction in OWL 3

be difficult. As a consequence, there are techniques to sample examples from
data. In particular, instances of the class are taken as its positive examples and
the CWA is made to obtain its negative examples. However, this way can cause
problems [10]. Another method of CDL is finding the least common subsumer
(LCS) [3]. LCS is computed from the most specific class (MSC) of each instance
of a target class. The method, however, is only applicable to weakly expressive
languages.

KBC is based on Formal Concept Analysis (FCA) [6]. It is aimed at acquiring
(in some sense) complete knowledge bases, in contrast to CDL. KBC requires
to define a set of class expressions in advance which can be hard. The degree
of domain expert involvement is high as the expert judges axioms and has to
supply a counterexample in the case of rejection. One more limitation is that
standard FCA can only be applied under the CWA and the OWA of OWL
requires modifications of FCA [2].

ARM is yet another approach to ontology learning [17]. Association rules
are mined from transaction tables where columns are predefined class expres-
sions which, similarly to the case of KBC, can be difficult to define in advance. In
contrast to KBC, ARM, however, permits acquiring axioms that have counterex-
amples. In contrast to CDL, ARM induces class inclusions and demands neither
positive nor negative examples. The approach focuses on weakly expressive lan-
guages. Among other restrictions are its CWA and little appreciation of interac-
tion between induced axioms and the background knowledge, as well as mutual
interactions between induced axioms, since they are acquired independently.

Thus, ontology learning approaches simplify the problem in different aspects.
As a result, there is no approach that has all following capabilities: learns sets of
GCIs, appreciates interactions between axioms within the set and interactions of
the set with the background knowledge, uses standard OWL semantics, requires
no supervision, does not demand frequent human interventions.

4 Settings and Assumptions

This paper is aimed at addressing the problem of inducing general terminological
knowledge from data and background knowledge. New knowledge is acquired in
the form of hypotheses. A hypothesis is a set of axioms which does not contradict
the input ontology, i.e. is consistent with it, and carries new information, i.e. is
informative for it.

Definition 1 (Hypothesis). An axiom α is informative for an ontology O if
O � α. A set H of axioms (GCIs) is called a hypothesis for an ontology O if H
is consistent with O, i.e. O∪H � � Ď ⊥, and each α ∈ H is informative for O.

A hypothesis is evaluated by quality criteria: readability, statistical quality,
and logical quality. Clearly, a hypothesis can be better on one criterion and worse
on another. Therefore, we view terminology induction as a multi-objective prob-
lem where objectives are quality measures corresponding to the quality criteria.
Hypotheses are presented to a domain expert who accepts some of them and

4 V. Sazonau et al.

rejects others. In order to suggest, or recommend, good hypotheses first, a pref-
erence relation based on quality measures is imposed on the set of hypotheses.
In this paper, we apply the following settings.

(i) We use OWL and its standard semantics.
(a) We allow for the usual OWA, i.e. for an instance a and a class C it is

possible that O � C(a) and O � (¬C)(a). As a consequence, data can
be regarded as just “incomplete”.

(b) Data normally consists of both class and property assertions, e.g. people
with family relations, proteins with interactions between them.

(c) We consider any logic for which subsumption, O |= C Ď D, and
instance checking, O |= C(a), are decidable. We use OWL ontologies
and reasoners.

(ii) Any input ontology O is consistent, i.e. data contains no noise which causes
inconsistency.

(iii) Learning is unsupervised, i.e. no additional information is required in the
form of positive or negative examples.

(iv) A set C of target (possibly complex) classes is fixed and finite.

The goal of induction is finding good hypotheses over classes C, or C-
hypotheses. In the following, we only consider C-hypotheses and omit C from
the name. We also define C

− := C ∪ {¬C | C ∈ C}.

Definition 2 (C-Hypothesis). Given an ontology O, a hypothesis H for O is
called a C-hypothesis if α ∈ H implies α = C Ď D, where C,D ∈ C

−.

It makes sense to establish a correspondence, sufficient for the task at hand,
between an ontology O and classes C, which we call projection.

Definition 3 (Projection). A projection π of an ontology O to C is

π(O, C) := {D(a) | O |= D(a) ∧ D ∈ C
− ∧ a ∈ ind(O)}.

Thus, a projection is a set of positive and negative class assertions over classes
C entailed by O. A projection can be viewed as a table where rows are labelled
with individuals ind(O) and columns are labelled with classes C. Each cell with
indices a,C can contain one of three possible values: “1” if O |= C(a), “0” if
O |= ¬C(a), “?” if O � C(a) and O � ¬C(a). Although there are similarities
with a transaction table of ARM, our table view is imaginary only and it permits
question marks. We will use the table view for better presentation of examples,
see Example 1 and Table 1.

Example 1. Given C = {A,B,∃R.B}, T = ∅,

A = {A(a1), A(a2), A(a3), A(a4), (¬A)(b), (¬A)(c), B(c)
R(a1, b), R(a2, b), R(a3, b), R(a4, c)}.

General Terminology Induction in OWL 5

Table 1. Projection
for Example 1

A B ∃R.B

a1 1 ? ?

a2 1 ? ?

a3 1 ? ?

a4 1 ? 1

b 0 ? ?

c 0 1 ?

We use the projection to evaluate how well a hypoth-
esis fits the known data assuming it is correct on the
unknown data. Indeed, due to the OWA, a hypothesis
can make assumptions on the unknown data by turn-
ing question marks into ones or zeros. If a hypothesis
makes too many assumptions, it may be too “strong”, e.g.
H = {� Ď [C∈CC}. Therefore, it is necessary to evaluate
how “brave” a hypothesis is.

Definition 4 (Assumption). An assumption of a hypothesis H in an ontology
O given C is

ψ(H,O, C) := {D(a) | O � D(a) ∧ O ∪ H |= D(a) ∧ D ∈ C
− ∧ a ∈ ind(O)}.

As a consequence, ψ(H,O, C)∩ π(O, C) = ∅ for any hypothesis H. Requiring
O � (¬D)(a) in Definition 4 is not necessary because if O |= (¬D)(a) then
H is not a hypothesis due its inconsistency with O. Hypotheses making fewer
assumptions are preferred according to Occam’s razor.

One can think of suggesting hypotheses as single axioms. However, this app-
roach ignores interactions between axioms that can influence the quality of the
hypothesis. Two axioms, which are logically “good” individually, do not necessar-
ily create a logically “good” hypothesis. For example, a hypothesis can become
redundant, e.g. H = {A Ď B,¬B Ď ¬A}, see Sect. 5.2. In fact, a set of two
logically “good” axioms is not necessarily a hypothesis. For example, given that
{A Ď B} and {B Ď C} are hypotheses for O, a set {A Ď B,B Ď C} is not a
hypothesis for O if O |= (A[¬C)(a). Similar to logical quality, two axioms which
are statistically “good” individually may not create a “good” hypothesis.

5 Quality Criteria and Measures for a Hypothesis

5.1 Syntactic Length as a Readability Measure

Readability is the ease with which a hypothesis can be read and understood by
a human. One of possible measures of readability is the usual syntactic length of
a hypothesis.

Definition 5 (Syntactic Length). Let A,C,D be (possibly complex) classes, A ∈
NC a class name, R ∈ NR a property name, a ∈ NI an individual name. The
syntactic length of a GCI is defined as follows: |C Ď D| := |C| + |D|, where
|�| = |⊥| = |A| := 1, |¬C| := 1 + |C|, |C [D| = |C \ D| := 1 + |C| + |D|,
|∃R.C| = |∀R.C| := 1+ |C|, | ≥ nR.C| = | ≤ nR.C| := 1+n+ |C|. The syntactic
length of a hypothesis H is |H| :=

∑

α∈H |α|.

5.2 Logical Quality

Logical quality evaluates logical properties of a hypothesis: logical strength and
redundancy. Logical strength is commonly called generality in machine learning.

6 V. Sazonau et al.

Definition 6 (Logical Strength). A hypothesis H is weaker (more general) than
another hypothesis H ′ if H ′ |= H and H � H ′.

A hypothesis can contain axioms which are superfluous, or redundant, within
the hypothesis, even if those axioms are informative. For example, axiom A Ď C
is redundant in hypothesis {A Ď B,B Ď C,A Ď C} and axiom ¬B Ď ¬A is
redundant in hypothesis {A Ď B,¬B Ď ¬A}. Axioms can also have redundant
parts. For example, D is a redundant part of axiom A Ď C [D in hypothesis
{A Ď B [D,A Ď C [D}.
Definition 7 (Redundancy). A hypothesis H is redundant if there exists a
hypothesis H ′ such that H ′ ≡ H and |H ′| < |H|. Otherwise, H is non-redundant.

Lemma 1. If a hypothesis H is non-redundant, then |H| = min{|H ′| | H ′ ≡ H}.
We define the logical strength and redundancy of a hypothesis H regardless

of O. The reason is that an axiom α ∈ H, which is informative for O and non-
redundant in H, can be interesting, even if it is not informative for O ∪ H\{α}.
Such axiom reveals yet only implicit (and possibly unknown) relation between
classes. Additionally, the search for good hypotheses would require entailment
checking O ∪ H |= H ′ which could make it infeasible for hard ontologies.

5.3 Statistical Quality

Statistical quality criteria are aimed at selecting hypotheses that best represent
data given background knowledge. In order to comply with the standard OWL
semantics and its OWA, we consider the statistical quality of a hypothesis as two-
fold. Firstly, hypotheses fit data and background knowledge differently. Secondly,
hypotheses make different number of assumptions in data given background
knowledge, i.e. some hypotheses are more cautious than others.

Fitness and Braveness. In order to evaluate the statistical quality of a hypoth-
esis, we exploit the idea that axioms can encode regularities in the data. Those
regularities can be used to “compress” the data, i.e. to present it in a shorter
way. This is the fundamental principle of the minimum description length induc-
tion [4,16]. According to it, the better a hypothesis fits the data, the shorter
description of the data it provides.

A standard way of measuring the description length is using syntactic mea-
sures. However, syntactic measures do not respect logical interactions of a hypoth-
esis with data and background knowledge. Therefore, we introduce a semantic
measure of the description length. We define fitness and braveness of a hypoth-
esis as follows.

Definition 8 (Description Length, Fitness, Braveness). The description length
of an ABox B given an ontology O = T ∪ A is

minSize(B,O) := min{|B′| | B′ ∪ O ≡ B ∪O}.
Given an ontology O, a set C of classes, and a hypothesis H, let π := π(O, C)
and ψ := ψ(H,O, C). Then

General Terminology Induction in OWL 7

(i) fitness of H is fit(H,O, C) := |π| − minSize(π, T ∪ H),
(ii) braveness of H is bra(H,O, C) := minSize(ψ,O).

As a consequence of Definition 8, all semantically equivalent hypotheses have
the same fitness and the same braveness which is stated by Lemma 2.

Lemma 2. Given an ontology O, a set C of classes, and two hypotheses
H1,H2, if H1 ≡ H2 then fit(H1,O, C) = fit(H2,O, C) and bra(H1,O, C) =
bra(H2,O, C).

Fitness of a hypothesis indicates how well the projection can be shrunk using
the hypothesis and background knowledge, i.e. a better shrinkage corresponds
to a better fitness. Braveness of a hypothesis measures how many assumptions
it makes in the data given the background knowledge.

As a consequence of Definition 8, fitness and braveness are semantically sound
and syntax independent measures of the statistical quality of a hypothesis. They
take into account both the interaction of a hypothesis with the background
knowledge and interactions between axioms within the hypothesis. The measures
respect the standard OWL semantics, in particular, they deal with its OWA and,
consequently, with incomplete data. Finally, they demand no supervision, such
as positive or negative examples, and no additional information besides the input
ontology.

6 General Terminology Induction

According to Definition 1, we only consider hypotheses which are logically sound,
i.e. informative and consistent with the background knowledge and data. The
goal of the induction is finding among those hypotheses ones which have maximal
fitness and minimal braveness, or better represent the data.

We impose a readability constraint on a hypothesis: it must not exceed a
given syntactic length. The logical weakness of a hypothesis is reflected by its
braveness: weaker hypotheses have a lower braveness and are preferred (respect-
ing their fitness) according to Occam’s razor. A redundant hypothesis has the
same fitness and braveness as its non-redundant counterpart but a greater length
that might be occupied by better axioms. We state the problem of general ter-
minology induction in OWL as follows.

Definition 9 (General Terminology Induction). Given an ontology O and a set
C of classes, the problem of general terminology induction is to find all best
hypotheses which do not exceed length �.

Thus, as in ILP, we view induction as search in the space of hypotheses
restricted by a language bias, determined by C and � in our case. We regard
the process of constructing hypotheses as being equivalent to ranking them in a
justified way which is based on fitness and braveness.

8 V. Sazonau et al.

7 Implementation and Evaluation

7.1 Implementation

Tools and Hardware. All algorithms are implemented in Java 7 using OWL
API (3.5.0). We use the OWL 2 DL reasoner FaCT++ (1.6.3) [15] which supports
incremental reasoning. The experiments are executed on the following machine:
Linux Ubuntu 14.04.2 LTS (64 bit), Intel Core i5-3470 3.20 GHz, 8 GB RAM.

7.2 Evaluation

Evaluation Goals. The experiments are aimed at answering the following
questions.

Q1 Where are we likely to find good hypotheses: in more expressive languages
for C or bigger values of �?

Q2 How does expressivity of the language and maximal length of a hypothesis
influence the performance of computing the fitness and braveness?

Q3 Can we acquire hypotheses that seem plausible, so that we can use them
to enrich our background knowledge, or that tell us interesting information
about our data?

Choice of Ontologies. We conduct the empirical evaluation on a corpus of
ontologies selected from related work [5,10] including DL-Learner datasets,3

Protégé OWL,4 and TONES5 repositories. The Kinship ontology is obtained
from UCI Machine Learning Repository.6 We have selected the ontologies based
on the following criteria. Firstly, data contains both class and property asser-
tions, at least 15 individuals. Secondly, ontology classification takes less 10 min.
Thirdly, we are sufficiently confident that we understand the topic of the ontol-
ogy. The corpus is available online.7

Table 2 describes the corpus where we use the following metrics. |ind(A)|, CA,
RA are numbers of individuals, concept and property assertions in the ABox,
respectively. degree(A), conn(A) are the average degree and average number
of individuals in a connected component, respectively. | ˜A|, |˜T | are sizes of the
ABox and TBox signature. Jac(˜A, ˜T) is the Jaccard index8 of ABox and TBox
signatures, open(A, T) is the average number of question marks per individual-
class name pair.

3 https://github.com/AKSW/DL-Learner.
4 http://protegewiki.stanford.edu/index.php/Protege Ontology Library.
5 http://owl.cs.manchester.ac.uk/repository/.
6 https://archive.ics.uci.edu/ml/datasets/Kinship.
7 http://www.cs.man.ac.uk/∼sazonauv/tbox induction/corpus/.
8 The size of the intersection divided by the size of the union.

https://github.com/AKSW/DL-Learner
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository/
https://archive.ics.uci.edu/ml/datasets/Kinship
http://www.cs.man.ac.uk/~sazonauv/tbox_induction/corpus/

General Terminology Induction in OWL 9

Table 2. Ontologies and their metrics

Evaluation Setup. To answer the raised questions, we set up the following
experimental pipeline. We choose maximal length � from {2, 4, 6, 8, 10}. In order
to generate classes C, we use signature Σ := ˜M , where M = �⊥-module(T , ˜A).
We investigate 5 class languages Gi, such that Gi ⊆ Gi+1 (duplicates are avoided
by the means of OWL’s structural equivalence):

G1 := {X | X ∈ Σ};
G2 := G1 ∪ {XM | XM is a possibly complex subclass in M};
G3 := G2 ∪ {X [Y | X,Y ∈ Σ};
G4 := G3 ∪ {∃R.X | X,R ∈ Σ};
G5 := G4 ∪ {X [∃R.Y | X,Y,R ∈ Σ}.

Given an ontology O, for each combination of a class language G and maximal
length � we run the algorithm (see [14] for details) with 10 min timeout. Once
the algorithm terminates, we record the fitness and braveness of each hypothesis
and the average hypothesis evaluation time which comprises computing its fitness
and braveness. Finally, we store up to 100 best hypotheses.

7.3 Results

The dependence of fitness and braveness on language and length is shown on
Fig. 1. The values obtained are normalised, i.e. divided by the maximal value.

10 V. Sazonau et al.

G1

G2

G3

G4

G5

2 4 6 8 10

(a) Fitness

G1

G2

G3

G4

G5

2 4 6 8 10

(b) Braveness

Fig. 1. Dependence of fitness (a) and braveness (b) on language expressivity and max-
imal length: darker colours reflect greater numbers

Then, the values are aggregated across the corpus and the average value is
reported per cell.

Our first observation is that some languages and lengths result in no hypothe-
ses induced which happens if a class language is not expressive enough or hypoth-
esis length is too low. We aggregate and average only over non-empty values.
An expected observation is that increasing expressivity is useless if an ontology
is poor, e.g. contains few relations in the data and axioms in the background
knowledge. On the other hand, if an ontology is rich, increasing expressivity may
or may not be fruitful.

Figure 1 shows that increasing length always results in hypotheses of higher
fitness and mostly, but not always, of higher braveness since added axioms may
make no assumptions or repeat the assumptions already made. Increasing expres-
sivity also generally leads to higher fitness and higher braveness. However, the
changes are not as gradual as for length, in particular, braveness seems irregular.
Interestingly, we observe that G2 consistently outperforms G3 in fitness, despite
G2 ⊆ G3, which can be explained as follows. On the one hand, the search space
considerably increases from G2 to G3. On the other hand, G3 appears to be
less fruitful than G2 (compare to G4 and G5). As a result, it becomes harder to
find equally good hypotheses in the same time. Thus, the answer to Q2 is that
increasing expressivity and length promises better fitness but commonly worse
braveness.

We also observe that the average hypothesis evaluation time does not vary
widely. Thus, the answer to Q2 is that performance does not degrade significantly
for higher expressivity and length. The performance of evaluating a hypothesis
is as follows: less than 0.1 s for 8 ontologies, from 0.1 to 1 s for 4 ontologies, from
1 to 10 s for 4 ontologies, and around 15 s for 1 ontology. The results can be
found online.9

In order to answer Q3, we act as domain experts and eyeball the induced
hypotheses. We aim at finding plausible and interesting hypotheses. Some results

9 http://www.cs.man.ac.uk/∼sazonauv/tbox induction/results/.

http://www.cs.man.ac.uk/~sazonauv/tbox_induction/results/

General Terminology Induction in OWL 11

Table 3. Examples of hypotheses induced within 10min

Ontology Examples of hypotheses

Alzheimer Drug Ď ∃getsReplacedBy.Substituent

Substituent Ď ∃hasPolatisation.Polar

∃hasPolatisation.Polar Ď ∃isHAcceptor.HAcceptor

Arch construction Ď ∃hasPillar.pillar

∃hasParallelpipe.wedge Ď ∃hasPillar.freeStandingPillar

∃touches.pillar Ď ∃leftof.pillar

BasicFamily ∃hasChild.Person Ď Person

∃hasParent.Person Ď Person

∃hasParent.Female Ď ∃hasParent.Male

Cinema
Movie Ď ∃hasForActor.Actor

Movie Ď ∃hasForGenre.Genre

∃hasForActor.{Eastwood} Ď ∃hasForGenre.{Western}
∃hasForDirector.{Burton} Ď ∃hasForActor.{Depp}

Earthrealm ∃hasDefaultUnit.BaseUnit Ď ∃hasDefaultUnit.ComplexUnit

∃hasDefaultUnit.{second} Ď TimeRelatedQuantity

∃hasDefaultUnit.{meterPerSecond} Ď DrySeasonDuration

Economy Nation ≡ IndependentState

∃economyType.EconomicDevelopmentLevel

Ď ∃economyType.IMFDevelopmentLevel

Financial Account Ď ∃hasStatementIssuanceFrequency.Monthly

∃isOwnerOf.Account Ď Client

Mammographic ∃hasMargin.spiculated Ď ∃hasShape.irregular

∃hasShape.irregular Ď ∃hasDensity.low

Mutagenesis Compound Ď ∃hasBond.Bond1

∃inBond.Hydrogen3 Ď Bond1

∃inBond.Oxygen40 Ď ∃inBond.Nitrogen38

NTN Man ≡ ∀spouseOf.Woman

∃knows.Man Ď Man

∃relativeOf.Man Ď Man

are shown in Table 3. Firstly, we observe that induced hypotheses can, in fact,
enrich the background knowledge, see Table 3. If the background knowledge is
poor, as in BasicFamily and Cinema, or even absent, as in Alzheimer, hypotheses
seem to be a good starting point for modellers. If the background knowledge is
incomplete, hypotheses appear to be interesting missing bits, e.g. for Economy,
Financial, NTN, and Mutagenesis.

Secondly, we observe that hypotheses can reveal interesting relations in our
data. This can expose new knowledge about the domain and help to understand
the data. For example, hypotheses discover relations between particular actors,
directors, and movie genres from Cinema. Another example is Mammographic
where we can learn relations between diagnostic observations, e.g. having irreg-
ular shape implies having lower density. Such hypotheses can potentially inform
doctors of yet unknown relations in their data, facilitate future research in the
domain, and lead to data improvements, e.g. a supplement of images of tumours
that have irregular shape and high density.

Thirdly, hypotheses can contain “strange” axioms which may help us high-
light, on the one hand, odd or erroneous modelling and, on the other hand, inac-
curate or abnormal data. We observe this for Arch inducing ∃touches.pillar Ď

12 V. Sazonau et al.

∃leftof.pillar (why is there nothing to the right?) and for Earthrealm inducing
∃hasDefaultUnit. {meterPerSecond} Ď DrySeasonDuration (wrong unit?).
Thus, we can answer Q3 positively.

Although we use different settings and the goal of induction is different,
we make some comparison of our results with related work. In particular, we
consider the supervised CDL and its implementation DL-Learner [11]. Given a
set of positive and negative examples for a target class construction in Arch,
it searches for definition construction ≡ ∃hasP illar.(freeStandingP illar [
∃leftof.∃supports.�). As Table 3 shows, our approach induces a weaker defini-
tion of construction along with some related knowledge. For Cinema we observe
that descriptions of different movie types are induced, e.g. EastwoodMovie
Ď ∃hasForActor.{Eastwood}, EastwoodMovie Ď ∃hasForGenre.{Western}.
For NTN the definition Man ≡ ∀spouseOf.Woman is induced. Thus, although
our approach is unsupervised, it shows the potential to learn class definitions.

8 Discussion and Future Work

The evaluation shows that our approach is able to induce interesting hypotheses.
On the one hand, they can potentially be helpful to build and improve the
background knowledge. On the other hand, hypotheses seemingly discover new
knowledge about the domain and help us understand the data. Interestingly,
they may help us identify modelling errors and data flaws.

Although the search space is vast, general terminology induction is feasible.
It is encouraging given that statistically and logically sound measures are used
to evaluate a hypothesis and this requires reasoning. We observe that larger and
more expressive hypotheses are generally better and still feasible.

As for future work, we will investigate more informed ways of constructing a
set of promising initial classes, e.g. using techniques from CDL, along with new
algorithms and heuristics for search space exploration. We will also attempt to
extend the methodology to deal with noisy data that causes inconsistency, e.g.
using techniques from [9]. We plan to investigate learning property hierarchies.

We intend to go beyond the corpus and carry out case studies with domain
experts to evaluate our approach in more detail. We also consider other scenar-
ios, e.g. how acceptance or rejection of a hypothesis affects other hypotheses,
how hypotheses can be used for predicting class memberships of individuals,
terminology abduction and “what if” analysis of data under the OWA.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

2. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 230–235. Morgan
Kaufmann Publishers Inc., San Francisco (2007)

General Terminology Induction in OWL 13

3. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer
w.r.t. a background terminology. J. Appl. Logic 5(3), 392–420 (2007)

4. Conklin, D., Witten, I.H.: Complexity-based induction. Mach. Learn. 16(3), 203–
225 (1994)

5. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description
Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp.
107–121. Springer, Heidelberg (2008)

6. Ganter, B., Wille, R.: Formal Concept Analysis, vol. 284. Springer, Berlin (1999)
7. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:

theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)
8. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:

OWL 2: the next step for OWL. Web Semant. 6(4), 309–322 (2008)
9. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-

Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer,
Heidelberg (2005)

10. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. Web Semant. 9(1), 71–81 (2011)

11. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Mach. Learn. 78(1–2), 203–250 (2010)

12. Lehmann, J., Völker, J. (eds.): Perspectives On Ontology Learning, Studies in the
Semantic Web, vol. 18. IOS Press, Amsterdam (2014)

13. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

14. Sazonau, V., Sattler, U., Brown, G.: General terminology induction in OWL. In:
Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 533–550. Springer,
Heidelberg (2015)

15. Tsarkov, D., Horrocks, I.: FACT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

16. Vitányi, P.M., Li, M.: Minimum description length induction, bayesianism, and
kolmogorov complexity. IEEE Trans. Inf. Theor. 46(2), 446–464 (2000)

17. Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

OBOWLMorph: Starting Ontology Development
from PURO Background Models

Marek Dudáš(B), Tomáš Hanzal, Vojtěch Svátek, and Ondřej Zamazal

Department of Information and Knowledge Engineering, University of Economics,
W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{marek.dudas,tomas.hanzal,svatek,ondrej.zamazal}@vse.cz

Abstract. We propose adding two additional steps to OWL ontology
development and offer tools supporting it. A so-called PURO background
model of an example situation to be covered by the ontology is first cre-
ated, then a seed of the ontology is generated automatically from it,
allowing users to choose suitable modeling style and import the ontol-
ogy seed into a common ontology editor where it can be finalized. Using
PURO as intermediary model should enable better collaboration, docu-
mentation and early detection of design problems. The paper focuses on
OBOWLMorph: a tool for ontology generation from a PURO model.

1 Introduction

In the semantic web realms, the prevailing practice of formalizing ontologies is
writing them, from the onset, in OWL, merely starting from textual specifica-
tions and informal charts. The advantages of OWL as uniform representation
of ontologies throughout all ‘formal’ phases of their development lifecycle are
its thorough standardization, solid support by authoring tools, and powerful
reasoning abilities allowing formal consistency checking of the models. On the
other hand, the direct transition from informal specifications to OWL puts quite
high demands on ontology engineers. In software engineering, UML models are
often created before the actual coding. Database designers use even two lev-
els of intermediate models: conceptual and logical. The common benefits of such
intermediate models are better collaboration, documentation and early detection
of architectural or logical problems. Ontology engineers directly defining OWL
entities based on informal specifications have to deal with two problems at the
same time: (a) “What are the entities and relations inherently described in the
specification?” and (b) “How to represent them with OWL constructs?” More-
over, the latter question often has several possible answers – choosing different
OWL modeling styles. Therefore we investigate, and attempt to offer tools for,
a more stepwise approach to ontological engineering where a ‘seed’ of the ontol-
ogy is first drafted and exemplified in a less constrained language (called PURO
[10]) and a basis of the ontology is then generated from it through pattern-based
PURO-to-OWL transformation. This allows focusing on question (a) in the first
step without having to solve question (b), which is dealt with in the second step.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 14–20, 2016.
DOI: 10.1007/978-3-319-33245-1 2

OBOWLMorph: Starting Ontology Development 15

The generated basis of an ontology can then be finalized using common ontology
editors. While such a practice is not new per se (since some earlier methodologies
[6] proposed to create the first formalization in first-order predicate calculus), the
crucial point is the use of PURO as language with structure similar to OWL,
giving way to the automatic transformation. Simple PURO-to-OWL transfor-
mation has recently been integrated [4] as additional feature into PURO Mod-
eler (our graphical PURO model authoring tool prototype); it allows to display
alternative OWL representations of uncomplicated PURO models, thus serving
as an auxiliary tool for ontology developers, with educative role for novices. In
this paper, in contrast, we present customizable PURO-to-OWL transformation
functionality implemented in a dedicated tool, OBOWLMorph, which has the
potential to play a more central role in the ontology development workflow.

2 PURO Language and OWL Modeling Styles

OWL ontology developer can often choose different combinations of language
constructs to model the same situation. The choice might be driven by the
intended usage of the ontology: web markup vocabularies often favor ‘feature’
assignment to entities through data properties, while linked data vocabularies
prefer object properties for this purpose; reasoning-enabled ontologies, in turn,
express ‘features’ as classes. We call sets of such choices modeling styles.1

PURO is an ontological modeling language recently drafted as common inter-
lingua for different modeling styles in OWL. A model built in PURO is denoted
as ontological background model (OBM). For example, the fact that a concrete
book is a ‘paperback’ can be expressed, in OWL, using an object property asser-
tion, a data property assertion or a class instantiation. In PURO it is always
the last option, called ‘B-instantiation’ (‘background-instantiation’), since ‘in
the background’, individual paperback books and the notion of ‘paperback’ are
interrelated via sound set membership.

PURO inventory is very similar to that of OWL, assuring easy understand-
ability by OWL-bred engineers. It is based on two distinctions: between partic-
ulars and universals and between relationships and objects (hence the PURO
acronym). There are six basic entity types: B-object (particular object), B-type
(type of object/type), B-relationship (particular relationship), B-relation (type
of relationship), B-valuation (particular assertion of quantitative value) and B-
attribute (type of valuation). An OBM consists of named entities of these types,
plus of subTypeOf and instanceOf relationships. Obviously, the ‘object-type-
relation’ triad of PURO corresponds to the ‘individual-class-property’ triad of
OWL, except that 1) PURO does not limit the arity of relations and allows
higher-order classes, and, consequently, 2) enables abstracting from modeling
style choices that are enforced by these limitations in OWL. For example the
fact that a book is published by a publisher in a certain year normally requires
reification to a new entity (e.g., of ‘PublishingEvent’ type) in OWL; in PURO a
ternary relationship suffices for this purpose. Every PURO OBM describes a con-
crete sample situation. Instances (‘particulars’) play central role in the model,
1 In agreement with [3] where OWL feature modeling styles are analysed.

16 M. Dudáš et al.

helping designers to avoid speculating about abstract categories for which there
would be no concrete data available and making them focus on sample situa-
tions to be covered. Particulars also glue different type-level entities (‘universals’)
together in a contiguous model. A PURO OBM thus does not only map on OWL
ontologies but also on samples of their respective fact bases (Aboxes).

The research of modeling styles is still in its infancy. To test OBOWLMorph,
we implemented five ad-hoc modeling styles. In Data property style, data prop-
erties are used whenever possible. Object property style prefers object properties,
even to model subTypeOf relationships and B-attributes. Object-prop and sub-
classing style is similar to Object property style, but subTypeOf is represented
by rdfs:subClassOf and B-attributes are modeled as data properties. In Reifica-
tion style, even binary B-relationships are reified into classes and pairs of object
properties, otherwise it is same as Object-prop and subclassing style. So is Class
membership style with the exception that binary B-relationships are turned into
classes of subjects of the B-relationship having the value of the object.

3 Related Research

The most similar to our approach is OntoUML [2]: a conceptual modeling lan-
guage based on UML and grounded in Universal Foundational Ontology (UFO).
OLED, the graphical editor for OntoUML, allows to transform it into OWL
fragments. The transformation is hard-coded and each OntoUML element has
its single OWL counterpart. The users can however select for each OntoUML ele-
ment whether it may change in time or is ‘read-only’, and the choice is reflected in
the transformation; such functionality is planned to be added to our framework
as well. Bauman [1] implemented XSLT transformation of conceptual models
into XML Schema, while OWL as target is only mentioned as possible future
work. The user can choose a sort of modeling style, e.g., whether to transform a
concept to an XML attribute or child-element. To allow reusing existing ER dia-
grams, Fahad [5] designed their rule-based transformation to OWL ontologies.
The framework is however not intended as a general ontology development alter-
native. For transformation between different types of models such as UML, XML
Schema or OWL, Kensche et al. [8] suggested to employ a generic metamodel
(GeRoMe), as an abstraction of particular metamodels. In order to uniformly
capture specific properties of models of different types, elements of GeRoMe are
decorated with a set of role objects (e.g., a role attribute is mapped to a column
in a relational schema and to a data property in OWL DL). Native models can
be imported/exported into/from GeRoMe. In all mentioned OWL generation
methods, the input model is created at the level of types. In our approach, in
contrast, the input model is created as an example situation at the instance
level. Finally, since the PURO language has also been proposed as means of
formally testing the conceptual coherence of ontologies [10], it can be compared
to OntoClean [7]; it differs in the ‘meta-properties’ assigned to entities.

OBOWLMorph: Starting Ontology Development 17

4 OBOWLMorph Implementation and Example of Usage

The generation of OWL from an OBM is done with SPARQL. To allow that,
the OBM is first serialized into RDF using a simple ‘PURO vocabulary’. The
serialization also includes information about the desired modeling style (gath-
ered from the user) in the form of annotations of serialized PURO entities. The
serialized OBM is then transformed to OWL with a set of SPARQL UPDATE2

queries. Using SPARQL allows the transformation rules to be easily altered and
extended by the semantic web community. So far we have defined 12 SPARQL
patterns,3 covering the most common combinations of PURO entities and their
OWL representations in different modeling styles. The WHERE part of each
query represents a pattern of an OBM fragment, including the modeling style
annotations. The INSERT part describes a corresponding OWL fragment. The
resulting OWL fragment is inserted into a separate RDF graph. All SPARQL
queries are applied automatically in a sequence and the resulting OWL ontol-
ogy ‘seed’ is then extracted from the graph. OBOWLMorph is implemented as
a web application4 and integrated with PURO Modeler, a visual OBM editor
connected to same DB as OBOWLMorph.

The OBOWLMorph interface consists of two windows: one displays the
loaded OBM, while the other shows the OWL ontology seed generated from
the OBM and visualized in WebVOWL [9]. The user can choose a different tar-
get OWL modeling style for each OBM entity: s/he simply clicks on an entity,
selects from available modeling styles shown in a pop-up window and clicks the
‘update’ button to see the change in the OWL ontology seed. A default modeling
style is used for the entities unaffected by the user.

Use-case Scenario Example: Consider that during the development of a food
ontology, a verbal example is gathered: A boiled egg is a dish of size 100 g,
containing 12 g of fat, 2 g of carbohydrates and 800 kJ of energy. Its ingredient
is one egg. The knowledge engineer creates its OBM in PURO Modeler5 as
shown in Fig. 1. S/he may share and discuss it with other developers and check
whether all concepts from the example are modeled and correctly labeled. Then
s/he proceeds to OWL modeling. Keeping the default modeling style settings
(Object-prop and subclassing style set for all entities), OBOWLMorph produces
the result shown in Fig. 2. The engineer now considers the intended usage of
the ontology and decides to, e.g., simplify it by changing the modeling style of
the “egg” entity to Datatype. On the other hand, the “energy” value needs to
be modeled as instance, because the engineer decided to allow adding the unit
specification to avoid confusion between kJ and calories. Therefore, s/he sets the
Reification modeling style for the “800 kJ” entity. After updating, the ontology
seed looks as shown in Fig. 3. When the engineer is satisfied with the result, s/he
may download the OWL ontology seed, import it to an ontology editor such as
Protégé, and continue working on it.

2 Used instead of CONSTRUCT for implementation-specific reasons.
3 Available at http://lod2-dev.vse.cz/puromodeler-v2/OBOWLMorph/patterns/.
4 http://lod2-dev.vse.cz/puromodeler-v2/OBOWLMorph/.
5 Following the guidelines available at http://bit.ly/1MFr8Lm (in development).

http://lod2-dev.vse.cz/puromodeler-v2/OBOWLMorph/patterns/
http://lod2-dev.vse.cz/puromodeler-v2/OBOWLMorph/
http://bit.ly/1MFr8Lm

18 M. Dudáš et al.

Fig. 1. OBM of a boiled egg as a dish with one ingredient and nutrition info.

Fig. 2. OWL ontology seed generated from the OBM using default modeling style.

Fig. 3. OWL ontology seed with modeling style on some OBM entities altered.

OBOWLMorph: Starting Ontology Development 19

5 Conclusions and Future Work

We experimentally implemented an application introducing two more steps into
ontology design, analogical to logical or UML models in DB and SW engineering:
the ontology designer first creates a PURO ontological background model, from
which a seed of the desired OWL ontology is generated automatically. Desired
OWL modeling style for each part of the background model can be selected.

The current inventory of modeling styles is a proof-of-concept one; how-
ever, further styles can be implemented rapidly, being mere SPARQL UPDATE
queries. Future work will also include reuse of entities (with fitting style) from
existing vocabularies in addition to coining new ones, during transformation, as
well as exploitation of entity naming conventions when using sophisticated pat-
terns, e.g., those including reification. Thorough evaluation by user assessment
and comparison to gold-standard ontologies is also foreseen.

The research is supported by UEP IGA F4/90/2015, by the H2020 project
no. 645833 (OpenBudgets.eu) and by long-term institutional support of research
activities by Faculty of Informatics and Statistics, Univ. of Economics, Prague.
Ondřej Zamazal is supported by CSF 14-14076P.

References

1. Bauman, B.T.: Prying apart semantics and implementation: generating xml
schemata directly from ontologically sound conceptual models. In: Proceedings
of Balisage: The Markup Conference 2009. http://www.balisage.net/Proceedings/
vol3/print/Bauman01/BalisageVol3-Bauman01.html

2. Benevides, A.B., Guizzardi, G.: A model-based tool for conceptual modeling and
domain ontology engineering in OntoUML. In: Filipe, J., Cordeiro, J. (eds.) Enter-
prise Information Systems. LNBIP, vol. 24, pp. 528–538. Springer, Heidelberg
(2009)

3. Dermeval, D., Tenório, T., Bittencourt, I.I., Silva, A., Isotani, S., Ribeiro, M.:
Ontology-based feature modeling: an empirical study in changing scenarios. Expert
Syst. Appl. 42(11), 4950–4964 (2015)

4. Dudáš, M., Hanzal, T., Svátek, V., Zamazal, O.: OBM2OWL patterns: spotlight on
OWL modeling versatility. In: Workshop on Ontology and Semantic WebPatterns
(WOP) at ISWC (2015). http://lod2-dev.vse.cz/puromodeler/purom-wop15.pdf

5. Fahad, M.: Er2owl: generating OWL ontology from ER diagram. In: Shi, Z.,
Mercier-Laurent, E., Leake, D. (eds.) Intelligent Information Processing IV. IFIP,
vol. 288, pp. 28–37. Springer, Heidelberg (2008)

6. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.
Springer, London (2004)

7. Guarino, N., Welty, C.A.: An overview of OntoClean. In: Staab, S., Studer, R.
(eds.) Handbook on ontologies. International Handbooks on Information Systems,
pp. 201–220. Springer, Heidelberg (2009)

8. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: a generic role based
metamodel for model management. In: Spaccapietra, S., Atzeni, P., Fages, F.,
Hacid, M.-S., Kifer, M., Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J.,
Zaihrayeu, I. (eds.) Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 82–
117. Springer, Heidelberg (2007)

http://www.balisage.net/Proceedings/vol3/print/Bauman01/BalisageVol3-Bauman01.html
http://www.balisage.net/Proceedings/vol3/print/Bauman01/BalisageVol3-Bauman01.html
http://lod2-dev.vse.cz/puromodeler/purom-wop15.pdf

20 M. Dudáš et al.

9. Lohmann, S., Negru, S., Haag, F., Ertl, T.: VOWL 2: user-oriented visualization of
ontologies. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW
2014. LNCS, vol. 8876, pp. 266–281. Springer, Heidelberg (2014)

10. Svátek, V., Homola, M., Kluka, J., Vacura, M.: Metamodeling-based coherence
checking of OWL vocabulary background models. In: OWLED (2013)

A Similarity Based Approach to Omission
Finding in Ontologies

Tahani Alsubait(B), Bijan Parsia, and Uli Sattler

School of Computer Science, The University of Manchester, Manchester, UK
{alsubait,bparsia,sattler}@cs.man.ac.uk

Abstract. With the growing interest in using ontologies in semantically-
enabled applications, the interest in enhancing the quality of such ontolo-
gies has grown as well. Standard reasoning services focus on certain
obvious dimensions of quality, e.g., to detect inconsistencies and inco-
herence. In addition, bespoke tools have been presented to address the
completeness dimension of quality, e.g., missing entailments. These tools
are usually focused on very restricted subsets of all the possible missing
entailments, i.e., only atomic subsumptions. We present a new protocol
to detect both existing invalid entailments and missing valid entailments.
We also present a case study to evaluate the usefulness of the presented
protocol for ontology validation purposes.

1 Introduction

With the growing interest in using ontologies in semantically-enabled applica-
tions, the interest in enhancing the quality of such ontologies has grown as well.
Ontologies can grow large in terms of size and complexity, making it challenging
to maintain their quality and accuracy. Typically, the ontology development life
cycle involves an ontology validation stage in which both ontology developers
and domain experts come together to review the ontology and make sure it is
free of errors. The most hard-to-spot errors in ontologies are the ones that do
not make the ontology inconsistent or incoherent, though cause either undesir-
able or missing entailments. This is similar to the so-called “logical errors” in
programming languages which cause the program to produce undesired output
but do not cause compilation errors or abnormal termination. However, as is
the case with programming languages, standard debugging tools cannot help in
identifying such logical errors. This is why there is a need to develop tools and
techniques for this purpose.

Indeed, there are many possible ways to find errors in ontologies. Direct ontol-
ogy inspection can be effective but has the obvious disadvantage of being infeasi-
ble for large ontologies. In addition, direct inspection might be more effective for
finding soundness problems (i.e., invalid entailments) rather than completeness
problems (i.e., missing entailments) [9]. Other approaches have been proposed to
address completeness problems. For example, Formal Concept Analysis (FCA)
has been used for such a purpose [5]. FCA, in this context, is used to compute

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 21–32, 2016.
DOI: 10.1007/978-3-319-33245-1 3

22 T. Alsubait et al.

a concept lattice, i.e. a subsumption hierarchy of all conjunctions of concept
names occurring in an ontology, and the negations of these concept names. This
lattice is then used to present successive questions to a domain expert to iden-
tify possible missing terminological or assertional axioms. A general observation
about this approach is that they focus on finding missing atomic subsumptions.
That is, they address only the completeness dimension (i.e., ignore soundness)
and within the completeness dimension, they only consider subsumption rela-
tions between concept names (i.e., ignore complex subsumptions). Similarly, the
approach presented by Lambrix et al. [8] is aimed at completing isa hierarchies.

In this paper, we define a new protocol for finding omissions in ontologies.
These omissions can be either missing atomic subsumptions or missing complex
subsumptions. The protocol invloves asking a domain expert a set of multiple
choice questions (MCQs) with high similarity between the correct and wrong
answers.1 Restricting the answer set to only those answers that are very similar
to the correct answer can be useful in restricting the search space (in a principled
way) when attempting to detect omissions. Using similarity to elicit knowledge
from domain experts has already been used in well known elicitation techniques.
For example, the triadic elicitation technique involves presenting 3 concepts to
domain experts who are asked to identify the two similar concepts and explain
why the third is considered different. Similarly, we present some statements
that are entailed to be invalid by the ontology, yet they are very similar to a
valid entailment and ask the experts to verify whether they are indeed invalid
entailments or possibly missing valid entailments.

The questions presented to the expert should take the form of a multiple-
response question2 where the expert is asked to select all (and only) the correct
answers. We re-use the question generation (QG) application described in [2] to
generate questions that have exactly one answer entailed by the ontology to be
correct. For the purpose of using these questions to validate the ontology, we
select (for each question) a varied number, ranging for example from 1 to 10, of
answers that are entailed to be wrong answers. The similarity between the key
and distractors is set to be above a threshold. To measure the similarity between
(possibly) complex concepts, we use the similarity measures presented in [3,4].
To examine whether using a high value threshold has an impact on the number
and type of the errors identified, we experiment with two different thresholds
as we will describe in detail in Sect. 3. In general, since the wrong answers are
selected to be similar to the correct answer, we question whether the ontology
should entail that they are correct answers as well, i.e., a missing entailment.

2 Motivation

As an example, consider the Java ontology that has been used in [1] as a knowl-
edge source for generating educationally-useful MCQs. A detailed description of
1 In MCQ terminology, a correct answer is referred to as a key and a wrong answer is

referred to as a distractor.
2 In a multiple-response question, more than one answer can be correct.

A Similarity Based Approach to Omission Finding in Ontologies 23

the ontology is presented in [1]. During the development of the Java ontology,
we have witnessed the usefulness of looking at MCQs generated from this ontol-
ogy for validating it on the fly. Some important “errors” in the ontology were
easily identified by looking at the MCQs generated from it, in particular, MCQs
with errors. Some errors were syntactic (e.g., typing mistakes) while others were
logical (e.g., a wrong entailment identified by looking at an invalid key or a
missing entailment identified by looking at an invalid distractor). Logical errors
are generally harder to spot and considered more interesting when debugging an
ontology. We briefly present some specific examples from the Java ontology in
Tables 1 and 2.

Table 1. Missing entailment example

Stem: A feature of Virtual Machine Code is:

Key: (A) Portability

Distractors: (B) Write once Run Anywhere

(C) Platform Independence

(D) Reusability

Explanation of error: Wrong answers are invalid (i.e., they are features of
Virtual Machine Code)

Reasons for the (missing) entailment: Portability � ∃ isAFeatureOf.VirtualMachineCode

WriteOnceRunAnywhere � ∃
isAFeatureOf.JavaProgramming

PlatformIndependence � ∃
isAFeatureOf.JavaProgramming

Reusability � ∃ isAFeatureOf.JavaProgramming

All the above classes (features) have the common
subsumer ∃ isAFeatureOf.Top (hence, are similar;
therefore, they all appeared in the answer list of
this MCQ)

Table 2. Undesired entailment example

Stem: Swing stands for:

Key: (A) Application Programming Interface

Distractors: (B) Abstract Windowing Toolkit

(C) Java Foundation Classes

Explanation of error: the key is not a correct answer (i.e., Swing does not
stand for Application Programming Interface)

Reasons for the (undesired) entailment: Swing � API

API � ∃ standsFor.ApplicationProgramming
Interface

Therefore, the ontology entails that:

Swing � ∃ standsFor.ApplicationProgramming

Interface

24 T. Alsubait et al.

Clearly, some logical errors in the Java ontology have resulted in producing
the errors that appear in these MCQs. Identifying the errors in these MCQs
by a Java expert has helped in finding and correcting some omissions in the
Java ontology. These examples show that looking at questions generated from
an ontology can be fruitful for identifying some omissions in the ontology. In
particular, it helped to identify invalid keys and distractors, i.e., answers that
were thought to be correct while they are in fact wrong or vice versa.

In this paper, we present a case study to further explore the applicability
of QG methods for ontology validation purposes. Rather than validating an
ontology under development, we study the case of validating a previously built
ontology in an attempt to suggest ways to improve it. We present some specific
examples for possible errors in the SNOMED CT ontology as identified by some
domain experts. In addition, QG methods can support ontology comprehension
purposes which can be a goal in itself or it can be done prior to validating an
ontology that has been built by a different ontology developer. We briefly tackle
this in the study presented in this paper.

3 Implementing a Prototype QG-Based Application
for Ontology Validation

To evaluate the usefulness of the suggested QG-based approach for ontology
validation purposes, we have implemented a prototype web-based application
that (1) presents a selected set of multiple-response questions generated from an
ontology to a domain expert (see Fig. 1) and (2) based on the expert’s answers,
the application suggests some possible wrong and/or missing entailments in the
ontology (see Fig. 2). As we already described in the introduction, the questions
are generated such that they have only one answer which is entailed by the
ontology to be correct. However, experts answering these questions are asked
to pick all the answers they believe to be correct. Experts are also asked to
indicate whether they are confident about their answers, per question. They can
also leave a comment for a detailed explanation.

When the answers provided by an expert are different from the ones entailed
by the ontology, the expert is asked to confirm their answers, as shown in Fig. 3.
The aim of this extra verification step is to encourage rethinking about the
answer.

4 A Case Study

4.1 Goals

The main goal of this case study is to evaluate the usefulness of the suggested
QG-based approach for ontology validation purposes. To address this goal, we try
to answer the following question: Can a domain expert identify some omissions
in an ontology by looking at MCQs generated from that ontology? We focus on
a specific class of MCQs in which each wrong answer is similar to the correct

A Similarity Based Approach to Omission Finding in Ontologies 25

Fig. 1. QG-based support for ontology validation

Fig. 2. Summary of suggestions to improve the ontology

answer (but entailed by the ontology to be a wrong answer). We expect that
looking at such questions can reveal some omissions or missing statements (in the
ontology) that might be difficult to spot without looking at the questions. This
is because these wrong answers are similar to the correct answer and therefore
raise the question of whether they have been considered as wrong answers due
to having any missing statements in the ontology or due to actual constraints
in the domain. The missing statements that are intended to be detected can be
either atomic or complex subsumptions. Missing or invalid atomic subsumptions
highlight problems in the inferred class hierarchy of the ontology. Since this
hierarchy is frequently looked at by ontology developers, we expect, in general,
that there are more missing/invalid complex subsumptions rather than atomic
subsumptions in a given ontology. We examine this hypothesis in the current
study by looking at two sets of questions, Set A1 and Set A2. The questions in
the two sets are constructed:

26 T. Alsubait et al.

Fig. 3. Extra verification step

1. in Set A1: based on atomic subsumptions.
2. in Set A2: based on complex subsumptions.

Another goal of this study is to explore the impact of varying the similarity
degree between the key and distractors on the overall usefulness of the generated
questions for validation purposes. To examine this factor, we generate and com-
pare two sets of MCQs, Set B1 and Set B2 which are described below. We try to
answer the following question: Is looking at MCQs from Set B1 more useful for
ontology validation purposes than looking at MCQs from Set B2? The MCQs in
the two sets are generated such that the similarity between the wrong answers
and the correct answer is:

1. in Set B1: above a threshold Δmax.
2. in Set B2: below a threshold Δmax but above a second threshold Δmin.

The two sets A1 and A2 are not disjoint from sets B1 and B2. To examine all
possibilities, we generate four disjoint sets of questions such that the questions:

1. in Set 1: are selected from Set A1 and Set B1.
2. in Set 2: are selected from Set A1 and Set B2.
3. in Set 3: are selected from Set A2 and Set B1.
4. in Set 4: are selected from Set A2 and Set B2.

4.2 Materials and Methods

Ontology Selection. The current study requires the availability of a domain
expert to answer a set of MCQs generated from a domain ontology. Due to the
availability of an expert in BioInformatics, we asked that expert to select some
parts of an ontology which he thinks might be suitable for the purpose of this

A Similarity Based Approach to Omission Finding in Ontologies 27

study. Due to the expert’s interest in SNOMED CT in general and genetic find-
ings in particular and his assumptions that the ontology is not detailed enough
in this part, we selected a (small) part of genetic findings that covers phenotypes
(e.g., Blood groups). All the subclasses (197 classes) of the class Phenotype were
used as a seed signature to extract a ⊥-module [10]. In addition, the object prop-
erty RoleGroup was added to the seed signature. This property is used to group
certain properties together [12] and is necessary for extracting the module. The
resulting module has a total of 246 classes and 6 object properties.

