
Chapter 5
The State of Robust Optimization

Seçil Sözüer and Aurélie C. Thiele

Abstract This survey presents a broad overview of the developments in robust
optimization over the past 5 years, i.e., between 2011 and 2015. We highlight the
advancement of knowledge both with respect to the theory of robust optimization
and application areas. From a theoretical standpoint, we describe novel findings in
static and multi-stage decision making, the connection with stochastic optimization,
distributional robustness and robust nonlinear optimization. In terms of application
areas, we consider inventory and logistics, finance, revenue management and health
care. We conclude with guidelines for researchers interested in immunizing their
problem against uncertainty.

5.1 Introduction

A classical assumption in mathematical programming is that the input data is per-
fectly known; however, in practice this is a rather rare situation and researchers have
attempted to take data uncertainty into account since the seminal work of Charnes
and Cooper [35] on chance-constrained programming. Unfortunately, many settings
in today’s fast-changing environments do not lend themselves to a probabilistic des-
cription of uncertainty. Robust optimization was first proposed in the early 1970s in
order to provide a decision-making framework when probabilistic models are either
unavailable or intractable, and has been the focus of significant research attention
from the 1990s onwards.
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Robust optimization assumes that the uncertain data belongs to a convex and
bounded set, called uncertainty set, and aims to find a solution that would remain
feasible for all possible instances of the data parameters while achieving the best
possible worst-case performance, as measured by the objective for the worst-case
realization of the parameters. The specific choice of the set naturally plays an im-
portant role in terms of tractability and insightfulness of the optimal solution. Key
to the tractability of robust optimization is the ability to optimize this worst-case
criterion efficiently in presence of two conflicting imperatives: (1) a high level of
robustness (protection against uncertainty) (2) the attainment of high-quality objec-
tive values (close to the objective of the nominal problem).

Soyster [107] took the first step toward the attainment of a robust optimization
methodology in 1973. In order to find a solution immune to data uncertainty in lin-
ear programming, he injected the worst-case value of each uncertain parameter into
the mathematical programming model; however, the model was deemed too conser-
vative for practical implementation by many business practitioners. Then, in the late
1990s, significant progress in tackling the issue of over-conservatism was made by
Ben-Tal and Nemirovski [14–16], El-Ghaoui and Lebret [45] and El-Ghaoui et al.
[46]. These papers provided the foundation for modern robust optimization. (Note
that the earlier paper of Mulvey et al. [91] uses a different concept also called robust
optimization that builds upon the stochastic programming problem and optimizes a
weighted combination of the traditional Stochastic Programming (SP) objective and
a feasibility penalty function, which penalizes violations of the control constraints.
This different definition for robust optimization will not be explored here.) The fo-
cus was mainly on constructing models more relevant to practitioners by controlling
the degree of conservatism in uncertain linear problems with ellipsoidal uncertainty
sets centered at the nominal value of the parameters. These problems were reformu-
lated as second-order cone problems [15]. A drawback is that the resulting model
is computationally less efficient than its nominal counterpart due to the added non-
linearity. This makes extensions to integer decision variables challenging from a
computational standpoint.

In a milestone work, Bertsimas and Sim [25] investigated novel ways to decrease
over-conservatism by tackling what they call the Price of Robustness using polyhe-
dral uncertainty sets, which they connect to probabilities of constraint guarantees.
Their approach offers full control on the level of conservatism for each constraint
through a parameter called the budget of uncertainty that is adjusted by the decision
maker. The interpretation of this budget of uncertainty is that it limits the number
of uncertain parameters that can deviate from their nominal value. In this approach,
the robust counterpart of a linear program remains linear, so that the robust model
retains the advantages of a linear optimization model in terms of computational eff-
iciency. Further, it can be readily generalized to discrete optimization, so that the
robust counterpart of a integer linear program remains an integer linear problem.

For a comprehensive book treatment and survey on robust optimization, the
reader is referred to Ben-Tal et al. [18] and Ben-Tal and Nemirovski [17], respec-
tively. Also, Gorissen et al. [56] provide a practical guide to robust optimization that
should be of significant interest to researchers attempting to immunize their prob-
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lems against parameter ambiguity. Gabrel et al. [50] present an overview of recent
advances in robust optimization between 2007 and 2012.

The present chapter focuses on studies indexed in Web of Science and published
between 2011 and 2015 included, belonging to the area of Operations Research and
Management Science, and having “robust” and “optimization” in their title. We nar-
rowed the list of papers to over one hundred we deemed most significant by taking
into account the research area, citation number, authors’ track record in robust opti-
mization and the journal’s impact factor. This was necessarily a subjective process
and some recent papers not listed here will certainly go on to have substantial im-
pact on the field; however, we hope that this survey provides a good starting point
into robust optimization today. Related book treatments and milestone works are
also presented for reference. Papers are grouped by theme; within each theme they
are listed in alphabetical order.

5.2 Theory of Robust Optimization

Since robust static (single-objective) linear programming is now well understood,
current research efforts have mostly focused on (1) developing a stronger connection
with stochastic optimization, (2) incorporating robust optimization to ambiguous
probability distributions of random parameters rather than to ambiguous parameters
of unknown but fixed value, (3) studying robust static nonlinear optimization, (4)
considering multiple objective criteria, leading to the theory of robust Pareto effi-
ciency, and (5) investigating robust dynamic decision-making. Note that Sniedovich
[106] cautions against attempts to tackle severe uncertainty, characterized by a poor
point estimate, a likelihood-free quantification of uncertainty and a large uncertainty
space, using local robustness models based on the “radius of stability” concept.

5.2.1 Connection with Stochastic Optimization

In Stochastic Optimization, the uncertain data is assumed to be random. In the sim-
plest case, these random parameters have a known probability distribution, while
in more advanced settings, this distribution is only partially known. While robust
optimization first emerged as a deterministic (worst-case) alternative to stochastic
programming, each arising from different models of uncertainty, in recent years in-
creasing numbers of researchers have strived to connect the robust optimization and
stochastic optimization paradigms so that the models can be best tailored to the
available information.
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5.2.1.1 Foundational Work

The most important developments have led to a greater connection between the
robust and stochastic optimization descriptions of uncertainty. They have been:
(1) an argument that uncertainty sets, approached through robust optimization,
should serve as the primitive for stochastic systems and (2) the design of safe
tractable approximations of chance constraints to obtain guarantees of constraint vi-
olation and their Robust Counterpart representations and (3) a connection between
linear problems with uncertain probabilities and uncertainty sets constructed as con-
fidence sets using phi-divergences, with a size of the uncertainty set being controlled
by the confidence level of the confidence set. Finally, a fourth work tackles robust
nonlinear inequalities and thus develops tractable robust counterparts for new, pre-
viously unstudied classes of optimization problems.

