
Michael McTear · Zoraida Callejas
David Griol

The
Conversational
Interface
Talking to Smart Devices

The Conversational Interface

Michael McTear • Zoraida Callejas
David Griol

The Conversational Interface
Talking to Smart Devices

123

Michael McTear
School of Computing and Mathematics
Ulster University
Northern Ireland
UK

Zoraida Callejas
ETSI Informática y Telecomunicación
University of Granada
Granada
Spain

David Griol
Department of Computer Science
Universidad Carlos III de Madrid
Madrid
Spain

ISBN 978-3-319-32965-9 ISBN 978-3-319-32967-3 (eBook)
DOI 10.1007/978-3-319-32967-3

Library of Congress Control Number: 2016937351

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

Some of us who have been in the field of “computers that understand speech” for
many years have experienced firsthand a tremendous evolution of all the tech-
nologies that are required for computers to talk and understand speech and lan-
guage. These technologies, including automatic speech recognition, natural
language understanding, language generation, and text to speech are extremely
complex and have required decades for scientists, researchers, and practitioners
around the world to create algorithms and systems that would allow us to com-
municate with machines using speech, which is the preferred and most effective
channel for humans.

Even though we are not there yet, in the sense that computers do not yet have a
mastering of speech and language comparable to that of humans, we have made
great strides toward that goal. The introduction of Interactive Voice Response
(IVR) systems in the 1990s created programs that could automatically handle
simple requests on the phone and allow large corporations to scale up their cus-
tomer care services at a reasonable cost. With the evolution of speech recognition
and natural language technologies, IVR systems rapidly became more sophisticated
and enabled the creation of complex dialog systems that could handle natural
language queries and many turns of interaction. That success prompted the industry
to create standards such as VoiceXML that contributed to making the task of
developers easier, and IVR applications became the test bed and catalyzer for the
evolution of technologies related to automatically understanding and producing
human language.

Today, while IVRs are still in use to serve millions of people, a new technology
that penetrated the market half a decade ago is becoming more important in
everyday life: that of “Virtual Personal Assistants.” Apple’s Siri, Google Now, and
Microsoft’s Cortana allow whoever has a smartphone to ask virtually unlimited
requests and interact with applications in the cloud or on the device. The embod-
iment of virtual personal assistants into connected devices such as Amazon’s Echo
and multimodal social robots such as Jibo are on the verge of enriching the human–
computer communication experience and defining new ways to interact with the

v

vast knowledge repositories on the Web, and eventually with the Internet of Things.
Virtual Personal Assistants are being integrated into cars to make it safer to interact
with onboard entertainment and navigation systems, phones, and the Internet. We
can imagine how all of these technologies will be able to enhance the usability of
self-driving cars when they will become a reality. This is what the conversational
interface is about, today and in the near future.

The possibilities of conversational interfaces are endless and the science of
computers that understand speech, once the prerogative of a few scientists who had
access to complex math and sophisticated computers, is today accessible to many
who are interested and want to understand it, use it, and perhaps contribute to its
progress.

Michael McTear, Zoraida Callejas, and David Griol have produced an excellent
book that is the first to fill a gap in the literature for researchers and practitioners
who want to take on the challenge of building a conversational machine with
available tools. This is an opportune time for a book like this, filled with the depth
of understanding that Michael McTear has accumulated in a career dedicated to
technologies such as speech recognition, natural language understanding, language
generation and dialog, and the inspiration he has brought to the field.

In fact, until now, there was no book available for those who want to understand
the challenges and the solutions, and to build a conversational interface by using
available modern open source software. The authors do an excellent job in setting
the stage by explaining the technology behind each module of a conversational
system. They describe the different approaches in accessible language and propose
solutions using available software, giving appropriate examples and questions to
stimulate the reader to further research.

The Conversational Interface is a must read for students, researchers, interaction
designers, and practitioners who want to be part of the revolution brought by
“computers that understand speech.”

San Francisco Roberto Pieraccini
February 2016 Director of Advanced Conversational Technologies

Jibo, Inc.

vi Foreword

Preface

When we first started planning to write a book on how people would be able to talk
in a natural way to their smartphones, devices and robots, we could not have
anticipated that the conversational interface would become such a hot topic.

During the course of writing the book we have kept touch with the most recent
advances in technology and applications. The technologies required for conversa-
tional interfaces have improved dramatically in the past few years, making what
was once a dream of visionaries and researchers into a commercial reality. New
applications that make use of conversational interfaces are now appearing on an
almost weekly basis.

All of this has made writing the book exciting and challenging. We have been
guided by the comments of Deborah Dahl, Wolfgang Minker, and Roberto
Pieraccini on our initial book proposal. Roberto also read the finished manuscript
and kindly agreed to write the foreword to the book.

We have received ongoing support from the team at Springer, in particular Mary
James, Senior Editor for Applied Science, who first encouraged us to consider
writing the book, as well as Brian Halm and Zoe Kennedy, who answered our many
questions during the final stages of writing. Special thanks to Ms. Shalini Selvam
and her team at Scientific Publishing Services (SPS) for their meticulous editing and
for transforming our typescript into the published version of the book.

