
Chapter 14
Robust DEA Approaches to Performance
Evaluation of Olive Oil Production Under
Uncertainty

Kazım Barış Atıcı and Nalân Gülpınar

Abstract In this chapter, we are concerned with performance evaluation of olive oil
production using Data Envelopment Analysis (DEA) under uncertainty. In order to
measure production efficiency of olive-growing farms, we first apply an imprecise
DEA approach by taking into account optimistic and pessimistic perspectives on un-
certainty realized in olive oil production yield. We then consider robust optimization
based DEA under an uncertainty set where the random data belong. The robust DEA
model enables to adjust level of conservatism that is defined by the price of robust-
ness of the uncertainty set. The performance of imprecise and robust DEA models is
illustrated via a case study of olive-growing farms located in the Aegean Region of
Turkey. The numerical experiments reveal that the efficiency scores and efficiency
discriminations dramatically depend on how the uncertainty is treated both in imp-
recise and robust DEA modeling. There exists a trade-off between the protection
level and conservatism of the efficiency scores.

14.1 Introduction

Data Envelopment Analysis (DEA) is a well-established non-parametric approach
for identifying relative efficiency of organizations or organizational units that are
producing multiple outputs through the use of multiple inputs [13, 23]. The DEA
approach has been widely applied for the performance evaluation of different
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aspects of business practices in various industries. Together with banking, health-
care, transportation and education, agriculture is one of the top-five industries that
DEA has been applied [18]. In particular, DEA and related methodologies have been
used for identifying relative technical efficiency of various types of agricultural est-
ablishments (for recent examples see [1, 2, 9, 15]).

The standard DEA methodology requires perfect information about data. In other
words, multiple input and output parameters for each decision making unit are
assumed to be known exactly. However, in various real world applications, some
or all parameters involve uncertainty. Often little is known about the specific distri-
butions of future uncertainties, and little data are available for estimating the prob-
ability distributions of these uncertainties. In many cases, it may be preferable to
provide general information about the uncertainties, such as means, ranges, and dir-
ectional deviations, rather than generating specific scenarios. In this case, they may
be represented in the forms of ordinal or bound data.

The standard (deterministic) DEA approach was extended to Imprecise Data
Envelopment Analysis (IDEA) to handle data uncertainty by Cooper et al. [11, 12].
The production efficiency of decision-making units is determined in view of such
uncertain parameters that are assumed to take either optimistic or pessimistic per-
spectives. The reader is referred to Zhu [24, 25] and Park [19] for various applica-
tions of IDEA.

As we will discuss in more detail later, robust optimization is a technique for dec-
ision making under uncertainty that is concerned with finding the optimal solution
when uncertain parameters in the problem take their worst-case values in pre-
specified uncertainty sets. Robust optimization was independently developed by
Ben-Tal and Nemirovski [4] and Ghaoui and Lebret [16], and has experienced
tremendous growth in the last decade mainly because of computational tractabil-
ity and practical implementation (for example, see [5, 7, 8]).

Robust optimization has also been adopted to DEA for handling data uncertainty
arising in input and output parameters. However, the robust DEA framework has not
been yet widely applied in practice. Sadjadi and Omrani [20] considered robustify-
ing uncertainty on output parameters for the performance assessment of electricity
distribution companies. Shokouhi et al. [21] proposed a tractable robust approach
for imprecise DEA where both input and output parameters are constrained within
an uncertainty set. They applied a Monte-Carlo simulation to illustrate performance
of the robust DEA model using a small example.

This chapter focuses on an agricultural performance evaluation problem under
uncertainty using DEA. More precisely, the imprecise and robust DEA models are
developed to measure technical efficiency of olive growing farms. To the best of our
knowledge, this research is the first attempt to model olive oil production problem
under uncertainty using the IDEA and robust DEA approaches. It is worthwhile to
mention that imprecise DEA is applied to the olive oil production problem rather
than standard (deterministic) DEA due to stochastic nature of output parameters
associated with farms’ olive oil yields. Uncertainty is represented as in the form of
bound data varying dependently on the olive production. We apply both optimistic
[11] and pessimistic [19] perspectives for data uncertainty within the imprecise DEA
framework.
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We also apply the robust DEA approach to find the worst-case production effi-
ciency of olive-growing farms in view of uncertain olive oil production level vary-
ing within a pre-specified uncertainty set. A tractable robust DEA model is derived
using an uncertainty set, introduced by Bertsimas and Sim [7], for random output
parameters. This model enables to adjust the level of conservatism that is defined by
the price of robustness of the uncertainty set.

We consider a real world case study of olive oil producing farms located in the
Aegean Region of Turkey in order to illustrate performance of imprecise and robust
DEA models. The production performance of those farms is measured in terms of
efficiency scores under data uncertainty. We study how efficiency scores change
between imprecise and robust DEA modeling. In addition to the comparison of effi-
ciency scores in robust and imprecise DEA models, we also investigate the impact of
the size of uncertainty sets and model parameters on the robust and imprecise DEA
scores of smaller groups of farms via simulating the estimated olive oil production
and its deviations.

