
Chapter 2
Data-Driven Robustness Analysis
for Multicriteria Classification Problems
Using Preference Disaggregation Approaches

Michael Doumpos and Constantin Zopounidis

Abstract The preference disaggregation framework of multicriteria decision aid
focuses on inferring decision models from data. In this context, the robustness of the
results is of major importance to ensure that quality recommendations are provided.
In this chapter we examine this issue adopting a data-driven perspective, focusing
on the effect due to changes in the data used for model construction. The analysis is
implemented for decision models expressed in the form of additive value functions
for multicriteria classification problems. Simple analytic measures are introduced
based on well-known optimization tools. The proposed measures enrich existing
robust multicriteria approaches with additional information taken directly from the
available data though an analytical approach. The properties and performance of
the new robustness indicators are illustrated through their application to an example
data set.

2.1 Introduction

Multiple criteria decision aid (MCDA) is involved with supporting the structuring
and modeling of decision problems involving multiple conflicting criteria. Similarly
to other operations research/management science approaches, MCDA methods are
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also based on modeling assumptions, related to the characteristics of the problem,
the aggregation of the decision criteria, and the preferential system of the decision
maker (DM). Naturally, these assumptions incorporate uncertainties, fuzziness, and
errors, thus affecting the quality of the obtained recommendations. Thus, changes in
the decision context and the available data may lead to completely different outputs.

In this framework, robustness analysis has emerged as a major research issue
in MCDA, emphasizing the need to re-think the traditional multicriteria framework
aiming towards providing satisfactory recommendations even in cases where the
decision context is altered. Roy [21] described in detail the robustness concern,
arguing that it is raised by vague approximations and zones of ignorance that cause
the formal representation of a problem to diverge from the real-life context, due
to: (1) the way imperfect knowledge is treated, (2) the inappropriate preferential
interpretation of certain types of data (e.g., transformations of qualitative attributes),
(3) the use of modeling parameters to grasp complex aspects of reality, and (4) the
introduction of technical parameters with no concrete meaning.

MCDA provides a wide arsenal of methodologies and techniques that enable the
systematic treatment of decision problems under multiple criteria. In this chapter
we focus on the preference disaggregation approach (PDA), which is involved with
the inference of preferential information and decision models from data [15]. PDA
techniques can greatly facilitate the model construction process, reducing the cogni-
tive effort required by DMs when specifying complex preferential information and
modeling parameters.

Robustness analysis in the framework of PDA is based on analytic and simulation
techniques (for an overview see [7]). This chapter considers the former approach,
which is based on two main schemes. The first focuses on the construction of a
single decision model that best represents the available decision instances [5, 13],
whereas the second is involved with the formulation of a range of recommendations
on the basis of all models compatible with the given data [10, 12]. In this chapter
we re-analyze the robustness of such approaches and introduce new robustness met-
rics following a data-driven perspective. More specifically, we are concerned with
robustness issues in terms of variations in the data instances used to infer a deci-
sion model. A similar view of robustness is very common on other fields also in-
volved with model inference from data (e.g., statistical learning [6]), but its analytic
treatment in the context of MCDA has been limited so far, despite the existence of
experimental results supporting its significance [8, 24]. This chapter contributes in
that direction and proposes tools based on well-known concepts from optimization
theory. The analysis is focused on decision models expressed in the form of additive
value functions for classification (sorting) problems, which involve the assignment
of a finite set of alternative options into predefined performance categories [27]. For
the purposes of the presentation an illustrative example is used.

The rest of the chapter is organized as four sections. Section 2.2 introduces the
framework of preference disaggregation analysis for classification problems and
presents the main existing robustness analysis techniques and approaches from the
MCDA literature. Section 2.3 discusses the importance of the proposed data-driven
framework for robustness analysis in disaggregation techniques and introduces



2 Data-Driven Robustness Analysis for Preference Disaggregation 23

new robustness indicators constructed on the basis of this framework. Section 2.4
presents results from the application on an example data set and finally Sect. 2.5
concludes the chapter and discusses some future research directions.