We have come to this book with a background in spoken dialog systems, having
all worked for many years in this field. During this time we have received advice,
feedback, and encouragement from many colleagues, including: Jim Larson, who
has kept us abreast of developments in the commercial world of conversational
interfaces; Richard Wallace, who encouraged us to explore the world of chatbot
technology; Ramón López-Cózar, Emilio Sanchis, Encarna Segarra and Lluís F.
Hurtado, who introduced us to spoken dialog research; and JoséManuel Molina and
Araceli Sanchis for the opportunity to continue working in this area. We would also
like to thank Wolfgang Minker, Sebastian Möller, Jan Nouza, Catherine Pelachaud,
Giusseppe Riccardi, Huiru (Jane) Zheng, and their respective teams for welcoming
us to their labs and sharing their knowledge with us.

vii

Writing a book like this would not be possible without the support of family and
friends. Michael would like to acknowledge the encouragement and patience of his
wife Sandra who has supported and encouraged him throughout. Zoraida and David
would like to thank their parents, Francisco Callejas, Francisca Carrión, Amadeo
Griol, and Francisca Barres for being supportive and inspirational, with a heartfelt
and loving memory of Amadeo, who will always be a model of honesty and passion
in everything they do.

viii Preface

Contents

1 Introducing the Conversational Interface 1
1.1 Introduction. 1
1.2 Who Should Read the Book? . 2
1.3 A Road Map for the Book . 2

1.3.1 Part I: Conversational Interfaces: Preliminaries 4
1.3.2 Part II: Developing a Speech-Based Conversational

Interface . 4
1.3.3 Part III: Conversational Interfaces and Devices. 5
1.3.4 Part IV: Evaluation and Future Prospects. 6

Part I Conversational Interfaces: Preliminaries

2 The Dawn of the Conversational Interface 11
2.1 Introduction. 11
2.2 Interacting with a Conversational Interface 12
2.3 Conversational Interfaces for Smart Watches and Other

Devices . 15
2.4 Explaining the Rise of the Conversational Interface 15

2.4.1 Technological Developments 16
2.4.2 User Acceptance and Adoption 18
2.4.3 Enterprise and Specialized VPAs 19
2.4.4 The Cycle of Increasing Returns 20

2.5 The Technologies that Make up a Conversational Interface 20
2.6 Summary . 22
References . 24

3 Toward a Technology of Conversation . 25
3.1 Introduction. 25
3.2 Conversation as Action. 26
3.3 The Structure of Conversation . 31

3.3.1 Dealing with Longer Sequences 34

ix

http://dx.doi.org/10.1007/978-3-319-32967-3_1
http://dx.doi.org/10.1007/978-3-319-32967-3_1
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_1#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_2
http://dx.doi.org/10.1007/978-3-319-32967-3_2
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_2#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_3
http://dx.doi.org/10.1007/978-3-319-32967-3_3
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec4

3.4 Conversation as a Joint Activity. 35
3.4.1 Turn Taking in Conversation 36
3.4.2 Grounding . 37
3.4.3 Conversational Repair . 40

3.5 The Language of Conversation . 42
3.5.1 Prosodic, Paralinguistic, and Nonverbal Behaviors . . . 43
3.5.2 Implications for the Conversational Interface 44

3.6 Summary . 45
References . 47

4 Conversational Interfaces: Past and Present 51
4.1 Introduction. 51
4.2 Conversational Interfaces: A Brief History 52

4.2.1 A Typical Interaction with a Spoken
Dialog System . 52

4.2.2 An Interaction that Goes Wrong. 54
4.2.3 Spoken Dialog Systems. 55
4.2.4 Voice User Interfaces . 56
4.2.5 Embodied Conversational Agent, Companions,

and Social Robots . 56
4.2.6 Chatbots . 57

4.3 What Have We Learned so Far? . 58
4.3.1 Making Systems More Intelligent 58
4.3.2 Using Incremental Processing to Model

Conversational Phenomena 60
4.3.3 Languages and Toolkits for Developers. 61
4.3.4 Large-Scale Experiments on System Design

Using Techniques from Machine Learning. 62
4.4 Summary . 65
References . 68

Part II Developing a Speech-Based Conversational Interface

5 Speech Input and Output . 75
5.1 Introduction. 75
5.2 Speech Recognition . 75

5.2.1 ASR as a Probabilistic Process. 77
5.2.2 Acoustic Model . 78
5.2.3 Language Model . 81
5.2.4 Decoding . 82

5.3 Text-to-Speech Synthesis . 83
5.3.1 Text Analysis . 83
5.3.2 Waveform Synthesis . 86
5.3.3 Using Prerecorded Speech . 87
5.3.4 Speech Synthesis Markup Language 87

x Contents

http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_3#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_4#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_5
http://dx.doi.org/10.1007/978-3-319-32967-3_5
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec14

5.4 Summary . 89
References . 91

6 Implementing Speech Input and Output . 93
6.1 Introduction. 93
6.2 Web Speech API . 95

6.2.1 Text-to-Speech Synthesis. 95
6.2.2 Speech Recognition . 98

6.3 The Android Speech APIs. 100
6.3.1 Text-to-Speech Synthesis. 103
6.3.2 Speech Recognition . 110
6.3.3 Using Speech for Input and Output. 117

6.4 Summary . 121

7 Creating a Conversational Interface Using Chatbot
Technology . 125
7.1 Introduction. 125
7.2 Introducing the Pandorabots Platform 127
7.3 Developing Your Own Bot Using AIML 131

7.3.1 Creating Categories . 131
7.3.2 Wildcards . 133
7.3.3 Variables. 134
7.3.4 Sets and Maps . 135
7.3.5 Context . 136

7.4 Creating a Link to Pandorabots from Your Android App 139
7.4.1 Creating a Bot in the Developer Portal 139
7.4.2 Linking an Android App to a Bot. 143

7.5 Introducing Mobile Functions . 147
7.5.1 Processing the <oob> Tags. 147
7.5.2 Battery Level . 149
7.5.3 Search Queries . 149
7.5.4 Location and Direction Queries 151

7.6 Extending the App . 153
7.7 Alternatives to AIML . 154
7.8 Some Ways in Which AIML Can Be Further Developed 154

7.8.1 Learning a Chatbot Specification from Data. 154
7.8.2 Making Use of Techniques from Natural Language

Processing . 156
7.9 Summary . 157
References . 157

8 Spoken Language Understanding . 161
8.1 Introduction. 161
8.2 Technologies for Spoken Language Understanding. 163
8.3 Dialog Act Recognition . 164
8.4 Identifying Intent . 165

Contents xi

http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_5#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_6#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec20
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec20
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec22
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Sec22
http://dx.doi.org/10.1007/978-3-319-32967-3_7#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec4

