
Chapter 8
Robust-Soft Solutions in Linear Optimization
Problems with Fuzzy Parameters

Masahiro Inuiguchi

Abstract Linear optimization problems with fuzzy parameters were studied deeply
and widely. Many of the approaches to fuzzy problems generate robust solutions.
However, they were based on satisficing approaches so that the solutions do not
maintain the optimality or suboptimality against the fluctuations in the coefficients.
In this chapter, we describe a robust solution maintaining the suboptimality against
the fluctuations in the coefficients. We formulate the problem as an extension of
the minimax regret/maximin achievement rate problem and investigate a solution
procedure based on a bisection method and a relaxation method. It is shown that
the proposed solution procedure is created well so that both bisection and relaxation
methods converge simultaneously.

8.1 Introduction

Due to the limit of available information, decision making problems often involve
uncertainties. Traditionally two kinds of decision making problems under uncer-
tainty have been studied: decision making problems under strict uncertainty and de-
cision making problems under risk (see for example, [5]). In the former problems,
the uncertainty is modelled by a set of possible situations where we do not know
which situation is more probable than the others. In the latter problem, the uncer-
tainty is modelled by a probability distribution. As an optimization technique under
uncertainty, stochastic programming [18–20] were investigated. It treats decision
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making problems under risk. However, recently, robust optimization [2] treating a
kind of decision making problems under strict uncertainty is proposed and getting
popular. In robust optimization, a solution which maintains the feasibility or the sub-
optimality against the parameter fluctuation in the given range is computed. Because
of this property, the solution is considered a safe decision.

As a non-traditional model of uncertainty, fuzzy set theory [4, 21] was proposed
and introduced into various fields. By fuzzy set theory, we can treat the vague re-
striction and goals of the decision maker (DM) on constraints and objectives as well
as ambiguous coefficients in optimization problems [10, 19]. As we may treat the
plausibility degree of a state of nature by a fuzzy set, we can formulate intermediate
problems between decision making problems under strict uncertainty and decision
making problems under risk. Fuzzy mathematical programming problems [10, 19]
have been formulated so as to find a solution balanced between DM’s aspiration and
the robustness. Those formulations are based on a satisficing approach. Namely, the
solution satisfies the given constraints and goals with a certain level of parameter
fluctuation and is one of the best solutions in the balance between the robustness of
given constraints and the possibility of achieving goals. However, the robustness in
the sense that its objective function value is kept close to the optimal value against
parameter fluctuation is not always high.

In this chapter, we describe optimizing approaches to linear programming prob-
lems with fuzzy objective function coefficients. An optimizing approach implies the
formulations and solution methods obtaining robust solutions in the sense that their
objective function values are kept close to the optimal value against parameter fluc-
tuation. We introduce mainly two robust optimization approaches under softness:
minimax regret type and maximin achievement rate type.

This chapter is organized as follows. In next section, blind spots in fuzzy pro-
gramming approaches are shown by simple numerical examples. Two optimal so-
lution concepts are given. We describe the weakness of those optimal solution
concepts. In Sect. 8.3, solution concepts based on optimization approaches are de-
scribed. Robust-soft optimal solutions maintaining suboptimality against the fluctu-
ation in coefficients are defined in two ways. Solution algorithm under given fuzzy
goals is investigated in Sect. 8.4. An acceleration technique in solving the subprob-
lem is described in Sect. 8.5. In Sect. 8.6, a simpler solution algorithm is shown
when fuzzy goals are not specified. Finally, in Sect. 8.7, we give some concluding
remarks.

8.2 Blind Spots in Fuzzy Programming Approaches

8.2.1 Linear Program with Fuzzy Objective Function Coefficients

We treat the following linear programming problems with fuzzy objective function
coefficients:

maximize c�x, subject to x ∈ F, (8.1)
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where F = {x ∈ R
n | Ax ≤ b} is bounded. A = (ai j) is an m× n constant matrix

and b = (b1, . . . ,bm)
�. x = (x1, . . . ,xn)

� is a decision variable vector. On the other
hand, objective coefficient vector c = (c1,c2, . . . ,cn)

� is not known precisely but
imprecisely. Namely, c takes a value in a possible range expressed by a bounded
fuzzy set Γ of Rn with a membership function,

μΓ (r) = min
j=1,2,...,p

μΓj(d
�
j r). (8.2)

r ∈R
n, Γj is a fuzzy number, i.e., a normal (∃r j, μΓj(r j) = 1), convex (μΓj is quasi-

concave) and bounded fuzzy set on real line (limr j→∞ μΓj(r j) = limr j→−∞ μΓj(r j) =
0) with upper semi-continuous membership function μΓj . d j ∈ R

n is a constraint
vector. The boundedness of Γ implies p ≥ n, in other words, rank{d1,d2, . . . ,dp}=
n. Membership grade μΓ (r) can be understood as the possibility degree that c = r.

We define h-level sets and strong h-level sets by

[Γ ]h = {r ∈ R
n | μΓ (r)≥ h}, [Γj]h = {r ∈ R | μΓj(r)≥ h}, j = 1,2, . . . , p, (8.3)

(Γ )h = {r ∈ R
n | μΓ (r)> h}, (Γj)h = {r ∈ R | μΓj(r)> h}, j = 1,2, . . . , p. (8.4)

We have

[Γ ]h =
{

r ∈ R
n | d�

j r ∈ [Γj]h, j = 1,2, . . . , p
}

=
{

r ∈ R
n | inf[Γj]h ≤ d�

j r ≤ sup[Γj]h, j = 1,2, . . . , p
}
, (8.5)

cl(Γ )h =
{

r ∈ R
n | d�

j r ∈ cl(Γj)h, j = 1,2, . . . , p
}

=
{

r ∈ R
n | inf(Γj)h ≤ d�

j r ≤ sup(Γj)h, j = 1,2, . . . , p
}
, (8.6)

where clX is the closure of a set X ⊆ R
n. An h-level set [Γ ]h is depicted in Fig. 8.1.

