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Intelligent Vision Processing Technology
for Advanced Driver Assistance Systems
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Abstract Intelligent vision processing technology has a wide range of applications

on vehicles. Many of these applications are related to a so-called Advanced Driver

Assistance System (ADAS). Collaborated with cameras, Pedestrian and Motorcy-

clist Detection System (PMD), Lane Departure Warning System (LDWS), Forward

Collision Warning System (FCWS), Speed Limit Detection System (SLDS), and

Dynamic Local Contrast Enhancement (DLCE) techniques can help drivers notice

important events or objects around. This chapter gives an in-depth exploration for

these intelligent vision processing technologies from the viewpoints of methodol-

ogy development, algorithm optimization, and system implementation on embed-

ded platforms. More precisely, this chapter tends to first give a survey and overview

for newly appeared state-of-the-art intelligent vision processing technologies for

ADAS, and then highlights some significant technologies including PMD, LDWS,

FCWS, SLDS, and DLCE developed in System on Chip (SoC) Laboratory, Fong-

Chia University, Taiwan, and intelligent Vision System (iVS) Laboratory, National

Chiao Tung University, Taiwan. Besides, implementation and verification of the

above ADAS technologies will also be presented. In summary, the proposed PMD

design achieves 32.5 frame per second (fps) for 720� 480 (D1) resolution on an

AMD A10-7850K processor by using heterogeneous computing. On an

automotive-grade Freescale i.MX6 (including 4-core ARM Cortex A9, 1 GB

DDR3 RAM, and Linux environment) platform, the proposed LDWS, FCWS,

and SLDS designs, respectively, achieve 33 fps, 32 fps, and 30 fps for D1 resolu-

tion. Finally, the proposed DLCE system is realized on a TREK-668 platform with

an Intel Atom 1.6 GHz processor for real-time requirement of 50 fps at D1

resolution.
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8.1 Introduction

According to the survey report of Gartner in 2015, autonomous vehicles attract the

highest expectation among many other popular applications. Autonomous cars

adopt sensors such as RAdio Detection And Ranging (RADAR), Light Detection

And Ranging (LiDAR), and cameras to understand environment around. Among

these sensors, cameras are rather inexpensive in cost consideration and mature in

manufacturing aspect. However, we need an elaborated intelligent processing

system to analyze the visual contents to construct sensing ability for autonomous

cars. In addition, design trend for car safety moves from passive ways to active

ones. In the USA, rear view monitoring becomes a standard equipment for new

cars. Car manufacturers such as BMW, Lexus, and Infiniti have launched Around

View Monitoring (AVM) adoption. In EU, Lane Departure Warning System

(LDWS) is already a standard equipment for vehicles. Besides, car manufacturers

such as BMW, Audi, Volvo, and Mercedes-Benz provide advanced options, e.g.,

Adaptive Cruise Control (ACC), Adaptive Front lighting System (AFS), Driver

Status Monitoring (DSM), Blind Spot Detection (BSD), and so on, to customers.

Moreover, search engine vendor Google also devotes to develop self-driving cars.

Google self-driving cars adopt a LiDAR sensor for detecting objects around from a

3D-space viewpoint and millimeter wave RADAR sensors for distant object detec-

tion. As for pedestrian and bicycle detection, vision technology is adopted. A car

electronics vendor worth mentioning is Mobileye, which provides vision Systems

on Chip (SoCs) for safety driving to car manufacturers. Based on solid foundation

of ARM and digital signal processor (DSP) experience, TI has also launched

TDA2x/3x SoCs for Advanced Driver Assistance Systems (ADAS). These above

facts reveal that intelligent vision processing technology for ADAS attracts high

attention recently and will probably become critical in the upcoming 5–10 years.

Accordingly, this chapter tends to give a survey and overview for newly appeared

intelligent vision processing technology for ADAS in Sect. 8.2, and highlights some

significant technologies including Pedestrian and Motorcyclist Detection System

(PMD), LDWS, Forward Collision Warning System (FCWS), Speed Limit Detec-

tion System (SLDS), and Dynamic Local Contrast Enhancement (DLCE) devel-

oped in our laboratory in Sect. 8.3. Besides, implementation and verification of the

above ADAS technology are also presented in Sect. 8.4. Finally, we end this chapter

in Sect. 8.5, i.e., the conclusion.

176 P.-C. Shen et al.



8.2 Existing ADAS Systems

Machine learning leads the trend to support multiple-object detecting and

distinguishing. How to generate good machine learning samples and simplify the

complex architecture are still challenges to real-time processing with limit com-

puting resource. Certain unique features are extracted to recognize one kind of

object, which reduces the computation complexity with minor sacrifice of detection

diversity. With inclement weather against techniques, ADAS systems perform even

better. This section reviews the related works of intelligent vision processing

technology for ADAS which can be categorized into PMD, LDWS, FCWS,

SLDS, and DLCE in the following sub-sections.

8.2.1 Pedestrian and Motorcyclist Detection System

Various techniques have been developed for detecting moving objects commonly

seen on the road, including pure pedestrians [1–21], pure vehicles [22–29], and

multiple kinds of objects [30, 31]. Enhancing the detection rate and lowering down

the false alarm rate are the two main objectives of all existing vision-based objects

detection designs. The designs [30, 31] are dedicated on multiple kinds of objects

detection, while the remainders focused on single kind of object, either pedestrian

or motorcyclist detection. All of these existing designs are verified by using

software models only and simulated on personal computers. One of the contribu-

tions of this work is to present the experience of implementing a vision-based

multiple moving objects detection system on a portable platform. Matching models

are required to enable machines to detect objects in images. These matching models

can be approximately classified into two types, i.e., with either global features or

local features. Features of the interested objects are extracted to train the classifier.