8.5 Analyzing the Content of the User’s Utterances 166
8.5.1 Tokenization . 166
8.5.2 Bag of Words . 166
8.5.3 Latent Semantic Analysis . 167
8.5.4 Regular Expressions . 168
8.5.5 Part-of-Speech Tagging . 168
8.5.6 Information Extraction . 169
8.5.7 Semantic Role Labeling . 169

8.6 Obtaining a Complete Semantic Interpretation of the Input 170
8.6.1 Semantic Grammar . 170
8.6.2 Syntax-Driven Semantic Analysis 172

8.7 Statistical Approaches to Spoken Language Understanding 175
8.7.1 Generative Models . 176
8.7.2 Discriminative Models . 178
8.7.3 Deep Learning for Natural and Spoken Language

Understanding . 179
8.8 Summary . 180
References . 182

9 Implementing Spoken Language Understanding 187
9.1 Introduction. 187
9.2 Getting Started with the Api.ai Platform 188

9.2.1 Exercise 9.1 Creating an Agent in Api.ai. 188
9.2.2 Exercise 9.2 Testing the Agent. 189

9.3 Creating an Android App for an Agent 191
9.3.1 Exercise 9.3 Producing a Semantic Parse. 191
9.3.2 Exercise 9.4 Testing the App 194

9.4 Specifying Your Own Entities and Intents. 195
9.4.1 Exercise 9.5 Creating Entities 195
9.4.2 Exercise 9.6 Creating an Intent 197
9.4.3 Exercise 9.7 Testing the Custom Entities

and Intents . 199
9.5 Using Aliases . 199
9.6 Using Context . 199

9.6.1 Exercise 9.8 Defining Contexts 200
9.7 Creating a Slot Filling Dialog . 200

9.7.1 Exercise 9.9 Creating a Slot-Filling Dialog 201
9.7.2 Exercise 9.10 Additional Exercises 202

9.8 Overview of Some Other Spoken Language Understanding
Tools . 202
9.8.1 Tools Using Intents and Entities. 203
9.8.2 Toolkits for various other NLP Tasks 206

9.9 Summary . 207
References . 208

xii Contents

http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec26
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec26
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec26
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec27
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Sec27
http://dx.doi.org/10.1007/978-3-319-32967-3_8#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec24
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Sec24
http://dx.doi.org/10.1007/978-3-319-32967-3_9#Bib1

10 Dialog Management . 209
10.1 Introduction. 209
10.2 Defining the Dialog Management Task 210

10.2.1 Interaction Strategies. 211
10.2.2 Error Handling and Confirmation Strategies 214

10.3 Handcrafted Approaches to Dialog Management 215
10.4 Statistical Approaches to Dialog Management 217

10.4.1 Reinforcement Learning . 219
10.4.2 Corpus-Based Approaches . 225

10.5 Summary . 228
References . 229

11 Implementing Dialog Management . 235
11.1 Introduction. 235
11.2 Development of a Conversational Interface

Using a Rule-Based Dialog Management Technique. 236
11.2.1 Practical Exercises Using VoiceXML 242

11.3 Development of a Conversational Interface
Using a Statistical Dialog Management Technique 257

11.4 Summary . 262
References . 263

12 Response Generation . 265
12.1 Introduction. 265
12.2 Using Canned Text and Templates . 265
12.3 Using Natural Language Generation Technology 268

12.3.1 Document Planning . 269
12.3.2 Microplanning . 270
12.3.3 Realization . 271

12.4 Statistical Approaches to Natural Language Generation. 272
12.5 Response Generation for Conversational Queries 273

12.5.1 Question Answering . 274
12.5.2 Structured Resources to Support Conversational

Question Answering . 275
12.5.3 Text Summarization . 276

12.6 Summary . 276
References . 278

Part III Conversational Interfaces and Devices

13 Conversational Interfaces: Devices, Wearables, Virtual Agents,
and Robots . 283
13.1 Introduction. 283
13.2 Wearables . 284

13.2.1 Smartwatches and Wristbands 284
13.2.2 Armbands and Gloves. 285

Contents xiii

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_10#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_11#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_12
http://dx.doi.org/10.1007/978-3-319-32967-3_12
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_12#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec4

13.2.3 Smart Glasses . 286
13.2.4 Smart Jewelry . 287
13.2.5 Smart Clothing. 288

13.3 Multimodal Conversational Interfaces for Smart Devices
and Wearables . 289

13.4 Virtual Agents . 293
13.5 Multimodal Conversations with Virtual Agents 294
13.6 Examples of Tools for Creating Virtual Agents 295
13.7 Social Robots . 296
13.8 Conversational Interfaces for Robots 297
13.9 Examples of Social Robots and Tools for Creating Robots 298

13.9.1 Aldebaran Robots. 298
13.9.2 Jibo . 299
13.9.3 FurHat . 300
13.9.4 Aisoy . 300
13.9.5 Amazon Echo . 302
13.9.6 Hello Robo . 302
13.9.7 The Open Robot Hardware Initiative. 302
13.9.8 iCub.Org: Open-Source Cognitive Humanoid

Robotic Platform . 302
13.9.9 SPEAKY for Robots. 303
13.9.10 The Robot Operating System (ROS) 303

13.10 Summary . 304
References . 305

14 Emotion, Affect, and Personality. 309
14.1 Introduction. 309
14.2 Computational Models of Emotion . 310

14.2.1 The Dimensional Approach 310
14.2.2 The Discrete Approach . 312
14.2.3 The Appraisal Approach . 312

14.3 Models of Personality. 314
14.3.1 The Detection of Personality 315
14.3.2 Simulating Personality . 316

14.4 Making Use of Affective Behaviors in the Conversational
Interface . 319
14.4.1 Acknowledging Awareness and Mirroring

