
Chapter 3
Robustness for Adversarial Risk Analysis

David Rı́os Insua, Fabrizio Ruggeri, Cesar Alfaro, and Javier Gomez

Abstract Adversarial Risk Analysis is an emergent paradigm for supporting a
decision maker who faces adversaries in problems in which the consequences are
random and depend on the actions of all participating agents. In this chapter, we
outline a framework for robust analysis methods in Adversarial Risk Analysis. Our
discussion focuses on security applications.

3.1 Introduction

Large scale terrorist events like S-11 led to huge security investments. In turn,
this has promoted many modeling efforts to support how to efficiently allocate
such resources. Parnell et al. [15] provided an in-depth review for the US National
Academy of Sciences on bio-terrorism assessment, concluding, among other things,
that traditional risk analysis tools, like event trees, are not adequate in this applica-
tion area for not accounting for adversarial intentionality; the critical and, in many
contexts, doubtful common knowledge assumptions of game theoretic approaches;
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and, finally, the problems of decision analytic based approaches in forecasting ad-
versarial actions. Merrick and Parnell [12] reviewed numerous approaches in this
research area, commenting favorably on Adversarial Risk Analysis (ARA), which is
a framework to manage risks derived from actions of intelligent adversaries, see [20]
or [1].

ARA aims at providing one-sided prescriptive support to one of the intervening
agents, the Defender (D, she), based on a subjective expected utility model treat-
ing the adversary’s decisions as uncertainties. To do so, we model the adversary’s
(A, Attacker, he) decision making problem and, assuming that he is an expected
utility maximizer, try to assess his probabilities and utilities. We can consequently
forecast his optimal action. However, our uncertainty about the adversary’s proba-
bilities and utilities is propagated to his decision, leading to a random optimal adv-
ersary decision which provides us with the required distribution over the Attacker’s
decision. Sometimes such assessments may lead to a hierarchy of nested decision
problems, as described in [17], similar to the concept of level-k thinking, see [24]. In
contrast with game theoretic approaches, we do not assume the standard, but unre-
alistic, common knowledge hypothesis, see [5], according to which the agents share
information about their utilities and probabilities.

A critical issue in ARA is elicitation. As in any subjective Bayesian analysis, one
needs personal probabilities over the parameters in the problem. Obtaining them is
not easy and we need to cope with many biases, see e.g., [14]. This is aggravated
in our context because of the involved strategic considerations. Nau [13] as well as
Wang and Bier [26] provide discussions of elicitation in the context of adversarial
situations.

The practical difficulty of elicitation raises the question of robustness. One wants
an ARA to be robust to the elicited probabilities and utilities, the model enter-
tained and, when available, the data. A good way forward is sensitivity analysis.
The above mentioned review by Parnell [15] recommends it, and Von Winterfeldt
and O’Sullivan [25] perform a systematic sensitivity analysis with respect to elicited
probabilities in an event tree concerning MANPADS. A different approach is taken
by Kardes [9], who considers robust stochastic games.

Robust Bayesian analysis facilitates finding the entire set of posterior distribu-
tions for a parameter when the prior lies within a class of distributions. The results
are typically expressed in terms of upper and lower bounds on probabilities and
expected utilities. Berger et al. [2] review this methodology which has yet to be
used in ARA. The only direct application is given by McLay et al. [11], who point
the way towards a principled means to incorporate robustness into ARA. They con-
sider a level-k thinking analysis of the sequential Defend-Attack game in which
the Attacker imperfectly observes the decision made by the Defender. The game
is modeled through an information structure comprising several signals and, con-
ditional on the defense choice, there is a specified distribution over the signals, a
model initially proposed by Rothschild et al. [22]. Robustification occurs by setting
upper and lower bounds over parameters for which distributions must be elicited,
and then calculating the outcome under the worst case combination of upper and
lower values.
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This chapter provides a complete outline of the role of robust methods in ARA.
After introducing basic notions in Bayesian robustness, we first describe the robust
ARA approach for sequential games and, then, for simultaneous games. In both
cases, we start by computing the game theoretic solution. We apply robust concepts
to assess such solution. If it is not robust, we use the ARA approach to find an
alternative solution. Again, we criticize it through robust ideas. If the solution is still
unstable, we may appeal to conventional robust concepts, such as the γ maximin.
We illustrate the ideas with a simple numerical example concerning routing security.

