
Chapter 7
Creating a Conversational Interface Using
Chatbot Technology

Abstract Conversational interfaces can be built using a variety of technologies.
This chapter shows how to create a conversational interface using chatbot tech-
nology in which pattern matching is used to interpret the user’s input and templates
are used to provide the system’s output. Numerous conversational interfaces have
been built in this way, initially to develop systems that could engage in conver-
sation in a human-like way but also more recently to create automated online
assistants to complement or even replace human-provided services in call centers.
In this chapter, some working examples of conversational interfaces using the
Pandorabots platform are presented, along with a tutorial on AIML, a markup
language for specifying conversational interactions.

7.1 Introduction

In Chap. 6, we showed how to add speech input and output to a mobile app using
the Google Speech APIs. However, speech input and output are only one part of the
tasks that we might require from a conversational interface. Our query might be
about the weather in London or for directions to the nearest Starbucks. We will
want our query to be interpreted by the conversational interface as a request to
answer a question or to carry out some action. We will also want the app to respond
with something related to what we asked for, such as a spoken answer to our
question about the weather or a display of information such as a map with the
requested directions.

Consider once again the components of a spoken language-based conversational
interface that we described in Chap. 2 (Fig. 7.1).

As we can see, once the user’s input has been recognized by the speech recog-
nition component, it has to be interpreted in order to determine its meaning. In some
approaches, this might involve a thorough analysis of the input using techniques
from spoken language understanding (SLU)—for example, a grammar to represent
the permissible inputs and a parser to apply the grammar to the input and to extract a
semantic representation. Then, the dialog manager has to decide what actions to

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_7

125

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_2


take, using as a basis this semantic representation and other relevant information
such as the current context. This will result in some output being generated—words
to be spoken and possibly output in other modalities, such as images, lists, and
maps. For these tasks, additional components are required, in particular: SLU (see
Chaps. 8 and 9), dialog management (DM) (see Chaps. 10 and 11), and response
generation (RG) (see Chap. 12).

In this chapter, we will present a simpler approach that has been widely applied
in chatbot technology, as illustrated in Fig. 7.2. In this approach, the input is
matched against a large store of possible inputs (or patterns) and an associated
response is outputted. The chatbot approach was first used in the ELIZA system
(Weizenbaum 1966) and has continued until the present day in the form of apps that
provide an illusion of conversation with a human as well as in areas such as
education, information retrieval, business, and e-commerce, for example, as auto-
mated online assistants to complement or even replace human-provided services in
a call center (see further Chap. 4).

More recently, chatbot technology has been extended to support the develop-
ment and deployment of virtual personal assistants by incorporating methods for
interpreting commands to the device or queries to Web services—for example, to
search for information on the Internet, access information on the device, such as
contacts and calendars, perform a task on the device such as launching an app,
setting an alarm, or placing a call.

We will use the Pandorabots platform, a popular Web service that enables
developers to create and host chatbots, to show how a conversational interface can
be created with chatbot technology. We first introduce Pandorabots and then

Fig. 7.1 The components of a spoken language-based conversational interface

126 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_12
http://dx.doi.org/10.1007/978-3-319-32967-3_4


provide a brief overview of AIML (Artificial Intelligence Markup Language),
which is used to specify conversations for a chatbot on the Pandorabots platform.
Following this, we will show how to embed a Pandorabots chatbot in an Android
app and how to provide speech input and output. We will then show how the
chatbot can be extended to handle commands to the device and queries to Web
services. In the final section, we will show how this approach can be further
extended.

The code corresponding to the examples in this chapter is in GitHub, in the
folder chapter7 of the ConversationalInterface1 repository.

7.2 Introducing the Pandorabots Platform

Pandorabots is a bot-hosting service launched in 2002 that enables chatbot devel-
opers (referred to in Pandorabots as botmasters) to develop, test, and deploy
chatbots (or more simply bots) without requiring a background in programming.2

AIML was developed by Dr. Richard Wallace as a language for specifying con-
versations with chatbots and was used by Wallace to develop the chatbot ALICE

Fig. 7.2 Using Pandorabots for spoken language understanding, dialog management, and
response generation

1http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.
2http://www.pandorabots.com/. Accessed February 20, 2016.

7.1 Introduction 127

http://zoraidacallejas.github.io/ConversationalInterface/
http://www.pandorabots.com/


(Artificial Linguistic Internet Computer Entity) which won the Loebner Prize in
2000, 2001, and 2004. The Loebner prize is awarded to the chatbot that in an
annual competition is considered by judges to be the most human-like. Other award
winning bots developed using AIML include Mitsuki, Tutor, Izar, Zoe, and
Professor. Currently more than 221,000 chatbots in many languages are hosted on
the platform. The platform has recently been revamped so that in addition to the
original chatbot-hosting server there are now facilities on a Developers Portal to
support the deployment of chatbots on the Web and on mobile devices.

Many chatbots that are currently available on mobile devices were created using
Pandorabots and AIML. These include the following: Voice Actions by Pannous
(also known as Jeannie), Skyvi, Iris, English Tutor, BackTalk, Otter, and
Pandorabot’s own CallMom app. CallMom can perform the same sorts of tasks as
other chatbots but also includes a learning feature so that it can learn personal
preferences and contacts and can be taught to correct speech recognition errors.
More information about Pandorabots and chatbots in general can be found at the
ALICE A.I. Foundation site.3 See also the Chatbots.org website.4

As mentioned in the previous section, in order to simulate conversation, chatbot
technology makes use of pattern matching in which the user’s input is matched
against a large set of stored patterns and a response is output that is associated with
the matched pattern. The technique was first used in the ELIZA system and has
been deployed in subsequent chatbots ever since. Authoring a chatbot on
Pandorabots involves creating a large number of AIML categories that at their most
basic level consist of a pattern against which the user’s input is matched and an
associated template that specifies the chatbot’s response. Code 7.1 is a simple
example of an AIML category.

Code 7.1 AIML category for “What are you?”

3http://www.alicebot.org/. Accessed February 20, 2016.
4https://www.chatbots.org/. Accessed February 20, 2016.

128 7 Creating a Conversational Interface Using Chatbot Technology

http://www.alicebot.org/
https://www.chatbots.org/


In this example, if the user’s input is matched against the text in the pattern, the
system executes the contents of the template. Matching in AIML is done by the
Graphmaster, which stores all the patterns in a graph. The graph consists of a
collection of nodes called Nodemappers that map the branches from each node. The
root of the Graphmaster is a Nodemapper with a large number of branches, one for
each of the first words of the patterns. In the case of ALICE, there were around
40,000 patterns with about 2000 different first words (Wallace 2003). Matching
involves traversing the graph on a word-by-word basis from the root to a terminal
node. Interestingly, this process bears some similarity to the process of incremental
processing by humans where an input sentence is analyzed on a word-by-word
basis as opposed to waiting for the utterance to be completed (Crocker et al. 1999;
see also Chap. 4). More detail about pattern matching in AIML can be found in
Wallace (2003) and also at the AliceBot Web page.5 A formal definition of the
Graphmaster and matching is provided in Wallace (2009).