Emotion . 319
14.4.2 Dealing with and Provoking the User’s Emotions. . . . 320
14.4.3 Building Empathy . 321
14.4.4 Fostering the User’s Engagement 322
14.4.5 Emotion as Feedback on the System’s

Performance . 322
14.5 Summary . 323
References . 325

xiv Contents

http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec19
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec20
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec20
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec22
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec22
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec22
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec24
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec24
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec25
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Sec25
http://dx.doi.org/10.1007/978-3-319-32967-3_13#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_14#Bib1

15 Affective Conversational Interfaces . 329
15.1 Introduction. 329
15.2 Representing Emotion with EmotionML 330
15.3 Emotion Recognition . 333

15.3.1 Emotion Recognition from Physiological Signals 335
15.3.2 Emotion Recognition from Speech 339
15.3.3 Emotion Recognition from Facial Expressions

and Gestures . 344
15.4 Emotion Synthesis . 349

15.4.1 Expressive Speech Synthesis 349
15.4.2 Generating Facial Expressions, Body Posture,

and Gestures . 350
15.4.3 The Uncanny Valley. 352

15.5 Summary . 353
References . 354

16 Implementing Multimodal Conversational Interfaces
Using Android Wear . 359
16.1 Introduction. 359
16.2 Visual Interfaces for Android Wear . 361
16.3 Voice Interfaces for Android Wear. 363

16.3.1 System-Provided Voice Actions 364
16.3.2 Developer-Defined Voice Actions. 366

16.4 Summary . 375

Part IV Evaluation and Future Directions

17 Evaluating the Conversational Interface . 379
17.1 Introduction. 379
17.2 Objective Evaluation . 380

17.2.1 Overall System Evaluation. 381
17.2.2 Component Evaluation . 382
17.2.3 Metrics Used in Industry . 387

17.3 Subjective Evaluation . 388
17.3.1 Predicting User Satisfaction 389

17.4 Evaluation Procedures . 394
17.4.1 Evaluation Settings: Laboratory Versus Field 394
17.4.2 Wizard of Oz. 395
17.4.3 Test Subjects . 396

17.5 Summary . 398
References . 399

Contents xv

http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec23
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec24
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec24
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec26
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec26
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec26
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec28
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec28
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec29
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Sec29
http://dx.doi.org/10.1007/978-3-319-32967-3_15#Bib1
http://dx.doi.org/10.1007/978-3-319-32967-3_16
http://dx.doi.org/10.1007/978-3-319-32967-3_16
http://dx.doi.org/10.1007/978-3-319-32967-3_16
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_16#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_17
http://dx.doi.org/10.1007/978-3-319-32967-3_17
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec15
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec16
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec17
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec18
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Sec21
http://dx.doi.org/10.1007/978-3-319-32967-3_17#Bib1

18 Future Directions . 403
18.1 Introduction. 403
18.2 Advances in Technology. 403

18.2.1 Cognitive Computing . 404
18.2.2 Deep Learning . 404
18.2.3 The Internet of Things . 406
18.2.4 Platforms, SDKs, and APIs for Developers 406

18.3 Applications that Use Conversational Interfaces 408
18.3.1 Enterprise Assistants . 408
18.3.2 Ambient Intelligence and Smart Environments 409
18.3.3 Health care . 410
18.3.4 Companions for the Elderly 411
18.3.5 Conversational Toys and Educational Assistants 412
18.3.6 Bridging the Digital Divide for Under-Resourced

Languages . 414
18.4 Summary . 415
References . 417

Index . 419

xvi Contents

http://dx.doi.org/10.1007/978-3-319-32967-3_18
http://dx.doi.org/10.1007/978-3-319-32967-3_18
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec1
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec2
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec3
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec4
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec5
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec6
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec7
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec8
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec9
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec10
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec11
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec12
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec13
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Sec14
http://dx.doi.org/10.1007/978-3-319-32967-3_18#Bib1

About the Authors

Michael McTear is Emeritus Professor at the University of Ulster with a special
research interest in spoken language technologies. He graduated in German
Language and Literature from Queens University Belfast in 1965, was awarded MA
in Linguistics at University of Essex in 1975, and a Ph.D. at the University of Ulster
in 1981. He has been a Visiting Professor at the University of Hawaii (1986–1987),
the University of Koblenz, Germany (1994–1995), and University of Granada,
Spain (2006–2010). He has been researching in the field of spoken dialog systems
for more than 15 years and is the author of the widely used textbook Spoken
dialogue technology: toward the conversational user interface (Springer, 2004). He
also is a coauthor (with Kristiina Jokinen) of the book Spoken Dialogue Systems,
(Morgan and Claypool, 2010), and (with Zoraida Callejas) of the book Voice
Application Development for Android (Packt Publishing, 2013).

Zoraida Callejas is Associate Professor at the University of Granada, Spain, and
member of the CITIC-UGR Research Institute. She graduated in Computer Science
in 2005, and was awarded a Ph.D. in 2008, also at the University of Granada. Her
research is focused on dialog systems, especially on affective human–machine
conversational interaction, and she has made more than 160 contributions to books,
journals, and conferences. She has participated in several research projects related
to these topics and contributes to scientific committees and societies in the area. She
has been a Visiting Professor at the Technical University of Liberec, Czech
Republic (2007–2013), University of Trento, Italy (2008), University of Ulster,
Northern Ireland (2009), Technical University of Berlin, Germany (2010),
University of Ulm, Germany (2012, 2014) and ParisTech, France (2013). She is
coauthor (with Michael McTear) of the book Voice Application Development for
Android (Packt Publishing, 2013).

