
Undergraduate Topics in Computer Science

Gerard O'Regan

Introduction
to the History
of Computing
A Computing History Primer

 Undergraduate Topics in Computer Science

Series Editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifi cal Catholic University of Rio de Janeiro, Rio de Janeiro,
Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby,
Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

 ‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to fi nal-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fi elds, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

 More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592

 Gerard O’Regan

 Introduction to the
History of Computing
 A Computing History Primer

 Gerard O’Regan
 Mallow , CK , Ireland

 ISSN 1863-7310 ISSN 2197-1781 (electronic)
 Undergraduate Topics in Computer Science
 ISBN 978-3-319-33137-9 ISBN 978-3-319-33138-6 (eBook)
 DOI 10.1007/978-3-319-33138-6

 Library of Congress Control Number: 2016938793

 © Springer International Publishing Switzerland 2016
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 This Springer imprint is published by Springer Nature
 The registered company is Springer International Publishing AG Switzerland

 To
 Pilar Cuitino Tride
 In memory
 of a beautiful week in Valparaiso

vii

 Overview

 The objective of this book is to provide a concise introduction to the history of
computing. The computing fi eld is a vast area and a comprehensive account of its
history would require several volumes. The goals of this book are more modest, and
it aims to give the reader a fl avour of some of the important events in the history of
computing and to stimulate the reader to study the more advanced articles and books
that are available.

 Organization and Features

 The fi rst chapter provides an introduction to analog and digital computers and the
von Neumann architecture which is the fundamental architecture underlying a digi-
tal computer. Chapter 2 considers the contributions of early civilizations to the com-
puting fi eld, and we discuss the achievements of the Babylonians, Egyptians, Greeks
and Romans and the Islamic civilization.

 Chapter 3 provides an introduction to the foundations of computing, and we
discuss the binary number system and the step reckoner calculating machine, which
were invented by Leibniz. Babbage designed the difference engine as a machine to
evaluate polynomials, and his analytic engine provided the vision of a modern com-
puter. Boole was an English mathematician who made important contributions to
mathematics and logic, and Boole’s symbolic logic provided the foundation for
digital computing.

 Chapter 4 discusses the fi rst digital computers including the Atanasoff-Berry
computer developed in the United States, the ENIAC and EDVAC computers devel-
oped in the United States, the Colossus computer developed in England, Zuse’s
computers developed in Germany and the Manchester Mark I computer developed
in England.

 Chapter 5 discusses the fi rst commercial computers including UNIVAC devel-
oped by EMCC/Sperry in the United States, the LEO I computer developed by
J. Lyons and Co. in England, the Z4 computer developed by Zuse KG in Germany
and the Ferranti Mark I computer developed by Ferranti in England.

 Pref ace

http://dx.doi.org/10.1007/978-3-319-33138-6_2
http://dx.doi.org/10.1007/978-3-319-33138-6_3
http://dx.doi.org/10.1007/978-3-319-33138-6_4
http://dx.doi.org/10.1007/978-3-319-33138-6_5

viii

 Chapter 6 discusses early commercial computers including the IBM 701 and 704
computers. We discuss the SAGE air defence system, which used the AN/FSQ-7
computer, which was developed by IBM. We discuss the invention of the transistor
by William Shockley and others at Bell Labs and early transistor computers.

 Chapter 7 discusses the invention of the integrated circuit by Jack Kilby at Texas
Instruments and subsequent work by Robert Noyce at Fairchild Semiconductors on
silicon-based integrated circuits. Moore’s law on the exponential growth of transis-
tor density on an integrated circuit is discussed, as well as its relevance to the com-
puting power of electronic devices.

 Chapter 8 is concerned with the development of the IBM System/360 and its
infl uence on later computer development. The System/360 was a family of main-
frame computers, and the user could start with a low specifi cation member of the
family and upgrade over time to a more powerful member of the family. It was the
start of an era of computer compatibility, and it set IBM on the road to dominate the
computing fi eld for the next 20 years. It was a massive $5 billion gamble by IBM,
and it moved the company from its existing product lines to the unknown world of
the System/360.

 Chapter 9 discusses later mainframes and minicomputers, including DEC’s
PDP-1, PDP-11 and VAX-11/780 minicomputers, which were popular with the
engineering and scientifi c communities. We discuss Amdahl’s mainframe comput-
ers such as the Amdahl 470 V/6 and the intense competition between IBM and
Amdahl. DEC became the second largest computer company in the world in the late
1980s, but it was too slow in reacting to the rise of the microprocessor and the revo-
lution in home computers.

 Chapter 10 is concerned with the revolutionary invention of the microprocessor
and discusses early microprocessors such as the Intel 4004, the 8-bit Intel 8080 and
the 8-bit Motorola 6800. The 16-bit Intel 8086 was introduced in 1978, and the
16/32-bit Motorola 68000 was released in 1979. The 8-bit Intel 8088 (the cheaper
8-bit variant of the Intel 8086) was introduced in 1979, and it was chosen as the
microprocessor for the IBM personal computer.

 Chapter 11 discusses home computers such as the Apple I and II home comput-
ers, which were released in 1976 and 1977, respectively. We discuss the Commodore
PET computer, which was introduced in 1977, and the Atari 400 and 800 comput-
ers, which were released in 1979. The Commodore 64 computer became very popu-
lar after its introduction in 1982. The Sinclair ZX 81 and ZX spectrum computers
were released in 1980 and 1981, respectively, and the Apple Macintosh was released
in 1984.

 Chapter 12 discusses the introduction of the IBM personal computer, which was
a major milestone in the computing fi eld. IBM’s goal was to get into the home com-
puter market as quickly as possible, and this led IBM to build the machine from
off-the-shelf parts from a number of equipment manufacturers. IBM outsourced the
development of the operating system to a small company called Microsoft, and Intel
was chosen to supply the microprocessor for the IBM PC. The open architecture of
the IBM PC led to a new industry of IBM compatible computers.

Preface

http://dx.doi.org/10.1007/978-3-319-33138-6_6
http://dx.doi.org/10.1007/978-3-319-33138-6_7
http://dx.doi.org/10.1007/978-3-319-33138-6_8
http://dx.doi.org/10.1007/978-3-319-33138-6_9
http://dx.doi.org/10.1007/978-3-319-33138-6_10
http://dx.doi.org/10.1007/978-3-319-33138-6_11
http://dx.doi.org/10.1007/978-3-319-33138-6_12

ix

 Chapter 13 presents a short history of telecommunications, and it focuses on the
development of mobile phone technology. The development of the AXE system by
Ericsson is discussed, and this was the fi rst fully automated digital switching sys-
tem. We discuss the concept of a cellular system, which was introduced by Bell
Labs, as well as the introduction of the fi rst mobile phone, the DynaTAC, by
Motorola.

 Chapter 14 describes the Internet revolution starting from ARPANET, which was
a packet-switched network, to TCP/IP, which is a set of network standards for inter-
connecting networks and computers. These developments led to the birth of the
Internet, and Tim Berners-Lee’s work at CERN led to the birth of the World Wide
Web. Applications of the World Wide Web are discussed, as well as successful and
unsuccessful new technology companies. The dot-com bubble and subsequent burst
of the late 1990s/early 2000s are discussed.

 Chapter 15 discusses the invention of the smartphone and the rise of social
media. It describes the evolution of the smartphone from PDAs and mobile phone
technology, and a smartphone is essentially a touch-based computer on a phone.
The impact of Facebook and Twitter in social networking is discussed. Facebook is
the leading social media site in the world, and it has become a way for young people
to discuss their hopes and aspirations as well as a tool for social protest and revolu-
tion. Twitter has become a popular tool in political communication, and it is also an
effective way for businesses to advertise its brand to its target audience.

 Chapter 16 presents a short history of programming languages, starting from
machine languages to assembly languages, to early high-level procedural languages
such as FORTRAN and COBOL, to later high-level languages such as Pascal and C
and to object-oriented languages such as C++ and Java. Functional programming
languages and logic programming languages are discussed, and there is a short dis-
cussion on the important area of syntax and semantics.

 Chapter 17 presents a short history of operating systems including the IBM
OS/360, which was the operating system for the IBM System/360 family of com-
puters. We discuss the MVS and VM operating systems, which were used on the
IBM System/370 mainframe computer. Ken Thompson and Dennis Ritchie devel-
oped the popular UNIX operating system in the early 1970s. This is a multi-user and
multitasking operating system and was written almost entirely in C. DEC developed
the VAX/VMS operating system in the late 1970s for its VAX family of minicom-
puters. Microsoft developed MS/DOS for the IBM personal computer in 1981, and
it introduced Windows as a response to the Apple Macintosh. There is a short dis-
cussion on Android and i OS, which are popular operating systems for mobile
devices.

 Chapter 18 presents a short history of software engineering from its birth at the
Garmisch conference in Germany. The IEEE defi nition of software engineering is
discussed, and it is emphasized that software engineering is a lot more than just
programming. We discuss the key challenges in software engineering, as well as a
number of the high-profi le software failures. The waterfall and spiral lifecycles are
discussed, as well a brief discussion on the Rational Unifi ed Process and the popular

Preface

http://dx.doi.org/10.1007/978-3-319-33138-6_13
http://dx.doi.org/10.1007/978-3-319-33138-6_14
http://dx.doi.org/10.1007/978-3-319-33138-6_15
http://dx.doi.org/10.1007/978-3-319-33138-6_16
http://dx.doi.org/10.1007/978-3-319-33138-6_17
http://dx.doi.org/10.1007/978-3-319-33138-6_18

x

Agile methodology. We discuss the key activities in the waterfall model such as
requirements, design, implementation, unit, system and acceptance testing.

 Chapter 19 presents a short history of artifi cial intelligence, and we discuss the
Turing test, which is a test of machine intelligence, describing it as strong and weak
AI, where strong AI considers an AI programmed computer to be essentially a
mind, whereas weak AI considers a programmed computer as simulating thought
without real understanding. We discuss Searle’s Chinese room argument, which is a
rebuttal of strong AI. We discuss Weizenbaum’s views on the ethics of AI and philo-
sophical issues in AI. We discuss logic, neural networks and expert systems.

 Chapter 20 presents a short history of databases including a discussion of the
hierarchical and network models. We discuss the relational model as developed by
Codd at IBM in more detail, as most databases used today are relational. There is a
short discussion on the SQL query language and on the Oracle database.

 Audience

 The main audience of this book is computer science students who are interested in
learning about the history of computing fi eld. The book will also be of interest to the
general reader who is curious about the history of computing.

 Acknowledgements

 I am deeply indebted to friends and family who supported my efforts in this endeav-
our. I would like to pay a special thanks to Pilar Cuitino Tride (to whom this book
is dedicated). It was my privilege to meet her and to share special times with her in
Valparaiso.

 I would like to express my thanks to the team at Springer for their consistent
professional work and a special thanks to Wayne Wheeler and Simon Rees.

 I would like to thank all copyright owners for the permission to use their images.
I believe that all of the required permissions have been obtained, but in the unlikely
event that an image has been used without the appropriate authorization, please
contact me so that the required permission can be obtained.

 Cork, Ireland Gerard O’Regan

Preface

http://dx.doi.org/10.1007/978-3-319-33138-6_19
http://dx.doi.org/10.1007/978-3-319-33138-6_20

xi

 Contents

 1 What Is a Computer? ... 1
 1.1 Introduction .. 1
 1.2 Analog Computers ... 2
 1.3 Digital Computers .. 3
 1.3.1 Vacuum Tubes ... 4
 1.3.2 Transistors ... 5
 1.3.3 Integrated Circuits .. 6
 1.3.4 Microprocessors.. 7
 1.4 Von Neumann Architecture .. 8
 1.5 Hardware and Software .. 10
 1.6 Review Questions ... 10
 1.7 Summary .. 11

 2 Computing in Early Civilizations .. 13
 2.1 Introduction .. 14
 2.2 The Babylonians... 16
 2.3 The Egyptians... 18
 2.4 The Greeks ... 21
 2.5 The Romans ... 28
 2.6 Islamic Infl uence .. 31
 2.7 Chinese and Indian Mathematics ... 34
 2.8 Review Questions ... 35
 2.9 Summary .. 36

 3 Foundations of Computing ... 37
 3.1 Introduction .. 38
 3.2 Step Reckoner Calculating Machine .. 38
 3.3 Binary Numbers ... 40
 3.4 The Difference Engine ... 41
 3.5 The Analytic Engine: Vision of a Computer 43
 3.5.1 Applications of Analytic Engine..................................... 45
 3.6 Boole’s Symbolic Logic ... 46
 3.6.1 Switching Circuits and Boolean Algebra........................ 49

xii

 3.7 Application of Symbolic Logic to Digital Computing 49
 3.8 Review Questions ... 52
 3.9 Summary .. 52

 4 The First Digital Computers .. 55
 4.1 Introduction .. 55
 4.2 Harvard Mark I ... 56
 4.3 Atanasoff-Berry Computer ... 58
 4.4 ENIAC and EDVAC ... 60
 4.4.1 EDVAC ... 62
 4.4.2 Controversy Between the ABC and ENIAC 64
 4.5 Bletchley Park and Colossus .. 64
 4.5.1 Colossus .. 65
 4.6 Zuse’s Machines ... 67
 4.6.1 Z1, Z2 and Z3 Machines... 68
 4.7 University of Manchester ... 69
 4.7.1 Manchester Mark I.. 70
 4.8 Review Questions ... 72
 4.9 Summary .. 72

 5 The First Commercial Computers... 73
 5.1 Introduction .. 73
 5.2 UNIVAC ... 74
 5.3 LEO I Computer ... 75
 5.4 The Z4 Computer ... 77
 5.5 Ferranti Mark I ... 78
 5.6 CSIRAC Computer .. 79
 5.7 Review Questions ... 80
 5.8 Summary .. 80

 6 Early Commercial Computers
and the Invention of the Transistor ... 83

 6.1 Introduction .. 83
 6.2 Early IBM Computers .. 84
 6.3 The SAGE System ... 86
 6.4 Invention of the Transistor ... 88
 6.5 Early Transistor Computers.. 90
 6.6 Review Questions ... 90
 6.7 Summary .. 91

 7 The Invention of the Integrated Circuit
and the Birth of Silicon Valley ... 93

 7.1 Introduction .. 94
 7.2 Invention of Integrated Circuit ... 94
 7.2.1 Moore’s Law ... 97
 7.3 Early Integrated Circuit Computers ... 97

Contents

xiii

 7.4 Birth of Silicon Valley .. 98
 7.5 Review Questions ... 100
 7.6 Summary .. 100

 8 The IBM System/360 ... 101
 8.1 Introduction .. 102
 8.2 Background to the Development of System/360 103
 8.3 The IBM System/360 ... 104
 8.4 Review Questions ... 106
 8.5 Summary .. 107

 9 Minicomputers and Later Mainframes .. 109
 9.1 Introduction .. 110
 9.2 DEC’s Minicomputers .. 110
 9.2.1 PDP-11.. 112
 9.2.2 The VAX-11/780 ... 112
 9.3 The War Between IBM and Amdahl .. 113
 9.4 Review Questions ... 116
 9.5 Summary .. 116

 10 The Microprocessor Revolution ... 119
 10.1 Introduction .. 120
 10.2 Invention of the Microprocessor .. 120
 10.3 Early Microprocessors ... 122
 10.4 A Selection of Semiconductor Companies 123
 10.5 Review Questions ... 125
 10.6 Summary .. 125

 11 Home Computers .. 127
 11.1 Introduction .. 128
 11.2 Xerox Alto Personal Computer .. 128
 11.3 MITS Altair 8800 ... 129
 11.4 Apple I and II Home Computers .. 131
 11.5 Commodore PET .. 132
 11.6 Atari 400 and 800 ... 133
 11.7 Commodore 64 ... 134
 11.8 Sinclair ZX 81 and ZX Spectrum... 135
 11.9 Apple Macintosh .. 137
 11.10 Later Commodore and Atari Machines .. 139
 11.11 Review Questions ... 141
 11.12 Summary .. 141

 12 The IBM Personal Computer... 143
 12.1 Introduction .. 144
 12.2 The IBM Personal Computer ... 144
 12.3 Operating System for IBM PC ... 147
 12.4 Review Questions ... 149
 12.5 Summary .. 149

Contents

xiv

 13 A Short History of Telecommunications ... 151
 13.1 Introduction .. 152
 13.2 AXE System ... 153
 13.3 Development of Mobile Phone Standards 155
 13.4 Development of Mobile Phone Technology 156
 13.5 The Iridium Satellite System .. 159
 13.6 Review Questions ... 160
 13.7 Summary .. 161

 14 The Internet Revolution ... 163
 14.1 Introduction .. 163
 14.2 The ARPANET ... 165
 14.3 TCP/IP .. 167
 14.4 Birth of the Internet .. 168
 14.5 Birth of the World Wide Web ... 168
 14.6 Applications of the World Wide Web ... 170
 14.7 Dot-Com Companies .. 171
 14.7.1 Dot-Com Failures ... 173
 14.7.2 Business Models ... 174
 14.7.3 Bubble and Burst .. 175
 14.8 E-Commerce Security .. 177
 14.9 Review Questions ... 178
 14.10 Summary .. 178

 15 The Smartphone and Social Media ... 179
 15.1 Introduction .. 180
 15.2 Evolution of the Smartphone ... 180
 15.3 The Facebook Revolution .. 182
 15.4 The Tweet ... 184
 15.5 Review Questions ... 186
 15.6 Summary .. 186

 16 History of Programming Languages ... 189
 16.1 Introduction .. 189
 16.2 Plankalkül ... 192
 16.3 Imperative Programming Languages ... 192
 16.3.1 FORTRAN and COBOL .. 193
 16.3.2 ALGOL ... 195
 16.3.3 Pascal and C .. 196
 16.4 Object-Oriented Languages ... 199
 16.4.1 C++ and Java .. 201
 16.5 Functional Programming Languages ... 202
 16.5.1 Miranda ... 204
 16.5.2 Lambda Calculus .. 205
 16.6 Logic Programming Languages ... 206

Contents

xv

 16.7 Syntax and Semantics .. 208
 16.7.1 Programming Language Semantics 209
 16.8 Review Questions ... 210
 16.9 Summary .. 211

 17 History of Operating Systems .. 213
 17.1 Introduction .. 214
 17.2 OS/360.. 215
 17.3 MVS ... 216
 17.4 VM ... 217
 17.5 VMS ... 218
 17.6 UNIX .. 218
 17.7 MS/DOS ... 219
 17.8 Microsoft Windows .. 220
 17.9 Mobile Operating Systems ... 221
 17.10 Review Questions ... 222
 17.11 Summary .. 222

 18 History of Software Engineering ... 225
 18.1 Introduction .. 226
 18.2 What Is Software Engineering? ... 228
 18.3 Challenges in Software Engineering .. 231
 18.4 Software Processes and Life Cycles .. 232
 18.4.1 Waterfall Life Cycle ... 233
 18.4.2 Spiral Life Cycles ... 234
 18.4.3 Rational Unifi ed Process .. 235
 18.4.4 Agile Development ... 236
 18.5 Activities in Waterfall Life Cycle ... 238
 18.5.1 Business Requirements Defi nition.................................. 238
 18.5.2 Specifi cation of System Requirements 239
 18.5.3 Design ... 240
 18.5.4 Implementation ... 240
 18.5.5 Software Testing ... 241
 18.5.6 Maintenance.. 242
 18.6 Software Inspections .. 243
 18.7 Software Project Management ... 244
 18.8 CMMI Maturity Model .. 245
 18.9 Formal Methods ... 245
 18.10 Review Questions ... 246
 18.11 Summary .. 247

 19 History of Artificial Intelligence .. 249
 19.1 Introduction .. 250
 19.2 Descartes .. 250

Contents

xvi

 19.3 The Field of Artifi cial Intelligence ... 254
 19.3.1 Turing Test and Strong AI .. 256
 19.3.2 Ethics and AI .. 259
 19.4 Philosophy and AI .. 260
 19.5 Cognitive Psychology .. 262
 19.6 Computational Linguistics ... 264
 19.7 Cybernetics ... 265
 19.8 Logic and AI ... 265
 19.9 Computability, Incompleteness and Decidability 266
 19.10 Robots .. 267
 19.11 Neural Networks .. 268
 19.12 Expert Systems ... 270
 19.13 Review Questions ... 272
 19.14 Summary .. 272

 20 History of Databases ... 275
 20.1 Introduction .. 275
 20.2 Hierarchical and Network Models ... 276
 20.3 The Relational Model ... 278
 20.4 Structured Query Language (SQL) .. 281
 20.5 Oracle Database ... 282
 20.6 Review Questions ... 283
 20.7 Summary .. 283

 Glossary ... 285

 References .. 289

 Index ... 293

Contents

xvii

 List of Figures

 Fig. 1.1 Vannevar Bush with the differential analyser 3
 Fig. 1.2 Replica of transistor .. 5
 Fig. 1.3 William Shockley .. 6
 Fig. 1.4 Intel 4004 microprocessor ... 8
 Fig. 1.5 Von Neumann architecture .. 9
 Fig. 1.6 Fetch/execute cycle ... 10

 Fig. 2.1 The Plimpton 322 tablet .. 17
 Fig. 2.2 Geometric representation of (a + b) 2 = (a 2 + 2 ab + b 2) 18
 Fig. 2.3 Egyptian numerals .. 19
 Fig. 2.4 Egyptian representation of a number .. 20
 Fig. 2.5 Egyptian representation of a fraction .. 20
 Fig. 2.6 Eratosthenes measurement of the circumference of the Earth 24
 Fig. 2.7 Plato and Aristotle ... 27
 Fig. 2.8 Julius Caesar ... 29
 Fig. 2.9 Roman numbers .. 30
 Fig. 2.10 Caesar cipher ... 30
 Fig. 2.11 Mohammed Al-Khwarizmi ... 32
 Fig. 2.12 Al-Azhar University, Cairo ... 33

 Fig. 3.1 Wilhelm Gottfried Leibniz .. 39
 Fig. 3.2 Replica of step reckoner at Technische

Sammlungen Museum, Dresden ... 40
 Fig. 3.3 Charles Babbage ... 42
 Fig. 3.4 Difference engine no. 2 ... 43
 Fig. 3.5 Lady Ada Lovelace ... 45
 Fig. 3.6 George Boole .. 46
 Fig. 3.7 Binary AND operation .. 50
 Fig. 3.8 Binary OR operation ... 50
 Fig. 3.9 NOT operation .. 50
 Fig. 3.10 Half-adder ... 50
 Fig. 3.11 Claude Shannon .. 51

 Fig. 4.1 Howard Aiken ... 57
 Fig. 4.2 Harvard Mark I (IBM ASCC) ... 57

xviii

 Fig. 4.3 John Atanasoff with components of ABC 58
 Fig. 4.4 Replica of ABC ... 59
 Fig. 4.5 Setting the switches on ENIAC’s function tables 61
 Fig. 4.6 Replacing a valve on ENIAC .. 62
 Fig. 4.7 The EDVAC computer .. 63
 Fig. 4.8 Tommy Flowers .. 64
 Fig. 4.9 Colossus Mark 2 ... 66
 Fig. 4.10 Konrad Zuse .. 67
 Fig. 4.11 Zuse and the reconstructed Z3 .. 69
 Fig. 4.12 Replica of the Manchester Baby ... 70
 Fig. 4.13 The Manchester Mark I ... 71

 Fig. 5.1 UNIVAC I computer ... 75
 Fig. 5.2 LEO I computer .. 76
 Fig. 5.3 The Z4 computer ... 77
 Fig. 5.4 Ferranti Mark I .. 79
 Fig. 5.5 CSIRAC .. 80

 Fig. 6.1 IBM 701 .. 85
 Fig. 6.2 IBM 704 .. 86
 Fig. 6.3 SAGE .. 87
 Fig. 6.4 William Shockley .. 88
 Fig. 6.5 Replica of transistor .. 89

 Fig. 7.1 Jack Kilby c. 1958 ... 95
 Fig. 7.2 First integrated circuit ... 96
 Fig. 7.3 The DEC PDP-8/e ... 98
 Fig. 7.4 HP Palo Alto garage, birthplace of Silicon Valley 99

 Fig. 8.1 IBM System/360 ... 104
 Fig. 8.2 Gene Amdahl .. 105
 Fig. 8.3 Fred Brooks ... 105

 Fig. 9.1 The PDP-1 computer ... 111
 Fig. 9.2 PDP-11 .. 113
 Fig. 9.3 VAX-11/780 .. 114
 Fig. 9.4 Amdahl 5860 ... 115

 Fig. 10.1 Intel 4004 microprocessor ... 121
 Fig. 10.2 Motorola 6800 microprocessor ... 122

 Fig. 11.1 Xerox Alto ... 129
 Fig. 11.2 MITS Altair computer ... 130
 Fig. 11.3 Apple II computer ... 131
 Fig. 11.4 Commodore PET 2001 home computer 133
 Fig. 11.5 The Atari 800 home computer .. 134
 Fig. 11.6 Commodore 64 home computer .. 135
 Fig. 11.7 ZX Spectrum ... 136

List of Figures

xix

 Fig. 11.8 Apple Macintosh computer ... 138
 Fig. 11.9 Amiga 500 home computer (1987) ... 139
 Fig. 11.10 Atari 1040 ST home computer .. 140

 Fig. 12.1 Don Estridge ... 145
 Fig. 12.2 IBM personal computer .. 145

 Fig. 13.1 AXE system .. 154
 Fig. 13.2 Frequency reuse in cellular networks .. 155
 Fig. 13.3 Martin Cooper re-enacts DynaTAC call .. 157
 Fig. 13.4 Iridium system .. 159

 Fig. 14.1 Vannevar Bush .. 164
 Fig. 14.2 Dow Jones (1995–2002) ... 176
 Fig. 14.3 NASDAQ (1995–2002) ... 176

 Fig. 15.1 Apple iPhone 4 .. 182
 Fig. 15.2 Mark Zuckerberg ... 183
 Fig. 15.3 Jack Dorsey at the 2012 Time 100 Gala 184

 Fig. 16.1 Grace Murray and UNIVAC ... 194

 Fig. 17.1 Virtual machine operating system ... 217
 Fig. 17.2 Android 6.0 ... 221

 Fig. 18.1 Standish report – results of 1995 and 2009 survey 227
 Fig. 18.2 Standish 1998 report – estimation accuracy 231
 Fig. 18.3 Waterfall V life cycle model ... 234
 Fig. 18.4 SPIRAL life cycle model. Public domain 235

 Fig. 19.1 Rene Descartes .. 251
 Fig. 19.2 Brain in a VAT thought experiment ... 252
 Fig. 19.3 John McCarthy .. 255
 Fig. 19.4 Searle’s Chinese room ... 258

 Fig. 20.1 Simple part/supplier—network model .. 277
 Fig. 20.2 Simple part/supplier—hierarchical model 277
 Fig. 20.3 Edgar Codd ... 279
 Fig. 20.4 PART relation .. 280
 Fig. 20.5 Domains vs. attributes ... 280

List of Figures

xxi

 List of Tables

 Table 1.1 Von Neumann architecture ... 9

 Table 2.1 Syllogisms: relationship between terms 28

 Table 3.1 Binary number system .. 41
 Table 3.2 Analytic engine ... 43

 Table 14.1 TCP layers .. 167
 Table 14.2 Features of World Wide Web .. 169
 Table 14.3 Characteristics of e-commerce ... 171
 Table 14.4 Characteristics of business models ... 174

 Table 16.1 Object-oriented paradigm ... 200
 Table 16.2 Programming language semantics .. 210

 Table 19.1 Laws of Robotics .. 268
 Table 19.2 Expert systems .. 270

1© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_1

 1 What Is a Computer?

 Abstract
 This chapter provides an introduction to computing, and a computer is a pro-
grammable electronic device that can process, store and retrieve data. It pro-
cesses data according to a set of instructions (or program), and all computers
consist of two basic parts, namely, hardware and software . There are two distinct
families of computing devices, namely, digital computers and the historical ana-
log computer . These two types of computer operate on quite different principles,
and the earliest computers were analog. We discuss the von Neumann architec-
ture, which is the fundamental architecture underlying a digital computer.

1.1 Introduction

 Computers are an integral part of modern society and new technology has trans-
formed the modern world into a global village. Communication today is conducted
using text messaging, mobile phones, video calls over the Internet, email and social

 Key Topics
 Analog computers
 Digital computers
 Vacuum tubes
 Transistors
 Integrated circuits
 Von Neumann architecture
 Generation of computers
 Hardware
 Software

2

media sites such as Facebook. New technology allows people to keep in touch with
friends and family around the world, and the World Wide Web allows businesses to
compete in a global market.

 A computer is a programmable electronic device that can process, store and
retrieve data. It processes data according to a set of instructions or program. All
computers consist of two basic parts, namely, hardware and software . The hardware
is the physical part of the machine, and the components of a digital computer include
memory for short-term storage of data or instructions, an arithmetic/logic unit for
carrying out arithmetic and logical operations, a control unit responsible for the
execution of computer instructions in memory and peripherals that handle the input
and output operations. Software is a set of instructions that tells the computer what
to do.

 The original meaning of the word computer referred to someone who carried out
calculations rather than an actual machine. The early digital computers built in the
1940s and 1950s were enormous machines consisting of thousands of vacuum
tubes. They typically fi lled a large room, but their computational power was a frac-
tion of the personal computers used today.

 There are two distinct families of computing devices, namely, digital computers
and the historical analog computer . The earliest computers were analog not digital,
and these two types of computer operate on quite different principles.

 The computation in a digital computer is based on binary digits, i.e. ‘0’ and ‘1’.
Electronic circuits are used to represent binary numbers, with the state of an electri-
cal switch (i.e. ‘on’ or ‘off’) representing a binary digit internally within a
computer.

 A digital computer is a sequential device that generally operates on data one step
at a time. The data are represented in binary format, and a single transistor is used
to represent a binary digit in a digital computer. Several transistors are required to
store larger numbers. The earliest digital computers were developed in the 1940s.

 An analog computer operates in a completely different way to a digital com-
puter. The representation of data in an analog computer refl ects the properties of the
data that are being modelled. For example, data and numbers may be represented by
physical quantities such as electric voltage in an analog computer, whereas a stream
of binary digits represents them in a digital computer.

1.2 Analog Computers

 James Thompson (who was the brother of the physicist Lord Kelvin) did early foun-
dational work on analog computation in the nineteenth century. He invented a wheel
and disc integrator, which was used in mechanical analog devices, and he worked
with Kelvin to construct a device to perform the integration of a product of two
functions. Kelvin later described a general-purpose analog machine (he did not
build it) for integrating linear differential equations of any order. He built a tide-
predicting analog computer that remained in use at the Port of Liverpool up to the
1960s.

1 What Is a Computer?

3

 The operations in an analog computer are performed in parallel, and they are
useful in simulating dynamic systems. They have been applied to fl ight simulation,
nuclear power plants and industrial chemical processes.

 Vannevar Bush at the Massachusetts Institute of Technology developed the fi rst
large-scale general-purpose mechanical analog computer. This machine was Bush’s
 differential analyser (Fig. 1.1), and it was a mechanical analog computer designed
to solve 6th-order differential equations by integration, using wheel-and-disc mech-
anisms to perform the integration. This mechanization allowed integration and dif-
ferential equation problems to be solved more rapidly. The machine took up the
space of a large table in a room and weighed 100 t.

 It contained wheels, discs, shafts and gears to perform the calculations. It required
a considerable set-up time by technicians to solve a particular equation. It contained
150 motors and miles of wires connecting relays and vacuum tubes.

 Data representation in an analog computer is compact, but it may be subject to cor-
ruption with noise. A single capacitor can represent one continuous variable in an ana-
log computer, whereas several transistors are required in a digital computer. Analog
computers were replaced by digital computers shortly after the Second World War.

1.3 Digital Computers

 Early digital computers used vacuum tubes to store binary information, and a vac-
uum tube could represent the binary value ‘0’ or ‘1’. These tubes were large and
bulky and generated a signifi cant amount of heat. Air conditioning was required to
cool the machine, and there were problems with the reliability of the tubes.

 Fig. 1.1 Vannevar Bush with the differential analyser

1.3 Digital Computers

4

 Shockley and others invented the transistor in the later 1940s, and it replaced
vacuum tubes from the late 1950s. Transistors are small and consume very little
power, and the resulting machines were smaller, faster and more reliable.

 Integrated circuits were introduced in the early 1960s, and a massive amount of
computational power could now be placed on a very small chip. Integrated circuits
are small and consume very little power and may be mass-produced to very high-
quality standard. However, integrated circuits are diffi cult to modify or repair and
nearly always need to be replaced.

 The fundamental architecture of a computer has remained basically the same
since von Neumann and others proposed it in the mid-1940s. It includes a central
processing unit which includes the control unit and the arithmetic unit, an input and
output unit and memory.

1.3.1 Vacuum Tubes

 A vacuum tube is a device that relies on the fl ow of an electric current through a
vacuum. Vacuum tubes (thermionic valves) were widely used in electronic devices
such as televisions, radios and computers until the invention of the transistor.

 The basic idea of a vacuum tube is that a current passes through the fi lament,
which then heats it up so that it gives off electrons. The electrons are negatively
charged and are attracted to the small positive plate (or anode) within the tube. A
unidirectional fl ow is thus established between the fi lament and the plate. Thomas
Edison had observed this while investigating the reason for breakage of lamp fi la-
ments. He noted an uneven blackening (darkest near one terminal of the fi lament) of
the bulbs in his incandescent lamps and noted that current fl ows from the lamp’s
fi lament and a plate within the vacuum.

 The fi rst generation of computers used several thousand bulky vacuum tubes,
with several racks of vacuum tubes taking up the space of a large room. The vacuum
tube used in the early computers was a three-terminal device, and it consisted of a
cathode, a grid and a plate. The vacuum tube was used to represent one of two
binary states: i.e. the binary value ‘0’ or ‘1’.

 The fi lament of a vacuum tube becomes unstable over time. In addition, if air
leaks into the tube, then oxygen will react with the hot fi lament and damage it. The
size and unreliability of vacuum tubes motivated research into more compact and
reliable technologies. This led to the invention of the transistor in the late 1940s.

 The fi rst generation of digital computers all used vacuum tubes: e.g. the
Atanasoff-Berry computer (ABC) developed at the University of Iowa in 1942; the
Colossus developed at Bletchley Park in 1944; ENIAC developed in the United
States in the mid-1940s; UNIVAC I developed in 1951; Whirlwind developed in
1951; and the IBM 701 developed in 1953.

1 What Is a Computer?

5

1.3.2 Transistors

 The transistor is a fundamental building block in modern electronic systems, and its
invention revolutionized the fi eld of electronics. It was smaller, cheaper and more
reliable than the existing vacuum tubes.

 The transistor is a three-terminal, solid-state electronic device. It can control
electric current or voltage between two of the terminals by applying an electric cur-
rent or voltage to the third terminal. The three-terminal transistor enables an electric
switch to be made which can be controlled by another electrical switch. Complicated
logic circuits may be built up by cascading these switches (switches that control
switches that control switches and so on).

 These logic circuits may be built very compactly on a silicon chip with a density
of a million transistors per square centimetre. The switches may be turned on and
off very rapidly (e.g. every 0.000000001 s). These electronic chips are at the heart
of modern electron devices.

 The transistor (Fig. 1.2) was developed at Bell Labs after the Second World War.
The goal of the research was to fi nd a solid-state alternative to vacuum tubes, as this
technology was too bulky and unreliable. Three inventors at Bell Labs (Shockley,
Bardeen and Brattain) were awarded the Nobel Prize in Physics in 1956 in recogni-
tion of their invention of the transistor.

 William Shockley (Fig. 1.3) was involved in radar research and antisubmarine
operations research during the Second World War, and after the war he led a research
group including Bardeen and Brattain to fi nd a solid-state alternative to the glass-
based vacuum tubes.

 Bardeen and Brattain succeeded in creating a point-contact transistor in 1947
independently of Shockley who was working on a junction-based transistor.

 Fig. 1.2 Replica of
transistor (Courtesy of
Lucent Bell Labs)

1.3 Digital Computers

6

Shockley believed that the point-contact transistor would not be commercially via-
ble, and his junction point transistor was announced in 1951.

 Shockley was not an easy person to work with and relations between him and the
others deteriorated. He formed Shockley Semiconductor Inc. (part of Beckman
Instruments) in 1955.

 The second generation of computers used transistors instead of vacuum tubes.
The University of Manchester’s experimental transistor computer was one of the
earliest transistor computers. The prototype machine appeared in 1953 and the full-
size version was commissioned in 1955. The invention of the transistor is discussed
in more detail in Chap. 6 .

1.3.3 Integrated Circuits

 Jack Kilby of Texas Instruments invented the integrated circuit in 1958. His invention
used a wafer of germanium, and Robert Noyce of Fairchild Semiconductors did subse-
quent work on silicon-based integrated circuits. The integrated circuit was a solution to
the problem of building a circuit with a large number of components, and the Nobel
Prize in Physics was awarded to Kirby in 2000 for his contribution to its invention.

 The idea was that instead of making transistors one by one, several transistors
could be made at the same time on the same piece of semiconductor. This allowed
transistors and other electronic components such as resistors, capacitors and diodes
to be made by the same process with the same materials.

 An integrated circuit consists of a set of electronic circuits on a small chip of
semiconductor material, and it is much smaller than a circuit made out of indepen-
dent components. Integrated circuits today are extremely compact and may contain

 Fig. 1.3 William Shockley
(Courtesy of Chuck
Painter. Stanford News
Service)

1 What Is a Computer?

http://dx.doi.org/10.1007/978-3-319-33138-6_6

7

billions of transistors and other electronic components in a tiny area. The width of
each conducting line has got smaller and smaller due to advances in technology over
the years, and it is now measured in tens of nanometres.

 The number of transistors per unit area has been doubling (roughly) every
1–2 years over the last 30 years. This amazing progress in circuit fabrication is
known as Moore’s law after Gordon Moore (one of the founders of Intel) who for-
mulated the law in the mid-1960s [ORg:13].

 Kilby was designing micromodules for the military, and this involved connecting
many germanium 1 wafers of discrete components together by stacking each wafer
on top of one another. The connections were made by running wires up the sides of
the wafers.

 Kilby saw this process as unnecessarily complicated and realized that if a piece
of germanium was engineered properly, it could act as many components simultane-
ously. This was the idea that led to the birth of the fi rst integrated circuit, and its
development involved miniaturizing transistors and placing them on silicon chips
called semiconductors. The use of semiconductors led to third-generation comput-
ers, with a major increase in speed and effi ciency.

 Users interacted with third-generation computers through keyboards and moni-
tors and interfaced with operating systems, which allowed the device to run many
different applications at one time with a central program that monitored the mem-
ory. Computers became accessible to a wider audience, as they were smaller and
cheaper than their predecessors. The invention of the integrated circuit is discussed
in more detail in Chap. 7 .

1.3.4 Microprocessor s

 The Intel 4004 microprocessor (Fig. 1.4) was the world’s fi rst microprocessor, and
it was released in 1969. It was the fi rst semiconductor device that provided, at the
chip level, the functions of a computer.

 The invention of the microprocessor happened by accident rather than design.
Busicom, a Japanese company, requested Intel to design a set of integrated circuits
for its new family of high-performance programmable calculators. Ted Hoff, an
Intel engineer, studied Busicom’s design and rejected it as unwieldy. He proposed a
more elegant solution requiring just four integrated circuits (Busicom’s required 12
integrated circuits), and his design included a chip that was a general-purpose logic
device that derived its application instructions from the semiconductor memory.
This was the Intel 4004 microprocessor.

 It provided the basic building blocks that are used in today’s microcomputers,
including the arithmetic and logic unit and the control unit. The 4-bit Intel 4004 ran
at a clock speed of 108 kHz and contained 2300 transistors. It processed data in 4

1 Germanium is an important semiconductor material used in transistors and other electronic
devices.

1.3 Digital Computers

http://dx.doi.org/10.1007/978-3-319-33138-6_7

8

bits, but its instructions were 8 bits long. It could address up to 1 Kb of program
memory and up to 4 Kb of data memory.

 Gary Kildall of Digital Research was one of the early people to recognize the
potential of a microprocessor as a computer in its own right. He worked as a consul-
tant with Intel, and he began writing experimental programs for the Intel 4004
microprocessor. He later developed the CP/M operating system for the Intel 8080
chip, and he set up Digital Research to market and sell the operating system.

 The development of the microprocessor led to the fourth generation of comput-
ers with thousands of integrated circuits placed onto a single silicon chip. A single
chip could now contain all of the components of a computer from the CPU and
memory to input and output controls. It could fi t in the palm of the hand, whereas
fi rst generation of computers fi lled an entire room. The invention of the micropro-
cessor is discussed in more detail in Chap. 10 .

1.4 Von Neumann Architecture

 The earliest computers were fi xed program machines that were designed to do a
specifi c task. This proved to be a major limitation as it meant that a complex manual
rewiring process was required to enable the machine to solve a different problem.

 The computers used today are general-purpose machines designed to allow a
variety of programs to be run on the machine. Von Neumann and others [VN:45]
described the fundamental architecture underlying the computers used today in the
late 1940s. It is known as von Neumann architecture (Fig. 1.5).

 Fig. 1.4 Intel 4004
microprocessor

1 What Is a Computer?

http://dx.doi.org/10.1007/978-3-319-33138-6_10

9

 Von Neumann architecture arose on work done by von Neumann, Eckert,
Mauchly and others on the design of the EDVAC computer, which was the succes-
sor to ENIAC computer. Von Neumann’s draft report on EDVAC [VN:45] described
the new architecture.

 Von Neumann architecture led to the birth of stored program computers, where a
single store is used for both machine instructions and data. The key components of
von Neumann architecture is described in Table 1.1 .

 The key approach to building a general-purpose device according to von
Neumann was in its ability to store not only its data and the intermediate results of
computation but also to store the instructions or commands for the computation.
The computer instructions can be part of the hardware for specialized machines, but
for general-purpose machines, the computer instructions must be as changeable as
the data that is acted upon by the instructions. His insight was to recognize that both
the machine instructions and data could be stored in the same memory.

 The key advantage of the von Neumann architecture over the existing approach
was that it was much simpler to reconfi gure a computer to perform a different task.

Memory

Control Unit
Arithmetic Logic

Unit

Input Output

Accumulator

 Fig. 1.5 Von Neumann
architecture

 Table 1.1 Von Neumann architecture

 Component Description

 Arithmetic unit The arithmetic unit is capable of performing basic arithmetic operations

 Control unit The program counter contains the address of the next instruction to be
executed. This instruction is fetched from memory and executed. This is the
basic fetch and execute cycle (Fig. 1.6)

 The control unit contains a built-in set of machine instructions

 Input-output
unit

 The input and output unit allows the computer to interact with the outside
world

 Memory The one-dimensional memory stores all of the program instructions and data.
These are usually kept in different areas of memory

 The memory may be written to or read from: i.e. it is a random access
memory (RAM)

 The program instructions are binary values, and the control unit decodes the
binary value to determine the particular instruction to execute

1.4 Von Neumann Architecture

10

All that was required was to enter new machine instructions in computer memory
rather than physically rewiring a machine as was required with ENIAC. The limita-
tions of von Neumann architecture include that it is limited to sequential processing
and not very suitable for parallel processing.

1.5 Hardware and Software

 Hardware is the physical part of the machine. It is tangible and may be seen or
touched. It includes punched cards, vacuum tubes, transistors and circuit boards,
integrated circuits and microprocessors. The hardware of a personal computer
includes a keyboard, network cards, a mouse, a DVD drive, hard disc drive, printers
and scanners and so on.

 Software is intangible and consists of a set of instructions that tells the computer
what to do. It is an intellectual creation of a programmer or a team of programmers.
Operating system software manages the computer hardware and resources and acts
as an intermediary between the application programs and the computer hardware.
Examples of operating systems include the OS/360 for the IBM System 360 main-
frame, the UNIX operating system, the various Microsoft Windows operating sys-
tem for the personal computer and the Mac operating system for the Macintosh
computer.

1.6 Review Questions

Memory

CPU
Accumulator

Fetch Execute

Decode (Instructions / Data)

 Fig. 1.6 Fetch/execute
cycle

 1. Explain the difference between analog and digital computers.
 2. Explain the difference between hardware and software.
 3. What is a microprocessor?
 4. Explain the difference between vacuum tubes, transistors and integrated

circuits.
 5. Explain von Neumann architecture.
 6. What are the advantages and limitations of the von Neumann

architecture?
 7. Explain the difference between a fi xed program machine and a stored pro-

gram machine.

1 What Is a Computer?

11

1.7 Summary

 A computer is a programmable electronic device that can process, store and retrieve
data. It processes data according to a set of instructions or program. All computers
consist of two basic parts, namely, the hardware and software . The hardware is the
physical part of the machine, whereas software is intangible and is the set of instruc-
tions that tells the computer what to do.

 There are two distinct families of computing devices, namely, digital computers
and the historical analog computer . These two types of computer operate on quite
different principles. The earliest digital computers were built in the 1940s, and these
were large machines consisting of thousands of vacuum tubes. However, their com-
putational power was a fraction of what is available today.

 A digital computer is a sequential device that generally operates on data one step
at a time. The data are represented in binary format, and a single transistor in a digi-
tal computer can store only two states: i.e. on and off. Several transistors are required
to store larger numbers.

 The representation of data in an analog computer refl ects the properties of the
data that is being modelled. For example, data and numbers may be represented by
physical quantities such as electric voltage in an analog computer. However, a
stream of binary digits represents the data in a digital computer.

1.7 Summary

13© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_2

2Computing in Early Civilizations

Abstract
This chapter considers the contributions of early civilizations to the computing
field, including the achievements of the Babylonians, Egyptians, Greeks and
Romans, and the Islamic world. The Babylonian civilization flourished in
Mesopotamia (in modern Iraq) from about 2000 B.C. until about 300 B.C., and
they made important contributions to mathematics. The Egyptian civilization
developed along the Nile from about 4000 B.C., and their knowledge of mathe-
matics allowed them to construct the pyramids at Giza as well as other impres-
sive monuments. The Greeks made major contributions to Western civilization
including mathematics, logic and philosophy. The golden age of Islamic civiliza-
tion was from 750 A.D. to 1250 A.D., and during this period enlightened caliphs
recognized the value of knowledge and sponsored scholars to come to Baghdad
to gather and translate the existing world knowledge into Arabic.

Key Topics
Babylonian mathematics
Egyptian civilization
Greek and Roman civilization
Counting and numbers
Solving practical problems
Syllogistic logic, algorithms and early ciphers

14

2.1	 �Introduction

It is difficult to think of western society today without modern technology. The last
decades of the twentieth century have witnessed a proliferation of high-tech com-
puters, mobile phones, text messaging, the Internet and the World Wide Web.
Software is now pervasive and it is an integral part of automobiles, airplanes, televi-
sions and mobile communication. The pace of change is relentless, and communica-
tion today is instantaneous with text messaging, mobile phones and email. Today
people may book flights over the World Wide Web as well as keeping in contact
with family members in any part of the world. In previous generations, communica-
tion often involved writing letters that took months to reach the recipient.
Communication improved with the telegraph and the telephone in the late nine-
teenth century, and the new generation probably views the world of their parents and
grandparents as being old fashioned.

The new technologies have led to major benefits1 to society and to improvements
in the standard of living for many citizens in the western world. It has also reduced
the necessity for humans to perform some of the more tedious or dangerous manual
tasks, as computers may now automate many of these. The increase in productivity
due to the more advanced computerized technologies has allowed humans, at least
in theory, the freedom to engage in more creative and rewarding tasks.

Some early societies had a limited vocabulary for counting: e.g. ‘one, two, three,
many’ is associated with a number of primitive societies and indicates limited
numerate and scientific abilities. It suggests that the problems dealt with in this
culture were elementary. These primitive societies generally employed their fingers
for counting, and as humans have five fingers on each hand and five toes on each
foot, then the obvious bases would have been 5, 10 and 20. Traces of the earlier use
of the base 20 system are still apparent in modern languages such as English and
French. This includes phrases such as three score in English and quatre vingt in
French.

The decimal system (base 10) is used today in western society, but the base 60
was common in early computation circa 1500 B.C. One example of the use of base
60 today is still evident in the subdivision of hours into 60 min and the subdivision
of minutes into 60 s. The base 60 system (i.e. the sexagesimal system) is inherited
from the Babylonians [Res:84], and the Babylonians were able to represent arbi-
trarily large numbers or fractions with just two symbols.

The achievements of some of these early civilizations are impressive. The
archaeological remains of ancient Egypt such as the pyramids at Giza and the tem-
ples of Karnak and Abu Simbel are inspiring. These monuments provide an
indication of the engineering sophistication of the ancient Egyptian civilization. The

1 Of course, while the new technologies are of major benefit to society, it is essential that the popu-
lation of the world moves towards more sustainable development to ensure the long-term survival
of the planet for future generations. This involves finding technological and other solutions to
reduce greenhouse gas emissions as well as moving to a carbon neutral way of life. The solution to
the environmental issues will be a major challenge for the twenty-first century.

2  Computing in Early Civilizations

15

objects found in the tomb of Tutankhamun2 are now displayed in the Egyptian
museum in Cairo and demonstrate the artistic skill of the Egyptians.

The Greeks made major contributions to western civilization including contribu-
tions to mathematics, philosophy, logic, drama, architecture, biology and democracy.3
The Greek philosophers considered fundamental questions such as ethics, the nature
of being, how to live a good life and the nature of justice and politics. The Greek
philosophers include Parmenides, Heraclitus, Socrates, Plato and Aristotle. The
Greeks invented democracy and their democracy was radically different from today’s
representative democracy.4 The sophistication of Greek architecture and sculpture is
evident from the Parthenon on the Acropolis and the Elgin marbles5 that are housed
today in the British Museum, London.

The Hellenistic6 period commenced with Alexander the Great and led to the
spread of Greek culture throughout most of the known world. The city of Alexandria
became a centre of learning during the Hellenistic period. Its scholars included
Euclid who provided a systematic foundation for geometry, and his famous work
The Elements consists of 13 books.

There are many words of Greek origin that are part of the English language.
These include words such as psychology which is derived from two Greek words
psyche (ψυχη) and logos (λογος). The Greek word psyche means mind or soul, and
the word logos means an account or discourse. Other examples are anthropology
derived from anthropos (ανθροπος) and logos (λογος).

The Romans were influenced by Greek culture, and they built aqueducts, via-
ducts and amphitheatres. They also developed the Julian calendar, formulated laws

2 Tutankhamun was a minor Egyptian pharaoh who reigned after the controversial rule of
Akhenaten. Howard Carter discovered Tutankhamun’s intact tomb in the Valley of the Kings. The
quality of the workmanship of the artefacts found in the tomb was extraordinary, and a visit to the
Egyptian museum in Cairo is memorable.
3 The origin of the word ‘democracy’ is from demos (δημος) meaning people and kratos (κρατος)
meaning rule. That is, it means rule by the people. It was introduced into Athens following the
reforms introduced by Cleisthenes. He divided the Athenian city-state into 13 areas. Twenty of
these areas were inland or along the coast and ten were in Attica itself. Fishermen lived mainly in
the ten coastal areas; farmers in the ten inland areas; and various tradesmen in Attica. Cleisthenes
introduced ten new clans where the members of each clan came from one coastal area and one
inland area on one area in Attica. He then introduced a boule (or assembly) which consisted of 500
members (50 from each clan). Each clan ruled for 1/10 of the year.
4 The Athenian democracy involved the full participations of the citizens (i.e. the male adult mem-
bers of the city-state who were not slaves), whereas in representative democracy the citizens elect
representatives to rule and represent their interests. The Athenian democracy was chaotic and
could also be easily influenced by individuals who were skilled in rhetoric. There were teachers
(known as the sophists) who taught wealthy citizens rhetoric in return for a fee. The origin of the
word ‘sophist’ is the Greek word σοφος meaning wisdom. One of the most well known of the
sophists was Protagorus. The problems with Athenian democracy led philosophers such as Plato to
consider alternate solutions such as rule by philosopher kings. This is described in Plato’s Republic.
5 The Elgin marbles are named after Lord Elgin who moved them from the Parthenon in Athens to
London in 1806. The marbles show the Panathenaic festival that was held in Athens in honour of
the goddess Athena after whom Athens is named.
6 The origin of the word Hellenistic is from Hellene (‘Ελλην) meaning Greek.

2.1  Introduction

16

(lex) and maintained peace throughout the Roman Empire (pax Romano). The ruins
of Pompeii and Herculaneum demonstrate their engineering excellence. Their num-
bering system is still employed in clocks and for page numbering in documents, but
it is cumbersome for serious computation. The collapse of the Roman Empire in
Western Europe led to a decline in knowledge and learning in Europe. However, the
eastern part of the Roman Empire continued at Constantinople until the Ottomans
conquered it in 1453.

2.2	 �The Babylonians

The Babylonian7 civilization flourished in Mesopotamia (in modern Iraq) from
about 2000 B.C. until about 300 B.C. Various clay cuneiform tablets containing
mathematical texts were discovered and deciphered in the nineteenth century
[Smi:23]. These included tables for multiplication, division, squares, cubes and
square roots; measurement of area and length; and the solution of linear and qua-
dratic equations. The late Babylonian period (c. 300 B.C.) includes work on
astronomy.

The Babylonians recorded their mathematics on soft clay using a wedge-shaped
instrument to form impressions of the cuneiform numbers. The clay tablets were
then baked in an oven or by the heat of the sun. They employed just two symbols
(1 and 10) to represent numbers, and these symbols were then combined to form all
other numbers. They employed a positional number system8 and used the base 60
system. The symbol representing 1 could also (depending on the context) represent
60, 602, 603, etc. It could also mean 1/60, 1/3600 and so on. There was no zero employed
in the system and there was no decimal point (no ‘sexagesimal point’), and therefore
the context was essential.

The example above illustrates the cuneiform notation and represents the number
60 + 10 + 1 = 71. They used the base 60 system for computation, and one possible
explanation for this is the ease of dividing 60 into parts as it is divisible by 2, 3, 4,
5, 6, 10, 12, 15, 20 and 30. They were able to represent large and small numbers and
had no difficulty in working with fractions (in base 60) and in multiplying fractions.
They maintained tables of reciprocals (i.e. 1/n, n = 1, …, 59 apart from numbers like
7, 11, etc., which are not of the form 2α3β5γ and cannot be written as a finite sexag-
esimal expansion).

7 The hanging gardens of Babylon were one of the seven wonders of the ancient world.
8 A positional numbering system is a number system where each position is related to the next by
a constant multiplier. The decimal system is an example: e.g. 546 = 5* 102 + 4* 101 + 6.

2  Computing in Early Civilizations

17

Babylonian numbers may be represented in a more modern sexagesimal notation
[Res:84]. For example, 1;24,51,10 represents the number 1 + 24/60 + 51/3600 + 10/216000 = 
1 + 0.4 + 0.0141666 + 0.0000462 = 1.4142129 and is the Babylonian representation
of the square root of 2. The Babylonians performed multiplication as the following
calculation of (20) * (1;24,51,10), i.e. 20 * sqrt(2) illustrates:

	

20 1 20

20 24 20
24

60
8

20
51

3600

51

180

17

60
17

20
10

216000

*

*; *

* ;

*

=

= =

= = =

== + =
3

3600

20

216000
0 3 20; , , 	

Hence, 20 * sqrt (2) = 20; + 8; + ; 17 + ; 0,3,20 = 28; 17, 3, 20.
The Babylonians appear to have been aware of Pythagoras’ theorem about

1000 years before the time of Pythagoras. The Plimpton 322 tablet (Fig. 2.1) records
various Pythagorean triples, i.e. triples of numbers (a, b, c) where a2 + b2 = c2. It
dates from approximately 1700 B.C.

They developed an algebra to assist with problem solving, which allowed prob-
lems involving length, breadth and area to be discussed and solved. They did not
employ notation for representation of unknown values (e.g. let x be the length and y

Fig. 2.1  The Plimpton 322 tablet

2.2  The Babylonians

18

be the breadth), and instead they used words like ‘length’ and ‘breadth’. They were
familiar with and used square roots in their calculations, as well as techniques to
solve quadratic equations.

They were familiar with various mathematical identities such as
(a + b)2 = (a2 + 2ab + b2) as illustrated geometrically in Fig. 2.2. They also worked on
astronomical problems, and they had mathematical theories of the cosmos to predict
when eclipses and other astronomical events would occur. They were also interested
in astrology, and they associated various deities with the heavenly bodies such as the
planets, as well as the sun and moon. Various clusters of stars were associated with
familiar creatures such as lions, goats and so on.

The Babylonians used counting boards to assist with counting and simple calcu-
lations. A counting board is an early version of the abacus, and it was usually made
of wood or stone. The counting board contained grooves, which allowed beads or
stones to be moved along the groove. The abacus differed from counting boards in
that the beads in abaci contained holes that enabled them to be placed in a particular
rod of the abacus.

2.3	 �The Egyptians

The Egyptian civilization developed along the Nile from about 4000 B.C., and the
pyramids at Giza were built during the fourth dynasty around 3000 B.C. The
Egyptians used mathematics to solve practical problems such as measuring time,
measuring the annual Nile flooding, calculating the area of land, book-keeping and
accounting and calculating taxes. They developed a calendar circa 4000 B.C., which
consisted of 12 months with each month having 30 days. There were five extra feast

Fig. 2.2  Geometric representation of (a + b)2 = (a2 + 2ab + b2)

2  Computing in Early Civilizations

19

days to give 365 days in a year. Egyptian writing commenced around 3000 B.C.,
and it is recorded on the walls of temples and tombs.9 A reedlike parchment termed
‘papyrus’ was also used for writing, and there are three Egyptian writing scripts,
namely, the hieroglyphics, the hieratic script and the demotic script.

Hieroglyphs are little pictures and are used to represent words, alphabetic char-
acters as well as syllables or sounds. Champollion deciphered hieroglyphics with
his work on the Rosetta stone, which was discovered during the Napoleonic cam-
paign in Egypt, and it is now in the British Museum in London. It contains three
scripts: hieroglyphics, demotic script and Greek. A key part of the decipherment
was that the Rosetta stone contained just one name ‘Ptolemy’ in the Greek text, and
this was identified with the hieroglyphic characters in the cartouche10 of the hiero-
glyphics. There was just one cartouche on the Rosetta stone, and Champollion
inferred that the cartouche represented the name ‘Ptolemy’. He was familiar with
another multilingual object, which contained two names in the cartouche. One he
recognized as Ptolemy and the other he deduced from the Greek text as ‘Cleopatra’.
This led to the breakthrough in translation of the hieroglyphics [Res:84], and
Champollion’s knowledge of Coptic was also essential in the deciphering

The Rhind papyrus is a famous Egyptian papyrus on mathematics. The Scottish
Egyptologist, Henry Rhind, purchased it in 1858, and it is a copy created by an
Egyptian scribe called Ahmose.11 It is believed to date to 1832 B.C. It contains
examples of all kinds of arithmetic and geometric problems, and students may have
used it as a textbook to develop their mathematical knowledge. This would allow
them to participate in the pharaoh’s building programme.

The Egyptians were familiar with geometry, arithmetic and elementary algebra.
They had formulae to find solutions to problems with one or two unknowns. A base
10 number system was employed with separate symbols for one, ten, a hundred, a
thousand, a ten thousand, a hundred thousand and so on. These hieroglyphic sym-
bols are represented in Fig. 2.3.

9 The decorations of the tombs in the Valley of the Kings record the life of the pharaoh including
his exploits and successes in battle.
10 The cartouche surrounded a group of hieroglyphic symbols enclosed by an oval shape.
Champollion’s insight was that the group of hieroglyphic symbols represented the name of the
Ptolemaic pharaoh ‘Ptolemy’.
11 The Rhind papyrus is sometimes referred to as the Ahmose papyrus in honour of the scribe who
wrote it in 1832 B.C.

Fig. 2.3  Egyptian numerals

2.3  The Egyptians

20

For example, the representation of the number 276 in Egyptian hieroglyphics is
given in Fig. 2.4.

The addition of two numerals is straightforward and involves adding the indi-
vidual symbols, and where there are ten copies of a symbol, it is then replaced by a
single symbol of the next higher value. The Egyptian employed unit fractions (e.g.
1/n where n is an integer). These were represented in hieroglyphs by placing the
symbol representing a ‘mouth’ above the number. The symbol ‘mouth’ represents
part of. For example, the representation of the number 1/276 is given in Fig. 2.5.

The papyrus included problems to determine the angle of the slope of the pyra-
mid’s face. The Egyptians were familiar with trigonometry including sine, cosine,
tangent and cotangent, and they knew how to build right angles into their struc-
tures by using the ratio 3:4:5. The papyrus also considered problems such as the
calculation of the number of bricks required for part of a building project. They
were familiar with addition, subtraction, multiplication and division. However,
their multiplication and division were cumbersome as they could only multiply
and divide by two.

Suppose they wished to multiply a number n by 7. Then n * 7 is determined by n
* 2 + n * 2 + n * 2 + n. Similarly, if they wished to divide 27 by 7, they would note
that 7 * 2 + 7 = 21 and that 27−21 = 6 and that therefore the answer was 3 6/7. Egyptian
mathematics was cumbersome and the writing of it was long and repetitive. For
example, they wrote a number such as 22 by 10 + 10 + 1 + 1.

The Egyptians calculated the approximate area of a circle by calculating the area
of a square 8/9 of the diameter of a circle. That is, instead of calculating the area in
terms of our familiar πr2, their approximate calculation yielded (8/9 * 2r)2 = 256/81 r2

Fig. 2.4  Egyptian
representation of a number

Fig. 2.5  Egyptian
representation of a fraction

2  Computing in Early Civilizations

21

or 3.16 r2. Their approximation of π was 256/81 or 3.16. They were able to calculate
the area of a triangle and volumes.

The Moscow papyrus is a well-known Egyptian papyrus, and it includes a prob-
lem to calculate the volume of the frustum. The formula for the volume of a frustum
of a square pyramid12 was given by V = 1/3 h(b1

2 + b1b2 + b2
2), and when b2 is 0, then

the well-known formula for the volume of a pyramid is given, i.e. 1/3 hb1
2.

2.4	 �The Greeks

The Greeks made major contributions to western civilization including mathemat-
ics, logic, astronomy, philosophy, politics, drama and architecture. The Greek world
of 500 B.C. consisted of several independent city-states such as Athens and Sparta
and various city-states in Asia Minor. The Greek polis (πολις) or city-state tended
to be quite small, and it consisted of the Greek city and a certain amount of territory
outside the city. Each city-state had its own unique political structure for its citizens:
some were oligarchs where political power was maintained in the hands of a few
individuals or aristocratic families; others were ruled by tyrants (or sole rulers) who
sometimes took power by force, but who often had a lot of support from the public.
These included people such as Solon, Peisistratus and Cleisthenes in Athens.

The reforms by Cleisthenes led to the introduction of the Athenian democracy.
Power was placed in the hands of the citizens who were male (women or slaves did
not participate). It was an extremely liberal democracy where citizens voted on all
of the important issues. Often, this led to disastrous results as speakers who were
skilled in rhetoric could exert significant influence. This led Plato to advocate rule
by philosopher kings rather than democracy.

Early Greek mathematics commenced approximately 500–600 B.C. with work
done by Pythagoras and Thales. Pythagoras was a philosopher and mathematician
who had spent time in Egypt becoming familiar with Egyptian mathematics. He was
born on the island of Samos, and he later moved to Croton in the south of Italy. He
formed a secret society known as the Pythagoreans, and they included men and
women who believed in the transmigration of souls and that number was the essence
of all things. They discovered the mathematics for harmony in music, with the rela-
tionship between musical notes being expressed in numerical ratios of small whole
numbers. Pythagoras is credited with the discovery of Pythagoras’ theorem,
although the Babylonians probably knew this theorem about 1000 years before
Pythagoras. The Pythagorean society was dealt a major blow13 by the discovery of

12 The length of a side of the bottom base of the pyramid is b1 and the length of a side of the top
base is b2.
13 The Pythagoreans were a secret society and its members took a vow of silence with respect to this
discovery. However, one member of the society is said to have shared the secret result with others
outside the sect, and the apocryphal account is that he was thrown into a lake for his betrayal and
drowned. They obviously took mathematics seriously back then!

2.4  The Greeks

22

the incommensurability of the square root of 2: i.e. there are no numbers p, q such
that √2 = p/q.

Thales was a sixth-century (B.C.) philosopher from Miletus in Asia Minor who
made contributions to philosophy, geometry and astronomy. His contributions to
philosophy are mainly in the area of metaphysics, and he was concerned with ques-
tions on the nature of the world. His objective was to give a natural or scientific
explanation of the cosmos, rather than relying on the traditional supernatural expla-
nation of creation in Greek mythology. He believed that there was a single sub-
stance that was the underlying constituent of the world, and he believed that this
substance was water. He also contributed to mathematics [AnL:95], and Thales’
theorem in Euclidean geometry states that if A, B and C are points on a circle, where
the line AC is a diameter of the circle, then the angle <ABC is a right angle.

The rise of Macedonia led to the Greek city-states being conquered by Philip of
Macedonia in the fourth century B.C. His son, Alexander the Great, defeated the
Persian Empire, and he extended his empire to include most of the known world.
This led to the Hellenistic Age where Greek language and culture spread to the
known world. Alexander founded the city of Alexandria, and it became a major
centre of learning in Ptolemaic Egypt.14 However, Alexander’s reign was very short
as he died at the young age of 33 in 323 B.C.

Euclid lived in Alexandria during the early Hellenistic period. He is considered
the father of geometry and the deductive method in mathematics. His systematic
treatment of geometry and number theory is published in The Thirteen Books of The
Elements [Hea:56]. It starts from five axioms, five postulates and 23 definitions to
logically derive a comprehensive set of theorems. His method of proof was gener-
ally constructive, in that as well as demonstrating the truth of a theorem, the proof
would often include the construction of the required entity. It was also used as indi-
rect proof (a nonconstructive proof) to show that there are an infinite number of
primes:

	1.	 Suppose there are a finite number of primes (say n primes).
	2.	 Multiply all n primes together and add 1 to form N.

N p p pn= ¼ +()1 2 1* * *
	3.	 N is not divisible by p1, p2, …, pn as dividing by any of these gives a remainder

of one.
	4.	 Therefore, N must either be prime or divisible by some other prime that was not

included in the list.
	5.	 Therefore, there must be at least n + 1 primes.
	6.	 This is a contradiction (it was assumed that there are n primes).
	7.	 Therefore, the assumption that there are a finite number of primes is false.
	8.	 Therefore, there are an infinite number of primes.

14 The ancient library in Alexandria was once the largest library in the world. It was build during
the Hellenistic period in the third century B.C. and destroyed by fire in 391 A.D.

2  Computing in Early Civilizations

23

Euclidean geometry included the parallel postulate (the fifth postulate). This pos-
tulate generated interest, as many mathematicians believed that it was unnecessary
and could be proved as a theorem. It states that:

Definition 2.1 (Parallel Postulate)  If a line segment intersects two straight lines
forming two interior angles on the same side that sum to less than two right angles,
then the two lines, if extended indefinitely, meet on that side on which the angles sum
to less than two right angles.

This postulate was later proved to be independent of the other postulates with the
development of non-Euclidean geometries in the nineteenth century. These include
the hyperbolic geometry discovered independently by Bolyai and Lobachevsky and
elliptic geometry as developed by Riemann. The standard model of Riemannian
geometry is the sphere where lines are great circles.

The material in the Euclid’s Elements is a systematic development of geometry
starting from the small set of axioms, postulates and definitions, leading to theorems
derived logically from the axioms and postulates. There are some jumps in reason-
ing, and the German mathematician, David Hilbert, later added extra axioms to
address this. Euclidean geometry contains many well-known mathematical results
such as Pythagoras’ theorem, Thales’ theorem, sum of angles in a triangle, prime
numbers, greatest common divisor and least common multiple, Euclidean algo-
rithm, areas and volumes, tangents to a point and algebra.