Bandi and Bertsimas [8] investigate tractable stochastic analysis in high dimen-
sions via robust optimization. They propose a new approach for stochastic systems
based on robust optimization, to address the issue of computational tractability that
arises when stochasticity is modeled using probabilities in areas such as queueing
networks or multi-bidder auctions. Their framework relies on replacing the Kol-
mogorov axioms and the concept of random variables as primitives of probability
theory, with uncertainty sets derived from some of the implications of probability
theory like the central limit theorem. Performance analysis of stochastic systems in
this new paradigm leads to linear, semidefinite or mixed integer optimization prob-
lems for which efficient algorithms capable of solving problems in high dimensions
are available. Further, Bandi and Bertsimas [9] develop an optimal design frame-
work for multi-item auctions based on robust optimization where they adopt an
uncertainty set based model instead of using probability distributions.

Nemirovski [93] provides safe tractable approximations of chance constraints
when data uncertainty is incorporated through randomly perturbed constraints. He
reviews several simulation-based and simulation-free computationally tractable ap-
proximations of chance constrained convex programs, primarily, those found in
chance constrained linear, conic quadratic and semidefinite programming, when the
data is affinely parametrized by a random vector of partially known distribution. The
models considered include Conditional Value-at-Risk and Bernstein approximations
of the chance constraint. Robust counterpart representations of the approximations
are also described.

Ben-Tal et al. [21] investigate robust linear optimization problems where the un-
certain parameters with uncertainty regions defined by phi-divergences, which arise
in settings involving moments of random variables and expected utility, and applica-
tions to asset pricing and the multi-item newsvendor problem. Phi-divergences refer
to families of functions that measure “distance” between two vectors. The authors
first derive confidence sets that are only asymptotically valid and then describe ways
to improve the approximation by considering a modified statistic that uses correc-
tion parameters. They finally describe the robust counterpart with phi-divergence
uncertainty and study its tractability. This is a special case of distributional robust
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optimization, which we review in more details below. (The reader is also referred to
Bayraksan and Love [11] for a tutorial on data-driven stochastic programming using
phi-divergences.)

Finally, Ben-Tal et al. [22] present a model to formulate the robust counterpart of
a nonlinear uncertain inequality that is concave in the uncertain parameters, using
convex analysis and in particular Fenchel duality. Hence, robust models can be for-
mulated for new classes of optimization models, for which tractable reformulations
were not previously available. With respect to tractability, the authors further show
that many robust counterparts can be written as linear, quadratic or conic quadratic
constraints, or admit a self-concordant barrier function, which implies that the opti-
mization problem can be solved in polynomial time.

5.2.1.2 Distributionally Robust Optimization and Chance Constraints

Ben-Tal et al. [19] consider chance constrained uncertain classification and inves-
tigate the problem of constructing robust classifiers when the training is plagued
with uncertainty. They also discuss methodologies for classifying uncertain test data
points and error measures for evaluating classifiers robust to uncertain data.

Dupacova and Kopa [42] consider stochastic programs whose set of feasible so-
lutions depends on probability distributions that are not fully known, and adopt a
contamination technique to study the robustness of results to perturbations on the
probabilities. They suggest a robust efficiency test with respect to the second order
stochastic dominance criterion.

With motivation drawn from data-driven decision making and sampling prob-
lems, Xu et al. [115] study the probabilistic interpretations of robust optimization
by showing the connection between robust optimization and distributionally robust
stochastic programming, and utilize this result to construct robust optimization for-
mulations for sampled problems.

Zymler et al. [121] develop tractable approximations based on semidefinite
programming for distributionally robust chance constraints where only the first-
and second-order moments and support of the uncertain parameters are given.
They investigate Worst-Case Conditional Value-at-Risk (CVaR) approximations and
show that the approximation is tight for robust individual chance constraints with
quadratic or concave constraint functions. For joint chance constraints, they show
that the Worst-Case CVaR is provably tighter than two benchmark approximations.
Further, a distributionally robust joint chance constrained optimization model for
the case of the dynamic network design problem under demand uncertainty is devel-
oped by Sun et al. [108]. They propose an approach to approximate a joint chance-
constrained cell transmission model based system optimal dynamic network design
problem with only partial distributional information of uncertain demand.

Wiesemann et al. [113] consider Markov Decision Processes (MDP) with uncer-
tain parameters when an observation history of the MDP is available. They derive a
confidence region that contains the unknown parameters with a prespecified prob-
ability and obtain a policy that attains the best worst-case performance over this
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confidence region, using the solution of conic programming problems of moderate
size. Further, Wiesemann et al. [114] suggest a unifying framework for modeling
and solving distributionally robust convex optimization problems based on standard-
ized ambiguity sets that contain all distributions with prescribed conic representable
confidence sets and encompass many ambiguity sets from the literature as special
cases. They also model information about statistical indicators that have not yet been
considered in the robust optimization literature, such as higher-order moments and
the marginal median. The authors determine sharp conditions under which distribu-
tionally robust optimization problems based on their approach are computationally
tractable, and tractable conservative approximations otherwise.

Alvarez-Miranda et al. [4] presents a note on the Bertsimas and Sim algorithm for
robust combinatorial optimization problems with interval uncertainty, where they
describe a method to solve fewer deterministic problems to obtain a robust solution.
Long and Qi [85] investigate discrete optimization under the distributionally robust
framework where they optimize the Entropic Value-at-Risk, a coherent risk measure
that serves as a convex approximation of the chance constraint. They propose an ap-
proximation algorithm to solve the problem as a sequence of nominal problems and
show in computational experiments that the number of nominal problems required
is small for various distributional uncertainty sets.

Duzgun and Thiele [43] study 0-1 linear programming with uncertain objective
coefficients using a safe tractable approximation of chance constraints, when the
decision maker only knows the first two moments and the support of the random
variables. They obtain a series of 0-1 linear programming problems parametrized
by only one additional variable and show in numerical experiments that their model
solves significantly faster than the benchmark robust model.

Zhen [119] investigates a variant of the task assignment problem under uncer-
tainty based on stochastic programming and robust optimization. He develops both
a stochastic programming model that tackles the issue of arbitrary probability dis-
tributions for the tasks’ random workload requirements, and a robust optimization
model which can cope with limited information about probability distributions.