Once a pattern has been matched, the contents of the associated template are
output. In the example above, the contents are in the form of text, so the output is a
message consisting of that text, but the template can also contain executable code
and various tags that can be used to compute more complex and more flexible
responses, as will be explained in Sect. 7.6.

In the remainder of this chapter, we will provide a series of exercises showing
the steps required to generate a bot (see Fig. 7.3).

Exercise 7.1: Creating a bot in Pandorabots Playground Pandorabots provides
a Web-based platform called Playground for testing bots developed in AIML. In
this section, we describe how to create an account in Playground and develop your

Fig. 7.3 The steps required to generate a bot

5http://www.alicebot.org/documentation/matching.html. Accessed February 20, 2016.

7.2 Introducing the Pandorabots Platform 129

http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://www.alicebot.org/documentation/matching.html


first bot using a built-in library of AIML files. The AIML files for the bot that we
will build in the next sections are in GitHub ConversationalInterface repository in
the folder chapter7/AIML.

1. To access Playground, go to the Pandorabots Web page6 and click on the
Playground tab, or you can also go directly to the Playground page.7 Here you
can sign up for a 10-day free trial account and log in using your Facebook,
Google, Twitter, or Yahoo account. You will find a QuickStart tutorial, a more
detailed tutorial, and a tab for FAQs, as shown in Fig. 7.4.

2. Once you have created an account, you can start to create bots, interact with
them and develop them further. The following are brief instructions. For more
detailed instructions, see the Playground Web site.

3. Click on the My Bots tab to see a list of your bots. (If you have just signed up
for an account, the list will be empty.)

4. Click on the Create Bot tab to create a bot. Give it a name, for example,
“talkbot.”

5. You will have a set of default AIML files.
6. To get started, you can make use of the chatbot base called Rosie, which is a

collection of AIML files. Rosie provides conversational interaction. The files in
the Rosie chatbot base allow you to get started quickly without having to write
any AIML code. This page8 includes a number of other useful resources. Go to
the page and upload the files found under the lib directory.

7. Select your bot. This will bring up the editor screen for your bot (Fig. 7.5).
8. Click on the Train tab. Now you can test your bot by asking questions.

Fig. 7.4 The Playground home page (reproduced with permission from Pandorabots, Inc.)

6http://www.pandorabots.com/. Accessed February 20, 2016.
7https://playground.pandorabots.com/en/. Accessed February 20, 2016.
8https://github.com/pandorabots/rosie. Accessed February 20, 2016.

130 7 Creating a Conversational Interface Using Chatbot Technology

http://www.pandorabots.com/
https://playground.pandorabots.com/en/
https://github.com/pandorabots/rosie


7.3 Developing Your Own Bot Using AIML

As you may have noticed, the chatbot bases provided by Pandorabots cover many
of the aspects of conversational speech. However, if you want your bot to be able to
respond to questions in a specific domain, you will need to create new AIML code.
In this section, we provide a brief tutorial on AIML that we will use as a basis for
creating a chatbot that provides answers to frequently asked questions in the domain
of type 2 diabetes. A more comprehensive tutorial can be found on the Pandorabots
Playground page.

The following are some of the questions that a user might ask:

What is type 2 diabetes?
What are the main symptoms of type 2 diabetes?
What is the main cause of type 2 diabetes?
How do you treat type 2 diabetes?
Can type 2 diabetes be cured?
Does exercise help?
Tell me about blood sugar.
What are the long term complications?

To be able to answer questions such as these, we need to create categories that
will specify the range of inputs and the answers that we wish to associate with them.

7.3.1 Creating Categories

A first step is to collect questions and their answers and to create categories con-
sisting of patterns and templates, for example (Code 7.2):

Fig. 7.5 The Playground editor screen (reproduced with permission from Pandorabots, Inc.)

7.3 Developing Your Own Bot Using AIML 131



However, it will quickly become clear that there are many ways of asking the
same question, for example:

What is the main cause of type 2 diabetes?
What causes type 2 diabetes?
What are the causes of type 2 diabetes?
What is the main cause?
What are the causes?
How do you get type 2 diabetes?

Rather than list all of these synonymous questions and their answers (which in
this case would all be the same), AIML makes use of a technique in which syn-
onymous questions are mapped on to one canonical pattern using the <srai> tag,
as in (Code 7.3).

In this example, the bot’s response is retrieved recursively by finding the
response in the category that contains the pattern of the canonical pattern what is
the main cause of type 2 diabetes. However, given the possible com-
binatorial explosion of synonymous questions, specifying all the required symbolic
reductions remains a formidable task.

Code 7.2 AIML category for “What is type 2 diabetes?”

Code 7.3 AIML category for “What is type 2 diabetes?” including an <srai> tag

132 7 Creating a Conversational Interface Using Chatbot Technology



7.3.2 Wildcards

The use of wildcards also enables similar patterns to be mapped on to one canonical
form. For example, the wildcard * matches one or more words in the input, so that
the following patterns can be treated as variants at different levels of
expressiveness:

What are the main symptoms of type 2 diabetes?
What are the * symptoms of type 2 diabetes?
What are the * symptoms *?

Another wildcard ^ can match zero or more words, so that in the following code,
the input “what are the main symptoms” would be matched along with other inputs
including words after the word “symptoms” (Code 7.4).

The words captured by a wildcard can be repeated back in the template by using
the <star/> tag. For example, in response to a question about symptoms, the
human might say, “I feel tired,” for which the pattern and template in Code 7.5
would cover any symptom mentioned.

This will allow an interaction such as:

Human: I feel tired.
Bot: When do you feel tired?

There can be more than one wildcard in a pattern, and they can be repeated back
in the template by using <star index = “x”>, where x corresponds to the
position of the wildcard in the input (Code 7.6).

This will allow an interaction such as:

Human: I feel tired and I have a headache.
Bot: So you feel tired and you have a headache.

While wildcards are a useful way of avoiding redundancy in patterns, as in any
other system using wildcards there is the potential for false positives, where an
input may be matched against an unintended canonical pattern, resulting in

Code 7.4 AIML code using the ^ wildcard

7.3 Developing Your Own Bot Using AIML 133



unexpected system responses. Looking again at Code 7.5, if the human inputs a
time expression, this will be matched and repeated in the bot’s response, resulting in
an incongruous output:

Human: I feel tired when I get up in the morning.
Bot: When do you feel tired when you get up in the morning?

