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NVRAM-Assisted Optimization Techniques
for Flash Memory Management
in Embedded Sensor Nodes
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Abstract Embedded sensor nodes are sensitize to battery lifetime and evidences

show that DRAM-based main memory subsystem is the major contributor of the

energy consumption of embedded sensor nodes. Due to the high density, byte-

addressability, and low standby power consumption, non-volatile random access

memories (NVRAMs), such as PRAM and STT-RAM, become promising main

memory alternatives in embedded sensor nodes. On the other hand, NAND flash

memory is widely adopted for storing collected data in embedded sensor nodes.

However, both NVRAM and NAND flash memory have limited lifetime, how to

optimize the management of NAND flash memory in NVRAM-based embedded

sensor nodes while considering the endurance issue becomes quite important. In

this chapter, we introduce a write-actively-aware NAND flash memory manage-

ment scheme to effectively manage NAND flash memory while reducing the write

activities to NVRAM-based main memory in embedded sensor nodes. The basic

idea is to preserve each bit in flash mapping table, which is stored in NVRAM, from

being inverted frequently during the mapping table update process. To achieve this,

a two-level mapping mechanism is employed while considering the access behavior

of IO requests, and a customized wear-leveling scheme is developed to evenly

distribute the writes across the whole mapping table. Evaluation results show that

the proposed technique can reduce the write activities significantly and achieve an

even distribution of writes in NVRAM with low overhead.
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6.1 Introduction

Due to the limitation in size and cost, embedded sensor nodes are commonly

equipped with a small battery, which has limited capacity, making the sensor

nodes sensitize to battery lifetime. Recent researches report that DRAM-based

main memory subsystem has become the major contributor of the embedded

system’s overall energy consumption [1, 2]. To solve this problem, a mount of

researches argue that non-volatile random access memory (NVRAM), such as

phase change memory (PCM) [3–10], spin-transfer torque random access memory

(STT-RAM) [11–13], is a promising DRAM alternative [14]. However, compared

to DRAM, NVRAM exhibits limited endurance (e.g., 106–108 for PRAM cells) and

high write latency/energy [15]. These constraints impose challenges for using

NVRAM as a complete replacement for DRAM. On the other hand, NAND flash

memory has been widely used in embedded sensor nodes due to its attractive

features, such as shock resistance, low power, and high density [16]. To manage

flash memory, FTL is introduced to emulate NAND flash memory as a block device

interface for file systems [17]. The FTL functions as translating logical addresses of

I/O requests into physical addresses in NAND flash memory. To achieve this, FTL

maintains a mapping table (i.e., metadata), which stores the mapping information

between logical addresses and physical addresses. The mapping table is usually

cached in main memory for better performance and written back to NAND flash

periodically.

Over the past decade, many studies for FTL schemes have been proposed

[18–27]. According to the granularity of mapping unit, there are three types of

FTL schemes: page-level mapping, block-level mapping, and hybrid-level mapping

[17]. Most of the previous work, however, have not yet explored the management

mechanism of NAND flash memory in the emerging NVRAM-based embedded

sensor nodes. Kim et al. [28] propose a page-level mapping FTL (hFTL) for

managing NAND flash memory in the NVRAM-based embedded systems, where

the page-level mapping table is stored in NVRAM and user data is stored in NAND

flash memory. Nevertheless, their approach does not consider write activities of

FTL mapping table in NVRAM, and the access behavior of I/O requests as well. As

FTL mapping table is updated frequently in NVRAM, a huge number of unneces-

sary write operations on FTL mapping table will degrade the endurance of

NVRAM. New techniques, therefore, are needed to eliminate unnecessary write

operations on FTL mapping table and, at the same time, to enhance the endurance

of NVRAM-based sensor nodes.

