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Portfolio Optimization with Second-Order
Stochastic Dominance Constraints
and Portfolios Dominating Indices

Neslihan Fidan Keçeci, Viktor Kuzmenko, and Stan Uryasev

Abstract Portfolio optimization models are usually based on several distribution
characteristics, such as mean, variance or Conditional Value-at-Risk (CVaR). For
instance, the mean-variance approach uses mean and covariance matrix of return
of instruments of a portfolio. However this conventional approach ignores tails of
return distribution, which may be quite important for the portfolio evaluation. This
chapter considers the portfolio optimization problems with the Stochastic Domi-
nance constraints. As a distribution-free decision rule, Stochastic Dominance takes
into account the entire distribution of return rather than some specific characteristic,
such as variance. We implemented efficient numerical algorithms for solving the
optimization problems with the Second-Order Stochastic Dominance (SSD) con-
straints and found portfolios of stocks dominating Dow Jones and DAX indices.
We also compared portfolio optimization with SSD constraints with the Minimum
Variance and Mean-Variance portfolio optimization.
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13.1 Introduction

Standard portfolio optimization problems are based on several distribution charac-
teristics, such as mean, variance, and Conditional Value-at-Risk (CVaR) of return
distribution. For instance, Markowitz [12] the mean-variance approach uses esti-
mates of mean and covariance matrix of return distribution. Mean-variance portfolio
theory works quite well when the return distributions re close to normal.

This chapter considers portfolio selection problem based on the stochastic
dominance rule. Stochastic dominance takes into account the entire distribution of
return, rather than some specific characteristics. Stochastic dominance produces a
partial ordering of portfolio returns and identifies a portfolio dominating some other
portfolios [11].

Hadar and Russell [8] demonstrated that a diversified portfolio can dominate a
benchmark portfolio in the sense of the Second Order Stochastic Dominance (SSD).
Several applications of stochastic dominance theory to portfolio selection are con-
sidered by Whitmore and Findlay [16]. Dentcheva and Ruszczynski [3] developed
an efficient numerical approach for the portfolio optimization with SSD using partial
moment constraints. Roman et al. [14] suggested a portfolio optimization algorithm
for SSD efficient portfolios. They used SSD with a multi-objective representation
of a problem with CVaR in objective. Kuosmanen [10] and Kopa and Chovanec [9]
described SSD portfolio efficiency measure for diversification.

Rudolf and Ruszczynski [15] and Fabian et al. [5, 6] considered cutting plane
method to solve optimization problem with SSD constraints. This chapter imple-
mented an algorithm similar to the Rudolf and Ruszczynski [15]. We concentrated
on numerical aspects of portfolio optimization with SSD constraints and conducted
a case study showing that our algorithm works quite efficiently. We used Portfolio
Safeguard (PSG) optimization package of AORDA.com, which has precoded func-
tions for optimization with SSD constraints. We solved optimization problems for
stocks in Dow Jones and DAX Indices and found portfolios which SSD dominate
these indices. We also compared these portfolios with the Mean-Variance portfolios
based on constant and time varying covariance matrices.

13.2 Second Order Stochastic Dominance (SSD)

Let denote by FX (t) the cumulative distribution function of a random variable X .
For two integrable random variables X and Y , we say that X dominates Y in the
second-order, if ∫ η

−∞
FX (t)dt ≤

∫ η

−∞
FY (t)dt, ∀η ∈ R (13.1)

In short we say that X dominates Y in SSD sense and denote it by X �2 Y [7]. With
the partial moment of a random variable X for a target value η , the SSD dominance
is defined as follows
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E([η −X ]+)≤ E([η −Y ]+), ∀η ∈ R (13.2)

where, [η −X ]+ = max(0,η −X) [13].

13.2.1 SSD Constraints for a Discrete Set of Scenarios

Suppose that Y has a discrete distribution with outcomes, yi, i = 1,2, . . . ,N. Then
the condition (13.2) can be reduced to the finite set of inequalities [13],

E([yi −X ]+)≤ E([yi −Y ]+), i = 1, ,2, . . . ,N (13.3)

We use inequalities (13.3) for obtaining a portfolio X dominating benchmark Y .