Careful testing of patterns would help to avoid this sort of problem, but it may be
difficult to test exhaustively for every possible input and how it would be matched
against patterns containing wildcards.

7.3.3 Variables

Variables can be used to set and retrieve information from an interaction that is
stored as a predicate, for example (Code 7.7). The value of the medication
predicate can be retrieved later using <get>, as in (Code 7.8).

Code 7.5 AIML code using the * wildcard and the <star/> tag

Code 7.6 AIML code using the <star/> tag at several positions

134 7 Creating a Conversational Interface Using Chatbot Technology



7.3.4 Sets and Maps

Repetition can be avoided in patterns where a word forms part of a set—for
example, all color words can be declared in a set of colors so that separate patterns
do not have to be written for inputs such as:

I like red cars.
I like blue cars.
I like green cars.

To create a set, click on the plus button of the Files tab of the Editor and select
the set type. For example, create a file called color and add some colors. The set
can then be used in a category containing a pattern as shown in Code 7.9.

This technique can be used to address the problem of lexical alternation, for
example, dealing with morphological variants of a word, as in the forms “find,”
“finding,” and “found.”

Code 7.7 AIML code that defines a predicate called “medication”

Code 7.8 AIML code that uses the value of a predicate

Code 7.9 An AIML set

7.3 Developing Your Own Bot Using AIML 135



Maps are used to specify associations between sets. For example, a set could be a
list of US states and a map could be a function that associates an element in the set
of states with an element in a set of state capitals, as in Table 7.1.

Using maps, it is then possible to use a single category as shown in Code 7.10 to
ask and answer questions about any US state, for example:

What is the capital of Alabama?
What is the capital of Arizona?
What is the capital of California?

Pandorabots has some built-in sets and maps for collections such as natural
numbers, singular and plural nouns. For further details on sets and maps, see
Wallace (2014b).

7.3.5 Context

There are several mechanisms in Pandorabots for dealing with aspects of the
conversational context. The simplest of these is the tag <that> which enables the
system to remember the last sentence it has said. Consider the following example:

Human: I have problems with my blood sugar.
Bot: is blood sugar your main problem?
Human: yes.
Bot: what medication are you taking for your blood sugar?

Table 7.1 Sets in AIML State set State2capital set

Alabama Alabama:Montgomery

Arizona Arizona:Phoenix

California California:Sacramento

… …

Code 7.10 An AIML map

136 7 Creating a Conversational Interface Using Chatbot Technology



This interaction can be specified as in Code 7.11. Here, the second category is
bound to a context where it will only be matched if the last sentence spoken by the
bot was “Is blood sugar your main problem?”.

A more wide-ranging mechanism involves setting a topic. For example, the topic
could be set to blood sugar and only those patterns within the scope of the topic
will be matched. This is illustrated in Code 7.12.

AIML has a number of other features including the ability to learn from infor-
mation provided by the human interlocutor. For more details, consult the
Pandorabots tutorial9 or the AIML2.0 specification (Wallace 2014a).

One of the main advantages of the pattern-matching approach as implemented in
AIML and similar languages is its simplicity. AIML makes use of an efficient
matching algorithm that conducts a graph search through the prestored patterns on a
word-by-word basis so that responses can be provided in real time. Also, given that
the application is typically the simulation of conversation, it is not always critical if
the user’s input cannot be matched against a pattern. In this case, the ultimate
default category is invoked to help keep the conversation going. For example, the
chatbot can say something like “tell me more about yourself,” which may cause the
user to say something that will be matched by a pattern. Indeed, the art of chatbot
programming is to provide sufficient responses in the ultimate default category that
can be generated randomly and that can help the system recover from failures to
match the user’s input. This feature is probably not so useful in applications like the
diabetes bot that simulate the answering of frequently asked questions in a particular
domain.

Code 7.11 Dealing with context using the AIML <that> tag

9https://playground.pandorabots.com/en/tutorial/. Accessed February 20, 2016.

7.3 Developing Your Own Bot Using AIML 137

https://playground.pandorabots.com/en/tutorial/


Exercise 7.2: Creating the diabetes bot

1. Click on the Create Bot tab to create a bot. You can call it “Diabetes.”
2. You will have a set of default AIML files. Add a new file called “questions.”

You can upload a sample file from the ones you will find in the
ConversationalInterface repository /chapter7/AIML/.

3. Select your bot. This will bring up the editor screen for your bot, as shown in
Fig. 7.6.

4. Click on the Train tab. Now you can test your bot by asking questions.

You will soon find that your bot is unable to answer all of your questions, in
which case you will need to add more categories. You can edit and further develop
the bot by following the more detailed instructions in the Playground tutorials. If
you wish to make your bot available to other members within the Clubhouse—a
community of other botmasters—to do this you need to click on the tab Publish
Bot.

Code 7.12 Setting a topic in AIML

138 7 Creating a Conversational Interface Using Chatbot Technology



7.4 Creating a Link to Pandorabots from Your Android
App

Once you have sufficiently developed your bots in Playground, you are ready to
deploy them. In this section, we show how to embed a Pandorabots bot into an
Android app. There are several reasons why you might wish to embed your bot in
an app:

• The Playground only allows you to interact with your bot using the Web
interface provided.

• The Playground allows you to make your bot available to other registered bot
masters by publishing it in the Clubhouse, but you cannot make it publicly
accessible on a Web site or by deploying it as a mobile application. For this, you
need to create an account on the Developer Portal.

• By embedding the bot in an Android app, your app can be deployed on an
Android mobile phone or tablet and can be made available to others to use, just
like any other Android app.

• You can provide a speech-based front end to your app using the Google Speech
APIs.

• You can add additional functions, such as making commands to access device
functions—for example, to launch an app or to check the time. You can also link
to other Web services, such as search and maps.

7.4.1 Creating a Bot in the Developer Portal

Exercise 7.3: Signing up for an account on the Developer Portal The Developer
Portal provides all the necessary tools and SDKs for deploying bots anywhere. To
sign up to the Developer Portal:

Fig. 7.6 The Playground editor screen for the diabetes bot (reproduced with permission from
Pandorabots, Inc.)

7.4 Creating a Link to Pandorabots from Your Android App 139



1. Click on the Dev Portal tab on the Pandorabots main page or go directly to the
Developer Portal.10

2. Sign up for an account. You have to register for a plan. Accounts are free for a
10-day trial period after which different plans are available depending on needs.
You should try to iron out any problems with your AIML code in Playground
before moving your bot over to the Developer Portal. If you find that you need
to make more API calls than allowed on your plan, you can upgrade your plan,
as required.