Generating Questions. Two sets of questions were generated from the
extracted module using the prototype QG application described in [2]. This
prototype generates two different sets of questions, namely difficult and easy
questions. The difficult questions are generated such that the similarity between
the key and distractors is above the average similarity between all siblings in the
ontology (or in the current study, the extracted module). The easy questions are
generated such that the similarity between the key and distractors is above two
thirds of the average similarity between all siblings in the module (but less than
the average similarity between all siblings). For the current study, we consider
difficult questions to be questions of Set B1 and easy questions to be questions of
Set B2. After computing the average similarity between all siblings in the mod-
ule, the thresholds Δmax and Δmin have been set to 0.88 and 0.587, respectively.
The generated questions take the form “What is X?” where X is a class name and
the answers are either class names or class expressions. This kind of questions is
suitable for finding missing/invalid entailments that we are interested in. Among
the generated questions, 223 questions have class-name-based answers, referred
to as Set A1 questions, and 24 questions have class-expression-based answers,
referred to as Set A2 questions. Among the class-expression-based questions,
only 5 questions are suitable for Set B1 (i.e., the similarity between the key and
distractors is above the threshold Δmax). These 5 questions are referred to as
Set 3 as defined in Sect. 4.1. Each question has exactly one key but the number
of distractors was variable. If the number of generated distractors for a given
question is more than 10, we randomly select 10 distractors out of the available
ones. We have restricted the number of distractors to be below or equal to 10 to
make the question answering phase manageable.

Answering Questions. Two domain experts have been asked to answer a
total of 20 questions (5 questions from each of the four sets Set 1, Set 2, Set 3
and Set 4). The first expert is a bioinformatician and the second expert is a
physician. The 20 questions were selected randomly from the set of generated
questions in the previous step. Three samples of those questions are presented
in Sect. 4.3. The questions were presented to the domain experts via the web-
interface described in Sect. 2, see Fig. 1. The first 10 questions are from Set A1
and the second 10 questions are from Set A2. We chose to present questions
from Set A1 first, to captivate the reader, because they are expected to take
less time to answer compared to questions from Set A2. Within Sets A1 and

28 T. Alsubait et al.

A2, questions from Sets B1 and B2 are randomly ordered. Also, a think-aloud
technique was used to get a deeper insight into the advantages and limitations of
the approach. The experts were allowed to use any external source to help them
in answering the questions. After answering all the questions, the experts were
asked to answer three last questions about their overall experience in answering
the questions. These questions are shown in Fig. 4.

Fig. 4. Using QG-methods to validate ontologies

4.3 Results and Discussion

For 9 out of the 10 questions in Set B1, the first expert’s answers were correct,
i.e., equivalent to what is entailed by the ontology. The only question for which
this expert’s answers were different from the ones entailed by the ontology is
the question presented in Table 3. This question is the only question which has
an answer that contains an existential restriction; all the other answers contain
either class names or conjunctions of class names. The expert has identified both
a missing entailment (invalid wrong answer) and a wrong entailment (invalid
correct answer). In particular, the expert indicated that the ontology should
entail that a finding of common composite blood group is subsumed by a finding
of blood group and phenotype finding. He also indicated that the ontology should
not entail that a finding of common composite blood group is subsumed by
a finding of blood group and interprets (attribute) ABO and Rho(D) typing
(procedure). The expert indicated that he was not confident about his answers
to this question and explained that by reporting that he was not familiar with
the terminology used by the ontology to describe the concepts presented in this
question, e.g., interprets (attribute). In consistent with the first expert’s answers,
the second expert answered all the questions in Set B1 correctly; hence she did
not identify any possible omissions in this part of the ontology.

For 8 out of the 10 questions in Set B2, the first and second experts’ answers
were equivalent to what is entailed by the ontology. The two questions for which

A Similarity Based Approach to Omission Finding in Ontologies 29

Table 3. A first example for a question generated from SNOMED CT

Stem: “Finding of common composite blood group” is:

Key: (A) “Finding of blood group” and Interprets “ABO and Rho(D) typing”

Distractors: (B) “Finding of blood group” and “Phenotype finding”

the two experts’ answers were different from the ones entailed by the ontology
are the questions presented in Tables 4 and 5. In both questions, the answers are
conjunctions of class names. Again, in both questions, the experts have identified
a missing entailment (by selecting one of the distractors) and a wrong entail-
ment (by not selecting the expected key). Both experts have agreed on the wrong
answer that they chose to select as an answer. The two experts have indicated
that they are not confident about their answers to these two questions. The first
expert explained why he was not confident about his answers to the question
presented in Table 4 by pointing out that one of the terms used in the question,
i.e., inherited, seems irrelevant since all blood groups are inherited. For this ques-
tion, the experts indicated that the ontology should entail that inherited weak
D phenotype is subsumed by blood group phenotype and finding of minor blood
group. Similarly, for the question presented in Table 5, the experts indicated that
the ontology should entail that trans weak D phenotype is subsumed by blood
group phenotype and finding of minor blood group.

In total, the first expert indicated that he was confident when answering
only 7 questions out of the 20 questions. The second expert was confident when
answering 13 questions out of the 20 questions. The first expert explained that by
pointing out that although the terminology used in the ontology might seem to
be natural to an ontology developer, it does not seem to be natural for a subject
matter expert. Consistent with this, the second expert reported that the language
of questions made it difficult to interpret what the question was asking. The
first expert also reported that the questions seem to be of varying difficulty. For
example, he pointed out that answering most of the questions from Set A1 was
straightforward. These questions use only class names as answers. In contrast, he
reported that two questions from the same set, which also use only class names
as answers, were harder to answer. He explained that by pointing out that the
answers were very similar and hence he found it difficult to decide which answer
is the correct answer. The answers to these questions were: Blood laboratory
and Blood bank which are indeed similar (yet refer to different departments).
The first expert further explains that he selected what he thought was the best
answer, rather than the only correct answer. Consistent with this, the second
expert reported that, for the exact two questions, she picked what she thought
was the best answer. The experts did not identify any missing entailments in
these two questions, i.e., they did not indicate that a wrong answer should be
a correct answer. However, their explanation supports the hypothesis we are
testing in this study, i.e., looking at MCQs with distractors that are similar to
the key can be helpful in identifying missing entailments.

30 T. Alsubait et al.

Table 4. A second example for a question generated from SNOMED CT

Stem: “Inherited weak D phenotype” is:

Key: (A) “Blood group phenotype” and “Finding of Rh blood group”

Distractors: (B) “Blood group phenotype” and “Finding of ABO blood group”

(C) ‘Blood group phenotype” and “Duffy blood group”

(D) “Blood group B” and “Blood group Para-Bombay”

(E) ‘Blood group phenotype” and “Finding of minor blood group”

Table 5. A third example for a question generated from SNOMED CT

Stem: “Trans weak D phenotype” is:

Key: (A) “Blood group phenotype” and “Finding of Rh blood group”

Distractors: (B) “Blood group phenotype” and “Duffy blood group”

(C) “Blood group B” and “Blood group Para-Bombay”

(D) “Blood group phenotype” and “Finding of minor blood group”

(E) “Blood group phenotype” and “Finding of ABO blood group”

As described earlier, the similarity between the key and distractors in ques-
tions from Set B1 is higher than the similarity between the key and distractors
in questions from Set B2. Although one would expect that questions in Set B1
would reveal more omissions in the ontology compared to questions in Set B2
(because the wrong answers are more similar to the correct answers), this was
not the case. Questions in Set B1 have identified 2 (possible) omissions while
questions in Set B2 have identified 4 (possible) omissions. This can be explained
by the fact that errors can occur in different parts of the ontology. For exam-
ple, questions in Set B1 would identify missing subsumees that are very close
to their (potential) subsumer, e.g., in the inferred class hierarchy. In contrast,
questions in Set B2 would identify missing subsumees that are not very close
to their potential subsumer. In general, looking at this (rather small) set of
questions was helpful in spotting some omissions in the ontology and suggesting
improvements. Consistent with our expectations, the results also show that the
method may be generally more helpful in identifying invalid/missing entailments
involving complex subsumptions, i.e., Set A2, rather than atomic subsumptions,
i.e., Set A1.

The aim of the second and third question presented to the experts after
answering the questions was to evaluate the usefulness of the presented MCQs
to support ontology comprehension purposes. According to the answers provided
by the experts, the questions were not very helpful in identifying new aspects
of the ontology they had not considered before. The first expert pointed out
that this is due to having (1) questions that seem to be unnatural to a subject
matter expert (due to describing concepts in an uncommon way) and (2) changes
in the difficulty level of the questions (partly due to the first point). He further
explains by pointing out that these two points might limit the usefulness of this

A Similarity Based Approach to Omission Finding in Ontologies 31

form of MCQs for supporting students who want to learn about the subject. The
second expert, who is a physician, did not respond to this question as she was
not familiar with the ontology.

4.4 Related Work

Baader et al. [5] presented a FCA-based approach for completing Description
Logics-based knowledge bases. Their approach is aimed at extending both the
terminological and the assertional part of the knowledge base, i.e., the TBox
and the ABox, respectively. A Protégé plugin implementing this approach is
presented in [11].

Bertolino et al. [6] have investigated the use of QG-based methods for val-
idation purposes. Their method aims at validating models in general and can
be applied to ontologies as well. A set of True/False questions generated from
an (altered) model are presented to a group of domain experts. The responses
gathered from domain experts are used to validate the model. The method pro-
posed by Bertolino et al. is different from our method in that they suggest to
alter the model by deliberately introducing some errors in it before the QG step.
Their method is also suitable for finding invalid entailments but not missing
entailments. Although they have reported that their method have helped the
recruited experts to think about new aspects of the domain which they have
not considered before, the method does not guarantee that this applies to the
unaltered (error-free) parts of the domain only.

Another related work is the approach presented by Dragisic et al. [7] that
takes already found missing entailments as input and suggest logical solutions
to repair the ontology by possibly adding missing axioms. Their approach is
extended in [8] by attempting to repair ontologies without given missing entail-
ments. This approach is different from our approach in that it only considers
missing atomic subsumptions.

5 Summary and Future Directions

We have suggested a new protocol for finding omissions in OWL ontologies.
We have also presented a case study for evaluating the usefulness of the sug-
gested protocol for ontology validation purposes. Although the results seem to
be promising, they are far from significant. Further efforts are needed to improve
and evaluate the presented strategy. In particular, more user studies are needed.
As a future work, we plan to implement a Protégé plugin to allow ontology
developers to benefit from the suggested protocol.

References

1. Alsubait, T., Parsia, B., Sattler, U.: Generating multiple choice questions from
ontologies: How Far Can We Go? In: Lambrix, P., Hyvönen, E., Blomqvist, E.,
Presutti, V., Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKWA 2014 Satellite
Events. LNCS, vol. 8982, pp. 66–79. Springer, Heidelberg (2015)

32 T. Alsubait et al.

2. Alsubait, T., Parsia, B., Sattler, U.: Generating multiple choice questions from
ontologies: Lessons learnt. In: The 11th OWL: Experiences and Directions Work-
shop (OWLED 2014) (2014)

3. Alsubait, T., Parsia, B., Sattler, U.: Measuring similarity in ontologies: a new
family of measures. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) EKAW 2014. LNCS, vol. 8876, pp. 13–25. Springer, Heidelberg (2014)

4. Alsubait, T., Parsia, B., Sattler, U.: Measuring similarity in ontologies: How bad
is a cheap measure? In: 27th International Workshop on Description Logics (DL-
2014) (2014)

5. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Proceedings of IJCAI 2007
(2007)

6. Bertolino, A., DeAngelis, G., DiSandro, A., Sabetta, A.: Is my model right? let me
ask the expert. J. Syst. Softw. 84(7), 1089–1099 (2011)

7. Dragisic, Z., Lambrix, P., Wei-Kleiner, F.: Completing the is-a structure of biomed-
ical ontologies. In: Galhardas, H., Rahm, E. (eds.) DILS 2014. LNCS, vol. 8574,
pp. 66–80. Springer, Heidelberg (2014)

8. Lambrix, P., Wei-Kleiner, F., Dragisic, Z.: Completing the is-a structure in light-
weight ontologies. J. Biomed. Semant. 6(12) (2015)

9. Rogers, J.: Development of a methodology and an ontological schema for medical
terminology. Ph.D. thesis, Department of Computer Science (2004)

10. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proceedings of the 22nd International Workshop on Description Logics
(DL-2009) (2009)

11. Sertkaya, B.: OntoComP: A Protégé plugin for completing owl ontologies. In:
Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 898–902. Springer,
Heidelberg (2009)

12. Spackman, K., Dionne, R., Mays, E., Weis, J.: Role grouping as an extension to
the description logic of ontylog, motivated by concept modeling in snomed. In:
Proceedings of the AMIA Symposium: American Medical Informatics Association,
p. 712 (2002)

An Ontology for Supporting the Evolution
of Virtual Reality Scenarios

Mauro Dragoni1(B), Chiara Ghidini1, Paolo Busetta2, Mauro Fruet2,
and Matteo Pedrotti2

1 FBK–IRST, Trento, Italy
{dragoni,ghidini}@fbk.eu

2 Delta Informatica, Trento, Italy
{paolo.busetta,mauro.fruet,matteo.pedrotti}@deltainformatica.eu

Abstract. Serious games with 3D interfaces are Virtual Reality (VR)
systems that are becoming common for the training of military and emer-
gency teams. A platform for the development of serious games should
allow the addition of semantics to the virtual environment and the
modularization of the artificial intelligence controlling the behaviors of
non-playing characters in order to support a productive end-user devel-
opment environment. In this paper, we report the ontology design activ-
ity performed in the context of the PRESTO project aiming to realize a
conceptual model able to abstract the developers from the graphical and
geometrical properties of the entities in the VR, as well as the behavioral
models associated to the non-playing characters.

1 Introduction

Serious games with 3D interfaces are a branch of VR systems and are often used
for the training of military personnel (in individual as well as team coordination
danger situations) and, more recently, for the training of civilian professionals
(firefighters, medical personnel, etc.) in emergency situations using tools such as
VBS31 and XVR2.

A crucial step towards the adoption of VR for training is the ability to config-
ure scenarios for a specific training session at reduced costs and complexity. By
looking at state of the art technologies, it is already possible to do so for physi-
cal landscapes, physical phenomena, and crowds (including their behaviors), and
trainers and system integrators can assemble and customize serious game prod-
ucts for a specific scenario using commercial products and libraries that need to
be (easily) adapted to the specific landscapes and needs of the clients.

Current attempts to the programming of non playing characters rely on ad
hoc specifications/implementations of their behaviors done by VR developers.
Thus, a specific behavior (e.g., a function emulating a panicking reaction) is
hardwired to a specific item (e.g., the element “Caucasian boy 17” of a VR such

1 https://www.bisimulations.com/.
2 http://futureshield.com/xvr-esemble.shtml.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 33–44, 2016.
DOI: 10.1007/978-3-319-33245-1 4

https://www.bisimulations.com/
http://futureshield.com/xvr-esemble.shtml

34 M. Dragoni et al.

as XVR) directly in the code. This generates a number of problems typical of
ad hoc, low level solutions: the solution is scarcely reusable, it often depends on
the specific knowledge of the code of a specific developer, and is cumbersome to
modify, since every change required by the trainer has to be communicated to
the developers and directly implemented in the code in a case by case manner.
The existence of high level specifications of non playing characters and modular
behaviors, described in a manner that is independent from the specific VR, and
available for both trainers and developers, would be an important step towards
the definition of reusable, flexible, and therefore cheaper, scenarios that include
non playing characters.

In this paper, we focus on the experience of using Semantic Web techniques,
and in particular lightweight ontologies, for the high level description of the
artificial entities (including characters) and their behaviors in gaming in order
to uncouple the description of scenarios performed by the trainers from their
physical implementation in charge to the developers. Differently from a number
of works in literature that often uses ontologies for a detailed description of
the geometrical properties of space and objects, the focus of our work is on the
description of the entities of a VR scenario from the cognitive point of views of
the trainers and the developers alike, in a way that is semantically well founded
and independent of a specific game or scenario [1], and with the goal of fostering
clarity, reuse, and mutual understanding [2].

To the best of our knowledge, the construction of the ontology presented
in this paper provides a first experience towards the description of a virtual
world from a cognitive level that can highlight the potential and criticality of
using Semantic Web techniques, and existing ontologies, to describe a VR from
a cognitive point of view and can provide the basis for further developments.

2 The PRESTO Project

The objective of PRESTO (Plausible Representation of Emergency Scenarios
for Training Operations) research project is the creation of a system for the
customization of serious games scenarios based on VRs. The advantage of this
system, compared to the state of the art, resides in the richness and the ease
of defining the behavior of artificial characters in simulated scenarios, and on
the execution engines able to manage cognitive behaviors, actions, and percep-
tions within a VR environment. One of the main outcome of the project is the
possibility of specifying procedures, psychological profiles, and other factors that
influence the behavior of individuals and/or small groups in any role (emergency
teams, victims, observers, terrorists, criminals, etc.) and to build scenarios, for
instance a car accident, in which part or all of the people involved are simulated
by artificial characters. To this end, the system has to include an environment
for building the training scenarios by the VR trainer, tools for the specification
of cognitive and perceptual models used for augmenting psychological profiles of
non-player characters, and execution engines able to manage cognitive behaviors,
actions, and perceptions within a VR environment.

An Ontology for Supporting the Evolution of Virtual Reality Scenarios 35

The system can be used, for example, for training safety personnel, for the
verification and the optimization of operational procedures, and for the analysis
of work environments. The system has been tested in a pilot use case selected in
a specific application domain of large interest in both commercial and research
fields: training for emergency management within close environments (such as
fires, evacuations, overload of users due to external factors such great disasters
scale, etc.). The pilot has been be conducted in collaboration with the Health
Services of the Trentino local government (APSS).

The open problems addressed by this project may be summarized as follows:

1. the perception of the virtual environment by an artificial character and the
execution of its models and procedures must be able to adapt to the context,
to its history and status (fatigue, emotions, intake of stimulants such as caf-
feine or depressants such as alcohol) and must maintain a level of variability
(i.e. in the accuracy of the vision, the rate of reaction, in the choices among
alternatives) such that the behavior is plausible but not trivially predictable;

2. the representation of procedures and patterns of behavior must be indepen-
dent of one specific usage scenario and accessible to training specialists (i.e.
industrial safety or civil protection) rather than just a computer, in an envi-
ronment facilitating the definition and configuration of training scenarios by
such specialists.

The first open problem relates to aspects such as the usage of a BDI (Beliefs-
Desire-Intention) multi-agent system with cognitive extensions, CoJACK [3], as
the artificial intelligent engine for the generation/selection of behaviors in serious
games [4], that go beyond the scope of this paper.

What we present in this work, instead, is the experience of using Semantic
Web techniques, and in particular lightweight ontologies, to contribute to the
second open problem, that is the development of a programming environment for
serious game platforms thanks to end-user development tools [5] and the ability
to mix and match scenario components (including behavioral components) taken
off-the-shelf from a market place.

3 PRESTO Ontology Design

The development of programming environment for the high level description
of artificial entities (including characters) and their behaviors in scenarios of
serious games requires the ability to represent a wide range of entities that exist
in the (artificial) world. The approach taken in PRESTO is to use ontologies
to represent this knowledge, in a way that is semantically well specified and
independent of a specific game or scenario [1].

The construction of the PRESTO ontology therefore is driven by typical ques-
tions that arise when building ontological representations of a domain, that is:

– “What are the entities that exist, or can be said to exist, in a Virtual Reality
scenario?”

36 M. Dragoni et al.

– “How can such entities be grouped, related within a hierarchy, and subdivided
according to similarities and differences?”

Differently from Ontology in philosophy, where these questions are motivated
from the need to investigate the nature and essence of being, we have looked
at these questions from the pragmatic point of view of computer science, where
ontologies and taxonomic representations have been widely proposed and used
to provide important conceptual modeling tools for a range of technologies, such
as database schemas, knowledge-based systems, and semantic lexicons [2] with
the aim of fostering clarity, reuse, and mutual understanding.

A serious problem we had to face in PRESTO was the lack-of/limited-
availability of training experts and software developers, and the broad scope
of items and behaviors that can occur in an arbitrary scenario of VR, that can
range from terrorist attacks in a war zone, to a road accidents in a motorway,
to a fire alarm in a nuclear plant or hospital and so on. Because of that rea-
son, building everything from the ground up by relying on domain experts and
using one of the state of the art ontology engineering methodologies such as
METHONTOLOGY [6] was deemed unfeasible. Thus the process followed in
PRESTO has been driven by an attempt to: (1) maximize the reuse of already
existing knowledge and (2) revise and select this knowledge with the help of
experts by means of more traditional ontology engineering approaches such as
the one mentioned above. The choice of already existing knowledge has lead us
to consider the following two sources:

– state of the art foundational ontologies which provide a first ontological char-
acterization of the entities that exist in the (VR) world; and

– the concrete items (such as people, tools, vehicles, and so on) that come with
VR environments and can be used to populate scenarios.

Our choices for the PRESTO project were the upper level ontology DOLCE
(Descriptive Ontology for Linguistic and Cognitive Engineering) [7], and the clas-
sification of elements provided by XVR. DOLCE was chosen as this ontology not
only provides one of the most known upper level ontologies in literature but it
is also built with a strong cognitive bias, as it takes into account the ontological
categories that underlie natural language and human common sense. This cog-
nitive perspective was considered appropriate for the description of an artificial
world that needs to be plausible from a human perspective. The decision to use
the classification of elements provided by XVR was due to the extensive range of
item available in their libraries (approximatively one thousand elements describ-
ing mainly human characters, vehicles, road related elements, and artifacts like
parts of buildings) and the popularity of XVR as VR platform.

The construction of the first version of the ontology of PRESTO was therefore
performed by following a middle-out approach, which combined the reuse and
adaptation of the conceptual characterization of top-level entities provided by
DOLCE and the description of extremely concrete entities provided by the XVR
environment. More in detail,

An Ontology for Supporting the Evolution of Virtual Reality Scenarios 37

– we performed an analysis and review of the conceptual entities contained in
DOLCE-lite [7] together with the Virtual Reality experts (both trainers and
developers) and selected the ones referring to concepts than needed to be
described in a VR scenario; this analysis has originated the top part of the
PRESTO ontology described in Sect. 4.1.

– we performed a similar analysis and review of the XVR items, together with
their classifications, in order to select general concepts (e.g., vehicle, building,
and so on) that refer to general VR scenarios; this analysis has originated the
middle part of the PRESTO ontology described in Sect. 4.2.

– as a third step we have injected (mapped) the specific XVR items into the
ontology, thus linking the domain independent, VR platform independent
ontology to the specific libraries of a specific platform, as described in Sect. 4.3.

A reader could ask now why we didn’t simply/mainly rely on the XVR clas-
sification in order to produce the, so called, PRESTO ontology. The reason is
twofold: first of all, the XVR classification mainly concerns with objects. It pro-
vides therefore a good source of knowledge for entities “that are” (in DOLCE
called Endurants), but a more limited source of knowledge on entities “that hap-
pen” (in DOLCE called Perdurants). Second, the XVR libraries contain objects
described at an extremely detailed level whose encoding and classification resem-
bles more to a Directory structures built to facilitate the selection of libraries
rather than a well thought is-a hierarchy and therefore presents a number of
problems that prevent its usage ‘as such’. In the following, we review the most
common problems we found in the categorization of the XVR items:

– Concepts names are used to encode different types of information. For instance
the concept name “Caucasian male in suit 34” is used to identify a person of
Caucasian race, dressed in suit and of 34 years of age. Encoding the informa-
tion on race, age, and so on via e.g., appropriate roles enables the definition
of classes such as e.g., “Caucasian person”, “young adult”, “male” and so on
and the automatic classification (and retrieval) of XVR item via reasoning.

– The terminology used to describe concepts is not always informative
enough: for instance, it is difficult to understand the meaning of the entity
“HLO assistant” from its label and description and to understand whether
this item may suggest a type of “assistant” that may be useful in several
scenarios and could therefore be worth adding to the ontology.

– The level of abstraction at which elements are described varies greatly. For
instance the library containing police personnel items classifies, an the same
hierarchical level the general concept of “Police Officer” and the rather specific
concept of “Sniper green camouflage”.

– The criteria for the classification is not always clear: for instance, the “BTP
officer” (British Transport Police) concept is not a subclass of “Police Officer”.

– Certain general criteria of classification are not present in all the libraries. As
an example, the general concept “Adult Male” should be a general concept
used for the classification of male characters. Nonetheless, it is present in
e.g., the library of “Environment humans” (that is, the library that describes
generic characters) and is not present in e.g., the libraries of “Rescue humans”

38 M. Dragoni et al.

and “Victims” (that is, the libraries of characters impersonating rescuers and
victims, respectively).

– Unclear classification: for instance, in the XVR original classification a “sign”
is a “road object”, and a “danger sign” is an “incident object”. By considering
that no relations are defined between the entities “sign” and “danger sign”, it
is not possible to infer any relation between “danger sign” and “road object”.

– Duplication of concept names: for instance, the label “police services” is used
to describe both human police characters in the library “environment human”,
and police vehicles, in the library “rescue vehicle”.

In the next section we provide an overview of the PRESTO ontology and of
its top-level, middle level and XVR specific components in detail.

4 The PRESTO Ontology

As introduced in Sect. 3, the PRESTO ontology3 is composed of three parts: (i) a
top level part constructed with the help of DOLCE; (ii) a middle level describing
general entities that can occur in a VR scenario, and (iii) a specific set of entities
representing objects and “behaviors” available in a concrete VR.

4.1 The Top-Level Ontology: DOLCE Entities

Figure 1 shows the taxonomy of DOLCE entities taken from [7] revised and
customised to the needs of PRESTO.

Entities in gray where not included in the PRESTO ontology, while entities
in boldface where added specifically for PRESTO.

Among the first level of entities we selected Endurants and Perdurants:
endurants are indeed useful to describe the big number of physical and non-
physical objects that can occur in a serious game, including avatars, vehicles,
tools, animals, roles and so on; perdurants are instead useful to describe what
happens in a scenario. Concerning endurants the diagram in Fig. 1 shows the
ones we selected to be included in PRESTO; note that we did not include the
distinction between agentive and non-agentive physical objects because of an
explicit requirement by the PRESTO developers. In fact, they require the possi-
bility to treat every object in a VR as an agentive one for the sake of simplicity4.
While perdurants can be useful in a VR to describe a broad set of “things that
happen”, in the current version of the ontology they were mainly used to describe
animations (that is, “bodily movements”) of avatars. From an ontological point

3 The current version of the PRESTO ontology cannot be published due to copyrights
constraints. A preliminary version, from which it is possible to observe the ratio-
nal used for modeling it, may be found here: https://shell-static.fbk.eu/resources/
ontologies/CorePresto.owl.

4 A typical example is vehicle, which the developers prefer to treat as an agentive
objective, rather than a non agentive object driven by an agent, for the sake of
simplicity of the code.

https://shell-static.fbk.eu/resources/ontologies/CorePresto.owl
https://shell-static.fbk.eu/resources/ontologies/CorePresto.owl

An Ontology for Supporting the Evolution of Virtual Reality Scenarios 39

Fig. 1. The top-level PRESTO ontology.

of view we felt it was appropriate classify them according to the categories of
stative and eventful perdurants included in DOLCE. In fact, we can have state
bodily movements (e.g., being sitting), process bodily movements (e.g., running),
and accomplishment bodily movement (e.g., open a door). The investigation of
animations did not show examples of achievement bodily movements, which were
therefore not included in the ontology.

The current version of the ontology does not contain Qualities, but current
work (not described in this paper) is devoted to investigate how to include them
in a further revision. Instead Abstracts do not seem to play a role in the
PRESTO ontology.

4.2 The Middle-Level Domain Ontology

This part augments the top level ontology described above with concrete, but
still abstract, entities that may appear in a broad range of VR scenarios for seri-
ous games. The current version of the ontology is composed of 311 concepts, 5
object properties and 3 annotations properties. Concerning the Endurant part
the main entities modeled in the middle-level ontology pertain classifications of
persons (avatars), buildings, locations, tools / devices, vehicles, and roles. Con-
cerning perdurants the ontology contains concepts describing state, process and
accomplishment bodily movement.

40 M. Dragoni et al.

4.3 Injecting the Bottom-Level Ontology

The linking of the bottom-level ontology, representing the classification scheme
used for organizing the items contained in the 3D-library, is not a trivial task.
Indeed, the correct alignment of these levels enables the transparency of the sys-
tem with respect to the actual content of the 3D-library.

While the creation of the top and middle-level of the PRESTO ontology is
meant to create a stable knowledge source, the definition of the alignments with
the bottom-level elements is an activity that has to be done every time a new 3D-
library is plugged into the system.

To ease this injection we decided to accomplish it in two separate steps: (i) an
automatic definition of alignments by using an ontology alignment tool and (ii)
a manual refinement of the alignments before using the complete ontology in the
production stage.

The output of the alignment task is the linking between the abstract concepts
contained in the middle PRESTO ontology and the concrete items contained in the
underlying 3D-library implemented in the system. Indeed, such alignments allow
the access to the entire set of items defined in the 3D-library and that are physically
used for building the VR scenario.

For sake of clarification about the alignment process works, let’s consider
the following example. In the middle-level of the ontology we have defined
the concept “Tent” representing a general tent that may be used for building
a VR scenario. By plugging, for example, the XVR library, we need to find
an alignment between the entity “Tent” and the specific tent items contained
in XVR, such as “Decontamination Tent Zone 1”, “Family tent blue”, “Treat-
ment Area”, and so on. To do that, as first step, we execute the Alignment API
library [8]: for the entity “Tent”, the XVR item identified in the 3D-library and
aligned with it is “Tents”. Such an alignment, classifies the bottom-level ontology
“Decontamination Tent Zone 1”, “Decontamination Tent Zone 2”, “Decontami-
nation Tent Zone 3”, “Family tent blue”, “Family tent orange”, “Festival tent”,
and “Treatment Area” as children of the concept “Tents”. As a consequence, all
these elements can be retrieved and used at run time to produce a specific scenario
which requires the presence of a tent, while the scenario can still be described using
the abstract term “tent”. Also, the same high level scenario may be easily adapted
to the usage of other 3D-libraries, simply by exploiting the (different) mappings of
such libraries with the middle level “Tents” concept.

In some cases the automatic alignment we used fails: for example, the middle-
level entity “Weapon” is automatically aligned with the bottom-level entity
“Baton” instead of being aligned with the bottom-level entity “Service-weapon”.
In these cases, a manual refinement of the generated alignments was done after-
wards for pruning wrong axioms.

By considering the XVR use case, the automatic alignment procedure allowed
a time-effort reduction, with respect of doing everything manually, of around 65 %
in the definition of the alignment between the middle-level and the bottom-level
ontologies, thus showing the potential of using ontology mapping technologies in
the concrete scenario of VR libraries.

An Ontology for Supporting the Evolution of Virtual Reality Scenarios 41

5 Enriching the VR for Decision-Making
and Coordination

There are a number of aspects required for decision-making and coordination of
activities that cannot be fully captured via static taxonomies and aggregations
but are worth describing in an ontology not only for its inherent representational
and deductive power, which helps in structuring abstract reasoning, but for the
ability built into PRESTO of dynamically and arbitrarily add and remove tags to
any item within the VR. These tags are generically called “qualities” since they
are mostly described as Qualities entities in the PRESTO ontology. They form
a layer of knowledge shared by all PRESTO components (including configurator
systems, DICE, an agent framework, agents, monitor and control GUIs, and end-
user development tools) without the need of modifying the game engine or hard-
coding relationships among categories and properties into software. Note that this
layer could have been built into the ontology itself (technically, by representing all
items in the VR as individuals stored in a triple store) but this would have created
issues with distribution, deployment and performance, so it is managed differently.
Further, DICE supports the tagging of BDI (Belief-Desire-Intention) plans and
intentions by software developers; these tags can be used for introspection and
monitoring of the activity of an agent.

Qualities are still work in progress, since they reflect the progressive develop-
ment of behavioral models. At the moment, they are used for two main reasons: to
represent an item’s characteristics and dynamic state; and, to enable recognition
(of activities and intentions) and coordination.

Examples of characteristics and states represented as qualities include:

– the characteristic of being a “gate”, which indicates something that can be
crossed but only after performing some enabling actions if required and coor-
dinating with others, thus it is relevant to the models of navigation. A gate may
be the revolving door at the entrance of a room, the sliding door of a lift, a drive-
way gate, a railroad crossing, and so on, all of which may have been classified
very differently in the VR. Note that a permanently sealed door is not a gate in
this definition;

– the dynamic state of being “open”, which may be associated to gates (as above)
as well as to entities not relevant to navigation (e.g. windows). Stative qualities
are represented as a is-a hierarchy, whose root is a generic name (such as “open-
ness”) and whose children are the possible values of the quality (in this example,
open, close, semi-open, semi-close, etc.). Items are tagged with the leaves (e.g.,
open or close) but the PRESTO API allows querying the current state by using
the root, thus implicitly checking if the item does have that quality in the first
place. Other examples of wide applicability include “liveliness” (which includes
“alive”, “dead”, “impaired”) and “functioning” (specialized in “running” and
“stopped”);

– dynamic states such as “body posture” and “facial expression”, also organized
in hierarchies as mentioned above. While posture and expression apparently
are properties of humans only, they can be also applied to animals and even to

42 M. Dragoni et al.

non-living entities; for instance, in shooting ranges (and their VR reconstruc-
tions), puppets used as targets may have different postures;

– dynamically changing values of various nature. PRESTO allows the association
of an arbitrary content together with a tag to an item, thus this mechanism is
essentially a way to add data fields to an object without impacting the general
PRESTO API. For instance, the reward mechanism in a Unity game built for
instructional purposes has been implemented as a “money”-tagged accumulator
on a specific item.

As mentioned earlier, the PRESTO ontology classifies also the animations that
can be applied by a game engine to entities. While this classification is used at the
moment as a configuration tool, essentially to make DICE models agnostic with
respect to the underlying technology, it is the first step towards a solution to the
problem of intention recognition, which in turn is the base for the simulation of
coordinated behaviour (no matter whether amicable, e.g. teamwork as fire fighters
in the fire example presented earlier, hostile, e.g. opposition in a security scenario,
or simply observation to anticipate future moves and take decisions, e.g. avoiding a
safety exit door when too many people are engaging it during an alarm). Intention
recognition is something that is innate in humans and cognitively complex animals
(e.g. dogs) but computationally very hard if taken by principle; machine learning
may come to the rescue in certain situations, but in a VR scenario where nuances
of body and expressions are hard to capture and represent, let alone the limited
number of training cases, this is not an option. In PRESTO, qualities are exploited
to allow entities to make their recognizable activities publicly visible; thus, inten-
tion and action recognition is reduced to reading certain qualities automatically
set by DICE when starting animations or appropriately tagged plans.

To do a further step ahead, work is in progress on game-theoretical descrip-
tions of coordinated behavior, including queuing and other crowding behaviors,
accessing shared resources, and so on, in order to enable the definition of policies
at a very abstract (meta-) level. This work exploits, in addition to PRESTO’s tag-
ging of items, the equivalent in DICE for goals and plans as well as its support for
introspection of intentions and motivations. In a nutshell, DICE agents tag them-
selves and any involved object with qualities that indicate the move they want to
play in a coordination game, while their meta-level, cognitive models would try to
achieve or stop pursuing aptly tagged goals and plans according to the agent’s own
moves in the game as well as of those entities perceived in the environment. The
specification of policies is expected to substantially reduce the coding required by
models and to allow the reuse of the same coordination patterns in many different
situations, e.g. a single policy for queuing to pass through a gate (which will be
part of the navigation models) as well as for queuing at the entrance of an office or
at the cashier in a supermarket (which are decision-making behaviors not related
to navigation goals).

A simplistic (but already available and of great practical use) coordinated
behavior exploiting qualities is goal delegation from an agent to another agent. By
means of the PRESTO API, any entity in a game can submit a goal to be pursued
by any other entity; when the goal is enriched with a few predefined parameters,

An Ontology for Supporting the Evolution of Virtual Reality Scenarios 43

the destination DICE agent publishes the fact that it has accepted a goal or that
has achieved it (or failed to achieve or refused), allowing the submitter (or any
other observer, including PRESTO’s session script engine) to monitor and coor-
dinate behaviors without the use of any additional agent protocol.

In the PRESTO ontology, qualities are represented as endurant or perdurant,
depending on their lifetime – static characteristics are endurant while stative,
behavioral and coordination qualities are perdurant.

As a final note, it is worth mentioning that PRESTO uses ontologies, in addi-
tion to classifications and qualities as discussed above, for other purposes such as:

– to represent individual, rather than objective, perspectives on the world. Cur-
rently, an ontology is used to capture the possible values used by DICE models to
appraise entities that may have an influence on behaviours. These values range
from positive to negative at different levels, from “friendly” to “dangerous, to
stay distant from”. For reasons similar to those that led to the management of
qualities in PRESTO, the relationships between ontological classifications and
appraisal values are captured by configuration files at various level of granular-
ity (shared by all NPCs of a certain type rather than specific for an individual)
rather than within the ontology;

– software engineering practice, e.g. to allow the definition of certain APIs in
a language-independent format, with the automatic generation of software in
some cases, and similarly for independence from the game engine when access-
ing commonly available resource types (e.g. animations, as mentioned above)
by means of an engine-neutral syntax.

6 RelatedWork and Conclusion

In this paper, we focused on the experience of using Semantic Web techniques,
and in particular lightweight ontologies, for the description of the artificial entities
and their behaviors in gaming with the aim of uncoupling the description of VR
scenarios from their physical implementation in charge to the developers.

With respect to the literature, where ontologies are often used for a detailed
description of the geometrical properties of space and objects [9], we focused more
on how the description of the entities of a VR scenario can be easily represented
and managed from the practical point of view. Indeed, the literature addressed
such problems only marginally by focusing mainly on the use of ontologies for man-
aging the representation of VR scenarios themselves [10,11], even if in some cases a
clear target domain, like the management of information related to disasters [12],
is took into account. Also the description of character behaviors have been sup-
ported by using ontologies for different purposes like as support for UML-based
descriptions [13] or as a “core” set of structural behavioral concepts for describing
BDI-MAS architectures [14].

However, all these works do not take into account issues concerning the prac-
tical implementations of flexible systems for building VR scenarios. The pro-
posed solution demonstrated the viability of using Semantic Web technologies for
abstracting the development of VR scenarios either from the point of view of the
3D-design and from the modeling of character behaviors.

44 M. Dragoni et al.

References

1. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge shar-
ing? Int. J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)

2. Guarino, N., Welty, C.: Identity and subsumption. In: Green, R., Bean, C., Myaeng,
S. (eds.) The Semantics of Relationships: an Interdisciplinary Perspective. Kluwer,
Dordrecht (2001)

3. Ritter, F.E., Bittner, J.L., Kase, S.E., Evertsz, R., Pedrotti, M., Busetta, P.:
CoJACK: A high-level cognitive architecture with demonstrations of moderators,
variability, and implications for situation awareness. Biologically Inspired Cogn.
Architectures 1, 2–13 (2012)

4. Evertsz, R., Pedrotti, M., Busetta, P., Acar, H., Ritter, F.: Populating VBS2 with
realistic virtual actors. In: Conference on Behavior Representation in Modeling &
Simulation (BRIMS), Sundance Resort, Utah, March 30–April 2 2009

5. Paternò, F.: End user development: survey of an emerging field for empowering peo-
ple. ISRN Softw. Eng. 2013, 1–11 (2013)

6. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological
art towards ontological engineering. In: Proceedings of Symposium on Ontological
Engineering of AAAI (1997)

7. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)

8. David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The alignment API 4.0.
Semant. Web 2(1), 3–10 (2011)

9. Chu, Y.L., Li, T.Y.: Realizing semantic virtual environments with ontology and
pluggable procedures. In: Lányia, C.S. (ed.) Applications of Virtual Reality. InTech,
Rijeka (2012)

10. Bille, W., Pellens, B., Kleinermann, F., Troyer, O.D.: Intelligent modelling of virtual
worlds using domain ontologies. In Delgado-Mata, C., Ibáñez, J. (eds.) Intelligent
Virtual Environments and Virtual Agents, Proceedings of the IVEVA 2004 Work-
shop, ITESM Campus Ciudad de Mexico, Mexico City, D.F., Mexico, April 27th
2004, vol. 97 of CEUR Workshop Proceedings (2004). CEUR-WS.org

11. Xuesong, W., Mingquan, Z., Yachun, F.: Building vr learning environment: an ontol-
ogy based approach. In: First International Workshop on Education Technology and
Computer Science, ETCS 2009, vol. 3, pp. 160–165, March 2009

12. Babitski, G., Probst, F., Hoffmann, J., Oberle, D.: Ontology design for information
integration in disaster management. In: Fischer, S., Maehle, E., Reischuk, R. (eds.)
Informatik 2009: Im Focus das Leben, Beiträge der 39. LNI, vol. 154, pp. 3120–3134.
Gesellschaft für Informatik, Bonn (2009)

13. Bock, C., Odell, J.: Ontological behavior modeling. J. Object Technol. 10(3), 1–36
(2011)

14. Faulkner, S., Kolp, M.: Ontological basis for agent ADL. In: Eder, J., Welzer, T.
(eds.) The 15th Conference on Advanced Information Systems Engineering (CAiSE
2003), Klagenfurt/Velden, Austria, 16–20, CAiSE Forum, Short Paper Proceedings,
Information Systems for a Connected Society, CEUR Workshop Proceedings, vol.
74 (2003). CEUR-WS.org

http://CEUR-WS.org
http://CEUR-WS.org

Collaborative Editing of Ontologies Using Fluent
Editor and Ontorion

A. Seganti1(B), P. Kap�lański1,2, and P. Zarzycki1

1 Cognitum, Wa�l Miedzeszyński 630, Warsaw, Poland
{a.seganti,p.kaplanski,p.zarzycki}@cognitum.eu

2 Gdansk University of Technology, Narutowicza 11/12, Gdansk, Poland

Abstract. In this paper we present two tools that we are developing at
Cognitum for managing large knowledge bases: Fluent Editor and the
Ontorion Server. We have been able to build a collaborative knowledge
management system using these two tools. We show how this system can
be used for the concurrent modification of knowledge and how we can
manage multiple modifications to the same knowledge.

1 Introduction

In this paper we show how to use Fluent Editor [1] and Ontorion [2,3] to build
a collaborative editing tool for large ontologies that uses controlled natural lan-
guage and modularization.

Fluent Editor is an editing tool for modifying ontologies using Ontorion Con-
trolled Natural Language (OCNL) as an interface for editing. Fluent Editor’s main
features are: autocompletion - helping the user to write the correct sentences,
many tools to interact with third party components (R plugins, Protégé plugin,...),
an OCNL interface, reasoning and materialization, complex CNL queries to the
current ontology, complete reference management (import/export/referencing of
OWL/RDF ontologies), a graphical representation of the ontologies and inter-
action with the Ontorion Server. With its 2000+ users, Fluent Editor is quickly
becoming an alternative to OWL-based editors like Protégé [4].

The Ontorion Server is the server equivalent of Fluent Editor, designed to
have scalable reasoning, an OCNL interface (querying and saving), a SPARQL
interface, OWL2/SWRL compatibility, tunable reasoning (currently OWL-DL
and OWL-RL profiles are available) and high availability. Ontorion has advanced
reference management, giving the user the possibility to define a prefix to a
namespace map to be used for all entities. Inside Ontorion, an innovative modu-
larization algorithm (based on [5]) is used to modularize the knowledge to allow
for scalable reasoning.

Both Fluent Editor and the Ontorion Server expose an OCNL interface.
OCNL is a controlled natural language designed on the one hand to be fully
compatible with OWL2 and SWRL W3C standards and on the other hand, to
be intuitive enough for people with little knowledge of logic to write knowledge
bases. Internally, both products use description logic as the interface between
these two worlds.
c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 45–55, 2016.
DOI: 10.1007/978-3-319-33245-1 5

46 A. Seganti et al.

In the first part of the paper we will briefly introduce Fluent Editor and the
Ontorion Server. Then we will show the Collaborative Knowledge editing system
architecture that we have built using these two tools and we will show how the
modularization algorithm has been used to simplify knowledge modification.
Next, we will present similar related collaborative ontology editors and compare
them to our solution. Then, we will present the results of evaluation based on
a pilot study of collaborative ontology editing in a Clinical Decision Support
System application for Gist Cancer, followed by a discussion and a summary.

2 Fluent Editor and the Ontorion Server

Fluent Editor and the Ontorion Server are products created by Cognitum to
manage knowledge. Both products are fully compatible with the W3C stan-
dards and internally use description logic for all logic-related operations. As the
user interface for both systems, we use Ontorion Controlled Natural Language
(OCNL), which is a controlled language equivalent to the OWL2 and SWRL
languages.

2.1 Fluent Editor

Fluent Editor is a knowledge editor tool for editing standard W3C ontologies.
In Fluent Editor, we provide: a reasoner, a taxonomy tree, a materialized graph,
an interface to R programming using our ROntorion package, the possibility
to import/export from/to the Protégé editor, a graphical representation of the
ontology, reference management, a reasoning profile validation of the current
ontology and Ontorion interoperability.

In Fluent Editor two different interfaces for ontology exploration have been
implemented: a reasoner and a materialized graph. The reasoner uses an OWL-
DL reasoner for reasoning over the content of the ontology. By default Fluent
Editor loads HermiT [6] but it is possible to implement a simple C# interface to
add other reasoners to Fluent Editor. In the materialized graph, we use a custom,
Jena-based OWL-RL+ reasoner (OWL-RL+ is OWL-RL extended with some
additional features based on the idea presented in [7] extended in a significant
way with e.g. SWRL builtins, custom rules, etc.) to materialize the knowledge
and then query the materialized inferred graph. In both cases, the user can make
OCNL queries to the ontology and the results are displayed in OCNL. Due to
differences in the underlying formalism, the query expressivity in the two cases is
slightly different and the result window is also different: in the OWL-DL reasoner
case, the result will consist of all entities answering the query together with sub
and super concepts, while in the materialized graph case, the instances answering
the query are shown.

2.2 Ontorion Server

The Ontorion Server [3] is a knowledge management server that offers scal-
able and tunable reasoning. Ontorion has an OCNL interface through which the

Collaborative Editing of Ontologies Using Fluent Editor and Ontorion 47

user can make queries to the knowledge together with a SPARQL interface for
complex SPARQL queries. It is possible to use the Ontorion Server through a
Windows Communication Foundation (WCF) API, which exposes all the main
functions to manage and query knowledge, manage users and databases and to
use more advanced functionalities.

Reasoning in Ontorion is very similar to what is done in Fluent Editor’s
materialized graph. The main difference is that each time something is saved,
Ontorion will extract the module of knowledge related to the sentences that are
being saved and reason over this knowledge. This is possible because Ontorion
has an implementation of a modularization algorithm (based on [5]) and allows
reasoning to be scaled also for a large number of entities. In Ontorion two rea-
soning modes can be used: OWL-DL and OWL-RL+; however, in the first case,
we still use the expensive OWL-DL reasoner, therefore the default mode for
Ontorion is OWL-RL+.

In Ontorion, the administrator of the system can manage multiple knowledge
bases and each user can have different access to the knowledge bases currently
loaded. Furthermore, there is a knowledge versioning management feature to
know when something has changed in the knowledge. This feature, together
with optimistic concurrency over the implementation of modules, described here
later, forms the basis for collaborative ontology editing.

2.3 OCNL

OCNL [8] is a controlled natural language for writing ontologies, which is com-
patible with OWL2+SWRL standards. Controlled natural language should be
unambiguous and intuitive, ultimately forming an easy way for human-machine
interaction (understandable by humans, executable by machines). Due to its lim-
itations, it needs to be supported by a predictive (structural) editor and OCNL
fulfills this requirements. It is currently implemented for English, Polish and
German but can be extended to other languages. A typical sentence in OCNL
will look like this: Every man is a human-being. In this sentence we can see that
in OCNL complex words need to be separated by hyphens.

In OCNL it is possible to express all OWL constructs and SWRL rules
(together with SWRL builtins) and use OWL references (prefixes man[pfx] or
full namespaces man[<http://www.mynamespace.com>] can be used). General
groups of sentences are allowed which include:

1. Concept subsumption, represents all cases where there is a need to specify (or
constrain) the fact about a specific concept or instance (or expressions that
evaluate the concept or instance) in the form of subsumption (e.g.: Every cat
is a mammal, Pawel has two legs or One cat that is brown has red eyes).

2. Role (possibly complex) inclusion specifies the properties and relationships
between roles in terms of the expressiveness of SROIQ(D) (e.g.: If X loves
something that covers Y then X loves-cover-of Y).

3. Complex rules; If [body] then [head] expressions that are restricted to the
DL-Safe SWRL subset [9] of rules (e.g.: If a scrum-master is-mapped-to a

http://www.mynamespace.com

48 A. Seganti et al.

provider and the scrum-master has-streamlining-assessment-processes-sprints-
level equal-to 2 then the provider has-service-delivery-level equal-to 1 and the
provider has-support-services-level equal-to 2).

4. Complex OWL expressions; the grammar allows the use of parentheses that
can be nested if needed in the form of (that <expression>) e.g.: Every human
is something (that is a man or a woman or a hermaphrodite).

5. Knowledge modification triggers that have the form of: If P then for-each
P execute Q, where P is a premise and Q a consequence. Premise P is an
expression that evaluates a set of connected instances that fulfill some condi-
tions, while the consequence Q is a procedure written in R [10] programming
language.

2.4 System Architecture

The collaborative knowledge editing environment that we have implemented uses
Fluent Editor and the Ontorion Server together. The architecture of the system
is presented in Fig. 1.

Fig. 1. Schema of the collaborative editing architecture using Fluent Editor and
Ontorion.

The server side of the collaborative editing architecture is comprehensive
combination of Ontorion and the Ontorion Windows Communication Foundation
(WCF) API. The API exposes all Ontorion functionalities and has been used
in Fluent Editor to implement the client-side. Ontorion has a complete user
management system in which each user can have a different access level to each
database in Ontorion. For collaborative editing, each user will connect using
her/his Ontorion credentials, and the changes to the ontology will be logged.

Collaborative Editing of Ontologies Using Fluent Editor and Ontorion 49

On the client side, Fluent Editor is installed locally on the computer of each
user. After the user opens Fluent Editor, s/he can connect to Ontorion and will
enter into Fluent Editor in the Ontorion Mode. In this mode, it is possible to
download/modify/add knowledge, see the taxonomy tree and make SPARQL
queries to the knowledge in Ontorion.

2.5 Ontorion Mode

User interface. When in Ontorion mode Fig. 2, it is possible to Save, Download,
Refresh and Clear the module regarding the knowledge the user is interested
in. The whole point of the Ontorion mode is to manage modules of knowledge
(see Sect. 2.6): the user adds entities to the signature, the module corresponding
to the signature is downloaded and the user modifies or adds knowledge in the
module.

Fig. 2. Screenshot of the tab showing in Ontorion mode inside Fluent Editor.

Module management is based on the “signature” of the module. In the signa-
ture there are the entities (concepts, instances or properties) that are of interest
to the user and each time a new entity is added, the module corresponding to
the signature will be downloaded. For example, if the user adds to the signature
the instance ‘New-York’ and the relation ‘lives-in’, the module will contain all
knowledge relative to New-York and lives-in.