Using global features of the objects is beneficial to achieving high detection rate,

while using local features of the objects can solve the occlusion problems.

In [1], the key insight is that one may compute finely sampled feature pyramids

at a fraction of the cost, without sacrificing performance, i.e., features computed at

octave-spaced scale intervals are sufficient to approximate features on a finely

sampled pyramid for a broad family of features. Extrapolation is inexpensive as

compared to direct feature computation. The work [2] presented a spatialized

random forest (SRF) approach, which can encode an unlimited length of high-

order local spatial contexts. By spatially random neighbor selection and random

histogram-bin partition during the tree construction, the SRF can explore much

more complicated and informative local spatial patterns in a randomized manner. In

[3], the authors had evaluated their system on a data set specifically for pedestrian

detection from a moving vehicle, and they have shown that it is able to outperform

other fast detection methods in both speed and accuracy. This is due to: (1) the use

of a Coarse to Fine (CtF) procedure for fast image scan; (2) the use of object parts to
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simulate local deformations; (3) the evaluation of detections with missing resolu-

tions; and (4) the introduction of an additional feature that balances out scores with

missing resolutions and gives possibly high scores also to small detections, which

are very important in the context of driving assistance. The work [4] proposed a

decomposition-based human localization model dealing with this issue in three

steps, i.e., a stable upper-body is firstly detected, then a set of bigger bounding

boxes are extended, from which the most appropriate instance is distinguished by a

discriminative Whole Person Model (WPM). The work [5] presented a method for

characterizing tiny images of pedestrians in a surveillance scenario, specifically, for

performing head orientation and body orientation estimation, employing arrays of

covariance as descriptors, named Weighted ARray of COvariances (WARCO). The

design [7] addressed the problem of ascertaining the existence of objects in an

image. In the first step, the input image is partitioned into non-overlapping local

patches, then the patches are categorized into two classes, namely natural and

man-made objects to estimate object candidates. Then, a Bayesian methodology

is employed to produce more reliable results by eliminating false positives. To

boost the object patch detection performance, they exploit the difference between

coarse and fine segmentation results. The design [8] proposed a representation for

scenes containing relocatable objects that can cause partial occlusions of people in a

camera’s field of view. The authors formulated an occluder-centric representation,

called a graphical model layer, where a person’s motion in the ground plane is

defined as a first-order Markov process on activity zones, while image evidence is

aggregated in 2D observation regions that are depth-ordered with respect to the

occlusion mask of the relocatable object. The work [9] improved on the successful

Evolution COnstructed (ECO) features algorithm by employing speciation during

evolution to create more diverse and effective ECO features. Speciation allows

candidate solutions during evolution to compete within niches rather than against a

large population.

The aforementioned literature provide solid foundation for researchers to

develop their works. However, there is still a gap to be filled before one can achieve

accurate moving objects detection for intelligent automobiles with real-time per-

formance on portable platforms.

8.2.2 Lane Departure Warning System

In the basic system flow of LDWS, there are two main steps of detecting the lanes.

One is lane-mark generation, and the other is lane model fitting.

At lane-mark generation stage, most papers, such as [32, 33], and [34, 35], used

canny edge detector, which can keep a good performance even in low contrast

weather conditions, to extract the lane-mark. However, the computing burden of

canny edge detector is more than the one of brightness thresholding. With this

reason, the paper [36] used brighter region to extract lane-mark based on Charge-

Coupled Device (CCD) camera parameter regulation skill.
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Straight line is the most famous and common lane model, which can be detected

with Hough transform [33, 34, 36] or Weight Least Square Regression (WLDR)

[37], because the lane-mark appears straight near the vehicles. In order to include

curves, curve lane models are adopted in some papers. Lindner et al. [32] used the

fitting value of Hamacher function to decide whether the line can be added or not.

Yoo et al. [35] used the quadratic curve model to represent the lane-mark as shown

in Eq. (8.1), where x and y are coordinate values, c0 is the curvature of the lane, m is

the slope, and b is the offset of the lane.

y ¼ 1

2
c0x

2 þ mxþ b ð8:1Þ

8.2.3 Forward Collision Warning System

In basic system flow of FCWS, Sun et al. [38] claimed two steps for detecting

vehicles, i.e., Hypothesis Generation (HG) and Hypothesis Verification (HV).

Generally speaking, the computing time in HV is more than that in HG, so

eliminating most of free-driving space in HG by apparent vehicle features is

needed. Next, some famous methods of HG and HV are introduced in the following

paragraphs.

For shadow feature in HG, Kumar [39] used edge and gray value to capture

shadow features. To begin with, free-driving space is extracted by edge segmenta-

tion and then they compute the mean and standard deviation to calculate threshold

of shadow. The intensity-value difference in the vertical direction is examined to

see whether or not there exists a transition from brighter intensity to darker

intensity. The candidates are revealed in HG by shadow features.

For symmetry feature in HG, Teoh et al. [40] used symmetry characteristic to

generate vehicle candidates. Canny operator is adopted to find reliable edge to be

the basis of symmetry calculation. They select a pair of proper width and height to

calculate symmetry depending on different scanning lines.

For tail-light feature in HG, Fossati et al. [41] used color, shape, area, and

position information as a criterion of pairing algorithm. With low-exposure camera,

they can take advantage of accurate color information in Hue–Saturation–Value

(HSV) space to decide which type the light-object belongs to. After pairing tail-

light objects, they estimated the forward vehicles position by using a pinhole model.

For Support Vector Machine (SVM) in HV, Teoh et al. [40] used two-pattern

classifier based on a linear SVM to differentiate between vehicles and non-vehicles.

In fact, they extract Edge Orientation Histogram (EOH) to be their features of the

classifier by quantizing the gradient of each pixel into eight bins. Khairdoost

et al. [42] applied lots of methods to SVM in order to raise classifier accuracy.