3.2 Bayesian Robustness

We present here the basic ideas on Bayesian robustness. We refer to Rı́os Insua
and Ruggeri [18] for an in-depth overview. In the Bayesian approach to inference,
prediction and decision making, the interest frequently lies on the behavior of the
posterior distribution on a parameter θ obtained by combining experimental evi-
dence provided by the likelihood and expert knowledge expressed through the prior
distribution, via Bayes theorem. This is used to compute posterior (and predictive)
expectations of functions g(θ) which typically will be set indicators, powers or
utility functions, providing, respectively, set probabilities, moments and expected
utilities. The robust Bayesian approach stems from the practical difficulty of spec-
ifying a unique prior distribution and/or a unique utility function, corresponding,
respectively, to the expert’s beliefs and the decision maker’s preferences. Therefore,
classes of priors and/or utilities are entertained and the consequences of different
possible choices of such pairs are evaluated through synthetic indices which deter-
mine whether the quantity of interest is subject to small or large variations when
changing the prior/utility, i.e. whether there is robustness or not.

In accordance with the content of this chapter, we shall consider utilities u in a
class U and probability measures p in a class P (without distinguishing whether
they are priors or posteriors). We suppose that the probability measure p has a den-
sity p(s) over the states s, and the utility function has the form u(d,s), where d is
an action (decision) in the feasible set D . We are interested in computing the ex-
pected utilities ψup(d) =

∫
u(d,s)p(s)ds for various alternatives d and the feasible

alternative d∗
up ∈D maximizing expected utility, given such choice u and p.

In a robust context, the interest would typically be in the ranges that relevant
quantities span when p and u vary in the class, e.g. the range of the expected utility
for a certain alternative d

ρψ(d) = sup
p∈P,u∈U

ψup(d)− inf
p∈P,u∈U

ψup(d),

or the distance between the optimal alternative and a reference alternative d∗

ρd = sup
p∈P,u∈U

e(d∗
up,d

∗),
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for some distance e. Looking at ρd , we claim that there is robustness if its value is
small with respect to the entertained problem and the decision maker’s perception.
In this case, essentially any p and u, and the corresponding d∗

up, may be used for
decision making purposes. Otherwise, efforts are required to get smaller classes
until either robustness can be achieved or no further refinement is possible.

In the latter case, some criterion could be introduced to choose a pair (p,u) and
the corresponding d∗

up. A possible choice for a decision could be the minimum regret
decision,

d̂ = argmind∈D max
p∈P,u∈U

[
ψup(d

∗
up)−ψup(d)

]
.

For a related discussion see [19]. In particular, the decision d̂ is conservative in the
sense that it protects against the worst loss in expected utility when replacing an
optimal decision d∗

up by another one.

3.3 Sequential Games

We start by considering sequential games: one agent first makes her decision and,
then, the other agent implements his alternative. As an example, imagine a case in
which a company deploys their cybersecurity countermeasures and then, observing
them, a hacker decides whether he launches an attack or not towards such company.

Specifically, we consider a Defend-Attack situation in which a Defender chooses
a defense d ∈ D and, then, the Attacker, having observed the defense, chooses his
attack a∈A . The corresponding bi-agent influence diagram is shown in Fig. 3.1. An
arc reflects that the Defender’s choice is observed by the Attacker. The consequences
for both players depend on the success s of the attack. Each decision maker assesses
differently the probability of the result of an attack, which depends on the defense
and attack adopted: pD(s | d,a) and pA(s | d,a). The utility function of the Defender
uD(d,s) depends on her chosen defense and the result of the attack. Similarly, the
Attacker’s utility function is uA(a,s). We first recall the standard game theoretic
approach and check its robustness. We then present the ARA solution and, again,
provide a robust analysis.

3.3.1 Game Theoretic Solution and Robustness

The standard game theoretic solution does not require the Attacker to know the
Defender’s probabilities and utilities, since he observes the Defender’s actions.
However, the Defender needs to know the Attacker’s utilities and probabilities
(uA, pA), an example of common knowledge. We then proceed as follows. First,
we compute the expected utilities of the players at node S in Fig. 3.1:
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SD A

UD UA

Fig. 3.1: The two player sequential decision game

ψA(a,d) =
∫

uA(a,s)pA(s|a,d)ds, (3.1)

ψD(a,d) =
∫

uD(d,s)pD(s|a,d)ds.

Then, we compute the Attacker’s best response to the Defender’s action d, which is

a∗(d) = argmaxa∈A ψA(a,d).

Knowing this, the Defender’s optimal action is, then,

d∗
GT = argmaxd∈DψD(a

∗(d),d).

The solution
(
a∗(d∗

GT ),d
∗
GT

)
is a Nash equilibrium and, indeed, a sub-game perfect

equilibrium, see [5]. We call d∗
GT the Nash defense.