Given a solution x 	= 0, by the extension principle, its objective function value is
given as a fuzzy set Y (x) having the following membership function μY (x):

μY (x)(y) = sup
c
{μΓ (c) : c�x = y}. (8.7)

Note that we have Y (0) = {0}.

8.2.2 Solution Comparison by Objective Function Values

To treat linear programming problems with fuzzy coefficients, necessity measure N
and possibility measure Π of a fuzzy set S are defined by

NQ(S) = inf
r

max(1−μQ(r),μS(r)), ΠQ(S) = sup
r

min(μQ(r),μS(r)), (8.8)
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Fig. 8.1: h-Level set [Γ ]h

where μS and μQ are membership function of S and Q, respectively. NQ(S) and
ΠQ(S) evaluate to what extent the vague event expressed by fuzzy set S is necessary
(certain) and possible under the possible range expressed by fuzzy set Q, respec-
tively.

There are various ways to compare two fuzzy numbers Z1 and Z2 ⊆ R. The fol-
lowing two indices are often used in the literature:

POS(Z1 ≥ Z2) = sup
r1,r2

{min(μZ1(r1),μZ2(r2)) : r1 ≥ r2}, (8.9)

NES(Z1 ≥ Z2) = 1− sup
r1,r2

{min(μZ1(r1),μZ2(r2)) : r1 < r2}. (8.10)

where μZ1 and μZ2 are membership functions of Z1 and Z2, and Z1 and Z2 are
considered possible ranges of ambiguous numbers ζ1 and ζ2. Namely, we have
a fuzzy set Z1 × Z2 ⊆ R

2 showing the possible ranges of (ζ1,ζ2) defined by a
membership function μZ1×Z2(r1,r2) = min(μZ1(r1),μZ2(r2)). As an event we con-
sider “ζ1 is not smaller than ζ2” which can be represented by a set (a binary re-
lation) ≥= {(r1,r2) ∈ R

2 | r1 ≥ r2}. Then we have POS(Z1 ≥ Z2) = ΠZ1×Z2(≥)
and NES(Z1 ≥ Z2) = NZ1×Z2(≥). Namely, possibility degree POS(Z1 ≥ Z2) shows
to what extent Z1 is possibly larger than or equal to Z2. Similarly, Necessity degree
NES(Z1 ≥ Z2) shows to what extent Z1 is necessarily larger than or equal to Z2.

When Z1 and Z2 are closed intervals [zL
1 ,z

R
1 ] and [zL

2 ,z
R
2 ], respectively, we have

POS(Z1 ≥ Z2) = 1 ⇔ zR
1 ≥ zL

2 , NES(Z1 ≥ Z2) = 0 ⇔ zL
1 < zR

2 . (8.11)

Those equivalences remarkably show their meanings and difference.
A comparison index between two fuzzy numbers is often applied to the compari-

son of fuzzy objective function values discarding their interaction in literature. Next
example demonstrates the inadequacy caused by the desertion of the interaction.
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Example 1. Let n = 2 and Γ = [1,2]× [−2,−1]. Namely, we consider a case
when each objective function coefficient is given by a closed interval. Consider
two feasible solutions x1 = (2,1)� and x2 = (3,1)�. We have Y (x1) = [0,3] and
Y (x2) = [1,5].

Let us apply the first equation of (8.11) discarding the interaction between Z1 =
Y (x1) and Z2 =Y (x2). We obtain POS(Z1 ≥ Z2)= 1 which implies that the objective
function value of x1 can be larger than or equal to that of x2. On the other hand, we
have

c�x1 = 2c1 + c2 < 3c1 + c2 = c�x2, ∀c1 ∈ [1,2], ∀c2 ∈ [−2,−1]. (8.12)

This insists that the objective function value of x1 can never be larger than or equal
to that of x2. Because the realized values of c1 and c2 are common independent
on the selection of a feasible solution of Problem (8.1), the latter result is correct.
Therefore, the direct application of index POS(Z1 ≥ Z2) is not adequate for the
problem setting.

Similarly, from the second equation of (8.11), we obtain NES(Z2 ≥ Z1)= 0. This
implies that there exists (c1,c2)

� ∈ Γ such that the objective function value of x2

is less than that of x1. However, this is neither true. As is shown in (8.12), for all
(c1,c2)

� ∈ Γ , the objective function value of x2 is larger than that of x1.

Now we emphasize the reason why indices defined by (8.9) and (8.10) do not
work in the case of Example 1. Let ζ1 and ζ2 be variables taking values in Z1 and Z2,
respectively. In the indices defined by (8.9) and (8.10), it is implicitly assumed that
the possible range of ζ2 does not depend on the realization of ζ1 and also possible
range of ζ1 does not depend on the realization of ζ2.

In Example 1, we set Z1 = Y (x1) and Z2 = Y (x2). Namely, they are possible
ranges of ζ1 = c�x1 and ζ2 = c�x2, respectively. Both ζ1 and ζ2 depend on the re-
alization of variable vector c taking a vector value in Γ = [1,2]× [−2,−1]. Because
of this fact, the implicit assumption in (8.9) and (8.10) does not hold. For example,
when ζ1 = c�x1 = 0, the possible realizations of c ∈ Γ are in

{(c1,c2)
� ∈ R

2 : 2c1 + c2 = 0,1 ≤ c1 ≤ 2,−2 ≤ c2 ≤−1}= {(1,−2)}. (8.13)

Namely, from the information ζ1 = 0, in this case, we know the realization of c
uniquely as (1,−2)�. It implies that ζ2 is also uniquely known as ζ2 =(1,−2)�x1 =
1. Generally, when ζ1 = q, the possible range of ζ2 is given by

{3c1 + c2 : 2c1 + c2 = q, 1 ≤ c1 ≤ 2, −2 ≤ c2 ≤−1}. (8.14)

This varies depending on ζ1’s realization q. Therefore, ζ2 interacts with ζ1. Simi-
larly, ζ1 interacts with ζ2.

