
Chapter 10
Dialog Management

Abstract One of the core aspects in the development of conversational interfaces
is to design the dialog management strategy. The dialog management strategy
defines the system’s conversational behaviors in response to user utterances and
environmental states. The design of this strategy is usually carried out in industry
by handcrafting dialog strategies that are tightly coupled to the application domain
in order to optimize the behavior of the conversational interface in that context.
More recently, the research community has proposed ways of automating the
design of dialog strategies by using statistical models trained with real conversa-
tions. This chapter describes the main challenges and tasks in dialog management.
We also analyze the main approaches that have been proposed for developing
dialog managers and the most important methodologies and standards that can be
used for the practical implementation of this important component of a conversa-
tional interface.

10.1 Introduction

This chapter describes the main aspects, tasks, and approaches involved in the
dialog management (DM) process. Section 10.2 defines the DM process and the
tasks involved. To illustrate the complexity of dialog strategy design, this section
analyzes two frequently arising design issues: the interaction strategy and the choice
of a confirmation strategy.

Dialog management can be classified into handcrafted approaches using rules,
which are described in Sect. 10.3, and statistical approaches using machine learning
methodologies, which are described in Sect. 10.4. Statistical approaches have been
proposed to model the variability in user behaviors and to allow the exploration of a
wider range of strategies. This section provides two detailed examples of the
practical application of reinforcement learning and corpus-based supervised
learning for the development of statistical dialog managers.
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10.2 Defining the Dialog Management Task

As has been described in previous chapters, different modules and processes must
cooperate to achieve the main goal of a conversational interface. Automatic speech
recognition (ASR) is the process of obtaining the text string corresponding to an
acoustic input (see Chap. 5). Once the speech recognition component has recog-
nized what the user uttered, it is necessary to understand what was said. Spoken
language understanding (SLU) is the process of obtaining a semantic interpretation
of a text string (see Chap. 8). This generally involves morphological, lexical,
syntactical, semantic, discourse, and pragmatic knowledge.

DM relies on the fundamental task of deciding what action or response a system
should take in response to the user’s input. There is no universally agreed definition
of the tasks that this component has to carry out to make this decision. Traum and
Larsson (2003) state that DM involves four main tasks:

1. Updating the dialog context.
2. Providing a context for interpretation.
3. Coordinating other modules.
4. Deciding the information to convey and when to do it.

Thus, the dialog manager has to deal with different sources of information such
as the SLU results, results of database queries, application domain knowledge, and
knowledge about the users and the previous dialog history. The complexity of DM
depends on the task, the extent to which the dialog is flexible, and who has the
initiative in the dialog, the system, the user, or both.

Although DM is only one part of the information flow of a conversational
interface, it can be seen as one of the most important tasks given that this com-
ponent encapsulates the logic of the speech application. The selection of a particular
action depends on multiple factors, such as the output of ASR (e.g., measures that
define the reliability of the recognized information), the dialog interaction (e.g., the
number of repairs carried out so far), the application domain (e.g., guidelines for
customer service), and the responses and status of external back-ends, devices, and
data repositories. Given that the actions of the system directly impact users, the
dialog manager is largely responsible for user satisfaction. Because of these factors,
the design of an appropriate DM strategy is at the core of conversational interface
engineering.

ASR is not perfect, so one of the most critical aspects of the design of the dialog
manager involves error handling. The ASR and SLU components make errors, and
so conversational interfaces are generally less accurate than humans. For all of this
technology to work, severe limitations need to be imposed on the scope of the
applications and this requires a great amount of manual work for designers. One
common way to alleviate errors is to use techniques aimed at establishing a con-
fidence level for the ASR result and to use that to decide when to ask the user for
confirmation, or whether to reject the hypothesis completely and reprompt the user.
Too many confirmations as well as too many reprompts could annoy users. So it is
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important to reduce the number of confirmations and rejections to a minimum while
at the same time preserving a reasonable level of accuracy.

In order to complete the tasks described above and to decide “what to say” and
“what to do,” the dialog manager needs to track the dialog history and update its
representation of the current state of the dialog. In addition, the dialog manager
needs a dialog strategy that defines the conversational behavior of the system, for
example, when to take the initiative in a dialog or when to establish common
ground. The performance of a conversational interface is highly dependent on the
quality of its DM strategy.

Unfortunately, the design of a good strategy is far from trivial since there is no
clear agreement as to what constitutes a good strategy. User populations are often
diverse, thus making it difficult to foresee which form of system behavior will lead
to a quick and successful completion of the dialog. In addition, the omnipresence of
ASR errors leads to constant uncertainty about the true intentions of the user. As
applications become more complex, the process of designing robust dialog strate-
gies becomes very time-consuming and expensive.

To further illustrate the complexity involved in dialog strategy design, the fol-
lowing subsections briefly discuss two frequently arising design issues: interaction
strategies and the choice of a confirmation strategy.

10.2.1 Interaction Strategies

The interaction strategy of a conversational interface determines who takes the
initiative in the dialog—the system, the user, or both. Three types of interaction
strategies are often distinguished in the literature: user-directed, system-directed,
and mixed-initiative.

When user-directed initiative is used, the user always has the initiative in the
dialog, and the system just responds to the user’s queries and commands. The main
problem with this strategy is that the user may think that they are free to say
whatever they want, which tends to cause ASR and SLU errors. The following
example shows a user-directed dialog with the EDECAN dialog system for booking
sports facilities at the Technical University of Valencia, Spain (Griol et al. 2014).