3.3.1.1 Robustness of the Game Theoretic Solution

Since we are supporting the Defender, we could argue that we know reasonably
well (uD, pD). However, we would contend that knowledge about (uA, pA) is that
precise, since it would require the Attacker to reveal them (common knowledge).
This is questionable in many application areas including security, cybersecurity and
competitive marketing. We may use robust methods to criticize such information
and, consequently, assess the game theoretic solution.

As discussed in Sect. 3.2, from a conceptual point of view, to perform robustness
we may consider classes for the Attacker’s utilities and probabilities that we model
through u ∈ UA, p ∈ PA. Then, mimicking the approach above, for each feasible
(u, p) we could:

• Compute the expected utilities (ψu,p
A (d,a),ψu,p

D (d,a)) at node S in Fig. 3.1.
• Compute the best response attack a∗u,p(d) for each d.
• Compute the optimal defense d∗

u,p.
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Then, if d∗
u,p remains reasonably stable for the allowed perturbations of u and p,

with u ∈ UA, p ∈ PA, the game theoretic solution seems robust. However, if d∗
u,p

is not that stable, we have an issue which questions, at first sight, the relevance of
the proposed Nash defense d∗

GT . At a deeper level, it also questions the appropri-
ateness of the (uA, pA) assessment, actually serving to criticize the game theoretic
assumptions, specially that of common knowledge, see [16] or [10].

From an operational point of view, the above robustness analysis scheme for the
game theoretic approach boils down to two computational issues:

• Exploring the whole range of perturbations u ∈UA, p ∈PA. In some cases, for
classes of probabilities and utilities widely studied in the robust Bayesian lit-
erature, see [2], it is possible to identify the extremal elements of UA and PA

and compute upper and lower bounds on the quantities of interest (namely opti-
mal decisions d∗

u,p and their expected utilities), through numerical optimization
methods. Another possible approach would be to randomly sample elements u, p
from the sets UA,PA and check for eventual large variations in d∗

u,p (and their
expected utilities).

• Declaring whether the effects induced by changes over d∗
u,p and the expected

utility are sufficiently small. As discussed in Sect. 3.2, a possible criterion could
be given by the range spanned by d∗

u,p as utility and probability vary in the
classes, i.e. u ∈ UA and p ∈ PA, respectively. Regarding the effects on the
expected utility, a criterion of interest could be based on the regret ru,p(d∗

GT )
given by the difference in expected utility when considering, for a given pair
(u, p), the Nash defense d∗

GT and the optimal defense d∗
u,p. A small value of

sup(u,p)∈UA ×PA
ru,p(d∗

GT ) would denote robustness with respect to the choice
of utility and probability and, therefore, any pair (u, p) can be chosen as opin-
ion on the Attacker’s behavior with no significant change in the consequences. If
robustness is not achieved, then we could undertake a minimum regret approach
as discussed in Sect. 3.2.

An alternative would be to move to ARA, as discussed next.

3.3.2 ARA Solution and Robustness

If the game theoretic solution is not robust, then we need to address the issue. One
way forward is to perform an ARA approach. For this, we weaken the common
knowledge assumption. In the sequential game, this means that the Defender does
not know (pA,uA). The problem she faces is depicted in Fig. 3.2.

To solve her problem, the Defender requires more information than pD(s|a,d)
and uD(d,s), available from our earlier discussion. She also needs pD(a|d), which is
her assessment of the probability that the Attacker will choose attack a after having
observed that she has chosen the defense d. Once the Defender has completed these
assessments, she can solve the problem. Indeed, the expected utility of d would be
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SD A

UD

Fig. 3.2: The decision problem as seen by Defender

ψD(d) =
∫

ψD(a,d)pD(a|d)da =

∫ [∫
uD(d,s)pD(s|a,d)ds

]

pD(a|d)da.

Finally, her optimal decision would be d∗
ARA = argmaxd∈D ψD(d). Note that, in

terms of classic game theory, the solution d∗
ARA for our sequential game may not

correspond to a Nash equilibrium, see the example in Sect. 3.5.
Eliciting pD(a|d) requires the Defender to analyze the problem from the

Attacker’s perspective.