In this chapter, we introduce a write-activity-aware two-level FTL scheme,

called NV-FTL, to effectively manage NAND flash memory and enhance the

endurance of NVRAM-based embedded sensor nodes. Different from existing

approaches [29–34], NV-FTL enhances the lifetime of NVRAM by making the

management of NAND flash memory aware of write activities on underlying

memory architecture. With NV-FTL, no change to the file systems or hardware

implementation of NAND flash and NVRAM is required. Our basic idea is to

preserve each bit in FTL mapping table, which is stored in NVRAM, from being
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inverted frequently, i.e., we focus on minimizing the number of bit flips in an

NVRAM cell when updating the FTL mapping table. NV-FTL employs a two-level

mapping mechanism, which not only focuses on minimizing write activities of

NVRAM but also considers the access behavior of I/O requests. To achieve this, in

NVRAM, we use a page-level mapping table to handle not frequently updated

random requests, and allocate a tiny buffer of block-level mapping table to record

most frequently updated sequential requests. To further minimize write activities in

NVRAM, NV-FTL actively chooses a physical block in NAND flash memory whose

physical block number (PBN) incursminimum number of bit flips. Consequently, the

write activities are eliminated and the endurance of NVRAM is enhanced.

We conduct trace-driven experiments with both general purpose and mobile I/O

workloads to show the effectiveness and versatility of NV-FTL. A representative

FTL design hFTL [28] for NVRAM-based embedded systems is selected as a

baseline scheme. The proposed NV-FTL is compared with hFTL in terms of

NVRAM bit flips with various configurations. The experimental results show that

our approach can achieve an average reduction of 93.10% and a maximum reduc-

tion of 98.98% in the maximum number of bit flips for an NVRAM-based embed-

ded sensor nodes with 1GB NAND flash memory. In addition, the results also show

that NV-FTL can achieve an even distribution of bit flips in NVRAM when

compared with the baseline scheme.

The rest of this chapter is organized as follows. Section 6.2 introduces the

background and motivation. Section 6.3 presents our proposed NV-FTL technique.

Section 6.4 reports the experimental results. Finally, in Sect. 6.5, we present the

conclusion.

6.2 Background and Motivation

In this section, we first introduce the background knowledge of NVRAM-based

embedded sensor node. Then we describe the issues of a representative FTL

scheme. Finally, we present the motivation of our work.

6.2.1 NVRAM-Based Sensor Node

Figure 6.1 shows a typical NVRAM-based embedded sensor node. As shown,

NVRAM is served as the sensor node’s main memory and NAND flash memory

is adopted as the storage media. Analog signals collected by various sensors are

firstly convert into digital signals by the analog digital converter (ADC), and then

the digital signals are processed by the CPU and stored in the storage system [35], in

which the FTL mapping table is cached in NVRAM and sensor data are stored in

NAND flash memory. In the storage system, the MTD layer provides primitive

functions such as read, write, and erase operations. The FTL layer emulates the
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flash memory as a disk device so that it can provide transparent storage service to

file systems. Following the I/O requests, FTL translates addresses between logical

page number (LPN) and physical page number (PPN), and keeps track of the

mapping information by using an FTL mapping table in NVRAM. Then according

to the mapping, data can be directly read from (write into) NAND flash memory.

Unlike NAND flash memory, NVRAMs support bit-addressability and in-place

update. NVRAMs keep data by changing the physical state of its underlayingmaterial

without maintaining constant current. One promising candidate is PCM, which stores

data by changing the state of the phase change material (e.g., GST). By ejecting

electrical pulses to heat up the GST region, each PCM cell can switch between two

states—amorphous and crystalline, which have high and low electrical resistance,

respectively. Reading a bit from a PCM cell is accomplished by sensing the resistance

level of the cell. To represent binary “1”, a SET operation is performed to turn a PCM

cell into the crystalline state by applying a moderate power, long duration pulses; To

represent binary “0”, a RESET operation is performed to turn a PCM cell into the

amorphous state by applying a high power, short duration pulses. Both of these

operations impose heat stress to PCM cells, and thus a PCM cell can only sustain a

limited number of write (SET/RESET) operations (e.g., 106–108 for Micron P5Q

PCM [36]). Other NVRAM like STT-RAM, memristor [37] also suffers from the

endurance problem. In this chapter, we do not target at any specific NVRAM, we

target at the optimization of NAND flash memory management in NVRAM-based

sensor nodes since all the NVRAMs have the same problem—limited endurance.