13.2.2 Portfolio Optimization Problem with SSD Constraints

Let us denote:

w j = portfolio weight of the instrument j, j = 1, . . . ,n.
pi = probability of scenario i, i = 1, . . . ,N,
r ji = return of instrument j on scenario i,
c j = cost of investing in instrument j = 1, . . . ,n (estimated return of an instrument
is interpreted as negative cost −c j),
w = vector of portfolio weights, w = (w1,w2, . . . ,wn)

�,
r(w) = portfolio return as a function of portfolio weights w,
c(w) = portfolio cost as a function of portfolio weights w.

Portfolio return on scenario i equals:

ri(w) =
n

∑
j=1

w jr ji, i = 1,2, . . . ,N

Portfolio cost equals:

c(w) =
n

∑
j=1

c jw j

The benchmark portfolio Y has a discrete distribution with scenarios yi, i =
1,2, . . . ,N. We want to find a portfolio SSD dominating the benchmark portfolio
Y and having minimum cost c(w). We do not allow for shorting of instruments. Let
us denote by W the set of feasible portfolios:

W = {w ∈ R
n : w j ≥ 0, j = 1,2, . . . ,n}
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The optimization problem is formulated as follows:

minimizew c(w)
subject to: r(w)�2 Y

w ∈W
(13.4)

Since the benchmark portfolio has a discrete distribution, with (13.3) we reduce
the portfolio optimization problem (13.4) to:

minimizew

n

∑
j=1

c jw j

subject to: E([yi − r(w)]+)≤ E([yi −Y ]+), i = 1, . . . ,N
w j ≥ 0, j = 1, . . . ,n

(13.5)

A solution of the optimization problem (13.5) yields a portfolio dominating Y .
The number of scenarios (which can be quite large) determines the number of SSD
constraints in this optimization problem. Further, we suggest a procedure for elimi-
nation redundant constraints in (13.5).

13.3 Algorithm for Portfolio Optimization Problem
with SSD Constraints

This section describes cutting plane algorithm for solving problems with SSD con-
straints in this study. An overview of the cutting-plane methods for SSD problems
can be found in [5, 6, 15]. We start the description of the algorithm with the proce-
dure for removing redundant constraints.

13.3.1 Removing Redundant Constraints

Let us consider benchmark scenarios yi1 and yi2 with indices i1 and i2 and denote
the right hand side values of the constraints for scenarios in problem (13.5) by Ci1 =
E([yi1 −Y ]+) and Ci2 = E([yi2 −Y ]+). If yi1 ≤ yi2 and Ci1 ≥ Ci2 , for scenarios i1
and i2, then constraint i1 is redundant and it can be removed from the constraint set.
This procedure dramatically reduces the number of constraints in the optimization
problem (13.5).

13.3.2 Cutting Plane Algorithm

Here are the steps of the algorithm for solving optimization problem (13.5). We
denote by s the iteration number.
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Step 1. Initialization: s = 0. Assign an initial feasible set

W0 = {w ∈ R
n : w j ≥ 0, j = 1,2, . . . ,n}

Assign an initial verification set

V0 = {w ∈ R
n : E([yi − r(w)]+)≤ E([yi −Y ]+), i = 1,2, . . . ,N}

Step 2. Solve the optimization problem

minimizew

n

∑
j=1

c jw j

subject to: w ∈Ws

(13.6)

If all constraints defining the set Vs are satisfied, then the obtained point is optimal
to problem (13.5). Otherwise, go to Step 3.
Step 3. Find constraint in Vs with the largest violation and remove it from Vs.
Denote this new set of constraints by Vs+1 (after removing the constraint with the
largest violation). Add removed constraint to the constraints defining set Ws and
denote it by WS+1. Increase the iteration counter s = s+1 and go back to Step 2.

13.3.3 PSG Code for Optimization with SSD Constraints

The problem (13.5) can be directly solved with the Portfolio Safeguard (PSG) with-
out any additional coding. Here is the code, which can be downloaded from this
link.1

maximize
avg g(matrix sde)

Constraint:= 1
linear(matrix budget)

MultiConstraint: <= vector ubound sd
pm pen (vector benchmark sd, matrix sde)

Box: >= 0, <= 1

We have done the case study in PSG MATLAB Environment running many opt-
imizations iteratively. However, here we provided just one code in PSG Run-File
format to show that the SSD constrained problems can be easily coded and solved.