The rest of this chapter is organized as follows. Section 14.2 provides an insight
on imprecise DEA models. In Sect. 14.3, we present a brief introduction to robust
optimization modeling of DEA and derive mathematical formulations of robust
DEA models. Section 14.4 focuses on the case study and describes the data set
in terms of input and output variables. Section 14.5 presents the numerical results of
relative production efficiency obtained through imprecise and robust DEA
approaches. Finally, Sect. 14.6 summarizes our findings.

14.2 DEA Modeling

This section is a brief introduction to deterministic and imprecise DEA modeling.
We consider imprecise DEA as a benchmark approach for the olive oil production
problem under uncertainty. Before formulating the imprecise DEA model, let us
describe a standard DEA linear program since it is a fundamental model for both
imprecise and robust DEA approaches.

14.2.1 Deterministic DEA Model

As mentioned before, DEA is used to measure relative efficiency of a decision mak-
ing unit with respect to other units producing multiple outputs through the use of
multiple inputs. The fundamental model (referred to the CCR DEA model) was
introduced by the original work of Charnes et al. [10]. The CCR DEA model basi-
cally builds on the idea of maximizing the ratio of weighted combination of outputs
to weighted combination of inputs.

Let us consider N decision making units. We assume that each decision making
unit j (for j = 1, · · · ,N) uses M different inputs xi j (for i = 1, · · · ,M) and produces S
different outputs yr j (for r = 1, · · · ,S). Let μr and wi denote the weights (or decision
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variables) corresponding to output r and input i, respectively. The CCR DEA model
calculates the efficiency score for the decision making unit o under consideration by
solving the following linear problem:

max
S

∑
r=1

μryro

s.t.
M

∑
i=1

wixio = 1

S

∑
r=1

μryr j −
M

∑
i=1

wixi j ≤ 0, j = 1, · · · ,N
μr,wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S.

(14.1)

Notice that the standard DEA model (14.1) is constructed by using exact (determin-
istic) data values for input and output parameters for each decision making unit.
However, it is not always possible to have perfect information about the data related
to input and/or output values of decision making units. The gathered data may in-
volve inaccuracy due to estimation error, and even data uncertainty may exist due to
the nature of the underlying problem.

For these cases, Cooper et al. [11] first introduced the concept of imprecise data
into the DEA framework. The term “imprecise data” reflects the situation where
some of the input and output data are only known to lie within bounded intervals
[14]. Thus, Imprecise Data Envelopment Analysis (IDEA) permits the incorporation
of bounded or ranked data into the DEA models.

14.2.2 Imprecise DEA Model

Let D+
r and D−

i denote sets for the input and output parameters including both imp-
recise and exact data. The values of yr and/or xi are not known exactly, but need to
be determined in sets D+

r and D−
i . Then the IDEA model based on the CCR DEA

formulation is stated as follows.

max
S

∑
r=1

μryro

s.t.
M

∑
i=1

wixio = 1

S

∑
r=1

μryr j −
M

∑
i=1

wixi j ≤ 0, j = 1, · · · ,N
yr = (yr j) ∈ D+

r r = 1, · · · ,S
xi = (xi j) ∈ D−

i i = 1, · · · ,M
μr,wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S,

(14.2)

where the decision variables μr and wi represent weights corresponding to output
and input data as defined before.
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For the deterministic DEA model, the exact values of yr and/or xi taken from sets
D+

r and D−
i are simply substituted in (14.2). This leads to a linear program as stated

by the standard DEA model (14.1). However, the IDEA model (14.2) becomes a
nonlinear optimization problem. In order to solve the nonlinear programming prob-
lem, Cooper et al. [11] and Kim et al. [17] converted the nonlinear model into a
linear program via scale transformations and variable alterations. Cooper et al. [12]
then applied the IDEA model (where an imprecise output parameter for all units
is defined in the form of intervals) to measure performance efficiency of a mobile
telecommunication company in Korea. Zhu [25] also considered the IDEA model
for the same telecommunication problem, but solved it as a standard DEA prob-
lem. He showed that the same efficiency scores as in Cooper et al. [12] can be
obtained by simply substituting the output parameter of the unit under evaluation to
its upper bound while fixing the output parameters of the remaining units to their
lower bounds of the corresponding intervals. Therefore, the unit under evaluation
is assumed to perform at its best (as fixed at the upper bound of the corresponding
interval of the output parameters) while the other units are assumed to perform at
the worst-case (as fixed at the lower bounds of the interval of output parameters).