Further, Duzgun and Thiele [44] bridge descriptions of uncertainty based on
stochastic and robust optimization by considering multiple ranges for each uncer-
tain parameter and setting the maximum number of parameters that can fall within
each range, in a model reminiscent of histograms. The corresponding optimization
problem can be reformulated in a tractable manner using the total unimodularity
property of the uncertainty set and allows for a finer description of uncertainty while
preserving tractability.

5.2.2 Nonlinear Optimization

We have already mentioned the work by Ben-Tal et al. [22], which presents a model
to formulate the robust counterpart of a nonlinear uncertain inequality concave in
the uncertain parameters. In this section, we list additional work pertaining to robust
nonlinear optimization.
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A specific case of nonlinear problems that are linear in the decision variables
but convex in the uncertainty when the worst-case objective is to be maximized
is investigated in Kawas and Thiele [76] in the context of portfolio management
with uncertain continuously compounded rates of return. In that setting, exact and
tractable robust counterparts can be derived. The authors extend their approach to
short sales in [77], where they examine a class of non-convex robust optimization
problems where the decision variables can be negative, leading to a non-convex
problem in the uncertainty.

Ben-Tal and den Hertog [13] immunize conic quadratic optimization problems
against ellipsoidal implementation errors. They prove that the robust counterpart of
a convex quadratic constraint with ellipsoidal implementation error is equivalent to
a system of conic quadratic constraints. They then extend the result to the case in
which the uncertainty set is the intersection of two convex quadratic inequalities and
show that the robust counterpart for this case is also equivalent to a system of conic
quadratic constraints.

Doan et al. [41] build upon the fact that current successful methods for solv-
ing semidefinite programs are based on primal-dual interior-point methods and
they approach robustness from an algorithmic perspective in order to address ill-
conditioning and instability issues. Houska and Diehl [63] present a convex bilevel
programming algorithm for the nonlinear min-max problems in semi-infinite pro-
gramming. A conservative approximation strategy and optimality conditions are
provided along with an analysis about strong global and locally quadratic conver-
gence properties.

Poss [98] develops a robust combinatorial optimization model where the uncer-
tain parameters belong to the image of multifunctions of the problem variables. A
mixed-integer programming reformulation for the problem, based on the dualization
technique is proposed since the feasibility set of the problem is non-convex. Jeyaku-
mar and Li [69] focus on the trust-region problem, which minimizes a nonconvex
quadratic function over a ball, and utilize the properties of the problems such as
semi-definite linear programming relaxation (SDP-relaxation) and strong duality.

Finally, Suzuki et al. [109] investigate surrogate duality for robust nonlinear op-
timization and they prove surrogate duality theorems for robust quasiconvex opti-
mization problems and surrogate min-max duality theorems for robust convex opti-
mization problems. They provide necessary and sufficient constraint qualifications
for surrogate duality and surrogate min-max duality, and give some examples at
which such duality results are used effectively.

5.2.3 Multiple Objectives and Pareto Optimization

A large branch of Robust Optimization focuses on single-objective problems; how-
ever, multiple objectives are sometimes considered as well. Hu and Mehrotra [64]
studies a family of models for multiexpert multicriteria decision making. Those
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models utilize the concept of weight robustness in order to identify a (robust) Pareto
decision that minimizes the worst-case weighted sum of objectives over a given
weight region. The model is then extended to include ambiguity or randomness
in the weight region as well as the objective functions. A multi-objective, multi-
mode, multi-commodity, and multi-period stochastic robust optimization model is
considered by Najafi et al. [92] where the purpose is to achieve the best possible
emergency relief for earthquake response. Their method use hierarchical objective
functions.

Fliege and Werner [49] consider general convex parametric multiobjective robust
optimization problems under data uncertainty. They also present a characterization
of the location of the robust Pareto frontier with respect to its nominal counterpart
and illustrate their approach on a mean-variance problem. Robust optimization for
interactive multiobjective programming with imprecise information is investigated
by Hassanzadeh et al. [61] where there are clashing objectives and uncertainty oc-
curs in both objective functions and constraints. They use an iterative procedure to
capture the tradeoffs between the objectives.

Fang et al. [47] develop a multiobjective robust optimization model in order to
enhance the performance and the robustness simultaneously. The multiobjective par-
ticle swarm optimization (MOPSO) algorithm is utilized for producing a set of non-
dominated solutions over the entire Pareto space for a non-convex problem, which
provides designers with more insightful information. Koebis [79] studied the re-
lation between Scalar Robust Optimization and Unconstrained Multicriteria Opti-
mization with a finite uncertainty set and showed that a unique solution of a robust
optimization problem is Pareto optimal for the unconstrained optimization problem.

Iancu and Trichakis [66] incorporate Pareto efficiency to robust linear optimiza-
tion problems and they present a characterization of Pareto robustly optimal so-
lutions. Specifically, they argue that the classical RO paradigm may not produce
solutions that possess the associated property of Pareto optimality, leading to poten-
tial inefficiencies and they propose practical methods that generate Pareto robustly
optimal solutions by solving optimization problems that are of the same complex-
ity as the underlying robust problems. Their numerical experiments are drawn not
only from portfolio optimization—the best-known application area for Pareto op-
timal solutions—but also inventory management and project management. Hu and
Mehrotra [65] consider robust decision making over a set of random targets or risk-
averse utilities. In their setting, the random target has a concave cumulative distri-
bution function or a risk-averse manager’s utility is concave. Finally, Tong and Wu
[111] investigate robust reward-risk ratio optimization models based on the positive
homogenous and concave/convex measures of reward and risk.

5.2.4 Multi-Stage Decision-Making

While the main focus of robust optimization was static decision making when it was
first investigated in the 1990s (following Soyster’s 1973 work), multi-stage robust
decision making has garnered substantial attention in recent years. In this setting,
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uncertainty is revealed in stages and the decision maker adjusts his strategy based
on the new information. The ability to take recourse action also allows the decision
maker to tackle over-conservatism issues that affect static robust optimization when
applied over multiple time periods. Delage and Iancu [40] provide an excellent tut-
orial on robust multi-stage decision-making.

5.2.4.1 Two Stages

Due to the difficulty inherent in multiple stages, many works have focused on two-
stage robust optimization. The most notable works in this category are Bertsimas et
al. [28], Hanasusanto et al. [60] and Ben-Tal et al. [23].