1 Three example problems containing input data and solutions in PSG format are at the following
link (see, Problem 1, Dataset 1, 2, 3): http://goo.gl/Fooals.

http://goo.gl/Fooals
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13.4 Case Study

We solved problem (13.5) with two data sets. The first dataset includes stocks from
the Dow Jones (DJ) index and DJ index is considered as a benchmark. Similar, the
second dataset includes stocks from the DAX index and the DAX index is used
as a benchmark. The data were downloaded from the Yahoo Finance (http://finance.
yahoo.com) and include 2500 historical daily returns of stocks from March 24, 2005
to Feb 27, 2015 for DJ index and from April 25, 2005 to Feb 27, 2015 for DAX
index. The lists of stocks in indices are taken on March 2, 2015. Therefore, we
considered only 29 stocks from the DJ index and 26 stocks from the DAX Index
(the appendix contains the list of the stocks selected for this chapter). The stock
returns on daily basis (r ji) were calculated using logarithm of ratio of the stock
adjusted closing prices ( fi),

r ji = ln( fi/ fi−1)

We adjusted the stocks prices of four companies from DAX Index.2 Daily returns
are considered as equally probable scenarios in the study.

The optimization problem with SSD constraint (in this case study) finds a portfo-
lio SSD dominating the benchmark and having maximum expected portfolio return.
Shorting is not allowed. The sum of portfolio weights is equal to 1,

n

∑
j=1

w j = 1, w j ≥ 0, j = 1,2, . . . ,n

We compared performance of the SSD based portfolios with Equally Weighted,
Minimum Variance and Mean-Variance portfolios with the constant and time-
varying covariance matrices. Here is a brief description of portfolios:

1. Equally Weighted (EW): All stocks in the portfolio are equally weighted. Every
stock has same weight (1/n), where n is the number of stocks in the portfolio.

2. Minimum Variance (MinVar): Minimum Variance portfolio has minimum vari-
ance without any constraint on portfolio return. Shorting is not allowed and the
sum of the portfolio weights is equal to 1.

3. Mean-Variance (Mean-Var): Mean-variance portfolio [12] uses mean return and
the variance of the stock returns. The approach finds efficient portfolios having
minimum variance for a desired level of portfolio return or equivalently having
maximum portfolio return for a given variance. We considered Mean-Var prob-
lems having variance in the objective function and the expected portfolio return
12 % per year in the constraint, and 0.2 upper bound constraint on the positions.
Shorting is not allowed and the sum of the portfolio weights is equal to 1.

The classical Mean-Variance model considers the constant covariance matrix. We
also considered the time dependent covariance matrix using DCC-GARCH model
in MinVar and Mean-Var approaches. Further, we briefly describe the estimation
procedure for the time-dependent covariance matrix.

2 DB1.DE, FRE.DE, IFX.DE and MRK.DE stock prices are adjusted for splits.

http://finance.yahoo.com
http://finance.yahoo.com
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13.4.1 Estimation of Time-Varying Covariance Matrix

We considered a dynamic conditional correlation DCC-GARCH (DCC) model for
the estimation of large time-dependent covariance matrices [4]. We estimated the
time dependent covariance matrix using DCC-GARCH model (assuming that cor-
relations may change over time). The time-dependent covariance matrix Ht is ext-
racted from the DCC-GARCH model, where Ht = DtRtDt . Here, Dt is the diagonal
matrix from a univariate GARCH model and Rt is the time dependent correlation
matrix. This chapter assumes the simplest conditional mean return equation where
r j = N−1 ∑N

i=1 r ji is the sample mean and the deviation of returns (rt − r) is condi-
tionally normal with zero mean and time-dependent covariance matrix Ht [2]. We
consider the time-dependent covariance matrix Ht in a simple DCC(1,1)-GARCH
model. We used Ht in MinVar and Mean-Var problems.

The next Sect. 13.4.2 compares SSD constrained optimization with the MinVar
and the Mean-Var approaches for all available historical data in a static setting.
The code was implemented with MATLAB R2012b. We have used PSG riskprog
function in MATLAB environment to solve MinVar and Mean-Variance portfolio
problems. For the estimation of the time-dependent covariance matrix we have used
MFE Toolbox3. The Sect. 13.4.3 we compares out-of-sample performance of port-
folios in time series framework. The calculations were performed on a computer
having 3.4 GHz CPU and 8 GB of RAM.

13.4.2 Comparing Numerical Performance
of Various Portfolio Settings

We benchmarked the cutting plane algorithm described in Sect. 13.3.2 with the
direct PSG code described in Sect. 13.3.3. We got the same results with both app-
roaches. Further in tables we report performance of the direct PSG code. The dataset
includes 2500 historical daily stock returns. Firstly we optimized portfolios with all
approaches using available 2500 historical daily returns.