System: Welcome to the sports service. How can I help you?
User: I want to book a basketball court.
System: You can see the available courts on the screen.
User: I want a court for November 12th in the afternoon.
System: Sorry, do you want a court from 15 to 21 hours?
User: Yes.
System: There are several courts available on Friday November 12th. Please
select one of them.
User: The one at 7 pm.
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System: There is only one court with the required features. Do you want to
book it?
User: Yes.
System: The basketball court has been booked. Anything else?
User: Yes, I want to know my list of court bookings.
System: You can see the courts on the screen. Anything else?
User: Yes, cancel the one at 12 am.
System: The specified court has been released. Anything else?
User: No, thank you.
System: Thank you for using the sports service. Goodbye.

When system-directed initiative is used, the system has the initiative in the
dialog, and the user just answers its queries. The advantage of this strategy is that it
helps to constrain the user’s input, leading to more efficient dialogs. The disad-
vantage is a lack of flexibility, as the user is restricted to behaving according to the
system’s expectations, providing the necessary data to perform some action in the
order specified by the system. The following example shows a system-directed
dialog with the LUNA dialog system that supports problem-solving tasks in the
domain of software/hardware repair (Griol et al. 2014).

System: Help Desk, I am Paola! How may I help you?
User: Hello I have a problem with the printer. It is not printing.
System: Where do you work?
User: For CSI Piemonte.
System: Tell me your name and surname.
User: My name is Ugo Foscolo.
System: I didn’t hear you very well. Please repeat and speak louder.
User: Ugo Foscolo.
System: Can you tell me your phone number?
User: Zero eleven forty fifty sixty-three.
System: Can you tell me the brand and model?
User: Epson EPL nine thousand.
System: Is the printer on now?
User: It is on.
System: Can you tell me the message on the printer display?
User: It says No network connection.
System: Can you see the printer from the control panel of your PC?
User: It is active.
System: Now, I will tell you the number of the ticket for your call. Your ticket
number is 2609192. Have you noted it down?
User: Yes.
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System: Thank you! A technical expert from Help Desk will contact you as
soon as possible. Have a nice day!

When the mixed-initiative strategy is used, both the user and the system can take
the initiative in the dialog. The advantage is that the system can guide the user in the
tasks that are to be performed, while the user can take the initiative, ask questions,
introduce new topics, and provide overinformative responses. In the following
example of a mixed-initiative dialog with the LUNA dialog system involving the
provision of railway information related to timetables, fares, trip times, types of
trains, and services the user responds to the system’s question about the destination
city by stating the day as well as the city (Griol et al. 2008).

System: Welcome to the railway information system. How can I help you?
User: I want to know timetables from Madrid.
System: Do you want to leave from Madrid?
User: Yes.
System: Tell me the destination city.
User: To Granada next Friday.
System: Do you want timetables for next Friday?
User: Yes
System: I have the following information about trains from Madrid to
Granada. There is only one train at 8.30. Anything else?
User: No, thank you.
System: Thanks for using this service. Have a good trip.

Although not shown in this dialog, an example of a mixed-initiative dialog in
which the user takes the initiative instead of responding directly to the system’s
question is shown in the following example:

System: Do you want timetables for next Friday?
User: Are there trains before 6 in the morning?

The problem with mixed-initiative dialogs is that the user can potentially say
anything and by introducing a different topic may cause the system to lose track of
its agenda. Thus, mixed-initiative dialogs require advanced ASR and SLU capa-
bilities as well as the ability to maintain and monitor the dialog history and the
system’s agenda.
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10.2.2 Error Handling and Confirmation Strategies

Because of the limitations of current ASR and SLU technologies that are employed
in conversational interfaces, it is necessary to assume that the information captured
by these components (and possibly also by sensors) may be uncertain or ambigu-
ous. Error propagation from the ASR and SLU modules is one of the main prob-
lems that the dialog manager must try to detect and correct.

To deal with the uncertainty problem, the ASR and SLU components typically
employ confidence scores attached to the frame slots, for example, real numbers in
the range between 0 and 1. A confidence score that falls below a threshold indicates
that the data item in the slot must be either confirmed or rejected by the system.

Two types of confirmation strategy are often employed: explicit confirmation
and implicit confirmation. With explicit confirmation, the system generates an
additional dialog turn to confirm the data item obtained from the previous user turn,
as in the following example:

User: I want to know timetables from Madrid.
System: Do you want to leave from Madrid?
User: Yes.

The disadvantage of explicit confirmations is that the dialog tends to be lengthy
due to these additional confirmation turns, and this makes the interaction less
efficient and even excessively repetitive if all the data items provided by the user
have to be confirmed.

The following is an example of an implicit confirmation:

User: I want to know timetables from Madrid.
System: What time do you want to leave from Madrid?

When the implicit confirmation strategy is used, the system includes some of the
user’s previous input in its next question. If the user answers the question directly,
for example, in this case by stating a departure time, then it is assumed that the
previous information about the destination is implicitly confirmed and no additional
turns are required. However, it is the user’s responsibility to make a correction if the
system has misrecognized the information and this can lead to the user producing
utterances that are beyond the scope of the ASR and SLU components, for example:

User: I want to know timetables from Madrid.
System: What time do you want to leave from Madrid?
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User: No, I just wanted to know about times from Madrid but I might be
departing from somewhere else depending on whether I have the use of the
car next Friday.

