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Real-Time Programmable Closed-Loop
Stimulation/Recording Platforms for Deep
Brain Study

Hung-Chih Chiu and Hsi-Pin Ma

Abstract Biomedical systems have expanded markedly in recent years, spreading

into many areas of human life. Rapid advances in biological science have led to the

creation of novel electrical circuits and signal processing methods and the devel-

opment of tools for diagnosing and treating human diseases. Many biomedical

engineering researchers have developed novel tools designed to tackle specific

medical conditions.

The instruments used represent an interface between biology and electronics.

These interfaces enable biological phenomena to be quantified and characterized,

thus allowing the biological processes underlying them to be elucidated. A typical

interface comprises a sensor or electrode for detecting some biological parameter,

the signals from which are then amplified and converted into a digital form. These

digital data can be processed by hardware or transferred to a personal computer for

closed-loop control, long-term storage, and more precise signal processing. The

guidelines for such signal processing algorithms require low complexity, short

latency, high sensitivity, and accurate characterization. Microprocessors are used

to make the design of an electronic algorithm flexible and adaptable. Depending on

the requirements of a specific application, the data can be transferred through wired

or wireless links. Communication can be achieved using widely available and

clearly defined technical specifications.

This chapter discusses the main hardware and software components used in

closed-loop deep brain stimulation systems and describes the evaluation procedures

that are used to ensure that the system performs as specified. Even when the system

parameters can change with the physiological characteristics, a closed-loop control

system can accurately extract the signals of interest.
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10.1 Introduction

Bioelectronic systems are used to measure and quantify physiological parameters

within the human body and to treat certain medical conditions. The interface with

the human body makes it possible to investigate the biological world and the

function of human body systems. Compared with conventional biomedical elec-

tronic systems based on digital signal processing (DSP) units, a real-time electronic

system can provide a programmable approach to recording and stimulating the

system, low-complexity DSP, and a closed-loop strategy for recording feedback

from the stimulated nuclei.

Electrical stimulation systems have been used to study the behavior of neurons

in the brain [1–4]. Various therapies use deep brain stimulation (DBS) to alleviate

neurological disorders and to treat Parkinson’s disease [5], tremors [6], epilepsy

[7, 8], depression [9], cluster headaches [10, 11], and other maladies [12, 13]. In

order for DBS therapy to be effective, the electrical pulses used must be of high

frequency. Many previous studies have quantified the energy used in neural activ-

ities. This has been done by calculating the power density in a particular bandwidth

of the brain, because neural synchrony exhibits large variability in amplitudes and

recurrence. There is increasing evidence to suggest that deep electrical stimulation

of brain structures suppresses neuronal synchrony at the basal ganglia

(BG) [14]. Suppression of neuronal synchrony in Parkinson’s disease usually

involves open-loop deep electrical stimulation of brain structures using local field

potentials (LFPs) [15]. Open-loop deep electrical stimulation delivers

preprogrammed electric signal patterns, but an effective feedback loop for

maintaining the neurotransmitters cannot be selected. By contrast, a closed-loop

stimulation strategy has a considerably stronger effect while preserving battery life

and allowing precise control of the functional electrical stimulation of the brain.

However, closed-loop stimulation strategies are not yet well enough understood to

allow the selection of the stimulation conditions. Few guidelines are available

covering the selection of appropriate closed-loop stimulation strategies, in which

the signal characteristic changes in the power spectra of the LFPs [16], or the phase

is synchronous in the specific frequency band [17]. Closed-loop stimulation strat-

egies must take account of power consumption and battery life. A long-term

objective is to develop a system that can automatically adjust the stimulation

strategies to achieve suppression of neuronal synchrony based on the electrical

signals from the deep brain. Closed-loop stimulation platforms for deep brain study

are discussed in detail in this chapter, which is organized as follows.

The remainder of this chapter is organized as follows: design considerations for

closed-loop stimulation strategies are discussed in Sect. 10.2. Standard closed-loop

DBS and recording system design are described in Sect. 10.3. Section 10.4 dis-

cusses closed-loop control policies and DSP. Section 10.5 presents an integrated

electronic and signal processing system, including system architecture, firmware

design, mathematical instruments for measuring neural activity, and closed-loop

neural phase synchrony detection. Section 10.6 offers some conclusions.
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10.2 Considerations for Closed-Loop System Design

In closed-loop DBS, bioelectrical signals are used to extract information from a

biological system. These signals exhibit different electrical characteristics, includ-

ing different levels of complexity, because an organ comprises multiple tissue types

and functional units, but is composed of cells that have common features. The

electrical signal received will reflect these similar cell features, but intracellular

variation will have an effect on the electrical properties. The electrical properties

can be captured by devices as simple as a closed-loop device on the skin surface or

microelectrodes placed in direct contact with the biological tissue. The character-

istics of the bioelectrical signals place further constraints on the design and appli-

cation of biomedical instrumentation systems. Novel closed-loop design strategies

must be considered for the instrumentation systems used in medical facilities and

research centers. In the design of a biomedical system, the following factors must

be considered:

(1) Energy source: The human or animal body can provide an original source for

the DBS system. Many biomedical systems allow human health to be monitored by

an implanted device. Different body parts produce different signals. Bioelectric

signals are produced by muscles and neuron cells, with the cell potential providing

the electricity source.

(2) Sensors: A sensor is used to convert the physical condition or property into an

electrical signal with specific characteristics. Factors including noise and electrode

impedance can influence the choice of analog front-end architecture. For example,

the electrode impedance is not dependent on the electrical properties of the mate-

rials, but on chemical reactions at the interface between the electrode and the

electrolyte [18]. In general, commercial electrodes for bioelectrical recording

have an impedance of 1 kHz, a range from 10 to 1000 kΩ, and capacitance values

of between 100 and 350 pF. Hence, the amplifier must be properly designed to

accommodate such large capacitive impedance. In real applications, the electrode

impedance includes thermal noise [19], whose background fluctuations generate

5–10 μV over 10 kHz.

(3) Signal acquisition and processing systems: Converting the physical condition
into an electrical signal can assist the user of the closed-loop DBS system. Signal

acquisition mainly involves the use of function blocks such as amplifiers, A/D

converters, D/A converters, wireless circuits, and digital control circuits.