Bertsimas et al. [28] analyze the performance of static solutions for two-stage
adjustable robust linear optimization problems with uncertain constraint and ob-
jective coefficients. They show that for a fairly general class of uncertainty sets, a
static solution is optimal for two-stage adjustable robust linear optimization, which
is quite counter-intuitive since static policies are generally believed to be conser-
vative. Further, they develop a tight characterization of the adaptivity gap when no
static solution is optimal. Their results lead to new geometric intuition about the
performance of static robust solutions for adjustable robust problems, based on a
certain transformation of the uncertainty set which helps highlight properties of the
set when static robust policies do not perform well. Hence, the paper provides guid-
ance in selecting the uncertainty set such that the adjustable robust problem can be
well approximated by a static solution.

Hanasusanto et al. [60] extends the robust optimization methodology to problems
with integer recourse, by approximating two-stage robust binary programs by their
corresponding K-adaptability problems, in which the decision maker pre-commits in
the first stage to K second-stage policies and implements the best of these policies
once the uncertain parameters are realized. The authors study the quality of their
approximation and the computational complexity of the K-adaptability problem.
Further, they propose two mixed-integer linear programming reformulations that
can be solved with off-the-shelf software.

Ben-Tal et al. [23] develop a method for approximately solving a robust optimiza-
tion problem using tools from online convex optimization, where at every stage a
standard (nonrobust) optimization program is solved. They find an approximate ro-
bust solution using a number of calls to an oracle that solves the original (nonrobust)
problem that is inversely proportional to the square of the target accuracy. Their ap-
proach yields significant computational benefits when finding the exact solution of
the robust problem is a NP-hard problem, for instance in the case of robust support
vector machine with an ellipsoidal uncertainty set.

Additional work includes the following. Minoux [89] introduces a new subclass
of polynomially solvable two-stage robust optimization problems with uncertainty
on the right-hand side coefficients. Remli and Rekik [101] investigate the prob-
lem of combinatorial auctions in transportation services under uncertain shipment
volumes and develop a two-stage robust formulation where they use a constraint



98 S. Sözüer and A.C. Thiele

generation algorithm. Chan et al. [33] propose a computationally tractable and dy-
namic multi-stage decision methodology that can hedge against uncertainty by uti-
lizing information from the previous stage iteratively, with an application to IMRT
(intensity-modulated radiation therapy) treatment planning for lung cancer. Bo and
Zhao [118] solve two-stage robust optimization problems by developing a column-
and-constraint generation algorithm and compare their approach with the existing
Benders-style cutting plane methods.

5.2.4.2 Optimal and Approximate Policies

We have already mentioned Bertsimas et al. [28], where the authors investigate the
performance of static policies in two-stage robust linear optimization. Further, Bert-
simas et al. [27] analyze the effect of geometric properties of uncertainty sets, such
as symmetry, in the power of finite adaptability in multi-stage stochastic and adap-
tive optimization. They investigate finitely adaptable solutions, which generalize the
notion of static robust solutions in the sense that a small set of solutions is specified
for each stage and the solution policy implements the best solution from the set, de-
pending on the realization of the uncertain parameters in past stages. In particular,
they show that a class of finitely adaptable solutions is a good approximation for
both the multistage stochastic and the adaptive optimization problem.

Kuhn et al. [80] consider primal and dual linear decision rule policies in stochas-
tic and robust programming, and compute the loss of optimality due to this pol-
icy. They show that both approximate problems are equivalent to tractable linear
or semidefinite programs of moderate sizes. Shapiro [104] considers the adjustable
robust approach to multistage optimization, derives related dynamic programming
equations and connects the problem to risk-averse stochastic programming. He also
shows that, as in the risk-neutral case, a basestock policy is optimal.

Supermodularity and affine policies in a particular class of dynamic robust op-
timization problems are investigated by Iancu et al. [67]. They aim to provide a
connection between dynamic programming and decision rules, and solve tractable
convex optimization problems. Bertsimas and Goyal [24] consider adjustable robust
versions of convex optimization problems where the constraints and objectives are
uncertain and they show that a static robust solution yields a good approximation
for these problems under general assumptions.

5.3 Application Areas of Robust Optimization

5.3.1 Classical Logistics Problems

5.3.1.1 Newsvendor Problem

The newsvendor problem is the building block of modern inventory theory. While
robust newsvendor problems were first studied long before the time window for
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publication of interest in this review, they continue to be the focus of significant
research. Jiang et al. [71] consider robust newsvendor competition under asymmet-
ric information about future demand realizations. They devise an approach based on
absolute regret minimization and derive closed-form expressions for the robust opti-
mization Nash equilibrium solution for a game with an arbitrary number of players.
Qiu et al. [100] investigate the robust inventory decision-making problem faced by
risk-averse managers with incomplete demand information with ellipsoidal uncer-
tainty in a newsvendor setting. Three basic models are developed: expected profit
maximization, Conditional Value-at-Risk (or CVaR)-based profit maximization, and
a combination of these two.

Finally, Hanasusanto et al. [59] consider multi-item newsvendor problems from
a distributional robust optimization perspective when the demand distributions are
multimodal. The products considered are subject to fashion trends that are not fully
grasped at the time when orders are placed. Spatially separated clusters of probabil-
ity mass lack a complete description. The decision-maker minimizes the worst-case
risk of the order portfolio over all distributions compatible with the modality infor-
mation. The authors show the robust problem admits a conservative, tractable ap-
proximation using quadratic decision rules, which achieves a high level of accuracy
in numerical tests.

5.3.1.2 Combinatorial Optimization Problems

Remli and Rekik [101] study the robust winner determination problem for combi-
natorial auctions in transportation services when shipment volumes are uncertain
and propose a two-stage robust formulation solved using a constraint generation
algorithm.

Poss [98] extends the Bertsimas-and-Sim model for robust combinatorial opti-
mization using variable budgeted uncertainty, which is less conservative than (tradi-
tional) budget of uncertainty for vectors with few non-zero components. The author
uses a mixed-integer programming reformulation for the problem and compare his
approach with that of Bertsimas and Sim on the robust knapsack problem, where
variable budgeted uncertainty achieves a reduction of the price of robustness by an
average of 18 %.

Chassein and Goerigk [36] propose a new bound for the midpoint solution in
minmax regret optimization, which evaluates a solution against the respective opti-
mum objective value in each scenario and aims to find robust solutions that achieves
the lowest worst-case difference between the two. Heuristics with performance guar-
antees have potentially great value in this context because most polynomially solv-
able optimization problems have strongly NP-hard minmax regret counterparts. One
of these approximations is the midpoint solution, obtained when the decision maker
approximates the uncertain parameters by the average of their lower and upper
bound and solves that problem. They derive an instance-dependent performance
guarantee for the midpoint solution of at most 2 and apply their methodology to the
robust shortest path problem.
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5.3.1.3 Scheduling

Robust berth scheduling at marine container terminals where vessel arrival and han-
dling times are uncertain is studied by Golias et al. in [55]. They propose a bi-
objective optimization problem and a heuristic algorithm, and test the results using
simulation.