SD A

UA

Fig. 3.3: Defender’s analysis of Attacker’s problem

First, the Defender puts herself in the Attacker’s shoes, and thinks about his deci-
sion problem. Figure 3.3 represents the Attacker’s problem, as seen by the Defender,
assuming he is an expected utility maximizer. The Defender will use all the informa-
tion and judgment that she can obtain about the Attacker’s utilities and probabilities.
Instead of using point estimates for pA and uA to find the Attacker’s optimal decision
a∗(d) for a given d, the Defender’s uncertainty about the Attacker’s decision should
derive from her uncertainty about the Attacker’s (pA,uA), through a distribution F
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on the space of utilities and probabilities, which we designate random probabilities
and utilities. This induces a distribution over the Attacker’s expected utility in (3.1),
where the random expected utility for A would be

ΨA(a,d) =
∫

UA(a,s)PA(s|a,d)ds,

for (PA,UA)∼ F . Then, the Defender would find

pD(a|d) = IPF [a = argmaxx∈AΨA(x,d)],

in the discrete case and, similarly, in the continuous case. We can use Monte Carlo
simulation to approximate pD(a|d) by drawing N samples

{(
Pi

A,U
i
A

)}N
i=1 from F

and setting

p̂D(a|d)≈ #{a = argmaxx∈A Ψ i
A(x,d)}

N
, (3.2)

where Ψ i
A(a,d) =

∫
Ui

A(a,s)P
i
A(s|a,d)ds.

3.3.2.1 Robust Analysis

The above approach leads to a Bayesian decision analysis problem with the peculiar-
ity that we have a complex procedure to forecast the adversarial actions. To do so,
we formulate the adversary decision making problem and propagate our uncertainty
about the adversary judgments to the optimal adversarial action.

We could then think about performing a robust Bayesian analysis. The inputs to
the Defender’s decision analysis are (uD(d,s), pD(s|a,d), pD(a|d)). We focus here
on sensitivity to the last component pD(a|d), surely the most contentious one, at-
tained through adversarial calculations based on the proposed UA(a,s),PA(s|a,d).
For that, we define classes UA, PA of random utilities and probabilities. For each
pair U,P in such class, we define pUP

D (a|d) through the ARA approach which, in
turn, leads to d∗UP

ARA .
Then, it is possible to consider the impact of the imprecision about U and P over

three quantities: pUP
D (a|d), d∗UP

ARA and ψ(d∗UP
ARA ). The first quantity requires the com-

parison of densities (actually of their Monte Carlo approximations) using indices
like the Kullback-Leibler divergence or Gini index. For the first and second quan-
tities, the interest centers around the variation of the decision (for the Defender),
whereas for the third one, the focus is on the expected utility of the decision. The
last quantity should be of major interest. In all three cases, we say that robustness
holds when the value of interest does not change much, whereas additional analysis
should be taken otherwise, as described in Sect. 3.2. In particular, if the distributions
pUP

D (a|d) do not differ too much, it is possible to choose one of them and use d∗UP
ARA

directly.
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3.3.3 A Full Robust Solution

If the ARA analysis is not robust, we may opt for gathering additional information
to reduce the classes UA and PA. The choice of increasing the sample size in the
Monte Carlo estimation p̂D(a|d) in (3.2) would be useful in reducing the variability
of the distribution. However, it will typically be ineffective in increasing robustness.

Once all possible sources of information have been exploited to try to increase
robustness about d∗

ARA and ψ(d∗
ARA), then some extra criterion has to be introduced

to make a decision and report a value about the quantity of interest. In any case, such
decision should be reported with the warning of lack of robustness. As discussed in
Sect. 3.2, we could consider the decision d∗

R minimizing the maximum regret, i.e.

min
d

max
U∈UA,P∈PA

[∫
ψD(a,d

∗UP
ARA )pUP

D (a|d∗UP
ARA )da−

∫
ψD(a,d)pUP

D (a|d)da

]

.

3.4 Simultaneous Games

We discuss now the simultaneous game model: two agents choose their decisions,
without knowing the action selected by each other. Among others, see [27] for a
related discussion within a game theoretic framework. As an example, imagine a
case in which the EASA decides whether to introduce undercover marshals in an
airplane that might, or not, be hijacked by terrorists.

Assume that the adversaries have alternative sets D and A of defenses and att-
acks, respectively. The only relevant uncertainty is S, denoting the success s of the
attack. Each decision maker assesses differently the probability of the result of the
attack, which depends on the defense and attack adopted: pD(s | d,a) and pA(s |
d,a). The utility function of the Defender uD(d,s) depends on her chosen defense
and the result of the attack. Similarly, the Attacker’s utility function is uA(a,s), as
illustrated in Fig. 3.4.