3. Once your account and plan have been approved, you can retrieve your
user_key and application_id, which are required in order to make API
calls.

Exercise 7.4: Using the APIs to create a bot, upload and compile files, and talk
to a bot There are two ways to use the APIs:

1. Using the Pandorabots CLI (command line interface).
2. Using an HTTP client-like cURL.

Both are supported, though the easiest way is to use the Pandorabots CLI.11

The CLI can be installed by going to the Developer Portal home page and
scrolling down to the section entitled Getting Started, which is below the
pricing information. Detailed instructions are also provided here.12

The CLI is written in Javascript, so it is first necessary to setup node.js before
installing the CLI. An installer for node.js for both OS X and Windows users is
available here.13

Node.js includes npm, a Javascript package manager that you can use to
install the CLI using the command (Code 7.13).

This will install the CLI and make the pb and pandorabots commands
available for use in the command line, for example (Code 7.14).

The CLI needs to be configured using a JSON file called chatbot.json in
order to allow these commands. The chatbot.json configuration file stores

Code 7.13 Installing the CLI in node.js

Code 7.14 Using the pb command to upload a file

10https://developer.pandorabots.com/. Accessed February 20, 2016.
11https://github.com/pandorabots/pb-cli. Accessed February 20, 2016.
12http://blog.pandorabots.com/introducing-the-pandorabots-cli/. Accessed February 20, 2016.
13http://nodejs.org/download/. Accessed February 20, 2016.

140 7 Creating a Conversational Interface Using Chatbot Technology

https://developer.pandorabots.com/
https://github.com/pandorabots/pb-cli
http://blog.pandorabots.com/introducing-the-pandorabots-cli/
http://nodejs.org/download/


basic information about your application: the app_id, the user_key, and the
botname. When a CLI command is run, all the required information is added from
chatbot.json. To create this file, you can use the init command and the CLI
will prompt for all the required information. First create a directory for chatbot.
json, then run init, as shown in Code 7.15.

This will now allow various commands to be run, such as shown in Code 7.16.
A complete list of the commands is available here.14

Code 7.15 Configuring the CLI

Code 7.16 Examples of pb commands

Code 7.17 The pb command for uploading a file

Code 7.18 The curl command for uploading a file

14https://github.com/pandorabots/pb-cli. Accessed February 20, 2016.

7.4 Creating a Link to Pandorabots from Your Android App 141

https://github.com/pandorabots/pb-cli


Using cURL to talk to the API requires more complex commands. For example,
to upload a file using the CLI, you would type the command shown in Code 7.17.

However, using curl you would have to insert the values for user_key,
app_id and botname and type something like the command shown in Code
7.18.

Some API resources that provide assistance with API calls are available here.15

For example, the resource in Fig. 7.7 shows an alternative way to create a bot.
These resources are also useful for observing the feedback provided to the API

call and the text of the API calls, as this may be useful when linking to an app
programmatically.

Exercise 7.5: Creating and testing a bot on the Pandorabots Developer Portal

1. Create a bot using either the CLI or the cURL command.
2. Upload one or more AIML files to your bot.
3. Compile the bot (Note: each time a file is modified or uploaded the bot must be

compiled in order for the changes to be available in a conversation.
4. Talk to the bot using the input patterns in your AIML files.

Fig. 7.7 Creating a bot in the Developer Portal (reproduced with permission from Pandorabots,
Inc.)

15https://developer.pandorabots.com/docs. Accessed February 20, 2016.

142 7 Creating a Conversational Interface Using Chatbot Technology

https://developer.pandorabots.com/docs


7.4.2 Linking an Android App to a Bot

In this section, we describe how to link from an Android app to a Pandorabots bot
that has been created on the Developer Portal. This is shown in the TalkBot
app. The app works as follows: the user can press a button to say something to the
bot, the recognized utterance is passed on to Pandorabots and using its corre-
sponding AIML code it generates a response that is retrieved by the Android app. If
the response is simple (e.g., a text), it is synthesized back to the user, whereas if the
response includes mobile functions (see Sect. 7.5), they are executed and the results
are synthesized to the user (e.g., checking the battery level and informing about it).

We have arranged the classes in this app in different packages (folders) as shown
in Fig. 7.8.

• In Pandora, we have included the classes to connect to Pandorabots
(PandoraConnection), process the results received
(PandoraResultProcessor, FindLocation), and manage possible
errors (PandoraException, PandoraErrorCode).

• In VoiceInterface, we include the VoiceActivity class to process the speech
interface. This is exactly the same class as was used in the TalkBack app
(Chap. 6).

• In the root, we have the MainActivity class. This class specifies the main
behavior of our app.

The MainActivity class is very similar to the one presented for the
TalkBack app in Chap. 6. In TalkBack, in order to demonstrate speech
recognition and TTS we simply took the best result from speech recognition and
spoke it out using TTS (Code 7.19).

Now in TalkBot, we want to send the recognized result of the user’s input to
the Pandorabots service and get a response. The following code accomplishes this
and then calls a method to process the response (Code 7.20).

Additionally in the catch section, there is a call to the method
processBotErrors, which deals with a number of possible errors such as
invalid keys and ids for connecting to Pandorabots, no match for the input, and
Internet connection errors.

Fig. 7.8 Packages and
classes for the TalkBot app

7.4 Creating a Link to Pandorabots from Your Android App 143

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_6


When a response is returned from Pandorabots, it is handled in the
processBotResults method (Code 7.21).

Here, there are two cases to consider:

1. The result is in the form of text to be output as a spoken response. In this case,
the method removeTags is called to remove any HTML tags. The resulting
string is spoken using TTS.

2. The result contains an <oob> tag, indicating that the response requires further
processing to determine what sort of mobile function is being requested. In this
case, the result is sent to the method processOobOutput in the class
OOBProcessor. This will be discussed further in Sect. 7.5.

Connecting with Pandorabots
Some parameters are declared in MainActivity that are required to make a

connection to your bot on Pandorabots. You must insert your own values (Code
7.22).

These values are used in the PandoraConnection class to establish the
connection with Pandorabots. We have included them in MainActivity to make
the PandoraConnection class independent of the actual bot used. By doing
this, you can use PandoraConnection every time you want to use a bot in your
Android apps without changing a single line of the code and just adjusting these
parameters in the initial activity that uses the code (MainActivity in our case).