After the biosignals have been converted into a digital form, the data must be

passed through a closed-loop processing algorithm. Digital recording must be

tightly controlled as it affects both the signal traces produced and the performance

of the algorithm. Effective control of these parameters sets the system state under

which the processing algorithm is characterized to the expected condition. For

example, different kinds of bioelectrical sensing systems require different sampling

rates, electrodes, and closed-loop control policies. All of them must be designed to a

specification. In real clinical applications, motion artifacts from the patient may be
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produced while recording the electrical signal, and such artifacts can significantly

affect algorithm performance.

(4) System Latency: The operation of closed-loop system control can be divided

into three steps: data acquisition, processing, and event detection [16]. Each step

can be controlled by a digital core or by independent programs that communicate

with each other via defined protocols. Each step introduces time and delay latency.

If this latency is too long or unpredictable, it may interfere with the real-time

closed-loop stimulation.

The time period for data acquisition in a sample block is controlled by the system

protocol. The exact latency depends on the type of A/D converter used. As the data

stored in the buffers is processed by the algorithms, the processing latency depends

on the complexity of processing and the clock speed. The detection latency is

determined by a number of factors that successively trigger the stimulator. There-

fore, assessment of the timing characteristics is a critical issue in the development

of closed-loop systems. Exact latency can be achieved with careful implementation.

(5) Monitor system: The monitor system is the bridge between the biomedical

system and the host PC. Results can be displayed on a user-friendly graphical user

interface. The monitor system can be numerical or graphical, or show features

characteristic of the biomedical activity being investigated.

10.3 General Closed-Loop Deep Brain Stimulation
and Recording System Design

The efficacy of DBS in treating neurological disorders such as movement disorders,

pain, epilepsy, and psychiatric disorders has been demonstrated, and a closed-loop

control policy can further improve these treatments by precisely monitoring the

neurotransmitters. A typical closed-loop DBS system can be characterized as

follows: (1) an adaptive DBS system can be used to measure and analyze a chosen

variable reflecting ongoing pathological changes in the patient’s clinical condition
to derive new stimulation settings [20]. (2) Key elements that can be added to the

generalized bi-directional brain-machine interface to facilitate research on chronic

conditions include multichannel LFP amplification, accelerometers, spectral anal-

ysis, and wireless telemetry for data uploads [21]. (3) Closed-loop DBS systems

have further developments in the charge transfer mechanisms at the electrode and

tissue interface. This can be used to investigate the symptoms of neurological

disorders and any side effects that may occur. Transgenic animals may be used in

the testing of systems that improve the energy efficiency of the stimulation

[22, 23]. (4) Closed-loop stimulation methods can dissociate changes in BG dis-

charge rates and patterns, providing insights into the pathophysiology of PD

[16]. This will have a significantly greater effect on akinesia. (5) While modulating

neural activity is an effective treatment for neurological diseases, systems have

been demonstrated that can identify a biomarker and the transfer functions of
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different stimulation amplitudes in a chronic animal mode [24]. (6) Signal unit

recording can be done using a variety of brainwave recording techniques, and these

parameters can be used for closed-loop activation of spinal circuitry below the level

of injury [25]. A typical model of a closed-loop DBS system is illustrated in

Fig. 10.1.

The DBS system mainly comprises a monitor and signal acquisition system, a

microprocessor, a stimulator, and peripheral interconnection components. All the

subsystems must be properly calibrated. Microprocessors form the kernel of the

DBS, and their incorporation into biomedical systems has added computing power

and greater control capability. The signal processor is used to acquire data, control

the transducer, and provide closed-loop DSP. The performance of the signal

processing algorithm is assessed prior to hardware implementation, and an input

biosignal is passed through the algorithm. It must be demonstrated through simu-

lation that the signal processing algorithm is rigorous, accurate, and produces

reproducible data [23, 26]. The wider availability of microcontrollers has provided

functional sub-circuits that offer both manual programming and automatic digital

control, which can help reduce the complexity of the circuit interface. Compared

with conventional biomedical electronic systems using DSP, the real-time closed-

loop electronic system offers programmable recording and stimulation, a

low-complexity and short latency DSP, and a closed-loop strategy for measuring

feedback within the stimulated nuclei. In biomedical applications where low-power

operation is a major concern, energy efficiency when performing a specific task

becomes a significant consideration. These issues are discussed in Sect. 10.3.1.

10.3.1 Neural Recording System

The deep brain signals measured by the sensors are amplified to levels suitable for

signal processing. The electrical signals are on the order of microvolts to millivolts,

for example, 10–300 μV for LFPs, 1 μV for evoked potentials, and 10–20 μV for

EEGs [27]. Two different methods are used for brainwave recording. One is called

monopolar recording, in which a channel potential is compared to a reference

electrode placed at a distant location. Monopolar recording involves amplitudes

up to 50 μV, which are more sensitive to global neural activity and motion artifacts.

Low-noise
Amplifier

Bandwidth-
Tunable Filter

N-to-1
Mux.

A/D
Converter

Digital Core/
Microcontroller

D/A Converter

Pulse Generator

Stimulation
Buffers and 
Multiplexers

Bidirectional
Telemetry

System

Long-shank
microprobe

Fig. 10.1 System architecture of a real-time programmable closed-loop stimulation and recording

platform comprising a neural recording system, a stimulation system, and a digital core
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The other method is called bipolar recording, in which a channel is compared to any

one of the other channels, at amplitudes of approximately 5–20 μV, depending on

the electrode distance and location. This method is less sensitive to noise and

motion artifacts and more sensitive to localized neural activity.

As already noted, in a DBS application, the neural activities are captured by the

probes or electrodes, and the bioelectrical signals generated can be fed into a

microprocessor. Generally, amplifiers must be used without distortion and suppress

system or environmental noise. Figure 10.2 shows a schematic of a recording

system, which comprises a low noise amplifier and successive approximation

(SAR) A/D conversion. The amplifier has an analog output or is integrated with

the SAR A/D unit.

10.3.1.1 Amplifier

In principle, biosignal amplifiers are differential amplifiers which can measure a

potential difference and contain high-impedance input circuits with a high common

mode rejection ratio (CMRR) of between 60 and 110 dB. High CMRR can

minimize noise from the power line and AC inductive power link. Ideally, the

amplifier can amplify the difference between the brain signals from two input

electrodes and eliminate the signal components that are common to both signals.