SD A

UD UA

Fig. 3.4: BAID for the simultaneous Defend-Attack model
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3.4.1 Game Theoretic Solution

Under common knowledge, preferences and beliefs from both the Defender and the
Attacker, (uD, pD) and (uA, pA) respectively, are disclosed. Therefore, each adver-
sary knows the expected utility that each pair (d,a) ∈D×A would provide to both
of them, computed through

ψD(d,a) =
∫

uD(d,s)pD(s|a,d)ds,

ψA(d,a) =
∫

uA(a,s)pA(s|a,d)ds.

A Nash equilibrium (d∗
GT ,a

∗
GT ) for this game would satisfy

ψD(d
∗
GT ,a

∗
GT )≥ ψD(d,a

∗
GT ) ∀d ∈D and

ψA(d
∗
GT ,a

∗
GT )≥ ψA(d

∗
GT ,a) ∀a ∈A .

Finding Nash equilibria may require the use of randomized strategies, see [4]. There
could be several equilibria, with no unambiguous criteria to further discern among
them, see [16] for a discussion.

If utilities and probabilities are not common knowledge among the adversaries,
a game-theoretic approach proceeds by modeling the game as one with incomplete
information, see [6–8], by introducing the notion of player types. Each player will
be of a certain type which is known to him but not to his opponent: a player’s type
represents the private information he may have. Harsanyi proposes the Bayes-Nash
equilibrium as a solution concept, still under a strong common knowledge assump-
tion: the adversaries’ beliefs about the opponent’s types are common knowledge and
modeled through a common prior distribution. Moreover, it is assumed that the play-
ers’ beliefs about other uncertainties in the problem are also common knowledge.
Again randomized strategies might be required to find such equilibria.

3.4.1.1 Robustness of the Game Theoretic Solution

We could argue that we know reasonably well (uD, pD), since we are supporting
the Defender. However, we would contend that (uA, pA) is properly known, since
it requires common knowledge, which is questionable. To address this concern, we
perform a robust analysis of the Defender’s decision at the Nash equilibrium.

For that, we would consider classes for the Attacker’s utilities and probabilities
represented as u ∈ UA, p ∈ PA. Then, for each feasible (u, p) we could compute
the corresponding Nash equilibrium (d∗

up,a
∗
up). If d∗

up remains stable for the feasible
perturbations of u and p, the game theoretic solution d∗

GT seems robust, from the per-
spective of the Defender. However, if d∗

up changes, specially the corresponding ex-
pected utility, we have a problem which questions, at first sight, the relevance of the
proposed d∗

GT and, at a deeper level, the appropriateness of the (uA, pA) assessment,
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actually serving to criticize the game theoretic approach at large and, in particular,
the common knowledge assumption. The two computational issues about finding all
possible optimal decisions and assessing robustness are dealt with as mentioned in
Sect. 3.3.3.

Note that we could actually study robustness with respect to (uD, pD,uA, pA) and
consider changes in d∗

uA,pA,uD,pD
. In this case, if the Defender’s Nash equilibrium

decision is sensitive, we might question the Defender’s knowledge, besides the game
theory postulates.

3.4.2 ARA Solution and Robustness

If the Nash equilibrium is unstable, we may try an ARA approach. We have to
weaken the common (prior) knowledge assumptions. As reflected in Fig. 3.5, the
Defender has to choose a defense d ∈D , whose consequences depend on the success
of an attack a ∈ A simultaneously chosen by the Attacker, which is, therefore,
uncertain for the Defender at the time she makes her decision.

SD A

UD

Fig. 3.5: The Defender’s decision analysis

By standard Decision Theory, the Defender should maximize her expected utility,
see [3]. The Defender knows her utility function uD(d,s) and her probability assess-
ment pD over S, conditional on (d,a). However, she does not know the Attacker’s
decision a at node A. She expresses her uncertainty through a probability distribu-
tion pD(a). Then, the optimization problem she should solve to find d∗

ARA is

maxd
∫

ψD(a,d)pD(a)da= maxd
∫
[
∫

uD(d,s)pD(s|a,d)ds] pD(a)da
= maxd

∫ ∫
uD(d,s)pD(s|a,d)pD(a)dsda.

(3.3)

We could then perform a robust analysis based on uD, pD(s|a,d) and pD(a). How-
ever, eliciting this last probability distribution is more difficult. We may use ARA
as follows to get it.

Suppose the Defender thinks that the Attacker is an expected utility maximizer
who tries to solve the decision problem shown in Fig. 3.6. The Attacker would look
for the attack a ∈A providing him maximum expected utility:
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a∗ = argmax
a∈A

∫ ∫
uA(a,s)pA(s|a)pA(d)ds dd.