6.2.2 A Representative FTL Scheme

In this section, we briefly revisit the hFTL scheme which is proposed for managing

NAND flash memory in PCM-based embedded systems [28].

hFTL is based on page-level mapping scheme [18], but it is optimized for

PCM-based embedded systems. hFTL stores metadata such as FTL mapping

Fig. 6.1 Illustration of NVRAM-based embedded sensor node with NAND flash memory
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table, physical page information, and physical block information in PCM. NAND

flash memory is only used for storing user data from the file system, and the blocks

in NAND flash memory are categorized into three types, i.e., garbage blocks, data

blocks, and a buffer block. Different from the conventional page-level mapping

FTL, hFTL uses a buffer block to store the newly arrived data. When the buffer

block runs out of free pages, it is put into the data block list and another empty

buffer block is allocated from the garbage block list. If there is not enough number

of garbage blocks, a garbage collection operation is performed to reclaim a block

from the data blocks. In hFTL, a page-level mapping table in PCM keeps track of

mappings between LPN and PPN, in terms of the I/O requests. Consequently, the

mapping table is updated frequently and thus imposes the endurance issue for PCM.

A motivational example is illustrated in Fig. 6.2.

In the example, we presume that PCM is adopted as the main memory of sensor

node, and there are four blocks in NAND flash memory, and each block has 8 pages.

Therefore, a page-level mapping table in PCM has 32 entries to record the mapping

information. To facilitate the comparison of hFTL and our NV-FTL scheme, the

PPN, PBN, and the offset of each block are represented by binary number. We

assume that each entry of the mapping table is empty at the beginning, and the

binary number in an entry is the updated PPNs to reflect the updates of mapping.

The I/O access requests of write operations (w) are listed in Fig. 6.2a. According to

the given I/O requests, the status variation of the blocks in NAND flash memory

is shown in Fig. 6.2b. For hFTL, when a write operation is performed, the

corresponding content is first written to a free page of the current buffer block in

a sequence order.

As shown, the first request is written to LPN (#18). A new buffer block

(PBN #00) is allocated from the garbage block list, and the content A with the

corresponding LPN (#18) is stored in the first page of current buffer block (PBN

#00). Meanwhile, the mapping information of LPN (#18) and PPN (#00000) is

stored into the mapping table shown in Fig. 6.2c. Note that PPN is the combination

of PBN and the block offset. After serving the eighth request, buffer block (PBN

#00) is full and becomes a data block. Likewise, the remaining garbage blocks

(PBN #01, PBN #10, and PBN #11) are allocated as a buffer block, respectively, to

serve the following write operations. Finally, when the content of N2 with the

corresponding LPN (#29) is written into the last page of buffer block (PBN #11), all

garbage blocks become data blocks and some entries of the mapping table have

been updated by new PPNs for several times.

6.2.3 Motivation

In the motivational example, several update operations are performed in the FTL

page-level mapping table. For instance, the 13th request updates the old content in

the 1st page of data block (PBN #00) by setting that page invalid, and writes the

new content to the current buffer block (PBN #01). Meanwhile, the corresponding
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Fig. 6.2 Motivational example. (a) I/O access requests. (b) The status variation of blocks in

NAND flash memory. (c) The status variation of FTL page-level mapping table in PCM
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mapping information in the mapping table is updated as well. In Fig. 6.2c, we use

the bit flips (BF), shown on the right side of the mapping table, to reflect the update

frequency of each entry in the mapping table. As shown, the 11th and 29th entry

have the maximum number of bit flips 5. Since NVRAM cell, like PCM, can only

sustain limited number of write cycles, frequent update operations in mapping table

will lead to the fast worn out of NVRAM. These observations motivate us to

propose a write-activity-aware FTL to effectively manage NAND flash memory

and, at the same time, to improve the endurance of NVRAM-based embedded

sensor node.

