
189© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_16

 16 History of Programming Languages

 Abstract
 This chapter presents a short history of programming languages, starting with
machine languages, to assembly languages, to early high-level procedural
 languages such as FORTRAN and COBOL, to later high-level languages such as
Pascal and C and to object-oriented languages such as C++ and Java. Functional
programming languages and logic programming languages are discussed, and
there is a short discussion on the important area of syntax and semantics.

16.1 Introduction

 Hardware is physical and may be seen and touched, whereas software is intangible
and is an intellectual undertaking by a team of programmers. Software is written in
a particular programming language, and hundreds of languages have been

 Key Topics
 Generations of programming languages
 Imperative languages
 ALGOL
 FORTRAN and COBOL
 Pascal and C
 Object-oriented languages
 Java and C++
 Functional programming languages
 Logic programming languages
 Syntax and semantics

190

developed. Programming languages have evolved from the early days of computing
with the earliest languages using machine code to instruct the computer. The next
development was the use of assembly languages to represent machine language
instructions. These were then translated into machine code by an assembler. The
next step was to develop high-level programming languages such as FORTRAN and
COBOL. These were easier to use than assembly languages and machine code and
helped to improve quality and productivity.

 A fi rst-generation programming language (or 1GL) is a machine-level program-
ming language that consists of 1 and 0 s. The main advantage of these languages is
execution speed as they may be directly executed on the computer. These languages
do not require a compiler or assembler to convert from a high-level language or
assembly language into the machine code.

 However, writing a program in machine code is diffi cult and error prone, as it
involves writing a stream of binary numbers. This made the programming language
diffi cult to learn and diffi cult to correct should any errors occur. The programming
instructions were entered through the front panel switches of the computer system,
and adding new code was diffi cult. Further, the machine code was not portable as
the machine language for one computer could differ signifi cantly from that of
another computer. Often, the program needed to be totally rewritten for the new
computer.

 First-generation languages were used mainly on the early computers. A program
written in a high-level programming language is generally translated by the com-
piler 1 into the machine language of the target computer for execution.

 Second-generation languages , or 2GL, are low-level assembly languages that are
specifi c to a particular computer and processor. However, assembly languages are
easier to read than the fi rst-generation machine code. They require considerably
more programming effort than high-level programming languages and are more dif-
fi cult to use for larger applications. The assembler converts the assembly code into
the actual machine code to run on the computer. The assembly language is specifi c
to a particular processor family and environment and is therefore not portable.

 A program written in assembly language for a particular processor family needs
to be rewritten for a different platform. However, since the assembly language is in
the native language of the processor, it has signifi cant speed advantages over high-
level languages. Second-generation languages are still used today, but high-level
programming languages have generally replaced them.

 The third-generation languages , or 3GL, include high-level programming lan-
guages such as Pascal, C or FORTRAN. They are general-purpose languages and

1 This is true of code generated by native compilers. Other compilers may compile the source code
to the object code of a virtual machine, and the translator module of the virtual machine translates
each byte code of the virtual machine to the corresponding native machine instruction. That is, the
virtual machine translates each generalized machine instruction into a specifi c machine instruction
(or instructions) that may then be executed by the processor on the target computer. Most computer
languages such as C require a separate compiler for each computer platform (i.e. computer and
operating system). However, a language such as Java comes with a virtual machine for each plat-
form. This allows the source code statements in these programs to be compiled just once, and they
will then run on any platform.

16 History of Programming Languages

191

have been applied to business, scientifi c and general applications. They are designed
to be easier for a human to understand and include features such as named variables,
conditional statements, iterative statements, assignment statements and data struc-
tures. Early examples of third-generation languages are FORTRAN, ALGOL and
COBOL. Later examples are languages such as C, C++ and Java. The advantages of
these high-level languages are:

 – Ease of readability
 – Clearly defi ned syntax (and semantics 2)
 – Suitable for business or scientifi c applications
 – Machine independent
 – Portability to other platforms
 – Ease of debugging
 – Execution speed

 These languages are machine independent and may be compiled for different
platforms. The early 3GLs were procedural in that they focus on how something is
done rather than on what needs to be done. The later 3GLs were object oriented , 3
and the programming tasks were divided into objects. Objects may be employed to
build larger programs, in a manner that is analogous to building a prefabricated
building. Examples of modern object-oriented language are the Java language that
is used to build web applications, C++ and Smalltalk.

 High-level programming languages allow programmers to focus on problem-
solving rather than on the low-level details associated with assembly languages.
They are easier to debug and to maintain than assembly languages.

 Fourth-generation languages specify what needs to be done rather than how it
should be done. They are designed to reduce programming effort and include report
generators and form generators. Report generators take a description of the data
format and the report that is to be created and then automatically generate a program
to produce the report. Form generators are used to generate programs to manage
online interactions with the application system users. However, 4GLs are slow when
compared to compiled languages.

 A fi fth-generation programming language, or 5GL, is a programming language
that is based around solving problems using constraints applied to the program,
rather than using an algorithm written by the programmer. Fifth-generation lan-
guages are designed to make the computer (rather than the programmer) solve the
problem. The programmer specifi es the problem and the constraints to be satisfi ed
and is not concerned with the algorithm or implementation details. These languages
are mainly used for research purposes especially in the fi eld of artifi cial intelligence.

2 The study of programming language semantics commenced in the 1960s. It includes work done
by Hoare on axiomatic semantics, work done by Gordon Plotkin on operational semantics and
work done by Scott and Strachey on denotational semantics.
3 Norwegian Research originally developed object-oriented programming with their work on
Simula 67 in the late 1960s.

16.1 Introduction

192

Prolog is one of the best known fi fth generation languages, and it is a logic program-
ming language.