2.2 Preference Disaggregation for Multicriteria Classification

2.2.1 General Framework

Multicriteria problems involve multi-objective optimization and discrete evaluation
cases. In this chapter we are concerned with the latter type, which is about the eval-
uation of a set X of discrete alternatives over n performance criteria. The result of
the evaluation may be expressed in different forms, such as a choice, ranking, and
classification. The present study focuses on classification problems, where the al-
ternatives under consideration should be classified into q rank-ordered performance
categories C1 � C2 � ·· · � Cq. Category C1 is assumed to consist of the best alter-
natives whereas Cq consists of the worst performing ones.

In this context, a decision model F(x,β )→{C1, . . . ,Cq} aggregates the available
information about the criteria and provides recommendations about the classifica-
tion of the alternatives. The model is explicitly defined by the parameters β , which
may relate to the relative importance of the criteria or other information about the
aggregation process.

In the field of MCDA there is a wide range of different types of decision and
evaluation models. Some common examples include value functions [17], outrank-
ing models [20, 25], and decision rules [9]. Bouyssou et al. [2] provide a compre-
hensive overview of different MCDA models and their characterization.

For the reminder of the presentation this chapter will focus on additive value
function (AVF) models, which have been widely used in MCDA. The general form
of an AVF is:

V (xi) =
n

∑
k=1

wkvk(xik) (2.1)

where xi = (xi1, . . . ,xin) is the data vector for alternative i (xi j being the data of
i on criterion j), w1, . . . ,wn ≥ 0 are trade-off constants (normalized to sum up to
one) representing the relative importance of the criteria, and v1(·), . . . ,vn(·) are the
marginal value functions of the criteria. The marginal value functions decompose
the overall performance V (xi) of each alternative i into partial assessments at the
criteria level, each usually scaled between 0 and 1.

The most straightforward approach to use a value function model to classify an
alternative into predefined rank-ordered classes, is to employ the following decision
rule:

t� <V (xi)< t�−1 ⇔ xi ∈C� (2.2)
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where t0 = 1 > t1 > t2 > · · · > tq−1 > tq = 0 are thresholds that distinguish the
classes. Alternative classification rules can also be employed such as the example-
based approach of Greco et al. [12] or the hierarchical model of Zopounidis and
Doumpos [26].

In the framework of PDA, the parameters of the model are inferred from a sam-
ple of m decision instances X ′ = {xi,yi}m

i=1, where yi denotes the given class label
for alternative i. This sample (referred to as the reference set) may consist of dec-
isions about alternatives considered in past situations or decisions about a set of
alternatives which can be easily judged by the DM [15].

Formally, the model that is most compatible with the information in the reference
set is defined by parameters ̂β ∗ such that:

̂β ∗ = arg min
̂β∈A

L[YX ′ ,F(X ′, ̂β )] (2.3)

where F(X ′, ̂β ) denotes the outputs of a model with parameters ̂β for the alter-
natives in X ′, A is the set of acceptable parameter values, and L(·) is a function
that measures the differences between the recommendations of the model and the
actual assessments YX ′ for the reference alternatives. If the solution of the above
problem (2.3) is judged satisfactory, then the inferred parameters ̂β ∗ can be used to
extrapolate the model to any other alternative outside the reference set.

For a value function model, problem (2.3) is expressed in a mathematical pro-
gramming form. In particular, the inference of a classification model (weights of the
criteria, marginal value functions, and classification thresholds) from the reference
examples can be expressed as the following optimization problem:

min
q

∑
�=1

1
m�

∑
xi∈C�

(σ+
i +σ−

i ) (2.4)

s.t. V (xi)+σ+
i ≥ t�+δ ∀xi ∈C�, �= 1, . . . ,q−1 (2.5)

V (xi)−σ−
i ≤ t�−δ ∀xi ∈C�, �= 2, . . . ,q (2.6)

t�− t�+1 ≥ ε �= 1, . . . ,q−2 (2.7)

V (x∗) = 0, V (x∗) = 1 (2.8)