Varas et al. [112] focus on production scheduling for a sawmill where the uncer-
tainty arises from the supply of logs and the finished product orders. Using a two-
stage adaptive robust optimization approach, Lima et al. [84] investigate weekly
self-scheduling, forward contracting, and pool involvement for an electricity pro-
ducer operating a mixed power generation station.

Che et al. [37] study the cyclic hoist scheduling problem with processing time
window constraints. The uncertainty comes from the perturbations or variations of
certain degree in the hoist transportation times. The authors propose a method to
measure the robustness of a cyclic hoist schedule and develop a bi-objective mixed
integer linear programming model to optimize cycle time and robustness.

5.3.2 Facility Location

Facility location is concerned with the optimal placement of facilities to minimize
the design and transportation costs while considering factors such as customer sat-
isfaction, covering/serving a certain area, or avoiding placing hazardous materials
near housing. Baron et al. [10] applied robust optimization to a capacitated multi-
period fixed-charge network location problem in a network under uncertain demand
over multiple periods. Their goal is to determine the number of facilities, their lo-
cation and capacities, as well as the production amount and allocation of demand to
facilities.

Another network design problem has been studied by Li et al. [83], for the plan-
ning of network infrastructure such as roads, pipelines and telecommunication sys-
tems. Uncertainty originates from the demand, and maintenance related issues such
as operating costs, degradation rates. They propose an efficient and tractable ap-
proach for finding robust optimum solutions to linear and quadratic programming
problems with interval uncertainty using a worst case analysis.

Robust hub location problems are studied in Alumur et al. [2] where the uncer-
tainty arises due to the set-up costs for the hubs and the demands to be transported
between the nodes. The authors analyze the changes in the solutions driven by the
different sources of uncertainty when considered either in isolation or in combina-
tion.

Guelpinar et al. [58] consider a stochastic facility location problem in which
multiple capacitated facilities serve customers with a single product, given uncertain
customer demand and a constraint on the stock-out probability. Robust optimization
strategies for facility location appear to have better worst-case performance than
non-robust strategies.
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Gabrel et al. [51] investigate a robust version of the location transportation prob-
lem with an uncertain demand using a two-stage formulation. The resulting robust
formulation is a convex (nonlinear) program, and the authors apply a cutting plane
algorithm in order to solve the problem exactly. Finally, Ghezavati et al. [53] in-
vestigate the optimization of reliability for a hierarchical facility location problem
under disaster relief situations by a chance-constrained programming, with the aim
of rapidly bringing the appropriate emergency supplies to the affected villages.

5.3.3 Supply Chain Management

Supply chain problems deal with the management of the flow of goods and services
from the producer to the customer. It includes the movement and storage of raw ma-
terials, work-in-process inventory, and finished goods from point of origin to point
of consumption in a way that ensures good service level and high profit. There exists
uncertainty in many parts of a supply chain especially due to demand uncertainty.

A production planning problem in small-size furniture companies has been stud-
ied by Alem et al. [1]. They utilized robust optimization tools to derive robust
combined lot-sizing and cutting-stock models when production costs and product
demands are uncertainty. Their motivation to adopt robust optimization instead of
two-stage stochastic programming was the absence of an explicit probabilistic de-
scription of the input data and the incentive of not having to deal with a large number
of scenarios in robust optimization.

Aouam and Brahimi [6] considered an integrated production planning problem
and order acceptance decisions under demand uncertainty. Orders/customers are
classified into classes with respect to the marginal revenue, quantity they are willing
to buy and reliability assessment. Their model provides flexibility to decide on the
fraction of demand to be satisfied from each customer class and consider production-
related constraints as well as factors such as congestion on production lead times.
An order acceptance strategy allows the decision maker to maintain an appropriate
level of utilization.

Schoenlein et al. [103] investigate the measurement and optimization of the ro-
bust stability of multiclass queueing networks with an application to dynamic supply
chains. Stability of these networks implies that the total number of customers in the
network remains bounded over time. The authors rely on fluid network analysis to
quantify robustness using a single number, called the stability radius.

Qiu and Shang [99] study robust multi-period inventory decisions for risk-averse
managers with partial demand distribution information for products with a short life
cycle. The three inventory models we developed aim respectively to maximize ex-
pected profit, maximize conditional value-at-risk-based profit, and balance between
the two objectives where the corresponding robust counterparts are presented.
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Ashayeri et al. [7] consider a supply chain where a company faces bankruptcy
to fulfill its debt obligation with limited financial resources. The uncertainty arises
from demands and exchange rates. They formulate a MIP model with specific down-
sizing features, which maximizes the utilization of resources through a combined
operation of demand selection and production assets reallocation. A pulp produc-
tion planning and supply chain management has been studied in Carlsson et al.
[32]. They utilize a robust optimization approach to handle the demand uncertainty
and to establish a distribution plan, together with related inventory management.
In this setup, they observe that there is no need for explicit safety stock levels
and they achieve higher profit. Kawas et al. [78] study a game-theoretic setup of
a production planning problem under uncertainty in which a company is exposed
to the risk of failing authoritative inspections due to non-compliance with enforced
regulations.

Finally, Kang et al. [74] investigate distribution-dependent robust linear opti-
mization with applications to inventory control where every element of the con-
straint matrix is subject to uncertainty and is modeled as a random variable with a
bounded support.

5.3.4 Industry-Specific Applications

In this section, we reference papers on three industry-specific logistics-driven appli-
cations that have received substantial attention in the robust optimization literature.

In warehouse management, Ang et al. [5] propose a robust storage assignment
approach in unit-load warehouses facing variable supply and uncertain demand in a
multi-period setting. They assume a factor-based demand model and minimize the
worst-case expected total travel in the warehouse with distributional ambiguity of
demand.

In train timetabling operations, Cacchiani et al. [30] focus on Lagrangian heuris-
tics the application of train time-tabling. Galli [52] describes the models and algo-
rithms that arise from implementing recoverable robust optimization to train plat-
forming and rolling stock planning, where the concept of recoverable robustness
has been defined in Liebchen et al. A survey of nominal and robust train timetabling
problems in its nominal and robust versions is presented in Cacchiani and Toth [29].