In general, the Defender will be uncertain about the Attacker’s utility function and
probabilities, and she would consider random utilities and probabilities through
F = (UA(a,s),PA(s|a), PA(d)) and compute the random optimal alternative

A∗|D = argmax
a∈A

∫ ∫
UA(a,s)PA(s|a)PA(d)dsdd. (3.4)

Then, we would make
pD(a) = P(A∗ = a|D)

in the discrete case and, similarly, in the continuous case.

SD A

UA

Fig. 3.6: The Attacker’s decision analysis, as seen by the Defender

Note that (UA(a,s),PA(s|a)) would be comparatively easily elicited from the De-
fender, see examples in [1]. However, the elicitation of PA(d) may require further
analysis leading to a next level of recursive thinking: the Defender would need
to think about how the Attacker analyzes her problem. This is why we condition
in (3.4) by (the distribution of) D.

In the above, the Defender presumes that the Attacker thinks she is an expected
utility maximizer trying to solve a decision problem like that described in Fig. 3.5.
Therefore, in order for the Defender to assess the required distribution, she will elicit
(UA,PA) from her viewpoint, and assess PA(D) through the analysis of her decision
problem, as thought by the Attacker, mimicking the resolution of problem (3.3) from
the Attacker’s perspective. This reduces the assessment of PA(D) to computing the
distribution

D | A1 ∼ argmax
d∈D

∫ ∫
UD(d,s)PD(S = s | d,a)PD(A

1 = a)dsda,

assuming that the Defender is able to assess PD(A1). A1 represents the Attacker’s
decision within the Defender’s second level of recursive thinking in the nested
decision model used by the Defender to predict the Attacker’s analysis of her deci-
sion problem. To complete the assessment, the Defender should elicit (UD,PD)∼ G,
representing her probabilistic knowledge about how the Attacker may estimate her
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utility function uD(d,s) and her probability pD over S|d,a, when she analyzes how
the Attacker thinks about her decision problem. The elicitation of PD(A1) might
require further recursive thinking from the Defender, see our final discussion.

3.4.2.1 Robustness

Performing a robust analysis for the ARA approach to the simultaneous game would
be similar to what described earlier. Consider a class for (UA(a,s),PA(s|a),PA(d))∈
(UA,PA,QA). We use (U,P,Q) to simplify the notation describing the elements in
the classes. Then, for (U,P,Q) satisfying the constraints, replicating the approach
above we could compute pUPQ

D and d∗UPQ
ARA . If d∗UPQ

ARA remains stable with respect to
changes in (U,P,Q), then the problem seems robust and we could apply the ARA
approach with little concern. Otherwise, we could still use a robust solution concept,
like the minimum regret mentioned in Sect. 3.2.

3.5 An Example

As an illustration, we consider a sequential defend-attack security routing problem.
An organization needs to make a trip, either through a safe, but costly, route, or
through a cheaper, but more dangerous, route. In this case, they may invest in sec-
urity, rendering the route less dangerous. See [23] for a case concerning piracy in
Somalia. Table 3.1 displays the consequences, expressed as costs, for various defend
and attack possibilities.

Table 3.1: Loss function in routing problem

Defense Attack Attack result Def. cons. Att. cons.

Dang. prot Attack θ1 cθ1 +K −dθ1 +B
No Attack K 0

Dang. unp Attack θ2 cθ2 −dθ2 +B
No attack 0 0

Safe H 0

The following parameters are used:

• θ1 represents the fraction of assets lost by the organization when attacked but
protected.

• θ2 represents the fraction of assets lost by the organization when attacked and
not protected.

• c is the cost per unit of assets.
• K are the protection costs.
• H is the cost of going through the expensive route.
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• d is the Attacker’s gain per unit of assets lost by the Defender.
• B is the cost of an attack.

The Defender has beliefs for θi, with θi ∼ β (ai,bi), i= 1,2. She is risk averse and her
utility function is strategically equivalent to −exp(hx), where x is her cost and h > 0
is her risk aversion coefficient. The Attacker has different beliefs for θi with θi ∼
β (ci,ei), i = 1,2. He is risk prone and his utility function is strategically equivalent
to exp(−mx), where x is his cost and m > 0 is his risk proneness coefficient. Both
agents expect θ1 to be smaller than θ2, but not necessarily. This may be reflected
in the choice of the beta parameters, for example with a1/(a1 +b1)< a2/(a2 +b2),
in the case of the Defender. Table 3.2 provides the expected utilities for both agents
under various interaction scenarios.