As mentioned above, several hardware optimization techniques for NVRAM

have been proposed [38–40] to tackle the redundant write activities by eliminating a

write if its designated memory cell holds the same value. Then through utilizing

such a fine-grained hardware feature, this work actively chooses mapping informa-

tion (e.g., PBN) which is almost the same as the mapping to be updated in the

mapping table, such that the number of write activities in NVRAM is minimized.

6.3 NV-FTL: Write-Activity-Aware FTL

In this section, we present the details of our NV-FTL, a write-activity-aware FTL,

that can effectively enhance the endurance of the NVRAM-based embedded sensor

node. We first present an overview of NV-FTL in Sect. 6.3.1. We then provide a

detailed description of NV-FTL in Sect. 6.3.2.

6.3.1 Overview

The objective of NV-FTL is to reduce write activities in NVRAM-based embedded

sensor node, and therefore, the endurance of NVRAM is enhanced. So the basic

idea of NV-FTL is to preserve each bit in FTL mapping table, which is stored in

NVRAM, from being inverted frequently, i.e., we focus on minimizing the number

of bit flips in an NVRAM cell when updating the FTL mapping table. Different

from the previous work [28], our NV-FTL adopts a two-level mapping mechanism,

which not only focuses on minimizing write activities in NVRAM but also con-

siders the access behavior of I/O requests. NV-FTL uses a page-level mapping table

to record the mapping of write requests not frequently updated, and allocates a tiny

buffer of block-level mapping table to cache the mapping of those most frequently

updated write requests. With the consideration of write activities, once a block is

needed for incoming write requests, NV-FTL actively chooses a physical block in

NAND flash memory whose PBN incurs minimum number of bit flips.

By applying NV-FTL, the number of bit flips is reduced, and thus the number of

write activities in NVRAM is minimized. Consequently, the endurance of the

NVRAM-based embedded sensor node is enhanced.
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6.3.2 NV-FTL Description

In general, a realistic I/Oworkload is a mixture of random and sequential requests. By

separating the random requests from the sequential requests, we can not only obtain

the access behavior but also handle those frequently updated write requests. Other-

wise, without considering the access behavior of I/O workload, we cannot effectively

manage NAND flash memory and may waste lots of blocks in garbage collection due

to frequent update operations. Therefore, in NV-FTL, we design a behavior detector

to separate the I/O workload into random and sequential requests, according to the

length of each request in the I/O workload. The length is a user-defined threshold,

which is determined by observing performance gains with different threshold values

(e.g., 8, 16, and 32) in the experiments. For example, if the length of a request is

smaller than 8, then this request is treated as a random request; Otherwise, if the length

of a request is greater than or equal to 8, then it is treated as a sequential request.

Figure 6.3 shows the structure of NV-FTL. As shown, NV-FTL first separates

the I/O workload into random requests and sequential requests. Then NV-FTL

adopts a two-level FTL mechanism to handle these two cases as follows:

• For random requests: NV-FTL sequentially allocates physical pages from the

first page of a physical block in NAND flash memory, so that all pages in blocks

are fully utilized. Accordingly, NV-FTL adds LPN to PPN mapping of random

requests into the page-level mapping table.

• For sequential requests: NV-FTL allocates physical pages based on block offset

as most sequential requests usually occupy a whole block, so that all pages in

blocks are fully utilized as well. Similarly, NV-FTL adds an LBN to PBN

mapping of sequential requests into the block-level mapping table buffer.

Fig. 6.3 Structure of NV-FTL
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In NV-FTL, we only allocate a tiny buffer for temporary storing a part of the

block-level mapping table. For example, the size of this block-level mapping buffer

is set as 10% of the size of the original block-level mapping table. Therefore, a

replacement policy should be considered when the buffer is full. Similar as a cache,

we only kick out the mapping of those not frequently updated blocks, while

maintaining the mapping of frequent updated blocks. The kicked out mapping

information is put into the page-level mapping table. If a block in NAND flash

memory has Np valid pages, and its corresponding block-level mapping is kicked

out to page-level mapping table, then Np entries in page-level mapping table should

be filled with the corresponding LPN to PPN mapping for each page in the block.