In the sawmill planning problem, in addition to previously-mentioned Varas et al.
[112], which focuses on production scheduling for a sawmill where the uncertainty
arises from the supply of logs and the finished product orders, Alvarez and Vera [3]
consider a related formulation where variability affects the yield coefficients related
to the cutting patterns used. Finally, Ide et al. [68] investigate an application of
deterministic and robust optimization in the wood cutting industry with the goal of
attaining resource efficiency.
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5.3.5 Finance

5.3.5.1 General Portfolio Problems

Robust portfolio optimization is studied by Ye et al. [117] in the context of a
Markowitz mean-variance model with uncertainty on mean and covariance matrix.
They formulate the robust problem as a second-order cone programming problem
and show in computational experiments that the portfolios generated by the robust
model are not as sensitive to input errors as the ones given by the classical model.

Nguyen and Lo [94] develop robust portfolio optimization models based on in-
vestors’ rankings of the assets instead of estimates of their parameters such as ex-
pected returns, when the ranking is subject to uncertainty. They solve a robust rank-
ing problem using a constraint generation scheme. Marzban et al. [87] study a multi-
period robust optimization model including stocks and American style options. The
decision maker selects the level of robustness through the length and the type of the
uncertainty set.

5.3.5.2 Risk Measures

Chen et al. [38] considers robust portfolio problems where expected utility is max-
imized under ambiguous distributions of the investment return, while Moon and
Yao [90] investigate robust portfolio management when absolute deviation from the
mean is used as a risk measure, leading to a linear programming problem. The au-
thors test the robust strategies on real market data and discuss performance of the
robust optimization model based on financial elasticity, standard deviation, and mar-
ket condition such as growth, steady state, and decline in trend.

Fertis et al. [48] propose the concept of robust risk measure, defined as the worst
possible of predefined risks when each among a set of given probability measures
is likely to occur. In particular, they introduce a robust version of CVaR and of
entropy-based risk measures, and show how to compute and optimize the Robust
CVaR using convex duality methods.

Kakouris and Rustem [73] consider robust portfolio optimization with copulas,
where copulas are used to describe the dependence between random variables. They
provide the copula formulation of the CVaR of a portfolio and extend their approach
to Worst Case CVaR (WCVaR) though the use of rival copulas exploiting a variety
of dependence structures.

Kapsos et al. [75] investigate the worst-case robust Omega ratio, where the
Omega ratio is a performance measure addressing the shortcomings of the Sharpe
ratio and is defined as the probability weighted ratio of gains versus losses for some
threshold return target. The authors investigate the problem arising from the proba-
bility distribution of the asset returns being only partially known and show that the
problem remains tractable for three types of uncertainty.

In the most recent body of work, Lagos et al. [81] analyzes the characterizations
of the robust uncertainty sets related to coherent and distortion risk measures and
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aim to mitigate estimation errors of the Conditional Value-at-Risk. Maillet et al.
[86] investigate global minimum variance portfolio optimization under some model
risk based on a robust regression-based approach. The robust portfolio corresponds
to the global minimum variance portfolio in the worst-case scenario and it pro-
vides protection against errors in the reference sample covariance matrix. Finally,
Bertsimas and Takeda [26] study optimization over coherent risk measures and non-
convexities where the relation between coherent risk measures and uncertainty sets
of robust optimization is taken into consideration.

5.3.6 Machine Learning and Statistics

The incorporation of Machine Learning and Robust Optimization is a growing field.
The reader is referred to Caramanis et al. [31] for an overview of robust optimization
in machine learning. Ben-Tal et al. [19] focus on the problem of constructing robust
classifiers when the training is subject to uncertainty. The problem is formulated as
a chance-constrained program that is relaxed utilizing Bernstein’s approximation to
yield a second-order cone problem whose solution is guaranteed to be feasible for
the original problem. Xu et al. [116] study robust principal component analysis in
the presence of contaminated data.

Ozmen et al. [96] utilize Conic Multivariate Adaptive Regression Splines
(CMARS) for generalizing the model identification problem including the exis-
tence of uncertainty with the aim to increase the trustworthiness of the solution
in case of data perturbation. Beliakov and Kelarev [12] study global non-smooth
optimization in robust multivariate regression where the objective is non-smooth,
non-convex and expensive to calculate. They analyze the numerical performance of
several derivative-free optimization algorithms with the aim of computing robust
multivariate estimators.

Support vector machine (SVM) classifiers with uncertain knowledge sets via
robust optimization are studied by Jeyakumar et al. [70]. They show how data
uncertainty in knowledge sets can be handled in SVM classification and provide
knowledge-based SVM classifiers with uncertain knowledge sets using convex
quadratic optimization duality.

5.3.7 Energy Systems

Another area that has seen significant growth recently is robust optimization in en-
ergy. An application of robust optimization to renewable energy, specifically wind
energy, is investigated in Jiang et al. [72], with the objective of providing a robust
unit commitment schedule for the thermal generators in the day-ahead market that
minimizes the total cost under wind output uncertainty.
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Classen et al. [39] study a robust optimization model and cutting planes for
the planning of energy-efficient wireless networks under demand uncertainty where
they apply three different cutting plane methods. Goryashko and Nemirovski [57]
study robust energy cost optimization of a water distribution system with uncertain
demand with the aim to optimize daily operation of pumping stations based on the
concept of Affinely Adjustable Robust Optimization.

Lima [84] works on weekly self-scheduling, forward contracting, and pool in-
volvement for an electricity producer under three different scenarios, corresponding
to electricity price forecasts. Sauma et al. [102] adopt a robust optimization ap-
proach to assess the effect of delays in the connection-to-the-grid time of new gen-
eration power plants over transmission expansion planning where the uncertainty
arises from construction times of new power plants. Finally, Zugno and Conejo
[120] work on the energy and reserve dispatch in electricity markets where they
cast the problem as an adaptive robust optimization problem instead of a stochastic
programming problem due to computational efficiency issues.

5.3.8 Public Good

The public good applications aim to improve the health, safety and well-being of the
general public. Two main fields are humanitarian relief and health care applications.
Examples include determining treatment plans in a hospital, patient transportation
among hospitals, patient-doctor scheduling and constructing emergency evacuation
routes during a disaster (fire, tsunami, earthquake).

5.3.8.1 Humanitarian Logistics/Emergency Logistics Planning

After a disaster occurs, humanitarian and state organizations gather resources and
staff to serve a community’s needs in an efficient way. Robust optimization has great
relevance in humanitarian relief supply chains since we face data uncertainty during
disasters.