V (x)≥V (x′) ∀x ≥ x′ (2.9)

σ+
i , σ−

i ≥ 0 i = 1, . . . ,m (2.10)

The objective function minimizes the total weighted classification error, where
the weights are defined on the basis of the number of reference alternatives from
each class (m1, . . . ,mq). The error variables σ+ and σ− are defined through con-
straints (2.5)–(2.6) as the magnitude of the violations of the classification rules (2.2)
(δ is a small positive constant used to ensure the string inequalities), whereas con-
straint (2.7) ensures that the class thresholds are defined in a decreasing sequence
(ε is a small positive constant). Constraint (2.8) defines the scale of the additive
model between 0 and 1 (0 corresponds to the performance of the least preferred
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alternative x∗ and 1 corresponds to the performance of an ideal action x∗). Finally,
constraint (2.9) ensures that the model is non-decreasing with respect to the perfor-
mance criteria (assuming all criteria are in maximization form).

For the case of an AVF, the above optimization problems can be written in lin-
ear programming form with a piece-wise linear modeling of the marginal values
function (for the modeling details, see [4, 14]).

2.2.2 Robust Approaches

The robustness concern in the context of PDA arises because often alternative
decision models can be inferred in accordance with the information embodied in
the set of reference decision examples that a DM provides (i.e., the optimization
model (2.4)–(2.10) often has multiple optimal solutions). This is particularly true
for reference sets that do not contain inconsistencies, but it is also relevant when
inconsistencies exist (in the PDA context, inconsistencies are usually resolved alg-
orithmically or interactively with the DM before the final model is built; see for
instance [19]).

With a consistent reference set the error variables can be removed from formu-
lation (2.4)–(2.10), which then reduces to a set of feasible linear constraints defin-
ing all acceptable models that are compatible with the assignment of the reference
alternatives.

V (xi)≥ t�+δ ∀xi ∈ G�, �= 1, . . . ,q−1

V (xi)≤ t�−δ ∀xi ∈ G�, �= 2, . . . ,q

t�− t�+1 ≥ ε �= 1, . . . ,q−2

V (x∗) = 0, V (x∗) = 1

V (x)≥V (x′) ∀x ≥ x′

(2.11)

The size of the polyhedron defined through (2.11) is associated with the robust-
ness of the results and can be affected by a number of factors. The most important
of these factors relate to the adequacy of the set of reference examples and the com-
plexity of the selected decision modeling form. The former is immediately related
to the quality of the information on which model inference is based. Vetschera et
al. [24] performed an experimental analysis to investigate how the size of the ref-
erence set affects the robustness and accuracy of the resulting multicriteria models
in classification problems. They found that small reference sets (e.g., with a limited
number of alternatives with respect to the number of criteria) lead to decision mod-
els that are neither robustness nor accurate. Expect for its size, other characteristics
of the reference set are also relevant, such as the existence of noisy data, outliers,
the existence of correlated criteria, etc. [4].

Traditional disaggregation techniques such as the family of the UTA methods use
linear programming post-optimality techniques [22] in order to build a representa-
tive AVF defined as the average solution of some characteristic extreme points of the
feasible polyhedron (2.11). Other approaches for selecting the most representative
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decision model include the regularization approach of Doumpos and Zopounidis
[5], the analytic center formulation of Bous et al. [1], and the max-min model of
Greco et al. [13]. As explained by Doumpos et al. [8] such approaches seek to iden-
tify (analytically) central solutions to the polyhedron defined by (2.11), which are
expected to be more robust to changes in the data and the setting of the analysis.

Recently, alternative approaches have been proposed that enable the formulation
of recommendations based on multiple decision models. Two main schemes can be
identified in this framework. The first is based on simulation techniques, which are
based on sampling, at random, different solutions (value functions) from the polyhe-
dron defined by (2.11). The simulation process provides an approximate description
of all models compatible with the classifications for the reference set and enables the
formulation of a range of recommendations associated with probabilistic measures
of confidence (see, for instance, [23]).