David Griol is Professor at the Department of Computer Science in the Carlos III
University of Madrid (Spain). He obtained his Ph.D. degree in Computer Science
from the Technical University of Valencia (Spain) in 2007. He also has a B.S. in
Telecommunication Science from this University. He has participated in several
European and Spanish projects related to natural language processing and

xvii

conversational interfaces. His main research activities are mostly related to the
study of statistical methodologies for dialog management, dialog simulation, user
modeling, adaptation and evaluation of dialog systems, mobile technologies, and
multimodal interfaces. His research results have been applied to several application
domains including Education, Healthcare, Virtual Environments, Augmented
Reality, Ambient Intelligence and Smart Environments, and he has published in a
number of international journals and conferences. He has been a visiting researcher
at the University of Ulster (Belfast, UK), Technical University of Liberec (Liberec,
Czech Republic), University of Trento (Trento, Italy), Technical University of
Berlin (Berlin, Germany), and ParisTech University (Paris, France). He is a member
of several research associations for Artificial Intelligence, Speech Processing, and
Human–Computer Interaction.

xviii About the Authors

Abbreviations

ABNF Augmented Backus-Naur Form
AI Artificial intelligence
AIML Artificial Intelligence Markup Language
AM Application manager
AmI Ambient intelligence
API Application programming interface
ASR Automatic speech recognition
ATIS Airline Travel Information Service
AU Action unit
AuBT Augsburg Biosignal Toolbox
AuDB Augsburg Database of Biosignals
BDI Belief, desire, intention
BML Behavior Markup Language
BP Blood pressure
BVP Blood volume pulse
CA Conversation analysis
CAS Common answer specification
CCXML Call Control eXtensible Markup Language
CFG Context-free grammar
CITIA Conversational Interaction Technology Innovation Alliance
CLI Command line interface
COCOSDA International Committee for Co-ordination and Standardisation of

Speech Databases
CRF Conditional random field
CTI Computer–telephone integration
CVG Compositional vector grammar
DBN Dynamic Bayesian networks
DG Dependency grammar
DiAML Dialog Act Markup Language
DIT Dynamic Interpretation Theory
DM Dialog management

xix

DME Dialog move engine
DNN Deep neural network
DR Dialog register
DST Dialog state tracking
DSTC Dialog state tracking challenge
DTMF Dual-tone multifrequency
ECA Embodied Conversational Agent
EEG Electroencephalography
ELRA European Language Resources Association
EM Expectation maximization
EMG Electromyography
EMMA Extensible MultiModal Annotation
EmotionML Emotion Markup Language
ESS Expressive speech synthesis
EU European Union
FACS Facial action coding system
FAQ Frequently asked questions
FIA Form Interpretation Algorithm
FML Functional Markup Language
FOPC First-order predicate calculus
GMM Gaussian Mixture Model
GPU Graphics processing unit
GSR Galvanic skin response
GUI Graphical user interface
HCI Human–computer interaction
HMM Hidden Markov model
HRV Heart rate variability
IoT Internet of Things
IQ Interaction quality
ISCA International Speech Communication Association
ISU Information State Update
ITU-T International Telecommunication Union
IVR Interactive voice response
JSGF Java Speech Grammar Format
JSON JavaScript Object Notation
LGPL Lesser General Public License
LPC Linear predictive coding
LPCC Linear prediction cepstral coefficient
LSA Latent semantic analysis
LUIS Language Understanding Intelligent Service (Microsoft)
LVCSR Large vocabulary continuous speech recognition
MDP Markov decision process
MFCC Mel frequency cepstral coefficients
MLE Maximum likelihood estimation
MLP Multilayer perceptron

xx Abbreviations

MURML Multimodal Utterance Representation Markup Language
NARS Negative Attitudes toward Robots Scale
NER Named entity recognition
NIST National Institute of Standards and Technology
NLG Natural language generation
NLP Natural language processing
NLTK Natural Language Toolkit
NP Noun phrase
OCC Ortony, Clore, and Collins
PAD Pleasure, arousal, and dominance
PARADISE PARAdigm for DIalogue Evaluation System
PLS Pronunciation Lexicon Specification
POMDP Partially observable Markov decision process
POS Part of speech
PP Perplexity
PP Prepositional phrase
PPG Photoplethysmograph
PSTN Public switched telephone network
QA Question answering
RAS Robot Anxiety Scale
RG Response generation
RL Reinforcement learning
RNN Recurrent (or Recursive) neural network
ROS Robot Operating System
RSA Respiratory sinus arrythmia
RVDK Robotic Voice Development Kit
SAIBA Situation, Agent, Intention, Behavior, Animation
SASSI Subjective Assessment of Speech System Interfaces
SC Skin conductance
SCXML State Chart XML: State Machine Notation for Control Abstraction
SDK Software development kit
SDS Spoken dialog system
SIGGEN Special Interest Group on Natural Language Generation
SISR Semantic Interpretation for Speech Recognition
SLU Spoken language understanding
SMIL Synchronized Multimedia Integration Language
SMILE Speech and Music Interpretation by Large-space feature

Extraction
SRGS Speech Recognition Grammar Specification
SSI Social Signal Interpretation
SSLU Statistical spoken language understanding
SSML Speech Synthesis Markup Language
SURF Speeded Up Robust Features
SVM Support vector machine
TAM Technology acceptance model

Abbreviations xxi

TIPI Ten-Item Personality Inventory
TTS Text-to-speech synthesis
UI User interface
UMLS Unified Medical Language System
URI Uniform resource identifier
VoiceXML Voice Extensible Markup Language
VP Verb phrase
VPA Virtual personal assistant
VUI Voice user interface
W3C World Wide Web Consortium
WA Word accuracy
Weka Waikato Environment for Knowledge Analysis
WER Word error rate
WOZ Wizard of OZ
XML Extensible Markup Language
ZCR Zero crossing rate

xxii Abbreviations

Chapter 1
Introducing the Conversational Interface

Abstract Conversational interfaces enable people to interact with smart devices
using conversational spoken language. This book describes the technologies behind
the conversational interface. Following a brief introduction, we describe the
intended readership of the book and how the book is organized. The final section
lists the apps and code that have been developed to illustrate the technology of
conversational interfaces and to enable readers to gain hands-on experience using
open-source software.