First, Pyramid Histogram of Oriented Gradient (PHOG) is adopted to produce more
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features for the classifier. Second, they used Principle Component Analysis (PCA)

to eliminate redundant PHOG features. Third, genetic algorithm is utilized to find

the weighting of PHOG-PCA features.

8.2.4 Speed Limit Detection System

A basic speed limit signs detection flow can be generally divided into three parts,

which include speed limit signs detection, to firstly locate the potential candidates

for speed limit signs, speed limit signs verification, to verify if the candidates from

the previous stage are indeed speed limit signs, and speed limit signs recognition, to

classify critical information from the speed limit signs [54, 55].

8.2.4.1 Speed Limit Signs Detection

The goal of this phase is to select the potential signs by locating where they appear.

There are two major kinds of speed limit signs, which are circular and rectangular

as shown in Fig. 8.1 over the world.

Radial symmetric transform [44, 45] is one of popular shape detection algo-

rithms in the sign location process, which aims to detect the center of n-side regular

polygons in gray-scale images through the radial symmetric feature.

8.2.4.2 Speed Limit Signs Verification

In this phase, the candidates from the previous stage are verified whether they are

speed limit signs or not by checking their contents.

AdaBoost learning with Haar-like features, a machine learning architecture

proposed by Viola–Jones, is adopted [46]. Cascaded geometric detectors are

defined such as area, solidity which is the ratio between the number of ROI

Fig. 8.1 Common types of speed limit signs over the world
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background pixels and the total number of ROI pixels, vertices relative positions

which detect rotated and non-rotated objects, and dimensional ratios which discard

non-symmetric objects and maintain rectangular shape objects [47].

8.2.4.3 Speed Limit Signs Recognition

Here, the speed limit signs are classified to recognize the actual speed limit digits

inside the signs. A binary classifier SVM is adopted by the tree structure with

rotation invariant features, which is generated by Fourier transformed input image

to classify speed limit signs [48]. Digits features are also considered one of efficient

manners, e.g., blob, which is defined as a closed region, and breach, which is

defined as the open region [49, 50].

8.2.5 Inclement Weather Processing Technology (DLCE)

Currently, there is no one-size-fits-all solution to inclement weathers. Each inclem-

ent weather is considered separately. Many de-fog technologies are proposed in

recent years, which can be categorized into multi-frame-need/single-frame-need or

image enhancement/physical model recovery. Some multi-frame-need methods

[56, 57] generated a good result but those are not able to be adopted in dynamic

scenes. Thus, single-frame-need methods were developed, with an image

enhancement-based idea. Solving fog influence with single frame is accompanied

with huge challenges. No matter using cost function and Markov Random Fields

[58] or Independent Component Analysis (ICA) [59] has some disadvantages, i.e.,

unnatural image, and limited applied image. A Dark Channel Prior (DCP) [60, 61]

was proposed for de-fogging foggy images in 2009. This assumption obtained

wonderful de-fogging results but required high computational complexity and

relied on precision of the dark channel computation, that is, the result may fail

once the dark channel is wrong. Night is also one of most encountered inclement

weathers. Histogram Equalization (HE) [62] is a common way used in image

processing for inclement weathers, which is usually applied to image enhancement

for single-camera high dynamic range (HDR) processing. However, HE could not

reveal comprehensive details and did not cover the consideration for local condi-

tions. Therefore, Adaptive Histogram Equalization (AHE) [63, 64] and Contrast

Limited Adaptive Histogram Equalization (CLAHE) [65] were proposed to

improve this weakness of HE. A better result is generated by adopting these

methods. Since low contrast is a common phenomenon among different inclement

weathers, these contrast enhancement algorithms are quite often to be adopted in

this field.
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8.3 Advanced ADAS System

Vision processing technology has a wide range of applications on vehicles

(Fig. 8.2). Collaborated with front cameras, PMD, LDWS, FCWS, Stop-and-Go,

Traffic Light Detection (TLD), and SLDS techniques can help drivers notice

pedestrians, motorcyclists, vehicles, traffic lights, and speed limit signs in front of

the way. With proper vehicle control intervention, FCWS and Stop-and-Go tech-

niques can guarantee drivers further driving safety. Side cameras capture videos for

BSD Systems (BSDS). Meanwhile, wide-view video stitching can combine several

video sources captured from different cameras around the car and provide a

panoramic view with viewing angle up to 360� for drivers. Furthermore, HDR

technology helps drivers see clear in scenes with high variation in lighting, e.g.,

when going in/out tunnels and facing strong lights in opposite direction at night.

Inside the cars, driver dangerous behavior detection system can help remind drivers

to drive the cars properly. Besides, hand tracking technology help drivers control

the in-car equipment by a more convenient and safer way, i.e., hand gesture.

In the following, we introduce more details on several significant intelligent

vision processing technologies for ADAS including PMD, LDWS, FCWS, SLDS,

and DLCE.

8.3.1 Pedestrian and Motorcyclist Detection System

Machine learning algorithms are widely used in pattern recognition such as face

detection and license plate recognition. They own high flexibility and good accu-

racy in detecting the target objects for specific applications. The classifiers used in

Fig. 8.2 The application scenario of our intelligent vision processing technology developed in

NCTU and FCU, Taiwan
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machine learning algorithms are specifically trained based on the collected samples

for the target. However, they often generate false alarms as patterns similar to target

objects appear in the background, which is also the major design challenge when

applying machine learning algorithms on object detection. On the other hand, larger

color contrast between the object and the background is helpful for detection.

Hence, the positive samples used to train the classifier should be representative.

To enhance the robustness of multiple moving object detection, we propose several

rules in capturing training samples, and then employ AdaBoost algorithm to detect

pedestrians, and people riding motorcycles commonly seen on the road.