On the contrary, the page-level mapping of a block can be re-added into the block-

level mapping table buffer, once the block is updated again by sequential write

requests. Therefore, by observing the frequently updated requests, our technique

can dynamically adjust the block-level mapping table buffer and the page-level

mapping table, such that write activities of frequently updated requests are only

buffered in block-level mapping table buffer which only contributes a small number

of bit flips in NVRAM. The experimental results in Sect. 6.4 confirms this fact.

To further minimize write activities in NVRAM, a write-activity-aware strategy

is proposed. In our technique, to allocate a new block for the write/update requests,

the corresponding original physical block number (PBN) is first obtained from

page-level mapping table (by dividing PPN with the number of pages in a block), or

from block-level mapping table buffer with the requested LPN. Then according to

the original PBN, we actively select a physical block in NAND flash memory

whose PBN is almost the same as the original PBN, i.e., the new PBN incurs

minimum number of bit flips if the original PBN is updated by the new PBN in the

mapping table. As a result, a large number of redundant bit flips are reduced, and the

endurance of NVRAM is enhanced.

Algorithm 6.3.1 The algorithm of NV-FTL

Require: I/O requests with random request or/and sequential request.

Ensure: Allocate pages for the I/O request.

1: Divide the I/O request into random writes or/and sequential writes according

to a predefined threshold.

2: if Random write request arrives then

3: Obtain the LBN and LPN of the random write request.

4: if LBN’s mapping is not in block-level mapping table buffer or LPN’s
mapping is not in page-level mapping table then

5: This is a new write, allocate a new block PBN, and write the contents

into the block sequentially from the first page.

6: Add the mapping of (LPN, PPN) into the page-level mapping table.

7: end if

(continued)

6 NVRAM-Assisted Optimization Techniques for Flash Memory Management. . . 143



Algorithm 6.3.1 (continued)

8: if LBN’s mapping exists in block-level mapping table buffer or LPN’s
mapping exists in page-level mapping table then

9: This is an update, obtain the PBN of the updated block.

10: if There exists enough space in the PBN block for the update

request then

11: Write the update contents in the left space of the PBN block sequen-

tially, and invalid the old pages in the same block.

12: else

13: Actively find a new block whose block number is almost the same as

PBN, write the update contents in the new block sequentially, and

invalid the old pages in PBN block.

14: end if

15: Update block-level mapping table buffer or page-level mapping table.

16: end if

17: end if

18: if Sequential write request arrives then

19: Obtain the LBN and LPN of the sequential write request.

20: if LBN’s mapping is not in block-level mapping table buffer or LPN’s
mapping is not in page-level mapping table then

21: This is a new write, allocate a new block PBN, and write the contents of
the request into the block based on block offset.

22: if The block-level mapping table buffer is full then

23: Kick out least frequently used entry, add the kicked out mappings into

page-level mapping table.

24: end if
25: Add the mapping of (LBN, PBN) into the block-level mapping table

buffer.

26: end if

27: if LBN’s mapping exists in block-level mapping table buffer or LPN’s
mapping exists in page-level mapping table then

28: This is an update, obtain the PBN of the updated block.

29: if There exists enough space in the PBN block for the update

request then
30: Write the update contents in the left space of the PBN block based on

block offset, and invalid the old pages in the same block.

31: else

32: Actively find a new block whose block number is almost the same as

PBN, write the update contents in the new block based on block offset,

and invalid the old pages in PBN block.

33: end if

34: Update block-level mapping table buffer or page-level mapping table.

35: end if

36: end if
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Algorithm 6.3.1 shows the process of a write operation of NV-FTL. NV-FTL

first divides the incoming I/O request into random writes or/and sequential writes

according to a threshold. Then the random and sequential write requests are

processed separately. For random write request (lines 2–17), if it is a new write,

i.e., we cannot find its corresponding LBN or LPN mapping in the block-level

mapping table buffer or page-level mapping table. So NV-FTL finds a new block

PBN, and write the contents of the random write request into the allocated new

block sequentially from the first page. After that, we add the (LPN, PPN) mapping

into the page-level mapping table. If the random write request is an update, and

there exists enough space in the updated block, then write the update contents into

the left space of the block sequentially, and invalid the old pages in the same block.