 The task of deriving an effi cient algorithm from a set of constraints for a particu-
lar problem is non-trivial, and to date this step has not been successfully automated.
Fifth-generation languages are used mainly in academia.

16.2 Plankalkül

 The earliest high-level programming language was Plankalkül developed by Konrad
Zuse in 1946. It means ‘Plan’ and ‘Kalkül’ or, in other words, a calculus of pro-
grams. It is a relatively modern language for a language developed in 1946. There
was no compiler for the language at the time, and it was only 50 years later that a
compiler was fi nally developed for the language. The Free University of Berlin
designed and developed a compiler in 2000, and the fi rst Plankalkül program was
run over 50 years after its conception.

 The language employs data structures and Boolean algebra and includes a mech-
anism to defi ne more powerful data structures. Zuse demonstrated that the Plankalkül
language could be used to solve scientifi c and engineering problems, and he wrote
several example programs including programs for sorting lists and searching a list
for a particular entry. The main features of Plankalkül are:

 – A high-level language.
 – Fundamental data types are arrays and tuples of arrays.
 – While construct for iteration.
 – Conditionals are addressed using guarded commands.
 – There is no GOTO statement.
 – Programs are non-recursive functions.
 – Type of a variable is specifi ed when it is used.

 The main constructs of the language are variable assignment, arithmetical and
logical operations, guarded commands and while loops. There are also some list and
set processing functions.

16.3 Imperative Programming Languages

 Imperative programming is a programming style that describes computation in
terms of a program state and statements that change the program state. The term
 imperative is a command to carry out a specifi c instruction or action. Similarly,
imperative programming consists of a set of commands to be executed on the com-
puter, and it is therefore concerned with how the program will be executed. The
execution of an imperative command generally results in a change of state.

 Imperative programming languages are quite distinct from functional and logical
programming languages . Functional programming languages, like Miranda, have
no global state, and programs consist of mathematical functions that have no side

16 History of Programming Languages

193

effects. In other words, there is no change of state, and the variable x will have the
same value later in the program as it does earlier. Logical programming languages,
like Prolog, defi ne what is to be computed, rather than how the computation is to
take place.

 Most commercial programming languages are imperative languages, with inter-
est in functional programming languages and relational programming languages
being mainly academic. Imperative programs tend to be more diffi cult to reason
about due to the change of state. Assembly languages and machine code are impera-
tive languages.

 High-level imperative languages use program variables and employ commands
such as assignment statements, conditional commands, iterative commands and
calls to procedures. An assignment statement performs an operation on information
located in memory and stores the results in memory. The effect of an assignment
statement is a change of the program state. A conditional statement allows a state-
ment to be executed only if a specifi ed condition is satisfi ed. Iterative statements
allow a statement (or group of statements) to be executed a number of times.

 High-level imperative languages allow the evaluation of complex expressions.
These may consist of arithmetic operations and function evaluations, and the result-
ing value of the expression is assigned to memory.

 FORTRAN was developed in the mid-1950s, and it was one of the earliest pro-
gramming languages. ALGOL was developed in the late 1950s and 1960s, and it
became a popular language for the expression of algorithms. COBOL was designed
in the late 1950s as a programming language for business use. George Kemeny and
Thomas Kurtz designed the BASIC (Beginner’s All-purpose Symbolic Instruction
Code) programming language in 1963. Niklaus Wirth developed Pascal in the early
1970s as a teaching language. Denis Ritchie at Bell Labs developed the C program-
ming language in the early 1970s.

 The Ada programming language was developed for the US military in the early
1980s. Object-oriented languages are imperative but include features to support
objects. Bjarne Stroustrup designed C++ in 1985 as an object-oriented extension of
the C language. Sun Microsystems released Java in 1996.

16.3.1 FORTRAN and COBOL

 FORTRAN (FORmula TRANslator) was the fi rst high-level programming language
to be implemented. John Backus at IBM developed it in the mid-1950s, and the fi rst
compiler was available in 1957. The language includes named variables, complex
expressions and subprograms. It was designed for scientifi c and engineering appli-
cations and remains the most important programming language for these domains.
The main statements of the language include:

 – Assignment statements (using the = symbol)
 – IF statements
 – GOTO statements
 – DO loops

16.3 Imperative Programming Languages

194

 Fortran II was developed in 1958, and it introduced subprograms and functions
to support procedural (or imperative) programming. Each procedure (or subroutine)
contains computational steps to be carried out when it is called (at any point) during
program execution. This could include calls by other procedures or by itself.
However, recursion was not allowed until FORTRAN 90. FORTRAN 2003 pro-
vides support for object-oriented programming.

 The basic types supported in FORTRAN include Boolean, integer and real.
Support for double precision and complex numbers was added later. The language
included relational operators for equality (.EQ.), less than (.LT.), and so on.
FORTRAN is good at handling numbers and computation, and this is especially
useful for mathematical and engineering problems. The following code (written in
FORTRAN 77) gives a fl avour of the language.

 PROGRAM HELLOWORLD

 C FORTRAN 77 SOURCE CODE COMMENTS FOR HELLOWORLD
 PRINT ‘(A)’, ‘HELLO WORLD’
 STOP
 END

 FORTRAN remains a popular scientifi c programming language for application
such as climate modelling, simulations of the solar system, modelling the trajecto-
ries of artifi cial satellites and simulation of automobile crash dynamics.

 Fig. 16.1 Grace Murray and UNIVAC

16 History of Programming Languages

195

 It was initially weak at handling input and output, which was important to busi-
ness computing. This led to the development of the COBOL programming language
in the late 1950s.