The second scheme, on which this study is focused, is based on approaches that
seek to characterize the full set of acceptable models through analytic techniques,
rather than using simulation. In particular, Greco et al. [12] introduced a model-
ing framework that takes into account all decision models (AVFs) compatible with
the constraints (2.11). Their approach is based on the definition of necessary and
possible assignments. The set of necessary assignments N j for a non-reference alt-
ernative j �∈ X ′ consists of the classes in which j is classified by all models compat-
ible with the reference set, whereas the set of possible assignments P j includes the
results supported by at least one decision model. Obviously, N j ⊆P j. Furthermore,
it should be noted that these definitions cover the general case where the reference
alternatives might be classified in multiple classes (rather than the specific case des-
cribed above where each alternative is assigned into only one class, in which case
N j is either empty or singleton).

Figure 2.1 provides a graphical illustration of the necessary and possible ass-
ignments for a two-class problem, assuming a linear decision model (linear value
function). With the given reference set consisting of alternatives classified in two
categories (circles and rectangles), it is evident that all models that separate the two
classes assign the non-reference alternative x1 into class C1. On the other hand,
the precise classification of the non-reference action x2 is not possible. In fact, this
alternative can be assigned to any of the two categories.

The necessary and possible assignments for a non-reference alternative j can
be obtained through linear programming [12, 16]. In particular, a class C� belongs
to the set of possible assignments for a non-reference alternative j if the optimal
objective value of the following linear program is strictly positive:

max γ
s.t. t�+ γ ≤V (x j)≤ t�+1 − γ

constraints (2.11) for X ′
(2.12)

Similarly, a class C� belongs to the set of necessary assignments for alternative j
if either of the following two linear programs has a non-positive optimal objective
function value:
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x1 assigned to C1
by all models

x2 can be assigned 
to either class

C1

C2

Fig. 2.1: An illustration of possible and necessary assignments

max γ max γ
s.t. V (x j)≥ t�−1 + γ s.t. V (x j)≤ t�− γ

constraints (2.11) for X ′ constraints (2.11) for X ′
(2.13)

If γ ≤ 0 in the optimal solution of the left problem, then j cannot be assigned
to any of the classes in the set {C1, . . . ,C�−1}, which implies that C� ∈N j. On the
other hand, if the optimal solution of the right problem yields γ ≤ 0, then j cannot
be assigned to any of the classes in the set {C�+1, . . . ,Cq}, which again implies that
C� ∈N j.

It follows that, for every non-reference alternative j, the obtained possible ass-
ignments define a range [L j,Uj] with the worst and best possible ratings that can be
defined on the basis of the information available in the evaluations of the reference
actions.

The identification of the necessary and possible assignments provides valuable
additional information as opposed to simple point recommendations obtained from
a single decision model, thus enhancing the robustness of the results. However,
given that the necessary and possible assignments are data-driven results (i.e., they
are obtained from a specific reference set), it is apparent that they are also sub-
ject to the robustness concern. Figure 2.2 provides an illustration of this issue.
According to the given two-class reference set (circles and rectangles), the indicated
non-reference alternative is necessarily assigned to class C2 by all linear value func-
tions compatible with the available reference evaluations. This result, however, is
not robust because a reconsideration of the evaluations for the two circled reference
alternatives will lead to a different outcome.

Kadziński and Tervonen [16] proposed the combination of robust analytic pro-
cedures based on the specification of the necessary and analytic assignments with
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simulation techniques. The latter provide further information in probabilistic form
about the necessary and possible assignments. Simulation-based methods, however,
only provide an approximate description of the problem data and they can be com-
putationally intensive for larger data sets involving many alternatives and criteria.

Necessarily
assigned to C2

C2

C1

Fig. 2.2: An example of a necessary assignment that is not robust

In the next section we present new ways and metrics to gain further insight into
the robustness of necessary and robust assignments, without requiring the use of
simulation. The proposed approaches adopt a data-driven perspective, in the sense
that they are based on the properties of the available reference set. Their implemen-
tation is grounded on well-known techniques from optimization theory.