1.1 Introduction

The idea of being able to hold a conversation with a computer has fascinated people
for a long time and has featured in many science fiction books and movies. With
recent advances in spoken language technology, artificial intelligence, and con-
versational interface design, coupled with the emergence of smart devices, it is now
possible to use voice to perform many tasks on a device—for example, sending a
text message, updating the calendar, or setting an alarm. Often these tasks would
require multiple steps to complete using touch, scrolling, and text input, but they
can now be achieved with a single spoken command. Indeed, voice input is often
the most appropriate mode of interaction, especially on small devices where the
physical limitations of the real estate of the device make typing and tapping more
difficult.

The topic of this book is the conversational interface. Conversational interfaces
enable people to interact with smart devices using spoken language in a natural
way—just like engaging in a conversation with a person. The book provides an
introduction and reference source for students and developers who wish to
understand this rapidly emerging field and to implement practical and useful
applications. The book aims at a middle ground between reviews and blogs in
online technology magazines on the one hand and, on the other, technical books,
journal articles, and conference presentations intended for specialists in the field.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_1

1

Currently, there is no comparable book that brings together information on con-
versational interfaces comprehensively and in a readable style.

1.2 Who Should Read the Book?

This book is intended as an introduction to conversational interfaces for two types
of reader:

• Final-year undergraduate and graduate students with some background in
computer science and/or linguistics who are also taking courses in topics such as
spoken language technology, mobile applications, artificial intelligence, Internet
technology, and human–computer interaction.

• Computing professionals interested in or working in the fields of spoken lan-
guage technology, mobile applications, and artificial intelligence.

The book provides a comprehensive introduction to conversational interfaces at
a level that is suitable for students and computing professionals who are not spe-
cialists in spoken language technology and conversational interface development.

In order to follow the programming exercises, readers should have some
knowledge of Java and of Android app development. Completing the exercises will
enable readers to put their ideas into practice by developing and deploying apps on
their own devices using open-source tools and software.

1.3 A Road Map for the Book

The book is organized into four parts. The chapters in Part I present the background
to conversational interfaces, looking at how they have emerged recently and why,
the mechanisms involved in engaging in conversation, and past and present work
on spoken language interaction with computers that provides a basis for the next
generation of conversational interfaces. Part II covers the various technologies that
are required to build a conversational interface with speech for input and output,
along with practical chapters and exercises using open-source tools. Part III extends
the conversational interface to look at interactions with smart devices, wearables,
and robots, as well as the ability to recognize and express emotion and personality.
Part IV examines methods for evaluating conversational interfaces and looks at
current trends and future directions. Figure 1.1 shows a road map for the book.

The following is a brief summary of the contents of each chapter.

2 1 Introducing the Conversational Interface

Fig. 1.1 A road map for the book

1.3 A Road Map for the Book 3

1.3.1 Part I: Conversational Interfaces: Preliminaries

Chapter 2: The dawn of the conversational interface

This chapter presents some examples of conversational interfaces on smartphones
and reviews the technological advances that have made conversational interfaces
possible. This is followed by a brief overview of the technologies that make up a
conversational interface.

Chapter 3: Toward a technology of conversation

Although conversation is natural and intuitive for most people, it is not so obvious
how conversation works. This chapter describes the various mechanisms that come
into play when we engage in conversation. An understanding of these mechanisms
is essential for developers wishing to design and implement effective conversational
interfaces.

Chapter 4: Conversational interfaces: past and present

This chapter presents an overview of several different approaches to the modeling
of conversational interaction with computers and of the achievements from these
approaches that can contribute to the next generation of conversational interfaces.

1.3.2 Part II: Developing a Speech-Based Conversational
Interface

Chapter 5: Speech input and output

In this chapter, the technologies that allow computers to recognize and produce
speech are reviewed. These technologies have seen enormous advances during the
past decade. Recent developments are outlined.

Chapter 6: Implementing speech input and output

Building on the overview of speech recognition and text to speech synthesis in
Chap. 5, this chapter presents two open-source tools—the HTML5 Web
Speech API and the Android Speech API—along with a series of practical exercises
illustrating their usage.

Chapter 7: Creating a conversational interface using chatbot technology

This chapter shows how a conversational interface can be created using fairly
simple techniques that have been applied widely in the development of chatbots.
Some working examples of conversational interfaces using the Pandorabots plat-
form are presented.

4 1 Introducing the Conversational Interface

http://dx.doi.org/10.1007/978-3-319-32967-3_2
http://dx.doi.org/10.1007/978-3-319-32967-3_3
http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_5
http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_5
http://dx.doi.org/10.1007/978-3-319-32967-3_7

Chapter 8: Spoken language understanding

As conversational interfaces become more complex, more sophisticated techniques
are required to interpret the user’s spoken input and extract a representation of its
meaning. This chapter describes and illustrates a range of technologies that are used
for spoken language understanding.

Chapter 9: Implementing spoken language understanding

This chapter provides a tutorial on the use of the Api.ai platform to extract a
semantic representation from the user’s spoken utterances. The chapter also reviews
some similar tools provided by Wit.ai, Amazon Alexa, and Microsoft LUIS, and
looks briefly at other tools that have been widely used in natural language pro-
cessing and that are potentially relevant for conversational interfaces.

Chapter 10: Dialog management

This chapter describes the dialog management component of a conversational
interface that controls how the system should respond to the user’s input. Two main
approaches are reviewed—handcrafted dialog strategies that are used widely in
industry and an emerging trend in which dialog strategies are learnt automatically
using statistical models trained on corpora of real conversations.

Chapter 11: Implementing dialog management

Building on Chap. 10, this chapter provides practical exercises in rule-based and
statistical dialog management, using VoiceXML for the rule-based approach and a
corpus of dialogs to illustrate statistical dialog management.

