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Abstract Climate change has been considered one of the most significant risks for
sustainability in our century; in order to move towards low-carbon and climate res-
ilient economies, fundamental changes must take place. In this direction, the Euro-
pean Union has set ambitious goals regarding the transition of its Member States to
low carbon societies, but the policy strategies to promote this transition must be soc-
ially acceptable and supported. So far, climate policies have been evaluated using
quantitative methods, including general equilibrium and integrated assessment mod-
els but, despite their undoubted contribution to climate modeling, both the quantita-
tive frameworks used for studying climate change and its impacts and those aiming
at policy optimization or evaluation feature significant uncertainties and limitations.
In order to overcome these issues, a Fuzzy Cognitive Map based approach is pro-
posed, aiming to directly involve stakeholders and assess human knowledge and
expertise. The suggested methodological framework can significantly support cli-
mate policy making, by supplementing quantitative models and exploring impacts
of selected sets of policies, based on qualitative information deriving from a struc-
tured stakeholder engagement process. Finally, an innovative approach of incorpo-
rating the concept of time into the methodology is proposed and evaluated, in the
aim of enhancing the robustness of transition pathways.
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11.1 Introduction

Climate change has long been considered one of the most prominent sustainability
problems [70] as well as among the most significant systematic risks for global soci-
ety [24] of this century. In this respect, the European Union has set ambitious goals
with regard to the necessary transition of Member States to low carbon economies.
The European Council has, in fact, recently mapped its envisioned requirements of
a 80–95 % cut on emissions by 2050 [17], taking into account that in order to tackle
the global challenge for building a sustainable future that is climate change [34] the
global temperature increase should be controlled: until recently, a global average
temperature increase of no more than 2 ◦C compared to pre-industrial levels until
2100 had been considered relatively [28, 61] safe in order for the most significant
consequences to be avoided [67], although the pursuit of a newer and stricter goal of
1.5 ◦C was discussed and agreed upon during the latest United Nations conference
on climate change [68].

It is obvious that the desired transitions cannot be achieved immediately, but
require specific courses of action that can adapt to the reference concentration (and
corresponding emission) trajectories, i.e. pathways, studied by the Intergovernmen-
tal Panel on Climate Change [63]. Furthermore, these transitions require radical and
rapid implementation of policies that are socially and politically supported [76]. To
this end, the European Union has been looking at cost-efficient ways to cut most
of its greenhouse gas emissions by identifying the key sectors in this direction, as
well as corresponding sectoral goals by the end of every decade until 2050, so as
to achieve greater depth on costs, trade-offs and uncertainty when examining policy
options [16].

So far, climate mitigation has been mostly studied through the use of quantitative
methodologies. These include computable general equilibrium models that can eval-
uate impacts of policy reforms on the economy, revolving around the economic im-
pacts of mitigation policies (e.g., [72]) or studied alongside climate-specific models
(e.g., [40]); advanced econometric models with strong empirical background [4, 59];
dynamic stochastic general equilibrium models that emphasize economy dynamics
over time, used as climate mitigation assessment tools [13, 14]; and energy-specific
scenario frameworks, such as the LEAP framework [29, 42]. These models can
greatly help explore implications of various scenarios in relation to climate mitiga-
tion pathways and identify effective policy drivers in quantitative terms; however,
they may limit their scope to the economics of climate change, feature significant
uncertainties, or fail to study all sectors in need of policy reform, and usually ignore
the socio-economic dimensions of climate change.

In order to deal with the above weaknesses, integrated assessment models, that
is models that draw on knowledge from multidisciplinary research [75], have been
receiving increasing attention (e.g., [23, 46, 49]). These models combine economic
and scientific aspects of climate change and have been proven to address issues such
as evaluating climate change control policies, integrating multiple disciplines in the
same framework and studying climate change in the context of both other environ-
mental and non-environmental problems, but the degree to which their results have
supported policy making is unclear [37].
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Despite their undoubted contribution, all of the aforementioned quantitative mod-
els involve assumptions and simplifications [73] and, although their level of detail is
limited by computing power and the need to avoid becoming too complex [47], they
eventually tend to be technically too complex to construct or understand [1]. As a
result, policy makers may view these models as too complicated to transform their
findings into policies or as black boxes and be reluctant to trust their results [37].

It is therefore of vital importance that methods able to successfully model com-
plex systems and at the same time easy to build by utilizing existing knowledge
and experience be used. Such methods should allow for both feasible and successful
policy pathways to be determined and studied, taking into account the national con-
text and sectoral specificities of a country as well as incorporating the knowledge of
experts around uncertainties and risks where quantitative data are not available or
too costly.

In this study, Fuzzy Cognitive Maps (FCMs) are proposed as one such method-
ology, for modeling the complex system that is climate mitigation policy in the
European Union. FCMs are fuzzy structures that strongly resemble neural networks
and are often used as a useful tool for modeling complex systems [35]. Once con-
structed, the FCM model allows performing qualitative simulations of a system and
experimenting with the model [2]. FCM simulations thus allow decision makers to
examine information dynamics and uncertainty, as well as identify critical system
elements and assess different decision alternatives by comparing their outcome in a
holistic manner [33].