When electronics are applied to the electrodes before the preamplifier or filtering,

the CMRR of the amplifier may be reduced. For example, neural spikes contain

high-frequency information (e.g., 300–6 kHz) and have a high-pass cutoff of

around 6 kHz [28]. Analog filtering allows these high-frequency signals to pass

through unattenuated. The anti-aliasing filter includes a low-pass cutoff, and the

sampling rates must be high enough to sense high-frequency signals.

Amplifiers designed for deep brain signal recording must meet specific require-

ments. First, a high sampling rate over 20 kHz is required by the A/D converter, so

an anti-aliasing filter must be incorporated. These filters typically remove high-

frequency signals (e.g., higher than 500 Hz), in order to retain the LFPs waveform.

Second, the input impedances must be higher than the probe impedance.

Fig. 10.2 The architecture

of the recording system
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A typical neural probe impedance is in the range of 1–1000 kΩ at 1 kHz. The

input impedance should be at least 100 times larger than that of the probe. Pre-

amplifiers with high impedance are therefore commonly used at the buffering stage

in the differential amplifier [29, 30].

10.3.1.2 A/D Converter

Many modern biomedical recording systems provide multichannels with high

sampling rates, but the amplitude resolution and dynamic range of the A/D con-

verter has a significant effect on the frequency range of the electrical signals

recorded. In a deep brain recording system, an SAR A/D is commonly used to

test the accuracy of the substrate resistance network, because it is widely applied to

bio-chips and complete analysis methods of the SAR A/D. The advantages of this

architecture are a low latency-time, high accuracy, and low-power consumption,

with maximum sample rates of 2–5 MHz.

After neural signals are amplified, the digitized signal from each amplifier cycles

many times per second, and this is called the sampling rate. The sampling frequency

must satisfy the Nyquist criterion and must be at least 2 times larger than the highest

frequency occurring in the biosignal. If the system does not satisfy the Nyquist

criterion, the information contained in the sequence of samples will be distorted by

aliasing [31]. In practice, the sampling rate may be several times higher than the

recording bandwidth, since an anti-aliasing filter cannot filter out the higher fre-

quency signals.

As described above, the brain signal is recorded using a multichannel differential

amplifier. The signal input from different amplifiers and the entire analog signal

must be digitized simultaneously. However, the digitization system contains a

single A/D converter and the samples are acquired at different times. Several

methods are available to address this problem: (1) a sample-and-hold method can

hold the analog signal until the digitizer is ready to read the data or (2) a high

sampling rate can reduce the sample time between each channel. A more detailed

discussion of sampling and digitizing theory can be found in this reference [32].

10.3.2 Neural Stimulation System

The stimulation system consists of a responsive stimulator, electrode leads, and a

function of the programmable parameters [33]. The stimulator is capable of com-

munication with external components such as baseband circuits, a microcontroller,

or wireless telemetry. The operator can use the bi-directional telemetry system to

rewrite the digital core firmware and adjust the stimulator setting. The sensing data

transmitter communicates with the central data management system where data can

be stored and reviewed by physicians.

10 Real-Time Programmable Closed-Loop Stimulation/Recording Platforms for. . . 243



In principle, the closed-loop stimulator is a multi-functional stimulation device,

which performs the following functions: (1) responsive stimulation, (2) digital to

analog (D/A) decoding, and (3) battery voltage monitoring. Closed-loop responsive

stimulation is controlled by a detection system in the digital core. As shown in

Fig. 10.3, a range of stimulation parameters can be adjusted, including the stimulus

voltage, stimulation frequency, and the pulse width and duration [34]. As discussed

above, stimulation can be monopolar or bipolar. Monopolar stimulation requires the

same polarity, while in bipolar stimulation the input is cathodic and the reference

potential is anodic.

The D/A decoder is used to classify the digital patterns. The stimulation param-

eters can identify the pattern across the electrographic events and detection algo-

rithm. After the stimulation parameter is set, the stimulator transmits the

stimulation current to the tissue via the neural probe. A closed-loop stimulation

control system can automatically evaluate the neural disorder and suppress neuro-

nal synchrony. In addition, closed-loop stimulation incorporating battery voltage

monitoring offers significantly extended battery life and reduced power

consumption.

10.3.3 Digital Integrated Circuits

The digital circuit is the core of the closed-loop DBS system, performing data

acquisition, DSP, sensor interfacing, and event detection. The generic architecture

of the digital module is presented in Fig. 10.4.

Fig. 10.3 Types of stimulation pulse shape, width, and duration
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The DSP component of a closed-loop system performs two essential functions:

feature extraction and control policy. Feature extraction is used to identify signal

characteristics from the raw data and to convert the data into the mathematical

domain. Data can be transferred to the frequency domain using Fourier transform or

by assessment of power spectra, coherence, or cross-correlation coefficients

[35, 36]. In closed-loop system design, it is essential that the signal processing is

dynamic to allow optimal control policies to be applied to the digital circuits.

Detection methods have therefore been adapted to fit the low-complexity con-

straints on the DSP. It is also important to take account of the system control policy

when considering the closed-loop function for different depths of the brain. These

functions include turning the stimulator on and off, feedback control of specific

features, evaluation of the detection latency, and switching between the various

subsystem interfaces.

The digital buffer is the bridge between the analog front-end and the digital

circuits and can be used to acquire the digital signals from the subject. Different

kinds of bioelectrical signal require different sampling rates. However, when the

buffer cannot be merged with the digital module, tunable bus encoder technology

can be used to reduce the biosignal activity [37].The digital buffer requires clocks,

because different levels and functions of the system require different clock fre-

quencies in the digital domain. As each subsystem can decrease the frequency range

for different algorithms or baseband circuits, system power consumption and

battery life can be substantially affected. For example, a sleep mode can be used

to reduce the system power consumption. This mode is controlled by a low clock

manager, and the controller can shut off the system main clock. Synchronous circuit

design is very critical in a system which includes two different clock domains.

Hence, the design of a state machine is a critical issue.