2.3 Data-Driven Robustness Indicators for Multicriteria
Classification Problems

Motivated by the above discussion about the robustness concern for classification
recommendations formulated using a set of decision models, this section presents
simple techniques that can be used to gain a better understanding of the robustness
issue in relation to the problem data, as represented in a set of reference assess-
ments. The main idea is based on the analysis of the changes in the feasible poly-
hedron (2.11) due to the incorporation of the necessary/possible assignments to a
given reference set.

To this end, first a simple support measure can be defined. Assume that accord-
ing to a given reference set X ′, a non-reference alternative j can be assigned to
any of the classes in the interval [L j,Uj]. Then, the support measure S j is defined
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as the minimum number of changes that need to be made in the assignments of
the reference actions in order to allow the classification of j into classes outside
[L j,Uj]. The lower this support measure is, the less robust in the obtained interval
assignment [L j,Uj], because minor changes in the reference set will lead to different
conclusions.

The computation of support can be done in a straightforward manner through the
solution of the following two mixed-integer linear programming problems:

min
m

∑
i=1

(σ+
i +σ−

i ) min
m

∑
i=1

(σ+
i +σ−

i )

s.t. V (x j)≥ tL j−1 +δ s.t. V (x j)≤ tUj −δ
constraints (2.5)–(2.9) for X ′ constraints (2.5)–(2.9) for X ′

σ+
i , σ−

i ∈ {0, 1} σ+
i , σ−

i ∈ {0, 1}

(2.14)

The left problem applied to cases where L j ≥ 2 and returns the minimum number
of changes that need to be made in the assignments of the reference actions in order
to classify the non-reference alternative j to the set of categories {C1, . . . ,CL j−1}.
Similarly, the right problem applies to cases with Uj ≤ q− 1 and returns the mini-
mum number of changes that need to be made in the assignments of the reference
actions in order to classify the non-reference alternative j to the set of categories
{CUj+1, . . . ,Cq}.

The support measure S j can then be defined as the minimum of the two objective
functions at the optimal solutions of the two problems. When L j = 1 and Uj = q,
then S j is by definition equal to zero. In other cases, if S j is non-zero but low,
then the DM may accept the changes identified through the solution of the above
optimization models, thus forming a new reference set X ′

j.
In order to compare the size of the feasible polyhedron corresponding to the new

reference set to the one of the initially available reference set X ′, we consider two
measures based on well-known results from optimization theory.

The first measure is based on the radius of the largest ball inscribed inside the
feasible polyhedron. Given a polyhedron {x |Ax ≤ b}, the radius r of the largest
ball inscribed in it can be computed from the following linear program [3]:

max r
s.t. ai x+ r‖ai‖2 ≤ bi, ∀ i

(2.15)

where ai is the ith row of A.
This approach can be straightforwardly applied to find the radius r0 of the largest

ball inscribed inside the polyhedron (2.11) corresponding to the original reference
set and compare it to the radius r j of the largest ball for the modified reference
set X ′

j. Then, the following robustness measure can be defined:

R j =
logr0

logr j
(2.16)
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The case R j > 1 indicates that the modified reference set X ′
j, which allows the

classification of the non-reference alternative j outside its first computed range of
assignments [L j,Uj], provides more options for choosing an acceptable decision
model. Thus, the modification of X ′ towards the new reference set X ′

j is likely to
lead to more robust results. On the other hand, the case R j < 1 indicates that the
modified reference set is more restrictive compared to X ′, which implies that this
modification is more sensitive to changes of the reference set (i.e., less robust).

Alternatively to the above metric, the size of the polyhedron corresponding to the
set of compatible decision models, can be assessed through the volume of the max-
imum ellipsoid inscribed inside the polyhedron. Compared to the above metric, this
is a more suitable approach for irregular polyhedra, which can not be well described
by the largest ball inscribed inside them (e.g., because they have large extremes).