Ben-Tal et al. [20] investigate a robust logistics plan generation methodology that
can hedge against demand uncertainty. They study the dynamic emergency response
assignment and evacuation traffic flow problems. They apply an affinely adjustable
robust counterpart approach in order to provide better emergency logistics plans. A
multi-objective robust optimization model for logistics planning during earthquake
is proposed in Najafi et al. [92]. This paper propose a multi-objective, multi-mode,
multi-commodity, and multi-period stochastic model to manage the scarce sources
efficiently and they ensure that the distribution plan performs well under the various
situations due to robustness.

Tajik et al. [110] adopt a robust optimization approach for the pollution routing
problem with pickup and delivery under uncertain data where the aim is to reduce
fuel consumption and decrease green house gases emission due to their harmful
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effects on environment and human health. Their study addresses a new time window
pickup-delivery pollution routing problem (TWPDPRP) to deal with uncertain input
data.

The most recent developments in robust humanitarian logistics are the following.
Lassiter et al. [82] consider the flexible allocation of the workforce after a disaster
in order take into account changing (uncertain) needs and volunteer preferences.
They use robust optimization to handle the uncertainty in task demands and derive
Pareto optimality and allocation decisions for any level of conservativeness. Gheza-
vati et al. [53] investigate a hierarchical facility location problem under disaster
relief situations where robust optimization and chance-constrained programming
are applied. Shishebori and Babadi [105] design a robust and reliable medical ser-
vices network under uncertain environment and system disruptions. Finally, Paul
and Wang [97] study the United States Department of Agriculture food aid bid allo-
cations, which aims at providing food aid annually in response to global emergen-
cies and famine.

5.3.8.2 Health Care Applications

Chan et al. [33] consider an adaptive robust optimization approach to IMRT (intensity-
modulated radiation therapy) treatment planning for lung cancer. They propose a
computationally tractable and dynamic multi-stage decision methodology that can
hedge against uncertainty by utilizing the information from the previous stage iter-
atively. Nha et al. [95] develops a new robust design optimization procedure based
on a lexicographical dynamic goal programming approach for implementing time-
series based multi-responses for drug formulations in the pharmaceutical industry.

Holte and Mannino [62] study the problem of allocating scarce resources such as
operating rooms or medical staff to medical staff when the exact number of patients
for each specialty is uncertain and when the allocation is defined over a short period
of time such as a week and subsequently repeated over the time horizon. They adopt
an adjustable optimization approach and develop a row and column generation al-
gorithm to solve it efficiently.

Chan et al. [34] consider a robust-CVaR optimization approach with application
to breast cancer therapy where the loss distribution is dependent on the state of an
underlying system and the fraction of time spent in each state is uncertain. Finally,
Meng et al. [88] investigate a robust optimization model for managing elective adm-
ission in a public hospital, given the priority of emergency patients over elective
ones. They propose an optimized budget of variation approach that maximizes the
level of uncertainty the admission system can withstand without violating the exp-
ected bed shortfall constraint and solve the robust optimization model by deriving a
second order conic programming counterpart of the model.
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5.4 Conclusions and Guidelines for Implementation

We have provided an overview of recent developments in robust optimization over
the past 5 years. As robust optimization is now about 20 years old, it has become a
well-established tool to address decision-making under uncertainty but also remains
a thriving research area. We remind the reader of the practical guide to implement-
ing robust optimization provided in Gorissen et al. [56]. The researcher interested in
implementing robust optimization faces several modeling choices, which will im-
pact the structure of the robust problem, its tractability and the insights the decision
maker can gain into the optimal solution.

First, should the uncertainty be on the problem parameters themselves (leading to
the classical robust optimization paradigm) or their underlying probabilistic distri-
butions (yielding distributionally robust optimization or DRO)? DRO is particularly
suitable if the stochastic programming version of the problem is tractable and the
decision maker feels confident that he knows specific attributes of the family of
probability distributions, such as their first two moments. If the SP version of the
problem suffers from tractability issues, then adding robustness to that formulation
will make the problem at least as computationally demanding; hence, it will then be
more promising to apply robust optimization to the ambiguous parameters.

Second, what is the type of uncertainty set most suitable for the problem at hand?
When the uncertainty is on the ambiguous parameters, the decision maker can then
either use polyhedral uncertainty sets, which do not change the complexity of the
mathematical programming problems considered but lead to additional constraints
and variables in the tractable reformulation, or ellipsoidal uncertainty sets, which do
not require any new variable or constraint but introduce non-linearities. When some
decision variables are integer, polyhedral uncertainty sets thus seem particularly
suitable. When the uncertainty is on the probability distributions, the uncertainty set
may for instance incorporate knowledge of support, mean, covariance, directional
deviations in the manner of Goh and Sim [54].

Third, is it possible to take corrective action after part of the uncertainty is re-
vealed? If yes, adaptive or adjustable robust optimization will be advisable to ad-
dress potential over-conservatism issues and lead to decision rules that are easy to
implement in practice. The choice of those decision rules and the fine-tuning of their
parameters have implications on computational tractability, closeness to optimality
and insightfulness of the optimal solution.

In today’s fast-changing environment, robust optimization presents an appealing
framework that is both intuitive and lends itself to computationally tractable refor-
mulations that either are exact or approximations documented in numerical experi-
ments to perform well against benchmarks. RO is hence expected to keep increasing
in relevance and importance in the arsenal of decision making tools of the operations
research professional. In the future, researchers are likely to continue investigating
improved approaches to multi-stage optimization, and to further connect RO with
SP in order to provide an integrated approach to decision-making under uncertainty.
Cutting-edge areas of interest include, but are not limited to, complex problems
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such as adversarial risk analysis, policy design, performance evaluation, optimiza-
tion with multiple criteria or objectives, alternative models of uncertainty such as
fuzzy optimization, new insights into sensitivity analysis and application-specific
results on topics that remain of prime relevance today such as job-shop scheduling
and portfolio management.

References

1. Alem, D.J., Morabito, R.: Production planning in furniture settings via robust optimization.
Comput. Oper. Res. 39(2), 139–150 (2012)

2. Alumur, S.A., Nickel, S., Saldanha-da Gama, F.: Hub location under uncertainty. Transp.
Res. Part B Methodol. 46(4), 529–543 (2012).