 The Common Business Oriented Language (COBOL) was the fi rst business pro-
gramming language, and it was introduced in 1959. Grace Murray Hopper 4
(Fig. 16.1) and a group of computer professionals called the Conference on Data
Systems Languages (CODASYL) designed it with the objective of improving the
readability of software source code. It has an English-like syntax designed to make
it easy to learn the language. The only data types in the language were numbers and
strings of text, and these may be grouped into arrays and records. The language is
verbose: DIVIDE A BY B GIVING C REMAINDER D

 COBOL was the fi rst computer language whose use was mandated by the US
Department of Defense. The language remains in use today, and there is an object-
oriented version of the language.

16.3.2 ALGOL

 ALGOL (ALGOrithmic Language) is a family of imperative programming lan-
guages, and it was originally developed in the mid-1950s and later revised in
ALGOL 60 and ALGOL 68. It was designed to address some of the problems in
FORTRAN, but it was not widely used. This may have been due to the refusal of
IBM to support ALGOL and the dominance of IBM in the computing fi eld.

 A committee of American and European computer scientists designed the lan-
guage, and it had a signifi cant infl uence on later language design. ALGOL 60
[Nau:60] was the most popular member of the family, and Edsger Dijkstra devel-
oped an early ALGOL 60 compiler. John Backus and Peter Naur developed a
method for describing the syntax of the ALGOL 58 programming language, which
is known as Backus-Naur Form (or BNF).

 ALGOL includes data structures and block structures. Block structures were
designed to allow blocks of statements to be created (e.g. for procedures or func-
tions). A variable defi ned within a block may be used within the block but is out of
scope outside of the block.

 ALGOL 60 introduced two ways of passing parameters to subprograms, and
these are call by value and call by name . The call by value parameter passing tech-
nique involves the evaluation of the arguments of a function or procedure before the
function or procedure is entered. The values of the arguments are passed to the func-
tion or procedure, and any changes to the arguments within the called function or
procedure have no effect on the actual arguments. The call by name parameter pass-
ing technique is the default parameter passing technique in ALGOL 60. It involves
re-evaluating the actual parameter expression each time the formal parameter is
read. Call by name is used today in C/C++ macro expansion.

4 Mary Hopper was a programmer on the Mark I, Mark II, Mark III and UNIVAC 1 computers. She
was the technical advisor to the CODASYL committee.

16.3 Imperative Programming Languages

196

 ALGOL 60 includes conditional statements and iterative statements. It supports
recursions: i.e. it allows a function or procedure to call itself. It includes:

• Dynamic arrays. These are arrays in which the subscript range is specifi ed by
variables.

• Reserved words. These are keywords that are not allowed to be used as identifi ers
by the programmer.

• User-defi ned data types. These allow the user to design their own data types.
• ALGOL uses bracketed statement blocks and it was the fi rst language to use

 begin-end pairs for delimiting blocks.

 ALGOL was used mainly by researchers in the United States and Europe. There
was a lack of interest to its adoption by commercial companies due to the absence
of standard input and output facilities in its description. ALGOL 60 became the
standard for the publication of algorithms, and it had a major infl uence on later
language development.

 ALGOL evolved during the 1960s but not in the right direction. The ALGOL 68
committee decided on a very complex design rather than the simple and elegant
ALGOL 60 specifi cation. Tony Hoare remarked that:

 ALGOL 60 was a great improvement on its successors.

16.3.3 Pascal and C

 Niklaus Wirth designed the Pascal programming language in the early 1970s. It is
named after Blaise Pascal (a seventeenth-century French mathematician), and it was
based on the ALGOL programming language. It was intended as a language to
teach students structured programming.

 Structured programming [Dij:68] is concerned with rigorous techniques to design
and develop programs, and there was intense debate on correct approaches to soft-
ware development in the late 1960s. Dijkstra argued against the use of the GOTO
statement ‘GOTO Statement considered harmful’ [Dij:68], and this infl uenced lan-
guage design and led to several languages that did not include the GOTO statement.

 The Pascal language includes constructs such as the conditional if statement; the
iterative while, repeat and for statements; the assignment statement; and the case
statement (which is a generalized if statement). The statement in the body of the
repeat statement is executed at least once, whereas the statement within the body of
a while statement may never be executed.

 The language has several reserved words (known as keywords) that have a spe-
cial meaning, and these may not be used as program identifi ers. The Pascal program
that displays ‘Hello World’ is given by:

 program HELLOWORLD (OUTPUT);

 begin
 WRITELN ('Hello, World!')
 end .

16 History of Programming Languages

197

 Pascal includes several simple data types such as Boolean, integer, character and
real. It also allows more advanced data types including arrays, enumeration types,
ordinal types and pointer data types. It allows complex data types to be constructed
from existing data types. Types are introduced by the reserved word ‘type’.

 type

 c = record

 a: integer;

 b: char
 end ;

 Pascal includes a ‘pointer’ data type, and this data type allows linked lists to be
created by including a pointer type fi eld in the record. The variable LINKLIST is a
pointer to the data type B in the example below where B is a record:

 type

 BPTR = ^B;

 B = record

 A : integer;

 C : BPTR

 end ;

 var

 LINKLIST : BPTR;

 Pascal is a block-structured language with programs structured into procedures
and function blocks. These can be nested to any depth, and recursion is allowed.
Each block has its own constants, types, variables and other procedures and func-
tions, which are defi ned, within the scope of the block.

 Pascal was criticized as being unsuitable for serious programming by Brian
 Kernighan and others [Ker:81]. Many of these defi ciencies were addressed in later
versions of the language. However, by then Denis Richie at Bell Labs had developed
the C programming language, which became popular in industry. It is a general-
purpose and a systems programming language.

 It was originally designed as a language to write the kernel for the UNIX operat-
ing system. This was novel as operating systems were traditionally written in assem-
bly languages. The success of C in writing the UNIX kernel led to its use on several
other operating systems such as Windows and Linux. It also infl uenced later lan-
guage development such as C++, and it is one of the most commonly used system
programming languages. The language is described in detail in [KeR:78].