The Euclidean algorithm is one of the oldest known algorithms, and it is used to
determine the greatest common divisor of two numbers a and b. It is presented in
The Elements, but it was known well before Euclid. The formulation of the gcd
algorithm for two natural numbers a and b is as follows:

	1.	 Check if b is zero. If so, then a is the gcd.
	2.	 Otherwise, the gcd (a, b) is given by gcd (b, a mod b).

It is also possible to determine integers p and q such that ap + bq = gcd(a, b).
The proof of the Euclidean algorithm is as follows. Suppose a and b are two posi-

tive numbers whose gcd is to be determined, and let r be the remainder when a is
divided by b:

	1.	 Clearly a = qb + r where q is the quotient of the division.
	2.	 Any common divisor of a and b is also a divider or r (since r = a – qb).
	3.	 Similarly, any common divisor of b and r will also divide a.
	4.	 Therefore, the greatest common divisor of a and b is the same as the greatest

common divisor of b and r.
	5.	 The number r is smaller than b and we will reach r = 0 in finitely many steps.
	6.	 The process continues until r = 0.

2.4  The Greeks

24

Comment 2.1  Algorithms are fundamental in computing as they define the proce-
dure by which a problem is solved. A computer program implements the algorithm
in some programming language.

Eratosthenes was a Hellenistic mathematician and scientist who worked as
librarian in the famous library in Alexandria. He devised a system of latitude and
longitude, and he became the first person to estimate of the size of the circumfer-
ence of the Earth (Fig. 2.6). His approach to the calculation was as follows:

	1.	 Eratosthenes believed that the Earth was a sphere.
	2.	 On the summer solstice at noon in the town of Syene (ancient name of Aswan15)

on the Tropic of Cancer in Egypt, the sun appears directly overhead.
	3.	 He assumed that rays of light came from the sun in parallel beams and reached

the Earth at the same time.
	4.	 At the same time in Alexandria, he had measured that the sun would be 7.2°

south of the zenith.
	5.	 He assumed that Alexandria was directly north of Aswan.
	6.	 He concluded that the distance from Alexandria to Aswan was 7.2/360 of the cir-

cumference of the Earth.
	7.	 The distance between Alexandria and Aswan was 5000 stadia (approximately

800 km).
	8.	 He established a value of 252,000 stadia or approximately 396,000 km (the

actual circumference at the equator is 40,075 km).

Eratosthenes’ calculation was an impressive result for 200 B.C. The errors in his
calculation were due to:

15 The town of Aswan is famous today for the Aswan high dam, which was built in the 1960s. There
was an older Aswan dam built by the British in the late nineteenth century. The new dam led to a
rise in the water level of Lake Nasser and flooding of archaeological sites along the Nile. Several
sites such as Abu Simbel and the island of Philae were relocated to higher ground.

Alexandria

Aswan

7.2°

Sun

Fig. 2.6  Eratosthenes measurement of the circumference of the Earth

2  Computing in Early Civilizations

25

	1.	 Aswan is not exactly on the Tropic of Cancer but it is actually 55 km north of it.
	2.	 Alexandria is not exactly north of Aswan and there is a difference of 3°

longitude.
	3.	 The distance between Aswan and Alexandria is 729 km not 800 km.
	4.	 Angles in antiquity could not be measured with absolute precision.
	5.	 The angular distance is actually 7.08 o and not 7.2°.

Eratosthenes also calculated the approximate distance to the moon and sun, and
he also produced maps of the known world. He developed a useful algorithm for
determining all of the prime numbers up to a specified integer, and this is known as
the Sieve of Eratosthenes. The steps in the algorithm are as follows:

	1.	 Write a list of the numbers from 2 to the largest number to be tested. This first
list is called A.

	2.	 A second list B is created to list the primes. It is initially empty.
	3.	 The number 2 is the first prime number, and it is added to list B.
	4.	 Strike off (or remove) all multiples of 2 from list A.
	5.	 The first remaining number in list A is a prime number and this prime number is

added to list B.
	6.	 Strike off (or remove) this number and all multiples of it from list A.
	7.	 Repeat steps 5 through 7 until no more numbers are left in list A.

Comment 2.2  The Sieve of Eratosthenes method is a well-known algorithm for
determining prime numbers.

Archimedes was a mathematician and astronomer who lived in Syracuse, Sicily.
He discovered the law of buoyancy known as Archimedes’ principle.

The buoyancy force is equal to the weight of the displaced fluid.
He is believed to have discovered the principle while sitting in his bath, and he

was so overwhelmed with his discovery that he rushed out onto the streets of
Syracuse shouting Eureka, forgetting to put on his clothes.

The weight of the displaced liquid is proportional to the volume of the displaced
liquid. Therefore, if two objects have the same mass, the one with greater volume
(or smaller density) has greater buoyancy. An object will float if its buoyancy force
(i.e. the weight of liquid displaced) exceeds the downward force of gravity (i.e. its
weight). If the object has exactly the same density as the liquid, then it will stay still,
neither sinking nor floating upwards.

For example, a rock is generally a very dense material, and so it usually does not
displace its own weight. Therefore, a rock will sink to the bottom as the downward
weight exceeds the buoyancy weight. However, the weight of a buoyancy device is
significantly less than the liquid that it would displace, and so it floats at a level
where it displaces the same weight of liquid as the weight of the object.

Archimedes also made good contributions to mathematics including an approxi-
mation to π, contributions to the positional numbering system, geometric series,

2.4  The Greeks

26

mathematics and physics. He also solved several interesting problems: e.g. the cal-
culation of the composition of cattle in the herd of the sun god by solving a number
of simultaneous Diophantine equations (named after Diophantus). The herd con-
sisted of bulls and cows, with one part of the herd consisting of white, second part
black, third spotted and the fourth brown. Various constraints were then expressed
in Diophantine equations, and the problem was to determine the precise composi-
tion of the herd.

He calculated the number of grains of sands in the known universe and chal-
lenged the prevailing view this was too large to be determined. He developed a
naming system for large numbers, as the largest number in use at the time was a
myriad (100 million), where a myriad is 10,000. He developed the laws of expo-
nents, i.e. 10a10b = 10a + b, and his calculation of the upper bound includes not only
the grains of sand on each beach but on the Earth filled with sand and the known
universe filled with sand. His final estimate of the upper bound of the number of
grains of sand in a filled universe was 1064.

It is possible that he may have developed the odometer,16 which could calculate
the total distance travelled on a journey. An odometer is described by the Roman
engineer Vitruvius around 25 B.C. It employed a wheel with a diameter of 4 ft, and
the wheel turned 400 times in every mile.17 The device included gears and pebbles
and a 400 tooth cogwheel that turned once every mile and caused one pebble to drop
into a box. The total distance travelled was determined by counting the number of
pebbles in the box.

Aristotle was born in Macedonia and he became a student of Plato at Plato’s
academy in Athens in the fourth century B.C. (Fig. 2.7). Aristotle later founded his
own school (known as the Lyceum) in Athens, and he was also the tutor of Alexander
the Great. He made contributions to biology, logic, politics, ethics and
metaphysics.

His starting point to knowledge acquisition was the senses, as he believed that
these were essential to acquire knowledge. His position is the opposite of Plato who
argued that the senses deceive and should not be relied upon. Plato’s writings are
mainly in dialogues involving his former mentor Socrates.18

Aristotle made important contributions to formal reasoning with his develop-
ment of syllogistic logic. Syllogistic logic (also known as term logic) consists of

16 The origin of the word ‘odometer’ is from the Greek words ‘οδος’ (meaning journey) and μετρον
(meaning measure).
17 The figures given here are for the distance of one Roman mile. This is given by π 4* 400 = 12.56
* 400 = 5024 (which is less than 5280 ft for a standard mile in the imperial system).
18 Socrates was a moral philosopher who deeply influenced Plato. His method of enquiry into
philosophical problems and ethics was by questioning. Socrates himself maintained that he knew
nothing (Socratic ignorance). However, from his questioning it became apparent that those who
thought they were clever were not really that clever after all. His approach obviously would not
have made him very popular with the citizens of Athens. Socrates had consulted the oracle at
Delphi to find out who was the wisest of all men, and he was informed that there was no one wiser
than him. Socrates was sentenced to death for allegedly corrupting the youth of Athens, and he was
forced to drink the juice of the hemlock plant (a type of poison).

2  Computing in Early Civilizations

27

reasoning with two premises and one conclusion. Each premise consists of two
terms and there is a common middle term. The conclusion links the two unrelated
terms from the premises. For example,

	

Premise All Greeks are mortal

Premise Socrates is a Greek

1

2

.

.

Conclusion Socrates is mortal. 	

The common middle term is ‘Greek’, which appears in the two premises. The two
unrelated terms from the premises are ‘Socrates’ and ‘mortal’. The relationship

Fig. 2.7  Plato and Aristotle

2.4  The Greeks

28

between the terms in the first premise is that of the universal: i.e. anything or any
person that is a Greek is mortal. The relationship between the terms in the second
premise is that of the particular: i.e. Socrates is a person that is a Greek. The conclu-
sion from the two premises is that Socrates is mortal: i.e. a particular relationship
between the two unrelated terms ‘Socrates’ and ‘mortal’.

The example above is an example of a valid syllogistic argument. Aristotle stud-
ied the various possible syllogistic arguments and determined those that were valid
and those that were invalid. There are several candidate relationships that may
potentially exist between the terms in a premise. These are listed in Table 2.1.

In general, a syllogistic argument will be of the form

	

S M

M P

S P

x

y

z

where x, y, z may be universal affirmation, universal negation, particular affirmation
and particular negation. Syllogistic logic is described in more detail in [ORg:12].
Aristotle’s work was highly regarded in classical and mediaeval times, and Kant
believed that there was nothing else to invent in logic.

An early form of propositional logic that was developed by Chrysippus19 in the
third-century B.C. Aristotelian logic is of historical interest today, and it has been
replaced by propositional and predicate logic.

2.5	 �The Romans

Rome is said to have been founded20 by Romulus and Remus about 750 B.C. Early
Rome covered a small part of Italy, but it gradually expanded in size and impor-
tance. It destroyed Carthage21 in 146 B.C. to become the major power in the

19 Chrysippus was the head of the Stoics in the third century B.C.
20 The Aeneid by Virgil suggests that the Romans were descended from survivors of the Trojan War
and that Aeneas brought surviving Trojans to Rome after the fall of Troy.
21 Carthage was located in Tunisia, and the wars between Rome and Carthage are known as the
Punic wars. Hannibal was one of the great Carthaginian military commanders, and during the
second Punic war, he brought his army to Spain, marched through Sprain and crossed the Pyrenees.
He then marched along southern France and crossed the Alps into Northern Italy. His army also
consisted of war elephants. Rome finally defeated Carthage and levelled the city.

Table 2.1  Syllogisms:
relationship between terms

Relationship Abbr.

Universal affirmation A

Universal negation E

Particular affirmation I

Particular negation O

2  Computing in Early Civilizations

29

Mediterranean. The Romans colonized the Hellenistic world, and they were influ-
enced by Greek culture and mathematics. Julius Caesar (Fig. 2.8) conquered the
Gauls in 58 B.C.

The Gauls consisted of several disunited Celtic22 tribes. Vercingetorix succeeded
in uniting them, but he was defeated at the siege of Alesia in 52 B.C.

The Roman number system uses letters to represent numbers (Fig. 2.9) and a
number consists of a sequence of letters. The evaluation rules specify that if a large
number follows a smaller number, then the smaller number is subtracted from the
large: e.g. IX represents 9 and XL represents 40. Similarly, if a smaller number

22 The Celtic period commenced around 1000 B.C. in Hallstatt (near Salzburg in Austria). The
Celts were skilled in working with iron and bronze, and they gradually expanded into Europe.
They eventually reached Britain and Ireland around 600 B.C. The early Celtic period was known
as the ‘Hallstatt period’, and the later Celtic period is known as the ‘La Téne’ period. The La Téne
period is characterized by the quality of ornamentation produced. The Celtic museum in Hallein in
Austria provides valuable information and artefacts on the Celtic period. The Celtic language has
similarities to the Irish language. However, the Celts did not employ writing, and the ogham writ-
ing developed in Ireland was developed in the early Christian period.

Fig. 2.8  Julius Caesar

2.5  The Romans

30

followed a larger number, they were generally added: e.g. MCC represents 1200.
They had no zero in their system.

The use of Roman numerals was cumbersome, and an abacus was often employed
for calculation. An abacus consists of several columns in which pebbles are placed.
Each column represented powers of 10: i.e. 100, 101, 102, 103, etc. The column to the
far right represents 1; the column to the left 10; next column to the left 100; and so
on. Pebbles (calculi) were placed in the columns to represent different numbers: e.g.
the number represented by an abacus with four pebbles on the far right, two pebbles
in the column to the left and three pebbles in the next column to the left is 324. The
calculations were performed by moving pebbles from column to column.

Merchants introduced a set of weights and measures (including the libra for
weights and the pes for lengths). They developed an early banking system to pro-
vide loans for business and commenced minting coins around 290 B.C. The Romans
also made contributions to calendars, and Julius Caesar introduced the Julian calen-
dar in 45 B.C. It has a regular year of 365 days divided into 12 months and a leap
day is added to February every 4 years. However, too many leap years are added
over time, and this led to the introduction of the Gregorian calendar in 1582.

Caesar employed a substitution cipher (Fig. 2.10) on his military campaigns to
ensure that important messages were communicated safely. This involves the sub-
stitution of each letter in the plaintext (i.e. the original message) by a letter with a
fixed number of positions down in the alphabet. For example, a shift of three posi-
tions causes the letter B to be replaced by E, the letter C by F and so on. The Caesar
cipher is easily broken, as the frequency distribution of letters may be employed to
determine the mapping. The cipher is defined as follows.

The process of enciphering a message (i.e. plaintext) involves mapping each let-
ter in the plaintext to the corresponding cipher letter. For example, the encryption of
‘summer solstice’ involves

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Fig. 2.9  Roman numbers

Alphabet Symbol abcde fghij klmno pqrst uvwxyz
Cipher Symbol dfegh ijklm nopqr stuvw xyzabc

Fig. 2.10  Caesar cipher

2  Computing in Early Civilizations

31

	

Plaintext Summer Solstice

Cipher Text vxpphu vrovwleh

:
	

The decryption involves the reverse operation: i.e. for each cipher letter, the cor-
responding plaintext letter is identified from the table:

	

Cipher Text vxpphu vrovwleh

Plaintext Summer Solstice: 	

The encryption may also be done using modular arithmetic. The numbers 0–25
represent the alphabet letters, and addition (modula 26) is used to perform the
encryption. The encoding of the plaintext letter x is given by

	 c x= + ()3 26mod 	

Similarly, the decoding of a cipher letter represented by the number c is given by

	 x c= - ()3 26mod 	

The emperor Augustus23 employed a similar substitution cipher (with a shift key
of 1). The Caesar cipher remained in use up to the early twentieth century. However,
by then frequency analysis techniques were available to break the cipher. The
Vigenère cipher uses a Caesar cipher with a different shift at each position in the
text. The value of the shift to be employed with each plaintext letter is defined using
a repeating keyword.

2.6	 �Islamic Influence

Islamic mathematics refers to mathematics developed in the Islamic world from the
birth of Islam in the early seventh century up until the seventeenth century. The
Islamic world commenced with the prophet Mohammed in Mecca and spread
throughout the Middle East, North Africa and Spain. The golden age of Islamic
civilization was from 750 A.D. to 1250 A.D., and during this period enlightened
caliphs recognized the value of knowledge and sponsored scholars to come to
Baghdad to gather and translate the existing world knowledge into Arabic.

This led to the preservation of the Greek texts during the dark ages in Europe.
Further, the Islamic cities of Baghdad, Cordoba and Cairo became key intellectual

23 Augustus was the first Roman emperor, and his reign ushered in a period of peace and stability
following the bitter civil wars. He was the adopted son of Julius Caesar and was called Octavion
before he became emperor. The earlier civil wars were between Caesar and Pompey, and following
Caesar’s assassination civil war broke out between Mark Anthony and Octavion. Octavion defeated
Anthony and Cleopatra at the battle of Actium in 31 B.C.

2.6  Islamic Influence

32

centres, and scholars added to existing knowledge (e.g. in mathematics, astronomy,
medicine and philosophy), as well as translating the known knowledge into Arabic.

The Islamic mathematicians and scholars were based in several countries in the
Middle East, North Africa and Spain. Early work commenced in Baghdad, and the
mathematicians were also influenced by the work of Hindu mathematicians, who
had introduced the decimal system and decimal numerals. Among the well-known
Islamic scholars are Ibn Al-Haytham, a tenth-century Iraqi scientist; Mohammed
Al-Khwarizmi (Fig. 2.11), a ninth Persian mathematician; Abd Al-Rahman al-Sufi,
a Persian astronomer who discovered the Andromeda galaxy; Ibn Al-Nafis, a Syrian
who did work on circulation in medicine; Averroes, who was an Aristotelian phi-
losopher from Cordoba in Spain; Avicenna who was a Persian philosopher; and
Omar Khayyam who was a Persian mathematician and poet.

Many caliphs (Muslim rulers) were enlightened and encouraged scholarship in
mathematics and science. They set up a centre for translation and research in
Baghdad, and existing Greek texts such as the works of Euclid, Archimedes,
Apollonius and Diophantus were translated into Arabic. Al-Khwarizmi made con-
tributions to early classical algebra, and the word algebra comes from the Arabic
word al jabr that appears in a textbook by Al-Khwarizmi. The origin of the word
algorithm is from the name of the Islamic scholar ‘Al-Khwarizmi’.

Education was important during the golden age, and the Al-Azhar University in
Cairo (Fig. 2.12) was established in 970 A.D., and the Al-Qarawiyyin University in Fez,
Morocco, was established in 859 A.D. The Islamic world has created beautiful architec-
ture and art including the ninth-century Great Mosque of Samarra in Iraq, the tenth-
century Great Mosque of Cordoba and the eleventh-century Alhambra in Grenada.

Fig. 2.11  Mohammed
Al-Khwarizmi

2  Computing in Early Civilizations

33

The Moors24 invaded Spain in the eighth century A.D., and they ruled large parts
of the Peninsula for several centuries. Moorish Spain became a centre of learning,
and this led to Islamic and other scholars coming to study at the universities in
Spain. Many texts on Islamic mathematics were translated from Arabic into Latin,
and these were invaluable in the renaissance in European learning and mathematics
from the thirteenth century. The Moorish influence25 in Spain continued until the
time of the Catholic Monarchs26 in the fifteenth century. Ferdinand and Isabella
united Spain, defeated the Moors in Andalusia and expelled them from Spain.

24 The origin of the word ‘Moor’ is from the Greek work μυοροζ meaning very dark. It referred to
the fact that many of the original Moors who came to Spain were from Egypt, Tunisia and other
parts of North Africa.
25 The Moorish influence includes the construction of various castles (alcazar), fortresses (alcalz-
aba) and mosques. One of the most striking Islamic sites in Spain is the palace of Alhambra in
Granada, and it represents the zenith of Islamic art.
26 The Catholic Monarchs refer to Ferdinand of Aragon and Isabella of Castille who married in
1469. They captured Granada (the last remaining part of Spain controlled by the Moors) in 1492.

Fig. 2.12  Al-Azhar University, Cairo

2.6  Islamic Influence

34

The Islamic contribution to algebra was an advance on the achievements of the
Greeks. They developed a broader theory that treated rational and irrational num-
bers as algebraic objects and moved away from the Greek concept of mathematics
as being essentially geometry. Later Islamic scholars applied algebra to arithmetic
and geometry and studied curves using equations. This included contributions to
reduce geometric problems such as duplicating the cube to algebraic problems.
Eventually this led to the use of symbols in the fifteenth century such as

	 x x xn m m n. = + .	

The poet Omar Khayyam was also a mathematician who did work on the clas-
sification of cubic equations with geometric solutions. Other scholars made contri-
butions to the theory of numbers: e.g. a theorem that allows pairs of amicable
numbers to be found. Amicable numbers are two numbers such that each is the sum
of the proper divisors of the other. They were aware of Wilson’s theory in number
theory: i.e. for p prime, then p divides (p − 1)! +1.

The Islamic world was tolerant of other religious belief systems during the
golden age, and there was freedom of expression provided that it did not infringe on
the rights of others. It began to come to an end following the Mongol invasion and
sack of Baghdad in the late 1250s and the Crusades. It continued to some extent
until the conquest by Ferdinand and Isabella of Andalusia in the late fifteenth
century.

2.7	 �Chinese and Indian Mathematics

The development of mathematics commenced in China about 1000 B.C., and it was
independent of developments in other countries. The emphasis was on problem
solving rather than on conducting formal proofs. It was concerned with finding the
solution to practical problems such as the calendar, the prediction of the positions of
the heavenly bodies, land measurement, conducting trade and the calculation of
taxes.

The Chinese employed counting boards as mechanical aids for calculation from
the fourth century B.C. Counting boards are similar to abaci and are usually made
of wood or metal and contained carved grooves between which beads, pebbles or
metal discs were moved. The abacus is a device, usually of wood having a frame
that holds rods with freely sliding beads mounted on them. It is used as a tool to
assist calculation, and it is useful for keeping track of the sums, the carry and so on
of calculations.

Early Chinese mathematics was written on bamboo strips and included work on
arithmetic and astronomy. The Chinese method of learning and calculation in math-
ematics was learning by analogy. This involves a person acquiring knowledge from
observation of how a problem is solved and then applying this knowledge for prob-
lem solving to similar kinds of problems.

They had their version of Pythagoras’ theorem and applied it to practical prob-
lems. They were familiar with the Chinese remainder theorem, the formula for

2  Computing in Early Civilizations

35

finding the area of a triangle, as well as showing how polynomial equations (up to
degree 10), could be solved. Other Chinese mathematicians showed how geometric
problems could be solved by algebra, how roots of polynomials could be solved,
how quadratic and simultaneous equations could be solved and how the area of vari-
ous geometric shapes such as rectangles, trapezia and circles could be computed.
Chinese mathematicians were familiar with the formula to calculate the volume of
a sphere. The best approximation that the Chinese had of π was 3.14159, and this
was obtained by approximations from inscribing regular polygons with 3 × 2n sides
in a circle.

The Chinese made contributions to number theory including the summation of
arithmetic series and solving simultaneous congruences. The Chinese remainder
theorem deals with finding the solutions to a set of simultaneous congruences in
modular arithmetic. Chinese astronomers made accurate observations, which were
used to produce a new calendar in the sixth century. This was known as the Taming
calendar and it was based on a cycle of 391 years.

Indian mathematicians have made important contributions such as the develop-
ment of the decimal notation for numbers that is now used throughout the world.
This was developed in India sometime between 400 B.C. and 400 A.D. Indian math-
ematicians also invented zero and negative numbers and also did early work on the
trigonometric functions of sine and cosine. The knowledge of the decimal numerals
reached Europe through Arabic mathematicians, and the resulting system is known
as the Hindu-Arabic numeral system.

The Sulva Sutras is a Hindu text that documents Indian mathematics and it dates
from about 400 B.C. The Indians were familiar with the statement and proof of
Pythagoras’ theorem, rational numbers, quadratic equations as well as the calcula-
tion of the square root of 2 to five decimal places

2.8	 �Review Questions

	1.	 Discuss the strengths and weaknesses of the various number systems.
	2.	 Describe ciphers used during the Roman civilization and write a program

to implement one of these.
	3.	 Discuss the nature of an algorithm and its importance in computing.
	4.	 Discuss the working of an abacus and its application to calculation.
	5.	 What are the differences between syllogistic logic and propositional and

predicate logic??

2.8  Review Questions

36

2.9	 �Summary

The last decades of the twentieth century have witnessed a proliferation of high-tech
computers, mobile phones and information technology. Software is now pervasive
and is in automobiles, airplanes, televisions and mobile communication. It is only in
recent decades that technology has become an integral part of the western world,
and the pace of change has been extraordinary. It has led to increases in industrial
productivity and potentially allows humans the freedom to engage in more creative
and rewarding tasks.

This chapter considered the contributions of early civilizations to computing and
included a discussion on the Babylonians, the Egyptians, the Greeks and the Romans
and Islamic scholars.

The Babylonian civilization flourished from about 2000 B.C., and they produced
clay cuneiform tablets containing mathematical texts. These included tables for
multiplication, division, squares and square roots, as well as the calculation of area
and the solution of linear and quadratic equations.

The Egyptian civilization developed along the Nile from about 4000 B.C., and
they used mathematics for practical problem solving such as measuring the annual
Nile flooding and their building programme.

The Greeks made major contributions to western civilization. Euclid developed
a systematic treatment of geometry starting from a small set of axioms, postulates
and definitions to derive and prove a comprehensive set of theorems. Aristotle’s syl-
logistic logic remained in use until the development of propositional and predicate
logic in the late nineteenth century.

The Islamic contribution helped to preserve western knowledge during the dark
ages in Europe. Islamic scholars in Baghdad, Cairo and Cordoba translated Greek
texts into Arabic. They also added to existing knowledge in mathematics, science,
astronomy and medicine.

2  Computing in Early Civilizations

37© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_3

3Foundations of Computing

Abstract
This chapter discusses the foundations of computing, including the binary num-
ber system and the step reckoner calculating machine, which were invented by
Leibniz. The difference engine was designed by Babbage to evaluate polynomi-
als and to produce accurate mathematical tables. Babbage’s design of the ana-
lytic engine provided the vision of a modern computer, and he envisaged that it
would be analogous to the operation of the Jacquard loom, which is designed to
weave (i.e. execute on the loom) a design pattern represented by a set of cards.
Boole’s symbolic logic provides the foundation for digital computing.

Key Topics
Leibniz
Binary numbers
Step reckoner
Babbage
Difference engine
Analytic engine
Lovelace
Boole
Shannon
Switching circuits

38

3.1	 �Introduction

This chapter considers important foundational work done by Wilhelm Leibniz,
Charles Babbage, George Boole, Ada Lovelace and Claude Shannon. Leibniz was a
seventeenth-century German mathematician, philosopher and inventor, and he is
recognized (with Isaac Newton) as the inventor of calculus. He developed a calcu-
lating machine that could perform all of the four basic arithmetic operations (i.e.
addition, subtraction, multiplication and division), and he also invented the binary
number system, which is used extensively in the computer field.

Boole and Babbage are considered grandfathers of the computing field, with
Babbage’s analytic engine providing a vision of a mechanical computer and Boole’s
logic providing the foundation for modern digital computers.

Charles Babbage was a nineteenth-century scientist and inventor who did pio-
neering work on calculating machines. He invented the difference engine (a sophis-
ticated calculator that could be used for the production of mathematical tables), and
he also designed the analytic engine (the world’s first mechanical computer). The
design of the analytic engine included a processor, a memory and a way to input
information and output results.

Lady Ada Lovelace was introduced into Babbage’s ideas on the analytic engine
at a dinner party. She was fascinated and predicted that such a machine could be
used to compose music, produce graphics as well as solve mathematical and scien-
tific problems. She explained how the analytic engine could be programmed, and
she wrote what is considered the first computer program.

Boole was a nineteenth-century English mathematician who made important
contributions to mathematics, probability theory and logic. Boole’s logic provides
the foundation for digital computers.

Claude Shannon was the first person to see the applicability of Boole’s logic to
switching theory, and it is the foundation for all modern digital computers. Shannon
was a twentieth-century American mathematician and engineer who showed that
Boolean algebra could simplify the design of circuits and telephone routing switches
and that it provided the perfect mathematical model for switching theory and for the
subsequent design of digital circuits and computers.

3.2	 �Step Reckoner Calculating Machine

Wilhelm Gottfried Leibniz (Fig. 3.1) was a German philosopher, mathematician and
inventor in the field of mechanical calculators. He developed the binary number
system used in digital computers, and he invented the calculus independently of Sir
Isaac Newton. He became familiar with Pascal’s calculating machine, the Pascaline,
while in Paris in the early 1670s. He recognized its limitations as the machine could
perform addition and subtraction operations only.

He designed and developed a calculating machine that could perform addition,
subtraction, multiplication, division and the extraction of roots. He commenced
work on the machine in 1672, and the machine was completed in 1694. It was the

3  Foundations of Computing

39

first calculator that could perform all four arithmetic operations, and it was superior
to the existing Pascaline machine. Leibniz’s machine was called the step reckoner
(Fig. 3.2), and it allowed the common arithmetic operations to be carried out
mechanically.

The operating mechanism used in his calculating machine was based on a count-
ing device called the stepped cylinder or Leibniz wheel. This mechanism allowed a
gear to represent a single decimal digit from 0 to 9 in just one revolution, and this
mechanism remained the dominant approach in the design of calculating machines
for the next 200 years. The Leibniz wheel was essentially a counting device consist-
ing of a set of wheels that were used in calculation. The step reckoner consisted of
an accumulator which could hold 16 decimal digits and an 8-digit input section. The
eight dials at the front of the machine set the operand number, which was then
employed in the calculation.

The machine performed multiplication by repeated addition and division by
repeated subtraction. The basic operation is to add or subtract the operand from the
accumulator as many times as desired. The machine could add or subtract an 8-digit
number to the 16-digit accumulator to form a 16-digit result. It could multiply two
8-digit numbers to give a 16-digit result, and it could divide a 16-bit number by an
8-digit number. Addition and subtraction are performed in a single step, with the

Fig. 3.1  Wilhelm
Gottfried Leibniz

3.2  Step Reckoner Calculating Machine

40

operating crank turned in the opposite direction for subtraction. The result is stored
in the accumulator.

3.3	 �Binary Numbers

Arithmetic has traditionally been done using the decimal notation,1 and Leibniz was
one of the first to recognize the potential of the binary number system. This system
uses just two digits, namely, ‘0’ and ‘1’, with the number 2 represented by 10, the
number 4 by 100 and so on. Leibniz described the binary system in Explication de
l’Arithmétique Binaire [Lei:03], which was published in 1703. A table of values for
the first 15 binary numbers is given in Table 3.1.

Leibniz’s 1703 paper describes how binary numbers may be added, subtracted,
multiplied and divided, and he was an advocate of their use. The key advantage of
the use of binary notation is in digital computers, where a binary digit may be
implemented by an on-off switch, with the digit 1 representing that the switch is on
and the digit 0 representing that the switch is off.

1 The segadecimal (or base 60) system was employed by the Babylonians (as discussed in Chapter
2). The decimal system was developed by Indian and Arabic mathematicians between 800 and
900 A.D., and it was introduced to Europe in the late twelfth/early thirteenth century. It is known
as the Hindu-Arabic system.

Fig. 3.2  Replica of step reckoner at Technische Sammlungen Museum, Dresden

3  Foundations of Computing

41

The use of binary arithmetic allows more complex mathematical operations to be
performed by relay circuits, and Boolean logic (described in a later section) is the
perfect model for simplifying such circuits and is the foundation underlying digital
computing.

3.4	 �The Difference Engine

Charles Babbage (Fig. 3.3) is considered (along with George Boole) to be one of the
grandfathers of the computing field. He made contributions to several areas includ-
ing mathematics, statistics, astronomy, calculating machines, philosophy, railways
and lighthouses. He founded the British Statistical Society and the Royal
Astronomical Society.

Babbage was interested in accurate mathematical tables as these are essential for
navigation and scientific work. However, there was a high error rate in the existing
tables due to human error introduced during calculation. He became interested in
the problem of finding a mechanical method to perform the calculations, as this
would eliminate errors introduced by human calculation. Babbage wished to
develop a more advanced machine than Pascal’s Pascaline or Leibniz’s step reck-
oner, which were limited to the basic arithmetic operations. He wished to develop a
machine that could compute polynomial functions.

He designed the difference engine (no. 1) in 1821 for the production of mathe-
matical tables. This is essentially a mechanical calculator (analogous to modern
electronic calculators), and it was designed to compute polynomial functions of
degree 4. It could also compute logarithmic and trigonometric functions such as
sine or cosine (as these may be approximated by polynomials).2

The accurate approximation of trigonometric, exponential and logarithmic func-
tions by polynomials depends on the degree of the polynomials, on the number of
decimal digits that it is being approximated to and on the error function. A higher-
degree polynomial is generally able to approximate the function more accurately.

2 The power series expansion of the sine function is given by Sin(x) = x − x3/3! + x5/5! − x7/7! + ….
The power series expansion for the cosine function is given by Cos(x) = 1 − x2/2! + x4/4! − x6/6! + ….
Functions may be approximated by interpolation, and the approximation of a function by a poly-
nomial of degree n requires n + 1 points on the curve for the interpolation. That is, the curve formed
by the polynomial of degree n that passes through the n + 1 points of the function to be approxi-
mated is an approximation to the function. The error function also needs to be considered.

Table 3.1  Binary number system

Binary Dec. Binary Dec. Binary Dec. Binary Dec.

0000 0 0100 4 1000 8 1100 12

0001 1 0101 5 1001 9 1101 13

0010 2 0110 6 1010 10 1110 14

0011 3 0111 7 1011 11 1111 15

3.4  The Difference Engine

42

Babbage produced prototypes for parts of the difference engine, but he never
actually completed the machine. The Swedish engineers, George and Edward
Schuetz, built the first working difference engine (based on Babbage’s design) in
1853 with funding from the Swedish government. Their machine could compute
polynomials of degree 4 on 15-digit numbers, and the third Schuetz difference
engine is on display at the Science Museum in London.

It was the first machine to compute and print mathematical tables mechanically.
The machine was accurate, and it showed the potential of mechanical machines as a
tool for scientists and engineers.

The machine is unable to perform multiplication or division directly. Once the
initial value of the polynomial and its derivative are calculated for some value of x,
the difference engine may calculate any number of nearby values using the numeri-
cal method of finite differences. This method replaces computational intensive tasks
involving multiplication or division, by an equivalent computation that just involves
addition or subtraction. The method of finite differences is described in more detail
in [ORg:12].

The British government cancelled Babbage’s project in 1842. He designed an
improved difference engine no.2 (Fig. 3.4) in 1849. It could operate on seventh-
order differences (i.e. polynomials of order 7) and 31-digit numbers. The machine
consisted of eight columns with each column consisting of 31 wheels. However, it
was over 150 years later before it was built (in 1991) to mark the 200th anniversary
of his birth. The Science Museum in London also built the printer that Babbage

Fig. 3.3  Charles Babbage

3  Foundations of Computing

43

designed, and both the machine and the printer worked correctly according to
Babbage’s design (after a little debugging).

3.5	 �The Analytic Engine: Vision of a Computer

The difference engine was designed to produce mathematical tables, and it required
human intervention to perform the calculation. Babbage recognized its limitations,
and he proposed a revolutionary solution by outlining his vision of a mechanical
computer. His plan was to construct a new machine that would be capable of execut-
ing all tasks that may be expressed in algebraic notation. His vision of a computer
(analytic engine) consisted of two parts (Table 3.2).

Fig. 3.4  Difference engine no. 2 (Photo public domain)

Table 3.2  Analytic engine

Part Function

Store This contains the variables to be operated upon as well as all those quantities, which
have arisen from the result of intermediate operations

Mill The mill is essentially the processor of the machine into which the quantities about to
be operated upon are brought

3.5  The Analytic Engine: Vision of a Computer

44

Babbage intended that the operation of the analytic engine would be analogous
to the operation of the Jacquard loom.3 The latter is capable of weaving (i.e. execut-
ing on the loom) a design pattern that has been prepared by a team of skilled artists.
The design pattern is represented by a set of cards with punched holes, where each
card represents a row in the design. The cards are then ordered and placed in the
loom, and the loom produces the exact pattern.

The use of the punched cards in the analytic engine allowed the formulae to be
manipulated in a manner dictated by the programmer. The cards commanded the
analytic engine to perform various operations and to return a result. Babbage distin-
guished between two types of punched cards:

–– Operation cards
–– Variable cards

Operation cards are used to define the operations to be performed, whereas the
variable cards define the variables or data that the operations are performed upon.
His planned use of punched cards to store programs in the analytic engine is similar
to the idea of a stored computer program in von Neumann architecture. However,
Babbage’s idea of using punched cards to represent machine instructions and data
was over 100 years before digital computers. Babbage’s analytic engine is therefore
an important milestone in the history of computing.

Babbage intended that the program be stored on read-only memory using
punched cards and that the input and output would be carried out using punched
cards. He intended that the machine would be able to store numbers and intermedi-
ate results in memory that could then be processed. There would be several punch
card readers in the machine for programs and data. He envisioned that the machine
would be able to perform conditional jumps as well as parallel processing where
several calculations could be performed at once.

The analytic engine was designed in 1834 as the world’s first mechanical com-
puter [Bab:42]. It included a processor, a memory and a way to input information
and output results. However, the machine was never built, as Babbage was unable to
secure funding from the British government.

1 3 The Jacquard loom was invented by Joseph Jacquard in 1801. It is a mechanical loom which
used the holes in punched cards to control the weaving of patterns in a fabric. The use of punched
cards allowed complex designs to be woven from the pattern defined on the punched cards. Each
punched card corresponds to one row of the design, and the cards were appropriately ordered. It
was very easy to change the pattern of the fabric being weaved on the loom, as this simply involved
changing cards.

3  Foundations of Computing

45

3.5.1	 �Applications of Analytic Engine

Lady Augusta Ada Lovelace (nee Byron)4 (Fig. 3.5) was a mathematician who col-
laborated with Babbage on applications for the analytic engine. She is considered
the world’s first programmer, and the Ada programming language is named in her
honour.

She was introduced to Babbage at a dinner party in 1833, and she visited
Babbage’s studio in London, where the prototype difference engine was on display.
She recognized the beauty of its invention, and she was fascinated by the idea of the
analytic engine. She communicated regularly with Babbage with ideas on its
applications.

Lovelace produced an annotated translation of Menabrea’s Notions sur la
machine analytique de Charles Babbage [Lov:42]. She added copious notes to the
translation,5 which were about three times the length of the original memoir, and
considered many of the difficult and abstract questions connected with the subject.
These notes are regarded as a description of a computer and software.

4 Lady Ada Lovelace was the daughter of the poet Lord Byron.
5 There is some controversy as to whether this was entirely her own work or a joint effort by
Lovelace and Babbage.

Fig. 3.5  Lady Ada
Lovelace

3.5  The Analytic Engine: Vision of a Computer

46

She explained in the notes how the analytic engine could be programmed and
wrote what is considered to be the first computer program. This program detailed a
plan be written for how the engine would calculate Bernoulli numbers. Lady Ada
Lovelace is therefore considered to be the first computer programmer, and Babbage
called her the ‘enchantress of numbers’.

She saw the potential of the analytic engine to fields other than mathematics. She
predicted that the machine could be used to compose music, produce graphics as
well as solve mathematical and scientific problems. She speculated that the machine
might act on other things apart from numbers and be able to manipulate symbols
according to rules. In this way, a number could represent an entity other than a
quantity.

3.6	 �Boole’s Symbolic Logic

George Boole (Fig. 3.6) was born in Lincoln, England, in 1815. His father (a cob-
bler who was interested in mathematics and optical instruments) taught him math-
ematics and showed him how to make optical instruments. Boole inherited his
father’s interest in knowledge, and he was self-taught in mathematics and Greek. He
taught at various schools near Lincoln, and he developed his mathematical knowl-
edge by working his way through Newton’s Principia, as well as applying himself
to the work of mathematicians such as Laplace and Lagrange.

He published regular papers from his early twenties, and these included contribu-
tions to probability theory, differential equations and finite differences. He devel-
oped Boolean algebra, which is the foundation for modern computing, and he is

Fig. 3.6  George Boole

3  Foundations of Computing

47

considered (along with Babbage) to be one of the grandfathers of computing. His
work was theoretical, and he never actually built a computer or calculating machine.
However, Boole’s symbolic logic was the perfect mathematical model for switching
theory and for the design of digital circuits.

Boole became interested in formulating a calculus of reasoning, and he pub-
lished The Mathematical Analysis of Logic in 1847 [Boo:48]. This work developed
novel ideas on a logical method, and he argued that logic should be considered as a
separate branch of mathematics, rather than a part of philosophy. He argued that
there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations. He corresponded regularly on logic with Augustus De Morgan.6

His paper on logic introduced two quantities ‘0 and ‘1’. He used the quantity 1
to represent the universe of thinkable objects (i.e. the universal set), and the quantity
0 represents the absence of any objects (i.e. the empty set). He then employed sym-
bols such as x, y, z, etc., to represent collections or classes of objects given by the
meaning attached to adjectives and nouns. Next, he introduced three operators
(+, − and ×) that combined classes of objects.

The expression xy (i.e. x multiplied by y or x × y) combines the two classes x, y to
form the new class xy (i.e. the class whose objects satisfy the two meanings repre-
sented by class x and class y). Similarly, the expression x + y combines the two
classes x, y to form the new class x + y (that satisfies either the meaning represented
by class x or class y). The expression x − y combines the two classes x, y to form the
new class x − y. This represents the class that satisfies the meaning represented by
class x but not class y. The expression (1 − x) represents objects that do not have the
attribute that represents class x.

Thus, if x = black and y = sheep, then xy represents the class of black sheep. Similarly,
(1 − x) would represents the class obtained by the operation of selecting all things in the
world except black things; x (1 − y) represents the class of all things that are black but
not sheep; and (1 − x) (1 − y) would give us all things that are neither sheep nor black.

He showed that these symbols obeyed a rich collection of algebraic laws and
could be added, multiplied, etc., in a manner that is similar to real numbers. These
symbols may be used to reduce propositions to equations, and algebraic rules may
be employed to solve the equations. The rules include:

1. x + 0 = x (Additive Identity)

2. x + (y + z) = (x + y) + z (Associative)

3. x + y = y + x (Commutative)

4. x + (1 − x) = 1

5. x 1 = x (Multiplicative Identity)

6. x 0 = 0

6 De Morgan was a nineteenth-century British mathematician based at University College London.
De Morgan’s laws in set theory and logic state that (A ∪ B)c = Ac ∩ Bc and ¬ (A ∨ B) ≡ ¬A ∧ ¬B.

3.6  Boole’s Symbolic Logic

48

7. x + 1 = 1

8. xy = yx (Commutative)

9. x(yz) = (xy)z (Associative)

10. x(y + z) = xy + xz (Distributive)

11. x(y − z) = xy − xz (Distributive)

12. x2 = x (idempotent)

These operations are similar to the modern laws of set theory with the set union
operation represented by ‘+’, and the set intersection operation is represented by
multiplication. The universal set is represented by ‘1’ and the empty by ‘0’. The
associative and distributive laws hold. Finally, the set complement operation is
given by (1 − x).

He applied the symbols to encode Aristotle’s syllogistic logic, and he showed
how the syllogisms could be reduced to equations. This allowed conclusions to be
derived from premises by eliminating the middle term in the syllogism. He refined
his ideas on logic further in An Investigation of the Laws of Thought which was
published in 1854 [Boo:58]. This book aimed to identify the fundamental laws
underlying reasoning in the human mind and to give expression to these laws in the
symbolic language of a calculus.

He considered the equation x2 = x to be a fundamental law of thought. It allows
the principle of contradiction to be expressed (i.e. for an entity to possess an attri-
bute and at the same time not to possess it):

	

x x
x x
x x

2

2 0

1 0

=
⇒ =
⇒ ()=

–

– 	

For example, if x represents the class of horses, then (1 − x) represents the class
of ‘not horses’. The product of two classes represents a class whose members are
common to both classes. Hence, x (1 − x) represents the class whose members are at
once both horses and ‘not horses’, and the equation x (1 − x) = 0 expresses the fact
that there is no such class. That is, it is the empty set.

Boole contributed to other areas in mathematics including differential equations
and finite differences7 and to the development of probability theory. Des McHale
has written an interesting biography of Boole [McH:85]. Boole’s logic appeared to
have no practical use, but this changed with Claude Shannon’s 1937 master’s thesis,
which showed its applicability to switching theory and to the design of digital
circuits.

7 Finite differences are a numerical method used in solving differential equations.

3  Foundations of Computing

49

3.6.1	 �Switching Circuits and Boolean Algebra

Claude Shannon showed in his famous master’s thesis that Boolean algebra pro-
vided the perfect mathematical model for switching theory and for the design of
digital circuits. It may be employed to optimize the design of systems of electrome-
chanical relays, and circuits with relays solve Boolean algebra problems. The use of
the properties of electrical switches to process logic is the basic concept that under-
lies all modern electronic digital computers. Digital computers today use the binary
digits 0 and 1, and Boolean logical operations may be implemented by electronic
AND, OR and NOT gates. More complex circuits (e.g. arithmetic) may be designed
from these fundamental building blocks.

Modern electronic computers use billions of transistors that act as switches and
can change state rapidly. The use of switches to represent binary values is the foun-
dation of modern computing. A high voltage represents the binary value 1 with low
voltage representing the binary value 0. A silicon chip may contain billions of tiny
electronic switches arranged into logical gates. The basic logic gates are AND, OR
and NOT. These gates may be combined in various ways to allow the computer to
perform more complex tasks such as binary arithmetic. Each gate has binary value
inputs and outputs.

The example in Fig. 3.7 is that of an ‘AND’ gate which produces the binary value
1 as output only if both inputs are 1. Otherwise, the result will be the binary value
0. Figure 3.8 shows an ‘OR’ gate which produces the binary value 1 as output if any
of its inputs is 1. Otherwise, it will produce the binary value 0.

Finally, a NOT gate (Fig. 3.9) accepts only a single input which it reverses. That
is, if the input is ‘1’, the value ‘0’ is produced and vice versa.

The logic gates may be combined to form more complex circuits. The example
in Fig. 3.10 is that of a half-adder of 1 + 0. The inputs to the top OR gate are 1 and
0 which yields the result of 1. The inputs to the bottom AND gate are 1 and 0 which
yields the result 0, which is then inverted through the NOT gate to yield binary 1.
Finally, the last AND gate receives two 1s as input and the binary value 1 is the
result of the addition. The half-adder (Fig. 3.10) computes the addition of two arbi-
trary binary digits, but it does not calculate the carry. It may be extended to a full
adder that provides a carry for addition.

3.7	 �Application of Symbolic Logic to Digital Computing

Claude Shannon (Fig. 3.11) was an American mathematician and engineer who
made fundamental contributions to computing. He was the first person8 to see the
applicability of Boolean algebra to simplify the design of circuits and telephone
routing switches. He showed that Boole’s symbolic logic developed in the nine-

8 Victor Shestakov at Moscow State University also proposed a theory of electric switches based
on Boolean algebra around the same time as Shannon. However, his results were published in
Russian in 1941, whereas Shannon’s were published in 1937.

3.7  Application of Symbolic Logic to Digital Computing

50

teenth century provided the perfect mathematical model for switching theory and
for the subsequent design of digital circuits and computers.

His influential master’s thesis is a key milestone in computing, and it shows how
to lay out circuits according to Boolean principles. It provides the theoretical foun-
dation of switching circuits, and his insight of using the properties of electrical
switches to do Boolean logic is the basic concept that underlies all electronic digital
computers.

Shannon realized that you could combine switches in circuits in such a manner
as to carry out symbolic logic operations. This allowed binary arithmetic and more
complex mathematical operations to be performed by relay circuits. He designed a
circuit, which could add binary numbers, and he later designed circuits that could
make comparisons and thus are capable of performing a conditional statement. This
was the birth of digital logic and the digital computing age.

1
1AND

AND

AND

1

0
0

0

1

0

0

Fig. 3.7  Binary AND
operation

1

1

0

1

1

0

OR

OR

OR
0

0

1

Fig. 3.8  Binary OR
operation

0 1Fig. 3.9  NOT operation

1
OR

AND

AND 1

0

Fig. 3.10  Half-adder

3  Foundations of Computing

51

Vannevar Bush [ORg:13] was Shannon’s supervisor at MIT, and Shannon’s ini-
tial work was to improve Bush’s mechanical computing device known as the dif-
ferential analyser. This machine had a complicated control circuit that was composed
of 100 switches that could be automatically opened and closed by an electromagnet.
Shannon’s insight was his realization that an electronic circuit is similar to Boolean
algebra, and he showed how Boolean algebra could be employed to optimize the
design of systems of electromechanical relays used in the analog computer. He also
realized that circuits with relays could solve Boolean algebra problems.

He showed in his master’s thesis A Symbolic Analysis of Relay and Switching
Circuits [Sha:37] that the binary digits (i.e. 0 and 1) can be represented by electrical
switches. The implications of true and false being denoted by the binary digits 1 and
0 were enormous, since it allowed binary arithmetic and more complex mathemati-
cal operations to be performed by relay circuits. This provided electronic engineers
with the mathematical tool they needed to design digital electronic circuits and pro-
vided the foundation of digital electronic design.

The design of circuits and telephone routing switches could be simplified with
Boolean algebra. Shannon showed how to lay out circuitry according to Boolean
principles, and his master’s thesis became the foundation for the practical design of
digital circuits. These circuits are fundamental to the operation of modern comput-
ers and telecommunication systems, and his insight of using the properties of

Fig. 3.11  Claude Shannon

3.7  Application of Symbolic Logic to Digital Computing

52

electrical switches to do Boolean logic is the basic concept that underlies all elec-
tronic digital computers.

He moved to the Mathematics Department at Bell Labs in the 1940s and com-
menced work that would lead to the foundation of modern information theory. The
fundamental problem in this field is to reproduce at a destination point, either
exactly or approximately, the message that has been sent from a source point. The
problem is that information may be distorted by noise, leading to differences
between the received message and the message that was originally sent. He pro-
vided a mathematical definition and framework for information theory in A
Mathematical Theory of Communication [Sha:48]. He also contributed to the field
of cryptography in Communication Theory of Secrecy Systems [Sha:49].

3.8	 �Review Questions

3.9	 �Summary

This chapter considered foundational work done by Leibniz, Babbage, Boole, Ada
Lovelace and Shannon. Leibniz was a seventeenth-century German mathematician
and inventor who developed a calculating machine (the step reckoner) that could
perform the four basic arithmetic operations. He also invented the binary number
system, which is used extensively in the computer field.

Babbage was a nineteenth-century scientist and inventor who did pioneering
work on calculating machines. He designed the difference engine (a sophisticated
calculator that could be used for the production of mathematical tables), and he also
designed the analytic engine (the world’s first mechanical computer).

Lady Ada Lovelace was introduced into Babbage’s ideas on the analytic engine,
and she predicted that such a machine could be used to compose music, produce
graphics as well as solve mathematical and scientific problems. She wrote what is
considered the first computer program.

	1.	 Explain the significance of binary numbers in the computing field.
	2.	 Explain the importance of Shannon’s master’s thesis.
	3.	 Explain the significance of the analytic engine.
	4.	 Explain why Ada Lovelace is considered the world’s first programmer.
	5.	 Explain the significance of Boole to the computing field.
	6.	 Explain the significance of Babbage to the computing field.
	7.	 Explain the significance of Leibniz to the computing field.

3  Foundations of Computing

53

Boole was a nineteenth-century English mathematician who made important
contributions to mathematics, probability theory and logic. Boole’s symbolic logic
provides the foundation for digital computers.

Shannon was a twentieth-century American mathematician and engineer, and he
was the first person to see the applicability of Boolean algebra to simplify the design
of circuits and telephone routing switches. He showed that Boole’s symbolic logic
provided the perfect mathematical model for switching theory and for the subse-
quent design of digital circuits and computers.

3.9  Summary

55© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_4

 4 The First Digital Computers

 Abstract
 The Second World War motivated researchers to investigate faster ways to per-
form calculation to solve practical problems. This led to research into the
development of digital computers to determine if they could provide faster
methods of computation. We discuss the fi rst digital computers including the
Atanasoff- Berry computer developed in the United States, the ENIAC and
EDVAC developed in the United States, the Colossus computer developed in
England, Zuse’s computers developed in Germany and the Manchester Mark I
computer developed in England.

4.1 Introduction

 This chapter considers some of the early computers developed in the United States,
Britain and Germany. The Second World War motivated researchers to investigate
faster ways to perform calculation to solve practical problems. This led to research
into the development of digital computers to determine if they could provide faster
methods of computation.

 Key Topics
 Harvard Mark I
 ABC
 ENIAC
 EDVAC
 Colossus
 Zuse’s machines
 Manchester Mark I

56

 The early computers were mainly large bulky machines consisting of several
thousand vacuum tubes. A computer often took up the space of a large room, and it
was slow and unreliable.

 The early computers considered in this chapter include the Harvard Mark I
designed and developed by Howard Aiken and IBM. This was a large electrome-
chanical calculator that could perform mathematical calculations quickly. John
Atanasoff and Clifford Berry designed and developed the Atanasoff-Berry com-
puter (ABC), and this machine was designed to solve a set of linear equations using
Gaussian elimination. John Mauchly and Presper Eckert designed the ENIAC and
EDVAC. ENIAC was a fi xed-program computer that needed to be physically rewired
to solve different problems, but the EDVAC computer implemented the concept of
a stored program. This meant that the program instructions could be stored in mem-
ory and that all that was required to carry out a new task was to load a new program
into memory.

 The team at Bletchley Park in England designed and developed the Colossus
computer as part of their codebreaking work during the Second World War. This
allowed them to crack the German Lorenz codes and to provide important military
intelligence for the D-Day landings of 1944.

 Konrad Zuse designed and developed the Z1, Z2 and Z3 machines in Germany.
The Z3 was operational in 1941, and it was the world’s fi rst programmable
computer.

4.2 Harvard Mark I

 Howard Aiken (Fig. 4.1) made several important contributions to the early comput-
ing fi eld. He showed that a large calculating machine could be built that would
provide speedy solutions to mathematical problems.

 His idea was to construct an electromechanical machine that could perform
mathematical operations quickly and effi ciently, and the machine would need to be
able to handle positive and negative numbers and scientifi c functions, such as loga-
rithms, and be able to work with minimal human intervention.

 He discussed the idea with colleagues and IBM, and he was successful in obtain-
ing IBM funding to build the machine. The machine was built at the IBM laborato-
ries at Endicott with several IBM engineers involved in its construction. The
construction took 7 years, and it was completed in 1943.

 The machine became known as the Harvard Mark I (also known as the IBM
 Automatic Sequence Controlled Calculator (ASCC)). Aiken was infl uenced by
Babbage’s ideas on the design of the Analytic Engine.

 IBM presented the machine to Harvard University in 1944, and the ASCC was
essentially an electromechanical calculator that could perform large computations
automatically. It could perform addition, subtraction, multiplication and division,
and it could refer to previous results.

 The Harvard Mark I (Fig. 4.2) was designed to assist in the numerical computa-
tion of differential equations, and it was 50 ft long and 8 ft high and weighed 5 tons.

4 The First Digital Computers

57

 Fig. 4.1 Howard Aiken

 Fig. 4.2 Harvard Mark I (IBM ASCC) (Courtesy of IBM Archives)

4.2 Harvard Mark I

58

It performed additions in less than a second, multiplications in 6 s and division in
about 12 s. It used electromechanical relays to perform the calculations, and it could
execute long computations automatically.

 It was constructed out of switches, relays, rotating shafts and clutches, and it
used 500 miles of wiring and over 750,000 components. It was the industry’s largest
electromechanical calculator, and it had 60 sets of 24 switches for manual data
entry. It could store 72 numbers, each 23 decimal digits long. The instructions were
read on paper tape, and punched cards were used to input the data, and the results
were either on punched cards or an electric typewriter.

 The US Navy used the Harvard Mark I for ballistic calculations, and the machine
remained in use until 1959. It cost approximately half a million dollars, but it was
never mass produced by IBM. It differed from most of the early digital computers
in that it used relays instead of vacuum tubes.

 The announcement of the Harvard Mark I led to tension between Aiken and
IBM, as Aiken announced himself as the sole inventor without acknowledging the
important role played by IBM.

4.3 Atanasoff-Berry Computer

 John Atanasoff (Fig. 4.3) was born in New York in 1903, and he studied electrical
engineering at the University of Florida and did a master’s in mathematics at Iowa
State College. He earned a PhD in theoretical physics from the University of

 Fig. 4.3 John Atanasoff with components of ABC

4 The First Digital Computers

59

Wisconsin in 1930 and became an assistant professor at Iowa State College, where
he taught mathematics and physics.

 He became interested in developing faster methods of computation while doing
his PhD research, as he wished to ease the time-consuming burden of calculation.
He did some work on an analog calculator in 1936, but he concluded that analog
devices were too restrictive and that they would be unable to give him the desired
accuracy. His goal was to mechanize calculation to enable accurate computation to
be carried out faster.

 The existing computing devices were mechanical, electromechanical or analog.
Atanasoff developed the concept of digital machine in the late 1930s, and he
believed that his proposed machine would perform faster computations and be more
accurate than the existing analog machines. He published the design of a machine
to solve linear equations using his own version of Gaussian elimination in the sum-
mer of 1939. He then used his research grant of $650 to build the Atanasoff-Berry
computer (ABC), with the assistance of his graduate student, Clifford Berry, from
1939 to 1942.

 The ABC (Fig. 4.4) was approximately the size of a large desk and had approxi-
mately 270 vacuum tubes. Two hundred and ten tubes controlled the arithmetic unit;
30 tubes controlled the card reader and card punch; and the remaining tubes helped
maintain charges in the condensers. It employed rotating drum memory, with each
of the two drum memory units able to hold thirty 50-bit numbers.

 Fig. 4.4 Replica of ABC (Courtesy of Iowa State University)

4.3 Atanasoff-Berry Computer

60

 The ABC was a digital machine that was designed for a specifi c purpose (i.e.
solving linear equations) rather than as a general-purpose computer. The working
prototype was one of the earliest electronic digital computers. 1 However, the ABC
was slow, and it required constant operator monitoring.

 It used binary mathematics and Boolean logic to solve simultaneous linear equa-
tions. It employed over 270 vacuum tubes for digital computation, but it had no
central processing unit (CPU), and it was not programmable.

 It weighed over 300 kg and it used 1.6 km of wiring. It used 50-bit numbers, and
it could perform 30 additions or subtractions per second. The memory and arithme-
tic units could operate and store 60 such numbers at a time (60 * 50 = 3000 bits). The
arithmetic logic unit was fully electronic, and it was implemented with vacuum
tubes.

 The input was in decimal format with standard IBM 80 column punched cards,
and the output was in decimal format via a front panel display. A paper card reader
was used as an intermediate storage device to store the results of operations too
large to be handled entirely within electronic memory. The ABC pioneered impor-
tant elements in modern computing including:

 – Binary arithmetic and Boolean logic.
 – All calculations were performed using electronics rather than mechanical

switches.
 – Computation and memory were separated.

 The ABC was tested and operational by 1942, and its historical signifi cance is
that it demonstrated the feasibility of electronic computing. Several of its concepts
were later used in the ENIAC developed by Mauchly and Eckert.

4.4 ENIAC and EDVAC

 The Electronic Numerical Integrator and Computer (ENIAC) was one of the fi rst
large general-purpose digital computers. It was used to integrate ballistic equations
and to calculate the trajectories of naval shells. It was completed in 1946, and it
remained in use until 1955. The original cost of the machine was approximately
$500,000.

 ENIAC (Fig. 4.5) was a large bulky machine and it was over 100 ft long, 10 ft
high and 3 ft deep and weighed about 30 tons. Its development commenced in 1943
at the University of Pennsylvania, and it was built for the US Army’s Ballistics
Research Laboratory The project team included Presper Eckert as chief engineer,
John Mauchly as a consultant and several others. ENIAC had over 18,000 vacuum
tubes, and so the machine generated a vast quantity of heat, as each vacuum tube

1 The ABC was ruled to be the fi rst electronic digital computer in the Sperry Rand vs. Honeywell
patent case in 1973. However, Zuse’s Z3 computer which was completed in Germany in 1941
preceded it.

4 The First Digital Computers

61

generated heat like a light bulb. The machine used 150 kW of power and air condi-
tioning was used to cool it.

 It employed decimal numerals and it could add fi ve thousand numbers and do
over three hundred and fi fty 10-digit multiplications or thirty-fi ve 10-digit divisions
in one second. It could be programmed to perform complex sequences of opera-
tions, and this included loops, branches and subroutines. However, the task of tak-
ing a problem and mapping it onto the machine was complex, and it usually took
weeks to perform. The fi rst step was to determine what the program was to do on
paper; the second step was the process of manipulating the switches and cables to
enter the program into ENIAC, and this usually took several days. The fi nal step was
verifi cation and debugging, and this often involved single-step execution of the
machine.

 There were problems initially with the reliability of ENIAC, as several vacuum
tubes burned out most days (Fig. 4.6). This meant that the machine was often non-
functional, as high-reliability vacuum tubes only became available in the late 1940s.
However, most of these problems with the tubes occurred during the warm-up and
cool-down periods, and it was therefore decided not to turn the machine off. This
led to improvements in its reliability to the acceptable level of one tube every 2 days.
The longest continuous period of operation without a failure was 5 days.

 The very fi rst program run on ENIAC took just 20 s, and the answer was manu-
ally verifi ed to be correct after 40 h of work with a mechanical calculator. One of the
earliest problems solved was related to the feasibility of the hydrogen bomb, and
this program involved the input of 500,000 punched cards, and it ran for 6 weeks
and gave an affi rmative reply.

 Fig. 4.5 Setting the switches on ENIAC’s function tables (US Army photo)

4.4 ENIAC and EDVAC

62

 ENIAC was a fi xed-program computer, and the machine had to be physically
rewired in order to perform different tasks. It was clear that there was a need for an
architecture that would allow a machine to perform different tasks without physical
rewiring each time. This led to the concept of the stored program , which was imple-
mented on EDVAC (the successor to ENIAC).

 The idea of a stored program is that the program is stored in memory, and when-
ever there is a need to change the task that is to be computed, then all that is required
is to place a new program in the memory of the computer, rather than rewiring the
machine. EDVAC implemented the concept of a stored program in 1949, just after
its implementation on the Manchester Baby prototype machine in England. The
concept of a stored program and Von Neumann architecture is detailed in Von
Neumann’s report on EDVAC [VN:45].

 ENIAC was preceded in development by Zuse’s Z3 machine in Germany, the
Atanasoff-Berry computer (ABC) in the United States and the Colossus computer
developed in the United Kingdom. ENIAC was a major milestone in the history of
computing.

4.4.1 EDVAC

 The EDVAC (Electronic Discrete Variable Automatic Computer) was the successor
to the ENIAC. It was a stored-program computer and it cost $500,000. Eckert and

 Fig. 4.6 Replacing a valve on ENIAC (US Army photo)

4 The First Digital Computers

63

Mauchly proposed it in 1944, and design work commenced prior to the completion
of ENIAC.

 It was delivered to the Ballistics Research Laboratory in 1949, and it commenced
operations in 1951. It remained in operations until 1961. It employed 6000 vacuum
tubes and its power consumption was 56,000 W. It had 5.5 Kb of memory.

 EDVAC (Fig. 4.7) was one of the earliest stored-program computers, and the
program instructions were stored in memory, rather than rewiring the machine each
time.

 Fig. 4.7 The EDVAC computer (US Army Photo)

4.4 ENIAC and EDVAC

64

4.4.2 Controversy Between the ABC and ENIAC

 The ABC was ruled to be the fi rst electronic digital computer in the 1963 Honeywell
vs. Sperry Rand patent court case in the United States. The court case arose from a
patent dispute between Sperry and Honeywell, and John Atanasoff was called as an
expert witness in the case.

 The court ruled that Eckert and Mauchly did not invent the fi rst electronic com-
puter, since the ABC existed as prior art at the time of their patent application. It is
fundamental in patent law that an invention is novel and that there is no existing
prior art. This meant that the Mauchly and Eckert patent application for ENIAC was
invalid, and John Atanasoff was named as the inventor of the fi rst digital computer.

 Mauchly had visited Atanasoff on several occasions prior to the development of
ENIAC, and they had discussed the implementation of the ABC. Mauchly subse-
quently designed the ENIAC, EDVAC and UNIVAC.

 The court ruled that the ABC was the fi rst digital computer and that the inventors
of ENIAC had derived the subject matter of the electronic digital computer from
Atanasoff.

4.5 Bletchley Park and Colossus

 Tommy Flowers (Fig. 4.8) was a British engineer who made important contributions
to breaking the Lorenz codes during the Second World War. He led the team that
designed and built Colossus, which was one of the earliest electronic computers. The
machine was designed to decode the top-level encrypted German military

 Fig. 4.8 Tommy Flowers

4 The First Digital Computers

65

communication sent by German High Command to its commanders in the fi eld. This
provided British and American intelligence with important information on German
military plans around the D-Day invasion and later battles, and it helped to ensure the
success of the Normandy landings and the ultimate defeat of Nazi Germany.

 Flowers was born in East London in 1905, and he obtained a position with the
telecommunications branch of the General Post Offi ce in 1926. He moved to the
research station at Dollis Hill in 1930, and he investigated the use of electronics for
telephone exchanges. He was convinced at an early stage that an all-electronic sys-
tem was possible.

 He became involved with the codebreaking work taking place at Bletchley Park
(located near Milton Keynes north west of London) during the Second World War.
Alan Turing and others had cracked the German Enigma codes by building a
machine known as the Bombe. This machine employed a crib to deduce the settings
of the Enigma machine for that day. Turing introduced Flowers to Max Newman
who was leading British efforts to break a German cipher generated by the Lorenz
SZ42 machine.

 Their existing approach to deciphering the Lorenz codes was with the Heath
Robinson machine (a slow and unreliable machine). Flowers proposed an alternate
solution involving the use of an electronic machine in 1943. This machine was
called Colossus and it employed 1800 thermionic valves. The management at
Bletchley Park were sceptical, but they encouraged him to continue with his work.

 Flowers and others at the Post Offi ce Research Station built the machine in
11 months, and its successor, the Colossus Mark 2, contained 2400 valves and it
commenced operations on June 1, 1944. It was a large bulky machine and took up
the space of a small room and weighed a ton.

 It provided vital information for the Normandy landings, and it confi rmed that
Hitler had been successfully misled by Allied disinformation into believing that the
Normandy landings were to be a diversionary tactic. Further, it confi rmed that no
additional German troops were to be moved there. The Colossus Mark 2 machine
played a key role in helping the British to monitor the German reaction to their
deception tactics.

4.5.1 Colossus

 Flowers and others designed and built the original Colossus machine at the Post
Offi ce Research Station at Dollis Hill in London. The machine was used to fi nd pos-
sible key combinations for the Lorenz machines rather than decrypting an inter-
cepted message in its entirety. The Lorenz machine was based on the Vernam cipher .

 Colossus compared two data streams to identify possible key settings for the
Lorenz machine. The fi rst data stream was the encrypted message, and it was read
at high speed from a paper tape. The second stream was generated internally and
was an electronic simulation of the Lorenz machine at various trial settings. If the
match count for a setting was above a certain threshold, it would be sent as output
to an electric typewriter.

4.5 Bletchley Park and Colossus

66

 The Lorenz codes were a more complex cipher than the Enigma codes, and they
were used in the transmission of important messages between the German High
Command in Berlin and the military commanders in the fi eld. The Lorenz SZ 40/42
machine performed the encryption. The Bletchley Park codebreakers called the
typewriter-coding machine Tunny and the coded messages Fish . The codebreaking
work involved carrying out complex statistical analyses on the intercepted
messages.

 The Colossus Mark I machine was specifi cally designed for codebreaking rather
than as a general-purpose computer. It was semi-programmable and helped in deci-
phering messages encrypted using the Lorenz machine. A prototype was available
in 1943 and a working version was available in the early 1944 at Bletchley Park.
The Colossus Mark 2 (Fig. 4.9) was introduced just prior to the Normandy landings
in June 1944.

 The Colossus Mark I used 15 kW of power and it could process 5000 characters
of paper tape per second. It enabled a large amount of mathematical work to be done
in hours rather than in weeks. There were 10 Colossus machines working at
Bletchley Park by the end of the war. A replica of the Colossus was rebuilt by a team
of volunteers led by Tony Sale from 1993 to 1996, and it is at Bletchley Park
museum.