Park [19] proved that the IDEA formulation (introduced by Cooper et al. [11])
in fact produces an “optimistic” strategy since the efficient score is evaluated at the
best scenario (selected within pre-specified imprecise data interval) available for the
underlying decision making unit. Therefore, the objective function for the IDEA
model to achieve the optimistic strategy can be formulated as follows:

max
yr∈D+

r ,xi∈D−
i

max
μ ,w

S

∑
r=1

μryro

Similarly, a “pessimistic” strategy within the IDEA context is achieved by the fol-
lowing min-max objective function

min
yr∈D+

r ,xi∈D−
i

max
μ ,w

S

∑
r=1

μryro

The IDEA model with the min-max objective transforms the bounded data to exact
data so that the model seeks to evaluate the unit under evaluation in the worst sce-
nario possible. In other words, the unit under consideration is evaluated by the worst
scenario possible (specified at the lower bound of the interval of the imprecise pa-
rameter) while the other units perform at their best scenario (specified at the upper
bound of the interval of the imprecise parameter). Therefore, the solution of the-
min-max optimization problem provides a conservative (worst-case) efficient score
for the underlying unit.

If any unit is determined as efficient by both optimistic and pessimistic perspec-
tives within IDEA approach, then it is declared as “perfectly efficient”. On the other
hand, it is called “potentially efficient” when it is efficient under the optimistic
strategy and inefficient under the pessimistic strategy [19].
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Following the transformations introduced by Soyster [22], the IDEA model in
view of the pessimistic perspective is formulated in a general form as follows;

max ∑S
r=1 μr inf{yro | yr ∈ D+

r }
s.t.

M

∑
i=1

wi sup
{

xio | xi ∈ D−
i

}
= 1

S

∑
r=1

μr inf
{

yro | yr ∈ D+
r

}−
M

∑
i=1

wi sup
{

xio | xi ∈ D−
i

}≤ 0, (14.3)

S

∑
r=1

μr inf
{

yr j | yr ∈ D+
r

}−
M

∑
i=1

wi sup
{

xi j | xi ∈ D−
i

}≤ 0, j = 1, · · · ,N, j �= o

μr,wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S

where the ‘sup’ and ‘inf’ are replaced by ‘max’ and ‘min’, respectively, when D+
r

and D−
i are closed and bounded sets. The reader is referred to Park [19] for further

information on the generalized linear program.

14.3 Robust DEA Approach

As mentioned in the introduction, the robust optimization approach to solving an op-
timization problem with uncertain data involves specifying appropriate uncertainty
sets for the uncertain coefficients, and finding a solution that guarantees feasibility
even if the uncertain coefficients take their worst-case values within the uncertainty
sets. A brief introduction to the main ideas of robust linear optimization (the type
of problem with which we are dealing in this chapter) is provided next; for further
information, the reader is referred to Ben-Tal and Nemirovski [4, 5] as well as Ben-
Tal et al. [6]. We then derive the robust DEA model that is to be applied for the case
study of olive oil production problem described in Sect. 14.4.

14.3.1 Robust Linear Optimization

Consider, for example, a linear program

max

{

c′x |
n

∑
j=1

ã jx j ≤ b, x ∈V

}

where c ∈ Rn×1, and V consists of all constraints whose parameters are certain.
x ∈ Rn×1 represents a vector of decision variables and ã ∈ Rn×1 is a vector of
uncertain parameters. Let Ua denote an uncertainty set specified by the modeler.
Robust optimization solves an optimization problem assuming that the uncertain
data belong to an uncertainty set, ã ∈ Ua. It looks for an optimal solution that
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remains feasible if the uncertainties take any values within that uncertainty set. This
reformulation of the problem is referred to as the robust counterpart of the original
optimization problem. In some special cases, the robust counterpart of the original
problem involves the worst-case outcome of the stochastic data within the uncer-
tainty set, and is a tractable optimization problem with no random parameters.

The robust counterpart of the underlying linear program is formulated as

max
x

min
ã

{

c′x |
n

∑
j=1

ã jx j ≤ b, ã ∈Ua, x ∈V

}

.

The size of the uncertainty set is often related to guarantees on the probability
that the constraint involving uncertain coefficients will not be violated. There is
a trade-off between the amount of protection against uncertainty that is desired and
optimality—the smaller the probability that the constraint will be violated, the more
the modeler gives up in terms of optimality of the robust solution relative to the
solution to the original optimization problem.

Ellipsoidal, box and polyhedral are the most commonly used uncertainty sets, but
more recently, asymmetric uncertainty sets have been used as well in order to capt-
ure the probability distribution characteristics of the uncertainties better. In practice,
the shape is selected to reflect the modeler’s knowledge of the probability distri-
butions of the uncertain parameters, while at the same time making the robust coun-
terpart problem efficiently solvable. Further results on probability bounds related to
the size and the shape of uncertainty sets can be found, for example, in Bertsimas
and Sim [7] and Bertsimas et al. [8].