Taxonomy Tree and SPARQL queries. A taxonomy tree is displayed together
with each ontology being edited in Fluent Editor and is generally built upon data

50 A. Seganti et al.

from the current ontology and all referenced ontologies. Selecting an element on
the taxonomy tree will search expressions in the CNL editor that are related
explicitly to the selected element.

The taxonomy tree is divided into four parts:

– thing: shows is-a relations between concepts and instances.
– nothing: shows concepts that cannot have instances.
– relation: shows the hierarchy of relations between concepts and/or instances.
– attribute: shows the hierarchy of attributes.

In Ontorion mode, the taxonomy tree will load the structure of the knowledge
currently stored in Ontorion. Furthermore, in Ontorion mode, it is possible to
make SPARQL queries to the knowledge in Ontorion.

Annotation Support and References. Ontorion and Fluent Editor have full
support for annotations and reference management. In Ontorion, it is possi-
ble to store a prefix to a namespace map that will be used to translate all
namespaces contained in the entities to the corresponding prefix (e.g. label[rdf]).
If no namespace is found, the entity will contain the full namespace (e.g.
label[<http://www.w3.org/1999/02/22-rdf-syntax-ns>]). Thus each time that
the user downloads the knowledge, Fluent Editor will also automatically down-
load the references and the annotations related to the sentences that have been
downloaded. It is then possible to see the annotations in the annotation window.

It is also possible to see annotations relative to all the elements in the tax-
onomy tree by right-clicking on one of the nodes and selecting the Show anno-
tation command. In this case, the annotation will be shown without the need
to download the knowledge relative to this entity.

2.6 Module Management

The modularization algorithm is a proprietary algorithm based on [5]. Essen-
tially, a module in Ontorion is the knowledge relative to the entities in the sig-
nature together with the knowledge “around” it. This means that when asking
for the module of an entity in Ontorion, the user will get back all the sentences
where the entity is mentioned together with all the sentences that are related
to this entity. Modularization is used internally by Ontorion to decide the part
of the knowledge on which it needs to reason but, at the same time, it is used
in the collaborative editing of knowledge to show the user only the knowledge
she/he wants to work on.

2.7 Collaborative Knowledge Editing

The Ontorion mode is particularly interesting when used for collaboratively edit-
ing a big knowledge base stored in Ontorion. Indeed, more than one user can be
connected to Ontorion at the same time and it is possible that both users are
working on the same knowledge at the same time. In this case, when one of the

http://www.w3.org/1999/02/22-rdf-syntax-ns

Collaborative Editing of Ontologies Using Fluent Editor and Ontorion 51

users commits his/her changes to Ontorion, the other user will be notified of the
changes as she/he will see the resync icon at the bottom left of Fluent Editor.

In this case, the user needs to click the Refresh button in the Ontorion tab,
which will show her/him the sentences added from the other user to the module
that is currently loaded (for example in Fig. 3 someone added a new attribute
for the instance Eli). By clicking Change, this sentence will be added to the
knowledge currently loaded into Fluent Editor.

Fig. 3. Screenshot of the window that will be shown to the user when some changes
are detected in the current knowledge that the user is editing.

When switched to “automatic merge” mode, if modules are frequently chang-
ing merging is done automatically without warning of non-colliding changes (sep-
arate lines of text w.r.t OCNL) turning the system into a real-time collaborative
editing tool (RTCE).

In Fluent Editor (when in Ontorion mode), additional effort is made to man-
age module synchronization. In order to do this, we distinguish three modules:
the current “local” module that the user is editing, the local remote module (the
last module that the user downloaded) and the current remote module (the mod-
ule that is currently stored in Ontorion). Using this distinction, we are able to
identify the knowledge that has been added/removed locally to the module that
was downloaded from Ontorion. Furthermore, in the background we check if the
knowledge in Ontorion has changed. If it has we can, by comparing the remote
module with the last downloaded module, understand if new knowledge has been
added, and warn the user.

Moreover, a non-trivial problem related to managing module synchronization
is caused by managing time synchronization. In order to avoid problems related
to managing a common clock and other time-related problems in distributed

52 A. Seganti et al.

systems, we opted for a simpler solution: knowledge versioning. Each time that
a user makes a change to the knowledge base, the knowledge version changes.
In this way, it is enough to download the knowledge version in Fluent Editor
together with the module in order to know if the module we have downloaded
is up-to-date or not.

This kind of conflict resolution can be described as “the first writer is the
winner” synchronization. On the other hand, once the other user changes an
overlapping knowledge module s/he is informed about it immediately, and is
asked to update the state to the current version if a conflict occurs. This is very
similar to such an approach common in software version control systems like e.g.:
SVN; however, in SVN, conflict resolving is done during a so-called “workplace
destabilization phase” and it is done on demand. Moreover, the programmer
using SVN never knows if in the meantime someone else has not simultaneously
changed the file. When working with Fluent Editor in Ontorion mode, the writer
is always at least warned about a conflict; however, s/he can continue to work
without an update at her/his risk.

When switched to “automatic merge” RTCE mode, all users are forced to
work on the “most recent” version of the ontology. This kind of collaboration
strategy is common for distributed systems (which Ontorion also claims to be)
and can also be found e.g.: in Google Docs collaborative conflict resolution strat-
egy, where only a critical conflict is reversed and the current merged state of the
document is displayed, which can force the “late writer” to re-apply the change
to the document [11]. From our observation, it seems to be true that this kind
of conflict situation is very rare in common use cases.

This kind of conflict resolution greatly limits the need for communication
during concurrent knowledge engineering and is possible due to the fact that
users use controlled natural language as a medium. This is because the use of
CNL makes the modern tools and methods used in concurrent document editing
useful in the case of collaborative knowledge engineering.

Typically, collaborative editorial work requires additional channels of com-
munication between editors that support the review process. As we have imple-
mented full OWL annotation support in FE (also for OWL statements as anno-
tation subjects), we assume that the whole review process can be implemented
based on OWL annotations if only editors agree on a single annotation property
to be such that describes “comments”. Moreover, as all the changes are recorded,
it is possible to track them if the review process requires it.

3 Related Work

CNL has a long history. A well-known implementation of a controlled natural lan-
guage is “Attempto Controlled English (ACE)” [12], developed by the University
of Zurich. However, the origins of CNL can be found in the famous novel by George
Orwell: “1984”, where he discusses NEWSPEAK – a controlled language. The
most used industrial implementations nowadays are Domain Specific Language

Collaborative Editing of Ontologies Using Fluent Editor and Ontorion 53

(DSL) (implemented as a part of the Drools project) [13] and Semantics of Busi-
ness Vocabulary and Rules (SBVR) [14]. Whereas CNL allows the representation
of BPML diagrams. OCNL maps OWL2 in a bidirectional manner.

A wide range of collaborative ontology tools exists:

1. MoKi [15] is a tool that “supports the creation of articulated enterprise mod-
els through structured wiki pages”. It enables heterogeneous teams of experts,
to collaborate. The active collaboration is guaranteed by an automatic trans-
lation between formal and informal specifications.

2. WebProtégé [16] is a free, open source collaborative ontology development
environment. It is “a simple editing interface, which provides access to com-
monly used OWL constructs”. It supports full change tracking, revision his-
tory, sharing and permissions, threaded notes and discussions, watches and
email notifications.

3. The NeOn [17] toolkit is “a state-of-the-art, open source multi-platform ontol-
ogy engineering environment, which provides comprehensive support for the
ontology engineering life-cycle”. It is based on the Eclipse platform and pro-
vides an extensive set of plug-ins covering a variety of ontology engineering
activities, including a Collaboration Support plugin. This plugin allows one
to manage the changes in different statuses, which are made by other editors.

In Fluent Editor, in Ontorion Mode, communication as well as ontology
authoring is done based on CNL and OWL annotations, preferably in real-time
when in “automatic merge”, RTCE mode.

The use of a CNL for collaborative knowledge management can be found
in AceWiki [18]. AceWiki is a semantic wiki that makes use of the controlled
natural language ACE; the articles in the wiki are composed of formal statements
that look like natural English.

While AceWiki is mostly focused on collaborative knowledge acquisition, we
focus on the collaboration process between different experts and therefore on
their intelligence amplification (IA); however, we are conscious of the blurred
border between both approaches and we try to understand the properties of this
border.

3.1 Community

Ontorion is free of charge for academic institutions and independent researchers.
For more information, please visit our website available at http://www.cognitum.
eu/semantics/.

4 Evaluation

The Clinical Decision Support System application for Gist Cancer (CDSS for
Gist) was a pilot study devoted to Gastrointestinal Stromal Tumors (GIST),
where we used collaborative ontology engineering based on our approach. Oncol-
ogy is a field where recommendations are well defined and studied and where

http://www.cognitum.eu/semantics/
http://www.cognitum.eu/semantics/

54 A. Seganti et al.

the quality of the clinical data needs to improve to allow for a more complex
analysis of these data.

The experts involved were able to develop the ontology during this collabora-
tion with the team of knowledge-engineering experts that had thought about the
general architecture of the CDSS application and its non-functional requirements.

In this study we proved that if a domain expert is involved in the whole
process of building the application then she/he is able to understand and correct
the knowledge that has been written using OCNL.

5 Discussion and Summary

In this paper we presented a collaborative knowledge editing environment using
Fluent Editor and the Ontorion Server. We have shown that using these tools
it is possible to set up a collaborative knowledge editing environment where
the user downloads the modules of knowledge that he/she is interested in and
modifies the knowledge using OCNL language. Furthermore, the user can explore
the knowledge currently stored in Ontorion by using SPARQL queries and the
taxonomy tree.

We are currently working on improving the editing capabilities of the environ-
ment by: adding user access levels to each “module” of the knowledge (instead
of the whole database), using knowledge modification logging to allow for undo
functionalities, and adding versioning management.

References

1. Cognitum. Fluent Editor 2014 - Ontology Editor, 1 June 2015. http://www.
cognitum.eu/semantics/FluentEditor/

2. Cognitum. Ontorion semantic knowledge management framework, 1 June 2015.
http://www.cognitum.eu/semantics/ontorion/

3. Kap�lański, P., Weichbroth, P.: Cognitum ontorion: knowledge representation and
reasoning system. In: FEDCSIS 2015 (2015)

4. Knublauch, H., Horridge, M., Musen, M.A., Rector, A.L., Stevens, R., Drummond,
N., Lord, P.W., Noy, N.F., Seidenberg, J., Wang, H.: The protege OWL experience.
In: OWLED (2005)

5. Kap�lański, P.: Syntactic modular decomposition of large ontologies with rela-
tional database. In: Nguyen, N.T., Katarzyniak, R.P., Janiak, A. (eds.) New Chal-
lenges in Computational Collective Intelligence. SCI, vol. 244, pp. 65–72. Springer,
Heidelberg (2009)

6. Shearer, R., Motik, B., Horrocks, I.: Hermit: a highly-efficient owl reasoner. In:
OWLED, vol. 432, p. 91 (2008)

7. Meditskos, G., Bassiliades, N.: Dlejena: a practical forward-chaining OWL 2 RL
reasoner combining jena and pellet. Web Semant. Sci. Serv. Agents World Wide
Web 8(1), 89–94 (2010)

8. Kap�lański, P.: Controlled English interface for knowledge bases. Studia Informatica
32(2A), 485–494 (2011)

http://www.cognitum.eu/semantics/FluentEditor/
http://www.cognitum.eu/semantics/FluentEditor/
http://www.cognitum.eu/semantics/ontorion/

Collaborative Editing of Ontologies Using Fluent Editor and Ontorion 55

9. Glimm, B., Horridge, M., Parsia, B., Patel-Schneider, P.F.: A syntax for rules in
OWL 2. In: Hoekstra, R., Patel-Schneider, P.F. (eds.) OWLED. CEUR, vol. 529.
CEUR-WS.org (2008)

10. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput.
Graph. Stat. 5(3), 299–314 (1996)

11. Dekeyser, S., Watson, R.: Extending google docs to collaborate on research papers.
University of Southern Queensland, Australia 23, 2008 (2006)

12. Fuchs, N.E., Schwitter, R.: Attempto controlled English (ace) (1996). arXiv
preprint cmp-lg/9603003

13. Proctor, M., Neale, M., McWhirter, B., Verlaenen, K., Tirelli, E., Bagerman, A.,
Frandsen, M., Meyer, F., De Smet, G., Rikkola, T., Williams, S., Truit, B.: Drools
(2007)

14. OMG. Semantics of business vocabulary and business rules (sbvr), v1.0, Abruf am
02.05.2013 (2008). http://www.omg.org/spec/SBVR/1.0/PDF

15. Di Francescomarino, C., Ghidini, C., Rospocher, M.: Evaluating wiki collaborative
features in ontology authoring. IEEE Trans. Knowl. Data Eng. 26(12), 2997–3011
(2014)

16. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: Webprotégé: a collaborative
ontology editor and knowledge acquisition tool for the web. Semant. Web 4(1), 89
(2013)

17. Haase, P., Lewen, H., Studer, R., Tran, D.T., Erdmann, M., d’Aquin, M., Motta,
E.: The neon ontology engineering toolkit. In: WWW (2008)

18. Kuhn, T.: Acewiki: A natural and expressive semantic wiki (2008). arXiv preprint.
arXiv:0807.4618

http://www.arxiv.org/abs/cmp-lg/9603003
http://www.omg.org/spec/SBVR/1.0/PDF
http://arxiv.org/abs/0807.4618

Integrating Ontology Negotiation and Agent
Communication

Marlo Souza1(B), Alvaro Moreira1, Renata Vieira2,
and John-Jules Ch. Meyer3

1 Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
{marlo.souza,alvaro.moreira}@inf.ufrgs.br

2 Pontifical Catholic University of Rio Grande do Sul - PUCRS,
Porto Alegre, Brazil

renata.vieira@pucrs.br
3 Utrecht University, Utrecht, The Netherlands

j.j.c.meyer@uu.nl

Abstract. Ontologies are considered a necessary ingredient for commu-
nication among heterogeneous agents in the Web. With the multiplica-
tion of ontologies for the same domains, semantic interoperability has
become a challenge. In this work, we study the use of ontology nego-
tiation in a agent communication mechanism for agents with ontologi-
cal reasoning. The resulting communication mechanism allows agents to
exchange not only factual but also terminological knowledge about an
individual domain and is closely related to available mechanisms in the
literature such as KQML and FIPA-ACL.

Keywords: Ontologies for agents · Agent communication · Ontology
negotiation

1 Introduction

It is commonly accepted that two essential ingredients for the construction of
the Semantic Web are the use of ontologies and autonomous agents. Despite that
fact, the integration of ontology-based reasoning in the semantics of communi-
cation mechanisms for multiagent systems has just recently became the focus of
attention.

As different ontologies arise to describe the same domain, achieving semantic
interoperability became essential to allow communication among agents in the
Web. Various methods have been proposed to solve this problem in the area
commonly known as Ontology Mediation [1].

The most popular approach to ontology mediation is ontology matching [2].
While it is a prolific area with mature methods, matching methods are static,
i.e. the alignments are established before the agents’ interactions. A dynamic
alternative is to centralize ontology mediation in ontology agents [3]. The cen-
tralization required by this approach, however, is not easily scalable.
c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 56–68, 2016.
DOI: 10.1007/978-3-319-33245-1 6

Integrating Ontology Negotiation and Agent Communication 57

Seeking dynamic and decentralized ways to ontology mediation, [4] proposed
the notion of ontology negotiation. In this approach, the agents resolve their
communication problems by negotiating a conversation vocabulary among them-
selves. We believe this approach is particularly interesting since it includes agent
communication as an integral part of ontology mediation.

The main contribution of this work is a proposal to embed ontology negotia-
tion into a speech act-based communication mechanism for multiagent systems.
We introduce a mechanism to allow communication between agents with differ-
ent private vocabularies that can exchange terminological information, based on
the work of [5]. We will, however, drop the requirement of classifiers and thus
generalize the conditions for meaningful communication between heterogeneous
agents.

This work is structured as follows: in Sect. 2 we discuss the related work;
in Sect. 3 we define the central ideas of the work of approximate translation
and information loss and in Sect. 4 we establish formal conditions for proper
communication between agents and algorithms for computing translations; in
Sect. 5 we present a mechanism for ontology-based communication that allows
ontology negotiation. We conclude the paper with some considerations about
the problems that arise from integrating negotiation and communication in the
language and the limitations of our technique.

2 Related Work

In [6] a framework for heterogeneous multiagent systems supporting ontology-
based communication was defined. The framework allows agents to have different
ontologies, and they implement an ontology service in which all the ontologies
must be registered. The technique only allows assertional exchange and is cen-
tralized, by the use of ontology agents.

From the ontology negotiation point of view, [4] presents a protocol that
allows agents to exchange parts of their terminologies and to interpret received
messages. The communication mechanism, however, is very restricted. A sim-
ilar approach but focused mainly on inductive methods used to locate similar
concepts between the agents’ terminologies is given in [7].

A method for semantic interoperability between taxonomies in peer-to-peer
systems is presented in [8]. While their approach is very similar to ours, their
work is limited to taxonomies, and they require a complete knowledge of the
extension of the concepts.

The work of [5] presents different communication protocols for two agents to
establish a communication vocabulary, by exchanging parts of their ontologies.
They focus on how to preserve the extensional meaning of the concepts between
different but jointly consistent ontologies. The main limitation of in [5] is that
they assume that every agent knows the complete extension of their concepts -
by the use of classification functions. Complete knowledge, however, is not a
realistic property for most applications.

58 M. Souza et al.

We generalized the notions of lossless communication of [5] for agents with
incomplete information about their domain. Also, we integrate their termino-
logical negotiation protocol within a communication mechanism for multiagent
systems.

3 Approximated Translation and Information Loss

Our mechanism relies on two central notions: approximate translation and infor-
mation loss. Informally, approximate translations are functions that transform
a formula ϕs written using concepts of the speaker’s ontology into a formula
ϕh using concepts of the hearer’s ontology in a way that preserves meaning. An
information loss occurs when an agent detects that the meaning of an informa-
tion may have been lost in the translation process.

From here on, we assume familiarity with Description Logics (DL). Capital
letters such as A,B,C,C ′, etc. represent concept names while lowercase letters
as a, b represent individuals. The uppercase Greek letter ΦC will usually denote
the set of concept names of an ontology, Similarly, ΦR the set role names in an
ontology. We will call BΦi

the set of atomic concept in the ontology Oi - which
is dependent on the DL chosen. For DL-Lite the foundational language of the
OWL 2-QL profile, for example, it includes the concepts ∃R for every role name
R ∈ ΦR, besides the concept names.

We will not fixate a particular Description Logic, but only require that the
negation of atomic concepts ¬B to be representable in it. We are aware that
some Description Logics do not allow atomic negation, such as the important
EL family used as the foundation for the OWL2 - EL profile. Notice, however,
that several important Description Logics, such as the DL-Lite family, SHOIN
and SROIC, used to defined the semantic of parts of the Ontology Web Lan-
guage, allow these constructions. We leave for future developments to extend
our methods for DLs without atomic negation.

We require that the ontologies used by the agents are expressible in the same
Description Logic. A more general setting would require the formal machinery of
translations between logics [9], which is outside the scope of this work. We also
require that their sets of concept names are disjoint. Concepts with the same
name in different ontologies can be differentiated by the use of namespaces.

In our mechanism, each agent i has a concept translation function Tij , for
each agent j in the system. A concept translation function Tij : BΦi

→ BΦj
is a

partial function that maps a concept Ci ∈ BΦi
to a concept Cj ∈ BΦj

. A similar
function may be defined for role names Trij : ΦRi

→ ΦRj
. For sake of space we

will not include translation of roles, but we point out that for expressible DLs,
such as SROIC [10] that bases the OWL 2 language, deciding translation for
roles may be achieved using the same techniques as proposed below for concepts.
We represent that the translation of C is undefined by Tij(C) = ⊥.

When a translation for a concept C in ontology Oi is undefined, the agent
i will navigate in the hierarchy of concepts Oi searching for a concept C ′ �= C
which is both “closer” to C in the hierarchy and is also translatable according to

Integrating Ontology Negotiation and Agent Communication 59

Tij (i.e. Tij(C ′) �= ⊥). We call such a concept C ′ a most specific super concept
of C, translatable according to a concept translation function Tij .

Definition 1. A most specific super concept of a concept C ∈ Oi translatable
according to a concept translation function Tij is an atomic concept C ′ ∈ Oi

satisfying the following properties:

(i) C ′ �= C, Oi |= C � C ′, Tij(C ′) �= ⊥, and
(ii) for all C ′′ ∈ Oi, if C ′′ �= C, Oi |= C � C ′′, and Tij(C ′′) �= ⊥ then Oi �|=

C ′′ � C ′

We call mstsc(Oi, Tij , C) the set of most specific super concepts of C translatable
according to a concept translation function Tij

By (i) in the definition above, C ′ is a superconcept of C, translatable w.r.t
Tij , while (ii) states that C ′ is most specific than any other concept C ′′ that is
also a superconcept of C and translatable w.r.t Tij .

Note that a most specific super concept always exists since axiom C � �
always holds, and we require that the concepts � and ⊥ are always translated to
themselves. Also, it might not be unique. An algorithm for computing the set of
most specific super concepts of a concept C translatable according to a concept
translation function Tij , denoted by, is presented in Fig. 1.

Fig. 1. Algorithm for computing the most specific translatable superconcepts of a
concept

In the algorithm depicted in Fig. 1, line 1 computes all atomic concepts that
satisfy condition i) in the Definition 1. In the loop (lines 3 to 6), the concepts that
are not most specific, (i.e. that violates condition ii in Defintion 1) are discarded.
We can now define the notion of approximated concept translation.

Definition 2. Let Tij : BΦi
→ L (BΦj

) be a concept translation function, and
Oi the agent’s ontology. We define the approximated concept translation function
Tij : BΦi

→ BΦj
as:

Tij(C) =

{
Tij(C) if Tij(C) �= ⊥
Tij(C

′) otherwise, w/C′ = sel(mstsc(Oi, Tij , C))

60 M. Souza et al.

The approximated translation of an atomic concept C is the concept trans-
lation of it, if it is defined, or it is the approximated concept translation of the
most specific superconcept of C.

In the definition above, sel is a selection function on the set of most specific
translatable superconcepts, which may be provided by the programmer.

Since most agent communication mechanisms in the literature [11–13] rely on
communication of ground atomic facts, we will not deal with complex formulas.
Our mechanism will be based only on instantiations of roles and concept literals,
i.e. atomic concepts and their negations. Notice however that, given that the
ontologies of the agents are defined over a same Description Logic, it is easy to
lift the translation of atomic concepts to complex concept formulas by preserving
the syntactic structure. The definition below may be, thus, generalized to be
applicable in more expressive DLs.

Definition 3. Let C(a) be a concept instantiation, where C is concept literal
formula in the vocabulary of the agent i. The translation of formula C(a) to
the terminology of agent j, represented by Tij(C(a)), is given by the following
approximate formula translation function:

Tij(C(a)) =
{

Tij(C)(a)[Ex] if Tij(C) �= ⊥
Tij(C)(a) otherwise

In the above definition, we use an annotated formula Tij(C)(a)[Ex] to point
out explicitly that this is the product of an exact translation - this will be
important later when we define information loss. From a logical point of view,
these annotations have no interpretation.

When an agent i needs to communicate an information C(a) to an agent j she
will first translate C(a) into j’s terminology, using the function in Definition 3,
and then send the message with the resulting formula.

We say that an agent i with ontology Oj and translation function Tij satis-
fies InfLoss(at), i.e. 〈Oj , Tji〉 � InfLoss(at), when j detects a (possible) loss of
information on receiving information at from agent j.

Definition 4. We say the agent possessing ontology Oi and translation function
Tij detects an information loss when receiving an atomic formula at from agent
j iff

〈Oj , Tji〉 � InfLoss(at) iff at �= C(a)[Ex] and for some term t
∃B ∈ BΦj

s.t.Tji(B(t)) = Tji(at)

When an agent detects an information loss, she can ask the speaker to clarify
the information. This action will result in the speaker introducing new concepts
in the communication, i.e. explaining to the hearer the meaning of the concept
the speaker intend to use in the communication. Knowing the meaning of the
concept the speaker wants to use, she can inform to the speaker an appropriate
translation to her terminology.

Integrating Ontology Negotiation and Agent Communication 61

4 Formal Properties of Translations Between Ontologies

The main problem for establishing a translation of a message is to decide the
semantic relations between the concepts of the two ontologies. In this section,
we introduce the formal properties required of the translation functions used in
the mechanism described later. We will adopt the requirements of [5] of maximal
preservation of extensional meaning as the guideline to decide translations. In
this section, we aim to provide a function TransCand to compute candidates
for the translation of a concept literal C, as used in rule AddConcept explained
later.

As discussed earlier, we believe the limitations imposed in [5] are very restric-
tive, in the sense that they may not be applied to a wide range of MAS. Giving
up these assumptions, however, implies we can no longer have certainty on which
translation is the correct. We can identify only those which cannot be good trans-
lations since the computation may only be performed over an incomplete set of
information about the world.

We assume a fixed set Δ of individuals for all ontologies, i.e. there are no
private names for individuals. This assumption is equivalent to require individ-
uals to be referenced by URIs. In the following, we define a series of properties
that have to be satisfied by our translation between ontologies. These properties
are based on those given in [5] posed in the context of incomplete information
about the domain.

Definition 5 (Sound Translation). Let Oi and Oj be two ontologies. We say
Tij : BΦi

→ BΦj
is a sound translation from Oi to Oj iff

∀C ∈ BΦi
,∀a ∈ Δ (Oi � C(a) ⇒ Oj �� ¬Tij(C)(a)).

Additionally, we say of any C ′ ∈ BΦj
to be a sound translation for C ∈ BΦi

if
there is a sound translation Tij from Oi to Oj such that Tij(C) = C ′.

The soundness condition means that the original meaning of the message is
coherent with the translated message, i.e. the translation of an atomic concept
encompass all the positive cases of the original concept. Since it cannot be guar-
anteed that there is no atomic concept in the target terminology with the same
extension as the original concept, we consider a translation is sound if it is a
superconcept of the original one, i.e. if it encompass all the positive information
the original concept does.

Notice that we do not require, as [5], that the ontologies have complete
information on all individuals. Consequently, by Definitions 5 (and 6 below), the
computation of appropriate translations relies mainly on the shared individuals,
i.e. the individuals that appear in both ontologies.

The other property required is that of lossless communication. To define
that more elegantly, we will use the notion of extension of a DL formula ϕ in an
ontology O, meaning all the individuals that are inferred to be an instance of ϕ
in O, symbolically ext(O, ϕ) = {a ∈ Δ | O � ϕ(a)}.

62 M. Souza et al.

Definition 6 (Lossless Translation). Let Oi and Oj be two ontologies. We
say Tij : BΦi

→ BΦj
is a lossless translation from Oi to Oj iff Tij is a sound

translation and for any atomic concept C ∈ BΦi
there is no sound translation

T ′
ij : BΦi

→ BΦj
such that

ext(Oi, C) ∩ ext(Oj , Tij(C)) ⊆ ext(Oi, C) ∩ ext(Oj , T
′
ij(C))

and
ext(Oi,¬C) ∩ ext(Oj , T

′
ij(C)) ⊂ ext(Oi,¬C) ∩ ext(Oj , Tij(C)).

Similarly, we say of any C ′ ∈ BΦj
to be a lossless translation for C ∈ BΦi

if
there is a lossless translation Tij from Oi to Oj such that Tij(C) = C ′.

This property means that the translation of an atomic concept is the most
specific translation possible in the target ontology. In other words, while the
translation of an atomic concept may differ in extension from the original one
since a complete preservation may not be possible, the difference in the extension
is minimal (w.r.t. set inclusion).

The following properties state the meaning preservation properties of lossless
translations. First we show that, up to extensional equivalence, the translated
concept preserves the meaning of the original concept.

Proposition 1. Let Oi be an ontology and Tii a lossless translation from Oi to
Oi. Then the translation of any concept C is (extensionally) equivalent to C, i.e.

∀C ∈ BΦi
(ext(Oi, C) = ext(Oi, Tii(C))))

It is easy to see that this proposition holds from the definition of lossless
translation. Notice that C is maximal element concerning the properties of
Definition 6. Since any other translation must include the extension of C, by
maximality of C, their extensions must be equal.

The following proposition states that the information Tij(A) = B, where Tij

is a lossless translation, can be identified as a (defeasible) subsumption axiom
A � B in the union of the ontologies.

Proposition 2. Let Oi, Oj be ontologies, Tij a lossless translation from Oi to
Oj and OT = {C1 � C2 | C2 �= ⊥ ∧ Tij(C1) = C2}. Then Oi ∪ Oj ∪ OT is
consistent.

Notice that, by definition of soundness, O1 � C(a), then O2 �� ¬Tij(C)(a).
Thus, there is no individual a s.t. C(a) and ¬Tij(C)(a) are derivable from the
ontology. For this reason, the proposition above holds.

From the definitions above, we can easily construct functions to compute the
set of possible sound and lossless translations. We provide algorithms for the
computation of those function (Fig. 2a and b), given that this is a central step
in the strategy for ontology negotiation in our mechanism. Notice that other
techniques in instance-based matching [2] can be easily integrated to order or
select translations, as some similarity measure between concepts. Particularly,

Integrating Ontology Negotiation and Agent Communication 63

(a) Algorithm for computing sound trans-
lations of a concept

(b) Algorithm for computing lossless translations
of a concept

Fig. 2. Algorithms for computing translations

since a successful translation is dependent on shared individuals, other methods
may provide alignments between individuals.

The algorithm CompSound in Fig. 2a for computing admissible sound trans-
lations for an atomic concept C based on its positive and negative instantiations
works by testing for each atomic concept in the hearer’s ontology if the sound-
ness condition is satisfied by this concept. If soundness is violated, the concept
is rejected as a possible translation.

The algorithm TransCand in Fig. 2b computes candidates for lossless trans-
lations of a concept C, based on its positive and negative instantiations. It works
by, first selecting all atomic concepts in the knowledge base O that are sound
translations for C and testing for each one if it satisfies the lossless condition of
Definition 6. If this condition is violated, the concept is rejected as a possible
translation. By the following result, we have that the algorithm presented in
Fig. 2b is correct. Notice that since the set of concept and role names are finite,
so it is the set of atomic concepts, and thus the algorithms presented always
terminate.

Proposition 3. Let Oi and Oj be two ontologies with BΦi
,BΦj

their respective
sets of atomic concepts, and C ∈ BΦi

s.t. ext(Oi,¬C) = Neg and ext(Oi¬C) =
Pos. For all C ′ ∈ TransCand(Oj , Pos,Neg), C ′ is a lossless translation of C
in Oj.

It is not difficult to see that the algorithm is correct, since it test for every
atomic concept of the ontology whether the requirements in Definitions 5 and 6
hold. Also, notice that the algorithm always terminates, since it is an iteration
on a finite set of concepts.

5 Integrating Ontology Negotiation in Agent
Communication

Once established the main notions used in this work, we begin the description
of a communication mechanism allowing terminological negotiation. To specify

64 M. Souza et al.

such mechanism, we will use a simple model for an agent ag as a tuple consisted
of is composed of an ontology O, a collection translation functions T and a mes-
sage base M = 〈In,Out, Susp,Hist〉 with the agent’s messages Inbox, Outbox,
Suspended Messages, and History of Messages, with all messages sent by the
agent respectively. An agent is, thus, a triple ag = 〈O,M, T 〉.

When an agent agi = 〈Oi,Mi, Ti〉, for example, wants to send a message to
agent agj = 〈Oj ,Mj , Tj〉 she executes an action .send. Messages in the outbox
MOut have the form 〈mid , id , ilf , cnt〉, where mid is the message identifier, id is
the hearer’s identifier, ilf is the illocutionary force or type of the message and
cnt its content. A message in the inbox MIn has the same format except that id
is the identification of the agent that has sent the message.

A multiagent system is composed of agents 〈ag1, . . . agn〉 asynchronously com-
municating with each other. In a multiagent system with n agents, the compo-
nent T of each agent i has n− 1 concept translation functions Tij : BΦi

→ BΦj
,

one for every other agent j.
The operational semantics of our communication mechanism is given by a

set of rules that define a transition relation between configurations 〈O,M, T 〉.
Intuitively the notation 〈O,M, T 〉 −→ 〈O ′,M ′, T ′〉 means that, after one step
in its execution, the components of agent 〈O,M, T 〉 may have been modified to
〈O ′,M ′, T ′〉

Since the main components of the configuration are tuples, we will use the
subscript when referring to a specific component, e.g. MIn will be used to refer to
the inbox In in the tuple M . We will also make use of selection functions that
are defined by the agent programmer, e.g. the function SM selects a message
from the agent’s message boxes, such as MIn , to be processed next.

We will assume that, unless negotiating the addition or explanation of a
concept, the agents always translate their messages before sending them. This
assumption can be easily implemented by taking the semantics of sending a
message 〈mid , id , ilf , cnt〉 to automatically translate the contents of the message.

We begin the description of the performatives by explaining how the different
ontologies affect the rules for assertional communication. Then, we introduce the
main contributions of this work, i.e. the rules for terminological negotiation. We
will explain the rules of the communication mechanism by instantiating them in
the interaction between two agents (agent i and j).

Assertional Communication. Assertional communication refers to the com-
munication about ground facts, such as proposed in [11,12]. Usual performatives
available for the agents are ones as Tell/Inform for communicating to an agent
some information and Ask/Confirm for querying an agent about certain infor-
mation. In this work, we will limit our discussion to the Tell performative. The
other performatives in the literature, such as those in [12], may be constructed
similarly.

As in the ontology negotiation protocols described in [5] when the hearer
detects a possible loss of information, she must proceed to request further expla-
nation. In the simplest case when no loss of information occurs, the semantics
of the communication is straight forward.

Integrating Ontology Negotiation and Agent Communication 65

When an agent j receives an atomic formula Cj(a) from agent i as a Tell ,
and there is no information loss, where Cj is a concept in agent j’s terminology,
then agent j must update her Abox with that information. We use an Update
function to include a set new factual information in the Abox. While we do
not provide a construction of such function, we point out some candidates have
already been proposed in the literature, e.g. [14].

SM (MIn) = 〈m0, i,Tell , Cj(a)〉
〈Oj , Tji〉 � ¬InfLoss(Cj(a))

〈Oj ,Mj , Tj〉 −→ 〈O ′
j ,Mj , Tj〉

where:
O ′

j = Update(Oj , Cj(a))

(Tell)

The more interesting case for us happens when an information loss has been
detected. In these cases, the agent must request further clarification of the mes-
sage. In our mechanism, we include the performative ReqSpec to represent this
request. To request further specification of an information in the message, the
agent will send a ReqSpec message with the information for which the agent has
detected a possible information loss.

SM (MIn) = 〈m1, i,Tell , Cj(a)〉
〈Oj , Tji〉 � InfLoss(Cj(a))

〈Oj ,Mj , Tj〉 −→ 〈Oj ,M
′
j , Tj〉

where:
M ′

jOut = MjOut ∪ {〈m1, i,ReqSpec, Cj(a)〉}

(TellInfLoss)

The request for a specification will begin an interaction for terminological
exchange. While this terminological exchange is being performed, however, the
assertional exchange that initiated it - the Tell message above - will be sus-
pended, for it to be restarted after a new concept is introduced to express cor-
rectly the information agent i wished to convey.

Receiving a ReqSpec Message. The ReqSpec is aimed to request the expan-
sion of the conversation vocabulary when a possible information loss is detected
by the hearer. When agent i receives a ReqSpec message from agent j, with content
Cj(a), she must add a new concept to the vocabulary that will allow a lossless com-
munication between the agents. This action is performed by sending AddConcept
messages, explaining the (known) extensional meaning of the concept.

Notice that the information C(a) that agent i initially wished to convey has
been translated to Cj(a) before the first message was sent. Because of that, to
further explain it, agent i must reacquire the original information, stored in her
message history.

Since a ReqSpec message initiates a negotiation process, the assertional mes-
sage agent i wanted to send to agent j must be suspended, waiting the end of the
negotiation. Agent i, thus, will remove it from her history and store it in her sus-
pended messages, for it to be processed after the terminological exchange is over.

66 M. Souza et al.

SM (MIn) = 〈m1, j,ReqSpec, Cj(a)[Tell]〉
〈m1, j,Tell , C(a)〉 ∈ Hist

〈Oi,Mi, Ti〉 −→ 〈Oi,M
′
i , Ti〉

where:
Hist′ = Hist \ {〈m1, j,Tell , C(a)〉}
S = {C(b) | Oi � C(b)} ∪ {¬C(b) | Oi � ¬C(b)}
M ′

iSusp = MiSusp ∪ { 〈m1, j,Tell , C(a)〉}
M ′

iOut = MiOut ∪ {〈m1, j, AddConcept, S〉}

(ReqSpec)

Receiving an AddConcept Message. The AddConcept is aimed to inform
the hearer of the (extensional) meaning of a new concept C to be used in com-
munication. An agent may send an AddConcept as a means to introduce a new
concept she wants to use or as a response to a request for a terminological
specification.

When agent j receives from agent i an AddConcept message with the set S
containing the extension to the concept C, she must search for the concepts in
her ontology that constitute a good translation for this new concept and inform
agent i this information. To compute the “good” candidates for the translation of
C in terms of the hearer’s concepts, we will use a function TransCand, presented
in Sect. 4. In the rule, we use an auxiliary function ST that selects one among
the candidates for translation. This selection function may be provided by the
programmer.

SM (MIn) = 〈m1, i,AddConcept , S]〉
〈Oj ,Mj , Tj〉 −→ 〈Oj ,M

′
j , Tj〉

where:
P = {a | C(a) ∈ S}
N = {a | ¬C(a) ∈ S}
B = ST (TransCand(Oj , P,N))
M ′

jOut = MjOut ∪ {〈m1, i,Translate, C 	 B〉}

(AddConcept)

Receiving a Translate Message. The Translate message is a response to
a previous AddConcept message. It contains one information: a terminological
axiom A � B, where A is the concept she wants to use in communication and
B is the translation computed by the sender of the Translate message to this
concept. As a result, the receiver will update her translation function to include
this new information.

SM (MIn) = 〈m1, j,Translate, A 	 B]〉
〈Oi,Mi, Ti〉 −→ 〈Oi,M

′
i , T

′
i 〉

where:

T ′(C) =

{
B , if C = A
T (C) , otherwise

M ′
iSusp = MiSusp \ {〈m1, j, T ell, C(a)〉}

M ′
iOut = MiOut ∪ {〈m1, j, T ell, T (C)(a)〉}

(Translate)

Integrating Ontology Negotiation and Agent Communication 67

6 Conclusions

In this work, we presented an integration of ontology negotiation and an agent
communication mechanism. Using the notion of translation between ontologies,
and the algorithms provided to compute such translations, we guarantee the
communication to be meaning-preserving. It is important to notice that we focus
on the integration of a negotiation protocol within a broader communication
mechanism for agent communication not on a method for ontology mediation
per si.

About the translation method, it is important to notice two things. Firstly,
by giving up on the use of classifiers as in [5], the successful communication
between agents relies on the existence of shared individuals in the agents’ ontolo-
gies. Secondly, it is also important to notice that the choice to translate concept
names into concept names has expressibility consequences. Allowing the result
of a translation to be a DL formula would increase expressibility of the method,
as shown in [8]. The choice we made in our work was based on the fact that most
communication mechanisms available rely on the exchange of ground literals, not
complex formulas and that allowing complex formulas as translations - even if
restricted to conjunctions of atomic concepts - yields in an exponential complex-
ity for computing the translation candidates. Also, we would like to point out
that a method of translation from concept names to formulas is highly dependent
on which DL is used to axiomatize the ontologies while our method is general.

Regarding complexity, our approach requires only a linear number of query
answering requests for the ontology reasoner. If the underlying Description Logic
is limited enough, the computation of translations is tractable. We don’t con-
sider the integration of ontology negotiation in the communication mechanism
to introduce a considerable overhead to the system. The reason for this belief
is that translations are cumulative throughout the execution and are only com-
puted when needed. This leads us to conclude that our method is scalable to
large and open-ended systems, without creating a great overhead.

In future work, we would like to explore more deeply the connection between
translation functions and defeasible subsumption rules. We believe the semantics
developed for defeasible description logics may provide a rich understanding of
ontology negotiation as a reasoning problem.

References

1. de Bruijn, J., Ehrig, M., Feier, C., Mart́ın-Recuerda, F., Scharffe, F., Weiten, M.:
Ontology mediation, merging and aligning. In: Semantic Web Technologies, pp.
95–113 (2006)

2. Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer, Heidelberg (2007)
3. FIPA Ontology service specification: FIPA XC00086D (2001)
4. Bailin, S.C., Truszkowski, W.: Ontology negotiation between intelligent informa-

tion agents. Knowl. Eng. Rev. 17(1), 7–19 (2002)
5. Van Diggelen, J., Beun, R.-J., Dignum, F., Van Eijk, R.M., Meyer, J.-J.: Ontology

negotiation: goals, requirements and implementation. Int. J. Agent-Oriented Softw.
Eng. 1(1), 63–90 (2007)

68 M. Souza et al.

6. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-agentspeak: enhancing
agentspeak-DL agents with plan exchange and ontology services. In: Intelligent
Agent Technology - IAT, pp. 109–116 (2011)

7. Williams, A.B.: Learning to share meaning in a multi-agent system. Auton. Agents
Multi Agent Syst. 8(2), 165–193 (2004)

8. Tzitzikas, Y., Meghini, C.: Ostensive automatic schema mapping for taxonomy-
based peer-to-peer systems. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen,
H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 78–92. Springer, Heidelberg
(2003)

9. Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.: New dimensions on translations
between logics. Logica Universalis 3(1), 1–18 (2009)

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR, vol.
6, pp. 57–67 (2006)

11. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent commu-
nication language. In: International Conference on Information and Knowledge
Management, pp. 456–463. ACM (1994)

12. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.H.: On the formal semantics
of speech-act based communication in an agent-oriented programming language.
J. Artif. Intell. Res. 29(1), 221–267 (2007)

13. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach combining
agent and semantic web technologies. In: Baldoni, M., Son, T.C., van Riemsdijk,
M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 91–110.
Springer, Heidelberg (2009)

14. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic aboxes. In:
KR, pp. 46–56 (2006)

Lifting EMMeT to OWL Getting
the Most from SKOS

Bijan Parsia1, Tahani Alsubait1, Jared Leo1(B), Veronique Malaisé2,
Sophie Forge2, Michelle Gregory2, and Andrew Allen2

1 The University of Manchester, Manchester, UK
{bijan.parsia,tahani.alsubait,jared.leo}@manchester.ac.uk

2 Elsevier B.V., Philadelphia, USA
{v.malaise,s.forge,m.gregory,a.allen}@elsevier.com

Abstract. SKOS and OWL are quite different but complimentary lan-
guages. SKOS is targeted at “cognitive” or “navigational” represen-
tations, that is, thesauri, controlled vocabularies, and the like. OWL
is targeted at logical representations of conceptual knowledge. To a
first approximation, SKOS vocabularies try to capture useful relations
between concepts, whereas OWL ontologies aim to capture true relations
between concepts. Now, of course, the true is sometimes useful and the
useful often true, thus SKOS and OWL overlap to some degree. How-
ever, there are applications where we need to know true relations (e.g.,
generating multiple choice questions). Furthermore, SKOS relations are
not precisely specified (by design). For example, many different ways of
being useful can be covered by the same SKOS relation, but only one
way of being useful is actually applicable to some application.

In this paper, we present a case study of modifying a large, exist-
ing SKOS vocabulary partially into OWL. This lifting is motivated by
an application (generating multiple choice questions) that requires more
precision in the representation than SKOS alone supports.

1 Introduction

A central use case for Web Ontology Language (OWL) Ontologies has been the
development and maintenance of “terminologies” such as controlled vocabular-
ies, taxonomies, or thesauri. Indeed, many of the most significant (in terms of
longevity, funding, use and size) ontologies such as SNOMED CT [15,16], the
NCI Thesaurus,1 or the Gene Ontology [3] are exemplars of this use case. The
use of reasoners to support development time services such as debugging and
verification [14] as well as runtime services such as post-coordination [5] is a key
part of the OWL success story for these use cases. For these, the existence of a
precise formal semantics for such constructs as SubClassOf is a boon.

However, not all relations of interest for terminologies fit into the OWL
model. Indeed, many controlled vocabularies do not need any such precision.

1 http://ncicb.nci.nih.gov/NCICB/core/EVS.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 69–80, 2016.
DOI: 10.1007/978-3-319-33245-1 7

http://ncicb.nci.nih.gov/NCICB/core/EVS

70 B. Parsia et al.

Thus, OWL is sometimes both too strong (e.g., A SubClassOf B makes an onto-
logical commitment — that every instance of A is an instance of B — which
may be the wrong one for the hierarchical relationship we want) and too weak
(e.g., we do not have ways to indicate that terms are related in some way or
another, at least not very easily). Hence, the introduction of the Simple Knowl-
edge Organisation System – SKOS [10].

SKOS takes the opposite approach than OWL. Instead of insisting on a
formal semantics, SKOS has an informal (or perhaps semi-formal) semantics,2

at least for domain knowledge. SKOS is designed for representing loose cognitive
or navigational relations rather than accurate domain relations. Roughly, OWL
aims to model the way the world is whereas SKOS aims to support how we
think about it in some context. It is easy to see how the two might come apart.
Consider the mnemonic for spelling ‘ocean’: “Only Cats’ Eyes Are Narrow”. In a
knowledge organisation system (KOS) about mnemonics, we strongly associate
‘ocean’ and ‘cats’ even though there are few domain relations between them.

Thus, SKOS allows for some flexibility and ambiguity that is a good match
for many applications (such as query expansion) where the application’s seman-
tic demands are similarly loose. However, SKOS representations can become
implicitly overfitted to some applications as they co-evolve. Furthermore, there
are some applications where ontological representations are better suited. But
migrating from a SKOS representation to an OWL one is challenging at best.
As the SKOS Reference states [10]:

To make the “knowledge” embedded in a thesaurus or classification scheme
explicit in any formal sense requires that the thesaurus or classification
scheme be re-engineered as a formal ontology. In other words, some per-
son has to do the work of transforming the structure and intellectual con-
tent of a thesaurus or classification scheme into a set of formal axioms
and facts. This work of transformation is both intellectually demanding
and time consuming, and therefore costly. In addition, some KOS are,
by design, not intended to represent a logical view of their domain. Con-
verting such KOS to a formal logic-based representation may, in practice,
involve changes which result in a representation that no longer meets the
originally intended purpose.

2 Take, for example, this paragraph from the SKOS Reference: “To understand this
distinction, consider that the “knowledge” made explicit in a formal ontology is
expressed as sets of axioms and facts. A thesaurus or classification scheme is of
a completely different nature, and does not assert any axioms or facts. Rather, a
thesaurus or classification scheme identifies and describes, through natural language
and other informal means, a set of distinct ideas or meanings, which are sometimes
conveniently referred to as “concepts”... These structures, however, do not have any
formal semantics, and cannot be reliably interpreted as either formal axioms or facts
about the world. Indeed they were never intended to be so, for they serve only to
provide a convenient and intuitive map of some subject domain, which can then
be used as an aid to organising and finding objects, such as documents, which are
relevant to that domain.”

Lifting EMMeT to OWL Getting the Most from SKOS 71

We present a case study of ontologising a large clinical SKOS terminology, the
Elsevier Merged Medical Terminology (EMMeT). EMMeT was initially released
as a SKOS knowledge base. The main rationale was publish the vocabulary
in a standard format for publication on the Web. Given EMMeT’s non-formal
structure, SKOS was a more fitting choice than OWL, in terms of standards,
and was fitting for the first use cases of browsing and query expansion.

While EMMeT (as a KOS) is an excellent resource for current applications,
it is not by itself suited for our application, to wit, the generation of multiple
choice questions (MCQs). In particular, our MCQ generation technique requires
us to distinguish between true and false subclass relations. In this paper, we
describe our attempts to partially re-engineer EMMeT into an OWL Ontology.

2 Preliminaries

A controlled vocabulary is a collection of terms, possibly with their informal
definitions. A classification is a controlled vocabulary that is usually, but not
necessarily, hierarchically ordered. It provides a similarity-based grouping of con-
cepts with respect to certain agreed principles, e.g., which similarity notions will
be used for classifying the concepts. A thesaurus is a collection of concepts that
can be related in three main kinds of relations: broader than, narrower than and
related to. The first two relations can be used to provide an informal hierarchical
order of concepts while the third relation can be used to capture some notion
of relevance for a given purpose, e.g., Cars are related to Fuel. A thesaurus can
also have synonymy relationships to allow for terminological level modelling. A
taxonomy is also a collection of concepts but it is different from a thesaurus in
terms of the underlying relations. In particular, a taxonomy is built using the
so-called is a relation which can provide a real subsumption hierarchy.

SKOS [10] is a World Wide Web Consortium (W3C) recommendation since
2009. It provides a lightweight language for representing knowledge in controlled
structured vocabularies, classifications or thesauri and can be encoded using any
concrete RDF syntax, e.g., RDF/XML. SKOS concepts can be linked to other
SKOS concepts using hierarchical (e.g., skos:narrower and skos:broader)
or associative relations (e.g., skos:related). In SKOS, the relation rdf:type
which is used to specify instances of concepts is not available. Thus, exten-
sional connections between concepts are not modelled. For example, consider
a SKOS concept about “computers” which can be associated with the concept
“printer” via a broader than relation. Clearly, not all instances of printers are
also instances of computers; hence, this is not a valid subsumption relation. How-
ever, the concept “computers”, in this context, may be interpreted as computers
and related devices from a sales and marketing perspective. As a result, SKOS
hierarchical relations are not transitive by default. For example, a “printer”
might be related to, indeed broader than, “A4 paper” but, “A4 papers” are
not necessarily narrower than “computers” (via “printer” being narrower than
“computers”) because while “A4 paper” might well be a natural more specific
search from “printer”, it might not be a reasonable next level search from “com-
puters”: people looking at printers often want to buy paper. Fewer want to shop

72 B. Parsia et al.

for paper while considering computers. Navigationally, there is a chain but we
don’t want shortcuts through that chain.

The Web Ontology Language (OWL) is the W3C standard ontology lan-
guage for the web and was standardised in 2004. It provides a formal knowledge
representation language with unambiguous semantics, i.e., context-independent
meaning. An OWL ontology is a finite set of axioms that describe the main
notions, i.e., concepts, of a domain of interest. The inferred class hierarchy is
the Hasse diagram of the partial order on concept names, e.g., A and B, in an
ontology O induced by the entailment relation O |= A � B. The main relation
in inferred class hierarchies is the is a relation which is a transitive subsump-
tion relation. Clearly, this is different from skos:narrower and skos:broader
relations which are not necessarily valid subsumption relations. OWL exploits
Description Logics (DLs) [1] to provide ontologies with formal semantics.

Part of OWL’s success is the availability of a number of optimised reasoners
such as FacT++ [17], Pellet [14], HermiT [13], and ELK [7].3 Different ontology
editing and processing tools and libraries are readily available as well such as
Protégé,4 and the OWL API [2].