Code 7.19 Fragment of the processAsrResults method in the MainActivity class
(TalkBack app, Chap. 6)

Code 7.20 Fragment of the processAsrResults method in the MainActivity class
(TalkBot app)

144 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_6


PandoraConnection is a simplified version of a class created by Richard
Wallace as a Java API to the Pandorabots service.16 The class has been edited and
simplified to adapt it to the requirementsof ourAndroid app.Theclass does the following:

1. The connection parameters specified in MainActivity are initialized.
2. The user’s input string is sent to the chatbot on the Pandorabot’s service and the

bot’s response is returned as a JSON object from which the responses to be
returned to MainActivity are extracted. In order to do that, the apache http
client libraries are employed, which requires including them as dependencies in
the build.gradle file (Code 7.23).

Code 7.21 Fragment of the processBotResults method in the MainActivity class
(TalkBot app)

Code 7.22 Initializing the Pandorabots connection parameters in the MainActivity class
(TalkBot app)

16https://github.com/pandorabots/pb-java. Accessed February 20, 2016.

7.4 Creating a Link to Pandorabots from Your Android App 145

https://github.com/pandorabots/pb-java


Exercise 7.6: Speech enabling conversational interaction in the TalkBot app
Run the app and interact with it using inputs similar to those that you used to
interact with the bot in Playground. Remember that for the code to work you must
include your own connection parameters. Figure 7.9 shows the interface for the
app.

Code 7.23 Fragment of the talk method in the PandoraConnection class (TalkBot app)

Fig. 7.9 Interface of the
TalkBot app

146 7 Creating a Conversational Interface Using Chatbot Technology



7.5 Introducing Mobile Functions

Chatbot technology has been extended to support the development of virtual per-
sonal assistants that can carry out commands to the device and answer queries to
Web services. A recent addition to AIML supports these mobile functions. The
following is an example (Code 7.24).

Here, the <oob> tags separate content within the template that is not part of the
response to be spoken to the user: In this case, including a tag indicating that the
task involves search and that the content of the search is the item retrieved from the
wildcard *. In other words, if the user says “Show me a Web site about speech
recognition” the bot outputs the words “let’s try a Google Search” and encloses the
command to search for speech recognition within <oob> tags. Figure 7.10 shows
the result of this interaction:

In the next section, we explain how to realize this interaction in our Android app.

7.5.1 Processing the <oob> Tags

In TalkBot, we capture the user’s input using Google speech recognition and
send the text to Pandorabots. Once the text is matched against a pattern in the AIML
file, the content of the template is sent back to the MainActivity class. If the
content is only text, it is spoken out using the Google TTS.

However, if the template contains an <oob> tag, we need to check for this and
take some action. In this case, we call a new class OOBProcessor in
MainActivity that contains a number of methods for processing the content of
the <oob> tag and executing the required commands.

First, we need to separate the items in the template into <oob> content and text to
be spoken to the user. This processing is done in the PandoraResultProcessor
class. The processOobOutputmethod processes the JSON object returned from
Pandorabots and extracts the content of the label that, as shown in Code 7.25.

Code 7.24 Including mobile functions in AIML with <oob> tags

7.5 Introducing Mobile Functions 147



The text within the <oob> tags is assigned to a variable oobContent and the
remaining text is assigned to textToSpeak (Code 7.26).

Next, we analyze oobContent to determine the type of command—for
example, “search,” “battery,” and “maps”—that is contained in the tag embedded
within the <oob> tag, using the processOobContent method. In this case, we
extract <launch>calendar</launch>, which enables us to determine that
the command is to launch an app and that the app is the calendar. With this

Fig. 7.10 Response to the query “show me a Web site about speech recognition.” Accessed at
22:38 on February 17, 2016. Google and the Google logo are registered trademarks of Google Inc.,
used with permission

Code 7.25 JSON object returned from query to Pandorabots

148 7 Creating a Conversational Interface Using Chatbot Technology



information, we can call the launchApp method with the required parameters
(Code 7.27).

Other commands, such as “search” and “maps” are handled in a similar way.
However, each command has to be implemented appropriately, depending on how
it is handled in Android. For example, to launch an app we need to check whether
that app actually exists on the device, as the user could speak the name of an app
and have the name recognized, but this does not guarantee that there is an app of
that name on that particular device. The launchApp method does the following:

1. Gets a list of app names and package names on the device.
2. Checks if the app requested is on the device.
3. If not, reports to the user.
4. If yes, gets the package name of the requested app.
5. Launches the app.

7.5.2 Battery Level

The batteryLevel method checks the level of the battery on the user’s device
given an input such as “what is my battery level?” The following code launches an
Android intent to check the battery level and convert the raw battery level to a
percentage number that can be spoken out (Code 7.28).

7.5.3 Search Queries

Two categories are tagged with an <oob> tag that includes <search> (Code
7.29).

Given inputs such as “tell me about speech recognition,” the text of the search
query is extracted and passed to the Android ACTION_WEB_Search intent to be
executed and the text in the template is spoken using TTS (Code 7.30).

Code 7.26 Assigning the text with the <oob> tags

Code 7.27 Calling the launchApp method

7.5 Introducing Mobile Functions 149



Code 7.28 The batteryLevel method of the PandoraResultProcessor class
(TalkBot app)

Code 7.29 AIML code including a <search>

Code 7.30 Fragment of the search method of the PandoraResultProcessor class
(TalkBot app)

150 7 Creating a Conversational Interface Using Chatbot Technology



7.5.4 Location and Direction Queries

In this section, we show how to make queries about locations and directions, for
example:

Where is New York?
Show me directions from New York to Boston.

We distinguish between absolute queries, such as these, in which all the
parameters of the query are mentioned explicitly, and relative queries, in which the
user’s current location is assumed implicitly, as in:

Find the nearest Starbucks.
Show me directions to Boston.

The motivation for making this distinction is to avoid potential problems with
the use of contextual information. For example, given the following sequence:

Show a map of Boston.
Find the nearest Starbucks.

It is possible that Boston could be assigned as the current context so that the next
question is interpreted as

Find the nearest Starbucks in Boston.

instead of

Find the nearest Starbucks relative to my current location.

Without direct access to the context mechanisms being applied, it is not possible
to resolve this. Indeed, in interaction between humans it is not always clear whether
a subsequent question relates to a previous one or whether it is part of a new topic.

In order to deal with this in AIML, we identify those inputs that contain absolute
queries and those that contain relative queries by inserting an additional tag

7.5 Introducing Mobile Functions 151



<myloc> into relative queries and adding additional code to find the user’s current
location. The following is a high-level overview of these processes.

Identify location queries

1. Check if oobContent contains <map>.
2. Parse to extract the values for the map query (mapText,textToSpeak).
3. Call the mapSearch method.

mapSearch

1. Speak the content of textToSpeak.
2. Replace spaces in mapText with “+”.
3. Use the ACTION_VIEW action and specify the location information in the intent

data with the Geo URI scheme.
4. Start activity (Code 7.31).