Digital Buffer Data Memory Baseband 
Communication

DSP
Closed-loop 

Detection 
Algorithm

Power 
Management

Digital Core

Sensor Wireless 
Module

Power
Module

Fig. 10.4 A general architecture of digital core in closed-loop system
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10.4 Closed-Loop Control Policy and Digital Signal
Processing

Biomedical signals carry information on a biological system. Biomedical measure-

ment systems must be secure and perform as intended to allow medical personnel to

make precise diagnoses and choose the correct treatments. To satisfy these require-

ments, the digital core must meet numerous standards and regulations for each

biomedical signal processing method used in the system. However, precise detec-

tion of the target signal and noise components remains a critical issue.

Most closed-loop stimulation systems use components of brain signals that are

clearly characterized as biosignal features. They are detected using data processing

algorithms that continuously monitor the brain activity. A data processing algo-

rithm analyzes each incoming sample block from each biosignal to identify these

features. The detection system is capable of comparison and specific detection. In

general, two detection methods, linear and nonlinear, are used by the detection

algorithm. These processing methods can be applied independently or to integrated

circuits, and electrical stimulation systems can also be configured for detection.

After the signal is processed, feedback is required to improve the detection of the

probes at different depths in the brain. As the signals may include ECoG from the

cortex or from the subthalamic nucleus in the deep brain, they clearly supply

different amounts of information, based on the frequency domain [38]. The detec-

tion system must be able to adapt its parameters to improve the accuracy of the

closed-loop stimulation system. Possible improvements in signal processing fall

into the following categories: (1) extraction of information in more useful forms,

(2) predictive data to anticipate the information from a specific signal, (3) data

compression, and (4) filtering out of nonessential information, such as power-line

noise or motion artifacts. Thus, it is common for a DBS system to incorporate

features such as digital filters, linear and nonlinear combinations, or other

modifications.

10.4.1 Digital Filtering

Digital filters are central to all signal processing systems. Each sample of the

digitized signal is passed through a specific type of filter. Digital filters are used

to filter out unwanted noise or artifacts from the biosignal to enhance the quality of

the signal and prepare it for closed-loop detection.

If input data x[n] enter the filter sequentially, the output data y[n] is the weighted

sum of the current and past values, and is given by:
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y n½ � ¼
XM
i¼0

aix n� i½ � �
XN
i¼1

biy n� i½ �;

where x[n�i] is the past input data, y[n�i] is the past output data, the ai and bi
parameters are the weights, and M and N are the numerical data lengths. The

filtered output data have the same number of samples, in which the first sample

of y[n] corresponds to the first sample of x[n]. Filters that depend on current and

past data are known as causal filters. In real-time applications, causal filtering is

necessary because future input and output data are not yet available. A simple

example is the computation of a moving average. When computing a moving

average, the signal passes through the filter, and the filter data is equal to the sum

of the past input samples (N) each weighted by 1/N. This filter attenuates the high

frequencies and preserves the low frequencies. The guidelines for developing

closed-loop control demand low complexity and short latency. The sums of the

past N consecutive samples have to be considered in the optimal range.

10.4.2 Time Domain Signal Processing Techniques

Linear signal processing can incorporate a number of different procedures. These

can be categorized as (1) block processing, (2) peak detection and integration, and

(3) wave detection. In a closed-loop system, it is desirable for the signal processing

to occur in real time. Before being fed into the processing algorithm, the incoming

raw data samples are segmented consecutively, either with or without overlapping.

If the signal features are computed more frequently than is necessary, the system

will consume additional computational time and power. In efficient real-time

implementations, therefore, the data window size and overlap of the blocks should

closely reflect the processing algorithm, detection latency, and available processing

power.

Peak detection and integration are the most straightforward and simple methods

for achieving this. Peak detection determines the maximum or minimum value of

the data in a window and uses this value as the feature. Features can be averaged or

integrated to provide more detailed information on the time domain. These methods

can also be applied to the detection of transient spectrum peaks in the frequency

domain.

Wave detection is calculated as the sum of the amplitude changes within a time

window. This method is mainly used to measure the complexity of the fractal

dimensions of a deep brain signal. The wave difference or the ratio of the average

change between a short and long window can be used to determine whether the

signal complexity is increasing or decreasing.
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10.4.3 Frequency Domain Signal Processing Techniques

Deep brain signals have continuous amplitude and frequency modulated oscilla-

tions. A number of researchers are tracking these changes in the frequency domain.

Much of frequency domain theory is based on Fourier analysis, which transforms

time domain data into a frequency domain representation. Depending on the

specific constraints or objectives, techniques such as fast Fourier transform (FFT)

or autoregressive (AR) modeling are used. An FFT spectrum tracks the brain signal

at a corresponding frequency, and the power spectrum of the FFT can be obtained

by squaring the magnitude. This is an efficient implementation method for brain

signals in a closed-loop system. AR modeling can use higher spectral resolution for

signal window sizes shorter than those used in FFT. The development of small

window sizes is necessary for closed-loop systems, because long latencies signif-

icantly affect real-time operations.

10.5 A Design Case: A Real-Time Closed-Loop
Neurostimulation System Based on Neural Phase
Synchrony Detection

10.5.1 Introduction to Closed-Loop Neurostimulation System

Parkinson’s disease (PD) is one of the most prevalent diseases in people aged 50–60

years [39]. The introduction of levodopa (L-dopa) in the late 1960s caused a sharp

decline in the surgical treatment of PD. Oral administration of L-dopa, which

transforms into dopamine in the basal ganglia (BG), is a widely adapted chemical

therapy for PD [40, 41]. However, long-term use of L-dopa is associated with motor

fluctuations and dyskinesia [42], and DBS of BG nuclei is increasingly considered a

highly effective and adjunctive therapy for PD symptoms [43–45], such as tremor

and dystonia; moreover, it limits drug-induced side effects.

Numerous studies have quantified the energy in neural activities, which is

measured by calculating the power density in a particular bandwidth of the brain

because neural synchrony exhibits large amplitude and recurrence variability.