 The language provides high-level and low-level capabilities, and a C program
that is written in ANSI C with portability in mind may be compiled for a very wide
variety of computer platforms and operating systems with minimal changes to the
source code. The C language is now available on a wide range of platforms.

16.3 Imperative Programming Languages

198

 C is a procedural programming language and includes conditional statements
such as the ‘if statement’, the ‘switch statement’, iterative statements such as the
‘while’ statement or ‘do’ statement and the assignment statement.

• If statement
 if (A == B)

 A = A + 1;

 else

 A = A – 1; 5
• Assignment statement

 i = i + 1;

One of the fi rst programs that people write in C is the Hello World program. This is
given by:

 main()

 {

 printf("Hello, World\n");

 }

 It includes several predefi ned data types including integers and fl oating-point
numbers.

 – int (integer)
 – long (long integer)
 – fl oat (fl oating-point real)
 – double (double-precision real)

 It allows more complex data types to be created using ‘structs’, which are similar
to records in Pascal. It allows the use of pointers to access memory locations, which
allows the memory locations to be directly referenced and modifi ed. The result of
the following example is to assign 5 to the variable x:

 int x;
 int *ptr_x;

 x = 4;
 ptr_x = &x;

 *ptr_x =5;

 C is a block-structured language, and a program is structured into functions (or
blocks). Each function block contains its own variables and functions. A function
may call itself (i.e. recursion is allowed).

5 The semi-colon in Pascal is used as a statement separator, whereas it is used as a statement termi-
nator in C.

16 History of Programming Languages

199

 One key criticism of C is that it is very easy to make errors in C programs and to
thereby produce undesirable results. For example, one of the easiest mistakes to make
is to accidentally write the assignment operator (=) for the equality operator (==). This
totally changes the meaning of the original statement as can be seen below:

 if (a == b)

 a++; …. Program fragment A
 else

 a--
 if (a = b)

 a++; …. Program fragment B

 else

 a--

 Both program fragments are syntactically correct and the intended meaning of a
program is easily changed. The philosophy of C is to allow statements to be written
as concisely as possible, and this is potentially dangerous. 6 The use of pointers
potentially leads to problems as uninitialized pointers may point anywhere in mem-
ory and may therefore write anywhere in memory. Therefore, the effective use of C
requires experienced programmers, well-documented source code and formal peer
reviews of the source code by other developers.

16.4 Object-Oriented Languages

 The traditional view of programming is that a program is a collection of functions
or a list of instructions to be performed on the computer. Object-oriented program-
ming is a paradigm shift in programming, where a computer program is considered
to be a collection of objects that act on each other. Each object is capable of sending
and receiving messages and processing data. That is, each object may be viewed as
an independent entity or actor with a distinct role or responsibility.

 An object is a black box which sends and receives messages . A black box con-
sists of code (computer instructions) and data (information which these instructions
operate on). The traditional way of programming kept code and data separate. For
example, functions and data structures in the C programming language are not con-
nected. However, in the object-oriented world, code and data are merged into a
single indivisible thing called an object .

 The reason that an object is called a black box is that the user of an object never
needs to look inside the box, since all communication to it is done via messages.
Messages defi ne the interface to the object. Everything an object can do is repre-
sented by its message interface. Therefore, there is no need to know anything about
what is in the black box (or object) in order to use it. The access to an object is only

6 It is very easy to write incomprehensible code in C and even one line of C code can be incompre-
hensible. The maintenance of poorly written code is a challenge unless programmers follow good
programming practice. This discipline needs to be enforced by formal reviews of the source code.

16.4 Object-Oriented Languages

200

through its messages, while keeping the internal details private. This is called infor-
mation hiding 7 and is due to work by Parnas in the early 1970s.

 The origins of object-oriented programming go back to the invention of Simula
67 at the Norwegian Computing Research Centre 8 in the late 1960s. It introduced
the notion of a class and instances of a class. 9 Simula 67 infl uenced later languages
such as the Smalltalk object-oriented language developed at Xerox PARC in the
mid-1970s. Xerox introduced the term object-oriented programming for the use of
objects and messages as the basis for computation. Most modern programming lan-
guages support object-oriented programming (e.g. Java and C++), and object-
oriented features are added to many existing languages such as BASIC, FORTRAN
and Ada. The main features of object-oriented languages are described in Table 16.1 .

7 Information hiding is a key contribution by Parnas to computer science. He has also done work
on mathematical approaches to software quality using tabular expressions [ORg:06].
8 The inventors of Simula 67 were Ole-Johan Dahl and Kristen Nygaard.
9 Dahl and Nygaard were working on ship simulations and were attempting to address the huge
number of combinations of different attributes from different types of ships. Their insight was to
group the different types of ships into different classes of objects, with each class of objects being
responsible for defi ning its own data and behaviour.

 Table 16.1 Object-oriented paradigm

 Feature Description

 Class A class defi nes the abstract characteristics of a thing, including its
attributes (or properties), and its behaviours (or methods). The
members of a class are termed objects

 Object An object is a particular instance of a class with its own set of
attributes. The set of values of the attributes of a particular object is
called its state

 Method The methods associated with a class represent the behaviours of the
objects in the class

 Message passing Message passing is the process by which an object sends data to
another object or asks the other object to invoke a method

 Inheritance A class may have subclasses (or children classes) that are more
specialized versions of the class. A subclass inherits the attributes and
methods of the parent class. This allows the programmer to create new
classes from existing classes. The derived classes inherit the methods
and data structures of the parent class

 Encapsulation
(information hiding)

 One fundamental principle of the object-oriented world is
encapsulation (or information hiding). The internals of an object are
kept private to the object and may not be accessed from outside the
object. That is, encapsulation hides the details of how a particular
class works and it requires a clearly specifi ed interface around the
services provided

 Abstraction Abstraction simplifi es complexity by modelling classes and removing
all unnecessary detail. All essential detail is represented, and
non-essential information is ignored.