Since the implicit assumption of (8.9) and (8.10) does not hold, indices defined
by (8.9) and (8.10) cannot be applied directly to the comparison between fuzzy ob-
jective function values. For the comparison between fuzzy objective function values,
the following modified indices [7, 9] are adequate:
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POS(c�x1 ≥ c�x2) = sup
r
{μΓ (r) : r�x1 ≥ r�x2}, (8.15)

NES(c�x1 ≥ c�x2) = 1− sup
r
{μΓ (r) : r�x1 < r�x2}. (8.16)

In literature, such desertion often appears when a fuzzy objective function is
treated by a comparison of fuzzy numbers. Moreover, we note that under other in-
terpretations of fuzzy coefficients, this discussion about the inadequacy is not valid.
For example, when a fuzzy objective function is regarded as a collection of objective
functions, e.g., a collection of utility functions of many decision makers, the above
discussion cannot be applied.

Using POS(c�x1 ≥ c�x2) and NES(c�x1 ≥ c�x2) of (8.15) and (8.16), we can
define fuzzy sets of necessary and possible non-inferior solutions by the following
membership functions:

μNnS(x2) =

{
1− sup

x1∈F
POS(c�x1 ≥ c�x2), if x ∈ F,

0, if x 	∈ F,
(8.17)

μΠnS(x2) =

{
1− sup

x1∈F
NES(c�x1 ≥ c�x2), if x ∈ F,

0, if x 	∈ F.
(8.18)

We note that necessary non-inferior solution set NnS is defined by POS(c�x1 ≥
c�x2) while possible non-inferior solution set NnS is defined by NES(c�x1 ≥
c�x2).

8.2.3 Necessity and Possibility Measure Optimization

When fuzzy goals G1 and G2 showing vaguely the required and desirable levels of
objective function value are given, for example, Problem (8.1) can be treated as the
following biobjective programming problem (see [10]):

maximize
(
NY (x)(G1),ΠY (x)(G2)

)
, subject to x ∈ F. (8.19)

We assume that membership functions of G1 and G2 are non-decreasing.
When Γ is crisp and membership functions of G1 and G2 are increasing, Prob-

lem (8.19) is reduced to

maximize

(
min
c∈Γ

c�x,max
c∈Γ

c�x
)
, subject to x ∈ F. (8.20)
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Completely optimal solutions to Problems (8.19) and (8.20), which maximize the
both objective functions at the same time, have been regarded as the best solutions.
However, as exemplified in the next example, such a complete optimal solution is
not always the best solution.

Fig. 8.2: The problem of Example 2

Example 2. Let us consider the following linear programming problem with uncer-
tain objective coefficients:

maximize c1x1 + c2x2,
subject to x1 + x2 ≤ 12, 3x1 + x2 ≤ 24,

x2 ≤ 9, −x1 ≤ 0, −x2 ≤ 0,
(8.21)

where c = (c1,c2)
� is restricted by

Γ = {(c1,c2,)
� | −4 ≤ 7c1 −5c2 ≤ 4,

2 ≤−3c1 +5c2 ≤ 9, 0 ≤ c2 ≤ 2, 1 ≤ c1 ≤ 3}. (8.22)

For every r = (r1,r2) ∈ Γ , we have (1,1)� ≤ r ≤ (2,2)�, (1,1)� ∈ Γ and
(2,2)� ∈ Γ . The biobjective programming problem becomes

maximize(x1 + x2, 2x1 +2x2), subject to x = (x1,x2)
� ∈ F. (8.23)

This problem has a completely optimal solution x∗ = (6,6)�.
The solution is illustrated in Fig. 8.2. The shaded area of Fig. 8.2 is the set of

c ∈ Γ which makes (6,6)� optimal. This shaded area is small relatively to Γ . From
the viewpoint of optimality, (6,6)� is not very robust because it easily fails to be
optimal. However, this solution is robust in the sense that the objective function
value is never less than 6+6 = 12 as far as c fluctuates in [1,2]× [1,2].
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8.3 Optimization Approaches

8.3.1 Possible and Necessary Optimal Solutions

Let P(x) = {r | r�x = maxy∈F r�y}. Possibly optimal solution set ΠS and neces-
sarily optimal solution set NS are proposed for Problem (8.1) (see [11]). They are
defined as fuzzy sets with the following membership functions, respectively:

μΠS(x) =

{
sup

r∈P(x)
μγ(r), if x ∈ F,

0, if x 	∈ F,
(8.24)

μNS(x) =

{
sup

r 	∈P(x)
1−μΓ (r), if x ∈ F,

0, if x 	∈ F.
(8.25)

We have μNS(x) > 0 ⇒ μΠS(x) = 1. μΠS(x) and μNS(x) are called the possible
optimality degree and necessary optimality degree of solution x, respectively.

When a feasible solution is given, we will be interested in the degrees of μΠS and
μNS. This topic is studied in [11] when p = n and d j = e j, where e j is a unit vector
whose j-th component is one. The method is easily extended to the general case.

A solution such that μNS(x)> 0 (resp. μΠS(x)> 0) is called a necessarily (resp.
possibly) optimal solution. In Example 2, the solutions on the line segment from
(6,6)� to (3,9)� are possibly optimal solutions and there is no necessarily optimal
solution. Generally, a necessarily optimal solution does not always exist but usually
there are a lot of possibly optimal solutions. If a necessarily optimal solution exists,
the solution is the most rational solution. Since F and Γ are bounded, any possi-
bly optimal solution can be expressed as a convex combination of possibly optimal
basic solutions. The number of possibly optimal solutions are finite because of the
boundedness of F . An enumeration method of all possible optimal basic solutions
together with possible optimality degrees μΠS is proposed in [8].