 The contribution of Bletchley Park to the cracking of the German Enigma and
Lorenz codes and to the development of computing remained clouded in secrecy
until recent times. The museum at Bletchley Park provides insight to the important
contribution made by this organization to codebreaking and to early computing dur-
ing the Second World War.

 Fig. 4.9 Colossus Mark 2 (Photo courtesy of UK government)

4 The First Digital Computers

67

4.6 Zuse’s Machines

 Konrad Zuse is considered the father of the computer in Germany, as he built the
world’s fi rst programmable machine (the Z3) in 1941 (Fig. 4.10).

 He was born in Berlin in 1910, and he studied civil engineering at the Technical
University of Berlin. He commenced working for Henschel (an airline manufac-
turer) after his graduation in 1935. He resigned after 1 year with the intention of
forming his own company to build automatic calculating machines.

 His parents provided fi nancial support, and he commenced work on what would
become the Z1 machine in 1936. Zuse employed the binary system for the calcula-
tor and metallic shafts that could shift from position 0 to 1 and vice versa. The Z1
was operational by 1938.

 He served in the German Army on the Eastern Front for 6 months in 1939 at the
start of the Second World War. Henschel helped Zuse to obtain a deferment from the
army, and they made the case that he was needed as an engineer and not as a soldier.
Zuse recommenced working at Henschel in 1940, and he remained affi liated with
Henschel for the duration of the war. He built the Z2 and Z3 machines during this
period, and the Z3 was operational in 1941, and it was the world’s fi rst program-
mable computer.

 He started his own company in 1941, and this was the fi rst company founded
with the sole purpose of developing computers. The Z4 was almost complete as the
Red Army advanced on Berlin in 1945, and Zuse left Berlin for Bavaria with the Z4
prior to the Russian advance. His other machines were destroyed in the Allied
bombing of Germany.

 He designed the world’s fi rst high-level programming language between 1943
and 1945, and this language was called Plankalkül. He later restarted his company

 Fig. 4.10 Konrad Zuse
(Courtesy of Horst Zuse,
Berlin)

4.6 Zuse’s Machines

68

(Zuse KG), and he completed the Z4 in 1950. This was the fi rst commercial com-
puter, as it was completed ahead of the Ferranti Mark I, UNIVAC and LEO comput-
ers. Its fi rst customer was the Technical University of Zurich.

 Zuse’s results are all the more impressive given that he was working alone in
Germany, and he was unaware of the developments taking place in other countries.
There is more detailed information on Zuse in [ORg:13].

4.6.1 Z1, Z2 and Z3 Machines

 Zuse was unaware of computer-related developments in Germany or in other coun-
tries, and he independently implemented the principles of modern digital computers
in isolation.

 He commenced work on his fi rst machine called the Z1 in 1936, and the machine
was operational by 1938. It was demonstrated to a small number of people who saw
it rattle and compute the determinant of a three by three matrix. It was essentially a
binary electrically driven mechanical calculator with limited programmability. It
was capable of executing instructions read from the program punched cards, but the
program itself was never loaded into the memory.

 It employed the binary system and metallic shafts that could slide from position
0 to position 1 and vice versa. The machine was essentially a 22-bit fl oating-point
value adder and subtracter. A decimal keyboard was used for input, and the output
was decimal digits. The machine included some control logic, which allowed it to
perform more complex operations such as multiplications and division. These oper-
ations were performed by repeated additions for multiplication and repeated sub-
tractions for division. The multiplication took approximately 5 s. The computer
memory contained 64 22-bit words. Each word of memory could be read from and
written to by the program punched cards and the control unit. It had a clock speed
of 1 Hz and two fl oating-point registers of 22 bits each. The machine was unreli-
able, and a reconstruction of it is in the Deutsches Technikmuseum in Berlin.

 His Z2 machine aimed to improve the Z1, and this mechanical and relay com-
puter was created in 1939. It used a similar mechanical memory, but it replaced the
arithmetic and control logic with 600 electrical relay circuits. It used 16-bit fi xed-
point arithmetic instead of the 22-bit used in the Z1. It had a 16-bit word size and
the size of its memory was 64 words. It had a clock speed of 3 Hz.

 The Z3 machine (Fig. 4.11) was the fi rst functional tape-stored-program-
controlled computer, and it was created in 1941. It used 2600 telephone relays and
the binary number system, and it could perform fl oating-point arithmetic. It had a
clock speed of 5Hz, and multiplication and division took 3 s. The input to the
machine was with a decimal keyboard, and the output was on lamps that could dis-
play decimal numbers. The word length was 22 bits, and the size of the memory was
64 words.

 It used a punched fi lm for storing the sequence of program instructions. It could
convert decimal to binary and back again. It was the fi rst digital computer since it
predates the Atanasoff-Berry computer by 1 year. It was proven to be Turing

4 The First Digital Computers

69

complete in 1998. There is a reconstruction of the Z3 computer in the Deutsches
Museum in Munich.

4.7 University of Manchester

 The Manchester Small-Scale Experimental Computer (better known by its nick-
name ‘Baby’) was developed at the University of Manchester. It was the fi rst stored-
program computer , and it was designed and built at Manchester University in
England by Frederic Williams, Tom Kilburn, Geoff Tootill and others.

 The machine demonstrated the reliability of the Williams tube, and it was the
fi rst stored-program computer: in other words the task to be computed is defi ned by
the computer instructions that are placed in memory, and in order to change the task
to be computed, all that is required is to load a different program into the computer
memory. Kilburn wrote and executed the fi rst stored program, and it was a short
17-line program written and executed in 1948.

 The prototype ‘Baby’ (Fig. 4.12) demonstrated the feasibility and potential of a
stored-program computer. Its memory consisted of 32 32-bit words, and it took
1.2 ms to execute one instruction: i.e. 0.00083 MIPS (million instructions per sec-
ond). Today’s computers are rated at speeds of up to 1000 MIPS and more. The
team in Manchester developed the machine further, and in 1949, the Manchester
Mark I was available.

 Fig. 4.11 Zuse and the reconstructed Z3 (Courtesy of Horst Zuse, Berlin)

4.7 University of Manchester

70

4.7.1 Manchester Mark I

 The Manchester Automatic Digital Computer (MADC), also known as the
Manchester Mark I, was developed at the University of Manchester. It was one of
the earliest stored-program computers, and it was the successor to the Manchester
‘Baby’ computer. It was designed and built by Williams, Kilburn and others.

 Each word could hold one 40-bit number or two 20-bit instructions. The main
memory consisted of two pages (i.e. two Williams tubes with each holding
32 × 40-bit words or 1280 bits). The secondary backup storage was a magnetic drum
consisting of 32 pages (this was updated to 128 pages in the fi nal specifi cation).
Each track consisted of two pages (2560 bits). One revolution of the drum took
30 ms, and this allowed the 2560 bits to be transferred to main memory.

 The Manchester Mark I (Fig. 4.13) contained 4050 vacuum tubes, and it had a
power consumption of 25,000 W. The standard instruction cycle was 1.8 ms but
multiplication was much slower. The machine had 26 defi ned instructions, and the
programs were entered into the machine in binary format, as assembly languages
and assemblers were not yet available.

 Fig. 4.12 Replica of the Manchester Baby (Courtesy of Tommy Thomas)

4 The First Digital Computers

71

 It had no operating system and its only systems software were some basic rou-
tines for input and output. Its peripheral devices included a teleprinter and a 5-hole
paper tape reader and punch.

 A display terminal used with the Manchester Mark I computer mirrored what
was happening within the Williams tube. A metal detector plate placed close to the
surface of the tube detected changes in electrical charges. The metal plate obscured
a clear view of the tube, but the technicians could monitor the tubes used with a
video screen. Each dot on the screen represented a dot on the tube’s surface, and the
dots on the tube’s surface worked as capacitors that were either charged and bright
or uncharged and dark. The information translated into binary code (0 for dark, 1 for
bright) became a way to program the computer.

 The Manchester Mark I infl uenced later computer development such as Ferranti
Mark I general-purpose computer which was released in 1951, as well as early IBM
computers such as the IBM 701.

 Fig. 4.13 The Manchester Mark I (Courtesy of the University of Manchester)

4.7 University of Manchester

72

4.8 Review Questions

4.9 Summary

 This chapter considered some of the earliest computers developed in the United
States, Britain and Germany. The Second World War led to research into the devel-
opment of digital computers to determine if they could provide faster methods of
computation. The early computers were mainly large bulky machines consisting of
several thousand vacuum tubes. A computer often took up the space of a large room,
and it was slow and unreliable.

 The early computers considered in this chapter include the Harvard Mark I
designed and developed by Howard Aiken and IBM. This was a large electrome-
chanical calculator that could perform mathematical calculations quickly. Atanasoff
and Berry designed and developed the ABC, and this machine was designed to
solve a set of linear equations. Mauchly and Eckert designed the ENIAC and
EDVAC, and the ENIAC needed to be physically rewired to solve different prob-
lems. Its successor, the EDVAC, implemented the concept of a stored program,
which meant that a new program was loaded into the memory of the machine to
solve a different problem.

 The team at Bletchley Park in England designed and developed the Colossus
computer as part of their codebreaking work. This allowed them to crack the German
Lorenz codes and to provide important military information during the D-Day land-
ings of 1944.

 Konrad Zuse designed and developed the Z1, Z2 and Z3 machines in Germany.
The Z3 was operational in 1941 and it was the world’s fi rst programmable com-
puter. Williams, Kilburn and others implemented the fi rst stored-program computer.
This machine was popularly known as the Manchester Baby.

 1. Explain the signifi cance of the ABC computer.
 2. Explain what is meant by a ‘stored-program’ computer and its advantages

over a fi xed-program machine such as ENIAC.
 3. Explain why Konrad Zuse is considered the father of the computer in

Germany.
 4. Explain the signifi cance of the Manchester Baby computer.
 5. Explain the signifi cance of the work done at Bletchley Park during the

Second World War.
 6. Explain the signifi cance of the Harvard Mark I?

4 The First Digital Computers

73© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_5

 5 The First Commercial Computers

 Abstract
 This chapter discusses the fi rst commercial computers including the UNIVAC I
developed by EMCC/Sperry in the United States for the US Census Bureau and
the LEO I computer developed by J. Lyons and Co. in England in partnership
with Maurice Wilkes of Cambridge University. The Z4 computer was developed
by Zuse KG in Germany, and the Ferranti Mark I computer was developed by
Ferranti in partnership with the University of Manchester.

5.1 Introduction

 This chapter considers a selection of the fi rst commercial computers designed and
developed in the United States, Great Britain, Germany and Australia. These
machines built on the work of the fi rst computers developed during the Second
World War.

 These include the UNIVAC I computer developed by EMCC (later called Sperry
and Unisys) in the United States, the LEO I computer developed by J. Lyons and
Co. in England, the Z4 computer developed by Zuse KG in Germany, the Ferranti
Mark I developed by Ferranti in England and CSIRAC developed by CSIR in
Australia.

 Key Topics
 UNIVAC I
 LEO I computer
 Ferranti Mark I
 Z4
 CSIRAC

74

 The UNIVAC I computer was designed by John Mauchly and Presper Eckert of
EMCC for the US Census Bureau, and it was designed for business and administra-
tive use.

 The LEO I computer was developed by J. Lyons and Co. in partnership with
Cambridge University in England. It was based on the EDSAC computer designed
by Maurice Wilkes at Cambridge University, and the LEO I was designed for busi-
ness use.

 The Z4 was designed and developed by Konrad Zuse in Germany. Zuse had
already designed and developed a number of machines, and the Z4 computer was
almost complete at the end of the Second World War. Zuse formed Zuse KG to
complete the machine after the war.

 The University of Manchester implemented the fi rst stored-program computer
(discussed in previous chapter), and the British government encouraged Ferranti to
commercialize the Manchester Mark I.

5.2 UNIVAC

 The Eckert-Mauchly Computer Corporation (EMCC) was founded by Presper
Eckert and John Mauchly in 1947. It was one of the earliest computer companies in
the world, and it pioneered a number of fundamental computer concepts such as the
 stored program , subroutines , programming languages and compilers .

 EMCC was awarded a contract from the US Census Bureau in 1948 to develop
the Universal Automatic Computer (UNIVAC) for the 1950 census. This was one of
the fi rst commercially available computers when it was delivered in 1951 (too late
for the 1950 census), and it was designed for business and administrative use, rather
than for complex scientifi c calculations. The UNIVAC machine was later used to
accurately predict the result of the 1952 presidential election in the United States
from a sample of 1 % of the population.

 The UNIVAC I (Fig. 5.1) was initially priced at $159,000 and the price gradually
increased over the years to reach between $1.2 and $1.5 million. Over 46 of these
computers were built and delivered.

 It employed magnetic tape for high-speed storage and it used 5200 vacuum
tubes. It consumed 125 kW of electricity and it could carry out 1905 operations per
second. It took up 400 square foot of space, and its main memory consisted of 1000
words of 12 characters. The input/output was via the operator’s console, several
tape drives and an electric typewriter.

 UNIVAC is the name of a series of digital computers produced by EMCC and its
successors (i.e. Remington Rand, Sperry and Unisys). The original model was the
UNIVAC I (Universal Automatic Computer I). The successor models in the original
UNIVAC series included the UNIVAC II, which was released in 1958, and the
UNIVAC III, which was released by Sperry Rand in 1962.

 EMCC set up a department to develop software applications for the UNIVAC
computer, and it hired Grace Murray Hopper in 1949 as one of its fi rst program-
mers. Hopper played an important role in the development of programming

5 The First Commercial Computers

75

languages, and she made important contributions to the early development of com-
pilers, programming language constructs, data processing and the COBOL pro-
gramming language. For more information on Grace Murray Hopper, see [ORg:13].

 EMCC was taken over by Remington Rand in 1950. Remington had a back-
ground in the production of typewriters, and the Remington Typewriter was the fi rst
to use the QWERTY keyboard . Remington’s acquisition of EMCC allowed it to
enter the electronics market, and EMCC became the UNIVAC division of Remington
Rand. Sperry took over Remington Rand in 1955, and it became known as Sperry
Rand (and later just Sperry).

5.3 LEO I Computer

 J. Lyons and Co. was an innovative and forward-thinking company, and it was com-
mitted to fi nding ways to continuously improve to serve its customers better. It sent
two of its executives to the United States shortly after the Second World War to
evaluate new methods to improve business processes. These two executives came
across the early computers that had been developed in the United States, including
the ENIAC that had been developed by John Mauchly and others. They recognized
the potential of these early machines for business data processing.

 They also became aware during their visit to the United States that Maurice
Wilkes and others at Cambridge University in England were working on the design
of a computer based on the ideas detailed in Von Neumann’s report. On their return
to England, they visited Wilkes at Cambridge University, who was working on the
design of the EDSAC computer . They were impressed by his ideas and technical
knowledge and the potential of the planned EDSAC computer. They prepared a
report for Lyon’s board recommending that a computer designed for data processing

 Fig. 5.1 UNIVAC I computer

5.3 LEO I Computer

76

should be the next step in improving business processes and that Lyons should
develop or acquire a computer to meet its business needs.

 Lyons and Cambridge entered a collaboration arrangement where Lyons agreed
to help fund the completion of EDSAC, and Cambridge agreed to help Lyons to
develop its own computer, which was called the Lyons Electronic Offi ce or LEO
computer (Fig. 5.2). This machine was based on EDSAC but adapted to business
data processing. Lyons set up a project team led by John Pinkerton to develop its
computer, and Wilkes provided training for Lyon’s engineers. The LEO computer
ran its fi rst program in late 1951.

 The Electronic Delay Storage Automatic Calculator (EDSAC) was completed
and ran its fi rst program in 1949, and the LEO I computer was completed and ran its
fi rst program in late 1951. Lyons developed several applications for the LEO com-
puter, and the LEO computer was used to process business applications (e.g. pay-
roll) for other companies. Lyons recognized that more and more companies would
require computing power, and they saw a business opportunity. They decided to set
up a subsidiary company to focus on computers for commercial applications

 Leo Computers Ltd. was set up in 1954 and it was based in London. It designed
and developed a new computer, the LEO II, which was purchased by several British
companies. The LEO III was released in 1961, and it was sold to customers in the
United Kingdom and overseas.

 LEO I’s clock speed was 500 kHz with most instructions taking 1.5 ms to com-
plete. The machine was linked to fast paper tape readers and fast punched card read-
ers and punches. It had 8.75 Kb of memory holding 2048 35-bit words

 Fig. 5.2 LEO I computer (Courtesy of LEO Computer Society)

5 The First Commercial Computers

77

 The LEO I was initially used for valuation jobs, but this was later extended to
payroll, inventory and other applications. One of the early applications developed
by Lyons was an early version of an integrated management information system to
manage its business. Lyons was also one of the pioneers of IT outsourcing in that it
performed payroll calculations for a number of companies in the United Kingdom.

 The UK Met Offi ce used the LEO I computer in an early attempt at using a com-
puter for weather forecasting in the early 1950s. The weather prediction model was
solved on the LEO I computer, and the fi rst predictions were made in 1954. The Met
Offi ce later used the Manchester Mark I and more powerful computers for weather
forecasting. For a more detailed account of LEO, see [Fer:03 , ORg:15].

5.4 The Z4 Computer

 Zuse KG was founded by Konrad Zuse at Neukirchen (north of Frankfurt) in 1949.
It was the fi rst computer company in Germany, and it initially had fi ve employees.
The early focus of the company was to restore and improve Zuse’s Z4 machine,
which had survived the Allied bombing of Berlin and Zuse’s subsequent move to
Bavaria.

 The Z4 machine (Fig. 5.3) consisted of 2200 relays, a mechanical memory of 64
32-bit words and a processor. The speed of the machine was approximate1000

 Fig. 5.3 The Z4 computer (Courtesy of Horst Zuse, Berlin)

5.4 The Z4 Computer

78

instructions per hour. The Henschel Aircraft Company had ordered the Z4 machine
in 1942, but as the production of the machine was time consuming, it was never
actually delivered to Henschel. The machine was almost complete by the end of the
Second World War in 1945.

 The Z4 was restored for the Institute of Applied Mathematics at the Eidgenössische
Technische Hochschule (ETH) Zürich in Zurich. The restoration was complete in
1950, and it was delivered to the ETH later that year. It was one of the fi rst opera-
tional computers in Europe at that time.

 It was transferred to the French-German Research Institute of Saint-Louis in
France in 1955, and it remained operational there until 1959. Today, the Z4 machine
is on display at the Deutsche Museum in Munich.

 Zuse KG commenced work on the Z5 in the early 1950s, and this was an extended
version of the Z4. The Z5 was one of the fi rst commercial computers in Europe, and
it was produced for the Leitz company in Germany. The Z5 followed similar con-
struction principles as the Z4, but it was over six times faster.

 Zuse KG produced over 250 computers from 1949 to 1969, and by 1964 it had
over 1200 employees. The company ran into fi nancial diffi culties in the early 1960s,
and it was taken over by Rheinstahl in 1964. Rheinstahl was taken over by Siemens
in 1967, and Konrad Zuse left the company in 1969. For a more detailed account of
Zuse, see [ORg:15].

5.5 Ferranti Mark I

 Ferranti Ltd. (a British company) and Manchester University collaborated to build
one of the earliest general-purpose electronic computers. The machine was called
the Ferranti Mark I (it was also known as the Manchester Electronic Computer), and
it was basically an improved version of the Manchester Mark I.

 The fi rst machine off the production line was delivered to the University of
Manchester in 1951 and shortly before the release of the UNIVAC I electronic com-
puter in the United States.

 The main improvements of the Ferranti Mark I over the Manchester Mark I com-
puter were in the size of primary and secondary storage, a faster multiplier and
additional instructions. The Ferranti Mark I (Fig. 5.4) had eight pages of random
access memory (i.e. eight Williams tubes each with a storage capacity of 64 20-bit
words or 1280 bits). A 512-page magnetic drum, which stored two pages per track,
provided the secondary storage, and its revolution time was 30 ms.

 It used a 20-bit word stored as a single line of dots on the Williams tube display,
with each tube storing a total of 64 lines of dots (or 64 words). Instructions were
stored in a single word, while numbers were stored in two words.

 The accumulator was 80 bits and it could also be addressed as two 40-bit words.
There were about 50 instructions and the standard instruction time was 1.2 ms.
Multiplication could be completed in 2.16 ms. There were 4050 vacuum tubes
employed.

5 The First Commercial Computers

79

 The Ferranti Mark I’s instruction set included a hoot command which allowed
auditory sounds to be produced. It also allowed variations in pitch. Christopher
Strachey (who later did important work in the semantics of programming languages)
programmed the Ferranti Mark I to play tunes such as God Save the King , and the
Ferranti Mark I was one of the earliest computers to play music.

 Dr. Dietrich Prinz wrote one of the earliest computer games (a chess-playing
program) for the Ferranti Mark I in 1951. The parents of Tim Berners-Lee (the
inventor of the World Wide Web) both worked on the Ferranti Mark I.

5.6 CSIRAC Computer

 The CSIRAC (Council for Scientifi c and Industrial Research Automatic Computer)
was Australia’s fi rst digital computer. It was one of the earliest stored-program com-
puters, and it became operational in November 1949. It is on permanent display at
the Melbourne Museum.

 It was constructed by a team led by Trevor Pearcey and Maston Beard at the
CSIR in Sydney. The machine had 2000 vacuum valves and used 30 kW of power
during operation. The input to the machine was done with a punched paper tape, and
output was to a teleprinter or to punched tape. The machine was controlled through
a console, which allowed programs to be stepped through one at a time.

 Fig. 5.4 Ferranti Mark I

5.6 CSIRAC Computer

80

 The CSIRAC (Fig. 5.5) was the fi rst digital computer to play music and this took
place in 1950. The machine was moved to the University of Melbourne in the mid-
1950s, and today the machine is on permanent display at the Melbourne Museum.

5.7 Review Questions

5.8 Summary

 This chapter considered a selection of the fi rst commercial computers designed and
developed in the United States, Britain, Germany and Australia. These machines
built upon the work done on the fi rst digital computers developed during the Second
World War.

 We discuss the UNIVAC I computer developed by EMCC in the United States,
the LEO I computer developed by J. Lyons and Co. in England, the Z4 computer

 Fig. 5.5 CSIRAC (Photo courtesy of John O’Neill)

 1. What are the key contributions made by EMCC/Unisys to the computing
fi eld ?

 2. Describe the contributions of J. Lyons and Co. to the early computing fi eld.
 3. What is the signifi cance of Zuse’s Z4 machine?
 4. Discuss the progress made in the production of music on early

computers.
 5. Describe the contribution of the University of Manchester to early comput-

ing. What were the key improvements in the Ferranti Mark I over the
Manchester Mark I?

 6. Describe the contributions of Grace Murray Hopper to the computing
fi eld.

5 The First Commercial Computers

81

developed by Zuse KG in Germany, the Ferranti Mark I developed by Ferranti in
England and CSIRAC developed by CSIR in Australia.

 Mauchly and Eckert wished to commercialize their work on the ENIAC/EDVAC
computers and to protect their intellectual property, as new policies at the University
of Pennsylvania required them to sign over the intellectual property rights to their
invention. They set up EMCC to commercialize their inventions.

 The LEO I computer arose as a result of forward thinking by J. Lyons and Co.
who wished to improve their businesses processes, and they collaborated with
Maurice Wilkes at Cambridge University to produce the LEO I computer.

 The UK government encouraged Ferranti to commercialize the Manchester
Mark I computer, and the Ferranti Mark I improved upon it with larger primary and
secondary storage and additional instructions.

5.8 Summary

83© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_6

 6 Early Commercial Computers
and the Invention of the Transistor

 Abstract
 This chapter considers a selection of computers developed during the 1950s, and
it includes a selection of vacuum tube-based computers as well as transistor com-
puters. One of the drivers for the design and development of more powerful
computers was the perceived threat of the Soviet Union. This led to an arms race
between the two superpowers, and it was clear that computing technology would
play an important role in developing sophisticated weapon and defence systems.
The SAGE air defence system developed for the United States and Canada was
an early example of the use of computer technology for the military. Early IBM
computers such as the IBM 701 and 704 computers are discussed, and the chap-
ter concludes with a discussion of the invention of the transistor by William
Shockley and others at Bell Labs.

6.1 Introduction

 This chapter considers a selection of computers developed during the 1950s, and it
includes a selection of vacuum tube-based computers as well as transistor comput-
ers. One of the drivers for the design and development of more powerful computers
was the perceived threat of the Soviet Union. This led to an arms race between the

 Key Topics
 IBM 701
 SAGE
 Transistor
 IBM 608
 IBM 704

84

two superpowers, and it was clear that computing technology would play an impor-
tant role in developing more sophisticated weapon and defence systems. The SAGE
air defence system developed for the United States and Canada was an early exam-
ple of the use of computer technology for the military.

 The other key driver for the development of more powerful computers was to
support business, universities and government. The machines developed during this
period were mainly large proprietary mainframes designed for business, scientifi c
and government use. They were expensive and this eventually led vendors such as
IBM and DEC to introduce families of computers in the 1960s, where a customer
could choose a small cheaper member of the family and to upgrade over time to a
larger computer as their needs evolved.

 The origins of IBM are in the work done by Herman Hollerith in developing a
tabulating machine to process the 1890 census of the population of the United
States. IBM became a very successful international company selling punched card
tabulating machines. Thomas Watson Sr. led the company from 1912 to 1952, and
Thomas Watson Jr. became CEO in 1952. He believed that the future of IBM was in
computers, and not tabulators, and he transformed IBM to become a world leader in
the computer sector.

6.2 Early IBM Computers

 IBM commenced work on computers during the Second World War, with its joint
venture with Howard Aiken on the Harvard Mark I (also known as the IBM
Automatic Sequence Controlled Calculator (ASCC)). This machine was essentially
an electromechanical calculator that could perform large computations automati-
cally. We discussed this machine in Chap. 4 , and it was delivered to Harvard
University in 1941.

 IBM introduced the Vacuum Tube Multiplier in 1943, which was an important
move from electromechanical to electronic machines (the Harvard Mark I used
electromechanical relays to perform the calculations). It was one of the fi rst com-
plete machines to perform arithmetic electronically by substituting vacuum tubes
for electric relays. The key advantages of the vacuum tubes were that they were
faster, smaller and easier to replace than the electromechanical switches used on the
Harvard Mark I. This allowed engineers to process information thousands of times
faster.

 IBM introduced its fi rst large computer based on vacuum tubes in 1952. The
machine was called the IBM 701 (Fig. 6.1) , and it executed 17,000 instructions per
second. It was used mainly for government work and for business applications.

 IBM introduced the IBM 650 (Magnetic Drum Calculator) in 1954. This was an
intermediate-sized electronic computer designed to handle accounting and scientifi c
computations. It was one of the fi rst mass-produced computers, and universities and
businesses used it. It was a very successful product for IBM, with over 2000
machines built and sold between its product launch in 1954, and its retirement in

6 Early Commercial Computers and the Invention of the Transistor

http://dx.doi.org/10.1007/978-3-319-33138-6_4

85

1962. The machine included a central processing unit, a power unit and a card
reader.

 The IBM 704 data processing system (Fig. 6.2) was a large computer introduced
in 1954. It included core memory and fl oating-point arithmetic, and it was used for
scientifi c and commercial applications. It included high-speed memory which was
faster and much more reliable than the cathode-ray-tube memory storage mecha-
nism used in earlier machines. It also had a magnetic drum storage unit, which
could store parts of the program and intermediate results.

 The interaction with the system was either by magnetic tape or punched cards
entered through the card reader. The program instructions or data were initially
produced on punched cards. They were then either converted to magnetic tape or
read directly into the system, and the data processing was then performed. The out-
put from the data processing was then sent to a line printer, magnetic tape or punched
cards. Multiplication and division was performed in 240 microseconds.

 The designers of the IBM 704 included John Backus and Gene Amdahl. Backus
was one of the key designers of the FORTRAN programming language, which was
introduced by IBM in 1957. This was the fi rst scientifi c programming language, and
it is still popular with engineers and scientists. Gene Amdahl later founded Amdahl
Corporation after his resignation from IBM, and Amdahl Corporation later became
a major rival to IBM in the mainframe market. For more detailed information on
Backus and Amdahl, see [ORg:13].

 Fig. 6.1 IBM 701 (Courtesy of IBM Archives)

6.2 Early IBM Computers

86

6.3 The SAGE System

 The Semi-Automatic Ground Environment (SAGE) was an automated system for
tracking and intercepting enemy aircraft in North America. It was used by the North
American Aerospace Defense Command (NORAD), which is located in Colorado
in the United States. The SAGE system was used from the late 1950s until the
1980s.

 The interception of enemy aircraft was extremely diffi cult prior to the invention
of radar during the Second World War. Its introduction allowed fi ghter aircraft to be
scrambled just in time to meet the enemy threat. The radar stations were ground
based, and they therefore needed to communicate with and send interception
instructions to the fi ghter aircraft to deal with the hostile aircraft.

 However, after the war the speed of aircraft increased considerably, thereby
reducing the time available to scramble fi ghter aircraft. This necessitated a more
effi cient and automatic way to transmit interception instructions and new approaches
to provide security for the United States. The SAGE system (Fig. 6.3) was designed
to solve this problem, it analysed the information that it received from the various
radar stations around the country in real time, and it then automated the transmis-
sion of interception messages to fi ghter aircraft .

 IBM and MIT played an important role in the design and development of
SAGE. Some initial work on real-time computer systems had been done at the
Massachusetts Institute of Technology on a project for the US Navy. This project
was concerned with building an aircraft fl ight simulator computer for training
bombing crews, and it led to the development of the Whirlwind digital computer.
This computer was originally intended to be an analog machine, but instead it
became the Whirlwind digital computer, and it was used for experimental develop-
ment of military combat information systems.

 Fig. 6.2 IBM 704 (Courtesy of IBM Archives)

6 Early Commercial Computers and the Invention of the Transistor

87

 Whirlwind was the fi rst real-time computer, and George Valley and Jay Forrester
wrote a proposal to employ Whirlwind for air defence. This led to the Cape Cod
system, which demonstrated the feasibility of an air defence system covering New
England. The design and development of SAGE commenced in 1953

 IBM was responsible for the design and manufacture of the AN/FSQ-7 vacuum
tube computer used in SAGE. Its design was based on the Whirlwind II computer,
which was intended to be the successor to Whirlwind. However, the Whirlwind II
was never built, and the AN/FSQ-7 computer weighed 275 tons and included
500,000 lines of assembly code.

 The AN/FSQ holds the current world record for the largest computer ever built.
It employed 55,000 vacuum tubes and covered an area over 18,000 square feet; and
it used about 3 MW of power.

 There were twenty-four SAGE Direction Centers and three SAGE Combat
Centers located in the United Sates. Each SAGE site included two computers for
redundancy, and long-distance telephone lines linked each centre. Burroughs pro-
vided the communications equipment to enable the centres to communicate with
one another, and this was one of the earliest computer networks .

 Each site was connected to multiple radar stations with tracking data transmitted
by modem over a standard telephone wire. The SAGE computers then collected the
tracking data for display on a cathode ray tube (CRT). The console operators at the
centre could select any of the targets on the display to obtain information on the
tracking data. This enabled aircraft to be tracked and identifi ed, and the electronic
information was presented to operators on a display device.

 Fig. 6.3 SAGE (Photo courtesy of Steve Jurvetson)

6.3 The SAGE System

88

 The engineering effort in the SAGE project was immense and the total cost is
believed to have been several billion US dollars. It was a massive construction proj-
ect, which involved erecting buildings and building power lines and communication
links between the various centres and radar stations.

 SAGE infl uenced the design and development of the Federal Aviation Authority
(FAA) automated air traffi c control system.

6.4 Invention of the Transistor

 The early computers were large bulky machines taking up the size of a large room.
They contained thousands of vacuum tubes, 1 and these tubes consumed large
amounts of power and generated a vast quantity of heat. This led to problems with
the reliability of the early computers, as several tubes burned out each day. This
meant that machines were often non-functional for parts of the day, until the defec-
tive tube was identifi ed and replaced (see Fig. 4.6).

 There was therefore a need to fi nd a better solution to vacuum tubes, and Shockley
(Fig. 6.4) set up the solid physics research group at Bell Labs after the Second
World War. His goal was to fi nd a solid-state alternative to the existing glass-based
vacuum tubes.

1 ENIAC contained over 18,000 vacuum tubes and the AN/FSQ-7 computer used in SAGE con-
tained 55,000 vacuum tubes.

 Fig. 6.4 William Shockley
(Courtesy Chuck Painter,
Stanford news service)

6 Early Commercial Computers and the Invention of the Transistor

http://dx.doi.org/10.1007/978-3-319-33138-6_4

89

 Shockley was born in England in 1910 to American parents, and he grew up at
Palo Alto in California. He earned his PhD from the Massachusetts Institute of
Technology in 1936, and he joined Bell Labs shortly afterwards. His solid physics
research team included John Bardeen and Walter Brattain, who would later share
the 1956 Nobel Prize in Physics with him for their invention of the transistor
(Fig. 6.5).

 Their early research was unsuccessful, but by late 1947 Bardeen and Brattain
succeeded in creating a point-contact transistor independently of Shockley, who
was working on a junction-based transistor. Shockley believed that the point- contact
transistor would not be commercially viable, and his junction point transistor was
announced in mid-1951, with a patent granted later that year. The junction point
transistor soon eclipsed the point-contact transistor, and it became dominant in the
marketplace.

 Shockley published a book on semiconductors in 1950 [Sho:50], and he resigned
from Bell Labs in 1955. He formed Shockley Laboratory for Semiconductors (part
of Beckman Instruments) at Mountain View in California. This company played an
important role in the development of transistors and semiconductors, and several of
its staff later formed semiconductor companies in the Silicon Valley area.

 Shockley was the director of the company, but his management style alienated
several of his employees. This led to the resignation of eight key researchers in 1957
following his decision not to continue research into silicon-based semiconductors.
This gang of eight went on to form Fairchild Semiconductors and other companies
in the Silicon Valley area in the following years.

 For more detailed information on Shockley and Bell Labs, see [ORg:13 , ORg:15].

 Fig. 6.5 Replica of
transistor (Courtesy of
Lucent Bell Labs)

6.4 Invention of the Transistor

90

6.5 Early Transistor Computers

 The University of Manchester Experimental Transistor Computer was one of the
fi rst transistor computers. 2 The prototype machine used 92 point-contact transistors
and had a 48-bit word size, whereas the full-scale version used 200 point-contact
transistors. There were serious problems with the reliability of the point-contact
transistors, which meant that there were reliability problems with the machine.
Metropolitan-Vickers (a Manchester company) adapted the design and changed the
circuits to use the more reliable junction-based transistors and created a full-scale
version called the Metrovick 950 in 1956.

 Other early transistor computers include the TRADIC designed and developed
by Bell Labs in the early 1954. This machine also used some vacuum tubes. The
Harwell CADET was an early fully transistorized machine when it appeared in
early 1955. The IBM 608 was the fi rst IBM product to use transistor circuits instead
of vacuum tubes. The prototype of this product appeared in 1955, and the fully
transistorized calculator was introduced in late 1957. It contained 3000 germanium
transistors. The Burroughs SM-65 Atlas ICBM was an early transistorized com-
puter, which appeared in 1957.

 The IBM 7090 was one of the earliest commercial computers with transistor
logic, and it was introduced in 1958. It was designed for large-scale scientifi c appli-
cations, and it was over 13 times faster than the older vacuum tube IBM 701. It used
36-bit words, had an address space of 32,768 words and could perform 229,000
calculations per second. It was used by the US Air Force to provide an early warning
system for missiles and also by NASA to control space fl ights. It cost approximately
$3 million, but it could be rented for over $60 K per month.

6.6 Review Questions

2 It was not a fully transistorized computer in that it employed a small number of vacuum tubes in
its clock generator.

 1. Explain the signifi cance of the transistor in the computing fi eld.
 2. Explain the signifi cance of the SAGE system to the computing fi eld.
 3. Describe the contributions made by the University of Manchester to the

computing fi eld.
 4. Describe the early transistor computers.
 5. Describe the contributions of John Backus and Gene Amdahl to the com-

puting fi eld.
 6. Describe the contributions of Bell Labs to the computing fi eld.
 7. Describe the contributions of IBM to the computing fi eld.

6 Early Commercial Computers and the Invention of the Transistor

91

6.7 Summary

 This chapter considers a selection of computers developed during the 1950s, and it
includes a selection of vacuum tube-based computers as well as early transistor
computers.

 Among the early vacuum tube computers considered were the IBM 701 and IBM
704. The IBM 701 was introduced in 1952; it was used mainly for government work
and for business applications. The IBM 704 data processing system was a large
computer that was introduced in 1954. It was used for scientifi c and commercial
applications, and Gene Amdahl and John Backus were involved in its design.

 The SAGE air defence system was developed for the United States and Canada,
and it was an early example of the use of computer technology for the military. It
was an automated system for tracking and intercepting enemy aircraft in North
America, and it automated the transmission of interception messages to fi ghter
aircraft.

 The invention of the transistor by Shockley and others at Bell Labs was a revolu-
tion in computing, and it led to smaller, faster and more reliable computers. The
University of Manchester Experimental Transistor Computer was one of the earliest
transistor computers.

6.7 Summary

93© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_7

 7 The Invention of the Integrated Circuit
and the Birth of Silicon Valley

 Abstract
 The invention of the integrated circuit allowed many transistors to be combined
on a single chip, and it was another revolution in computing. The integrated cir-
cuit placed the previously separated transistors, resistors, capacitors and wiring
circuitry onto a single chip made of silicon or germanium. The integrated circuit
shrunk the size and cost of making electronics, and it had a major infl uence on
the design of later computers leading to faster and more powerful machines. The
germanium-based integrated circuit was invented by Jack Kilby at Texas
Instruments, and Robert Noyce of Fairchild Semiconductor did subsequent work
on silicon-based integrated circuits. Moore’s law on the exponential growth of
transistor density on an integrated circuit is discussed, as well as its relevance to
the computing power of electronic devices.

 Key Topics
 Integrated circuit
 Silicon
 Germanium
 Texas Instruments
 Fairchild
 Silicon Valley
 Moore’s law

94

7.1 Introduction

 The fi rst computers used thousands of vacuum tubes, and they were large bulky
machines. The invention of the transistor was a revolution in computing, and it led
to smaller, faster and more reliable computers. However, it was still a challenge for
engineers to design complex circuits, as they had to wire hundreds (thousands) of
separate components together.

 It is essential when building a circuit that all of the connections are intact, as
otherwise the electric current will be stopped on its way through the circuit, and the
circuit will fail. Prior to the invention of the integrated circuit, engineers had to
construct circuits by hand, which involved soldering each component in place and
connecting them with wires. However, the manual assembly of the large number of
components required in a computer often resulted in faulty connections, and
advanced computers required so many connections that they were almost impossi-
ble to build. Clearly, there was a need for a better solution.

 The invention of the integrated circuit allowed many transistors to be combined
on a single chip, and it was another revolution in computing. The integrated circuit
placed the previously separated transistors, resistors, capacitors and wiring circuitry
onto a single chip made of silicon or germanium. The integrated circuit shrunk the
size and cost of making electronics, and it had a major infl uence on the design of
later computers and electronics. It led to faster and more powerful computers.

7.2 Invention of Integrated Circuit

 The electronics industry was dominated by vacuum tube technology up to the mid-
1950s. However, vacuum tubes had inherent limitations as they were bulky and
unreliable, produced considerable heat and consumed a lot of power. Bell Labs
invented the transistor in the late 1940s, and transistors were tiny in comparison to
vacuum tubes and consumed very little power, and they were more reliable and
lasted longer. The transistor stimulated engineers to design ever more complex elec-
tronic circuits and equipment containing hundreds or thousands of discrete compo-
nents such as transistors, diodes, rectifi ers and capacitors.

 The motivation for the invention of the integrated circuit was the goal of fi nding
a solution to the problems that engineers faced in increasing the performance of
their designs as the number of components in the design increased. Each component
needed to be wired to many other components, and the wiring and soldering was
done manually. Clearly, more components would be required to improve perfor-
mance, and therefore, it seemed that future designs would consist almost entirely of
wiring.

 However, the problem was that these components needed to be interconnected to
form electronic circuits, and this involved hand soldering of thousands of compo-
nents to thousands of bits of wire. This was expensive and time-consuming, and it
was also unreliable since every soldered joint was a potential source of trouble. The

7 The Invention of the Integrated Circuit and the Birth of Silicon Valley

95

challenge for the industry was to fi nd a cost-effective and reliable way of producing
these components and interconnecting them.

 Jack Kilby (Fig. 7.1) joined Texas Instruments in 1958, and he began investigat-
ing how to solve this problem. He realized that semiconductors were all that were
really required, as resistors and capacitors could be made from the same material as
the transistors. He realized that since all of the components could be made of a
single material, they could also be made in situ interconnected to form a complete
circuit.

 Kilby succeeded in building an integrated circuit made of germanium that con-
tained several transistors in 1958. Robert Noyce of Fairchild Semiconductors built
an integrated circuit on a single wafer of silicon in 1960, and Kilby and Noyce are
considered coinventors of the integrated circuit. Kilby was awarded the Nobel Prize
in Physics in 2000 for his role in the invention of the integrated circuit.

 Kilby’s integrated circuit consisted of a transistor and other components on a
slice of germanium (Fig. 7.2). His invention revolutionized the electronics industry,
and the integrated circuit is the foundation of almost every electronic device in use
today. His invention used germanium, and the size of the integrated circuit was 7/16
by 1/16 inches.

 Robert Noyce at Fairchild Semiconductors later invented an integrated circuit
based on a single wafer of silicon in 1960, and today silicon is the material of choice
for semiconductors. Noyce made an important improvement on Kilby’s design in
that he added a thin layer of metal to the chip to better connect the various compo-
nents in the circuit. Noyce’s solution made the integrated circuit more suitable for
mass production, and Fairchild Semiconductors pioneered the use of the planar
process for making transistors, and the existing semiconductor companies soon

 Fig. 7.1 Jack Kilby
c. 1958 (Courtesy of Texas
Instruments)

7.2 Invention of Integrated Circuit

96

employed this process. Noyce was one of the co-founders of Intel, which is one of
the largest manufacturers of integrated circuits in the world.

 An integrated circuit (IC) consists of a set of electronic circuits on a small chip
of semiconductor material, and it is much smaller than a circuit made out of inde-
pendent components. The IC is made on a small plate of semiconductor material
that is usually made of silicon. An integrated circuit is extremely compact, and it
may contain billions of transistors and other electronic components in a tiny area.
The width of each conducting line has got smaller and smaller due to advances in
technology over the years, and it is now measured in tens of nanometres. 1 The
invention of the integrated circuit led to major reductions in the size and cost of
making electronics, and it impacted the design of all future computers and other
electronics.

 The size of the components in a modern fabrication plant is extremely small,
with thousands of transistors fi tting inside the cross section of a strand of hair. The
production of a chip requires precision at the atomic level, with tiny particles such
as those in tobacco smoke large enough to ruin a chip. For this reason, chip produc-
tion takes place in a clean room, which is a special room designed with furniture
made of special materials that don’t give off particles and very effective air fi lters
and air circulation systems.

 There has been a massive reduction in the production costs of integrated circuits,
with the initial production cost of integrated circuits at $1000 in 1960. However, as

1 1 nanometre (nm) is equal to 10 −9 m.

 Fig. 7.2 First integrated circuit (Courtesy of Texas Instruments)

7 The Invention of the Integrated Circuit and the Birth of Silicon Valley

97

demand increased and production techniques improved, the cost of production was
reduced down to $25 by 1963.

 There are several generations of integrated circuits from the small-scale integra-
tion (SSI) of the early 1960s, which typically had less than 30 transistors on the
chip, to medium-scale integration (MSI) of the late 1960s with less than 300 transis-
tors on the chip, to large-scale integration (LSI) of the mid-1970s with less than
3000 transistors on the chip, to very large-scale (VLSI) and ultra large-scale integra-
tion (ULSI) of the 1980s, which have over a million transistors on the chip.

 There are several large companies that design and make semiconductors. These
include companies such as Texas Instruments (TI), which is an American electron-
ics company that is one of the largest manufacturers of semiconductors in the world.
Intel and AMD (Advanced Micro Devices) are among the largest makers of semi-
conductors in the world. For more detailed information on Jack Kilby and Texas
Instruments, see [ORg:13 , ORg:15].

7.2.1 Moore’s Law

 Gordon Moore observed that over a period of time (from 1958 up to 1965), the
number of transistors on an integrated circuit doubled approximately every year.
This led him to formulate what became known as Moore’s law in 1965 [Mor:65],
which predicted that this trend would continue for at least another 10 years. He
refi ned the law in 1975 and predicted that a doubling in transistor density would
occur every 2 years for the following 10 years.

 His prediction of exponential growth in transistor density has proved to be accu-
rate over the last 50 years, and the capabilities of many digital electronic devices are
linked to Moore’s law.

 The exponential growth in the capability of processor speed, memory capacity
and so on is all related to this law. It is likely that the growth in transistor density
will slow to a doubling of density every 3 years by 2015.

 The phenomenal growth in productivity is due to continuous innovation and
improvement in manufacturing processes. It has led to more and more powerful
computers running more and more sophisticated applications.

7.3 Early Integrated Circuit Computers

 It took some time for integrated circuits to take off, as they were an unproven tech-
nology and they remained expensive until mass production. Kilby and others at
Texas Instruments successfully commercialized the integrated circuit by designing
a hand-held calculator that was as powerful as the existing large, electromechanical
desktop models. The resulting electronic hand-held calculator was small enough to
fi t in a coat pocket. This battery-powered device could perform the four basic arith-
metic operations on six-digit numbers, and it was completed in 1967.

7.3 Early Integrated Circuit Computers

98

 The earliest computers that used integrated circuits appeared in the 1960s, and
the early use of integrated circuits was mainly in embedded systems. The use of
integrated circuits played an important role in early aerospace projects such as the
Apollo Guidance Computer and Minuteman missile. The Apollo fl ight computer
was one of the earliest computers to use integrated circuits, and it was developed by
MIT/Raytheon and introduced in 1966. It provided capabilities for the guidance,
navigation and control of the Apollo spacecraft. The Minuteman II program used a
computer built from integrated circuits, and the guidance system of the Minuteman
II intercontinental ballistic missile was much smaller due to the use of the integrated
circuits.

 DEC’s fi rst minicomputer to use integrated circuits was the popular PDP-8
(Fig. 7.3), which was designed by Edson de Castro and introduced in 1965. Hewlett-
Packard introduced the 2116A minicomputer in 1966, and this minicomputer used
Fairchild Semiconductors integrated circuits.

 The Honeywell ALERT airborne computer was designed to handle complex air-
borne data in a real-time environment, and it was introduced in 1966. The Central
Air Data Computer was designed in the late 1960s, and it was used for fl ight control
in the US Navy’s F-14A Tomcat fi ghter. These were among the early computers to
use integrated circuits.

7.4 Birth of Silicon Valley

 Silicon Valley is the nickname for the southern portion of the San Francisco Bay
Area. It is home to many of the world’s largest high-tech companies as well as thou-
sands of start-up companies.

 Fig. 7.3 The DEC
PDP-8/e

7 The Invention of the Integrated Circuit and the Birth of Silicon Valley

99

 The term Silicon Valley fi rst appeared in the printed media in 1971, in a series by
Don Hoefl er titled Silicon Valley in the USA , which was published in the weekly
newspaper Electronics News . The term was used widely from the early 1980s fol-
lowing the introduction of the IBM personal computer and given the high concen-
tration of semiconductor technology companies in the area. The word silicon
originally referred to the large number of silicon chip manufacturers in the area, as
most semiconductors are made from silicon. The word valley refers to the Santa
Clara Valley.

 Bill Hewlett and Dave Packard started their new two-person company (Hewlett-
Packard) in a Palo Alto garage (Fig. 7.4) on 367 Addison Avenue in 1938. Fruit
orchards covered the surrounding area, as Silicon Valley as it is known today did not
exist. This 12 by 18 ft garage is now a historical landmark, and it has been offi cially
declared the birthplace of Silicon Valley . HP purchased the property in 2000 to pre-
serve it for future generations.

 William Shockley (one of the inventors of the transistor) moved from New Jersey
to Mountain View in California to start Shockley Semiconductors in 1956.
Shockley’s work served as the foundation for many electronics developments.
However, Shockley was a diffi cult person to work with and his management style
soon alienated several of his employees. This led to the resignation of eight key
researchers in 1957, following his decision not to continue research into silicon-
based semiconductors. Shockley described them as the traitorous eight .

 This gang of eight went on to form Fairchild Semiconductors and other compa-
nies in the Silicon Valley area in the following years. They included Gordon Moore
and Robert Noyce, who founded Intel in 1968. Other employees from Fairchild
Semiconductors formed companies such as National Semiconductors and Advanced
Micro Devices in the Silicon Valley area in later years. Shockley Semiconductors
and these new companies formed the nucleus of what became Silicon Valley.

 Stanford University played an important role in the development of Silicon
Valley, and Frederick Terman, the Dean of Engineering and provost of Stanford

 Fig. 7.4 HP Palo Alto garage, birthplace of Silicon Valley (Courtesy of HP)

7.4 Birth of Silicon Valley

100

University in the 1950s, encouraged graduates to form companies in the Silicon
Valley area. Stanford University set up an industrial park (Stanford Research Park)
for high-tech companies. Terman has been described as the father of Silicon Valley.

7.5 Review Questions

7.6 Summary

 An integrated circuit consists of a set of electronic circuits on a small chip of semi-
conductor material, and it is much smaller than a circuit made out of independent
components. Its invention placed the previously separated transistors, resistors,
capacitors and wiring circuitry onto a single chip made of silicon or germanium.
The integrated circuit was a revolution in computing, and it shrunk the size and cost
of making electronics. It had a major infl uence on later developments in the comput-
ing fi eld.

 There are several generations of integrated circuits from the small-scale integra-
tion of the early 1960s, to medium-scale integration of the late 1960s, to large-scale
integration (LSI) of the mid-1970s, to very large-scale and ultra large-scale integra-
tion of the 1980s. The number of transistors on a silicon chip has grown from less
than 30 in the early 1960s to over a billion today.

 Gordon Moore formulated Moore’s law in 1965, in which he predicted exponen-
tial growth in transistor density. His prediction has proved to be accurate over the
last 50 years, and the capabilities of many digital electronic devices are linked to
Moore’s law.

 The earliest computers to use integrated circuits appeared in the 1960s, and their
use was mainly in embedded systems. They played an important role in early aero-
space projects such as the Apollo Guidance Computer and Minuteman missile.
DEC’s popular PDP-8 was one of the early computers to use integrated circuits, and
it was introduced in 1965.

 Silicon Valley today is home to the world’s largest high-tech companies and
thousands of start-ups. It employs hundreds of thousands of IT workers. The garage
where HP was formed is considered the birthplace of Silicon Valley.

 1. What is an integrated circuit?
 2. Explain the signifi cance of Moore’s law and its relevance to the computing

power of electronic devices.
 3. What are the benefi ts of the integrated circuit?
 4. Describe the early computers that were based on the integrated circuit.
 5. Describe how Silicon Valley was formed.
 6. Describe the role played by Stanford University in the success of Silicon

Valley.

7 The Invention of the Integrated Circuit and the Birth of Silicon Valley

101© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_8

 8 The IBM System/360

 Abstract
 The IBM System/360 was a family of mainframe computers designed and devel-
oped by IBM. It had a major impact on technology and on the computing fi eld,
and it set IBM on the road to dominate the computing fi eld for the next 20 years,
up to the arrival of personal computers in the 1980s. The user could start with a
low specifi cation member of the family and upgrade over time to a more power-
ful member of the family. It was the start of an era of computer compatibility, and
it set IBM on the road to dominate the computing fi eld. It was a massive $5 bil-
lion gamble by IBM, and it moved the company from its existing product lines to
the unknown world of the System/360.

 Key Topics
 System/360
 Family of computers
 Gene Amdahl
 Fred Brooks
 The Mythical Man Month

102

8.1 Introduction

 The IBM System/360 1 was a family of mainframe computers designed and devel-
oped by IBM. It had a major impact on technology and on the computing fi eld, and
it set IBM on the road to dominate the computing fi eld for the next 20 years, up to
the arrival of personal computers in the 1980s.

 It was the beginning of an era of computer compatibility, where for the fi rst time
machines across a product line could work with each other. It meant that IBM cus-
tomers could start off with a low specifi cation member of the family and upgrade
over time to a more powerful member of the family. This allowed the customer to
choose the appropriate model to meet its current needs, and then as its needs evolved,
it could upgrade to a more powerful member of the family. It was a massive $5 bil-
lion investment (bet the business gamble) by Thomas Watson Jr., and it moved IBM
from its traditional business and product lines into the unknown with the gamble
that the future would be the System/360.

 Thomas Watson Jr. 2 announced the System/360 in 1964, and the revolutionary
announcement changed business and the world of computing forever. The
System/360 replaced all fi ve of IBM’s computer product lines with one strictly com-
patible family. It used a new computer architecture that employed hybrid integrated
circuit technology, and it pioneered the 8-bit byte, which remains in use on every
computer today.

 The System/360 included a multiprogramming disc-based operating system,
which was called OS/360. It included free software packages such as compilers for
several programming languages, as well as packages for communication network
capabilities [Pug:09].

 The System/360 was an extremely successful product line for IBM, with orders
rapidly exceeding forecasts. Its success vastly exceeded IBM’s expectations, with
over a thousand orders placed in the fi rst 4 weeks after the announcement. The
popularity of the System/360 made it diffi cult for IBM competitors (such as
Burroughs, Honeywell and Sperry Rand) to compete against IBM in the general-
purpose computer market.

 Monthly rental prices ranged from under $3000 per month for the most basic
system to over $100,000 per month for a large multisystem. The purchase cost
ranged from $130,000 for a basic system to over $5 million for a large system. In
1989, 25 years after the announcement of the System/360, products based on the
System/360 architecture and its extensions still accounted for over 50 % of IBM
revenue.

1 The number ‘360’ (the number of degrees in a circle) was chosen to represent the ability of each
computer to handle all types of applications.
2 Thomas Watson Jr. later stated, ‘The System/360 was the biggest, riskiest decision that I ever
made, and I agonised about it for weeks, but deep down I believed that there was nothing that IBM
couldn’t do’.

8 The IBM System/360

103

8.2 Background to the Development of System/360

 Thomas Watson Jr., the son of Thomas Watson Sr. (the fi rst president of IBM),
became president of IBM in 1952. He recognized that computers would play a key
role for business in the years ahead, and he realized that the future of IBM was in
the computer business and not in tabulators. It was clear to him that IBM needed to
change, and he played a key role in transforming the company to become the world
leader in the computer industry.

 IBM was already a successful computer company in the 1950s. It introduced its
fi rst large computer (the IBM 701) based on vacuum tubes in 1952, the IBM 650
(Magnetic Drum Calculator) in 1954 and the IBM 704 data processing system com-
puter in 1954. It had also played a key role in the development of the computers for
the SAGE air defence system in the United States. IBM had become the market
leader with a large growth in its revenue and earnings, and it employed over 100,000
people around the world.

 However, within IBM there were concerns that the company had reached a pla-
teau, and competitors were launching alternative products to IBM. The origins of
the System/360 go back to the late 1950s and Watson’s determination to transform
IBM in order to position it for future success. IBM was supporting fi ve different
product lines by 1959, and it was becoming a major challenge to train staff to ser-
vice and maintain software to support so many different computer products.

 There were major problems with incompatibility between different hardware and
software among the different computer vendors, as well as incompatibility among
IBM’s own products. IBM had an existing product line of several computers, each
excellent in its own right, but all with incompatible architectures. It meant that cus-
tomers who wished to move up from their existing small system to a larger system
had to invest in a new system, new printers, new storage devices and new software
(often totally rewritten for the new machine).

 It was clear to Watson and other senior IBM executives that there was a need to
develop a totally cohesive product line so that computers produced at different IBM
facilities would be compatible with one another.

 IBM set up a corporate wide task group to establish an overall IBM plan for its
future products. The task group had the acronym SPREAD (System Programming,
Research, Engineering and Design), and it completed its fi nal report in the late
1961. It made a series of recommendations such as that there would be fi ve proces-
sors spanning a 200-fold range in performance. IBM made the brave decision in
1962 to replace the company’s entire product line of computers and to build a new
family of compatible machines.

 It would mean that code written for the smallest member of the family would be
upwardly compatible with each of the processors in the family. Further, the various
peripherals such as printers and storage devices would be compatible across the
family. It was an incredibly brave decision, and Fortune Magazine later described it
as IBM’s fi ve billion dollar gamble .

8.2 Background to the Development of System/360

104

8.3 The IBM System/360

 Thomas Watson announced the new System/360 to the world at a press conference
in 1964 and said:

 The System/360 represents a sharp departure from concepts of the past in designing and
building computers. It is the product of an international effort in IBM’s laboratories and
plants, and is the fi rst time IBM has redesigned the basic internal architecture of its comput-
ers in a decade. The result will be more computer productivity at lower cost than ever
before. This is the beginning of a new generation—not only of computers—but of their
application in business, science and government.

 The IBM System/ 360 (Fig. 8.1) was a family of small to large computers, and the
concept of a family of computers was a paradigm shift away from the traditional
 one-size-fi ts-all philosophy of the computer industry, as up until then, every com-
puter model was designed independently.

 The family of computers ranged from minicomputers with 24 KB of memory to
supercomputers for US missile defence systems. However, all these computers
employed the same user instruction set, and the main difference was that for the
larger computers, the more complex machine instructions were implemented with
hardware, whereas the smaller machines used microcode.

 The System/360 architecture allowed customers to commence with a lower-cost
computer model and to then upgrade over time to a larger system to meet their
evolving needs. The fact that the same instruction set was employed meant that the
time and expense of rewriting software was avoided.

 Fig. 8.1 IBM System/360 (Courtesy of IBM Archives)

8 The IBM System/360

105

 Gene Amdahl (Fig. 8.2) was the chief architect for the System/360, and Fred
Brooks 3 was the project manager (Fig. 8.3). This family was introduced in 1964,
and the IBM chairman, Thomas Watson Jr., called it the most important product
announcement in the company’s history.

3 Fred Brooks wrote an infl uential paper The Mythical Man Month based on his experience as
project manager for the System/360 project.

 Fig. 8.2 Gene Amdahl
(Photo courtesy of Perry
Kivolowitz)

 Fig. 8.3 Fred Brooks
(Photo courtesy of Dan
Sears)

8.3 The IBM System/360

106

 The IBM 360 family of small to large computers offered a choice of fi ve proces-
sors and 19 combinations of power, speed and memory. There were 14 models in the
family. It was successful in achieving strict compatibility in the family of computers,
and the project introduced a number of new industry standards including 8-bit bytes.

 A customer could start with a small member of the System/360 family and
upgrade over time into a larger computer in the family. This helped to make comput-
ers more affordable for businesses, and it stimulated growth in computer use.

 It was used extensively in the Apollo program to place man on the moon. The
contribution by IBM computers and personnel was essential to the success of the
project. IBM invested over $5 billion in the design and development of the S/360.
However, the gamble paid off and it was a very successful product line for IBM.

 Gene Amdahl was appointed an IBM fellow in 1965 in recognition of his contri-
bution to IBM, and he was appointed director of IBM’s Advanced Computing
Systems (ACS) Laboratory in California and given freedom to pursue his own
research projects. He later left IBM following disagreements on later computer
development and he formed Amdahl Corporation, which later became a major com-
petitor to IBM in the mainframe market.

 Fred Brooks was the project manager for the System/360 project, which involved
5000 man-years of effort at IBM. Brooks recorded his experience as project man-
ager in a famous project management book titled The Mythical Man Month [Brk:75].
This book which appeared in 1975 considered the challenge of delivering a major
project (of which software is a key constituent) on time, on budget and with the right
quality. Brooks described it as my belated answer to Tom Watson's probing question
as to why programming is hard to manage .

 For a more detailed account of the System/360 revolution, see the excellent IBM
article ‘The 360 Revolution’ by Chuck Boyer [Boy:04]. For more detailed informa-
tion on Brooks and Amdahl, see [ORg:13 , ORg:15].

8.4 Review Questions

 1. Why did IBM decide to retire its existing product line and develop the
System/360?

 2. What were the main risks in developing the System/360?
 3. What were the advantages of developing the System/360?
 4. What new industry standards followed from the System/360?
 5. What is a family of computers?
 6. Describe the contributions of Gene Amdahl to the computing fi eld.
 7. Describe the contributions of Fred Brooks to the computing fi eld.

8 The IBM System/360

107

8.5 Summary

 The IBM System/ 360 was a family of small to large computers, and it was a para-
digm shift away from the traditional ‘one-size-fi ts-all’ philosophy of the computer
industry, as up until then, every computer model was designed independently.

 The family ranged from minicomputers with 24 KB of memory to supercomput-
ers for US missile defence systems. However, all these computers employed the
same user instruction set, and the main difference was that for the larger computers,
the more complex machine instructions were implemented with hardware, whereas
the smaller machines used microcode.

 The System/360 architecture allowed customers to commence with a lower-cost
computer model and to then upgrade over time to a larger system to meet their
evolving needs. The fact that the same instruction set was employed meant that the
time and expense of rewriting software was avoided.

 Gene Amdahl was the chief architect for the System/360 and Fred Brooks was
the project manager. Fred Brooks later wrote an infl uential project management
book, which was concerned with the challenge of delivering a major project (of
which software is a key part) on time, on budget and with the right quality.

8.5 Summary

109© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_9

 9 Minicomputers and Later Mainframes

 Abstract
 The minicomputer was a new class of low-cost computers that arose during the
1960s, and its development was facilitated by the introduction of integrated cir-
cuits and their improved performance and declining cost. Minicomputers were
distinguished from the large mainframe computers by price and size, and they
formed a class of the smallest general-purpose computers. We discuss minicom-
puters such as DEC’s PDP-1, PDP-11 and VAX-11/780 minicomputers, which
were popular with the engineering and scientifi c communities. DEC became the
second largest computer company in the world in the late 1980s, but it was too
slow in reacting to the rise of the microprocessor and the revolution in home
computers. Later mainframes are discussed including the Amdahl 470V/6 and
the intense competition between IBM and Amdahl in the high-end mainframe
market.

 Key Topics
 DEC
 Minicomputers
 PDP-11
 VAX-11/780
 Amdahl 470
 IBM System/370

110

9.1 Introduction

 The minicomputer was a new class of low-cost computers that arose during the
1960s. The development of minicomputers was facilitated by the introduction of
integrated circuits and their improved performance and declining cost.
Minicomputers were distinguished from the large mainframe computers by price
and size, and they formed a class of the smallest general-purpose computers.

 Mainframes were large expensive machines (typically costing over $1 million)
and they required separate rooms for technicians and operation, whereas minicom-
puters cost well under $100,000 and they were designed for direct, personal interac-
tion with the programmer.

 Digital Equipment Corporation (DEC) and Control Data Corporation (CDC)
introduced small or minicomputers in the early 1960s. These included DEC’s PDP-
1, which was released in 1961, and the CDC-160A, which was released in 1960.
These machines cost $110,000 and $60,000, respectively, which was a fraction of
the cost of a mainframe computer.

 The DEC PDP series of minicomputers became popular in the 1960s. The PDP-8
minicomputer (Fig. 7.3) was released in 1965, and it was a 12-bit machine with a
small instruction set. The PDP-11 was a highly successful series of 16-bit minicom-
puters, and it remained a popular product for over 20 years from its release in 1970
to the early 1990s.

 Gene Amdahl was the chief architect for the IBM System/360, and he resigned
from IBM to set up Amdahl Corporation in 1970. His goals were to develop a main-
frame that would provide better performance than the existing IBM machines, and
do so at a lower cost, as well as being compatible with IBM hardware and
software.

 Amdahl Corporation launched its fi rst product, the Amdahl 470V/6 , in 1975.
This was an IBM S/370 compatible mainframe that could run IBM software, and so
it was an alternative to a full IBM proprietary solution. It meant that companies
around the world now had the choice of continuing to run their software on IBM
machines or purchasing the cheaper and more powerful IBM compatibles produced
by Amdahl. Amdahl Corporation became a major competitor to IBM in large-scale
computer placements.

 Amdahl Corporation’s success led to a price war with IBM, with the latter offer-
ing discounts to its customers to protect its market share.

9.2 DEC’s Minicomputers

 Ken Olsen and Harlan Anderson founded Digital Equipment Corporation (DEC) in
1957. It was a spin-off from MIT’s Lincoln computer laboratory, and it was an inno-
vative and forward-thinking company. It became the second largest computer com-
pany in the world in the late 1980s, with revenues of over $14 billion and over
100,000 employees. It dominated the minicomputer era from the 1960s to the 1980s,
with its PDP and VAX series of computers, which were very popular with the engi-
neering and scientifi c communities.

9 Minicomputers and Later Mainframes

http://dx.doi.org/10.1007/978-3-319-33138-6_7

111

 DEC’s fi rst computer, the Programmed Data Processor (PDP-1), was released in
1961 (Fig. 9.1). This 18-bit machine was a relatively inexpensive computer for the
time, and it cost $110,000. The existing IBM mainframes cost over $2 million, and
so DEC’s minicomputers were relatively affordable to businesses. It was a simple
and reasonably easy-to-use computer with 4000 words of memory.

 The PDP series of minicomputers were elegant and reasonably priced and domi-
nated the new minicomputer market segment. They were an alternative to the mul-
timillion dollar mainframe computers offered by IBM to large corporate customers.
Research laboratories, engineering companies and other organizations with large
computing needs all used DEC’s minicomputers

 The PDP-8 minicomputer (Fig. 7.3) was released in 1965, and it was a 12-bit
machine with a small instruction set. It was a major commercial success for DEC
with many sold to schools and universities. The PDP-11 was a highly successful
series of 16-bit minicomputer, and it remained a popular product for over 20 years
from the 1970s to the 1990s.

 Gordon Bell was one of the earliest employees of the company, and he played an
important role in the development of the PDP family of minicomputers. He designed
the multiplier/divider unit and the interrupt system for the PDP-1 computer, which
built upon work done at the MIT Lincoln Laboratory. He later became vice presi-
dent of research and development at DEC, and he was the architect of several PDP
computers. He later led the development of the 32-bit VAX series of computers, and
he was involved in the design of around 30 microprocessors.

 Fig. 9.1 The PDP-1 computer

9.2 DEC’s Minicomputers

http://dx.doi.org/10.1007/978-3-319-33138-6_7

112

 The VAX series of minicomputers were derived from the best-selling PDP-11,
and the VAX was the fi rst widely used 32-bit minicomputer. The VAX-11/780 was
released in 1978, and it was a major success for the company. The VAX product line
was a competitor to the IBM System/370 series of mainframe computers. The VAX
minicomputers used the Virtual Memory System (VMS) operating system.

 The rise of the microprocessor and microcomputer led to the availability of low-
cost personal computers, and this later challenged DEC’s product line. DEC was
slow in recognizing the importance of these developments, and Olsen’s statement
from the mid-1970s ‘There is no need for any individual to have a computer in his
home’ suggests that DEC were totally unprepared for the revolution in personal
computing and its threat to DEC’s business. DEC was too late in responding to the
paradigm shift in the industry, and this proved to be fatal for the company. Compaq
acquired DEC in 1998 for $9.8 billion, and HP later acquired Compaq.

9.2.1 PDP-11

 The PDP-11 (Fig. 9.2) was a family of 16-bit minicomputers produced by DEC
from 1970 up to the early 1990s. It was designed by Harold McFarland, with the
prototype ready in 1969 and the PDP/11 released in 1970. There were several mod-
els in the PDP-11 family.

 It was one of DEC’s most successful computers, with over 600,000 machines
sold. It was the only 16-bit computer made by the company, as its successor was the
32-bit VAX-11 series. It started its life as a minicomputer and ended its life as
macro/super-microcomputer. The release price of the PDP-11 in 1970 was a very
affordable $20,000.