Otherwise, there does not exist enough space in the updated block, NV-FTL will

actively find a new block whose block number is almost the same as PBN, and then
write the update contents in the new block based on block offset. At last, we update

the corresponding block-level mapping table buffer or page-level mapping table.

For sequential write request (lines 18–36), we process it in the similar way as that

for processing random write request.

Note that the block-level mapping table buffer is updated frequently by sequen-

tial write requests, so it may become very hot and lead to an uneven distribution of

bit flips in NVRAM. To avoid this scenario and enhance NVRAM endurance, a

wear-leveling method is integrated into NV-FTL. In NV-FTL, during a period of

time (e.g., every 100 I/O requests), the block-level mapping table buffer is moved

across the whole mapping table area (block-level and page-level mapping table) in

NVRAM. With acceptable copy operations of mapping information, an even

distribution of bit flips in NVRAM is obtained.

An example of NV-FTL is shown in Fig. 6.4. This example is based on the I/O

requests and the NAND flash memory assumptions for the motivational example

shown in Fig. 6.2. As shown, for the first random request with LPN (#18), we find a

new block (PBN #00), and the content A is written sequentially into the first page

(#00000) of block (PBN #00). For this request, there is no bit flip when updating the

mapping table. It can be seen that A is updated by a new content A1 in the 13th

request, and A1 is written into the physical page (#00010) according to the update

policy of NV-FTL. When the 13th request arrives, we use the LPN (#18) to get the

corresponding LBN (#10). Then we find the LBN (#10) is already in the block-level

mapping table buffer, so the 13th request is an update to the old page in the block

(PBN #00), then by checking the block (PBN #00), we know the old content A of

this LPN (#18) is stored in the page PPN (#00000), thus this page is set as invalid.

Since there exists enough space in block (PBN #00), the new update content A1 of

LPN (#18) is written sequentially into the block.

It is noticed that the 5th to 12th requests form a sequential write, then we allocate

a new block (PBN #11) for this request, and write the contents into each page of the

block based on offset. The corresponding LBN to PBN mapping (01, 11) is added

into the block-level mapping table buffer. Later, when the following 22nd to 29th

sequential update requests arrive, then the old pages in the block (PBN #11) are

invalid. Since we cannot find free block, the block (PBN #11) is erased, and the new

6 NVRAM-Assisted Optimization Techniques for Flash Memory Management. . . 145



update data E1 to L1 is written into this block based on offset. Finally, we update

the block-level mapping table buffer, and the value of corresponding LRU is

updated as well.

After processing all requests, we found that the total number of bit flips in

NVRAM is 16 by our NV-FTL, while the total number of bit flips in NVRAM

are 44 by hFTL. Our scheme achieves a reduction of 63.6% in the total number of

bit flips, which confirms that our approach can effectively reduce write activities in

NVRAM. The experimental results in Sect. 6.4 also show that our scheme can

effectively reduce the total number of bit flips.

6.4 Evaluation

To evaluate the effectiveness of the proposed NV-FTL, we conduct a series of

experiments and present the experimental results with analysis in this section. We

compare and evaluate our proposed NV-FTL scheme over the representative page-

level FTL scheme, hFTL[28].

a b

Fig. 6.4 Illustration of NV-FTL. (a ) The status variation of blocks in NAND flash memory

according to the access sequence in Fig. 6.2. (b ) The status variation of FTL page-level mapping

table and block-level mapping table buffer in NVRAM
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6.4.1 Experimental Setup

Although our design does not target at any specifical NVRAM, in the evaluation,

we assume that a particular NVRAM—PCM—is used as the main memory of

embedded sensor node. The evaluation is through a trace-driven simulation. The

framework of our simulation platform is shown in Fig. 6.5. In our experiment, we

use the same experimental configuration adopted by hFTL [28], a 1GB NAND

flash memory and a 64MB PCM are configured in our simulator. The traces along

with various flash parameters, such as block size and page size, are fed into our

simulation framework. The page size, number of pages in a block, and size of the

OOB for each page are set as 2KB, 64, and 64Bytes, respectively. Therefore, the

1GB NAND flash memory used in the experiment has 8,192 physical blocks. To

fully evaluate our scheme, we further conduct the experiments on a 4GB NAND

flash memory with the same configurations. In addition, the threshold for

distinguishing random and sequential requests is set as 8.