We note that the possibly and necessary optimal solutions sets equal to possibly
and necessary non-inferior solution sets, i.e., we have ΠS = ΠnS and NS = NnS.

8.3.2 Robust-Soft Optimal Solutions

Since in many cases no solution with positive necessary optimality degree exists,
let us weaken the concept of the necessary optimality. To this end, we introduce the
concept of soft optimality. If the objective function value of a feasible solution is
slightly smaller than the optimal value, the solution can be regarded as a suboptimal
solution. From this point of view, we define a suboptimal solution set T (c) to a
linear programming problem with an objective function vector c as a fuzzy set with
a membership function,
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μT (c)(x) =

⎧
⎨
⎩

μDi f

(
max
y∈F

c�y− c�x
)
, if x ∈ F,

0, if x 	∈ F,
(8.26)

or

μT (c)(x) =

⎧
⎪⎪⎨
⎪⎪⎩

μRat

⎛
⎝ c�x

max
y∈F

c�y

⎞
⎠ , if x ∈ F,

0, if x 	∈ F,

(8.27)

where μDi f is assumed to be upper semi-continuous and non-increasing. μRat is
assumed to be upper semi-continuous, and non-decreasing if maxy∈F c�x > 0 and
non-increasing if maxy∈F c�x < 0. While (8.26) is useful whenever the decision
maker takes care of the difference from the optimal value, (8.27) is useful when
maxy∈F c�x 	= 0 and the decision maker takes care of the achievement rate based on
the optimal value.

Using T , the necessarily soft optimal solution set NT is defined by

μNT (x) = inf
c

max
(
1−μΓ (c),μT (c)(x)

)
. (8.28)

It should be noted that NT with T (c) defined by (8.27) is useful only when there
exists y ∈ F such that minc∈cl(Γ )h

c�y > 0 for all h ∈ [0,1) or when maxy∈F c�y < 0
for all c∈ (Γ )0. When we define a fuzzy set V (x) of c∈R

n for x∈R
n by μV (x)(c) =

μT (c)(x), we obtain μNT (x) = NΓ (V (x)), i.e., the necessarily soft optimal solution
set NT is defined by using a necessity measure.

When μDi f (r) takes 1 for r ≤ 0 and 0 for r > 0, fuzzy set NT is reduced to NS.
Similarly, in the case of maxy∈F c�x > 0, when μRa(r) takes 1 for r ≥ 1 and 0 for
r < 1, fuzzy set NT is reduced to NS. In the case of maxy∈F c�x < 0, when μRa(r)
takes 1 for r ≤ 1 and 0 for r > 1 , fuzzy set NT is reduced to NS.

8.4 Solution Algorithms Under Given Fuzzy Goals

When μDi f or μRat is given by the decision maker, the best solution among NT is
a solution with highest necessary soft optimality degree μNT (x). This problem is
formulated as

maximize μNT (x). (8.29)

This formulation was already proposed in [13]. While the objective function val-
ues of a solution x are independent of F in Problem (8.19), the objective function
value depends on F in Problem (8.29). In this sense, both objective function values
of Problem (8.19) are independent from other feasible solutions but the objective
function value of Problem (8.29) is depends on others. Let x̂ and ĥ be an optimal
solution and the optimal value of Problem (8.29). Then we have

∀c ∈ (Γ )1−ĥ, μT (c)(x̂)≥ ĥ. (8.30)
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This implies that the suboptimality degree is guaranteed as at least ĥ as far as c takes
a value in (Γ )1−ĥ. In this sense, Problem (8.29) produces a solution which is robust
in suboptimality.

When T (c) is defined by (8.26) and d j = e j, j = 1,2, . . . , p = n, the equivalent
problem and a solution algorithm based on bisection and relaxation methods are
shown in [13]. In this chapter, we describe the result when d j, j = 1,2, . . . , p are
general.

For the sake of simplicity, we consider the following three cases:

Case (I): T (c) is defined by (8.26),
Case (II): T (c) is defined by (8.27) under the assumption that there exists y ∈ F

such that minc∈(Γ )h
c�y > 0 for all h ∈ (0,1],

Case (III): T (c) is defined by (8.27) under the assumption that maxy∈F c�y < 0
for all c ∈ (Γ )0

The procedure is the same among those three cases but subproblems are different.
We note that in cases (II) and (III) we implicitly assume that (Γ )0 is bounded.

We investigate (8.29) when T (c) is defined by (8.26) and (8.27). Introducing
an auxiliary variable h, from the upper semi-continuity of μRat , Problem (8.29) is
reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize h, subject to x ∈ F, μDi f

⎛
⎜⎝ max

c∈cl(Γ )1−h
y∈F

(c�y− c�x)

⎞
⎟⎠≥ h,

in case (I),

maximize h, subject to x ∈ F, μRat

⎛
⎜⎝ min

c∈cl(Γ )1−h
y∈F, c�y>0

c�x
c�y

⎞
⎟⎠≥ h, in case (II),

maximize h, subject to x ∈ F, μRat

⎛
⎜⎝ max

c∈cl(Γ )1−h
y∈F

c�x
c�y

⎞
⎟⎠≥ h, in case (III).