Özesmi and Özesmi [51] extensively discuss the reasons for choosing FCMs
when dealing with environmental problems over other modeling methods, such as
system dynamics models, multiple criteria decision analysis methodologies, expert
systems and structural equation models. Most importantly though and compared to
quantitative models in particular, FCMs do not depend on data availability: their
robustness does not depend on any training procedures that are biased to the size of
the available data sets [53]. Moreover, given the fact that they are built on human
expertise and knowledge alone, they are highly flexible and easy to include social
effects [69].

The following section introduces the origins and structure of Fuzzy Cognitive
Maps. Section 11.3 presents the proposed FCM-based methodological framework
for modeling climate policy pathways. The aim of the framework is to visualize the
system dynamics deriving from both the results of other modeling methods and an
effective stakeholder participatory process; quantify the knowledge and experience
of the experts with regard to the success of the various transition pathways; and use
all available information to simulate the impacts of the chosen policies on the res-
pective systems, in order to gain new insight. Finally, Sect. 11.4 focuses on the ass-
essment of simulation results, and Sect. 11.5 discusses key aspects of the proposed
methodological framework.
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11.2 Fuzzy Cognitive Maps

Cognitive mapping is a qualitative technique that aims to capture a person’s percep-
tion of a particular issue in a diagrammatic format [20]. It provides both the analyst
and the interviewee with a process that is not constrained by formal structure and
through which additional insight can be gained [12]. In this context, a map focuses
on the individual’s values, beliefs and assumptions about a certain domain and rev-
eals how these relate to each other, providing information about how the change of
one issue can affect the others. Therefore, a cognitive map [3] can be defined as the
graphical representation of a system, in which nodes represent concepts and arcs
represent the perceived relationships between these concepts (Fig. 11.1).

Fig. 11.1: Example of a cognitive map

Every cognitive map features a unique adjacency matrix A = [ai j] that pro-
vides information with regard to its structure, i.e., how concepts are linked to each
other [27]. The adjacency matrix is a square matrix that includes all concepts listed
on both the vertical and the horizontal axis; when a causal connection from concept
ci to concept c j exists, then ai j = 0, otherwise ai j = 1. In other words, if ai j = 1,
then concept ci is considered a cause of concept c j, and concept c j is considered
an effect of concept ci. The adjacency matrix for the cognitive map in Fig. 11.1 is
shown in Table 11.1.

Cognitive maps work as a transitional object applied by members in the aim of
expressing and understanding their knowledge contents with regard to certain prob-
lem domains, as well as their structure [6]. They can be used for assessing attention,
association and importance in order to identify mental connections between strategic
themes; showing dimensions of categories and cognitive taxonomies in order to det-
ermine hierarchical relationships and frame the competitive environment; exploring
influence, causality and system dynamics; delving into the structure of arguments
and conclusion; and specifying schemas and frames [31].
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Table 11.1: The adjacency matrix of the example cognitive map

C1 C2 C3 C4 C5

C1 0 1 0 0 1
C2 0 0 1 0 1
C3 0 0 0 1 0
C4 1 0 0 0 1
C5 0 0 1 0 0

Kosko [39] was the first to introduce the notion of Fuzzy Cognitive Maps
(FCMs), by suggesting that cognitive maps are too binding for knowledge-base
building because causality is fuzzy, admits of vague degrees and thus cannot be fully
described by arcs that connect concepts with one another. Among Huff’s five types
of cognitive maps, FCMs fall under the third category: they are fuzzy-graph struc-
tures for representing causal reasoning and consist of concepts that interact with
each other, enabling the mapper to show the dynamics of a particular system [25].
The main difference between FCMs and cognitive maps lies in the fact that causal
relation values are also defined and quantified, meaning that links between concepts
are weighted.

As a result, a fuzzy cognitive map does not have only a unique adjacency matrix
but a weight matrix W = [wi j] as well. Entries in an FCM weight matrix are not
of binary form (either 0 or 1), but can be of any numerical value within the inter-
val [−1,1]. If there exists a causal connection from concept ci to concept c j, then
[wi j ∈ (0,1] if a positive change in concept ci leads to an increase in concept c j, or
[wi j ∈ [−1,0) if a positive change in concept ci leads to a decrease in concept c j;
otherwise, if no connection exists between the two concepts then wi j = 0.

A causal map, and therefore a fuzzy cognitive map as well, includes concepts
that can be one of three types: transmitters, receivers and ordinary concepts [21].
A transmitter is a concept that can be perceived only as a cause to other elements
within the system under examination; a receiver is a concept that can be perceived
only as an effect of other elements; and ordinary concepts are those elements that
have both at least one cause and at least one effect relationship. These three types
can also be defined by their indegree and outdegree functions. The indegree or gen-
eralized indegree of a node is the number of paths leading to this particular node
from others, while the (generalized) outdegree of a node is the number of paths
leading from this node to others [9]. As a result, a transmitter is a concept with zero
indegree and non-zero outdegree; a receiver is a concept with non-zero indegree
and zero outdegree; and an ordinary concept is a concept with both indegree and
outdegree non-zero [50]. An example of these structural criteria can be viewed in
Fig. 11.2, which is inspired by the work of Lopolito et al. [45].

