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Abstract With an estimated global abundance of 1030, viruses represent the most
abundant biological entities in the ocean. There is emergent awareness that viruses
represent a driving force not only for the genetic evolution of the microbial world but
also the functioning marine ecosystems. Culture studies advance our understanding
how viruses regulate host population dynamics, but retrieving virus and host in pure
culture can be difficult. Recent developments in high-throughput sequencing provide
insights into the diversity and complexity of viral populations. This chapter describes
current milestones in the burgeoning field of marine viral ecology, including the
different aspects of marine viral action, viral diversity, ecological and biogeochemical
implications of marine viruses, the cultivation of virus-host systems, and biotech-
nological applications of these astonishing microorganisms.

5.1 Introduction

Marine viruses are like any other viruses defined as small infectious agents, con-
sisting of a core of nucleic acids (RNA or DNA) in a protein coat, that replicate
only in the living cells of a host. A lipid envelope may be found outside or inside of
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the capsid. In the strict sense, complete viral particles found outside host cells and
constituting the infective form are called virions, however, throughout this chapter
the term viruses will be used for both the intracellular and extracellular forms.
Viruses are classified by their genome type (DNA or RNA, single or double
stranded, segmented or not, circular or linear) and size (from few Kbp to 2.5 Mbp),
particle structure (e.g., icosahedral or helical) and size (from *20 to 500 nm),
capsid coat protein composition, whether it is enveloped or not, the replication
strategy, the latent period (i.e., the time until progeny viruses are released from the
host cell), sensitivity to physicochemical factors (e.g., temperature, pH, UV), and
last but not least the host they infect. There are no universal oligonucleotide primers
for marine viruses due to their huge genetic diversity, but the presence of specific
conservative genes aids to the detection and classification of marine viruses, e.g.,
primers for fragments of the conserved cyanophage structural gene g20, or for the
DNA polymerase gene (polB) are used to detect large dsDNA algal viruses (Chen
and Suttle 1995; Short and Suttle 2005).

Unable to replicate without a host cell, viruses are generally not considered
living organisms or alive (Forterre 2010). The finding of large genome-sized viruses
displaying a localized viral factory in the host’s cytoplasm where the viral genome
is replicated and virions are produced (La Scola et al. 2003; Santini et al. 2013),
together with the discovery of viruses infecting the viral factory (c.q. virophages
meaning virus eaters; La Scola et al. 2008; Fischer and Suttle 2011), renewed the
discussion as to whether viruses are alive. Both ways, viruses have the ability to
pass on genetic information to upcoming generations and as such they play an
important role in biodiversity and evolution. Due to their mode of replication,
viruses can take some genetic material from their host in their progeny but can also
add their own genetic material to the host, thereby increasing genetic diversity and
biodiversity as a whole. Actually, viruses can in a way be considered part of the
genetic reservoir of their host, i.e., the genomes of viruses are part of the larger
pan-genome (e.g., Bacteria or Archaea) like other extra-chromosomal elements.
Given their rapid reproduction rates, and often high mutation rate, viruses represent
an important source of genetic innovation. Besides the enormous reservoir of
uncharacterized genetic diversity (Suttle 2007), viruses have the potential to be
interesting material for biotechnological use (Sánchez-Paz et al. 2014).

The research on marine viruses, their population dynamics, diversity and eco-
logical relevance has expanded exponentially over the last years. Marine viruses are
the most abundant biological entities in the seas and oceans, ranging between 1 and
100,000 � 106 L−1, whereby the higher abundances are generally found in the
more coastal, eutrophic surface waters and the lowest numbers in the deep ocean.
Per unit volume, viruses in marine sediments (benthic viruses) with the higher load
of bacterial hosts exceed pelagic viruses by one or more orders of magnitude
(Danovaro et al. 2008; Glud and Middelboe 2004; Hewson et al. 2001). The
numerically dominant hosts are the marine microorganisms belonging to all three
domains of life, i.e., Bacteria, Archaea, and Eukarya. With the development of
sensitive nucleic acid-specific dyes in combination with epifluorescence micro-
scopy (Noble and Fuhrman 1998), pelagic viruses could be more easily counted
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than by transmission electron microscopy (Fig. 5.1). Moreover, the availability of
fluorescent dyes allowed counting of the total viral community and not just the
infectious viruses for specific hosts in culture as determined traditionally by plaque
assay (using agar plates) and most probable number (end-point dilution of liquid
cultures). More recently, staining of the viral nucleic acids combined with flow
cytometry allowed a more objective and faster analysis (Brussaard et al. 2000;
Brussaard 2004a) opening further the research field of marine viruses to a better
spatial and temporal sample coverage, as well as higher degree of replication.
Besides these methods for direct detection of virus particles, there are molecular
approaches helping to identify and quantify (by qPCR) marine viruses (Sandaa and
Larsen 2006; Tomaru et al. 2011a, b, c). Combining techniques such as, for
example, flow cytometry sorting of virus and/or infected host with molecular
sequencing will further advance prospective research aiming at answering questions
on viral diversity and adaptation (Labonté et al. 2015; Martínez-Martínez et al.
2014; Zeigler et al. 2011). Metagenomic analysis has even revealed new virus
families, e.g., ssDNA viruses infecting a wide range of marine hosts (Labonté and
Suttle 2013a, b).

Although essential, quantification and identification by itself is not enough to
answer the major research questions in marine viral ecology, e.g., who infects
whom, what is the impact of viral infection on host population dynamics and
subsequent species succession, and how do viruses affect ecosystem efficiency and
consequently biogeochemical fluxes? One needs to be able to determine actual viral
infection and lysis rates in the field. At the same time, there is need to isolate and
bring into culture more (and new) virus-host model systems in order to allow
optimal understanding of the mechanisms underlying successful infection and
alterations in virus–host interactions due to change in environmental factors.

Fig. 5.1 Different techniques to detect marine viruses, i.e., epifluorescence microscopy upon
staining the viral nucleic acid (left panel), transmission electron microscopy (TEM) thin section of
host cell showing virions PgV infecting the phytoplankton Phaeocystis globosa (virus 150 nm
diameter; mid upper panel), TEM of free bacteriophage (virus head diameter 100 nm, tail length
180 nm; mid lower panel), and flow cytometry of natural seawater sample showing several virus
clusters (right panel)
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The outcome of viral infection has implications for ocean function and it is an
exciting time of discovery (some milestones are listed in Table 5.1). This chapter
describes some of the milestones in marine viral ecology (Table 5.1) and outlines
the different aspects of marine viral action, i.e., the different viral infection strate-
gies, horizontal gene transfer, viral diversity, ecological influence on host mortality,
microbial biodiversity, food web structure, organic carbon and nutrient cycling, the
culturing and storage of virus-host systems, and concludes with several biotech-
nological applications.