Chapter 12: Response generation

This chapter reviews several approaches that have been used to create the system’s
response to the user’s input, looking at canned text, the technology of natural
language generation, and recent statistical methods. Methods for creating responses
from unstructured and structured content on the Web are reviewed.

1.3.3 Part III: Conversational Interfaces and Devices

Chapter 13: Conversational interfaces: devices, wearables, virtual agents, and
robots

Although conversational interfaces have been used mainly to interact with virtual
personal assistants on smartphones, increasingly sensors and other devices provide
input and support conversational interaction. This chapter reviews the peculiarities
of conversational interaction with wearables, robots, and other smart devices.

1.3 A Road Map for the Book 5

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_12
http://dx.doi.org/10.1007/978-3-319-32967-3_13

Chapter 14: Emotion, affect, and personality

Affect is a key factor in human conversation, and a conversational interface that is
to be believable will have to be able to recognize and express emotion and per-
sonality. This chapter reviews the issues involved in endowing conversational
interfaces with emotion and personality.

Chapter 15: Affective conversational interfaces

This chapter explains how emotion can be recognized from physiological signals,
acoustics, text, facial expressions and gestures, and how emotion synthesis is
managed through expressive speech and multimodal embodied agents. The main
open-source tools and databases are reviewed that are available for developers
wishing to incorporate emotion into their conversational interfaces.

Chapter 16: Implementing multimodal conversational interfaces using Android
Wear

This chapter discusses the challenges that arise when implementing conversational
interfaces for a variety of devices with different input and output capabilities. There
is a series of exercises showing how to develop libraries for multimodal interfaces
using Android Wear.

1.3.4 Part IV: Evaluation and Future Prospects

Chapter 17: Evaluating the conversational interface

As conversational interfaces become more complex, their evaluation has become
multifaceted. It is not only necessary to assess whether they operate correctly and
are usable, but there are also novel aspects like their ability to engage in social
communication. This chapter discusses the main measures that are employed for
evaluating conversational interfaces from a variety of perspectives.

Chapter 18: Future directions

This chapter concludes the book by discussing future directions, including devel-
opments in technology and a number of application areas that will benefit from
conversational interfaces, including smart environments, health care, care of the
elderly, and conversational toys and educational assistants for children. The chapter
also reviews issues related to the digital divide for under-resourced languages.

Apps and Code In several chapters, we provide tutorials showing how to develop
examples and apps that illustrate different kinds of conversational interface at dif-
ferent levels of complexity. The following apps are provided:

• Web SAPI (Chap. 6). These examples show how to use the Web Speech API to
provide spoken input and output on Web pages (you can try it using Google
Chrome).

6 1 Introducing the Conversational Interface

http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_16
http://dx.doi.org/10.1007/978-3-319-32967-3_17
http://dx.doi.org/10.1007/978-3-319-32967-3_18
http://dx.doi.org/10.1007/978-3-319-32967-3_6

• SimpleTTS, RichTTS, SimpleASR, RichASR, TalkBack (Chap. 6). These apps
show with increasing complexity how to build Android apps with speech output
and input.

• TalkBot (Chap. 7). Shows how to create a chatbot with Pandorabots and use it
with an Android app.

• Understand (Chap. 9). Shows the use of the Api.ai platform to extract semantic
representations from the user’s spoken utterances.

• PizzaRules (Chap. 11). Shows how to use VoiceXML to build a rule-based
dialog manager to manage a pizza service.

• PizzaStat (Chap. 11). Shows how to build a statistical dialog manager to manage
a pizza service.

• MorningCoffee, CookingNotifications, WriteBack (Chap. 16). These apps show
how to build conversational interfaces for smartwatches with Android Wear,
from predefined system voice actions to rich speech input processing.

The code for the examples is in GitHub, in the ConversationalInterface1

repository.

1http://zoraidacallejas.github.io/ConversationalInterface.

1.3 A Road Map for the Book 7

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_16
http://zoraidacallejas.github.io/ConversationalInterface

Part I
Conversational Interfaces: Preliminaries

Chapter 2
The Dawn of the Conversational Interface

Good morning, Theodore. You have a meeting in five minutes.
Do you want to try getting out of bed?

Samantha in the movie Her: Official Trailer

Abstract With a conversational interface, people can speak to their smartphones
and other smart devices in a natural way in order to obtain information, access Web
services, issue commands, and engage in general chat. This chapter presents some
examples of conversational interfaces and reviews technological advances that have
made conversational interfaces possible. Following this, there is an overview of the
technologies that make up a conversational interface.

2.1 Introduction

In the movie Her (2013), Theodore Twombly acquires Samantha, described as “the
world’s first intelligent operating system.” Samantha is constantly available, just
like a personal assistant, not only monitoring Theodore’s calendar and answering
his questions but also providing guidance and support in his personal life. They
develop a relationship, and Theodore confesses to a friend that he is “dating”
Samantha.

In the real world, being able to talk with a personal assistant in this way on a
smartphone or other smart device has almost become a reality. Personal assistants,
known by various names such as virtual personal assistants (VPAs), intelligent per-
sonal assistants, digital personal assistants, mobile assistants, or voice assistants, have
become mainstream. Examples include Apple’s Siri, Google Now, Microsoft
Cortana, Amazon Alexa, Samsung S Voice, Facebook’s M, and Nuance Dragon.
Indeed, a search for “personal assistants” onGoogle Play toward the end of December
2015 returned 100 entries.Many of theseVPAs help users to perform a variety of tasks
on their smartphones, such as obtaining information using voice search, finding local
restaurants, getting directions, setting the alarm, updating the calendar, and engaging
in general conversation. Others provide more specialized functions, such as fitness
monitoring, personalized preparation of drinks, and recipe planning.