Relative queries are marked up in AIML shown in Code 7.32.
A relative query results in the following actions:

1. The tag <myloc> causes the FindLocation class to be instantiated in order
to find the latitude and longitude of the user’s current location.

2. The ACTION_VIEW action is called with the values for latitude (lat) and
longitude (lng) for the user’s current location found.

Directions are handled in a similar way. For example, if the input is a relative
directions query, as in “directions to Boston,” the <myloc> tag causes

Code 7.31 Fragment of the mapSearch method of the PandoraResultProcessor class
(TalkBot app)

Code 7.32 AIML relative query

152 7 Creating a Conversational Interface Using Chatbot Technology



FindLocation to be called to find the latitude and longitude values of the user’s
current location, assuming the current location as the origin of the directions query
(Code 7.33).

Exercise 7.7: Testing the app

1. Run the sample code with a range of inputs that includes oob processing. You
can find the oob.aiml file in the chapter7/AIML folder in our GitHub
ConversationalInterface repository.

2. Note any queries that do not work.
3. Try to determine the problem, for example:

– Is it a speech recognition error?
– Is it due to missing categories in AIML?
– Are additional or modified Java methods required?

7.6 Extending the App

We can extend the app in a number of ways. For example, we could add more
AIML categories to allow a wider range of inputs. Another extension would be to
add more commands to the device and queries to Web services. The CallMom
app17 illustrates how this can be done.

In our application, we made use of Google Search and Google Maps to provide
responses to queries. CallMom also consults a number of external knowledge
sources, including Wolfram Alpha, DbPedia, Trueknowledge.com, Answers.com,
Weather Service, various shopping sites, and other Pandorabots.

Most chatbot markup languages nowadays have methods for representing infor-
mation. For example, inAIML2.1 there is a facility to create ontologies that enable the
chatbot to make use of and reason with knowledge, while ChatScript has a facility for
invoking WordNet ontologies. Another approach extends the reference implemen-
tation of AIML to enable the extraction of domain knowledge from semantic Web
ontologies using a scripting language called OwlLang and to store new knowledge
obtained from the conversations in the ontologies (Lundqvist et al. 2013).

Code 7.33 Fragment of the getDirections method in the PandoraResultProcessor
class (TalkBot app)

17http://callmom.pandorabots.com/static/callmombasic/features.html. Accessed February 20, 2016.

7.5 Introducing Mobile Functions 153

http://callmom.pandorabots.com/static/callmombasic/features.html


7.7 Alternatives to AIML

AIML is a widely used markup language for specifying chatbots. However, there are
some alternatives, the most notable of which is ChatScript. ChatScript was devel-
oped in 2010 by Wilcox (2011a, b) and is used mainly to provide natural language
understanding capabilities for characters in games, but has also been used for the
chatbot Rose that won the Loebner Prize competition in 2014. While AIML’s pattern
matching is word-based, in ChatScript it is meaning-based, supporting sets of words
called concepts to represent synonyms, as shown in Code 7.34.

This allows rules to be written that respond to all sorts of meat (Code 7.35).
Here, the input pattern (in parentheses) contains the concept “meat” that can be

matched by any of the words in the concept *meat. The chatbot’s response is the
text following the input pattern.

ChatScript is available as open source18, and there is also a tutorial on how to
build a conversational bot using ChatScript.19

Other alternatives to AIML are Api.ai20 and Wit.ai.21 Chapter 9 shows how to
use the Api.ai platform to extract a semantic analysis from the user’s input.

7.8 Some Ways in Which AIML Can Be Further
Developed

In this section, we review some ways in which AIML has been extended as well as
some suggestions for further developments.

7.8.1 Learning a Chatbot Specification from Data

Creating a chatbot in a language such as AIML typically involves hand coding a
large number of categories, a process that can take several years if starting from
scratch. Developers creating a chatbot on the Pandorabots Web site can make use of
libraries of AIML categories to get started. For commercial developers on a special
license, there is also a tool called Pattern Suggester that is part of Program AB, the
most recent reference implementation of AIML 2.0. Pattern Suggester helps to
automate the process of creating new patterns through a type of unsupervised

18http://sourceforge.net/projects/chatscript/. Accessed February 20, 2016.
19http://inspiredtoeducate.net/inspiredtoeducate/learn-to-build-your-own-conversational-robot-
using-chatscript/. Accessed February 20, 2016.
20https://api.ai/. Accessed February 20, 2016.
21https://wit.ai/. Accessed February 20, 2016.

154 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://sourceforge.net/projects/chatscript/
http://inspiredtoeducate.net/inspiredtoeducate/learn-to-build-your-own-conversational-robot-using-chatscript/
http://inspiredtoeducate.net/inspiredtoeducate/learn-to-build-your-own-conversational-robot-using-chatscript/
https://api.ai/
https://wit.ai/


learning for patterns.22 In one experiment, by searching through 500,000 inputs in
logs from the CallMom app, the Pattern Suggester was able to find new patterns and
create graphs at a rate of 6 categories per minute (Wallace 2014c).

A similar approach is the use of machine-learning techniques to read text from a
corpus and convert it to the required AIML format. Abu Shawar and Atwell (2005)
trained a bot using text from the Dialog Diversity Corpus, the spoken part of the
British National Corpus (BNC), and online FAQ (Frequently Asked Questions)
Web sites. They were able to generate more than one million categories extracted
from the BNC. FAQs are a good corpus source as they have a clear turn-taking
structure that can be easily adapted to the AIML pattern-template format.
Several FAQ chatbots were generated, including one using the FAQ of the School
of Computing at the University of Leeds, and a Python tutor trained on the public
domain Python programming language FAQ Web site. De Gasperis et al. (2013)
describe an algorithm in which texts in a corpus are used in a bottom-up procedure
that chooses portions of text to be used as answers along with a keyword analysis of
each piece of selected text to build questions. Each text representing an answer is
then associated with possible questions and their formal variants (or paraphrases).
Wu et al. (2008) describe an approach involving automatic chatbot knowledge
acquisition from online forums using rough sets and ensemble learning.

AIML 2.0 contains learning features that enable the system to be taught new
information and other chatbots such as Cleverbot,23 Jabberwacky,24 and Kyle25 are
also able to learn. Cleverbot employs a data mining approach in which it memorizes
everything that is said to it and then searches through its saved conversations to find
a response to new input, while Jabberwacky models the way humans learn lan-
guage, facts, contexts, and rules. Kyle models the way humans learn language,
knowledge, and context, making use of the principles of positive and negative
feedback.