These confirmation strategies are useful for avoiding misunderstandings, for
example, when the system has understood something from its interaction with the
user but is uncertain about how accurate it is. One related, but different situation is
non-understanding, which occurs when the system has not been able to collect any
data from its interaction with the user. In this case, two typical strategies for
handling the error are to ask the user to repeat the input, or to ask for it to be
rephrased.

In the case of multimodal conversational interfaces, the input information can
also be ambiguous. For example, input made with a pen on a touch-sensitive screen
can have three different purposes: pointing (as a substitute for the mouse), hand-
writing, and drawing. In order to address this problem, the system must employ
some method to try to automatically decide the mode in which the pen is being used
and/or employ an additional dialog turn to get a confirmation from the user about
the intended mode.

A number of different approaches to DM have been developed within the
research community and in industry (Lee et al. 2010; Wilks et al. 2011). These
approaches can be classified into two main categories: handcrafted approaches
using rules and statistical or data-driven approaches using machine learning
methodologies. Hybrid approaches are also possible in which these two main
approaches are combined. The following sections discuss approaches to DM.

10.3 Handcrafted Approaches to Dialog Management

One of the simplest DM strategies is finite state-based DM, in which a generic
program implements the application with an interaction model based on finite state
machines. This approach is usually confined to highly structured tasks in which
system-directed initiative is used and the user’s input is restricted to utterances
within the scope of the ASR and SLU components (Barnard et al. 1999; Lee et al.
2010). This knowledge-based approach generally uses finite state automata with
handcrafted rules. The user’s actions determine the transitions between the system
responses that constitute the nodes of the finite state automaton, and the user’s
responses to the system prompts are coded in recognition grammars.

Although this approach has been deployed in many practical applications
because of its simplicity, these early applications only support a strict
system-directed dialog interaction, in which at each turn the system directs the user
by proposing a small number of choices for which there is a limited grammar or
vocabulary to interpret the input. Directed dialog has been efficient in terms of
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accuracy and cost of development. However, although libraries and dialog modules
have been created that can be reused and adapted to different applications, the
weakest point of this approach is its lack of versatility and poor domain portability
(Acomb et al. 2007; Pieraccini et al. 2009).

Unlike the finite state approach, frame-based dialog managers do not have a
predefined dialog path but use a frame structure comprised of one slot for piece of
information that the system has to gather from the user (McTear 2004). The
advantage of this approach is that the system can capture several data at once and
the information can be provided in any order (more than one slot can be filled per
dialog turn and in any order). The form interpretation algorithm (FIA), the basis for
the VoiceXML standard, is an example of a model of frame-based dialog man-
agement (see Chap. 11). Using frames, it is possible to specify the whole topic of a
dialog. A study by Lemon et al. (2001) is an example of a frame-based system, as is
the COMIC DM system (Catizone et al. 2003). The core idea is that humans
communicate to achieve goals and during the interaction the mental state of the
speakers may change. Thus, frame-based dialog managers model dialog as a
cooperation between the user and the system to reach common goals. Utterances are
not considered as text strings but as dialog acts in which the user communicates
their intentions.

Amore advanced approach is Information StateTheory, also knownas Information
StateUpdate (ISU), introduced inChap. 4 (TraumandLarsson 2003). The information
state of a dialog represents the information needed to uniquely distinguish it from all
others. It comprises the accumulated user interventions and previous dialog actions on
which the next system response can be based. The information state is also sometimes
known as the conversation store, discourse context, ormental state. In the information
state approach, the main tasks for the dialog manager are to update the information
state based on the observed user actions and based on this update to select the next
system action as specified in the update rules.

Plan-based approaches take the view that humans communicate to achieve goals,
including changes to the mental state of the listener. Plan-based theories of com-
municative action and dialog (e.g., Allen and Perrault 1980; Appelt 1985; Cohen
and Levesque 1990) claim that the speaker’s speech act is part of a plan and that it
is the listener’s task to identify and respond appropriately to this plan (Wilks et al.
2011). Plan-based approaches attempt to model this claim and explicitly represent
the (global) goals of the task.

Conversational games theory (Carletta et al. 1995; Kowtko et al. 1993) uses
techniques from both discourse grammars and plan-based approaches by including
a goal or plan-oriented level in its structural approach. It can be used to model
conversations between a human and a computer in a task-oriented dialog (Williams
1996). This approach deals with discourse phenomena such as side sequences and
clarifications by allowing games to have another game embedded within them
(Wilks et al. 2011).

Additionally, when it is necessary to execute and monitor operations in a
dynamically changing application domain, an agent-based approach can be
employed. A modular agent-based approach to DM makes it possible to combine
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the benefits of different dialog control models, such as finite state-based dialog
control and frame-based DM (Chu et al. 2005).

As previously discussed, in most settings, application developers, together with
voice user interface (VUI) designers, typically handcraft DM strategies using rules
and heuristics. As it is extremely challenging to anticipate every possible user input,
handcrafting dialog management strategies is an error-prone process that needs to
be iteratively refined and tuned, which requires considerable time and effort. The
VoiceXML standard, which was introduced briefly in Chap. 4, is an example of the
handcrafted approach that is used widely in industry to develop voice user inter-
faces. Chap. 11 provides an overview of VoiceXML along with exercises in how to
build a simple dialog system using VoiceXML.

One of the main problems with handcrafted approaches to DM is that it is
extremely challenging to anticipate every possible user input and design appropriate
strategies to handle it. The process is error-prone and requires considerable time and
effort to iteratively refine and tune the dialog strategies.