In addition to the standard reasoning services provided by the above reason-
ers, some useful non-standard reasoning services have also been developed. For
example, many techniques have been developed to extract modules, i.e., subsets
of the axioms in a given ontology that are “relevant” to a particular signature.
An interesting property of modules is that they preserve all entailments relevant
to the intended signature, yet they are much smaller than the original ontology.
For example, if O |= C � E, where E is a concept expressible in a considered
DL, then extracting a module M with a seed signature Σ = {C} also guarantees
that M |= C � E.

The Elsevier Merged Medical Taxonomy (EMMeT) is currently modelled in
SKOS. It contains 927,827 concepts with 3,010,262 synonyms in the EMMeT 3.8
release (May 15 2015). Some prominent such areas include: Anatomy (17,000
concepts), clinical findings (8,500), drugs (40,500), organisms (34,000), proce-
dures (61,000), along with symptoms (38,000). Further more there are 132,000
semantic relationships between these concepts.

EMMeT uses 3 types of elements in their SKOS representation: skos and
skosxl elements, custom nodes used to represent semantic relations, and meta
data nodes. Amongst the skos and skosxl terms are elements to classify con-
cepts, e.g., skos:Concept, skos:ConceptScheme, skosxl:prefLabels, and ele-
ments used to act as relations between concepts such as skos:narrower and
skos:broader and skos:ExactMatch which expresses a relationship between
concepts from EMMeT and external conceptSchemes or vocabularies. Whenever
possible, EMMeT makes use of existing standard properties, like the Dublin
Core set for metadata, the PROV vocabulary for Provenance, RDF, SKOS and
SKOS-XL. Whenever a custom property is needed, like explicit semantic rela-
tionships (which are more precise than skos:related), the idea is to create

3 For a list of DL reasoners: http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/.
4 http://protege.stanford.edu.

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
http://protege.stanford.edu

Lifting EMMeT to OWL Getting the Most from SKOS 73

them as sub-properties of standard W3C properties, to keep the compatibility
with other published vocabularies. The metamodel, however, was not published
together with the EMMeT release as it should have been.

The namespace semrel (semantic relation) was used in order to represent
a concept to concept relation and specify a ranking of importance that the
concept to concept relation has in the general knowledge base. For example,

<semrel:isACauseFor rdf:ID="Relation-2996187-i".../>

defines a relationship between two concepts, with an ID that allows for the
reification of this relationship. The reification method is used to assign a rank
to that relationship. For example:

<semrel:Relation rdf:about="...">
<semrel:rank>9.0</semrel:rank>

</semrel:Relation>

These ranks are used in several ways including to filter or order results. For
example, a very low ranked related concept might only be displayed if no more
high ranked related concepts are found.

emloc (EMMeT local) is another defined namespace which represents a very
specific semantic relationship between a coordinated concept (e.g., disease due
to X symptoms) and its compounds: “Disease due to X” and “Symptoms”. This
relationship was designed to be used in a very specific case of knowledge intensive
query expansion: to link a disease to its symptoms, treatments etc. and allow for
the actual symptom/treatment concepts to be added to the query expansion.

<emloc:hasLocalChildren rdf:ID="Relation-3041760-h".../>
<!-- Disease due to Deltaretrovirus Symptoms -->

There are also other metadata properties that are used as provenance and
quality assurance for concepts creation and maintenance, for example informa-
tion representing creation dates (pav:createdOn).

To illustrate the use of these nodes, consider Fig. 1. This example shows an
extraction of EMMeT highlighting the usage of the elements described above.
The example represents a graph between the 5 following concepts:

– breastCancer
– malignantMelanomaOfBreast
– malignantMelanomaOfSkinOfBreast
– oncology
– radiationTherapy

4 narrower/broader relations:

– <breastCancer>skos:broader<malignantMelanomaOfBreast>
– <malignantMelanomaOfBreast>skos:narrower<breastCancer>
– <malignantMelanomaOfBreast>
skos:broader<malignantMelanomaOfSkinOfBreast>

74 B. Parsia et al.

– <malignantMelanomaOfSkinOfBreast>
skos:narrower<malignantMelanomaOfBreast>

and 2 ranked semantic relations:

– (<malignantMelanomaOfBreast>
semrel:hasPhysicianSpeciality<oncology>)rank:6.0

– (<malignantMelanomaOfBreast>
semrel:hasTreatmentProcedure<radiationTherapy>)rank:6.0

Fig. 1. An extraction from EMMeT, illustrating the use of concepts and their relations

3 Lifting EMMeT to OWL

EMMeT is clearly very large and has coverage on the scale of other major clinical
terminologies. It is not feasible to do a hand crafted lifting based on term by term
view by clinically savvy medical experts. We needed at least a “good enough”
initial translation that hopefully will be sufficient for assessing whether EMMeT
is in principle adequate for our task. To this end, we first attempted what seemed
to be a straightforward, if a bit naive approach, on the theory that EMMeT might
be close enough to OWL, and if not, such a translation would flush out problems.
The latter proved to be the case, so we performed a more sophisticated but still
automatic translation making use of the fact that many EMMeT concepts are
mapped to SNOMED.

3.1 The Naive Approach

The basic idea of the naive approach is to presume that EMMeT’s use of SKOS
is more or less as a kind of syntax for OWL.

Classes: Clearly, on nearly any translation, we will map skos:Concept to
owl:Class. In general, owl:Classes are intended to represent concepts and

Lifting EMMeT to OWL Getting the Most from SKOS 75

act as a way to describe part of a domain. Since skos:Concepts are used to
describe a particular part of a knowledge base, or a term which covers other
terms of similar properties, the mapping to owl:Class seemed obvious.

Relations: EMMeTs semrel:X relations are associative relations intended
to relate concepts via a property. Using the example from Sect. 2,
(malignant MelanomaOfBreast semrel:hasTreatmentProcedure radiation
Therapy) rank:6.0 is intended to represent that a malignant melanoma of
the breast has a treatment procedure that is radiation therapy. skos’s semantic
relations are described in the documentation as equivalent to owls object
propertys. Since both radiationTherapy and malignantMelanomaOf Breast
are classes, this leads to the following OWL modelling choice:

malignantMelanomaOfBreast �
∃hasTreatmentProcedure.radiationTherapy

where hasTreatmentProcedure is an instance of owl:objectProperty. In
OWL, at an axiom level there are two ways to model property relations between
two concepts. The first being universal (∀) restrictions, and the second, as used
in the example, being existential (∃) restrictions. To illustrate the basic use of
each example, consider the following two axioms

A � ∃R.D (1)
A � ∀R.D (2)

(1) says that every instance of A has an R-successor to an instance of D,
whilst the second tells us that every instance of A must only have R succes-
sors to instances of Ds. Since we don’t want to enforce the restriction that
malignantMelanomaOfBreast only has radiationTherapy as a treatment pro-
cedure and no other treatment (EMMeT also tells us that simple mastectomy,
chemotherapy and mastectomy are also treatment procedures with ranks 5.0,
6.0, 6.0 respectively), we opted for the existential axiom, leaving the door open
for other treatments being allowed. The same modelling options were used for
EMMeT’s relations emloc:hasLocalChildren and its inverse isLocalChildOf.
Although these may be interpreted as similar to narrower and broader relations,
after closer inspection this was not so the case, therefore owl:objectPropertys
were used, in the same way as above. In general, existential readings are preferred
in biomedical ontologies not least because it opens the possibly of staying inside
the polynomial OWL EL profile, which is the profile of choice for SNOMED,
among others.

Narrower and Broader: skos:narrower and skos:broader are hierarchi-
cal relations used to indicate that one concept is in some way more general
(broader) than another concept (narrower). We chose to model these using
OWL’s subClassOf relation. There is really no other reasonable choice in OWL
if we want to model hierarchical concept relations, at least, without a complex
scheme that is unlikely to be understood by other modellers. Of course, we know
that subClassOf is transitive whereas the source SKOS relations are not. How-
ever, it might be that they are transitive when read ontologically. After all, it is a

76 B. Parsia et al.

standard to use the transitive reduct of an OWL class hierarchy as a navigational
structure — this is exactly what the Protégé class hierarchy view does.

Ranks. In EMMeT, semrel:rank properties were used to map associative
relations between concepts to a rank (a measure) according to specific met-
rics such as pertinence to a specialty, quality of test, or severity of conse-
quence. Given that reification is used in the SKOS model, we carried that over
to our first OWL model. Returning to our example, we know that the rank-
ing between (malignantMelanomaOfBreast semrel:hasTreatmentProcedure
radiationTherapy), has a value of 6.0. We model this in OWL by introducing
a new object property hasRankedRelation and the data property hasRank as
follows:

malignantMelanomaOfBreast � ∃hasRankedRelation.
(∃hasTreatmentProcedure.radiationTherapy �∃hasRank .6)

This reads as every instance of the class malignantMelanomaOfBreast has a
ranked relation to an instance that both has a treatment procedure that is radi-
ationTherapy and that has rank 6.

Meta data. All meta data, including alternate labels, preferred labels, and
mappings to other vocabularies or ontologies were included as non-logical asser-
tions, namely owl:annotation assertions, and also using rdfs:labels where
appropriate.

All of these transformations are performed by a simple program written in
Java and using the OWL API.

Results. The OWL lift resulted in an ontology with 927,941 classes with over
1.6 million asserted logical axioms. There were 45 object properties and one data
property. The number of inferred atomic subsumptions stood at over 21 million.
There were several issues that were revealed. The first issue was that there
were numerous modelling errors from mapping narrower and broader relations to
subclass and superclass relations. For example, consider the classes Abortion and
Abortion Recovery. It is clear that Abortion is a broader term than Abortion
Recovery, hence the use of a skos:broader relation in EMMeT. However, to
state that one is a subclass of the other is just wrong: abortion recovery is not a
kind of abortion. Thus we are at high risk of generating incorrect keys. That is,
our technique could easily generate a multiple choice question where “abortion
recovery” would be treated as a correct answer when it obviously is not.

The second issue was in relation to inheritance of superclass proper-
ties. Consider the disorder Acute left ventricular failure. According to
EMMeT, this disorder is related via has diagnostic procedure to the
class echocardiography. The relation has a rank of 6.0. A broader term
for Acute left ventricular failure has the same procedure relation to
echocardiography but with a rank of 10.0, which will be inherited into Acute
left ventricular failure due to a subclass relation; i.e. it will have two
rankings. This is clearly incorrect.

Lifting EMMeT to OWL Getting the Most from SKOS 77

3.2 A More Sophisticated Approach

Of these two issues, the first is more challenging. The ranking issue can be han-
dled simply by using an alternative modelling construct that avoids the prob-
lematic inheritance. We do not need to interpret or validate any of the specific
rankings, thus the fixing remains domain independent. This is not true for the
broader-narrower relations. There, we need to know which ones actually repre-
sent subsumptions (as many of them obviously do).

Ranking. The key to the second issues is that ranks are actually a sort of extra
logical feature of EMMeT. Such extra-logical features are standardly represented
with annotations and left for downstream processors to handle. OWL 2 added the
ability to annotate whole axioms so this seemed like a good fit. Using the same
example from Sect. 3.(1), we now introduce and annotation property hasRank in
the following way

(malignantMelanomaOfBreast �
∃hasTreatmentProcedure.radiationTherapy): hasRank :6

Annotation properties are not inherited to subclasses, and although we may lose
any logical inferences w.r.t the data property version, since the annotation is
basic, simple processing of the ontology would allow us to easily get the same
information back.

SNOMED Alignment. To address the first issue, we needed a source of
domain knowledge. Manual inspection was not a feasible option due to the size
of EMMeT and lack of available domain expertise. However, EMMeT does have
semantic relations which associates EMMeT concepts to concepts in external
ontologies. Critically, one especially well connected source is SNOMED-CT [15].
SNOMED-CT, the coding controlled vocabulary is backed by a richly axiomitised
OWL ontology and a long held focus on modelling domain relations correctly
(esp. in a US context, though there are various internationalised versions and
extensions). That, plus the fact that it has extensive coverage of the clinical
domain makes it an ideal source of “ground truth” for subsumptions.

We did first try our question generation technique using SNOMED-CT alone
but found that it lacked many relations between concepts that were essential for
the sorts of questions we need to generate. For example, isClinicalFinding
For, hasTreatmentProcedure, and hasDiagnosticProcedure are critical for
formulating diagnostic puzzles, and are prevalent in EMMeT but not in
SNOMED.

Out of the 927,941 EMMeT-in-OWL concepts, 106,435 contained mapping
relationships to equivalent SNOMED CT classes. We first decided to test the
accuracy of narrower broader relations of classes with SNOMED IDs against the
same classes in SNOMED to see if a subclass relation was also present. There
were over 1.4 million inferred atomic subsumptions in EMMeT for which both
subclass and superclass had SNOMED IDs (6 % of all atomic subsumptions in
EMMeT). From that 1.4 million, over 1.08 million (75 %) occurred in SNOMED,
leaving 355,880 (25 %) not present in SNOMED. While it would still be a chal-
lenging task to review that remaining 25 % (which are potentially a source of

78 B. Parsia et al.

clinical knowledge beyond SNOMED), having the large number of SNOMED
valid subsumptions is more than sufficient for current purposes. Finally, there
were 487,382 atomic subsumptions that were not present in EMMeT and were
present in SNOMED. It seems somewhat implausible that these are “intentional”
misses, that is, that the EMMeT designers think that SNOMED got some sub-
sumptions wrong. These are a potential source for enriching EMMeT and we are
investigating that possibility.

We identified two methods of including SNOMED CT in EMMeT: 1. Import-
ing SNOMED directly and aligning the equivalent concepts and 2. Adding
the subclass relations to existing EMMeT concepts. We also opted to encode
skos:narrower and skos:broader relations as owl object properties instead
of subclass and superclass relations, keeping there original intended seman-
tics in both alignments. We decided to implement both methods and evaluated
them against each other by comparing additional entailments when computing
the class hierarchy in each ontology. Surprisingly, other than the entailments
SNOMED alone provides, both ontologies did not provide any additional entail-
ments upon classifying. After closer inspection we found that this was due to
how we modelled the axioms. All logical axioms in the ontology are either of
the form A � B or A � ∃R.B. The left hand side of each axiom is always a
named class, and since we have no definitions (axioms using ≡ instead of �) no
further entailments could be inferred. Unfortunately, simply strengthening the
axioms to equivalences would lead to a number of bogus results. (E.g., different
diseases may have a common cause, so if we made each equivalent to having that
cause we would end up with distinct diseases being equivalent.) We are currently
investigating alternatives.

4 Related Work

Hepp and de Bruijn (2007) [6] introduced the GenTax algorithm to transform a
thesaurus into a “useful” ontology by creating two OWL classes for each concept
in the original hierarchy: (1) a Generic class and (2) a Taxonomy class that can be
used to build a subsumption-based hierarchy that is valid with respect to a partic-
ular context of interest. Human intervention is required to determine (1) the main
notions of the intended context, (2) a preliminary classification that is valid in the
intended context. The obvious drawback of this methodology is the increased size
of the resulting ontology since each concept in the original hierarchy is transformed
into two separate concepts. The SKOS2OWL5 tool is an implementation of the
GenTax algorithm which offers a script-based transformation of SKOS informal
hierarchies to OWL ontologies (with limited human intervention).

The method introduced by Wielinga et al. [19] is one of the earliest non-naive6

transformations of thesauri to ontologies. The method was extended in [18,20] to
transform two thesauri, namely MeSH [12] and WordNet [11], to OWL ontologies.
5 http://www.heppnetz.de/projects/skos2owl/.
6 By naive, here, we mean simply converting the hierarchy in the thesaurus to a sub-

sumption hierarchy, ignoring any possible invalid consequences, as has been done in
[8,9].

http://www.heppnetz.de/projects/skos2owl/

Lifting EMMeT to OWL Getting the Most from SKOS 79

The work presented in this paper is also related to ontology learning tech-
niques in that the ultimate goal of such techniques is to build an ontology from
existing knowledge sources. Our approach makes use of existing thesauri, in par-
ticular SKOS knowledge bases, to build the ontology. Such knowledge bases are
valuable sources for ontology learning as they already contain some hierarchical
ordering between concepts and they can be rich in semantic relations. A review
of other existing ontology learning techniques is out of the scope of this paper.
The interested reader is referred to [4].

5 Conclusion

Given a bit of luck, we were able to produce a prototype version of EMMeT
with sufficiently reliable subsumption relations for at least experimental work
and perhaps even production quality generation of multiple choice questions.
Futhermore, we seem to have identified an “easy win” extension of EMMeT
with additional SNOMED relations. The effort involved was but a few person
weeks and did not require expensive domain expertise.

On the downside, many broader-narrower relations are still “mysterious”
from an ontological perspective. We just do not have enough information to
know whether any of the residual relations are subsumptions (or definite non-
subsumptions). We feel this exposes a weakness in the SKOS relaxed approach to
relation specification: It inhibits reuse. Essentially, only applications that work
at the same level of underspecification (or weaker) can use EMMeT without
extensive examination. Whereas, if all the relations were more specified (not
necessarily as subsumptions but at least as subsumptions when they were sub-
sumptions), then use across various applications would be straight.

We will continue to strengthen EMMeTs hierarchy. As well as SNOMED-
CT, there are also symbolic links to other formalisms such as UMLS and ICD
which can be used to provide more entailments between concepts. It will be
interesting to know how many of the narrower/broader relations are present as
subclass relations w.r.t these formalisms. We also are exploring OWL modelling
that would safely exploit the semantic relations we are currently modelling as
subsumptions of existential restrictions.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

2. Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the OWL API.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
659–675. Springer, Heidelberg (2003)

3. T. G. O. Consortium: Gene ontology: tool for the unification of biology. Nat. Genet.
25(1), 25–29 (2000)

80 B. Parsia et al.

4. Drumond, L., Girardi, R.: A survey of ontology learning procedures. In: 3rd Work-
shop on Ontologies and Their Applications, vol. 427. CEUR Workshop Proceedings
(2008)

5. Hedeler, C., Parsia, B., Brandt, S.: Estimating and analysing coordination in med-
ical terminologies. In: IEEE 27th International Symposium on Computer-Based
Medical Systems (CBMS), pp. 357–362 (2014)

6. Hepp, M., de Bruijn, J.: GenTax: a generic methodology for deriving OWL and
RDF-S ontologies from hierarchical classifications, thesauri, and inconsistent tax-
onomies. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 129–144. Springer, Heidelberg (2007)

7. Kazakov, Y., Krötzsch, M., Simancik, F.: Unchain my EL reasoner. In: Proceedings
of the 24th International Workshop on Description Logics (DL-11) (2011)

8. Klein, M.: DAML+OIL and RDF Schema representation of UNSPSC (2015).
http://www.cs.vu.nl/mcaklein/unspsc/. Accessed 4 Aug 2015

9. McGuinness, D.L.: UNSPSC Ontology in DAML+OIL (2015). http://www.ksl.
stanford.edu/projects/DAML/UNSPSC.daml. Accessed 4 Aug 2015

10. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system reference
(2015). http://www.w3.org/TR/skos-reference/. Accessed 4 Aug 2015

11. Miller, G.: WordNet: a lexical database for English. Commun. ACM 38(11) (1995)
12. Nelson, S.J.: Medical terminologies that work: the example of MeSH. In: Proceed-

ings of the 10th International Symposium on Pervasive Systems, Algorithms, and
Networks (ISPAN 2009), Kaohsiung, Taiwan, pp. 380–384, December 2009

13. Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient OWL reasoner. In:
Proceedings of the 5th International Workshop on OWL: Experiences and Direc-
tions (OWLED-08EU) (2008)

14. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical
OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

15. Spackman, K., Campbell, K.: Snomed CT: a reference terminology for health care.
In: Masys, D.R. (ed.) Proceedings of AMIA Annual Fall Symposium, Bethesda,
Maryland, USA, pp. 640–644. Hanley and Belfus Inc. (1997)

16. Stearns, M.Q., Price, C., Spackman, K.A., Wang, A.Y.: Snomed clinical terms:
overview of the development process and project status. In: Proceedings of the
2001 AMIA Annual Symposium, pp. 662–666. Hanley and Belfus (2001)

17. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Proceedings of the 3rd International Joint Conference on Automated Reasoning
(IJCAR) (2006)

18. van Assem, M., Menken, M.R., Schreiber, G., Wielemaker, J., Wielinga, B.J.: A
method for converting thesauri to RDF/OWL. In: McIlraith, S.A., Plexousakis,
D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 17–31. Springer,
Heidelberg (2004)

19. Wielinga, B.J., Schreiber, A.T., Sandberg, J.A.C.: From thesaurus to ontology. In:
Proceedings of the First International Conference on Knowledge Capture (K-CAP
2001), Victoria, British Columbia, Canada (2001)

20. Wielinga, B.J., Wielemaker, J., Schreiber, G., van Assem, M.: Methods for porting
resources to the semantic web. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R.
(eds.) ESWS 2004. LNCS, vol. 3053, pp. 299–311. Springer, Heidelberg (2004)

http://www.cs.vu.nl/ mcaklein/unspsc/
http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml
http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml
http://www.w3.org/TR/skos-reference/

Experiences with Aber-OWL, an Ontology
Repository with OWL EL Reasoning

Luke Slater1, Miguel Ángel Rodŕıguez-Garćıa1(B), Keiron O’Shea1,2,
Paul N. Schofield3, Georgios V. Gkoutos2, and Robert Hoehndorf1

1 Computational Bioscience Research Center, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

{luke.slater,miguel.rodriguezgarcia,robert.hoehndorf}@kaust.edu.sa
2 Aberystwyth University, Aberystwyth SY23 3DB, Wales, UK

keo7@aber.ac.uk
3 University of Cambridge, Downing Street, Cambridge CB2 3EG, England, UK

pns12@hermes.cam.ac.uk

Abstract. Ontologies are widely used in biology and biomedicine for
the annotation and integration of data, and hundreds of ontologies have
been developed for this purpose. These ontologies also constitute large
volumes of formalized domain knowledge, usually expressed in the Web
Ontology Language (OWL). Computational access to the knowledge con-
tained within them relies on the use of automated reasoning. We have
developed Aber-OWL, an ontology repository that provides OWL EL
reasoning to answer queries and verify the consistency of ontologies.
Aber-OWL also provides a set of web services which provide ontology-
based access to scientific literature in Pubmed and Pubmed Central,
SPARQL query expansion to retrieve linked data, and integration with
Bio2RDF. Here, we report on our experiences with Aber-OWL and out-
line a roadmap for future development. Aber-OWL is freely available at
http://aber-owl.net.

Keywords: Biomedical ontology · Semantic web · Literature search ·
Semantic indexing · Query expansion

1 Introduction

Ontologies are used in most biological databases for the annotation and integra-
tion of data, and hundreds of ontologies have been developed for that purpose.
These ontologies are commonly expressed in either the Web Ontology Language
(OWL) [6] or an OWL-compatible language such as the OBO Flatfile Format
[12]. Ontology repositories, such as BioPortal [14], the Ontology Lookup Ser-
vice (OLS) [5] and OntoBee [18], currently provide web services and interfaces
to access ontologies and their data in the biological domain. However, they do
not utilize reasoning in the services they provide, and thus do not provide the
advantages of semantic access, access to inferred knowledge and consistency
verification.
c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 81–86, 2016.
DOI: 10.1007/978-3-319-33245-1 8

http://aber-owl.net

82 L. Slater et al.

To enable this, we have created Aber-OWL [10] – an ontology repository
in which access to ontologies is underpinned by reasoning. Aber-OWL consists
primarily of an API, a web repository and a set of web services that provide
ontology-based access to biological and biomedical data and literature. Here, we
discuss our experiences with developing an ontology portal based on automated
reasoning, discuss the current limitations, and suggest future extensions.

2 An Overview of Aber-OWL

2.1 Reasoning Services

The main component of Aber-OWL is a server that provides access to a large
set of ontologies (currently 391) through an OWL EL reasoner. Ontologies are
classified at the beginning of the server’s runtime, and then kept in memory. We
use the ELK reasoner [13], which supports the OWL EL profile, and any axioms
that do not fall within the OWL EL subset are ignored. The restriction to OWL
EL expressivity ensures that classification and query times remain tractable.

Access to the classified ontologies is provided through a REST API. This API
can be utilized to perform Description Logic queries; specifically, it can be used
to retrieve sub-, super-, or equivalent classes of a class description (which must
also fall in the OWL EL profile). Querying is performed by transforming a class
description in Manchester OWL Syntax [11] into an OWL class expression using
the OWL API. If this transformation fails (e.g., when the query string provided
is not a valid OWL class expression within the ontology being queried), an empty
set of results is returned.

If the transformation succeeds, the ELK reasoner is used to retrieve sub-,
super- or equivalent classes of the OWL class expression. Each query can be
performed over a single or multiple ontologies stored within Aber-OWL. Con-
sequently, results may be returned from multiple different ontologies at once. If
a URL is specified as part of a query but the ontology is not available within
Aber-OWL’s repository, an attempt is made to retrieve the ontology from the
URL, classify the ontology, perform the query over this ontology and return
the results automatically. The API also provides additional ways to access the
content of the ontologies, such as a substring-based search for classes, retrieving
class descriptions based on the class IRI, and others.

2.2 Ontology-Based Data Access

One of our main aims in developing Aber-OWL is to demonstrate the potential
for ontology-based access [4] to biological and biomedical data. Therefore, we
developed several webservices that make use of Aber-OWL and combine OWL
EL reasoning with access to different types of data sources.

The Aber-OWL: PubMed service is built on top of the Aber-OWL reasoning
infrastructure, and retrieves articles in PubMed and PubMed Central in which
any of the labels and synonyms of classes returned by a given semantic query

Experiences with Aber-OWL, an Ontology Repository 83

appear. The literature search is performed over an Apache Lucene index holding
all full text articles in PubMed Central and all abstracts in PubMed (using a
disjunctive Lucene query of the class labels in the result set of the Aber-OWL
query). This service allows, for example, to retrieve all articles that mention a
subclass of part-of some Heart in its text.

The Aber-OWL: SPARQL service performs query expansion on a SPARQL
query to incorporate the results of an Aber-OWL query. In particular, the set
of class IRIs returned by an Aber-OWL query can be bound to a variable in
SPARQL (using the SPARQL 1.1 VALUES statement) or used as an RDF collec-
tion that could, for example, be used with the IN operator as part of a FILTER
statement. The use of Aber-OWL: SPARQL allows, for example, to query the
UniProt [16] SPARQL endpoint for all proteins that have as their function
a part of apoptosis that also regulates apoptosis (part-of some ’apoptotic
process’ and regulates some ’apoptotic process’). We further incorpo-
rated direct access to Bio2RDF [3] based on either the IRI of a class returned
by an Aber-OWL query or based on the label of the class.

3 Experiences

One of the main challenges in developing an ontology portal based on OWL
reasoning is the usability. Our target audience for Aber-OWL is twofold: on one
side, we aim to provide services to bioinformaticians and ontologists who wish
to make use of automated reasoning over ontologies as part of their workflow,
and on the other hand, we aim to provide a useful repository of ontologies for
biologists and biomedical researchers. While the first group of users will primarily
use the API provided by Aber-OWL, the second group would rely mainly on the
user interfaces we provide. However, making Description Logic querying easily
accessible to a wide range of users through a common user interface is challenging
and has constituted the main criticism we have received so far. To address these
challenges in the future, we are considering utilizing natural language query
interfaces [17], or visual construction of DL queries.

A related challenge is the automatic identification of labels and descriptions
in ontologies. Across the range of over 390 ontologies in Aber-OWL, several
different annotation properties are used to characterize the labels and textual
descriptions of classes and object properties. Since Manchester OWL syntax
relies on identifying natural language labels for classes so that they can be used as
part of a class description, it is crucial to find a unified way of identifying labels,
synonyms and descriptions of classes. The annotation properties we currently
use to identify these are shown in Table 1, and they cover most of the ontologies
in Aber-OWL. With the broad range of ontologies in Aber-OWL, the annotation
properties in use will have to be constantly updated. As an intermediate solution,
we now allow queries to be submitted in two forms, using either the labels of the
classes and object properties, or using their IRIs directly.

With a more widespread adoption of Aber-OWL, we also have the potential
for collecting a large set of real world Description Logic queries together with

84 L. Slater et al.

Table 1. Labels, Synonyms and Descriptions used in Aber-OWL

Labels:

rdfs:label

http://www.w3.org/2004/02/skos/core#prefLabel

http://purl.obolibrary.org/obo/IAO 0000111

Synonyms:

http://www.w3.org/2004/02/skos/core#altLabel

http://purl.obolibrary.org/obo/IAO 0000118

http://www.geneontology.org/formats/oboInOwl#hasExactSynonym

http://www.geneontology.org/formats/oboInOwl#hasSynonym

http://www.geneontology.org/formats/oboInOwl#hasNarrowSynonym

http://www.geneontology.org/formats/oboInOwl#hasBroadSynonym

Descriptions:

http://purl.obolibrary.org/obo/IAO 0000115

http://www.w3.org/2004/02/skos/core#definition

http://purl.org/dc/elements/1.1/description

http://www.geneontology.org/formats/oboInOwl#hasDefinition

their execution time, which may become a useful resource for Description Logic
reasoner performance evaluation [2]. We have created a log of all Description
Logic queries submitted to Aber-OWL available at http://aber-owl.net/queries.
log. The query log contains the ontology that has been queried, the kind of
query made (retrieving sub-, super- or equivalent classes), the number of classes
returned, and the time it took to execute the query.

4 Future Directions

In the future, we aim to further develop Aber-OWL in two major directions.
First, we intend to explore how much of the semantics of ontologies can be made
available in real time through an ontology portal. Currently, in Aber-OWL, we
are using the ELK reasoner [13]. However, a large number of highly optimized
reasoners are available, including some for more expressive fragments of OWL.
We intend to evaluate some of these reasoners, based on the results achieved in
the OWL Reasoner Evaluation challenges [2]. However, the theoretical limita-
tions of non-tractable reasoning in OWL will remain a challenge, in particular
with user-defined queries which may result in query times becoming too high.
One solution to avoid this pitfall with more expressive fragments of OWL (or
complete OWL 2) could be to set an upper limit for query answer time and fail
if a query cannot be answered in that time, essentially resulting in incomplete
reasoning. Nevertheless, such an approach could work if the majority of queries
can be answered quickly.

Our second main aim for future development is to demonstrate additional
functionality and novel types of bioinformatics applications that make use of

http://www.w3.org/2004/02/skos/core#prefLabel
http://purl.obolibrary.org/obo/IAO_0000111
http://www.w3.org/2004/02/skos/core#altLabel
http://purl.obolibrary.org/obo/IAO_0000118
http://www.geneontology.org/formats/oboInOwl#hasExactSynonym
http://www.geneontology.org/formats/oboInOwl#hasSynonym
http://www.geneontology.org/formats/oboInOwl#hasNarrowSynonym
http://www.geneontology.org/formats/oboInOwl#hasBroadSynonym
http://purl.obolibrary.org/obo/IAO_0000115
http://www.w3.org/2004/02/skos/core#definition
http://purl.org/dc/elements/1.1/description
http://www.geneontology.org/formats/oboInOwl#hasDefinition
http://aber-owl.net/queries.log
http://aber-owl.net/queries.log

Experiences with Aber-OWL, an Ontology Repository 85

inferences over ontologies. As our intended users fall in two categories (bioinfor-
maticians/ontologists and domain experts), this step also takes two directions.
For ontology developers in the biomedical domain, it is often difficult to evalu-
ate the consequences of a change made to an ontology, since the ontology may
be imported in multiple other ontologies. For example, a single change in the
Gene Ontology [1], which is imported by a large number of other ontologies,
can have a significant impact on any of the other ontologies, such as result-
ing in incoherent class definitions or leading to inconsistency. At the moment,
such consequences are not visible to the ontology developers. Aber-OWL has the
potential of immediately showing the consequences of such a change across the
range of ontologies it contains, essentially serving as a continuous integration
environment for distributed development of ontologies.

Our other target audience, the domain experts, often work with ontologies as
graph structures [9] that are used in visualization and data analysis. We intend
to generate and visualize ontology graph structures, including the graph struc-
tures induced by axiom patterns [7], in addition to the subsumption hierarchy
currently available through Aber-OWL.

5 Conclusion

Despite Aber-OWL being relatively new, we have already established a small
user base, mainly for the REST API services. We have also demonstrated that
reasoning even over a large set of ontologies is now a possibility and can be
performed efficiently [15], and that novel kinds of applications can be developed
which rely on automated reasoning and semantic query. These applications may
even lead to new data- or text-mining methods that reveal new insights into a
domain of knowledge [8]. In the future, we hope that Aber-OWL will establish
itself as an ontology repository in the biological and biomedical domain that
makes the semantics of ontologies and inferences over them available to a wide
range of users.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, M.J.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P.,
Tarver, L.I., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald,
M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology.
Nat. Genet. 25(1), 25–29 (2000). http://dx.doi.org/10.1038/75556

2. Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Steigmiller,
A. (eds.): ORE 2014: OWL Reasoner Evaluation Workshop. No. 1207 in CEUR
Workshop Proceedings. CEUR-WS.org, Aachen, Germany (2014)

3. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards
a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5),
706–716 (2008). http://dx.doi.org/10.1016/j.jbi.2008.03.004

4. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: a
study through disjunctive datalog, CSP, and MMSNP. In: PODS, pp. 213–224
(2013)

http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1016/j.jbi.2008.03.004

86 L. Slater et al.

5. Cote, R., Jones, P., Apweiler, R., Hermjakob, H.: The ontology lookup service, a
lightweight cross-platform tool for controlled vocabulary queries. BMC Bioinform.
7(1), 97 (2006). http://dx.doi.org/10.1186/1471-2105-7-97

6. Grau, B., Horrocks, I., Motik, B., Parsia, B., Patelschneider, P., Sattler, U.: OWL
2: the next step for OWL. Web Seman. Sci. Serv. Agents World Wide Web 6(4),
309–322 (2008). http://dx.doi.org/10.1016/j.websem.2008.05.001

7. Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D.,
Herre, H.: Relations as patterns: bridging the gap between OBO and OWL. BMC
Bioinform. 11(1), 441 (2010)

8. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: Analysis of the human diseasome
using phenotype similarity between common, genetic, and infectious diseases. Sci.
Rep. 5, Article no. 10888 (2015). http://bmcbioinformatics.biomedcentral.com/
articles/10.1186/1471-2105-11-441

9. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biologi-
cal and biomedical research: a functional perspective. Briefings Bioinform. 16(6),
1069–1080 (2015). https://bib.oxfordjournals.org/content/16/6/1069.full

10. Hoehndorf, R., Slater, L., Schofield, P.N., Gkoutos, G.V.: Aber-OWL: a frame-
work for ontology-based data access in biology. BMC Bioinform. 16, 26 (2015).
http://www.biomedcentral.com/1471-2105/16/26/abstract

11. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.:
The Manchester OWL syntax. In: Proceedings of the 2006 OWL Experiences and
Directions Workshop (OWL-ED 2006) (2006)

12. Horrocks, I.: OBO flat file format syntax and semantics and mapping to OWL
Web Ontology Language. Technical report, University of Manchester, March 2007.
http://www.cs.man.ac.uk/∼horrocks/obo/

13. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK. J. Autom. Reasoning
53(1), 1–61 (2014). http://dx.doi.org/10.1007/s10817-013-9296-3

14. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet,
C., Rubin, D.L., Storey, M.A.A., Chute, C.G., Musen, M.A.: Bioportal: ontologies
and integrated data resources at the click of a mouse. Nucleic Acids Res. 37(Web
Server issue), W170–W173 (2009). http://dx.doi.org/10.1093/nar/gkp440

15. Slater, L., Gkoutos, G., Schofield, P.N., Hoehndorf, R.: Using Aber-OWL for
fast and scalable reasoning over BioPortal ontologies. In: Proceedings of Interna-
tional Conference on Biomedical Ontologies (ICBO), pp. 72–76, July 2015. http://
icbo2015.fc.ul.pt/ICBO2015Proceedings.pdf

16. The Uniprot Consortium: The universal protein resource (uniprot). Nucleic Acids
Res 35(Database issue), January 2007. http://view.ncbi.nlm.nih.gov/pubmed/
17142230

17. Usbeck, R., Ngonga Ngomo, A.C., Bühmann, L., Unger, C.: HAWK - hybrid ques-
tion answering over linked data. In: 12th Extended Semantic Web Conference, 31st
May – 4th 2015, Portoroz, Slovenia, June 2015

18. Xiang, Z., Mungall, C.J., Ruttenberg, A., He, Y.: Ontobee: a linked data server
and browser for ontology terms. In: Proceedings of International Conference on
Biomedical Ontology, pp. 279–281 (2011)

http://dx.doi.org/10.1186/1471-2105-7-97
http://dx.doi.org/10.1016/j.websem.2008.05.001
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-441
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-441
https://bib.oxfordjournals.org/content/16/6/1069.full
http://www.biomedcentral.com/1471-2105/16/26/abstract
http://www.cs.man.ac.uk/~horrocks/obo/
http://dx.doi.org/10.1007/s10817-013-9296-3
http://dx.doi.org/10.1093/nar/gkp440
http://icbo2015.fc.ul.pt/ICBO2015Proceedings.pdf
http://icbo2015.fc.ul.pt/ICBO2015Proceedings.pdf
http://view.ncbi.nlm.nih.gov/pubmed/17142230
http://view.ncbi.nlm.nih.gov/pubmed/17142230

Towards a Rule Based Distributed OWL
Reasoning Framework

Raghava Mutharaju(B), Prabhaker Mateti, and Pascal Hitzler

Wright State University, Dayton, OH, USA
{mutharaju.2,prabhaker.mateti,pascal.hitzler}@wright.edu

Abstract. The amount of data exposed in the form of RDF and OWL
continues to increase exponentially. Some approaches have already been
proposed for the scalable reasoning over several language profiles such as
RDFS, OWL Horst, OWL 2 EL, OWL 2 RL etc. But all those approaches
are limited to the particular ruleset that the reasoner supports. In this
work, we propose the idea for a rule-based distributed reasoning frame-
work that can support any given ruleset and highlight some of the chal-
lenges that needs to be solved in order to implement such a framework.

1 Introduction

The W3C recommendations RDF and OWL, are primarily used to represent data
in the Semantic Web. Large amount of data in these formats is now available
and it only continues to grow. Several billions of RDF triples are available as
Linked Open Data (close to 90 billion1). Automated generation of OWL axioms
from streaming data [9] and text [10] can result in very large knowledge bases.
Reasoning is one of the most important operations that can be performed over
OWL and RDF knowledge bases. It is required to infer logical consequences
and to check the consistency of the knowledge base. Reasoning is memory and
compute intensive. So reasoning over large knowledge bases needs a scalable
approach. Currently, all the popular off-the-shelf reasoners work only on a single
machine, possibly with multiple cores. It is not possible for a single machine to
keep up with the growth rate of data. Also, for some reasoning tasks the output
is several times larger than the input. Distributed memory reasoning provides a
viable alternative.

There are some existing approaches for scalable reasoning over each indi-
vidual Semantic Web language profile such as RDFS, OWL Horst, OWL 2 EL,
OWL 2 RL (see Sect. 4). Reasoning over ontologies in each of these profiles is
performed using a set of rules that vary with each profile (there is some overlap
among the different rulesets). Generally, the existing solutions are tuned towards
a particular ruleset and are not adaptable to other rulesets. This poses a problem
for users who work with multiple rulesets and also in cases where users need a
scalable solution for a ruleset which does not have a customized approach. In this
paper, we propose the idea for a unified distributed reasoning framework that
1 http://stats.lod2.eu/.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 87–92, 2016.
DOI: 10.1007/978-3-319-33245-1 9

http://stats.lod2.eu/

88 R. Mutharaju et al.

Table 1. RDFS closure rules

1: s p o (if o is literal) ⇒ :n rdf:type rdfs:Literal

2: p rdfs:domain x & s p o ⇒ s rdf:type x

3: p rdfs:range x & s p o ⇒ o rdf:type x

4a: s p o ⇒ s rdf:type rdfs:Resource

4b: s p o ⇒ o rdf:type rdfs:Resource

5: p rdfs:subPropertyOf q & q rdfs:subPropertyOf r ⇒ p rdfs:subPropertyOf r

6: p rdf:type rdf:Property ⇒ p rdfs:subPropertyOf p

7: s p o & p rdfs:subPropertyOf q ⇒ s q o

8: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf rdfs:Resource

9: s rdf:type x & x rdfs:subClassOf y ⇒ s rdf:type y

10: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf s

11: x rdfs:subClassOf y & y rdfs:subClassof z ⇒ x rdfs:subClassOf z

12: p rdf:type rdfs:ContainerMembershipProperty ⇒ p rdfs:subPropertyOf rdfs:member

13: o rdf:type rdfs:Datatype ⇒ o rdfs:subClassOf rdfs:Literal

can work on any given ruleset. This framework can, not only handle the afore-
mentioned language profiles but also avoids the need to develop a customized
scalable approach for any new ruleset.

2 Challenges

Some of the challenges in the design and implementation of a rule-based distrib-
uted reasoning framework are discussed here.

2.1 Rule Dependency Analysis

If the input to a rule Ri, depends on the output of another rule Rj , then the
rule Ri is dependent on Rj . The more independent the rules are, better can be
the rule distribution among the nodes in the cluster.

A rule dependency graph can be constructed in order to determine the inter-
dependency among the rules. Each vertex represents a rule and an outgoing edge
between vertex vi and vj represents the dependency of vertex vi on vj . Isolated
vertices are independent of each other and can be executed in parallel. For each
vertex vi, all the vertices that are reachable from it are dependent on each other.

RDFS rules from [21] are shown in Table 1 and its dependency graph is
shown in Fig. 1. There are several rules that are independent and can be given
to separate nodes in the cluster. Rules 5, 6 and 7 are dependent on each other
and can be grouped together i.e., all the three rules can be executed by one node.
Same holds for the group of rules 9, 2, 3, 10, 11.

On the other hand, rules for EL++ [1] are highly inter-dependent and are
difficult to parallelize.

Towards a Rule Based Distributed OWL Reasoning Framework 89

4a 1

7

5

6 9

2 3 10 11

4b

8

12

13

Fig. 1. RDFS rule dependency graph

2.2 Data Distribution

Rule dependency analysis can provide the basis for data distribution. Some rules
are applicable only to a specific type of data and in these cases, it would be easy
to partition the data based on the rule distribution. Cases such as rules 4a, 4b
and 6 in Table 1 should be handled differently since they are applicable to the
entire dataset. These rules should be run on all the nodes of the cluster so as
to avoid data overloading. Heuristics such as number of variables in a rule in
proportion to the constants could be used to determine such type of rules.

2.3 Rule Implementation

Interpreting different rulesets will be very difficult for the framework. Instead,
rulesets should be converted to a common domain specific language (DSL) that is
supported by the framework. This DSL should be able to define the vocabulary,
syntax and semantics of the language to be used.

For the choice of DSL, there are some options. (1) general purpose rule lan-
guages such as RETE, Datalog and Prolog. (2) or a custom DSL for the rules
supported by the framework. DSL should support the declaration of variables
and constants in the rules.

3 Evaluation Plan

The rule-based distributed reasoning framework can be evaluated along the lines
of adaptation and extension.

– There are several existing specialized and scalable reasoners for rulesets such as
RDFS (WebPIE, Cichlid), OWL Horst (QueryPIE) and OWL 2 EL (DistEL).
The framework should be able to handle these rulesets. The performance of
the general purpose framework in comparison to the specialized ones remains
to be seen.

– The framework should be able to take in a new ruleset and provide sound and
complete inference over the given data.

90 R. Mutharaju et al.

4 Related Work

There are several language profiles in the Semantic Web that support rule-
based reasoning. Other reasoning approaches such as tableau algorithms are not
considered here. Scalable reasoning approaches such as parallel shared memory
reasoning to distributed shared-nothing reasoning exist.

RDFS has around 34 inference (entailment) rules including simple, exten-
sional and datatype entailment rules [3]. Almost all of the existing work on scal-
able RDFS entailment (closure) computation considers only a subset of these
rules. Marvin computes the closure of RDF triples using a peer-to-peer model
[16]. In [22], triples are distributed across the cluster by making a distinction
between the schema and instance triples. Finding closure becomes an embar-
rassingly parallel computation. Several other scalable approaches exist for RDFS
closure computation [4,6,21].

OWL Horst (also known as pD*) [5] extends RDFS entailment rules to
include reasoning with datatypes from a given datatype map D. Rule partition-
ing and data partitioning strategies are explored in [19] for computing closure
over OWL Horst knowledge base. QueryPIE [20] is a backward chaining distrib-
uted reasoner that supports OWL Horst reasoning over large knowledge bases.
A recent Apache Spark implementation of RDFS and OWL Horst rules named
Cichlid, is 10 times faster than state-of-the-art implementations [2].

OWL 2 RL [11] is further extension of pD* and has several entailment rules.
A scalable OWL 2 RL inference engine has been implemented inside a relational
database system (Oracle) in [8]. QueryPIE has partial support for OWL 2 RL.

The description logic underlying OWL 2 EL is EL++ and there are 11 com-
pletion rules ([1]) for classification (computing the subsumption hierarchy of all
concepts). Three approaches to distributed EL++ reasoning were discussed in [13]
including MapReduce [15]. Among them, the most efficient system named Dis-
tEL, follows a peer-to-peer model that uses rule partitioning based on the axiom
types [14]. Though not distributed, parallelization of OWL 2 EL classification
has been studied in [7,18].

There are some existing generic rule-based scalable reasoning approaches.
RETE implementation on GPUs for RDFS and OWL Horst rulesets is shown
in [17]. Another alternative is to convert different rulesets into datalog rules.
A parallel implementation of datalog programs with application to RDFS rules
is shown in [12]. A distributed approach for either of these two has not been
developed yet.

5 Conclusion

There are different rulesets for different language profiles and there are scal-
able approaches for many of these rulesets. However, such a specialized scalable
reasoner does not work on other rulesets. A general purpose rule-based dis-
tributed reasoning framework is proposed here to fill that gap. This framework
provides more flexibility in terms of rulesets but there could be a possible loss

Towards a Rule Based Distributed OWL Reasoning Framework 91

in performance when compared to specialized scalable reasoners. A proper eval-
uation of the framework is required in order to determine its flexibility and
performance.

The next step is to choose the appropriate DSL by checking the advantages
and disadvantages of RETE, Datalog and Prolog. After this, we plan to proceed
with the implementation of rest of the pieces in the framework.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, IJCAI-2005, July 30–August 5 2005, Edinburgh, Scotland,
UK, pp. 364–369. AAAI (2005)

2. Gu, R., Wang, S., Wang, F., Yuan, C., Huang, Y.: Cichlid: efficient large scale
RDFS/OWL reasoning with spark. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS 2015, 25–29 May 2015, Hyderabad, India,
pp. 700–709. IEEE Computer Society (2015)

3. Hayes, P., Patel-Schneider, P.F.: RDF Semantics (2014). http://www.w3.org/TR/
rdf11-mt/

4. Heino, N., Pan, J.Z.: RDFS reasoning on massively parallel hardware. In: Cudré-
Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 133–148.
Springer, Heidelberg (2012)

5. ter Horst, H.J.: Combining RDF and part of OWL with rules: semantics, decid-
ability, complexity. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 668–684. Springer, Heidelberg (2005)

6. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS reasoning and query answering
on top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516.
Springer, Heidelberg (2008)

7. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Concurrent classification of EL ontolo-
gies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 305–320. Springer,
Heidelberg (2011)

8. Kolovski, V., Wu, Z., Eadon, G.: Optimizing enterprise-scale OWL 2 RL reasoning
in a relational database system. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P.,
Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I.
LNCS, vol. 6496, pp. 436–452. Springer, Heidelberg (2010)

9. Lécué, F., Tucker, R., Bicer, V., Tommasi, P., Tallevi-Diotallevi, S., Sbodio, M.:
Predicting severity of road traffic congestion using semantic web technologies. In:
Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. LNCS, vol. 8465, pp. 611–627. Springer, Heidelberg (2014)

10. Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn.
Res. (JMLR) 10, 2639–2642 (2009)

11. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language Profiles. In: W3C Recommendation (2012). http://www.
w3.org/TR/owl2-profiles/

12. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Parallel materialisation of datalog
programs in main-memory RDF databases. In: Brodley, C.E., Stone, P. (eds.) Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27–31 2014, Qébec City, Qébec, Canada. AAAI Press (2014)

http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

92 R. Mutharaju et al.

13. Mutharaju, R., Hitzler, P., Mateti, P.: Distributed OWL EL reasoning: the story
so far. In: Liebig, T., Fokoue, A. (eds.) Proceedings of the 10th International Work-
shop on Scalable Semantic Web Knowledge Base Systems, Riva Del Garda, Italy.
CEUR Workshop Proceedings, vol. 1261, pp. 61–76. CEUR-WS.org (2014)

14. Mutharaju, R., Hitzler, P., Mateti, P., Lécué, F.: Distributed and Scalable OWL
EL Reasoning. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux,
P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 88–103. Springer,
Heidelberg (2015)

15. Mutharaju, R., Maier, F., Hitzler, P.: A MapReduce algorithm for EL+. In:
Haarslev, V., Toman, D., Weddell, G.E. (eds.) Proceedings of the 23rd Inter-
national Workshop on Description Logics (DL 2010), 4–7 May 2010, Waterloo,
Ontario, Canada. CEUR Workshop Proceedings, vol. 573. CEUR-WS.org (2010)

16. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: distributed reasoning over large-scale semantic web data. Web Seman. Sci.
Serv. Agents World Wide Web 7(4), 305–316 (2009)

17. Peters, M., Sachweh, S., Zündorf, A.: Large scale rule-based reasoning using a
laptop. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P.,
Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 104–118. Springer,
Heidelberg (2015)

18. Ren, Y., Pan, J.Z., Lee, K.: Parallel ABox reasoning of EL ontologies. In: Pan,
J.Z., Chen, H., Kim, H.-G., Li, J., Horrocks, I., Mizoguchi, R., Wu, Z., Wu, Z.
(eds.) JIST 2011. LNCS, vol. 7185, pp. 17–32. Springer, Heidelberg (2012)

19. Soma, R., Prasanna, V.K.: Parallel inferencing for OWL knowledge bases. In: 2008
International Conference on Parallel Processing, ICPP 2008, 8–12 September 2008,
Portland, Oregon, USA, pp. 75–82. IEEE Computer Society (2008)

20. Urbani, J., van Harmelen, F., Schlobach, S., Bal, H.: QueryPIE: backward reason-
ing for OWL horst over very large knowledge bases. In: Aroyo, L., Welty, C., Alani,
H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011,
Part I. LNCS, vol. 7031, pp. 730–745. Springer, Heidelberg (2011)

21. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning
using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 634–649. Springer, Heidelberg (2009)

22. Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure
for hundreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009)

Improving OWL RL Reasoning in N3 by Using
Specialized Rules

Dörthe Arndt1(B), Ben De Meester1, Pieter Bonte2, Jeroen Schaballie2,
Jabran Bhatti3, Wim Dereuddre3, Ruben Verborgh1, Femke Ongenae2,

Filip De Turck2, Rik Van de Walle1, and Erik Mannens1

1 Ghent University – iMinds – Data Science Lab, Ghent, Belgium
{doerthe.arndt,ben.demeester,ruben.verborgh}@ugent.be

2 IBCN Research Group, INTEC, Ghent University – iMinds, Ghent, Belgium
{pieter.bonte,jeroen.schaballie,femke.ongenae}@intec.ugent.be

3 Televic Healthcare, Izegem, Belgium
{j.bhatti,w.dereuddre}@televic.com

Abstract. Semantic Web reasoning can be a complex task: depending
on the amount of data and the ontologies involved, traditional OWL DL
reasoners can be too slow to face problems in real time. An alternative
is to use a rule-based reasoner together with the OWL RL/RDF rules
as stated in the specification of the OWL 2 language profiles. In most
cases this approach actually improves reasoning times, but due to the
complexity of the rules, not as much as it could. In this paper we present
an improved strategy: based on the TBoxes of the ontologies involved
in a reasoning task, we create more specific rules which then can be
used for further reasoning. We make use of the EYE reasoner and its
logic Notation3. In this logic, rules can be employed to derive new rules
which makes the rule creation a reasoning step on its own. We evaluate
our implementation on a semantic nurse call system. Our results show
that adding a pre-reasoning step to produce specialized rules improves
reasoning times by around 75 %.