5.2 Viral Infection Strategies

Microbial host cells and their viral predators have been evolving together for bil-
lions of years. At first glance, one might think that their interactions are simpler
than those of other predator or parasite-host pairs but they are actually extremely
complex. The main predators of microbes typically discriminate for prey size, along
rough lines of taxonomy and morphology and can eat many individual prey of
diverse genomic make up throughout its individual cell life span (Sintes and Del
Giorgio 2014). In contrast, viruses are single opportunity killers and highly
host-specific. One virus particle has only one chance to reproduce and requires a
refined adjustment to the cell machinery on which it depends for ultimate repli-
cation and virion component. Therefore, viruses are specialized parasites that are
fine-tuned to the host structure and metabolism (Leggett et al. 2013). Actually, the
delicate discriminatory power of viruses has been used classically for typing, for

Table 5.1 Overview of some of the milestones obtained in marine virus ecology during the last
1–2 decades

Milestone Impact

Counting viruses using
sensitive dyes

Opened up the field as it allowed for more replicates and better
spatial and temporal coverage

Viral lysis rates in the
field

Demonstrate that virally induced mortality at least as important as
traditional loss by grazing

New dsRNA virus family Unique dsRNA virus infecting marine protist

Use of PCR primers Specific virus groups can be detected

Full genome sequencing Discovery of new metabolic pathways

Metagenomics Deep coverage of viral diversity and discovery of new virus
families (e.g., ssDNA viruses)

Large genome-sized virus
discovery

With their huge size (1–2.5 Mb) and cellular trademark genes,
these viruses are evolutionary challenging

Virophages Viruses infecting viruses, thereby decreasing mortality of the host
organism

Viral shunt Realization that viral activity promotes flux of organic carbon and
nutrients, making remineralized nutrients directly available for
phytoplankton
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example, bacteria. Precise host cell recognition is an essential step in the life cycle
of any virus. Accordingly, viruses have refined molecular recognition modules that
allow discrimination of encountered cells before the infection process in triggered
(Garcia-Doval and van Raaij 2013). These molecular recognition devices are
among the most sensitive in nature and match in complexity, and probably in
diversity as well, the vertebrate immune system (Fraser et al. 2007). Mirroring this
diversity, host cells have an enormous diversity of virus potential receptors. They
can be any outermost exposed structure of the cell, frequently proteins such as
pillins, porins or transporters but, above all, polysaccharides or the glycosidic
moiety of glycoproteins. Actually, the interaction with viruses might be behind the
commonality of polysaccharides and glycoproteins in exposed structures of
Bacteria, Archaea, and Eukarya.

Through the lytic cycle, viruses can reproduce inside the host cell directly upon
penetration, causing destruction of the host cell to release the progeny viruses into
the surrounding water. Alternatively, viruses may integrate into the host genome as
a provirus and propagate together with the host. Thus, in contrast to lytic viruses,
these temperate (or latent) phages establish a stable, but reversible, relationship with
their host, which is termed lysogeny. For the prophage being inside the host pro-
vides protection against virion decay by environmental factors (Mojica and
Brussaard 2014). Although at first glance it does not seem beneficial for the host to
carry a prophage, it generally protects from infection by similar and related phages.
Furthermore, prophage may provide useful genes and improve host fitness (Paul
2008). This transfer of genes via prophages is a form of horizontal gene transfer
(HGT) that aids to the genetic diversity within the host species. The prophage can
be released again by an inducing event triggering a lytic cycle. The environmental
factors responsible for the transition from a lysogenic to a lytic cycle are not well
identified. UV and pollution have been reported to induce the lytic stage, potentially
to produce progeny viruses before potential cell death of the host (Paul et al. 1999).
Alternatively, the triggering factor may represent more optimal growth conditions
for the host (e.g., release of P-limitation; Wilson et al. 1996), whereby the shift from
prophage to lytic phage is a favorable one as many more progeny viruses can be
produced than under the lysogenic life style (one progeny every time the host
divides). In agreement with this potential mechanism, the percentage lysogeny of
total mortality of bacteria was found highest under oligotrophic conditions with low
host abundance, both geographically as well as seasonally (McDaniel et al. 2002;
Weinbauer et al. 2003).

Besides lytic and lysogenic cycles, the host cell can also release viruses by
continuous or intermittent budding or extrusion without its immediate lysis. This
replication strategy, known as chronic cycle or carrier state, is far less investigated
in marine environments, yet it has been described for viruses that infect marine
eukaryotic photoautotrophs (Mackinder et al. 2009; Thomas et al. 2011), but also
for archaeal viruses (Geslin et al. 2003; Gorlas et al. 2012).
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5.3 Virus Characteristics

The characterization of virus isolates typically includes a phenotypic analysis
(particle morphology, symmetry and size; genome type and size; composition of
structural proteins) in order to assign a taxonomical status to these isolates.
Additionally, parameters related to virus life cycle, specificity pattern, environ-
mental stability or resistance, are other important viral features. The information
generated by one-step growth experiments, also referred to as “single burst
experiments,” have proven essential in this respect. This classical procedure
developed by Ellis and Delbrück (1939) is designed to quantitate and monitor the
growth of lytic viruses and it provides two fundamental viral properties: the latent
period (that is the duration between virus adsorption and extracellular release from
the infected host cell) and the burst size (that is the number of progeny viruses
released per infected host cell). These viral parameters vary depending on the virus
isolate and the host they infect. Collectively these variables constitute important
components to model virus–host interactions in the ocean. For example, the
infection strategy of a given virus largely determines the ecological impact of virus
interactions. Gaining fundamental knowledge on the infection strategy of relevant
virus-host model systems, the conditions that induce the transition between these
different modes of infection, and the potential influence environmental factors have
on the intensity and the kinetics of infection are thus a prerequisite for under-
standing the impact of viral infection on microbial assemblages.

The infection range (the range of action of a phage measured in terms of the
varieties of bacteria in which it can grow) has been a major conundrum of virus
studies. The host specificity of bacteriophages (i.e., viruses that infect bacteria;
there are also referred to as phage or bacteriovirus) was recognized very soon after
their discovery in the early twentieth century (Abedon 2000). The idea of phage
therapy was based on this early discovery and was the main driver of the original
interest on bacteriophages, later displaced by the enormous role played by phages in
the development of genetics and molecular biology. The success or failure of
adsorption and subsequent lysis of the host typically, but not always, determines the
host infection range. There is a wide diversity of mechanisms within the cell to
prevent phage replication, including receptor variation, restriction–modification,
abortive infection, lysogenic immunity, or innate immunity conferred by CRISPRs
(see for example Stern and Sorek 2011). In the laboratory, host specificities are
determined by pairwise infection, in which a clonal virus lineage is added to a
collection of host cultures, infection is scored positive if lysis occurs. These
infection assays suggest that marine viruses exist along a continuum of specialists
to generalists. The specialist viruses can only infect a restricted range of strains,
sometimes even only the one used for their initial isolation. The generalist viruses
can infect many different strains and occasionally can infect also isolates from
different species and even different genera (e.g., Baudoux et al. 2012; Johannessen
et al. 2015; Matsuzaki et al. 1992; Sullivan et al. 2003; Suttle et al. 1995). However,
in general the genus is the taxonomic unit that encompasses the most sensitive
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strains for the vast majority of phages. It is sensible to say that the boundary of
natural host range of most phages is the genus.