Furthermore, increasing evidence indicates that deep electrical stimulation of

brain structures suppresses neuronal synchrony at both BG [14]. Suppressed neu-

ronal synchrony in PD usually involves open-loop deep electrical stimulation of

brain structures such as LFPs [46]. Open-loop deep electrical stimulation delivers

preprogrammed electric signal patterns, but the effective feedback loop for

maintaining neurotransmitters cannot be chosen. By contrast, closed-loop

stimulation strategy has a considerably stronger effect with preserving battery

life, decreased neural synchronization, and an ideal control policy for feedback

within the stimulated nuclei. For instance, neurological disorders are ameliorated

when stimulation is based on electrical signal feedback and matched to the
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frequency of the abnormal synchronization [16]. In addition, characteristic changes

in the power spectra of LFPs have been identified after DBS of the BG, and an

adaptive model based on recursive identification by the brain has been developed

[17]. However, the power spectra do not consider the dynamic phase synchronous

properties exhibited by the additional information in closed-loop strategies. The

phase synchronous in the specific frequency band is a marker of neurological

disorders in PD such as the beta band synchronization of BG is associated with

the motor symptoms, such as the hypokinetic symptoms [47] and associated

symptoms were reduced by different therapies [48]. Hence, the phase synchronous

of neurophysiologic signals is used to estimate the neurological disorders at beta

frequency oscillations. With this framework, this study is to develop a program-

mable closed-loop stimulation control system that automatically evaluates the

neural phase synchrony to achieve reduction of motor symptoms.

Synchronous neural detection hardware that precisely controls intracortical

microstimulation [49], closed-loop spike detection algorithms for triggering elec-

trical stimulation, [50], and electroencephalograph (EEG) seizure detection [51, 52]

have been implemented. Advanced algorithms include complexity analysis pro-

cedures, such as approximate entropy (ApEn) calculation and ameliorate neurolog-

ical disorders [53]. In our previous studies, we developed a multichannel open-loop

stimulation system-on-chip (SoC) that is based on an open-source 8051 microcon-

troller for real-time data collection [54, 55]. Because no commercial embedded

systems are available for neural phase synchrony stimulation and recording, we

developed a closed-loop DSP platform using flexible FFT and a fully programma-

ble stimulus control strategy, which considers parameters such as stimulation

amplitude, frequency, and pulse width. This platform is flexible and adaptable to

the electronic algorithm design, which is substantially advantageous in the first step

of the investigation.

In the present study, an RISC processor [56] is the core of the closed-loop phase

detection algorithm; it provides a flexible architecture and a uniform length instruc-

tion set that affords system implementation at various processing performance

levels. At the system architecture level, a combination of programmable and digital

circuits provides implementation feasibility to different algorithms. Hence, the

major closed-loop phase detection algorithm and signal processing are set by the

user, thus precisely controlling the stimulator. An analysis of the performance

requirements in neural networks shows that the proposed microprocessor is ade-

quate for signal processing. At the microarchitecture level, the processor performs

feature extraction using diverse FFT resolutions for obtaining neural information.

Additionally, a low-complexity algorithm for addition and multiplication was

proposed for variable-FFT-length (16–1024 points) implementations that involve

a tradeoff between memory bandwidth and run time. Using the proposed algorithm,

continuous LFP signals were collected from freely moving PD rats. We focus on the

phase interaction of the signal amplitude to achieve highly dynamic modulation of

neural activity by using the phase of low-frequency rhythms. Hence, the proposed

processor provides a platform for combined statistical testing in a closed-loop

microstimulation, which enables onset pattern detection and provides a precise

stimulus for adequate treatment of PD symptoms.
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10.5.2 System Architecture

The closed-loop phase detection system mainly consists of a recording analog

front-end (AFE), a RISC processor, a stimulator, and a peripheral component

interconnects. All external devices and algorithms are interconnected using a

shared 32-bit data Wishbone bus, and the DSP, AFE, and analog-to-digital con-

verter (ADC) interfaces can be connected in parallel with the crossbar switch. In

addition, the host PC can rewrite processor firmware and monitor neural signal. The

complete platform for closed-loop phase detection and the functional flow diagram

is illustrated in Fig. 10.5.

10.5.2.1 Recording and Functional Electrical Stimulation

Adult (2-month-old) male Sprague Dawley rats weighing 250–350 g were used in

this experiment. All animal handling, surgical, and behavior testing procedures

were carried out in accordance with the guidelines on animal ethics. In each

experiment, the rats were first anesthetized with chloral hydrate (400 g/kg) and

urethane (0.5 g/kg). Microelectrodes were implanted into layer V of the M1 primary

motor cortical region located using a stereotaxic apparatus with an average imped-

ance of 50 kΩ at 130 Hz, after which the variable waveforms were recorded.

Experimental experience has shown that a critical constraint in investigating neu-

rophysiologic signals is that simultaneous recording of brain signals during DBS

induces electrical artifacts several orders of amplitude larger than the brain waves.

To overcome this constraint, investigators commonly adopt two distinct

approaches. One approach involves recording the brain waves at the BG projection

sites, where stimulation artifacts are less intense. The second approach, which we

adopted in this study, involves avoiding stimulation artifacts by immediately

recording brain waves after DBS. A 2-min M1 layer V time series was used for

signal processing and statistical analysis on the host PC.

Neural recording

Host PC

Closed-loop 
stimulator 

control unit

Closed-loop control unit

Neural 
stimulation

Neural signal 
visualization

Phase 
visualization

Spectrum
visualization

Phase synchrony 
computation

Fig. 10.5 Functional flow diagram of the closed-loop phase detection system. The digital signal

processor is responsible for FFT, the control policy, and phase computation. In addition, the host

PC can be used to rewrite the digital signal processor firmware, stimulation threshold, and to create

a GUI for monitoring and storing data
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Data collection and the electrical stimulation architecture were based on our

previous study. Deep brain signals were band-pass filtered between 0.1 and 700 Hz

and amplified 3000-fold. A voltage-controlled stimulation (VCS) for a grounded

load transmits the stimulation current to the tissues via the neural electrode.

Through a programmable VCS interface implemented in the FPGA evaluation

board, the user selects the RISC processor, sets the stimulation parameters, and

stimulates the neurons.