Code 7.34 Declaring a concept in ChatScript

Code 7.35 Using a concept in ChatScript

22https://code.google.com/p/program-ab/. Accessed February 20, 2016.
23http://www.cleverbot.com/. Accessed February 20, 2016.
24http://www.jabberwacky.com/j2about. Accessed February 20, 2016.
25http://www.leeds-city-guide.com/kyle. Accessed February 20, 2016.

7.8 Some Ways in Which AIML Can Be Further Developed 155

https://code.google.com/p/program-ab/
http://www.cleverbot.com/
http://www.jabberwacky.com/j2about
http://www.leeds-city-guide.com/kyle


7.8.2 Making Use of Techniques from Natural Language
Processing

One potential criticism of chatbot technology is that it does not make use of
theoretically driven approaches and dialog technology but instead uses a simple
pattern-matching approach within a stimulus-response model. It could be argued
that incorporating additional technologies into AIML would make the authoring
process more difficult. It would be useful to conduct empirical studies to ascertain
the effectiveness of the additional technologies for the authoring process as well as
for pattern matching and RG. As it is, pattern matching in AIML is fast and
efficient, even when searching a large number of patterns. Moreover, from a
practical viewpoint it could be argued that in reality most language use in inter-
action with a chatbot does not need to address the ambiguous and complex sen-
tences that are the concern of theoretical linguists and that a stimulus–response
model has the merits of simplicity and practical utility (see discussion of this issue
by Wallace.26

Nevertheless, there have been some useful suggestions as to how AIML could be
enhanced using techniques from natural language processing, most notably in a
paper by Klüwer (2011). One problem concerns the authoring of patterns. In order
to be able to handle surface variation in input, i.e., alternative syntactic structures
and alternative lexical items, an AIML botmaster has to manually create a large
number of alternative patterns. Klüwer describes some natural language processing
technologies that could be used to optimize pattern authoring. For example, surface
variation in patterns could be addressed by using dependency structures (see
Chap. 8) rather than surface strings so that all variations on a sentence with the
same dependency structure would be associated with a single pattern. To handle
sentences that have the same meaning but different surface forms—for example, the
active and passive forms of a sentence—a semantic analysis of the different forms
of the sentence would abstract from their surface forms and allow the different
forms to be associated with a single pattern. These techniques could also help to
address the problem of false positives when the user’s input is matched erroneously
with patterns including wildcards that are used to cover variations in surface
structure.

Natural language processing technology could also be used to generate alter-
native output to allow for greater flexibility. With current chatbots, the output is
generally static, having either been defined manually as a system response or
assembled from templates in which some variables are given values at runtime. In
AIML, it is possible to code a set of alternative responses that are generated
randomly and there is also a <condition> tag that allows particular actions in a
template to be specified conditionally. ChatScript makes use of a C-style scripting
language that can be used along with direct output text to produce more flexible

26http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html. Accessed February 20, 2016.

156 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html


responses. For an approach to the automatic generation of output from abstract
representations, see Berg et al. (2013).

7.9 Summary

In this chapter, we have shown how to create a chatbot that can engage in con-
versational interaction and also perform functions on a mobile device such as
launching apps and accessing Web services. We have used the Pandorabots plat-
form to run the chatbot and have specified the conversational interaction using
AIML. Using this approach, we have not needed to implement components for
SLU, DM, and RG, as the pattern-matching capabilities of AIML and the associated
templates are able to handle a wide range of user inputs and produce appropriate
system responses. We have shown how the app developed in this chapter can be
further extended, and we have reviewed some alternatives to AIML.

In the following chapters, we will examine more advanced technologies that are
used to develop conversational interfaces, beginning with SLU in Chap. 8.

Further Reading
For readers interested in the Turing test, the collection of papers by an impressive
range of scholars in Epstein et al. (2009) explores philosophical and methodological
issues related to the quest for the thinking computer. The collection also includes
Turing’s 1950 paper “Computing machinery and intelligence.” There is also an
interesting paper by Levesque discussing the science of artificial intelligence in
which the Turing test is criticized for relying too much on deception. A set of
questions, known as the Winograd schema questions, is proposed as a more useful
test of intelligence.27

References

Abu Shawar B, Atwell E, Roberts A (2005) FAQChat as an information retrieval system. In:
Vetulani Z (ed) Human language technologies as a challenge. Proceedings of the 2nd language
and technology conference, Wydawnictwo Poznanskie, Poznan, Poland, 21–23 April 2005:
274–278. http://eprints.whiterose.ac.uk/4663/. Accessed 20 Jan 2016

Berg M, Isard A, Moore J (2013) An openCCG-based approach to question generation from
concepts. In: Natural language processing and information systems. 18th international
conference on applications of natural language to information systems, NLDB 2013, Lecture
notes in computer science, vol 7934. Springer Berlin Heidelberg, Salford, UK, 19–21 June
2013, pp 38–52. doi:10.1007/978-3-642-38824-8_4

Crocker MW, Pickering M, Clifton C Jr (1999) Architectures and mechanism for language
processing, 1st edn. Cambridge University Press, Cambridge. doi:10.1017/cbo9780511527210

27http://www.cs.toronto.edu/*hector/Papers/ijcai-13-paper.pdf. Accessed February 20, 2016.

7.8 Some Ways in Which AIML Can Be Further Developed 157

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://eprints.whiterose.ac.uk/4663/
http://dx.doi.org/10.1007/978-3-642-38824-8_4
http://dx.doi.org/10.1017/cbo9780511527210
http://www.cs.toronto.edu/%7ehector/Papers/ijcai-13-paper.pdf


De Gasperis G, Chiari I, Florio N (2013) AIML knowledge base construction from text corpora.
In: Artificial intelligence, evolutionary computing and metaheuristics, vol 427. Studies in
computational intelligence, pp 287–318. doi:10.1007/978-3-642-29694-9_12

Epstein R, Roberts G, Beber G (eds) (2009) Parsing the turing test: philosophical and
methodological issues in the quest for the thinking computer. Springer, New York. doi:10.
1007/978-1-4020-6710-5

Klüwer T (2011) From chatbots to dialog systems. In: Perez-Marin D, Pascual-Nieto I
(eds) Conversational agents and natural language interaction: techniques and effective
practices. IGI Global Publishing Group, Hershey, Pennsylvania, pp 1–22. doi:10.4018/978-1-
60960-617-6.ch001

Lundqvist KO, Pursey G, Williams S (2013) Design and implementation of conversational agents
for harvesting feedback in eLearning systems. In: Hernandez-Leo D, Ley T, Klamma R,
Harrer A (eds) Scaling up learning for sustained impact. Lecture notes in computer science, vol
8095, pp 617–618. doi:10.1007/978-3-642-40814-4_79