 Polymorphism Polymorphism is behaviour that varies depending on the class in
which the behaviour is invoked. Two or more classes may react
differently to the same message. The same name is given to methods
in different subclasses, i.e. one interface, and multiple methods

16 History of Programming Languages

201

 Object-oriented programming has become popular in large-scale software devel-
opment, and it became the dominant paradigm in programming from the early
1990s. Its proponents argue that it is easier to learn and simpler to develop and
maintain such programs. Its growth in popularity was helped by the rise in popular-
ity of graphical user interfaces (GUI), which is well suited to object-oriented pro-
gramming. The C++ programming language has become popular, and it is an
object-oriented extension of the C programming language.

16.4.1 C++ and Java

 Bjarne Stroustrup developed the C++ programming language in 1983 as an object-
oriented extension of the C programming language. It was designed to use the
power of object-oriented programming and to maintain the speed and portability of
C. It provides a signifi cant extension of C’s capabilities, but it does not force the
programmer to use the object-oriented features of the language.

 A key difference between C++ and C is the concept of a class. A class is an
extension to the C concept of a structure. The main difference is that while a C data
structure can hold only data, a C++ class may hold both data and functions. An
 object is an instantiation of a class: i.e. the class is essentially the type, whereas the
object is essentially a variable of that type. Classes are defi ned in C++ by using the
keyword class:

 class class_name

 {

 access_specifi er_1:
 member1;
 access_specifi er_2:
 member2;

 …

 }

 The members may be either data or function declarations, and an access specifi er
is included to specify the access rights for each member (e.g. private, public or pro-
tected). Private members of a class are accessible only by other members of the
same class; public members are accessible from anywhere where the object is visi-
ble; protected members are accessible by other members of the same class and also
from members of their derived classes. An example of a class in C++ is the defi ni-
tion of the class rectangle:

 class CRectangle

 {

 int x, y;

 public:

 void set_values (int,int);

 int area (void);
 } rect;

16.4 Object-Oriented Languages

202

 Java is an object-oriented programming language developed by James Gosling
and others at Sun Microsystems in the early 1990s. C and C++ infl uenced the syntax
of the language, and the language was designed with portability in mind. The objec-
tive is for a program to be written once and executed anywhere. Platform indepen-
dence is achieved by compiling the Java code into Java bytecode, which are
simplifi ed machine instructions specifi c to the Java platform.

 This code is then run on a Java virtual machine (JVM) that interprets and exe-
cutes the Java bytecode. The JVM is specifi c to the native code on the host hard-
ware. The problem with interpreting bytecode is that it is slow compared to
traditional compilation. However, Java has a number of techniques to address this
including just in time compilation and dynamic recompilation. Java also provides
automatic garbage collection. This is a very useful feature as it protects program-
mers who forget to deallocate memory (thereby causing memory leaks).

 Java is a proprietary standard that is controlled through the Java Community
Process. Sun Microsystems makes most of its Java implementations available with-
out charge. The following is an example of the Hello World program written in
Java:

 class HelloWorld

 {

 public static void main (String args[])

 {

 System.out.println ("Hello World!");

 }
}

16.5 Functional Programming Languages

 Functional programming is quite distinct from imperative programming in that it
involves the evaluation of mathematical functions . Imperative programming
involves the execution of sequential (or iterative) commands that change the state.
For example, the assignment statement alters the value of a variable, and the value
of a given variable x may change during program execution.

 There are no changes of state for functional programs. The fact that the value of
 x will always be the same makes it easier to reason about functional programs than
imperative programs. Functional programming languages provide referential trans-
parency : i.e. equals may be substituted for equals, and if two expressions have equal
values, then one can be substituted for the other in any larger expression without
affecting the result of the computation.

16 History of Programming Languages

203

 Functional programming languages use higher-order functions, 10 recursion, lazy
and eager evaluation, monads 11 and Hindley-Milner-type inference systems. 12 These
languages are mainly being used in academia, but there has been some industrial use,
including the use of Erlang for concurrent applications in industry. Alonzo Church
developed lambda calculus in the 1930s, and it provides an abstract framework for
describing mathematical functions and their evaluation. It provides the foundation
for functional programming languages. Church employed lambda calculus to prove
that there is no solution to the decision problem for fi rst-order arithmetic in 1936.

 Lambda calculus uses transformation rules, and one of these rules is variable sub-
stitution. The original calculus developed by Church was untyped, but typed lambda
calculi have since been developed. Any computable function can be expressed and
evaluated using lambda calculus, but there is no general algorithm to determine
whether two arbitrary lambda calculus expressions are equivalent. Lambda calculus
infl uenced functional programming languages such as LISP , ML and Haskell .

 Functional programming uses the notion of higher-order functions . Higher-order
functions take other functions as arguments and may return functions as results. The
derivative function d / dx f (x) = f ’(x) is a higher-order function. It takes a function as
an argument and returns a function as a result. For example, the derivative of the
function Sin(x) is given by Cos(x). Higher-order functions allow currying which is
a technique developed by Schönfi nkel. It allows a function with several arguments
to be applied to each of its arguments one at a time, with each application returning
a new (higher-order) function that accepts the next argument. This allows a function
of n arguments to be treated as n applications of a function with one argument.