Due to the great diversity of clothing and posture, pedestrian detection has

always been a challenging task. Besides, information from the background may

also influence the detection result. Therefore, we propose to choose pedestrian

samples by following the rules below: each sample includes one pedestrian only,

let the boundary of the sample close to the pedestrian, and include both samples

which include global features and local features. In addition, the training sample

selection method for motorcycle detection is somewhat different to that for pedes-

trian detection because motorcycles move much faster than pedestrian. According

to the distance, we present sample selection ways for detecting farther motorcycles

and nearer ones, respectively. Considering that farther motorcycles appear to be

smaller than the nearer ones, we adopt samples with global features to enhance both

the detection accuracy and detection distance. On the contrary, nearer motorcycles

appear to be larger in size than the farther ones, we adopt samples with local

features to decrease the false detection rate and avoid detection miss due to

occlusion. Moreover, we adopted vehicle samples of local features for training

the classifier to detect both nearer and farther vehicles because vehicles are rather

larger than motorcycles in terms of size.

The performance of the classifier is not always enhanced as the number of

samples is increased. The training phase for obtaining a discriminative objects

classifier may be time consuming. Therefore, we propose a multi-pass self-correc-

tion procedure for effectively achieving the goal. First, we have a classifier trained

by using conventional one-pass procedure. We then use this classifier to detect the

internal samples from the adopted database and keep the correctly detected samples

only for retraining the classifier. After that, we use the classifier to detect more

samples beyond the adopted database and keep the correctly detected samples only

when retraining the classifier. This method not only can avoid wrecking the feature

of the basic classifier, but also can emphasize versatile features of different objects

for improving detection performance. To improve the detection performance indi-

cates both increasing the detection accuracy and lowering down the false detection

rate. From the performance evaluation, we find that the proposed self-correction

procedure not only can save 25% effective sample selection time but also can lower

down 50% false detection rate due to the effective samples collected. The time

saving is evaluated according to the working time saving of an operator who is

familiar with the sample selection process including sample capturing and classifier

training. More details of the above methods can be found in [30].

Furthermore, we adopt heterogeneous computing with OpenCL for realizing this

object detection design on a multicore CPU and GPU platform. By utilizing the
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techniques of scale parallelizing, stage parallelizing, and dynamic stage scheduling

on AdaBoost algorithm, windows load unbalance problem and scale load unbalance

problem are solved. Consequently, the proposed object detection design achieves

32.5 frame per second (fps) at 720� 480 (D1) resolution on an AMD A10-7850K

processor.

8.3.2 Lane Departure Warning System and Forward
Collision Warning System

Traffic accidents may cause great damage on people’s lives and wealth. In Taiwan,
there are 273,449 traffic accidents (i.e., the sum of A1 traffic accidents, which

causes people die within 24 h, and A2 ones, which causes people injury or die

beyond 24 h) in 2013. About 20.4% of A1 traffic accidents happened due to fatigue

driving or drivers’ inattention. Therefore, it is inevitable to develop some driver

assistance functions to help reminding the drivers to be aware of the dangerous

driving conditions. Among the ADAS functions, LDWS and FCWS are two major

technologies.

In real driving environments, there are lots of problems, which may cause ADAS

functions to fail, such as inclement weathers and complicated scenes. To conquer

the problem of inclement weather, dynamic threshold, which combines local

threshold with global threshold and change the threshold automatically, is proposed

to avoid illumination variation. To reduce the effect of different scenes, multiple

frame approval, which accumulates the frequency of the desired objects based on

the position of the frame in order to eliminate static objects and the false alarm

caused by windshield wiper, is adopted when the vehicle speed is over 40 km/h.

With the aforementioned solutions, we are able to overcome the design challenges

of the two popular ADAS functions, i.e., LDWS and FCWS, to be applied in real

world driving environments, which is one of the major contributions of this chapter.

Hence, we propose the design, verification, and vision radar system integration

of two popular ADAS functions including LDWS and FCWS. A dynamic threshold

method (including local threshold and global threshold) is adopted to improve the

accuracy of lane detection and vehicle detection in various weather conditions.

Multiple frame approval is adopted to conquer the effect of some tough scenes, such

as static objects, signs appearing temporarily, or interference of the windshield

wiper. The proposed system is implemented on automotive-grade Freescale i.MX6

(including 4-core ARM Cortex A9, 1 GB DDR3 RAM, and Linux environment)

with a USB webcam to capture the video. Under the D1 resolution, the performance

of the proposed LDWS achieves 33 fps, while the performance of the proposed

FCWS achieves 32 fps, and the performance of integrated application achieves

22 fps.
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8.3.3 Speed Limit Detection System

In recent years, car cam recorders have become more and more popular. Thanks to

it, the footages of car accidents, dangerous driving, or other critical road-side events

can be entirely recorded, which can help justify who is the perpetrator and be the

evidence for illegal driving. Furthermore, the information of traffic signs is able to

be extracted from footages. To realize multiple-country SLDS on embedded sys-

tems, we simplify the proposed algorithms computing resource with template

databases and digital features.

Currently, color-based algorithms are adopted in most of the SLDSs along with

training samples for machine learning algorithms. This approach needs to not

merely adjust training samples based on different cameras, but also take long-

period training time causing it less practical chance. A low complexity shape-based

speed limit sign locating algorithm, adaptive threshold and multiple-country-suit-

able speed-limit-digit recognition algorithm are proposed. Our multiple-country

SLDS maintains good detection rate under inclement weathers. The proposed

algorithm reaches 150 fps on the Intel i7-2600 3.4 GHz CPU desktop with D1

resolution on desktop and 30 fps with D1 resolution on Freescale i.MX 6 platform.