10.5.2.2 Phase Analysis

Excessive synchronized oscillation in the beta frequency is one of the most com-

mon PD biomarker signals [14, 46] and a characteristic feature of the neural

network activity in LFPs. However, the neuronal oscillations are quite inconsistent,

and frequency spectra do not contain phase variant properties. On the basis of this

knowledge, time-series fragmentation techniques are employed for analyzing inter-

mittent synchronized oscillations to investigate the dynamic phase of synchronized

signals, and the phase space of the brain signals is used to estimate the neural

rhythms. The localized phase synchronizations are analyzed separately using fre-

quency correlation. Each offline signal processing procedure is detailed for PC. All

PC-based analyses were performed using MATLAB (The MathWorks, Natick,

MA, USA). Before spectral analysis, raw data were band-pass filtered between

10 and 50 Hz to remove power-line noise and low-frequency oscillations. The time-

varying power of neural changes in the motor state was estimated using short-time

Fourier transform. Power changes were estimated using FFT with windows of 1024

samples, a Hanning window with a width of 0.5 s, and a 50% overlap, until all

signals were analyzed. In this time-varying spectral analysis, the high beta frequen-

cies (20–35 Hz) of different relative power information were measured.

We detected localized phase synchronizations with respect to both time and

frequency. Phase synchronizations were analyzed separately using a coherence

technique. This technique involves obtaining the cross-spectrum of two signals

by using the power spectral density. First, FFT is applied to both auto-power (Pxx)

and cross-power spectra (Pxy).

Pxx wð Þ ¼ E X wð Þj j2
h i

; ð10:1Þ

Pxy wð Þ ¼ E X wð ÞY wð Þ*
h i

; ð10:2Þ

where X(w) and Y(w) are obtained using FFT of the time domain signals x(t) and

y(t) (Fig. 10.6a). Next, phase relations are computed as follows:

Phase wð Þ ¼ �arctan Txy wð Þ� � ð10:3Þ
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where Txy(w) is a transfer function based on the cross-spectrum of a signal pair; it is

defined as

Txy wð Þ ¼
E X wð ÞY wð Þ*
h i

E X wð Þj j2
h i ð10:4Þ

All mean phases (n¼ 37) in the DBS ON and OFF states are presented in

Fig. 10.6b. Phase relations refer to the periodicity labeling of the neural activity

signals at a point between the coordinates (�3.141 to 3.141). On analyzing the beta

frequency power time series, the phase series was found not to be a constant in the

intermittent synchrony of power over time. The mean phase of DBS ON is more

stable than that of DBS OFF. Therefore, adding phase time-series detection capa-

bility to a VCS system facilitates addressing neurobiological concerns.
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Fig. 10.6 LFP betas in the DBS ON and OFF states exhibit different characteristics. (a) Beta is
observed in the 13–35 Hz range, where the power range is reduced and DBS ON and OFF is

intermittently synchronous. The power ranges shown are plotted logarithmically. Time domain

signals x(t) and y(t) are used to calculate the cross-spectrum and phase synchrony. (b) The mean

phase (n¼ 37) is calculated for DBS ON and OFF, and the mean phase in DBS ON is more stable

than that in DBS OFF
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10.5.2.3 Closed-Loop Stimulator Control Unit

As mentioned, neural phase dynamics can be calculated using the Fourier theory,

and the phase equation of (10.1) enables the processor to activate the stimulator by

using a precise threshold. The threshold condition of phase synchronization (PS) is

defined as

PS ¼ 1, �β � π � Phase wð Þ � β � π
0, otherwise

�
ð10:5Þ

where β is a constant determined using the statistical analysis presented in the

subsequent paragraph. PS¼ 1 activates the stimulator. In this study, precisely

control of stimulator in short latency is a critical factor in maintaining the closed-

loop system. An operational flowchart is depicted in Fig. 10.7.

A preliminary statistical analysis was performed to evaluate the start threshold β.
Before determining the stimulation threshold, the continuous phase parameters

were analyzed using paired t tests to evaluate the mean difference between stimu-

lator ON and OFF states that maps β to an optimal stimulator start condition. Such

analysis was performed on neural signals exhibiting PD symptoms. First, the phase

characteristics of stimulator ON and OFF were independently tested for normality

using the Shapiro–Wilk test. When the statistic is significant, the hypothesis that the

distribution is normal is rejected. Second, another nonparametric statistical analy-

sis, the paired t test, was performed to evaluate the differences in each pair.

Significant p values were obtained in all cases.

y

x

FFT
Neural

recording

Neural
stimulation

Closed-loop Stimulator 
control unit

Phase analysisBrain

- ≥Phase≥ Closed-loop
control unit

Fig. 10.7 System architecture of the closed-loop phase synchrony detection, consisting of a

neural recording, a neural stimulation, and a closed-loop control unit. Closed-loop control unit

covert the neural signal into phase domain and trigger stimulator when that phase synchrony

exceeds a threshold
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10.5.3 Real-Time Digital Processing Platform

Although our previous studies have successfully implemented 8051 microcon-

trollers in freely moving rats [54, 55], the architecture requires numerous instruc-

tions for a single operation. A high number of instructions can negatively affect the

memory size, processing bandwidth, and real-time performance. Therefore, this

study employed a 32-bit RISC processor, OpenRISC 1200 [56], for arithmetic

operations, data storage, system control, and neural variant property evaluation.

The 32-bit processor provides a computing speed of 2.1 DMIPS per MHz under the

dhrystone benchmark and DSP MAC 32� 32 operations per MHz. By contrast, the

8051 microcontroller in our previous studies computed at 1.67 DMIPS per MHz.

In addition, virtual memory support, a five-stage pipeline, and basic capabilities are

included in OpenRISC 1200. Processor efficiency and flexibility in specific tasks

are crucial for precise and complex biomedical algorithms that sense neural

activity.

The neural phase analysis of the system is classified into two components: First,

the vector mode of the coordinate rotation digital computer (CORDIC) algorithm

[57] is proposed, fulfilling the arctangent function, because it requires shift and add

operations for each vector rotation. Because of the 16-bit fixed point computation in

the processor, the word length of CORDIC computations must be considered for

numerical accuracy. To achieve a 10-bit resolution of the fraction part [48], the

word length should be at least (n + log2 n + 2), and n+ 1 rotations must be

performed. Second, the variable point radix-24 FFT is proposed [58]. In the

proposed RISC processor, this architecture achieves the lowest computing com-

plexity for mathematical operations. In addition, the radix-24 algorithm provides a

variable FFT length ranging from 16 to 1024 points. To increase FFT computation

efficiency, the twiddle factor is precomputed, stored in an array in the processor

memory, and accessed through table lookup.