Wallace R (2003) The elements of AIML Style. ALICE A.I. Foundation, Inc. http://www.alicebot.
org/style.pdf. Accessed 20 Jan 2016

Wallace R (2009) Anatomy of A.L.I.C.E. In: Epstein R, Roberts G, Beber G (eds) Parsing the
turing test: philosophical and methodological issues in the quest for the thinking computer.
Springer, New York, pp 81–210. doi:10.1007/978-1-4020-6710-5_13

Wallace R (2014a) AIML 2.0 working draft. https://docs.google.com/document/d/
1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub. Accessed 20 Jan 2016

Wallace R (2014b) AIML—sets and maps in AIML 2.0. https://docs.google.com/document/d/
1DWHiOOcda58CflDZ0Wsm1CgP3Es6dpicb4MBbbpwzEk/pub. Accessed 20 Jan 2016

Wallace R (2014c) AIML 2.0—virtual assistant technology for a mobile era. In: Proceedings of the
mobile voice conference 2014, San Francisco, 3–5 March http://wp.avios.org/wp-content/
uploads/2014/conference2014/35_mctear.pdf. Accessed 20 Jan 2016

Weizenbaum J (1966) ELIZA—a computer program for the study of natural language
communication between man and machine. Commun ACM 9(1):36–45. doi:10.1145/
365153.365168

Wilcox B (2011a) Beyond Façade: pattern matching for natural language applications. http://www.
gamasutra.com/view/feature/134675/beyond_façade_pattern_matching_php. Accessed 20 Jan
2016

Wilcox B (2011b) Fresh perspectives—a Google talk on natural language processing http://www.
gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_
Natural_Language_Processing.php. Accessed 20 Jan 2016

Wu Y, Wang G, Li W, Li Z (2008) Automatic chatbot knowledge acquisition from online forum
via rough set and ensemble learning. IEEE Network and Parallel Computing (NPC 2008). IFIP
International Conference, pp 242–246. doi:10.1109/npc.2008.24

Web sites

Alice A.I. Foundation www.alicebot.org
AIML matching http://www.alicebot.org/documentation/matching.html
AIML tutorial http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html
AIML 2.0 Working Draft https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQE

iG-HkXRXusukADpFnDs4/pub
API.ai https://api.ai/
CallMom app http://callmom.pandorabots.com/static/callmombasic/features.html
Chatbots.org https://www.s.org/
Cleverbot http://www.cleverbot.com/
Jabberwacky http://www.jabberwacky.com/j2about
Kyle http://www.leeds-city-guide.com/kyle

158 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-642-29694-9_12
http://dx.doi.org/10.1007/978-1-4020-6710-5
http://dx.doi.org/10.1007/978-1-4020-6710-5
http://dx.doi.org/10.4018/978-1-60960-617-6.ch001
http://dx.doi.org/10.4018/978-1-60960-617-6.ch001
http://dx.doi.org/10.1007/978-3-642-40814-4_79
http://www.alicebot.org/style.pdf
http://www.alicebot.org/style.pdf
http://dx.doi.org/10.1007/978-1-4020-6710-5_13
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1DWHiOOcda58CflDZ0Wsm1CgP3Es6dpicb4MBbbpwzEk/pub
https://docs.google.com/document/d/1DWHiOOcda58CflDZ0Wsm1CgP3Es6dpicb4MBbbpwzEk/pub
http://wp.avios.org/wp-content/uploads/2014/conference2014/35_mctear.pdf
http://wp.avios.org/wp-content/uploads/2014/conference2014/35_mctear.pdf
http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.1145/365153.365168
http://www.gamasutra.com/view/feature/134675/beyond_fa%c3%a7ade_pattern_matching_php
http://www.gamasutra.com/view/feature/134675/beyond_fa%c3%a7ade_pattern_matching_php
http://www.gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_Natural_Language_Processing.php
http://www.gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_Natural_Language_Processing.php
http://www.gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_Natural_Language_Processing.php
http://dx.doi.org/10.1109/npc.2008.24
http://www.alicebot.org
http://www.alicebot.org/documentation/matching.html
http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://api.ai/
http://callmom.pandorabots.com/static/callmombasic/features.html
https://www.s.org/
http://www.cleverbot.com/
http://www.jabberwacky.com/j2about
http://www.leeds-city-guide.com/kyle


Node.js http://nodejs.org/download/
Pandorabots http://www.pandorabots.com/
Pandorabots blog http://blog.pandorabots.com/
Pandorabots Command Line Interface (CLI) https://github.com/pandorabots/pb-cli
Pandorabots CLI instructions http://blog.pandorabots.com/introducing-the-pandorabots-cli/Node.js
Pandorabots Developer Portal https://developer.pandorabots.com/
Pandorabots Github https://github.com/pandorabots
Pandorabots Playground https://playground.pandorabots.com/en/
Pandorabots Playground tutorial https://playground.pandorabots.com/en/tutorial/
Pandorabots Rosie library https://github.com/pandorabots/rosie
Pandorabots Twitter https://twitter.com/pandorabots
Wit.ai https://wit.ai/

Web sites 159

http://nodejs.org/download/
http://www.pandorabots.com/
http://blog.pandorabots.com/
https://github.com/pandorabots/pb-cli
http://blog.pandorabots.com/introducing-the-pandorabots-cli/Node.js
https://developer.pandorabots.com/
https://github.com/pandorabots
https://playground.pandorabots.com/en/
https://playground.pandorabots.com/en/tutorial/
https://github.com/pandorabots/rosie
https://twitter.com/pandorabots
https://wit.ai/

	7 Creating a Conversational Interface Using Chatbot Technology
	Abstract
	7.1 Introduction
	7.2 Introducing the Pandorabots Platform
	7.3 Developing Your Own Bot Using AIML
	7.3.1 Creating Categories
	7.3.2 Wildcards
	7.3.3 Variables
	7.3.4 Sets and Maps
	7.3.5 Context

	7.4 Creating a Link to Pandorabots from Your Android App
	7.4.1 Creating a Bot in the Developer Portal
	7.4.2 Linking an Android App to a Bot

	7.5 Introducing Mobile Functions
	7.5.1 Processing the lessthan oob greaterthan Tags
	7.5.2 Battery Level
	7.5.3 Search Queries
	7.5.4 Location and Direction Queries

	7.6 Extending the App
	7.7 Alternatives to AIML
	7.8 Some Ways in Which AIML Can Be Further Developed
	7.8.1 Learning a Chatbot Specification from Data
	7.8.2 Making Use of Techniques from Natural Language Processing

	7.9 Summary
	References
	Web sites