The volume of the largest ellipsoid inside a polyhedron {x |Ax ≤ b} can be
found from the solution of the following convex optimization problem [3]:

min v = logdetB−1

s.t. ‖Bai‖2 +ai d ≤ bi, ∀ i
(2.17)

where d is a vector of decision variables defining the center of the ellipsoid whose
volume is proportional to detB. Similarly to the previous measure, this optimization
problem can be used to compare the volume of the largest ellipsoid inscribed inside
the polyhedron (2.11) corresponding to the original reference set, against the volume
for the modified reference set X ′

j. The robustness measure in this case is defined as
follows:

Vj =
v0

v j
(2.18)

Similarly to the interpretation of (2.16), the case Vj > 1 indicates that the modi-
fication of the original reference set to allow the classification of the non-reference
alternative j outside its first computed range of assignments [L j,Uj], leads to more
available options for selecting an acceptable decision model (i.e., higher robustness),
versus the case Vj < 1, which corresponds to a small (less robust) polyhedron.

2.4 Illustrative Results

In order to examine the potentials of the data-driven robustness measures introduced
in the previous section, we present results from their application to a data set taken
from Mousseau et al. [18]. The data involve 100 alternatives evaluated on seven cri-
teria (all in minimization form). The alternatives are classified in three performance
categories: the high performance class (category H), the medium performance group
(category M), and the low performance alternatives (class L).

For the purposes of the analysis, a reference set of 30 randomly selected alt-
ernatives (10 alternatives from each category) is used. Table 2.1 presents the results
for the necessary (N ) and possible (P) assignments of the 70 non-reference
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alternatives obtained with the chosen reference set, as opposed to their actual clas-
sification (columns). Out of the five alternatives actually belonging in the high per-
formance class, four are assigned to the same category by all models compatible
with the selected reference set (necessary assignments), whereas one alternative is
classified by some ambiguity in classes H or M (possible assignments). Similarly,
17 out of the 28 alternatives from class M are classified in the same category by all
models derived from the selected reference set. However, 11 alternatives from class
M are classified with ambiguity: three can be classified in H or M, five can be clas-
sified in M or L, whereas three actions can be assigned to any of the three categories
(H, M, L). Finally, 20 necessary assignments are specified for alternatives of class
L, whereas the remaining 17 alternatives of this class are assigned to categories M
or L (possible assignments).

Table 2.1: Necessary and possible assignments for the non-reference alternatives

Actual class

H M L Total

N H 4 0 0 4
M 0 17 0 17
L 0 0 20 20

P {H, M} 1 3 0 4
{M, L} 0 5 17 22
{H, M, L} 0 3 0 3

Total 5 28 37 70

To examine the robustness of the above results a resampling exercise is con-
ducted. In particular, first a subsample of 20 alternatives is selected, at random,
from the initial chosen reference set of 30 actions. Using this subsample as a new
reference set, the necessary and possible assignments are computed for all of the 70
non-reference alternatives. A single AVF model is also constructed through formu-
lation (2.4)–(2.10) and it is used to specify a single assignment for each one of the
non-reference actions. The same experiment is repeated 100 times, each based on a
different random subsample (new reference set) of 20 alternatives.

In each one of the above 100 tests, the best and worst assignments are identified
for all non-reference alternatives. Table 2.2 presents the average frequencies with
which each non-reference action is classified in the three categories. The results are
reported in comparison to the necessary and possible assignments identified through
the original reference set of 30 actions. Discrepancies between the results from the
full reference set and the ones obtained from the 100 random tests are shown in
bold.

For the alternatives necessarily assigned to category H, the simulation tests are
mostly consistent with the necessary assignments. There is only a small likelihood
(2.5 %) that an action necessarily assigned to class H under the full set might be
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downgraded to category M if the reference set changes. However, the discrepancies
for the two other categories are higher. For instance, for the alternatives that are

Table 2.2: Classification frequencies (in %) with the full set of AVFs corresponding
to different perturbations of the reference set

Best assignments Worst assignments

H M L H M L

N H 100.0 – – 97.5 2.5 –
M 22.6 77.4 – – 80.3 19.7
L 4.6 25.6 69.9 – – 100.0

P {H, M} 100.0 – – – 84.8 15.3
{M, L} 8.0 92.0 – – – 100.0
{H, M, L} 100.0 – – – – 100.0

necessarily assigned to category M with the full reference set, there is a significant
likelihood (22.6 %) that will be upgraded to category H if the reference set changes.
There is also a notable likelihood (19.7 %) for downgrading these alternatives to
the low performance class L. Thus, claiming that these alternatives are consistently
assigned to class M under all models compatible with the reference, does not seem
to be a very robust conclusion, because variations of the reference set often lead to
different outcomes.