Real-time signal processing for the closed-loop detection of localized phase

synchronizations is implemented using a digital processor. The proposed algorithm

and control policy can be verified on the implantable device firmware by using a

wireless module. The firmware is segmented and updated independently and allows

a series of instructions into the program memory from the boot ROM. The proces-

sor is programmed to deliver information as follows: (1) retrieve data from the

SRAM and input it into the asynchronous FIFO; (2) set the stimulation parameters

and the threshold for specific brain regions; and (3) start the N-point radix-24 FFT

and CORDIC for phase computation.

After the phase property is calculated using the proposed algorithm, a hybrid

approach is used where Fourier-based segmentation with phase synchrony is

applied to maintain the neural activity reflected in the deep brain. Subsequently,

the phase threshold condition β, which starts the stimulator, is trained statistically.

When phase synchrony occurs, the processor generates a stimulation pulse. The

initial programming setting generates a pulse width of 60 μs at a frequency of

125 Hz and amplitude of 5 V and supplies a constant current of 100 μA. These

254 H.-C. Chiu and H.-P. Ma



parameters are effective in managing PD symptoms [59]; the user can flexibly

modify the stimulation parameters by modifying the instruction set.

Detection latency is a critical factor in maintaining a real-time closed-loop

system in which features of phase change are used to trigger stimulation. To

evaluate the detection latency, an EEG dataset that generated output signals serving

as AFE triggers was used. When one of the phase characteristics can trigger

stimulation, it triggers the stimulator output and sets the identity of the detection

unit, which is used in the feedback control scheme. The latency between a phase

discriminator and a digital sample is then calculated using the same sample clock. A

timing diagram of the experimental protocol is illustrated in Fig. 10.8. Closed-loop

stimulation latencies were calculated using numerous individual subsystems, such

as the digital sample, control policy, and phase detection algorithm. Using a 1024-

point digital sample, the average run time for the asynchronous FIFO was 0.256 s.

Furthermore, the phase detection latency calculated using the phase frequency and

corresponding change in the Wishbone bus was determined for each firmware

option. The difference in reaction latency for the RISC processor is largely attrib-

utable to the FFT and CORDIC; the mean latencies for the 1024-point FFT

computation and CORDIC were 33 and 12.8 ms, respectively. Table 10.1 illustrates

a comparison of the detection latency of the proposed system with those of recently

published closed-loop systems. The shortest latency is reported in [53], where the

sampling frequency is lower. Nevertheless, the 1024-point FFT and sampling

frequency of our system is higher, and the neurological detect state is not the

same. For the same neurological detect state, the shortest latency is in [60], where

the test platform uses a software and hardware coworker but does not consider the

sampling time.

10.5.4 Implementation Results

An ALTERA DE2-115 FPGA evaluation board, capable of reloading instructions

and implanted with dedicated RISC processors, was used to verify the functionality

and basic control policy. The processor instructions were stored in a 2 MB SRAM; a

Time

Sampling period : 0.25ms

: Neural recording buffer 
: FFT computation
: Phase analysis computation
: Closed-loop stimulator control unit

0.256s
33ms

12.8ms
0.13ms

Fig. 10.8 Timing diagram of the phase detection firmware
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waveform generator was used to store the EEG dataset and regenerate the brain

signal for the digital processors. The EEG datasets were collected from our previ-

ous study. Figure 10.9 showed the top view of the recording system and a rat

implanted with the neuron-probes. In addition, the EEG dataset was used to

demonstrate the functionality of the system: data collection, phase characteristic

identification, and compatibility with the closed-loop algorithm and the evaluation

board.

After the system is initiated, the user can rewrite the firmware codes and start the

RISC processors, which can access digital samples directly from the ADCs (wave-

form generators) and continuously perform phase detection. To facilitate validating

the dynamic phase and the stimulator control policy states, the experimental results

are streamed in real time to the host PC through a wireless module so that the user

can monitor the algorithm operation.

A specific example is the closed-loop DBS for PD, which entails (1) capturing

neural signals by controlling the ADC sampling clock; (2) statistically determining

the stimulation threshold; and (3) evaluating the phase synchronization through DSP.

Table 10.1 Comparison of the proposed system with recent systems

[60] [53] [51] [23] This work

DSP

operation

Empirically

derived lin-

ear thresh-

old on the

amplitude

Programmable,

64-point FFT

(radix-4), and

on-line seizure

detection

256-

point

FFT

(radix-2)

LFP amplitude

threshold for

triggering

stimulation

Flexible
N-point
FFT (N¼ 16
through
1024)
(Radix-24)

Processor PC OR1200 Cortex-

M3

Embedded pro-

cessor (Spike

2 software)

OR1200

Latency 0.600 s 0.500–0.800 s >0.500 s >0.030–0.040 sa

+ x

0.302 s
(N¼ 1024)
0.550 s
(N¼ 256,
5 MHz)
0.114 s
(N¼ 64,
13.6 MHz)

Sampling

frequency

422 Hz 200 Hz 256 Hz 1 kHz 4 kHz

Operating

frequency

N/A 13.6 MHz 7 kHz

(0.5 V)

5 MHz

(1 V)

N/A 25 MHz

Neurological

state

LFP, EMG,

ECoG

Epilepsy Epilepsy LFPs LFPs,
EMG,
sEEG

ax without consider 0.400 s moving average filter, digital sample, and software and hardware

interface delay time

N/A Not Available
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10.5.4.1 Data Collection

The digital samples are loaded into a waveform generator and output to a 12-bit

ADC. The sampling frequency for the neural signal is 4 kHz, and system operation

at 25 MHz is adequate for real-time signal processing. Subsequently, the processor

has a buffer for retrieving 1024 digital samples through a parallel interface. FFT,

CORDIC, and phase are computed for the next 1024 digital samples and phase

synchronizations are subsequently detected. The experiment was completed in

approximately 2 min. After using the timing diagram to design the firmware, the

default instructions are written to the processor; handshakes with the host PC ensure

that the data are passed correctly, subsequently; the user sets the stimulation

parameters and controls the ADC.

10.5.4.2 Statistical Results

Statistical analyses were performed using the R 3.1.1 software (R Foundation for

Statistical Computing, Vienna, Austria). A two-sided p value less than 0.05 was

considered statistically significant. Data were expressed as the mean� standard

deviation. The continuous data of DBS ON and OFF were assessed using the paired

t test. Forty data records for DBS ON and OFF, each measured 40 times, were

included. Three data signals were excluded because of poor data recording and

incomplete recording of brain signals.