Keywords: Notation3 · Rule-based reasoning · OWL 2 RL

1 Introduction

With the increasing amount of carefully designed ontologies semantic web rea-
soning is becoming more popular for industrial applications: ontologies can be
employed to solve complex problems in domains like medicine, automotive indus-
try or finance (e.g., [13,17]). Nevertheless, there are still some obstacles which
hinder semantic web reasoning from being fully established. One of these is scal-
ability: depending on the amount of data and the ontologies involved, traditional
OWL DL reasoners can be too slow to solve problems in real time. The different
OWL 2 profiles [9] provide a solution: by using less expressive but still powerful
subsets of OWL DL, reasoning times can be significantly improved.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 93–104, 2016.
DOI: 10.1007/978-3-319-33245-1 10

94 D. Arndt et al.

In this paper we focus on the OWL RL profile which is designed to enable
rule-based reasoners to draw the right conclusions from ontology data and con-
cepts. The rules for that, as presented in the specification, are complex in the
sense that they rely on rather complicated patterns occurring in both ABox
and TBox which have to be found to draw conclusions. We propose to improve
OWL RL reasoning performance by adding an extra reasoning step. Based on
the ontology’s TBox, specialized rules can be automatically produced to be used
for further reasoning on the ABox. Due to its expressiveness we use Notation3
Logic [6] to perform this task. The highly performant EYE reasoner [19] is used
for reasoning. As our pre-reasoning step has to be executed only once for every
TBox, our approach is especially suitable for situations where the same reasoning
has to be performed on frequently changing data. We tested our implementation
in an event based reasoning set-up: a semantic nurse call system which con-
trols the technical equipment in a hospital and, for example, assigns the most
suitable nurse to a patient’s call. Our tests showed that our pre-reasoning step
reduces reasoning times at about 75 % compared to an implementation using the
originally proposed rules.

The remainder of this paper is structured as follows: in Sect. 2 we give an
overview of related work. After that, in Sect. 3, we explain our use case, a seman-
tic nurse call system. Section 4 gives a general introduction to OWL RL in N3.
In Sect. 5 we describe our system in more detail, focusing in particular on the
improved rules themselves and the steps which are necessary to produce them.
An evaluation of our implementation is given in Sect. 6. We summarize our main
findings and give an outlook to future work in Sect. 7.

2 Related Work

Traditionally, reasoning over OWL ontologies was performed by description logic
based reasoners using (variants of) the tableaux algorithm. Prominent examples
of such reasoners are Pellet [16] and HermiT [18]. Both support—as others of
their kind—the full OWL DL profile. The expressiveness of this profile and the
complexity of the related reasoning, make these reasoners perform rather slow in
comparison with, for example, rule-based reasoners. The OWL 2 profiles [9] aim
to overcome this gap by defining less expressive but still powerful subsets of OWL
DL. One of these profiles is OWL RL, which was designed to enable rule-based
reasoners to cope with OWL ontologies. Various implementations make use of
the OWL 2 RL/RDF rules as proposed in the specification, among them OWLim
[8] and Oracle’s RDF Semantic Graph [20]. As most other implementations we
are aware of, these reasoners support their own rule format, and optimizations
are done internally using the underlying programming language. We propose
an optimization which can be done in the logic itself by performing an extra
reasoning step. We are thereby independent of a specific reasoner.

Notation3 Logic (N3) was introduced in 2008 by Tim Berners-Lee et al. [6]. It
forms a superset of RDF and extends the RDF data model by formulas (graphs),
functional predicates, universal variables and logical operators, in particular the

Improving OWL RL Reasoning in N3 by Using Specialized Rules 95

implication operator. Rules in N3 can not only be applied to derive new RDF
triples, it is also possible to write and apply rules with new rules in their conse-
quence, and thus to derive new rules. It is exactly this property which made us
opt for using N3 instead of other rule formats like, e.g., SWRL [14].

There are several reasoners supporting N3: FuXi [1] is a forward-chaining pro-
duction system for Notation3 whose reasoning is based on the RETE algorithm.
The forward-chaining cwm [4] reasoner is a general-purpose data processing tool
which can be used for querying, checking, transforming and filtering informa-
tion. EYE [19] is a reasoner which is enhanced with Euler path detection. It
supports backward and forward reasoning and also a user-defined mixture of
both. Amongst its numerous features are the option to skolemize blank nodes
and the possibility to produce and reuse proofs for further reasoning. The rea-
son why we use EYE in our implementation is its high performance. Existing
benchmarks and results are listed in the above-mentioned paper [19] and on the
EYE website [11].

3 Use Case

Our use case is a nurse call system in a hospital. The system is aware of certain
details about personnel and patients represented in an OWL ontology. Such infor-
mation can include: personal skills of a staff member, staff competences, patient
information, special patient needs, and/or the personal relationship between staff
members and patients. Furthermore, there is dynamic information available, for
example, the current location of staff members and their status (busy or free).
When a call is made, the nurse call system should be able to assign the best staff
member to answer that call. The definition of this “best” person varies between
hospitals and can be quite complex. The system additionally controls different
devices. If for example staff members enter a room with a patient, a light should
be switched on; if they log into the room’s terminal, they should have access to
the medical lockers in the room. The event-driven reasoning system for this use
case has to fulfill certain requirements.

scalability It should cope with data sets ranging from 1000 to 100,000 relevant
triples (i.e., triples necessary to be included for the reasoning to be correct).
Especially in bigger hospitals the number of staff members and patients and
thereby also the amount of available information about those can be quite big.
It is not always possible to divide this knowledge into smaller independent
chunks as this data is normally full of mutual dependencies.

functional complexity It should implement deterministic decision trees with
varying complexities. The reasons to assign a nurse to a certain patient can
be as manifold as the data. Previous work has shown that this complexity is
not only theoretically possible but also desired by the parties interested in
such a semantic system [15].

configuration It should support the ability to change these decision trees at
configuration time. Different hospitals have different requirements and even
in one single hospital those requirements can easily change due to e.g., an

96 D. Arndt et al.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {?C rdfs:subClassOf ?D. ?X a ?C} => {?X a ?D}.

Listing 1. OWL RL rule for rdfs:subClassOf class axiom in N3.

increase of available information or a simple change in the hospital’s organi-
zational concepts or philosophy.

real-time It should return a response within 5 s to any given event. Especially
in such a delicate sector as patient care, seconds can make a difference. Even
though a semantic nurse call system will not typically be employed to assign
urgent emergency calls through complex decision trees, a patient should not
wait too long till his possibly pressing request is answered.

The functional complexity requirement together with the configuration con-
straint motivate the choice of a reasoning system which supports rules as these
can be seen as the most natural way to express decision trees. Even though a
numerous amount of OWL DL reasoners support at least one rule format, their
reasoning is too slow to meet the scalability and the real-time constraint [2].
Therefore, we chose a rule-based solution.

4 OWL RL in N3

In a first attempt to solve the above-mentioned problem we used a direct transla-
tion of OWL 2 RL/RDF rules as listed on the corresponding website [9]. Where
possible, we made use of existing N3-translations of these rules as provided by
EYE [12]. Missing concepts were added. The data was represented using the
ACCIO ontology [15] which will be further described in Sect. 6.1. The results of
this implementation were already promising [2], but for larger data sets the rea-
soning took multiple minutes and, thus, did not meet the requirements claimed
above.

We explain the idea behind these OWL RL rules in N3 and how they can
be improved using an example: Listing 1 shows the class axiom rule1 which is
needed to deal with the rdfs concept subclassOf. For convenience we omit the
prefixes in the formulas below. The empty prefix refers to the ACCIO ontology,
rdf and rdfs have the same meaning as in Listing 1. Consider that we have
the following TBox triple stating that the class :Call is a subclass of the class
:Task:

:Call rdfs:subClassOf :Task. (1)

If the ABox contains an individual which is member of the class :Call

:call1 a :Call. (2)

1 The rule is the N3 version of the cax-sco rule in Table 7 on the OWL 2 Profiles
website [9].

Improving OWL RL Reasoning in N3 by Using Specialized Rules 97

an OWL DL reasoner would make the conclusion that the individual also belongs
to the class Task:

:call1 a :Task. (3)

Our rule in Listing 1 does exactly the same: as Formulas 1 and 2 can be unified
with the antecedent of the rule, a reasoner derives the triple in Formula 3. But
this unification is rather expensive: if we take a closer look to the antecedent
we see that it contains three different variables occurring in two different triples
which have to be instantiated with the data of the ontology. In our use case
information as stated in Formula 2 can change—patients will make new calls—
but statements as Formula 1 can be considered as fixed: the terminology does
not change during the reasoning process, calls are tasks for our ontology. Our
solution makes use of this observation: what is valid for the triple in Formula 1
also counts for other TBox-triples. We consider the TBox as static knowledge
which can be used for pre-processing. The idea of our solution is to do as much
unification as possible before dealing with (possibly) dynamic data. We produce
more specialized rules, in the case mentioned above, for example the rule

{?X a :Call.} => {?X a :Task.}. (4)

which will derive for every new call, that it is also a task, just as the rule in
Listing 1 does.

5 Producing TBox-rules

In order to achieve the goal explained in the last section, producing specialized
rules based on the concepts present in the ontology’s TBox, we use the EYE
reasoner. Reasoning in EYE can be considered as a single process, having as input
all necessary files representing the knowledge (i.e., the necessary ontologies, data,
and rule-files), and a query-file that filters the output of the reasoning result.
We have to perform two steps:

1. Produce a grounded copy of the TBox.
2. Use rules to translate the grounded TBox into specialized rules.

The need of the first step has to do with the fact that an ontology can contain
anonymous classes represented by blank nodes. Used in rules, these blank node
class names have, due to the semantics of N3, a limited scope. It is therefore
difficult to use them to reference the same class in different rules. We will give a
more elaborate explanation in the next section. After that we will describe the
translation step in more detail.

5.1 Grounding the Ontology

Before translating the TBox into rules we have to replace all blank nodes by
URIs or literals. To understand the reason for this skolemization step, consider
the example in Listing 2. The example contains triples which further describe

98 D. Arndt et al.

1 @prefix : <http://ontology/Accio.owl#>.
2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
5
6 :Call rdfs:subClassOf [
7 rdf:type owl:Class ;
8 owl:intersectionOf (
9 :PatientTask

10 :UnplannedTask
11)
12].

Listing 2. ACCIO example: a call is both, a patient task and an unplanned task.

the class :Call from Formula 2. A call is a patient task and an unplanned task,
or to be more specific: the class :Call is subclass of an anonymous class which is
the intersection of the classes :PatientTask and :UnplannedTask. Even though
N3 supports rules which contain blank nodes, it is exactly this anonymous class
which causes problems. Being unlabeled, the blank node can be referred by an
arbitrary new blank node name. A translation as done in Formula 4 would result
in a rule like:

{?X a :Call.} => {?X a :newblank.}. (5)

This rule means, that every instance of the class :Call is also instance of some
other class. This knowledge can already be gained by Formula 4 and does not
have much influence on further reasoning. And even if the blank node in Listing 2
would be labeled by, for example, :intersection1 a new rule

{?X a :Call.} => {?X a :intersection1.}. (6)

would have no other meaning than Formula 4 as in N3 the scope of a blank node
is always only the graph, i.e. the curly brackets { }, in which it occurs [3,5]. The
consequence of the rule would not refer to our intersection of patient tasks and
unplanned tasks.

We perform the grounding step by using the EYE reasoner. The reasoner
provides the option to obtain a skolemized version of any input N3 file(s). The
switch --no-qvars replaces every blank node by a unique skolem IRI following
the naming convention as described in the RDF specification [10]. It additionally
makes sure that equally named blank nodes only get assigned the same skolem
IRI if they actually refer to the same thing. Producing a grounded version of
the ontology enables us in further reasoning steps to use the new identifiers for
(formally) anonymous classes in different rules.

5.2 Translation Step

As explained above, the next step after having produced a grounded version of
the ontology’s TBox is to produce the new specialized rules. Here, we make use

Improving OWL RL Reasoning in N3 by Using Specialized Rules 99

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3
4 {?C rdfs:subClassOf ?D.} => {{?X a ?C.} => {?X a ?D.}.}.

Listing 3. Rule producing new rule for every occurrence of rdfs:subClassOf; based
on the rdfs:subClassOf class axiom of Listing 1.

of a property of Notation3: rules can not only be applied to derive new triples
but also to derive new rules. To illustrate that we consider a simple rule:

{ :Call rdfs:subClassOf :Task.
︸ ︷︷ ︸

satisfied ontology triple(s)

}=>{ {?X a :Call}=>{?X a :Task.}.
︸ ︷︷ ︸

produced new rule(s)

}.

Just as simple rules enable the reasoner to derive new triples from the fact that
its antecedent is fulfilled, the rule above, applied on Formula 1, derives a new
rule, namely Formula 4. Nevertheless, the rule as stated above is too specific to
be used for our purpose: if we already knew that the ontology contained the
triple in Formula 1 we could also write the rule in Formula 4 directly instead of
writing a rule which will surely produce it. Our rule needs to be more general
as we want to handle all owl:subclassOf triples in that same way and always
produce a rule similar to the rule expressed in Formula 4. This more general rule
can be found in Listing 3. Applied on Formula 1 the variable ?C gets unified with
the URI :Call and the variable ?D gets unified with :Task, thus, Rule 4 can be
derived. Similarly, an application of the rule in Listing 3 on triple

:UnplannedTask rdfs:subClassOf :Task.

results in a new rule

{?X a :UnplannedTask.} => {?X a :Task.}.

The same principle can be applied for other OWL concepts. Listing 4 shows a
rule2 which handles the concept owl:intersectionOf. Note that this rule uses
a built-in predicate of Notation3, list:in. A triple using list:in as a predicate
is true if and only if the object is a list and the subject is an entry of that list.
If we apply this rule to the (now skolemized) intersection expressed in Listing 2

:InterClass1 owl:intersectionOf (:PatientTask :UnplannedTask).

two rules will be produced by that:

{?x a :InterClass1} => {?x a :PatientTask.}.

and

2 The rule is motivated by the cls-int2 rule in Table 6 on [9].

100 D. Arndt et al.

1 @prefix list: <http://www.w3.org/2000/10/swap/list#>.
2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3
4 {?C owl:intersectionOf ?L. ?D list:in ?L} =>
5 {{?X a ?C.} => {?X a ?D}}.

Listing 4. Rule-producing rule for owl:intersectionOf.

{?x a :InterClass1} => {?x a :UnplannedTask.}.
The above example illustrates another useful property of Notation3: Nota-

tion3 treats lists themselves, not only their reified version, as elements of the
language. There are many built-in predicates which enable the user to write
clear rules regarding lists and to refer to all elements of a given list. For working
with OWL ontologies this is a real advantage as lists are normally used together
with many OWL concepts like the above owl:intersectionOf or for example
owl:unionOf.

To produce new rules by applying the rules described above, the rule produc-
ing rules have to be applied as filter rules for the reasoner. Notation3 reasoners
normally take one ore more input files—consisting of rules and facts—and a
query file containing rules into account. Based in the input files the reasoner
outputs the logical consequences of the filter rules. In our present case these
are the specialized rules. The rules produced by the two described steps do now
replace the TBox of the ontology and can be used for further reasoning.

6 Evaluation

The aforementioned methodology replaces generic and complex constructs in the
TBox by specialized rules that provide the same functionality. To test how much
performance we gain by using this pre-processing step we tested a scenario of our
use case with two rule sets: the first traditional rule set [11] processes the triples
of the original TBox while reasoning and acts on top of those together with
the actual ABox data, the second precomputed rule set contains the specialized
rules which already take all TBox triples into account, therefore in this case the
original TBox is not needed for further reasoning. All experiments were run on
the same technology stack3.

6.1 Ontology and Data

To represent the data as described above we make use of the ACCIO ontology
which was designed to represent all aspects of patient care in a hospital. The
ontology contains ca. 3,500 triples (414 named classes, 157 object properties, 38
data type properties). A full description is given by Ongenae et al. [15].

3 Hardware: Intel(R) Xeon(R) E5620@2.40 GHz CPU with 12 GB RAM. Software:
Debian “Wheezy”, EYE-Autumn15 09261046Z and SWI-Prolog 6.6.6.

Improving OWL RL Reasoning in N3 by Using Specialized Rules 101

This ontology was filled with data describing wards in a hospital. This data
was simulated, based on real-life situations, as deducted from user studies [15].
The data was scaled by increasing the amount of wards from 1 to 10 to fill the
ABox with more data. The description of such a ward contains approximately
1,000 static triples. Additionally, there was dynamic data such as for example
the location of nurses or the status of calls taken into account.

6.2 Test Scenario

We compared the reasoning times of the two rule sets by running a scenario,
based on a real-life situation. This scenario consists of a sequence of events,
which we list below, where the expected outcome of the reasoning is indicated
in brackets.

1. A patient launches a call (assign nurse and update call status)
2. The assigned nurse indicates that she is busy (assign other nurse)
3. The newly assigned nurse accepts the call task (update call status)
4. The nurse moves to the corridor (update location)
5. The nurse arrives at the patients’ room (update location, turn on lights and

update nurse status)
6. The nurse logs into the room’s terminal (update status call and nurse, open

lockers)
7. The nurse logs out again (update status call and nurse, close lockers)
8. The nurse leaves the room (update location and nurse status and turn off

lights)

6.3 Results

The aforementioned scenario was run 35 times, consisting of 3 warm-up runs and
2 cool-down runs, for 1 ward and 10 wards, for both rule sets. By averaging the
30 remaining reasoning times per amount of wards and per rule set, we provide
the results as shown as a table in Fig. 1, and depicted in Fig. 2.

The figures show how preprocessing the rules improves reasoning times signif-
icantly, consistently requiring only a quarter of the reasoning time. This trend
manifests itself regardless of the amount of dynamic data involved. Whereas
the traditional rule set can no longer be used in a hospital with 10 wards the
preprocessed rule set still provides reasonable reasoning times.

Fig. 1. Reasoning times using traditional rules and preprocessed rules in seconds. Pre-
processing significantly reduces reasoning times.

102 D. Arndt et al.

1 2 3 4 5 6 7 8

preprocessed
traditional

step number

tim
e

in
 s

ec
.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 2 3 4 5 6 7 8

preprocessed
traditional

step number

tim
e

in
 s

ec
.

0
10

20
30

40
50

Fig. 2. Comparison of reasoning times using preprocessed and traditional rules. The
preprocessing step improves reasoning times.

7 Conclusion and Future Work

In this paper we have shown that precomputing and using specialized rules
based on the ontology’s TBox improve reasoning times of OWL RL reasoning
by about 75 %. The main cause for that is that the newly computed rules are less
complex—in terms of the variables which have to be unified during reasoning—
than the original version of the rules taken from the OWL RL profile description.
Another aspect which makes reasoning faster in our set up is the fact that
rules for concepts which are not even present in the ontology’s TBox will not
get produced by the preprocessing step. If for example the rather expensive
concept owl:sameAs does not occur in any triple of the considered ontology, no
specialized rules will be produced for this concept.

The presented preprocessing step consists of two simple reasoning runs which
can be performed before dealing with additional input data. Using the EYE
reasoner this preprocessing normally takes only a few seconds. In set ups where
the TBox does not change during run time the produced rules can be used
whenever the ABox data to reason on changes as in the example introduced in
this paper. Our approach is independent of the reasoning done on top of the
TBox by additional rules. This makes the rule version of the ontology’s TBox
even more suitable for reuse.

Our approach makes use of the special properties of Notation3 Logic. By
providing the option of using rules to produce new rules this logic is particularly
suitable for our purposes. Furthermore Notation3 offers multiple predicates to
act on lists as for example the function list:in. This eases the implementa-
tion of rule producing rules based on OWL predicates as there are many OWL
constructs which are normally stated with lists in their object position.

Notation3 Logic posses other interesting properties which we are planning to
apply in future work: in N3, rules can have existential variables in their conse-
quence. Using this particular property it will be possible to also cover OWL EL
concepts which are not present in OWL RL. Similarly as done in for example

Improving OWL RL Reasoning in N3 by Using Specialized Rules 103

OWLim [7] we are planning to include OWL EL in our implementation. We fur-
thermore want to investigate the actual costs of processing the different OWL
concepts by our newly produced rules. This will enable us to recommend the
exclusion of particular concepts if not really needed.

Acknowledgements. The research activities described in this paper were funded by
Ghent University, iMinds, the IWT Flanders, the FWO-Flanders, and the European
Union, in the context of the project “ORCA”, which is a collaboration of Televic
Healthcare, Internet-Based Communication Networks and Services (IBCN), and Data
Science Lab (DSLab).

References

1. FuXi 1.4: A Python-based, bi-directional logical reasoning system for the semantic
web. http://code.google.com/p/fuxi/

2. Arndt, D., et al.: Ontology reasoning using rules in an eHealth context. In:
Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML
2015. LNCS, vol. 9202, pp. 465–472. Springer, Heidelberg (2015)

3. Arndt, D., Verborgh, R., De Roo, J., Sun, H., Mannens, E., Van De Walle, R.:
Semantics of notation3 logic: a solution for implicit quantification. In: Bassiliades,
N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS,
vol. 9202, pp. 127–143. Springer, Heidelberg (2015)

4. Berners-Lee, T.: cwm (2000–2009). http://www.w3.org/2000/10/swap/doc/cwm.
html

5. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. In: W3C
Team Submission, March 2011. http://www.w3.org/TeamSubmission/n3/

6. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3 Logic: a logical
framework for the World Wide Web. Theory Pract. Logic Program. 8(3), 249–269
(2008)

7. Bishop, B., Bojanov, S.: Implementing OWL 2 RL and OWL 2 QL rule-sets for
OWLIM. In: OWLED, vol. 796 (2011)

8. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: a family of scalable semantic repositories. Semant. Web 2(1), 33–42
(2011)

9. Calvanese, D., Carroll, J., Di Giacomo, G., Hendler, J., Herman, I., Parsia, B.,
Patel-Schneider, P.F., Ruttenberg, A., Sattler, U., Schneider, M.: OWL 2 web
ontology language profiles 2nd edn. In: W3C Recommendation, December 2012.
www.w3.org/TR/owl2-profiles/

10. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: Concepts and Abstract Syn-
tax. In: W3C Recommendation, February 2014. http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

11. De Roo, J.: Euler yet another proof engine (1999–2015). http://eulersharp.
sourceforge.net/

12. De Roo, J.: EYE and OWL 2 (1999–2015). http://eulersharp.sourceforge.net/
2003/03swap/eye-owl2.html

13. Declerck, T., Krieger, H.U.: Translating XBRL into description logic. an approach
using protege, sesame & OWL. In: BIS, pp. 455–467 (2006)

http://code.google.com/p/fuxi/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/TeamSubmission/n3/
www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html
http://eulersharp.sourceforge.net/2003/03swap/eye-owl2.html

104 D. Arndt et al.

14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: a semantic web rule language combining OWL and RuleML. In: W3C
Member Submission, 21 May 2004. http://www.w3.org/Submission/SWRL/

15. Ongenae, F., Bleumes, L., Sulmon, N., Verstraete, M., Van Gils, M., Jacobs, A.,
De Zutter, S., Verhoeve, P., Ackaert, A., De Turck, F.: Participatory design of a
continuous care ontology: towards a user-driven ontology engineering methodology.
In: Proceedings of the Knowledge Engineering and Ontology, pp. 81–90 (2011)

16. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. In: Proceedings of the Third
International Semantic Web Conference (2004)

17. Patel, C., et al.: Matching patient records to clinical trials using ontologies. In:
Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 816–
829. Springer, Heidelberg (2007)

18. Shearer, R., Motik, B., Horrocks, I.: Hermit: a highly-efficient OWL reasoner. In:
OWLED, vol. 432, p. 91 (2008)

19. Verborgh, R., De Roo, J.: Drawing conclusions from linked data on the web. IEEE
Softw. 32(5), 23–27 (2015)

20. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: 2008 IEEE 24th International Conference on Data Engineering,
ICDE 2008, pp. 1239–1248. IEEE (2008)

http://www.w3.org/Submission/SWRL/

On the Capabilities and Limitations of OWL
Regarding Typecasting and Ontology Design

Pattern Views

Adila A. Krisnadhi1,3(B), Pascal Hitzler1, and Krzysztof Janowicz2

1 Wright State University, Dayton, OH, USA
Krisnadhi.2@wright.edu

2 University of California, Santa Barbara, CA, USA
3 Universitas Indonesia, Depok, Indonesia

Abstract. In ontology engineering, particularly when dealing with het-
erogeneous domains and their subfields, legacy data, various data mod-
els, existing standards, code lists, and so forth, there is a frequently
recurring need to express certain types of axioms that allow diverse rep-
resentational choices interoperate. Some of these axioms, which we call
typecasting axioms, point to limitations of the Web Ontology Language
(OWL), while others require best practice guides for the community.
Here, we introduce these typecasting axioms and elaborate how such
axioms can help the development of data integration using ontology and
ontology patterns. We then conclude with a brief catalog of open research
problems motivated by typecasting axioms, which may be of potential
interest to both application developers and researchers working on logical
foundations of OWL.

1 Introduction and Motivation

During our ontology engineering work with subject matter experts from a wide
range of domains including the broader geo-sciences [10], industrial ecology, the
digital humanities, libraries and the publishing industry, particle physics, and so
forth, we became aware of the recurring need to express certain types of axioms
necessary to bridge diverse representational choices, and thus enable interop-
erability between them in the same ontological framework. Often, these axioms
can be easily expressed using first-order predicate logic, but the description logic
(DL) underlying the Web Ontology Language OWL [7] does not – or not obvi-
ously – enable us to express these axioms.

Our goal is twofold: first, to motivate and describe these types of axioms
as well as the capabilities and limitations of OWL to represent them, to the
extent we are aware of them; and second, to highlight these limitations as open
problems on which researchers interested in improving and extending OWL and
its underlying logics could work. In this paper, we particularly focus on axioms
called typecasting axioms, which allow one to seamlessly switch between class-
centric, individual-centric, and property-centric representation. These axioms
are not only relevant to ontology modeling, but also in ontology alignment with

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 105–116, 2016.
DOI: 10.1007/978-3-319-33245-1 11

106 A.A. Krisnadhi et al.

complex mappings. Some of the issues herein were already alluded to by Noy
[16], however they were not discussed in the context of formal semantics of OWL
and the underlying description logics-based formalisms.

Our discussion is structured as follows. Section 2 introduces typecasting
axioms and discusses how and why OWL can or cannot represent them. This
is followed by Sect. 3 where we further discuss a particular use of typecasting
axioms in the context of Ontology Design Patterns [6] to express view expan-
sion and contraction, which are useful in the context of linked data publishing
and integration [10,12,17]. We then conclude in Sect. 4 with a list of research
questions compiled from throughout the paper.

2 Typecasting in OWL

In this section we discuss three kinds of typecasting that we frequently encoun-
tered in our work on ontological modeling. Casting between types is the implicit
or explicit process by with one (data) type is converted into another type, e.g.,
widening an int to a long. In object-oriented modeling, this includes accessing
objects that instantiate certain types as objects of their common ancestor type.
To give a simple example, a Point Of Interest (POI) class may define a method
to return the spatial footprint of the place as geographic (point) coordinates. All
classes that extend the POI class, say Restaurant and Hospital, can be queried
for their footprint by iterating over a collection of POI.

Here, we use the term typecasting to refer to translation between multiple
representational choices to define a notion using either individuals, classes, or
properties in the context of description logics. This is part of a bigger picture
that we call ontology virtualization by which an underlying model can be exposed
in different ways to suit particular needs or paradigms.

2.1 Typecasting Individual to Class and Back: Explicit Versus
Implicit Typing of Instances

The first case is concerned with the representational choice between the explicit
typing of individuals (via rdf:type) versus the identification of the type of an
individual by reference to a classname, given as an individual. In other words,
we do typecasting from a class to an individual and vice versa.

Problem Description. Schematically, the two representational choices are
depicted in Fig. 1. Case 1a at the top part of the figure corresponds to the
explicit use of rdf:type to assert a type of an individual, which, generally
speaking, seems to be more in the spirit of OWL. Case 1b at the bottom part
of the figure, however, sometimes seem more natural for domain experts, e.g.,
when referring to an externally controlled vocabulary.

Consider, for example, the case of measurement types. A concrete measure-
ment of a particular characteristic of a feature of interest, e.g., a lake, can be

OWL Typecasting and ODP Views 107

Fig. 1. Axiom (1) maps Case 1a (top part) to Case 1b (bottom part), while axiom
(2) maps in the opposite direction. Blue nodes are OWL named individuals, while the
yellow node is an OWL class (Color figure online).

of type NitrateConcentration (which in turn is a Concentration measurement).
This can be asserted through the following triple.

ex:measurement1 rdf:type geo:NitrateConcentration.

We assume here that the namespace geo: refers to an appropriate ontology that
contains measurement types. At the same time, however, it may be appropriate
for this ontology to incorporate an existing controlled vocabulary for the iden-
tification of measurement types widely used in certain fields of the geosciences.
Such controlled vocabularies often come in the form of code lists or may describe
measurement types as individuals because one may want to give additional infor-
mation about them, say

geo:NO3-concentration geo:potentialSource geo:urban runoff.

With geo:NO3-concentration being an individual, one would therefore
appropriately identify the measurement type for :measurement1 by specifying

ex:measurement1 geo:hasMeasurementType geo:NO3-concentration.

Logical Aspects. This typecasting case can be handled easily in OWL. Axiom
(1) maps Case 1a to 1b, while axiom (2) maps Case 1b to 1a.

ClassName � ∃hasType.{classname} (1)

∃hasType.{classname} � ClassName (2)

For the nitrate concentration example, the mappings in both direction can be
expressed by:

geo:NitrateConcentration ≡
∃geo:hasMeasurementType.{geo:NO3-concentration}.

It shall be noted that the above case is closely related to punning between
classes and individuals, i.e., the use of one identifier to denote both a class name
and an individual name, which is allowed in OWL 2 DL. In fact, in the above
example, we could have used geo:NO3-concentration as a class name in addi-
tion to using it as an individual name (or only using geo:NitrateConcentration
for that matter). Typecasting is, however, more general in the sense that it allows
one to use different identifier to refer to the same typing of an instance and
employ any object property as a typing predicate, simulating rdf:type.

108 A.A. Krisnadhi et al.

2.2 Typecasting Between Class and Property

The next two kinds of typecasting is concerned with the representational choice
between using a simple property or using a class to represent a relationship
between two entities.

Problem Description. Schematically, the two representational choices are
depicted in Fig. 2. Here, Case 2a simply uses a property to represent a rela-
tionship between two individuals, while Case 2b uses a reified representation of
the relation, which is actually a (possibly non-atomic) class.

For example, consider the set of triples in Fig. 3 stating that an oceano-
graphic cruise has a lead scientist provided as an individual ex:PeterWiebe.
These triples in Turtle syntax corresponds to Case 2a (disregarding the instance
typing triples).

Meanwhile, the set of triples in Fig. 4 corresponds to Case 2b where essentially
the same relationship as above is represented using a reified representation.

The representational choice as described by Case 2b is in fact very common,
e.g. as part of the so-called Agent Role ontology design pattern,1 and has in some
form even be adopted by schema.org under the term role.2 The advantage of the
second, more verbose representation is that additional information can be added
to the blank node, e.g., the funding agency, affiliation, and so forth. Note that

Fig. 2. Case 2a (top) and Case 2b (bottom). In the bottom part, the unlabeled blue
node can either be a named or anonymous individual (blank node) (Color figure online).

Fig. 3. Triples for Case 2a

1 http://ontologydesignpatterns.org/wiki/Submissions:AgentRole.
2 https://schema.org/Role.

http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
https://schema.org/Role

OWL Typecasting and ODP Views 109

Fig. 4. Triples for Case 2b

the typecasting discussed in Sect. 2.1 can also be applied to the individual acting
as the property specifier in case 2b above.

Logical Aspects: Rolification. Mapping from Case 2b to 2a corresponds to type-
casting from class to property. Note that Case 2b is indeed a class-centric repre-
sentation because the intended relationship is represented through the unlabeled
node in the middle of the bottom part of Fig. 2, which is an instance of the non-
atomic class expression ∃propertySpecifier.{c}. Obviously, one can assign a class
name to such an expression if so desired. Also, rdf:type and a class name can
be used instead of propertySpecifier and c.

The typecasting from class to property desired above employs a technique
called rolification [11,18].3 This is a key technique for representation of (Datalog)
rules in OWL. There are of course rules that can be readily expressed using OWL
axioms, e.g., guarded domain restrictions such as

Person(y) ∧ hasLeadScientist(x, y) → Cruise(x),

which is equivalent to

∃hasLeadScientist.Person � Cruise

However, this is not the case for other rules such as:

Cruise(x) ∧ hasParticipation(x, y) ∧ LeadScientistRole(y) ∧ isPlayedBy(y, z)
∧ Person(z) → hasLeadScientist(x, z)

The above rule is in fact what we need to map Case 2b to 2a. It can be expressed
in OWL by rolifying the three class names, i.e. by introducing new properties
RCruise, RLeadScientistRole, and RPerson and asserting the following axioms:

Cruise ≡ ∃RCruise.Self, Person ≡ ∃RPerson.Self
LeadScientistRole ≡ ∃RLeadScientistRole.Self

RCruise ◦ hasParticipation ◦RLeadScientistRole ◦ isPlayedBy ◦RPerson � hasLeadScientist

Notice that the three class names were typecasted into property names through
rolification axioms of the form A ≡ ∃RA.Self.
3 In DL literature, properties are called roles, hence the term rolification; not to be

confused with role as defined by the Agent Role pattern or schema.org.

www.schema.org

110 A.A. Krisnadhi et al.

More generally, mapping Case 2b to 2a in Fig. 2 is expressed using the fol-
lowing rule

hasProperty(x, y) ∧ propertySpecifier(y, c) ∧ propertyFiller(y, z)
→ a property(x, z),

which can be expressed in OWL using the two axioms

∃propertySpecifier.{c} � ∃propertySpecifier c.Self
hasProperty ◦ propertySpecifier a ◦ propertyFiller � a property

where the complex class ∃propertySpecifier.{c} is typecasted into the property
propertySpecifier c via a rolification axiom.

Since rolification allows one to typecast class into property, an additional
benefit of the use of rolification is that it allows us to express typed property
chains of the form

R1 ◦ . . . ◦Rn � R,

where each Ri is either a property name or a class name, the latter of which is
to be typecasted into a property using rolification.

There is however a caveat in using rolification axiom. While it is of course
expressible in OWL DL, its primary use cases, i.e., general conversion of rules,
always involve property chains. For them, OWL DL imposes a so-called regular-
ity restriction on the use of property chains [8], which may be violated by the
introduced ones. The origin of the regularity restriction is that without it, rea-
soning over the logic would be undecidable. While this means that the restriction
cannot be lifted in its entirety without rendering the logic undesirable, it would
be helpful to soften it, i.e., to describe types of cases which violate regularity, but
which retain decidability. In addition, approximate work-arounds are possible,
e.g., using so-called nominal schemas [11,13].

Logical Aspects: Reification. Mapping in the other direction, i.e., from case 2a to
case 2b, corresponds to typecasting property to class. For example, given a set
of triples in Fig. 3, we want to express an axiom that allows us to infer triples in
Fig. 4. This amounts to a well-known modeling technique called reification. The
axiom cannot be expressed in OWL, but can be handled using rules with exis-
tential head – well-known in database as tuple-generating dependencies (TGDs)
[2]. In the context of Fig. 2, the TGD is of the following form:

a property(x, z) → ∃y.(hasProperty(x, y) ∧ propertySpecifier(y, a)
∧ propertyFiller(y, z))

Note that using rolification axioms is not sufficient because they cannot allow us
to infer the existence of the new node for the reification (the RDF blank node
in Fig. 4).

OWL Typecasting and ODP Views 111

3 Ontology Design Pattern View Contraction
and Expansion

When developing ontologies or ontology design patterns (ODPs) for the purpose
of data integration, ontology engineers often have to introduce complex struc-
tures like reified relationships to cover the richness of the data being integrated or
to provide flexibility in the integrating schema. However, from the perspective of
a particular user or data provider, such complications may not be desirable. For
them, simplified version of the global schema, which can be specially tailored to
be sufficient for their needs may be preferable. In the context of ontology-based
or ODP-based data integration, such a simplified version of the global schema
corresponds to what we call a view by which we mean a set of shortcuts through
an ontology or an ontology design pattern. To illustrate the concept, which is
discussed also in [12,17], we adapt an example from the GeoLink oceanography
ontology [10].

Referring to Fig. 5, the red arrows indicate shortcuts, and we will discuss the
case of the isTraversedBy shortcut. Of course the picture is only a visualization
of a part of the ontology, which consists of a set of OWL axioms which we do
not list here.

In the fabric of the ontology, the isTraversedBy shortcut is in fact redundant,
i.e. it can be inferred using the rule

Vessel(x) ∧ isUndertakenBy(y, x) ∧ Cruise(y)
∧ hasTrajectory(y, z) ∧ Trajectory(z) ∧ hasSegment(z, w)

∧ Segment(w) → isTraversedBy(w, x). (3)

Since the application of the rule results in a simpler representation of the rela-
tionship between a trajectory segment and the vessel traversing it, we refer to
this type of rule also as a contraction.

The reverse of a contraction is an expansion. In our experience, this case
occurs when, e.g., a data provider may have only information about trajectories
(and their segments) which oceanographic vessels have taken. In order to popu-
late the ontology with this data, it is required to expand the data by inserting an
additional individual (or a blank node) as the cruise connecting the trajectory
and the vessel.

Fig. 5. Part of the GeoLink oceanography ontology to illustrate views.

112 A.A. Krisnadhi et al.

3.1 Contraction

A generic depiction of the view idea is presented in Fig. 6. The grey ellipse shall
indicate a labeled graph which in turn can be represented as a conjunction of
unary and binary predicates involving ClassA and ClassB, like

ClassA(x) ∧ClassB(y) ∧C1(x1) ∧ · · · ∧Cn(xn) ∧R1(y1, y2) ∧ · · · ∧Rk(yk, yk+1),

where x, y, the xi and the yj are any variables.
Contraction (i.e., a shortcut between the classes ClassA and ClassB) can then

be expressed using the rule

ClassA(x) ∧ ClassB(y) ∧ C1(x1) ∧ · · · ∧ Cn(xn) ∧ R1(y1, y2) ∧ · · · ∧Rk(yk, yk+1)
→ shortcut(x, y). (4)

Note that the simpler typecasting case discussed in Sect. 2.2 can in fact be
understood as a very simple case of contraction and expansion.

The rule expressing a shortcut (i.e., contraction) cannot in general be repre-
sented in OWL, and this is well-known. In particular, if the graph representing
the rule body is cyclic, this is not possible in many cases. Discussing this in
detail is out of scope for this paper, but a detailed account of this can e.g. be
found in [11,13].

However, let us work with the earlier example from rule (3), which is not
cyclic. In this case we can convert the rule into OWL using rolification, which
results in the following set of axioms.

Vessel ≡ ∃RVessel.Self, Cruise ≡ ∃RCruise.Self
Trajectory ≡ ∃RTrajectory.Self, Segment ≡ ∃RSegment.Self

RSegment ◦ hasSegment− ◦RTrajectory ◦
◦ hasTrajectory− ◦RCruise ◦ isUndertakenBy � isTraversedBy

The problem is again, of course, that the introduction of additional role chains
may render the ontology to be outside OWL DL due to possible violations of
regularity restrictions.

Fig. 6. Depiction of a generic shortcut.

OWL Typecasting and ODP Views 113

The cases where rules are cyclic pose particular challenges. We illustrate this
by an example taken from [11]. The rule defines a shortcut indicating a review
assignment with a conflict of interest.

hasReviewAssignment(v, x) ∧ hasAuthor(x, y) ∧ atVenue∧
∧hasSubmittedPaper(v, u) ∧ hasAuthor(u, y) ∧ atVenue(u, z)

→ hasConflictingAssignedPaper(v, x)

Approximate (sound but incomplete) translations of such cyclic rules into
OWL are possible using DL-safe rules [9,15]. Better approximations (i.e., with
not as much loss in terms of logical consequences) are possible using so-
called nominal schemas [11,13]. While in the meantime some results have been
obtained regarding efficient reasoning with nominal schemas [5,19], the topic
does still require in depth exploration to obtain sufficient coverage for modeling
purposes.

Assuming familiarity with rule to OWL conversion techniques as discussed
e.g. in [11], we identify several research questions which address such conversion
issues. Some of them have in fact already been exposed by our earlier discussions.

(1) Translation of rules usually requires rolification and the use of role chains,
i.e. softening regularity restrictions would be extremely helpful.

(2) Approximate translation of rules (approximate in order to avoid regularity
issues) currently requires the use of nominal schemas, for which efficient rea-
soning algorithms, as well as suitable modeling and reasoning tools, require
further investigation.

(3) Translated rules often fall into the OWL EL fragment with additional use
of inverse roles. While OWL EL requires regularity, the regularity require-
ment is not required for decidability of the logic. However, in the presence
of inverse roles, together with a non-regular set of role chains, the logic
becomes undecidable [1]. Softening the regularity requirement for OWL EL
with addtional inverse roles would make it possible to translate more short-
cut rules.

(4) Likewise, OWL EL (with the regularity restriction) together with inverse
roles is no longer tractable. Research into conditions under which tractability
is retained would be helpful in practice – see e.g. for [4] for some work related
to this issue.

Another issue arising out of shortcuts is if ClassB, in our generic example, is
actually a datatype, i.e., the infered role ‘shortcut’ shall be a datatype property.
Structurally, representation of the corresponding rule should follow the same
method, however the resulting OWL axioms will then usually involve a role
chain with a datatype property as the final, right-most role. However, the OWL
standard currently does not allow this. We conjecture that allowing this would
probably be a minor extension of the standard, but this still requires looking at.

114 A.A. Krisnadhi et al.

3.2 Expansion

Expansion is the reverse of contraction, i.e. expanding from a shortcut into the
graph, as in our generic example. It can be understood as a generalized version
of the direction from Case 2a to 2b in Sect. 2.2 where a blank node is introduced,
i.e. as a type of role introduction instead of using an elementary property.

Of course, simply reversing the implication arrow in rule (4) is insufficient,
as quantification of the variables needs to be addressed. The appropriate axiom-
atization, in fact, is the following.

shortcut(x, y) → ClassA(x) ∧ ClassB(y) ∧ ∃x1 . . . ∃xn∃y1 . . . ∃yn(C1(x1) ∧ . . .

· · · ∧ Cn(xn) ∧R1(y1, y2) ∧ · · · ∧Rk(yk, yk+1))

Similar to the case above in Sect. 2.2, existential rules appear to be a suit-
able paradigm, in principle. However the potentially rather complex rule heads
deserve considerable investigation, in particular if it is to be integrated with
ontology reasoning.

A specific case which may also deserve studying is when the rule head may
be translatable into a right-hand-side role chain, i.e. an axiom of the form

R � R1 ◦ · · · ◦Rn,

possible after some rolification. Right-hand-side role chains have been studied
in the literature and in the general case they lead to undecidability, particularly
when left-hand side role chains are present. Decidability by generalizing regular-
ity restriction where shown by Mosurovic, et al. [14]. On the other hand, the rule
above can also be categorized into guarded TGDs [3] for which query answering
is decidable. Note, however, that adding existential rules to OWL in general may
cause the violation of guardedness condition, hence may not guarantee decid-
ability.

4 Conclusions

We have seen that modeling issues arising in practice give rise to logical axioms
which are currently not expressible within the OWL DL standard, and this
prompts research questions which may ultimately lead to a suitable coverage
in a later version of the standard. To provide an overview, we list the research
questions raised by our discussion.

1. Relaxing RBox regularity constraints to make use of rolification easier, for
several of the aspects mentioned above.

2. Relaxing RBox regularity constraints in the specific case of OWL EL with
additional inverse roles would allow for the expression of more view contrac-
tions. Aspects to be considered would be both, decidability and tractability.

3. Develop more efficient reasoning algorithms and implementations for nominal
schemas, as they are one way to circumvent the regularity issues arising from
rolification.

OWL Typecasting and ODP Views 115

4. Investigate reasoning aspects regarding role chains which end in datatype
literals, including the issue of right-hand-side role chains.

5. Investigate right-hand-side role chains as a possible extension of OWL DL.
6. Investigate the integration of existential rules with OWL DL, in particular

for complex rule heads.

Acknowledgements. This work was supported by the National Science Foundation
under award 1017225 III: Small: TROn – Tractable Reasoning with Ontologies and
award 1440202 EarthCube Building Blocks: Collaborative Proposal: GeoLink – Lever-
aging Semantics and Linked Data for Data Sharing and Discovery in the Geosciences.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI-2005, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August,
2005, pp. 364–369 (2005)

2. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4),
718–741 (1984)

3. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

4. Carral, D., Feier, C., Grau, B.C., Hitzler, P., Horrocks, I.: EL-ifying ontologies. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
464–479. Springer, Heidelberg (2014)

5. Carral, D., Wang, C., Hitzler, P.: Towards an efficient algorithm to reason over
description logics extended with nominal schemas. In: Faber, W., Lembo, D. (eds.)
RR 2013. LNCS, vol. 7994, pp. 65–79. Springer, Heidelberg (2013)

6. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262–276. Springer, Heidelberg (2005)

7. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.)
OWL 2 Web Ontology Language: Primer. W3C Proposed Recommendation 22
September 2009 (2009). http://www.w3.org/TR/owl2-primer/

8. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRC Press, Chapman & Hall, Boca Raton (2010)

9. Hitzler, P., Parsia, B.: Ontologies and rules. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies. International Handbooks on Information Systems, pp. 111–
132. Springer, Heidelberg (2009)

10. Krisnadhi, A., et al.: The GeoLink modular oceanography ontology. In: Arenas,
M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 301–309. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-25010-6 19

11. Krisnadhi, A., Maier, F., Hitzler, P.: OWL and rules. In: Polleres, A., d’Amato,
C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 382–415. Springer, Heidelberg (2011)

http://www.w3.org/TR/owl2-primer/
http://dx.doi.org/10.1007/978-3-319-25010-6_19

116 A.A. Krisnadhi et al.

12. Krisnadhi, A.A., Hu, Y., Janowicz, K., Hitzler, P., Arko, R., Carbotte, S., Chandler,
C., Cheatham, M., Fils, D., Finin, T., Ji, P., Jones, M., Karima, N., Lehnert, K.,
Mickle, A., Narock, T., O’Brien, M., Raymond, L., Shepherd, A., Schildhauer, M.,
Wiebe, P.: The GeoLink framework for pattern-based linked data integration. In:
Proceedings of the ISWC 2015 Posters & Demonstrations Track a track within the
14th International Semantic Web Conference, ISWC 2015, Bethlehem, PA, USA,
October 13, 2015 (2015)

13. Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for OWL: nomi-
nal schemas for integrating rules and ontologies. In: Srinivasan, S., Ramamritham,
K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of
the 20th International Conference on World Wide Web, WWW 2011, Hyderabad,
India, March 28 – 1 April, 2011, pp. 645–654. ACM (2011)

14. Mosurovic, N., Krdzavac, H., Graves, M., Zakharyaschev, M.: A decidable exten-
sion of SROIQ with complex role chains and unions. J. Artif. Intell. Res. 47,
809–851 (2013)

15. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J.
Web Semant. 3(1), 41–60 (2005)

16. Noy, N. (ed.) Representing classes as property values on the semantic web. W3C
Working Group Note, 5 April 2005. http://www.w3.org/TR/swbp-classes-as-
values/

17. Rodŕıguez-Doncel, V., Krisnadhi, A.A., Hitzler, P., Cheatham, M., Karima, N.,
Amini, R.: Pattern-based linked data publication: the linked chess dataset case.
In: Hartig, O., Sequeda, J., Hogan, A. (eds.) Proceedings of the 6th International
Workshop on Consuming Linked Data co-located with 14th International Semantic
Web Conference (ISWC 2105), Bethlehem, Pennsylvania, US, October 12th, 2015,
CEUR Workshop Proceedings, vol. 1426. CEUR-WS.org (2015)

18. Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are bigger than all mice.
In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of the 21st International
Workshop on Description Logics (DL2008), Dresden, Germany, May 13–16, 2008,
CEUR Workshop Proceedings, vol. 353. CEUR-WS.org (2008)

19. Steigmiller, A., Glimm, B., Liebig, T.: Reasoning with nominal schemas through
absorption. J. Autom. Reasoning 53(4), 351–405 (2014)

http://www.w3.org/TR/swbp-classes-as-values/
http://www.w3.org/TR/swbp-classes-as-values/

How to Keep a Reference Ontology Relevant
to the Industry: A Case Study from the Smart Home

Laura Daniele(✉), Frank den Hartog, and Jasper Roes

TNO - Netherlands Organization for Applied Scientific Research, The Hague, The Netherlands
{Laura.Daniele,Frank.denHartog,Jasper.Roes}@tno.nl

Abstract. The Smart Appliance REFerence ontology (SAREF) is a shared model
of consensus developed in close interaction with the industry to enable semantic
interoperability for smart appliances. Smart appliances are intelligent and
networked devices that accomplish some household functions, such as cleaning
or cooking. This paper focuses on specific aspects of SAREF’s development
cycle, such as the design principles on which the ontology is based and the stake‐
holders’ requirements from which certain modelling decisions originated. More‐
over, we discuss the work to be done in the immediate future for SAREF to evolve
concerning its maintenance, versioning, extension and governance. Open ques‐
tions include how to guarantee the correct usage of SAREF, how to systematically
manage the growth of extensions and specializations of SAREF in a consistent
network of ontologies, and who should be responsible for these activities.