Cross-infections between virus and hosts are challenging to interpret. In spite of
25 years of investigation, there is as yet no consensus on either the global pattern of
viral infection or the environmental drivers that shape these patterns of interactions.
For example, to what extent does virus–host infection vary in space and/or time, are
there factors that favor generalists upon specialists, and are virus–host interactions
structured at all (Avrani et al. 2012)? It is presently inconceivable to bring into
culture and test the specificity pattern of all individual virus-host model systems
dispersed in marine systems. As an alternative, theoretical approaches that rely on
empirical data have been proposed to study of virus–host interactions as networks
(Flores et al. 2011, 2013; Weitz et al. 2013). Network-based analysis tests whether
virus–host interactions are structured (i.e., they possess a structured pattern) or
random. The most common patterns in ecological networks are being nested or
modular. Nested virus–host interaction networks are characterized by a hierarchy of
resistance among hosts and infection ability among viruses (Flores et al. 2011;
Weitz et al. 2013). This pattern is thought to result from coevolutionary arms race
(Red Queen hypothesis) where viruses evolve to broaden host ranges and hosts
evolve to increase the number of viruses to which they are resistant (Flores et al.
2011). In contrast, modularity is characterized by groups of viruses and hosts
(referred to as modules) that preferentially interact with another (Flores et al. 2011;
Weitz et al. 2013). This ecological pattern should emerge if virus–host interactions
result from evolutionary processes that lead to specialization.

A network-based analysis of cross-infections of 215 phages against 286 bacteria
collected across the Atlantic Ocean (Moebus and Nattkemper 1981) revealed that
infection network possessed a multiscale structure (Flores et al. 2013). At a global
network scale, virus–host interactions network displayed a modular structure. This
modularity was explained, at least in part, by geography. In other words, viruses
isolated from a given sampling site were more likely to infect cooccurring hosts,
supporting the need to account for biogeography in the analysis of viral diversity.
However, individual modules were either further modular or nested, which suggests
that different coevolutionary processes drive virus–host interaction at different scale
(Flores et al. 2013). Network-based analyses of virus–host interactions have
emerged quite recently. Yet, these analyses represent a promising tool to quantify
the functional complexity of viral infections in natural systems and to identify the
drivers of microbial species interactions.

5.4 Virus and Host Diversity

The role of viruses in shaping the evolution of their hosts is acquiring new
dimensions both as selective pressure that keeps populations diverse (Rodriguez-
Valera et al. 2009) and as sources of genetic innovation (Suttle 2007). Viruses may
carry metabolic genes of the host to enhance infection performance, but can also
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introduce genetic diversity to the cognate pathways. Microbiology has failed to
provide a sensible representation of the diversity of microbes using only the pure
culture approach. Although great advances are being made, until recently the vast
majority of microbes in nature has been inaccessible to microbiologists. If this is the
situation of cellular microbes, the status of the viruses preying on them is even
direr. Most of what we know about viruses derives from the studies of human, cattle
and plant crop viral pathogens. Lately large efforts to sequence more virus genomes
of different hosts have been made (Pope et al. 2015), and the approaches based on
high-throughput sequencing metagenomics and single cell genomics are also
applied to marine viruses (Angly et al. 2006; Rodriguez-Brito et al. 2010).

The advent of high-throughput sequencing technologies permitted to determine
the complete genome sequence of more than one hundred cultured marine viruses
over the past 15 years and many more are currently being analyzed. Virus genomics
provides invaluable insights into the understanding of how viral infection and virus
evolutionary relationships function. One notable feature is that marine viruses
encode remarkable panoplies of biological functionalities. They display core genes,
found in most viruses, involved into the replication of viral DNA and the structure
and the assembly of virions. Genome analyses also indicate that viruses encode and
transfer a variety of auxiliary metabolic genes (AMG) derived from their hosts
(Rohwer et al. 2000; Sullivan et al. 2005; Wilson et al. 2005). Although the ability
to shuffle genetic information through HGT is commonly reported in viruses, the
repertoire of host-derived genes encode by marine viruses differ from those of
non-marine origins. The most emblematic AMG is probably the psbA photosyn-
thesis gene reported in cyanophage genomes (Mann et al. 2003; Sullivan et al.
2005). This gene encodes the protein D1, which forms part of the photosystem II
reaction center in the host cell. During the course of viral infection, the D1 proteins
derived from the host decline dramatically while those encoded by the cyanophages
increase (Clockie et al. 2006). This led to the hypothesis that the expression of
virus-derived psbA helps maintaining photosynthesis throughout the lytic cycle,
which, in turn, ‘boosts’ the host metabolism to support virus replication. The
analysis of AMG in virus genomes suggests that marine viruses have evolved a
wide range of strategies to hijack host metabolism towards their own replication
(Hurwitz et al. 2013). AMG are widespread and they appear to be involved into
phosphate scavenging, carbon, or nitrogen metabolism (Brum and Sullivan 2015;
Hurwitz et al. 2013; Rohwer et al. 2000; Sullivan et al. 2005). The genome analysis
of viruses that infect the bloom-forming alga Emiliania huxleyi (EhV) also revealed
a unique cluster of sphingolipid biosynthetic genes (Wilson et al. 2005) that
facilitate virus replication and assembly (Rosenwasser et al. 2014). Genomics of
marine virus isolates provides unprecedented knowledge about complex metabolic
pathways that play a pivotal in role in host–virus interactions.