(8.31)

As h increases, cl(Γ )1−h enlarges and thus, (1) the maximum value of (c�y−
c�x) under c ∈ cl(Γ )1−h and y ∈ F increases, (2) the minimum value of c�x/c�y
under c ∈ cl(Γ )1−h, y ∈ F and c�y > 0 decreases and (3) the maximum value of
c�x/c�y under c ∈ cl(Γ )1−h and y ∈ F increases. Therefore, Problem (8.31) can be
solved by a bisection method with respect to h with checking
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μDi f

⎛
⎜⎝min

x∈F
max

c∈cl(Γ )1−h
y∈F

(c�y− c�x)

⎞
⎟⎠≥ h, in case (I),

μRat

⎛
⎜⎝max

x∈F
min

c∈cl(Γ )1−h
y∈F, c�y>0

c�x
c�y

⎞
⎟⎠≥ h, in case (II),

μRat

⎛
⎜⎝min

x∈F
max

c∈cl(Γ )1−h
y∈F

c�x
c�y

⎞
⎟⎠≥ h, in case (III),

(8.32)

If (8.32) is satisfied, we know that the optimal value of Problem (8.31) is not less
than h, and examine (8.32) again with an increased h. Otherwise, we know that
the optimal value of Problem (8.31) is less than h and examine (8.32) again with
a decreased h. Repeating this procedure, the possible range of the optimal value of
Problem (8.31) reduced and we stop the procedure when the range becomes small
enough.

In order to check the validity of (8.32), we should solve the min-max or max-min
problem included in (8.32). Let us look into a solution method for these min-max
and max-min problems.

Let c j : (0,1]→ (Γ )0, j = 1,2, . . . ,k be vector functions such that c j(h)∈ cl(Γ )h,
for all h ∈ [0,1). These vector functions are generated through the algorithm pro-
posed later in this chapter. Each of these function values is usually obtained at a ver-
tex of cl(Γ )h by solving a linear programming problem defined by an index set Q j =
{q j1,q j2, . . . ,q jn} ⊆ P = {1,2, . . . , p} and a 0-1 vector B j = (β j1,β j2, . . . ,β jn)

� ⊆
{0,1}n. We assume that q j1 < q j2 < · · · < q jn. Namely, given h ∈ (0,1], the func-
tion value is obtained as c-value of an optimal solution (c�,δ1,δ2, . . . ,δn)

� to the
following linear programming problem:

minimize
n

∑
i=1

δi,

subject to inf(Γq ji)h +δi = d�
q ji

c ≤ sup(Γq ji)h, for i ∈ N such that β ji = 0,
inf(Γq ji)h ≤ d�

q ji
c = sup(Γq ji)h −δi, for i ∈ N such that β ji = 1,

inf(Γq)h ≤ d�
q c ≤ sup(Γq)h, q ∈ P\Q j

δi ≥ 0, i = 1,2, . . . ,n,

(8.33)

where N = {1,2, . . . ,n}.
When y j ∈ F , j = 1,2, . . . ,k are given under fixed h ∈ (0,1], a relaxation prob-

lem of the min-max/max-min problem in (8.32) is obtained as the following linear
programming problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize r, subject to x ∈ F, c j(1−h)
�y j − c j(1−h)

�x ≤ r, j ∈ K,
in case (I),

maximize r, subject to x ∈ F,
c j(1−h)

�x

c j(1−h)�y j
≥ r, j ∈ K, in case (II),

minimize r, subject to x ∈ F,
c j(1−h)

�x

c j(1−h)�y j
≤ r, j ∈ K, in case (III),

(8.34)

where K = {1,2, . . . ,k} and the given solution y j ∈ F satisfies c j(1−h)
�y j > 0

when T (c) is defined by (8.27) and maxy∈F c�y > 0 for all c ∈ (Γ )0. Note that
the number of possible Q j’s is at most pCn = n!/(p!(n− p)!) and that the num-
ber of possible B j’s is 2n. The value of c j(h) is determined by solving Prob-
lem (8.33) for a given h ∈ (0,1]. Then the number of all possible vector func-
tions c j is 2nn!/(p!(n− p)!). Because cl(Γ )1−h is a polytope for each h ∈ (0,1],
any element c ∈ cl(Γ )1−h can be represented by a convex combinations of the
vertices of cl(Γ )1−h. Let V (cl(Γ )1−h) be the set of vertices of cl(Γ )1−h. Then
we have V (cl(Γ )1−h) = {c j(1− h), j = 1,2, . . . ,2nn!/(p!(n− p)!)}. Hence, when
k = 2nn!/(p!(n− p)!), Problem (8.34) is equivalent to the min-max/max-min prob-
lem in (8.32).

Let x0 and r0 be an optimal solution and the optimal value of Problem (8.34),
respectively. Since Problem (8.34) is a relaxed problem, we should examine whether
x0 is an optimal solution to the min-max/max-min problem in (8.32) or not under
the fixed h ∈ (0,1]. This can be done by checking whether the optimal value of the
following problem is not less than r0:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maximize c�y− c�x0, subject to c ∈ cl(Γ )1−h, y ∈ F, in case (I),

minimize
c�x0

c�y
, subject to c ∈ cl(Γ )1−h, y ∈ F, c�y > 0, in case (II),

maximize
c�x0

c�y
, subject to c ∈ cl(Γ )1−h, y ∈ F, in case (III),

(8.35)

where we note that constraint c ∈ cl(Γ )1−h is represent by a system of linear in-
equalities because we have

c ∈ cl(Γ )1−h if and only if inf(Γq)1−h ≤ d�
q c ≤ sup(Γq)1−h, q ∈ P. (8.36)

If the optimal value of Problem (8.35) is not greater/less than r0, x0 is an op-
timal solution to the min-max/max-min problem in (8.32). Otherwise, we add
ck+1 : (0,1]→ (Γ )0 which satisfies
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ck+1(1−h)
�

y j − ck+1(1−h)
�

x > r0, ∃ j ∈ K, in case (I),

ck+1(1−h)
�

x

ck+1(1−h)�y j
< r0, ∃ j ∈ K, in case (II),

ck+1(1−h)
�

x

ck+1(1−h)�y j
> r0, ∃ j ∈ K, in case (III),

(8.37)

for the fixed h ∈ (0,1] and update k = k + 1. Such function ck+1 can be deter-
mined by using an optimal solution to Problem (8.35). Namely, there exists an op-
timal solution c to Problem (8.35) which has at least n independent dq such that
d�

q c = inf(Γq)1−h or d�
q c = sup(Γq)1−h. This implies that we can find Qk+1 and

Bk+1 corresponding to ck+1 whose function value is obtained by solving (8.33) with
substitution j = k+1.