Other than assessing the structure of a map, the indegree and outdegree func-
tions can also contribute to drawing comparisons between FCMs, as they are used
to calculate centrality of concepts, which is the summation of their indegree and
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Fig. 11.2: Transmitter, receiver and ordinary variables of a causal map, based on
Lopolito et al. [45]

outdegree [27], as well as complexity, which is defined as the ratio of number of
receivers to the number of transmitters [51].

In a fuzzy cognitive map, concepts represent key factors and stand for events,
goals, inputs, outputs, states, variables and trends of the modeled system [25]. For
example, in the context of developing robust mitigation policy pathways, these can
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be events, policy-defined goals, system trends, transition drivers and barriers (such
as risks and uncertainties) and other variables acting within each national (or sec-
toral) system.

After a fuzzy cognitive map has been drawn, using techniques from neural net-
works, the systematic causal propagation [39] of the map can be analytically traced
through a simulation process [52]. Using a simulation driver function, the value of
a concept during each iteration depends on its value at the beginning of the current
step and the values of the concepts that causally point to it, as well as the causal
weights of the respective interconnections. At the end of each iteration, new values
are normalized within the interval [0,1] using a transfer function (also known as
threshold or transformation function). Simulations may converge to a steady state
vector (fixed point), a limit cycle where the concept values fall into a loop of num-
erical values, a limit torus, or a highly unstable strange (chaotic) attractor in the
fuzzy cube [19], where concept values randomly reach varying values. The result to
which the simulated system will converge depends on the initial state vector, given
a fixed model structure.

This analysis allows the modeler to explore what-if scenarios, by performing
simulations of the FCM for various initial state vectors, i.e., for different sets of ac-
tivated policies or different levels of activation of certain policies. Comparisons be-
tween the results can be used to support decision making or scenario building [62].

It is noteworthy to mention that there exist many applications of Fuzzy Cognitive
Mapping in literature, with regard to climate change and environmental planning
and assessment, among which many focus on improving the methodological process
as well, while others aim to either stress the participatory methodology or exploit
the FCM methodology for building scenarios [48].

11.3 The Methodological Framework

Regardless of how FCM simulation results have been evaluated and supported deci-
sion and policy making, FCMs have so far been used to model and simulate various
systems from different disciplines, in problems that feature significant uncertainties
linked to the social factor to some (e.g., [2, 45, 52, 78]), great (e.g., [8]) or no extent
at all (e.g., [43, 64]). When considering the many risks and uncertainties associated
with climate change policy [22] as well as issues concerning public acceptance of
low-carbon technologies and policies, one can understand the logic behind using
fuzzy cognitive mapping in this context. However, as already discussed and unlike
many of the domains in which FCMs have previously been used, there exist a large
number of quantitative frameworks that can support climate mitigation policy mak-
ing and that have, to some degree, tackled many uncertainty issues.

The aim of this approach, therefore, is not to avoid the necessary quantita-
tive models used for optimizing, evaluating and selecting policies that can deliver
the desired transition goals, but rather supplement quantitative methodologies, by
linking them to qualitative, experience-driven modeling. Fuzzy cognitive mapping
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does not provide any real-value estimations [52]: FCM simulation is based on purely
qualitative information and is therefore not intended for forming exact quantitative
values [6], nor should it be perceived as such, but rather as a means of exploring
which of the proposed policies or sets of policies are believed to perform better in
the examined systems.

Using fuzzy cognitive maps for linking stakeholder input and quantitative mod-
eling frameworks has been explored in the past [69], in the aim of enabling the
quantification and integration of narrative storylines, i.e. participatory output, into
the models. This approach assumes the need for the opposite sequence: after hav-
ing determined a number of policy pathways that according to quantitative models
results are sufficient to achieve the required transitions, FCMs can help select the
optimal pathways, by utilizing expert knowledge and experience as to the feasibil-
ity and applicability of the different sets of policies. This is similar to the process
Hobbs et al. [30] suggested undertaking in the Lake Erie Lakewide Management
Plan project, following a fuzzy set theory approach, before considering the FCM
alternative.

The proposed framework consists of the following steps, presented below:

• Step 1. Determining the group of stakeholders
• Step 2. Designing the cognitive map
• Step 3. Inferring causal relation weights
• Step 4. Exploring the time dimension
• Step 5. Quantifying concepts
• Step 6. Selecting configuration parameters
• Step 7. Running simulations

11.3.1 Determining the Group of Stakeholders

For the purpose of evaluating potential climate mitigation policy pathways within
each country, experts from the following groups are to participate in the process:

– Government departments
– Private and public sector industries, associations and distributors
– Policy makers
– Research institutes
– Non-Governmental Organizations (NGOs) representing various societal groups,

such as consumers and environmental protection activists
– Labor unions
– International organizations
– Electric utilities and regulators
– Media
– Communities and households
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All country-specific stakeholders take part in the framework in the same way,
responding to common surveys, questionnaires and workshops; however, they are
nevertheless grouped into respective categories, in order to better assess the qualita-
tive information they contribute.