In parallel to genome analysis of cultured isolates, the development of
culture-independent tools was a breakthrough in virus ecology in the ocean.
Metagenomics largely contributed to unveil the extent of viral diversity and the
dynamics of viral communities (Angly et al. 2006; Breitbart et al. 2004; Brum et al.
2015). The genome sequence of relevant virus models is thus essential to build a

162 C.P.D. Brussaard et al.



reference database in order to identify the members of the viral communities and,
importantly, whom they infect (Kang et al. 2013; Zhao et al. 2013). Despite its
success, a general problem in the application of metagenomics techniques is that
although the number of viral particles is high, the amount of viral DNA in natural
environments is much smaller than cellular DNA. Therefore, since the beginning,
DNA amplification approaches were applied to retrieve the required amount for
Next Generation Sequencing (NGS) (Angly et al. 2006). In addition, the short NGS
reads complicate enormously the already shaky grounds of viral genome annota-
tion. Finally, one classical major limitation of viral metagenomics or metaviromics
was assembly. By assembly of high coverage metagenomes large genome contigs
can be reconstructed that are much more reliably annotated and classified.
However, for unknown reasons, assembly works much more poorly with phage
genomes in metaviromes. This problem can be partially by-passed by using cellular
metagenomes. Cellular DNA is also rich in viral DNA derived from cells that are
undergoing the lytic cycle. In metabolically active communities such as the deep
chlorophyll maximum (DCM) 10–15 % of the bacterial and archaeal DNA derives
from such phages (Ghai et al. 2010). For example, by using advanced binning
approaches, a bacteroidetes phage that seems to be extremely widespread and
conserved in the human microbiome could be assembled (Dutilh et al. 2014). By
using metagenomic fosmid libraries Mizuno et al. (2013) described large genomic
fragments from more than a 1000 viral genomes obtained from a single sample
from the Mediterranean DCM. Fosmids have similar size to typical Caudovirales
genomes and many of these could be retrieved. They could be gathered by genome
comparison into 21 major sequence groups and a vast genomic diversity was
present within each group. Host could be assigned to some of the 10 totally novel
groups by comparison to putative host genomes what allowed assigning the first
phages detected to marine Verrucomicrobia and the recently described marine
actinobacteria Actinomarinales (Ghai et al. 2013). This work also revealed high
microdiversity among the highly related sequence groups (Rodriguez-Valera et al.
2014), particularly in the host recognition modules. Specific single stranded
(ss) DNA amplification has allowed the reconstruction of ssDNA viruses that are
prevalent in marine habitats and have small genomes that simplify their recon-
struction from metaviromes (Labonté and Suttle 2013a, b). The newly developed
technology of single cell genomics is also providing data about viruses taking
advantage of the same phenomenon, i.e., sorted cells are often undergoing lysis and
eventually the active virus genome is abundantly represented in the resulted
amplified genome (Labonté et al. 2015). This technique allowed the description of
the first genome of a virus preying on the ubiquitous group I marine archaea or
Thaumarchaeota.
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5.5 Ecological Importance

Under natural conditions the richness of microbial species is high, while laboratory
research indicates that competition for the same resources ultimately will lead to the
dominance of the best competitor and the extinction of the other competitor(s). The
most renowned example is the Plankton Paradox (Hutchinson 1961), whereby
according to the competitive exclusion principle only a small number of plankton
species should be able to coexist on the growth-limiting resources while in reality
large numbers of plankton species are found to coexist within small regions of open
sea. Because ecological factors stay hardly ever constant, spatio-temporal hetero-
geneity, but also selective grazing, symbiosis and commensalism have been sug-
gested as factors responsible for resolving the Plankton Paradox. Another top-down
controlling factor more recently acknowledged is viral infection. Marine viruses
have typically narrow host ranges, which makes them highly relevant as underlying
cause of coexistence of microbial species (Suttle 2007; Thingstad 2000). As viral
infection is dependent on contact with the host, higher abundances of susceptible
host species are expected to favor successful infection. This Killing-the-Winner
(KtW) model describes how the abundance of the competition strategist is
top-down controlled by viruses, thereby ensuring coexistence of competing species
since the growth-limiting resources can be used by others (Thingstad 2000). Then
again, a high abundance of host is not necessarily the result of rapid growth as host
species might be resistant to top-down control (by zooplankton predators and/or
viral lysis), or there might be substantial loss of viral infectivity or virus particles
that prevent further infection of the developing host population. The traditional
rank-abundance curves (illustrating the relative abundance of species) have to be
read differently then, i.e., the least abundant taxa are not rare (or dormant) but are
instead actively growing but at the same time also predated and/or lost by viral lysis
(Suttle 2007). They illustrate r-selection, with high reproductive output, while the
few most abundant taxa are K-selected with low maximum growth rates, better
competitors for resources and less sensitive to cell loss (Suttle 2007; Våge et al.
2013). At the same time, the marine viruses rank-abundance curve shows a con-
trasting pattern with most viruses r-selected, being virulent with small genome sizes
and high decay rates. The low abundance virus taxa are K-selected with larger
genomes, longer-lived, and potentially forming stable associations with their host.

Blooms of phytoplankton exemplify situations where there is an unbalance
between growth and loss processes, either because the algal species is able to
outgrow infecting (at least temporarily) or because it is (largely) resistant to
infection. Blooms of E. huxleyi illustrate the concept of KtW well, because during
the development of the bloom the percentage of infected cells is increasing to a
point that causes the collapse of the bloom (Bratbak et al. 1993; Brussaard et al.
1996a; Martínez-Martínez et al. 2007). Interestingly, the cell morphotype of E.
huxleyi seems to affect the chance of infection. A laboratory study showed that the
diploid calcifying coccolith-bearing cells were virally infected but the haploid cells
were not (Frada et al. 2008). This finding led to the proposition of the Cheshire Cat
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escape strategy, where viral infection indirectly promotes a resistant haploid phe-
notype and thus sexual cycling (Frada et al. 2008). However, the genetically distinct
communities of the E. huxleyi host and the co-occurring viruses under natural
conditions were stable over several years, which seems to be inconsistent with the
Cheshire Cat hypothesis (sexual reproduction would actually reshuffle the genes in
E. huxleyi; Morin 2008). Moreover, a study of a natural bloom of E. huxleyi showed
that the haploid organic scale-bearing cells (haploid by nature, Laguna et al. 2001)
were also visibly infected by viruses (using transmission electron microscopy;
Brussaard et al. 1996a). It needs to be seen whether these differences between the
studies (1) indicate that sex does not act as an antiviral strategy (Morin 2008),
(2) are due to growth-controlling factors (i.e., the natural bloom was nitrogen
depleted while the laboratory study used nutrient replete cultures), (3) different
virus types (the natural study showed co-infection of two different viruses),
(4) genetically distinct algal host strains (and thus potentially different sensitivity to
infection), or (5) the haploid E. huxleyi cells in the laboratory study being different
than the natural scale-bearing cells.

Another example of how blooms are formed by (largely) viral infection-resistant
cell morphotypes is the algal blooms of the phytoplankton genus Phaeocystis
(Brussaard et al. 2005). Phaeocystis can make colonies provided that there is enough
light available to allow the excess organic carbon to be excreted in the form of
carbohydrates forming a colonial matrix (Schoemann et al. 2005). The colonial cell
morphotype has a much lower chance of becoming infected (or grazed) than a single
cell (Jacobsen et al. 2007; Ruardij et al. 2005) and therefore a considerable increase in
biomass is possible. At the moment, the cells become shed from the colonial matrix
(due to low light or nutrient depletion; Brussaard et al. 2005) the liberated single cells
are readily infected and eaten and the bloom crashes (Baudoux et al. 2006).