3. Alvarez, P.P., Vera, J.R.: Application of robust optimization to the sawmill planning problem.
Ann. Oper. Res. 219(1), 457–475 (2014)

4. Alvarez-Miranda, E., Ljubic, I., Toth, P.: A note on the Bertsimas & Sim algorithm for robust
combinatorial optimization problems. 4OR-A Q. J. Oper. Res. 11(4), 349–360 (2013)

5. Ang, M., Lim, Y.F., Sim, M.: Robust storage assignment in unit-load warehouses. Manag.
Sci. 58(11), 2114–2130 (2012)

6. Aouam, T., Brahimi, N.: Integrated production planning and order acceptance under uncer-
tainty: a robust optimization approach. Eur. J. Oper. Res. 228(3), 504–515 (2013)

7. Ashayeri, J., Ma, N., Sotirov, R.: Supply chain downsizing under bankruptcy: a robust opti-
mization approach. Int. J. Prod. Econ. 154, 1–15 (2014)

8. Bandi, C., Bertsimas, D.: Tractable stochastic analysis in high dimensions via robust opti-
mization. Math. Program. 134(1, SI), 23–70 (2012)

9. Bandi, C., Bertsimas, D.: Optimal design for multi-item auctions: a robust optimization app-
roach. Math. Oper. Res. 39(4), 1012–1038 (2014)

10. Baron, O., Milner, J., Naseraldin, H.: Facility location: a robust optimization approach. Prod.
Oper. Manag. 20(5), 772–785 (2011)

11. Bayraksan, G., Love, D.: Data-driven stochastic programming using phi-divergences.
INFORMS TutORials on operations research, pp. 1–19 (2015)

12. Beliakov, G., Kelarev, A.: Global non-smooth optimization in robust multivariate regression.
Optim. Methods Softw. 28(1), 124–138 (2013)

13. Ben-Tal, A., den Hertog, D.: Immunizing conic quadratic optimization problems against
implementation errors. Technical Report. Tilburg University (2011)

14. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805
(1998)

15. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett.
25, 1–13 (1999)

16. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contami-
nated with uncertain data. Math. Program. 88, 411–424 (2000)

17. Ben-Tal, A., Nemirovski, A.: Selected topics in robust convex optimization. Math. Program.
112, 125–158 (2011)

18. Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton Series in
Applied Mathematics. Princeton University Press, Princeton (2009)

19. Ben-Tal, A., Bhadra, S., Bhattacharyya, C., Nath, J.S.: Chance constrained uncertain classi-
fication via robust optimization. Math. Program. 127(1, SI), 145–173 (2011)

20. Ben-Tal, A., Do Chung, B., Mandala, S.R., Yao, T.: Robust optimization for emergency logis-
tics planning: risk mitigation in humanitarian relief supply chains. Transp. Res. B Methodol.
45(8, SI), 1177–1189 (2011)

21. Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G.: Robust sol-
utions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2),
341–357 (2013)



5 The State of Robust Optimization 109

22. Ben-Tal, A., den Hertog, D., Vial, J.P.: Deriving robust counterparts of nonlinear uncertain
inequalities. Math. Program. 149, 265–299 (2015)

23. Ben-Tal, A., Hazan, E., Koren, T., Mannor, S.: Oracle-based robust optimization via online
learning. Oper. Res. 63(3), 628–638 (2015)

24. Bertsimas, D., Goyal, V.: On the approximability of adjustable robust convex optimization
under uncertainty. Math. Meth. Oper. Res. 77(3), 323–343 (2013)

25. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
26. Bertsimas, D., Takeda, A.: Optimizing over coherent risk measures and non-convexities: a

robust mixed integer optimization approach. Comput. Optim. Appl. 62(3), 613–639 (2015)
27. Bertsimas, D., Goyal, V., Sun, X.: A geometric characterization of the power of finite adapt-

ability in multistage stochastic and adaptive optimization. Math. Oper. Res. 36(1), 24–54
(2011)

28. Bertsimas, D., Goyal, V., Lu, B.Y.: A tight characterization of the performance of static
solutions in two-stage adjustable robust linear optimization. Math. Program. 150(2), 281–319
(2015)

29. Cacchiani, V., Toth, P.: Nominal and robust train timetabling problems. Eur. J. Oper. Res.
219(3), 727–737 (2012)

30. Cacchiani, V., Caprara, A., Fischetti, M.: A Lagrangian heuristic for robustness, with an
application to train timetabling. Transp. Sci. 46(1), 124–133 (2012)

31. Caramanis, C., Mannor, S., Xu, H.: Robust optimization in machine learning. In: Optimiza-
tion in Machine Learning, pp. 369–402 MIT Press, Cambridge, MA (2011)

32. Carlsson, D., Flisberg, P., Roennqvist, M.: Using robust optimization for distribution and
inventory planning for a large pulp producer. Comput. Oper. Res. 44, 214–225 (2014)

33. Chan, T.C.Y., Misic, V.V.: Adaptive and robust radiation therapy optimization for lung can-
cer. Eur. J. Oper. Res. 231(3), 745–756 (2013)

34. Chan, T.C.Y., Mahmoudzadeh, H., Purdie, T.G.: A robust-CVaR optimization approach with
application to breast cancer therapy. Eur. J. Oper. Res. 238(3), 876–885 (2014)

35. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79
(1959)

36. Chassein, A.B., Goerigk, M.: A new bound for the midpoint solution in minmax regret opti-
mization with an application to the robust shortest path problem. Eur. J. Oper. Res. 244(3),
739–747 (2015)

37. Che, A., Feng, J., Chen, H., Chu, C.: Robust optimization for the cyclic hoist scheduling
problem. Eur. J. Oper. Res. 240(3), 627–636 (2015)

38. Chen, L., He, S., Zhang, S.: Tight bounds for some risk measures, with applications to robust
portfolio selection. Oper. Res. 59(4), 847–865 (2011)

39. Classen, G., Koster, A.M.C.A., Schmeink, A.: A robust optimisation model and cutting
planes for the planning of energy-efficient wireless networks. Comput. Oper. Res. 40(1),
80–90 (2013)

40. Delage, E., Iancu, D.: Robust multistage decision-making. INFORMS TutORials, pp. 20–46
(2015)

41. Doan, X.V., Kruk, S., Wolkowicz, H.: A robust algorithm for semidefinite programming.
Optim. Methods Softw. 27(4–5, SI), 667–693 (2012)

42. Dupacova, J., Kopa, M.: Robustness in stochastic programs with risk constraints. Ann. Oper.
Res. 200(1), 55–74 (2012)

43. Duzgun, R., Thiele, A.: Robust binary optimization using a safe tractable approximation.
Oper. Res. Lett. 43(4), 445–449 (2015)

44. Duzgun, R., Thiele, A.: Robust optimization with multiple ranges: theory and application to
pharmaceutical project selection. In: Proceedings of the 14th INFORMS ICS Conference,
pp. 103–118 (2015)

45. El-Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data.
SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

46. El-Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs.
SIAM J. Optim. 9(1), 33–52 (1998)
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