11.3.2 Designing the Cognitive Map

This second step of the framework is the most challenging one. Normally, this step
starts from scratch with experts being asked to either help the analysts design the
map or draw the map themselves. Özesmi and Özesmi [51] discuss most of the
existing ways in which cognitive maps can be obtained.

The most common way of doing that, in FCM literature, has been the use of
questionnaire-oriented interviews or meetings, through which experts express their
perceptions of concepts that are important with regard to the problem domain under
examination. Roberts [57] explains that a list of variables is initially created and then
refined, by selecting the most important ones to be included in the cognitive map.
Isak et al. [32] present an analytical framework in which interviews can be con-
ducted. Instead of separate interviews, collaborative determination of key concepts
can be conducted, by organizing workshops [41].

Another commonly found process for visualizing expert input into maps has been
that of experts directly drawing their cognitive maps. Özesmi [50], after enabling
interviewees to express their views on the important variables of the system, had
them draw lines with arrows bearing positive or negative signs between variables,
showing causal increase or decrease respectively. A detailed description of an in-
dicative framework for achieving this can be found in Özesmi and Özesmi[51],
where stakeholders were guided along the whole procedure by using engaging ques-
tions. Papageorgiou and Kontogianni [52] too, after explaining the process of con-
structing fuzzy cognitive maps, asked each of their interviewees to draw their map.

Other methods include coding cognitive maps from implicit or explicit descrip-
tions found in experts’ narratives [77] and extracting cognitive maps from existing
numerical measurements [60].

The proposed approach assumes that key concepts have been a priori determined,
which however do not capture the whole picture nor include several uncertainties
and insights that only experts are able to provide. Policies and transition drivers are
identified in extensive case studies of the national systems of innovation [5, 58, 71]
with regard to one or more sectors of interest and for each of the examined countries,
while other key concepts can be extracted from the results of quantitative frame-
works used for evaluating these policies onto the examined national and sectoral
systems, as previously discussed. To complete the initial set of concepts, the most
important risks and uncertainties, which are identified after a detailed literature re-
view and prioritized using Multiple Criteria Decision Analysis methods, are added.

Given the large number of systems to be modeled, we select the first option pre-
sented: after determining the sets of policies to be examined, i.e. those that are able
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to achieve the transitions to low carbon societies as per models results, as well as
other key concepts, stakeholders are asked to provide their input during interviews.
The research question that needs to be addressed at this stage is “what does the in-
formant perceive as important concepts in the problem domain, given the initial set
of key concepts?”. By following this approach, stakeholders’ opinions are taken into
account in order to facilitate the development of the FCMs, while also minimizing
their bias with regard to their suggestions [36]. Their liberty to add concepts is not
limited but encouraged, as long as they include the predefined key concepts or, even
better, are driven by the latter when listing their perceived concepts of significance.
In countries where such an option exists, time-effective workshops are preferred.

After putting together a large list of concepts for a particular system, it is imp-
erative that only a global and concise map be created. There exist various ways of
refining concepts, by reducing their number to those that appear to be most criti-
cal. Lopolito et al. [45] pursued consensus over a compromise between the required
preciseness and the unavoidable vagueness that the human language features as well
as over the selection of the final set of concepts, during their discussion with stake-
holders. Other scholars have taken advantage of structured communication method-
ologies in order to achieve consensus, such as the Delphi method [7]. Given the
large number of different systems to be examined, our aim is to avoid a long, itera-
tive process for each country and limit the stages of stakeholder engagement for the
purpose of creating cognitive maps. To this end, the task of reducing the number of
concepts is entirely up to the analysts. At first, all identified concepts are reviewed in
case groups of two or more should be semantically merged and, then, the remaining
concepts are prioritized by number of occurrences among stakeholders, so that con-
cepts (including merged ones and their cumulative number of mentions) that rank at
the bottom may be omitted.

Afterwards, a second round of stakeholder engagement revolves around the res-
earch question “which of the other concepts does each concept affect, either pos-
itively or negatively?”. Experts only need to specify which of the other concepts
each concept has a causal relationship with; a structured way to achieve this is to
enumerate all concepts and have experts note the numbers of variables of which each
concept can be considered a cause, or ideally provide them with an empty adjacency
matrix and have them fill it in.

After having obtained the adjacency matrix of this refined set of concepts, more
techniques are available to the analysts for obtaining a final and concise cognitive
map. A popular technique in the literature has been that of replacing subgraphs
with a single concept, which is called condensation [27] or aggregation [51]. For
example, Papageorgiou and Kontogianni [52] describe how they managed to cluster
52 variables into 26 high-level concepts. It should be noted that the goal is not to
alter the derived model but rather simplify it and optimize its complexity; according
to Özesmi and Özesmi [51], when the number of variables exceed the number 30
the map starts being counterproductive for gaining insights.