Viruses can be so specific that they only infect certain strains. This provides the
potential for intraspecies succession of host and virus within a phytoplankton bloom
(Baudoux et al. 2006; Tarutani et al. 2000). For example, the different sensitivities
of Heterosigma akashiwo clones to viral infection resulted not only in changes in
the total abundance of the virus infecting H. akashiwo but also the clonal diversity
of the algal host. Another example of high differential sensitivity to viral infection
within a species is the blooms of Synechococcus spp. that were composed of many
(genetically) different populations of host and cyanophage (Mühling et al. 2005;
Suttle and Chan 1994; Waterbury and Valois 1993). Differences in infectivity
properties of the host strains may be directly due to changes in the composition of
the attachment sites on the host’s cell surface (Marston et al. 2012), or may be the
indirect result of altered virus proliferation as a consequence of variation in host cell
metabolic traits between the host strains (Brussaard, unpublished data). Resistance
is thought to come with a cost, i.e., a resource competitive disadvantage compared
to viral infection susceptible strains (Lenski 1988; Thingstad et al. 2015).
Furthermore, host growth-controlling factors have been shown to affect virus latent
period, viral burst size, the level of infectivity of the viral offspring, and even viral
life strategy (Baudoux and Brussaard 2008; Bratbak et al. 1998; Maat et al. 2014;
Wilson et al. 1996). Altogether, variations in host susceptibility to viral infection
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and viral production rate and yield add not only to biodiversity but also to spatial
and temporal variability of microbial hosts and viruses.

Although many studies have indicated that viral infection is a significant loss
factor, accurate measurements of viral lysis rates of microorganisms in the field are
still few (Suttle 2005). Furthermore, rates of virally mediated mortality are assessed
using different approaches (results are therefore not necessarily comparable), and
most methods rely on different assumptions and conversion factors. The first
approach, using visibly infected cells obtained from transmission electron micro-
scopy analysis, is dependent on good estimation of the proportion of the lytic cycle
during which virus particles are visible in the infected host cells (Brussaard et al.
1996a; Proctor and Fuhrman 1990). This factor is difficult to assess as the lytic virus
growth cycle is highly variable between viruses and it can also differ within a virus
depending on host metabolism. Estimating viral lysis rates using (fluorescent) virus
tracers requires estimates of burst sizes (Heldal and Bratbak 1991; Noble and
Fuhrman 2000; Suttle and Chen 1992). Using viral decay rates to estimate pro-
duction rates also requires the assumption that there is a steady-state situation. The
use of synthesis rates of viral DNA requires many conversion factors (Steward et al.
1992). Measuring viral production rates is most widely used but does need an
estimate of burst size and comes with substantial sample handling (Weinbauer et al.
2010). Many of these methods, except the visibly infected host cell assay, measure
viral lysis of the total community, because the different virus (and often also host)
populations cannot be discriminated. Because algal viruses typically represent a few
percent of the total virus abundance, the same methods are not well suited for
phytoplankton viral lysis rate estimates unless the algal virus can be separately
counted. For phytoplankton, viral lysis rate can be assessed using a modified
dilution assay (Baudoux et al. 2006; Evans et al. 2003; Kimmance and Brussaard
2010), but here the restriction is that the algal host cells are newly infected and
lysed within the time of incubation (typically 24 h because of synchronized cell
division of many phytoplankton species).

The available viral lysis rate measurements in the field demonstrate that viral
lysis is similar to predation rates (Baudoux et al. 2006, 2007; Mojica et al. 2015).
The pathways of cellular organic matter and energy through the food web will,
therefore, follow different ways (Suttle 2005). Upon predation organic carbon and
nutrients are transferred to higher trophic levels, while upon viral lysis the host’s
cellular content is released into the surrounding waters as dissolved and detrital
particulate organic matter. Viruses are as mortality agents causing accelerated
transformation of organic matter from the particulate (lysed host cells) state to the
dissolved phase, upon which heterotrophic microbial communities mineralize the
largely (semi-) labile organic matter directly (Lønborg et al. 2013). The diversion of
organic matter towards the microbial loop (microbial recycling) results in enhanced
respiration (Suttle 2005). Cell lysis of microorganisms has been reported to sustain
the heterotrophic bacterial carbon demand (Brussaard et al. 1995, 1996b, 2005).
Globally, viral lysis seems to negatively affect the efficiency of the biological pump
(i.e., the transfer of photosynthetically fixed carbon to the deep ocean as dead
organisms or feces). The rapid release and remineralization of nutrients in the photic
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zone may increase the ratio of carbon relative to nutrients exported to the
deep. Conversely, viral lysis may potentially short-circuit the biological pump by
stimulating the formation of transparent exopolymer particles (TEP) and aggregates
(Brussaard et al. 2008; Mari et al. 2005), as well as release elements that could as
such stimulate primary production (e.g., ligand-bound iron and organic phosphorus;
Gobler et al. 1997; Løvdal et al. 2008; Poorvin et al. 2004). With respect to the
global anthropogenic climate change (greenhouse effect but also alterations in the
physicochemical characteristics of the water masses, e.g., temperature, salinity,
light, nutrients), it is urgent to improve our understanding of how viral activity
affects the processes involved in the natural sequestration of carbon dioxide.
A study in the northeast Atlantic Ocean showed for instance that the share of viral
lysis (as compared to grazing) of phytoplankton increased under conditions of
temperature-induced vertical stratification (Mojica et al. 2015).

5.6 Isolation, Culture, and Characterization
of Marine Viruses

Almost from their first discovery in 1917, cultured virus–host systems (VHS) were
viewed as relevant models for microbiologists and geneticists who investigated the
nature of genes and heredity. This early era of virus research constituted the
foundations of molecular biology. It was not until the mid-1950s that marine
viruses were discovered with the isolation and the description of a phage lytic to the
fish gut associated bacterium, Photobacterium phosphoreum (Spencer 1955).
Although the potential of bacteriophages to control host populations emerged quite
rapidly, virus isolation from oceanic settings was only reported sporadically and
most studies focused on the biology rather than the ecological implications of these
model systems (Hidaka and Fujimura 1971; Hidaka 1977; Spencer 1960). The
breakthrough discovery that viruses are the most abundant biological entities in the
ocean marked a turning point in the field of virus ecology and literally renewed
interest in isolating, culturing, and characterizing marine viruses.