The same also holds true for alternatives that are necessarily assigned to the low
performance class L under the full reference set. In this case, there is notable likeli-
hood (25.6 %) that they could be upgraded to the medium performance category M
with a perturbed reference set, whereas the likelihood of an even further upgrade to
class H is 4.6 %.

Similar discrepancies are also observed for the possible assignments, which are
expressed in interval form. For instance, focusing on the alternatives that can be
classified in H or M under the full reference set, the simulation test indicates that
they could actually be classified to category L with some perturbation of the refer-
ence set.

Table 2.3 presents similar results with a single AVF model, obtained through
the solution of problem (2.4)–(2.10) for each reference set in the 100 test runs. In
this case smaller discrepancies are observed (shown in bold) between the results
obtained with a single decision model (columns) and the necessary/possible assign-
ments derived from the full reference set (rows). This should be of no surprise, as
a single model does not provide information about extreme assignments like those
considered in the above results.

The above obtained results support the argument in this study that similarly to
point recommendations derived with a single decision model (AVF), interval results
formulated on a set of decision models are also subject to the robustness concern
when the reference data change.
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Table 2.3: Classification frequencies (in %) with a single AVF for random pertur-
bations of the reference set

Model assignments

H M L

N H 99.8 0.2 –
M 2.8 95.2 2.1
L 2.6 3.4 94.0

P {H, M} 37.8 60.5 1.8
{M, L} 0.8 32.3 66.9
{H, M, L} 29.3 50.3 20.3

Table 2.4 reports some results about the support measure and the uncertainty
of the assignments for the non-reference alternatives. Uncertainty is defined as the
entropy of the assignments over the 100 test runs, with higher entropy values in-
dicating higher ambiguity in the obtained classifications. Results are presented for
the extreme (best and worst) assignments as well as for the assignments obtained
with a single AVF. For the extreme assignments only the cases with positive sup-
port are considered because, as explained earlier a zero support indicates that the
possible assignments cover all classes (e.g., from H to L in this example). For the
results of the single AVF we also consider the cases with zero support to examine
how ambiguous alternatives are classified when a single decision model is used. The
obtained results clearly indicate that higher support is associated with lower ambi-
guity (i.e., lower entropy values) for all classifications, both the interval ones and
the single AVF model assignments.

Table 2.4: Entropy of assignments vs support

Support Best Worst Support Single AVF

1 0.463 0.306 0 0.784
2 0.386 0.094 1 0.300
3 0.288 0.005 ≥2 0.212
4 0.080 0.006
≥5 0.007 0.004

Regarding the two robustness indicators (2.16)–(2.18) that consider the size of
the feasible polyhedron, they were found to be highly correlated to each other (Pear-
son correlation higher than 0.85) and strongly negatively correlated to the support
measure (correlation about −0.6). The latter result implies the robustness of the
assignments for non-reference alternatives with low support can be improved by
reconsidering the evaluations of the supporting reference actions.