Keywords: Smart appliances · Ontologies · Semantic interoperability ·
Maintenance · Extension · Governance

1 Introduction

The Smart Appliance REFerence ontology (SAREF) is a shared model of consensus
developed in close interaction with the industry to facilitate the matching of existing
assets (i.e., standards, data models, protocols, specifications) in the smart appliances
domain. Smart appliances are intelligent and networked devices that accomplish some
household functions, such as cleaning or cooking. Smart appliances play an active role
in the energy management of the buildings and are of strategic importance in achieving
the goal of higher energy efficiency in the European economy [1]. SAREF focuses on
the concept of “device”, which is a tangible object designed to accomplish a particular
task in households, common public buildings or offices. In order to accomplish this task,
a device performs one or more “functions”. For example, a washing machine is designed
to wash (task) and to accomplish this task it performs, among others, a start and stop
function. When connected to a network, a device offers a “service”, which is a repre‐
sentation of a function to a network that makes the function discoverable, registerable
and remotely controllable by other devices in the network. A device is also characterized
by an “energy profile” and a “power profile” that can be used to optimize the energy
efficiency in a home or office that are part of the building. SAREF is expressed in OWL-
DL and contains 124 classes, 56 object properties and 28 datatype properties.

© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp 117–123, 2016.
DOI: 10.1007/978-3-319-33245-1_12

The documentation of SAREF is available online1 where the ontology file can be down‐
loaded in Turtle format2. A detailed description of the main classes and properties of
SAREF can be found in our earlier work [3], in which we also described the approach
taken during the SAREF development and we articulated the general principles learned
from our experience in working with the community of industrial practitioners in the
ontology creation process.

In this paper we focus on specific aspects of SAREF’s development cycle, such as
the stakeholders’ requirements, the fundamental design principles used to create the
ontology and the best practices followed to describe, document and publish SAREF in
order to promote its usage in the smart appliances community. Moreover, we discuss
the work to be done in the immediate future for SAREF to evolve concerning its main‐
tenance, versioning, extension and governance. Open questions are how to guarantee
the correct usage of SAREF, how to systematically organize future extensions and
specializations in a consistent network of ontologies, and who should be responsible for
these activities. The paper is structured as follows. The next section addresses various
aspects that help to understand the modelling decisions underlying SAREF (i.e., require‐
ments, principles and best practices), followed by the discussion on the maintenance,
versioning, extension and governance of the ontology network sprouting from SAREF.
The final section concludes the paper.

2 SAREF: Requirements, Principles and Best Practices

One of the most important stakeholders of SAREF is the European Commission (EC).
The lack of a shared model of consensus in the smart appliances industry is a bottleneck
for the EC to reach their energy saving ambitions [2, 4, 5]. Therefore the EC financed
the development of the initial version of SAREF3 [2], which project we subsequently
executed4. During the development of SAREF, we had to take into account various
requirements that the EC specifically mentioned in the tender document [2], and addi‐
tional requirements set by our industrial collaborators. Often this meant that we had to
balance apparently contradicting requirements. For example, the tender specification
indicated OWL as the preferred ontology language for the project. However, the tender
also stated that “the tenderer is free to suggest in his offer other tools or formalized
languages, especially if they could facilitate collaborative aspects of ontology develop‐
ment and dynamic evolution of ontology networks in distributed environments”. We
decided to use OWL-DL as suggested, since it provided us with formal semantics and
allowed a sufficient degree of semantic reasoning, being supported by a large number
of software reasoning and consistency checking tools. Moreover, the tender required
SAREF to be as complete as possible “to cover the needs of all appliances relevant for
energy efficiency”, and at the same time optimize the ontology “to be synthetic, compact

1
http://ontology.tno.nl/saref.

2
http://ontology.tno.nl/saref.ttl.

3
http://ec.europa.eu/digital-agenda/en/news/invitation-tender-study-available-semantics-
assets-interoperability-smart-appliances-mapping.

4
https://sites.google.com/site/smartappliancesproject/home.

118 L. Daniele et al.

http://ontology.tno.nl/saref
http://ontology.tno.nl/saref.ttl
http://ec.europa.eu/digital-agenda/en/news/invitation-tender-study-available-semantics-assets-interoperability-smart-appliances-mapping
http://ec.europa.eu/digital-agenda/en/news/invitation-tender-study-available-semantics-assets-interoperability-smart-appliances-mapping
https://sites.google.com/site/smartappliancesproject/home

and with the minimum redundancy”. The reference ontology resulting from our work
was also meant to cover all semantic requirements as discovered in the project, but also
“designed in a way that it can be expanded to cover future intelligence requirements”.
Finally, from a foundational point of view, we wanted to have a well axiomatized
ontology to exploit the reasoning capabilities offered by OWL-DL, although the tender
stated that the ontology under development was expected to be “a rather simple ontology
as compared of state of the art ontology engineering level of complexity”. In conclusion,
it was required to produce an artefact with an exhaustive coverage in which all the
different stakeholders in the domain could recognize their work, but which should be
also rather simple, understandable and easy to use, in order to ease the adoption by the
stakeholders. This was not a trivial task, and as described in [3] we had to compromise
between the conceptual thinking underlying the world of formal ontologies and the more
practical point of view of industrial stakeholders.

We created SAREF using fundamental principles of ontology engineering [6], such
as reuse and alignment of concepts that are defined elsewhere. Since a large amount of
work was already being done in the smart appliances domain, we have not invented
anything new, but harmonized and aligned what was already there. The SAREF ontology
was therefore built using core concepts that describe existing semantic assets (i.e.,
standards, data models, protocols, specifications) in the smart appliances community. A
mapping that aligns concepts from existing semantic assets to core concepts in SAREF
is available at the project website5 as a complementary file to the project’s final deliv‐
erable [7]. Moreover, SAREF reuses ontologies and vocabularies that have been devel‐
oped in the Semantic Web community. In particular, SAREF directly imports the W3C
WGS84 geo positioning vocabulary6 and the W3C Time ontology7. SAREF also refers
to the Ontology of units of Measure (OM)8 to define the members of its “unit of measure”
subclasses, such as the “power unit” class in the following example:

We have not directly imported OM since we only needed a reference to some basic
units of measure and not the entire reasoning capability of this complex ontology, which
in our opinion, if imported, would have confused the smart appliances industry - main

5
D-S4 - SMART 2013-0077 - Smart Appliances - Mapping SAREF to short list assets: https://
sites.google.com/site/smartappliancesproject/documents.

6
http://www.w3.org/2003/01/geo/wgs84_pos.

7
http://www.w3.org/TR/owl-time.

8
http://www.wurvoc.org/vocabularies/om-1.8.

How to Keep a Reference Ontology Relevant to the Industry 119

https://sites.google.com/site/smartappliancesproject/documents
https://sites.google.com/site/smartappliancesproject/documents
http://www.w3.org/2003/01/geo/wgs84_pos
http://www.w3.org/TR/owl-time
http://www.wurvoc.org/vocabularies/om-1.8

user of SAREF - who is rather pragmatic and not acquainted with (complex) ontologies.
In contrast, we decided to include the W3C WGS84 geo positioning vocabulary and the
W3C Time ontology as direct imports to fully exploit their reasoning capability and
since they are reasonably small and usable also by non-expert users.

SAREF is furthermore based on the principle of modularity to allow separation and
recombination of different parts of the ontology depending on specific needs. Towards
this aim, SAREF provides building blocks that can be combined to accommodate
different needs and points of view. The starting point in SAREF is the concept of
“device”. For example, a “switch” is a device. A device is always designed to accomplish
one or more functions. Therefore, SAREF offers a lists of basic functions that can even‐
tually be combined in order to have more complex functions in a single device. For
example, the mentioned switch offers an actuating function of type “switching on/off”.
Each function has some associated commands, which can also be picked up as building
blocks from a list. For example, the “switching on/off” function is associated with the
commands “switch on”, “switch off” and “toggle”. Depending on the function(s) it
accomplishes, a device can be found in a corresponding state. States are also listed as
building blocks, making it easy and intuitive to combine devices, functions and states.
The switch considered in our example can be found in one of the two states “on” or
“off”. SAREF also provides a list of properties that can be used to further specialize the
functioning of a device. For example, a “light switch” specializes the more general
“switch” for the purpose of controlling the “light” property.

According to best practices in the Semantic Web, SAREF includes basic metadata
that allow others to correctly understand and properly reuse the ontology, such as creator,
publisher, date of issue, title and description9. SAREF is self-descriptive since it contains
labels, definitions and comments for its classes, and we also created a human-readable
description that explains the main classes and properties. This description is available
at the project website10, together with the descriptions of the technology- and domain-
specific ontologies that we used for the construction of SAREF11. We published the
SAREF ontology at a stable URL (http://w3id.org/saref) in order to guarantee persistent
access and facilitate its (re)usability in the smart appliances community.

3 Discussion

In this section we discuss the work to be done in the immediate future for SAREF to
evolve and stay relevant to the EC and industry, also now that the initial project is
completed. This work concerns the usage, extension, maintenance, versioning and
governance of SAREF. The observations follow from our experience in the development
of SAREF, but can be generalized for other (networks of) ontologies in different appli‐
cation domains. First, the adoption of SAREF and its correct usage need to be promoted.
During the project, the EC and ETSI organized a number of workshops to allow us to

9
From the Dublin Core Metadata Initiative (DCMI) Metadata Terms: http://purl.org/dc/terms.

10
 https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology.

11
 https://sites.google.com/site/smartappliancesproject/ontologies.

120 L. Daniele et al.

http://w3id.org/saref
http://purl.org/dc/terms
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
https://sites.google.com/site/smartappliancesproject/ontologies

publicly present SAREF, answer the stakeholders’ questions and collect their feedback
in an interactive fashion. Version 1.0 of SAREF is available online since the end of the
project and can be used by anybody that is interested in its capabilities. SAREF’s online
documentation is supported by the project’s ad-interim reports12, which are collected
and harmonized in the final deliverable [7]. However, no explicit strategy has been
defined on how to support users in using SAREF, especially if they only need a limited
set of capabilities that suit their purpose, instead of the entire model. This issue becomes
even more relevant when the interested users are not ontology experts, and therefore not
acquainted to create new ontologies by importing or referencing to concepts defined
elsewhere. We therefore conclude that there is a need for flexible and user-friendly
solutions in terms of tools, methods, guidelines and best practices to (1) further promote
the adoption of SAREF, and (2) allow third-party developers and users to utilize the
ontology, either the whole model or a relevant subset of it.

Another important observation comes from the fact that SAREF is a conceptual
artefact that does not cease to live because the project in which it was conceived is
finished. SAREF has its own lifecycle and we expect it to continuously evolve in the
future to cover new domains that are relevant in the home environment, such as e-health
and entertainment. There will be new devices and consequently new functions,
commands, services and so forth to be added as extensions to SAREF. Furthermore, it
would be extremely beneficial to enhance the reasoning capabilities of SAREF by
enabling its extension by means of rules. Moreover, the current concepts in SAREF are
rather high-level, since SAREF contains core concepts that are recurring in the smart
appliances domain. These concepts need to be specialized into a finer-grained level of
detail to accommodate the requirements of specific use cases that come at hand. As a
consequence, we envision that SAREF will grow into a network of ontologies that will
require some governance. We should therefore investigate a modular and consistent way
to enable this growth, while acknowledging that different stakeholders should be able
to specialize the SAREF concepts according to their needs and points of view, add more
specific relationships and axioms to refine the general (common) semantics expressed
in the reference ontology, and create new concepts linked to existing concepts in SAREF.
The minimum requirement is therefore that any extension/specialization must import or
refer to SAREF.

An example on how to extend SAREF as described above is provided by an interoper‐
ability initiative taken by the EEBus13 and Energy@home14 associations. The initiative
includes the development of an extension of SAREF to bridge the semantic gap between
the EEBus and Energy@home data models. These two data models focus on the same
concept, namely the concept of “power profile”, but they use different terminologies. A
power profile contains the information about the consumption and production of smart
appliances in the household, for example a washing machine or a refrigerator. This infor‐
mation is exchanged between the appliances and the Consumer Energy Manager (CEM)
for the purpose of energy efficiency optimization. SAREF already contains the concept of

12
 https://sites.google.com/site/smartappliancesproject/deliverables.

13
 http://www.eebus.org/en.

14
 http://www.energy-home.it.

How to Keep a Reference Ontology Relevant to the Industry 121

https://sites.google.com/site/smartappliancesproject/deliverables
http://www.eebus.org/en
http://www.energy-home.it

power profile, but this concept needs to be specialized in more detail in order to accom‐
modate the specific requirements of the use cases prescribed by EEBus and
Energy@home. This initiative helps with creating the envisioned network of ontologies,
learning by experience from these use cases, and laying out (initial) best practices that can
be reused and improved by anybody interested in this task.

An additional and essential point of discussion concerns who should be responsible
for the extension of SAREF, its maintenance and, more in general, the governance of
the envisioned network of ontologies. Not only SAREF, but also the network of ontol‐
ogies needs to be maintained in order to identify and correct defects, accommodate new
requirements, and cope with changes over time. In principle, anybody can create a new
ontology that makes use of SAREF and the creator of such ontology is responsible for
its maintenance and versioning, independent from SAREF. In this way, the maintenance
of the network will be distributed over the creators of the new ontologies sprouting from
SAREF. To avoid inconsistency and confusion, we in contrast believe that the mainte‐
nance of SAREF should be delegated to a single party (e.g., an individual organization
or a group of organizations) who should also take care of aligning SAREF with new
ontologies in the network when necessary. Consider, for example, the case in which
several extensions, like the one created for EEBus and Energy@home, are developed
to accommodate different use cases, but present common recurring concepts or proper‐
ties that could be “promoted” as core-upper concepts in SAREF. Which organization is
going to implement the necessary updates and create the new version of SAREF? TNO
could be a natural candidate as the creator of the first version of SAREF, but it is the EC
who is the official owner of SAREF, ETSI is given the responsibility to adopt SAREF
as a Technical Specification (TS) [8], and a large number of industrial stakeholders have
closely collaborated as domain experts in SAREF’s development. Also new parties such
as W3C could play a role.

4 Conclusions

This paper follows our earlier work [3] in which we presented SAREF, the Smart Appli‐
ances REFerence ontology, pointing out the lesson learned from our collaboration with
the industry during the ontology development process. In this paper we elaborated on
several aspects of the development lifecycle of SAREF. We discussed various require‐
ments that we had to take into account when creating SAREF, partly mentioned by the
EC in the tender document, but also set by our industrial collaborators during the devel‐
opment process. Often this meant that we had to balance apparently contradicting
requirements. We furthermore discussed how SAREF is based on fundamental princi‐
ples of ontology engineering, such as reuse and modularity. We also pointed out best
practices that we have used to describe, document and publish SAREF in order to guar‐
antee persistent access and facilitate its (re)usability in the smart appliances community.
We finally discussed the work to be done in the immediate future for SAREF to evolve
concerning its maintenance, versioning, extension and governance. We concluded that
there is a need for flexible and user-friendly solutions to further promote the adoption
of SAREF and allow third-party developers and users to utilize the ontology, either the

122 L. Daniele et al.

whole model or a relevant subset of it. Moreover, we identified the need for suitable
mechanisms to define the SAREF extension and maintenance workflow, manage
SAREF extensions and changes submitted by its users, possibly exploiting state-of-the-
art versioning and consistency checking. The question of which organization(s) should
be responsible for the maintenance, extension and governance of the SAREF network
of ontologies remains open and needs special attention in the immediate future.

Acknowledgments. This work has been partly funded by the European Commission under
contract number 30-CE-0610154/00-11.

References

1. Mertens, R., et al.: Manual for Statistics on Energy Consumption in Households. Publications
Office of the European Union, Luxembourg (2013)

2. European commission: invitation to tender - study on the available semantics assets for the
interoperability of smart appliances. Mapping into a Common Ontology as a M2 M Application
Layer Semantics - SMART 2013/0077

3. Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the smart
appliances reference (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP,
vol. 225, pp. 100–112. Springer, Heidelberg (2015)

4. ICT for a low carbon economy, eebuilding data models, energy efficiency vocabularies &
ontologies. In: Segovia, R. (ed.) Proceedings of the 4th Workshop Organised by the EEB Data
Models Community ICT for Sustainable Places, Nice, France, 9th–11th September 2013.
European Commission, Brussels (2014)

5. den Hartog, F., Daniele, L., Roes, J.: Toward semantic interoperability of energy using and
producing appliances in residential environments. In: 12th Annual IEEE Consumer
Communications & Networking Conference (CCNC 2015), Las Vegas, USA, pp. 162–167.
IEEE Press (2015)

6. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng.
Rev. 11(2), 93–136 (1996). Cambridge University Press

7. Daniele, L., den Hartog, F., Roes, J.: Study on Semantic Assets for Smart Appliances
Interoperability, D-S4 Final Report and D-S4 Mapping SAREF to Short List Assets. European
Commission, Brussels (2015)

8. ETSI TS 103 264 V1.1.1, SmartM2M Smart Appliances Reference Ontology and oneM2M
Mapping, ETSI (2015). http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/01.01.01_60/
ts_103264v010101p.pdf

How to Keep a Reference Ontology Relevant to the Industry 123

http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/01.01.01_60/ts_103264v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103264/01.01.01_60/ts_103264v010101p.pdf

An INSPIRE-Based Vocabulary
for the Publication of Agricultural Linked Data

Raúl Palma1(B), Tomas Reznik2, Miguel Esbŕı3, Karel Charvat4,
and Cezary Mazurek1

1 Poznan Supercomputing and Networking Center, Poznań, Poland
{rpalma,mazurek}@man.poznan.pl

2 Masaryk University, Brno, Czech Republic
tomas.reznik@sci.muni.cz

3 Atos, Madrid, Spain
miguel.esbri@atos.net

4 Wirelessinfo, Litovel, Czech Republic
charvat@ccss.cz

Abstract. FOODIE project aims at building an open and interopera-
ble agricultural specialized platform on the cloud for the management,
discovery and large-scale integration of data relevant for farming produc-
tion. In particular, the integration focuses on existing open datasets as
well as their publication in Linked data format in order to maximize their
reusability and enable the exploitation of the extra knowledge derived
from the generated links. Based on such data, for instance, FOODIE
platform aims at providing high-value applications and services support-
ing the planning and decision-making processes of different stakeholders
related to the agricultural domain. The keystone for data integration is
FOODIE data model, which has been defined by reusing and extend-
ing current standards and best practices, including data specifications
from the INSPIRE directive which are in turn based on the ISO/OGC
standards for geographical information. However, as these data specifi-
cations are available as XML documents, the first step to publish Linked
Data required transforming or lifting FOODIE data model into seman-
tic format. In this paper, we describe this process, which was conducted
semi-automatically by reusing existing tools, and adhering to the map-
ping rules for transforming geographic information UML models to OWL
ontologies defined by the ISO 19150-2 standard. We describe the chal-
lenges associated to this transformation, and finally, we describe the
generated ontology, providing an INSPIRE-based vocabulary for the pub-
lication of Agricultural Linked Data.

1 Introduction

The agriculture sector has been of strategic importance for both European cit-
izens (consumers) and European economy (regional and global) since the con-
ception of the EU; it was one of the first sectors of the economy to receive the
attention of EU policymakers [3]. And despite the fact that its contribution to
c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 124–133, 2016.
DOI: 10.1007/978-3-319-33245-1 13

An INSPIRE-Based Vocabulary for the Publication 125

the overall EU economy has slightly decreased during the previous years, agri-
culture (with forestry and fishing) represented about 1,7 % of the EU-28 Gross
Added Value and accounted for 4.9 % of the total number of persons employed
in 2013 [4]. As a result, the EU has developed policies and innovation programs
that tackle the challenges associated to improve the efficiency of agricultural
activities with a limited environmental footprint (see [2]).

Along these lines, we claim that in order tomake economically and environmen-
tally sound decisions, the different stakeholders groups involved in the agricultural
activities need integrated access to multiple and heterogeneous sources of infor-
mation collected by multiple applications and devices. In this context, FOODIE
project1 aims at building an open and interoperable cloud-based platform address-
ing among others the integration of data relevant to farming production, particu-
larly from open datasets, as well as their publication in Linked data format.

In order to build such platform, we defined the modeling approach for the
categories of information the platform will have to deal with, including their
thematic, spatial and temporal characteristics as well as their meta-information.
Such approach relies on reusing and extending standards and best practices to
specify FOODIE data model. In particular we reused data specifications from
the INSPIRE directive2, which in turn are based on ISO/OGC standards for
geospatial services and formats3, thus applying the ISO/OGC-approach of mod-
eling physical things, so-called “features”. The specifications are defined as UML
models and are available in different XML-based formats (e.g., GML, XMI) and
as Enterprise Architect (EA)4 projects. Accordingly, FOODIE data model was
specified in UML by extending and specializing INSPIRE data model for Agri-
cultural and Aquaculture Facilities (AF) [7].

However, according to the methodological guidelines for Linked Data publi-
cation [6], we need to specify the model for the representation of the data objects
and their relationships. This usually involves the specification of a lightweight
ontology (or vocabulary), reusing standard vocabularies wherever possible. In
our case, this required transforming FOODIE UML data model into a light-
weight ontology. But in addition to reusing standard vocabularies, our require-
ment was to comply with standard rules for mapping ISO UML models to OWL
ontologies. In this paper we describe this transformation process, and the result-
ing ontology that can be used to represent agricultural-related data in a Linked
Data representation or serialization (e.g., Turtle, RDF/XML).

2 Transformation

Based on the evaluation of different approaches in the literature for similar trans-
formation process (see Sect. 4), we decided to follow a semi-automatic one using
1 http://foodie-project.eu/.
2 INSPIRE directive (http://inspire.ec.europa.eu/) aims at building a Pan-European

spatial data infrastructure (SDI), requiring EU Member States to make available
spatial data, from multiple thematic areas, according to established implementing
rules using appropriate services [5].

3 http://www.opengeospatial.org/standards/is.
4 http://www.sparxsystems.com/.

http://foodie-project.eu/
http://inspire.ec.europa.eu/
http://www.opengeospatial.org/standards/is
http://www.sparxsystems.com/

126 R. Palma et al.

ShapeChange tool. ShapeChange can process application schemas for geographic
information from a UML model (e.g., XMI) and derive implementation represen-
tations, such as XML schemas, feature catalogs, and ontologies. In our case, we
were interested in the OWL processor that is based on the ISO 19150-2 standard
[8] defining rules for mapping ISO geographic information UML models to OWL
ontologies.

2.1 Pre-processing Tasks

Source Model. FOODIE UML data model required some changes before
processing it in ShapeChange. These changes led to the release of a new version
(v4.3.2)5 and include: (i) assignment of INSPIRE application schema stereotype
to include the target namespace; (ii) fixing inconsistent range usage for attribute
code; (iii) naming target sides of aggregations and associations for the genera-
tion of named object properties. The model was then published as XMI from
EA tool, but we had to remove manually the ASCII code for Carriage Return
encoded as an XML character reference in the file.

ShapeChange Configuration. The primary mechanism for providing argu-
ments to ShapeChange is the configuration file. The two main components of this
file are the encoding rules and the mappings. The first drives (broadly) the con-
version from an application schema in UML to another data structure. The sec-
ond supports customized mappings from UML classes to target OWL elements,
by enabling the specification of generic rules. Additionally, the ShapeChange
processor relies on different base ontologies for the generation of the RDF model,
and thus the configuration file includes namespaces definitions for these ontolo-
gies. In particular, the processor uses geo-spatial ontologies, including those
based on ISO 19100 series standards GeoSPARQL OGC standard and INSPIRE
specifications; and in line with the Linked Data publication guidelines, it reuses
several standard vocabularies like rdf, skos, dublin core and PROV.

We used as starting point the sample configuration settings in http://
shapechange.net/targets/ontology/uml-rdfowl-19150-2/ and customized it acco-
rding to our needs6. In particular, we applied the following rules: (i) ontologies are
created only for the selected schema; (ii) constraints on properties and classes are
specified; (iii) feature types get a subClassOf declaration to the GeoSPARQL Fea-
tureType class; (iv) feature types get a subClassOf declaration to the ISO 19150-2
FeatureType and ISO 19109 AnyFeature classes; (v) data types get a subClassOf
declaration to the ISO 19150-2 Datatype class and code lists get a subClassOf dec-
laration to ISO 19150-2 Codelist class; (vi) cardinality restrictions are specified;
(vii) allValuesFrom restrictions are not specified; (viii) minCardinality is set to 0
for voidable properties; (ix) dc:source is included only on the ontology subject;
5 Available at https://git.man.poznan.pl/stash/projects/FOOD/repos/model/

browse/.
6 https://git.man.poznan.pl/stash/projects/FOOD/repos/model/browse/

shapechange-conf.

http://shapechange.net/targets/ontology/uml-rdfowl-19150-2/
http://shapechange.net/targets/ontology/uml-rdfowl-19150-2/
https://git.man.poznan.pl/stash/projects/FOOD/repos/model/browse/
https://git.man.poznan.pl/stash/projects/FOOD/repos/model/browse/
https://git.man.poznan.pl/stash/projects/FOOD/repos/model/browse/shapechange-conf
https://git.man.poznan.pl/stash/projects/FOOD/repos/model/browse/shapechange-conf

An INSPIRE-Based Vocabulary for the Publication 127

(x) association names are not specified; (xi) the namespace abbreviation for the
application schema is used for the ontology name and filename.

We included more than ten mapping entries in the configuration file for the
classes and properties referenced in the model (see Sect. 3). We also fixed and
added several namespaces in the configuration file, i.e., many of the namespaces for
the geo-spatial ontologies were outdated or incorrect (e.g., INSPIRE, iso19150-2
and iso19109 ontologies), and we needed to include new namespaces for the map-
ping entries we created (e.g., iso19103, iso19108 and iso19115-citation ontologies).

Base Ontologies. The base INSPIRE ontology (the schema for basic types
used by multiple themes)7 was slightly modified to load it correctly, namely
we: (i) added namespace of geosparql ontology (missing); (ii) fixed namespace of
iso19150-2 based ontology, and removed the ontology import statement (because
of few inconsistencies - see discussion below); (iii) fixed VerticalPositionValue
datatype declaration; (iv) changed the ontology namespace to avoid multiple
base prefixes; (v) replaced range of object properties for which no RDF repre-
sentation was known from owl:Class to owl:Thing.

The original iso19103 ontology8 treated a few datatype as classes. For
instance Number is defined as an equivalent class to the union of primitive
numerical datatypes (xsd:decimal, xsd:double, xsd:float and xsd:integer), and as
a result it was declared both as class and datatype. We removed the class dec-
larations, however they are still being treated as classes (as it was intended).
This is possible in RDF, but in OWL terms this means that we have an OWL
full ontology, as in all reasonable profiles (OWL 2 DL and below) datatypes and
classes need to be disjoint.

Overall, we found some issues with the ontologies based on the ISO 19100
series standards. They are in provisional state, although they were created
between 2012 and 2013, and in many cases the versions changed drastically.
For instance, ISO 19100 series standards define UML profiles that include a list
of stereotypes and basic types to be used in application schemas. Accordingly,
the ISO 19150-2 based ontology defined classes for these stereotypes, including
〈〈datatype〉〉, 〈〈codelist〉〉, 〈〈featureType〉〉, and the base class 〈〈anyFeature〉〉.
However, the latest version of this ontology does not declare all these classes, as
it did in the previous version (used in ShapeChange). Additionally, the ontolo-
gies miss several elements from the standard and in most cases the ontologies
are only available as OWL full ontologies (e.g., treating datatypes as classes).
We tried unsuccessfully to reach the developers to discuss these issues.

2.2 Post-processing Tasks

We had to make some manual fixes in the ontology after executing the trans-
formation, including updating incorrect namespaces added automatically by the
processor rules (hard-coded), adding missing prefixes and removing unnecessary
7 http://portele.de/ont/inspire/base.ttl.
8 http://def.seegrid.csiro.au/isotc211/iso19103/2005/basic.

http://portele.de/ont/inspire/base.ttl
http://def.seegrid.csiro.au/isotc211/iso19103/2005/basic

128 R. Palma et al.

imports of ontologies to avoid ending up with a heavy ontology. Additionally, as
ShapeChange only processes the selected schema (i.e., FOODIE data model), we
had to add manually the ontology elements (corresponding to the UML elements)
of the base INSPIRE schemas, particularly those from the Agriculture and Aqua-
culture Facilities theme. Finally, we removed an axiom generated to constraint
the cardinality of the property rdfs:label in a class expression (rdfs:label was the
mapped property for the UML element “name”) because rdfs:label is a predefined
annotation property so it can only be used in annotations.

3 Ontology

FOODIE ontology is available at http://foodie-cloud.github.io/model/FOODIE.
html, and a partial view of its taxonomy is depicted in Fig. 1. In the reminder
we describe the main ontology elements (classes are in italics).

For the purposes of FOODIE, we found the lack of a feature on a more
detailed level than Site that is already part of the INSPIRE AF data model. The
main motivation was to represent a continuous area of agricultural land with one
type of crop species, cultivated by one user in one farming mode (conventional vs.
transitional vs. organic farming). Such concept is called Plot and represents the
main element in the model, specially because it is the level to which the majority
of agro data is related. One lower level than Plot is the ManagementZone, which
enables a more precise description of the land characteristics in fine-grained
areas. The Plot has associated two kinds of data: (i) metadata information,
including properties: code (id), validity (when the plot started and ceased to
exist), geometry (spatial extent), description and originType (manual, system);
(ii) agro-related information, including:

– ProductionType, representing production-related data, comprising properties:
productionDate (when the information was added/changed in the knowl-
edge base (KB)); variety (assemblage of cultivated individuals that are dis-
tinguished by characteristics significant for agriculture, e.g., morphological,
physiological, cytological, chemical); productionAmount (physical quantity of
produced variety).

– CropSpecies, representing the planted crop species, comprising properties: date
(when it started/ended to be planted on the Plot); cropArea (spatial extent
on the Plot); cropSpecies (designation under which it is commonly known).

– Alert, representing alerts generated by the models integrated in the platform,
comprising properties: code; type (according to user-defined classification, e.g.
phytosanitary); description; checkedByUser (indication of user awareness);
alertDate (creation); alertGeometry (spatial extent for which it is applicable).

– Intervention, representing the basic feature type for any application with
explicitly defined geometry, comprising properties: type (free text (e.g., tillage,
pruning)9); description; notes (user-defined); status (free text); creationDate

9 In the cases of free text properties, it was not feasible to provide common code lists
(e.g., values vary from country to country or from farm to farm).

http://foodie-cloud.github.io/model/FOODIE.html
http://foodie-cloud.github.io/model/FOODIE.html

An INSPIRE-Based Vocabulary for the Publication 129

(a) Top hierarchy (b) ISO 19150-2 FeatureType class hierarchy9

(c) ISO 19150-2 Codelist class hierarchy (d) 19150-2 Datatype class hierarchy

Fig. 1. Partial view of FOODIE ontology taxonomy (same for ISO 19109 AnyFeature
and geosparql Feature classes.)

(in the KB); interventionStart/End (when started/ended in the real word);
interventionGeometry (spatial extent); supervisor (entity with authority to
guarantee its execution); operator (person who executed it); evidenceParty
(entity who added it in the KB); price.

The intervention has direct and indirect associations to the following entities
(as depicted in Fig. 210):

– Treatment comprising properties: quantity (applied physical quantity); trac-
torId (vehicle for machine applying it); machineId (machine applying it);

10 In Fig. 2, boxes represent classes, arrows represent relations (black for subsumption,
blue for direct relations), properties are listed inside the boxes (with a blue square
for ObjectProperty and green square for DatatypeProperty).

130 R. Palma et al.

Fig. 2. Partial view of Intervention class

motionSpeed (recommended speed for its application); pressure (recom-
mended pressure for its application); flowAdjustment (indication if flow adjust-
ment was needed for its application); applicationWidth (width in which a
machine is capable to apply it); areaDose (maximum application rate); for-
mOfTreatment (id of its application, e.g., manual, aerial, from a code list);
treatmentPurpose (rationale why it was used, e.g., weed, pest, from a code
list); treatmentDescription.

– TreatmentPlan comprising properties: treatmentPlanCode; description; type;
campaign (period to which it was designed); treatmentPlanCreation (in the
KB); notes.

– ProductPreparation comprising properties: productQuantity (physical quan-
tity of the applied product); solventQuantity (physical quantity of solvent
applied); safetyPeriod (when a dissolved product may be used).

– Product, comprising properties: productCode; productName; productType
(free text); productSubType (detailed classification - as free text); produc-
tKind (origin, e.g., organic, mineral - from a code list); description; manufac-
turer; safetyInstructions; storageHandling (for safe storage); registrationCode
(id according to the national or other relevant registration scheme); regis-
terUrl (link to the national (or other) registry); nutrients (id of nutrients, i.e.,
chemical elements and compounds necessary for plant growth, represented by
NutrientsType class comprising properties for the amount of nitrogen, phos-
phorus pentoxide, potassium oxide and other chemical elements.

– ActiveIngredients with properties: code, ingredientName, and ingredient
Amount.

An INSPIRE-Based Vocabulary for the Publication 131

4 Related Work

We identified and analyzed some relevant works that tackle the transforma-
tion of UML models into an OWL ontology, particularly those related to the
geo-spatial domain. In [9], the authors propose a general approach for translat-
ing INSPIRE-compliant GML data models into OWL ontologies They consider
the common characteristics that INSPIRE UML (and derived GML) models
have with OWL ontologies to derive a set of general conversion rules and some
ontological refinements for frequently used element types. The execution of the
UML-OWL conversion, however, is not described and there is already a standard
defining mapping rules for transforming geographic information UML models to
OWL ontologies. In [10], the authors propose to generate an OWL ontology
from their UML model with ShapeChange tool. They then propose the usage of
annotations in the UML attributes with special meaning in RDF to use existing
RDF vocabularies in the generated ontology. The latest version of ShapeChange,
however, enables the specification of such mappings in their configuration files.
Another relevant work is presented in [1] where the authors present a method-
ology for exposing INSPIRE data and metadata on the Semantic Web through
GeoSPARQL endpoints. They follow a data-centric approach based on the usage
of XSL Transformations to map INSPIRE-compliant metadata records and data
elements from INSPIRE-compliant features into suitable RDF statements. In
our case, we are more interested in a model-based approach where the resulting
ontology can later be reused and extended, and where different source datasets
can either stay in the original (geospatial) database (using virtual SPARQL
endpoint) or lifted into a semantic store.

It is also worth mentioning that there exist some relevant ontologies and
vocabularies in the agricultural domain, being AGROVOC the most notable.
AGROVOC11 is a multilingual controlled vocabulary from FAO covering areas
like food, nutrition, agriculture, fisheries, forestry and the environment. Comple-
mentary FAO also developed agrontology12, an OWL vocabulary providing a set
of domain properties to AGROVOC. Another example is the Organic Agriculture
ontology developed within the Organic.Lingua project13 to enhance an educa-
tional Web portal14 with content on Organic Agriculture and Agroecology. These
resources are good examples of (multi-)domain ontologies which are applied par-
ticularly for the tasks of indexing, annotation, and retrieval of resources. In our
case, however, we are interested in an application oriented ontology that can
deal with all the categories of information the FOODIE platform will have to
deal with, including farming tasks and activities, and their publication as Linked
Data. Nevertheless, we plan to align our ontology with concepts from some of
these resources, particularly from AGROVOC.

11 http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-
thesaurus.

12 https://aims-fao.atlassian.net/wiki/display/AGV/Agrontology.
13 http://www.organic-lingua.eu/.
14 http://www.organic-edunet.eu/en.

http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
https://aims-fao.atlassian.net/wiki/display/AGV/Agrontology
http://www.organic-lingua.eu/
http://www.organic-edunet.eu/en

132 R. Palma et al.

5 Conclusion

The publication of Agricultural Linked Data is unfortunately still not a com-
mon practice. One of the key issues for this is that although there are some
vocabularies/ontologies for modeling the domain concepts and relations, there
is still a lack of vocabularies for modeling all the relevant information within
farm-oriented applications, including their tasks and activities, as Linked Data.
In FOODIE project, we have developed an ontology for this task which complies
and adheres to existing standards for the representation of geo-spatial data rel-
evant for agriculture. In particular, we extended and specialized INSPIRE UML
data model for Agricultural and Aquaculture Facilities and transformed this
model into a lightweight ontology. We conducted this process semi-automatically
reusing ShapeChange tool, which enables the transformation of UML models in
XMI into OWL ontologies. The transformation required several pre and post
processing tasks, in order to build the final ontology. We described in detail
this process, the challenges associated, and finally, we presented the resulting
ontology. At the moment we are working on the application of this ontology in
FOODIE platform.

Acknowledgments. The research reported in this paper has been supported by the
EU FOODIE project (http://foodie-project.eu/, CIP-ICT-PSP-2013-7, Pilot B no.
621074).

References

1. Alexakis, M., Athanasiou, S., Georgomanolis, N., Patroumpas, K., Stratiotis,
T.: D2.7.1 geodata.gov.gr Geospatial Data as Linked Data. Technical report
D2.7.1, ATHENA, June 2014. http://svn.aksw.org/projects/GeoKnow/Public/D2.
7.1 Geodata.gov.gr Geospatial Data as Linked Data.pdf

2. European Comission: Agricultural and rural development, research and inno-
vation, challenges (2015). http://ec.europa.eu/agriculture/research-innovation/
challenges/index en.htm

3. Eurostat: Enlargement countries agriculture, forestry and fishing statistics (2014).
http://goo.gl/Sm121D

4. Eurostat: Enlargement countries agriculture, forestry and fishing: tables and figures
(2014). http://goo.gl/m3mkFA

5. Fichtinger, A.: INSPIRE Roadmap and Implementation. In: INSPIRE-GMES
Information Brochure, 7th edn., pp. 2–10. Technische Universität München,
October 2011

6. Hyland, B., Atemezing, G., Villazon-Terrazas, B.: Best practices for publishing
linked data (2014). http://www.w3.org/TR/ld-bp/

7. INSPIRE Thematic WG Agricultural and Aquaculture Facilities. D2.8.III.9 data
specification on agricultural and aquaculture facilities, December 2013. http://goo.
gl/eWi6rq

8. ISO: Standard 19150–2:2015: Geographic information - Ontology - Part 2,
July 2015. http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.
htm?csnumber=57466

http://foodie-project.eu/
http://svn.aksw.org/projects/GeoKnow/Public/D2.7.1_Geodata.gov.gr_Geospatial_Data_as_Linked_Data.pdf
http://svn.aksw.org/projects/GeoKnow/Public/D2.7.1_Geodata.gov.gr_Geospatial_Data_as_Linked_Data.pdf
http://ec.europa.eu/agriculture/research-innovation/challenges/index_en.htm
http://ec.europa.eu/agriculture/research-innovation/challenges/index_en.htm
http://goo.gl/Sm121D
http://goo.gl/m3mkFA
http://www.w3.org/TR/ld-bp/
http://goo.gl/eWi6rq
http://goo.gl/eWi6rq
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57466
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57466

An INSPIRE-Based Vocabulary for the Publication 133

9. Tschirner, S., Scherp, A., Staab, S.: Semantic access to inspire. In: Terra Cognita
2011 Workshop Foundations, Technologies and Applications of the Geospatial Web.
Citeseer (2011)

10. Van den Brink, L., Janssen, P., Quak, W.: From geo-data to linked data: automated
transformation from GML to RDF. Linked Open Data-Pilot Linked Open Data
Nederland (2013)

Towards a Core Ontology of Occupational Safety
and Health

Agnieszka �Lawrynowicz(B) and Ilona �Lawniczak

Institute of Computing Science, Poznan University of Technology, Poznan, Poland
alawrynowicz@cs.put.poznan.pl

Abstract. We describe the core module of the Occupational Safety and
Health Domain Ontology (OSHDO-Core) v1.0, we have developed. We
also discuss the requirements specification and modeling and ontology
engineering issues encountered during the design process. The resulting
OSHDO-Core contains the core vocabulary of the domain with basic
ontological distinctions. The ultimate goal is to establish a common
vocabulary and a core formal model of the domain.

Keywords: Occupational Safety and Health · Ontology

1 Introduction

Occupational Safety and Health (OSH) is defined as the scientific domain deal-
ing with the anticipation, identification, evaluation and control of hazards that
emerge in or from the workplace and that may negatively impact the health and
well-being of workers [1]. It is a broad, multidisciplinary domain since a variety
of workplaces and hazards exist. World Health Organization (WHO) considers
rather the discipline of occupational health defined as dealing with “all aspects of
health and safety in the workplace and has a strong focus on primary prevention
of hazards.”1 Health is considered as a state of complete well-being and not just
the absence of a disease. Whereas the term safety engineering refers to a related
engineering discipline whose goal is to ensure acceptable levels of safety pro-
vided by engineered systems. Studying the possible impact on the neighbouring
communities and environment is also being considered as part of OSH.

Our contribution in this work is the specification of the core vocabulary of the
domain with basic ontological distinctions. We have developed the core module
of the Occupational Safety and Health Domain Ontology (OSHDO-Core) v1.0
that we discuss in this paper.

The rest of the paper is structured as follows. In Sect. 2 we discuss the require-
ments. In Sect. 3 we review related ontologies and non-ontological resources. In
Sect. 4 we describe the content of OSHDO-Core. In Sect. 5 we provide a discus-
sion and lessons learnt with respect to modeling issues and ontology engineering
issues. In Sect. 6 we provide a summary and the future work agenda.
1 http://www.wpro.who.int/topics/occupational health/en/.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 134–142, 2016.
DOI: 10.1007/978-3-319-33245-1 14

http://www.wpro.who.int/topics/occupational_health/en/

Towards a Core Ontology of Occupational Safety and Health 135

2 Requirements Specification

We have identified several use cases for OSHDO2, such as: analyzing occupational
risks, analysing and making predictions concerning the causes and consequences
of accidents or potentially accidental events, developing training materials, link-
ing workers with events that occurred in the company, creating annual statis-
tics. We have also identified the possible users of the ontology: the worker, the
employer, the occupational safety and health specialist, general inspectors (e.g.,
national labour inspectorate), the (central) statistical office.

Below we present sample competency questions. The questions are organized
into thematic groups according to Ishikawa diagrams [2] (also called fishbone
diagrams or cause–and–effect diagrams). This technique is commonly used to
locate causes of a mistake, accident, or potentially accidental events.

CQ1 Man:

– What is an unsafe act?
– What regulates training of workers?
– Can mental and physical condition cause accidents at work?

CQ2 Method:

– To which group of causes belongs inadequate adaptation of technology to the
work process?

– What describes the procedures to be followed at work?

CQ3 Management:

– To what group of accident causes belongs inappropriate distribution and stor-
age of objects of labor (raw materials, semi-finished products, etc.)?

– What causes the division of work or task planning to be incorrect?

CQ 4 Machine:

– Which group of causes includes excessive exploitation of material?
– Which group of causes includes improper repairs and renovations?

CQ 5 Material:

– What are hidden causes of material defects?
– Does incorrectly protected material can cause near miss event?

CQ 6 Environment:

– What are the unsafety conditions?
– What group of hazards affects the environment?
– What factors belong to a group of chemical/physical hazards?

2 The complete list may be found at http://semantic.cs.put.poznan.pl/ontologies/
oshdo/.

http://semantic.cs.put.poznan.pl/ontologies/oshdo/
http://semantic.cs.put.poznan.pl/ontologies/oshdo/

136 A. �Lawrynowicz and I. �Lawniczak

CQ 7 Risk assessment:

– What is the most common cause of accidents at work?
– What is WEEL (Workplace Environmental Exposure Level)?
– What methods can be used to minimize occupational risk?
– What threat is most common in occupational risk assessment?
– What are the most commonly used means of corrective or preventive actions?
– Which means are part of the PPE (personal protective equipment)?
– Which groups of threats/hazards can be distinguished ?
– What kind of health effects are reversible?
– What kind of a situation/an event is that in which there nearly happened an

accident at work?
– What is the severity of the consequences defined as resulting from injuries and

diseases (e.g. third-degree burns, occupational hearing loss)?

The complete set of the questions may be found at http://semantic.cs.put.
poznan.pl/ontologies/oshdo/.

3 Related Work

The occupational safety and health overlaps with a number of disciplines
including safety engineering, (occupational) medicine, psychology, epidemiology,
human factors and ergonomics, physiotherapy and rehabilitation, law and oth-
ers. The ontologies for many of those fields exist, but focused on the particular
domain. Below, we briefly review the ontologies from the overlapping domains.

The major terms in OSH are hazard (threat) and risk. Threat is considered
in Internet and/or Cyber Security, and in [3] an ontology is described for the
latter domain, but it is modeled with a different focus and scope. The Risk base
ontology from the EU project RISCOSS [4] re-uses concepts from another risk
ontology, defined in the EU project Musing3, definitions from standards such as
ISO 31000, and terms defined in risk management methodologies. But it does
not include a concept of hazard. A hackathon at Ontology Summit 20144 was
devoted to modeling hazard and risk related concepts but in the travel domain.

There are many ontologies that might be considered relevant for modeling
hazards, such as from the life sciences domain [5] which include knowledge on
potential hazards - biological and chemical agents - and diseases. They may be
useful in further steps for modeling OSHDO branches beyond the core module.

Legal ontologies such as LKIF-Core Ontology [6] describe the issues related
to law, legislation, norms, but none of them models vocabulary typical to OSH
(specific to safety management, as how to implement the duties related to safety,
what are the requirements for carrying out activities aimed at risk reduction
etc.). Similarly, ontologies related to management or business processes [7] do not
contain key concepts from the OSH domain, e.g. to describe the consequences

3 http://cordis.europa.eu/ist/kct/musingsynopsis.htm.
4 http://ontolog.cim3.net/OntologySummit/2014/.

http://semantic.cs.put.poznan.pl/ontologies/oshdo/
http://semantic.cs.put.poznan.pl/ontologies/oshdo/
http://cordis.europa.eu/ist/kct/musingsynopsis.htm
http://ontolog.cim3.net/OntologySummit/2014/

Towards a Core Ontology of Occupational Safety and Health 137

of impacts in the labor process, prevention methods, procedures and security
measures which must be used to deal with hazardous substances and situations.

Identifying and analyzing the available ontologies revealed lack of one that
fully covers the scope and vocabulary for the subject of OSH. Thus we aim at
creating a new ontology on the basis of available resources.

4 Overview of the Content of OHSDO-Core

4.1 Main Concepts of OHSDO-Core

To define a set of core concepts we have examined non-ontological resources
including: the taxonomy of categories of OSHwiki5, definitions from standards
such as OHSAS 18001 as well as glossaries of terms6. We have also studied
handbooks on the domain [1,8] and the definitions therein. Below, we describe
basic terms of OHSDO-Core v1.0. The ontology may be downloaded from http://
semantic.cs.put.poznan.pl/ontologies/oshdo/OSHDO-Core.owl.

OccupationalSafety and Health are two important terms in the domain that
are often misinterpreted. For the layperson, ‘safety’ is to not getting injured.
But professionals operate by referring to the likelihood or risk of an occurence
of such an event. Safety is understood as “operating within an acceptable or
low probability of risk” [8] that concerns potential harm to people and non-
human resources of the enterprise (equipment and facilities). Similarly, Health
is commonly interpreted as the absence of a disease. But in the OSH domain, a
broader definition, as the one of WHO (see: Sect. 1), is adapted.

OccupationalHazard is the major term in the domain. It is defined as a
potential source of Harm (Injury or other health deterioration) on someone or
something. It is a threat that may be caused by a source, situation, or act
with a potential for harm. It may be responsible for Incidents at Workplace
and/or occupational diseases (OccupationalDisease) under occurrence of a cer-
tain HazardousEvent or condition. HazardousEvent is as an event where at least
one participating Worker is exposed to an OccupationalHazard. HazardousEvent
may casually follow some Cause and may cause one or more Consequence. Occu-
pationalExposure is a measure of the extent (a dose) to which a Worker (or
Equipment) is likely to be exposed to - or may be influenced by - the Occupation-
alHazard. HazardousSituation is a situation that participates in one or more Haz-
ardousEvents (Hazardous Situation ontology design pattern (ODP) is depicted
in Sect. 4.2). It represents a ‘snapshot’, a setting that is associated with a Haz-
ardousEvent. There is a variety of hazards e.g., physical hazards, electrical haz-
ards, radiation hazards, noise, and vibration. HazardIdentification belongs to main
areas of OSH.

Risk, in the simplest case, is the likelihood that Harm will actually occur
(Risk = Hazard × Exposure). A broader meaning of Risk also considers the
likelihood of the amount of Harm that the exposure to a hazard will cause

5 http://oshwiki.eu.
6 http://www.iapa.ca/pdf/iapa glossary.pdf.

http://semantic.cs.put.poznan.pl/ontologies/oshdo/OSHDO-Core.owl
http://semantic.cs.put.poznan.pl/ontologies/oshdo/OSHDO-Core.owl
http://oshwiki.eu
http://www.iapa.ca/pdf/iapa_glossary.pdf

138 A. �Lawrynowicz and I. �Lawniczak

Fig. 1. Accident as an event of type of Incident (according to OHSAS versus Accident
and Incident as different types of events (according to HSE (http://www.hse.gov.uk)).

(Severity). For instance, in [1] there is provided the following formula to define
Risk: Risk = Probability × Severity. The OHSAS 18001:2007 standard defines
risk as “combination of the likelihood of an occurrence of a hazardous event or
exposure(s) and the severity of injury or ill health that can be caused by the
event, accident(s) or exposure(s)”.

RiskAssessment concerns analyzing the risks and determining the level of
acceptability of risk, based on the reviews of the risk including risk analysis
and risk evaluation. It shall consider acceptable risks, for which changes are not
necessary and those for which actions are needed to be taken to reduce Risk.
Action is a short-term event. PreventiveAction and CorrectiveAction may be dis-
tinguished (for preventing incidents and eliminating similar incidents to those
that has just happened).

Harm occurs in practice when there are both: the OccupationalHazard and
OccupationalExposure. It may be a result of Incident or Accident at Workplace
causing negative consequences for the life and health of a Worker or Equipment.
OccupationalDisease is primarily a result of OccupationalExposure to risk factors
in the Workplace arising from specificity of the tasks that Worker performs.

Various definitions of Incident and Accident, regarded as unintended events at
work, exist in the literature (see: Fig. 1). We adopt the definition of Incident from
OHSAS 18001 standard, where Incident is regarded as “a work-related event(s)
in which an injury or ill health (regardless of severity) or fatality occurred, or
could have occurred”7. Those events are nearly always preceded by unsafe acts
of workers, hazardous conditions in the workplace, or both.

Worker is a physical person employed by an employer to carry out the tasks
laid down in the contract of employment. Employer is a physical or legal per-
son that operates under law with regard to an employment relationship with
the Worker. From a safety standpoint Employer is responsible for the condition
of the company as well as for activities that must be performed in order to
identify and minimize risks. Workplace is the physical location and its surround-
ings where the Worker takes actions related to performing any work that is

7 http://www.ohsas-18001-occupational-health-and-safety.com.

http://www.hse.gov.uk
http://www.ohsas-18001-occupational-health-and-safety.com

Towards a Core Ontology of Occupational Safety and Health 139

organized by the management and subject to ongoing monitoring. Workplace
also includes machines (Machine), equipments Equipment and tools needed to do
the job. Hazardous environment at work is associated with unsafe conditions,
i.e. such conditions, not directly caused by the action or inaction of one or more
workers (e.g., faulty design) that may lead to an Incident or Injury if uncorrected.