 Its central processing unit had eight 16-bit registers, six general-purpose regis-
ters, the stack pointer and a program counter. It included software such as an editor,
debugger and utilities. The size of its memory was 128 KB.

 The PDP-11 was very useful for multi-user and multitask applications, and the
fi rst version of the UNIX operating system ran on a PDP-11/20 in 1970. The VAX
line at Digital began as an enhancement to the PDP-11 architecture.

9.2.2 The VAX-11/ 780

 The Virtual Address eXtension (VAX) was a family of minicomputers produced by
DEC from the mid-1970s up to the late 1980s. This family used processors imple-
menting the VAX instruction set architecture, and its members included minicom-
puters such as the VAX-11/780, /782, /784, /785, /787, /788, /750, /725 and /730.
The VAX product line was a competitor to the IBM System/370 series of
computers.

 The VAX series was derived from the PDP-11 minicomputer and the VAX-
11/780 (Fig. 9.3) was the fi rst member of the family. It was the fi rst widely used
32-bit minicomputer, and it was released in 1978. It was the fi rst one MIPS (million
instructions per second) machine, and it was a major success for the company.

9 Minicomputers and Later Mainframes

113

 Several programming languages including Fortran 77, BASIC, COBOL and
Pascal were available for the machine. The VAX-11/780 used the DEC VMS operat-
ing system, which was a multi-user, multitasking and virtual memory operating
system. The VAX-11/780 remained the base system that every computer bench-
marked its speed against for many years.

 It supported 128KB–8MB of memory through one or two memory controllers,
and the memory was protected with error-correcting codes. Each memory controller
could support 128KB–4MB of memory. For more detailed information on DEC, see
[Sch:04].

9.3 The War Between IBM and Amdahl

 Gene Amdahl (Fig. 8.2) resigned from IBM to set up Amdahl Corporation in 1970,
and his goal was to develop a mainframe that would be compatible with the IBM
System/360. Further, he intended that it would provide a better performance at a
lower cost than the existing IBM machine. Amdahl revised his plans to launch an
IBM-compatible System/360 mainframe following IBM’s introduction of its IBM
System/370 mainframe.

 Amdahl Corporation launched its fi rst product, the Amdahl 470V/6 , in 1975.
This was an IBM System/370 compatible mainframe that could run IBM software,
and so it was an alternative to a full IBM proprietary solution. It meant that compa-
nies around the world now had the choice of continuing to run their software on
IBM machines or purchasing the cheaper and more powerful IBM compatibles pro-
duced by Amdahl.

 Fig. 9.2 PDP-11

9.3 The War Between IBM and Amdahl

http://dx.doi.org/10.1007/978-3-319-33138-6_8

114

 Amdahl’s fi rst customer was the NASA Goddard Institute for Space Studies,
which was based in New York. The Institute needed a powerful computer to track
data from its Nimbus weather satellite, and it had a choice between a well- established
company such as IBM and an unknown company such as Amdahl. It seemed likely
that IBM would be the chosen supplier. However, the institute was highly impressed
with the performance of the Amdahl 470V/6, and its cost was signifi cantly less than
the IBM machine.

 The Amdahl 470 competed directly against the IBM System/370 family of main-
frames. It was compatible with IBM hardware and software but cheaper than the
IBM product: i.e. the Amdahl machines provided better performance for less money.
Further, the machine was much smaller than the IBM machine due to the use of
large-scale integration (LSI) with many integrated circuits on each chip. This meant
that the Amdahl 470 was one-third of the size of IBM’s 370. It was over twice as fast
and sold for about 10 % less than the IBM 370.

 IBM’s machines were water-cooled, while Amdahl’s were air-cooled, which
decreased installation costs signifi cantly. Machine sales were slow initially due to
concerns over Amdahl Corporation’s long-term survival and the risks of dealing
with a new player. IBM had a long-established reputation as the leader in the com-
puter fi eld. The University of Michigan was Amdahl’s second customer, and it used

 Fig. 9.3 VAX-11/780

9 Minicomputers and Later Mainframes

115

the 470 in its education centre. Texas A&M University was Amdahl’s third cus-
tomer, and they used the 470 for educational and administrative purposes. Amdahl
Corporation was well on its way to success, and by 1977 it had over 50 470V/6
machines installed at various customer sites.

 IBM launched a new product, the IBM 3033, in 1977 to compete with the Amdahl
470. However, Amdahl Corporation responded with a new machine, the 470V/7,
which was one and a half times faster than the 3033 and only slightly more expen-
sive. Customers voted with their feet and chose Amdahl as their supplier, and by late
1978, it had sold over a hundred of the 470V/7 machines.

 IBM introduced a medium-sized computer, the 4300 series, in early 1979, and in
late 1980, it announced plans for the 3081 processor which would have twice the
performance of the existing 3033 on its completion in late 1981. In response,
Amdahl announced the 580 series (Fig. 9.4), which would have twice the perfor-
mance of the existing 470 series. The 580 series was released in mid-1982, but their
early processors had some reliability problems and lacked some of the features of
the new IBM product.

 Amdahl moved into large system multiprocessor design from the mid-1980s. It
introduced its 5890 model in late 1985 and its superior performance allowed Amdahl
to gain market share and increase its sales to approximately $1 billion in 1986. It
now had over 1300 customers in around 20 countries around the world. It launched
a new product line, the 5990 processor, in 1988, and this processor outperformed
IBM by 50 %. Customers voted with their feet and chose Amdahl as their supplier.

 Fig. 9.4 Amdahl 5860 (Courtesy of Robert Broughton, University of Newcastle)

9.3 The War Between IBM and Amdahl

116

 It was clear that Amdahl was now a major threat to IBM in the high-end main-
frame market. Amdahl had a 24 % market share and annual revenues of $2 billion at
the end of 1988. This led to a price war with IBM, with the latter offering discounts
to its customers to protect its market share. Amdahl responded with its own dis-
counts, and this led to a reduction in profi tability for the company.

 The IBM personal computer was introduced in the early 1980s, and by the early
1990s, it was clear that the major threat to Amdahl was the declining mainframe
market. Revenue and profi tability fell, and Amdahl shut factory lines and cut staff
numbers. By the late 1990s, Amdahl was making major losses, and there were con-
cerns about the future viability of the company.

 It was clear by 2001 that Amdahl could no longer effectively compete against
IBM following IBM’s introduction of its 64-bit zSeries architecture. Amdahl had
invested a signifi cant amount in research on a 64-bit architecture to compete against
the zSeries, but the company estimated that it would take a further $1 billion and two
more years to create an IBM-compatible 64-bit system. Further, it would be several
years before they would gain any benefi t from this investment as there were declin-
ing sales in the mainframe market due to the popularity of personal computers.

 By late 2001, the sales of mainframes accounted for just 10 % of Amdahl’s rev-
enue, with the company gaining signifi cant revenue from the sale of Sun servers.
Amdahl became a wholly owned subsidiary of Fujitsu in 1997, and it exited the
mainframe business in 2002. Today, it focuses on the server and storage side as well
as on services and consulting.

 For more detailed information on Gene Amdahl, Amdahl Corporation, IBM and
Digital Equipment Corporation, see [ORg:13 , ORg:15].

9.4 Review Questions

9.5 Summary

 The minicomputer was a new class of low-cost computers that arose during the
1960s. The development of minicomputers was facilitated by the introduction of
integrated circuits, as this helped to reduce cost and size of computers. Minicomputers
were distinguished from the large mainframe computers by price and size, and they
formed a class of the smallest general-purpose computers.

 1. What is a minicomputer?
 2. What factors led to the introduction of the minicomputer?
 3. Describe the achievements of Gene Amdahl.
 4. Describe the competition between Amdahl Corporation and IBM in the

mainframe market.
 5. What factors led to the demise of DEC and Amdahl?
 6. What could have DEC and Amdahl done differently?
 7. Describe the achievements of Gordon Bell.

9 Minicomputers and Later Mainframes

117

 Minicomputers typically cost well under $100,000 and so were relatively inex-
pensive compared to mainframes. They were designed for direct, personal interac-
tion with the programmer. DEC, CDC and HP introduced small or minicomputers
in the early 1960s.

 The PDP-11 was a highly successful series of 16-bit minicomputers, and it
remained a popular product from the 1970s to the 1990s. The VAX series of mini-
computers were derived from the PDP-11, and it was the fi rst widely used 32-bit
minicomputer. The VAX-11/780 was released in 1978, and it was a major success
for DEC.

 The rise of the microprocessor and microcomputer led to the availability of low-
cost home and personal computers, and this paradigm shift later challenged the
mainframe and minicomputer market. DEC was too late in responding to the para-
digm shift in the industry, and this proved to be fatal for the company.

 Gene Amdahl resigned from IBM to set up Amdahl Corporation in 1970, and his
goals were to develop a mainframe that would be compatible with the IBM
System/360 and that would provide better performance at a lower cost than the IBM
machine. Amdahl Corporation launched its fi rst product, the Amdahl 470V/6 , in
1975, and this computer was compatible with the IBM System/370 mainframe. It
meant that companies now had the choice of continuing to run their software on
IBM machines or purchasing the cheaper and more powerful IBM compatibles pro-
duced by Amdahl.

 Amdahl became a major threat to IBM in the high-end mainframe market, as
customers placed orders with Amdahl at IBM’s expense. By the late 1980s, it had
24 % market share and annual revenues of $2 billion. However, as the mainframe
market declined in the 1990s, Amdahl failed to adapt to the rise of the personal
computer, and it went through major fi nancial diffi culties and was taken over by
Fujitsu.

9.5 Summary

119© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_10

 10 The Microprocessor Revolution

 Abstract
 A microprocessor is a central part of a modern personal computer (or computer
device). It integrates the functions of a central processing unit (the part of a com-
puter that processes the program instructions) onto a single integrated circuit and
places a vast amount of processing power in a tiny space.

 Intel’s invention of the microprocessor in 1971 was a revolution in comput-
ing, and it placed the power of a computer on a tiny chip. It was initially devel-
oped as an enhancement to allow users to add more memory to their units.
However, it soon became clear that the microprocessor had great potential for
everything from calculators to cash registers and traffi c lights. Its invention made
personal computers, tablets and mobile phones possible.

 We discuss early microprocessors such as the Intel 4004, the 8-bit Intel 8080
and the 8-bit Motorola 6800. The 16-bit Intel 8086 was introduced in 1978 and
the 16/32-bit Motorola 68000 was released in 1979. The 8-bit Intel 8088 (the
cheaper 8-bit variant of the Intel 8086) was introduced in 1979, and it was chosen
as the microprocessor for the IBM personal computer.

 Key Topics
 Microprocessor
 Intel 4004
 Intel 8008
 Intel 8080
 Intel 8088
 Motorola 68000

120

10.1 Introduction

 A microprocessor is a central part of a modern personal computer (or computer
device). It integrates the functions of a central processing unit (the part of a com-
puter that processes the program instructions) onto a single integrated circuit and
places a vast amount of processing power in a tiny space.

 Intel’s invention of the microprocessor in 1971 was a revolution in computing,
and it placed the power of a computer on a tiny chip. It was initially developed as an
enhancement to allow users to add more memory to their units. However, it soon
became clear that the microprocessor had great potential for everything from calcu-
lators to cash registers and traffi c lights. Its invention made personal computers,
tablets and mobile phones possible.

 Computers in the 1960s were large and expensive, and they typically fi lled an
entire room. They were available only to a small number of individuals and govern-
ment laboratories. The invention of the transistor by Shockley and others at Bell
Labs had helped to reduce the size and cost of a computer.

 The later invention of the integrated circuit by Jack Kilby of Texas Instruments,
and improved upon by Robert Noyce and others at Fairchild Semiconductors, meant
that several transistors could now be placed on a chip, leading to further reductions
in the size and cost of machines. However, large-scale integration where a large
number of transistors could be placed onto a silicon chip was still a long way away.

 Several employees left Fairchild Semiconductors in the late 1960s to form their
own semiconductor companies in the Silicon Valley area. They formed companies
such as Intel, National Semiconductors and Advanced Micro Devices (AMD). Intel
began operations making memory chips and it delivered its fi rst product the 64-bit
SRAM chip (the 3101) to Honeywell in 1969. It introduced a DRAM chip (the
1103) in 1970, and in 1971, it introduced the microprocessor, an invention that
transformed the computing fi eld.

10.2 Invention of the Microprocessor

 The invention of the microprocessor (initially called microcomputer) in 1971 was a
revolution in computing, with the power of a computer now available on a tiny
microprocessor chip.

 The microprocessor is essentially a computer on a chip, and its invention made
hand-held calculators and personal computers (PCs) possible. Intel’s microproces-
sors are used on the majority of personal computers and laptops around the world.

 The invention of the microprocessor happened by accident rather than design.
The Nippon Calculating Machine Corporation (later known as Busicom), a Japanese
company, requested Intel to design a set of integrated circuits for its new family of
high-performance programmable calculators. At that time, it was standard practice
to custom design all logic chips for each customer’s product, and this clearly limited
the applicability of a logic chip to a specialized domain.

10 The Microprocessor Revolution

121

 The design proposed by Busicom required 12 integrated circuits. Ted Hoff, an
Intel engineer, studied Busicom’s design and he rejected it as unwieldy. He pro-
posed a more elegant solution requiring just four integrated circuits, and his design
included a chip that was a general-purpose logic device (microprocessor) that
derived its application instructions from the semiconductor memory. Busicom
accepted his proposed design, and Intel engineers then implemented it.

 Hoff’s 4004 microprocessor design included a central processing unit (CPU) on
one chip. It contained 2300 transistors on a one-eighth by one-sixth inch chip sur-
rounded by three ICs containing ROM, shift registers, input/output ports and RAM.

 Busicom had exclusive rights to the design and components, but following dis-
cussion and negotiations, Busicom agreed to give up its exclusive rights to the chips.
Intel shortly afterwards announced the availability of the fi rst microprocessor, the
Intel 4004 (Fig. 10.1).

 This was the world’s fi rst microprocessor, and although it was initially developed
as an enhancement to allow users to add more memory to their units, it soon became
clear that the microprocessor could be applied to many other areas.

 This small Intel 4004 microprocessor chip was launched in late 1971, and it
could execute 60,000 operations per second. The tiny chip had an equivalent com-
puting power as the large ENIAC which used 18,000 vacuum tubes and took up the
space of an entire room [ORg:11].

 The Intel 4004 sold for $200 and for the fi rst time affordable computing power
was available to designers of all types of products. The introduction of the micro-
processor was a revolution in computing, and its invention had applications to
everything from traffi c lights to medical instruments and to the development of
home and personal computers.

 Fig. 10.1 Intel 4004
microprocessor

10.2 Invention of the Microprocessor

122

 Gary Kildall was one of the early people to recognize the potential of the micro-
processor as a computer in its own right, and he began writing experimental pro-
grams for the Intel 4004 microprocessor in the early 1970s. Kildall worked as a
consultant with Intel on the later 8008 and 8080 microprocessors.

 He developed the fi rst high-level programming language for a microprocessor
(PL/M) in 1973, which enabled programmers to write applications for microproces-
sors. He developed the CP/M operating system (Control Program for
Microcomputers) in the same year. CP/M allowed the Intel 8080 microprocessor to
control a fl oppy disk drive allowing fi les to be read and written to and from an 8 inch
fl oppy disk. CP/M made it possible for computer hobbyists and companies to build
the fi rst home computers.

 Kildall made CP/M hardware independent by creating a separate module called
the BIOS (basic input/output system). He added several utilities such as an editor,
debugger and assembler, and by 1977, several manufacturers included CP/M with
their systems. He set up Digital Research Inc. (DRI) in 1976 to develop, market and
sell the CP/M operating system.

10.3 Early Microprocessors

 Intel has developed more and more powerful microprocessors since its introduction
of the Intel 4004. The Intel 8008 was launched in 1972, and this was a reasonably
successful product. It led to the 8-bit Intel 8080 microprocessor, which was released
in 1974. The Intel 8080 was the fi rst general-purpose microprocessor, and it was
sold for $360: i.e. a whole computer on one chip was sold for $360, while conven-
tional computers sold for thousands of dollars. The Intel 8080 soon became the
industry standard, and Intel became the industry leader in the 8-bit market. The
8080 played an important role in starting personal computer development, as it
attracted the interest of computer developers and engineers.

 Motorola introduced its fi rst microprocessor, the 8-bit 6800 microprocessors
(Fig. 10.2), in 1974, and this microprocessor was used in automotive, computing
and video games. It contained over 4000 transistors. It competed against the Intel
8080 microprocessor, and it was used in some early home computer kits.

 Fig. 10.2 Motorola 6800
microprocessor

10 The Microprocessor Revolution

123

 National Semiconductors introduced its 16-bit IMP-16 in 1973 and an 8-bit ver-
sion, the IMP-8, in 1974. Texas Instruments introduced the fi rst single-chip micro-
processor, the PACE, in 1974, and it introduced its fi rst 16-bit microprocessor, the
TMS 9900, in 1976. MOS Technology introduced its 8-bit 6502 in 1975, and Zilog
introduced its Z80 in 1976.

 The 16-bit Intel 8086 was introduced in 1978, but it soon faced competition from
Motorola, which introduced its 16/32-bit 68000 microprocessor in 1979. The Intel
8088 is an 8-bit variant of the 8086, and it was introduced in 1979. The Motorola
68000 was a hybrid 16/32-bit microprocessor that had a 16-bit data bus, but it could
perform 32-bit calculations internally. It was used on various Apple Macintosh
computers, the Atari ST and the Commodore Amiga.

 The fi rst single-chip 32-bit microprocessor was AT&T Bell Labs BELLMAC-
32A, which was introduced in 1982. Motorola introduced its 32-bit 68020 micro-
processor in 1984, and this microprocessor contained 200,000 transistors on a
three-eighths inch square chip.

 IBM considered several microprocessors for its IBM PC including the IBM 801
processor, the Motorola 68000 microprocessor and the Intel 8088 microprocessor.
IBM chose the Intel 8088 chip (which was cheaper than the 16-bit Intel 8086), and
it took a 20 % stake in Intel leading to strong ties between both companies.

 Today, Intel’s microprocessors are used on most personal computers around the
world, and the contract to supply the Intel 8088 microprocessor was a major turning
point for the company. Intel had been focused more on the sale of dynamic random
access memory chips, with sales of microprocessors in thousands or in tens of thou-
sands. However, sales of microprocessors rocketed following the introduction of the
IBM PC, and soon sales were in tens of millions of units.

 The introduction of the IBM PC was a revolution in computing, and there are
hundreds of millions of computers in use around the world today. It placed comput-
ing power in the hands of ordinary users, and today’s personal computers are more
powerful than the mainframes that were used to send man to the moon. The cost of
computing processing power has fallen exponentially since the introduction of the
fi rst microprocessor, and Intel has played a key role in squeezing more and more
transistors onto a chip leading to more and more powerful microprocessors and
personal computers.

10.4 A Selection of Semiconductor Companies

 Robert Noyce and Gordon Moore founded Intel (Integrated Electronics) in 1968.
Today, it is an American semiconductor giant with headquarters at Santa Clara in
California. It is one of the largest semiconductor manufacturers in the world, with
plants in the United States, Europe and Asia. It has played an important role in shap-
ing the computing fi eld with its invention of the microprocessor in 1971. It is the
inventor of the x86 series of microprocessors that are used in most personal comput-
ers, and the company is renowned for its leadership in the microprocessor industry
and for its excellence and innovation in microprocessor design and manufacturing.

10.4 A Selection of Semiconductor Companies

124

 Noyce and Moore left Fairchild Semiconductors to set up Intel, and the initial
focus of the company was on semiconductor memory products and to make semi-
conductor memory practical. Its goal was to create large-scale integrated (LSI)
semiconductor memory, and it introduced a number of products including the Intel
1103, which was a one-kilobit (KB) dynamic random access memory (DRAM)
integrated circuit.

 Motorola set up a research lab in 1952 to take advantage of the potential of semi-
conductors, and by 1961 it was mass-producing semiconductors at a low cost. It
introduced a transistorized walkie-talkie in 1962 as well as transistors for its Quasar
televisions. Its microprocessors have played an important role in the computing
fi eld. These include the infl uential 68000 and PowerPC architecture, which were
used in the Apple Macintosh and Power Macintosh personal computers. Motorola’s
semiconductor business was spun off to become a separate company called Freescale
Semiconductor Inc. in 2004.

 Advanced Micro Devices was formed by Jerry Sanders and several of his col-
leagues from Fairchild Semiconductors in 1969. It initially acted as a second-source
supplier of microchips designed by Fairchild and National Semiconductors, and it
later acted as second supplier for the x86 chips produced by Intel. AMD produces
microprocessors, motherboards and chipsets, and it is the second largest supplier of
x86-based microprocessors.

 National Semiconductors was founded in Connecticut by Bernard Rothlein and
several of his colleagues from Sperry Rand Corporation. It introduced the 16-bit
IMP-16 microprocessor in 1973 and the 8-bit version, the IMP-8, in 1974. National
Semiconductors was taken over by Texas Instruments in 2011.

 Texas Instruments (TI) is an American electronics company that was formed in
1951, and its headquarters are in Dallas. It is one of the largest manufacturers of
semiconductors in the world, and it produces a wide range of semiconductor prod-
ucts including chips for mobile phones, calculators, microcontrollers, digital signal
processors, analog semiconductors and multicore processors.

 It commenced research on transistors in the early 1950s, and it introduced one of
the fi rst transistor radios in 1954. It invented the integrated circuit in 1958; PACE,
the fi rst single-chip microprocessor, was introduced in 1974; and the TMS 9900, its
fi rst 16-bit microprocessor, was released in 1976.

 MOS Technology was formed in 1969 initially as a second supplier of calculator
chips for Texas Instruments. Several Motorola designers of the Motorola 6800
microprocessor joined the company in 1975, and their knowledge allowed MOS to
develop the 6501 and 6502 microprocessors. MOS Technology was taken over by
Commodore in 1976.

10 The Microprocessor Revolution

125

10.5 Review Questions

10.6 Summary

 A microprocessor is a central part of a modern personal computer (or computer
device), and it places a vast amount of processing power on a tiny chip. Intel’s
invention of the microprocessor in 1971 changed computing forever, and it placed
the power of a computer on a tiny chip.

 The microprocessor was initially developed as an enhancement to allow users to
add more memory to their units. However, it soon became clear that the micropro-
cessor had applications to many other areas. Its invention led to personal comput-
ers, tablets and mobile phones.

 The invention of the microprocessor happened by accident rather than design,
and it was initially developed as part of the design to allow users to add more
memory to their units. The design solution included a general-purpose chip that
derived its application instructions from the semiconductor memory. This was the
Intel 4004 microprocessor.

 1. What is a microprocessor?
 2. What is the signifi cance of the Intel 4004?
 3. Why is the invention of the microprocessor considered a revolution in

computing?
 4. What are the main contributions made by Motorola to the semiconductor

fi eld?
 5. Why did so many employees leave Fairchild Semiconductors to set up

companies in Silicon Valley? What companies did they form?
 6. What are the main contributions made by Intel to the semiconductor fi eld?
 7. Explain the signifi cance of PL/M and CP/M?

10.6 Summary

127© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_11

 11 Home Computers

 Abstract
 We consider a selection of home and personal computers, including early home
computers such as the MITS Altair 8800, which was introduced in early 1975;
the Apple I and II computers, which were released in 1976 and 1977, respec-
tively; the Commodore PET computer, which was introduced in 1977; the Atari
400 and 800 computers, which were released in 1979; the popular Commodore
64 computer, which was introduced in 1982; and the Sinclair ZX 81 and ZX
Spectrum computers, which were released in 1980 and 1981, respectively. We
discuss later Atari and Amiga computers and the Apple Macintosh computer,
which was a major milestone in computing.

 Key Topics
 Xerox Alto
 MITS Altair 8800
 Apple I and II computers
 Atari 400 and 800
 Commodore PET
 Amiga
 Commodore 64
 Sinclair ZX Spectrum
 Apple Macintosh

128

11.1 Introduction

 The invention of the microprocessor was a revolution in computing, and it led to the
development of home and personal computers. We consider a selection of home and
personal computers in this chapter, including early home computers such as the
MITS Altair 8800, the Apple I and II computers, the Commodore PET computer,
the Atari 400 and 800 computers and the Commodore 64 computer. We discuss later
Atari and Amiga computers and the Apple Macintosh computer, which was a major
milestone in computing. We will discuss the introduction of the IBM personal com-
puter in Chap. 12 .

 Many of the early home computers discussed in this chapter were based on the
8-bit MOS 6502 microprocessor. The MITS Altair 8800 is an exception, as it was
based on the Intel 8080 microprocessor, and it was one of the earliest home comput-
ers when it was introduced in late 1974.

 Later home and personal computers used a variety of microprocessors. The ZX
Spectrum home computer was based on the 8-bit Zilog Z80 microprocessor; the
Apple Macintosh was based on the Motorola 68000 microprocessor, as was the
Amiga 1000. The Atari personal computer was based on the Intel 8088
microprocessor.

 We start with a discussion of the Xerox Alto computer, which was developed at
Xerox PARC. This computer pioneered several key concepts in personal comput-
ing, and it had a major impact on the design of the Apple Macintosh.

11.2 Xerox Alto Personal Computer

 The Xerox Alto (Fig. 11.1) was one of the earliest personal computers, and it was
introduced in early 1973. Chuck Thacker and others at Xerox designed it, and it was
one of the fi rst computers to use a mouse-driven graphical user interface. It was
designed for individual rather than home use, and a single person sitting at a desk
used it. It was essentially a small minicomputer rather than a personal computer, and
it was unlike modern personal computers in that it was not based on the micropro-
cessor. The signifi cance of the Xerox Alto is that it had a major impact on the design
of early personal computers and especially on the design of the Apple Macintosh
computer.

 Butler Lampson wrote a famous memo to the management in Xerox in 1972
[Lam:72], in which he requested funds to construct a number of Alto workstations.
He made the case for the development of the Alto, and he outlined his vision of
personal computing in the memo. His vision described the broad range of applica-
tions to which the Xerox Alto could be applied.

 He outlined a vision of distributed computing, where several Xerox Alto work-
stations would form a network of computers, with each computer user having his
own fi les and communicating with other users to interchange or share information.
He argued that the development of the Alto would allow the theory that cheap

11 Home Computers

http://dx.doi.org/10.1007/978-3-319-33138-6_12

129

personal computers would be extremely useful to be tested and demonstrated com-
prehensively to be the case.

 This memo led to the development of a network of Alto in the mid-1970s, the
development of Ethernet technology for connecting computers in a network, the
development of a mouse-driven graphical user interface, the development of a
WYSIWYG editor and laser printing and the development of the Smalltalk object-
oriented programming language.

 The cost of the Alto machine was approximately $10,000, and this was signifi -
cantly less than the existing mainframes and minicomputers. The machine was
capable of performing almost any computation that a DEC PDP-10 machine could
perform. For a more detailed account of the contributions of Xerox PARC to the
computing fi eld, see [Hil:00].

11.3 MITS Altair 8800

 Micro Instrumentation and Telemetry Systems (MITS) was founded by Ed
Roberts and others in 1969. Roberts had a background in electronics from the US
military, and the company began in Robert’s garage in New Mexico. Its initial
focus was to design and sell electronic kits to model rocket enthusiasts, which had
become a popular hobby in the 1960s, due to manned space fl ights and the race to
the moon.

 The next product that the company introduced was the MITS 816 calculator kit,
which included six LSI integrated circuits designed to make a calculator with the

 Fig. 11.1 Xerox Alto

11.3 MITS Altair 8800

130

four basic arithmetic functions. The calculator kit featured on the November 1971
cover of Popular Electronics , which was a popular American electronics magazine
that appeared from the mid-1950s to the late 1990s.

 MITS began working on the Altair 8800 home computer (Fig. 11.2) in 1974, and
the prototype was available in October of that year. The cover page of the January
1975 edition of Popular Electronics featured an early design of the Altair 8800, and
this publicity helped in generating sales that vastly exceeded expectations. Over
5000 machines were delivered by August 1975, and the home computer kit version
(which was assembled by the customer) cost $439, whereas the fully assembled
version cost $621.

 The home kit included assembly instructions, a metal case, a front panel with
switches, a power supply, a motherboard with expansion slots, various cards to plug
into the expansion slots, as well as any other components required to build the com-
puter. The actual assembly was quite a challenge as it involved careful soldering and
assembly. There was no actual keyboard or monitor, which meant that the task of
programming the machine was non-trivial and required the user to program in
machine language and watch the LEDs on the front panel to get the results. Several
expansion cards (e.g. for keyboard, monitor and data storage) were soon released,
and this made it easier to use. The Altair 8800 used the 8-bit Intel 8080 micropro-
cessor, which was introduced in 1974.

 Bill Gates and Paul Allen developed a BASIC interpreter for the Altair 8800, and
the 4k/8k versions of BASIC were released in July 1975. It cost the customer an
additional $60/$75 when purchasing an Altair 8800. Gates and Allen formed
Microsoft later in 1975, and Altair BASIC was their fi rst product.

 Fig. 11.2 MITS Altair
computer (Photo public
domain)

11 Home Computers

131

11.4 Apple I and II Home Computers

 Steve Jobs and Steve Wozniak formed Apple Computer, Inc. in 1976, and the com-
pany commenced operations in Job’s family garage. Their goal was to develop a
user-friendly alternative to the existing mainframe and minicomputers produced by
IBM and Digital. Wozniak was responsible for product development and Jobs for
marketing. Jobs and Wozniak were both college dropouts, and both attended the
Homebrew Computer Club of computer enthusiasts in Silicon Valley during the
mid-1970s.

 The Apple I computer was released in 1976, and it retailed for $666.66. It gener-
ated over $700,000 in revenue for the company, but it was mainly of interest to
computer hobbyists and engineers. This was due to the fact that it was not a fully
assembled personal computer as such, and it was essentially an assembled mother-
board that lacked features such as a keyboard, monitor and case. It used a television
as the display system, and it had a cassette interface to allow programs to be loaded
and saved. It used the inexpensive MOS Technology 6502 microprocessor chip,
which had been released earlier that year, and Wozniak had already written a BASIC
interpreter for this chip.

 The Apple II computer (Fig. 11.3) was released in 1977, and it was a signifi cant
advance on its predecessor. It was a personal computer with a monitor, keyboard
and case, and it was one of the earliest computers to come preassembled. It was a
popular 8-bit home computer, and it was one of the earliest computers to have a
colour display with colour graphics.

 The BASIC programming language was built-in, and it contained 4 K of RAM
(which could be expanded to 48 K). The VisiCalc spreadsheet program was released
on the Apple II, and this helped to transform the computer into a credible business

 Fig. 11.3 Apple II
computer (Photo public
domain)

11.4 Apple I and II Home Computers

132

machine. The Apple II retailed for $1299, and it was a major commercial success
for Apple generating over $139 million in revenue for the company. For more
detailed information on Apple, see [ORg:15].

11.5 Commodore PET

 Commodore Business Machines was a leading North American home computer and
electronics manufacturing company. It played an important role in the development
of the home computer industry in the 1970s and 1980s, and it is especially famous
for its development of the Commodore PET computer, which was very popular in
the education fi eld. It also developed the VIC-20 and Commodore 64 home comput-
ers, which were very popular machines.

 Commodore initially manufactured typewriters for the North American market,
and it diversifi ed into the manufacture of mechanical calculators from the early
1960s. It introduced both consumer and scientifi c calculators in the late 1960s, and
by the early 1970s, it was one of the most popular brands for calculators. The calcu-
lators used Texas Instruments chips, but when Texas Instruments entered the calcu-
lator market in the mid-1970s, Commodore was unable to compete with the prices
offered by Texas.

 Commodore purchased the semiconductor company, MOS Technology, with the
intention of using MOS chips in its calculators. However, Chuck Peddle, one of
MOS’s employees, convinced Commodore that the future was in computers and not
calculators. Commodore used one of MOS Technology’s chips, the 8-bit 6502, to
enter the home computer market in 1977 with the launch of its Commodore Personal
Electronic Transactor (PET) computer.

 This Commodore PET was very popular in the education market, and one of its
models was called the Teacher’s PET . It used the MOS 8-bit 6502 microprocessor,
which was designed by Chuck Peddle and others at MOS Technology. The 6502
controlled the screen, keyboard, the cassette recorder and any peripherals connected
to the expansion ports. The machine used the Commodore BASIC operating sys-
tem. There were several models of the Commodore PET introduced during its life-
time including the PET 2001 series, the PET 4000 series and the SuperPET 8000
series.

 The fi rst model introduced was the PET 2001 (Fig. 11.4), which had either 4 Kb
or 8 Kb of RAM. It had a built-in monochrome monitor with 40 × 25 character
graphics enclosed in a metal case. It included a magnetic data storage device known
as a datasette (data + cassette) in the front of the machine as well as a small key-
board. There were complaints with respect to the small keyboard, which soon led to
the appearance of external replacement keyboards.

 The PET 4000 series was launched in 1980, and the 4032 model was very suc-
cessful at schools as its all-metal construction and all-in-one design made it ideal for
the challenges in the classroom. The 4000 series used a larger 12” monitor and an
enhanced BASIC 4.0 operating system. Commodore manufactured a successful
variant called the Teacher’s PET.

11 Home Computers

133

 Commodore introduced the 8000 series, and the last in the series was the
SuperPET or SP9000. It used the Motorola 6809 microprocessor, and it provided
support for several programming languages such as BASIC, Pascal, COBOL and
FORTRAN. For more detailed information on Commodore, see [ORg:15].

11.6 Atari 400 and 800

 Atari designed and produced four lines of home and personal computers from the
late 1970s up to the early 1990s. These were the 8-bit Atari 400 and 800 line, the
16-bit ST line, the IBM PC compatible series and the 32-bit series.

 The Atari 8-bit series began as a next-generation follow-up to its successful Atari
2600 video game console. Atari’s management noted the success of Apple in the
early personal computer market, and they tasked their engineers to transform the
hardware into a personal computer system. The net result was the Atari 400 and the
Atari 800 home computers, which were introduced in 1979.

 The Atari 800 (Fig. 11.5) came with 8 KB of RAM and it retailed for $1000, and
the Atari 400 was a lower-specifi cation version, which retailed for $550. Both
machines were based on the MOS 6502 microprocessor. The architecture of the
Atari 400 and 800 machines provided sound and graphics capabilities that were
superior to competitor products such as the Apple II or the Commodore PET.

 The Atari 400 and 800 made an impact on the home computing fi eld, and both
machines included joystick ports for playing games. Atari BASIC was provided on
an external cartridge for each machine.

 The Atari 400 was Atari’s entry-level computer, and it was designed for younger
children. It had a membrane keyboard designed to prevent damage from food or
small objects, and the keys could not be removed or swallowed by children. It was

 Fig. 11.4 Commodore
PET 2001 home computer

11.6 Atari 400 and 800

134

initially designed for 4 K of memory, but as memory costs declined, it was shipped
with 8 K (and later 16 K). This meant that it could run most cartridge- and cassette-
based software. It was connected to a standard television.

 The Atari 800 was based on the MOS 6502 microprocessor, and this 8-bit
machine came with a graphics/audio chipset that allowed it to produce the most
advanced graphics and sound on an existing home computer system. It could pro-
duce 128 colours (later upgraded to 256 colours using a later chip), and the graphics
were 320 × 192, which was very advanced for its time. It looked like a standard
typewriter machine.

 The Atari 400 and 800 were replaced in 1982, initially with the Atari 1200XL
and then with the Atari 600/800XL line of computers. For more detailed informa-
tion on Atari, see [ORg:15].

11.7 Commodore 64

 The Commodore 64 (C64) was a very successful 8-bit home computer introduced
by Commodore in 1982 (Fig. 11.6). Its main competitors at that time were the Atari
400 and 800 and the Apple II computer. The cost of the C64 machine was $595,
which was signifi cantly less than its rivals, and Commodore cleverly exploited the
price difference to rapidly gain market share. Approximately 15 million of the
Commodore 64 machines were sold.

 The C64 used the MOS 6501 microprocessor and it came with 64 kilobytes of
RAM. It had 320 × 200 colour graphics with 16 colours using the VIC-II graphics
chip, and the MOS Sound Interface Device (SID) chip. The SID chip was one of the
fi rst sound chips to be included in a home computer. The C64 dominated the low-
end home computer market for most of the 1980s.

 It came with the Commodore BASIC, but support for other languages such as
Pascal and FORTRAN were also available. Programmers also wrote programs in
assembly language to maximize speed and memory use. The Commodore 64’s

 Fig. 11.5 The Atari 800
home computer

11 Home Computers

135

graphics and sound capabilities were quite advanced for the time, and the C64 was
very popular for computer games.

 Commodore published detailed technical documentation to assist programmers
and enthusiastic users to design and develop applications for the Commodore 64.
This led to the development of over 10,000 commercial software applications such
as development tools, games and offi ce productivity applications for the machine.
Atari was Commodore’s main competitor, but it kept its technical information
secret.

 The C64 included a ROM-based version of the BASIC 2.0 programming lan-
guage. There was no operating system as such, and instead the kernel was accessed
via BASIC commands. BASIC did not allow commands for sound or graphics
manipulation, and instead the user had to use the ‘POKE’ command to access these
chips directly.

 The Commodore 64 remained highly popular throughout the 1980s, and it was
still being sold up to the early 1990s. For a more detailed account of Commodore,
see [Bag:12].

11.8 Sinclair ZX 81 and ZX Spectrum

 Sir Clive Sinclair founded Sinclair Research in 1973 as a consumer electronics
company. It entered the home computer market in 1980 with the Sinclair ZX 80.
This home computer retailed for £99.95, and it was the cheapest and smallest home
computer in the United Kingdom, at the time.

 The ZX 80 was a stepping stone for the Sinclair ZX 81 home computer, which
was introduced in 1981. The ZX 81 was designed by Rick Dickinson to be a small,
simple and low-cost home computer for the general public, and it retailed for an
affordable £69.95. It offered tremendous value for money, and it opened the world
of computing to those who had been denied access by cost. It was bought mainly for
educational purposes.

 The ZX 81 was a highly successful product with sales of over 1.5 million units.
It came with 1 KB of memory, which could be extended to 16 KB of memory. It had
a monochrome black-and-white display on a UHF television. It was one of the fi rst
home computers to be used widely by the general public, and it led to a large

 Fig. 11.6 Commodore 64
home computer

11.8 Sinclair ZX 81 and ZX Spectrum

136

community of enthusiast users. It came with a BASIC interpreter, which enabled
users to learn about computing and allowed them to write their fi rst BASIC pro-
grams. It came with a standard QWERTY keyboard, which had some extra keys,
and each key had several functions.

 Sinclair entered an agreement with Timex, an American company, which allowed
Timex to produce clones of Sinclair machines for the American market. These
included the Timex Sinclair 1000 and the Timex Sinclair 1500 which were variants
of the ZX 81. These were initially successful but soon faced intense completion
from other American vendors.

 The ZX Spectrum home computer (Fig. 11.7) was introduced in 1982, and it
became the best-selling computer in the United Kingdom at that time. Its main com-
petitor was the BBC Microcomputer produced by Acorn Computers. However, the
BBC Micro was more expensive and retailed for £299, whereas the ZX Spectrum
was about half its price. The basic model of the ZX Spectrum had 16 KB of RAM
and retailed for £125, whereas the more advanced model had 48 KB of RAM and
retailed for £175. This made the ZX Spectrum signifi cantly more attractive to users
than the existing Microcomputer.

 The ZX Spectrum introduced colour graphics and sound, and it included an
extended version of Sinclair’s existing BASIC interpreter. It was an 8-bit home
computer, and it used an 8-bit Zilog Z80 microprocessor. It initially came in two
models and was eventually released in eight different models.

 Rick Dickinson and Richard Altwasser designed the ZX Spectrum at Sinclair
Research. Dickinson created the sleek outward design, and the internal hardware
was designed by Altwasser. Clive Sinclair had emphasized the importance of creat-
ing a home computer substantially cheaper than the rival BBC Microcomputer, and
so cost was a key factor in the design of the ZX Spectrum.

 Cost forced the designers to fi nd new ways of doing things, and they minimized
the number of components in the keyboard from a few hundred to a handful of mov-
ing parts using a new technology. They used the cost-effective 3.5 MHz Z80 proces-
sor, a sound beeper, a BASIC interpreter and an audio tape as a storage device.

 Fig. 11.7 ZX Spectrum

11 Home Computers

137

 The demand for the ZX Spectrum was phenomenal, as the machine caught the
imagination of the British general public. It was initially targeted as an educational
tool to help students to become familiar with programming, but it soon became
popular for playing home video games.

 It was a highly successful home computer with over fi ve million units sold. It
was 50 % cheaper than the BBC Microcomputer and this was an important factor in
its success. It led to a massive interest in learning about computing, programming
and video games among the general public.

 The users were supplied with a book from which they could type in a computer
program into the computer, or they could load a program from a cassette. This
allowed users to modify and experiment with programs as well as playing computer
games.

 Its simplicity, versatility and good design led to companies writing various soft-
ware programs for it, and soon computer magazines and books dedicated to the ZX
Spectrum were launched with the goal of teaching users how to program the
machine.

 The ZX Spectrum spawned various clones around the world. Countries such as
the United States, to Russia and India created their own version of the Spectrum.

 The ZX Spectrum remained popular throughout the 1980s, and it was offi cially
retired in 1988. The Spectrum + was released in 1984, and this was essentially the
48 K version of the Spectrum with an enhanced keyboard. The Spectrum +128 was
released in 1986, and it was similar in appearance to the Spectrum + but it had 128 K
of memory.

 Sinclair was sold to Amstrad in 1986, and Amstrad created its own models
including the ZX Spectrum +2, the ZX Spectrum +2A, the ZX Spectrum +3, the ZX
Spectrum +3A and the ZX Spectrum +3B.

 There is a large archive of ZX Spectrum-related material available on-line (http://
www.worldofspectrum.org), and it includes software, utilities, games and tools.
Today, there are emulators available that allow Spectrum games to be downloaded
and played on personal computers.

11.9 Apple Macintosh

 The Apple Macintosh (Fig. 11.8) was announced during a famous television com-
mercial aired during the third quarter of the Super Bowl in 1984. This was one of
the most creative advertisements of all time, and it ran just once on television. It
generated more excitement than any other advertisement up to then, and it immedi-
ately positioned Apple as a creative and innovative company, while implying that its
competition (i.e. IBM) was stale and robotic.

 It presented Orwell’s totalitarian world of 1984, with a lady runner wearing
orange shorts and a white tee shirt with a picture of the Apple Macintosh running
towards a big screen and hurling a hammer at the big brother character on the screen.
The audience is stunned at the broken screen and the voice-over states, ‘On January
24th Apple will introduce the Apple Macintosh and you will see why 1984 will not

11.9 Apple Macintosh

http://www.worldofspectrum.org/
http://www.worldofspectrum.org/

138

be like “1984”.’ Ridley Scott who has directed well-known fi lms such as Alien,
Blade Runner, Robin Hood and Gladiator directed the short fi lm.

 The Macintosh project began in Apple in 1979 with the goal of creating an easy-
to- use low-cost computer for the average consumer. Jef Raskin initially led it, and
the project team included Bill Atkinson, Burrell Smith and others. It was infl uenced
by the design of the Apple Lisa, and it employed the Motorola 68000 processor.
Steve Jobs became involved in the project in 1981 and Raskin left the project. Jobs
negotiated a deal with Xerox that allowed him and other Apple employees to visit
the Xerox PARC research centre at Palo Alto in California to see their pioneering
work on the Xerox Alto computer and their work on a graphical user interface.
PARC’s research work had a major infl uence on the design and development of the
Macintosh, as Jobs was convinced that future computers would use a graphical user
interface. The design of the Macintosh included a friendly and intuitive graphical
user interface (GUI), and the release of the Macintosh was a major milestone in
computing.

 The Macintosh was a much easier machine to use than the existing IBM PC. Its
friendly and intuitive graphical user interface was a revolutionary change from the
command-driven operating system of the IBM PC, which required the users to be
familiar with its operating system commands. The introduction of the Mac GUI is
an important milestone in the computing fi eld, and it was 1990 before Microsoft
introduced its Windows 3.0 GUI-driven operating system.

 Apple intended that the Macintosh would be an inexpensive and user-friendly
personal computer that would rival the IBM PC and compatibles. However, it was
more expensive, and retailed for $2495, which was signifi cantly more expensive

 Fig. 11.8 Apple
Macintosh computer
(Photo public domain)

11 Home Computers

139

that the IBM PC. Further, initially it had a limited number of applications available,
whereas the IBM PC had spreadsheets, word processors and database applications,
and so it was more attractive to customers. The technically superior Apple Macintosh
was unable to break the IBM dominance of the market. However, the machine
became very popular in the desktop publishing market, due to its advanced graphics
capabilities.

11.10 Later Commodore and Atari Machines

 The Amiga was a family of personal computers sold by Commodore in the 1980s
and 1990s. Commodore purchased the start-up company called Amiga Corporation
in 1984, and it became a subsidiary called Commodore-Amiga . The fi rst model, the
Amiga 1000 (or A1000), was released in 1985, and it became popular for its graphi-
cal, audio and multitasking capabilities. The A1000 had a powerful CPU and
advanced graphics and sound hardware. It was based on the Motorola 68000 series
of microprocessor, and it had 256 Kb of RAM, which could be upgraded with a
further 256 Kb of RAM. It retailed for $1295.

 The Amiga 500 (Fig. 11.9) was the best-selling model in the Amiga family, and
it was released in 1987. It was a highly popular home computer with over 6 million
machines sold. Several other models of the Amiga machines were introduced
including the A3000; the A500+ and A600; and the A1200 and A4000 machines.

 The August 1994 edition of the Byte magazine [By:94] spoke highly of the early
Amiga machines. It called the A1000 machine the fi rst multimedia computer, as it
was so far ahead of its time with advanced graphics and sound.

 Jack Tramiel (the founder and former CEO of Commodore) acquired Atari’s
home computing division in 1984, and he renamed the company to Atari
Corporation. Atari designed the 16-bit GUI-based home computer, the Atari ST, in
1985. This machine was priced at an affordable $799, and it included a 360 KB

 Fig. 11.9 Amiga 500
home computer (1987)

11.10 Later Commodore and Atari Machines

140

fl oppy disk drive, a mouse and a monochrome monitor. A colour monitor was pro-
vided for an extra $200, and the machine came with 512 KB of RAM. It used a
colour graphical windowing system called GEM. The Atari ST included two
Musical Instrument Digital Interface (MIDI) ports, which made it very popular
with musicians.

 The Atari 1040 ST (Fig. 11.10) was introduced in 1986, and this 16-bit machine
differed from the Atari ST in that it integrated the external power supply and fl oppy
disk drive into one case. It contained 1 MB of RAM and retailed for $999. It came
as a complete system with a base unit, a monochrome monitor and a mouse. Atari
released advanced versions of these models, called the Atari 520STE and the Atari
1040STE, in 1989. The Atari ST line had an impressive life span starting in 1986
and ending with the Atari Mega STE, which was released in 1990.

 Atari released its fi rst personal computer, the Atari PC, in 1987. This IBM-
compatible machine was an 8 MHz 8088 machine with 512 KB of RAM and a
360 KB 5.25 inch fl oppy disk drive in a metal case. It released the Atari PC2 and
PC3 later that year, and the PC3 included an internal hard disk. The Atari PC4
included a faster 16 MHz 80286 CPU and 1 MB of RAM, and it was released the
same year. The PC5 was released in 1988 and it had a 20 MHz 80386 CPU and
2 MB of RAM.

 The Atari ABC (Atari Business Computer) was released in 1990. The 286 ver-
sion shipped with a range of CPU and storage choices ranging from an 8 MHz to a
20 MHz CPU and a 30 MB to 60 MB hard disk. The Atari ABC 386 version included
a 20 MHz or 40 MHz CPU and a 40 MB or 80 MB hard disk. The ABC 386 shipped
with Microsoft Windows 3.0. For more detailed information on Atari, see [Edw:11 ,
 IGN:14].

 There was intense rivalry between the Amiga and Atari families of personal com-
puters. However, ultimately both companies lost the battle in the personal computer
market, and players such as IBM, Dell, HP and Apple now dominate it.

 Fig. 11.10 Atari 1040 ST
home computer

11 Home Computers

141

11.11 Review Questions

11.12 Summary

 The invention of the microprocessor was a revolution in computing, and it led to the
development of home and personal computers. Many of the early home computers
discussed in this chapter were based on the 8-bit MOS 6502 microprocessor, with
the MITS Altair 8800 based on the Intel 8080 microprocessor. Later home and per-
sonal computers used a variety of microprocessors such as the 8-bit Zilog Z80
microprocessor, the Motorola 68000 microprocessor, the Intel 8088 microprocessor
and later Intel microprocessors.

 We discussed the Xerox Alto computer, which was developed at Xerox
PARC. This computer pioneered several key concepts in personal computing, and it
had a major impact on the design of the Apple Macintosh. It was essentially a small
minicomputer rather than a personal computer.

 We discussed several early home computers such as the Apple I and II comput-
ers, which were developed by Apple; the Commodore PET which was introduced
by Commodore Business Machines; the Atari 400 and 800 computers which were
introduced by Atari; the Commodore 64 computer; the Apple Macintosh computer;
the ZX Spectrum introduced by Sinclair Research; and later Atari and Amiga
computers.

 1. What is the signifi cance of the Xerox Alto in the history of computing?
 2. Discuss the relevance of Atari to game development and the computing

fi eld.
 3. Discuss the accuracy of the message conveyed by Apple in the 1984 Super

Bowl commercial that launched the Apple Macintosh.
 4. Discuss whether Apple should have received all of the credit for its GUI-

based operating system on the Macintosh given the pioneering work done
at Xerox PARC?

 5. Describe the relevance of the Apple I and II computers to the computing
fi eld.

 6. Describe the relevance of the Sinclair Research to the computing fi eld.
 7. Explain the relevance of the MITS Altair 8800 to the computing fi eld.

11.12 Summary

143© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_12

 12 The IBM Personal Computer

 Abstract
 We discuss the introduction of the IBM personal computer, which was a major
milestone in the computing fi eld. The introduction of the IBM personal computer
was a paradigm shift in that it placed computing power in the hands of millions
of people. The previous paradigm was that an individual user had limited control
over a computer, with the system administrators controlling the access privileges
of the individual users. IBM’s goal was to get into the home computer market as
quickly as possible, and this led IBM to build the machine from off-the-shelf
parts from a number of equipment manufacturers. IBM outsourced the develop-
ment of the operating system to a small company called Microsoft, and Intel was
chosen to supply the microprocessor for the IBM PC. Intel and Microsoft later
became technology giants. The open architecture of the IBM PC led to a new
industry of IBM-compatible computers.

 Key Topics
 Intel 8088
 Intel 8086
 PC/DOS
 MS/DOS
 IBM compatible
 CP/M
 Digital Research

144

12.1 Introduction

 The introduction of the IBM personal computer in 1981 was a major milestone in
the computing fi eld. IBM’s traditional approach up to then in product development
was to develop a full proprietary solution. However, due to the aggressive times-
cales associated with the introduction of the IBM PC, it decided instead to out-
source the development of the microprocessor to a small company called Intel and
to outsource the development of the operating system to a small company called
Microsoft. These decisions would later prove costly to IBM, as Microsoft and Intel
later became technology giants.

 The introduction of the IBM personal computer was a paradigm shift in comput-
ing in that it placed computing power in the hands of millions of people. The previ-
ous paradigm was that an individual user had limited control over a computer, with
the system administrators controlling the access privileges of the individual users.

 The awarding of the contract to develop the operating system to Microsoft later
proved controversial. IBM had intended awarding the contract to Digital Research
who had introduced the CP/M operating system for several microprocessors.
However, IBM and Digital Research were unable to agree terms (there may have
been problems with meeting the IBM delivery timescales or royalties demanded),
and IBM instead awarded the contract to Microsoft. Microsoft hired a consultant to
port an existing CP/M operating system to the 8088 microprocessor, and it later
became clear to Digital Research that their software had been used to develop the
operating system for the IBM personal computer.

12.2 The IBM Personal Computer

 IBM introduced the IBM personal computer (PC) in 1981 as a machine to be used
by small businesses and users in the home. The IBM goal at the time was to get
quickly into the home computer market, which was then dominated by Commodore,
Atari and Apple.

 IBM assembled a small team of 12 people led by Don Estridge (Fig. 12.1), and
their objective was to get the personal computer to the market as quickly as possible.
They designed and developed the IBM PC within 1 year, and as time to market was
the key driver, they built the machine with off-the-shelf parts from a number of
equipment manufacturers. The normal IBM approach to the design and develop-
ment of a computer was to develop a full proprietary solution

 The team had intended using the IBM 801 processor, which was developed at the
IBM Research Center in Yorktown Heights. However, they decided instead to use
the Intel 8088 microprocessor, which was inferior to the IBM 801. They chose the
PC/DOS operating system from Microsoft rather than developing their own operat-
ing system.

 The unique IBM elements in the personal computer were limited to the system
unit and keyboard. The team decided on an open architecture so that other manufac-
turers could produce and sell peripheral components and software without

12 The IBM Personal Computer

145

purchasing a licence. They published the IBM PC Technical Reference Manual ,
which included the complete circuit schematics, the IBM ROM BIOS source code
and other engineering and programming information.

 The IBM PC (Fig. 12.2) was the cheapest IBM computer produced up to then,
and it was priced at an affordable $1565. It offered 16 kilobytes of memory (expand-
able to 256 kilobytes), a fl oppy disk, a keyboard and a monitor. The IBM personal
computer became an immediate success, and it became the industry standard.

 Fig. 12.1 Don Estridge
(Courtesy of IBM
Archives)

 Fig. 12.2 IBM personal
computer (Courtesy of
IBM Archives)

12.2 The IBM Personal Computer

146

 The open architecture led to a new industry of IBM-compatible computers, which
had all of the essential features of the IBM PC, except that they were cheaper. The
terms of the licensing of PC/DOS operating system gave Microsoft the rights to the
 MS/DOS operating system on the IBM-compatible computers, and this led inexora-
bly to the rise of the Microsoft Corporation. The IBM Personal Computer XT was
introduced in 1983. This model had more memory, a dual-sided diskette drive and a
high-performance fi xed-disk drive. The Personal Computer/AT was introduced in
1984.

 The development of the IBM PC meant that computers were now affordable to
ordinary users, and this led to a huge consumer market for personal computers and
software. It led to the development of business software such as spreadsheets and
accountancy packages, banking packages, programmer developer tools such as
compilers for various programming languages, specialized editors and computer
games.

 The Apple Macintosh was announced in a famous television commercial aired
during the Super Bowl in 1984. It was quite different from the IBM PC in that it
included a friendly and intuitive graphical user interface, and the machine was much
easier to use than the standard IBM PC. The latter was a command-driven operating
system that required its users to be familiar with the PC/DOS commands. However,
the Apple Macintosh was more expensive than the IBM PC, and cost proved to be a
decisive factor for consumers when purchasing a personal computer. The IBM PC
and the various IBM-compatible computers remained dominant.

 The introduction of the personal computer was a paradigm shift in computing,
and it led to a fundamental change in the way in which people worked. It placed
computing power directly in the hands of millions of people, with individual users
having complete control over the machine. The previous paradigm was that the
system administrators strictly controlled the access privileges of the individual
users, and so individual users had limited control over the computer. The introduc-
tion of the client-server architecture led to the linking of the personal computers
(clients) to larger computers (servers). These servers contained large amounts of
data that could be shared with the individual client computers.

 The IBM strategy in developing the IBM personal computer was deeply fl awed,
and it cost the company dearly. IBM had traditionally produced all of the compo-
nents for its machines, but with its open architecture model, any manufacturer could
now produce an IBM-compatible machine. IBM had outsourced the development of
the microprocessor chip to Intel, and Intel later became the dominant player in the
microprocessor industry.

 The development of the operating system, PC/DOS (PC Disk Operating System)
was outsourced to a small company called Microsoft. 1 This proved to be a major
mistake by IBM, as the terms of the deal with Microsoft were favourable to the

1 Microsoft was founded by Bill Gates and Paul Allen in 1975.

12 The IBM Personal Computer

147

latter, and it allowed Microsoft to sell its own version of the operating system (i.e.
MS/DOS) to other manufacturers as the operating system for the many IBM com-
patibles. Intel and Microsoft would later become technology giants.

12.3 Operating System for IBM PC

 Digital Research lost out on the opportunity of a lifetime to supply the operating for
the IBM personal computer to IBM, and instead it was Microsoft that reaped the
benefi ts. Microsoft would later become a technology giant and a dominant force in
the computer industry.

 Bloomberg Businessweek published an article in 2004 describing the back-
ground to the development of the operating system for the IBM PC and the failed
negotiations between Digital Research and IBM on the licensing of the CP/M oper-
ating system. The article was titled The man who could have been Bill Gates
[Blo:04].

 Don Estridge led the IBM team that was developing the IBM personal computer.
The project was subject to an aggressive delivery schedule, and while traditionally
IBM developed a full proprietary solution, it decided instead to outsource the devel-
opment of the microprocessor and the operating system.

 The IBM team initially asked Bill Gates and Microsoft in Seattle to supply them
with an operating system. Microsoft had already signed a contract with IBM to sup-
ply a BASIC interpreter for the IBM PC, but they lacked the appropriate expertise
in operating system development. Gates referred IBM to Gary Kildall at DRI, and
the IBM team approached Digital Research with a view to licensing its CP/M oper-
ating system.

 Digital Research was working on a new version of CP/M for the 16-bit Intel 8086
microprocessor, which had been introduced in 1978. IBM decided to use the lower-
cost Intel 8088 microprocessor (a slower version of the 8086) for its new personal
computer.

 IBM and Digital Research failed to reach an agreement on the licensing of CP/M
for the IBM PC. The precise reasons for failure are unclear, but some immediate
problems arose with respect to the signing of an IBM non-disclosure agreement
during the visit. It is unclear whether Kildall actually met with IBM and whether
there was an informal handshake agreement between both parties. However, there
was certainly no documented legal agreement between IBM and DRI.

 There may also have been diffi culties in relation to the amount of royalty pay-
ment being demanded by Digital Research, as well as practical diffi culties in achiev-
ing the required IBM delivery schedule (due to Digital Research’s existing
commitments to Intel). Kildall was superb at technical innovation, but he may have
lacked the appropriate business acumen to secure a good deal or he may have over-
sold his hand.

 Gates had signed a Microsoft BASIC licence agreement with IBM, and he now
saw a business opportunity for Microsoft. He offered to provide an operating system

12.3 Operating System for IBM PC

148

(later called PC/DOS) and BASIC to IBM on favourable terms. IBM accepted the
offer, and the contract allowed Microsoft to market and sell its version (MS/DOS)
of the operating systems on IBM compatibles. Microsoft reaped the benefi ts.

 Gates was aware of the work done by Tim Paterson on a simple quick-and-dirty
version of CP/M (called QDOS) for the 8086 microprocessor for Seattle Computer
Products (SCP). Gates licensed QDOS for $50,000, and he hired Paterson to modify
it to run on the IBM PC for the Intel 8088 microprocessor. Gates then licensed the
operating system to IBM for a low per-copy royalty fee.

 IBM called the new operating system PC/DOS, and Microsoft retained the rights
to MS/DOS, which was used on IBM-compatible computers produced by other
hardware manufacturers. In time, MS/DOS would later become the dominant oper-
ating system (eclipsing PC/DOS due to the open architecture of the IBM PC and the
rapid growth of clones) leading to the growth of Microsoft into a major
corporation.

 DRI released CP/M-86 shortly after IBM released PC DOS. Kildall examined
PC/DOS, and it was clear to him that it had been derived from CP/M. He was furi-
ous and met separately with IBM and Microsoft, but nothing was resolved. Digital
Research considered suing Microsoft for copying all of the CP/M system calls in
DOS 1.0, as it was evident to Kildall that Paterson’s QDOS was a copy of CP/M.

 He considered his legal options, but his legal advice suggested that as intellectual
copyright law with regard to software had only been recently introduced in the
United States, it was not clear what constituted infringement of copyright. There
was no guarantee of success in any legal action against IBM, and considerable
expense would be involved. Kildall threatened IBM with legal action, and IBM
agreed to offer both CP/M-86 and PC-DOS. However, as CP/M was priced at $240
and DOS at $60, few personal computer owners were willing to pay the extra cost.
CP/M was to fade into obscurity.

 Perhaps, if Kildall had played his hand differently, he could have been in the
position that Bill Gates is in today, and Digital Research could well have been the
 Microsoft of the PC industry. Kildall’s delay in developing the operating system
gave Paterson the opportunity to create his own version. IBM was under serious
time pressures with the development of the IBM PC, and Kildall may have been
unable to meet the IBM deadline. This may have resulted in IBM dealing with Gates
instead of DRI.

 Further, the size of the royalty fee demanded by Kildall for CP/M was not very
sensible, as the excessive fee resulted in very low sales for the DRI product, whereas
if a more realistic price had been proposed, then DRI may have made some reason-
able revenue. Nevertheless, Kildall could justly feel hard done by, and he may have
viewed Microsoft’s actions as the theft of his intellectual ideas and technical inven-
tions. It shows that technical excellence and innovation are not in itself suffi cient for
business success.

12 The IBM Personal Computer

149

12.4 Review Questions

12.5 Summary

 The introduction of the IBM personal computer in 1981 was a major milestone in
the computing fi eld. IBM’s approach up to then was to develop a full proprietary
solution. However, due to the timescales associated with the development of the
IBM PC, it decided instead to outsource the development of the microprocessor to
a small company called Intel and to outsource the development of the operating
system to a small company called Microsoft.

 Don Estridge led the IBM team responsible for the introduction of the IBM PC,
and their goal was to design and develop the IBM PC within 1 year. They built the
machine with off-the-shelf parts from a number of equipment manufacturers, rather
than the usual IBM approach developing a full proprietary solution.

 The awarding of the contract to develop the operating system to Microsoft later
proved controversial. IBM had intended awarding the contract to Digital Research
who had introduced the CP/M operating system for several microprocessors.

 1. Why did IBM launch the personal computer ?
 2. What mistakes did IBM make with its introduction of the IBM PC?
 3. Why has Gary Kildall been described as “the man who could have been

Bill Gates”?
 4. Describe the controversy over the operating system for the IBM PC.
 5. Describe IBM’s contributions to the computing fi eld.
 6. Describe Intel’s contributions to the computing fi eld.
 7. Describe Microsoft’s contributions to the computing fi eld.

12.5 Summary

151© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_13

 13 A Short History of Telecommunications

 Abstract
 Telecommunications is a branch of technology concerned with the transmission
of information over a distance, where the transmitter sends the information to a
receiver. We present a short history of telecommunications and focus on the
development of mobile phone technology. The development of the AXE system
by Ericsson is discussed, and this was the fi rst fully automated digital switching
system. We discuss the concept of a cellular system, which was introduced by
Bell Labs, as well as the introduction of the fi rst mobile phone, the DynaTAC, by
Motorola. We discuss the Iridium system, which was launched in late 1998 to
provide worldwide wireless coverage to its customers, and the coverage included
the oceans, airways and polar regions. The existing telecom systems had limited
coverage in remote areas, and so the concept of global coverage as provided by
Iridium was potentially very useful. In many ways, Iridium was an engineering
triumph over common sense, and over $5 billion was spent in building an infra-
structure of low Earth orbit (LEO) satellites to provide global coverage.

 Key Topics
 Telegraph
 Telephone
 AMPS
 AXE
 Telephone
 Telegraph
 Mobile phone system
 Iridium

152

13.1 Introduction

 Telecommunications is a branch of technology concerned with the transmission of
information over a distance, where the transmitter sends the information to a
receiver. Early societies used fi re and smoke signals for visual communication, with
drums used for auditory communication. This allowed simple messages (e.g. ‘dan-
ger’) to be communicated to other groups.

 The Persian Empire established an early postal system in the sixth century B.C.,
and other societies such as the Egyptians and Romans later established their own
postal systems. A pigeon messaging system, where the homing characteristics of
pigeons were employed to send messages, was later introduced.

 The Greeks introduced an early semaphore system in the fourth century B.C.,
and this allowed very simple messages to be exchanged between groups on two dif-
ferent hills (similar in a sense to smoke signals). A ship semaphore system was
introduced in the fi fteenth century, which allowed two ships to communicate with
each other. This system used fl ags where the position and motion of a fl ag repre-
sented a letter.

 The Chappe brothers in France introduced an early optical telegraph system in
Europe in the late eighteenth century. It used similar principles as the ship-based
semaphore system, and it allowed messages to be sent from one high tower to
another. It was used by the French military.

 Early electrical telegraph systems were introduced in the early nineteenth cen-
tury, and Samuel Morse devised a system (the Morse code) that allowed letters to be
represented by a series of on-off tones in the late 1830s. This was the foundation for
electrical telegraphs and later telephone systems. The fi rst Atlantic telegraph cable
was laid between Britain and America in 1858.

 The telephone was invented by Alexander Graham Bell in 1876, 1 and early tele-
phones were hardwired to and communicated with a single other telephone (e.g.
from a person’s business to his home), as initially there were no telephone exchanges.
A telephone exchange provides switching or interconnection between two sub-
scriber lines, and the earliest manual commercial telephone exchanges were intro-
duced in the late 1870s. The fi rst mechanical automated exchanges were introduced
in the early 1890s. The fi rst North American transcontinental phone call from the
east coast to the west coast was made by Bell in 1915, and it made long-distance
communication a reality.

 The invention of the telephone was a paradigm shift from face-to-face communi-
cation, where people met to exchange ideas and share information or where indi-
viduals wrote letters to each other to exchange information. The telephone was a
new medium that provided direct and instantaneous communication between two
people. It allowed two individuals to establish and maintain two-way communica-
tion irrespective of being at two different physical locations. Initially the business

1 He was the fi rst person to patent the telephone as an ‘apparatus for transmitting vocal or other
sounds telegraphically’. There are several other claimants for inventing the telephone.

13 A Short History of Telecommunications

153

community and the affl uent members of society used the telephone, but this changed
rapidly in the years that followed.

 Marconi, an Italian engineer, introduced a system for the wireless transmission
of sounds in 1896, and the British Marconi Company was established in 1897. It
began communication between ships at sea and coastal radio stations. Marconi
established an early radio factory in England in 1912.

 The fi rst prototype electronic television was developed and demonstrated by
Philip Farnsworth in the late 1920s. It was the result of research on ways to transmit
images, and it had been determined that radio waves could be encoded with an
image and then transmitted back to the screen. Farnsworth’s prototype is considered
the fi rst electronic television.

 The foundations of the mobile cellular industry go back to the introduction of a
limited-capacity mobile phone system that was introduced for automobiles in 1946.
Martin Cooper of Motorola made the fi rst mobile phone call to Joe Engels at Bell
Labs in 1973, and a prototype mobile phone network was operational in the late
1970s with commercial mobile phone networks introduced in the early 1980s. The
fi rst global mobile phone system (Iridium) was operational in 1998, and the Iridium
system consisted of 66 satellites, with the customers using hand-held satellite
phones.

 The ARPANET packet switching network was introduced in the late 1960s, and
it remained operational until 1990, when the Internet became operational. The
Internet has led to almost instantaneous communication, and it has led to electronic
mail; the World Wide Web, which was developed by Tim Berners-Lee at CERN;
social networking; electronic commerce; and telephone calls over the Internet with
the VoIP protocol.

 This chapter considers a small number of events in the history of telecommuni-
cations including the development of the AXE system, which was the fi rst fully
automated digital switching system, the development of mobile phone technology
and the development of the Iridium satellite mobile phone system.

13.2 AXE System

 Ericsson introduced the AXE (Automatic Exchange Electric) switching system in
1977 (Fig. 13.1). This was the fi rst fully automated digital switching system, and it
converted speech into digital (i.e., the binary language used by computers).
Ericsson’s competitors were still using the slower and less reliable analog systems.