Table 2.5 provides details about the average values of the robustness indicators
R and V , as defined by (2.16)–(2.18), for all assignments of the non-reference alter-
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natives (the results are averages over the 100 tests). It is evident that both indicators
attain their maximum values when the alternatives are classified in their respective
necessary assignments. For instance, for alternatives assigned in category H by all
models compatible with the full reference set, both R and V are equal to one for class
H, whereas their value is lower for classes M (R = 0.81, V = 0.76) and L (R = 0.84,
V = 0.75). Thus, both indicators confirm that H is the most robust assignment for
these alternatives. The same holds for alternatives necessarily assigned to classes
M and L using the full reference set. For alternatives for which the full reference
set indicates that the can be classified in H or M (possible assignments), again the
two indicators verify that these are the most robust conclusions (classes H and M
correspond to higher values in R and V compared to class L). Similar, conclusions
are also drawn for alternatives possibly assigned to M or L. These results, indicate
that the two proposed robustness indicators are in accordance with the definitions of
necessary and possible assignments, and enhance them with additional information
that provides an analytic estimate of the robustness of the results, without requiring
to resort to approximate simulation-based approaches.

Table 2.5: The robustness indicators for all assignment results (non-reference alter-
natives)

R V

N /P H M L H M L

H 1.00 0.81 0.84 1.00 0.76 0.75
M 0.87 1.00 0.95 0.78 1.00 0.82
L 0.80 0.84 1.00 0.79 0.81 1.00

{H, M} 0.89 0.99 0.85 0.88 0.97 0.76
{M, L} 0.81 0.92 0.98 0.77 0.88 0.96
{H, M, L} 0.85 1.00 0.83 0.85 1.00 0.83

As a final test for the information content and validity of the two proposed indica-
tors we consider the classification of the alternatives whose classification is ambigu-
ous according to the reference set used in the analysis. These are 29 non-reference
alternatives for which only their possible assignments could be defined (i.e., the
alternatives classified in {H, M}, {M, L}, or {H, M, L}. To specify a single classi-
fication result for these cases we compare three different approaches:

1. For each of the 100 perturbations of the reference set, construct a single AVF
model, use it to classify the alternatives, and finally use a majority rule to aggre-
gate the 100 results for each alternative and specify the most appropriate class
assignment.

2. Classify the alternatives to the class for which the R measure is highest.
3. Classify the alternatives to the class for which the V measure is highest.

The results of these three procedures are compared against the actual classification
of the alternatives. The accuracy rate (i.e., the percentage of correct classifications)
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for the assignments obtained through the majority rule was found to be 89.7 %, the
assignments with the R measure had an accuracy rate of 82.8 %, whereas using the V
measure led to an accuracy of 96.6 %. These results indicate that the two robustness
indicators can constitute the basis for formulating good recommendations about the
most appropriate classification when a reference set leads to ambiguous conclusions.
Between the two indicators, the one based on the volume of the ellipsoid inscribed
inside the feasible polyhedron (V ) appears to provide better results.

2.5 Conclusions and Future Research

The robustness of MCDA models has been an active research topic recently having
attracted a lot of interest from different perspectives. In this chapter we focused on
the PDA framework for constructing decision models from data related to classifi-
cation problems. PDA is based on a data-driven scheme. As such, changes in the
data used to construct a decision model can have a significant impact on the results.

Motivated by this fact, this study presented simple, yet effective ways to assess
the robustness of MCDA models in the form of AVFs for classification problems.
The proposed measures provide analytic estimates of the ambiguity resulting from
the information that a given data set provides, based on tools and techniques from
optimization theory. The analytic form of the measures introduced in this study
makes them applicable to all cases, even when dealing with large problem instances
(i.e., reference sets with many actions and criteria).

The illustrative results presented in this chapter indicate that the proposed mea-
sures enhance existing robust MCDA techniques with additional information. Their
connection with the concept of robustness in the data-driven context explained
above was verified and their usefulness for formulating better decision recommen-
dations was demonstrated.

However, the positive properties of the measures introduced in this study and
the preliminary results should be further explored. To this end, applications to large
real data sets and further experimental testing will provide further insights. Compar-
isons with simulation-based approaches could also be useful to construct an unified
framework for analyzing robustness and assess the statistical properties of the pro-
posed measures. Finally, extensions to other types of decision problems, including
ordinal regression [11] should be examined, together with an analysis of cases where
inconsistencies, uncertainties, and fuzziness are present in the data.
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15. Jacquet-Lagrèze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience.
Eur. J. Oper. Res. 130, 233–245 (2001)
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