For the robust DEA model, we apply an uncertainty set introduced by Bertsimas
and Sim [7]. A brief description to this uncertainty set and its adaptation to the DEA

modeling is presented next. Let’s consider the constraint
n

∑
j=1

ã jx j ≤ b where the un-

certain parameter ã j will be robustified. Assume that each entry ã j is modeled by a
symmetric and bounded random variable that takes values in [a j − â j, a j + â j]. The

random variable η j =
ã j−â j

â j
which obeys an unknown but symmetric distribution

and takes values from an interval [−1,1]. Then the robust counterpart of the linear
constraint is derived by a set of the following constraints

{ n

∑
j=1

â jx j + zΓ +
n

∑
j=1

p j ≤ b, z+ p j ≥ â jt j,

− t j ≤ x j ≤ t j, t j ≥ 0, p j ≥ 0, z ≥ 0, j = 1, · · · ,n
}

where the parameter Γ adjusts the robustness of the model against the level of con-
servatism of the solution. It takes values in the interval [0,n], not necessarily integer.
It is crucial to decide the sufficient level where the some parameters are protected to
get their worst-case values. When Γ is selected as 0, there is no protection against
uncertainty (i.e. uncertainty is ignored). If Γ = n, then the constraint is completely
protected against uncertainty.
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14.3.2 Robust DEA Model

Assume that uncertain output parameters, ỹr j for r = 1, · · · ,S, and j = 1, · · · ,N,
belong to an uncertainty set Uy. The robust counterpart of the DEA model can be
formulated as follows;

max
μ ,w

min
ỹro∈Uy

S

∑
r=1

μrỹro

s.t.
M

∑
i=1

wixio = 1

min
ỹr j∈Uy

S

∑
r=1

μrỹr j −
M

∑
i=1

wixi j ≤ 0, j = 1, · · · ,N, j �= o

μr ≥ 0, wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S,

(14.3)

Let θ be a free variable representing the inner minimization problem in the objective
function. Then the objective function can be transformed into a constraint

min
ỹro∈Uy

S

∑
r=1

μrỹro −θ ≥ 0.

Next, to derive the robust counterpart of the DEA model (so-called as the robust
DEA model) using the uncertainty set introduced by Bertsimas and Sim [7], both
inner minimization problems in the constraints are first solved using dual linear
programs. Then the corresponding robust counterparts are reinjected into the corre-
sponding constraints. The robust DEA model can be stated as

max θ

s.t.
M

∑
i=1

wixio = 1

S

∑
r=1

μrŷro −θ − zoΓo −
S

∑
r=1

pro ≥ 0

M

∑
i=1

wixi j −
S

∑
r=1

μrŷr j −θ − z jΓj −
S

∑
r=1

pr j ≥ 0, j = 1, · · · ,N, j �= o

z j + pr j ≥ ŷr jtr, pr j ≥ 0, z j ≥ 0 j = 1, · · · ,N, r = 1, · · · ,S
−tr ≤ μr ≤ tr, tr ≥ 0, r = 1, · · · ,S
μr ≥ 0, wi ≥ 0, i = 1, · · · ,M, r = 1, · · · ,S.

(14.4)

where Γo and Γj represent are the price of robustness of the uncertainty sets defined
for the uncertain parameters in the objective function and the constraints, respec-
tively. As explained in detail by Bertsimas and Sim [7] and Sadjadi and Omrani
[20], the sufficient level for Γj parameter is determined as Γj = 1+φ (−1)(1−e j)

√
N

where e j represents the probability that the constraint j is to be violated, φ is the
cumulative distribution of standard Gaussian variable. It is also worthwhile to note
that the robust DEA model has more variables and constraints than the IDEA model
has. On the other hand, it still remains as a tractable linear program.
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14.4 Case Study: Performance of Olive Oil Growing Farms

In this study, we consider a real case of olive oil production problem to apply the
imprecise and robust DEA models introduced in Sects. 14.2 and 14.3. A sample
that consists of 89 olive oil growing farms (labeled as 1–89) in the Aegean region
of Turkey is selected to perform an efficiency analysis. The farms are located in
the same agricultural area in Izmir; therefore, possible effects of geographical and
weather conditions on the oil production are eliminated.

The data were gathered from Taris Olive Oil company, which was established in
2001 by the Union of Taris Olive and Olive Oil Cooperatives. Currently, 33 coop-
eratives are affiliated with the Union. The company is responsible for the trading
of olives cultivated by the olive producing farms located in the Aegean region of
Turkey. According to International Olive Council, Turkey produces 4.9 % of world
production of olive oil and takes the sixth place in the world olive oil production
league (http://www.internationaloliveoil.org/).

Taris has recently started gathering data in order to keep record of the suppliers’
performance. The farmers are requested to fill a questionnaire about specifications
of farms as well as their performance during the year. For the computational ex-
periments, we use the raw data (relevant to specifications of the farms) that were
collected in 2011. Thus, the data set basically reflects the performance of olive oil
(not table olives) producers in 2010.