The whole process of designing the cognitive map can be viewed in Fig. 11.3.
At this point, it should be noted that, as far as receiver and ordinary variables

are concerned, only concepts that feature a cause and/or effect relationship with the
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Fig. 11.3: Flow chart of Step 2 of the framework: designing the cognitive map

respective system should be included in the final map, while transmitter variables
should exclusively be policies, as it is the policies’ effect on the system that we aim
to explore. For example, although “population growth” is a concept that may have
direct impact on a number of variables within a system, it should not be included in
the map as the objective is to explore how the system reacts to certain policies every
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time and draw comparisons, while “population growth” exists in every possible set
of policies; however, if any concept of the system affects “population growth” in
any way, then it should be included as well.

11.3.3 Inferring Causal Relation Weights

This stage calls for the third and final stakeholder engagement process which rev-
olves around the research question “given the cognitive map, as well as the national
context, how strongly does each concept affect the others?” and the purpose of which
is to establish the grade of causality between concepts. In literature, these weights
can be of binary form {0,1} depending on whether two concepts are directly related
or not (e.g., [1]), take any value within the interval [0,1] (e.g., [7]), or take any
value within the interval [−1,1] (e.g., [8]), which is also the case in our proposed
framework. The sign expresses whether the causal concept has a positive or negative
impact on the effect concept, and the value shows how much impact the former has
on the latter.

There exist many different approaches for extracting the required information
from experts. Özesmi and Özesmi [51], after having the stakeholders draw their
own cognitive maps, asked their interviewees to directly assign numerical weights
between −1 and +1 to the perceived interconnections. Papageorgiou and Konto-
gianni [52] proposed using if-then rules that infer a fuzzy linguistic variable from a
given set of thirteen variables; alternatively, experts could directly assign fuzzy lin-
guistic weights from the same set. In the same context, Lopolito et al. [45] used only
three linguistic values for describing the grade of causality for the concept intercon-
nections (namely weak, moderate and strong) and assigned these linguistic values to
numerical weights: 0.33, 0.67 and 1, respectively. Other approaches include using
structured communication techniques: for example, Biloslavo and Dolinšek [6] used
an iterative approach with feedback based on the Delphi method [18] and the Mul-
tiple Criteria Decision Analysis method called Analytical Hierarchy Process [66]
for calculating weights; Olazabal [48] used the Q-methodology [11] in order to sup-
port the whole stakeholder engagement process, including inferring weights. Last
but not least, other researchers proposed iterative, penalization-based stakeholder
engagement algorithms using a credibility factor [25].

Given the need to limit stakeholder engagement to the least possible number of
stages, as dictated by the very large number of systems to be examined as well as
the fact that this methodological framework presupposes the use of other models
beforehand (Fig. 11.3), we propose that every stakeholder be free to choose among
the 13 linguistic values of the following set [52]:

{negatively very very strong, negatively very strong, negatively strong, negatively
medium, negatively weak, negatively very weak, zero, positively very weak,
positively weak, positively medium, positively strong, positively very strong,

positively very very strong}



11 Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach 251

These values, however, are directly assigned to the following numerical set:

{−1,−0.83,−0.67,−0.5,−0.33,−0.17,0,+0.17,+0.33,+0.5,+0.67,+0.83,+1}

After individual weights have been inferred, all numerical values are aggregated
using either the mean or the weighted mean of all weights for each causal relation;
this depends on whether the analyst chooses to assign different weights to different
stakeholders, as identified and grouped in Step 1 of the framework and based on
the level and nature of expertise each stakeholder group has. For example, members
of the media, consumers or community representatives are not as knowledgeable
about every identified concept or policy as experts from research institutes or policy
makers. For our purpose and given an appropriate sampling of experts, a mean value
is considered adequate for aggregating causal relation weights. Finally, the weight
matrix is filled in using the aggregated weight values.

11.3.4 Exploring the Time Dimension

A very weak point of Fuzzy Cognitive Mapping, as applied so far, has been that
of appropriately defining and incorporating time [69]. The output of an FCM sim-
ulation can be used to assess how key factors play out after a number of iterations,
when certain policies or sets of policies are at play, but this output cannot be dir-
ectly translated into time. However, this can be overcome to some extent, by only
including causal relations that are meaningful in the same time scale [38].

Hagiwara [26] was the first researcher to acknowledge the lack of the concept of
time in FCMs, along with the need for conditional and non-linear causal relation-
ships; he therefore proposed an extended FCM framework that is able to incorporate
time delays, non-linear weights and conditional relations. However, this approach
not only requires an extensive, time-consuming stakeholder engagement framework
that assumes experts’ knowledge and expertise is adequate for offering insight into
all of the required information, but also significantly enhances the complexity of the
FCM methodology.