To represent the realistic I/O request patterns, we collected the traces from

desktop running DiskMon [41] with an Intel Pentium Dual Core 2GHz processor,

a 200GB hard disk, and a 2GB DRAM. Among these traces, CopyFiles is a trace

collected by copying files from hard disk to an external hard drive; DownFiles

represents a trace collected by downloading files from a network server;

Office represents a trace collected by running some office related applications;

P2P represents a trace collected by running a P2P file-sharing application on an

external hard drive; Table 6.1 summarizes our experimental platform and trace

collection environment.

6.4.2 Results and Discussion

In this section, we present the experimental results with analysis. We first present

the endurance impact of NV-FTL. Then we present the wear-leveling comparison

of NV-FTL and the baseline scheme.

Fig. 6.5 The framework of simulation platform
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6.4.2.1 NVRAM Endurance

The objective of this work is to reduce write activities to enhance the endurance of

NVRAM-based embedded sensor node. Therefore, the endurance of NVRAM is

one of the most important factors in analyzing the reliability of NVRAM-based

embedded sensor node. The endurance of NVRAM is mainly affected by the worst

case of bit flips in an NVRAM cell, i.e., the maximum number of bit flips in a

NVRAM cell determines the endurance of NVRAM. For example, if PCM can only

sustain 106 write cycles, then a PCM cell is worn out if it suffers from more than 106

bit flips. So our technique not only focuses on minimizing write activities in

NVRAM but also reducing the maximum number of bit flips. Table 6.2 presents

the results for the maximum and total number of bit flips among all PCM cells when

managing 1GB and 4GB NAND flash memory embedded sensor node.

We observe that NV-FTL can significantly reduce write activities of PCM in

comparison with the baseline scheme—hFTL. As shown in the table, for the

embedded sensor node with 1GB NAND flash memory, NV-FTL can achieve

more than 60% reduction of total number of bit flips. Similarly, for 4GB NAND

flash memory, NV-FTL also achieves a great amount of total number of bit flips

when compared with the baseline scheme, proofing that NV-FTL can effectively

preserve the PCM cells being converted frequently.

Moreover, in terms of maximum of bit flips, NV-FTL exhibits a similar tend find

in the result of total number of bit flips. When compared with the baseline scheme,

NV-FTL can reduce the maximum number of bit flips more than 90 and 80% for

1GB and 4GB NAND flash memory, respectively. To some extend, the reduction

in maximum number of bit flips can slow down the wearing out of certain NVRAM

cells. Since NV-FTL can reduce both the total number of bit flips and maximum

number of bit flips, we therefore conclude that NV-FTL can effectively prolong the

endurance of NVRAM, such as PCM, making the NVRAM-based embedded sensor

node has a longer longevity.

Table 6.1 Experimental setup

Hardware CPU Intel dual core 2GHz

Disk space 200GB

RAM 2GB

Simulation environment OS kernel Linux 2.6.17

Flash size 1GB & 4GB

PCM 64 MB

Trace OS Windows XP (NTFS)

Trace name generator DiskMon

Applications Web applications, MSN, Word, Excel,

PowerPoint, Media player, Emuler
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6.4.2.2 PCM Wear-Leveling

Wear-leveling is another major concern in NVRAM-based embedded sensor node.