Following to most studies in the literature [3], we also consider total olive land
utilized by each farm, cultivation cost, labor as inputs to the DEA models. Land is
measured by decares (1 decare = 1000 m2). Cultivation cost represents the aggre-
gated monetary value in Turkish Liras for cultivation and miscellaneous costs (such
as fertilizer, pesticides or fuel costs) spent by the farm in order to operate during a
year. We determine labor as the number of workers employed to process the har-
vesting rather than the monetary terms. Apart from land, cost and labor, we also
consider number of olive trees as the fourth input parameter [2]. Although Land is
an input factor, because of the different densities of trees in the given land areas, we
also consider number of trees as an input parameter.

As an output parameter, olive oil yield is chosen. The olive oil production for each
farm depends on the total olive production and is assumed to be uncertain. The other
factors such as weather and age of olive trees that might affect the olive production
are not taken into account in this study. Since there is no exact measurement for
the olive oil production, we consider an expert knowledge in designing the output
parameter as the projection of olive production of each farm. Recall that Taris is
interested in the olive oil yield rather than the olive production itself.

In current practice, nominal value of olive oil yield for each farm is estimated as
20 % of the olive production. For instance, for a farm that is producing 15,000 kg
olives in a year, the nominal olive oil production is expected to be 3000 kg. How-
ever, as confirmed by the experts, this value in reality fluctuates within the range
of 25 % of the oil production. In this case, the annual olive oil yield varies be-
tween 2250 and 3750 for the farm with 3000 kg of nominal olive oil production.
Therefore, we develop the imprecise and robust DEA models to evaluate relative

http://www.internationaloliveoil.org/
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production performance of those olive-growing farms with multiple (determinis-
tic) input parameters (land, cost, labour and number of olive trees) and uncertain
output parameter (olive oil production). The deterministic DEA model is used as
a benchmark to compare relative performance of those farms using the imprecise
and robust DEA models. The DEA models (described in Sects. 14.2 and 14.3) are
implemented using General Algebraic Modeling System (GAMS) and solved by a
linear programming algorithm.

14.5 Computational Results

We conducted a series of computational experiments to investigate the performance
of the imprecise and robust DEA models. Specifically, the experiments aim to an-
swer the following questions:

• How do deterministic, imprecise and robust DEA models perform for the olive
oil production problem?

• What are the impact of size and shape of the symmetric uncertainty sets on the
robust relative efficiency of olive growing farms?

• How do the robust and imprecise DEA models respond to the changes in size of
uncertainty ranges and sample sizes?

In order to measure the relative performance of olive growing farms, we apply
the DEA approach. The efficiency scores of farms are computed by solving the
linear programs corresponding to the DEA models presented in Sects. 14.2 and 14.3.
There is no consensus in the farm efficiency literature on deciding the returns-to-
scale assumption. Since all of our farms are located in a small specific region and
operate in a similar scale size, constant returns-to-scale is assumed. In summary, we
consider the following DEA models;

• Nominal (deterministic) model applies the standard DEA approach and uses cer-
tain data values of input and output variables. The olive oil production of each
farm is calculated as 20 % of the actual olive production.

• Imprecise DEA approach considers optimistic and pessimistic views by fixing
the upper and lower bounds of the corresponding intervals for the output values
in the IDEA model.

• The robust DEA models require another input parameter that measures the level
of robustness (the price of robustness to use the term from Bertsimas and Sim
[7]). The level of robustness varies from 0 to 1.0 and the corresponding DEA
models are labelled as R(0.0),R(0.1), · · · ,R(1.0), respectively. In particular, the
robust DEA model at zero price of robustness, R(0.0), corresponds to the deter-
ministic (nominal) DEA model.

As mentioned in Sect. 14.3, the robust DEA model requires to specify param-
eter Γ . In the olive oil production problem, there exists only one uncertain data
point at each constraint. The protection level against uncertainty Γ is defined to



14 Robust DEA Approaches 309

vary within interval [0,1]. Since Γ is not necessarily integer, we test the robust
DEA model at different protection levels by fixing it at any value within the range
[0, 1]. The state Γ = 0 represents no protection for uncertainty, which corresponds
to the nominal model. On the other hand, Γ = 1 describes a full protection against
uncertainty.

14.5.1 Performance Comparison of Imprecise
and Robust DEA Approaches

We are first concerned with performance comparisons of all DEA models in terms
of relative production efficiency of the farms. Table 14.1 presents the optimal effi-
ciency scores obtained by the deterministic DEA and imprecise DEA approaches
in view of optimistic and pessimistic perspectives. In Table 14.2, the results of the
robust DEA approach with various level of robustness (at 0.2, 0.4, 0.5, 0.6, 0.8 and
1.0) are summarized in terms of worst-case efficiency scores of farms. The farms
taking place on the efficient frontier possess an efficiency score of 1.0 (and high-
lighted in bold). Notice that the inefficient farms have efficiency scores less than 1.0.
Table 14.3 summarizes the statistics of efficiency scores obtained by deterministic,
imprecise and robust DEA models in terms of average, minimum and maximum as
well as the number of efficient and inefficient farms.