From the above discussion, we obtain the following solution algorithm based on
the bisection method and the relaxation procedure with an admissible error ε > 0.

Algorithm 1

Step 1. Select Q1 and B1 arbitrarily in order to define c1 : (0,1]→ (Γ )0. Let y1 be
an optimal solution to the following linear programming problem:

maximize c1(0.5)�y, subject to y ∈ F. (8.38)

Step 2. Set hL = 0, hU = 1, k = 1 and x0 = y1.
Step 3. Set h = 1

2 (h
L + hU) and let yk+1 and rk be an optimal solution and the

optimal value of Problem (8.35), respectively.
Step 4. If μDi f (rk)≥ h or μRat(rk)≥ h then update hL = h and return to Step 3.
Step 5. If hU − hL ≤ ε then terminate the algorithm. If hU ≤ ε then there is no

feasible solution x such that μNT (x) > ε and otherwise the optimal solution is
obtained as x0.

Step 6. Construct ck+1 from a pair (Qk+1,Bk+1) corresponding to an optimal so-
lution of the latest problem solved at Step 3. If there is no j ∈ {1,2, . . . ,k} such

that c j = ck+1 and c j(1−h)
�y j = ck+1(1−h)

�
yk+1 then update k = k+1.

Step 7. Set h = 1
2 (h

L + hU). In cases (I) and (III), obtain an optimal solution
(x∗,r∗) to Problem (8.34) and go to Step 8. In case (II), update y j as an opti-

mal solution to maximizey∈F c j(1−h)
�y.

Step 8. If μDi f (r∗) < h or μRat(r∗) < h, then set hU = h and return to Step 7.
Otherwise, set x0 = x∗ and return to Step 3.

In this algorithm, we use μDi f in case (I), and μRat in cases (II) and (III). In case

(II), we update y j at Step 7 so that we have c j(1−h)
�y j > 0, j = 1,2, . . . ,k. The

existence of such y j ∈ F is guaranteed by the assumption described in case (II). Fur-
thermore, we do not solve the max-min problem in (8.32) at each fixed h but solve
it simultaneously with optimizing h so as to obtain a solution of Problem (8.31).
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To prove the convergence of Algorithm 1, we use the following proposition.

Proposition 1. If hL is not updated at Step 4 in iteration k ≥ 2, for the pair
(ck+1,yk+1) obtained by solving Problem (8.35) at Step 3, there is no l ≤ k such

that cl = ck+1 and c j(1−h)
�y j = ck+1(1−h)

�
yk+1.

Proof. Assume there exists l ≤ k such that cl = ck+1 and c j(1−h)
�y j =

ck+1(1−h)
�

yk+1 for the pair (ck+1,yk+1) corresponding to Problem (8.35) solved
at Step 3 when hL is not updated at Step 4 in iteration k ≥ 2. Since hL is not updated
at Step 4, rk satisfies μDi f (rk) < h in case (I), and μRat(rk) < h in cases (II) and
(III). On the other hand, because k ≥ 2, it has returned to Step 3 from Step 8 and
thus r∗ of the optimal solution (x∗,r∗) obtained at the last visit of Step 7 satisfies
μDi f (r∗)≥ h in case (I), and μRat(r∗)≥ h in cases (II) and (III). Therefore, we have

μDi f (r
k)< μDi f (r

∗) in case (I) and μRat(r
k)< μRat(r

∗) in cases (II) and (III).
(∗)

If we fix y at a feasible solution in Problem (8.35), the problem becomes a linear
programming problem or a linear fractional programming problem with a decision
variable vector c. From the theories of linear and linear fractional programming [1,
3], the optimal solution c exists at an extreme point of cl(Γ )1−h. Together with this

fact, the assumption of the existence of l ≤ k such that cl = ck+1 and c j(1−h)
�y j =

ck+1(1−h)
�

yk+1 implies

rk = ck+1(1−h)�yk+1 − ck+1(1−h)�x0 = cl(1−h)�yl − cl(1−h)�x0.

Because r∗ is the optimal value of Problem (8.34), we have rk ≤ r∗ in cases (I)
and (III), and rk ≥ r∗ in case (II). This implies

μDi f (r
k)≥ μDi f (r

∗) in case (I) and μRat(r
k)≥ μRat(r

∗) in cases (II) and (III).

This contradicts (∗). ��
From Proposition 1, in every iteration, hL is updated or a new pair (ck+1,yk+1) is

added. The update of hL reduces the difference hU −hL to half or to less than half.
The number of pairs (c j,y j) is finite because the number of pairs (Q j,B j) is finite
and F is bounded. Hence Algorithm 8.4 terminates in a finite number of iterations.

8.5 Solving the Subproblem

In Algorithm 1, all problems other than Problem (8.35) are linear programming
problems and solved easily. However, Problem (8.35) is neither a linear program-
ming problem nor a concave/convex programming problem but a convex maxi-
mization/concave minimization problem. To solve this problem, several approaches
such as two-phase method, outer approximation method, cutting hyperplane method
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and so on were proposed (see [12, 14, 15, 17]) when Γ is a crisp set. In two-
phase method, all possibly optimal extreme points zl ∈ F , l = 1,2, . . . ,q such that
μΠS(zl) > 0 are enumerated before the execution of Algorithm 1 and at Step 3 of
Algorithm 1 we solve q linear programming problems/linear fractional program-
ming problems (8.35) with fixing y = zl , l = 1,2, . . . ,q. In case 1, we may apply
a post optimality technique of linear programming for the change of objective co-
efficient vector when we solve q linear programming problems (8.35) with fixing
y = zl , l = 1,2, . . . ,q. Therefore, those q problems are solved sequentially without
reinitialization of simplex tableau.