 The analog system uses an electric current to convey the vibrations of the human
voice, whereas a digital system uses a stream of binary digits to represent sound.
The AXE system was an immediate success with telecom companies, and it has
been sold in many countries around the world. AXE was originally a digital
exchange for landline telephony, but it has been extended for use with mobile tele-
phony systems.

 Ellemtel was established in 1970 as a pure research and development company
and was a joint venture between Televerket (Sweden’s state-owned PTT) and

13.2 AXE System

154

Ericsson. Its primary task was to develop an electronic and automated switching
system for telephone stations that would become the AXE system.

 Ericsson had been working to develop a commercial electronic switching system
called AKE, while Televerket was working on its own electronic switch. Ericsson
realized that its AKE system was not suitable for large switching stations and that it
needed to develop a new generation of switching systems. It decided to combine its
resources with Televerket and to jointly develop an electronic telephone switching
system.

 Bengt-Gunnar Magnusson was the project manager for the AXE project, and
AXE had a modular system design which made the system fl exible. New functional-
ity could be added and existing modules updated or replaced. The modular design
enabled the system to be easily adapted to different markets.

 The development of AXE also involved the development of hardware and soft-
ware such as programs and processors to control the AXE stations. The fi rst proto-
type AXE system was installed at a Televerket station in 1976, and Ellemtel’s work
in developing the AXE system was complete in 1978.

 The AXE system was then commercialized and many of Ellemtel’s employees
moved to Ericsson. AXE was an immediate success and Ericsson soon had

 Fig. 13.1 AXE system
(Courtesy of Ericsson)

13 A Short History of Telecommunications

155

customers in Sweden, Finland, France, Australia and Saudi Arabia. The Saudi order
was the largest that Ericsson had ever received, and it involved increasing the capac-
ity of the Saudi network by 200 % and installing the AXE system.

 The introduction of AXE meant that by the early 1980s, Ericsson had the mar-
ket’s most advanced and fl exible switching system, and this made it ideally placed
for the transition to mobile telephony. It meant that Ericsson had moved from being
a minor player in the telecoms business to a major league player. It was now the
leader in fi xed-line phone technology, and it laid the foundation for Ericsson’s
future success in mobile telephony, where it became the leader in mobile technol-
ogy from the late 1980s. Today, AXE has been installed in over 130 countries.

13.3 Development of Mobile Phone Standards

 Bell Labs played an important role (with Motorola) in the development of the ana-
log mobile phone system in the United States. It developed a system in the mid-
1940s that allowed mobile users to place and receive calls from automobiles, and
Motorola developed mobile phones for automobiles. However, these phones were
large and bulky and they consumed a lot of power. A user needed to keep the auto-
mobile’s engine running in order to make or receive a call.

 Bell Labs fi rst proposed the idea of a cellular system back in the late 1940s, when
they proposed hexagonal rings for mobile communication. Large geographical
areas were divided into cells, where each cell had its own base station and channels.
The available frequencies could be used in parallel in different cells without disturb-
ing each other (Fig. 13.2). Mobile telephone could now, in theory, handle a large
number of subscribers. However, it was not until the late 1960s that Bell Labs pre-
pared a detailed plan for implementing the cellular system.

F2F1 F1

F4F3 F3

F1 F2

 Fig. 13.2 Frequency reuse in cellular networks

13.3 Development of Mobile Phone Standards

156

 Bell Labs developed the Advanced Mobile Phone System (AMPS) standard from
1968 to 1983. Motorola and other telecommunication companies designed and built
phones for this cellular system. AMPS uses separate frequencies (or channels) for
each conversation and requires considerable bandwidth for a large number of users.

 The signals from a transmitter cover an area called a cell. As a user moves from
one cell into a new cell, a handover to the new cell takes place without any notice-
able difference to the user. The signals in the adjacent cell are sent and received on
different channels to the existing cell’s signals, and so there is no interference.

 The Total Access Communication System (TACS) and Extended TACS (ETACS)
were variants of AMPS that were employed in the United Kingdom and Europe.
These analog standards employed separate frequencies (or channels) for each con-
versation using frequency division multiple access (FDMA). However, the analog
system suffered from static and noise, and there was no protection from eavesdrop-
ping using a scanner.

 Ericsson became the leader in the fi rst generation of mobile with Motorola, and
the extent of its leadership was clear when its proposed design for digital mobile
radio transmission was selected as the US standard for cellular communications
over entries from Motorola and AT&T in 1989.

 AMPS is the fi rst generation of cellular technology, and it has several weak-
nesses when compared to today’s cellular systems. Mobile technology has evolved
from the AMPS analog standard to the digital Global System for Mobile communi-
cation (GSM) and code division multiple access (CDMA) technologies; to General
Packet Radio Service (GPRS); to third-generation mobile, including 3G and
WCDMA; and to fourth-generation (4G) mobile.

13.4 Development of Mobile Phone Technology

 The invention of the telephone by Graham Bell in the late nineteenth century was a
revolution in human communication, as it allowed people in different geographic
locations to communicate instantaneously rather than meeting face to face. However,
the key restriction of the telephone was that the actual physical location of the per-
son to be contacted was required prior to communication, as otherwise communica-
tion could not take place: i.e . communication was between places rather than
people .

 The origins of the mobile phone revolution dates back to work done on radio
technology from the 1940s. Bell Labs had proposed the idea of a cellular communi-
cation system back in 1947, and it was eventually brought to fruition by researchers
at Bell Labs and Motorola . Bell Labs constructed and operated a prototype cellular
system in Chicago in the late 1970s and performed public trials in 1979. Motorola
commenced a second US cellular system test in the Washington/Baltimore area. The
fi rst commercial systems commenced operation in the United States in 1983.

 The DynaTAC (Dynamic Adaptive Total Area Coverage) used cellular radio
technology to link people and not places. Motorola was the fi rst company to incor-
porate the technology into a portable device designed for use outside of an automo-
bile, and it spent $100 million on the development of cellular technology. Martin

13 A Short History of Telecommunications

157

Cooper (Fig. 13.3) led the team at Motorola that developed the DynaTAC 8000X ,
and he made the fi rst mobile phone call on a prototype DynaTAC phone to Joel
Engels, the head of research at Bell Labs, in April 1973.

 Commercial cellular services commenced in North America in 1983, and the
world’s fi rst commercial mobile phone went on sale the same year. This was the
Motorola DynaTAC 8000X, and it was popularly known as the brick due to its size
and shape. It weighed 28 ounces (almost 2 lbs); it was 13.5 ” (over a foot) in length
and 3.5 ” in width. It had a LED display and could store 30 numbers. It had a talk
time of 30 min and 8 h of standby, and it took over 10 h to recharge.

 The cost of the Motorola DynaTAC 8000X was $3995, and it was too expensive
for most people apart from wealthy consumers. Today, mobile phones are ubiqui-
tous, and there are more mobile phone users than fi xed-line users. The cost of a
mobile phone today is typically less than $100, and a mobile phone typically weighs
as little as 3 ounces.

 The fi rst-generation mobile phone system introduced into North America in the
early 1980s used the 800 MHz cellular band. It had a frequency range between 800
and 900 MHz. Each service provider could use half of the 824–849 MHz range for
receiving signals from cellular phones and half the 869–894 MHz range for trans-
mitting to cellular phones. The bands were divided into 30 kHz sub-bands called
channels, and a separate frequency (or channel) was used for each conversation. The

 Fig. 13.3 Martin Cooper
re-enacts DynaTAC call

13.4 Development of Mobile Phone Technology

158

division of the spectrum into sub-band channels is achieved by using frequency
division multiple access (FDMA).

 This fi rst-generation system allowed voice communication only, and it was sus-
ceptible to static and noise. Further, it had no protection from eavesdropping using
a scanner.

 The AXE system (discussed earlier) provided the foundation for Ericsson’s
growth in mobile telephony. The fl exible modular design of AXE allowed new func-
tionality to be added, and by changing a module, AXE could be reconfi gured to
handle mobile telephone calls. This allowed Ericsson to design the fi rst mobile tele-
phone exchange (MTX) by replacing the subsystem for fi xed subscribers with a new
subsystem for mobile subscribers. The MTX switch was developed in the late
1970s/early 1980s and was a key part of the Nordic Mobile Telephone (NMT) sys-
tem which would be used in all Nordic countries.

 Ericsson was awarded a large Saudi Arabian contract to deliver a fi xed-line and
mobile system, and it was agreed that the NMT standard would be used and that
Ericsson would supply the entire system. The Saudi mobile phone network became
operational from 1981, and Ericsson provided base stations, radio towers and
switches. Ericsson had now acquired cell-planning experience, and it was awarded
the contract to develop the entire mobile telephone network in the Netherlands.
Ericsson was now a total systems supplier in mobile telephony, and it provided the
entire infrastructure such as switches and base stations. Today, its base stations
range from small picocells to large macrocells.

 The second generation (2G) of mobile technology was a signifi cant improvement
on the existing analog technology. This digital, cellular technology encrypted tele-
phone conversations and provided data services such as text and picture messages.
The two main second-generation technologies were the GSM standard developed
by the European Telecommunications Standards Institute (ETSI) and CDMA devel-
oped in the United States. The fi rst GSM call was made by the Finnish prime min-
ister in Finland in 1991, and the fi rst short message service (SMS) or text message
was sent in 1992.

 The subscriber identity module (SIM) card was a new feature in GSM, and a SIM
card is a detachable smart card that contains the user’s subscription information and
phone book. The SIM card may be used in other GSM phones, and this is useful
when the user purchases a replacement phone. GSM provides an increased level of
security, with communication between the subscriber and base station encrypted.

 GSM networks evolved into GPRS (2.5 G), which became available in 2000.
Third- and fourth-generation (3G and 4G) mobiles provide mobile broadband mul-
timedia communication. Mobile phone technology has transformed the earlier para-
digm of communication between places to that of communication between people .

 Motorola dominated the analog mobile phone market. However, it was slow to
adapt to the GSM standard, and it paid a heavy price with a loss of market share to

13 A Short History of Telecommunications

159

Nokia and Ericsson. The company was very slow to see the potential of a mobile
phone as a fashion device, 2 and it was too slow in adapting to smartphones.

13.5 The Iridium Satellite System

 Iridium was a global satellite phone company that was backed by Motorola. In
many ways it was an engineering triumph over common sense, and over $5 billion
was spent in building an infrastructure of low Earth orbit (LEO) satellites to provide
global coverage. It was launched in the late 1998 to provide worldwide wireless
coverage to its customers, and the coverage included the oceans, airways and polar
regions. The existing telecom systems had limited coverage in remote areas, and so
the concept of global coverage as provided by Iridium was potentially very useful.

 Iridium was implemented by a constellation of 66 satellites (Fig. 13.4). The orig-
inal design required 77 satellites, and so the name Iridium was chosen since its
atomic number in the periodic table is 77. However, the later design required just 66
satellites, and so Dysprosium may have been a more appropriate name. The satel-
lites are in low Earth orbit at a height of approximately 485 miles, and communica-
tion between the satellites is via inter-satellite links. Each satellite contains seven
Motorola Power PC 603E processors running at 200 MHz. These machines are used
for satellite communication and control.

 Iridium routes phone calls through space and there are several Earth stations. As
satellites leave the area of an Earth base station, the routing tables change, and

2 The attitude of Motorola at the time seemed to be similar to that of Henry Ford: i.e. they can have
whatever colour they like as long as it is black.

 Fig. 13.4 Iridium system (Courtesy of Iridium)

13.5 The Iridium Satellite System

160

frames are forwarded to the next satellite just coming into view of the Earth base
station.

 The Iridium constellation is the largest commercial satellite constellation in the
world, and it is especially suited for industries such as maritime, aviation, govern-
ment and the military. Motorola was the prime contractor for Iridium, and it played
a key role in its design and development. The satellites were produced at a cost of
$5 million each ($40 million each including launch costs), and Motorola engineers
were able to make a satellite in a phenomenal time of 2–3 weeks.

 The fi rst Iridium call was made by Al Gore in late 1998. However, despite being
an engineering triumph, Iridium was a commercial failure, and it went bankrupt in
late 1999 due to insuffi cient demand for its services. It had needed a million sub-
scribers to break even, and as the cost of an Iridium call was very expensive com-
pared to the existing cellular providers, and as the cost of its handsets were much
higher and more cumbersome to use than existing mobile phones, there was very
little demand for its services.

 Specifi cally, the reasons for failure included:

 – Insuffi cient demand for its services (10,000 subscribers)
 – High cost of its service ($5 per minute for a call)
 – Cost of its mobile handsets ($3000 per handset)
 – Bulky mobile handsets
 – Competition from existing mobile phone networks
 – Management failures

 However, the Iridium satellites remained in orbit, and the service was re-
established in 2001 by the newly founded Iridium Satellite LLC. The new business
model required just 60,000 subscribers to break even. Today, it has over half a mil-
lion customers, and it is used extensively by the US Department of Defense.

 Iridium was designed in the late 1980s, and so it is designed primarily for voice
rather than data. This means that it lacks the sophistication of modern mobile phone
networks, and it is not as attractive to users. However, it provides service in remote
parts of the world, which is very useful.

13.6 Review Questions

 1. Describe the contributions of Bell Labs to mobile technology.
 2. What are the advantages of mobile technology over fi xed-line

technology?
 3. Describe the various generations of mobile technology.
 4. Describe Motorola’s contributions to mobile technology.
 5. What factors led to Ericsson’s success and leadership in mobile

technology?
 6. What factors led to the (initial) commercial failure of the Iridium system?

13 A Short History of Telecommunications

161

13.7 Summary

 The invention of the telephone by Graham Bell in the late nineteenth century was a
revolution in human communication, as it allowed people in different geographic
locations to communicate instantaneously rather than meeting face to face. The
early phones had major limitations, but the development of automated telephone
exchanges helped to deal with many of these.

 However, the key restriction of the telephone was that the actual physical loca-
tion of the person to be contacted was needed prior to communication: i.e . commu-
nication was between places rather than people.

 This led to research by Bell Labs and others into ways in which communication
could take place between people (and not places). Bell Labs developed a system in
the mid-1940s that allowed mobile users to place and receive calls from automo-
biles, with Motorola developing the phones for automobiles. However, these phones
were large and bulky, and the automobile’s engine needed to be running in order to
make or receive a call.

 Bell Labs proposed the idea of a cellular system back in the late 1940s, and it
prepared a detailed plan for the cellular system in the late 1960s. A cellular system
is divided into cells, where each cell has its own base station and channels. The
available frequencies may be used in parallel in different cells without interference
with each other.

 Motorola developed the fi rst mobile phone, the DynaTAC, and it made the fi rst
mobile phone call in 1973. The fi rst mobile phone systems were analog and based
on the AMPS standard. The later generations of mobile technology are digital and
are a signifi cant advance on the older cellular technology.

 Iridium provides global wireless coverage to its customers including coverage in
the oceans, airways and polar regions. It was implemented by a constellation of 66
satellites. For a more detailed account of the contributions of Bell Labs, Ericsson
and Motorola, see [Ger:13, MeJ:01, Mot:99, ORe:15].

13.7 Summary

163© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_14

 14 The Internet Revolution

 Abstract
 This chapter describes the Internet revolution starting from ARPANET, which
was a packet-switched network, to TCP/IP, which is a set of network standards
for interconnecting networks and computers. These developments led to the birth
of the Internet, and Tim Berners-Lee’s work at CERN led to the birth of the
World Wide Web. Berners-Lee built on several existing inventions such as the
Internet, hypertext and the mouse to form the World Wide Web. Applications of
the World Wide Web are discussed, as well as successful and unsuccessful new
economy companies. The dot-com bubble and subsequent burst of the late 1990s/
early 2000 are discussed.

14.1 Introduction

 The vision of the Internet and World Wide Web goes back to an article by Vannevar
Bush in the 1940s . Bush was an American scientist who had done work on subma-
rine detection for the US Navy. He designed and developed the differential analyser

 Key Topics
 ARPANET
 TCP/IP
 The Internet
 The World Wide Web
 Dot-com bubble
 E-software development
 Facebook
 The Twitter Revolution

164

(Fig. 1.1), which was a mechanical computer whose function was to evaluate and
solve fi rst-order differential equations. It was funded by the Rockefeller Foundation
and developed by Bush and others at MIT in the early 1930s. Bush supervised
Claude Shannon at MIT, and Shannon’s initial work was to improve the differential
analyser.

 Bush (Fig. 14.1) became the director of the offi ce of Scientifi c Research and
Development, and he developed a win-win relationship between the US military
and universities. He arranged large research funding for the universities to carry out
applied research to assist the US military. This allowed the military to benefi t from
the early exploitation of research results, and it also led to better facilities and labo-
ratories at the universities. It led to close links and cooperation between universities
such as Harvard and Berkeley, and this would eventually lead to the development of
 ARPANET by DARPA .

 Bush outlined his vision of an information management system called the memex
(memory extender) in a famous essay As We May Think [Bus:45]. He envisaged the
memex as a device electronically linked to a library that would be able to display
books and fi lms. It describes a proto-hypertext computer system and infl uenced the
later development of hypertext systems.

 A memex is a device in which an individual stores all his books, records, and communica-
tions, and which is mechanized so that it may be consulted with exceeding speed and fl ex-
ibility. It is an enlarged intimate supplement to his memory.

 Fig. 14.1 Vannevar Bush

14 The Internet Revolution

http://dx.doi.org/10.1007/978-3-319-33138-6_1

165

 It consists of a desk, and while it can presumably be operated from a distance, it is pri-
marily the piece of furniture at which he works. On the top are slanting translucent screens,
on which material can be projected for convenient reading. There is a keyboard, and sets of
buttons and levers. Otherwise it looks like an ordinary desk.

 Bush predicted that:

 Wholly new forms of encylopedias will appear, ready made with a mesh of associative trails
running through them, ready to be dropped into the memex and there amplifi ed.

 This description motivated Ted Nelson and Douglas Engelbart to independently
formulate ideas that would become hypertext. Tim Berners-Lee would later use
hypertext as part of the development of the World Wide Web.

14.2 The ARPANET

 There were approximately 10,000 computers in the world in the 1960s. These were
expensive machines (over $100 K) with limited processing power. They contained
only a few thousand words of magnetic memory, and programming and debugging
was diffi cult. Further, communication between computers was virtually
non-existent.

 However, several computer scientists had dreams of worldwide networks of
computers, where every computer around the globe is interconnected to all of the
other computers in the world. Licklider 1 wrote memos in the early 1960s on his
concept of an intergalactic network. This concept envisaged that everyone around
the globe would be interconnected and able to access programs and data at any site
from anywhere.

 The US Department of Defense founded the Advanced Research Projects Agency
(ARPA) in the late 1950s. ARPA embraced high-risk, high-return research, and
Licklider became the head of its computer research program. He developed close
links with MIT, UCLA and BBN Technologies. 2 The concept of packet switching 3
was invented in the 1960s, and several organizations including the National Physical
Laboratory (NPL), RAND Corporation and MIT commenced work on its
implementation.

 The early computers had different standards for data representation, and so it was
essential to know the standard employed by each computer prior to communication.

1 Licklider was an early pioneer of AI and wrote an infl uential paper ‘Man-Computer Symbiosis’
in 1960, which outlined the need for simple interaction between users and computers.
2 BBN Technologies (originally Bolt Beranek and Newman) is a research and development tech-
nology company. It played an important role in the development of packet switching and in the
implementation and operation of ARPANET. The ‘@’ sign used in an email address was a BBN
innovation.
3 Packet switching is a message communication system between computers. Long messages are
split into packets, which are then sent separately so as to minimize the risk of congestion.

14.2 The ARPANET

166

This led to recognition of the need for common standards in data representation, and
a US government committee developed the American Standard Code for Information
Interchange (ASCII) in 1963. This was the fi rst universal standard for data, and it
allowed machines from different manufacturers to exchange data. The standard
allowed a 7-bit binary number to stand for a letter in the English alphabet, an Arabic
numeral or a punctuation symbol. The use of 7 bits allowed 128 distinct characters
to be represented. The development of the IBM System/360 mainframe (discussed
in Chap. 8) standardized the use of 8 bits for a word, and 12-bit or 36-bit words
became obsolete.

 The fi rst wide-area network connection was created in 1965, 4 and it involved the
connection of a computer at MIT to a computer in Santa Monica. This was done via
a dedicated telephone line, and it showed that a telephone line could be used for data
transfer. ARPA recognized the need to build a network of computers in the mid-
1960s, and this led to the ARPANET project in 1966 which aimed to implement a
packet-switched network with a network speed of 56 Kbps. ARPANET was to
become the world’s fi rst packet-switched network.

 BBN Technologies was awarded the contract to implement the network, with
plans for a total of 19 nodes. The fi rst two nodes were based at UCLA and the
Stanford Research Institute (SRI). The network management was performed by
interconnected Interface Message Processors (IMPs), which were in front of the
main computers. The IMPs eventually evolved to become the network routers that
are used today

 The team at UCLA called itself the Network Working Group , and it saw its role
as developing a set of rules that specifi ed how the computers on the network should
communicate. These rules were called the Network Control Protocol (NCP). The
fi rst host-to-host connection was made between a computer in UCLA and a com-
puter at SRI in late 1969. Several other nodes were added to the network until it
reached its target of 19 nodes in 1971.

 The Network Working Group developed the telnet protocol and the File Transfer
Protocol (FTP) in 1971. The telnet program allowed the user of one computer to
remotely log in to the computer of another computer. The File Transfer Protocol
allows the user of one computer to send (or receive) fi les to (or from) another com-
puter. A public demonstration of ARPANET was made in 1972 and it was a huge
success. One of the earliest demos was that of Weizenbaum’s ELIZA program (dis-
cussed in Chap. 19). This famous AI program allowed a user to conduct a typed
conversation with an artifi cially intelligent machine (psychiatrist) at MIT.

 The viability of packet switching as a standard for network communication had
been clearly demonstrated. Ray Tomlinson of BBN Technologies developed a pro-
gram that allowed electronic mail to be sent over the ARPANET. Over 30 institu-
tions were connected to the ARPANET by the early 1970s.

4 We will not consider the early work done by SAGE in the late 1950s.

14 The Internet Revolution

http://dx.doi.org/10.1007/978-3-319-33138-6_8
http://dx.doi.org/10.1007/978-3-319-33138-6_19

167

14.3 TCP/IP

 ARPA was renamed to the Defense Advanced Research Projects Agency (DARPA)
in 1973. It commenced a project to connect seven computers on four islands using
a radio-based network and a project to establish a satellite connection between a site
in Norway and in the United Kingdom. This led to a need for the interconnection of
the ARPANET with other networks. The key problems were to investigate ways of
achieving convergence between ARPANET, radio-based networks and the satellite
networks, as these all had different interfaces, packet sizes and transmission rates.
Therefore, there was a need for a network-to-network connection protocol .

 An international network-working group (INWG) was formed in 1973. The con-
cept of the transmission control protocol (TCP) was developed at DARPA by Bob
Kahn and Vint Cerf, and they presented their ideas at an INWG meeting at the
University of Sussex in England in 1974 [KaC:74]. TCP allowed cross network con-
nections, and it began to replace the original NCP protocol that was used in ARPANET.

 TCP is a set of network standards that specify the details of how computers com-
municate, as well as the standards for interconnecting networks and computers. It
was designed to be fl exible and provides a transmission standard that deals with
physical differences in host computers, routers and networks. It is designed to trans-
fer data over networks which support different packet sizes and which may some-
times lose packets. It allows the internetworking of very different networks, which
then act as one network.

 The new protocol standards were known as the Transport Control Protocol
(TCP) and the Internet Protocol (IP). TCP details how information is broken into
packets and reassembled on delivery, whereas IP is focused on sending the packet
across the network. These standards allow users to send electronic mail or to trans-
fer fi les electronically, without needing to concern themselves with the physical
differences in the networks. TCP/IP consists of four layers (Table 14.1).

 The Internet Protocol (IP) is a connectionless protocol that is responsible for
addressing and routing packets. It breaks large packets down into smaller packets
when they are travelling through a network that supports smaller packets. A connec-
tionless protocol means that a session is not established before data is exchanged , and

 Table 14.1 TCP layers

 Layer Description

 Network interface
layer

 This layer is responsible for formatting packets and placing them on to
the underlying network

 Internet layer This layer is responsible for network addressing. It includes the Internet
protocol and the address resolution protocol

 Transport layer This layer is concerned with data transport and is implemented by TCP
and the User Datagram Protocol (UDP)

 Application layer This layer is responsible for liaising between user applications and the
transport layer

 It includes the File Transfer Protocol (FTP), telnet, Domain Name
System (DNS) and Simple Mail Transfer Program (SMTP)

14.3 TCP/IP

168

packet delivery with IP is not guaranteed as packets may be lost or delivered out of
sequence. An acknowledgement is not sent when data is received, and the sender or
receiver is not informed when a packet is lost or delivered out of sequence. The router
forwards a packet only if it knows a route to the destination; otherwise the packet is
dropped. Packets are dropped if their checksum is invalid or if their time to live is zero.
The acknowledgement of packets is the responsibility of the TCP protocol. The
ARPANET employed the TCP/IP protocols as a standard from 1983.

14.4 Birth of the Internet

 The use of ARPANET was initially limited to academia and to the US military, and
in the early years, there was little interest from industrial companies. It allowed
messages to be sent between the universities that were part of ARPANET. There
were over 2000 hosts on the TCP/IP enabled network by the mid-1980s.

 It was decided to shut down the network by the late 1980s, and the National
Science Foundation (NSF) commenced work on its successor, the NSFNET, in the
mid-1980s. This network consisted of multiple regional networks connected to a
major backbone. The original links in NSFNET were 56 Kbps, but these were
updated to 1.544 Mbps T1 links in 1988. The NSFNET T1 backbone initially con-
nected 13 sites, but this increased, as there was growing academic and industrial
interest from around the world. The NSF quickly realized that the Internet had sig-
nifi cant commercial potential.

 The Internet began to become more international with nodes in Canada and sev-
eral European countries. DARPA formed the Computer Emergency Response Team
(CERT) to deal with any emergency incidents arising from the operation of the
network.

 The independent not-for-profi t company, Advanced Network Services (ANS),
was founded in 1991. It installed a new network (ANSNET) that replaced the
NSFNET T1 network, and it operated over T3 (45Mbps) links. It was owned and
operated by a private company rather than the US government, with the NSF focus-
ing on the research aspects of networks rather than on the operational side.

 The ANSNET network was a distributive network architecture operated by com-
mercial providers such as Sprint, MCI and BBN. The various parts of the network
were connected together by major network exchange points. These were termed
Network Access Points (NAPs). There were over 160,000 hosts connected to the
Internet by the late 1980s.

14.5 Birth of the World Wide Web

 Tim Berners-Lee invented the World Wide Web, while working at CERN in 1990
[BL:00]. CERN is an important European centre for research in the nuclear fi eld,
and it is based in Switzerland. It employs several thousand physicists and scientists
from around the world, and many visiting scientists spend a period of time there.

14 The Internet Revolution

169

 One of the problems that scientists at CERN faced in the late 1980s was keeping
track of people, computers, documents and databases. The centre had many visiting
scientists who spent several months there, as well as a large pool of permanent staff.
There was no effi cient and effective way in CERN at that time to share information
among scientists.

 A visiting scientist might need to obtain information or data from a CERN
computer or to make the results of their research available to CERN. Berners-Lee
came to CERN in the early 1980s, and he developed a program called ‘Enquire’ to
assist with information sharing and in keeping track of the work of visiting scien-
tists. He returned to CERN in the mid-1980s to work on other projects, and he
devoted part of his free time to consider solutions to the information-sharing
problem.

 He built on several existing inventions such as the Internet; hypertext and the
mouse. Ted Nelson invented hypertext in the 1960s, and it allowed links to be pres-
ent in text. For example, a document such as a book contains a table of contents, an
index and a bibliography. These are all links to material that is either within the
book itself or external to the book. The reader of a book is able to follow the link to
obtain the internal or external information. Doug Engelbart invented the mouse in
the 1960s, and it allowed the cursor to be steered around the screen.

 The major leap that Berners-Lee made was essentially a marriage of the Internet,
hypertext and the mouse into what has become the World Wide Web. His vision and
its subsequent realization benefi ted CERN and the wider world.

 He created a system that gives every web page a standard address called the
Universal Resource Locator (URL). Each page is accessible via the Hypertext
Transfer Protocol (HTTP), and the page is formatted with the hypertext markup
language (HTML). Each page is visible using a web browser. The key features of
Berners-Lee invention are listed in Table 14.2 .

 Berners-Lee invented the well-known terms such as URL, HTML and World
Wide Web, and he wrote the fi rst browser program that allowed users to access web
pages throughout the world. Browsers are used to connect to remote computers over
the Internet and to request, retrieve and display the web pages on the local machine.

 The early browsers included Gopher developed at the University of Minnesota
and Mosaic developed at the University of Illinois. These were replaced in later

 Table 14.2 Features of World Wide Web

 Feature Description

 URL Universal Resource Identifi er (later renamed to Universal Resource Locator
(URL)) provides a unique address code for each web page

 HTML Hypertext markup language (HTML) is used for designing the layout of web pages

 HTTP The Hypertext Transport Protocol (HTTP) allows a new web page to be accessed
from the current page

 Browser A browser is a client program that allows a user to interact with the pages and
information on the World Wide Web

14.5 Birth of the World Wide Web

170

years by Netscape, which dominated the browser market until Microsoft developed
Internet Explorer. The development of the graphical browsers led to the commer-
cialization of the World Wide Web.

 The World Wide Web creates a space in which users can access information eas-
ily from any part of the world. This is done using only a web browser and simple
web addresses. The user can then click on hyperlinks on web pages to access further
relevant information that may be on an entirely different continent. Berners-Lee is
now the director of the World Wide Web Consortium, and this MIT-based organiza-
tion sets the software standards for the Web.

 The invention of the World Wide Web was a revolutionary milestone in the his-
tory of computing. It transformed the use of the Internet from mainly academic use
to where it is now an integral part of peoples’ lives. Users may now surf the Web,
i.e. hyperlink among the millions of computers in the world, and obtain information
easily. It is revolutionary in that:

• No single organization is controlling the Web.
• No single computer is controlling the Web.
• Millions of computers are interconnected.
• It is an enormous marketplace of billions of users.
• The Web is not located in one physical location.
• The Web is a space and not a physical thing.

14.6 Applications of the World Wide Web

 Berners-Lee realized that the World Wide Web offered the potential to conduct busi-
ness in cyberspace, rather than the traditional way where buyers and sellers come
together to do business in the marketplace.

 Anyone can trade with anyone else except that they do not have to go to the market square
to do so

 The growth of the World Wide Web has been phenomenal, and exponential growth
rate curves became a feature of newly formed Internet companies and their business
plans. The World Wide Web has been applied to many areas including:

• Travel industry (booking fl ights, train tickets, and hotels)
• E-marketing
• On-line shopping (e.g. www.amazon.com)
• Portal sites (such as Yahoo)
• Recruitment services
• Internet banking
• On-line casinos (for gambling)

14 The Internet Revolution

http://www.amazon.com/

171

• On-line auction sites (e.g. eBay)
• Newspapers and news channels
• Social media (Facebook and Twitter)

 The prediction in the early days was that the new web-based economy would
replace traditional bricks and mortar companies. It was expected that most business
would be conducted over the Web, with traditional enterprises losing market share
and going out of business. Exponential growth of e-commerce companies was pre-
dicted, and the size of the new web economy was estimated to be in trillions of US
dollars.

 New companies were formed to exploit the opportunities of the Web, and exist-
ing companies developed e-business and e-commerce strategies to adapt to the
brave new world. Companies providing full e-commerce solutions were concerned
with the selling of products or services over the Web to either businesses or consum-
ers. These business models are referred to as business to business (B2B) or business
to consumer (B2C). E-commerce web sites have the following characteristics
(Table 14.3).

14.7 Dot- Com Companies

 The success of the World Wide Web was phenomenal and it led to a boom in the
formation of new economy businesses. These businesses were conducted over the
Web and included the Internet portal company, Yahoo; the on-line book store,
Amazon; and the on-line auction site, eBay. Yahoo provides news and a range of
services, and most of its revenue comes from advertisements. Amazon initially sold
books, but it now sells a collection of consumer and electronic goods. eBay brings
buyers and sellers together in an on-line auction space.

 Table 14.3 Characteristics of e-commerce

 Feature Description

 Catalogue of products The catalogue of products details the products available for sale
and their prices

 Well designed and easy to
use

 This is essential as otherwise the web site will not be used

 Shopping carts This is analogous to shopping carts in a supermarket

 Security Security of credit card information is a key concern for users of
the Web, as users need to have confi dence that their credit card
details will remain secure

 Payments Once the user has completed the selection of purchases, there is a
checkout facility to arrange for the purchase of the goods

 Order fulfi lment/order
enquiry

 Once payment has been received, the products must be delivered
to the customer

14.7 Dot-Com Companies

172

 Some of these new technology companies were successful and remain in busi-
ness. Others were fi nancial disasters due to poor business models, poor manage-
ment and poor implementation of the new technology. Some of these technology
companies offered an Internet version of a traditional bricks and mortar company,
with others providing a unique business offering. For example, eBay offers an auc-
tioneering Internet site to consumers worldwide which was a totally new service
and quite distinct from traditional auctioneering.

 David Filo and Jerry Yang founded Yahoo , and they used it to keep track of their
personal interests and the corresponding web sites on the Internet. Filo and Yang
were students at Stanford in California, and their list of interests grew over time and
became too long and unwieldy. Therefore, they broke their interests into a set of
categories and then subcategories, and this is the core concept of the web site.

 There was a lot of interest in the site from other students, family and friends and
a growing community of users. The founders realized that the site had commercial
potential, and they incorporated it as a business in 1995. The company launched its
initial public offering (IPO) 1 year later in April 1996, and it was valued at $850 mil-
lion. Yahoo is a portal site and it offers free email accounts to users, a search engine,
news, shopping, entertainment, health and so on. The company earns most of its
revenue from advertisement (including the click through advertisements that appear
on a Yahoo web page).

 Jeff Bezos founded Amazon in 1995 as an on-line bookstore. Its product portfo-
lio has expanded to include the sale of CDs, DVDs, toys, computer software and
video games. Its initial focus was to build up the ‘Amazon’ brand throughout the
world and to become the world’s largest bookstore. It initially sold books at a loss
by giving discounts to buyers in order to build market share. It was very effective in
building its brand through advertisements, marketing and discounts.

 It has become the largest on-line bookstore in the world and has a solid business
model with a very large product catalogue, a well-designed web site with good
searching facilities, good checkout facilities and good order fulfi lment. It also devel-
oped an associate model, which allows its associates to receive a commission for
purchases of Amazon products made through the associate site.

 Pierre Omidyar founded eBay in 1995, and the site brings buyers and sellers
together. Millions of items are listed, bought and sold on eBay every day. The sellers
are individuals or international companies. Any legal product that does not violate
the company’s terms of service may be bought or sold on the site. A buyer makes a
bid for a product or service and competes against several other bidders. The highest
bid is successful, and payment and delivery is then arranged. The revenue earned by
eBay includes fees to list a product and commission fees that are applied whenever
a product is sold.

 Any product listed that violates eBay’s terms of service is removed from the site
as soon as the company is aware of them. The company also has a fraud-prevention
mechanism, which allows buyers and sellers to provide feedback on each other and
to rate each other following the transaction. The feedback may be positive, negative
or neutral, and relevant comments are included. This offers a way to help to reduce

14 The Internet Revolution

173

fraud as unscrupulous sellers or buyers will receive negative ratings and
comments.

14.7.1 Dot-Com Failures

 Several of the companies formed during the dot-com era were successful and remain
in business today. Others had inappropriate business models or poor management
and failed in a spectacular fashion. This section considers some of the dot-com fail-
ures and highlights the reasons for failure.

 Webvan .com was an on-line grocery business based in California. It delivered
products to a customer’s home within a 30 min period of their choosing. The com-
pany expanded to several other cities before it went bankrupt in 2001. Many of its
failings were due to management as the business model was reasonable, and today
there are several successful on-line fresh food delivery businesses. The management
was inexperienced in the supermarket or grocery business, and the company spent
excessively on infrastructure. It had been advised to build up an infrastructure to
deliver groceries as quickly as possible, rather than developing partnerships with
existing supermarkets. It built warehouses and purchased a fl eet of delivery vehicles
and top of the range computer infrastructure before running out of money.

 Ernst Malmsten and others founded Boo.com in 1998, as an on-line fashion
retailer that was based in the United Kingdom. The company spent over $135 mil-
lion of shareholder funds in less than 3 years, and it went bankrupt in 2000. Its web
site was poorly designed for its target audience, and it went against many of the
accepted usability conventions of the time. The web site was designed in the days
before broadband, with 56 K modems used by most customers. However, its design
included the latest Java and Flash technologies, and it took most users several min-
utes to load the fi rst page of the web site. Further, the navigation of the web site was
inconsistent and changed as the user moved around the site.

 Other reasons for failure included poor management and leadership, lack of
direction, lack of communication between departments, spirally costs left unchecked
and crippling pay roll costs. Further, purchasers returned a large number of prod-
ucts, and there was no postage charge applied for this service. The company went
bankrupt in 2000, and an account of its formation and collapse is in the book, Boo
Hoo , [MaP:02]. This book is a software development horror story, and the poor
software development practices employed are evident from the fact that the devel-
opers were working without any source code control mechanism in place. The net
effect was that despite extensive advertising by the company, the users were not
inclined to use the site.

 Pets.com was an on-line pet supply company founded in 1998 by Greg
McLemore. It sold pet accessories and supplies. It had a well-known advertisement
as to why one should shop at an on-line pet store . The answer to this question was
 because pets can’t drive ! Its mascot (the Pets.com sock puppet) was well known. It
launched its IPO in February 2000 just before the dot-com collapse.

14.7 Dot-Com Companies

174

 Pets.com made investments in infrastructure such as warehousing and vehicles.
It needed a critical mass of customers in order to break even and its management
believed that it needed $300 million of revenue to achieve this. They expected that
this would take a minimum of 4–5 years, and therefore there was a need to raise
further capital. However, following the dot-com collapse, there was negative senti-
ment towards technology companies, and it was apparent that it would be unable to
raise further capital. The management tried to sell the company without success,
and it went into liquidation 9 months after its IPO.

 Joseph Park and Yong Kang founded Kozmo.com in New York in 1998. It was
an on-line company that promised free 1 h delivery of small consumer goods. It
provided point-to-point delivery usually on a bicycle and did not charge a delivery
fee. Its business model was deeply fl awed, as it is expensive to offer point-to-point
delivery of small goods within a 1 h period without charging a delivery fee. The
company argued that they could make savings to offset the delivery costs, as they
did not require retail space. It expanded into several cities in the United States and
raised about $280 million from investors. The company ceased trading in 2001.

14.7.2 Business Models

 A business model converts a business or technology idea into a commercial reality,
and it needs to be appropriate for the company and its intended operating market. A
company with an excellent business idea but with a weak business model may fail,
whereas a company with an average business idea but an excellent business model
may be quite successful. Several of the business models in the dot-com era were
deeply fl awed, and the eventual collapse of many of these companies was predict-
able. Chesbrough and Rosenbloom [ChR:02] have identifi ed six key components in
a business model (Table 14.4).

 Table 14.4 Characteristics of business models

 Constituent Description

 Value proposition This describes how the product or service is a solution to a
customer problem

 Market segment This describes the customers that will be targeted (including
market segments)

 Value chain structure This describes where the company fi ts into the value chain
[Por:98]

 Revenue generation and
margins

 This describes how revenue will be generated, including revenue
streams from sales, support, etc.

 Position in value network This involves identifying competitors and other players that can
assist in delivering added value to the customer

 Competitive strategy This describes how it will develop a competitive advantage to be
successful

14 The Internet Revolution

175

14.7.3 Bubble and Burst

 The initial public offering of Netscape in 1995 demonstrated the incredible value of
the new Internet companies. The company had planned to issue the share price at
$14, but it decided at the last minute to issue it at $28. The share price reached $75
later that day. This was followed by what became the dot-com bubble where there
were a large number of public offerings of Internet stock and where the value of
these stocks reached astronomical levels. Reality returned to the stock market when
it crashed in April 2000, and share values returned to more realistic levels.

 The vast majority of these Internet companies were losing substantial sums of
money, and few expected to deliver profi ts in the short term. Financial instruments
such as the balance sheet, profi t and loss account and price to earnings ratio are
normally employed to estimate the value of a company. However, investment bank-
ers argued that there was a new paradigm in stock market valuation for Internet
companies. This paradigm suggested that the potential future earnings of technol-
ogy companies be considered in determining their value, and this was used to justify
the high prices of shares, as frenzied investors rushed to buy these overpriced and
overhyped stocks. Common sense seemed to play no role in decision-making. The
dot-com bubble is characterized by:

• Irrational exuberance on the part of investors.
• Insatiable appetite for Internet stocks.
• Incredible greed from all parties involved.
• Following herd mentality.
• A lack of rationality and common sense by all concerned.
• Traditional method of company valuation not employed.
• Interest in making money rather than in building the business fi rst.
• Questionable decisions by Federal Reserve chairman (Alan Greenspan).
• Questionable analysis by investment fi rms.
• Confl ict of interest investment banks.
• Market had left reality behind.

 There were winners and losers in the boom and collapse. Some investors made a
lot of money from the bubble, with others including pension funds and life assur-
ance funds making signifi cant losses. The investment banks typically earned 5–7 %
commission on each successful IPO, and it was not in their interest to question the
boom too closely. Those who bought and disposed early obtained a good return,
whereas those who kept their shares for too long suffered losses. The full extent of
the boom can be seen in the rise and fall of the value of the Dow Jones and NASDAQ
from 1995 to 2002.

 The extraordinary rise of the Dow Jones (Fig. 14.2) from a level of 3800 in 1995
to 11,900 in 2000 represented a 200 % increase over 5 years or approximately 26 %
annual growth (compound) during this period. The rise of the NASDAQ (Fig. 14.3)
over this period is even more dramatic. It rose from a level of 751 in 1995 to 5000 in
2000, representing a 566 % increase during the period. This is equivalent to a 46 %
compounded annual growth rate of the index.

14.7 Dot-Com Companies

176

 The fall of the indices was equally as dramatic especially in the case of the
NASDAQ. It peaked at 5000 in March 2000, and fell to 1200 (a 76 % drop) by September
2002. It had become clear that Internet companies were rapidly going through the cash
raised at the IPOs, and analysts noted that a signifi cant number would be out of cash by
the end of 2000. Therefore, these companies would either go out of business or would
need to go back to the market for further funding. This led to questioning of the hitherto
relatively unquestioned business models of these Internet fi rms. Funding is easy to
obtain when stock prices are rising at a rapid rate. However, when prices are static or
falling, with negligible or negative business return to the investor, then funding dries up.
The actions of the Federal Reserve in rising interest rates to prevent infl ationary pres-
sures also helped to correct the irrational exuberance of investors.

 Some independent commentators had recognized the bubble, but their comments
and analysis had been largely ignored. These included ‘The Financial Times’ and
‘The Economist’ as well as some commentators in the investment banks. Investors
rarely queried the upbeat analysis coming from Wall Street and seemed to believe
that rising stock prices would be a permanent feature of the US stock markets.
Greenspan had argued that it is diffi cult to predict a bubble until after the event and
that even if the bubble had been identifi ed, it could not have been corrected without
causing a contraction. Instead, the responsibility of the Fed according to Greenspan
was to mitigate the fallout when it occurs.

Do w Jo n e s Tr e n d

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2

Dow Jones Trend

 Fig. 14.2 Dow Jones (1995–2002)

Na s d a q Tre n d

0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2

Na s d a q Tre n d

 Fig. 14.3 NASDAQ (1995–2002)

14 The Internet Revolution

177

 There have, of course, been other stock market bubbles throughout history. For
example, in the 1800s there was a rush on railway stock in England leading to a
bubble and eventual burst of railway stock prices in the 1840s. There was a devastat-
ing property bubble and collapse (2002–2009) in the Republic of Ireland. The fail-
ure of the Irish political class, the Irish Central bank and fi nancial regulators, the
Irish Banking sector in their irresponsible lending policies and failures of the media
in questioning the bubble are deeply disturbing. Its legacy remains, and while the
country has made a remarkable recovery, the failures of so many at senior level in
the state remain deeply disturbing.

14.8 E-Commerce Security

 The World Wide Web consists of unknown users and suppliers with unpredictable
behaviour operating in unknown countries around the world. These users and web
sites may be friendly or hostile and the issue of trust arises:

• Is the other person whom they claim to be?
• Can the other person be relied upon to deliver the goods on payment?
• Can the other person be trusted not to infl ict malicious damage?
• Is fi nancial information kept confi dential on the server?

 Hostility may manifest itself in various acts of destruction. For example, mali-
cious software may attempt to format the hard disk of the local machine, and if
successful all local data will deleted. Other malicious software may attempt to steal
confi dential data from the local machine including bank account or credit card
details. The denial of service attack is when a web site is overloaded by a malicious
attack and where users are therefore unable to access the web site for an extended
period of time.

 The display of web pages on the local client machine may involve the download-
ing of programs from the server and running the program on the client machine.
Standard HTML allows the static presentation of a web page, whereas many web
pages include active content (e.g. Java applets or Active X). There is a danger that a
 Trojan Horse 5 may be activated during the execution of active content.

 Security threats may be from anywhere (e.g. client side, server side, transmis-
sion) in an e-commerce environment, and therefore a holistic approach to security
is required. Internal and external security measures need to be considered, with

5 The origin of the term ‘Trojan Horse’ is from Homer’s Iliad and concerns the Greek victory in the
Trojan War. The Greek hero, Odysseus, and others hid in a wooden horse, while the other Greeks
sailed away from Troy. This led the Trojans to believe that the Greeks had abandoned their attack
and were returning to their homeland leaving behind a farewell gift for the citizens of Troy. The
Trojans brought the wooden horse into the city, and later that night Odysseus and his companions
opened the gates of Troy to the returning Greeks, and the mass slaughter of the citizens of Troy
commenced, hence the phrase ‘Bewared of Greeks bearing gifts’. Troy is located at the mouth of
the Dardanelles in Turkey.

14.8 E-Commerce Security

178

internal security generally implemented with good processes and procedures and
assigning appropriate access privileges.

 It is essential that the user is confi dent in the security provided as otherwise they
will be reluctant to pass credit card details over the Web for purchases. Technologies
such as Secure Sockets Layer (SSL) and Secure HTTP (S-HTTP) help to ensure
security.

14.9 Review Questions

14.10 Summary

 This chapter considered the evolution of the Internet from the early work on packet
switching and ARPANET to the subsequent development of the TCP/IP network
protocols that specify how computers communicate and the standards for intercon-
necting networks and computers.

 TCP/IP provides a transmission standard that deals with physical differences in
host computers, routers and networks. It is designed to transfer data over networks
which support different packet sizes and which may sometimes lose packets. TCP
details how information is broken into packets and reassembled on delivery, whereas
IP is focused on sending the packet across the network.

 The invention of the World Wide Web by Tim Berners-Lee was a revolutionary
milestone in computing. It transformed the Internet from mainly academic use to
commercial use, and it led to a global market of consumers and suppliers. Today, the
World Wide Web is an integral part of peoples’ lives.

 The growth of the World Wide Web was exponential, and the boom led to the
formation of many ‘new economy’ businesses. These new companies conducted
business over the Web as distinct from the traditional bricks and mortar companies.
Some of these new companies were very successful (e.g. Amazon) and remain in
business. Others were fi nancial disasters due to poor business models, poor manage-
ment and poor implementation of the new technology.

 1. Describe the development of the Internet.
 2. Describe the development of the World Wide Web and its key

constituents.
 3. Describe the applications of the World Wide Web.
 4. Describe the key constituents of an electronic commerce site.
 5. Describe a successful dot-com company that you are familiar with. What

has made the company successful?
 6. Describe a dot-com failure that you are familiar with. What caused the

company to fail?
 7. Discuss the key components of a business model.
 8. Discuss security in an e-commerce environment.

14 The Internet Revolution

179© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_15

 15 The Smartphone and Social Media

 Abstract
 A smartphone contains advanced computing capabilities that are attractive to
users, and it arose as the outcome of the marriage of the existing mobile phone
technology and PDA technology. A smartphone is more than a mobile device for
making and receiving calls, and it is essentially a touch-based computer on a
phone, which comes with its own keyboard, operating system, Internet access
and third-party applications. It provides many other features such as a camera,
maps, calendar, alarm clock and games. Today, the smartphone is ubiquitous.

 We discuss the impact of Facebook and Twitter in social networking. Facebook
is the leading social media site in the world, and it has become a way for young
people to discuss their hopes and aspirations as well as a tool for social protest
and revolution. Twitter has become a popular tool in political communication,
and it is also an effective way for businesses to advertise its brand to its target
audience.

 Key Topics
 PDA
 Smartphone
 Facebook
 Tweets
 Twitter

180

15.1 Introduction

 Smartphones arose as the outcome of the marriage of the existing mobile phone
technology and PDA technology, and they contain advanced computing capabilities
that are attractive to users. Today, the smartphone is ubiquitous, with most people in
advanced countries owning one.

 We consider some of the events that led to the development of the smartphone,
such as the introduction of the PDA by Apple and Palm. The introduction of the
smartphone facilitated a major growth of social networking, as users were now able
to communicate news events or update their personal information in real time.
Social networking sites such as Facebook and Twitter have transformed human
communication.

 Social media involves the use of computer technology that allows the creation
and exchange of user-generated content. These web-based technologies allow users
to collaborate to discuss and modify user-created content. It has led to major changes
in communication between individuals, communities and organizations.

 Facebook helps users to keep in touch with friends and family, and it allows them
to share their opinions on what is happening around the world. Users may upload
photos and videos, express opinions and ideas and exchange messages, and
Facebook allows their community of friends to be actively kept up to date on impor-
tant events in their lives.

 Facebook has become an important communication channel for educated young
people to discuss their aspirations for the future, as well as their grievances with
society and the state. It has even become an effective tool for protest and social
revolution.

 Twitter has become an effective way to communicate the latest news, and its
effectiveness as a communication tool increases as the number of a person’s follow-
ers grows. It allows a person or organization to determine what people are saying
about it, including their positive or negative experiences. This allows direct interac-
tion with the followers, and so it is a powerful way to engage the audience and to
make people feel heard.

15.2 Evolution of the Smartphone

 A smartphone is more than a mobile device for making and receiving calls, and it is
essentially a touch-based computer on a phone, which comes with its own key-
board, operating system, Internet access and third-party applications. It provides
many other features such as a camera, maps, calendar, alarm clock and games.

 IBM (in a joint venture with BellSouth) introduced one of the earliest precursors
of today’s smartphones in 1993. This was the IBM Simon, and it included voice and
data services. It acted as a mobile phone, a PDA and a fax machine, and it also
included a touchscreen that could be used to dial numbers. It could send faxes and
emails, as well as making or receiving calls, and included applications such as an
address book, calendar and calculator. However it was an expensive and large bulky
device, and it was priced at $900.

15 The Smartphone and Social Media

181

 John Sculley, the CEO of Apple, coined the term personal digital assistant , and
Apple introduced the fi rst PDA, the Newton, in 1993. The Apple Newton included
some nice features including limited handwriting recognition abilities. Xerox PARC
had created a prototype PDA, the Dynabook, in the 1970s, but they did not com-
mercialize it.

 A PDA allows a large amount of data to be stored on a small handheld device.
Palm introduced an early PDA device, the Palm Pilot 1000, which was used for
mobile data, and it was introduced in 1996. It played an important role in popular-
izing the use of mobile data by business users. The Palm Pilot started the PDA
industry, and it included 128Kb of memory and 16 MHz of processing power. It had
better handwriting recognition capabilities than the Newton and a graphical user
interface (GUI).

 The Nokia 9000 Communicator was released in 1996, and this phone combined
the features of a PDA and a mobile phone. It included a physical QWERTY key-
board, and it provided features such as email, calendar, address book and calculator.
However, it did not provide the ability to browse the web, and a colour display was
introduced in the Nokia 9210 in 1998.

 Qualcomm introduced its pdQ smartphone in 1999, and this phone combined a
Palm PDA with Internet connectivity capabilities. Research In Motion (RIM)
released its fi rst Blackberry devices in 1999, and these provided secure email com-
munication into a single inbox. Samsung’s fi rst smartphone was the Samsung SPH-
I300, which was released in 2001, and this Palm-powered smartphone is a distant
ancestor of today’s smartphones. Samsung introduced its SGH i607 smartphone in
2006, and this Windows-powered phone was inspired by Research in Motion’s
Blackberry phone.

 Smartphone technology continued to evolve through the early 2000s, and Apple
introduced its revolutionary i Phone in 2007. This Internet-based multimedia smart-
phone included a touchscreen and features such as a video camera, email, web
browsing, text messaging and voice. The i Phone had a 3.5 inch 480 × 320 touch-
screen, a QWERTY keyboard and 4GB of storage. Apple developed its own operat-
ing system, i OS, for the i Phone.

 Google introduced its open-source Android operating system in the late 2007,
and the fi rst Android phone was introduced in the late 2008. Android is now the
dominant operating system for smartphones and tablets, with i OS used on Apple’s
products. The Samsung Instinct was released in 2008, but it was based on an operat-
ing system developed by Samsung from various Java components. Although its
touchscreen operating system was not in the same league as Apple’s i OS, it became
a competitor to Apple’s i Phone.

 Apple’s i Phone 4 (Fig. 15.1) was introduced in 2010, and this powerful smart-
phone has a 3.5 inch 960 × 640 screen and a 5 megapixel camera. The Samsung
Galaxy S smartphone was launched in 2010, and this touchscreen-enabled Android
smartphone became extremely popular. The Samsung Galaxy S series of smart-
phones have been very successful and have become a major competitor to Apple’s
 i Phone.

15.2 Evolution of the Smartphone

182

 Apple released the i Pad in 2010, which is a large screen tablet-like device that
uses a touchscreen operating system. Samsung is a major competitor to Apple in the
tablet market.

15.3 The Facebook Revolution

 Facebook is the leading social networking site (SNS) in the world, and its mission
is to make the world more open and connected. It helps users to keep in touch with
friends and family, and it allows them to share their opinions on what is happening
around the world. Users may upload photos and videos, express opinions and ideas
and exchange messages. Facebook is very popular with advertisers as it allows them
to easily reach a large target audience.

 Mark Zuckerberg (Fig. 15.2) founded the company in 2004 while he was a student
studying psychology at Harvard University. Zuckerberg was interested in program-
ming, and he had already developed several social networking websites for his fellow
students including Facemash , which could be used to rate the attractiveness of a
person, and CourseMatch which allowed students to view people taking their degree.

 Zuckerberg launched The Facebook (thefacebook.com) at Harvard in February
2004, and over a thousand Harvard students had registered on the site within the fi rst
24 h. Over half of the Harvard student population had a profi le on Facebook within
the fi rst month. The membership of the site was initially restricted to students at
Harvard, then to students at the other universities in Boston, and then to students at
the other universities in the United States. Its membership was extended to interna-
tional universities from 2005.

 The use of Facebook was extended beyond universities to anyone with an email
address from 2006, and the number of registered users began to increase exponen-
tially. The number of registered users reached 100 million in 2008 and 500 million
in 2010 and exceeded one billion in 2012. It is now one of the most popular web
sites in the world.

 Fig. 15.1 Apple iPhone 4

15 The Smartphone and Social Media

183

 Facebook’s business model is quite distinct from that of a traditional business in
that it does not manufacture or sell any products. Instead it earns its revenue mainly
from advertisements, and its business model is based on advertisement revenue,
with advertisements targeted to its over 1.3 billion users based on their specifi c
interests. Facebook is essentially selling its users to advertisers (i.e. the users are the
product). The users really do all the work, and Facebook collects data about them
(e.g. age, gender, location, education, work history and interests) and classifi es and
categorizes them, so that it is in a position to target advertisements that will poten-
tially be of interest to them. This means that the advertisements are targeted to the
right audience.

 Social media have become important communication channels for educated
young people to discuss their aspirations for the future, as well as their grievances
with society and the state. The effectiveness of Facebook as a tool for protests and
revolution is evident in the relatively short protests that culminated in the resigna-
tion of President Hosni Mubarak of Egypt in 2011.

 Egypt has a young population with roughly 60 % of the population under the age
of 30, and the country has faced many challenges since independence such as
improving education and literacy for its young population, as well as fi nding jobs
for its citizens.

 Facebook provided a platform for Egyptian youth to discuss issues such as
unemployment, low wages, police brutality and corruption. Young Egyptians set up
groups on Facebook to discuss specifi c issues (e.g. a group that aimed to provide
solidarity with striking workers was set up). Further momentum for revolution fol-
lowed the beating and killing of Khaled Mohammed Said, as photos of his disfi g-
ured body were posted over the Internet and went viral. An infl uential Facebook

 Fig. 15.2 Mark
Zuckerberg

15.3 The Facebook Revolution

184

group called We Are All Khaled Said was set up, and the killing provided a tangible
focus for solidarity among young Egyptians.

 The protests lasted for 18 days and it led to hundreds of thousands of young
Egyptians taking to the streets and gathering in Tahrir Square in Cairo. They
demanded an end to police brutality as well as the end of the 30-year reign of
President Hosni Mubarak. The authorities reacted swiftly in closing down the
Internet in Egypt, but this act of censorship failed to stop the protests against
Mubarak. Social media played an important role in mobilizing protests and infl u-
encing the outcome of the revolution.

15.4 The Tweet

 Twitter is a social communication tool that allows people to broadcast short mes-
sages. It is often described as the SMS of the Internet , and it is an online social
media and microblogging site that allows its users to send and receive short
140-character messages called tweets . The restriction to 140 characters is to allow
Twitter to be used on non-smartphone mobile devices. Twitter has over 300 million
active users, and it is one of the most visited websites in the world. Users may
access Twitter through its website interface, a mobile device app or SMS.

 Jack Dorsey (Fig. 15.3) and others founded the company in 2006. Dorsey intro-
duced the idea of an individual using an SMS service to communicate with a small
group while he was still an undergraduate student at New York University. The
word twitter was the chosen name for this new service, and its defi nition as a short
burst of information and chirps from birds was highly appropriate.

 Fig. 15.3 Jack Dorsey at
the 2012 Time 100 Gala

15 The Smartphone and Social Media

185

 Twitter messages are often about friends telling one another about their day, what
they are doing, where they are and what they are thinking and doing, and Twitter has
transformed the world of media, politics and business. It is possible to include links
to web pages and other media as a tweet. News such as natural disasters, sports
results and so on are often reported fi rst by Twitter. The site has impacted political
communication in a major way, as it allows politicians and their followers to debate
and exchange political opinions. It allows celebrities to engage and stay in contact
with their fans, and it provides a new way for businesses to advertise its brands to its
target audience.

 As a Twitter user, you select which other people who you wish to follow, and
when you follow someone, their tweets show up in a list known as your Twitter
stream . Similarly, anyone that chooses to follow you will see your tweets in their
stream.

 A hashtag is an easy way to fi nd all the tweets about a particular topic of interest,
and it may be used even if you are not following the people who are tweeting. It also
allows you to contribute to the particular topic that is of interest. A hashtag consists
of a short word or acronym preceded by the hash sign (#), and conferences, hot top-
ics and so on often have a hashtag.

 A word or topic that is tagged at a greater rate than other hashtags is said to be a
 trending topic , and a trending topic is often the result of an event that prompts
people to discuss a particular topic. Trending may also result from the deliberate
action of certain groups (e.g. in the entertainment industry) to raise the profi le of a
musician or celebrity and to market their work.

 Twitter has evolved to become an effective way to communicate the latest news,
and its effectiveness as a communication tool for an organization increases as the
number of its followers grows. An organization may determine what people are say-
ing about it, as well as their positive or negative experience in interacting with it.
This allows the organization to directly interact with its followers, which is a power-
ful way to engage with its audience and to make people feel heard. It allows the
organization to respond to any negative feedback and to deal with such feedback
sensitively and appropriately.

 The fi rst version of Twitter was introduced in mid-2006, and it took the company
some time to determine exactly what type of entity it actually was. There was noth-
ing quite like it in existence, and initially it was considered a microblogging and
social media site. Today it is considered to be an information network rather than
just a social media site.

 Twitter has experienced rapid growth from 400,000 tweets posted per quarter in
2007, to 100 million per quarter in 2008, to 65 million tweets per day from mid-
2010, to 140 million tweets per day in 2011. Twitter’s usage spikes during important
events such as major sporting events, natural disasters, the death of a celebrity and
so on. For such events, there may be over 100, 000 tweets per second.

 Twitter’s main source of revenue is advertisements through promoted tweets that
appear in a user’s timeline (Twitter stream). The fi rst promoted tweets appeared
from late 2011, and the use of a tweet for advertisement was ingenious. It helped to
make the advertisement feel like part of Twitter, and it meant that an advertisement

15.4 The Tweet

186

could go anywhere that a tweet could go. Advertisers are only charged when the
user follows the links or retweets the original advertisements. Further, the use of
tweets for advertisement meant that the transition to mobile was easy, and today
about 80 % of Twitter use is on mobile devices.

 Twitter has recently embarked on a strategy that goes beyond these advertise-
ments to sell products directly (including to people who don’t use Twitter). Twitter
also earns revenue from a data licensing arrangement where it sells its information
to companies who use this information to analyse consumer trends. Twitter analyses
what users tweet in order to understand their intent. For more detailed information
on Twitter, see [Sch:14].

15.5 Review Questions

15.6 Summary

 A smartphone is essentially touch-based computer on a phone, which comes with its
own keyboard, operating system, Internet access and third-party applications. It
provides many other attractive features such as a camera, maps, calendar, alarm
clock and games. It arose from the marriage of mobile phone technology and PDA
technology.

 The smartphone has facilitated a major growth of social networking, as users are
now able to communicate news or update their personal information in real time.
Social media involves the use of computer technology that allows the creation and
exchange of user-generated content. It has led to major changes in communication
between individuals, communities and organizations. Social networking sites such
as Facebook and Twitter have transformed human communication.

 Facebook helps users to keep in touch with friends and family, and it allows them
to share their opinions on what is happening around the world. Users may upload
photos and videos, express opinions and ideas and exchange messages. It has
become an important communication channel for young people to discuss their
aspirations for the future, and it has also become an effective tool for mobilizing
protests and social revolution.

 1. What is a PDA?
 2. What is a smartphone?
 3. What is social media? Explain how sites such as Facebook and Twitter

have transformed human communication.
 4. Explain how a company may use social media to market new products to

its customers.
 5. Explain how social media has been used as a tool for protest and

revolution.
 6. Why has Twitter been described as the SMS of the Internet?

15 The Smartphone and Social Media

187

 Twitter has become an effective way to communicate the latest news, and its
effectiveness as a communication tool increases as the number of its followers
grows. It allows a person or organization to determine what people are saying about
it, as well as their positive or negative experiences.

15.6 Summary

189© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_16

 16 History of Programming Languages

 Abstract
 This chapter presents a short history of programming languages, starting with
machine languages, to assembly languages, to early high-level procedural
 languages such as FORTRAN and COBOL, to later high-level languages such as
Pascal and C and to object-oriented languages such as C++ and Java. Functional
programming languages and logic programming languages are discussed, and
there is a short discussion on the important area of syntax and semantics.

16.1 Introduction

 Hardware is physical and may be seen and touched, whereas software is intangible
and is an intellectual undertaking by a team of programmers. Software is written in
a particular programming language, and hundreds of languages have been

 Key Topics
 Generations of programming languages
 Imperative languages
 ALGOL
 FORTRAN and COBOL
 Pascal and C
 Object-oriented languages
 Java and C++
 Functional programming languages
 Logic programming languages
 Syntax and semantics

190

developed. Programming languages have evolved from the early days of computing
with the earliest languages using machine code to instruct the computer. The next
development was the use of assembly languages to represent machine language
instructions. These were then translated into machine code by an assembler. The
next step was to develop high-level programming languages such as FORTRAN and
COBOL. These were easier to use than assembly languages and machine code and
helped to improve quality and productivity.

 A fi rst-generation programming language (or 1GL) is a machine-level program-
ming language that consists of 1 and 0 s. The main advantage of these languages is
execution speed as they may be directly executed on the computer. These languages
do not require a compiler or assembler to convert from a high-level language or
assembly language into the machine code.

 However, writing a program in machine code is diffi cult and error prone, as it
involves writing a stream of binary numbers. This made the programming language
diffi cult to learn and diffi cult to correct should any errors occur. The programming
instructions were entered through the front panel switches of the computer system,
and adding new code was diffi cult. Further, the machine code was not portable as
the machine language for one computer could differ signifi cantly from that of
another computer. Often, the program needed to be totally rewritten for the new
computer.

 First-generation languages were used mainly on the early computers. A program
written in a high-level programming language is generally translated by the com-
piler 1 into the machine language of the target computer for execution.

 Second-generation languages , or 2GL, are low-level assembly languages that are
specifi c to a particular computer and processor. However, assembly languages are
easier to read than the fi rst-generation machine code. They require considerably
more programming effort than high-level programming languages and are more dif-
fi cult to use for larger applications. The assembler converts the assembly code into
the actual machine code to run on the computer. The assembly language is specifi c
to a particular processor family and environment and is therefore not portable.

 A program written in assembly language for a particular processor family needs
to be rewritten for a different platform. However, since the assembly language is in
the native language of the processor, it has signifi cant speed advantages over high-
level languages. Second-generation languages are still used today, but high-level
programming languages have generally replaced them.

 The third-generation languages , or 3GL, include high-level programming lan-
guages such as Pascal, C or FORTRAN. They are general-purpose languages and

1 This is true of code generated by native compilers. Other compilers may compile the source code
to the object code of a virtual machine, and the translator module of the virtual machine translates
each byte code of the virtual machine to the corresponding native machine instruction. That is, the
virtual machine translates each generalized machine instruction into a specifi c machine instruction
(or instructions) that may then be executed by the processor on the target computer. Most computer
languages such as C require a separate compiler for each computer platform (i.e. computer and
operating system). However, a language such as Java comes with a virtual machine for each plat-
form. This allows the source code statements in these programs to be compiled just once, and they
will then run on any platform.

16 History of Programming Languages

191

have been applied to business, scientifi c and general applications. They are designed
to be easier for a human to understand and include features such as named variables,
conditional statements, iterative statements, assignment statements and data struc-
tures. Early examples of third-generation languages are FORTRAN, ALGOL and
COBOL. Later examples are languages such as C, C++ and Java. The advantages of
these high-level languages are:

 – Ease of readability
 – Clearly defi ned syntax (and semantics 2)
 – Suitable for business or scientifi c applications
 – Machine independent
 – Portability to other platforms
 – Ease of debugging
 – Execution speed

 These languages are machine independent and may be compiled for different
platforms. The early 3GLs were procedural in that they focus on how something is
done rather than on what needs to be done. The later 3GLs were object oriented , 3
and the programming tasks were divided into objects. Objects may be employed to
build larger programs, in a manner that is analogous to building a prefabricated
building. Examples of modern object-oriented language are the Java language that
is used to build web applications, C++ and Smalltalk.

 High-level programming languages allow programmers to focus on problem-
solving rather than on the low-level details associated with assembly languages.
They are easier to debug and to maintain than assembly languages.

 Fourth-generation languages specify what needs to be done rather than how it
should be done. They are designed to reduce programming effort and include report
generators and form generators. Report generators take a description of the data
format and the report that is to be created and then automatically generate a program
to produce the report. Form generators are used to generate programs to manage
online interactions with the application system users. However, 4GLs are slow when
compared to compiled languages.