8.3.4 Inclement Weather Processing Technology (DLCE)

Many key functions in ADAS were proposed and expected to execute with normal

weather conditions in the recent years. Capturing a low contrast image and shooting

a color-faded image might cause failure of these systems. The technologies prof-

fered to deal with inclement weather [56–68] are framed narrowly, which are not

one-size-fits-all. The contrast of vision decrease exists at nights, foggy days, cloudy

days, and rainy days with our observations. Thus, exploiting the idea of AHE, we

propose a so-called Dynamic Local Contrast Enhancement (DLCE) technique,

which can strengthen the image quality in the most inclement weather conditions,

improve unnatural over-enhancement image quality, and reduce noise existed in the

image. DLCE technique is designed and implemented on an embedded platform to

verify its correctness and robustness. Without specific hardware and software

optimizations, the proposed DLCE system is realized on TREK-668 platform

with ATOM 1.6 GHz in real-time for both requirements of 120 fps 352� 288

(CIF) resolution and 50 fps D1 resolution.

8.4 Implementation Issues

Both detection performance and real-time implementation on embedded system are

our important targets. Through using OpenCL programming language, a heteroge-

neous system architecture can speed up the processing performance of PMD. Those
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who tend to detect targets with unique appearances, i.e., LDWS, FCWS and SLDS,

can well recognize the targets by analyzing specific features, e.g., shadows, tail

lights, and shape. Furthermore, these detection systems keep good precision rate in

various weather by adopting the extended idea of DLCE. The implementation of

proposed PMD, LDWS, FCWS, SLDS, and DLCE is illustrated in this section as

follows.

8.4.1 Pedestrian and Motorcyclist Detection System

AdaBoost algorithm has been widely used in face recognition. Due to its simplicity

and regularity, it has also been adopted to detect other targets such as pedestrians,

motorcyclists, and vehicles. Haar-like features are usually utilized alone with

AdaBoost algorithm. Besides, developers find that a skill called integral imaging

can reduce the redundant computation of Haar-like features and therefore can

accelerate the detection speed. Moreover, AdaBoost classifier contains multiple

weak classifiers in a cascade manner. Only when a candidate passes all weak

classifiers, it is recognized as a targeted object.

Before a superior AdaBoost classifier can be obtained, one should collect enough

positive samples and negative samples and train the classifier. The selection of

training samples affects the detection performance of the resulting classifier obvi-

ously. By adopting the sample selection rules and multi-pass self-correction pro-

cedure presented in Sect. 8.3.1, we can train a superior AdaBoost classifier

efficiently. After that, we can utilize OpenCV to implement the AdaBoost classifier

for PMD.

Although OpenCV contains many useful subroutines, the version performs only

4.76 fps on the Panda board for 320� 240 (QVGA) video format. On the other

hand, we have also implemented the proposed design as a C model to improve the

real-time performance. The C version can achieve 30.3 fps for QVGA video format

on the Panda board, i.e., 6.37 times of performance speedup is obtained. Our

method achieves a detection rate of 91.8% with only 3.3% false alarm rate for

multiple objects detection. The detection performance of our method is obviously

better than that of existing methods.

In addition, we also adopt heterogeneous computing with OpenCL for realizing

this PMD design on a multicore CPU and GPU platform. Figure 8.3 illustrates the

flow chart of the proposed heterogeneous computing system for PMD. Scaling up of

detecting windows for different sizes of pedestrians is required. The big scaling

factors have less number of windows than small scaling factors have. Besides, the

amount of windows for detecting near objects is much less than that for detecting

far objects. Meanwhile, using GPU to process small amount of windows is ineffi-

ciency due to the induced memory latency. Hence, we propose to execute the

far-distance PM detection in parallel on GPU and finish the near-distance PM

detection in parallel on CPU to maximize the resource utilization of both CPU

and GPU cores. Besides, the non-PM windows are rejected at the earlier stages in
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the cascade process of AdaBoost algorithm, and only few windows go through all

the stages. Over 95% of candidate windows are dropped after the first five stages

and only 0.03% of candidate windows finish the whole cascade process. Because

the parallelism of the rest candidate windows is not suitable for GPU parallel

processing, GPU passes the rest of candidate windows to CPU to complete the

whole cascade process in the proposed system. Meanwhile, GPU can process the

next scale of pedestrian detection. Moreover, a dynamic stage scheduling is pro-

posed to keep both the CPU and GPU busy in different situations. Once the

processing time on GPU is less than that on CPU, more stages then are allocated

for GPU in the next scale computation and vice versa. By utilizing these techniques

Fig. 8.3 The flowchart of proposed heterogeneous computing system for Pedestrian and Motor-

cyclist Detection System (PMD)
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of scale parallelizing, stage parallelizing, and dynamic stage scheduling on

AdaBoost algorithm, windows load unbalance problem and scale load unbalance

problem are solved. Consequently, the proposed PMD design can achieve 32.5 fps

at D1 resolution on an AMD A10-7850K processor.

8.4.2 Lane Departure Warning System

As shown in Fig. 8.4, Conditional Dynamic Threshold (CDT) is adopted to extract

brighter region as lane-marks. Line-thinning speeds up the Hough transform pro-

cedure, then line collection reduces lots of lines not belonging to lane-marks. Our

algorithm can solve the problems of detecting outer lanes and avoiding the effect of

windshield wiper by the occurrence frequency in finite state machine.

CDT is applied at the first stage, that is, more conditions are added into the

equation to conquer the effect of the different weathers, such as day, nightfall, or

night. The weather condition is based on the sky region as shown in Fig. 8.5.

Fig. 8.4 The flowchart of proposed Lane Departure Warning System (LDWS)
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After thresholding of CDT, line-thinning is executed to speed up Hough trans-

form, as shown in Fig. 8.6.