Several protocols describing procedures for the isolation of lytic viruses have
been reported from various laboratories. These protocols include three main steps:
(1) A natural sample is added to a selection of prospective host cultures, (2) the
lysis of this host is visualized and, (3) in case of positive lysis, the lytic agent is
cloned and stored appropriately until characterization. In the following section, we
provide a thorough description of these steps and recommendations to optimize
successful virus isolation. Although these features are applicable to most viruses,
viral strains may differ in their development, and therefore isolation protocols may
have to be adapted accordingly. In theory, at least one, and usually multiple,
viruses, can infect any given organism. However, empirical data have shown that
some strains are more permissive to viral infection than others. It is, therefore,
preferable to use several clonal host lineages in order to increase the chance of
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successful isolation. When possible, one should isolate the host strains just prior to
virus isolation from the same location in order to increase success rate in case the
virus has a narrow host range. Furthermore, owing to their parasitic nature, viruses
largely rely on the metabolism of their hosts for production. In most cases,
well-growing hosts tend to be more susceptible to viral infection.

Prior to the isolation, it is recommended to remove particles larger than viruses
by low-speed centrifugation and/or pre-filtration through low protein binding
membrane filters (e.g., polycarbonate, polyethylsulfone, polyvinylidene fluoride)
with a preferable pore size of 0.45–0.8 µm (filtration through 0.2 µm could exclude
larger virus particles). However, this may result in loss of viruses and therefore it is
recommended to also use a non-treated sample. For sediment or any other type of
porous samples, viral particles need to be transferred into a buffer solution prior to
centrifugation and/or pre-filtration (Danovaro and Middelboe 2010). If the targeted
virus population is expected to be low in abundance, tangential flow filtration/
ultrafiltration or ultra-centrifugal units with a retention cutoff of at least 100 kDa
can concentrate viral particles. As an alternative to these techniques that can
become time consuming and costly, the host-enrichment technique also increases
the probability of successful isolation considerably. This enrichment step consists
of amending the viral community to be screened with 1–5 prospective host strains
and host growth medium. Upon incubation this mixture, viruses lytic to these hosts
should propagate and hence this procedure facilitates isolation. After incubation, the
suspension can be clarified by centrifugation or pre-filtration and, if necessary,
further concentrated by ultrafiltration as described above. Once prepared, the
extracted viral community can be stored at 4 °C until the isolation procedure.

5.6.1 Detection of Lytic Viral Lysis and Virus Purification

There are several approaches to visualize cell lysis of the targeted host due to lytic
viral infection. One common technique is the plaque assay, which has been suc-
cessfully applied to the isolation of viruses of bacteria and microalgae (Fig. 5.2).
This technique relies on combining an inoculum of the viral sample and the targeted
host culture in soft agar overlay on agar plates. On incubation, the host develops a
homogenous lawn, except where virus lysis occurs, resulting in localized translu-
cent plaques, referred to as a plaque-forming unit (PFU, Fig. 5.2). PFU typically
originates from one infectious virus and displays a well-defined morphology.
Different viruses infecting the same host can coexist in the same sample. It is
therefore recommended to pick as many individual plaques as possible and to repeat
the plaque assay for another two times to produce as many clonal lineages of these
isolates. Alternatively, the lysis of infected host can be detected in liquid medium.
In this case, the propagation of viruses is not limited by the diffusion in semi-solid
agar media. Upon attachment on a susceptible host, the viral progeny is released in
liquid medium and the newly produced virions can initiate another lysis cycle and
propagate until complete lysis of the cultured host. Lysis is detected by complete
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clearing of the host suspension as shown in Fig. 5.3. The resulting lysate can
comprise a mixture of viruses that need to be separated as soon as possible to obtain
clonal viral lineages. This can be achieved by extinction dilution methods in
multiwell-plates (Fig. 5.3). The principle of this procedure is to serially dilute
(usually using tenfold dilution increment) the lytic agents in vigorously growing
host culture until complete extinction (i.e., no lysis detected anymore). The lysed
culture from the most diluted dilution is selected and the complete procedure is
repeated twice to ensure a clonal virus. While the plaque assay can lead to the
isolation of several viral strains infecting the same host, isolation in liquid medium
generally selects for the most abundant viral strain lytic for the targeted hosts.
However, this latter procedure requires only non-specialized equipment, consum-
ables and minimal sample handling.

Fig. 5.2 Petri dish showing a plaque assay for viruses infecting the picoeukaryotic phytoplankton
Micromonas sp. (photo courtesy Nigel Grimsley)

Fig. 5.3 Aquatic serial dilution set-up using microwell plates whereby a suspension of
Micromonas virus RCC4265 was diluted from �101 down to �10−14 in Micromonas host
culture RCC829. Lysis is scored positive until dilution �108. Non-infected controls (first column)
were taken along for reference
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5.6.2 Isolation of Temperate Viruses

The most common procedure to induce lysogens and isolate temperate viruses
consists of inducing lysogens with the antibiotic mitomycin-C (Paul and Weinbauer
2010). The recommended mitomycin-C concentration varies depending on the
lysogen strains but usually ranges between 0.1 and 2 µg mL−1. This treatment
usually induces the collapse of lysogenized culture and the release of temperate virus
within 12 h. Cellular debris and larger particles can be clarified from the suspension
by low-speed centrifugation and/or filtration through 0.45 µm low protein binding
membrane filters. The filtrate containing temperate viral isolates can then be stored at
4 °C in the dark until further characterization. Alternatively, lysogens can also be
induced upon short (30 s) exposure to UV-C radiation (Jiang and Paul 1998; Lohr
et al. 2007; Weinbauer and Suttle 1996). These procedures demonstrated that
lysogeny was frequent among cultured marine bacteria (Jiang and Paul 1998;
Lossouarn et al. 2015; Stopar et al. 2004) yet it has been seldom reported in
microalgae (Lohr et al. 2007) and archaea. However, one should bear in mind that
lysogeny represents a complex and stable relationship between the virus genome and
that of its hosts. The induction of lysogens upon chemical or physical induction does
not take into account the biological principle of this symbiosis (Paul 2008). It is thus
likely that some lysogens are not induced following these treatments.

5.6.3 Isolation of Chronic Viruses

Chronic viruses that are released by the host cell by continuous or intermittent
budding or extrusion are less investigated than their lytic and temperate counter-
parts, yet they have been reported in marine eukaryotic photoautotrophs Emiliania
huxelyi (Mackinder et al. 2009) and Ostreococcus sp. (Thomas et al. 2011), but also
for viruses of the hyperthermophilic euryarchaeote Pyrococcus abyssi (Geslin et al.
2003) and Thermococcus prieurii (Gorlas et al. 2012). Chronic viruses are typically
detected by the examination of host culture by transmission electron microscopy.
The isolation of these viruses mostly relies on extracting the virus particles from the
host culture. This can be done either by low-speed centrifugation and/or filtration
through low protein binding membrane filters with pore size ranging from 0.2 to
0.45 µm.