On the other hand, in cases (II) and (III), we cannot apply this technique directly.
In case (III), because we have c�x0 < 0 and c�y < 0 for any y ∈ F , we obtain

min
c∈cl(Γ )1−h

y∈F

c�y
c�x0 =

1

max
c∈cl(Γ )1−h

y∈F,

c�x0

c�y

. (8.39)

Applying the linear fractional programming technique, the minimization problem in
the left-hand side of (8.39) is reduced to

minimize ĉ�y, subject to ĉ�x0 =−1, y ∈ F,
ĉ
t
∈ cl(Γ )1−h, t ≥ 0. (8.40)

To this reduced problem, we can apply the post optimality technique and thus q
linear fractional programming problems are solved efficiently. We note an optimal
solution to Problem (8.35) is obtained as (ĉ/t,y) from the obtained optimal solution
(ĉ,y, t) to Problem (8.40).

In case (II), we cannot obtain a similar result to (8.39). This is because there is no
guarantee that we have c�x0 > 0 for all c ∈ cl(Γ )1−h at Step 3. However, because
of the assumption described in case (II), we have a solution y ∈ F such that c�y > 0
for all c ∈ cl(Γ )1−h. In order to ensure c�x0 > 0 for all c ∈ cl(Γ )1−h , we can add

ck+1 ∈ cl(Γ )1−h such that ck+1�x0 < 0, iteratively at Step 6 with the replacement of
Step 3 by the following step:

Step 3’. Set h= 1
2 (h

L+hU) and solve the following linear programming problem:

minimize x0�c, subject to c ∈ cl(C)1−h. (8.41)

If the optimal value is negative, let c̄ be the obtained optimal solution and yk+1

an optimal solution to

maximize c̄�y, subject to y ∈ F, (8.42)

and then go to Step 6. Otherwise, let yk+1 and rk be an optimal solution and the
optimal value of Problem (8.35), respectively.

Because F is bounded, we obtain some x0 such that c�x0 > 0 for all c ∈ cl(Γ )1−h

in a finite iterations. If c�x0 > 0 for all c ∈ cl(Γ )1−h is ensured, we have
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max
c∈cl(Γ )1−h
y∈F,c�y>0

c�y
c�x0 =

1

min
c∈cl(Γ )1−h
y∈F, c�y>0

c�x0

c�y

, (8.43)

Applying a linear fractional programming technique, the maximization problem in
the left-hand side problem of (8.43) is reduced to a bilinear programming problem,

maximize ĉ�y,

subject to ĉ�x0 = 1, y ∈ F,
ĉ
t
∈ cl(Γ )1−h.

(8.44)

Let (ĉ,y, t) be an optimal solution to Problem (8.44). Then solution (ĉ/t,y) is an
optimal solution to Problem (8.35). The post optimality technique of linear pro-
gramming problem can be applied to the reduced problem (8.44).

The transformations of the fractional programming problems in cases (II) and
(III) are useful when the outer approximation method is used for solving Prob-
lem (8.35). By the numerical experiments reported in [14], the outer approxima-
tion method solves Problem (8.35) efficiently. An outer approximation algorithm is
shown as follows.

Algorithm 2

Step 1. Initialize p = 0 and obtain a polytope Y0 such that F ⊆ Y0.
Step 2. Enumerate all elements of ΠB(Yp).
Step 3. Calculate f (y) for all y ∈ ΠB(Yp).

In case (I): let yp be a solution which maximizes f (y) subject to y ∈ ΠB(Yp).
Moreover, let c̄p be a c ∈ Γ such that f (yp) = cT(yp −x0).

In case (II): In case (II) let yp be a solution which minimizes f (y) subject to
y ∈ ΠB(Yp). Moreover, let c̄p be a c ∈ Γ such that f (yp) = cTyp/c�x0.

In case (III): let yp be a solution which maximizes f (y) subject to y∈ΠB(Yp).
Moreover, let c̄p be a c ∈ Γ such that f (yp) = cTyp/c�x0.

Step 4. In cases (I) and (III) if f (yp) ≤ r0, terminate the algorithm with setting
rk = r0. In case (II) if f (yp)≥ r0, terminate the algorithm with setting rk = r0.

Step 5. If yp ∈ F , terminate the algorithm with setting ck = c̄p, zk = yp and rk =
f (yp).

Step 6. Solve a linear programming problem,

maximize
y∈F

c̄pTy, (8.45)

and let wp be an optimal solution. Let Z be a set defined by constraints whose
corresponding slack variables are nonbasic at the optimal solution wp.

Step 7. Update Yp+1 = Yp ∩Z and p = p+1. Return to Step 2.

In the algorithm above, ΠB(Yp) is the set of all possibly extreme points with positive
possible optimality degrees of Problem (8.1) where F is replaced with Yp. f (y) is
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defined by

f (y) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
c∈Γ

(c�y− c�x0), in case (I),

min
c∈Γ

c�x0

c�y
, in case (II),

max
c∈Γ

c�x0

c�y
, in case (III).

(8.46)

Extreme points of ΠB(Yp+1) can be obtained easily from extreme points of ΠB(Yp)
(see [14]).

In [14], the outer approximation method and other possible solution methods
for Problem (8.35) are described in case (I). Moreover the results of numerical ex-
periments in comparison among possible solutions methods for Problem (8.35) are
explained in [14].

8.6 Solution Algorithms Under Unknown Goals

The determination of μDi f or μRat can be difficult in some situations. Instead of
giving μDi f or μRat , the decision maker may tell to what extent the fluctuation of
coefficients should be taken care of. In this situation, the decision maker specifies
h0 ∈ (0,1] so that we consider all c ∈ (Γ )1−h0 . Under such a situation, we consider

{
minimize qDi f , subject to μNT (x)≥ h0, in case (I),
minimize |qRat −1|, subject to μNT (x)≥ h0, in cases (II) and (III),

(8.47)

where we define

μDi f (r) =

{
1, if r ≤ qDi f ,
0, if r > qDi f ,

μRat(r) =

{
1, if r ≤ |qRat −1|,
0, otherwise.