The line model is composed of the middle point of the vehicle in x coordinate,
and the vanishing point in y coordinate. With our observation, we find that the

distance from the point to the line, belonging to the lane, will be always less than the

threshold, 50 pixels in D1 resolution, and the constraint is shown in Eq. (8.2).

p x0; y0ð Þ and L : axþ byþ c ¼ 0

D p; Lð Þ ¼ a � x0 þ b � y0 þ cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p < 50 ð8:2Þ

This system is integrated with the FCWS in order to enhance driving safety,

whose results are shown at the end of Sect. 8.4.3.

Fig. 8.5 Sky region of judging weather condition

Fig. 8.6 Line detection result images: (a) original image, (b) after CDT, (c) after line-thinning,
and (d) after Hough transform
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8.4.3 Forward Collision Warning System

As shown in Fig. 8.7, weather judgment is applied and benefits dynamic threshold

decision to extract brighter region as tail-light features and darker region as shadow

features. We use vertical and horizontal edge to verify features in spatial domain.

The occurrence frequency reduces the false detections caused by different scenes or

windshield wiper in temporal domain since the changes in each frame of different

scenes and windshield wiper are stronger than the one of lane is.

Vehicle model based on certain position takes advantage of judging whether the

vehicle size is correct or not. The proposed vehicle model expresses the situation,

that is, the farther the vehicle is, the smaller it will be, and vice versa, as shown in

Eq. (8.5), which is deduced from pinhole camera extended equation, Eq. (8.3), and

an equation from [43], i.e., Eq. (8.4), by eliminating variable D. For parameter

meaning, Fc is camera focal, and yh is the vanishing point. We assume that the

Fig. 8.7 The flowchart of proposed Forward Collision Warning System (FCWS)
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camera height (Hc) is 1.5 m, and the average width of vehicles (Wa) is 2 m. The

bottom width of the vehicle must be in the range of generated vehicle model on the

corresponding image y-axis as demonstrated in Fig. 8.8.

D ¼ Fc �Wa

ωa
ð8:3Þ

D ¼ Fc � Hc

yb � yh
ð8:4Þ

ωa ¼ yb � yhð Þ*Wa

Hc
! ωa ¼ yb � yhð Þ*1:3 ð8:5Þ

Light objects can be obtained by Connecting Component Labels (CCL) in the

image after dynamic threshold. Rule-pairing is to find tail-light features with four

rules, i.e., horizontal position, area, motion, and vehicle model. If two of the light

objects satisfy the four rules, the tail-light feature is formed.

Four 5-min videos are picked up to show our integrated achievements (i.e.,

LDWS and FCWS) in this chapter. Forward vehicles within the range between

5 and 40 m at day, and between 5 and 30 m at night, and lateral vehicles within the

range between 10 and 30 m at both day and night should be detected in our

specification. We sample each frame per second in order to reduce the counting

process of detection rate and false alarm, defined in Eq. (8.7). As shown in

Table 8.1, we can achieve 90.15% detection rate and 5.96% false alarm rate

averagely, and each result of the video sequence would be displayed in Fig. 8.9.

vehicles real answerð Þ
non� vehicles real answerð Þ

� vehicles our judgementð Þ
non� vehicles our judgementð Þ

�

vehicles our judgementð Þ
non� vehicles our judgementð Þ

�
a
b
c
d

Detection rate ¼ a

aþ b
, False alarm rate ¼ c

aþ c

ð8:6Þ

Fig. 8.8 Distance estimation: (a) pinhole model and (b) equation from [43]
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On Freescale i.MX6 with Logitech C920 webcam input, LDWS achieves 33 fps

at D1 resolution, FCWS achieves 32 fps at D1 resolution, and the integrated system

reaches 22 fps at D1 resolution.

8.4.4 Speed Limit Detection System

8.4.4.1 Shape Detection

Figure 8.10 shows the flowchart of proposed SLDS, which starts from shape

detection after getting image. The voting process is based on the gradient of each

pixel. The direction of gradient can form a vote. The vote generated from each pixel

follows the symmetric axes, which cause the highest in the center of the shapes.

Sobel operator is used to generate horizontal and vertical gradients, where each

selected pixel is represented with its absolute magnitude, and the gradient vector is

denoted as g(p). The direction of g(p) can be formulated with the horizontal

gradient Gx and the vertical gradient Gy into an angle as shown in Eq. (8.7).

g pð Þ ¼ tan �1Gy

Gx
ð8:7Þ

Table 8.1 The integrated system experiment results

No Weather Scene Detection rate False alarm

1 Day Highway 99.62% (0265/0266) 001.48% (004/0269)

2 Day Highway 96.88% (0249/0257) 002.35% (006/0255)

3 Day City 98.49% (0196/0199) 009.25% (020/0216)

4 Night Highway 76.07% (0248/0326) 006.06% (016/0264)

5 Night City 80.85% (0114/0141) 016.17% (022/0136)

Day 98.33% (0710/0722) 004.05% (030/0400)

Night 77.51% (0362/0467) 005.26% (038/0722)

Average 90.15% (1072/1189) 005.96% (068/1140)

Fig. 8.9 The integrated system experiment results
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The voting image is firstly initialized to zero, and accumulates vote-number by

horizontal and vertical voting line, which is generated by each pixel with positive

and negative votes as illustrated in Fig. 8.11.

The centers of sign candidate will receive higher vote-number as shown in Fig.

8.12, and then several sign candidates are picked up with designed constraints for

rest judging processes.