10.4 Statistical Approaches to Dialog Management

Machine learning approaches to DM try to reduce the effort and time required to
handcraft DM strategies and, at the same time, facilitate the development of new
dialog managers and their adaptation to deal with new domains. The application of
machine learning approaches to DM strategy design is a rapidly growing research
area. The main idea is to learn optimal strategies from corpora of real human–
computer dialog data using automated “trial-and-error” methods instead of relying
on empirical design principles (Young 2002).

Statistical approaches to DM present additional important advantages. Rather
than maintaining a single hypothesis for the dialog state, they maintain a distri-
bution over many hypotheses for the correct dialog state. In addition, statistical
methodologies choose actions using an optimization process, in which a developer
specifies high-level goals and the optimization works out the detailed dialog plan.
Finally, statistical DM systems have shown, in research settings, more robustness to
speech recognition errors, yielding shorter dialogs with higher task completion rates
(Williams and Young 2007).

The main trend in this area is an increased use of data to improve the perfor-
mance of the system. As described in Paek and Pieraccini (2008), there are three
main aspects of spoken dialog interaction where the use of massive amounts of data
can potentially improve the automation rate and ultimately the penetration and
acceptance of speech interfaces in the wider consumer market. They are as follows:

• Task-independent behaviors (e.g., error correction and confirmation behavior).
• Task-specific behaviors (e.g., logic associated with certain customer care

practices).
• Task interface behaviors (e.g., prompt selection).
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Statistical models can be trained using corpora of human–computer dialogs with
the goal of explicitly modeling the variability in user behavior that can be difficult
to address by means of handwritten rules (Schatzmann et al. 2006). Additionally, it
is possible to extend the strategy learned from the training corpus with handcrafted
rules that include expert knowledge or specifications about the task (Suendermann
and Pieraccini 2012; Laroche et al. 2008; Torres et al. 2008; Young et al. 2013).

The goal is to build systems that exhibit more robust performance, improved
portability, better scalability, and easier adaptation to other tasks. However, model
construction and parameterization are dependent on expert knowledge, and the
success of statistical approaches is dependent on the quality and coverage of the
models and data used for training (Schatzmann et al. 2006). Moreover, the training
data must be correctly labeled for the learning process. The size of currently
available annotated dialog corpora is usually too small to sufficiently explore the
vast space of possible dialog states and strategies. Collecting a corpus with real
users and annotating it requires considerable time and effort.

To address these problems, researchers have proposed alternative techniques that
facilitate the acquisition and labeling of corpora, such as Wizard of Oz (Fraser and
Gilbert 1991; Lane et al. 2004), bootstrapping (Fabbrizio et al. 2008; Abdennadher
et al. 2007), active learning (Cohn et al. 1994; Venkataraman et al. 2005), automatic
dialog act classification and labeling (O’Shea et al. 2012; Venkataraman et al.
2002), and user simulation (Schatzmann et al. 2006; Callejas et al. 2012).

Another relevant problem is how to deal with unseen situations, that is, situa-
tions that may occur during the dialog and that were not considered during training.
To address this point, it is necessary to employ generalizable models in order to
obtain appropriate system responses that enable the system to continue with the
dialog in a satisfactory way.

Another difficulty is in the design of a good dialog strategy, which in many cases
is far from being trivial. In fact, there is no clear definition of what constitutes a
good dialog strategy (Schatzmann et al. 2006; Lemon and Pietquin 2012). Users are
diverse, which makes it difficult to foresee which form of system behavior will lead
to a quick and successful dialog completion, and speech recognition errors may
introduce uncertainty about the user’s intentions.

Statistical approaches to DM can be classified into three main categories: dialog
modeling based on reinforcement learning (RL), corpus-based statistical dialog
management, and example-based dialog management. Example-based approaches
can be considered a specific case of corpus-based statistical dialog management,
given that they usually perform dialog modeling by means of prepared dialog
examples (Murao et al. 2003; Lee et al. 2009). These approaches assume that the
next system action can be predicted when the dialog manager finds dialog examples
that have a similar dialog state to the current dialog state (Lee et al. 2010). The best
example is then selected from the candidate examples by calculating heuristic
similarity measures between the current input and the example.

Hybrid approaches to DM combine statistical and rule-based approaches to try to
reduce the amount of dialog data required for parameter estimation and to allow
system designers to directly incorporate their expert domain knowledge into the

218 10 Dialog Management



dialog models (Lison 2015). In the following sections, we provide a detailed
description of reinforcement learning and corpus-based approaches.

10.4.1 Reinforcement Learning

The most recent research advances in reinforcement learning (RL) for building
spoken conversational interfaces have been reviewed and summarized in a survey
paper by Frampton and Lemon (2009). An earlier survey can be found in
Schatzmann et al. (2006). See also Rieser and Lemon (2011).

The most widespread methodology for machine learning of dialog strategies
involves modeling human–computer interaction as an optimization problem using
Markov decision processes (MDPs) and reinforcement learning methods (Levin and
Pieraccini 1997; Levin et al. 2000; Singh et al. 1999). The main drawback of this
approach is that the large state space required for representing all the possible dialog
paths in practical spoken conversational interfaces makes its direct representation
intractable. In addition, while exact solution algorithms do exist, they do not scale
to problems with more than a few states/actions (Young et al. 2010, 2013).