From the results presented in Tables 14.1, 14.2 and 14.3, we can make the fol-
lowing observations;

• The DEA models show different characteristics in terms of the number of effi-
cient farms. The optimistic (pessimistic) strategy obtained by IDEA provides 32
farms efficient while the deterministic DEA produces only 8 efficient farms. On
the other hand, no farm is declared as efficient according to the robust DEA strat-
egy. Only farm 42 (see Table 14.2) is determined as perfectly efficient since it is
declared as efficient by all nominal, optimistic and pessimistic imprecise DEA
models.

• The IDEA model with optimistic approach seems the least conservative way of
evaluation in the presence of uncertain data in the form of bounds. The efficiency
scores obtained by the optimistic model are consistently greater than or equal to
the efficiency scores produced by the nominal DEA and pessimistic IDEA mod-
els. As mentioned in Sect. 14.2, the IDEA in view of an optimistic perspective
assumes that a farm under consideration performs at its best production whereas
the rest of farms perform at their worst production efficiency. The highest aver-
age efficiency score is achieved by the optimistic IDEA as 74.4 %. As expected,
it outperforms the deterministic DEA strategy that, in average, provides 52.4 %
of overall scores.

• On the other hand, the IDEA model with pessimistic perspective is seen the most
conservative way of finding efficiency scores of olive growing farms as it pro-
duces the lowest efficiency scores comparing with the nominal DEA and the
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Table 14.1: Efficiency scores obtained by the deterministic and imprecise DEA
models

Deterministic IDEA Deterministic IDEA
Farms DEA Optimistic Pessimistic Farms DEA Optimistic Pessimistic

1 1.00 1.00 0.63 46 0.25 0.41 0.15
2 0.22 0.36 0.13 47 0.27 0.44 0.16
3 0.42 0.70 0.25 48 0.27 0.45 0.16
4 0.07 0.11 0.04 49 0.16 0.27 0.10
5 1.00 1.00 0.77 50 0.26 0.43 0.16
6 0.34 0.57 0.20 51 0.21 0.35 0.13
7 0.45 0.75 0.27 52 0.48 0.80 0.29
8 0.20 0.34 0.12 53 0.38 0.64 0.23
9 0.24 0.41 0.15 54 0.35 0.58 0.21
10 0.10 0.16 0.06 55 0.59 0.99 0.36
11 0.50 0.83 0.30 56 0.21 0.36 0.13
12 0.56 0.93 0.33 57 0.79 1.00 0.48
13 0.52 0.87 0.31 58 0.37 0.62 0.22
14 0.34 0.57 0.21 59 0.42 0.70 0.25
15 0.12 0.20 0.07 60 0.66 1.00 0.39
16 1.00 1.00 0.91 61 0.37 0.62 0.22
17 0.72 1.00 0.43 62 0.38 0.64 0.23
18 0.67 1.00 0.40 63 0.47 0.79 0.28
19 1.00 1.00 0.99 64 0.90 1.00 0.54
20 0.73 1.00 0.44 65 0.76 1.00 0.46
21 0.65 1.00 0.39 66 0.50 0.83 0.30
22 0.67 1.00 0.40 67 0.71 1.00 0.43
23 0.50 0.83 0.30 68 0.58 0.97 0.35
24 1.00 1.00 0.75 69 0.81 1.00 0.49
25 0.33 0.54 0.20 70 1.00 1.00 0.85
26 0.56 0.94 0.34 71 0.76 1.00 0.46
27 0.97 1.00 0.58 72 0.51 0.86 0.31
28 0.10 0.16 0.06 73 0.59 0.98 0.35
29 0.58 0.96 0.35 74 0.75 1.00 0.45
30 0.74 1.00 0.45 75 0.55 0.91 0.33
31 0.19 0.31 0.11 76 0.31 0.52 0.19
32 0.34 0.56 0.20 77 0.37 0.62 0.22
33 0.99 1.00 0.59 78 0.95 1.00 0.57
34 1.00 1.00 0.82 79 0.44 0.74 0.27
35 0.19 0.32 0.11 80 0.31 0.51 0.18
36 0.19 0.31 0.11 81 0.66 1.00 0.40
37 0.71 1.00 0.43 82 0.82 1.00 0.49
38 0.08 0.13 0.05 83 0.50 0.83 0.30
39 0.42 0.69 0.25 84 0.30 0.49 0.18
40 0.56 0.93 0.34 85 0.58 0.97 0.35
41 0.51 0.86 0.31 86 0.47 0.79 0.28
42 1.00 1.00 1.00 87 0.80 1.00 0.48
43 0.14 0.23 0.08 88 0.60 1.00 0.36
44 0.64 1.00 0.38 89 0.69 1.00 0.42
45 0.32 0.53 0.19
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optimistic IDEA models. This case also confirms the findings in [19]. The aver-
age efficiency score is 33.6 % for the pessimistic model and 88 farms are found
to be inefficient. The discrimination of efficiency scores exhibits a noticeable
change between optimistic to pessimistic modeling.