Fig. 8.10 Proposed speed

limit detection algorithm

Fig. 8.11 The voting process for both horizontal and vertical vote
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8.4.4.2 Achromatic Decomposition

We use the inner product between (1,1,1), where gray scale is along, and each

considered pixel to check the angle α between these two vectors to apply the

decomposition in RGB domain as illustrated in Fig. 8.13, where each considered

pixel in vector form of (r,g,b). The cosine function of α, which is equal to the inner

product is shown in Eq. (8.8).

cos α ¼ 1; 1; 1ð Þ � r; g; bð Þ
1; 1; 1ð Þj j � r; g; bð Þj j ¼

r þ gþ bffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ g2 þ b2

p ð8:8Þ

8.4.4.3 Binarization and Digit Segmentation

Otsu threshold is adopted in days and adaptive threshold is adopted in nights. Using

the fact that the speed limit of rectangular speed limit signs is two-digit, the pairing

rules sizes and positions are proposed as below:

Fig. 8.12 The result after the voting process

Fig. 8.13 The schematic of

the RGB model and the

angle α
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1. The areas of the digit candidates should be similar;

2. The positions of the digit candidates should be close enough;

3. The density of the pixels inside the digit candidates should be similar.

The pairing steps of circular speed limit signs are similar but looser to one of the

rectangular speed limit signs because two-digit and three-digit speed limits are

included in circular speed limit signs (Fig. 8.14).

8.4.4.4 Digit Recognition

The extracted digits are firstly classified with the built-in different-font templates

and selected out three possible numbers. After it, the blob, the closed region inside

the digit, and breach features are applied to verify the final number.

After calculating the Sum of Absolute Difference (SAD) between the target digit

candidate and the built-in templates, we select three possible digit numbers with

less matching difference. With possible digit candidates, we adopt union row,

which gathers several rows as a union row, to detect the blob feature, and then

verify the digit. The pixel value of a union row is the union value of all rows in the

union row. Then, for each union row, we count the number of lines in white pixels.

A blob is formed only if the number of lines is the sequence of “1, 2, . . ., 2, 1”.
Similarly, we count the number of pixels where the white pixel first appears from

both the right and the left in each column to half of width of digit candidates to

detect breach, where there are a series number of pixels that are larger than half of

digit height (Fig. 8.15).

Fig. 8.14 The example of digit segmentation results

Fig. 8.15 The example of digit recognition results
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Freescale i.MX6 is chosen as the target embedded platform and the proposed

algorithm is first designed in C++ with Visual Studio platform on an Intel i7-2600

3.40 GHz CPU desktop running Windows 7 with 8 GB memory. It reaches 150 fps

at D1 resolution in average for both rectangular and circular speed limit signs on

desktop and 30 fps at D1 resolution on Freescale i.MX6. The accuracy for two

different major types of signs is listed in Table 8.2. Tables 8.3 and 8.4 also show the

accuracy under different weather conditions for different types of signs.

As listed in Table 8.5, the proposed system provides high accuracy and efficient

performance in applications of speed limit detection. It can reach real-time imple-

mentation on embedded systems with low computing resource, support different

types of multiple-country speed limit signs, and support different digit fonts thanks

to adopting the blob and breach features. Figure 8.16 shows SLDS results in various

weather conditions and countries.

Table 8.2 The accuracy for two different major types of signs

Rectangular Circular

Total video frames count 3482 2832

Total speed limit sign count 24 25

Detected signs 23 24

Detection accuracy (%) 95.83 96.00

Total detected signs frames count 81 80

Total detected signs and correctly classified frames 78 77

Recognition accuracy (%) 96.30 96.25

Overall accuracy (detection accuracy * recognition accuracy) (%) 92.28 92.40

Table 8.3 The details of rectangular speed limit detection

Video sequence number 1 2 3 4 5 6 7

Weather Day Day Day Night Night Rain Rain

Number of signs 4 4 3 4 2 2 3

Detected signs 4 4 3 3 2 2 3

Missed signs 0 0 0 1 0 0 0

Number of frames with sign detection 15 17 10 9 7 9 12

Number of correct speed limit recognition 15 16 10 8 6 9 12

Number of wrong speed limit recognition 0 1 0 1 1 0 0

Table 8.4 The details of circular speed limit detection

Video sequence number 1 2 3 4 5 6 7

Weather Day Day Day Day Night Night Rain

Number of signs 4 6 5 5 2 2 1

Detected signs 4 6 5 5 1 2 1

Missed signs 0 0 0 0 1 0 0

Number of frames with sign detection 12 20 15 16 4 9 4

Number of correct speed limit recognition 12 19 15 15 4 9 3

Number of wrong speed limit recognition 0 1 0 1 0 0 1
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8.4.5 Inclement Weather Processing Technology (DLCE)

In the proposed DLCE system, a contrast of a pre-defined block in the image is

calculated and is used to limit the height of the histogram dynamically. Figure 8.17

shows the flowchart of the proposed system.

Table 8.5 The comparisons among other works and our system

[51] [52] [46] [53] Our system

CPU 2.13 GHz

dual-core

laptop

1.67 GHz Intel

Atom 230 and a

NVIDA

GeForce

9400M GSGPU

2.16 GHz

dual-core

laptop

2.13 GHz

dual-core

laptop

Intel®
Core™
i7-2600

CPU

3.4 GHz

Freescale i.

MX6 with

4-core

1 GHz

Cortex-A9

CPU

Accuracy

(%)

90 88 96.25 90.9 92.3

Video

resolution

640� 480 640� 480 700� 400 Image

only

720� 480

Frame rate

on PC (fps)

20 33 25 7.7

(130 ms)

150 30

Real-time

on embed-

ded system

X O X X O

Supporting

all types of

speed limit

sign

O X X X O

Supporting

different

fonts of

speed limit

signs

X X X X O

Fig. 8.16 The overall results for speed limit signs detection
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Two main goals at harsh environment judgment phase are: (1) distinguishing

harsh environment, and (2) obtaining the local contract information, as shown in

Fig. 8.18. The luminance difference of pixel D(x,y) is calculated by the following

equation:

D x; yð Þ ¼ f x; yð Þ � A x; yð Þj j ð8:9Þ

where f(x,y) is luminance of pixel (x,y) and A(x,y) is the average of luminance in

block W�W. Eventually, the contrast with image size M�N is generated as

Eq. (8.10).