A good wear-leveling not only prolong NVRAM-based embedded sensor node’s
longevity, but also increase its reliability since worn out cells may lead to corrupted

data. Therefore, in Fig. 6.6, we plot the maximum number of bit flips among all

mapping table entries for sensor node with 64MB PCM and 1GB NAND flash

memory. For each subfigure, the x-axis denotes the number of page-level and block-

level mapping table entries in PCM, while the y-axis shows the maximum number

Table 6.2 The maximum and total number of bit flips of NV-FTL versus hFTL

PCM with 1GB NAND flash memory

Trace name % of write % of read Total number of bit flips

hFTL NV-FTL

NV-FTL

over hFTL (%)

CopyFiles 78.75 21.25 559,496,658 293,866,292 47.48

DownFiles 71.88 28.12 1,756,464,372 568,987,257 67.61

Office 77.37 22.63 7,520,028,995 2,576,892,175 65.73

P2P 28.95 71.05 6,929,967,624 1,718,812,456 75.20

Average 64.00

Trace name % of write % of read Maximum number of bit flips

hFTL NV-FTL

NV-FTL

over hFTL (%)

CopyFiles 78.75 21.25 9,977 519 94.80

DownFiles 71.88 28.12 21,945 567 97.42

Office 77.37 22.63 9,385 1,762 81.23

P2P 28.95 71.05 74,540 762 98.98

Average 93.10

PCM with 4GB NAND flash memory

Trace name % of write % of read Total number of bit flips

hFTL NV-FTL

NV-FTL

over hFTL (%)

CopyFiles 78.75 21.25 122,605,530 93,456,325 23.77

DownFiles 71.88 28.12 842,401,436 191,579,924 77.26

Office 77.37 22.63 6,981,790,260 919,567,590 86.83

P2P 28.95 71.05 15,269,865,958 650,611,634 95.74

Average 70.90

Trace name % of write % of read Maximum number of bit flips

hFTL NV-FTL

NV-FTL

over hFTL(%)

CopyFiles 78.75 21.25 10,461 2,076 80.15

DownFiles 71.88 28.12 20,857 3,923 81.19

Office 77.37 22.63 36,667 7,377 79.88

P2P 28.95 71.05 86,383 7,623 91.18

Average 83.10

6 NVRAM-Assisted Optimization Techniques for Flash Memory Management. . . 149



Fig. 6.6 The wear-leveling comparison of hFTL and NV-FTL in a PCM-based embedded

sensor node with 1GB NAND flash memory over four traces. (a) hFTL/CopyFiles,
(b) NV-FTL/CopyFiles, (c) hFTL/DownFiles, (d) NV-FTL/DownFiles, (e) hFTL/Office,
(f) NV-FTL/Office, (g) hFTL/P2P, (h) NV-FTL/P2P
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of bit flips extracted from each mapping table entry. To present the distributions

clearly, we restrict the maximum number of bit flips on y-axis to 5,000.

As shown in the figure, we observe that the write distribution of bit flips for

hFTL varies a lot, and this will surely pose a threat to the endurance of PCM,

making certain PCM cells worn out quickly, as well as other NVRAMs. However,

compared to hFTL, NV-FTL distributes write activities more evenly among

all PCM cells, especially for DownFiles and Office, the wear-leveling of

which have a great improvements in NV-FTL. The results listed in Table 6.2 also

illustrate this fact. In summary, NV-FTL achieves much better wear-leveling

than the baseline scheme, leading to the NVRAM-based embedded sensor nodes

have a better reliability.

6.5 Conclusion

In this chapter, we have proposed a write-activity-aware NAND flash memory

management scheme NV-FTL which takes the first step to reduce write activities

in NVRAM-based sensor node. In our NV-FTL, the performance improvement is

achieved by preserving a bit in an NVRAM cell from being inverted frequently.

Through a two-level mapping mechanism, and a write-activity-aware strategy,

unnecessary write activities in NVRAM are directly eliminated. We conducted

experiments on a set of realistic I/O workload collected from daily-life. For a sensor

node with 64 MB PCM and 1GB (4GB) NAND flash memory, the experimental

results show that the maximum number of bit flips among PCM cells can be reduced

by 93.10% (83.10%) on average, and the total number of bit flips of all PCM cells

can be reduced by 64.00% (70.90%) on average. Furthermore, the results show that

NV-FTL can evenly distribute write activities among PCM cells in comparison

with a representative baseline FTL scheme.
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