In order to incorporate time relationships into Fuzzy Cognitive Mapping, Park
and Kim [56] suggested collecting information on the time delay that every relation-
ship between concepts features and then translating the original FCM into a fuzzy
time cognitive map (FTCM) in which all causal relations apply in the same time
unit. In order to achieve this, they proposed a framework that introduces dummy
nodes between concepts and calculates the sign and value of individual weights that
compose each original causal weight. Although this approach serves our purpose,
in larger FCMs (such as the ones we anticipate to have to deal with, with regard to
climate mitigation policies) there is significant increase in the FCM complexity and
the visual outcome is hard to produce, supervise and gain insight from. This is partly
why the proposed FTCMs only incorporate time lags of two or three time units and
no more, but this poses another limitation since causal relations may potentially
feature larger delays.
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Other approaches include the expression of the implicit time delay of every
relation and the selection of a base time in Rule-Based Fuzzy Cognitive Maps [15];
the use of Fuzzy Time Cognitive Maps for analyzing trust dynamics in virtual en-
terprises [74]; the agent-based FCM methodological framework developed by Lee
et al. [44], in an effort to better address the drawbacks identified by Hagiwara [26]
and further analyzed by Schneider et al. [60], which was applied in industrial mar-
keting planning; and a significantly more complex version of timed fuzzy cogni-
tive maps that requires the determination of linguistically-expressed time-dependent
weights [10].

In our approach, all causal relations are assumed to be yearly and stakeholders are
asked to evaluate how many time units (i.e., years) it takes for each cause concept
to have an impact on its effect concept(s). The research question that needs to be
addressed at this stage is “how long does it take for a change in each concept to
have an effect on its adjacent concepts?”. This process does not necessarily require
an extra stakeholder engagement step, as it can be done in parallel with the weight
inference stage (Step 3). After extracting this information, again an average value is
calculated for each causal relation, as in Step 3.

Time lags are incorporated in the way new concept values are calculated, as des-
cribed in Step 6. As discussed in Sect. 11.4, this approach does not provide different
numerical results from what the FCM simulations would produce without integrat-
ing time lags, but offers new insight with regard to how soon each policy or set of
policies can produce the calculated results.

This step concludes the stakeholder engagement process, which can be viewed
in Fig. 11.4.

11.3.5 Quantifying Concepts

As explained in Sect. 11.2, all concept nodes are assigned a numerical value, which
is usually within the interval [0,1] or [−1,1], depending on which threshold function
is selected (Step 6). Certain researchers have proposed different approaches; for ex-
ample, when suggesting an FCM-based approach for robust scenario planning with
regard to wind energy development, Amer et al. [2] used concept values of binary
form, i.e. {0,1}, depending on whether a concept is clamped or not. Although such
an approach could be applied for developing scenarios emerging from policies or
sets of policies that greatly differ from one another, it would not allow for adequate
comparisons in cases where policies have different effects on the same variables or
where policies or sets of policies are clamped to a different extent among alterna-
tives. In our approach, concepts are able to take values within the interval [−1,1],
so as not to limit our methodology to a specific threshold function.

A major issue that has never really been addressed or elucidated in the FCM
literature is that of clarifying which of the concepts should be modeled as constants
and which ones as variables. Since a Fuzzy Cognitive Map model is simulated over
and over again using a particular threshold function and until it converges to a steady
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Fig. 11.4: The three stages of the proposed stakeholder engagement process
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state vector, if all concepts were modeled as variables this final state vector would
depend entirely on the FCM structure: set of concepts, adjacency matrix and weight
matrix. In order for each simulation to depend on the initial state vector and thus be
meaningful (given a fixed set of concepts, interconnections and weights), concepts
that differentiate each alternative should be unaffected by the selected threshold
function. As a result, policy (transmitter) concepts should be modeled as constants,
while all other (ordinary and receiver) concepts should be modeled as variables.

Therefore, the initial state vector should be carefully selected for each alterna-
tive option considered and modeled. In most cases, different policies are examined
and activated (i.e. 0 if unclamped and 1 if clamped) every time but this should not
necessarily be the case; for example, Papageorgiou and Kontogianni [52] examined
two different scenarios for future prospects and risks of the Black Sea marine en-
vironment, by attributing different, non-zero initial values to all concepts in each
scenario.

11.3.6 Selecting Configuration Parameters

One simulation driver function that has almost exclusively been used in FCM app-
lications calculates the value of a concept at the end of an iteration as the sum of
contributions of its causal concepts at the beginning of the iteration:

C(t)
j = f

(
n

∑
i=1

C(t−1)
i wi j +C(t−1)

j

)

where C(t)
j is the value of concept j at the end of the iteration, C(t−1)

j is the value

of concept j at the beginning of the iteration, C(t−1)
i is the value of concept i at the

beginning of the iteration , and f is a threshold function.
Depending on the notion of auto-correlation that we will be using, the second

term (C(t−1)
j ) can be omitted; functions of this form assuming no auto-correlation

have been used in FCM literature. Of course, both functions can be considered
identical, depending on whether the weight matrix includes auto-correlation: by
assigning ones on the main diagonal of the weight matrix, i.e. wi j = 1, then auto-
correlation is implied and included in the first term and the second term should be
omitted.

Stylios and Groumpos [65] proposed a slightly modified approach for calculating
new concept values at the end of every iteration, by introducing two coefficients k1

and k2, depending on how strongly auto-correlation affected each concept compared
to the contribution of its causal concepts:

C(t)
j = f

(
k j

1

n

∑
i=1

C(t−1)
i wi j + k j

2C(t−1)
j

)
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However, this approach too requires significantly more information from the
stakeholder engagement process, since stakeholders should not only know but also
be able to offer insight into the extent to which each and every single concept
depends on its previous value compared to the contributions of its causes.