Contrast ¼
XM

x¼0

XN

y¼0
D x; yð Þ

M � N
ð8:10Þ

The luminance difference of pixel determines the value at which the histogram is

clipped according to the following equations:

Fig. 8.17 Flowchart of the

proposed Dynamic Local

Contrast Enhancement

(DLCE) method
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clip ¼ 1� βð Þ∗Havg þ α∗Havg ð8:11Þ

β ¼
XM

x¼0

XN

y¼0
D x; yð Þ

M � N

0
@

1
A=255 ð8:12Þ

β, Havg, and α represent dynamic control parameter, average of histogram, and

intensity parameter to bridle image adjustment, respectively. Mapping function Re

(x) updates depend on β after clipped pixel is distributed, which benefits these

techniques to fit the current scene. (Note: CDF is cumulative distribution function.)

Re xð Þ ¼ H
0
max � H

0
min

� �
� CDF xð Þ þ H

0
min ð8:13Þ

H
0
max ¼ Hmax � β∗ Hmax � Hminð Þ ð8:14Þ

H
0
min ¼ Hmin þ β∗ Hmax � Hminð Þ ð8:15Þ

The proposed method has been implemented on TREK-668 embedded platform

with 1.6 GHz Intel Atom N2600 CPU and tested under various inclement weather

conditions. The performance of the prototype is able to achieve 50 fps at D1 video

input.

Figures 8.19 and 8.20 present the quality of DLCE and Table 8.6 proves the

statistics compared with Global Histogram Equalization (GHE), CLAHE [65], and

DCP [60]. The average of higher contrast values, calculated by Eq. (8.10), as in

Table 8.6 proves that DLCE method provides videos with clearer scene. Besides,

local contrast is also improved when adopting the proposed method.

Image

Integral Image 
Calculation

Is the Last Pixel?
Luminance 

Difference Calculate

Local Contrast
Analyze

> Threshold

Harsh 
Environment

Normal
Enviorment

Fig. 8.18 Flowchart of the

harsh environment

detection
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DLCE benefits ADAS in gaining better image quality at inclement weather

conditions. More pedestrians are detected, better lane detection is generated, and

farther scene can be seen while DLCE is applied, as demonstrated in Fig. 8.21 and

Table 8.7.

Fig. 8.19 Foggy day results with different methods: (a) original, (b) Global Histogram Equali-

zation (GHE), (c) Contrast Limited Adaptive Histogram Equalization (CLAHE), (d) Dark Channel
Prior (DCP), and (e) DLCE

Fig. 8.20 Night results with different methods: (a) original, (b) GHE, (c) CLAHE, (d) DCP, and
(e) DLCE

Table 8.6 Contrast values with various methods

Original GHE CLAHE [65] DCP [60] DLCE

Fog day 9 18 25 19 24

Night 4 23 15 6 17
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8.5 Conclusion

ADAS becomes quite important in these years for smart vehicle development.

Moreover, having an autonomous car is not a far dream human beings immerse

in. Vision-based object detection is an intuitive detection method similar to human

visual perception, which is much low-cost compared with other detection methods

Fig. 8.21 ADAS results with adopting DLCE (a–b) PD, (c–d) LDWS, (e–f) car recorder, and (b,
d, f) DLCE is adopted

Table 8.7 Increasing rate after adopting DLCE

Number of detected lane

LDWS

Number of detected lane

LDWS+DLCE

Increasing rate of

detected lane (%)

Rainy

day

533 834 56.47

Foggy

day

1100 1710 55.45

Night 912 1098 20.39
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such as RADAR or LiDAR. However, current vision-based objects detection

methods still suffer from several challenges such as high false alarm rate and

unstable detection rate which limit their value in practical applications. In addition,

luminance variation and weather change induce tougher challenges to vision-based

object detection. Therefore, more research and development effort are necessary in

this area.

In this chapter, we have introduced a set of rules in selecting proper training

samples and presented a multi-pass self-correction training procedure to achieve an

effective multiple moving objects detection system with high accuracy and low

false alarm rates. Besides, FCWS and LDWS are proposed and implemented on

Freescale i.MX6 with a monocular camera, which provides safety information to

drivers. The dynamic threshold method conquers the problems resulted from

different weather conditions, and the multiple frame approval reduces the effect

of different scenes and windshield wiper. Moreover, the proposed LDWS and

FCWS algorithms are integrated together in order to produce comprehensive

information for day and night highway driving, which detects not only the forward

vehicle, but also the potential cut-in vehicles. The implementation shows that the

integrated system can achieve real-time processing for video input with D1 reso-

lution. Furthermore, speed limit signs, which are significant traffic signs beside the

road, are regarded as the primary targets to recognize. A detection system is

designed to not only work under different weather conditions, but also achieve

real-time processing performance based on single webcam. With more and more

demands on the driving safety, future works can focus on using the blob and breach

features on recognition of licenses plates and supporting other traffic signs based on

the shape detection which can make good use of videos from car cam recorders. In

addition, DLCE method can help ADAS system obtain better results at inclement

weather conditions. The significant improvements of DLCE are proved in terms of

detection accuracy of LDWS and pedestrian detection system. The proposed

method has been implemented on TREK-668 embedded platform with 1.6 GHz

Intel Atom N2600 CPU and tested with many inclement weather conditions. The

performance of the prototype is able to achieve 50 fps at D1 video input.

Currently, these works can extend the functions of car cam recorders, making it

actively ensure the safety of drivers. Although there are lots of challenges ahead,

the dream of autonomous car will eventually come true by continuous efforts on

enhancing existing functions and enlarging the ability of detecting object.
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