 A fi fth-generation programming language, or 5GL, is a programming language
that is based around solving problems using constraints applied to the program,
rather than using an algorithm written by the programmer. Fifth-generation lan-
guages are designed to make the computer (rather than the programmer) solve the
problem. The programmer specifi es the problem and the constraints to be satisfi ed
and is not concerned with the algorithm or implementation details. These languages
are mainly used for research purposes especially in the fi eld of artifi cial intelligence.

2 The study of programming language semantics commenced in the 1960s. It includes work done
by Hoare on axiomatic semantics, work done by Gordon Plotkin on operational semantics and
work done by Scott and Strachey on denotational semantics.
3 Norwegian Research originally developed object-oriented programming with their work on
Simula 67 in the late 1960s.

16.1 Introduction

192

Prolog is one of the best known fi fth generation languages, and it is a logic program-
ming language.

 The task of deriving an effi cient algorithm from a set of constraints for a particu-
lar problem is non-trivial, and to date this step has not been successfully automated.
Fifth-generation languages are used mainly in academia.

16.2 Plankalkül

 The earliest high-level programming language was Plankalkül developed by Konrad
Zuse in 1946. It means ‘Plan’ and ‘Kalkül’ or, in other words, a calculus of pro-
grams. It is a relatively modern language for a language developed in 1946. There
was no compiler for the language at the time, and it was only 50 years later that a
compiler was fi nally developed for the language. The Free University of Berlin
designed and developed a compiler in 2000, and the fi rst Plankalkül program was
run over 50 years after its conception.

 The language employs data structures and Boolean algebra and includes a mech-
anism to defi ne more powerful data structures. Zuse demonstrated that the Plankalkül
language could be used to solve scientifi c and engineering problems, and he wrote
several example programs including programs for sorting lists and searching a list
for a particular entry. The main features of Plankalkül are:

 – A high-level language.
 – Fundamental data types are arrays and tuples of arrays.
 – While construct for iteration.
 – Conditionals are addressed using guarded commands.
 – There is no GOTO statement.
 – Programs are non-recursive functions.
 – Type of a variable is specifi ed when it is used.

 The main constructs of the language are variable assignment, arithmetical and
logical operations, guarded commands and while loops. There are also some list and
set processing functions.

16.3 Imperative Programming Languages

 Imperative programming is a programming style that describes computation in
terms of a program state and statements that change the program state. The term
 imperative is a command to carry out a specifi c instruction or action. Similarly,
imperative programming consists of a set of commands to be executed on the com-
puter, and it is therefore concerned with how the program will be executed. The
execution of an imperative command generally results in a change of state.

 Imperative programming languages are quite distinct from functional and logical
programming languages . Functional programming languages, like Miranda, have
no global state, and programs consist of mathematical functions that have no side

16 History of Programming Languages

193

effects. In other words, there is no change of state, and the variable x will have the
same value later in the program as it does earlier. Logical programming languages,
like Prolog, defi ne what is to be computed, rather than how the computation is to
take place.

 Most commercial programming languages are imperative languages, with inter-
est in functional programming languages and relational programming languages
being mainly academic. Imperative programs tend to be more diffi cult to reason
about due to the change of state. Assembly languages and machine code are impera-
tive languages.

 High-level imperative languages use program variables and employ commands
such as assignment statements, conditional commands, iterative commands and
calls to procedures. An assignment statement performs an operation on information
located in memory and stores the results in memory. The effect of an assignment
statement is a change of the program state. A conditional statement allows a state-
ment to be executed only if a specifi ed condition is satisfi ed. Iterative statements
allow a statement (or group of statements) to be executed a number of times.

 High-level imperative languages allow the evaluation of complex expressions.
These may consist of arithmetic operations and function evaluations, and the result-
ing value of the expression is assigned to memory.

 FORTRAN was developed in the mid-1950s, and it was one of the earliest pro-
gramming languages. ALGOL was developed in the late 1950s and 1960s, and it
became a popular language for the expression of algorithms. COBOL was designed
in the late 1950s as a programming language for business use. George Kemeny and
Thomas Kurtz designed the BASIC (Beginner’s All-purpose Symbolic Instruction
Code) programming language in 1963. Niklaus Wirth developed Pascal in the early
1970s as a teaching language. Denis Ritchie at Bell Labs developed the C program-
ming language in the early 1970s.

 The Ada programming language was developed for the US military in the early
1980s. Object-oriented languages are imperative but include features to support
objects. Bjarne Stroustrup designed C++ in 1985 as an object-oriented extension of
the C language. Sun Microsystems released Java in 1996.

16.3.1 FORTRAN and COBOL

 FORTRAN (FORmula TRANslator) was the fi rst high-level programming language
to be implemented. John Backus at IBM developed it in the mid-1950s, and the fi rst
compiler was available in 1957. The language includes named variables, complex
expressions and subprograms. It was designed for scientifi c and engineering appli-
cations and remains the most important programming language for these domains.
The main statements of the language include:

 – Assignment statements (using the = symbol)
 – IF statements
 – GOTO statements
 – DO loops

16.3 Imperative Programming Languages

194

 Fortran II was developed in 1958, and it introduced subprograms and functions
to support procedural (or imperative) programming. Each procedure (or subroutine)
contains computational steps to be carried out when it is called (at any point) during
program execution. This could include calls by other procedures or by itself.
However, recursion was not allowed until FORTRAN 90. FORTRAN 2003 pro-
vides support for object-oriented programming.

 The basic types supported in FORTRAN include Boolean, integer and real.
Support for double precision and complex numbers was added later. The language
included relational operators for equality (.EQ.), less than (.LT.), and so on.
FORTRAN is good at handling numbers and computation, and this is especially
useful for mathematical and engineering problems. The following code (written in
FORTRAN 77) gives a fl avour of the language.

 PROGRAM HELLOWORLD

 C FORTRAN 77 SOURCE CODE COMMENTS FOR HELLOWORLD
 PRINT ‘(A)’, ‘HELLO WORLD’
 STOP
 END

 FORTRAN remains a popular scientifi c programming language for application
such as climate modelling, simulations of the solar system, modelling the trajecto-
ries of artifi cial satellites and simulation of automobile crash dynamics.

 Fig. 16.1 Grace Murray and UNIVAC

16 History of Programming Languages

195

 It was initially weak at handling input and output, which was important to busi-
ness computing. This led to the development of the COBOL programming language
in the late 1950s.

 The Common Business Oriented Language (COBOL) was the fi rst business pro-
gramming language, and it was introduced in 1959. Grace Murray Hopper 4
(Fig. 16.1) and a group of computer professionals called the Conference on Data
Systems Languages (CODASYL) designed it with the objective of improving the
readability of software source code. It has an English-like syntax designed to make
it easy to learn the language. The only data types in the language were numbers and
strings of text, and these may be grouped into arrays and records. The language is
verbose: DIVIDE A BY B GIVING C REMAINDER D

 COBOL was the fi rst computer language whose use was mandated by the US
Department of Defense. The language remains in use today, and there is an object-
oriented version of the language.

16.3.2 ALGOL

 ALGOL (ALGOrithmic Language) is a family of imperative programming lan-
guages, and it was originally developed in the mid-1950s and later revised in
ALGOL 60 and ALGOL 68. It was designed to address some of the problems in
FORTRAN, but it was not widely used. This may have been due to the refusal of
IBM to support ALGOL and the dominance of IBM in the computing fi eld.

 A committee of American and European computer scientists designed the lan-
guage, and it had a signifi cant infl uence on later language design. ALGOL 60
[Nau:60] was the most popular member of the family, and Edsger Dijkstra devel-
oped an early ALGOL 60 compiler. John Backus and Peter Naur developed a
method for describing the syntax of the ALGOL 58 programming language, which
is known as Backus-Naur Form (or BNF).

 ALGOL includes data structures and block structures. Block structures were
designed to allow blocks of statements to be created (e.g. for procedures or func-
tions). A variable defi ned within a block may be used within the block but is out of
scope outside of the block.

 ALGOL 60 introduced two ways of passing parameters to subprograms, and
these are call by value and call by name . The call by value parameter passing tech-
nique involves the evaluation of the arguments of a function or procedure before the
function or procedure is entered. The values of the arguments are passed to the func-
tion or procedure, and any changes to the arguments within the called function or
procedure have no effect on the actual arguments. The call by name parameter pass-
ing technique is the default parameter passing technique in ALGOL 60. It involves
re-evaluating the actual parameter expression each time the formal parameter is
read. Call by name is used today in C/C++ macro expansion.

4 Mary Hopper was a programmer on the Mark I, Mark II, Mark III and UNIVAC 1 computers. She
was the technical advisor to the CODASYL committee.

16.3 Imperative Programming Languages

196

 ALGOL 60 includes conditional statements and iterative statements. It supports
recursions: i.e. it allows a function or procedure to call itself. It includes:

• Dynamic arrays. These are arrays in which the subscript range is specifi ed by
variables.

• Reserved words. These are keywords that are not allowed to be used as identifi ers
by the programmer.

• User-defi ned data types. These allow the user to design their own data types.
• ALGOL uses bracketed statement blocks and it was the fi rst language to use

 begin-end pairs for delimiting blocks.

 ALGOL was used mainly by researchers in the United States and Europe. There
was a lack of interest to its adoption by commercial companies due to the absence
of standard input and output facilities in its description. ALGOL 60 became the
standard for the publication of algorithms, and it had a major infl uence on later
language development.

 ALGOL evolved during the 1960s but not in the right direction. The ALGOL 68
committee decided on a very complex design rather than the simple and elegant
ALGOL 60 specifi cation. Tony Hoare remarked that:

 ALGOL 60 was a great improvement on its successors.

16.3.3 Pascal and C

 Niklaus Wirth designed the Pascal programming language in the early 1970s. It is
named after Blaise Pascal (a seventeenth-century French mathematician), and it was
based on the ALGOL programming language. It was intended as a language to
teach students structured programming.

 Structured programming [Dij:68] is concerned with rigorous techniques to design
and develop programs, and there was intense debate on correct approaches to soft-
ware development in the late 1960s. Dijkstra argued against the use of the GOTO
statement ‘GOTO Statement considered harmful’ [Dij:68], and this infl uenced lan-
guage design and led to several languages that did not include the GOTO statement.

 The Pascal language includes constructs such as the conditional if statement; the
iterative while, repeat and for statements; the assignment statement; and the case
statement (which is a generalized if statement). The statement in the body of the
repeat statement is executed at least once, whereas the statement within the body of
a while statement may never be executed.

 The language has several reserved words (known as keywords) that have a spe-
cial meaning, and these may not be used as program identifi ers. The Pascal program
that displays ‘Hello World’ is given by:

 program HELLOWORLD (OUTPUT);

 begin
 WRITELN ('Hello, World!')
 end .

16 History of Programming Languages

197

 Pascal includes several simple data types such as Boolean, integer, character and
real. It also allows more advanced data types including arrays, enumeration types,
ordinal types and pointer data types. It allows complex data types to be constructed
from existing data types. Types are introduced by the reserved word ‘type’.

 type

 c = record

 a: integer;

 b: char
 end ;

 Pascal includes a ‘pointer’ data type, and this data type allows linked lists to be
created by including a pointer type fi eld in the record. The variable LINKLIST is a
pointer to the data type B in the example below where B is a record:

 type

 BPTR = ^B;

 B = record

 A : integer;

 C : BPTR

 end ;

 var

 LINKLIST : BPTR;

 Pascal is a block-structured language with programs structured into procedures
and function blocks. These can be nested to any depth, and recursion is allowed.
Each block has its own constants, types, variables and other procedures and func-
tions, which are defi ned, within the scope of the block.

 Pascal was criticized as being unsuitable for serious programming by Brian
 Kernighan and others [Ker:81]. Many of these defi ciencies were addressed in later
versions of the language. However, by then Denis Richie at Bell Labs had developed
the C programming language, which became popular in industry. It is a general-
purpose and a systems programming language.

 It was originally designed as a language to write the kernel for the UNIX operat-
ing system. This was novel as operating systems were traditionally written in assem-
bly languages. The success of C in writing the UNIX kernel led to its use on several
other operating systems such as Windows and Linux. It also infl uenced later lan-
guage development such as C++, and it is one of the most commonly used system
programming languages. The language is described in detail in [KeR:78].

 The language provides high-level and low-level capabilities, and a C program
that is written in ANSI C with portability in mind may be compiled for a very wide
variety of computer platforms and operating systems with minimal changes to the
source code. The C language is now available on a wide range of platforms.

16.3 Imperative Programming Languages

198

 C is a procedural programming language and includes conditional statements
such as the ‘if statement’, the ‘switch statement’, iterative statements such as the
‘while’ statement or ‘do’ statement and the assignment statement.

• If statement
 if (A == B)

 A = A + 1;

 else

 A = A – 1; 5
• Assignment statement

 i = i + 1;

One of the fi rst programs that people write in C is the Hello World program. This is
given by:

 main()

 {

 printf("Hello, World\n");

 }

 It includes several predefi ned data types including integers and fl oating-point
numbers.

 – int (integer)
 – long (long integer)
 – fl oat (fl oating-point real)
 – double (double-precision real)

 It allows more complex data types to be created using ‘structs’, which are similar
to records in Pascal. It allows the use of pointers to access memory locations, which
allows the memory locations to be directly referenced and modifi ed. The result of
the following example is to assign 5 to the variable x:

 int x;
 int *ptr_x;

 x = 4;
 ptr_x = &x;

 *ptr_x =5;

 C is a block-structured language, and a program is structured into functions (or
blocks). Each function block contains its own variables and functions. A function
may call itself (i.e. recursion is allowed).

5 The semi-colon in Pascal is used as a statement separator, whereas it is used as a statement termi-
nator in C.

16 History of Programming Languages

199

 One key criticism of C is that it is very easy to make errors in C programs and to
thereby produce undesirable results. For example, one of the easiest mistakes to make
is to accidentally write the assignment operator (=) for the equality operator (==). This
totally changes the meaning of the original statement as can be seen below:

 if (a == b)

 a++; …. Program fragment A
 else

 a--
 if (a = b)

 a++; …. Program fragment B

 else

 a--

 Both program fragments are syntactically correct and the intended meaning of a
program is easily changed. The philosophy of C is to allow statements to be written
as concisely as possible, and this is potentially dangerous. 6 The use of pointers
potentially leads to problems as uninitialized pointers may point anywhere in mem-
ory and may therefore write anywhere in memory. Therefore, the effective use of C
requires experienced programmers, well-documented source code and formal peer
reviews of the source code by other developers.

16.4 Object-Oriented Languages

 The traditional view of programming is that a program is a collection of functions
or a list of instructions to be performed on the computer. Object-oriented program-
ming is a paradigm shift in programming, where a computer program is considered
to be a collection of objects that act on each other. Each object is capable of sending
and receiving messages and processing data. That is, each object may be viewed as
an independent entity or actor with a distinct role or responsibility.

 An object is a black box which sends and receives messages . A black box con-
sists of code (computer instructions) and data (information which these instructions
operate on). The traditional way of programming kept code and data separate. For
example, functions and data structures in the C programming language are not con-
nected. However, in the object-oriented world, code and data are merged into a
single indivisible thing called an object .

 The reason that an object is called a black box is that the user of an object never
needs to look inside the box, since all communication to it is done via messages.
Messages defi ne the interface to the object. Everything an object can do is repre-
sented by its message interface. Therefore, there is no need to know anything about
what is in the black box (or object) in order to use it. The access to an object is only

6 It is very easy to write incomprehensible code in C and even one line of C code can be incompre-
hensible. The maintenance of poorly written code is a challenge unless programmers follow good
programming practice. This discipline needs to be enforced by formal reviews of the source code.

16.4 Object-Oriented Languages

200

through its messages, while keeping the internal details private. This is called infor-
mation hiding 7 and is due to work by Parnas in the early 1970s.

 The origins of object-oriented programming go back to the invention of Simula
67 at the Norwegian Computing Research Centre 8 in the late 1960s. It introduced
the notion of a class and instances of a class. 9 Simula 67 infl uenced later languages
such as the Smalltalk object-oriented language developed at Xerox PARC in the
mid-1970s. Xerox introduced the term object-oriented programming for the use of
objects and messages as the basis for computation. Most modern programming lan-
guages support object-oriented programming (e.g. Java and C++), and object-
oriented features are added to many existing languages such as BASIC, FORTRAN
and Ada. The main features of object-oriented languages are described in Table 16.1 .

7 Information hiding is a key contribution by Parnas to computer science. He has also done work
on mathematical approaches to software quality using tabular expressions [ORg:06].
8 The inventors of Simula 67 were Ole-Johan Dahl and Kristen Nygaard.
9 Dahl and Nygaard were working on ship simulations and were attempting to address the huge
number of combinations of different attributes from different types of ships. Their insight was to
group the different types of ships into different classes of objects, with each class of objects being
responsible for defi ning its own data and behaviour.

 Table 16.1 Object-oriented paradigm

 Feature Description

 Class A class defi nes the abstract characteristics of a thing, including its
attributes (or properties), and its behaviours (or methods). The
members of a class are termed objects

 Object An object is a particular instance of a class with its own set of
attributes. The set of values of the attributes of a particular object is
called its state

 Method The methods associated with a class represent the behaviours of the
objects in the class

 Message passing Message passing is the process by which an object sends data to
another object or asks the other object to invoke a method

 Inheritance A class may have subclasses (or children classes) that are more
specialized versions of the class. A subclass inherits the attributes and
methods of the parent class. This allows the programmer to create new
classes from existing classes. The derived classes inherit the methods
and data structures of the parent class

 Encapsulation
(information hiding)

 One fundamental principle of the object-oriented world is
encapsulation (or information hiding). The internals of an object are
kept private to the object and may not be accessed from outside the
object. That is, encapsulation hides the details of how a particular
class works and it requires a clearly specifi ed interface around the
services provided

 Abstraction Abstraction simplifi es complexity by modelling classes and removing
all unnecessary detail. All essential detail is represented, and
non-essential information is ignored.

 Polymorphism Polymorphism is behaviour that varies depending on the class in
which the behaviour is invoked. Two or more classes may react
differently to the same message. The same name is given to methods
in different subclasses, i.e. one interface, and multiple methods

16 History of Programming Languages

201

 Object-oriented programming has become popular in large-scale software devel-
opment, and it became the dominant paradigm in programming from the early
1990s. Its proponents argue that it is easier to learn and simpler to develop and
maintain such programs. Its growth in popularity was helped by the rise in popular-
ity of graphical user interfaces (GUI), which is well suited to object-oriented pro-
gramming. The C++ programming language has become popular, and it is an
object-oriented extension of the C programming language.

16.4.1 C++ and Java

 Bjarne Stroustrup developed the C++ programming language in 1983 as an object-
oriented extension of the C programming language. It was designed to use the
power of object-oriented programming and to maintain the speed and portability of
C. It provides a signifi cant extension of C’s capabilities, but it does not force the
programmer to use the object-oriented features of the language.

 A key difference between C++ and C is the concept of a class. A class is an
extension to the C concept of a structure. The main difference is that while a C data
structure can hold only data, a C++ class may hold both data and functions. An
 object is an instantiation of a class: i.e. the class is essentially the type, whereas the
object is essentially a variable of that type. Classes are defi ned in C++ by using the
keyword class:

 class class_name

 {

 access_specifi er_1:
 member1;
 access_specifi er_2:
 member2;

 …

 }

 The members may be either data or function declarations, and an access specifi er
is included to specify the access rights for each member (e.g. private, public or pro-
tected). Private members of a class are accessible only by other members of the
same class; public members are accessible from anywhere where the object is visi-
ble; protected members are accessible by other members of the same class and also
from members of their derived classes. An example of a class in C++ is the defi ni-
tion of the class rectangle:

 class CRectangle

 {

 int x, y;

 public:

 void set_values (int,int);

 int area (void);
 } rect;

16.4 Object-Oriented Languages

202

 Java is an object-oriented programming language developed by James Gosling
and others at Sun Microsystems in the early 1990s. C and C++ infl uenced the syntax
of the language, and the language was designed with portability in mind. The objec-
tive is for a program to be written once and executed anywhere. Platform indepen-
dence is achieved by compiling the Java code into Java bytecode, which are
simplifi ed machine instructions specifi c to the Java platform.

 This code is then run on a Java virtual machine (JVM) that interprets and exe-
cutes the Java bytecode. The JVM is specifi c to the native code on the host hard-
ware. The problem with interpreting bytecode is that it is slow compared to
traditional compilation. However, Java has a number of techniques to address this
including just in time compilation and dynamic recompilation. Java also provides
automatic garbage collection. This is a very useful feature as it protects program-
mers who forget to deallocate memory (thereby causing memory leaks).

 Java is a proprietary standard that is controlled through the Java Community
Process. Sun Microsystems makes most of its Java implementations available with-
out charge. The following is an example of the Hello World program written in
Java:

 class HelloWorld

 {

 public static void main (String args[])

 {

 System.out.println ("Hello World!");

 }
}

16.5 Functional Programming Languages

 Functional programming is quite distinct from imperative programming in that it
involves the evaluation of mathematical functions . Imperative programming
involves the execution of sequential (or iterative) commands that change the state.
For example, the assignment statement alters the value of a variable, and the value
of a given variable x may change during program execution.

 There are no changes of state for functional programs. The fact that the value of
 x will always be the same makes it easier to reason about functional programs than
imperative programs. Functional programming languages provide referential trans-
parency : i.e. equals may be substituted for equals, and if two expressions have equal
values, then one can be substituted for the other in any larger expression without
affecting the result of the computation.

16 History of Programming Languages

203

 Functional programming languages use higher-order functions, 10 recursion, lazy
and eager evaluation, monads 11 and Hindley-Milner-type inference systems. 12 These
languages are mainly being used in academia, but there has been some industrial use,
including the use of Erlang for concurrent applications in industry. Alonzo Church
developed lambda calculus in the 1930s, and it provides an abstract framework for
describing mathematical functions and their evaluation. It provides the foundation
for functional programming languages. Church employed lambda calculus to prove
that there is no solution to the decision problem for fi rst-order arithmetic in 1936.

 Lambda calculus uses transformation rules, and one of these rules is variable sub-
stitution. The original calculus developed by Church was untyped, but typed lambda
calculi have since been developed. Any computable function can be expressed and
evaluated using lambda calculus, but there is no general algorithm to determine
whether two arbitrary lambda calculus expressions are equivalent. Lambda calculus
infl uenced functional programming languages such as LISP , ML and Haskell .

 Functional programming uses the notion of higher-order functions . Higher-order
functions take other functions as arguments and may return functions as results. The
derivative function d / dx f (x) = f ’(x) is a higher-order function. It takes a function as
an argument and returns a function as a result. For example, the derivative of the
function Sin(x) is given by Cos(x). Higher-order functions allow currying which is
a technique developed by Schönfi nkel. It allows a function with several arguments
to be applied to each of its arguments one at a time, with each application returning
a new (higher-order) function that accepts the next argument. This allows a function
of n arguments to be treated as n applications of a function with one argument.

 John McCarthy developed LISP at MIT in the late 1950s, and this language
includes many of the features found in modern functional programming languag-
es. 13 Scheme built upon the ideas in LISP. Kenneth Iverson developed APL 14 in the
early 1960s, and this language infl uenced Backus’s FP programming language.
Robin Milner designed the ML programming language in the early 1970s. David
Turner developed Miranda in the mid-1980s . The Haskell programming language
was released in the late 1980s.

10 Higher-order functions are functions that take functions as arguments or return a function as a
result. They are known as operators (or functionals) in mathematics, and one example is the deriv-
ative function dy / dx that takes a function as an argument and returns a function as a result.
11 Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of uses this
feature.
12 This is the most common algorithm used to perform type inference. Type inference is concerned
with determining the type of the value derived from the eventual evaluation of an expression.
13 Lisp is a multi-paradigm language rather than a functional programming language.
14 Iverson received the Turing Award in 1979 for his contributions to programming language and
mathematical notation. The title of his Turing Award paper was ‘Notation as a tool of thought’.

16.5 Functional Programming Languages

204

16.5.1 Miranda

 Miranda was developed by David Turner at the University of Kent in the mid-1980s
[Turn:85]. It is a non-strict functional programming language: i.e. the arguments to
a function are not evaluated until they are actually required within the function
being called. This is also known as lazy evaluation, and one of its main advantages
is that it allows infi nite data structures to be passed as an argument to a function.
Miranda is a pure functional language in that there are no side effect features in the
language. The language has been used for:

 – Rapid prototyping
 – Specifi cation language
 – Teaching language

 A Miranda program is a collection of equations that defi ne various functions and
data structures. It is a strongly typed language with a terse notation.

 z = sqr p / sqr q
 sqr k = k * k

 p = a + b
 q = a - b
 a = 10
 b = 5

 The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the defi nition of the function in which it occurs.

 One of the most common data structures used in Miranda is the list. The empty
list is denoted by [], and an example of a list of integers is given by [1, 3, 4, 8]. Lists
may be appended to by using the ‘++’ operator. For example,

 [1, 3, 5] ++ [2, 4] is [1, 3, 5, 2, 4].

The length of a list is given by the ‘#’ operator:

 # [1, 3] = 2

The infi x operator ‘:’ is employed to prefi x an element to the front of a list. For
example,

 5 : [2, 4, 6] is equal to [5, 2, 4, 6]

The subscript operator ‘!’ is employed for subscripting. For example,

 Nums = [5,2,4,6] then Nums!0 is 5.

The elements of a list are required to be of the same type. A sequence of elements
that contains mixed types is called a tuple. A tuple is written as follows:

16 History of Programming Languages

205

 Employee = (“Holmes”, “222 Baker St. London”, 50, “Detective”)

A tuple is similar to a record in Pascal whereas lists are similar to arrays. Tuples
cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function:

 fac 0 = 1

fac (n + 1) = (n + 1) * fac n

The defi nition of the factorial function uses two equations, distinguished by the
use of different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists:

 reverse [] = []

reverse (a:x) = reverse x ++ [a]

 Miranda is a higher-order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed and this allows a function of
 n arguments to be treated as n applications of a function with one argument. Function
application is left associative: i.e. f x y means (f x) y. That is, the result of applying
the function f to x is a function, and this function is then applied to y . Every function
with two or more arguments in Miranda is a higher-order function.

16.5.2 Lambda Calculus

 Lambda calculus (λ- calculus) was designed by Alonzo Church in the 1930s to study
computability. It is a formal system that may be used to study function defi nition,
function application, parameter passing and recursion. It may be employed to defi ne
what a computable function is, and any computable function may be expressed and
evaluated using the calculus.

 The lambda calculus is equivalent to the Turing machine formalism. However,
lambda calculus emphasizes the use of transformation rules, whereas Turing
machines are concerned with computability on primitive machines. Lambda calcu-
lus consists of a small set of rules:

 Alpha-conversion rule (α-conversion) 15
 Beta-reduction rule (β-reduction) 16
 Eta-conversion (η-conversion) 17

15 This essentially expresses that the names of bound variables is unimportant.
16 This essentially expresses the idea of function application.
17 This essentially expresses the idea that two functions are equal if and only if they give the same
results for all arguments.

16.5 Functional Programming Languages

206

 Every expression in the λ- calculus stands for a function with a single argument.
The argument of the function is itself a function with a single argument and so on.
The defi nition of a function is anonymous in the calculus. For example, the function
that adds one to its argument is usually defi ned as f (x) = x + 1. However, in λ- calculus
the function is defi ned as:

l lx x. .+ +()1 1or equivalentlyas z z

 The name of the formal argument x is irrelevant and an equivalent defi nition of
the function is λ z. z + 1. The evaluation of a function f with respect to an argument
(e.g. 3) is usually expressed by f (3). In λ- calculus this would be written as (λ x. x + 1)
3, and this evaluates to 3 + 1 = 4. Function application is left associative : i.e. f x y = (f
x) y . A function of two variables is expressed in lambda calculus as a function of one
argument, which returns a function of one argument. This is known as currying and
has been discussed earlier. For example, the function f(x , y) = x + y is written as λ x .
λ y. x + y . This is often abbreviated to λ x y. x + y .

 λ-Calculus is a simple mathematical system and its syntax is defi ned as
follows:

<exp>::= < identifi er> |

 λ < identifi er > . < exp> | --abstraction

 <exp > <exp> | --application

 (<exp>)

 -- Syntax of Lambda Calculus --

 λ -Calculus’s four lines of syntax plus conversion rules are suffi cient to defi ne
B ooleans , integers , data structures and computations on them. It inspired LISP and
modern functional programming languages.

16.6 Logic Programming Languages

 Logic programming languages describe what is to be done, rather than how it should
be done. These languages are concerned with the statement of the problem to be
solved, rather than how the problem will be solved.

 These languages use mathematical logic as a tool in the statement of the problem
defi nition. Logic is a useful tool in developing a body of knowledge (or theory), and
it allows rigorous mathematical deduction to derive further truths from the existing
set of truths. The theory is built up from a small set of axioms or postulates and rules
of inference derive further truths logically.

 The objective of logic programming is to employ mathematical logic to assist
with computer programming. Many problems are naturally expressed as a theory,
and the statement of a problem to be solved is often equivalent to determining if a
new hypothesis is consistent with an existing theory. Logic provides a rigorous way
to determine this, as it includes a rigorous process for conducting proof.

16 History of Programming Languages

207

 Computation in logic programming is essentially logical deduction, and logic
programming languages use fi rst-order 18 predicate calculus. It employs theorem
proving to derive a desired truth from an initial set of axioms. These proofs are
constructive 19 in the sense that an actual object that satisfi es the constraints is pro-
duced, rather than a reliance on a theoretical existence theorem. Logic program-
ming specifi es the objects, the relationships between them and the constraints that
must be satisfi ed for the problem.

 – The set of objects involved in the computation
 – The relationships that hold between the objects
 – The constraints of the particular problem

 The language interpreter decides how to satisfy the particular constraints.
 Artifi cial intelligence infl uenced the development of logic programming, and J ohn
McCarthy 20 demonstrated that mathematical logic could be used for expressing
knowledge. The fi rst logic programming language was Planner developed by Carl
Hewitt at MIT in 1969. It uses a procedural approach for knowledge representation
rather than McCarthy’s declarative approach.

 The best-known logic programming languages is Prolog, which was developed
in the early 1970s by Alain Colmerauer and Robert Kowalski . It stands for pro gram-
ming in log ic. It is a goal-oriented language that is based on predicate logic. Prolog
became an ISO standard in 1995. The language attempts to solve a goal by tackling
the subgoals that the goal consists of:

 goal :- subgoal 1 , …, subgoal n .

 That is, in order to prove a particular goal, it is suffi cient to prove subgoal 1
through subgoal n . Each line of a Prolog program consists of a rule or a fact, and the
language specifi es what exists rather than how. The following program fragment
has one rule and two facts:

 grandmother(G,S) :- parent(P,S), mother(G,P).
mother(sarah, isaac).

parent(isaac, jacob).

18 First-order logic allows quantifi cation over objects but not functions or relations. Higher-order
logics allow quantifi cation of functions and relations.
19 For example, the statement ∃ x such that x = √4 states that there is an x such that x is the square
root of 4, and the constructive existence yields that the answer is that x = 2 or x - -2, i.e. constructive
existence provides more the truth of the statement of existence, and an actual object satisfying the
existence criteria is explicitly produced.
20 John McCarthy received the Turing Award in 1971 for his contributions to artifi cial intelligence.
He also developed the programming language LISP.

16.6 Logic Programming Languages

208

 The fi rst line in the program fragment is a rule that states that G is the grand-
mother of S if there is a parent P of S and G is the mother of P. The next two state-
ments are facts stating that isaac is a parent of jacob, and that sarah is the mother of
isaac. A particular goal clause is true if all of its subclauses are true:

 goalclause(V g) :- clause 1 (V 1),..,clause m (V m)

 A Horn clause consists of a goal clause and a set of clauses that must be proven
separately. Prolog fi nds solutions by unifi cation: i.e. by binding a variable to a value.
For an implication to succeed, all goal variables V g on the left side of :- must fi nd a
solution by binding variables from the clauses which are activated on the right side.
When all clauses are examined and all variables in V g are bound, the goal succeeds.
But if a variable cannot be bound for a given clause, then that clause fails. Following
the failure, Prolog backtracks , and this involves going back to the left to previous
clauses to continue trying to unify with alternative bindings. Backtracking gives
Prolog the ability to fi nd multiple solutions to a given query or goal.

 Most logic programming languages use a simple searching strategy to consider
alternatives:

 If a goal succeeds and there are more goals to achieve, then remember any untried
alternatives and go on to the next goal.

 If a goal is achieved and there are no more goals to achieve, then stop with
success.

 If a goal fails and there are alternative ways to solve it, then try the next one.
 If a goal fails and there are no alternate ways to solve it, and there is a previous goal,

then go back to the previous goal.
 If a goal fails and there are no alternate ways to solve it, and no previous goal, then

stop with failure.

 Constraint programming is a programming paradigm where relations between
variables can be stated in the form of constraints. Constraints specify the properties
of the solution and differ from the imperative programming languages in that they
do not specify the sequence of steps to execute.

16.7 Syntax and Semantics

 There are two key parts to any programming language, namely, its syntax and
 semantics . The syntax is the grammar of the language, and a program needs to be
syntactically correct with respect to its grammar. The semantics of the language is
deeper and determines the meaning of what has been written by the programmer.
The semantics of a language determines what a syntactically valid program will
compute. A programming language is therefore given by:

 Programming Language = Syntax + Semantics

16 History of Programming Languages

209

 The theory of the syntax of programming languages is well established, and
Backus-Naur Form 21 (BNF) is employed to specify the grammar of languages. The
grammar of a language may be input into a parser, which determines whether the
program is syntactically correct. Chomsky 22 defi ned a hierarchy of grammars (regular,
context-free, context sensitive). A BNF specifi cation consists of a set of rules such as

 <symbol>::= < expression with symbols>

where < symbol > is a nonterminal and the expression consists of sequences of sym-
bols and/or sequences separated by the vertical bar ‘|’ which indicates a choice.
Symbols that never appear on a left side are called terminals. The partial defi nition
of the syntax of various statements in a programming language is given below:

 <loop statement> ::= < while loop > | < for loop>
 <while loop> ::= while () < statement>

 <for loop> ::= for () < statement>

 ::= < assignment statement> | < loop statement>
 <assignment statement> ::= < variable> := < expression>

 The example above includes various nonterminals (<loop statement>, <while
loop>, <for loop>, <condition>, <expression>, <statement>, <assignment state-
ment> and < variable>) . The terminals include ‘while’, ‘for’, ‘:=’, ‘(’ and ‘)’. The
production rules for < condition > and < expression > are not included.

 There are various types of grammars such as regular grammars, context-free
grammars and context-sensitive grammars. A parser translates the grammar of a
language into a parse table. Each type of grammar has its own parsing algorithm to
determine whether a particular program is valid with respect to its grammar.

16.7.1 Programming Language Semantics

 The formal semantics of a programming language is concerned with the meaning of
programs. A program is written according to the rules of the language, and the com-
piler then checks that it is syntactically correct, and if so, it generates the equivalent
machine code. 23

 The compiler must preserve the semantics of the language, and the syntax of the
language gives no information as to the meaning of a program. It is possible to write
syntactically correct programs that behave in quite a different way from the inten-
tions of the programmer.

21 Backus-Naur Form is named after John Backus and Peter Naur. It was created as part of the
design of ALGOL 60 and used to defi ne the syntax rules of the language.
22 Chomsky made important contributions to linguistics and the theory of grammars. He is more
widely known today as a critic of US foreign policy.
23 Of course, what the programmer has written may not be what the programmer had intended.

16.7 Syntax and Semantics

210

 The formal semantics of a language is given by a mathematical model, which
describes the possible computations described by the language. The three main
approaches to programming language semantic are axiomatic semantics , opera-
tional semantics and denotational semantics. A short summary of each approach is
described in Table 16.2 , and more detailed information is in [ORg:06 , ORg:12].

16.8 Review Questions

 1. Describe the fi ve generations of programming languages.
 2. Describe the early use of machine code.
 3. Describe the early use of assembly languages.
 4. Describe the key features of Fortran and COBOL.
 5. Describe the key features of Pascal and C.
 6. Discuss the key features of object-oriented languages.
 7. Explain the differences between imperative programming languages and

functional programming languages.
 8. What are the key features of logic programming languages?
 9. What is the difference between syntax and semantics?
 10. Explain the main approaches to programming language semantics.

 Table 16.2 Programming language semantics

 Approach Description

 Axiomatic
semantics

 Axiomatic semantics involves giving meaning to phrases of the language
with logical axioms. This approach is based on mathematical logic, and it
employs pre and post condition assertions to specify what happens when
the statement executes. The relationship between the initial assertion and
the fi nal assertion essentially gives the semantics of the code

 Operational
semantics

 The operational semantics for a programming language was developed by
Gordon Plotkin [Plo:81]. It describes how a valid program is interpreted
by a sequence of computational steps

 An abstract machine (SECD machine) may be defi ned to give meaning to
phrases, by describing the transitions they induce on states of the
machine

 A precise mathematical interpreter (such as the lambda calculus) may
also give the semantics

 Denotational
semantics

 Denotational semantics (originally called mathematical semantics)
provides meaning to programs in terms of mathematical objects such as
integers, tuples and functions

 Each phrase in the language is translated into a mathematical object that is
the denotation of the phrase. Christopher Strachey and Dana Scott
developed it in the mid-1960s

16 History of Programming Languages

211

16.9 Summary

 This chapter considered the evolution of programming languages from the older
machine languages, to the low-level assembly languages, to high-level program-
ming languages and object-oriented languages, to functional and logic program-
ming languages. Finally, the syntax and semantics of programming languages were
briefl y discussed.

 The advantages of the machine languages are execution speed and effi ciency. It
is diffi cult to write programs in these languages, as the program involves a stream
of binary numbers. These languages were not portable, as the machine language for
one computer may differ signifi cantly from the machine language of another.

 The second-generation languages, or 2GLs, are low-level assembly languages
that are specifi c to a particular computer and processor. These are easier to write and
understand, but they must be converted into the actual machine code to run on the
computer. The assembly language is specifi c to a particular processor family and
environment and is therefore not portable. However, their advantages are execution
speed, as the assembly language is the native language of the processor.

 The third-generation languages, or 3GLs, are high-level programming languages.
They are general-purpose languages and have been applied to business, scientifi c
and general applications. They are designed to be easier to understand and to allow
the programmer to focus on problem solving. Their advantages include ease of read-
ability and portability and ease of debugging and maintenance. The early 3GLs
were procedure oriented and the later 3GLs were object oriented.

 Fourth-generation languages, or 4GLs, are languages that consist of statements
similar to human language. Most fourth-generation languages are non-procedural
and are often used in database programming. They specify what needs to be done
rather than how it should be done, and they have been used as report generators and
form generators.

 Fifth-generation programming languages or 5GLs, are programming languages
that is based around solving problems using logic programming or applying con-
straints to the program. They are designed to make the computer (rather than the
programmer) solve the problem. The programmer only needs to be concerned with
the specifi cation of the problem and the constraints to be satisfi ed and does not need
to be concerned with the algorithm or implementation details.

16.9 Summary

213© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_17

 17 History of Operating Systems

 Abstract
 This chapter presents a short history of operating systems including the IBM
OS/360, which was the operating system for the IBM System/360 family of com-
puters. We discuss the MVS and VM operating systems, which were used on the
IBM System/370 mainframe computer. Ken Thompson and Dennis Ritchie
developed the popular UNIX operating system at Bell Labs in the early 1970s.
This is a multi-user and multitasking operating system and was written almost
entirely in C. DEC developed the VAX/VMS operating system in the late 1970s
for its VAX family of minicomputers. Microsoft developed MS/DOS for the
IBM personal computer in 1981, and it introduced Windows as a response to the
Apple Macintosh. There is a short discussion on Android and iOS, which are
popular operating systems for mobile devices.

 Key Topics
 MVS
 VM
 OS/360
 UNIX
 MS/DOS
 Windows
 Android
 iOS

214

17.1 Introduction

 An operating system is a collection of software programs that controls the hardware
of a computer and makes it usable. It makes the computing power of the hardware
available to the users of the computer, and it manages the hardware to achieve good
system performance. An operating system manages system hardware such as the
processors, storage, input/output devices, communication devices and data, and it
provides functionality such as sharing hardware among users, scheduling resources
among users, preventing users from interfering with each other, facilitating input/
output, recovering from errors and handling network communication.

 The earliest computers did not have an operating system, and the user had exclu-
sive control over a large computer for a specifi ed period of time. The user entered
the program one bit at a time in machine code (initially using mechanical switches
and later with a stack of punched cards) and waited for the results. People began to
develop libraries to share code for common activities, and these are in a sense the
precursor of today’s operating systems.

 The earliest operating systems were designed in the 1950s with the goal of
making more effi cient use of expensive computer resources. These batch-processing
systems ran one job at a time, and programs and data were submitted in groups
(or batches).

 These evolved during the early 1960s into multi-batch systems that were designed
to improve utilization of the expensive computer resources. They could handle sev-
eral diverse jobs at once, and running several jobs offered a way to optimize com-
puter utilization. One job could be using the processor while another job could be
using the various I/O devices. These later batch-processing systems contained many
peripheral devices such as card readers, card punches, printers, tape drives and disk
drives. Jobs were normally submitted on punched cards and computer tape, and
often a user’s job could sit for hours (days) on an input table until it was processed.
However, even a very slight error in a program would cause the program to fail, and
it would require resubmission. This meant that software development in this envi-
ronment was very slow. This led operating system designers to develop the concept
of multiprogramming, in which several jobs are in main memory at once, and the
concept of interrupts, where an interrupt allows one unit to gain the attention of
another, and the state of the interrupted unit is saved prior to the processing of the
interrupt and restored once processing is complete.

 MIT developed the CTSS time-sharing system in the early 1960s, and this oper-
ating system provided users with typewriter-like terminals to obtain computing
power from the machine. CTSS ran a conventional batch stream (to ensure high
utilization of expensive computer resources), but it was also able to give fast
responses to users who were editing or debugging programs. It was a highly interac-
tive environment where the computer provided rapid responses to user requests.
IBM began work on the CP/CMS operating system in 1964, and this would eventu-
ally evolve into IBM’s VM operating system.

 IBM announced the System/360 family of computers in 1964, and the computers
in the family were designed to use the IBM System/360 operating system (OS/360).

17 History of Operating Systems

215

OS/360 was a batch-oriented operating system, and IBM supported three variants of
OS/360, which allowed multiprogramming for mid-range and top-range members
of the family. The other major operating system used in the System/360 was the
Disk Operating System (DOS/360). 1 The IBM System/360 evolved over time into
the System/370 series.

 MIT’s successor to the CTSS operating system was a general time-sharing oper-
ating system called Multics , and Bell Labs was initially involved in its development.
UNIX arose out of work on the development of Multics, and it was developed at
Bell Labs in the early 1970s. It is a multitasking and multi-user operating system.

 The IBM PC was introduced in 1981, and IBM outsourced the development of
the operating system to a small company called Microsoft. The terms of the deal
with IBM allowed Microsoft the right to license its operating system, MS/DOS, on
IBM compatibles, with PC/DOS (or simply DOS) reserved for IBM personal com-
puters only. MS/DOS managed fl oppy disks and fi les, input and output and memory,
and it contained an external command processor that interpreted user commands
and allowed the user to interact with the system.

 The Macintosh was a paradigm shift for the computer industry when it was intro-
duced in 1984. Its MAC operating system was GUI based, friendly, intuitive and
easy to use, and it was clear that the future of operating systems was in GUI-driven
systems, rather than primitive command-driven operating systems such as MS/DOS.

 Microsoft Windows is a family of graphical operating systems developed by
Microsoft, and it was Microsoft’s initial response to Apple’s GUI operating system.
Windows has evolved to become the dominant operating system on laptops and
personal computers, but it has failed to make an impact on the smartphone operating
system market, which is dominated by Apple’s iOS and Google’s Android operating
systems.

 The Android operating system was designed mainly for touchscreen smart-
phones and tablets, and it was developed by Google and the Open Handset alliance.
Android is built on the Linux kernel, and its fi rst version was released in late 2007.

 The iOS operating system is a mobile operating system employed on Apple’s
mobile devices such as smartphones and tablets. It was introduced in 2007. For
more detailed information on operating systems, see [AnDa:14 , Dei:90].

17.2 OS/360

 IBM announced the System/360 family of computers in 1964, and the family of
computers was designed to use the IBM System/360 operating system (OS/360).
OS/360 was a batch-oriented operating system, and IBM supported three variants of
it. These were OS/360 PCP (Principal Control Program), OS/360 MFT (Multiple
Programming with a Fixed number of Tasks) and OS/360 MVT (Multiple
Programming with a Variable number of Tasks).

1 Not to be confused with DOS used on IBM personal computers.

17.2 OS/360

216

 OS/360 PCP was the simplest version, and it could run only one program at a
time. The smaller members of the System/360 family used it. OS/360 MFT could
run several programs at once, but only after partitioning the memory required to run
each. It was subject to the limitation that if a program was idle, its allocated memory
was unavailable to other programs. It was developed as an interim solution pending
the delayed introduction of OS/360 MVT. However, the simpler MFT continued in
use for many years due to problems with MVT.

 OS/360 MVT was the most sophisticated version of OS/360, and it was intended
for the largest members in the System family. It allowed memory divisions to be
recreated as needed, and it was able to allocate all of a computer’s memory (if
required) to a single large job. Further, whenever memory was available, OS/360
MVT searched a queue of jobs to see if any could be run on the available memory.
OS/360 MVT was introduced in 1967.

 All three versions of OS/360 provided similar features from the point of view of
application programs. This included the same Application Programming Interface
(API), the same job control language (JCL) for initiating batch jobs, the same access
methods for reading and writing fi les and data communication, the same spooling
facility and multitasking.

 OS/360 MVT evolved over time to become OS/VS2 following the introduction
of virtual memory in the IBM System/370. OS/VS2 was later renamed to OS/MVS.

17.3 MVS

 IBM introduced the Multiple Virtual Storage (MVS) operating system in 1974, and
it was an enhancement of the MVT version of the OS/360 operating system that
supported virtual memory. It was the most commonly used operating system on the
IBM System/370 and System/390 mainframe computers.

 The System/370 was an enhancement of the System/360 architecture in that it
provided virtual storage capabilities, where virtual storage allows a much larger
storage space to be addressed than is available in the primary memory of the com-
puter. The concept of virtual storage dates back to the design of the Atlas Computer
at the University of Manchester in 1960, and the two most common methods of
implementing virtual storage are paging and segmentation.

 The 24-bit addressing of the System/370 meant that each user (or job) had a
16-megabyte (2 24) virtual address space (i.e. 256 segments, with each segment con-
taining 16 pages, and each page contained 4096 bytes).

 MVS provides multiprogramming and multiprocessing capabilities, and it is a
large operating system designed with performance, reliability and availability in
mind. The operating system has recovery routines that gain control in the event of
an operating system failure, and it attempts recovery from hardware errors.

 MVS includes a master scheduler that initializes the system and responds to
commands issued by the system operator. It contains a job entry subsystem
that allows jobs to be entered into the system. Its system management facility
collects information to account for system use and to analyse system performance.

17 History of Operating Systems

217

Its time-sharing option (TSO) provides users with interactive editing, testing and
debugging capabilities. Its data management functionality handles all input/output
and fi le management activities. Its telecommunication functionality allows remote
terminal users to access MVS.

17.4 VM

 The virtual machine (VM) operating system makes a single machine appear as sev-
eral real machines (Fig. 17.1). The user at a VM virtual machine sees the equivalent
of a complete real machine, even though it is an illusion and just appears to be a real
machine to the user. A virtual machine runs programs in a similar way to a real
machine, and the user communicates with the virtual machine through a terminal.
The most widely used virtual machine operating system is IBM’s VM, and it is used
on an IBM System/370 mainframe. It created the illusion that each user operating at
a terminal had access to a complete IBM System/370, including the input/output
devices.

 VM can run several different operating systems at once, each of them on its own
virtual machine. This is a very attractive feature as running multiple operating sys-
tems offers a form of backup in the event of failure. The operating systems running
on virtual machines perform their normal functions such as storage management,
control of input/output, processor scheduling and multiprogramming. Virtual
machines create virtual processors, virtual storage and virtual I/O devices. The VM
user may run operating systems such as MVS, VM/370, AIX/370 or VM itself.

 The main components of VM are the Control Program (CP), the Conversational
Monitor System (CMS), the Remote Spooling Communications Subsystem (RSCS),
the Interactive Problem Control System (IPCS) and the CMS batch.

 CP creates the environment in which virtual machines may execute, and it pro-
vides support for the various operating systems that may be used to control the IBM
System/370. It manages the real machine underlying the virtual machine environ-
ment and gives each user access to the facilities of the real machine. CMS is an
applications system with editors, debugging tools and various application packages.

Virtual
Machine

1

Virtual
Machine

2

Virtual
Machine

3

Virtual Machine
Multiprogramming
Operating System

Virtual
Machine

n

 Fig. 17.1 Virtual machine
operating system

17.4 VM

218

RSCS provides the ability to transmit and receive fi les, and IPCS is used for on-line
analysis and for fi xing VM software problems. The CMS batch facility allows the
user to submit longer jobs for batch processing.

17.5 VMS

 The VAX Virtual Memory System (VMS) was designed as the operating system for
the VAX family of minicomputers. Digital Equipment Corporation (DEC) intro-
duced it in the late 1970s, and DEC was a major player in the minicomputer market
with its popular family of PDP and VAX minicomputers. The models in the VAX
family of computers all had the same architecture, and they could all run the VMS
operating system.

 David Cutler and others at DEC designed VMS as a high-end, secure, scalable,
multi-user, multitasking and virtual memory operating system, and it supported a
broad class of applications and systems. DEC developed VAX and VMS together,
and the designers balanced the trade-offs between the work done by the hardware
and the work done by the operating system.

 VAXes may operate together in a peer-to-peer relationship, where any VAX may
be a client or any may be a server. This allows fl exibility when several computers
perform tasks in cooperation. Several VAXes may be connected together so that
they work as a cooperating unit called a VAXcluster.

 VMS expanded the memory of the machine by disk or other peripheral storage
to act as extra memory. The VAX-11 provided a 32-bit virtual address space per
process, divided into 512 byte pages. VMS used paging and segmentation, with the
fi rst 23 bits used as the virtual page number (VPN), and a 9-bit offset within the
page.

 VMS was a popular and easy to use operating system. Its commands are easy to
remember English-like words, and it has an extensive on-line help system. It
included utilities such as a mail program and a text editor. Open VMS is the latest
version of the operating system and is sold by HP.

17.6 UNIX

 Ken Thompson, Dennis Ritchie and others designed and developed the UNIX oper-
ating system at Bell Labs in the early 1970s. It is a multitasking and multi-user
operating system that was written almost entirely in the C programming language,
which was designed by Denis Ritchie at Bell Labs. UNIX arose out of work by the
Massachusetts Institute of Technology, General Electric and Bell Labs on the devel-
opment of a general time-sharing operating system called Multics .

 Bell Labs decided in 1969 to withdraw from the Multics project (as they believed
that it would be a large and expensive system) and to use General Electric’s GECOS
operating system. However, several of the Bell Lab researchers (led by Ken
Thompson) decided to continue the work on a smaller-scale operating system, and

17 History of Operating Systems

219

the name ‘UNIX’ was coined by Brian Kernighan. The fi rst version of UNIX was
written on a digital PDP-7 minicomputer in assembly language, and Dennis Ritchie
joined the project. He helped in rewriting UNIX in the C programming language for
the PDP-11 computer in 1973, which had recently been introduced. Thompson and
Ritchie later received the Turing Award for their design and development of the
UNIX operating system. Microsoft introduced XENIX, a commercial version of
UNIX, in 1980.

 The use of C helped to make UNIX more portable, and it became a widely used
operating system. Universities and the US government used it initially, but it later
became popular in industry. It is a powerful and fl exible operating system, and it is
used on a variety of machines from micros to supercomputers. It is designed to
allow several programmers to access the computer at the same time, and to share its
resources, and it offers powerful real-time sharing of resources.

 It includes features such as multitasking which allows the computer to do several
things at once, multi-user capability which allows several users to use the computer
at the same time and portability of the operating system which allows it to be used
on several computer platforms with minimal changes to the code. It includes a col-
lection of tools and applications. There are three levels of the UNIX system: kernel ,
 shell and tools and applications .

 The kernel is the central part of the UNIX operating system, and it provides sys-
tems services to applications programs. This includes services for process manage-
ment, memory management and input/output management. UNIX manages many
concurrent processes.

 The UNIX shell is a command interpreter that acts as the interface between the
user and the operating system. There are a number of popular shells for UNIX
including the Bourne shell and Korn shell. UNIX uses a hierarchical fi le system
with the root node at its origin, with each directory entry containing fi les and other
directories. For a more detailed account of UNIX, see [Rob:05].

17.7 MS/DOS

 We discussed the introduction of the IBM personal computer in an earlier chapter,
as well as the controversy with respect to the development of the PC/DOS operating
system for the IBM PC. Digital Research, the developers of the CP/M operating
system, lost out on the major opportunity of supplying the operating system for the
IBM PC, and instead it was Microsoft that reaped the benefi ts. The terms of the deal
with IBM allowed Microsoft the right to license its operating system, MS/DOS, on
IBM compatibles, whereas PC/DOS (or simply DOS) was reserved for IBM per-
sonal computers only.

 The IBM PC was introduced in 1981, and the fi rst version of the operating
system was compatible with Digital Research’s CP/M operating system (as it essen-
tially was CP/M). It managed fl oppy disks and fi les, input and output and memory,
and it contained an external command processor that interpreted user commands
and allowed the user to interact with the system.

17.7 MS/DOS

220

 MS/DOS version 2.0 was introduced in 1983 and it was designed to support the
10 MB hard disk on the IBM PC/XT, as well as providing support for device drivers.
Microsoft had previously licensed XENIX (their commercial version of UNIX)
from AT&T, and MS/DOS 2.0 was a move towards XENIX. It employed a hierar-
chical fi le system, and a unique pathname identifi ed each fi le (similar to XENIX). It
provided limited multitasking for background print spooling. The hard disk on the
XT helped to establish the IBM PC in the business marketplace.

 The open architecture of the IBM PC led to the development of cheaper IBM-
compatible personal computers (clones of the IBM PC but cheaper), and they rap-
idly gained market share, as it was diffi cult for IBM to compete on price. This led
to massive international demand for MS/DOS (which was the operating system for
IBM compatibles and clones).

 MS/DOS 3.0 was released in 1984 and it provided support for the IBM PC/AT,
which had a 20 MB hard disk. Several versions of MS/DOS followed through the
1980s and 1990s and were used with Microsoft Windows 95 and Windows
Millennium. Today, Microsoft Windows is the operating system used on personal
computers, and MS/DOS is now of historical interest.

17.8 Microsoft Windows

 Microsoft Windows is a family of graphical operating systems developed by
Microsoft. The original Windows 1.0 operating environment was introduced in late
1985 as a graphical operating system shell for its command-driven MS/DOS operat-
ing system. It was Microsoft’s initial response to Apple’s GUI operating system.

 The Apple Macintosh was released in 1984, and its MAC operating system was
GUI based and a paradigm shift for the computer industry. It was friendly, intuitive
and easy to use, and it was clear that the future of operating systems was in GUI-
driven systems, rather than primitive command-driven operating systems such as
MS/DOS.

 The early versions of Windows were not complete operating systems as such and
were instead graphical shells in that they ran on top of MS/DOS and extended the
operating system. Windows 1.0 used MS/DOS for fi le system services, and it also
included applications such as a calculator, calendar and clock. However, Windows
differed from MS/DOS in that it allowed multiple graphical applications to be run
at the same time, and this was done through cooperative multitasking.

 Windows 2.0 was introduced in 1987 and it was more popular than its predeces-
sor. It included improvements to the user interface and to memory management.
Windows 3.0 improved the design of the operating system, and it used virtual mem-
ory and virtual device drivers that allowed arbitrary devices to be shared between
multitasked DOS applications. It was introduced in 1990, and it was the fi rst
Windows operating system to achieve commercial success.

 Windows 3.1 was introduced in 1992, Windows 95 in 1995, Windows 98 in 1998
and Windows Millennium (ME) in 2000. Windows ME provided expanded multi-
media capabilities including the Windows Media Player, and it was the last

17 History of Operating Systems

221

DOS- based version of Windows. Windows ME was criticized for its speed and
instability.

 Windows XP was introduced in 2001 and it was marketed into a ‘Home’ edition
for personal users and a ‘Professional’ edition for business users. Windows Vista
was released in 2006, Windows 7 in 2009, Windows 8 in 2012 and Windows 10 in
2015.

 Microsoft Windows dominates the personal computer and laptop market with
over 90 % market share. Windows has not been as successful on mobile computing
platforms such as mobile phones and tablets, where Google’s Android operating
system is the dominant platform.

17.9 Mobile Operating Systems

 Android (Fig. 17.2) is a mobile operating system that was developed by Google and
the Open Handset alliance, and it was designed mainly for touchscreen smartphones
and tablets. It is built on the Linux kernel, and the fi rst version of the operating sys-
tem was released in late 2007. The fi rst Android smartphone was released in late
2008, and Android is currently the most widely used operating system.

 The source code for Android is released under an open-source licence, and its
open-source philosophy has led to a large community of developers who maintain
and develop new versions of it. Manufacturers may modify Android as they see fi t,
and this allows them to customize their devices and differentiate them from com-
petitor products.

 Fig. 17.2 Android 6.0

17.9 Mobile Operating Systems

222

 There are over a million applications (apps) for Android, and developers are
challenged to ensure that the apps are compatible with the many mobile devices
using different hardware and running various (possibly customized) versions of
Android.

 The iOS operating system is a mobile operating system employed on Apple’s
mobile devices such as smartphones and tablets. It was created from the MAC OS/X
operating system and introduced in 2007. Multitasking for iOS was introduced in
2010 with the release of iOS version 4.0.

17.10 Review Questions

17.11 Summary

 An operating system is a collection of software programs that control the hardware
of a computer and makes it usable. It makes the computing power of the hardware
available to the users of the computer, and it manages the hardware to achieve good
system performance.

 The earliest computers did not have an operating system, and the user had exclu-
sive control over a large computer for a specifi ed period of time. The earliest operat-
ing systems were designed in the 1950s with the goal to make more effi cient use of
the computer (as computers were expensive). These batch-processing systems ran
one job at a time, and programs and data were submitted in groups (or batches).

 These evolved during the early 1960s into batch multiprogramming systems that
were designed to get better utilization of the expensive computer resources. They
could handle several diverse jobs at once. However, software development in this
environment was very slow. This led operating system designers to develop the
concept of multiprogramming in which several jobs are in main memory at once.

 IBM announced the System/360 family of computers in 1964, and the computers
in the family were designed to use the IBM System/360 operating system (OS/360).
OS/360 was a batch-oriented operating system.

 UNIX was developed at Bell Labs in the early 1970s. It is a multitasking and
multi-user operating system. The IBM PC was introduced in 1981, and IBM

 1. What is an operating system?
 2. What are the main functions of an operating system?
 3. Explain the following operating system concepts: processor scheduling,

multiprogramming, paging/segmentation and multitasking.
 4. Describe IBM’s contributions to operating system development.
 5. Describe the similarities and differences between VM and MVS.
 6. Describe the infl uence of the UNIX operating system.
 7. Describe the features of DEC’s VMS operating system.

17 History of Operating Systems

223

outsourced the development of the operating system to a small company called
Microsoft. Microsoft had the right to license its operating system, MS/DOS, on
IBM compatibles, with PC/DOS (or simply DOS) reserved for IBM personal com-
puters only.

 The Macintosh was a paradigm shift for the computer industry when it was intro-
duced in 1984. Its MAC operating system was GUI based, friendly, intuitive and
easy to use.

 Microsoft Windows is a family of graphical operating systems developed by
Microsoft, and it has evolved to become the dominant operating system on laptops
and personal computers. It has failed to make an impact on the smartphone operat-
ing system market, which is dominated by Apple’s iOS and Google’s Android oper-
ating systems.

 The Android operating system was designed mainly for touchscreen smart-
phones and tablets, and the iOS operating system is a mobile operating system
employed on Apple’s mobile devices.

17.11 Summary

225© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_18

 18 History of Software Engineering

 Abstract
 This chapter presents a short history of software engineering from its birth at the
Garmisch conference in Germany. The IEEE defi nition of software engineering
is discussed, and it is emphasized that software engineering is a lot more than
just programming. We discuss the key challenges in software engineering, as
well a number of the high-profi le software failures. The waterfall and spiral life
cycles are discussed, as well a brief discussion on the Rational Unifi ed Process
and the popular Agile methodology. We discuss the key activities in the waterfall
model such as requirements, design, implementation, unit, system and accep-
tance testing.

 Key Topics
 Standish Chaos Report
 Software life cycles
 Waterfall model
 Spiral model
 Rational Unifi ed Process
 Agile development
 Software inspections
 Software testing
 Project management
 CMMI

226

18.1 Introduction

 The approach to software development in the 1950s and 1960s has been described
as the Mongolian Hordes Approach by Ince and Andrews [1nА:91]. The ‘method’
or lack of method was characterized by:

 The completed code will always be full of defects.
 The coding should be fi nished quickly to correct these defects.
 Design as you code approach.

 This philosophy accepted defeat in software development and suggested that
irrespective of a solid engineering approach, the completed software would always
contain lots of defects and that it therefore made sense to code as quickly as possible
and to then identify the defects that would be present, so as to correct them as soon
as possible.

 It was clear in the late 1960s that the existing approaches to software develop-
ment were deeply fl awed and that there was an urgent need for change. The NATO
Science Committee organized two famous conferences to discuss critical issues
in software development [Bux:75], with the fi rst conference held at Garmisch,
Germany, in 1968, and it was followed by a second conference in Rome in 1969.

 Over 50 people from 11 countries attended the Garmisch conference, including
Edsger Dijkstra, who did important theoretical work on formal specifi cation and
verifi cation . The NATO conferences highlighted problems that existed in the soft-
ware sector in the late 1960s, and the term software crisis was coined to refer to
these problems. These included budget and schedule overruns, as well as problems
with the quality and reliability of the delivered software.

 The conference led to the birth of software engineering as a discipline in its own
right and the realization that programming is quite distinct from science and math-
ematics. Programmers are like engineers in that they build software products, and
they therefore need education in traditional engineering as well as the latest tech-
nologies. The education of a classical engineer includes product design and mathe-
matics. However, often computer science education places an emphasis on the latest
technologies rather than the important engineering foundations of designing and
building high-quality products that are safe for the public to use.

 Programmers therefore need to learn the key engineering skills to enable them to
build products that are safe for the public to use. This includes a solid foundation on
design and the mathematics required for building safe software products.
Mathematics plays a key role in engineering and may assist software engineers in
the delivery of high-quality software products. Several mathematical approaches to
assist software engineers are described in [ORg:06].

 There are parallels between the software crisis in the late 1960s and serious prob-
lems with bridge construction in the nineteenth century. Several bridges collapsed
or were delivered late or over-budget due to the fact that people involved in their
design and construction did not have the required engineering knowledge. This led
to bridges that were inadequately designed and constructed, leading to their col-
lapse with the loss of life and endangering the lives of the public.

18 History of Software Engineering

227

 This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practising as engineers. This organization identifi ed
a core body of knowledge that the engineer is required to possess, and the licensing
body verifi es that the engineer has the required qualifi cations and experience. This
helps to ensure that only personnel competent to design and build products actually
do so. Engineers have a professional responsibility to ensure that the products are
properly built and are safe for the public to use.

 The Standish group has conducted research (Fig. 18.1) on the extent of problems
with IT projects since the mid-1990s. These studies were conducted in the United
States, but there is no reason to believe that European or Asian companies perform
any better. The results indicate serious problems with on-time delivery of projects
or projects being cancelled prior to completion. 1 However, the comparison between
1995 and 2009 suggests that there have been some improvements with a greater
percentage of projects being delivered successfully and a reduction in the percent-
age of projects being cancelled.

 Fred Brooks argues that software is inherently complex and that there is no silver
bullet that will resolve all of the problems associated with software development
such as schedule or budget overruns [Brk:75 , Brk:86]. Problems with poor software
quality can lead to software fl aws that may seriously impact the work of an organi-
zation or even loss of life. It is therefore essential that software development
organizations place suffi cient emphasis on quality throughout the software develop-
ment life cycle.

1 These are IT projects covering diverse sectors including banking, telecommunications, etc.,
rather than pure software companies. Software companies following maturity frameworks such as
the CMMI generally achieve more consistent project results, and the CMMI focuses on the man-
agement side of software engineering.

 Fig. 18.1 Standish report – results of 1995 and 2009 survey

18.1 Introduction

228

 The Y2K problem was caused by a two-digit representation of dates, and it
required major rework of legacy software for the new millennium. Clearly, well-
designed programs would have hidden the representation of the date and would
have required minimal changes for year 2000 compliance. Instead, companies spent
vast sums of money to rectify the problem.

 The quality of software produced by some companies is impressive. 2 These com-
panies employ mature software processes and are committed to continuous improve-
ment. Today, there is a lot of industrial interest in software process maturity models
for software organizations, and various approaches to assess and mature software
companies are described in [ORg:10 , ORg:14]. 3 These models focus on improving
the effectiveness of the management, engineering and organization practices related
to software engineering and on introducing best practice in software engineering.
The disciplined use of the mature software processes by the software engineers
enables high-quality software to be consistently produced.

18.2 What Is Software Engineering?

 Software engineering involves the multi-person construction of multi-version
programs. The IEEE 610.12 defi nition of software engineering is:

 Software engineering is the application of a systematic, disciplined, quantifi able approach
to the development, operation, and maintenance of software; that is, the application of engi-
neering to software, and the study of such approaches.

 Software engineering includes:

 1. Methodologies to design, develop and test software to meet customers’ needs.
 2. Software is engineered. That is, the software products are properly designed,

developed and tested in accordance with engineering principles.
 3. Quality and safety are properly addressed.
 4. Mathematics may be employed to assist with the design and verifi cation of soft-

ware products. The level of mathematics employed will depend on the safety
critical nature of the product. Systematic peer reviews and rigorous testing will
often be suffi cient to build quality into the software, with heavy mathematical
techniques reserved for safety and security critical software .

 5. Sound project management and quality management practices are employed.
 6. Support and maintenance of the software is properly addressed.

2 I recall projects at Motorola that regularly achieved 5.6σ quality in an L4 CMM environment (i.e.
approx. 20 defects per million lines of code. This represents very high quality.).
3 Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and orga-
nizational practices required in software engineering. The emphasis is on defi ning software pro-
cesses that are fi t for purpose and to consistently follow them. The process maturity models focus
on what needs to be done rather how it should be done. This gives the organization the freedom to
choose the appropriate implementation to meet its needs. The models provide useful information
on practices to consider in the implementation.

18 History of Software Engineering

229

 Software engineering is not just programming. It requires the engineer to state
precisely the requirements that the software product is to satisfy and then to produce
designs that will meet these requirements. The project needs to be planned and
delivered on time and budget. The requirements must provide a precise description
of the problem to be solved: i.e. it should be evident from the requirements what is
and what is not required . The requirements need to be rigorously reviewed to ensure
that they are stated clearly and unambiguously and are exactly what the customer
wants. The next step is then to create the design that will solve the problem, and it
is essential to validate the correctness of the design. Next, the software to implement
the design is written, and peer reviews and software testing are employed to verify
and validate the correctness of the software.

 The verifi cation and validation of the design is rigorously performed for safety
critical systems, and it is sometimes appropriate to employ mathematical techniques
for this. However, it will often be suffi cient to employ peer reviews or software
inspections, as these methodologies provide a high degree of rigour. This may
include approaches such as Fagan inspections [Fag:76], Gilb inspections [Glb:94] or
 Prince 2’s approach to quality reviews [OGC:04].