Partially observable MDPs (POMDPs) outperform MDP-based dialog strategies
since they provide an explicit representation of uncertainty (Roy et al. 2000). This
enables the dialog manager to avoid and recover from recognition errors by sharing
and shifting probability mass between multiple hypotheses of the current dialog
state.

Another disadvantage of the POMDP methodology is that the optimization
process is free to choose any action at any time. As a result, there is no obvious way
to incorporate domain knowledge or constraints such as business rules. In addition,
in the worst case, spurious actions might be taken with real users, an especially
serious concern if POMDP-based systems are going to handle financial or medical
transactions. POMDP-based systems have been limited to small-scale problems,
since the state space would be huge and exact POMDP optimization is again
intractable (Young et al. 2010).

Formally, a partially observable MDP is defined as a tuple {S, A, T, R, O, Z, λ,
b0} where

• S is a set of the system states;
• A is a set of actions that the system may take;
• T defines a transition probability P(s′|s, a);
• R defines the immediate reward obtained from taking a particular action in a

particular state r(s, a);
• O is a set of possible observations that the system can receive from the world;
• Z defines the probability of a particular observation given the state and machine

action P(o′|s′ a);
• λ is a geometric discount factor 0 ≤ λ ≤ 1; and
• b0 is an initial belief state b0(s).
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The operation of a POMDP is as follows. At each moment, the system is in an
unobserved state s. The system selects an action am, receives a reward r, and
transits to a state (unobserved) s′, where s′ only depends on s and am. The system
receives an observation o′, which depends on s′ and am. Although the observation
allows the system to have some evidences about the state s in which the system is
now, s is not exactly known, and b(s) (belief state) is defined to indicate the
probability of the system being in the state s.

Based on b, the machine selects an action a 2 A, receives a reward r(s, a),
and transitions to state s′, which depends only on s and a. The machine then
receives an observation o′ 2 O, which is dependent on s′ and a. In each moment,
the probability of the system being in a specific state is updated taking into account
o′ and a, as shown in Eq. 10.1.

b0 s0ð Þ ¼ P s0jo0; a; bð Þ ¼ P o0js0m; am; b
� �

P s0mjam; b
� �

P o0jam; bð Þ

¼ P o0js0m; am; b
� �P

sm2Sm P s0mjam; b; sm
� �

P smjam; bð Þ
P o0jam; bð Þ

¼ k � P o0js0; að Þ
X

s2S P s0ja; sð ÞbðsÞ
ð10:1Þ

where k = P (o’|a, b) is a normalization constant (Kaelbling et al. 1998). At
each time t, the system receives a reward r(bt, am,t), which depends on bt and
the selected action am,t. The reward accumulated during the dialog is called a
return and can be calculated by means of Eq. 10.2.

R ¼
X1
t¼0

ktRðbt; am;tÞ ¼
X1
t¼0

kt
X
s2S

btðsÞrðs; am;tÞ ð10:2Þ

Each action am,t is determined by the policy π(bt), and the construction of the
POMDP model implies to find the strategy π* which maximizes the return at every
point b. Due to the vast space of possible belief states, however, the use of
POMDPs for any practical system is far from straightforward. The optimal policy
can be represented by a set of policy vectors where each vector vi is associated
with an action a(i) 2 Am and vi(s) equals the expected value of taking action a
(i) in state s. Given a complete set of policy vectors, the optimal value function and
corresponding policy are computed as shown in Eq. 10.3.

Vp� ðbÞ ¼ max
i
fvi; bg
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and

Vp� ðbÞ ¼ max
i
fvi; bg ð10:3Þ

The application of a POMDP to model a conversational interface is based on the
classical architecture of these systems as shown in Fig. 10.1. As this figure shows,
the user has an internal state Su corresponding to a goal to be accomplished and the
dialog state Sd represents the previous history of the dialog. Based on the user’s
goal prior to each turn, the user decides some communicative action (also called an
intention) Au, expressed in terms of dialog acts and corresponding to an audio
signal Yu.

Then, the speech recognition and language understanding modules take the

audio signal Yu and generate the pair eAu;C
� �

. This pair consists of an estimate of

the user’s action Au and a confidence score that provides an indication of the
reliability of the recognition and semantic interpretation results. This pair is then
passed to the dialog model, which is in an internal state Sm and decides what action
Am the dialog system should take. This action is also passed back to the dialog
manager so that Sm may track both user and machine actions. The language gen-
erator and the text-to-speech synthesizer take Am and generate an audio response Ym.
The user listens to Ym and attempts to recover Am. As a result of this process, users
update their goal state Su and their interpretation of the dialog history Sd. These
steps are then repeated until the end of the dialog.

One of the main challenges for conversational interfaces is that eAu usually
contains recognition errors (i.e., eAu 6¼ Au). As a result, the user’s action Au, the
user’s state Su, and the dialog history Sd are not directly observable and can never
be known to the system with certainty. However, eAu and the confidence scores C
provide evidence from which Au, Su, and Sd can be inferred.