Table 3.2: Expected utilities in routing problem

Interaction Eu. def Eu. att

Prot, Att. −∫
eh(cθ1+K) f (θ1|a1,b1)dθ1

∫
em(dθ1−B) f (θ1|c1,e1)dθ1

Prot.,NoAtt. −ehK 1
NoProt.,Att. −∫

eh(cθ2) f (θ2|a2,b2)dθ2
∫

em(dθ2−B) f (θ2|c2,e2)dθ2
NoProt.,NoAtt. −1 1

Safe −ehH 1

The problem may be viewed through the game tree in Fig. 3.7, where d1 means
going through the dangerous route but protected; d2 means going through the dan-
gerous route but unprotected; and, finally, d3 means going through the safe route,
whereas a means attack and ā means no attack.

We are supporting the Defender and assess from her the values c = 200,000,
K = 50,000, H = 100,000, h = 3. We also elicit from her the distributions β (a1,b1),
with mean 0.3 and standard deviation 0.07, leading to a1 = 12.325, b1 = 28.76;
and β (a2,b2), with mean 0.7 and standard deviation 0.18, leading to a2 = 3.815,
b2 = 1.635.

3.5.1 Game Theoretic Approach

Under common knowledge, we assume the Defender knows that d = 30,000,
B = 10,000, m = 5 and the distributions β (c1,e1), with mean 0.313 and standard
deviation 0.16, leading to c1 = 2.272, e1 = 4.978; and β (c2,e2), with mean 0.324
and standard deviation 0.11, leading to c2 = 5.49, e2 = 11.45. We, then, proceed as
follows:

• At node A1, compute max (ψA(d1,a),ψA(d1, ā)) and call the optimal action
a∗(d1). In the example, we have max (1.001,1) = 1.001 and the optimal deci-
sion for the Attacker is a.
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q1 (−29.67,1.001)

A1

(−4.48,1)

q2 (−106.03,1.002)

D A2

(−1,1)
(−20.08,1)

d1

d2

d3

a

ā

a

ā

Fig. 3.7: Game tree for the routing problem

• At node A2, compute max (ψA(d2,a),ψA(d2, ā)) and call the corresponding
action a∗(d2). We have max (1.002,1) = 1.002 and the optimal decision for the
Attacker is a.

• At node D, compute max (ψD(d1,a∗(d1)),ψD(d2,a∗(d2)),ψD(d3)) and call the
optimal action d∗

GT . In our case, max (−29.67,−106.03,−20.08) =−20.08 and
the Nash defense d∗

GT is d3, that is, to choose the safe route.

3.5.2 Robustness of the Game Theoretic Solution

We consider now the robustness of the game theoretic solution. We simplify and
assume that the attack cost B = 10,000 is reasonably well known. Assume that d is
not that well known and we express this through a constraint d ∈ [10000, 50000].
Similarly, suppose that c1 ∈ [0,3], e1 ∈ [1,6], c2 ∈ [2,8] and e2 ∈ [10,14]. We sample
randomly from these intervals 1000 times and repeat the procedure in Sect. 3.5.1.

The three defenses may be Nash, given the constraints. Indeed, based on the
above sampling scheme, we estimate that the probabilities of the three alternatives
being Nash are, respectively, 0.454, 0.236 and 0.31, therefore with no clear winner.
The maximum loss when we implement the defense d∗

GT = d3 is 19.08. This is
deemed large enough and we need to perform an ARA approach.
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3.5.3 ARA Approach

The problem faced by the Defender is described in the decision tree in Fig. 3.8.

q1

A1

q2

D A2

d1

d2

d3

a

ā

a

ā

Fig. 3.8: Decision tree for the Defender in the routing problem

The expected utilities of the first two alternatives have the form

ψD(di) = pD(a|di)ψD(di,a)+ pD(ā|di)ψD(di, ā), i = 1,2.

Thus, we need to assess the attack probabilities p(a|di) given the implemented
defense di.

We illustrate the estimation of pD(a|d1). We assume that d,c1,e1,c2,e2 are uni-
formly distributed over the intervals described in Sect. 3.5.2. Thus, we assume that
d ∼U [10000, 50000], c1 ∼U [0,3], e1 ∼U [1,6], c2 ∼U [2,8] and e2 ∼U [10,14].
Then, we may use Algorithm 1 to estimate the required probability, where ψk

A(d1,x)
designates the expected utility that the Attacker reaches, when the Defender imple-
ments d1 and he implements attack x and the sampled parameters are dk,ck

1,c
k
2,e

k
1,e

k
2.