Another approach was introduced by Papageorgiou and Kontogianni [52], acc-
ording to which limitations presented by the sigmoid threshold function, when initial
values are 0 or 0.5 or the initial state cannot be efficiently described [54], can be
addressed:

C(t)
j = f

(
n

∑
i=1

(
2C(t−1)

i −1
)

wi j +2C(t−1)
j −1

)

Finally, Papaioannou et al. [55] suggested an interesting simulation driver func-
tion that, given a preliminary process of adjusting and greatly reducing weights
depending on the number of iterations at which the system is expected to converge,
requires no transformation function:

C(t)
j =

n

∑
i=1

(
C(t−1)

i −C(t−2)
i

)C(t−1)
j

C(t−2)
i

wi j +C(t−1)
j

In the proposed framework, however, we will be using a different simulation
driver function, based on the originally presented and most frequently used one, so
as to incorporate the notion of time delays. This is done by multiplying the weight
of a relation between causal node i and effect node j with the value of concept i at
time t minus the time delay lagi j of the respective impact:

C(t)
j = f

(
n

∑
i=1

C
(t−lagi j)
i wi j +C(t−1)

j

)

Finally, a threshold function must be selected and applied, in order to normalize
new concept values within the interval [−1,1] at the end of every iteration. As in
neural networks, there exist many different threshold functions, such as logistic,
linear threshold or step functions [51]. However, the most frequently used threshold
functions in the FCM literature are the sigmoid function and the hyperbolic tangent
function.

When concept values can only be positive, i.e. belong to the interval [0,1], the
unipolar sigmoid function (λ > 0) is usually used as a threshold function (e.g., [45]):

f (x) =
1

1+ e−λx

If concept values can be negative as well, meaning that they can take values
within the interval [−1,1], the hyperbolic tangent function can be used instead [25]:

f (x) = tanh(x)
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Having quantified concepts in the interval [−1,1], both threshold functions can
be applied to our approach. The non-negative transformation of the sigmoid func-
tion allows for better understanding of concept activation levels [51]. Furthermore,
given that it squashes values into a stricter interval, it usually converges faster than
the hyperbolic tangent function. However, the latter allows for more realistic repre-
sentation of the causal output and requires no calibration. For example, if the value
of a certain concept can only decrease, the sigmoid function will still produce a pos-
itive outcome in the final state vector, which must then be compared to the inaction
model in order to draw conclusions for a single scenario; of course, when dealing
with a number of alternatives, comparisons between alternatives can still be drawn
without comparing them to the inaction scenario, using the sigmoid function.

11.3.7 Running Simulations

After the FCM model has been developed and all configuration parameters have
been selected, simulations can begin for each country case study and respective
sector; for every simulation and as discussed in Sect. 11.2, causal propagation takes
place in every iteration until the system converges; this happens when no change
occurs in any of the concept values after a certain point, the concept vector at which
is called the final state vector.

11.4 Assessing Results

After having simulated the derived model for every possible policy strategy, com-
parisons between the final state vectors of the alternatives should be drawn in order
to assess to what extent the desired transition has been promoted by activating each
set of policies. The larger the value of the goal concept is at the end of the simula-
tion, the better the selected policies are considered by the stakeholders. Of course,
the analysts must define which of the concepts included in the FCM should be taken
into account when comparing the various alternatives, as well as how important
each of these concepts are. For example, Lopolito et al. [45] defined the concept
representing the policy objective and distinguished five other concepts to negatively
contribute to the alternative pathways’ score, as equally undesired effects of the
policies. Özesmi [50] proposed a different approach: different objectives were ac-
knowledged for each of the stakeholder groups, leading to different conclusions for
each group’s perspective. On the other hand, when comparing scenarios with strict
activation thresholds and values of binary form, all of the final state vector values
are taken into account in order to produce sound narratives (e.g., [2]).

Other than the final state vector and given the integration of the time dimension
into the proposed framework, another significant criterion to be taken into consid-
eration when comparing the examined alternatives is how fast convergence has oc-
curred.
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As an example, simulations were run for the fuzzy cognitive map presented
in Fig. 11.2, with and without time delays, and using the original weight matrix.
When activating the first policy option, i.e. enhancing public information on the
bio-refinery industry, all concept changes (including the desired transition) appear
to slightly delay when very little time lag is introduced in certain interconnections,
compared to a no-lag model (Fig. 11.5). It should be pointed out that the sigmoid
threshold function was used.

In order to achieve a better understanding and more detailed examination of
the time lags’ effects, the same model was simulated using the hyperbolic tangent
threshold function, using both of the options previously considered and adding a
third one with a slightly increased time lag. The impact of both time delays on the
goal concept, which is the development of the bio-refinery industry, can be viewed
in Fig. 11.6.