 John McCarthy developed LISP at MIT in the late 1950s, and this language
includes many of the features found in modern functional programming languag-
es. 13 Scheme built upon the ideas in LISP. Kenneth Iverson developed APL 14 in the
early 1960s, and this language infl uenced Backus’s FP programming language.
Robin Milner designed the ML programming language in the early 1970s. David
Turner developed Miranda in the mid-1980s . The Haskell programming language
was released in the late 1980s.

10 Higher-order functions are functions that take functions as arguments or return a function as a
result. They are known as operators (or functionals) in mathematics, and one example is the deriv-
ative function dy / dx that takes a function as an argument and returns a function as a result.
11 Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of uses this
feature.
12 This is the most common algorithm used to perform type inference. Type inference is concerned
with determining the type of the value derived from the eventual evaluation of an expression.
13 Lisp is a multi-paradigm language rather than a functional programming language.
14 Iverson received the Turing Award in 1979 for his contributions to programming language and
mathematical notation. The title of his Turing Award paper was ‘Notation as a tool of thought’.

16.5 Functional Programming Languages

204

16.5.1 Miranda

 Miranda was developed by David Turner at the University of Kent in the mid-1980s
[Turn:85]. It is a non-strict functional programming language: i.e. the arguments to
a function are not evaluated until they are actually required within the function
being called. This is also known as lazy evaluation, and one of its main advantages
is that it allows infi nite data structures to be passed as an argument to a function.
Miranda is a pure functional language in that there are no side effect features in the
language. The language has been used for:

 – Rapid prototyping
 – Specifi cation language
 – Teaching language

 A Miranda program is a collection of equations that defi ne various functions and
data structures. It is a strongly typed language with a terse notation.

 z = sqr p / sqr q
 sqr k = k * k

 p = a + b
 q = a - b
 a = 10
 b = 5

 The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the defi nition of the function in which it occurs.

 One of the most common data structures used in Miranda is the list. The empty
list is denoted by [], and an example of a list of integers is given by [1, 3, 4, 8]. Lists
may be appended to by using the ‘++’ operator. For example,

 [1, 3, 5] ++ [2, 4] is [1, 3, 5, 2, 4].

The length of a list is given by the ‘#’ operator:

 # [1, 3] = 2

The infi x operator ‘:’ is employed to prefi x an element to the front of a list. For
example,

 5 : [2, 4, 6] is equal to [5, 2, 4, 6]

The subscript operator ‘!’ is employed for subscripting. For example,

 Nums = [5,2,4,6] then Nums!0 is 5.

The elements of a list are required to be of the same type. A sequence of elements
that contains mixed types is called a tuple. A tuple is written as follows:

16 History of Programming Languages

205

 Employee = (“Holmes”, “222 Baker St. London”, 50, “Detective”)

A tuple is similar to a record in Pascal whereas lists are similar to arrays. Tuples
cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function:

 fac 0 = 1

fac (n + 1) = (n + 1) * fac n

The defi nition of the factorial function uses two equations, distinguished by the
use of different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists:

 reverse [] = []

reverse (a:x) = reverse x ++ [a]

 Miranda is a higher-order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed and this allows a function of
 n arguments to be treated as n applications of a function with one argument. Function
application is left associative: i.e. f x y means (f x) y. That is, the result of applying
the function f to x is a function, and this function is then applied to y . Every function
with two or more arguments in Miranda is a higher-order function.

16.5.2 Lambda Calculus

 Lambda calculus (λ- calculus) was designed by Alonzo Church in the 1930s to study
computability. It is a formal system that may be used to study function defi nition,
function application, parameter passing and recursion. It may be employed to defi ne
what a computable function is, and any computable function may be expressed and
evaluated using the calculus.

 The lambda calculus is equivalent to the Turing machine formalism. However,
lambda calculus emphasizes the use of transformation rules, whereas Turing
machines are concerned with computability on primitive machines. Lambda calcu-
lus consists of a small set of rules:

 Alpha-conversion rule (α-conversion) 15
 Beta-reduction rule (β-reduction) 16
 Eta-conversion (η-conversion) 17

15 This essentially expresses that the names of bound variables is unimportant.
16 This essentially expresses the idea of function application.
17 This essentially expresses the idea that two functions are equal if and only if they give the same
results for all arguments.

16.5 Functional Programming Languages

206

 Every expression in the λ- calculus stands for a function with a single argument.
The argument of the function is itself a function with a single argument and so on.
The defi nition of a function is anonymous in the calculus. For example, the function
that adds one to its argument is usually defi ned as f (x) = x + 1. However, in λ- calculus
the function is defi ned as:

l lx x. .+ +()1 1or equivalentlyas z z

 The name of the formal argument x is irrelevant and an equivalent defi nition of
the function is λ z. z + 1. The evaluation of a function f with respect to an argument
(e.g. 3) is usually expressed by f (3). In λ- calculus this would be written as (λ x. x + 1)
3, and this evaluates to 3 + 1 = 4. Function application is left associative : i.e. f x y = (f
x) y . A function of two variables is expressed in lambda calculus as a function of one
argument, which returns a function of one argument. This is known as currying and
has been discussed earlier. For example, the function f(x , y) = x + y is written as λ x .
λ y. x + y . This is often abbreviated to λ x y. x + y .

 λ-Calculus is a simple mathematical system and its syntax is defi ned as
follows:

<exp>::= < identifi er> |

 λ < identifi er > . < exp> | --abstraction

 <exp > <exp> | --application

 (<exp>)

 -- Syntax of Lambda Calculus --

 λ -Calculus’s four lines of syntax plus conversion rules are suffi cient to defi ne
B ooleans , integers , data structures and computations on them. It inspired LISP and
modern functional programming languages.

16.6 Logic Programming Languages

 Logic programming languages describe what is to be done, rather than how it should
be done. These languages are concerned with the statement of the problem to be
solved, rather than how the problem will be solved.