All data (n¼ 37) are presented in Table 10.2. The mean phases of DBS ON and

OFF show statistically significant (1.084� 0.748 vs. 1.600� 0.864; p¼ 0.002) that

using the paired t test. Normality for DBS ON and OFF was statistically significant

Fig. 10.9 Data collection and electrical stimulation
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( p¼ 0.180, p¼ 0.113). Figure 10.10 showed the Box–Whisker plot of phase sup-

pression. According to this statistical result, the stimulation threshold based on DBS

OFF was sets 1.6�.

10.5.4.3 Phase Synchronization Detection in the EEG Dataset

For detecting phase suppression, the transfer function that measures the signal of

synchronous change over short-time intervals is calculated. Every 0.256 s, a 1024-

point FFT is performed for the input data with a 50% overlap in time, followed by

the execution of the CORDIC algorithm. Phase synchronization is determined using

two 1024-sample cycles along with DSP; phase response detection takes approxi-

mately 0.302 s.

Neural recording of M1 layer V stimulation artifacts during electrical stimula-

tion at 125 Hz and pulse width of 60 μs is presented in Fig. 10.11a. To evaluate the
effect of electrical stimulation on phase detection, neural signals after DBS

(Fig. 10.11b) are used as a dataset for DSP. Figure 10.11c, d shows a 0.302 s

segment of the 1024-point FFT and phase irregular stimulation pattern; the upper

panels depict power and phase detection events for triggering stimulation. These

signals were recorded to determine whether the LFP power spectra and phase were

consistent across each segment of the time series despite interventions such as DBS

ON or OFF states. In each segment, the signal that differed indicates that the power

and phase in the beta range triggered stimulation.

Table 10.2 Effect of electrical stimulation on phase response

ON OFF

Phase 1.084� 0.748 1.600� 0.864 p¼ 0.002

Shapiro–Wilk test: DBS ON: p¼ 0.180, DBS OFF: p¼ 0.113

Fig. 10.10 Box–Whisker

plot of phase suppression of

the beta band. Suppression

of phase synchrony of LFPs

occurs between 20 and

35 Hz in the DBS ON and

OFF states
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10.5.4.4 Comparison with Other Studies

The foundation of the closed-loop system is related to choose the neural data as a

biomarker. All techniques have its advantage, depending on the different algorithm

and practical system constraints. Table 10.3 lists the results of the phase detection

algorithm compared with monitor power spectrum when that power exceeds a

stimulation threshold in the specific frequency band [38] and LFPs oscillations
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Fig. 10.11 Two-second series analysis in detecting the fine temporal structure of intermittent

power spectrum and phase synchrony. (a) An example of a 250 s LFP neural signal S1 before

showing stimulation artifacts and S2 after applying the stimulus paradigm. (b) Neural recording
for 2 s after electrical stimulation. (c, d) 0.302 s trace of the stimulation pattern; 1024-point FFT

and phase irregular stimulation pattern
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was used to control triggered stimulator via a defined threshold [23]. In addition, the

EEG dataset (n¼ 37) was used to demonstrate the functionality of the closed-loop

system and the total duration for all experiments was nearly 2 min.

To evaluate the closed-loop effect of electrical stimulation on power spectrum,

LFPs oscillations and phase synchrony detection, the numbers of triggered stimu-

lator are used as an indicator in this experiment. In an open-loop system, the total

detection number is 397, without considering the stimulation threshold. And then

closed-loop spectrum detection and LFPs oscillation detection need 371 and

358 times stimulation. Our proposed method requires 302 times stimulation.

Hence, the selection of features for detection has important implications for

power consumption.

As a result, the spectrum, LFPs oscillations, and phase synchrony detection

numbers represent distinct phenomena (Fig. 10.12) and Fig. 10.12d showing that

our proposed method in the beta frequency band has a lower percentage of triggered

stimulator over time. These three methods were individually significant in the EEG

dataset (LFPs amplitude, phase synchrony, and power spectrum; p< 0.001) and

exhibit a positive relationship over time.

In this study, a real-time closed-loop neurostimulation system should be able to

provide localized phase detection and precise control of electrical stimulation for

in-vivo experiments; accordingly, such in-vivo experiments have to be considered

for the next step of experimentation.

10.6 Conclusions

With the development of bioelectronics, DSP, and effective feedback loops for

maintaining neurotransmitters, the closed-loop DBS system is playing a growing

role in the treatment of certain medical conditions. Precise control of electrical

stimulation requires an advanced signal processing algorithm that maintains ther-

apeutic efficacy at optimal levels. Through detailed analysis of typical closed-loop

DBS systems, this chapter has presented an overview of neural recording systems,

stimulation systems, and digital integrated circuits. The specifications of each

function have been presented.

A real-time closed-loop neurostimulation system based on a neural phase syn-

chrony detection design has also been discussed. We developed a closed-loop

digital signal processor platform using the radix-24 algorithm, providing a variable

FFT length ranging from 16 to 1024 points with a short latency response (0.302 s)

and offering fully programmable stimulation. This study focused on the use of

transfer-function-based LFP processing for calculating phase synchrony, which

Table 10.3 Summary of power spectrum, LFP AMPLITUDE, and phase synchrony detections

[38] [23] This work

Stimulation times 371� 14 358� 31 302� 21
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was then used to trigger the neural stimulator. A preliminary statistical analysis

provided additional evidence that the feedback threshold parameters can be opti-

mized and directly transferred to fit the threshold conditions. Advanced statistical

methods can then be used to address neurobiological problems. Finally, the pro-

posed method can be extended to other biomedical signal applications such as

electromyography and surface EEG. Commercial platforms can be employed to

conduct short-term experiments and functional verification, whereas ICs are more

practical for specific and long-term applications.

Fig. 10.12 The percentage of triggered stimulator over time (% per 0.302 s block). The solid line

is result of linear regression. (a) The percentage of LFPs amplitude triggered stimulator. Multiple

R-squared is 0.537, p< 0.001. (b) The percentage of phase synchrony triggered stimulator.

Multiple R-squared is 0.482, p< 0.001. (c) The percentage of phase synchrony triggered stimu-

lator. Multiple R-squared is 0.512, p< 0.001. (d) Mean and standard error of the percentage of

triggered stimulator with different stimulation conditions
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