 The term engineer is a title that is awarded on merit in classical engineering. It is
generally applied only to people who have attained the necessary education and
competence to be called engineers and who base their practice on classical engi-
neering principles. The title places responsibilities on its holder such as to behave
professionally and ethically. Often in computer science, the term software engineer
is employed loosely to refer to anyone who builds things, rather than to an individ-
ual with a core set of knowledge, experience and competence.

 Several computer scientists (such as Parnas 4) have argued that computer scien-
tists should be educated as engineers to enable them to apply appropriate scientifi c
principles to their work. They argue that computer scientists should receive a solid
foundation in mathematics and design, to enable them to have the professional com-
petence to perform as engineers in building high-quality products that are safe for
the public to use. The use of mathematics is an integral part of the engineer’s work
in other engineering disciplines, and so the software engineer should be able to use
the appropriate mathematics to assist in the modelling or understanding of the
behaviour or properties of a proposed software system.

 Software engineers need education 5 on specifi cation, design, turning designs into
programs, software inspections and testing. The education should enable the soft-
ware engineer to produce well-structured programs that are fi t for purpose.

4 Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques to software development. He
also introduced information hiding in the 1970s, which is now a part of object-oriented
development.
5 Software companies that are following approaches such as the CMM or ISO 9001 consider the
education and qualifi cation of staff prior to assigning staff to performing specifi c tasks. The appro-
priate qualifi cations and experience for the specifi c role are considered prior to appointing a person
to carry out the role. Many companies are committed to the education and continuous development
of their staff and on introducing best practice in software engineering into their organization

18.2 What Is Software Engineering?

230

 Parnas has argued that software engineers have responsibilities as professional
engineers. 6 They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their decisions
and actions 7 and have a responsibility to object to decisions that violate professional
standards. Engineers are required to behave professionally and ethically with their
clients. The membership of the professional engineering body requires the member
to adhere to the code of ethics 8 of the profession. Engineers in other professions are
licensed, and therefore Parnas argues that a similar licensing approach be adopted
for professional software engineers 9 to provide confi dence that they are competent
for the particular assignment. Professional software engineers are required to follow
best practice in software engineering and the defi ned software processes. 10

 Many software companies invest heavily in training, as the education and knowl-
edge of its staff are essential to delivering high-quality products and services.
Employees receive professional training related to the roles that they are performing,
such as project management, service management and software testing. The fact
that the employees are professionally qualifi ed increases confi dence in the ability of
the company to deliver high-quality products and services. A company that pays
little attention to the competence and continuous development of its staff will
underperform its peers and suffer a loss of reputation and market share.

6 The ancient Babylonians used the concept of accountability, and they employed a code of laws
(known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house collapsed
and killed the owner, then the builder of the house would be executed.
7 However, it is unlikely that an individual programmer would be subject to litigation in the case of
a fl aw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility
for problems rather than a guarantee of quality accompanies most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and
it would be potentially diffi cult for an outside party to prove that the cause of a particular problem
is due to the professional negligence of a particular software engineer, as there are many others
involved in the process such as reviewers of documentation and code and the various test groups.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and a company is a wealthier entity than one of its
employees. The legal aspects of licensing software may protect software companies from litiga-
tion. However, greater legal protection for the customer can be built into the contract between the
supplier and the customer for bespoke-software development.
8 Many software companies have a defi ned code of ethics that employees are expected to adhere.
Larger companies will wish to project a good corporate image and to be respected worldwide.
9 The British Computer Scientist (BCS) has introduced a qualifi cation system for computer science
professionals that it used to show that professionals are properly qualifi ed. The most important of
these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals
to be qualifi ed in service management, project management, software testing and so on.
10 Software companies that are following the CMMI or ISO 9000 standards will employ audits to
verify that the processes and procedures have been followed. Auditors report their fi ndings to
management and the fi ndings are addressed appropriately by the project team and affected
individuals.

18 History of Software Engineering

231

18.3 Challenges in Software Engineering

 The challenge in software engineering is to deliver high-quality software on time
and on budget to customers. The research done by the Standish group was discussed
earlier in this chapter, and the results of their 1998 research (Fig. 18.2) on project
cost overruns in the United States indicated that 33 % of projects are between 21 %
and 50 % overestimate, 18 % are between 51 % and 100 % overestimate and 11 % of
projects are between 101 % and 200 % overestimate.

 The accurate estimation of project cost, effort and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process actually is and to make appropriate improvements. The use
of software metrics is an objective way to do this, and improvements in estimation
will be evident from a reduced variance between estimated and actual effort. The
project manager will determine and report the actual versus estimated effort and
schedule for the project.

 Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project and to manage them
appropriately. The probability of each risk occurring and its impact is determined
and the risks are managed during project execution.

 Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor quality software lead to a negative perception of
the company and may damage the customer relationship and lead to a loss of market
share.

 There is a strong economic case to building quality into the software, as less time
is spent in reworking defective software. The cost of poor quality (COPQ) should be
measured and targets set for its reductions. It is important that lessons are learned

 Fig. 18.2 Standish 1998 report – estimation accuracy

18.3 Challenges in Software Engineering

232

during the project and are acted upon appropriately. This helps to promote a culture
of continuous improvement.

 There have been a number of high-profi le software failures [ORg:14]. These
included the millennium bug (Y2K) problem, the fl oating-point bug in the Intel
microprocessor, the European Space Agency Ariane-5 disaster and so on. These
have caused embarrassment to the organizations as well as the cost of replacement
and correction.

 The millennium bug was due to the use of two digits to represent dates rather than
four digits. The solution involved fi nding and analysing all code that had a Y2K
impact, planning and making the necessary changes and verifying the correctness of
the changes. The worldwide cost of correcting the millennium bug is estimated to
have been in billions of dollars.

 The Intel Corporation was slow to acknowledge the fl oating-point problem in its
Pentium microprocessor and in providing adequate information on its impact to its
customers. This led to a large fi nancial cost in replacing microprocessors for its
customers. The Ariane-5 failure caused major embarrassment and damage to the
credibility of the European Space Agency (ESA). Its maiden fl ight ended in failure
on June 4, 1996, after a fl ight time of just 40 s.

 These failures indicate that quality needs to be carefully considered when design-
ing and developing software. The effect of software failure may be large costs to
correct the software, loss of credibility of the company or even loss of life.

18.4 Software Processes and Life Cycles

 Organizations vary by size and complexity, and the processes employed will refl ect
the nature of their business. The development of software involves many processes
such as those for defi ning requirements, processes for project management and esti-
mation and processes for design, implementation, testing and so on.

 It is important that the processes employed are fi t for purpose, and a key premise
in the software quality fi eld is that the quality of the resulting software is infl uenced
by the quality and maturity of the underlying processes and compliance to them.
Therefore, it is necessary to focus on the quality of the processes, as well as the
quality of the resulting software.

 There is, of course, little point in having high-quality processes unless their use
is institutionalized in the organization. That is, all employees need to follow the
processes consistently. This requires that people are trained on the new processes
and that process discipline is instilled by an appropriate audit strategy.

 Employees need to be trained on the processes, and audits are conducted to
ensure process compliance. Data will be collected to improve the process. The soft-
ware process assets in an organization generally consist of:

 – A software development policy for the organization
 – Process maps that describe the fl ow of activities
 – Procedures and guidelines that describe the processes in more detail

18 History of Software Engineering

233

 – Checklists to assist with the performance of the process
 – Templates for the performance of specifi c activities (e.g. design, testing)
 – Training materials

The processes employed to develop high-quality software generally include:

 – Project management process
 – Requirements process
 – Design process
 – Coding process
 – Peer review process
 – Testing process
 – Supplier selection processes
 – Confi guration management process
 – Audit process
 – Measurement process
 – Improvement process
 – Customer support and maintenance processes

 The software development process has an associated life cycle that consists of
various phases. There are several well-known life cycles employed such as the
 waterfall model [Roy:70], the spiral model [Boe:88], the Rational Unifi ed Process
[Jac:99] and the Agile methodology [Bec:00] which has become popular in recent
years. The choice of a particular software development life cycle is determined from
the particular needs of the specifi c project. The various life cycles are described in
more detail in the following sections.

18.4.1 Waterfall Life Cycle

 The origins of the waterfall model 11 (Fig. 18.3) are in the manufacturing and con-
struction industry, and Winston Royce defi ned it formally for software development
in 1970 [Roy:70]. It starts with requirements gathering and defi nition. It is followed
by the functional specifi cation, the design and implementation of the software and
comprehensive testing. The testing generally includes unit, system and user accep-
tance testing.

 It is employed for projects where the requirements can be identifi ed early in the
project life cycle or are known in advance. It is also called the ‘V’ life cycle model,
with the left-hand side of the ‘V’ detailing requirements, specifi cation, design and
coding and the right-hand side detailing unit tests, integration tests, system tests and
acceptance testing. Each phase has entry and exit criteria that must be satisfi ed
before the next phase commences. There are several variations to the waterfall
model.

11 We treat the waterfall model as identical to the V model in this text.

18.4 Software Processes and Life Cycles

234

 Many companies employ a set of templates to enable the activities in the various
phases to be consistently performed. Templates may be employed for project
planning and reporting, requirements defi nition, design, testing and so on. These
templates may be based on the IEEE standards or on industrial best practice.

18.4.2 Spiral Life Cycles

 The spiral model (Fig. 18.4) was developed by Barry Boehm in the mid-1980s and
is useful for a project in which the requirements are not fully known at project initia-
tion, or where the requirements evolve as a part of the development life cycle. The
development proceeds in a number of spirals, where each spiral typically involves
objectives and an analysis of the risks, updates to the requirements, design, code,
testing and a user review of the particular iteration or spiral. The early spirals are
concerned with prototyping with the later spirals concerned with the full implemen-
tation of the system.

 The spiral is, in effect, a reusable prototype with the business analysts and the
customer reviewing the current iteration and providing feedback to the development
team. The feedback is analysed and used to plan the next iteration. This approach is
often used in joint application development, where the usability and look and feel of
the application are a key concern. This is important in web-based development and
in the development of a graphical user interface (GUI). The implementation of part
of the system helps in gaining a better understanding of the requirements of the
system, and this feeds into subsequent development cycle. The process repeats until
the requirements and the software product are fully complete.

 There are several variations of the spiral model including Rapid application
development (RAD), joint application development (JAD) models and the dynamic
systems development method (DSDM) model. Agile methods have become popular
in recent years and these generally employ sprints (or iterations) of 2 weeks dura-
tion to implement a number of user stories.

 Fig. 18.3 Waterfall V life cycle model

18 History of Software Engineering

235

 There are other life cycle models, for example, the iterative development process
that combines the waterfall and spiral life cycle model. The cleanroom approach
developed by Harlan Mills at IBM includes a phase for formal specifi cation, and its
approach to software testing is based on the predicted usage of the software product.
The Rational Unifi ed Process has become popular in recent years, and it is dis-
cussed in the next section.

18.4.3 Rational Unified Process

 The Rational Unifi ed Process [Jac:99] was developed at the Rational Corporation
(now part of IBM) in the late 1990s. It uses the Unifi ed Modeling Language (UML)
as a tool for specifi cation and design, and UML is a visual modelling language for
software systems, which provides a means of specifying, constructing and docu-
menting the object-oriented system. UML was developed by James Rumbaugh,
Grady Booch and Ivar Jacobson, and it facilitates the understanding of the architec-
ture and complexity of the system.

Requirements
plan

Concept of
operations

Concept of
requirements

Verification
& Validation

Verification
& Validation

Test plan

Requirements

Prototype 1 Prototype 2
Operational

prototype

Detailed
design

Code

Integration

Test

Implementation

Release

Review

Cumulative cost

1. Determine
objectives

Progress 2. Identify and
resolve risks

3. Development
and Test

4. Plan the
next iteration

Draft

Development
plan

 Fig. 18.4 SPIRAL life cycle model. Public domain

18.4 Software Processes and Life Cycles

236

 RUP is use case driven , architecture centric , iterative and incremental and
includes cycles, phases, workfl ows, risk mitigation, quality control, project man-
agement and confi guration control. Software projects may be very complex, and
there are risks that requirements may be incomplete or that the interpretation of a
requirement may differ between the customer and the project team.

 Requirements are gathered as use cases, and the use cases describe the func-
tional requirements from the point of view of the user of the system . They describe
what the system will do at a high level and ensure that there is an appropriate focus
on the user when defi ning the scope of the project. Use cases also drive the develop-
ment process , as the developers create a series of design and implementation models
that realize the use cases. The developers review each successive model for confor-
mance to the use case model, and the test team verifi es that the implementation
correctly implements the use cases.

 The software architecture concept embodies the most signifi cant static and
dynamic aspects of the system. The architecture grows out of the use cases and fac-
tors such as the platform that the software is to run on, deployment considerations,
legacy systems and non-functional requirements.

 RUP decomposes the work of a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product .
The iteration consists of one or more steps in the workfl ow and generally leads to
the growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather than the entire product. In other
words, RUP is a way to mitigate risk in software engineering.

18.4.4 Agile Development

 There has been a growth of popularity among software developers in lightweight
methodologies such as Agile . This is a software development methodology that
claims to be more responsive to customer needs than traditional methods such as the
waterfall model. The waterfall development model is similar to a wide and slow-
moving value stream and halfway through the project 100 % if the requirements are
typically 50 % done. However, for Agile development 50 % of requirements are
typically 100 % done halfway through the project .

 An early version of the methodology was originally introduced in the late 1980s/
early 1990s, and the Agile Manifesto was introduced in early 2001 [Bec:01]. Agile
has a strong collaborative style of working and its approach includes:

 – Aim is to achieve a narrow fast-fl owing value stream.
 – Feedback and adaptation employed in decision making.
 – User stories and sprints are employed.
 – Stories are either done or not done.
 – Iterative and incremental development is employed.
 – A project is divided into iterations.
 – An iteration has a fi xed length (i.e. time boxing is employed).

18 History of Software Engineering

237

 – Entire software development life cycle is employed for the implementation of
each story.

 – Change is accepted as a normal part of life in the Agile world.
 – Delivery is made as early as possible.
 – Maintenance is seen as part of the development process.
 – Refactoring and evolutionary design are employed.
 – Continuous integration is employed.
 – Short cycle times.
 – Emphasis on quality.
 – Stand-up meetings.
 – Plan regularly.
 – Direct interaction is preferred over documentation.
 – Rapid conversion of requirements into working functionality.
 – Demonstrate value early.
 – Early decision-making.

 Ongoing changes to requirements are considered normal in the Agile world , and
it is believed to be more realistic to change requirements regularly throughout the
project rather than attempting to defi ne all of the requirements at the start of the
project. The methodology includes controls to manage changes to the requirements,
and good communication and early regular feedback are an essential part of the
process.

 A story may be a new feature or a modifi cation to an existing feature . It is reduced
to the minimum scope that can deliver business value, and a feature may give rise to
several stories. Stories often build upon other stories and the entire software devel-
opment life cycle is employed for the implementation of each story. Stories are
either done or not done : i.e. there is such thing as a story being 80 % done . The story
is complete only when it passes its acceptance tests. Stories are prioritized based on
a number of factors including:

 – Business value of story
 – Mitigation of risk
 – Dependencies on other stories

 Sprint planning is performed before the start of the iteration, and stories are
assigned to the iteration to fi ll the available time. The estimates for each story and
their priority are determined, and the prioritized stories are assigned to the iteration.
 A short morning stand-up meeting is held daily during the iteration and attended
by the project manager and the project team. It discusses the progress made the
previous day, problem reporting and tracking and the work planned for the day
ahead. A separate meeting is held for issues that require more detailed discussion.

 Once the iteration is complete, the latest product increment is demonstrated to an
audience including the product owner. This is to receive feedback and to identify
new requirements. The team also conducts a retrospective meeting to identify what
went well and what went poorly during the iteration. This is for continuous improve-
ment for future iterations.

18.4 Software Processes and Life Cycles

238

 Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one . This allows multiple perspectives in
decision-making and a broader understanding of the issues.

 Software testing is very important and Agile generally employs automated testing
for unit, acceptance, performance and integration testing. Tests are run frequently
with the goal of catching programming errors early. They are generally run on a
separate build server to ensure that all dependencies are checked. Tests are rerun
before making a release. Agile employs test-driven development with tests written
before the code . The developers write code to make a test pass with ideal developers
only coding against failing tests. This approach forces the developer to write
testable code.

 Refactoring is employed in Agile as a design and coding practice . The objective
is to change how the software is written without changing what it does. Refactoring
is a tool for evolutionary design where the design is regularly evaluated, and
improvements are implemented as they are identifi ed. The automated test suite is
essential in showing that the integrity of the software is maintained following
refactoring.

 Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all of the
automated tests to be run thereby identifying problems earlier.

18.5 Activities in Waterfall Life Cycle

 This section describes the various activities in the waterfall software development
life cycle in more detail. The activities discussed include:

• Business requirements defi nition
• Specifi cation of system requirements
• Design
• Implementation
• Unit testing
• System testing
• UAT testing
• Support and maintenance

18.5.1 Business Requirements Definition

 The business requirements specify what the customer wants and defi ne what the
software system is required to do (as distinct from how this is to be done).
The requirements are the foundation for the system, and if they are incorrect, then
the implemented system will be incorrect. Prototyping may be employed to assist
in the defi nition and validation of the requirements.

18 History of Software Engineering

239

 The specifi cation of the requirements needs to be unambiguous to ensure that all
parties involved in the development of the system share a common understanding of
what is to be developed and tested.

 Requirements gathering involves meetings with the stakeholders to gather all
relevant information for the proposed product. The stakeholders are interviewed,
and requirements workshops conducted to elicit the requirements from them. An
early working system (prototype) is often used to identify gaps and misunderstand-
ings between developers and users. The prototype may serve as a basis for writing
the specifi cation.

 The requirements workshops with the stakeholders are used to discuss and
prioritize the requirements, as well as identifying and resolving any confl icting
requirements. The collected information is consolidated into a coherent set of
requirements.

 The requirements are validated by the stakeholders to ensure that they are actu-
ally those desired and to establish their feasibility. This may involve several reviews
of the requirements until all stakeholders are ready to approve the requirements
document. Changes to the requirements may occur during the project, and these
need to be controlled. It is essential to understand the impacts of a change prior to
its approval.

 The requirements for a system are generally documented in a natural language
such as ‘English’. Other notations that may be employed to express the requirements
include the visual modelling language UML [Jac:05] and formal specifi cation
languages such as VDM or Z.

18.5.2 Specification of System Requirements

 The specifi cation of the system requirements of the product is essentially a state-
ment of what the software development organization will provide to meet the busi-
ness requirements. That is, the detailed business requirements are a statement of
what the customer wants, whereas the specifi cation of the system requirements is a
statement of what will be delivered by the software development organization.

 It is essential that the system requirements are valid with respect to the business
requirements, and the stakeholders review them to ensure their validity. Traceability
may be employed to show how the business requirements are addressed by the sys-
tem requirements.

 There are two categories of system requirements: namely, functional and non-
functional requirements. The functional requirements defi ne the functionality that is
required of the system, and it may include screenshots, report layouts or the desired
functionality specifi ed in natural language, use cases, etc. The non-functional
requirements will generally include security, reliability, performance and portability
requirements, as well as usability and maintainability requirements.

18.5 Activities in Waterfall Life Cycle

240

18.5.3 Design

 The design of the system consists of engineering activities to describe the architec-
ture or structure of the system, as well as activities to describe the algorithms and
functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design and data structure design. There are often
several possible design solutions for a particular system, and the designer will need
to decide on the most appropriate solution.

 The design may be specifi ed in various ways such as graphical notations that
display the relationships between the components making up the design. The nota-
tion may include fl ow charts, or various UML diagrams such as sequence diagrams,
state charts and so on. Program description languages or pseudocode may be
employed to defi ne the algorithms and data structures that are the basis for
implementation.

 Functional design involves starting with a high-level view of the system and
refi ning it into a more detailed design. The system state is centralized and shared
between the functions operating on that state.

 Object-oriented design has become popular in recent years and is based on the
concept of information hiding [Par:72]. The system is viewed as a collection of
objects rather than functions, with each object managing its own state information.
The system state is decentralized and an object is a member of a class. The defi ni-
tion of a class includes attributes and operations on class members, and these may
be inherited from super classes. Objects communicate by exchanging messages

 It is essential to verify and validate the design with respect to the system require-
ments, and this will be done by design reviews and traceability of the design to the
system requirements.

18.5.4 Implementation

 This phase is concerned with implementing the design in the target language and
environment (e.g. C++ or Java) and involves writing or generating the actual code.
The development team divides up the work to be done, with each programmer
responsible for one or more modules. The coding activities include code reviews or
walkthroughs to ensure that quality code is produced, and to verify its correctness.
The code reviews will verify that the source code adheres to the coding standards,
that maintainability issues are addressed and that the code produced is a valid imple-
mentation of the software design.

 Software reuse has become more important in recent times as it provides a way
to speed up the development process. Components or objects that may be reused
need to be identifi ed and handled accordingly. The implemented code may use soft-
ware components that have either being developed internally or purchased off
the shelf. Open-source software has become popular in recent years, and it allows
software developed by others to be used (under an open-source licence) in the
development of applications.

18 History of Software Engineering

241

 The benefi ts of software reuse include increased productivity and a faster time to
market. There are inherent risks with customized-off-the shelf (COTS) software, as
the supplier may decide to no longer support the software, or there is no guarantee
that software that has worked successfully in one domain will work correctly in a
different domain. It is therefore important to consider the risks as well as the bene-
fi ts of software reuse and open-source software.

18.5.5 Software Testing

 Software testing is employed to verify that the requirements have been correctly
implemented and that the software is fi t for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing and
user acceptance testing . These are described below.

18.5.5.1 Unit Testing
 Unit testing is performed by the programmer on the completed unit (or module),
prior to its integration with other modules. The programmer writes these tests, and
the objective is to show that the code satisfi es the design. Each unit test case is
documented and it should include a test objective and the expected result.

 Code coverage and branch coverage metrics are often recorded to give an indica-
tion of how comprehensive the unit testing has been. These metrics provide visibil-
ity into the number of lines of code executed as well as the branches covered during
unit testing.

 The developer executes the unit tests, records the results, corrects any identifi ed
defects and retests the software. Test-driven development has become popular in
recent years (e.g. in the Agile world), and this involves writing the unit test case
before the code, and the code is written to pass the unit test cases.

18.5.5.2 Integration Test
 The development team performs this type of testing on the integrated system, once
all of the individual units work correctly in isolation. The objective is to verify that
all of the modules and their interfaces work correctly together and to identify and
resolve any issues. Modules that work correctly in isolation may fail when inte-
grated with other modules.

18.5.5.3 System Test
 The purpose of system testing is to verify that the implementation is valid with
respect to the system requirements. It involves the specifi cation of system test cases,
and the execution of the test cases will verify that the system requirements have
been correctly implemented. An independent test group generally conducts this
type of testing, and the system tests are traceable to the system requirements.

 Any system requirements that have been incorrectly implemented will be
identifi ed, and defects are logged and reported to the developers. The test group
will verify that the new version of the software is correct, and regression testing is

18.5 Activities in Waterfall Life Cycle

242

conducted to verify system integrity. System testing may include security testing,
usability testing and performance testing.

 The preparation of the test environment requires detailed planning, and it may
involve ordering special hardware and tools. It is important that the test environment
is set up as early as possible to allow the timely execution of the test cases.

18.5.5.4 Performance Test
 The purpose of performance testing is to ensure that the performance of the system is
within the bounds specifi ed in the non-functional requirements and to determine if the
system is scalable to support future growth. It may include load performance testing ,
where the system is subjected to heavy loads over a long period of time, and stress
testing , where the system is subjected to heavy loads during a short time interval.

 Performance testing often involves the simulation of many users using the system
and measuring the response times for various activities. Test tools are employed to
simulate a large number of users and heavy loads.

18.5.5.5 User Acceptance Test
 UAT testing is usually performed under controlled conditions at the customer site,
and its operation will closely resemble the real-life behaviour of the system. The
customer will see the product in operation and is able to judge whether or not the
system is fi t for purpose.

 The objective is to demonstrate that the product satisfi es the business require-
ments and meets the customer expectations. Upon its successful completion, the
customer is happy to accept the product.

18.5.6 Maintenance

 This phase continues after the release of the software product to the customer. Any
problems that the customer notes with the software are reported as per the customer
support and maintenance agreement. The support issues will require investigation,
and the issue may be a defect in the software , an enhancement to the software or due
to a misunderstanding . The support and maintenance team will identify the causes
of any identifi ed defects and will implement an appropriate solution. Testing is con-
ducted to verify that the solution is correct and that the changes made have not
adversely affected other parts of the system. Mature organizations will conduct
postmortems to learn lessons from the defect 12 and will take corrective action to
prevent a reoccurrence.

 The presence of a maintenance phase suggests an acceptance of the reality that
problems with the software will be identifi ed post-release . The goal of building a
correct and reliable software product the fi rst time is very diffi cult to achieve, and

12 This is essential for serious defects that have caused signifi cant inconvenience to customers (e.g.
a major telecom outage). The software development organization will wish to learn lessons to
determine what went wrong in its processes that prevented the defect from being identifi ed during
peer reviews and testing. Actions to prevent a reoccurrence will be identifi ed and implemented.

18 History of Software Engineering

243

the customer is always likely to fi nd some issues with the released software product.
It is accepted today that quality needs to be built into each step in the development
process, with the role of software inspections and testing to identify as many defects
as possible prior to release and minimize the risk that that serious defects will be
found post-release.

 The more effective the in-phase inspections of deliverables, the higher the qual-
ity of the resulting implementation, with a corresponding reduction in the number
of defects detected by the test groups. The testing group plays a key role in verifying
that the system is correct, and in providing confi dence that the software is fi t for
purpose. The approach to software correctness almost seems to be a brute force
approach, where testing and retesting achieve quality, until the testing group is con-
fi dent that all defects have been eliminated. Dijkstra [Dij:72] noted that:

 Testing a program demonstrates that it contains errors, never that it is correct.

 That is, irrespective of the amount of time spent testing, it can never be said with
absolute confi dence that the program is correct, and, at best, statistical techniques
may be employed to give a measure of the confi dence in its correctness. That is,
there is no guarantee that all defects have been found in the software.

 Many software companies may consider one defect per thousand lines of code
(KLOC) to be reasonable quality. However, if the system contains one million lines
of code, this is equivalent to a thousand post-release defects, which is unacceptable.

 Some mature organizations have a quality objective of three defects per million
lines of code. This goal is known as six- sigma (6σ), and Motorola developed it ini-
tially for its manufacturing businesses and later applied to its software organization.
The goal is to reduce variability in manufacturing processes and to ensure that the
processes performed within strict process control limits. Motorola was awarded the
fi rst Malcolm Baldrige Quality award for its six-sigma initiative and its commit-
ment to quality.

18.6 Software Inspections

 Software inspections are used to build quality into software products, and there are
several well-known approaches such as the Fagan methodology [Fag:76], Gilb’s
approach [Glb:94] and Prince 2 ’s approach.

 Fagan inspections were developed by Michael Fagan of IBM. It is a seven-step
process that identifi es and removes errors in work products. The process mandates
that requirements documents, design documents, source code and test plans are all
formally inspected by experts independent of the author of the deliverable to ensure
quality.

 There are various roles defi ned in the process including the moderator who
chairs the inspection. The reader's responsibility is to read or paraphrase the
particular deliverable, and the author is the creator of the deliverable and has a
special interest in ensuring that it is correct. The tester role is concerned with the
test viewpoint.

18.6 Software Inspections

244

 The inspection process will consider whether the design is correct with respect
to the requirements and whether the source code is correct with respect to the design.
Software inspections play an important role in building quality into the software and
in reducing the cost of poor quality in the organization. For more detailed informa-
tion, see [ORg:14].

18.7 Software Project Management

 The timely delivery of quality software requires good management and engineering
processes. Software projects have a history of being delivered late or over budget,
and good project management practices include the following activities:

 – Estimation of cost, effort and schedule for the project
 – Identifying and managing risks
 – Preparing the project plan
 – Preparing the initial project schedule and key milestones
 – Obtaining approval for the project plan and schedule
 – Staffi ng the project
 – Monitoring progress, budget, schedule, effort, risks, issues, change requests and

quality
 – Taking corrective action
 – Replanning and rescheduling
 – Communicating progress to affected stakeholders
 – Preparing status reports and presentations

 The project plan will contain or reference several other plans such as the project
quality plan, the communication plan, the confi guration management plan and the
test plan.

 Project estimation and scheduling are diffi cult as often software projects are
breaking new ground and differ from previous projects. That is, previous estimates
may often not be a good basis for estimation for the current project. Often, unantici-
pated problems can arise for technically advanced projects, and the estimates may
be optimistic. Gantt charts are generally employed for project scheduling, and these
show the work breakdown for the project, as well as task dependencies and the
allocation of staff to the various tasks.

 The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves 13 risk identi-
fi cation, risk analysis and evaluation, identifying responses to risks, selecting and
planning a response to the risk and risk monitoring. The risks are logged, and the
likelihood of each risk arising and its impact is then determined. The risk is assigned
an owner and an appropriate response to the risk determined. For more detailed
information on project management, see [ORg:14].

13 These are the risk management activities in the Prince 2 methodology.

18 History of Software Engineering

245

18.8 CMMI Maturity Model

 The CMMI is a framework to assist an organization in the implementation of best
practice in software and systems engineering [CKS:11]. It is an internationally rec-
ognized model for process improvement and assessment and is used worldwide by
thousands of organizations. It provides a framework for an organization to introduce
a solid engineering approach to the development of software, and it helps in the defi -
nition of high-quality processes for the various software engineering and manage-
ment activities.

 It was developed by the Software Engineering Institute (SEI) who adapted the
process improvement principles used in the manufacturing fi eld to the software
fi eld. They developed the original CMM model in the early 1990s and its successor
the CMMI. The CMMI states what the organization needs to do to mature its pro-
cesses rather than how this should be done .

 The CMMI consists of fi ve maturity levels with each maturity level consisting of
several process areas. Each process area consists of a set of goals, and these goals
are implemented by practices related to that process area. Level two is focused on
management practices; level three is focused on engineering and organization prac-
tices; level four is concerned with ensuring that key processes are performing within
strict quantitative limits; level fi ve is concerned with continuous process improve-
ment. Maturity levels may not be skipped in the staged implementation of the
CMMI, as each maturity level is the foundation for the next level.

 The CMMI allows organizations to benchmark themselves against other organi-
zations. This is done by a formal appraisal conducted by an authorized lead appraiser
[SCA:06]. The results of the appraisal are generally reported back to the SEI, and
there is a strict qualifi cation process to become an authorized lead appraiser . An
appraisal is useful in verifying that an organization has improved, and it enables the
organization to prioritize improvements for the next improvement cycle. The CMMI
is discussed in more detail in [ORg;14].

18.9 Formal Methods

 Dijkstra and Hoare have argued that the appropriate way to develop correct soft-
ware is to derive the program from its formal mathematical specifi cation and to
employ mathematical proof to demonstrate the correctness of the software with
respect to the specifi cation. This offers a rigorous framework to develop programs
adhering to the highest-quality constraints. However, in practice mathematical tech-
niques have proved to be cumbersome to use, and their widespread deployment in
industry is unlikely at this time.

 The safety-critical area is one domain to which mathematical techniques have
been successfully applied: for example, demonstrating the presence or absence of
safety critical properties such as when a train is in a level crossing, then the gate is
closed . There is a need for extra rigour in the software development process used in

18.9 Formal Methods

246

the safety critical fi eld, and mathematical techniques can demonstrate the presence
or absence of certain desirable or undesirable properties.

 Spivey [Spi:92] defi nes a formal specifi cation as the use of mathematical nota-
tion to describe in a precise way the properties which an information system must
have, without unduly constraining the way in which these properties are achieved.
It describes what the system must do, as distinct from how it is to be done. This
abstraction away from implementation enables questions about what the system
does to be answered, independently of the detailed code. Furthermore the unam-
biguous nature of mathematical notation avoids the problem of speculation about
the meaning of phrases in an imprecisely worded natural language description of a
system.

 The formal specifi cation thus becomes the key reference point for the different
parties concerned with the construction of the system and is a useful way of promot-
ing a common understanding for all those concerned with the system.

 The term formal methods is used to describe a formal specifi cation language and
a method for the design and implementation of computer systems. The specifi cation
is written in a mathematical language, and its precision helps to avoid the problem
of ambiguity inherent in a natural language specifi cation. The derivation of an
implementation from the specifi cation may be achieved via step-wise refi nement .
Each refi nement step makes the specifi cation more concrete and closer to the actual
implementation. There is an associated proof obligation that the refi nement be valid
and that the concrete state preserves the properties of the more abstract state. Thus,
assuming the original specifi cation is correct and the proofs of correctness of each
refi nement step are valid, then there is a very high degree of confi dence in the cor-
rectness of the implemented software.

 Formal methods have been applied to a diverse range of applications, including
circuit design, artifi cial intelligence, specifi cation of standards, specifi cation and
verifi cation of programs, etc. They are described in more detail in [ORg:06].

18.10 Review Questions

 1. Discuss the research results of the Standish group on the current state of IT
project delivery.

 2. What are the main challenges in software engineering?
 3. Describe various software life cycles such as the waterfall model and the

spiral model.
 4. Discuss the benefi ts of Agile over conventional approaches. What are the

advantages and disadvantages?
 5. Describe the purpose of software inspections. What are the benefi ts?
 6. Describe the main activities in software testing.
 7. Describe the advantages and disadvantages of formal methods.
 8. Describe the main activities in project management.
 9. Explain the signifi cance of the CMMI as a framework to improve the soft-

ware engineering capability of an organization.

18 History of Software Engineering

247

18.11 Summary

 The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software sec-
tor in the late 1960s, and the term software crisis was coined to refer to these. This
led to the realization that programming is quite distinct from science and mathemat-
ics and that software engineers need to be properly trained to enable them to build
high-quality products that are safe to use.

 The Standish group conducts research on the extent of problems with the deliv-
ery of projects on time and budget. Their research indicates that it remains a chal-
lenge to deliver projects on time, on budget and with the right quality.

 Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as part of
their education. Classical engineers receive training on product design and an
appropriate level of mathematics.

 Software engineering involves multi-person construction of multi-version pro-
grams. It is a systematic approach to the development and maintenance of the soft-
ware, and it requires a precise statement of the requirements of the software product
and then the design and development of a solution to meet these requirements. It
includes methodologies to design, develop, implement and test software as well as
sound project management, quality management and confi guration management
practices. Support and maintenance of the software is properly addressed.

 Software process maturity models such as the CMMI place an emphasis on
understanding and improving the software processes in an organization. It is a
principle in the software quality fi eld that high-quality processes play a key role in
delivering a high-quality product, and the CMMI is a framework that allows
high- quality processes to be successfully introduced in the organization. The CMMI
allows organizations to benchmark themselves against other similar organizations,
and this is done by a formal SCAMPI appraisal conducted by qualifi ed assessors.

 Formal methods involve the use of mathematical techniques to provide extra
confi dence in the correctness of the software. They are used mainly in the safety and
security critical fi elds.

18.11 Summary

249© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_19

 19 History of Artificial Intelligence

 Abstract
 This chapter presents a short history of artifi cial intelligence, and we discuss the
Turing Test, which is a test of machine intelligence. We discuss strong and weak
AI, where strong AI considers an AI programmed computer to be essentially a
mind, whereas weak AI considers a computer to simulate thought without real
understanding. We discuss Searle’s Chinese room, which is a rebuttal of strong
AI, and we discuss philosophical issues in AI and Weizenbaum’s views on the
ethics of AI. There are many subfi elds in AI and we discuss logic, neural net-
works and expert systems.

 Key Topics
 Turing Test
 Searle’s Chinese room
 Philosophical problems in AI
 Cognitive psychology
 Linguistics
 Logic and AI
 Robots
 Cybernetics
 Neural networks
 Expert systems

250

19.1 Introduction

 The long-term 1 goal of artifi cial intelligence is to create a thinking machine that is
intelligent, has consciousness, has the ability to learn, has free will and is ethical.
The fi eld involves several disciplines such as philosophy, psychology, linguistics,
machine vision, cognitive science, mathematics, logic and ethics. Artifi cial intelli-
gence is a young fi eld and John McCarthy and others coined the term in 1956. Alan
Turing had earlier devised the Turing Test as a way to test the intelligent behaviour
of a machine. There are deep philosophical problems in artifi cial intelligence, and
some researchers believe that its goals are impossible or incoherent. Hubert Dreyfus
and John Searle share these views. Even if artifi cial intelligence is possible, there
are moral issues to consider such as the exploitation of artifi cial machines by
humans and whether it is ethical to do this. Weizenbaum 2 has argued that artifi cial
intelligence is unethical.

 One of the earliest references to creating life by artifi cial means is that of the
classical myth of Pygmalion . Pygmalion was a sculptor who carved a woman out of
ivory. The sculpture was so realistic that he fell in love with it and offered the statue
presents and prayed to Aphrodite the goddess of love. Aphrodite took pity on him
and brought the statue (Galathea) to life.

 There are several stories of attempts by man to create life from inanimate objects:
for example, the creation of the monster in Mary Shelly’s Frankenstein. The mon-
ster is created by an over ambitious scientist who is punished for his blasphemy of
creation (in that creation is for God alone). The monster feels rejected following
creation and infl icts a horrible revenge on its creator.

 The Czech play ‘Rossum’s Universal Robots ’ is a science fi ction play by Capek,
and it was performed in Prague in 1921. It was translated into English and appeared
in London in 1923. It contains the fi rst reference to the term robot , and the play
considers the exploitation of artifi cial workers in a factory. The robots (or androids)
are initially happy to serve humans, but become unhappy with their existence over
a period of time. The fundamental question that the play is considering is whether
the robots are being exploited and, if so, whether this is ethical and what should the
response of the robots be to their exploitation. It eventually leads to a revolt by the
robots and the extermination of the human race.

19.2 Descartes

 René Descartes (Fig. 19.1) was an infl uential French mathematician, scientist and
philosopher. He was born in a village in the Loire valley in France in 1596 and
studied law at the University of Poitiers. He never practised as a lawyer and instead

1 This long-term goal may be hundreds of years as there is unlikely to be an early breakthrough in
machine intelligence as there are deep philosophical problems to be solved.
2 Weizenbaum was a psychologist who invented the ELIZA program, which simulated a psycholo-
gist in dialogue with a patient. He was initially an advocate of artifi cial intelligence but later
became a critic.

19 History of Artifi cial Intelligence

251

served Prince Maurice of Nassau in the Netherlands. He invented the Cartesian
coordinate system that is used in plane geometry and algebra. In this system, each
point on the plane is identifi ed through a pair of numbers (x , y): the x- coordinate and
the y- coordinate.

 He made important contributions to philosophy and attempted to derive a funda-
mental set of principles that can be known to be true. His approach was to renounce
any idea that could be doubted. He rejected the senses since they can deceive and
are not a sound source of knowledge. For example, during a dream the subject per-
ceives stimuli that appear to be real, but these have no existence outside the sub-
ject’s mind. Therefore, it is inappropriate to rely on one’s senses as the foundation
of knowledge.

 He argued that a powerful evil demon or mad scientist could exist who sets out
to manipulate and deceive subjects, thereby preventing them from knowing the true
nature of reality. The evil demon could bring the subject into existence including an
implanted memory. The question is how one can know for certain what is true given
the limitations of the senses. The brain in the vat thought experiment is a more mod-
ern formulation of the idea of an evil spirit or mad scientist. A mad scientist could
remove a person’s brain from their body and place it in a vat and connects its neu-
rons by wires to a supercomputer. The computer provides the disembodied brain
with the electrical impulses that the brain would normally receive. The computer
could then simulate reality, and the disembodied brain would have conscious expe-
riences and would receive the same impulses as if it were inside a person’s skull.
There is no way to tell whether the brain is inside the vat or inside a person.

 That is, at any moment an individual could potentially be a brain connected to a
sophisticated computer program or inside a person’s skull. Therefore, if you cannot

 Fig. 19.1 Rene Descartes

19.2 Descartes

252

be sure that you are not a brain in a vat, then you cannot rule out the possibility that
all of your beliefs about the external world are false. This sceptical argument is
diffi cult to refute.

 The perception of a ‘cat’ (Fig. 19.2) in the case where the brain is in the vat is
false and does not correspond to reality. It is impossible to know whether your brain
is in a vat or inside your skull; it is therefore impossible to know whether your belief
is valid or not.

 From this, Descartes deduced that there was one single principle that must be
true. He argued that even if he is being deceived, then clearly he is thinking and
must exist. This principle of existence or being is more famously known as ‘ cogito,
ergo sum ’ (I think, therefore I am). Descartes argued that this existence can be
applied to the present only, as memory may be manipulated and therefore doubted.
Further, the only existence that he is sure of is that he is a thinking thing . He cannot
be sure of the existence of his body, as his body is perceived by his senses, which he
has proven to be unreliable. Therefore, his mind or thinking thing is the only thing
about him that cannot be doubted. His mind is used to make judgements and to deal
with unreliable perceptions received via the senses.

 Fig. 19.2 Brain in a VAT thought experiment

19 History of Artifi cial Intelligence

253

 Descartes constructed a system of knowledge (rationalism) from this one
principle using the deductive method. He deduced the existence of a benevolent
God using the ontological argument. He argues [Des:99] that we have an innate idea
of a supremely perfect being (God) and that God’s existence may be inferred imme-
diately from the innate idea of a supremely perfect being.

 1. I have an innate idea of a supremely perfect being (i.e. God).
 2. Necessarily, existence is a perfection. 3
 3. Therefore God exists.

 He then argued that since God is benevolent, he can have some trust in the reality
that his senses provide. God has provided him with a thinking mind and does not
wish to deceive him. He argued that knowledge of the external world can be obtained
by both perception and deduction and that reason (or rationalism) is the only reli-
able method of obtaining knowledge.

 Descartes was a dualist and he makes a clear mind-body distinction. He states
that there are two substances in the universe: mental substances and bodily substances.
The mind-body distinction is very relevant in AI and the analogy of the human mind
and brain is software running on a computer.

 This thinking thing (res cogitans or mind/soul) is distinct from the rest of nature
(res extensa) and interacts with the world through the senses to gain knowledge.
Knowledge is gained by mental operations using the deductive method, where start-
ing from the premises that are known to be true, further truths may be logically
deduced. Descartes founded what would become known as the rationalist school of
philosophy where knowledge was derived solely by human reasoning. The analogy
of the mind in AI would be an AI program running on a computer with knowledge
gained by sense perception with sensors and logical deduction.

 Descartes believed that the bodies of animals are complex living machines with-
out feelings. He dissected (including vivisection) many animals for experiments.
His experiments led him to believe that the actions and behaviour of non-human
animals can be fully accounted for by mechanistic means, without reference to the
operations of the mind. He realized from his experiments that a lot of human behav-
iour (e.g. physiological functions and blinking) is like that of animals in that it has
a mechanistic explanation.

 Descartes was of the view that well-designed automata 4 could mimic many parts
of human behaviour. He argued that the key differentiators between human and
animal behaviour were that humans could adapt to widely varying situations and
also had the ability to use language. The use of language illustrates the power of the
use of thought, and it clearly differentiates humans from animals. Animals do not
possess the ability to use language for communication or reason. This, he argues,

3 Descartes’ ontological argument is similar to St. Anselm’s argument on the existence of God, and
implicitly assumes existence as a predicate (which was refuted by Kant).
4 An automaton is a self-operating machine or mechanism that behaves and responds in a mechani-
cal way.

19.2 Descartes

254

provides evidence for the presence of a soul associated with the human body.
In essence, animals are pure machines, whereas humans are machines with minds
(or souls).

 The signifi cance of Descartes in the fi eld of artifi cial intelligence is that the
Cartesian dualism that humans seem to possess would need to be refl ected among
artifi cial machines. Humans seem to have a distinct sense of ‘I’ as distinct from the
body, and the ‘I’ seems to represent some core sense or essence of being that is
unchanged throughout the person’s life. It somehow represents personhood, as
distinct from the physical characteristics of a person that are inherited genetically.
The long-term challenge for the AI community is to construct a machine that (in a
sense) possesses Cartesian dualism: i.e. a machine that has awareness of itself as
well as its environment.

19.3 The Field of Artificial Intelligence

 The origin of the term ‘artifi cial intelligence’ is in work done on the proposal for
Dartmouth Summer Research Project on Artifi cial Intelligence. John McCarthy and
others wrote this proposal in 1955, and the research project took place in the sum-
mer of 1956.

 The success of early AI went to its practitioners’ heads and they believed that
they would soon develop machines that would emulate human intelligence. They
convinced many of the funding agencies and the military to provide research grants,
as they believed that real artifi cial intelligence would soon be achieved. They had
some initial (limited) success with machine translation, pattern recognition and
automated reasoning. However, it is now clear that AI is a long-term project.
 Artifi cial intelligence is a multidisciplinary fi eld and includes disciplines such as:

• Computing
• Logic and philosophy
• Psychology
• Linguistics
• Neuroscience and neural networks
• Machine vision
• Robotics
• Expert systems
• Machine translation
• Epistemology and knowledge representation

 The British mathematician, Alan Turing, contributed to the debate concerning
thinking machines, consciousness and intelligence in the early 1950s [Tur:50]. He
devised the famous ‘ Turing Test ’ to judge whether a machine was conscious and
intelligent. Turing’s paper was very infl uential as it raised the idea of the possibility
of programming a computer to behave intelligently.

19 History of Artifi cial Intelligence

255

 Shannon considered the problem of writing a chess program in the late 1940s,
and he distinguished between a brute force strategy where the program could look
at every combination of moves and a strategy where knowledge of chess could be
used to select and examine a subset of available moves. The ability of a program to
play chess is a skill that is considered intelligent, even though the machine itself is
not conscious that it is playing chess.

 Modern chess programs have been quite successful and have advantages over
humans in terms of computational speed in considering combinations of moves.
The IBM chess program ‘Deep Blue’ defeated Kasparov in 1997.

 Herbert Simon and Alan Newell developed the fi rst theorem prover with their
work on a program called ‘ Logic Theorist ’ or ‘LT’ [NeS:56]. This program could
independently provide proofs of various theorems in Russell’s and Whitehead’s
 Principia Mathematica 5 [RuW:10]. LT was demonstrated at the Dartmouth confer-
ence, and it showed that computers had the ability to encode knowledge and
information and to perform intelligent operations such as solving theorems in
mathematics.

 John McCarthy (Fig. 19.3) proposed a program called the advice taker in his
infl uential paper ‘Programs with Common Sense’ [Mc:59]. The idea was that this
program would be able to draw conclusions from a set of premises, and McCarthy

5 Russell is said to have remarked that he was delighted to see that the Principia Mathematica could
be done by machine and that if he and Whitehead had known this in advance, they would not have
wasted 10 years doing this work by hand in the early twentieth century. The LT program succeeded
in proving 38 of the 52 theorems in Chap. 2 of Principia Mathematica . Its approach was to start
with the theorem to be proved and to then search for relevant axioms and operators to prove the
theorem.

 Fig. 19.3 John McCarthy
(Courtesy of John
McCarthy)

19.3 The Field of Artifi cial Intelligence

2

256

states that a program has common sense if it is capable of automatically deducing
for itself a suffi ciently wide class of immediate consequences of anything it is told
and what it already knows .

 The advice taker uses logic to represent knowledge (i.e. premises that are taken
to be true), and it then applies the deductive method to deduce further truths from
the relevant premises. 6 That is, the program manipulates the formal language (e.g.
predicate logic) and provides a conclusion that may be a statement or an imperative.
McCarthy envisaged that the advice taker would be a program that would be able to
learn and improve. This would involve making statements to the program and telling
it about its symbolic environment. The program will have all the logical consequences
of what it has already been told and the previous knowledge. McCarthy’s desire was
to create programs to learn from their experience as effectively as humans do.

 The McCarthy philosophy is that common sense 7 knowledge, reasoning and
problem solving can be formalized with logic. A particular system is described by a
set of sentences in logic. These logic sentences represent all that is known about the
world in general and what is known about the particular situation and the goals of
the systems. The program then performs actions that it infers are appropriate for
achieving its goals.

19.3.1 Turing Test and Strong AI

 Alan Turing contributed to the debate concerning artifi cial intelligence in his 1950
paper on computing, machinery and intelligence [Tur:50]. Turing’s paper consid-
ered whether it could be possible for a machine to be conscious and to think. He
predicted that it would be possible to speak of machines thinking, and he devised a
famous experiment that would determine if a computer had these attributes. This is
known as the Turing Test , and it is an adaptation of a well-known party game, which
involves three participants. One of them, the judge, is placed in a separate room
from the other two: one is a male and the other is a female. Questions and responses
are typed and passed under the door. The objective of the game is for the judge to
determine which participant is male and which is female. The male is allowed to
deceive the judge, whereas the female is supposed to assist.

 Turing adapted this game by allowing the role of the male to be played by a
computer. The test involves a judge who is engaged in a natural language conversa-
tion with two other parties: one party is a human and the other is a machine. If the
judge cannot determine which is machine and which is human, then the machine is
said to have passed the ‘Turing Test’. That is, a machine that passes the Turing Test
must be considered intelligent, as it is indistinguishable from a human. The test is

6 Of course, the machine would somehow need to know what premises are relevant and should be
selected in applying the deductive method from the many premises that are already encoded.
7 Common sense includes basic facts about events, beliefs, actions, knowledge and desires. It also
includes basic facts about objects and their properties.

19 History of Artifi cial Intelligence

257

applied to test the linguistic capability of the machine rather than the audio capability,
and the conversation is limited to a text-only channel.

 Turing’s work on ‘thinking machines’ led to a debate concerning the nature of
intelligence, and it caused a great deal of public controversy as defenders of tradi-
tional values attacked the idea of machine intelligence.

 Turing strongly believed that machines would eventually be developed that
would stand a good chance of passing the ‘Turing Test’. He considered the operation
of ‘thought’ to be equivalent to the operation of a discrete state machine. A program
that runs on a single, universal machine, i.e. a computer, may simulate such a machine.

 Turing viewpoint that a machine will one day pass the Turing Test and be consid-
ered intelligent is known as strong artifi cial intelligence . It states that a computer
with the right program would have the mental properties of humans. There are a
number of objections to strong AI, and one well-known rebuttal is that of Searle’s
Chinese room argument.

 Searle’s Chinese room thought experiment is a famous paper on machine under-
standing [Sea:80]. This classic paper presents a compelling argument against the
feasibility of the strong AI project. It rejects the claim that a machine will someday
in the future have the same cognitive qualities as humans. Searle argues that brains
cause minds, and that syntax does not suffi ce for semantics . He defi nes the terms
 strong and weak AI as follows:

 Strong AI

 The computer is not merely a tool in the study of the mind, rather the appropriately pro-
grammed computer really is a mind in the sense that computers given the right programs
can be literally said to understand and have other cognitive states. [Searle’s 1980 Defi nition]

 Weak AI

 Computers just simulate thought, their seeming understanding isn’t real understanding
(just as-if), their seeming calculation is only as-if calculation, etc. Nevertheless, computer
simulation is useful for studying the mind (as for studying the weather and other things).

19.3.1.1 The Chinese Room Thought Experiment
 A man is placed into a closed room into which Chinese writing symbols are input
to him (Fig. 19.4). He is given a rulebook that shows him how to manipulate the
symbols to produce Chinese output. He has no idea as to what each symbol means,
but with the rulebook, he is able to produce the Chinese output. This allows him to
communicate with the other person and appear to understand Chinese. The rulebook
allows him to answer any questions posed, without the slightest understanding of
what he is doing or what the symbols mean.

 1. Chinese characters are entered through slot 1.
 2. The rulebook is employed to construct new Chinese characters.
 3. Chinese characters are outputted to slot 2.

19.3 The Field of Artifi cial Intelligence

258

 The question Do you understand Chinese? could potentially be asked, and the
rulebook would be consulted to produce the answer ‘Yes, of course’ despite of the
fact that the person inside the room has not the faintest idea of what is going on. It
will appear to the person outside the room that the person inside is knowledgeable
on Chinese. The person inside is just following rules without understanding.

 The process is essentially that of a computer program that takes an input, per-
forms a computation based on the input and then fi nally produces an output. Searle
has essentially constructed a machine that can never be mental. Changing the pro-
gram essentially means changing the rulebook, and this does not increase under-
standing. The strong artifi cial intelligence thesis states that given the right program,
 any machine running it would be mental. However, Searle argues that the program
for this Chinese room would not understand anything and that therefore the strong
AI thesis must be false. In other words, Searle’s Chinese room argument is a rebuttal
of strong AI by showing that a program running on a machine that appears to be
intelligent has no understanding whatsoever of the symbols that it is manipulating.
That is, given any rulebook (i.e. program), the person would never understand the
meanings of those characters that are manipulated.

 That is, just because the machine acts like it knows what is going on, it actually
only knows what it is programmed to know. It differs from humans in that it is not
aware of the situation like humans are. It suggests that machines may not have intel-
ligence or consciousness, and the Chinese room argument applies to any Turing
equivalent computer simulation.

 There are several rebuttals of Searle’s position and one well-known rebuttal
attempt is the ‘System Reply’ argument. This reply argues that if a result associated
with intelligence is produced, then intelligence must be found somewhere in the
system. The proponents of this argument draw an analogy between the human brain
and its constituents. None of its constituents have intelligence, but the system as a
whole (i.e. the brain) exhibits intelligence. Similarly, the parts of the Chinese room
may lack intelligence, but the system as a whole is intelligence.

 Fig. 19.4 Searle’s Chinese
room

19 History of Artifi cial Intelligence

259

19.3.2 Ethics and AI

 Weizenbaum created the famous ELIZA program at MIT in 1966, and the program
interacted with a user sitting at an electric typewriter, in English, in the manner of a
Rogerian psychotherapist. 8

 The name Eliza 9 was chosen because it could be taught to speak increasingly
well, as in Shaw’s Pygmalion. It was one of the earliest natural language processing
programs, and Weizenbaum gave an example of a conversation between Eliza and a
young woman in [Wei:66]. Many users believed that Eliza had real understanding,
and they began to unburden themselves in long computer sessions.

 The program operated by decomposing the user’s input into its constituent parts
of speech and then typing them back at the user in a manner to continue with the
dialogue. The program provided very convincing human-like interaction, as may be
seen in the sample dialogue below:

 User/patient: Men are all alike.
 ELIZA: In what way ?
 User/patient: They are always bugging us about something or others.
 ELIZA: Can you think of a specifi c example ?
 User/patient: Well, my boyfriend made me come here.
 ELIZA: Your boyfriend made you come here ?
 User/patient: He says I’m depressed much of the time.
 ELIZA: I am sorry to hear that you are depressed .
 User/patient: It’s true; I am unhappy.
 ELIZA: Do you think that coming here will help you not to be unhappy ?
 User/patient: I need some help; that much seems certain.
 ELIZA: What would it mean to you if you got some help ?
 User/patient: Perhaps, I could learn to get along with my mother.
 ELIZA: Tell me more about your family .

 Weizenbaum was shocked to discover that so many users were convinced that
the program had real understanding, and users spent hours sharing their personal
problems with the program. It led Weizenbaum to think about the ethics and impli-
cations of the artifi cial intelligence fi eld and the ability of a relatively trivial pro-
gram to deceive a naïve user to reveal personal information. He became a leading
critic of the AI fi eld and an advocate for professional and social responsibility.

 His views on the ethics of AI are discussed in his book Computer Power and
Human Reason [Wei:76]. He displays ambivalence towards computer technology,
and he argues that AI is a threat to human dignity and that AI should not replace
humans in positions that require respect and care. He states that machines lack

8 Rogerian psychotherapy (person-centred therapy) was developed by Carl Rodgers in the 1940s.
9 Eliza Doolittle was a working-class character in Shaw’s play Pygmalion. She is taught to speak
with an upper-class English accent.

19.3 The Field of Artifi cial Intelligence

260

empathy and that if they replace humans in positions such as police offi cers or
judges, this would lead to alienation and a devaluation of the human condition.

 His ELIZA program demonstrated the threat that AI poses to privacy. It is conceiv-
able that an AI program may be developed in the future that is capable of under-
standing speech and natural languages. Such a program could theoretically
eavesdrop on every phone conversation and email and gather private information on
what is said and who is saying it. Such a program could be used by a state to sup-
press dissent and to eliminate those who pose a threat.

 As more and more sophisticated machines and robots are created, it is, of course,
essential that intelligent machines behave ethically and have a moral compass to
distinguish right from wrong. It remains an open question as to how to teach a robot
right from wrong.

19.4 Philosophy and AI

 Artifi cial intelligence includes the study of knowledge and the mind, and there are
deep philosophical problems (e.g. the nature of mind, consciousness and knowl-
edge) to be solved.

 The Greeks did important early work on philosophy as they attempted to under-
stand the world and the nature of being and reality. Thales and the Milesians 10
attempted to fi nd an underlying principle that would explain the nature of the world.
Pythagoras believed that mathematics was this basic principle and that everything
(e.g. music) could be explained in terms of number. Plato distinguished between the
world of appearances and the world of reality. He argued that the world of appear-
ances resembles the fl ickering shadows on a cave wall, whereas reality is in the
world of ideas 11 or forms, in which objects of this world somehow participate.
Aristotle proposed the framework of a substance, which includes form plus matter.
For example, the matter of a wooden chair is the wood that it is composed of, and
its form is the general form of a chair.

 Descartes had a signifi cant infl uence on the philosophy of mind and
AI. Knowledge is gained by mental operations using the deductive method. This
involves starting from premises that are known to be true and deriving further truths.
He distinguished between the mind and the body (Cartesian dualism), and the anal-
ogy of the mind is an AI program running on a computer with sensors and logical
deduction used to gain knowledge.

 British Empiricism rejected the Rationalist position and stressed the importance
of empirical data in gaining knowledge about the world. It argued that all knowl-
edge is derived from sense experience. It included philosophers such as Locke,

10 The term ‘Milesians’ refers to inhabitants of the Greek city-state Miletus which is located in
modern Turkey. Anaximander and Anaximenes were two other Milesians who made contributions
to early Greek philosophy approx 600 B.C.
11 Plato was an idealist: i.e. that reality is in the world of ideas rather than the external world.
Realists (in contrast) believe that the external world corresponds to our mental ideas.

19 History of Artifi cial Intelligence

261

Berkeley 12 and Hume. Locke argued that a child’s mind is a blank slate (tabula rasa)
at birth and that all knowledge is gained by sense experience. Berkeley argued that
the ideas in a man’s mind have no existence outside his mind [Ber:99], and this
philosophical position is known as idealism. 13 David Hume formulated the standard
empiricist philosophical position in ‘An Enquiry Concerning Human Understanding’
[Hum:06].

 Hume argued that all objects of human knowledge may be divided into two
kinds: matters of fact propositions that are based entirely on experience or relation
of ideas propositions that may be demonstrated via deduction reasoning in the oper-
ations of the mind. He argued that any subject 14 proclaiming knowledge that does
not adhere to these empiricist principles should be committed to the fl ames 15 as such
knowledge contains nothing but sophistry and illusion .

 Kant’s Critique of Pure Reason [Kan:03] was published in 1781 and is a response
to Hume’s theory of empiricism. Kant argued that there is a third force in human
knowledge that provides concepts that can’t be inferred from experience. Such con-
cepts include the laws of logic (e.g. modus ponens), causality and so on, and Kant
argued that the third force was the manner in which the human mind structures its
experiences. These structures are called categories.

 The continental school of philosophy included thinkers such as Heidegger
and Merleau-Ponty who argued that the world and the human body are mutually
intertwined. Merleau-Ponty emphasized the concept of a body-subject that actively
participates both as the perceiver of knowledge and as an object of perception.
Heidegger emphasized that existence can only be considered with respect to a
changing world.

12 Berkeley was an Irish philosopher and he was born in Dysart castle in Kilkenny, Ireland. He was
educated at Trinity College, Dublin, and served as bishop of Cloyne in Co. Cork. He planned to
establish a seminary in Bermuda for the sons of colonists in America, but the project failed due to
lack of funding from the British government. Berkeley University in San Francisco is named after
him.
13 Berkeley’s theory of ontology is that for an entity to exist, it must be perceived: i.e. ‘ Esse est
percipi ’. He argues that ‘It is an opinion strangely prevailing amongst men, that houses, mountains,
rivers, and in a world all sensible objects have an existence natural or real, distinct from being
perceived’. This led to a famous Limerick that poked fun at Berkeley’s theory. ‘There once was a
man who said God; Must think it exceedingly odd; To fi nd that this tree, continues to be; When
there is no one around in the Quad’. The reply to this Limerick was appropriately ‘Dear sir, your
astonishments odd; I am always around in the Quad; And that’s why this tree will continue to be;
Since observed by, yours faithfully, God’.
14 Hume argues that these principles apply to subjects such as theology as its foundations are in
faith and divine revelation, which are neither matters of fact nor relations of ideas.
15 ‘When we run over libraries, persuaded of these principles, what havoc must we make? If we
take in our hand any volume; of divinity or school metaphysics, for instance; let us ask, Does it
contain any abstract reasoning concerning quantity or number? No. Does it contain any experi-
mental reasoning concerning matter of fact and existence? No. Commit it then to the fl ames: for it
can contain nothing but sophistry and illusion’.

19.4 Philosophy and AI

262

 Philosophy has been studied for over two millennia, but to date very little progress
has been made in solving its fundamental questions. However, it is important that it
be considered as any implementation of AI will make philosophical assumptions
and it is important that these be understood.

19.5 Cognitive Psychology

 Psychology arose out of the fi eld of psychophysics in the late nineteenth century
with the work by German pioneers in attempting to quantify perception and sensa-
tion. Fechner’s mathematical formulation of the relationship between stimulus and
sensation is given by

 S k I c log

The symbol S refers to the intensity of the sensation, the symbols k and c are
constants, and the symbol I refers to the physical intensity of the stimulus. William
James defi ned psychology as the science of mental life.

 One of the early behaviouralist psychologists was Pavlov who showed that it was
possible to develop a conditional refl ex in a dog. He showed that it is possible to
make a dog salivate in response to the ringing of a bell. This is done by ringing a bell
each time before meat is provided to the dog, and the dog therefore associates the
presentation of meat with the ringing of the bell after a training period.

 Skinner developed the concept of conditioning further using rewards to reinforce
desired behaviour and punishment to discourage undesired behaviour. Positive rein-
forcement helps to motivate the individual to behave in the desired way, with punish-
ment used to deter the individual from performing undesired behaviour. The behavioural
theory of psychology explains many behavioural aspects of the world. However, it does
not really explain complex learning tasks such as language development.

 Merleau-Ponty 16 considered the problem of what the structure of the human
mind must be for the objects of the external world to exist in our minds in the form
that they do. He built upon the theory of phenomenology as developed by Hegel and
Husserl. Phenomenology involves a focus and exploration of phenomena with the
goal of establishing the essential features of experience. Merleau-Ponty introduced
the concept of the body-subject , which is distinct from the Cartesian view that the
world is just an extension of our own mind. He argued that the world and the human
body are mutually intertwined. The Cartesian view is that the self must fi rst be
aware of and know its own existence, prior to being aware of and recognizing the
existence of anything else.

 The body has the ability to perceive the world, and it plays a double role in that it
is both the subject (i.e. the perceiver) and the object (i.e. the entity being perceived)

16 Merleau-Ponty was a French philosopher who was strongly infl uenced by the phenomenology of
Husserl. He was also closely associated with the French existentialist philosophers such as Jean-
Paul Sartre and Simone De Beauvoir.

19 History of Artifi cial Intelligence

263

of experience. Human understanding and perception are dependent on the body’s
capacity to perceive via the senses and its ability to interrogate its environment.
Merleau-Ponty argued that there is a symbiotic relationship between the perceiver
and what is being perceived, and he argues that as our consciousness develops, the
self imposes richer and richer meanings on objects. He provides a detailed analysis
of the fl ow of information between the body-subject and the world.

 Cognitive psychology is a branch of psychology that is concerned with learning,
language, memory and internal mental processes. Its roots lie in Piaget’s child
development psychology and in Wertheimer’s Gestalt psychology. The latter argues
that the operations of the mind are holistic and that the mind contains a self-
organizing mechanism. Holism argues that the sum of the parts is less than the
whole, and it is the opposite of logical atomism 17 developed by Bertrand Russell.
Russell (and also Wittgenstein) attempted to identify the atoms of thought: i.e. the
elements of thought that cannot be divided into smaller pieces. Logical atomism
argued that all truths are ultimately dependent on a layer of atomic facts. It had an
associated methodology whereby by a process of analysis, it attempted to construct
more complex notions in terms of simpler ones.

 Cognitive psychology was developed in the late 1950s and is concerned with
how people understand, diagnose and solve problems, as well as the mental pro-
cesses that take place during a stimulus and its corresponding response. It argues
that solutions to problems take the form of rules, heuristics and sudden insight, and
it considers the mind as having a certain conceptual structure. The dominant para-
digm in the fi eld has been the information processing model , which considers the
mental processes of thinking and reasoning as being equivalent to software running
on the computer: i.e. the brain. It has associated theories of input, representation of
knowledge, processing of knowledge and output.

 Cognitive psychology has been applied to artifi cial intelligence from the 1960s,
and some of the research areas include:

• Perception
• Concept formation
• Memory
• Knowledge representation
• Learning
• Language
• Grammar and linguistics
• Thinking
• Logic and problem solving

 It is clear that for a machine to behave with intelligence, it will need to be able to
perceive objects in the physical world. It must be able to form concepts and to

17 Atomism actually goes back to the work of the ancient Greeks and was originally developed by
Democritus and his teacher Leucippus in the fi fth century B.C. Atomism was rejected by Plato in
the dialogue the Timaeus .

19.5 Cognitive Psychology

264

remember knowledge that it has already been provided with. It will need an under-
standing of temporal events. Knowledge must be effi ciently represented to allow
easy retrieval for analysis and decision-making. An intelligent machine will need
the ability to produce and understand written or spoken language. A thinking
machine must be capable of thought, learning, analysis and problem solving.

19.6 Computational Linguistics

 Linguistics is the theoretical and applied study of language, and human language is
highly complex. It includes the study of phonology, morphology, syntax, semantics
and pragmatics. Syntax is concerned with the study of the rules of grammar, and the
application of the rules forms the syntactically valid sentences and phrases of the
language. Morphology is concerned with the formation and alteration of words , and
phonetics is concerned with the study of sounds and how sounds are produced and
perceived as speech (or non-speech).

 Noam Chomsky is considered the father of linguistics, and he has been highly
infl uential in the linguistics fi eld. He defi ned the Chomsky Hierarchy of grammars
[ORg:13], which classifi es grammars into a number of classes with increasing
expressive power. These consist of four levels including regular grammars, context-
free grammars, context-sensitive grammars and unrestricted grammars. Each suc-
cessive class can generate a broader set of formal languages than the previous. The
grammars are distinguished by their production rules, which determine the type of
language that is generated.

 Computational linguistics is an interdisciplinary study of the design and analysis
of natural language processing systems. It includes linguists, computer scientists ,
 cognitive psychologists , mathematicians and experts in artifi cial intelligence .

 Early work on computational linguistics commenced with machine translation
work in the United States in the 1950s. The objective was to develop an automated
mechanism by which Russian language texts could be translated directly into
English without human intervention. It was naively believed that it was only a matter
of time before automated machine translation would be done.

 However, the initial results were not very successful, and it was realized that the
automated processing of human languages was considerably more complex. This
led to the birth of a new fi eld called computational linguistics, and the objective of
this fi eld is to investigate and develop algorithms and software for processing natural
languages. It is a subfi eld of artifi cial intelligence and deals with the comprehension
and production of natural languages.

 The task of translating one language into another requires an understanding of
the grammar of both languages. This includes an understanding of the syntax, the
morphology, semantics and pragmatics of the language. For artifi cial intelligence to
become a reality, it will need to make major breakthroughs in computational
linguistics.