 These languages use mathematical logic as a tool in the statement of the problem
defi nition. Logic is a useful tool in developing a body of knowledge (or theory), and
it allows rigorous mathematical deduction to derive further truths from the existing
set of truths. The theory is built up from a small set of axioms or postulates and rules
of inference derive further truths logically.

 The objective of logic programming is to employ mathematical logic to assist
with computer programming. Many problems are naturally expressed as a theory,
and the statement of a problem to be solved is often equivalent to determining if a
new hypothesis is consistent with an existing theory. Logic provides a rigorous way
to determine this, as it includes a rigorous process for conducting proof.

16 History of Programming Languages

207

 Computation in logic programming is essentially logical deduction, and logic
programming languages use fi rst-order 18 predicate calculus. It employs theorem
proving to derive a desired truth from an initial set of axioms. These proofs are
constructive 19 in the sense that an actual object that satisfi es the constraints is pro-
duced, rather than a reliance on a theoretical existence theorem. Logic program-
ming specifi es the objects, the relationships between them and the constraints that
must be satisfi ed for the problem.

 – The set of objects involved in the computation
 – The relationships that hold between the objects
 – The constraints of the particular problem

 The language interpreter decides how to satisfy the particular constraints.
 Artifi cial intelligence infl uenced the development of logic programming, and J ohn
McCarthy 20 demonstrated that mathematical logic could be used for expressing
knowledge. The fi rst logic programming language was Planner developed by Carl
Hewitt at MIT in 1969. It uses a procedural approach for knowledge representation
rather than McCarthy’s declarative approach.

 The best-known logic programming languages is Prolog, which was developed
in the early 1970s by Alain Colmerauer and Robert Kowalski . It stands for pro gram-
ming in log ic. It is a goal-oriented language that is based on predicate logic. Prolog
became an ISO standard in 1995. The language attempts to solve a goal by tackling
the subgoals that the goal consists of:

 goal :- subgoal 1 , …, subgoal n .

 That is, in order to prove a particular goal, it is suffi cient to prove subgoal 1
through subgoal n . Each line of a Prolog program consists of a rule or a fact, and the
language specifi es what exists rather than how. The following program fragment
has one rule and two facts:

 grandmother(G,S) :- parent(P,S), mother(G,P).
mother(sarah, isaac).

parent(isaac, jacob).

18 First-order logic allows quantifi cation over objects but not functions or relations. Higher-order
logics allow quantifi cation of functions and relations.
19 For example, the statement ∃ x such that x = √4 states that there is an x such that x is the square
root of 4, and the constructive existence yields that the answer is that x = 2 or x - -2, i.e. constructive
existence provides more the truth of the statement of existence, and an actual object satisfying the
existence criteria is explicitly produced.
20 John McCarthy received the Turing Award in 1971 for his contributions to artifi cial intelligence.
He also developed the programming language LISP.

16.6 Logic Programming Languages

208

 The fi rst line in the program fragment is a rule that states that G is the grand-
mother of S if there is a parent P of S and G is the mother of P. The next two state-
ments are facts stating that isaac is a parent of jacob, and that sarah is the mother of
isaac. A particular goal clause is true if all of its subclauses are true:

 goalclause(V g) :- clause 1 (V 1),..,clause m (V m)

 A Horn clause consists of a goal clause and a set of clauses that must be proven
separately. Prolog fi nds solutions by unifi cation: i.e. by binding a variable to a value.
For an implication to succeed, all goal variables V g on the left side of :- must fi nd a
solution by binding variables from the clauses which are activated on the right side.
When all clauses are examined and all variables in V g are bound, the goal succeeds.
But if a variable cannot be bound for a given clause, then that clause fails. Following
the failure, Prolog backtracks , and this involves going back to the left to previous
clauses to continue trying to unify with alternative bindings. Backtracking gives
Prolog the ability to fi nd multiple solutions to a given query or goal.

 Most logic programming languages use a simple searching strategy to consider
alternatives:

 If a goal succeeds and there are more goals to achieve, then remember any untried
alternatives and go on to the next goal.

 If a goal is achieved and there are no more goals to achieve, then stop with
success.

 If a goal fails and there are alternative ways to solve it, then try the next one.
 If a goal fails and there are no alternate ways to solve it, and there is a previous goal,

then go back to the previous goal.
 If a goal fails and there are no alternate ways to solve it, and no previous goal, then

stop with failure.

 Constraint programming is a programming paradigm where relations between
variables can be stated in the form of constraints. Constraints specify the properties
of the solution and differ from the imperative programming languages in that they
do not specify the sequence of steps to execute.

16.7 Syntax and Semantics

 There are two key parts to any programming language, namely, its syntax and
 semantics . The syntax is the grammar of the language, and a program needs to be
syntactically correct with respect to its grammar. The semantics of the language is
deeper and determines the meaning of what has been written by the programmer.
The semantics of a language determines what a syntactically valid program will
compute. A programming language is therefore given by:

 Programming Language = Syntax + Semantics

16 History of Programming Languages

209

 The theory of the syntax of programming languages is well established, and
Backus-Naur Form 21 (BNF) is employed to specify the grammar of languages. The
grammar of a language may be input into a parser, which determines whether the
program is syntactically correct. Chomsky 22 defi ned a hierarchy of grammars (regular,
context-free, context sensitive). A BNF specifi cation consists of a set of rules such as

 <symbol>::= < expression with symbols>

where < symbol > is a nonterminal and the expression consists of sequences of sym-
bols and/or sequences separated by the vertical bar ‘|’ which indicates a choice.
Symbols that never appear on a left side are called terminals. The partial defi nition
of the syntax of various statements in a programming language is given below:

 <loop statement> ::= < while loop > | < for loop>
 <while loop> ::= while () < statement>

 <for loop> ::= for () < statement>

 ::= < assignment statement> | < loop statement>
 <assignment statement> ::= < variable> := < expression>

 The example above includes various nonterminals (<loop statement>, <while
loop>, <for loop>, <condition>, <expression>, <statement>, <assignment state-
ment> and < variable>) . The terminals include ‘while’, ‘for’, ‘:=’, ‘(’ and ‘)’. The
production rules for < condition > and < expression > are not included.