OSH-Policy is defined by OHSAS 18001:2007 as “overall intentions and direc-
tion of an organization related to its OH&S performance as formally expressed
by top management”. It is a method for guiding carrying out actions. It states
the principles and rules to guide actions. PreventionStrategy and ControlStrategy
are both plans of actions such as, for instance, related to personal protective
equipment, or workplace health promotion. OSH-Management is a geared effort
of reducing the risk into acceptable threshold level, then keep it at the same or
lower level. The safety management system OSH-ManagementSystem is regarded
as a set of functions that are decisive in defining and implementing security poli-
cies in the workplace. OSH-Performance is a measurable, definite in time score
indicating the level of the performance of the company in terms of OSH after the
implementation of work safety management system. PreventiveMeasure and Pro-
tectiveMeasure are used to assess, prevent and reduce occupational Risk. Efforts
are made where risk assessment indicates an inadmissible level of risk to reduce
it and improve the Workplace.

4.2 The Hazardous Situation Ontology Design Pattern

We briefly present an ontology design pattern we have developed to represent
hazardous situations and events. It is intended to provide a building block for
modeling hazardous situations, i.e. the situations where one or more objects is
exposed to one or more hazards to some extent (exposure value). The pattern is
depicted in Fig. 2. A longer description may be found in [9].

Fig. 2. The hazardous situation ontology design pattern

140 A. �Lawrynowicz and I. �Lawniczak

5 Discussion

5.1 Modeling Issues

The main difficulties we have encountered during modeling are related to the
presence of various alternative definitions and interpretations of the core terms
of OSH that may be found in the literature and within the proposed standards.

Risk. Risk is the term often being confused with OccupationalHazard. Some dic-
tionaries give imprecise definitions or even combine those two terms (e.g. “a
danger or risk”), and many people apply those terms interchangeably. But haz-
ard is only one of the components of Risk. Several definitions and formulas have
been proposed in the literature and it remains to be further researched what is
the most proper formal definition in the context of OSH.

Hazard. During making modeling choices, we investigated the modeling pattern
from the RISCOSS ontology [4]. RISCOSS models Risk, with exposure as a
derived value, and RiskEvent with likelihood as a derived value. RiskEvent is
an Event, and as such it corresponds most closely to Incident or HazardousEvent
in OSHDO. The report from the hackathon at Ontology Summit 2014 uses the
term hazard also as of an event. RiskEvent is a superclass of accidents in this
view. Thus the term Factor from the report (such as EnvionmentalFactor, e.g.
Limited Sight) is closest to our interpretation of Hazard. Hazard in our case, is
not an event. It is much closer in the meaning to Threat from [3].

Incident vs Accident. The definition of these terms is important in the context of
prevention of these events. Although the term Incident is regarded increasingly as
a broad term encompassing all events causing injury or material damages, also
near-miss events, this is not always the case. Incident is often also referred to
an event that have had the potential to cause harm, but didn’t. Incident is then
regarded as a synonym for a near-miss event. These differences in terminology
and definitions have to be taken into account when reading OSH literature.

Hazardous Situation vs Hazardous Event. Before arriving in the Hazardous Sit-
uation ODP we had struggled in differentiating situations from events. In the
literature, they are often used interchangeably. But we wanted to capture that
by the situation we understand a ‘setting’, a ‘context’, more in the spirit as it is
defined in the DOLCE ontology.

5.2 Ontology Engineering Issues

During this and previous ontology engineering efforts [10], we have identified
needs with regard to ontology engineering tools that we summarize below:

– support for Ontology Design Patterns; this includes support for handling
groups of axioms, rather than individual axioms, analogously to handling com-
posite objects in vector graphics editors after ‘grouping’ operation to manip-
ulate multiple axioms collectively;

Towards a Core Ontology of Occupational Safety and Health 141

– support for axiom generalisations, i.e. for templates of recurring modeling in
axioms, where some entities in an axiom are replaced by variables (see for
instance [11]). This should enable an ontology engineer to work at the level of
the pattern and not that of the set of OWL axioms. Such templates could be
used as macros to facilitate ontology population (see: Populous tool [12]);

– support for provenance-aware versioning, i.e. the use of a provenance and an
ontology change vocabulary [13] to track entity provenance (who created what
etc.), facilitate querying provenance, and ‘rollback’ operations.

6 Summary and Future Work

In this paper, we have presented the version v1.0 of the core module of the
Occupational Safety and Health Domain Ontology (OSHDO-Core). We have
described the main terms of the ontology and the Hazardous Situation ODP.
We have discussed the modeling choices made and ontology engineering issues.

The future work agenda includes investigating, selecting and modeling further
ontology design patterns that may be included into the ontology. We plan to
further enhance the scope and the axiomatisation of the ontology.

Acknowledgements. This work was partially supported from the PARENT-
BRIDGE program of Foundation for Polish Science, cofinanced from European Union,
Regional Development Fund (Grant No POMOST/2013-7/8).

References

1. Alli, B.: Fundamental Principles of Occupational Health and Safety. International
Labour Office (2008)

2. Ishikawa, K.: Guide to quality control. Industrial engineering and technology. Asian
Productivity Organization (1976)

3. Oltramari, A., Cranor, L.F., Walls, R.J., McDaniel, P.: Building an ontology of
cyber security. In: Proceedings of STIDS 2014 (2014)

4. Siena, A., Morandini, M., Susi, A.: Modelling risks in open source software compo-
nent selection. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS,
vol. 8824, pp. 335–348. Springer, Heidelberg (2014)

5. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache,
T., Musen, M.A.: Bioportal: enhanced functionality via new web services from the
national center for biomedical ontology to access and use ontologies in software
applications. Nucleic Acids Res. 39(suppl), W541–W545 (2011)

6. Hoekstra, R., Breuker, J., Di Bello, M., Boer, A.: LKIF core: principled ontology
development for the legal domain. In: Proceedings of the 2009 Conference on Law,
Ontologies and the Semantic Web: Channelling the Legal Information Flood, pp.
21–52. IOS Press, Amsterdam, The Netherlands (2009)

7. Gasevic, D., Guizzardi, G., Taveter, K., Wagner, G.: Vocabularies, ontologies, and
rules for enterprise and business process modeling and management. Inf. Syst.
35(4), 375–378 (2010)

8. Friend, M., Kohn, J.: Fundamentals of Occupational Safety and Health. Bernan
Press, London (2014)

142 A. �Lawrynowicz and I. �Lawniczak

9. Lawrynowicz, A., Lawniczak, I.: The hazardous situation ontology design pattern.
In: Proceedings of the 6th Workshop on Ontology and Semantic Web Patterns
(WOP 2015) (2015)

10. Keet, C.M., Lawrynowicz, A., d’Amato, C., Kalousis, A., Nguyen, P., Palma, R.,
Stevens, R., Hilario, M.: The data mining optimization ontology. Web Semant. Sci.
Serv. Agents World Wide Web 32, 43–53 (2015)

11. Mikroyannidi, E., Iannone, L., Stevens, R., Rector, A.: Inspecting regularities in
ontology design using clustering. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 438–453. Springer, Heidelberg (2011)

12. Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Wolstencroft,
K., Stevens, R.: Populous: a tool for building OWL ontologies from templates. BMC
Bioinf. 13(S–1), 1 (2012)

13. Palma, R., Haase, P., Corcho, Ó., Gómez-Pérez, A.: Change representation for
OWL 2 ontologies. In: Proceedings of OWLED 2009 (2009)

Towards a Visual Notation for OWL: A Brief
Summary of VOWL

Steffen Lohmann1(B), Florian Haag1, and Stefan Negru2

1 Institute for Visualization and Interactive Systems (VIS), University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

{steffen.lohmann,florian.haag}@vis.uni-stuttgart.de
2 Faculty of Computer Science, Alexandru Ioan Cuza University,
Strada General Henri Mathias Berthelot 16, 700483 Iasi, Romania

stefan.negru@info.uaic.ro

Abstract. The Web Ontology Language (OWL) has no standardized
visual notation in contrast to related modeling languages. However, the
visual representation of individual and combined OWL elements as well
as complete OWL ontologies can be very useful in many cases. We have
developed the Visual Notation for OWL (VOWL) that defines graphical
representations for most of the OWL language constructs. In contrast to
related work, VOWL aims at a complete and well-specified notation that
is easy to understand and implement. This paper reports on the current
state of development and briefly describes the main design principles
and considerations. At OWLED 2015, we conducted a special session to
gather feedback on how to further improve the visual notation and to
collect requirements for its future development.

1 Introduction

The Web Ontology Language (OWL) has become the ‘lingua franca’ for ontolo-
gies. Nearly all modern ontologies are modeled in OWL, and more and more
OWL ontologies are developed every week. However, OWL is not a visual lan-
guage. In contrast to related modeling languages that define visual notations,
such as UML or ER diagrams, the OWL specifications do not include any rec-
ommendations on how to graphically represent the different OWL language con-
structs.

Yet, a visualization of individual and combined OWL elements as well as
complete ontologies can be very useful in many situations. It can help in the
development, exploration, verification, and sensemaking of ontologies. It can
also be useful for teaching OWL, in order to illustrate the language constructs
and possible combinations. Finally, visualizations of OWL are known to ease the
communication between domain experts and ontology experts.

Although many visualizations for OWL ontologies have been developed in the
past, only few define an explicit notation. Most visualizations use basic node-link
diagrams or other visualization techniques to depict the concepts and relation-
ships modeled in OWL [27,36], but neither provide any further description of
the notation nor an explicit visual mapping for the individual OWL elements.
c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 143–153, 2016.
DOI: 10.1007/978-3-319-33245-1 15

144 S. Lohmann et al.

We have developed the Visual Notation for OWL (VOWL) in an effort to
close this gap and complement OWL with a well-specified visual notation that
defines graphical representations for most language constructs. While we focused
the development on an easy-to-understand notation for casual ontology users,
VOWL can also be of use to ontology experts. A precise description of the visual
notation can be found in the VOWL specification [40], while details on its imple-
mentation and evaluation are given in related publications [34–36]. Recently, we
started work on version 3 of VOWL with the goals to incorporate the complete
set of OWL language constructs and to further increase the scalability of the
visual notation.

In this paper, we summarize the main design decisions, principles, and con-
siderations related to the development of VOWL, and give an outlook on future
directions. At OWLED 2015, we discussed the state of development in a special
session, and collected feedback and requirements on how to further improve the
visual notation.

2 Related Work

Many attempts to visualize OWL ontologies have been presented in the last
decade. Surveys can be found in [10,27,32], among others. Most of the works
visualize OWL ontologies as graphs, which reflects well the way concepts and
relationships are organized in OWL [36]. The graphs are typically rendered in
a force-directed, hierarchical, or radial layout, often resulting in appealing visu-
alizations. There are also 3D graph visualizations for OWL ontologies [3,18] as
well as approaches that visualize the ontologies as hyperbolic trees [11,15].

However, few visualizations show all concepts modeled in OWL, but most
approaches focus on certain aspects of ontologies [35]. While some visualize only
the class hierarchy of the ontologies [22,33,37], others consider different types of
properties [13,14,45] but do not include property characteristics and other infor-
mation required to fully understand the information modeled in OWL. Only a
small number of works provide comprehensive visualizations for OWL ontologies.
Unfortunately, the different ontology elements are partly hard to distinguish in
these visualizations. For instance, the tools TGViz [1] and NavigOWL [25] use
plain node-link diagrams where all nodes and links look the same except for their
color.

SOVA [2] and GrOWL [31] define more elaborate notations using different
symbols, colors, and node shapes. However, the resulting visualizations are still
comparatively hard to read due to many crossing edges and only minor variations
in the visual elements. In addition, both notations use abbreviations and math-
ematical symbols that make them less intuitive for casual ontology users [35].

There is also a bunch of research on reusing UML class diagrams for the visu-
alization of OWL ontologies [4,8,29]. Precise mappings between OWL and UML
class diagrams are, for instance, specified in the Ontology Definition Metamodel
(ODM) [41]. However, UML has originally not been designed for the representa-
tion of OWL, which results in some conceptual limitations and incompatibilities

Towards a Visual Notation for OWL: A Brief Summary of VOWL 145

[21,29,30]. It can therefore be confusing to illustrate OWL language constructs
with UML, especially in teaching and training contexts. Moreover, people not
familiar with UML have difficulties interpreting the diagrams correctly, as we
found in a comparative user study [38].

A UML-related type of diagram for the visualization of OWL ontologies is
used in OntoViz [43]. It groups classes and datatypes in boxes that are linked by
object properties. Another proposal has been made with VisioOWL [16], which
has been implemented as a template for the diagram editor Microsoft Visio.
However, both types of diagrams share the limitation of UML class diagrams
that the resulting visualizations are comparatively difficult to read for casual
ontology users. Furthermore, the visual distinction of the various OWL elements
is again limited, as similar shapes and colors are used for different OWL elements.

A related attempt has been made with Concept Diagrams [24] that consider
the logic of OWL in particular. Concept Diagrams aim at a formal representation
of ontologies that adequately expresses the OWL semantics. However, they do
not provide intuitive OWL visualizations that are also understandable to casual
users.

This is different in Graffoo [12] which aims at an easy-to-understand notation
for OWL and is therefore closely related to the idea of VOWL. It comes with
a comprehensive specification [42] and has been implemented as a GraphML
extension for the diagram editor yEd. However, Graffoo is rather related to
the idea of UML-based modeling by being based on visual elements commonly
known from diagram editors. This makes it less scalable than VOWL when it
comes to the visualization of OWL ontologies with many classes, properties,
and instances. In addition, and similar to the previous attempts, Graffoo defines
a rather general notation that uses similar visual elements for different OWL
language constructs. Despite these limitations, Graffoo currently seems to be
the most promising alternative to UML, Concept Diagrams, and VOWL when
a visual notation for OWL is needed.

3 Summary of VOWL

In general, we designed VOWL as a visual notation that is easily understand-
able to lay users and that supports the communication between domain experts
and ontology experts. We did not attempt to create a direct visual mapping of
the OWL syntax, but rather focused on the semantics of the individual OWL
constructs. That is, we were interested in depicting the meaning of the OWL con-
structs in a way that is easily understandable to lay users, without considering
how this meaning is syntactically represented in OWL.

3.1 General Design Principles

For the design of VOWL, we aimed at meeting several design goals that were
inspired by the dialog principles defined in ISO 9241-110. This ISO standard “sets
forth ergonomic design principles formulated in general terms [...] and provides

146 S. Lohmann et al.

a framework for applying those principles to the analysis, design and evaluation
of interactive systems” [26].

– VOWL was designed to be self-descriptive by featuring textual descriptions
where necessary or helpful. In the best case, there is no need to consult the
VOWL specification or a legend with explanations in order to understand the
notation.

– Established patterns were respected by using commonly used shapes and col-
ors (such as arrowheads to indicate direction or gray elements to indicate
deprecation), borrowing some visual aspects from notations such as UML.
This helps to keep VOWL conformant with user expectations.

– We put a focus on the comprehensive specification of the VOWL nota-
tion. This complete and unambiguous specification, combined with the self-
descriptiveness and conformance with user expectations, makes VOWL suit-
able for learning.

– VOWL is suitable for its task of visualizing the semantics of individual
and combined OWL elements as well as complete OWL ontologies by defining
graphical representations for most OWL language constructs. Users are able
to answer a number of questions that are commonly asked when working with
ontologies and, in particular, with graph visualizations of ontologies, as we
found in user studies we conducted [35,36,38].

– VOWL has been defined in a modular way by making certain labels and col-
ors optional or customizable. Furthermore, we took care to make it work in
different interaction contexts, by considering both touch and mouse input for
example. The VOWL visualizations scale well with different screen sizes, and
can be printed on paper in monochrome, without losing any important infor-
mation. All of these properties make VOWL suitable for individualization.

Accordingly, all of the dialog principles defined in ISO 9241-110 are met
by the visual notation except for controllability and error tolerance, which
do not apply to the visual notation itself but rather to its implementation in
corresponding tools, as they are summarized in Sect. 4. As already mentioned,
the design principles were empirically validated in user studies with different
user groups [35,36,38] and a benchmark [36], both focusing the notation itself
and its interactive implementations. Besides these primary design principles,
we were pursuing some secondary objectives, such as an aesthetically pleasing
visualization and a comparatively easy implementation. In addition, we had to
make a number of design decisions, which are summarized in the following.

3.2 Concrete Design Decisions

Figure 1 shows a part of version 3.1 of the Geonames ontology [44] visualized with
VOWL. The visualization has been generated with the application WebVOWL
(cf. Sect. 4).

A key design decision was the basic representation paradigm used to visualize
the OWL structure and semantics. The network of classes that can be related

Towards a Visual Notation for OWL: A Brief Summary of VOWL 147

1

1

Subclass of

Subclass of

nearby

neighbour
(symmetric)

wikipedia ar...

ISO countr... Subclass of

children fe...

neighbouri...

Subclass of

feature code

nearby fea...

map

population

feature class

Subclass of

name

official name

Subclass of

parent feature
(transitive)

level 1 adm...level 2 adm...
level 4 adm...

parent country
short name

alternate...

Document
(external)

RDF Data

Class
9

Wikipedia Article

Map

Feature
[Feature, Geograp...]

Geonames Fe...

Code
690

Place
(external)

Literal

Thing

integer

SpatialThing
(external)

Literal

Literal

Literal
Literal

Literal

postal code

located in
level 3 adm...

Fig. 1. A part of the Geonames ontology visualized with VOWL.

by inheritance relationships and object properties lends itself to being displayed
as a graph. In particular, a node-link-based representation was chosen, as this
graph visualization supports the tasks well that are typically relevant in the
context of ontology visualization, such as finding an indirect connection between
two classes or spotting highly connected classes [28].

Even though indented trees can be more suitable for showing mere hierar-
chies without multiple inheritance or additional connections by properties, Fu
et al. found that node-link visualizations are perceived as “more controllable
and intuitive without visual redundancy, especially for ontologies with multiple
inheritance” [17]. They are considered particularly “suitable for overviews” and
“held [the] attention” better than trees in a comparative user study conducted
by Fu et al. [17]. However, it needs to be kept in mind that neither indented
trees nor node-link diagrams scale particularly well for very large ontologies.

Each graph element is usually represented exactly once in a node-link visu-
alization of a graph. We decided against this straightforward approach by merg-
ing some groups of elements in VOWL that conceptually represent units, such
as sets of equivalent classes. Likewise, other elements, such as datatypes and
owl:Thing, are represented multiple times in the VOWL visualizations. This has
the advantage that abstract elements connected with many other ontology ele-
ments are prevented from taking central positions in the force-directed graph
layout, which is recommended by VOWL and used in the implementations (cf.
Sect. 4). At the same time, it allows for shorter edges and fewer edge cross-
ings, both of which enhance the readability of the visualization. As we found in

148 S. Lohmann et al.

evaluations of VOWL, users are able to correctly interpret the aggregation and
multiplication of specific elements [35,36].

The aggregation and multiplication is one example why VOWL is not a
direct mapping of the OWL syntax but of the concepts found in OWL ontolo-
gies. Another example are the disjoint union constructs which are disassembled
into their atomic parts in VOWL, i.e., a union class and pairwise disjoint restric-
tions between the participants of the union. However, for the sake of a better
readability and easier interpretation of the visualization, we are considering to
introduce a new element for disjoint union in the next version of VOWL.

Two basic shapes, circles and rectangles, were chosen for nodes in VOWL.
Class nodes can feature high degrees of connectivity, which is supported by the
circle shape that allows higher numbers of inbound arrows to properly align
around the circle without overlapping arrowheads. At the same time, datatype
nodes that are usually merely connected to one edge have a rectangular shape.
Property labels are shown in a rectangle as well, but in contrast to the afore-
mentioned shapes, these rectangles have no frame. Thus, the described elements
can be clearly distinguished even in monochrome renditions.

The aforementioned arrowheads are found in inheritance and property rela-
tionships. VOWL inheritance edges are reminiscent of UML inheritance and
implementation edges, which helps users with the respective prior knowledge [35].
Properties defined in OWL are shown as edges with a label and an arrowhead
pointing from the domain to the range. Rather than defining the property as
an independent node with two edges and arrowheads to indicate the domain
and range, we opted for this graphically simpler visualization as it was preferred
by users [38]. Finally, type relationships look similar to properties, but have a
special color and label and only appear in cases where a class is an instance of
another class.

In general, the size of class nodes can be scaled in VOWL according to
the number of individuals that are members of the respective class. It must be
pointed out that the exact area covered by circles is difficult to determine for
users. Also, a linear mapping between the number of individuals and the radius
of the circles may not be helpful, anyway, if the numbers of individuals differ
a lot between classes. However, the scaling of class nodes is mainly meant to
provide an approximate sense of which classes in an ontology contain slightly or
significantly more or less individuals than others at a glance. The exact number
of individuals can additionally be displayed inside the class node as text. In this
number, individuals are counted for each class they are a member of, also in
cases of multi-membership.

Various parts of the visualization were designed to be slightly redundant.
For instance, subclass relations are unique in appearance but also carry a tex-
tual label. Likewise, deprecated and imported elements have a unique color but
also have a descriptive text pointing out their special status. This was done to
both improve self-descriptiveness and to minimize the amount of information
lost when some features of the visualization are not available. For instance, dep-
recated classes are still recognizable with impaired color vision or when printed
as a monochrome depiction due to the descriptive text. Thus, while colors in

Towards a Visual Notation for OWL: A Brief Summary of VOWL 149

VOWL help to make elements immediately distinguishable, their absence does
not imply the loss of crucial information.

3.3 Limitations

Although the graphical representations of the elements described above have
many benefits, a few shortcomings still pose open questions in the further devel-
opment of VOWL. For instance, several reasons beside mere aesthetics support
the decision to represent classes with circles, but as labels are often wider than
tall, much empty space in class nodes remains. Unless the empty space is used
for extra information, the class name can be wrapped, which graphics toolkits
are often not able to accomplish within the non-rectangular bounds of a cir-
cle. Likewise, IRIs are currently not displayed anywhere in the visualization, as
VOWL is directed towards lay users. Those users often do not want to see IRIs,
and it is trivial to display them for selected elements in a tooltip and/or next to
the visualization.

More generally, VOWL focuses on the visualization of the TBox of small
to medium-size ontologies but does not sufficiently support the visualization of
very large ontologies and detailed ABox information for the time being. Yet, first
attempts to handle larger ontologies by gradually hiding nodes with low degrees
of connectivity have been tentatively integrated in the WebVOWL implementa-
tion. Future analyses of user needs and suggestions will be required to determine
how to integrate more ABox information into VOWL. In particular, this issue
must be tackled with respect to ontologies where certain key individuals are
as generally used and important as the classes and properties defined in the
ontology.

4 Implementations of VOWL

VOWL has been implemented in two different tools that demonstrate its applica-
bility: a plugin for the ontology editor Protégé and a responsive web applica-
tion. Both tools are released under the MIT license and are publicly available
at http://vowl.visualdataweb.org. The OWL ontologies are rendered in a force-
directed graph layout according to the VOWL specification. Interaction tech-
niques allow to explore the ontologies and customize their visualizations. While
the Protégé plugin is a rather prototypical implementation that does not include
all visual elements defined in VOWL, the web application provides a complete
implementation of the latest specification of VOWL (which is VOWL 2 at time
of writing).

The web application (called WebVOWL) allows users to upload custom
ontologies and to interactively explore and adapt the generated VOWL visu-
alizations [34]. It is complemented by a Java-based converter that transforms
the OWL ontologies into the required JSON format. The converter parses the
ontology representation using the OWL API [23] and outputs a JSON file that
is read by WebVOWL. The schema of the JSON file has been designed with

http://vowl.visualdataweb.org

150 S. Lohmann et al.

regard to VOWL, i.e., its structure differs from common OWL serializations in
order to enable an efficient generation of the graph visualization and to ease
access at runtime. WebVOWL is easy to use and understand and therefore also
appropriate for casual ontology users, as we could confirm in a user study [35].

First attempts to integrate WebVOWL with other approaches have already
been started. For instance, WebVOWL is used to visualize OWL fragments in the
tool PURO Modeler [9] and to visualize OWL vocabularies in the Linked Open
Vocabularies (LOV) service1. Ongoing activities related to the implementation of
VOWL also concern its integration into WebProtégé2 as well as the development
of a Visio template for VOWL [6].

We have developed a visual query language based on VOWL that addresses
the peculiarities of querying Linked Data with SPARQL [20]. Some VOWL ele-
ments had to be adapted for this purpose to indicate the variability of the IRIs
or values they represent, and to provide for the interactive options that users
require to specify their query. For instance, visual elements can act as place-
holders in the query language that are not fully specified on a TBox level and
for which restrictions can be added by the user. More details on the query lan-
guage and a prototypical implementation of it are also available at http://vowl.
visualdataweb.org.

In related efforts, we have looked into how the VOWL notation could be used
to visualize the evolution of ontologies [5] or to represent ontologies extracted
from text [7]. Similar to the above query language, we had to incorporate some
ABox concepts in the VOWL notation in the latter case. Finally, we developed a
benchmark ontology [19] that was used to test the visual scope and completeness
of VOWL [36].

5 Conclusions

In this summary paper, we outlined the main design principles and considerations
related to the development of a visual notation for OWL. The interested reader
is referred to our papers that detail the development of VOWL [35,36,39].

The presented VOWL notation apparently provides only one way to visualize
OWL ontologies using node-link diagrams. As OWL is not an inherently visual
language, other types of visualizations are also possible and could even be more
appropriate in certain cases. For instance, if users are mainly interested in the
class hierarchy contained in an OWL ontology, they might prefer a visualization
that uses an indented tree or treemap to depict the ontology.

We believe that VOWL is already a comparatively mature proposal to further
discuss the visual representation of OWL. However, although version 2 of VOWL
already considers a large portion of the OWL language constructs, it is not yet
complete, in particular with regard to OWL 2. Our ultimate goal is to turn
VOWL into a visual notation that can represent OWL ontologies as completely
as possible. Therefore, we recently started work on version 3 of VOWL, with the
goal to incorporate additional OWL language constructs.
1 http://lov.okfn.org/dataset/lov.
2 https://github.com/VisualDataWeb/webprotege.

http://vowl.visualdataweb.org
http://vowl.visualdataweb.org
http://lov.okfn.org/dataset/lov
https://github.com/VisualDataWeb/webprotege

Towards a Visual Notation for OWL: A Brief Summary of VOWL 151

In addition, we plan to further improve the visual notation, in particular,
with regard to the visualization of large OWL ontologies. The current notation
does not scale well for large ontologies, as the graph visualization becomes to
large, calling for a more compact notation that copes for those cases. Alternatives
would be to filter certain elements of the notation or to display only parts of
the OWL ontology or abstractions of it. While the WebVOWL implementation
already provides some functionality to filter the visualization, this is not yet
systematically incorporated into the VOWL specification.

The visual representation of very large ontologies is one of the issues that
was discussed at OWLED 2015. Other issues concerned the stability of the visu-
alization and possible alternatives to a force-directed graph layout. We are cur-
rently elaborating whether a hierarchical or radial graph layout could also be
used together with VOWL. Moreover, we are thinking about ways to integrate
further information about individuals defined in OWL ontologies.

At OWLED 2015, we discussed these and other issues and challenges related
to the development of a visual notation for OWL. In particular, we gathered
feedback on how to further improve VOWL in order to make it even more useful
to the community of ontology users.

Acknowledgements. We would like to thank our former and current students David
Bold, Vincent Link, and Eduard Marbach for their excellent contributions to the imple-
mentation of VOWL and their valuable feedback on the notation.

References

1. Alani, H.: TGVizTab: an ontology visualisation extension for Protégé. In: Proceed-
ings of the 2nd Workshop on Visualizing Information in Knowledge Engineering
(VIKE 2004) (2003)

2. Boinski, T., Jaworska, A., Kleczkowski, R., Kunowski, P.: Ontology visualization.
In: Proceedings of the 2nd International Conference on Information Technology
(ICIT 2010), pp. 17–20. IEEE (2010)

3. Bosca, A., Bonino, D., Pellegrino, P.: OntoSphere: more than a 3D ontology visu-
alization tool. In: Proceedings of the 2nd Italian Semantic Web Workshop (SWAP
2005). CEUR-WS, vol. 166 (2005)

4. Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL
ontologies using UML. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 198–213. Springer, Heidelberg (2004)

5. Burch, M., Lohmann, S.: Visualizing the evolution of ontologies: a dynamic graph
perspective. In: Proceedings of the International Workshop on Visualizations and
User Interfaces for Ontologies and Linked Data (VOILA 2015). CEUR-WS, vol.
1456, pp. 69–76 (2015)

6. Chungoora, T.: Visio template for VOWL (2015). http://ontoweave.com/articles/
visio-template-for-vowl/

7. Dasiopoulou, S., Lohmann, S., Codina, J., Wanner, L.: Representing and visual-
izing text as ontologies: a case from the patent domain. In: Proceedings of the
International Workshop on Visualizations and User Interfaces for Ontologies and
Linked Data (VOILA 2015). CEUR-WS, vol. 1456, pp. 83–90 (2015)

http://ontoweave.com/articles/visio-template-for-vowl/
http://ontoweave.com/articles/visio-template-for-vowl/

152 S. Lohmann et al.

8. Djurić, D., Gašević, D., Devedžić, V., Damjanović, V.: A UML profile for OWL
ontologies. In: Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA 2003. LNCS,
vol. 3599, pp. 204–219. Springer, Heidelberg (2005)

9. Dudáš, M., Hanzal, T., Svátek, V., Zamazal, O.: OBM2OWL patterns: spotlight
on OWL modeling versatility. In: 6th Workshop on Ontology and Semantic Web
Patterns (WOP 2015). CEUR-WS, vol. 1461 (2015)

10. Dudáš, M., Zamazal, O., Svátek, V.: Roadmapping and navigating in the ontology
visualization landscape. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) EKAW 2014. LNCS, vol. 8876, pp. 137–152. Springer, Heidelberg (2014)

11. Eklund, P., Roberts, N., Green, S.: OntoRama: browsing RDF ontologies using a
hyperbolic-style browser. In: Proceedings of the 1st International Symposium on
Cyber Worlds (CW 2002), pp. 405–411. IEEE (2002)

12. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontolo-
gies with graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 320–325.
Springer, Heidelberg (2014)

13. Falconer, S.: OntoGraf (2010). http://protegewiki.stanford.edu/wiki/OntoGraf
14. Falconer, S.M., Callendar, C., Storey, M.-A.: A visualization service for the seman-

tic web. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp.
554–564. Springer, Heidelberg (2010)

15. Fensel, D., Decker, S., Erdmann, M., Studer, R.: Ontobroker: the very high idea.
In: Proceedings of the 11th International Florida Artificial Intelligence Research
Society Conference (FLAIRS 1998), pp. 131–135. AAAI Press (1998)

16. Flynn, J.: VisioOWL (2012). http://www.semwebcentral.org/projects/visioowl/
17. Fu, B., Noy, N.F., Storey, M.-A.: Indented tree or graph? a usability study of

ontology visualization techniques in the context of class mapping evaluation. In:
Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 117–134. Springer,
Heidelberg (2013)

18. Guo, S.S., Chan, C.W.: A tool for ontology visualizaiton in 3D graphics:
Onto3DViz. In: Proceedings of the 23rd Canadian Conference on Electrical and
Computer Engineering (CCECE 2010), pp. 1–4. IEEE (2010)

19. Haag, F., Lohmann, S., Negru, S., Ertl, T.: OntoViBe 2: advancing the ontology
visualization benchmark. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti,
V., Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKWA 2014 Satellite Events.
LNCS, vol. 8982, pp. 83–98. Springer, Heidelberg (2015)

20. Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: a visual query notation
for linked data. In: Gandon, F., et al. (eds.) ESWC 2015. LNCS, vol. 9341, pp.
387–402. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25639-9 51

21. Hart, L., Emery, P., Colomb, B., Raymond, K., Taraporewalla, S., Chang, D., Ye,
Y., Kendall, E., Dutra, M.: OWL full and UML 2.0 compared. Technical report,
OMG (2004)

22. Horridge, M.: OWLViz (2010). http://protegewiki.stanford.edu/wiki/OWLViz
23. Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies.

Semant. Web 2(1), 11–21 (2011)
24. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: a case

study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 257–272.
Springer, Heidelberg (2011)

25. Hussain, A., Latif, K., Rextin, A., Hayat, A., Alam, M.: Scalable visualization of
semantic nets using power-law graphs. Appl. Math. Inf. Sci. 8(1), 355–367 (2014)

http://protegewiki.stanford.edu/wiki/OntoGraf
http://www.semwebcentral.org/projects/visioowl/
http://dx.doi.org/10.1007/978-3-319-25639-9_51
http://protegewiki.stanford.edu/wiki/OWLViz

Towards a Visual Notation for OWL: A Brief Summary of VOWL 153

26. ISO: ISO 9241–110: Ergonomics of Human-system Interaction - Part 110: Dialogue
Principles. ISO (2006)

27. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology
visualization methods - a survey. ACM Comput. Surv. 39(4) (2007)

28. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link diagrams: which
visual representation is better for visualising connectivity models? Inf. Vis. 5(1),
62–76 (2006)

29. Kendall, E.F., Bell, R., Burkhart, R., Dutra, M., Wallace, E.K.: Towards a graph-
ical notation for OWL 2. In: Proceedings of the 6th International Workshop on
OWL: Experiences and Directions (OWLED 2009). CEUR-WS, vol. 529 (2009)

30. Kiko, K., Atkinson, C.: A detailed comparison of UML and OWL. Technical Report
TR-2008-004, University of Mannheim (2005)

31. Krivov, S., Williams, R., Villa, F.: GrOWL: a tool for visualization and editing
of OWL ontologies. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 54–57
(2007)

32. Lanzenberger, M., Sampson, J., Rester, M.: Visualization in ontology tools. In:
Proceedings of the International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS 2009), pp. 705–711. IEEE (2009)

33. Liebig, T., Noppens, O.: OntoTrack: a semantic approach for ontology authoring.
Web Semant. Sci. Serv. Agents World Wide Web 3(2–3), 116–131 (2005)

34. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visualiza-
tion of ontologies. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti, V., Qi,
G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKWA 2014 Satellite Events. LNCS,
vol. 8982, pp. 154–158. Springer, Heidelberg (2015)

35. Lohmann, S., Negru, S., Haag, F., Ertl, T.: VOWL 2: user-oriented visualization of
ontologies. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW
2014. LNCS, vol. 8876, pp. 266–281. Springer, Heidelberg (2014)

36. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semantic Web (to appear)

37. Motta, E., Mulholland, P., Peroni, S., d’Aquin, M., Gomez-Perez, J.M., Mendez,
V., Zablith, F.: A novel approach to visualizing and navigating ontologies. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 470–486. Springer,
Heidelberg (2011)

38. Negru, S., Haag, F., Lohmann, S.: Towards a unified visual notation for OWL
ontologies: insights from a comparative user study. In: Proceedings of the 9th
International Conference on Semantic Systems (I-SEMANTICS 2013), pp. 73–80.
ACM (2013)

39. Negru, S., Lohmann, S.: A visual notation for the integrated representation of OWL
ontologies. In: Proceedings of the 9th International Conference on Web Information
Systems and Technologies (WEBIST 2013), pp. 308–315. SciTePress (2013)

40. Negru, S., Lohmann, S., Haag, F.: VOWL: Visual notation for OWL ontologies
(2014). http://purl.org/vowl/

41. OMG: Ontology Definition Metamodel, Version 1.1 (2014). http://www.omg.org/
spec/ODM/1.1/

42. Peroni, S.: Graffoo specification (2013). http://www.essepuntato.it/graffoo/
specification/current.html

43. Sintek, M.: OntoViz (2007). http://protegewiki.stanford.edu/wiki/OntoViz
44. Vatant, B.: GeoNames Ontology (2012). http://www.geonames.org/ontology/
45. Wachsmann, L.: OWLPropViz (2008). http://protegewiki.stanford.edu/wiki/

OWLPropViz

http://purl.org/vowl/
http://www.omg.org/spec/ODM/1.1/
http://www.omg.org/spec/ODM/1.1/
http://www.essepuntato.it/graffoo/specification/current.html
http://www.essepuntato.it/graffoo/specification/current.html
http://protegewiki.stanford.edu/wiki/OntoViz
http://www.geonames.org/ontology/
http://protegewiki.stanford.edu/wiki/OWLPropViz
http://protegewiki.stanford.edu/wiki/OWLPropViz

Snap-SPARQL: A Java Framework for Working
with SPARQL and OWL

Matthew Horridge(B) and Mark Musen

Stanford Biomedical Informatics Research Group, Stanford University,
Stanford, CA, USA

matthew.horridge@stanford.edu

Abstract. We present Snap-SPARQL, which is a Java framework for
working with SPARQL and OWL. The framework includes a parser,
axiom template API, SPARQL algebra implementation, and graphi-
cal user interface components for reading, processing and executing
SPARQL queries under the SPARQL 1.1 OWL Entailment Regime.
While the framework was originally designed to support the implemen-
tation of a SPARQL teaching aid in the form of a Protégé plugin, we
believe that it is more generally useful and may be of interest to devel-
opers and researchers working on SPARQL 1.1 OWL entailment regime
implementations and optimisations. The framework is open source and
pluggable.

1 Introduction

In March 2013 the World Wide Web Consortium published the SPARQL 1.1
Recommendation—a set of nine documents that specify a query language and
protocol for querying and manipulating RDF graphs [2]. Although a point incre-
ment, this latest version of SPARQL includes many new language features such
as aggregates, sub-queries, a new suite of builtin functions, and path expres-
sions. Besides these many language enhancements, SPARQL 1.1 also includes a
sub-specification that describes how SPARQL queries should be evaluated under
different entailment regimes [3].

An entailment regime is a specification that precisely defines how SPARQL
queries should be answered with respect to a given entailment relation. The
SPARQL 1.1 specification defines several out-of-the-box entailment regimes,
which include the Simple, RDF-Schema, and OWL 2 Direct Semantics entail-
ment regimes. For any given SPARQL query, the set of answers depends upon
the entailment regime in question, and the answers for one entailment regime
may be different to the answers for a different entailment regime. For example,
consider the RDF graph below1

:PaloAlto :isLocatedInState :California .
:California :isLocatedIn :USA .
:isLocatedInState rdfs:subPropertyOf :isLocatedIn .
:isLocatedIn rdf:type owl:TransitiveProperty .

1 Where we omit prefix declarations for the sake of brevity.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 154–165, 2016.
DOI: 10.1007/978-3-319-33245-1 16

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL 155

The following query asks for the pairs ?x and ?y where ?x is located in ?y.

SELECT ?x ?y
WHERE {

?x :isLocatedIn ?y
}

Under the Simple entailment regime, the set of bindings for ?x and ?y con-
tains the single binding 〈:California, :USA〉, while under the RDFS entailment
regime the set of bindings includes the bindings for the Simple regime plus
〈:PaloAlto, California:〉 (entailed in part by the sub-property axiom), and finally,
under the OWL 2 Direct Semantics entailment regime the set also includes the
previous two bindings plus 〈:PaloAlto, USA:〉 (entailed in part by the transitive
property axiom).

As far as end users are concerned, the practical impact of the SPARQL 1.1
Entailment Regimes specification is that the answers to SPARQL 1.1 queries can
potentially include information that follows implicitly from the dataset that is
being queried. In other words, query answers may now be obtained from inferred
information, and for OWL users, this means that SPARQL 1.1 can sensibly be
used for querying OWL ontologies.

While having a standardised query language for OWL is a huge plus, users
also need tools in order to be able to write and execute queries. Furthermore,
not only are middleware tools that perform the actual query answering needed,
but there is also a need for user-facing tools that assist users in writing queries
that are well-formed for both a given entailment regime and a given dataset (set
of ontologies). With this in mind, we present a framework called Snap-SPARQL
that assists end-users of environments like Protégé in writing SPARQL queries
that are well-formed for the OWL entailment regime.

The Snap-SPARQL framework consists of (1) a SPARQL parser, which parses
queries that are well formed for the OWL entailment regime and also provides
error descriptions that allow meaningful auto-correction/completion to be pro-
vided, (2) data-structures for representing basic graph patterns at the level of
axiom templates, or axioms that may contain variables, (3) an executable imple-
mentation of the bulk of the SPARQL 1.1 query algebra that provides the vari-
ous SPARQL “bells and whistles” beyond basic graph pattern evaluation, (4) a
graphical user interface component that contains syntax highlighting and auto-
completion, which assists end-users of tools like Protégé in writing SPARQL
queries that are well-formed for the OWL Entailment Regime, and (5) a Protégé
plugin that uses the aforementioned components to enable Protégé users to query
OWL ontologies that are contained in a Protégé workspace.

Finally, the framework is pluggable. It allows reasoners that implement the
OWL API [4] reasoner interfaces such as ELK, FaCT++, HermiT, JFact and
Pellet to be plugged into it. It also allows basic graph pattern evaluation imple-
mentations such as OWL-BGP or the Derivo SPARQL-DL engine2 to be used
for the core graph pattern (axiom template) evaluation operations.

2 http://www.derivo.de/en/resources/sparql-dl-api.html.

http://www.derivo.de/en/resources/sparql-dl-api.html

156 M. Horridge and M. Musen

Fig. 1. An example SPARQL query. The query asks for people who have pets that are
cats, and lists them along with their names and, if known, gender.

2 Preliminaries

SPARQL is based on Turtle Syntax (Terse RDF Triple Language) [7]. SPARQL
queries typically consist of various clauses and blocks, which specify basic graph
patterns to be matched along with keywords that join, filter and extend the
solution sequences to these patterns.

An example SPARQL query, targeted at the people and pets tutorial ontology
is shown in Fig. 1. The solutions to this query are the people who have cats
that have names that begin with the letter “T”, along with the name of the
cat and, if known, its gender. Curly brackets denote group graph patterns, and
contiguous triple patterns form basic graph patterns. In this query, there are
two basic graph patterns split by the OPTIONAL keyword, which performs a
left join on the solution sequences to the two basic graph patterns. The query
prologue contains various prefix declarations consisting of a prefix label and a
prefix. Various variables are used within the query body, but only three are
projected: ?personName ?petName and ?gender.

3 Components and Functionality

The Snap-SPARQL framework contains several components that may be split
into programmer-facing and end-user-facing components. We provide a few brief
details of each of these components below.

3.1 An Axiom Template API

Axiom templates are essentially OWL axioms that allow variables to be placed
in the positions of IRIs and Literals. For example, {ClassAssertion(:person ?x),

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL 157

AnnotationAssertion(rdfs:label ?x ?y)} is a set containing two axioms templates3. The
first template is a ClassAssertion axiom that contains the variable ?x in the indi-
vidual position. Hence bindings for ?x are the entailed instances of :person. The
second template is an AnnotationAssertion axiom that contains two variables ?x and
?y in the subject and object position respectively. Intuitively, bindings for ?y are
the labels of bindings for ?x. Together, the templates form a query for the labels
of the instances of :person.

According to the OWL entailment regime specification, for a query to be
considered well-formed it must be possible to “lift” the basic graph patterns in
that query into OWL axiom templates. In other words, the basic graph patterns
must corresponds to a triple-based serialisation of some OWL axioms.

Axiom templates essentially provide a high-level view of basic graph patterns
that makes sense at the level of OWL, and they essentially abstract away from
the triple-based syntax of SPARQL. Snap-SPARQL provides an API for working
with axiom templates that allows implementors to avoid dealing with triples
and the intricacies of the triple-based serialisation of OWL axioms. The axiom
template API itself is inspired by the axiom and class expression structures in
the OWL API, and it closely follows the OWL functional syntax specification in
design.

3.2 A SPARQL Parser

The framework includes a parser that consumes SPARQL syntax and trans-
forms it into high-level axiom templates and other data structures that represent
SPARQL queries at an abstract level that is syntax independent. The parser was
designed with supporting context-sensitive auto-completion in mind and it forms
part of an editing kit that is part of the framework (see Sect. 3.5).

At the time of writing the parser supports most of the SPARQL 1.1 specifica-
tion in terms of language features. However, some features, such as property path
expressions, are not supported. In terms of parsing axiom templates, the parsing
of complex class expressions is not currently supported, but this is planned as
part of future work (see Sect. 4).

Because Snap-SPARQL is designed to handle queries under the OWL entail-
ment regime, the parser will only consume queries that conform to the syntactic
restrictions of this regime rather than more general SPARQL queries. In par-
ticular, queries must be written so that they can be parsed into well-formed
axiom templates, so sets of triples that do not correspond to the triple-based
serialisation of OWL axioms, such as {?x rdfs:subClassOf :pete.} (where :pete is an
individual) or {?x :hasParent “Mary”.} (where :hasParent is an object property), will
cause an error. Uses of punning within group graph patterns (between curly
braces) will also raise an error, in accordance with the OWL entailment regime
specification.

3 For the sake of brevity, we have written these axiom templates using a variant of
the OWL Functional Syntax.

158 M. Horridge and M. Musen

Finally, the parser is designed to make it easy for end-users of tools such as
Protégé to write SPARQL queries. So for example, the parser does not require
all terms appearing in a query to be declared (typed with rdf:type)—if it can
determine the type of a term from the underlying ontology then it will do so.
Similarly, in some cases the type of variables may unambiguous, for example
given {?x rdfs:subClassOf :cat.}, the variable ?x must be of the type owl:Class, i.e. a
class variable, and the parser does not require this variable to be typed.

3.3 An Implementation of the SPARQL Algebra

The SPARQL Algebra is a set of operators that together can be used to form
SPARQL Algebra Expressions. An example of an algebra expression, that cor-
responds to the concrete SPARQL query shown in Fig. 1, is shown below. An
algebra expression, together with data, represents a high-level abstract view of
a SPARQL query that is independent from syntactic shortcuts or variations,
and syntax-level keywords and punctuation. The algebra is used to define the
semantics of SPARQL and it can also be used to derive a canonical procedure
for query answering.

Fig. 2. An example of a SPARQL Algebra Expression. This particular algebra expres-
sion corresponds to the concrete SPARQL query shown in Fig. 1.

Snap-SPARQL provides an implementation of the SPARQL query algebra
for the purposes of query analysis and query plan optimisation, and also to act
as a reference implementation for query execution. In the first case, developers of
query engines may use the algebra API to generate more optimal query plans. In
the second case, developers of implementations that provide basic graph pattern

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL 159

evaluation can simply concentrate on the algorithms for pattern matching and
leave algebra operations, such as join, filter, extend, orderby and project to the
framework.

3.4 Support for Pluggable Basic Graph Pattern Matching

At the most basic level, answering SPARQL queries involves computing solution-
sequences to Basic Graph Patterns (Axiom Templates) and then processing these
solution sequences in accordance with the SPARQL algebra mentioned in the pre-
vious section. The core operations here are performed by Graph Pattern match-
ing implementations and these are pluggable in Snap-SPARQL. The framework
ships with the Derivo’s SPARQL-DL4 as the default implementation, but it
should also possible to plugin in some other off-the-shelf pattern matcher, such
as OWL-BGP [6], with minimal effort. The benefit of this pluggable approach,
is that researchers and developers who are interested in supporting the OWL
entailment regime, and testing optimisations for query answering under this
regime, can focus on axiom template evaluation implementation without worry-
ing about other SPARQL features. In addition to this, Snap-SPARQL enables
them to make their implementations available to a wider community, for use in
Protégé, without too much extra effort.

3.5 A SPARQL Editor

Writing SPARQL queries can be challenging for users. It requires them: (1)
to be fairly well-versed with Turtle syntax in order to construct the basic graph
patterns that form the core of any query, (2) to understand the various SPARQL
keywords and how these can be used, (3) to correctly setup prefix names and
prefixes and then use them consistently in the body of the query, and (4) to use
the domain vocabulary in question such that the queries actually make sense.
The situation becomes more challenging when basic graph patterns must be
well-formed for a given entailment regime such as the OWL entailment regime.

In order to assist users in writing SPARQL queries the framework provides an
editor component that can be reused in third party tools. The editor provides the
kinds of features that one would expect in a modern development environment
such as syntax high-lighting and auto-completion. These features are described
in more detail below:

Syntax highlighting of keywords, variables and built-in vocabulary. An
example of the syntax highlighting is shown in Fig. 3, where highlighting has
been applied to the example query shown in Fig. 1 (note that the highlighting
example also includes the addition of comments). Highlighting is applied to
keywords, builtin vocabulary, builtin functions and variable names. Furthermore,
projected and non-projected variables are distinguished with bold and regular
weight fonts.

Auto-suggestion for PREFIX declarations. Dealing with prefixes in SPARQL
can be painful. Indeed, this is an issue that related tools have addressed

4 http://www.derivo.de/en/resources/sparql-dl-api.html.

http://www.derivo.de/en/resources/sparql-dl-api.html

160 M. Horridge and M. Musen

Fig. 3. An example of the syntax highlighting used in Snap-SPARQL. Keywords, vari-
ables, comments, functions and built-in vocabulary are highlighted. The tool distin-
guishes between projected and non-projected variables. For example, ?personName and
?petName are highlighted in bold because they are projected into the query result.

(see Sect. 5). Snap-SPARQL provides auto-completion for prefixes based on the
IRIs of entities in the signature dataset ontology documents. Well-known prefix
names, such as dce:, foaf: or dbo:, are suggested if the corresponding prefixes are
present in the underlying dataset. Once prefixes have been declared, the editor
will offer completions for terms in the body of the query based on these prefixes
rather than offering full IRIs.

Error Highlighting. The editor performs highlighting for different kinds of syn-
tax/semantic errors. Two examples are shown in Figs. 4 and 5, where a double
red underline indicates an error. The editor derives error information, both type
and position, from the Snap-SPARQL parser. This means that it is capable of
detecting several categories of errors, that go beyond SPARQL syntax violation
errors that may be detected by a bog-standard SPARQL parser. For example,
while both Figs. 4 and 5 show queries that are syntactically correct according to
the SPARQL grammar, however they contain other kinds of errors. Specifically,
Fig. 4, shows an error where the class name :busdriver is not contained in the sig-
nature of the dataset ontologies. Figure 5 shows a kind of grammatical error that
is only an error under the OWL entailment regime—in this case, the predicate
rdfs:subClassOf cannot be used with the variable ?person because this variable will
bind to individuals based on its context.

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL 161

Fig. 4. An example of error checking and highlighting. Here, the name :busdriver has
been used in a position that should be filled by a class (given the context provided by
preceding statements). However, the signature of the underlying set of ontologies does
not contain a corresponding term (Color figure online).

Fig. 5. Another example of error checking and highlighting. Here, the predicate
rdfs:subClassOf has been used in a position that should be filled by an object prop-
erty, data property or annotation property since :person is an individual variable (given
the context provided by preceding statements) (Color figure online).

Context-Sensitive Auto-Completion. In conjunction with the aforemen-
tioned error checking, the editor offers context-sensitive auto-completion.
Figure 6 shows two examples. On the left-hand side, the variable ?person has
not been declared and its type cannot be derived from the context of the query.
This means that the editor offers a large choice of possible completions that
allow for the variable being a class, property, individual etc. On the-right hand
side (after a bit more typing) the parser has a larger context to work with, and it
is able to determine that ?person is an individual variable, hence the choice at the
cursor is limited to object, data or annotation properties and builtin vocabulary
that also applies to individuals such as rdf:type, owl:sameAs and owl:differentFrom. It
should be noted that the auto-completion functionality is available in all con-
texts, including for triple subjects, predicates and objects, as well as key words,
function names and punctuation.