Looking at both figures, it is safe to conclude that time delays do not alter the
values of the final state vector, as produced without integrating time lags in the
first place, but nevertheless offer new insight into how fast changes take place. As
previously discussed, the final state vector depends solely on the FCM structure,
including its concepts, interconnections and weights, as well as the initial values of
the considered transmitter (policy) concepts. As a result, time delays introduced in
the proposed manner cannot change the results, unless a certain delay is perceived
to be so prolonged that the respective causal relation’s impact is not observed be-
fore the system converges; this is a negative feature of the proposed approach that
could potentially lead to false results, but which can easily be addressed by either
comparing results with the respective no-lag model’s results or introducing stricter
convergence criteria, such as requiring zero numerical changes in the state vector
for a number of iterations equal to the largest time lag included.

As expected, the observed delay had an impact on convergence as well: using
the sigmoid threshold function and introducing low time lag resulted in a delay in
the convergence by five iterations, while using the hyperbolic tangent function and
introducing both the low time lag and a slightly higher one resulted in a delay in the
convergence by four and six iterations respectively.

It should be noted, though, that iterations in a Fuzzy Cognitive Map simulation
and real time units are not the same thing, and results should not be directly trans-
lated into time; this, however, can be partly overcome when causal relations are
meaningful in the same time scale, as suggested by Kok [38]. In the same way that
FCM results should not be used as real-value estimations [6, 52] but provide qual-
itative insight into the effectiveness of a set of policy strategies, the rate of causal
propagation and eventually convergence too can provide qualitative insight into the
rate of transition, without necessarily translating each simulation step into a time
unit.

Given the need to limit global temperature increase within a strictly defined time
frame in order to avoid the most significant and irreversible impacts, the introduction
of the notion of time delays is of vital importance from a climate mitigation policy
perspective.
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Fig. 11.5: Concept activation levels of the example FCM, using the sigmoid thresh-
old function, (a) without time lag and (b) with slight time lag

11.5 Conclusions

The proposed methodological framework for selecting effective climate policies for
low carbon transitions is based on the Fuzzy Cognitive Mapping method, and builds
on the output of previously run quantitative models, an extensive literature review of
potential risks and uncertainties, as well as country case studies of technological in-
novation systems, as part of a complete, analytical framework for developing robust
transition pathways. This chapter, therefore, aims to present an innovative approach
that takes advantage of the qualitative insight that Fuzzy Cognitive Maps can offer,
suggesting however that the FCM technique cannot stand on its own when explor-
ing alternative climate policy strategies but rather supplement existing quantitative
methodologies, by linking them to experience-driven modeling.
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Fig. 11.6: Value increase in the goal concept, due to various time delays, using the
hyperbolic tangent threshold function

Another key aspect of the presented approach lies in the simplification of the
FCM model construction, from the experts’ perspective. Although the required
qualitative input is extended in order to include time-related issues, stakeholder
engagement is limited to a clearly-defined and structured three-stage process. In
this direction, extensive literature review on the various approaches of stakeholder
engagement in fuzzy cognitive maps has been conducted, and specific research ques-
tions and steps have been determined, so as to reduce the method’s complexity while
at the same time not compromising the added value of the derived conclusions.

Last but not least, the proposed method introduces an ill-defined aspect of FCMs,
which is the notion of time. By including causal relationship impacts that are defined
in the same time unit, to the extent experts can offer such knowledge, and integrating
potential time delays of these impacts into the model, the fuzzy cognitive maps
of the examined systems become more dynamic, and new insight can be explored
and gained with regard to each considered alternative, in an attempt to enhance the
robustness of the resulting climate policy strategies.
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6. Biloslavo, R., Dolinšek, S.: Scenario planning for climate strategies development by integrat-
ing group Delphi, AHP and dynamic fuzzy cognitive maps. Foresight 12(2), 38–48 (2010)

7. Biloslavo, R., Grebenc, A.: Integrating group Delphi, analytic hierarchy process and dynamic
fuzzy cognitive maps for a climate warning scenario. Kybernetes 41(3/4), 414–428 (2012)

8. Bontis, N., Fitz-Enz, J.: Intellectual capital ROI: a causal map of human capital antecedents
and consequents. J. Intellect. Cap. 3(3), 223–247 (2002)

9. Bougon, M., Weick, K., Binkhorst, D.: Cognition in organizations: an analysis of the Utrecht
jazz orchestra. Adm. Sci. Q. 22(4), 606–639 (1977)

10. Bourgani, E., Stylios, C.D., Manis, G., Georgopoulos, V.C.: Integrated approach for develop-
ing timed fuzzy cognitive maps. In: Intelligent Systems’ 2014, pp. 193–204. Springer, Berlin
(2015)

11. Brown, S.R.: Political Subjectivity: Applications of Q Methodology in Political Science. Yale
University Press, New Haven, Connecticut (1980)

12. Brown, S.M.: Cognitive mapping and repertory grids for qualitative survey research: some
comparative observations. J. Manag. Stud. 29(3), 287–307 (1992)

13. Bukowski, M., Kowal, P.: Large Scale, Multi-Sector DSGE Model as a Climate Policy
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