Therefore, when using POMDPs to model a conversational interface, the
POMDP state Sm expresses the unobserved state of the world and can naturally be
factored into three distinct components: the user’s goal Su, the user’s action Au, and
the dialog history Sd. Hence, the factored POMDP state S is defined as Sm = (su,

Fig. 10.1 Modeling a dialog system by means of POMDPs (Young et al. 2013)
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au, sd). The belief state b is then a distribution over these three components:
sm = bs = b(su, au, sd). The observation o is the estimate of the user dialog acteAu. In the general case, this will be a set of N-best hypothesized user acts, each with
an associated probability:

o ¼ ~a1u; p1
� �

; ~a2u; p2
� �

; . . .; ~aNu ; pN
� �� � ð10:4Þ

where pn ¼ P ~aNu jo
� �

for n ¼ 1. . .N:
The transition function for an SDS-POMDP follows directly by substituting the

factored state into the regular POMDP transition function and making indepen-
dence assumptions:

P s0mjsm; am
� � ¼ P s0u; a

0
u; s

0
djsu; au; sd; am

� �
¼ P s0ujsu; am

� �
P a0ujs0u; am
� �

P s0djs0u; a0u; sd; am
� � ð10:5Þ

The observation model is obtained by making similar reasonable independence
assumptions regarding the observation function, giving

P o0js0m; am
� � ¼ P o0js0u; a0u; s0d; am

� � ¼ P o0ja0u
� � ð10:6Þ

The above factoring simplifies the belief update equation as shown in Eq. 10.7.

b0 s0u; a
0
u; s

0
d

� � ¼ k � P o0ja0u
� �

|fflfflfflffl{zfflfflfflffl}
Observationmodel

P a0ujs0u; am
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
User actionmodel

X
su

P s0ujsu; am
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
User goal model

�
X
sd

P s0djs0u; a0u; sd; am
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dialogmodel

bðsu; sdÞ
ð10:7Þ

As shown in the previous equation, the probability distribution for a0u is called
the user action model. It allows the observation probability to be scaled by the
probability that the user would speak a0u given the goal s0u and the last system
prompt am. The user goal model determines the probability of the user goal
switching from su to s0u following the system prompt am. Finally, the dialog model
enables information relating to the dialog history to be maintained such as
grounding and focus.

10.4.1.1 Reinforcement Learning: Some Problems and Some Solutions

Scaling the dialog model to handle real-world problems remains a significant
challenge for RL-based systems, given that the complexity of a POMDP grows with
the number of user goals, and optimization quickly becomes intractable. The
summary POMDP method (Young et al. 2010) provides a way to scale up the
POMDP model for so-called slot-filling spoken dialog systems. In this approach,
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the belief state and actions are mapped down to a summarized form where opti-
mization becomes tractable.

The original belief space and actions are called master space and master actions,
while the summarized versions are called summary space and summary actions.
The updated belief state b is then mapped into a summary state ~b, where an
optimized dialog policy is applied to compute a new summary machine action ãm.
The summary machine action is then mapped back into the master space where it is
converted to a specific machine dialog act am.

The optimization of the policy in these two spaces is usually carried out using
techniques such as point-based value iteration or Q-learning, in combination with a
user simulator. Q-learning is a technique for online learning where a sequence of
sample dialogs is used to estimate the Q functions for each state and action. The
optimal action for each point p is given by

�ap ¼ argmax
�a

Qða; pÞ ð10:8Þ

Given that a good estimate of the true Q-value can be obtained if sufficient
dialogs are completed, user simulation is usually introduced to reduce the
time-consuming and expensive task of obtaining these dialogs with real users.
Simulation is usually done at a semantic dialog act level to avoid having to
reproduce the variety of user utterances at the word or acoustic levels.

Agenda-based state representations, like the one described in (Thomson et al.
2007), factor the user state into an agenda A and a goal G. The goal G consists of
constraints C that specify the detailed goal of the dialog and requests R that specify
the desired pieces of information.

The user agenda A is a stack-like structure containing the pending user dialog
acts that are needed to elicit the information specified in the goal. At the beginning
of each dialog, a new goal G is randomly selected. Then, the goal constraints C are
converted into user and system inform acts (au and am acts) and the requests R into
request acts. A bye act is added at the bottom of the agenda to close the dialog once
the goal has been fulfilled. The agenda is ordered according to priority, with A[N]
denoting the top item and A[1] denoting the bottom item. As the dialog pro-
gresses, the agenda and goal are dynamically updated and acts are selected from the
top of the agenda to form user acts au.

Young et al. (2010) present an approach that scales the POMDP framework for
the implementation of practical spoken conversational interfaces by defining two
state spaces. Approximate algorithms have also been developed to overcome the
intractability of exact algorithms, but even the most efficient of these techniques
such as point-based value iteration (PBVI) cannot scale to the many thousands of
states required by a statistical dialog manager (Williams et al. 2006).
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Composite summary point-based value iteration (CSPBVI) has suggested the
use of a small summary space for each slot where PBVI policy optimization can be
applied. However, policy learning in this technique can only be performed off-line,
i.e., at design time, because policy training requires an existing accurate model of
user behavior. An alternative technique for online training based on Q-learning is
presented in Thomson et al. (2007), which allows the system to adapt to real users
as new dialogs are recorded. This technique does not require any model of user
behavior, so user simulation techniques are proposed to iteratively learn the dialog
model.

Other authors have combined conventional dialog managers with a fully
observable Markov decision process (Singh et al. 2002; Heeman 2007), or proposed
using multiple POMDPs and selecting actions using handcrafted rules (Williams
et al. 2006). In Williams (2008), the robustness of the POMDP approach is com-
bined with the developer control available in conventional approaches: The (con-
ventional) dialog manager and POMDP run in parallel, but the dialog manager is
augmented so that it outputs one or more allowed actions at each time
step. The POMDP then chooses the best action from this limited set. Results from a
real voice dialer application show that adding the POMDP machinery to a standard
dialog system yields a significant improvement.