19 History of Artifi cial Intelligence

265

19.7 Cybernetics

 The interdisciplinary fi eld of cybernetics 18 began in the late 1940s when concepts
such as information, feedback and regulation were generalized from engineering to
other systems. These include systems such as living organisms, machines, robots
and language. Norbert Wiener coined the term cybernetics , and it was taken from
the Greek word ‘κυβeρνητη’ (meaning steersman or governor). It is the study of
communications and control and feedback in living organisms and machines to
ensure effi cient action.

 The name is well chosen, as a steersman needs to respond to different conditions
and feedback while steering a boat to travel to a particular destination. Similarly, the
fi eld of cybernetics is concerned with the interaction of goals, predictions, actions,
feedback and responses in all kinds of systems. It uses models of organizations,
feedback and goals to understand the capacity and limits of any system.

 It is concerned with knowledge acquisition through control and feedback. Its
principles are similar to human knowledge acquisition, where learning is achieved
through a continuous process of feedback from parents and peers, which leads to
adaptation and transformation of knowledge, rather than its explicit encoding.

 The conventional belief in AI is that knowledge may be stored inside a machine
and that the application of stored knowledge to the real world in this way constitutes
intelligence. External objects are mapped to internal states on the machine, and
machine intelligence is manifested by the manipulation of the internal states. This
approach has been reasonably successful with rule-based expert systems, but it has
made limited progress in creating intelligent machines. Therefore, alternative
approaches such as cybernetics warrant further research. Cybernetics views infor-
mation (or intelligence) as an attribute of an interaction, rather than something that
is stored in a computer.

19.8 Logic and AI

 Mathematical logic is used in the AI fi eld to formalize knowledge and reasoning.
Common-sense reasoning is required for solving problems in the real world, and
McCarthy [Mc:59] argues that it is reasonable for logic to play a key role in the
formalization of common-sense knowledge. This includes the formalization of
basic facts about actions and their effects, facts about beliefs and desires and facts
about knowledge and how it is obtained. His approach allows common-sense prob-
lems to be solved by logical reasoning.

 Its formalization requires suffi cient understanding of the common-sense world,
and often the relevant facts to solve a particular problem are unknown. It may be
that knowledge thought relevant may be irrelevant and vice versa. A computer may
have millions of facts stored in its memory, and the problem is how to determine

18 Cybernetics was defi ned by Couffi gnal (one of its pioneers) as the art of ensuring the effi cacy of
action.

19.8 Logic and AI

266

which of these should be chosen from its memory to serve as premises in logical
deduction.

 McCarthy’s infl uential 1959 paper discusses various common-sense problems
such as getting home from the airport. Mathematical logic is the standard approach
to express premises, and it includes rules of inferences that are used to deduce valid
conclusions from a set of premises. Its rigorous deductive reasoning shows how new
formulae may be logically deduced from a set of premises.

 McCarthy’s approach to programs with common sense has been criticized by
Bar-Hillel and others on the grounds that common sense is fairly elusive and the
diffi culty that a machine would have in determining which facts are relevant to a
particular deduction from its known set of facts.

 Propositional calculus associates a truth value with each proposition and includes
logical connectives to produce formulae such as A → B , A ∧ B and A ∨ B . The truth
values of the propositions are normally the binary values of true and false . There are
other logics, such as three-valued logic or fuzzy logics that allow more than two
truth values for a proposition. Predicate logic is more expressive than propositional
logic and includes quantifi ers and variables. It can formalize the syllogism ‘All
Greeks are mortal; Socrates is a Greek; therefore, Socrates is mortal’. The predicate
calculus consists of:

• Axioms
• Rules for defi ning well-formed formulae
• Inference rules for deriving theorems from premises

 A formula in predicate calculus is built up from the basic symbols of the language.
These include variables, predicate symbols such as equality; function symbols;
constants; logical symbols such as ∃, ∧, ∨, ¬; and punctuation symbols such as
brackets and commas. The formulae of predicate calculus are built from terms,
where a term is defi ned recursively as a variable or individual constant or as some
function containing terms as arguments. A formula may be an atomic formula or
built from other formulae via the logical symbols.

 There are several rules of inference associated with predicate calculus, and the
most important of these are modus ponens and generalization. The rule of modus
ponens states that given two formulae p and p → q , then we may deduce q . The rule
of generalization states that given a formula p , we may deduce ∀(x) p .

19.9 Computability, Incompleteness and Decidability

 An algorithm (or procedure) is a fi nite set of unambiguous instructions to perform a
specifi c task. The term ‘algorithm’ is named after the Persian mathematician
 Al-Khwarizmi . Church defi ned the concept of an algorithm formally in 1936, and he
defi ned computability in terms of the lambda calculus. Turing defi ned computability
in terms of the theoretical Turing machine. These formulations are equivalent.

19 History of Artifi cial Intelligence

267

 Hilbert proposed formalism as a foundation for mathematics in the early twentieth
century. A formal system consists of a formal language , a set of axioms and rules of
 inference . Hilbert’s program was concerned with the formalization of mathematics
(i.e. the axiomatization of mathematics) together with a proof that the axiomatization
was consistent. Its goals were to:

 – Develop a formal system where the truth or falsity of any mathematical state-
ment may be determined.

 – A proof that the system is consistent (i.e. that no contradictions may be derived).

 A proof in a formal system consists of a sequence of formulae, where each
formula is either an axiom or derived from one or more preceding formulae in the
sequence by one of the rules of inference. Hilbert believed that every mathematical
problem could be solved, and he therefore expected that the formal system of math-
ematics would be complete (i.e. all truths could be proved within the system) and
 decidable : i.e. that the truth or falsity of any mathematical proposition could be
determined by an algorithm. However, Church and Turing independently showed
this to be impossible in 1936, and the only way to determine whether a statement is
true or false is to try to solve it.

 Russell and Whitehead published Principia Mathematica in 1910, and this three-
volume work on the foundations of mathematics attempted to derive all mathemati-
cal truths in arithmetic from a well-defi ned set of axioms and rules of inference. The
questions remained whether the Principia was complete and consistent. That is, is it
possible to derive all the truths of arithmetic in the system and is it possible to derive
a contradiction from the Principia’s axioms?

 Gödel’s second incompleteness theorem [Goe:31] showed that fi rst-order arith-
metic is incomplete and that the consistency of fi rst-order arithmetic cannot be
proved within the system. Therefore, if fi rst-order arithmetic cannot prove its own
consistency, then it cannot prove the consistency of any system that contains fi rst-
order arithmetic. These results dealt a fatal blow to Hilbert’s program.

19.10 Robots

 The fi rst use of the term ‘robot’ was by the Czech playwright Karel Capek in his
play Rossum’s Universal Robots performed in Prague in 1921. The word ‘robot’ is
from the Czech word for forced labour. The theme explored is whether it is ethical
to exploit artifi cial workers in a factory and how the robots should respond to their
exploitation. Capek’s robots were not mechanical or metal in nature and were
instead created through chemical means.

 Asimov wrote several stories about robots in the 1940s including the story of a
robotherapist. He predicted the rise of a major robot industry, and he also introduced
a set of rules (or laws) for good robot behaviour. These are known as the Three Laws
of Robotics (Table 19.1), and Asimov later added a fourth law.

19.10 Robots

268

 The term ‘robot’ is defi ned by the Robot Institute of America as:

 Defi nition 19.1 (Robots) A re-programmable, multifunctional manipulator
designed to move material, parts, tools, or specialized devices through various
programmed motions for the performance of a variety of tasks .

 Joseph Engelberger and George Devol are considered the fathers of robotics, and
they set up the fi rst manufacturing company ‘Unimation’ to make robots. Their fi rst
robot was called the ‘Unimate’. These robots were very successful and reliable and
saved their customer (General Motors) money by replacing staff with machines.

 Robots are very effective at doing clearly defi ned repetitive tasks, and there are
many sophisticated robots in the workplace today. The robot industry plays a major
role in the automobile sector, and these are mainly industrial manipulators that are
essentially computer controlled ‘arms and hands’. However, fully functioning
androids are many years away.

 Robots may also improve the quality of life for workers, as they can free human
workers from performing dangerous or repetitive tasks. They consistently produce
(24 × 7 × 365) high-quality products at a low cost to consumers. They will, of course,
from time to time require servicing by engineers or technicians. However, there are
impacts on workers whose jobs are displaced by robots.

19.11 Neural Networks

 The term ‘ neural network ’ refers to an interconnected group of processing elements
called nodes or neurons. These neurons cooperate and work together to produce an
output function. Neural networks may be artifi cial or biological. A biological net-
work is part of the human brain, whereas an artifi cial neural network is designed to
mimic some properties of a biological neural network. The processing of informa-
tion by a neural network is done in parallel rather than in series.

 A unique property of a neural network is fault tolerance: i.e. it can still perform
(within certain tolerance levels) its overall function even if some of its neurons are
not functioning. Neural network may be trained to learn to solve complex problems

 Table 19.1 Laws of Robotics

 Law Description

 Law zero A robot may not injure humanity or, through inaction, allow humanity to
come to harm

 Law one A robot may not injure a human being or, through inaction, allow a human
being to come to harm, unless this would violate a higher order law

 Law two A robot must obey orders given it by human beings, except where such
orders would confl ict with a higher-order law

 Law three A robot must protect its own existence as long as such protection does not
confl ict with a higher-order law

19 History of Artifi cial Intelligence

269

from a set of examples. These systems may also use the acquired knowledge to
generalize and solve unforeseen problems.

 A biological neural network is composed of billions of neurons (or nerve cells).
A single neuron may be physically connected to thousands of other neurons, and the
total number of neurons and connections in a network may be enormous. The human
brain consists of many billions of neurons, and these are organized into a complex
intercommunicating network. The connections are formed through axons 19 to
 dendrites, 20 and the neurons can pass electrical signals to each other. These connec-
tions are not just the binary digital signals of on or off , and instead the connections
have varying strength, which allows the infl uence of a given neuron on one of its
neighbours to vary from very weak to very strong.

 That is, each connection has an individual weight (or number) associated with it
that indicates its strength. Each neuron sends its output value to all other neurons to
which it has an outgoing connection. The output of one neuron can infl uence the
activations of other neurons causing them to fi re. The neuron receiving the connec-
tions calculates its activation by taking a weighted sum of the input signals. Networks
learn by changing the weights of the connections. Many aspects of brain function,
especially the learning process, are closely associated with the adjustment of these
connection strengths. Brain activity is represented by particular patterns of fi ring
activity among the network of neurons. This simultaneous cooperative behaviour of
a huge number of simple processing units is at the heart of the computational power
of the human brain. 21

 Artifi cial neural networks aim to simulate various properties of biological neural
networks. They consist of many hundreds of simple processing units, which are
wired together in a complex communication network. Each unit or node is a simpli-
fi ed model of a real neuron which fi res 22 if it receives a suffi ciently strong input
signal from the other nodes to which it is connected. The strength of these connec-
tions may be varied in order for the network to perform different tasks correspond-
ing to different patterns of node fi ring activity. The objective is to solve a particular
problem, and artifi cial neural networks have been applied to speech recognition
problems , image analysis and so on.

 The human brain employs massive parallel processing, whereas artifi cial neural
networks have provided simplifi ed models of the neural processing that takes place
in the brain. The largest artifi cial neural networks are tiny compared to biological
neural networks. The challenge for the fi eld is to determine what properties indi-
vidual neural elements should have to produce something useful representing
intelligence.

19 These are essentially the transmission lines of the nervous system. They are microscopic in diam-
eter and conduct electrical impulses. The axon is the output from the neuron and the dendrites are
input.
20 Dendrites extend like the branches of a tree. The origin of the word dendrite is from the Greek
word (δενδρον) for tree.
21 The brain works through massive parallel processing.
22 The fi ring of a neuron means that it sends off a new signal with a particular strength (or weight).

19.11 Neural Networks

270

 Neural networks differ from the traditional von Neumann architecture, which is
based on the sequential execution of machine instructions. The origins of neural
networks lie in the attempts to model information processing in biological systems.
This relies more on parallel processing as well as on implicit instructions based on
pattern recognition from sense perceptions of the external world.

 The nodes in an artifi cial neural network are composed of many simple process-
ing units, which are connected into a network. Their computational power depends
on working together (parallel processing) on any task, and computation is related to
the dynamic process of node fi rings rather than sequential execution of instructions.
This structure is much closer to the operation of the human brain and leads to a
computer that may be applied to a number of complex tasks.

19.12 Expert Systems

 An expert system is a computer system that contains domain knowledge of one or
more human experts in a narrow specialized domain. It consists of a set of rules
(or knowledge) supplied by the domain experts about a specifi c class of problems
and allows knowledge to be stored and intelligently retrieved. The effectiveness of
the expert system is largely dependent on the accuracy of the rules provided, as
incorrect inferences will be drawn with incorrect rules. Several commercial expert
systems have been developed since the 1960s.

 Expert systems have been a success story in the AI fi eld. They have been applied
to the medical fi eld, equipment repair and investment analysis. They employ a logi-
cal reasoning capability to draw conclusions from known facts, as well as recom-
mending an appropriate course of action to the user. An expert system consists of
the following components (Table 19.2): a knowledge base, an inference engine, an
explanatory facility, a user interface and a database.

 Human knowledge of a specialty is of two types: namely, public knowledge and
private knowledge. The former includes the facts and theories documented in text-
books and publications, whereas the latter refers to knowledge that the expert pos-
sesses that has not found its way into the public domain. The latter often consists of
rules of thumb or heuristics that allow the expert to make an educated guess where
required, as well as allowing the expert to deal effectively with incomplete or erro-
neous data. It is essential that the expert system encodes both public and private
knowledge to enable it to draw valid inferences.

 Table 19.2 Expert systems

 Component Description

 Knowledge base The knowledge base is represented as a set of rules of the form
(if condition, then action)

 Inference engine Carries out reasoning by which expert system reaches conclusion

 Explanatory facility Explains how a particular conclusion was reached

 User interface Interface between user and expert system

 Database/memory Set of facts used to match against IF conditions in knowledge base

19 History of Artifi cial Intelligence

271

 The inference engine is made up of many inference rules that are used by the
engine to draw conclusions. Rules may be added or deleted without affecting other
rules, and this refl ects the normal updating of human knowledge. Out-of-date facts
may be deleted, as they are no longer used in reasoning, while new knowledge may
be added and applied in reasoning. The inference rules use reasoning that is closer
to human reasoning, and the two main types of reasoning are backward chaining
and forward chaining. Forward chaining starts with the data available and uses the
inference rules to draw intermediate conclusions until a desired goal is reached.
Backward chaining starts with a set of goals and works backwards to determine if
one of the goals can be met with the data that is available.

 The expert system makes its expertise available to decision-makers who need
answers quickly. This is extremely useful as often there is a shortage of experts, and
the availability of an expert computer with in-depth knowledge of specifi c subjects
is therefore very attractive. Expert systems may also assist managers with long-term
planning. There are many small expert systems available that are quite effective in
a narrow domain.

 Several expert systems (e.g. Dendral, Mycin, and Colossus) have been devel-
oped. Dendral (Dendritic Algorithm) was developed at Stanford University in the
mid-1960s, and its objectives were to assist the organic chemist with the problem of
identifying unknown organic compounds and molecules by computerized spec-
trometry. This involved the analysis of information from mass spectrometry graphs
and knowledge of chemistry. Dendral automated the decision-making and problem-
solving process used by organic chemists to identify complex unknown organic
molecules. It was written in LISP and it showed how an expert system could employ
rules, heuristics and judgement to guide scientists in their work.

 Mycin was developed at Stanford University in the 1970s. It was written in LISP
and was designed to diagnose infectious blood diseases and to recommend appro-
priate antibiotics and dosage amounts corresponding to the patient’s body weight. It
had a knowledge base of approximately 500 rules and a fairly simple inference
engine. Its approach was to query the physician running the program with a long list
of yes/no questions. Its output consisted of various possible bacteria that could cor-
respond to the blood disease, along with an associated probability that indicated the
confi dence in the diagnosis. It also included the rationale for the diagnosis and a
course of treatment appropriate to the diagnosis.

 Mycin had a correct diagnosis rate of 65 %. This was better than the diagnosis of
most physicians who did not specialize in bacterial infections. However, its diagno-
sis rate was less than that of experts in bacterial infections who had a success rate of
80 %. Mycin was never actually used in practice due to legal and ethical reasons on
the use of expert systems in medicine. For example, if the machine makes the wrong
diagnosis, who is to be held responsible?

 Colossus was an expert system used by several Australian insurance companies.
It was used to help insurance adjusters assess personal injury claims and helped to
improve consistency, objectivity and fairness in the claims process. It guides the
adjuster through an evaluation of medical treatment options, the degree of pain and

19.12 Expert Systems

272

suffering of the claimant and the extent that there is permanent impairment to the
claimant, as well as the impact of the injury on the claimant’s lifestyle. The Computer
Sciences Corporation (CSC) developed it.

19.13 Review Questions

19.14 Summary

 Artifi cial intelligence is a multidisciplinary fi eld, and its branches include logic,
philosophy, psychology, linguistics, machine vision, neural networks and expert
systems. Turing believed that machine intelligence was achievable, and he devised
the ‘Turing Test’ to judge if a machine was intelligent. Searle’s Chinese room argu-
ment is a rebuttal of strong AI, and it aims to demonstrate that a machine will never
have the same cognitive qualities as a human even if it passes the Turing Test.

 McCarthy proposed programs with common-sense knowledge and reasoning
formalized with logic. He argued that human-level intelligence could be achieved
with a logic-based system. Cognitive psychology is concerned with cognition and
some of its research areas include perception, memory, learning, thinking, logic and
problem solving. Linguistics is the scientifi c study of language and includes the
study of syntax and semantics.

 Artifi cial neural networks aim to simulate various properties of biological neural
networks. They consist of many hundreds of simple processing units that are wired
together in a complex communication network. Each unit or node is a simplifi ed
model of a real neuron which fi res if it receives a suffi ciently strong input signal
from the other nodes to which it is connected. The strength of these connections
may be varied in order for the network to perform different tasks corresponding to
different patterns of node fi ring activity.

 1. Discuss Descartes and his rationalist philosophy and his relevance to arti-
fi cial intelligence.

 2. Discuss the Turing Test and its relevance on strong AI.
 3. Discuss Searle’s Chinese room rebuttal arguments. What are your views

on Searle’s argument?
 4. Discuss the philosophical problems underlying artifi cial intelligence.
 5. Discuss the applicability of logic to artifi cial intelligence.
 6. Discuss neural networks and their applicability to artifi cial intelligence.
 7. Discuss expert systems and their applications to the AI fi eld.
 8. Discuss the applications of cybernetics to the AI fi eld.
 9. Discuss the applications of phenomenology to the AI fi eld.

19 History of Artifi cial Intelligence

273

 An expert system is a computer system that allows knowledge to be stored and
intelligently retrieved. It is a program that is made up of a set of rules (or knowl-
edge). The domain experts generally supply the rules about a specifi c class of prob-
lems. Expert systems include a problem-solving component that allows an analysis
of the problem, as well as recommending an appropriate course of action to solve
the problem.

19.14 Summary

275© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6_20

 20 History of Databases

 Abstract
 We present a short history of databases including the hierarchical model, the
network model and the relational model. We discuss the relational model as
developed by Codd at IBM in more detail, as most databases used today are rela-
tional. There is a short discussion on the SQL and on the Oracle database.

20.1 Introduction

 A database (DB) is essentially an organized collection of data and consists of sche-
mas, tables, queries, reports and views. It is organized in such a way that a computer
program (termed the database management system) may easily select and analyse
the desired pieces of data. A database holds information about many different types
of entities, as well as information about the relationships between the entities.

 A database management system (DBMS) is a collection of software programs
that allows a user to store, modify and extract data from a database. The interaction

 Key Topics
 Hierarchical model
 Network model
 Relational model
 Table
 Key
 Index
 SQL
 Oracle database

276

between the users and the database is through the DBMS, and it enables the
defi nition, creation, query, update and administration of databases. There are three main
categories of database management systems, and these are hierarchical, network
and relational models. These differ in how the DBMS organizes data internally, and
this determines the speed and effi ciency of data retrieval from the database.

 A network model database is perceived by the user to be a collection of record
types and relationships between these record types organized as a network. The
network model defi nes the relationships explicitly as part of the structure of the
network. A hierarchical model is perceived by a user to be a collection of hierar-
chies or trees, and it is a more restricted structure than the network model as only
one arrow may enter each box on the network. A relational model is perceived by
the user to be a collection of tables (or relations), and it has been the most popular
category of databases since the 1980s.

 Early work on database management systems began in the 1960s as part of the
Apollo mission to land man on the moon. It was clear that the existing systems were
not capable of handling the coordination of the vast amounts of data required for the
project. IBM developed the Generalized Update Access Method (GUAM) product
in 1964, and this product evolved into Data Language/1 (DL/1). DL/1 is the data
management component of the information management system (IMS) database,
which was one of the earliest database management systems when it was introduced
in 1968. IMS used the hierarchical model.

 The CODASYL committee 1 set up a database task group and devised a standard,
which became known as the ‘CODASYL approach’. This became the network stan-
dard, and it was defi ned in the late 1960s. The standard was introduced in 1971.

 Codd proposed the relational model, a radically new approach to the manage-
ment of data in 1970, and IBM developed the prototype system called System R in
the 1970s. Commercial relational database systems were introduced from the early
1980s, and today relational databases are much more widely used than network or
hierarchical databases. Among the popular relational databases used today are
Oracle, Microsoft SQL Server and Informix.

20.2 Hierarchical and Network Models

 A database management system uses the network model if the data relationships are
defi ned in terms of a graph. The relationships are defi ned in terms of records
(a record is a collection of fi elds, with each fi eld containing one value), which are
connected together via links. Any given record may have several parent records and
several dependent records. Cycles are permitted in the model. Charles Bachman and
others on the CODASYL committee defi ned the network model in the late 1960s.

1 The CODASYL committee is the group that defi ned and standardized the COBOL programming
language. It was also involved in work in standardizing database interfaces.

20 History of Databases

277

Among the well-known databases that were based on the network model was
General Electric’s Integrated Data Store (IDS) and the Integrated Database
Management System (IDMS). Both of these mainframe databases were introduced
in the early 1970s.

 For a possible network view of suppliers and parts, the data would be presented
in a simple graph-like structure (Fig. 20.1), which allows many-to-many relation-
ships to be expressed. For more detailed information, see [Dat:81].

 A database management system uses the hierarchical model if the data relation-
ships are defi ned in terms of hierarchies (i.e. in a tree-like structure). The relation-
ships are simple but infl exible (as they are one to many). The data are defi ned as
records, which are connected to each other through links. Each child record may
have only one parent, whereas each parent record may have several children records.
The whole tree (starting from the root) needs to be traversed in order to retrieve data
from a hierarchical database. In other words, the hierarchical model is a more
restricted version of the network model, where no box can have more than one
arrow entering the box although several arrows can leave a box.

 For a possible hierarchical view of suppliers and parts, the data would be pre-
sented in a simple tree-like structure (Fig. 20.2). Each tree consists of one part
record together with a set of supplier record occurrences, one for each supplier of
the part. For more detailed information, see [Dat:81].

 The database access and manipulation component of the hierarchical model is
termed Data Language/1, and it includes a data defi nition language and a data
manipulation language. The IBM Information Management System (IMS) is one of
the most widely used hierarchical databases, and it was created in the late 1960s.

London12RedNutP1 London12RedNutP1

London20SmithS1 London20SmithS1 Paris10JonesS2 Paris10JonesS2

300

Paris17GreenBoltP2 Paris17GreenBoltP2

300 400

 Fig. 20.1 Simple part/supplier—network model

P1 Nut Red 12 London

S1 Smith 20 London 300
S2 Jones 10 Paris 300

 Fig. 20.2 Simple part/
supplier—hierarchical
model

20.2 Hierarchical and Network Models

278

20.3 The Relational Model

 A relational database management system (RDBMS) is a system that manages data
using the relational model , and examples of such systems include RDMS developed
at MIT in the 1970s; Ingres developed at the University of California, Berkeley, in
the mid-1970s; Oracle developed in the late 1970s; DB2; Informix; and Microsoft
SQL Server.

 A relation is defi ned as a set of tuples, and it is usually represented by a table.
A table is data organized in rows and columns, with the data in each column of the
table of the same data type. Constraints may be employed to provide restrictions on
the kinds of data that may be stored in the relations. These are Boolean expressions
which indicate whether the constraint holds or not and are a way of implementing
business rules in the database.

 Relations have one or more keys associated with them, and the key uniquely
identifi es the row of the table . An index is a way of providing fast access to the data
in a relational database, as it allows the tuple in a relation to be looked up directly
(using the index) rather than checking all of the tuples in the relation.

 The structured query language (SQL) is a computer language that tells the
relational database what to retrieve and how to display it. A stored procedure is
executable code that is associated with the database, and it is used to perform
common operations on the database.

 The concept of a relational database was fi rst described in a paper A Relational
Model of Data for Large Shared Data Banks by Codd [Cod:70]. A relational data-
base is a database that conforms to the relational model , and it may be defi ned as a
set of relations (or tables).

 Codd (Fig. 20.3) was a British mathematician, computer scientist and IBM
researcher, who initially worked on the SSEC (Selective Sequence Electronic
Calculator) project in New York and then on the IBM 701 and 702 computers. He
later worked on the IBM 7030 Stretch computer (IBM’s fi rst transistorized computer).
He was the creator of STEM (statistical database expert manager).

 He developed the relational database model in the late 1960s, and he published
an internal IBM paper on the relational model in 1969. Today, this is the standard
way that information is organized and retrieved from computers, and relational
databases are at the heart of systems from hospitals’ patient records to airline fl ight
and schedule information.

 IBM was promoting its IMS hierarchical database in the 1970s, and it showed
little interest or enthusiasm for Codd’s new relational database model. It made busi-
ness sense for IBM to preserve revenue for the IMS/DB model, rather than embark-
ing on a new technology. However, IBM agreed to implement Codd’s ideas on the
relational model for the System R research project in the 1970s, and this project
demonstrated the power of the model, as well as demonstrating good transaction
processing performance. The project introduced a data query language that was
initially called SEQUEL (later renamed to SQL), and this language was designed to
retrieve and manipulate data in the IBM database.

20 History of Databases

279

 Codd continued to develop and extend his relational model, and several theorems
are named after him. In later years he proposed a three-valued logic to deal with
missing or undefi ned information and even proposed a four-valued logic in the
1990s. These proposals were never implemented and were controversial at the time.
The relational model became popular from the early 1980s, and Codd received the
ACM Turing Award in 1981 for his development of the relational database model.

 A binary relation R(A,B) where A and B are sets is a subset of the Cartesian
product (A × B) of A and B. The domain of the relation is A, and the codomain of the
relation is B. The notation a R b signifi es that there is a relation between a and b and
that (a,b) ∈R. An n -ary relation R (A 1 ,A 2 ,…A n) is a subset of the Cartesian product
of the n sets: i.e. a subset of (A 1 × A 2 × … × A n). However, an n -ary relation may also
be regarded as a binary relation R(A,B) with A = A 1 × A 2 × … × A n -1 and B = A n .

 The data in the relational model are represented as a mathematical n -ary relation.
In other words, a relation is defi ned as a set of n - tuples and is usually represented by a
table. A table is a visual representation of the relation, and the data is organized in rows
and columns . The data stored in each column of the table is of the same data type .

 The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n -tuple (one tuple) of the relation, and
the number of tuples in the relation is the cardinality of the relation. Consider the
PART relation taken from [Dat:81], where this relation consists of a heading and the
body. There are fi ve data types representing part numbers, part names, part colours,
part weights and locations in which the parts are stored. The body consists of a set
of n -tuples. The PART relation is of cardinality 6 (Fig. 20.4).

 Fig. 20.3 Edgar Codd

20.3 The Relational Model

280

 Strictly speaking there is no ordering defi ned among the tuples of a relation,
since a relation is a set and sets are not ordered. However, in practice, relations are
often considered to have an ordering.

 There is a distinction between a domain and the columns (or attributes) that are
drawn from that domain. An attribute represents the use of a domain within a rela-
tion, and the distinction is often emphasized by giving attributes names that are
distinct from the underlying domain. The difference between domains and attributes
can be seen in the PART relation (Fig. 20.5) from [Dat:81].

 A normalized relation satisfi es the property that at every row and column posi-
tion in the table, there is exactly one value (i.e. never a set of values). All relations
in a relational database are required to satisfy this condition, and an un-normalized
relation may be converted into an equivalent normalized form.

 It is often the case that within a given relation, there is one attribute with values
that is unique within the relation and can thus be used to identify the tuples of the
relation. For example, the attribute P# of the PART relation has this property since
each PART tuple contains a distinct P# value, which may be used to distinguish that

P# PName Colour Weight City
P1
P2
P3
P4
P5
P6

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

London
Paris
Rome
London
Paris
London

 Fig. 20.4 PART relation

DOMAIN PART_NUMBER CHARACTER(6)

DOMAIN PART_NAME CHARACTER(20)

DOMAIN COLOUR CHARACTER(6)

DOMAIN WEIGHT NUMERIC(4)

DOMAIN LOCATION CHARACTER(15)

RELATION PART

(P# : DOMAIN PART_NUMBER

PNAME : DOMAIN PART_NAME

COLOUR : DOMAIN COLOUR

WEIGHT : DOMAIN WEIGHT

CITY : DOMAIN LOCATION)

 Fig. 20.5 Domains vs. attributes

20 History of Databases

281

tuple from all other tuples in the relation. P# is termed the primary key for the PART
relation. A candidate key that is not the primary key is termed the alternate key .

 An index is a way of providing quicker access to the data in a relational database,
as it allows the tuple in a relation to be looked up directly (using the index) rather
than checking all of the tuples in the relation.

 The consistency of a relational database is enforced by a set of constraints
that provide restrictions on the kinds of data that may be stored in the relations.
The constraints are declared as part of the logical schema and are enforced by the
database management system. They are used to implement the business rules for the
database.

20.4 Structured Query Language (SQL)

 Codd proposed the Alpha language as the database language for his relational
model. However, IBM’s implementation of his relational model in the System R
project introduced a data query language that was initially called SEQUEL (later
renamed to SQL). This language did not adhere to Codd’s relational model but
became the most popular and widely used database language. It was designed to
retrieve and manipulate data in the IBM database, and its operations included insert,
delete, update, query , schema creation and modifi cation and data access control.

 Structured query language (SQL) is a computer language that tells the relational
database what to retrieve and how to display it. It was designed and developed at IBM
by Donald Chamberlin and Raymond Boyce, and it became an ISO standard in 1987.

 The most common operation in SQL is the query command, which is performed
with the SELECT statement. The SELECT statement retrieves data from one or
more tables, and the query specifi es one or more columns to be included in the
result. Consider the example of a query that returns a list of expensive books
(defi ned as books that cost more than 100.00):

 SELECT * 2
FROM Book
WHERE Price > 100.00
ORDER by title;

 The data manipulation language (DML) is the subset of SQL used to add, update
and delete data. It includes the INSERT, UPDATE and DELETE commands. The data
defi nition language (DDL) manages table and index structure and includes the
CREATE, ALTER, RENAME and DROP statements.

 There are extensions to standard SQL that add programming language function-
ality. A stored procedure is executable code that is associated with the database. It
is usually written in an imperative programming language, and it is used to perform
common operations on the database.

2 The asterisk (*) indicates that all columns of the Book table should be included in the result.

20.4 Structured Query Language (SQL)

282

 Oracle is recognized as a world leader in relational database technology, and its
products play a key role in business computing. An Oracle database consists of a col-
lection of data managed by an Oracle database management system. Today, Oracle is
the main standard for database technology, and it is described in the next section.

20.5 Oracle Database

 An Oracle database is a collection of data treated as a unit, and the database is used
to store and retrieve related information. The database server manages a large
amount of data in a multi-user environment. It allows concurrent access to the data,
and the database management system prevents unauthorized access to the database.
It also provides a smooth recovery of database information in the case of an outage
or any other disruptive event.

 Every Oracle database consists of one or more physical data fi les, which contain
all of the database data, and a control fi le that contains entries that specify the physi-
cal structure of the database.

 An Oracle database includes logical storage structures that enable the database to
have control of disc space use. A schema is a collection of database objects, and the
schema objects are the logical structures that directly refer to the database’s data.
They include structures such as tables, views and indexes.

 Tables are the basic unit of data storage in an Oracle database, and each table has
several rows and columns. An index is an optional structure associated with a table,
and it is used to enhance the performance of data retrieval. The index provides an
access path to the table data. A view is the customized presentation of data from one
or more tables. It does not contain actual data and derives the data from the actual
tables on which it is based.

 Each Oracle database has a data dictionary, which stores information about the
logical and physical structure of the database. The data dictionary is created when
the database is created and is updated automatically by the Oracle database to ensure
that it accurately refl ects the status of the database at all times.

 An Oracle database uses memory structures and various processes to manage
and access the database. These include server processes, background processes and
user processes.

 A database administrator (DBA) is responsible for setting up the Oracle database
server and application tools. This role is concerned with allocating system storage
and planning future storage requirements for the database management system. The
DBA will create appropriate storage structures to meet the needs of application
developers who are designing a new application. The access to the database will be
monitored and controlled, and the performance of the database monitored and opti-
mized. The DBA will plan backups and recovery of database information.

20 History of Databases

283

20.6 Review Questions

20.7 Summary

 A database (DB) is essentially a collection of data organized in such a way that a
computer program may easily select the desired pieces of data. A database manage-
ment system (DBMS) is a collection of software programs that allows a user to
store, modify and extract data from a database.

 There are three main categories of database management systems, and these are
hierarchical, network and relational models. A network model database is perceived
by the user to be a collection of record types and relationships between them orga-
nized as a network. A hierarchical model is perceived by a user to be a collection of
hierarchies or trees, and it is a more restricted structure than the network model. A
relational model is perceived by the user to be a collection of tables (or relations).

 Early work on database management systems began in the 1960s, and IBM
developed the information management system (IMS) database in the late 1960s.
This hierarchical database was one of the earliest database management systems.

 Codd proposed the relational model as a new approach to the management of
data in 1970, and IBM developed the prototype System R relational database in the
1970s. Relational databases are now dominant with the hierarchical and network
model mainly of historical interest.

 1. What is a database?
 2. What is a database management system?
 3. Explain the differences between relational, hierarchical and network

databases.
 4. Explain the difference between a key and an index.
 5. What is a stored procedure?
 6. What is the role of the Oracle DBA?
 7. Explain the differences between tables, views and schemas.
 8. What is SQL?.
 9. What is an Oracle database?

20.7 Summary

285© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6

 Glossary

 ABC Atanasoff-Berry Computer
 ACS Advanced Computing Systems
 AI Artifi cial Intelligence
 ALGOL Algorithmic language
 AMD Advanced Micro Devices
 AMPS Advanced Mobile Phone System
 ANS Advanced Network Services
 ANSI American National Standards Institute
 API Application Programming Interface
 ARPA Advanced Research Projects Agency
 ASCC Automatic Sequence Controlled Calculator
 ASCII American Standard Code for Information Interchange
 AXE Automatic Exchange Electric switching system
 B2B Business to Business
 B2C Business to Consumer
 BASIC Beginners All-purpose Symbolic Instruction Code
 BBN Bolt, Beranek and Newman
 BCS British Computer Society
 BIOS Basic Input Output System
 CD Compact Disc
 CDC Control Data Corporation
 CDMA Code Division Multiple Access
 CEO Chief Executive Offi cer
 CERN Conseil Européen pour la Recherche Nucléaire
 CERT Certifi ed Emergency Response Team
 CMM® Capability Maturity Model
 CMMI® Capability Maturity Model Integration
 CMS Conversational Management System
 COBOL Common Business Oriented Language
 CODASYL Conference on Data Systems Languages
 COPQ Cost of Poor Quality
 COTS Customized Off The Shelf
 CP/M Control Program for Microcomputers

286

 CPU Central Processing Unit
 CSIRAC Council for Scientifi c and Industrial Research Automatic Computer
 CRT Cathode Ray Tube
 CTSS Compatible Time-Sharing System
 DARPA Defense Advanced Research Project Agency
 DB Database
 DBA Database Administrator
 DBMS Database Management System
 DDL Data Defi nition Language
 DEC Digital Equipment Corporation
 DL/1 Data Language 1
 DML Data Manipulation Language
 DNS Domain Naming System
 DOS Disk Operating System
 DRAM Dynamic Random Access Memory
 DRI Digital Research Incorporated
 DSDM Dynamic Systems Development Method
 DVD Digital Versatile Disc
 EDSAC Electronic Delay Storage Automatic Calculator
 EDVAC Electronic Discrete Variable Automatic Computer
 EMCC Eckert-Mauchly Computer Corporation
 ENIAC Electronic Numerical Integrator and Computer
 ETH Eidgenössische Technische Hochschule
 ETACS Extended TACs
 ETSI European Telecommunications Standards Institute
 FAA Federal Aviation Authority
 FDMA Frequency Division Multiple Access
 FTP File Transfer Protocol
 GB Gigabyte
 GECOS General Electric Comprehensive Operating System
 GL Generation Language
 GPRS General Packet Radio Service
 GSM Global System Mobile
 GUAM Generalised Update Access Method
 GUI Graphical User Interface
 HP Hewlett Packard
 HTML Hypertext Markup Language
 HTTP Hypertext Transport Protocol
 IBM International Business Machines
 IC Integrated Circuit
 ICBM Intercontinental Ballistic Missile
 IDE Integrated Development Environment
 IDMS Integrated Database Management System
 IDS Integrated Data Store
 IE Internet Explorer

Glossary

287

 IEEE Institute of Electrical and Electronic Engineers
 IMP Interface Message Processor
 IMS Information Management System
 INWG International Network-Working Group
 IOS Internetwork operating system
 IP Internet Protocol
 IPCS Interactive Problem Control System
 IPO Initial Public Offering
 ISEB Information Systems Examination Board
 ISO International Standards Organization
 IT Information Technology
 JAD Joint Application Development
 JCL Job Control Language
 JVM Java Virtual Machine
 KB Kilobyte
 KLOC Thousand Lines of Code
 LAN Local Area Network
 LED Light Emitting Diode
 LEO Lyons Electronic Offi ce
 LEO Low Earth Orbit
 LSI Large Scale Integration
 MADC Manchester Automatic Digital Computer
 MB Megabyte
 ME Millennium
 MFT Multiple Programming with a Fixed number of Tasks
 MIDI Musical Instrument Digital Interface
 MIT Massachusetts Institute of Technology
 MITS Micro Instrumentation and Telemetry System
 MOS Metal Oxide Semiconductor
 MSI Medium Scale Integration
 MS/DOS Microsoft Disk Operating System
 MTX Mobile Telephone Exchange
 MVS Multiple Virtual Storage
 MVT Multiple Programming with a Variable number of Tasks
 NAP Network Access Point
 NASA National Aeronautics and Space Administration
 NATO North Atlantic Treaty Organization
 NCP Network Control Protocol
 NMT Nordic Mobile Telephony system
 NORAD North American Aerospace Defense
 NPL National Physical Laboratory
 NR Norwegian Research
 NSF National Science Foundation
 OS Operating System
 PARC Palo Alto Research Centre

Glossary

288

 PC Personal Computer
 PC/DOS Personal Computer Disk Operating System
 PDA Personal Digital Assistant
 PDP Programmed Data Processor
 PL/M Programming Language for Microcomputers
 PTT Postal Telephone and Telegraph
 RAD Rapid Application Development
 RAM Random Access Memory
 RDBMS Relational Database Management System
 RIM Research in Motion
 ROM Read Only Memory
 RSCS Remote Spooling Communications Subsystem
 RUP Rational Unifi ed Process
 SAGE Semi-Automatic Ground Environment
 SECD Stack, Environment, Control, Dump
 SEI Software Engineering Institute
 SID Sound Interface Device
 SIM Subscriber Identity Module
 SMS Short Message Service
 SMTP Simple Mail Transfer Program
 SNS Social Networking Site
 SPREAD System Programming, Research, Engineering and Design
 SQL Structured Query Language
 SRI Stanford Research Institute
 SSEM Small Scale Experimental Machine
 SSI Small Scale Integration
 SSL Secure Socket Layer
 SWF Small Web Format
 TACS Total Access Communication
 TCP Transport Control Protocol
 TI Texas Instrument
 TSO Time Sharing Option
 UAT User Acceptance Testing
 UCLA University of California (Los Angeles)
 UDP User Datagram Protocol
 ULSI Ultra Large Scale Integration
 UML Unifi ed Modelling Language
 UNIVAC Universal Automatic Computer
 URL Universal Resource Locator
 VAX Virtual Address eXtension
 VDM Vienna Development Method
 VLSI Very Large Scale Integration
 VM Virtual Memory
 VMS Virtual Memory System
 W3C World Wide Web Consortium
 WCDMA Wideband CDMA

Glossary

289© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6

 References

 [AnDa:14] Thomas A, Michael D (2014) Operating systems: principles and practice. Recursive
Books, West Lake Hills

 [AnL:95] Anglin WS, Lambek J (1995) The heritage of Thales. Springer, New York
 [Bab:42] Menabrea LF (1842) Sketch of the analytic engine. Invented by Charles Babbage (trans:

Lada Ada Lovelace LA). Bibliothèque Universelle de Genève
 [Bag:12] Bagnall B (2012) Commodore: a company on the edge, 2nd edn. Variant Press, Winnipeg
 [Bec:00] Beck K (2000) Extreme programming explained embrace change. Addison Wesley,

Reading
 [Ber:99] George B (1999) Principles of human knowledge. Oxford University Press, Oxford.

(Originally published in 1710)
 [BL:00] Berners-Lee T (2000) Weaving the web. Collins Book, New York
 [Blo:04] The man who could have been Bill Gates. Bloomberg Business Week Magazine. October

2004
 [Boe:88] Barry B (1988) A spiral model for software development and enhancement. Computer

21:61–72
 [Boo:48] George B (1848) The calculus of logic. Camb Dublin Math J III:183–198
 [Boo:58] George B (1958) An investigation into the laws of thought. Dover Publications, New York.

(First published in 1854)
 [Boy:04] Boyer C (2004) The 360 revolution. IBM
 [Brk:75] Fred B (1975) The mythical man month. Addison Wesley, Reading
 [Brk:86] Fred B (1986) No silver bullet. Essence and accidents of software engineering. In:

Information processing. Elsevier, Amsterdam
 [Bus:45] Bush V (1945) As we may think. The Atlantic Monthly 176(1):101–108
 [Bux:75] Buxton JN, Naur P, Randell B (1975) Software engineering. Petrocelli. Report on two

NATO Conferences held in Garmisch, Germany (October 1968) and Rome, Italy (October
1969)

 [By:94] Halfhill T (1994) R.I.P. Commodore. 1954–1994. A look at an innovative industry pioneer,
whose achievements have been largely forgotten. Byte Magazine, August 1994

 [ChR:02] Henry C, Richard R (2002) The role of the business model in capturing value from inno-
vation: evidence from xerox corporation’s technology spin-off companies. Ind Corp Chang
11(3):529–555

 [CKS:11] Chrissis MB, Mike C, Sandy S (2011) CMMI. Guidelines for process integration and
product improvement, 3rd edn, SEI series in software engineering. Addison Wesley, Upper
Saddle River

 [Cod:70] Codd EF (1970) A relational model of data for large shared data banks. Commun ACM
13(6):377–387

 [Dat:81] Date CJ (1981) An introduction to database systems, 3rd edn, The systems programming
series. Addison-Wesley, Reading

290

 [Dei:90] Deitel HM (1990) Operating systems, 2nd edn. Addison Wesley.
 [Des:99] Descartes R (1999) Discourse on method and meditations on fi rst philosophy, 4th edn.

Translated by Cress D. Hackett Publishing Company, Indianapolis
 [Dij:68] Dijkstra EW (1968) Go to statement considered harmful. Commun ACM 51:7–9
 [Dij:72] Dijkstra EW (1972) Structured programming. Academic Press, London\New York
 [Edw:11] Edwards B (2011) The history of atari computers. PC World.
 [Fag:76] Fagan M (1976) Design and code inspections to reduce errors in software development.

IBM Syst J 15(3):182–210
 [Fer:03] Georgina F (2003) A computer called LEO: lyons tea shops and the world’s fi rst offi ce

computer. Fourth Estate Ltd, London
 [Ger:13] Jon G (2013) The idea factory: Bell Labs and the great age of american innovation.

Penguin Books, New York
 [Glb:94] Gilb T, Graham D (1994) Software inspections. Addison Wesley, Reading
 [Goe:31] Goedel K (1931) Undecidable propositions in arithmetic. Über formal unentscheidbare

Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und
Physik 38:173–98

 [Hea:56] Euclid (1956) The thirteen books of the elements, vol 1 (trans: Sir Thomas Heath). Dover
Publications, New York. (First published in 1925)

 [Hil:00] Hilzik MA (2000) Dealers of lightning. Xerox PARC and the dawn of the computer age.
Harper Business, New York

 [Hum:06] Hume D (2006) An enquiry concerning human understanding. Digireads.com, Stilwell.
(Originally published in 1748)

 [IGN:14] IGN presents: the history of Atari. March 2014. http://www.ign.com/articles/2014/03/20/
ign-presents-the-history-of-atari

 [Jac:99] Jacobson I, Booch G, Rumbaugh J (1999) The unifi ed software development process.
Addison Wesley, Reading

 [Jac:05] Jacaobson I et al (2005) The unifi ed modelling language, user guide, 2nd edn. Addison
Wesley Professional, Upper Saddle River

 [KaC:74] Kahn B, Cerf V (1974) Protocol for packet network interconnections. IEEE Trans
Commun Technol 22:637–648

 [Kan:03] Immanuel K (2003) Critique of pure reason. Dover Publications, New york. Originally
published in 1781

 [Ker:81] Kernighan B (1981) Why Pascal is not my favourite language. AT&T Bell Laboratories,
Murray Hill

 [KeR:78] Kernighan B, Ritchie D (1978) The C programming language, 1st edn. Prentice Hall,
Englewood Cliffs

 [Lam:72] Butler L (1972) Why Alto? Xerox inter-offi ce memorandum. Xerox PARC, Palo Alto
 [Lei:03] Wilhelm Gottfried L (1703) Explication de l'Arithmétique Binaire. Memoires de

l'Academie Royale des Sciences 3:85–93
 [Lov:42] Menabrea LF (1842) Sketch of the analytic engine invented by Charles Babbage.

Bibliothèque Universelle de Genève, No. 82 Translated by Ada, Augusta, Countess of Lovelace
 [MaP:02] Malmsten E, Portanger E (2002) Boo Hoo: $135 Million, 18 Months… A dot.com story

from concept to catastrophe. Arrow, London
 [Mc:59] McCarthy J (1959) Programs with common sense. In: Proceedings of the Teddington

conference on the mechanization of thought processes. Her Majesty’s Stationery Offi ce,
London

 [McH:85] McHale D (1985) Boole. Cork University Press, Cork
 [MeJ:01] Meurling J, Jeans R (2001) The ericsson chronicle: 125 years in telecommunications.

Informationsforlaget, Stockholm
 [Mor:65] Moore G (1965) Cramming more components onto integrated circuits. Elect Mag

38:14–117
 [Mot:99] Motorola Museum of Electrics and Motorola (1999) Motorola (CB) – a journey through

time and technology. Purdue University Press
 [Nau:60] Peter N (1960) Report on the algorithmic language: ALGOL 60. Commun ACM

3(5):299–314

References

http://www.ign.com/articles/2014/03/20/ign-presents-the-history-of-atari
http://www.ign.com/articles/2014/03/20/ign-presents-the-history-of-atari

291

 [Nes:56] Newell A, Simon H (1956) The logic theory machine. IRE Trans Inf Theory 2:61–79
 [OGC:04] Offi ce of Government Commerce (2004) Managing successful projects with PRINCE2.

The Stationery Offi ce, London
 [ORg:06] O’Regan G (2006) Mathematical approaches to software quality. Springer, London
 [ORg:10] O’Regan G (2010) Introduction to software process improvement. Springer, London
 [ORg:11] O’ Regan G (2011) A brief history of computing. Springer, London
 [ORg:12] O’Regan G (2012) Mathematics in computing. Springer, London
 [ORg:13] O’Regan G (2013) Giants of computing. Springer, London
 [ORg:14] O’Regan G (2014) Introduction to software quality. Springer, Cham
 [ORg:15] O’Regan G (2015) Pillars of computing. Springer, Cham
 [Par:72] Parnas D (1972) On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15(12): 1053–1058
 [Plo:81] Gordon P (1981) A structural approach to operational semantics, Technical Report DAIM

FN-19. Computer Science Department. Aarhus University, Aarhus
 [Por:98] Porter ME (1998) Competitive advantage. Creating and sustaining superior performance.

Free Press, New York
 [Pug:09] Pugh EW (2009) Building IBM: shaping an industry and its technology. MIT Press,

Cambridge
 [Res:84] Resnikoff HL, Wells RO (1984) Mathematics in civilization. Dover Publications,

New York
 [Rob:05] Robbins A (2005) Unix in a nutshell, 4th edn. O’Reilly Media, Sebastopol
 [Roy:70] Royce W (1970) The software lifecycle model (Waterfall Model). In: Proceedings of the

WESTCON, August, 1970
 [SCA:06] Standard CMMI appraisal method for process improvement. CMU/SEI-2006-HB-002.

V1.2. August 2006
 [Sch:04] Schein E (2004) DEC is dead, long live DEC. The lasting legacy of digital equipment

corporation. Barrett-Koehler Publishers, San Francisco
 [Sch:14] Schaefer MW (2014) The Tao of Twitter. Changing your life and business 140 characters

at a time, 2nd edn. McGraw-Hill, New York
 [Sea:80] John S (1980) Minds, brains, and programs. Behav Brain Sci 3:417–457
 [Sha:37] Shannon C (1937) A symbolic analysis of relay and switching circuits. Masters thesis,

Massachusetts Institute of Technology
 [Sha:48] Shannon C (1948) A mathematical theory of communication. Bell Syst Tech

J 27:379–423
 [Sha:49] Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech

J 28(4):656–715
 [Sho:50] Shockley W (1950) Electrons and holes in semiconductors with applications to transistor

electronics. Van Nostrand, New York
 [Smi:23] Smith DE (1923) History of mathematics, vol 1. Dover Publications, New York
 [Spi:92] Spivey JM (1992) The Z notation. A reference manual, Prentice Hall international series

in computer science. Prentice Hall, New York
 [Tur:50] Alan T (1950) Computing, machinery and intelligence. Mind 49:433–460
 [Turn:85] Turner MD (1985) Proceedings IFIP conference, Nancy France, Springer LNCS (201),

September 1985
 [VN:45] von Neumann J (1945) First draft of a report on the EDVAC. University of Pennsylvania,

Philadelphia
 [Wei:66] Joseph W (1966) Eliza. A computer program for the study of natural language communi-

cation between man and machine. Commun ACM 9(1)):36–45
 [Wei:76] Joseph W (1976) Computer power and human reason: from judgments to calculation.

W.H. Freeman & Co Ltd, San Francisco

References

293© Springer International Publishing Switzerland 2016
G. O’Regan, Introduction to the History of Computing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-33138-6

 A
 Abu Simbel , 14
 Ada Lovelace , 45 , 46
 Advanced Micro Devices , 124
 Advanced Mobile Phone System (AMPS) ,

 155–156
 Advice Taker , 256
 Agile development , 236–238
 Aiken, Howard , 56
 Alexander the Great , 22
 Alexandria , 22
 ALGOrithmic Language (ALGOL) , 195
 Al-Khwarizmi , 32
 Amdahl 470V/6 , 110 , 113 , 117
 Amdahl Corporation , 110
 Analog Computers , 2–3
 Analytic engine , 43 , 44
 Anderson, Harlan , 110
 Android , 221
 Apple I , 131
 Apple II , 131
 Apple Macintosh , 137 , 146
 Archimedes , 26
 Ariane 5 disaster , 232
 ARPANET , 164–166
 Artifi cial Intelligence , 250 , 254
 Atanasoff-Berry Computer , 58–60
 Atari 1040 , 140
 Atari 400 , 133–134
 Atari 800 , 133
 Atari ABC , 140
 Athenian democracy , 21
 AXE System , 153–155
 Axiomatic approach , 222
 Axiomatic semantics , 210

 B
 Babbage , 41
 Babylonians , 16–18
 Baldrige, Malcolm , 243
 BBN Technologies , 166
 Bell, Gordon , 111
 Bell, Graham , 156 , 161
 Berners-Lee, Tim , 168
 Binary numbers , 40–41
 Binary relation , 279
 Birth of Silicon Valley , 98–100
 Bletchley Park , 64–66
 Boo.com , 173
 Boole , 46
 British Empiricism , 260
 Bubble and Burst , 175–177
 Bush, Vannevar , 51 , 163
 Business to business (B2B) , 171
 Business to consumer (B2C) , 171
 Business model , 174

 C
 C++ , 201–202
 Capek , 267
 Champollion , 19
 Chinese remainder theorem , 35
 CMMI Maturity Model , 245
 Codd, Edgar , 278
 Cognitive psychology , 262–264
 Colossus , 65–66
 Colossus Mark 1 , 66
 Commodore 64 , 134–135
 Commodore Business Machines , 132
 Commodore PET , 132–133

 Index

294

 Commodore-Amiga , 139
 Common Business Oriented Language

(COBOL) , 193
 Computable function , 203
 Computational linguistics , 264
 Conference on Data Systems Languages

(CODASYL) , 195
 Cooper, Martin , 157
 Cybernetics , 265

 D
 Database , 275
 Database management system , 275
 DEC , 110
 DEC’s minicomputers , 110–113
 Defense Advanced Research Projects Agency

(DARPA) , 164 , 167
 Denotational semantics , 210
 Descartes , 250
 Deutsches Technikmuseum , 68
 Difference engine , 41–43
 Differential analyser , 3
 Digital computers , 3–8
 Digital research , 8
 Dorsey, Jack , 184
 Dot-com , 171–177
 Dot-com bubble , 175
 Dot-com failures , 173–174
 Dynamic Adaptive Total Area Coverage

(DynaTAC) , 157

 E
 Early IBM computers , 84–85
 eBay , 172
 Eckert-Mauchly Computer Corporation

(EMCC) , 74
 E-Commerce Security , 177–178
 EDSAC computer , 75
 Egyptians , 18–21
 Electronic Discrete Variable Automatic

Computer (EDVAC) , 62
 Electronic Numerical Integrator and Computer

(ENIAC) , 60–64
 E LIZA program , 259
 Eratosthenes , 24
 Ericsson , 154
 Estridge, Don , 144 , 147 , 149
 Ethics and AI , 259–260
 Euclid , 22
 Euclidean algorithm , 23

 European Space Agency , 232
 Expert system , 270

 F
 Facebook , 182
 Facebook revolution , 182–184
 Fagan inspections , 229 , 243
 Ferranti Mark I , 78–79
 Flowers, Tommy , 64
 Formal methods , 245–246
 Formalism , 267
 FORmula TRANslator

(FORTRAN) , 193
 Functional programming , 202

 G
 Greek , 21

 H
 Harvard Mark 1 , 56–58
 Heidegger , 261
 Hellenistic age , 22
 Hewlett, Bill , 99
 Hierarchical model , 277
 Hume, David , 261

 I
 IBM 360 , 107
 IBM 701 , 84
 IBM 704 , 85
 IBM 7090 , 90
 IBM personal computer , 144
 IBM System/360 , 104 , 106
 IEEE standards , 234
 Imperative programming , 192
 Information theory , 52
 Integrated circuit , 6–7 , 94–97
 Intel 4004 , 121
 Internet , 168
 iOS , 222
 IP , 167
 iPad , 182
 Iridium , 159
 Islamic mathematics , 31

 J
 Java , 202

Index

295

 K
 Karnak , 14
 Kernighan , 197
 Kilby, Jack , 95
 Kozmo.com , 174

 L
 Lambda calculus , 205
 Leibniz , 38
 LEO I Computer , 75–77
 Logic and AI , 265–266
 Logic programming languages , 206
 Logic Theorist , 255
 Lorenz codes , 66

 M
 Maintenance , 242
 Manchester Mark I , 70–71
 Mauchly, John , 74
 McCarthy, John , 255
 Merleau-Ponty , 262
 Microprocessor , 7–8 , 120
 Microsoft Windows , 220–221
 Miranda , 204
 MIT , 166
 MITS Altair 8800 , 129–130
 Mobile Operating Systems , 221–222
 Mobile phone , 156
 Model , 233
 Mongolian Hordes Approach , 226
 Moore, Gordon , 123
 Moore’s Law , 97
 Mosaic , 169
 Motorola , 122 , 156
 MS/DOS , 146 , 219–220
 Multiple Virtual Storage (MVS) , 216–217

 N
 NASDAQ , 175
 National Semiconductors , 123
 Nelson, Ted , 169
 Network model , 276
 Neural network , 268
 Noyce, Robert , 123

 O
 Object-oriented programming , 199
 Olsen, Ken , 110
 Omidyar, Pierre , 172

 Operational semantics , 210
 Oracle database , 282
 OS/360 , 215–216

 P
 Packard, Dave , 99
 Papyrus, Rhind , 19
 Parnas , 229 , 230
 Pascal , 196
 PC Disk Operating System (PC/DOS) , 146
 PDP-11 , 110–112 , 117
 Performance testing , 242
 Pets.com , 173
 Philosophy and AI , 260–262
 Plaintext , 31
 Plankalkül , 192
 Plimpton 322 Tablet , 17
 Predicate calculus , 266
 Prince 2 , 229 , 243
 Professional Engineering Association , 227
 Professional engineers , 230
 Project management , 244
 Prolog , 207
 Proof , 267
 Propositional calculus , 266
 Prototyping , 238
 Pygmalion , 250

 R
 RAND Corporation , 165
 Rational Unifi ed Process , 233 , 235–236
 Relational model , 276–281
 Remington Rand , 75
 Ritchie, Denis , 218
 Robots , 267–268
 Rossum’s Universal Robots , 250

 S
 Searle’s Chinese Room , 257
 Semantics , 208
 Semi-Automatic Ground Environment

(SAGE) , 86–88
 Shannon, Claude , 49
 Shockley, William , 5 , 88
 Simula 67 , 200
 Sinclair ZX 81 , 135
 Six sigma , 243
 Software crisis , 226 , 247
 Software engineering , 226 , 228 , 231
 Software failures , 232

Index

296

 Software inspections , 243–244
 Software reuse , 240
 Software testing , 241
 Sperry , 75
 Spiral model , 234
 Sprint planning , 237
 Standish group , 227 , 247
 Step reckoner , 38–40
 Story , 237
 Strong AI , 257
 Structured query language (SQL) , 281–282
 Syllogistic logic , 26
 Syntax , 208
 System testing , 241 , 242

 T
 TCP , 167
 TCP/IP , 167–168
 Test driven development , 241
 Traceability , 239
 Transistor , 5–6 , 88–89
 Trojan horse , 177
 Tunny , 66
 Turing Test , 254 , 256
 Tweet , 184–186

 U
 UAT testing , 242
 Unit testing , 241
 Universal Automatic Computer (UNIVAC) ,

 74–75
 UNIX , 218–219

 V
 Vacuum tubes , 4
 VAX 11 series , 112 , 117
 VAX 11/780 , 112–113
 Virtual machine (VM) , 217–218
 Virtual Memory System (VMS) , 218
 Von Neumann Architecture , 8–10

 W
 Waterfall model , 233
 Weak AI , 257
 Webvan , 173
 Weizenbaum , 259
 Whirlwind , 87
 World-Wide Web , 168–170

 X
 Xerox Alto Personal Computer ,

128–129

 Y
 Y2K , 228 , 232
 Yahoo , 172

 Z
 Z3 computer , 68
 Z4 computer , 77–78
 Zuse, Konrad , 67
 Zuse’s Machines , 68–69
 ZX spectrum , 136

Index

	Dedication
	Preface
	Overview
	 Organization and Features
	 Audience
	 Acknowledgements

	Contents
	List of Figures
	List of Tables
	1: What Is a Computer?
	1.1	 Introduction
	1.2	 Analog Computers
	1.3	 Digital Computers
	1.3.1	 Vacuum Tubes
	1.3.2	 Transistors
	1.3.3	 Integrated Circuits
	1.3.4	 Microprocessors

	1.4	 Von Neumann Architecture
	1.5	 Hardware and Software
	1.6	 Review Questions
	1.7	 Summary

	2: Computing in Early Civilizations
	2.1	 Introduction
	2.2	 The Babylonians
	2.3	 The Egyptians
	2.4	 The Greeks
	2.5	 The Romans
	2.6	 Islamic Influence
	2.7	 Chinese and Indian Mathematics
	2.8	 Review Questions
	2.9	 Summary

	3: Foundations of Computing
	3.1	 Introduction
	3.2	 Step Reckoner Calculating Machine
	3.3	 Binary Numbers
	3.4	 The Difference Engine
	3.5	 The Analytic Engine: Vision of a Computer
	3.5.1	 Applications of Analytic Engine

	3.6	 Boole’s Symbolic Logic
	3.6.1	 Switching Circuits and Boolean Algebra

	3.7	 Application of Symbolic Logic to Digital Computing
	3.8	 Review Questions
	3.9	 Summary

	4: The First Digital Computers
	4.1	 Introduction
	4.2	 Harvard Mark I
	4.3	 Atanasoff-Berry Computer
	4.4	 ENIAC and EDVAC
	4.4.1	 EDVAC
	4.4.2	 Controversy Between the ABC and ENIAC

	4.5	 Bletchley Park and Colossus
	4.5.1	 Colossus

	4.6	 Zuse’s Machines
	4.6.1	 Z1, Z2 and Z3 Machines

	4.7	 University of Manchester
	4.7.1	 Manchester Mark I

	4.8	 Review Questions
	4.9	 Summary

	5: The First Commercial Computers
	5.1	 Introduction
	5.2	 UNIVAC
	5.3	 LEO I Computer
	5.4	 The Z4 Computer
	5.5	 Ferranti Mark I
	5.6	 CSIRAC Computer
	5.7	 Review Questions
	5.8	 Summary

	6: Early Commercial Computers and the Invention of the Transistor
	6.1	 Introduction
	6.2	 Early IBM Computers
	6.3	 The SAGE System
	6.4	 Invention of the Transistor
	6.5	 Early Transistor Computers
	6.6	 Review Questions
	6.7	 Summary

	7: The Invention of the Integrated Circuit and the Birth of Silicon Valley
	7.1	 Introduction
	7.2	 Invention of Integrated Circuit
	7.2.1	 Moore’s Law

	7.3	 Early Integrated Circuit Computers
	7.4	 Birth of Silicon Valley
	7.5	 Review Questions
	7.6	 Summary

	8: The IBM System/360
	8.1	 Introduction
	8.2	 Background to the Development of System/360
	8.3	 The IBM System/360
	8.4	 Review Questions
	8.5	 Summary

	9: Minicomputers and Later Mainframes
	9.1	 Introduction
	9.2	 DEC’s Minicomputers
	9.2.1	 PDP-11
	9.2.2	 The VAX-11/780

	9.3	 The War Between IBM and Amdahl
	9.4	 Review Questions
	9.5	 Summary

	10: The Microprocessor Revolution
	10.1	 Introduction
	10.2	 Invention of the Microprocessor
	10.3	 Early Microprocessors
	10.4	 A Selection of Semiconductor Companies
	10.5	 Review Questions
	10.6	 Summary

	11: Home Computers
	11.1	 Introduction
	11.2	 Xerox Alto Personal Computer
	11.3	 MITS Altair 8800
	11.4	 Apple I and II Home Computers
	11.5	 Commodore PET
	11.6	 Atari 400 and 800
	11.7	 Commodore 64
	11.8	 Sinclair ZX 81 and ZX Spectrum
	11.9	 Apple Macintosh
	11.10	 Later Commodore and Atari Machines
	11.11	 Review Questions
	11.12	 Summary

	12: The IBM Personal Computer
	12.1	 Introduction
	12.2	 The IBM Personal Computer
	12.3	 Operating System for IBM PC
	12.4	 Review Questions
	12.5	 Summary

	13: A Short History of Telecommunications
	13.1	 Introduction
	13.2	 AXE System
	13.3	 Development of Mobile Phone Standards
	13.4	 Development of Mobile Phone Technology
	13.5	 The Iridium Satellite System
	13.6	 Review Questions
	13.7	 Summary

	14: The Internet Revolution
	14.1	 Introduction
	14.2	 The ARPANET
	14.3	 TCP/IP
	14.4	 Birth of the Internet
	14.5	 Birth of the World Wide Web
	14.6	 Applications of the World Wide Web
	14.7	 Dot-Com Companies
	14.7.1	 Dot-Com Failures
	14.7.2	 Business Models
	14.7.3	 Bubble and Burst

	14.8	 E-Commerce Security
	14.9	 Review Questions
	14.10	 Summary

	15: The Smartphone and Social Media
	15.1	 Introduction
	15.2	 Evolution of the Smartphone
	15.3	 The Facebook Revolution
	15.4	 The Tweet
	15.5	 Review Questions
	15.6	 Summary

	16: History of Programming Languages
	16.1	 Introduction
	16.2	 Plankalkül
	16.3	 Imperative Programming Languages
	16.3.1	 FORTRAN and COBOL
	16.3.2	 ALGOL
	16.3.3	 Pascal and C

	16.4	 Object-Oriented Languages
	16.4.1	 C++ and Java

	16.5	 Functional Programming Languages
	16.5.1	 Miranda
	16.5.2	 Lambda Calculus

	16.6	 Logic Programming Languages
	16.7	 Syntax and Semantics
	16.7.1	 Programming Language Semantics

	16.8	 Review Questions
	16.9	 Summary

	17: History of Operating Systems
	17.1	 Introduction
	17.2	 OS/360
	17.3	 MVS
	17.4	 VM
	17.5	 VMS
	17.6	 UNIX
	17.7	 MS/DOS
	17.8	 Microsoft Windows
	17.9	 Mobile Operating Systems
	17.10	 Review Questions
	17.11	 Summary

	18: History of Software Engineering
	18.1	 Introduction
	18.2	 What Is Software Engineering?
	18.3	 Challenges in Software Engineering
	18.4	 Software Processes and Life Cycles
	18.4.1	 Waterfall Life Cycle
	18.4.2	 Spiral Life Cycles
	18.4.3	 Rational Unified Process
	18.4.4	 Agile Development

	18.5	 Activities in Waterfall Life Cycle
	18.5.1	 Business Requirements Definition
	18.5.2	 Specification of System Requirements
	18.5.3	 Design
	18.5.4	 Implementation
	18.5.5	 Software Testing
	18.5.5.1	 Unit Testing
	18.5.5.2	 Integration Test
	18.5.5.3	 System Test
	18.5.5.4	 Performance Test
	18.5.5.5	 User Acceptance Test

	18.5.6	 Maintenance

	18.6	 Software Inspections
	18.7	 Software Project Management
	18.8	 CMMI Maturity Model
	18.9	 Formal Methods
	18.10	 Review Questions
	18.11	 Summary

	19: History of Artificial Intelligence
	19.1	 Introduction
	19.2	 Descartes
	19.3	 The Field of Artificial Intelligence
	19.3.1	 Turing Test and Strong AI
	19.3.1.1	 The Chinese Room Thought Experiment

	19.3.2	 Ethics and AI

	19.4	 Philosophy and AI
	19.5	 Cognitive Psychology
	19.6	 Computational Linguistics
	19.7	 Cybernetics
	19.8	 Logic and AI
	19.9	 Computability, Incompleteness and Decidability
	19.10	 Robots
	19.11	 Neural Networks
	19.12	 Expert Systems
	19.13	 Review Questions
	19.14	 Summary

	20: History of Databases
	20.1	 Introduction
	20.2	 Hierarchical and Network Models
	20.3	 The Relational Model
	20.4	 Structured Query Language (SQL)
	20.5	 Oracle Database
	20.6 Review Questions
	20.7	 Summary

	Glossary
	References
	Index