• Under the full protection against uncertainty, the average efficiency score for the
farms is obtained as 31.5 %. This is slightly lower than the average score for the
pessimistic IDEA model, which yields 33.6 % average efficiency. Note that 81
out of 89 farms have protected their efficiency scores at the same level with the
pessimistic IDEA model. On the other hand, in case of no protection against un-
certainty, not surprisingly, the model produces the same efficiency scores with
the nominal (deterministic) model (an average of 52.4 %). This verifies the effi-
ciency scores obtained by the deterministic model.

Table 14.3: Statistics of efficiency scores

Deterministic Imprecise DEA Robust DEA

DEA Optimistic Pessimistic R(0.2) R(0.4) R(0.5) R(0.6) R(0.8) R(1.0)

Efficiency scores (%)

Average 52.4 74.4 33.6 47.4 42.9 40.8 38.8 35.0 31.5
Min 6.8 11.3 4.1 6.1 5.5 5.3 5.0 4.5 4.1
Max 100 100 100 90.5 81.8 77.8 73.9 66.7 60.0

Number of efficient and inefficient farms

Efficient 8 32 1 0 0 0 0 0 0
Inefficient 81 57 88 89 89 89 89 89 89

• No farm is reported as efficient by the robust DEA approach. For instance, the
robust DEA model with 50 % protection against the uncertainty produces the
maximum efficiency score as 77.8 % and the average efficiency score is 40.8 %.
Using this reference efficiency score obtained by robust DEA model (at 0.5 price
of robustness for all constraints), we can compare the relative production perfor-
mance of the DEA models. We observe that

– The efficiency scores of all farms obtained by the robust DEA (ER(0.50)) are
always lower than those scores achieved by the nominal model (EN) and the
robust DEA model with no protection (ER(0.0)).

– Their efficiency scores (ER(0.50)) are persistently larger than those achieved
by the pessimistic imprecise DEA (Epes) and the robust DEA model with full
protection against uncertainty (ER(1.0)).

– On the other hand, the imprecise DEA scores under the optimistic view (Eopt)
are grater than the scores of all other DEA approaches.

As a result, we can state the following relationship between the efficiency scores
of all farms obtained by various DEA approaches as

ER(1.0) ≤ Epes ≤ ER(0.50) ≤ EN = ER(0.0) ≤ Eopt .
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• Finally, we can comment on the impact of level of conservatism on the average
efficiency scores obtained by the robust DEA models at various price of robust-
ness. As the level of conservatism increases from no-protection to full-protection
against uncertainty (i.e. varying price of robustness within [0, 1]), the average ef-
ficiency scores for the sample decline from 52.4 to 31.5 %. Similarly, the lowest
(highest) average efficiency scores decrease from 6.8 (100) to 4.1 % (60 %). This
basically shows a trade-off between the level conservatism and the production
efficiency level that a decision maker needs to take into account.

14.5.2 Impact of Model Parameters

We also investigate possible impact of the model parameters and the size of future
uncertainty on imprecise and robust production performance of olive oil producing
farms. We adopt the simulation framework suggested by Shokouhi et al. [21] for
the case study. The olive-growing farms are clustered into smaller groups according
to their efficiency scores obtained by the nominal DEA approach. In this chapter,
due to the length restriction, we only present the results of three groups each of
whom consists of eight farms with the same or similar nominal performance. The
farms in Group 1 are all declared as efficient whereas Group 2 consists of the least
efficient farms according to the nominal DEA approach. Group 3 involves such
farms showing medium level (around 50 %) of efficiency.

We design two experiments, labeled as Experiment I and Experiment II, with
different size of uncertainty levels for the output parameters. More precisely, Exper-
iment I assumes the initial range for the uncertain olive oil yield of a farm where the
olive oil production of a farm deviates from its nominal production by 1/4 (25 %).
On the other hand, Experiment II is designed to observe the impact of the interval
size on results by considering narrower ranges for olive oil yields of the farms where
the olive oil production of a farm is assumed to deviate from its nominal production
by 1/6 (approximately 16 %) rather than 1/4.

A brief description of the simulation procedure is as follows. First, we calculate
the optimal weights associated with each farm using the nominal values of input
and the estimated output parameters within the imprecise and robust DEA mod-
els (given the price of robustness). Secondly, we randomly generated 1000 nominal
values of olive oil production levels (using uniform distribution) for the uncertain
output parameters. Thus, the corresponding intervals for each simulated point within
the ranges of 25 and 16 % olive production are then determined. Finally, the optimal
weights (obtained with the estimated oil production level) and oil olive production
intervals at each generated random points of the output parameters are then used to
find the robust efficiency scores by solving the robust DEA models. The same pro-
cedure is repeated with 1000 output intervals in the same manner. We then analyse
the statistics of 1000 efficiency scores associated with each farm within three groups
in terms of average and standard deviation of scores.
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Table 14.4 illustrates the simulation results for Experiment I (top) and Experi-
ment II (bottom) using three groups of farms in terms of average efficiency scores
obtained at various price of robustness with robust DEA and IDEA with optimistic
(IDEA-O) and pessimistic (IDEA-P) approaches. These results basically show, on
average, how the olive oil production performance of each farm changes under im-
precise and robust DEA when the range of uncertainty varies.