5.6.4 Maintenance and Storage

The most common procedure to store virus stocks is to keep them refrigerated (4 °C)
in the dark. However, viral strains differ considerably with respect to their stability in
the cold. While some isolates can be kept for years, others decay when stored
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refrigerated. Therefore, appropriate storage conditions should be designed for each
individual type of virus. For the most challenging isolates, repeated transfers into
fresh host culture can be considered for maintaining viruses. Finally, cryopreser-
vation can be an alternative for, at least, some isolates. Bacteriophages affiliated to
the order Caudovirales are often stored at −80 °C in 10–20 % sucrose, 10-20 %
dimethyl sulfoxide (DMSO). These concentrations of cryoprotectant were also
appropriate to store viruses of phytoplankton; however, storage temperature has to
be modified according to the isolate stability (Nagasaki and Bratbak 2010).
Conversely, to viruses pathogenic to human, animals or plants, marine virus isolates
are rarely deposited in culture collections. Except for the Roscoff Culture Collection
(RCC), which curates and supplies viruses of marine microbes, most VHS are
maintained in personal culture collections of individual laboratories.

5.7 Marine Virus-Host Model Systems in Culture

During the past three decades few hundreds of viruses have been isolated from
marine systems and brought into culture. Cultured viral isolates have been reported
for many species emblematic of heterotrophic and phototrophic marine bacteria
such as Proteobacteria, Bacteroidetes, Cyanobacteria (e.g., Holmfeldt et al. 2013,
2014; Moebus and Nattkemper 1983; Sullivan et al. 2003, 2005, 2009) and algae
(Brussaard and Martínez-Martínez 2008; Short 2012; Tomaru et al. 2015 and ref-
erences therein), whereas thus far only few viruses infecting archaea (Geslin et al.
2003; Gorlas et al. 2012), or heterotrophic protozoa (Arslan et al. 2011; Fischer
et al. 2010; Garza and Suttle 1995) were brought into culture. Among the latter, the
virus of the protozoa Cafeteria roenbergensis (CroV) was even parasitized by a
small virophage (Mavirus) during CroV host infection (Fischer and Suttle 2011).

The isolation and characterization of these VHS unveiled an extraordinarily high
level of morphological, taxonomical, and functional novelty. The characterization
of 31 cellulophages demonstrated considerable divergence with known counterparts
(Holmfeldt et al. 2013). The morphological and genomic analysis of these isolates
showed that they represent 12 novel genera globally distributed in the ocean and
together they comprise the largest diversity of phages associated to a single marine
host (Holmfeldt et al. 2013). Likewise, marine protists host a wide diversity of viral
pathogens. The majority of these viruses is complex, possesses a large dsDNA
genome, and belongs to the Nucleo-Cytoplasmic Large DNA Viruses (NCLDV),
for which the order Megavirales has been proposed (Colson et al. 2013). NCLDV
from marine environments belong to 2 main families. The Phycodnaviridae family
includes the majority of viruses that infects photosynthetic protists among which
the haptophytes E. huxleyi (Schroeder et al. 2002; Wilson et al. 2005), P. globosa
(Baudoux and Brussaard 2005; Brussaard et al. 2004b), the prasinophytes
Micromonas, Bathycoccus, and Ostreococcus (Baudoux et al. 2015; Derelle et al.
2008, 2015; Martínez-Martínez et al. 2015; Zingone et al. 2006), or the raphido-
phyte H. akashiwo (Nagasaki et al. 1999).
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Marine NCLDV also classify within the Mimiviridae family. This clade, named
after the discovery of Mimivirus (Raoult et al. 2004), originally included viruses
with exceptionally large dsDNA genomes. With a sophisticated shell 0.7 µm and a
huge genome of 1.2 Mb,Megavirus chilensis, isolated from coastal waters of Chile,
represents the largest Mimiviridae and it surprisingly propagates on a freshwater
acanthamoeba (Arslan et al. 2011). Viruses with smaller genome sizes but sharing
several genetic features with these giant viruses were added to this virus family;
Mimiviridae includes now the virus CroV that infects the marine protozoa Cafeteria
roenbergensis (750 kb, Fischer et al. 2010), but also viruses that infect photosyn-
thetic protists such as the haptophytes Phaeocystis pouchetii (485 kb, Jacobsen
et al. 1996), Phaeocystis globosa (460 kb PgV-16T, Santini et al. 2013), Haptolina
ericina (formely named Chrysochromulina ericina, 530 kb, Sandaa et al. 2001;
Johannessen et al. 2015), Prymnesium kappa (507 kb, Johannessen et al. 2015), the
prasinophyte Pyramimonas orientalis (560 kb, Sandaa et al. 2001) and the
pelagophyte Aureococcus anophagefferens (371 kb, Moniruzzaman et al. 2014) are
awaiting assignment to this virus family. The discovery of Mimiviridae initiated
intensive debates on the concept virus. Their huge and astonishingly complex
genome was found to encode trademark cellular functions, which literally blurs the
boundaries between viruses and cellular organisms. The upper limits of the viral
world both in terms of particle size and genome complexity have been pushed out
with the isolation of Pandoraviruses from coastal marine waters and a freshwater
pond (Philippe et al. 2013). These amoeba viruses exhibit dsDNA genome of
2.5 Mb lacking similarities with known NCLDV.

Not all protist viruses are of the dsDNA type. The prasinophyte Micromonas,
which hosts many Phycodnaviridae, can also be infected by dsRNA virus
(Brussaard et al. 2004b). This reovirus displays unusual morphology and genetic
features compared to known Reoviridae, which led to the proposition of a new
genus, Mimoreovirus, within the family Reoviridae (Attoui et al. 2006). Moreover,
diatom viruses exhibit tiny particle diameter (< 40 nm) compared to Phycod
naviridae and belong to two main groups: the Bacilladnavirus (ssDNA viruses,
Kimura and Tomaru 2013, 2015; Nagasaki et al. 2005; Tomaru et al. 2008, 2011a,
b, 2013b) and the Bacillarnavirus (ssRNA, Kimura and Tomaru 2015; Nagasaki
et al. 2004; Shirai et al. 2008; Tomaru et al. 2009, 2012, 2013a).