 There are various types of grammars such as regular grammars, context-free
grammars and context-sensitive grammars. A parser translates the grammar of a
language into a parse table. Each type of grammar has its own parsing algorithm to
determine whether a particular program is valid with respect to its grammar.

16.7.1 Programming Language Semantics

 The formal semantics of a programming language is concerned with the meaning of
programs. A program is written according to the rules of the language, and the com-
piler then checks that it is syntactically correct, and if so, it generates the equivalent
machine code. 23

 The compiler must preserve the semantics of the language, and the syntax of the
language gives no information as to the meaning of a program. It is possible to write
syntactically correct programs that behave in quite a different way from the inten-
tions of the programmer.

21 Backus-Naur Form is named after John Backus and Peter Naur. It was created as part of the
design of ALGOL 60 and used to defi ne the syntax rules of the language.
22 Chomsky made important contributions to linguistics and the theory of grammars. He is more
widely known today as a critic of US foreign policy.
23 Of course, what the programmer has written may not be what the programmer had intended.

16.7 Syntax and Semantics

210

 The formal semantics of a language is given by a mathematical model, which
describes the possible computations described by the language. The three main
approaches to programming language semantic are axiomatic semantics , opera-
tional semantics and denotational semantics. A short summary of each approach is
described in Table 16.2 , and more detailed information is in [ORg:06 , ORg:12].

16.8 Review Questions

 1. Describe the fi ve generations of programming languages.
 2. Describe the early use of machine code.
 3. Describe the early use of assembly languages.
 4. Describe the key features of Fortran and COBOL.
 5. Describe the key features of Pascal and C.
 6. Discuss the key features of object-oriented languages.
 7. Explain the differences between imperative programming languages and

functional programming languages.
 8. What are the key features of logic programming languages?
 9. What is the difference between syntax and semantics?
 10. Explain the main approaches to programming language semantics.

 Table 16.2 Programming language semantics

 Approach Description

 Axiomatic
semantics

 Axiomatic semantics involves giving meaning to phrases of the language
with logical axioms. This approach is based on mathematical logic, and it
employs pre and post condition assertions to specify what happens when
the statement executes. The relationship between the initial assertion and
the fi nal assertion essentially gives the semantics of the code

 Operational
semantics

 The operational semantics for a programming language was developed by
Gordon Plotkin [Plo:81]. It describes how a valid program is interpreted
by a sequence of computational steps

 An abstract machine (SECD machine) may be defi ned to give meaning to
phrases, by describing the transitions they induce on states of the
machine

 A precise mathematical interpreter (such as the lambda calculus) may
also give the semantics

 Denotational
semantics

 Denotational semantics (originally called mathematical semantics)
provides meaning to programs in terms of mathematical objects such as
integers, tuples and functions

 Each phrase in the language is translated into a mathematical object that is
the denotation of the phrase. Christopher Strachey and Dana Scott
developed it in the mid-1960s

16 History of Programming Languages

211

16.9 Summary

 This chapter considered the evolution of programming languages from the older
machine languages, to the low-level assembly languages, to high-level program-
ming languages and object-oriented languages, to functional and logic program-
ming languages. Finally, the syntax and semantics of programming languages were
briefl y discussed.

 The advantages of the machine languages are execution speed and effi ciency. It
is diffi cult to write programs in these languages, as the program involves a stream
of binary numbers. These languages were not portable, as the machine language for
one computer may differ signifi cantly from the machine language of another.

 The second-generation languages, or 2GLs, are low-level assembly languages
that are specifi c to a particular computer and processor. These are easier to write and
understand, but they must be converted into the actual machine code to run on the
computer. The assembly language is specifi c to a particular processor family and
environment and is therefore not portable. However, their advantages are execution
speed, as the assembly language is the native language of the processor.

 The third-generation languages, or 3GLs, are high-level programming languages.
They are general-purpose languages and have been applied to business, scientifi c
and general applications. They are designed to be easier to understand and to allow
the programmer to focus on problem solving. Their advantages include ease of read-
ability and portability and ease of debugging and maintenance. The early 3GLs
were procedure oriented and the later 3GLs were object oriented.

 Fourth-generation languages, or 4GLs, are languages that consist of statements
similar to human language. Most fourth-generation languages are non-procedural
and are often used in database programming. They specify what needs to be done
rather than how it should be done, and they have been used as report generators and
form generators.

 Fifth-generation programming languages or 5GLs, are programming languages
that is based around solving problems using logic programming or applying con-
straints to the program. They are designed to make the computer (rather than the
programmer) solve the problem. The programmer only needs to be concerned with
the specifi cation of the problem and the constraints to be satisfi ed and does not need
to be concerned with the algorithm or implementation details.

16.9 Summary

	16: History of Programming Languages
	16.1	 Introduction
	16.2	 Plankalkül
	16.3	 Imperative Programming Languages
	16.3.1	 FORTRAN and COBOL
	16.3.2	 ALGOL
	16.3.3	 Pascal and C

	16.4	 Object-Oriented Languages
	16.4.1	 C++ and Java

	16.5	 Functional Programming Languages
	16.5.1	 Miranda
	16.5.2	 Lambda Calculus

	16.6	 Logic Programming Languages
	16.7	 Syntax and Semantics
	16.7.1	 Programming Language Semantics

	16.8	 Review Questions
	16.9	 Summary