162 M. Horridge and M. Musen

Fig. 6. An example of auto-completion. Auto-completion is provided for keywords,
variable names, function names, and terms at all positions.

3.6 A Protégé Plugin

The final Snap-SPARQL component is a Protégé plugin that exposes all of the
previously described functionality to end-users of Protégé. In particular, the
plugin provides the editing capability described above along with a mechanism
to view query results. The plugin is fairly tightly integrated into the Protégé
environment, as it uses the ontologies that are loaded into the active Protégé
workspace, along with the currently selected reasoner for the purpose of provid-
ing inferred information to the basic graph pattern evaluator component of the
framework. Finally, the plugin is compatible with Protégé 5, it is open source and
may be downloaded from http://github.com/protegeproject/snap-sparql-plugin.

4 Limitations and Future Work

While the Snap-SPARQL framework supports most of the SPARQL 1.1 query
language, in particular the features that make sense in the context of the OWL
entailment regime there are some features that are not supported. We briefly
discuss some of these limitations along with future implementation plans.

SPARQL 1.1 contains property path expressions that allow regular-expression-
like paths of properties to be matched. However, these are not supported by the
Snap-SPARQL framework. While this would be a significant limitation under sim-
ple entailment, it is not clear how much of a limitation it actually is under the
OWL entailment regime. This is because, one of motivations for property path
expressions is that they enable queries to be written whose answers involve
some kind of “transitivity” such as {?x rdfs:subClassOf+ ?y} or {?x :partOf+ ?y}.

http://github.com/protegeproject/snap-sparql-plugin

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL 163

In these cases, under the OWL entailment regime, transitivity comes “for free”
according to the semantics of the language, for example if A is a subclass of B

and B is a subclass of C, then A is also a subclass of C. For more complex cases
that involve choices e.g. the lack of property path expressions imposes some
inconvenience and queries such as {?x rdfs:label | dce:title ?y}, will need to be
written by the user, if possible.

SPARQL Update makes it possible to modify graphs in the query dataset.
In the case of OWL, this would involve adding and removing axioms to a set of
ontologies. While it seems like SPARQL Update for OWL ontologies would be
useful, Snap-SPARQL does not currently support this feature.

Specification of specific datasets using the GRAPH keyword is not supported.
The framework currently assumes that the query dataset consists of a set ontol-
ogy documents that are specified by an imports closure in accordance with the
OWL semantics. We may support more selective queries using the GRAPH key-
word (perhaps restricted to asserted information) in the future.

While Snap-SPARQL supports SPARQL’s MINUS keyword, meaning that one
solution sequence can be subtracted from another thereby providing a form of
negation by failure, it does not currently support NOT EXISTS. We intend to add
support for this.

Snap-SPARQL does not currently support complex OWL class expressions.
At the moment, queries are essentially limited to SPARQL-DL [10] queries. These
kind of queries correspond to mixed ABox/TBox queries over class hierarchies,
property hierarchies, disjoint classes, property domain, property range, class
assertions, property assertions, same individual, different individuals and anno-
tation assertions. All of this still operates under the OWL entailment regime.
Part of the reason for the lack of support for complex class expressions is that
these are tricky to write in a triple-based syntax such as turtle, for example ?x

SubClassOf hasPart some ?part corresponds to {?x rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasPart; owl:someValuesFrom ?part]}. We are therefore currently con-
sidering whether to support complex class expressions via Terp [9], whereby
Manchester Syntax [5] can be embedded into SPARQL queries, or by some form
of auto-completion that automatically inserts sets of triple patterns that corre-
spond to well-formed class expressions.

Finally, as part of future work, we are considering supporting explanation of
query results using justification based explanation techniques, and we are also
considering a web-based version of the editor, in particular for WebProtégé.

5 Related Work

The challenges of writing SPARQL queries using a plain text editor (as pro-
vided by many SPARQL end points) are somewhat obvious and have not gone
unnoticed by the RDF/SPARQL community. Two tools that are related to the
work here are Flint Editor5 and YASGUI [8], where the latter is based on the

5 http://openuplabs.tso.co.uk/demos/sparqleditor.

http://openuplabs.tso.co.uk/demos/sparqleditor

164 M. Horridge and M. Musen

former. Both of these tools are Web-based and make it possible to query public
SPARQL endpoints. They provide the usual affordances such as syntax high-
lighting and some form of autocompletion. However, neither of these tools are
“entailment regime aware”, in particular they are not OWL entailment regime
aware. This means that queries are based upon the asserted graph. Furthermore,
they do not provide a distinction between domain vocabulary and vocabulary
used to encode OWL axioms. They do not perform error checking to the extent
that Snap-SPARQL does, which means that they will happily accept nonsen-
sical queries such as {?x rdf:type :John}, where John is an individual name, or
{:C :hasPart ?p}, where :C is a class name. Finally, related to the last point,
auto-completion is somewhat impoverished when compared to Snap-SPARQL
and offers nonsensical suggestions in some cases. For example, attempting to
complete ‘‘SELECT ?x WHERE {?x rdfs:subClassOf dbo:Company . ?x dbo:’’ offers any
kind of predicate that is present in the graph along with language vocabulary—
it offers object properties, even though ?x must be a class variable, and it also
offers language vocabulary such as rdfs:range or rdfs:domain, which does not make
sense in this context. On the other hand, both of these tools are fully-fledged
general SPARQL 1.1 query tools, they are Web-based, understand commonly
used prefixes and offer querying of public SPARQL endpoints.

OWL-BGP [6] is a library for performing basic graph pattern matching under
the OWL entailment regime. It also includes an axiom template API and triple
consumer for lifting triples into axiom templates before query evaluation takes
place. Clients typically do not interact with OWL-BGP directly, as the library
itself does not contain a SPARQL algebra implementation. Instead, OWL-BGP
interfaces with the Jena RDF framework [1], which provides this functionality.
It’s possibly the case that OWL-BGP could also be plugged into Snap-SPARQL
without too much difficulty.

The Derivo SPARQL-DL library6 provides basic graph pattern matching
under the OWL entailment regime for SPARQL-DL queries. Snap-SPARQL cur-
rently uses this library as the default implementation for basic graph pattern
matching.

Pellet [11] is an OWL reasoner that supports SPARQL queries over ABoxes.
For mixed TBox and ABox queries Pellet falls back to the native Jena RDF
SPARQL implementation.

Finally, Stardog7 is a commercial graph (RDF) database from Complexible
that supports OWL reasoning. It supports SPARQL as its native query language,
and essentially allows the SPARQL-DL queries to be answered under the OWL
entailment regime.

6 Availability

Snap-SPARQL has been developed as part of the Protégé Project. It is open
source and freely available at https://github.com/protegeproject/snap-sparql-
query.
6 http://www.derivo.de/en/resources/sparql-dl-api.html.
7 http://stardog.com.

https://github.com/protegeproject/snap-sparql-query
https://github.com/protegeproject/snap-sparql-query
http://www.derivo.de/en/resources/sparql-dl-api.html
http://stardog.com

Snap-SPARQL: A Java Framework for Working with SPARQL and OWL 165

Acknowledgements. This work was supported by Grants GM103316 and
R01GM086587 from the National Institute of General Medical Sciences of the United
States National Institutes of Health.

References

1. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Feldman, S., Uretsky,
M., Najork, M., Wills, C. (eds.) Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers & posters, pp. 74–83. New York, NY,
USA, ACM, May 2004

2. Glimm, B., Ogbuji, C.: SPARQL 1.1 Entailment Regimes. Technical report, World
Wide Web Consortium (2012)

3. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Technical report, World
Wide Web Consortium (2012)

4. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

5. Horridge, M., Patel-Schneider, P.F.: Manchester OWL Syntax for OWL 1.1. In:
OWL: Experiences and Directions (OWLED) (2008)

6. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontolo-
gies. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De
Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 382–396.
Springer, Heidelberg (2011)

7. Prud’hommeaux, E., Carothers, G., Beckett, D., Berners-Lee, T.: Turtle terse RDF
triple language. Technical report, W3C - World Wide Web Consortium, February
2014

8. Rietveld, L., Hoekstra, R.: YASGUI: not just another SPARQL client. In: Cimiano,
P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS,
vol. 7955, pp. 78–86. Springer, Heidelberg (2013)

9. Sirin, E., Bulka, B., Smith, M.: Terp: Syntax for OWL-friendly SPARQL queries.
In: Sirin, E., Clark, K. (eds.) Proceedings of the 7th International Workshop on
OWL: Experiences and Directions (OWLED), San Francisco, California, USA,
June 21–22. CEUR, vol. 614. CEUR-WS.org (2010)

10. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: OWL: Expe-
riences and Directions (OWLED) (2007)

11. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

An Application Ontology to Help Users
of a Geo-decision Software
Understanding Their Data

Perrine Pittet(&) and Jérôme Barthélémy

Articque Software, 149 Avenue Général de Gaulle, 37230 Fondettes, France
ppittet@articque.com

Abstract. This paper intends to describe the application ontology of the SaaS
version of the decision statistical mapping and geomarketing software Cartes &
Données (C & D): CD7Online. Specified in OWL DL, the CD7 ontology was
conceived for automation of semantic annotation of CD7Online user data to help
users better understand their data and make better selection and representation
choices when building maps.

Keywords: OWL DL � Description logics � Application ontology � Ontology
development � Semantic annotation � Cartes & données � Geo business software

1 Introduction

Ontologies have been introduced in the Semantic Web research field in the early 2000’s
to exploit textual documents available on the Web in formalized information [1]. As
such, they are sometimes presented as tools for knowledge representation adapted to
the Web environment, automatically transforming data into information and informa-
tion into knowledge [2]. In this paper, we describe an ontology, which was developed
to foster users’ understanding regarding their data, within a geo business decision SaaS
application called CD7Online1. This ontology, specified in OWL DL2, supports the
automatized semantic annotation process of user data. In our case the annotation
process generates a graph of RDF3 annotations for each user data workspace, which is
stored as a namedgraph in a triplestore. Each namedgraph is automatically queried by
an interactive visualization tool, on which users navigate to discover the knowledge
behind their data. The rest of the paper is articulated in 4 sections. Section 2 presents
the CD7Online project background to expose our motivations for developing a formal
application ontology and how this ontology can help users better understand their data.
Section 3 describes the CD7 ontology main concepts and justifies their use regarding
the task of semantic annotation of user data. Section 4 presents some applications
supported by the ontology. Section 5 concludes on feedbacks and future works.

J. Barthélémy—Deceased.

1 CD7Online: https://cdonline.articque.com/.
2 OWL reference: http://www.w3.org/TR/owl-ref/.
3 RDF concepts and abstract syntax: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 166–173, 2016.
DOI: 10.1007/978-3-319-33245-1_17

https://cdonline.articque.com/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

2 Project Background

CD7Online is the SaaS application of the 7th version of Cartes & Données4 (C & D),
which is a French commercial decision statistical mapping and geomarketing software,
published by Articque5. C & D allows users to obtain effective and interoperable maps
built on statistical data, without being mapping specialists. As a business decision tool,
it is a data analysis and visualization oriented application, which aims at helping people
to take decisions via the maps they build upon geo-visualization. C & D has been
designed since the very beginning with the aim of being self-explanatory, simple, and
highly intuitive for users - ease-of-use being a major requirement. Nevertheless, C & D
still relies on the users good knowledge of their data and their ability to choose the
relevant analysis and representation tools to build meaningful maps. Also most of C &
D users have a punctual use of the software and often do not have enough available
time to study and fully exploit the potential of their data. For solving these issues in
CD7Online, we decided to provide users the knowledge they require to quickly
understand their data and their potential applications. We chose to use an automated
semantic annotation process on these data in order to extract and represent this
knowledge. Automatized semantic annotation of data is the process of automatically
associating relevant metadata to data, so that each data is described by a set of semantic
annotations. The main objective is to exploit these annotations to allow users visual-
izing, via an interactive graph visualization tool, the concepts related to their data and
the semantic relations they share. This tool allows them to intuitively navigate in the
annotations, compare and select relevant data to build relevant maps (cf. Fig. 1). As
CD7Online user data consist in statistical and geographical data tables specified in
xml-based files, we adapted a methodology suited to semantic annotation of tables of
data proposed in [3]. In [3], an ontology of the food microbiology domain is adapted to
support a semantic annotation process. The concepts of this ontology cover the defi-
nitions of microbiological symbolic and numerical types, units, value intervals, rela-
tions shared by types and the corresponding lexical data, which are used to name them.
We similarly developed an ontology describing the knowledge underlying the geo-
graphical and statistical data used by CD7Online. Also, because this knowledge
strongly depends on the CD7Online application specific uses and processes, this
ontology is not a domain ontology as in [3]’s methodology but an application ontology
[4]. This however does not alter the efficiency of the semantic annotation process. In
fact the methodology has been designed to accept any ontology, in which semantic
relations with lexical data can be added, in order to make possible lexical similarity
measures. For the development of the ontology, we have followed a simple method-
ology proposed in [5]. The ontology development and evaluation experience were
presented in [6].

The following section focuses on the description of the main concepts of the
ontology.

4 C & D website: http://www.articque.com/solutions/cartes-et-donnees/.
5 Articque website: http://www.articque.com/.

An Application Ontology to Help Users of a Geo-decision Software 167

http://www.articque.com/solutions/cartes-et-donnees/
http://www.articque.com/

3 CD7 Application Ontology Description

For the purpose of this article, we rely on the ontology definition of [7]. Therefore, we
define the CD7 application ontology as a formal explicit description of concepts of the
CD7Online data domain, properties of each concept describing various features and
attributes of the concepts, and restrictions on properties. The ontology together with the
set of individual instances constitute the knowledge base designed for the automatized
semantic annotation process. A concept can have subconcepts representing concepts
that are more specific than this concept. Properties describe properties of concepts and
instances. As we needed to keep the maximum expressiveness while retaining com-
putational completeness and decidability for potential inference purposes, we chose to
specify the ontology in the OWL DL language. Note that the CD7 ontology terms are
originally written in French. Somehow, to facilitate the reading of its description, we
translated terms in English and use description logics [8] in the following part. The
CD7 ontology6 defines two main concepts: DataComponent and CDComponent.
DataComponent describes all components related to user data, such as metadata, user
data. CDComponent describes all components related to the CD7Online specific
application processes applicable to user data. All the other concepts fall under these two
concepts. Due to lack of space we will focus on the main DataComponent underlying
concepts, which are used in semantic annotation. Three main concepts are considered:
UserData, Metadata and LexicalData.

UserData is a DataComponent enclosing the three types of data files a CD7Online
user can have in a group of his workspace and use within CD7Online, such as statistical
data files, basemaps and maps. UserData is defined in SHOINðDÞ DL axioms as
follows:

UserDataY DataComponent u 1 hasFilename.FileName u � 1 ownedBy.User u
1 hasGroup.Group

UserData ≡ StatisticalDataFile t Basemap t Map

with StatisticalDataFile designating the statistical data files, which contain at least
one data table defined by:

StatisticalDataFile Y UserData u � 1 hasDataTable.DataTable

with Basemap designating basemap files used in maps, containing geographical
data of a certain geographical space at a certain geographical level, defined by:

Basemap Y UserData u 1 hasGeographicalSpace.GeographicalSpace u 1 hasGeographi-
calLevel.GeographicalLevel

with Map designating the map project files created by users within CD7Online,
which can import basemaps and statistical data columns, defined by:

Map Y UserData u � 0 hasBasemap.Basemap u � 0 hasDataColumn.DataColumn

6 CD7 Ontology url: http://support-articque.com/ressources/CD7Ontology.owl.

168 P. Pittet and J. Barthélémy

http://support-articque.com/ressources/CD7Ontology.owl

Metadata is a DataComponent designating all the metadata concepts that can be
used to describe the underlying knowledge of components of user data or user data
themselves in semantic annotations. Metadata is defined by:

Metadata ≡ DataType t GeographicalLevel t GeographicalSpace t DataIndicator t Theme
t Date t Unit t WeightedTerm t WeightedWord

with DataType covering three types of data types that can qualify a data column in
a data table of a statistical data file: quantitative data, qualitative data and discrete data.

DataType ≡ QuantitativeData t QualitativeData t DiscreteData t IdData t
UnknownDataType

DataType Y Metadata u � 0 hasDataType−.DataColumn

with GeographicalLevel defining all the geographical division levels that can be
considered in a statistical data file or a basemap (ex: regional, national level, etc.).

GeographicalLevel Y Metadata u � 0 hasGeographicalLevel−.DataTable

with DataIndicator describing all the statistical indicators a data column can be
related to (ex: GDP, mortality rate, etc.). Statistical indicators are categorized by themes.
Each statistical indicator is associated with at least one weighted term representing the
potential composition of weighted lemmas generally used to designate this indicator.

DataIndicator Y Metadata u � 0 hasDataIndicator-.DataColumn u � 1 hasTheme.Theme
u � 1 hasWeightedTerm.WeightedTerm

Another sort of DataComponent is used to support the lexical similarity measures
used to determine the statistical indicator related to a data column: LexicalData. Lex-
icalData designates two lexicons instantiated from two concepts: WeightedTerm and
WeightedWord.

WeightedTerm Y DataComponent u � 1 hasWeightedWord.WeightedWord

with WeightedWord defining a lexicon of all the instances of weighted words that
can compose weighted terms. A weighted word is described by a text and a weight,
which are respectively typed with string and float values.

WeightedWord Y DataComponent u ≥ 0 hasWeightedWord-.WeightedTerm u 1 text.xsd:
String u 1 weight.xsd:float

Additionally, a set of properties, representing the relations between user data
components and metadata (as illustrated above) has been defined. Their domains,
ranges and facets have also been formalized (c.f. [6]). Finally, in order to set up the
knowledge base for the semantic annotation task, a set of individuals was instantiated
from the concepts WeightedWord, WeightedTerm, DataIndicator, Datatype, Theme,
Unit, GeographicalLevel, GeographicalSpace. These individuals are required for the
automatized semantic annotation process. For example, to identify and annotate a data
column with a statistical indicator, the process evaluates the lexical similarity of data
cells content with instances of WeightedTerm, which are composed of instances of
WeightedWord and associated to instances of DataIndicator. Below is illustrated an
example of such instantiation:

An Application Ontology to Help Users of a Geo-decision Software 169

4 Applications

One of the main features supported by the CD7Online ontology is the semantic
annotation of statistical data tables. It implies the identification of the DataIndicator for
each data table column.

4.1 Column DataIndicator Identification

The identification of the data indicator related to a data column involves two steps: first
the column data type identification, second the data indicators lexical similarity scores
according to the column title content.

The identification of a column data type consists in determining whether its content
is quantitative, discrete or qualitative. A set of regular expressions is used to help
distinguishing between qualitative numeric values (mostly territorial codes), discrete
and true quantitative values. In the ontology, each DataIndicator instance is associated
to one Datatype. Therefore once the data type of a column is identified, the corre-
sponding data indicators lexical similarity scores can be assessed. We adapt here the
lexical similarity score definition of [3] (cf. Definition 1). The data indicator, which
score is the highest, is then associated to the data column.

Definition 1: Lexical similarity score between column title lemma and weighted terms.

• LetW = {w1 : pw1;…; wn : pwn} and O = {o1 : po1,…, ok : pok}, be sets of lemma,
with W a set of DataColumn title lemmas wi and weights pwi, and O a Weight-
edTerm instance, with oi and poi its respective WeightedWord instances text and
weight values.

• Let C be the set of indices pairs (i,j) such as wi = oj.
• Then the degree of similarity between W and O is:

simlex w; oð Þ ¼
P

ði;jÞ2Cðpwi þ pojÞ
Pn

m¼1 pwm þ
Pk

m¼1 pom

170 P. Pittet and J. Barthélémy

As recommended in [3], as we do not know which lemma of a column title content
W is semantically more important than the others, we automatically associate a default
weight of 1.0 to each lemma of the column title considered.

Example: Lexical similarity score of data indicator gdp for a column title content
“gdp_per_capita” composed of two lemma “gdp” and “capita”.

If W = (“gdp”:1.0; “capita”:1.0) and O = (“GDP”:1.0) then simlex(W,O) = (1.0 +
1.0)/(1.0 + 1.0 + 1.0) = 2/3.

4.2 Example of Semantic Annotations

A map called “CatchmentArea” created with CD7 is partially described below by a
subset of its semantic annotations generated within our system.

It uses data columns (c.f. ns:column etc.) from a data table of an excel sheet and a
basemap (c.f. ns:basemap). The data column ns:excel55sheet6stores_data_column0 is
partially described below.

This data column has been annotated with different metadata: title, the data type of
its content (c.f.: ns:dataType), the indicator type (c.f.: ns:indicatorType) and the theme

An Application Ontology to Help Users of a Geo-decision Software 171

(c.f.: ns:theme) it is related to, the excel sheet (c.f.: ns:column) in which it is contained
and the geographical level (c.f.: ns:geolevel) on which its content has been processed.

4.3 Visualization

Semantic annotations can be queried with SPARQL to visualize maps related to a
specific theme or indicator, to select basemaps or statistical data files sharing the same
geographical levels or time in order to select compatible ones, etc. Figure 1 shows a an
example of radial visualization built on dynamic SPARQL querying.

Fig. 1. Visualization of user data annotations within the CD7 graph navigation tool.

172 P. Pittet and J. Barthélémy

5 Conclusions and Future Works

The CD7 application ontology is part of the CD7Online project semantic layer
development and supports an automated semantic annotation tool. This tool produces
annotations of user data browsable through a graph navigation tool that users can use to
better understand their data and build better maps. CD7Online being a commercial
software, the development and integration of this layer follows its successive updates.
Until now it involved the integration of many semantic tools and technologies. In an
industrial project, where deadlines strongly matter, this was a challenge. Hopefully
using W3C standards such as OWL clearly helped to reduce development time as many
compatible tools for edition, deployment, querying, management and evaluation exist:
Protégé, Pellet, Apache Jena-Fuseki, SPARQL, etc. Today, we are working on adding
RIF/SPIN rules to provide CD7Online users suggestions of statistical and geographical
analysis processes and map representations within a recommender system.

Acknowledgements. This paper is dedicated to the memory of Jérôme Barthélémy, who
directed the CD7 project and played a major role in the research work presented here.

References

1. Berners-Lee, T.: Semantic Web Stack (2000)
2. Kaladzavi, G., Diallo, P.F., Lo, M.: OntoSOC: Sociocultural Knowledge Ontology. arXiv

preprint arXiv:1505.04107 (2015)
3. Hignette, G.: Annotation sémantique floue de tableaux guidée par une ontologie (Doctoral

dissertation, AgroParisTech) (2007)
4. Malone, J., Parkinson, H.: Reference and application ontologies. Ontogenesis (2010)
5. Noy, N.F., McGuinness, D.L.: Ontology development 101: a guide to creating your first

ontology (2001)
6. Pittet, P., Barthélémy, J.: Experience of formal application ontology development to enhance

user understanding in a geo business intelligence saas platform. In: Cuel, R., Young, R. (eds.)
FOMI 2015. LNBIP, vol. 225, pp. 51–62. Springer, Heidelberg (2015)

7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

8. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Nutt, W. (eds.) Description
Logic Handbook, pp. 43–95. Cambridge University Press, Cambridge (2003)

An Application Ontology to Help Users of a Geo-decision Software 173

http://arxiv.org/abs/1505.04107

Ontology Engineering: From an Art to a Craft

The Case of the Data Mining Ontologies

Larisa Soldatova1, Panče Panov2(B), and Sašo Džeroski2

1 Brunel University, London, UK
larisa.soldatova@brunel.ac.uk

2 Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
{pance.panov,saso.dzeroski}@ijs.si

Abstract. In this paper, we report on our experience and discuss the
problems we encountered while designing, implementing and revising a
set of ontologies describing the domain of data mining. After giving a
short description of the ontologies we have developed, we focus on a set
of key issues that we think are important and need to be addressed by
the ontology engineering community. These include ontology evaluation,
testing, versioning, the use of design patterns, the use of IT portal(s),
re-usability, and compatibility. To illustrate the key issues we provide
examples that originate from our work on the ontologies for data min-
ing. We conclude the paper with a summary and some suggestions that
we believe should be addressed by the ontology engineering research com-
munity.

1 Introduction

The progress of ontology engineering for the last two decades has been immense.
It is now possible to learn ontologies from text, or construct it following the data-
driven approach. Ontologies can be mapped, integrated and re-used. However
many steps of ontology engineering remain an art: the design, testing, evaluation.
It is still not engineering in a true sense.

For example, in the domain of machine learning, a subfield of computer sci-
ence that explores the construction of algorithms that learn from and make pre-
dictions on data, there are clear procedures how a newly developed algorithm
is evaluated, which performance measures should be used for the learning task
at hand, and how one can compare with other algorithms defined for the same
learning task. Another example is from computer programming, where tools pro-
vide complete support and procedures for software testing, versioning, and the
use of patterns in the software engineering phase.

In this manuscript, we analyze the state of ontology engineering based on
our extensive experience in the development of a number of ontologies, and
in particular ontologies for the domain of data mining [1–3], identify the key
bottlenecks in its progress and outline a way forward. We illustrate the key
issues with examples from our ontologies for the domain of data mining.

c© Springer International Publishing Switzerland 2016
V. Tamma et al. (Eds.): OWLED 2015, LNCS 9557, pp. 174–181, 2016.
DOI: 10.1007/978-3-319-33245-1 18

Ontology Engineering: From an Art to a Craft 175

2 Ontologies for the Domain of Data Mining

For the domain of data mining and knowledge discovery, we have developed a
modular ontology (named OntoDM) that is composed of three sub-ontologies
that can be used together or as a stand-alone product, depending on the use
case. This includes: the OntoDM-core ontology that represents core data min-
ing entities [1], the OntoDT ontology that represents datatypes [2], and the
OntoDM-KDD ontology that represents the process of knowledge discovery [3].

From the initial version of the ontology [4] to the current ontology releases, we
have dealt with variety of problems and design choices largely due to the lack of
guidelines for the development of IT ontologies. The simplest design decision in
this case was to base our work on the established best practices from the biology
and bio-medical domains (such as the OBO Foundry principles1), which are
still among the most developed domains in regards to ontologies. Other design
decisions involved extensive reuse of other ontology resources (classes, relations)
from the bio-medical domains using the MIREOT principle [5]. This included the
ontology of bio-medical investigations2 (OBI) [6], information artifact ontology3

(IAO), and using the basic formal ontology4 (BFO) [7] as a template at the top
level.

In the course of the ontology development, other related ontologies describing
the domains of machine learning, data mining and knowledge discovery from
various perspectives appeared [8–11]. There was always a problem of how one
can compare an ontology to other related domain ontologies and also how to
evaluate the constructed ontology sufficiently. Another problem that arose is
how to avoid the duplication of the efforts and to reuse classes from other DM
ontologies. The reuse has not been straightforward, since the related ontologies
were built using different design principles. Some of these issues are discussed
further in the following section. In this section, we give a brief summary of
the ontologies that we developed and the modeling issues we encountered while
trying to represent the domain of data mining.

2.1 Ontology of Core Data Mining Entities

OntoDM-core is developed as an ontology of core data mining entities [1] and
it is based on a proposal for a general framework for data mining [12]. It rep-
resents the most essential data mining entities in a three-layered ontological
structure comprising of a specification, an implementation and an application
layer. OntoDM-core provides a representational framework for the description
of mining structured data, and it provides taxonomies of datasets, data min-
ing tasks, generalizations, data mining algorithms and constraints, based on
the type of data. OntoDM-core is designed to support a wide range of applica-
tions/use cases, such as semantic annotation of data mining algorithms, datasets
1 http://obofoundry.org/.
2 http://obi-ontology.org/.
3 https://github.com/information-artifact-ontology/IAO/.
4 http://ifomis.uni-saarland.de/bfo/.

http://obofoundry.org/
http://obi-ontology.org/
https://github.com/information-artifact-ontology/IAO/
http://ifomis.uni-saarland.de/bfo/

176 L. Soldatova et al.

and results; annotation of QSAR studies in the context of drug discovery inves-
tigations; and disambiguation of terms in text mining. OntoDM-core is available
at http://www.ontodm.com.

2.2 Ontology of Datatypes

OntoDT is developed as a generic ontology for representing the scientific knowl-
edge about datatypes [2]. The ontology is based on an ISO standard for repre-
senting datatypes in computer systems [13]. It defines the basic entities, such
as datatype, properties of datatypes, specifications, characterizing operations,
and a datatype taxonomy. OntoDT was used within the OntoDM-core ontology
for constructing taxonomies of datasets, data mining tasks, generalizations and
data mining algorithms. Furthermore, OntoDT can be used to annotate and
query dataset repositories. In addition, OntoDT can improve the representation
of datatypes in the BioXSD exchange format for basic bio-informatics types of
data. The generic nature of OntoDT enables it to support a wide range of other
applications, especially in combination with other domain specific ontologies:
the construction of data mining workflows, annotation of software and algo-
rithms, semantic annotation of scientific articles, etc. The ontology iis available
at http://www.ontodt.com.

2.3 Ontology for Representing the Knowledge Discovery Process

OntoDM-KDD is developed as an ontology for representing the knowledge dis-
covery (KD) process [3]. It is based on the Cross Industry Standard Process for
Data Mining [14]. OntoDM-KDD defines the most essential entities for describing
data mining investigations in the context of knowledge discovery in a two-layered
ontological structure. The ontology provides a taxonomy of KD specific actions,
processes and specifications of inputs and outputs. OntoDM-KDD supports the
annotation of DM investigations in application domains. The ontology has been
thoroughly assessed following the best practices in ontology engineering, is fully
interoperable with many domain resources and easily extensible. OntoDM-KDD
is available at http://www.ontodm.com.

3 The Key Issues

3.1 Evaluation

In our work on ontologies for data mining, we evaluated the produced ontologies
using the methodology proposed by Grüniger and Fox [15], which is based on
an assessment whether the built ontologies answers the competency questions
established in the design phase. In addition, we provided a subjective assessment
of how the constructed ontology satisfied the design principles established in the
design phase.

While these evaluation approaches are reasonable, they are mainly based on
expert opinions: competency questions are created by experts or potential users,

http://www.ontodm.com
http://www.ontodt.com
http://www.ontodm.com

Ontology Engineering: From an Art to a Craft 177

and a selection of the design principles is due to experts choice. There are some
objective evaluation metrics, e.g. a coverage of the domain, the depth of the
hierarchy, a reasoning time. However such metrics do not enable a convincing
comparison of ontologies. There are no procedures like for example in machine
learning to compare the performance of two algorithms on the same dataset
using objective measures.

The development of ontologies is expensive, and therefore it is unlikely to have
several ontologies for exactly the same domain to enable an accurate comparison
of their performances. However, a comprehensive analyses and evaluation of the
key design principles could be performed: what works best for what types of
problems/domains: a 4D or a 3D approach; the use of Basic Formal Ontology
(BFO) [7] or an ad-hoc upper-level ontology; the use of many or a few relations?

There is a clear need for the research community to come up with a better
evaluation approach than those currently available.

3.2 Testing

Testing is an essential part of any engineering project, be it a construction of
a bridge or software development. Testing has similarities with evaluation, but
it is a different process. On one hand, evaluation aims to identify if a product
meets the specified requirement and is closely related with a quality assurance
(i.e. a certain level of quality is typically one of the requirements). On the other
hand, testing is executing a system in order to identify any errors. Obviously,
a system with errors is not a high quality system. Finally, the results of testing
are used to improve the system before evaluation.

Standard testing methods for software engineering (e.g. white/grey/black
box) can be applied to ontology engineering. However, a development of an
ontology has its distinct specificity due to explicit and implicit logical entail-
ments. Unfortunately, there is no methodology available to construct a collection
of tests to check if an ontology indeed outputs the expected outputs and does
not outputs unexpected ones. Reasoners assist in the detection of logical consis-
tency errors, but they would not detect unexpected outcomes. For example, one
can develop a logically consistent pizza ontology where a vegetarian pizza has a
meat topping (see the pizza tutorial5). Reasoners also do not detect such errors
as for example using an is-a relation instead of a part-of relation. Even if an
ontology is error free, and it imports another error free ontology, this does not
guarantee that the resulting ontology will be error-free.

The available ontology development tools do not provide sufficient support
for the design (manual or automated) and execution of tests. The exception
is Tawny-OWL by Lord et al. [16]. The Tawny-OWL library provides a fully-
programmatic environment for ontology building; it enables the use of a rich
set of tools for ontology development, by recasting development as a form of
programming. It is built in Clojure6 - a modern Lisp dialect, and is backed
5 http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/

protg-owl-tutorial/.
6 http://clojure.org/.

http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://clojure.org/

178 L. Soldatova et al.

by the OWL API. It provides a rich and modern programming tool chain, for
versioning, distributed development, build, testing and continuous integration.

The barriers for the development and adoption of testing methodologies for
ontology engineering are not only technological, but also sociological. There
are expectations that a newly developed ontology should be evaluated before
a release or a publication. Unfortunately, it is unusual to report on what set
of tests an ontology has been tested. Journals do not require an inclusion of
information on testing into papers reporting on ontology development. We as a
research community need to change this. We also need to agree on a standard for
ontology testing, similar to how it was done for software testing (see the IEEE
Standard for Software Unit Testing7).

3.3 Versioning

An ontology, like any other any artifact, has a life cycle and it is changing over
time. The changes of ontologies may cause interoperability problems. For exam-
ple, a good practice is not to delete any of the classes, but to deprecate them.
But not all developers do that. Ontologies have specificity regarding version-
ing (see [17]). Changes in ontologies might occur due to various issues and it is
important to capture that.

Ontology development tools do not have inbuilt version control of ontology
projects. The developers have to use external tools, like Git8 to compensate for
such shortcomings. While it does address the problem of ontology versioning,
it is not a seamless process. In terms of versioning support on the level of lan-
guages, the OWL language (1.0) provides some built in versioning attributes9

(e.g., owl:versionInfo, owl:priorVersion), but this is not enough to fully support
versioning of ontologies in a systematic way.

3.4 Design Patterns

Mature programming techniques rely on the use of patterns. They speed up the
development process and reduce number of errors. Some patterns are available
for ontology engineering. Ontology design patterns (ODPs) are ready made mod-
elling solutions for creating and maintaining ontologies. ODPs help in creating
rich and rigorous ontologies with less effort [18]. There is a public catalog of
ODPs focused on the biological knowledge domain10. The OBI (the Ontology
for Biomedical Investigations) project developed a pattern (aka a template) for
the key class assay. Such an approach has significantly speeded up the submis-
sion of hundreds of subclasses. Hoehndorf et al. provide a prototype to extract
relational patterns from OWL ontologies using automated reasoning [19]. How-
ever the described efforts are focusing mainly on biomedical areas. There is a
need for an easily accessible collection of more generic ontology patterns.
7 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2599.
8 https://git-scm.com/.
9 http://www.w3.org/2007/OWL/wiki/Ontology Versions.

10 https://git-scm.com/html/.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2599
https://git-scm.com/
http://www.w3.org/2007/OWL/wiki/Ontology_Versions
https://git-scm.com/html/

Ontology Engineering: From an Art to a Craft 179

3.5 IT Portal

We deposited our OntoDM and OntoDT ontologies to BioPortal11. Currently, it
has 450 ontologies and the number is rapidly growing. The portal has an excel-
lent search capabilities and also provides other useful tools, such as: federated
querying engine, mapping service, an annotation service, ontology recommender
based on an excerpt from a biomedical text or list of keywords and others [20].
However, the portal is supporting biomedical domains, and there is no such a
portal for IT ontologies.

The absence of a portal which would provide similar services for IT ontologies
contributes to the duplication of the efforts and inhibits the development of
the area. For example, we now have several ontologies describing the domains
of machine learning, data mining and knowledge discovery that are not inter-
operable. Having an IT portal with the same functionalities as the BioPortal (or
better), would ease the reuse of the ontologies, their discovery and mapping.

3.6 Reausability and Compatibiliy

The most common usage of ontologies remains to be as a controlled vocabulary12.
However ontologies originally were viewed as ‘building blocks’ of information sys-
tems [21]. We believe that they are under-used in such a capacity and that we will
see in the nearest future many interesting use-cases, where ontologies are integral
components of complex systems. For example, an ontology LABORS is an inte-
gral part of the Robot Scientist system, which is capable of automated discovery
of new functional genomics knowledge [22]. The PHenotypic Interpretation of
Variants in Exomes (PHIVE) algorithm includes the phenotype manifestations
in individuals as well as the signs and symptoms of diseases [23]. This work goes
beyond the use of ontologies as controlled vocabularies and exploits hierarchical
inheritance properties. It was shown that including phenotype information into
the prioritisation of candidate genes leads to an up to 54.1 fold improvement
over methods purely based on variant information.

Ontologies as potential information systems ‘building blocks’ needs to be
represented as such to enable their discovery, reuse, integration and functioning
as components of complex systems. For example, the service oriented architecture
(SOA) approach can be adopted for the description of ontologies as services.
SOA is viewed by W3C as a set of components which can be invoked, and
whose interface descriptions can be published and discovered. An ontology should
be ‘wrapped-up’ by the specification of what services it can provide, for what
domain, what input/output and environment requirements are, provenance, the
development stage, quality, etc. A collection of such ontologies would ease the
design and implementation of complex information systems.

11 http://bioportal.bioontology.org/.
12 http://www.w3.org/TR/webont-req/.

http://bioportal.bioontology.org/
http://www.w3.org/TR/webont-req/

180 L. Soldatova et al.

4 Discussion and Conclusion

We believe that ontology engineering is still far from reaching its full potential.
The developers are struggling with multiple issues outlined above. A better sup-
port for the development and evaluation processes would speed up the research
in this area. Sophisticated and easy to use development tools can low the barriers
for the novice ontology designers and help in reducing errors. Dedicated IT por-
tals would promote best practices in ontology engineering and support ontology
reuse and their integration into complex intelligent systems. A mature method-
ology for the testing and evaluation of constructed ontologies would ensure that
the deposited ontologies are of high quality. The research community needs to
agree on the standards for ontology testing, description and quality assurance.
We are confident that ontology engineering would become a true engineering if
these objectives would be achieved.

Acknowledgements. Panče Panov and Sašo Džeroski are supported by The Slovenian
Research Agency (Grant P2-0103) and the European Commission (Grants ICT-2013-
612944 MAESTRA and KT-2013-604102 HBP).

References

1. Panov, P., Soldatova, L., Džeroski, S.: Ontology of core data mining entities. Data
Min. Knowl. Disc. 28(5–6), 1222–1265 (2014)

2. Panov, P., Soldatova, L.N., Džeroski, S.: Generic ontology of datatypes. Informa-
tion Sciences. In press (2015)

3. Panov, P., Soldatova, L., Džeroski, S.: OntoDM-KDD: ontology for representing
the knowledge discovery process. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T.
(eds.) DS 2013. LNCS, vol. 8140, pp. 126–140. Springer, Heidelberg (2013)

4. Panov, P., Džeroski, S., Soldatova, L.N.: OntoDM: an ontology of data mining. In:
2008 IEEE International Conference on Data Mining Workshops. ICDMW 2008,
pp. 752–760. IEEE (2008)

5. Courtot, M., Gibson, F., Lister, A.L., Malone, J., Schober, D., Brinkman, R.R.,
Ruttenberg, A.: Mireot: the minimum information to reference an external ontology
term. Appl. Ontol. 6(1), 23–33 (2011)

6. Brinkman, R.R., Courtot, M., Derom, D., Fostel, J., He, Y., Lord, P.W.,
Malone, J., Parkinson, H.E., Peters, B., Rocca-Serra, P., et al.: Modeling bio-
medical experimental processes with OBI. J. Biomed. Semant. 1(S–1), S7 (2010)

7. Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology.
MIT Press, Cambridge (2015)

8. Keet, C.M., �Lawrynowicz, A., dAmato, C., Kalousis, A., Nguyen, P., Palma, R.,
Stevens, R., Hilario, M.: The data mining optimization ontology. In: Web Seman-
tics: Science, Services and Agents on the World Wide Web (2015)

9. Diamantini, C., Potena, D., Storti, E.: A virtual mart for knowledge discovery in
databases. Inf. Syst. Front. 15(3), 447–463 (2013)

10. Vanschoren, J., Soldatova, L.: Exposé: An ontology for data mining experiments.
In: International Workshop on Third Generation Data Mining: Towards Service-
oriented Knowledge Discovery (SoKD-2010), pp. 31–46 (2010)

Ontology Engineering: From an Art to a Craft 181

11. Esteves, D., Moussallem, D., Baron Neto, C., Soru, T., Usbeck, R., Lehmann, J.:
Mex vocabulary: a lightweight interchange format for machine learning experi-
ments. In: SEMANTiCS 2015 (2015)

12. Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf,
J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)

13. ISO/IEC11404:2007: Information technology - General-Purpose Datatypes (GPD)
(2007). URL: http://www.iso.org/iso/catalogue detail.htm?csnumber=39479

14. Chapman, P., Kerber, R., Clinton, J., Khabaza, T., Reinartz, T., Wirth, R.: The
CRISP-DM process model. In: Discussion Paper, March 1999

15. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies.
In: IJCAI-95 Workshop on Basic Ontological Issues in Knowledge Sharing (1995)

16. Lord, P.: The semantic web takes wing: Programming ontologies with tawny-owl
(2013). arXiv preprint arXiv:1303.0213

17. Klein, M.C., Fensel, D.: Ontology versioning on the semantic web. In: SWWS, pp.
75–91 (2001)

18. Aranguren, M.E., Antezana, E., Kuiper, M., Stevens, R.: Ontology design patterns
for bio-ontologies: a case study on the cell cycle ontology. BMC Bioinform. 9(Suppl.
5), S1 (2008)

19. Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D.,
Herre, H.: Relations as patterns: bridging the gap between OBO and OWL. BMC
Bioinform. 11(1), 441 (2010)

20. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache,
T., Musen, M.A.: Bioportal: enhanced functionality via new web services from the
national center for biomedical ontology to access and use ontologies in software
applications. Nucleic Acids Res. 39(Suppl. 2), W541–W545 (2011)

21. Mizoguchi, R.: Tutorial on ontological engineering part 1: introduction to ontolog-
ical engineering. New Gener. Comput. 21(4), 365–384 (2003)

22. King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata,
M., Markham, M., Pir, P., Soldatova, L.N., et al.: The automation of science.
Science 324(5923), 85–89 (2009)

23. Robinson, P.N., Köhler, S., Oellrich, A., Wang, K., Mungall, C.J., Lewis, S.E.,
Washington, N., Bauer, S., Seelow, D., Krawitz, P., et al.: Improved exome pri-
oritization of disease genes through cross-species phenotype comparison. Genome
Res. 24(2), 340–348 (2014)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39479
http://arxiv.org/abs/1303.0213

Author Index

Allen, Andrew 69
Alsubait, Tahani 21, 69
Arndt, Dörthe 93

Barthélémy, Jérôme 166
Bhatti, Jabran 93
Bonte, Pieter 93
Brown, Gavin 1
Busetta, Paolo 33

Charvat, Karel 124

Daniele, Laura 117
De Meester, Ben 93
De Turck, Filip 93
den Hartog, Frank 117
Dereuddre, Wim 93
Dragoni, Mauro 33
Dudáš, Marek 14
Džeroski, Sašo 174

Esbrí, Miguel 124

Forge, Sophie 69
Fruet, Mauro 33

Ghidini, Chiara 33
Gkoutos, Georgios V. 81
Gregory, Michelle 69

Haag, Florian 143
Hanzal, Tomáš 14
Hitzler, Pascal 87, 105
Hoehndorf, Robert 81
Horridge, Matthew 154

Janowicz, Krzysztof 105

Kapłański, P. 45
Krisnadhi, Adila A. 105

Ławniczak, Ilona 134
Ławrynowicz, Agnieszka 134

Leo, Jared 69
Lohmann, Steffen 143

Malaisé, Veronique 69
Mannens, Erik 93
Mateti, Prabhaker 87
Mazurek, Cezary 124
Meyer, John-Jules Ch. 56
Moreira, Alvaro 56
Musen, Mark 154
Mutharaju, Raghava 87

Negru, Stefan 143

O’Shea, Keiron 81
Ongenae, Femke 93

Palma, Raúl 124
Panov, Panče 174
Parsia, Bijan 21, 69
Pedrotti, Matteo 33
Pittet, Perrine 166

Reznik, Tomas 124
Rodríguez-García, Miguel Ángel 81
Roes, Jasper 117

Sattler, Uli 1, 21
Sazonau, Viachaslau 1
Schaballie, Jeroen 93
Schofield, Paul N. 81
Seganti, A. 45
Slater, Luke 81
Soldatova, Larisa 174
Souza, Marlo 56
Svátek, Vojtěch 14

Van de Walle, Rik 93
Verborgh, Ruben 93
Vieira, Renata 56

Zamazal, Ondřej 14
Zarzycki, P. 45

	Preface
	Organization
	Contents
	General Terminology Induction in OWL
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Settings and Assumptions
	5 Quality Criteria and Measures for a Hypothesis
	5.1 Syntactic Length as a Readability Measure
	5.2 Logical Quality
	5.3 Statistical Quality

	6 General Terminology Induction
	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Evaluation
	7.3 Results

	8 Discussion and Future Work
	References

	OBOWLMorph: Starting Ontology Development from PURO Background Models
	1 Introduction
	2 PURO Language and OWL Modeling Styles
	3 Related Research
	4 OBOWLMorph Implementation and Example of Usage
	5 Conclusions and Future Work
	References

	A Similarity Based Approach to Omission Finding in Ontologies
	1 Introduction
	2 Motivation
	3 Implementing a Prototype QG-Based Application for Ontology Validation
	4 A Case Study
	4.1 Goals
	4.2 Materials and Methods
	4.3 Results and Discussion
	4.4 Related Work

	5 Summary and Future Directions
	References

	An Ontology for Supporting the Evolution of Virtual Reality Scenarios
	1 Introduction
	2 The PRESTO Project
	3 PRESTO Ontology Design
	4 The PRESTO Ontology
	4.1 The Top-Level Ontology: DOLCE Entities
	4.2 The Middle-Level Domain Ontology
	4.3 Injecting the Bottom-Level Ontology

	5 Enriching the VR for Decision-Making and Coordination
	6 Related Work and Conclusion
	References

	Collaborative Editing of Ontologies Using Fluent Editor and Ontorion
	1 Introduction
	2 Fluent Editor and the Ontorion Server
	2.1 Fluent Editor
	2.2 Ontorion Server
	2.3 OCNL
	2.4 System Architecture
	2.5 Ontorion Mode
	2.6 Module Management
	2.7 Collaborative Knowledge Editing

	3 Related Work
	3.1 Community

	4 Evaluation
	5 Discussion and Summary
	References

	Integrating Ontology Negotiation and Agent Communication
	1 Introduction
	2 Related Work
	3 Approximated Translation and Information Loss
	4 Formal Properties of Translations Between Ontologies
	5 Integrating Ontology Negotiation in Agent Communication
	6 Conclusions
	References

	Lifting EMMeT to OWL Getting the Most from SKOS
	1 Introduction
	2 Preliminaries
	3 Lifting EMMeT to OWL
	3.1 The Naive Approach
	3.2 A More Sophisticated Approach

	4 Related Work
	5 Conclusion
	References

	Experiences with Aber-OWL, an Ontology Repository with OWL EL Reasoning
	1 Introduction
	2 An Overview of Aber-OWL
	2.1 Reasoning Services
	2.2 Ontology-Based Data Access

	3 Experiences
	4 Future Directions
	5 Conclusion
	References

	Towards a Rule Based Distributed OWL Reasoning Framework
	1 Introduction
	2 Challenges
	2.1 Rule Dependency Analysis
	2.2 Data Distribution
	2.3 Rule Implementation

	3 Evaluation Plan
	4 Related Work
	5 Conclusion
	References

	Improving OWL RL Reasoning in N3 by Using Specialized Rules
	1 Introduction
	2 Related Work
	3 Use Case
	4 OWL RL in N3
	5 Producing TBox-rules
	5.1 Grounding the Ontology
	5.2 Translation Step

	6 Evaluation
	6.1 Ontology and Data
	6.2 Test Scenario
	6.3 Results

	7 Conclusion and Future Work
	References

	On the Capabilities and Limitations of OWL Regarding Typecasting and Ontology Design Pattern Views
	1 Introduction and Motivation
	2 Typecasting in OWL
	2.1 Typecasting Individual to Class and Back: Explicit Versus Implicit Typing of Instances
	2.2 Typecasting Between Class and Property

	3 Ontology Design Pattern View Contraction and Expansion
	3.1 Contraction
	3.2 Expansion

	4 Conclusions
	References

	How to Keep a Reference Ontology Relevant to the Industry: A Case Study from the Smart Home
	Abstract
	1 Introduction
	2 SAREF: Requirements, Principles and Best Practices
	3 Discussion
	4 Conclusions
	Acknowledgments
	References

	An INSPIRE-Based Vocabulary for the Publication of Agricultural Linked Data
	1 Introduction
	2 Transformation
	2.1 Pre-processing Tasks
	2.2 Post-processing Tasks

	3 Ontology
	4 Related Work
	5 Conclusion
	References

	Towards a Core Ontology of Occupational Safety and Health
	1 Introduction
	2 Requirements Specification
	3 Related Work
	4 Overview of the Content of OHSDO-Core
	4.1 Main Concepts of OHSDO-Core
	4.2 The Hazardous Situation Ontology Design Pattern

	5 Discussion
	5.1 Modeling Issues
	5.2 Ontology Engineering Issues

	6 Summary and Future Work
	References

	Towards a Visual Notation for OWL: A Brief Summary of VOWL
	1 Introduction
	2 Related Work
	3 Summary of VOWL
	3.1 General Design Principles
	3.2 Concrete Design Decisions
	3.3 Limitations

	4 Implementations of VOWL
	5 Conclusions
	References

	Snap-SPARQL: A Java Framework for Working with SPARQL and OWL
	1 Introduction
	2 Preliminaries
	3 Components and Functionality
	3.1 An Axiom Template API
	3.2 A SPARQL Parser
	3.3 An Implementation of the SPARQL Algebra
	3.4 Support for Pluggable Basic Graph Pattern Matching
	3.5 A SPARQL Editor
	3.6 A Protégé Plugin

	4 Limitations and Future Work
	5 Related Work
	6 Availability
	References

	An Application Ontology to Help Users of a Geo-decision Software Understanding Their Data
	Abstract
	1 Introduction
	2 Project Background
	3 CD7 Application Ontology Description
	4 Applications
	4.1 Column DataIndicator Identification
	4.2 Example of Semantic Annotations
	4.3 Visualization

	5 Conclusions and Future Works
	Acknowledgements
	References

	Ontology Engineering: From an Art to a Craft
	1 Introduction
	2 Ontologies for the Domain of Data Mining
	2.1 Ontology of Core Data Mining Entities
	2.2 Ontology of Datatypes
	2.3 Ontology for Representing the Knowledge Discovery Process

	3 The Key Issues
	3.1 Evaluation
	3.2 Testing
	3.3 Versioning
	3.4 Design Patterns
	3.5 IT Portal
	3.6 Reausability and Compatibiliy

	4 Discussion and Conclusion
	References

	Author Index