Crook et al. (2014) describe an evaluation of a POMDP-based spoken dialog
system using crowd-sourced calls with real users. The evaluation compares a
“hidden information state” POMDP system that uses a handcrafted compression of
the belief space with the same system using instead an automatically computed
belief space compression.

In Tetreault and Litman (2008), the authors aimed to evaluate the best
state-space representations so that RL can be used to find an optimal dialog policy.
The authors presented three metrics for the tutoring domain and ways to build
confidence intervals for model switching. In the work reported in Gašić et al.
(2011), online optimization of dialog policy was conducted in spoken dialog sys-
tems via live interaction with human subjects.

Jurčíček et al. (2012) presented two RL algorithms for learning the parameters of
a dialog model. The Natural Belief Critic algorithm is designed to optimize the
model parameters while the policy is kept fixed. The Natural Actor and Belief Critic
algorithm jointly optimizes both the model and the policy parameters. The algo-
rithms were evaluated on a statistical dialog system for the tourist information
domain modeled as a POMDP. The experiments indicated that model parameters
estimated to maximize the expected reward function provide improved performance
compared to the baseline handcrafted parameters.

Thomson and Young (2010) used expectation–propagation (EP) to infer the
unobserved dialog state together with the model parameters. The main advantage of
this algorithm is that it is an off-line method and it does not rely on annotated data.
However, it requires the model to be generative (i.e., the observations must be
conditioned on the dialog state).

Wierstra et al. (2010) used recurrent neural networks (RNN) to approximate the
policy. This method selects a new system action based on the accumulated
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information in the internal memory and the last observation. Png and Pineau (2011)
presented a framework based on a Bayes-adaptive POMDP algorithm to learn an
observation model. In this work, a dialog model was factored into a transition
model between hidden dialog states and an observation model, and only learning of
the observation model was considered.

Lopes et al. (2015) have very recently presented a data-driven approach to
improve the performance of SDSs by automatically finding the most appropriate
terms to be used in system prompts. Speakers use one another’s terms (entrain)
when trying to create common ground during a spoken dialog. Those terms are
commonly called primes, since they influence the interlocutors’ linguistic
decision-making. The proposed approach emulates human interaction, with a sys-
tem built to propose primes to the user and accept the primes that the user proposes.
Live tests with this method show that the use of on-the-fly entrainment reduces
out-of-vocabulary and word error rate and also increases the number of correctly
transferred concepts.

Lison (2015) has also recently presented a modeling framework for DM based
on the concept of probabilistic rules, which are defined as structured mappings
between logical conditions and probabilistic effects. Probabilistic rules are able to
encode the probability and utility models employed in DM in a compact and
human-readable form. As a consequence, they can reduce the amount of dialog data
required for parameter estimation and allow system designers to directly incorporate
their expert domain knowledge into the dialog models.

Other interesting approaches for statistical DM are based on modeling the sys-
tem by means of Hidden Markov models (HMMs) (Cuayáhuitl et al. 2005) or using
Bayesian networks (Paek and Horvitz 2000; Meng et al. 2003).

10.4.2 Corpus-Based Approaches

Griol et al. (2014) describe a corpus-based approach to DM based on the estimation
of a statistical model from the sequences of the system and user dialog acts obtained
from a set of training data. The next system response is selected by means of a
classification process that considers the complete history of the dialog.

Another main characteristic is the inclusion of a data structure that stores the
information provided by the user. The main objective of this structure is to easily
encode the complete information related to the task provided by the user during the
dialog history and then to consider the specific semantics of the task and include
this information in the proposed classification process.

In order to control the interactions with the user, the proposed dialog manager
represents dialogs as a sequence of pairs (Ai, Ui), where Ai is the output of the
dialog system (the system answer) at time i and Ui is the semantic representation of
the user turn (the result of the understanding process of the user input) at time i;
both expressed in terms of dialog acts (Griol et al. 2008). Each dialog is represented
by:
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ðA1;U1Þ; . . .; ðAi;UiÞ; . . .; ðAn;UnÞ

where A1 is the greeting turn of the system and Un is the last user turn. We refer to a
pair (Ai, Ui) as Si, the dialog sequence at time i.

In this framework, we consider that, at time i, the objective of the dialog
manager is to find the best system answer Ai. This selection is a local process for
each time i that takes into account the previous history of the dialog, that is to say,
the sequence of states of the dialog preceding time i:

bAi ¼ argmax
Ai2A

PðAi j S1; . . .; Si�1Þ ð10:9Þ

where set A contains all the possible system answers.
Following Eq. 10.9, the dialog manager selects the next system prompt by

taking into account the sequence of previous pairs (Ai, Ui). The main problem
with resolving this equation is that the number of possible sequences of states is
usually very large. To solve the problem, we define a data structure in order to
establish a partition in this space, i.e., in the history of the dialog preceding time i.
This data structure, which we call Dialog Register (DR), contains the information
provided by the user throughout the previous history of the dialog.

After applying the above considerations and establishing the equivalence rela-
tion in the histories of the dialogs, the selection of the best Ai is given by:

bAi ¼ argmax
Ai2A

PðAi j DRi�1; Si�1Þ ð10:10Þ

Each user turn supplies the system with information about the task; i.e., the user
asks for a specific concept and/or provides specific values for certain attributes.
However, a user turn can also provide other kinds of information, such as
task-independent information (for instance, Affirmation, Negation, and
Not-Understood dialog acts). This kind of information implies some decisions
that are different from simply updating the DRi−1. Hence, for the selection of the
best system response Ai, we take into account the DR that results from turn 1 to
turn i − 1, and we explicitly consider the last state Si−1.