(8.48)

Those problems produce a robust solution. Let x̂ and q̂ be an optimal solution and
the optimal value of Problem (8.47). Then we have

⎧
⎨
⎩

∀c ∈ (Γ )1−h0 , ∀y ∈ F, c�y− c�x̂ ≤ q̂, in case (I),

∀c ∈ (Γ )1−h0 , ∀y ∈ F,

∣∣∣∣
c�x̂
c�y

−1

∣∣∣∣≤ q̂, in cases (II) and (III).
(8.49)

In this section, we show a simpler solution procedure to Problem (8.47). Prob-
lem (8.47) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize max
c∈cl(Γ )1−h0

y∈F

(c�y− c�x), subject to x ∈ F, in case (I),

maximize min
c∈cl(Γ )1−h0

y∈F, c�y>0

c�x
c�y

, subject to x ∈ F, in case (II),

minimize max
c∈cl(Γ )1−h0

y∈F, c�y>0

, subject to x ∈ F, in case (III).

(8.50)
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In each case, this problem is the same as the min-max or max-min problem appeared
in the argument of the membership function in (8.32). Thus, the discussion in Sec-
tion 4 is valid also for Problem (8.50). Because h0 is fixed, Problem (8.50) is easier
than Problem (8.31). Based on the relaxation procedure, we have the following al-
gorithm.

Algorithm 3

Step 1. Select c1 : (0,1]→ (Γ )0. Let y1 be an optimal solution to a linear program-
ming problem,

maximize c1�y, subject to y ∈ F. (8.51)

Set k = 1, x0 = y1, and r0 = 0 in case (I) and r0 = 1 in cases (II) and (III).
Step 2. Let (ck+1,yk+1) and rk be an optimal solution and the optimal value of Prob-

lem (8.35) with h = h0, respectively.
Step 3. If rk ≤ r0 + ε in cases (I) and (III) and if rk ≥ r0 − ε in case (II) then termi-

nate the algorithm. The optimal solution is obtained as x0.
Step 4. Update k = k+1. Update (x0,r0) with an optimal solution to the following

problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize r, subject to x ∈ F, c j�y j − c j�x ≤ r, j ∈ K,
in case (I),

maximize r, subject to x ∈ F,
c j�x

c j�y j
≥ r, j ∈ K, in case (II),

minimize r, subject to x ∈ F,
c j�x

c j�y j
≤ r, j ∈ K, in case (III).

(8.52)

Return to Step 2.

Example 3. Let us apply the approach under unknown goal to the problem of Exam-
ple 2 with h0 = 0.5. We define T (c) by (8.27). In the problem, we can confirm that
minc∈(Γ )0

c�y > 0, for any y ∈ F . Namely, we consider case (II). Since Γ is crisp in
this problem, there is no difference by the choice of h0 ∈ (0,1]. Setting ε = 0.00001,
we applied Algorithm 3. The computation process is shown in Table 8.1. The ob-
tained solution is

(x1,x2)
� = (3.6,8.4)�, (8.53)

and its location is shown in Fig. 8.2. As shown in Fig. 8.2, reflecting the shape of Γ ,
i.e., the fact that Γ has a small right lower part, the obtained solution is located near
an extreme point (x1,x2) = (3,9) rather than (x1,x2) = (6,6).

In order to see the correspondences between ci ∈ cl(Γ )h and pair (Qi,Bi) which
are used in Algorithm 1, we note that c1 = (1.5,1.3)� is a solution to Problem (8.33)
with Q1 = {1,2} and B1 = (1,0) and c2 = (1,2) is a solution to Problem (8.33) with
Q2 = {3,4} and B2 = (1,0).
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Table 8.1: Computation process

Step 1 We select c1(h0) = (1.5,1.3)�. We obtain y1 = (6,6)�. Set k = 1, x0 = y1 and r0 = 1.
Step 2 Solve Problem (8.35) with h = h0. We obtain (c2,y2) = ((1,2)�,(3,9)�) and r1 =

0.857143.
Step 3 r1 = 0.857143 < r0 − ε = 1−0.00001. Continue.
Step 4 We update k = 2. We obtain x0 = (3.6,8.4)� and r0 = 0.971429. Return to Step 2.
Step 2 Solve Problem (8.35) with h = h0. We obtain (c3,y3) = ((1.5,1.3)�,(6,6)�) and r1 =

0.971429.
Step 3 r1 = 0.971429 ≥ r0 − ε = 0.971429 − 0.00001. Terminate the algorithm. The optimal

solution is x0 = (3.6,8.4)�

8.7 Concluding Remarks

In this chapter, we described robust optimization approaches to linear programming
problems with fuzzy parameters. We explained the necessary care of the interaction
between objective function values of two solutions when they are compared. The in-
sufficiency of satisficing approaches is exemplified by a simple example. Two opti-
mal solution sets are defined and their properties are briefly described. To overcome
the weak points of two optimality concepts under uncertainty, robust-soft optimal-
ity concept is introduced. The necessarily soft optimal solution set is defined. Two
suboptimal solution sets are considered and then solution approaches to two nec-
essarily soft optimal solution sets are investigated. Both cases use the same main
solution procedure although the subproblems are different. The solution procedure
is based on a bisection method and a relaxation method and combined successfully
so that both methods converge simultaneously. Nevertheless, the solution procedure
is generally much more difficult than that by the satisficing approach. When fuzzy
goals are unknown, we do not need to use the bisection method and the solution
procedure becomes simpler. However, the reduced problem is still a non-convex
optimization problem. We hope that global optimization techniques [6, 16] as well
as computer technologies would be developed so that problems in optimization ap-
proaches would be solved in a practically acceptable computation time.
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