Table 13.1 shows the expected yearly returns of portfolios for all considered
approaches.

The SSD dominating portfolios can be used for actual investments. At least in
the past, these portfolios SSD dominated the corresponding indices. Moreover, the
expected yearly return of the portfolio SSD dominating the DJ index equals 0.10029
and significantly exceeds the DJ index return in this period. Similar observations are
valid for the portfolio of DAX index; the expected yearly return of portfolio SSD
dominating the benchmark equals 0.14894.

We compared solving times of SSD constraint optimization problem (using direct
PSG optimization) with the MinVar and Mean-Var approaches (using PSG riskprog

3 DCC-GARCH models are estimated with Kevin Sheppard’s (Multivariate GARCH) MFE Tool-
box. http://www.kevinsheppard.com/MFE Toolbox

http://www.kevinsheppard.com/MFE_Toolbox
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Table 13.1: Expected yearly returns of portfolios

Portfolios DJI DAX

EW 0.09617 0.10179
MinVar 0.08668 0.14135
Mean-Var 0.12693 0.12693
DCC MinVar 0.09034 0.13466
DCC Mean-Var 0.12693 0.12693
SSD 0.10029 0.14894
Benchmark 0.05682 0.10484

subroutine). Data loading and solving times are given in Table 13.2. The optimiza-
tion is done almost instantaneously and data loading takes some fraction of a second.
The time-dependent covariance matrix estimation with MFE Toolbox additionally
takes about 30 s (for MinVar and Mean-Var optimization).

Table 13.2: Loading and solving times (in seconds) with PSG in MATLAB Envi-
ronment

DJ DAX
Problem Loading Solving Loading Solving

SSD constrained (PSG code) 0.24 0.01 0.23 0.01
MinVar (PSG riskprog) 0.22 0.01 0.23 0.01
Mean-Var (PSG riskprog) 0.31 0.01 0.32 0.01

13.4.3 Out-of-Sample Simulation

Secondly, we have evaluated the out-of-sample performance of considered ap-
proaches. We considered a time series framework where the estimation period (750
and 1000 days) is rolled over time. Portfolios are re-optimized on every first busi-
ness day of the month using the recent historical daily returns (750 or 1000). We kept
constant positions during the month. Regarding the return constraint in the Mean-
Var problem, if the expected return 12 % per year is not feasible (in the beginning
of the month), than we set 6 % expected return constraint and if we still do not have
feasibility, we reduce the expected return to 3 %, and then to 0 %. A difficulty in es-
timation of the covariance matrices with DCC model is that the time-dependent con-
ditional correlation matrix has to be positive definite for all time moments [1]. We
observe that with a small in-sample time intervals (such as 250 days) the variance-
covariance matrix may not be positive-definite. Therefore, we have used 750 and
1000 days in-sample periods.

Table 13.3 shows out-of-sample total compounded returns of considered port-
folios. In particular, we observe that the SSD constrained portfolio for DJ stocks
with 750 days in-sample and DAX stocks with 1000 days in-sample, have highest
compounded returns among all portfolios.
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Table 13.3: Out-of-sample total compounded returns of the portfolios

DJ DAX
Portfolios 750 1000 750 1000

EW 1.6698 2.7560 1.2120 1.9022
MinVar 1.4787 2.0035 1.6186 2.4410
Mean-Var 1.6715 2.1487 1.4912 2.6219
DCC MinVar 1.3876 2.0463 1.7763 2.2062
DCC Mean-Var 1.6499 2.2556 1.4344 2.3435
SSD 1.8817 2.1692 1.3987 2.8827
Benchmark 1.2729 2.2275 1.3399 1.8674

Figures 13.1, 13.2, 13.3, and 13.4 show the out-of-sample compounded daily
returns of the portfolios.

Fig. 13.1: Compounded (on daily basis) returns of portfolios including DJ stocks,
t = 750

The out-of-sample performances of portfolios are represented in Tables 13.4,
13.5, 13.6, and 13.7. The tables include yearly compounded portfolio returns for
2009–2014 years, the total compounded portfolio return (TR) and Sharpe Ratio (ShR).

• Table 13.4 (DJ stocks, t = 750). SSD constrained portfolio has the highest Total
Compounded Return (1.8817) and Sharpe Ratio (0.7906).