In our particular case, with N = 10,000, we obtain p̂(a|d1) = 0.406 (and, conse-
quently, p̂(ā|d1) = 0.594). Similarly, p̂(a|d2) = 0.764 and p̂(ā|d2) = 0.236. Then,
we have ψ(d1) =−14.7, ψ(d2) =−81.2 and ψ(d3) =−20.08 and the optimal ARA
defense d∗

ARA is d1, which is different to d∗
GT .
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Algorithm 1: Estimating p(a|d1)

p = 0;
for k ← 1 to N do

Sample dk,ck
1,c

k
2,e

k
1,e

k
2;

if ψk
A(d1,a)≥ ψk

A(d1, ā) then
p = p+1;

p̂(a|d1) = p/N;

3.5.4 Robustness of the ARA Solution

We consider now the robustness of the ARA solution. For that, we consider classes
of beta distributions with the same support than the corresponding parameters. As an
example, for d, we shall assume that d ∼ β [o1,o2] over the interval [10000, 50000],
with o1 ∈ [0.5,1.5], o2 ∈ [0.5,1.5]. Similarly, for the other parameters we use beta
distributions over the previous intervals, with parameters as in Table 3.3, where the
first parameter of the beta distribution is uniform over [LL, LU] and the second
parameter of the beta distribution is uniform over [UL, UU].

We sample 100 times from such distributions and repeat the procedure in
Sect. 3.5.3. Then, the estimated probabilities of each defense being optimal, in the
ARA sense, would be, respectively, p̂(d1) = 1, p̂(d2) = 0 and p̂(d3) = 0. Therefore,
d1 seems clearly the most likely alternative for being optimal.

The regrets when we implement various solutions, are respectively, 0 for d1,
37.91 for d2 and 8.54 for d3. Thus, the minimum regret defense is d1.

Table 3.3: Upper and lower limits for the parameters of the involved beta distribu-
tions

Parameter LL LU UL UU

c1 0.5 1.5 0.5 1.5
c2 0.5 1.5 0.5 1.5
e1 0.5 1.5 0.5 1.5
e2 0.5 1.5 0.5 1.5

3.6 Discussion

Adversarial Risk Analysis is an emergent paradigm when supporting a decision
maker who faces adversaries and such that the consequences are random and depend
on the actions of all participating agents. The prevalent paradigm in this area is
Game Theory. In this chapter, we have provided a framework for robustness analysis
in this area.
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The approach we have followed is:

• Under common knowledge assumptions compute the game theoretic solution.
Perform a robust analysis for such solution. If it is stable, such solution may be
used with confidence and we do not require further analysis.

• Otherwise, perform an ARA. Undertake a robust analysis for the ARA solution.
If it is stable, the ARA solution may be used with confidence and the analysis
stops. Otherwise, gather more data and/or refine the relevant classes, eventually
declaring the robustness of the ARA solution. If not sufficient, move towards
next stage.

• Undertake a minimum regret (or other robust) concept.

We have illustrated it with two simple models, the sequential defend-attack and
the simultaneous defend-attack, but the ideas would extend to more complex ARA
models. Similarly, we have assumed that the attacker was maximising expected util-
ity but the ideas may be translated to other attacker rationalities, as in [21].

There are many other sensitivity analysis questions relevant in ARA. For ex-
ample, we mentioned above the recursive assessment required in the simultaneous
game, which may be expressed as follows, see [17]:

Algorithm 2: Recursive assessment required in the simultaneous game

for i ← 1 to ∞ do
Find ΠDi−1 (Ai) by solving

Ai | Di ∼ argmax
a∈A

∑
d∈D

[

∑
s∈{0,1}

Ui
A(a,s) Pi

A(S = s | d,a)

]

ΠAi (Di = d)

with (Ui
A,P

i
A)∼ Fi

Find ΠAi (Di) by solving

Di | Ai+1 ∼ argmax
d∈D

∑
a∈A

[

∑
s∈{0,1}

Ui
D(d,s) Pi

D(S = s | d,a)

]

ΠDi (Ai+1 = a)

with (Ui
D,P

i
D)∼ Gi

i = i+1;

This hierarchy would stop when the Defender lacks the information necessary to
assess the distribution Fi or Gi associated with the decision analysis of Ai and Di,
respectively. At this point, the Defender would assign an unconditional probabil-
ity distribution over Ai or Di, respectively, without going deeper into the hierarchy,
summarizing all the information she might have through the direct assessment of
ΠDi−1(Ai) or ΠAi(Di), as might correspond. Should she have no additional informa-
tion to do so, she could assign a noninformative distribution, see [3].
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However, climbing up one level in the hierarchy entails a lot of effort. We could
question whether this is worth it by using value of information types of computation.
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