Together, these novel VHS demonstrate that we have barely scratched the sur-
face of viral diversity. Characterizing these model systems is essential to gaining
knowledge about the functional role of this tremendous taxonomic diversity.
Importantly, marine environments have been inadequately sampled. Most VHS
cultured thus far originate from temperate coastal marine environments, while
open-ocean, tropical and extreme marine systems have been largely under-explored.
Likewise, VHS mostly include dsDNA virus that infect emblematic marine bacteria
or protists. By comparison archaeal viruses, RNA viruses, or ssDNA are
under-represented while some of these groups seem to comprise an important
fraction of the viral community (Culley et al. 2006; Labonté and Suttle 2013a, b;
Labonté et al. 2015). Hence, there is no question that more efforts for isolating
novel viruses need to be pursued.
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5.8 Marine Viruses and Biotechnological Applications

Metagenomic studies of marine viruses reveal the presence of many new genes and
novel proteins and as such the vast amount of genetically diverse marine viruses is a
largely untapped genetic resource for biotechnological applications. Interesting
findings from studying marine viruses thus far involve the algal virus EhV infecting
E. huxleyi, which has a unique cluster of seven genes that are involved in the
sphingolipid biosynthesis, leading to ceramide formation (Wilson et al. 2005).
Ceramides are the key structural lipids of skin, nails and hair as an effective epi-
dermal barrier against water evaporation and entry of microorganisms. Use of
ceramides by the cosmetic industry depends still largely on biomolecules obtained
from natural sources, and thus the expression and production of viral ceramides
may be a promising alternative source of natural ceramides (Wilson et al. 2005).

Other exciting recent discoveries are the viruses infecting viruses which showed
that the infection with such virophage (‘eaters of viruses’) not only helps the
survival of the cellular organism by decreasing the yield of the larger virus, but it
also illustrated the potential of the virophages as source of biotechnologically
interesting features (Fischer and Suttle 2011; La Scola et al. 2008). For example, the
name of the virophage Mavirus is derived from Maverick virus as its genome
encoding 20 predicting coding sequences of which seven have homology to the
Maverick/Polinto family of DNA transposons. Furthermore, the DNA genome of
the virophage Sputnik contains genes related to those in viruses infecting the three
domains of life, and may as such serve the transfer of genetic material among
viruses.

In the marine aquaculture industry, viruses are typically directly linked to (lethal)
diseases and therefore are considered a major economic burden (Suttle 2007).
However, the beneficial use of lytic viruses as mortality agents and source of lytic
enzymes has been explored for multiple purposes. In aquaculture, Chlorella viruses
were exploited to improve the extraction efficiency of algal lipids for biodiesel
production (Sanmukh et al. 2014). The stringent host specificity of virus is another
feature that has been exploited in aquaculture. Cultured fish, shellfish, or crus-
taceans, like any animal, are the target of bacterial infections that can have a
dramatic economic impact. The use of chemotherapy is a rapid and efficient way to
limit these infections. Yet these treatments are also lethal for beneficial bacteria and,
importantly, they have led to the evolvement of multidrug-resistant bacterial strains
that are a serious threat for farming industries. By comparison, lytic viruses are
efficient antimicrobial agents that specifically infect and propagate on a limited
number of host strains, leaving the co-occurring microbial community untouched.
They have thus emerged as potential therapeutic agents to prevent and treat bac-
terial infections. Phage therapy has already been implemented to treat several fish
pathogens and its effectiveness is currently tested for the treatment of other cultured
animals in experimental conditions (Karunasagar et al. 2007; Martínez-Díaz and
Hipólito-Morales 2013; Nakai and Park 2002; Oliveira et al. 2012 and references
therein).
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The application of viruses as therapeutic agents goes beyond aquaculture. In
natural ecosystems, the combined effect of anthropogenic pressure and global
change severely threatens the health of coral reefs. The increased surface temper-
ature and pollution has been associated with the development of infectious diseases
that lead to the demise of infected reefs. Phage therapy reached a new milestone
with promising tests accomplished on the scleractinian corals Favia favus infected
by Thalassomonas loyana, the causative agent of the white plague disease (Atad
et al. 2012). Inoculation of the marine phage BA3 (Efrony et al. 2007, 2009) with
diseased corals prevented the progression of the white plague disease and its
transmission to healthy corals in the Gulf of Aqba, Red Sea. This promising study
constitutes the first application of phage therapy to cure diseased corals in situ.

Another emerging field of interest is the detection and identification of viruses in
ballast water. Ballast water discharges from ships are responsible for introducing
invasive species and their viruses to other marine regions. The knowledge of marine
microorganisms spread by ballast water discharge is still largely understudied but
has potential of spreading disease agents. There are a few examples (already) of
specific viruses that were introduced via ships’ ballast water, i.e., the Infectious
Salmon Anemia Virus (ISAV) in salmon farms of Scotland were linked to vessel
visits, and marine cyanophages were introduced to the Great Lakes, USA (Murray
et al. 2002; Wilhelm et al. 2006). Given the increasing volume of shipping and
rapidly growing aquaculture industry, introduction of pathogenic viruses to
near-coast ecosystems and aquaculture farms is a realistic threat. At the same time,
increasingly strict regulations on ballast water discharge force the shipping industry
to make use of on-board ballast water treatment systems in order to decrease the
abundance of organisms and viruses. Effective methods of virus concentration and
virus detection are needed to comply with the new quality standards.

The high yield genes found as AMG can be used by synthetic biology to create
more efficient artificial cells in the future. It is clear that the vast genetic diversity
contained in the viral biosphere compartment will eventually be used for biotech
applications or nanotechnology (Fischlechner and Donath 2007).

5.9 Future Perspectives

Viruses play a major role in the natural history and population dynamics of most
living organisms and this is even truer for Bacteria, Archaea, and protists. Marine
viruses might contribute decisively to the marine ecosystem functioning and to the
stability and performance of the microbial communities. Therefore, it is important
to strive to get a meaningful representation of all the groups involved in the
community behavior and that includes viruses. If we are to understand the biology
of these microbes we have to advance in the knowledge of their viruses.
Culture-independent approaches are allowing fast advances, but do not exclude the
need for in situ viral lysis rate measurements, as well as experimental studies of
viral–host interactions.
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Viruses are probably the largest reservoir of novel genes in the biosphere and
this novelty is important for their host biology. The role that viruses play in the
evolution of microbes is considered to be fundamental. Cells can outsource their
most innovative evolutionary experiments to their viruses that are not under the
pressure of optimizing growth parameters to compete. The number of genes shared
by (microbial) hosts and their viruses has been continuously increasing. As more
viral genomes become available, the list of AMG genes increases and is now
including multiples aspects of the host physiology (Breitbart 2012).

It has been proposed that viruses are a part of the bacterial and archaeal
pan-genomes (Rodriguez-Valera and Ussery 2012) and that as such are impossible
to extricate from the cellular lineages from an evolutionary perspective, i.e., to form
a single selection unit. In the formidable task that microbiologists face when
struggling to describe microbial diversity and its ecological function, viral diversity
and activity can be considered the last but important frontiers that need to be
overcome.
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