• Table 13.5 (DJ stocks, t = 1000). SSD constrained portfolio has Sharpe Ratio
(1.2771) higher than the all considered portfolios except Equally Weighted port-
folio.
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Fig. 13.2: Compounded (on daily basis) returns of portfolios including DJ stocks,
t = 1000

Fig. 13.3: Compounded (on daily basis) returns of portfolios including DAX stocks,
t = 750

• Table 13.6 (DAX stocks, t = 750). SSD constrained portfolio has Sharpe Ratio
(0.2732) and Total Compounded Return (1.3987) higher than the Benchmark and
Equally Weighted portfolios.

• Table 13.7 (DAX stocks, t = 1000). SSD constrained portfolio has the highest
Total Return (2.8827) and Sharpe Ratio (1.3523).

Table 13.8 shows weights of SSD constrained portfolios at the last month of the
out-of-sample period. Also, the table shows SSD dominating portfolios over all
in-sample 2500 days. The table shows only stocks with non-zero positions.
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Fig. 13.4: Compounded (on daily basis) returns of portfolios including DAX stocks,
t = 1000

Table 13.4: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DJ stocks (t = 750)

Portfolios 2009 2010 2011 2012 2013 2014 TR ShR

EW 1.2257 1.1256 1.0467 1.1249 1.3063 1.1029 1.6698 0.5533
MinVar 1.0903 1.0282 1.1259 1.1158 1.1814 1.0451 1.4787 0.4584
Mean-Var 1.0618 1.0993 1.1424 1.1399 1.2220 1.0473 1.6715 0.7034
DCC MinVar 1.0277 1.0119 1.1513 1.0612 1.1574 1.1090 1.3876 0.4025
DCC Mean-Var 1.0405 1.0865 1.1864 1.1041 1.2104 1.0678 1.6499 0.6835
SSD 1.0931 1.0493 1.1495 1.0443 1.2089 1.1498 1.8817 0.7906
Benchmark 1.154 1.0958 1.0321 1.0652 1.2584 1.0688 1.2729 0.2239

Table 13.5: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DJ stocks (t = 1000)

Portfolios 2010 2011 2012 2013 2014 TR ShR

EW 1.1256 1.0467 1.1249 1.3063 1.1029 2.7560 1.2902
MinVar 1.0294 1.1109 1.1349 1.1852 1.0593 2.0035 0.9230
Mean-Var 1.1241 1.1129 1.0920 1.1993 1.0736 2.1487 1.1965
DCC MinVar 1.0437 1.1064 1.0530 1.1702 1.1321 2.0463 0.9803
DCC Mean-Var 1.1207 1.1548 1.0866 1.1822 1.0899 2.2556 1.2653
SSD 1.0721 1.1327 1.0525 1.2078 1.1153 2.1692 1.2771
Benchmark 1.0958 1.0321 1.0652 1.2584 1.0688 2.2275 1.0165
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Table 13.6: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DAX stocks (t = 750)

Portfolios 2009 2010 2011 2012 2013 2014 TR ShR

EW 1.2890 1.1677 0.8119 1.2526 1.2034 1.0217 1.2120 0.1245
MinVar 1.1609 1.0742 1.1485 1.1590 1.1537 1.0698 1.6186 0.5457
Mean-Var 0.9763 1.1691 1.0700 1.1896 1.2448 1.0740 1.4912 0.4635
DCC MinVar 1.1231 1.0966 1.1853 1.1346 1.0468 1.0436 1.7763 0.6348
DCC Mean-Var 0.9799 1.1565 1.0793 1.1612 1.1282 1.0789 1.4344 0.3939
SSD 1.0284 1.1304 1.0950 1.2322 1.2031 1.0885 1.3987 0.2732
Benchmark 1.1891 1.1411 0.8181 1.2671 1.2414 1.0123 1.3399 0.2279

Table 13.7: Yearly compounded returns, total compounded return (TR), Sharpe ratio
(ShR) for DAX stocks (t = 100)

Portfolios 2010 2011 2012 2013 2014 TR ShR

EW 1.1677 0.8119 1.2526 1.2034 1.0217 1.9022 0.6784
MinVar 1.0714 1.1479 1.1541 1.1371 1.0746 2.4410 1.1886
Mean-Var 1.2238 1.0407 1.1562 1.2211 1.0962 2.6219 1.3164
DCC MinVar 1.1033 1.1825 1.1501 1.0282 1.0606 2.2062 1.0335
DCC Mean-Var 1.2547 1.0542 1.1593 1.0626 1.0867 2.3435 1.0169
SSD 1.1452 1.0343 1.2235 1.2323 1.1425 2.8827 1.3523
Benchmark 1.1411 0.8181 1.2671 1.2414 1.0123 1.8674 0.6676