We propose solving Eq. 10.10 using a classification process, in which every
dialog situation (i.e., each possible sequence of dialog acts) is classified taking into
account a set of classes C, in which a class contains all the sequences that provide
the same set of system actions (responses). The objective of the dialog manager at
each moment is to select a class of this set c 2 C, so that the system answer is the
one associated with the selected class.

The classification function can be defined in several ways. Griol et al. (2014)
propose the use of a multilayer perceptron (MLP) (Rumelhart et al. 1986), where
the input layer holds the input pair (DRi−1, Si−1) corresponding to the Dialog
Register and the state. The values of the output layer can be seen as an
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approximation of the a posteriori probability of the input belonging to the associ-
ated class c 2 C.

As stated before, the DR contains information about concepts and values for the
attributes provided by the user throughout the previous history of the dialog. For the
dialog manager to determine the next answer, the exact values of the attributes are
assumed to be not significant. They are important for accessing databases and for
constructing the output sentences of the system. However, the only information
necessary to predict the next action by the system is the presence or absence of
concepts and attributes. Therefore, the codification proposed for each slot in the DR
is in terms of three values, {0, 1, 2}, according to the following criteria:

• (0) The concept is unknown, or the value of the attribute is not given.
• (1) The concept or attribute is known with a confidence score that is higher than

a given threshold.
• (2) The concept or attribute has a confidence score that is lower than the given

threshold.

To decide whether the state of a certain value in the DR is 1 or 2, the system
employs confidence measures provided by the ASR and SLU modules (Torres et al.
2005).

The previously described process allows every task to be modeled based only on
the information provided by the user in the previous turns and its own model. In
other dialog systems, the dialog manager generates the next system response taking
also into account the information generated by the module that controls the
application (that is denoted as the application manager (AM)). For example, the
AM can validate restrictions, apply privacy policies, or carry out computations that
define the next system response (for instance, selecting a different system action
depending on the result of a query to the databases of the application). Thus, the
output of this module has to be taken into account for the selection of the best
system action.

For this reason, for this kind of task, two phases are proposed for the selection of
the next system turn. In the first phase, the information contained in the DR and the
last state Si−1 are considered to select the best request to be made to the AM:

bAi ¼ argmax
A1i2A1

PðAi j DRi�1; Si�1Þ ð10:11Þ

where A1 is the set of possible requests to the AM.
In the second phase, the system answer eA2 is generated taking into account eA1

and the information provided by the AM (AMi):

bA2i ¼ argmax
A2i2A2

PðAijAMi;A1iÞ ð10:12Þ

where eA2 is the set of possible system answers.
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Figure 10.2 shows the scheme proposed for the development of the dialog
manager for this kind of task, detailing the two phases described for the generation
of the system response. The use of two MLPs is proposed to deal with the specific
information defined for each phase.

The AM makes it possible to consider specific requisites (e.g., special require-
ments, policies, or specific routines) that endow conversational interfaces with a
more sophisticated behavior that is different from only requiring information from
the user and checking or updating a repository. This phase also makes it possible for
systems to deal with specific cases for the different attributes, given that the exact
values for each attribute are considered to access the data repositories. In addition,
the statistical dialog model supports user adaptation, which makes it suitable for
different application domains with varying degrees of complexity.

10.5 Summary

Given the current state of the dialog, the principal role of the dialog manager is to
choose an action that will result in a change of dialog state. The strategy followed
by the dialog manager, sometimes referred to as the policy, should be designed to
enable successful, efficient, and natural conversations.

This is a challenging goal, and in most commercially deployed conversational
interfaces, a human designer handcrafts the dialog manager. This handcrafted
approach is limited for several reasons: it is not always easy to specify the optimal
action at each state of the dialog; a dialog behavior that is generic and static is
usually assumed for the entire user population; designing such strategies is
labor-intensive, especially for large systems.

Machine learning approaches to DM try to reduce the effort and time required by
handcrafted DM strategies; they isolate domain knowledge from the dialog strategy;

Fig. 10.2 Scheme of the architecture proposed in the corpus-based DM methodology
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and they facilitate the development of new dialog managers and their adaptation to
new domains.

DM is discussed further in Chap. 11 where we provide practical exercises related
to the application of rule-based and statistical DM techniques for a specific task.
Chap. 17 will discuss the most relevant approaches for the evaluation of DM.

Further Reading
Wilks et al. (2011) present a detailed survey of DM approaches and architectures,
along with practical examples of dialog systems developed using these approaches
and architectures. Lee et al. (2010) present a detailed survey covering design issues
and approaches to DM and techniques for modeling. The paper also explains the
use of user simulation techniques for the automatic evaluation of spoken conver-
sational interfaces.

Some recent research advances in RL for building SDSs were reviewed and
summarized in a survey paper by Frampton and Lemon (2009). An earlier survey
can be found in Schatzmann et al. (2006). See also Rieser and Lemon (2011),
Lemon and Pietquin (2012), and Thomson (2013). Young et al. (2013) provide an
overview of the state of the art in the development of POMDP-based spoken dialog
systems.

Meena et al. (2014) summarize the main approaches to turn taking in human
conversations. They also explore a range of automatically extractable features for
online use, covering prosody, lexicosyntax, and context, and different classes of
learning algorithms for turn taking in human–machine conversations.
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