From the simulation results in Table 14.4, we observe that

• The average efficiency scores in Experiment II are always higher than those in
Experiment I regardless the choice of models (imprecise and robust DEA at each
price of robustness). This implies that as the size of intervals for the random pa-
rameters decreases (i.e. random parameter approaches to the estimated nominal
value), the average efficiency score increases.

• As the simulation results confirm, the imprecise DEA with optimistic view pro-
duces the highest average efficiency scores (labelled as SE), obtained out of 1000
simulated points for all farms. In both Experiments I and II, as the price of ro-
bustness varies between 0 and 1, the average efficiency score decreases. As a
result, we can state the following relationship between the efficiency scores of
all farms obtained by various DEA approaches as

SER(1.0) ≤ ·· · ≤ SER(0.0) ≤ SEopt .

• On the other hand, the IDEA approach with pessimistic view produces the low-
est average efficiency scores (obtained by the simulation experiments) for most
farms in three groups. The lowest scores are indicated in bold in Table 14.4.
Therefore, SE pes ≤ SER(1.0). Notice that the order (between the IDEA approach
with pessimistic view and the most conservative robust optimization approach)
that was already established from Tables 14.1 and 14.2 has changed. For these
cases, IDEA apparently becomes more conservative than robust DEA. This
result leads us to conclude that for such homogeneous smaller samples of
farms (in groups 1, 2 and 3) with similar nominal performance, the pessimistic
IDEA approach produces more conservative scores than the robust DEA model
with full protection no matter which uncertainty range (25 or 16 %) is cho-
sen. However, for more diversified sample of farms, the robust DEA strat-
egy is more conservative than IDEA with pessimistic view as illustrated in
Tables 14.2 and 14.3.

• In order to illustrate the overall performance (labeled as “AverGP” in Table 14.4)
of each farm within the three different groups, we compute the average of the
efficiency scores obtained by the robust DEA at eleven values of price of ro-
bustness (0,0.1,0.2, · · · ,1.0). One can easily see that all farms in both Groups
1 and 3 exhibit average performance around 80 and 85 % in Experiments I and
II, respectively. However, farms in Group 2 show different average performance
varying from 42 to 81 % in Experiment I (and similarly, 45–85 % in Experiment
II). Recall that these farms are reported as the least efficient by the deterministic
DEA model.
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14.6 Conclusions

In this study, we are concerned with performance evaluation of olive oil production
using DEA under uncertainty. In particular, we study the sensitivity of efficiency
scores obtained through imprecise and robust optimization based DEA approaches
in a real world agricultural problem. The olive oil production problem involves the
efficiency assessment of a sample of farms located in a specific region in Turkey.
The only output factor (olive oil yield of the farm) is uncertain varying between
bounds that depend on the olive production. For computational experiments, we
implement two basic approaches of imprecise DEA and robust optimization based
DEA models.

The results indicate that the optimistic model yields higher levels of efficiency
for the farms, whereas the pessimistic model scores are way below than the opti-
mistic and nominal models as expected. The discrimination of the scores is con-
siderably worse in the pessimistic model where only one farm remains efficient. In
robust DEA modeling, as the level of conservatism increases from no-protection to
full-protection against uncertainty, the average, minimum and maximum efficiency
scores for the sample decline. This indicates a trade-off between the level conser-
vatism and the efficiency levels.

We compare the efficiency scores of the DEA models in order to establish perfor-
mance ranking of deterministic, imprecise and robust DEA approaches. The IDEA
with optimistic view yields considerably higher levels of efficiency than any other
DEA models considered in this study. When no robustness is assumed, the efficiency
scores are exactly the same with those of the nominal model. Under full robustness,
the efficiency scores of robust DEA are less than or equal to the scores of the IDEA
with pessimistic view. Therefore, it can be stated that the most conservative robust
DEA model can yield lower efficiency scores than the most pessimistic imprecise
DEA model.

In order to measure sensitivity of different DEA approaches to changing unc-
ertainty ranges and parameters, we perform simulation based experiments using ho-
mogeneous groups of farms. The simulation results reveal that when the uncertainty
ranges are close to the estimated nominal values, the average efficiency scores in-
crease. In addition, when the level of conservatism increases from no-protection to
full-protection against uncertainty, the average efficiency scores for the sample de-
cline. Therefore, we can conclude that the choice of price of robustness and size
of intervals play an important role on the performance of the robust DEA models.
As future research directions, one may investigate model behavior in cases where
uncertainty is observed in both input and output parameters simultaneously. In par-
ticular, data driven uncertainty sets would be worthwhile to investigate.
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