Table 13.8: SSD constrained portfolios (table shows only selected stocks)

DJ Weights DAX Weights

Code 750 days 1000 days 2500 days Code 750 days 1000 days 2500 days
BA 0.06984 0.00808 0.00243 ADS 0.00000 0.00000 0.01287
DIS 0.34832 0.10397 0.00000 BAYN 0.00000 0.00000 0.02686
HD 0.19280 0.19317 0.00000 BEI 0.00000 0.02238 0.20000
IBM 0.00000 0.00000 0.01959 CON 0.33042 0.04653 0.00000
JNJ 0.00000 0.22105 0.20000 DPW 0.06556 0.12844 0.00000
KO 0.00000 0.00000 0.16569 DTE 0.02086 0.00000 0.00000
MCD 0.00000 0.00000 0.20000 FME 0.00000 0.00000 0.20000
MMM 0.08726 0.00000 0.00000 FRE 0.31189 0.43899 0.12149
MRK 0.07009 0.15284 0.00000 LIN 0.00000 0.00000 0.10719
NKE 0.05919 0.05844 0.01776 MRK 0.27127 0.36366 0.12265
PG 0.00000 0.02058 0.19368 MUV2 0.00000 0.00000 0.08076
T 0.00000 0.00000 0.01456 SAP 0.00000 0.00000 0.12819
TRV 0.08155 0.00000 0.00000
UNH 0.09096 0.08374 0.00000
VZ 0.00000 0.00000 0.05402
WMT 0.00000 0.15814 0.13226
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13.5 Conclusions

In this chapter we tested algorithms for portfolio optimization with SSD constraints.
The algorithms are very efficient and solve optimization problems nearly instanta-
neously (solution times less than 0.01 s for the considered cases).

We have done out-of-sample simulations and compared SSD constrained portfo-
lios with the minimum variance and mean-variance portfolios. The portfolios were
constructed from the stocks of DJ and DAX indices. SSD constrained portfolio
demonstrated quite good out-of-sample performance and in some cases had highest
compounded return and Sharpe ratio (among all considered portfolios).

Appendix: Company Codes and Names

DAX DJ
code Name code Name

1 ADS Adidas AG AXP American Express Company
2 ALV Allianz SE BA The Boeing Company
3 BAS BASF SE CAT Caterpillar Inc.
4 BAYN Bayer AG CSCO Cisco Systems, Inc.
5 BEI Beiersdorf AG CVX Chevron Corporation
6 BMW Bayerische Mot. Werke Aktienges. DD E. I. du Pont de Nemours and Company
7 CBK Commerzbank AG DIS The Walt Disney Company
8 CON Continental Aktiengesellschaft GE General Electric Company
9 DAI Daimler AG GS The Goldman Sachs Group, Inc.

10 DB1 Deutsche Boerse AG HD The Home Depot, Inc.
11 DBK Deutsche Bank AG IBM Int. Business Machines Corporation
12 DPW Deutsche Post AG INTC Intel Corporation
13 DTE Deutsche Telekom AG JNJ Johnson & Johnson
14 EOAN E.ON SE JPM JPMorgan Chase & Co.
15 FME Fres. Med. Care AG & Co. KGAA KO The Coca-Cola Company
16 FRE Fresenius SE & Co KGaA MCD McDonald’s Corp.
17 HEI HeidelbergCement AG MMM 3M Company
18 IFX Infineon Technologies AG MRK Merck & Co. Inc.
19 LHA Deutsche Luft. Aktiengesellschaft MSFT Microsoft Corporation
20 LIN Linde Aktiengesellschaft NKE Nike, Inc.
21 MRK Merck KGaA PFE Pfizer Inc.
22 MUV2 Münchener R. G. A. PG The Procter & Gamble Company
23 SAP SAP SE T AT&T, Inc.
24 SDF K+S Aktiengesellschaft TRV The Travelers Companies, Inc.
25 SIE Siemens Aktiengesellschaft UNH UnitedHealth Group Incorporated
26 TKA ThyssenKrupp AG UTX United Technologies Corporation
27 VZ Verizon Communications Inc.
28 WMT Wal-Mart Stores Inc.
29 XOM Exxon Mobil Corporation
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