We use the term conversational interface to refer to the technology that supports
conversational interaction with these VPAs by means of speech and other modal-
ities. To set the scene, we begin with some examples of the sorts of interactions that
can be performed using such conversational interfaces.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_2

11

2.2 Interacting with a Conversational Interface

The following examples are taken from interactions with the Google Now personal
assistant, which is available for Android devices as well as for iPhones and iPads.
Google Now can be activated by tapping on the microphone icon in the Google
Search box, as shown in Fig. 2.1 and also on more recent Android devices (Android
4.4 onwards) by saying “OK Google”. This activates speech recognition, leading to
a screen displaying the instruction say “Ok Google”.

There is a Google support page that provides information on how to turn on “OK
Google” voice search along with examples of what you can say in a large variety of
languages.1 The following example shows the output from a query about the
weather.

User (spoken input): What’s the weather in Belfast?
Google Now (spoken output): It’s 7 degrees and partly cloudy in Belfast.

In addition to the spoken response, there is also a visual display of the recog-
nized question, a visual representation of the weather forecast, and, on scrolling
down, the addresses of some relevant Web pages (Fig. 2.2).

The next example is a general knowledge query.

User (spoken input): When was Belfast City Hall built?
Google Now (spoken output): Belfast City Hall is 110 years old.

The response from Google Now displays the recognized question, the answer, a
picture showing Belfast City Hall, when it was built, a map of its location, and, on
scrolling down, links to some additional information (Fig. 2.3).

Our final example illustrates access to operations on the device, in this case to set
an alarm.

Fig. 2.1 Google Search box on a Nexus 5 smartphone. Google and the Google logo are registered
trademarks of Google Inc., used with permission

1https://support.google.com/websearch/answer/2940021?hl=en. Accessed February 19, 2016.

12 2 The Dawn of the Conversational Interface

https://support.google.com/websearch/answer/2940021?hl=en

Fig. 2.2 Response to the
query “What’s the weather in
Belfast” to Google Now on a
Nexus 5 at 15:25 on February
10, 2016. Google and the
Google logo are registered
trademarks of Google Inc.,
used with permission

User (spoken input): Set the alarm for 9 o’clock tomorrow morning;
Google (spoken output): OK, 9 am, setting your alarm.

In addition to the spoken response, Google Now also presents the information
shown in Fig. 2.4, which displays the recognized question, and a message con-
firming that the alarm has been set.

A wide range of device operations can be performed using voice, such as placing
a call to a contact, sending a text, or launching an app. In many cases, the use of
voice commands enables users to carry out these operations in fewer steps com-
pared with traditional input methods. For example, the following steps would be
required to set an alarm manually on a Nexus 5:

1. Tap on the clock icon (e.g. from the home screen).
2. Find the icon representing the alarm and tap on it.
3. Tap on the time displayed.
4. Adjust the hours and minutes to the required time.
5. Tap on “Done” to finish.

2.2 Interacting with a Conversational Interface 13

Fig. 2.3 Response to the
question “When was Belfast
City Hall built” to Google
Now on a Nexus 5 at 15:58 on
February 10, 2016. Google
and the Google logo are
registered trademarks of
Google Inc., used with
permission

Fig. 2.4 Response to the
command “Set the alarm for 9
o’clock tomorrow morning”
to Google Now on a Nexus 5
on February 10, 2016. Google
and the Google logo are
registered trademarks of
Google Inc., used with
permission

14 2 The Dawn of the Conversational Interface

2.3 Conversational Interfaces for Smart Watches
and Other Devices

Although conversational interfaces first appeared on smartphones, they are now
also being deployed on various other devices such as smart watches, social robots,
and devices such as Amazon Echo. In the future, we might expect conversational
interfaces to be an integral part of the so-called Internet of Things (IoT), a massive
network of connected objects, sensors, and devices that “talk” to each other and in
some cases also communicate with humans.

A smart watch is a wearable device that provides many of the functions of a
smartphone, such as notifications of incoming messages and emails, navigation, and
voice search. Some smart watches also provide fitness tracking and heart rate
monitoring. Users interact with a smart watch by speaking, by tapping on items on
the screen, and by swiping the displayed cards. Some smart watches also have
speakers that provide spoken output. Smart watches do not usually have an Internet
connection so they have to be connected to a smartphone via Bluetooth pairing
using software such as Android Wear—a dedicated software development kit
(SDK) for wearables that is compatible with Android as well as iOS devices. One of
the advantages of a smart watch is that actions such as responding to an email or
text message can be performed on the fly using voice without having to take the
phone from a pocket or handbag, find the required app, and tap in a reply.

Social robots allow users to perform tasks similar to those provided by a virtual
personal assistant on a smartphone. However, because of their physical embodi-
ment and because they often possess social qualities such as the ability to recognize
and display emotions, they also provide social functions such as companionship for
the elderly.

Conversational interfaces on devices such as smart watches and social robots
provide many of the same capabilities that are already available on smartphones,
although there may be differences in terms of the type of interface they provide. For
example, the display on a smart watch is smaller than that on a typical smartphone,
while some devices do not have a display for information but rely solely on voice
for input and output. Chapter 13 discusses various devices, wearables, and robots;
Chaps. 14 and 15 explore emotion and personality in conversational interfaces; and
Chap. 16 provides a tutorial on how to develop apps for smart watches using the
Android Wear SDK.

2.4 Explaining the Rise of the Conversational Interface

The conversational interface has for a long time been a vision of researchers in
speech technology and artificial intelligence (AI), but until recently, this vision has
only been realized in science fiction books and movies, such as 2001: A Space
Odyssey, Star Wars, and many others. In 1987, Apple released a concept video

2.3 Conversational Interfaces for Smart Watches and Other Devices 15

http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_16

depicting a device called the Knowledge Navigator, a software agent that provided
services similar to those of a present-day VPA and that possessed advanced
communication capabilities, including excellent text-to-speech and perfect speech
understanding. In 2001, Berners-Lee and colleagues put forward a vision for a
Semantic Web in which Semantic Web agents would perform tasks such as
checking calendars, making appointments, and finding locations (Berners-Lee et al.
2001). But it was not until 2011 that these visions were realized with the launch of
Siri, generally recognized as the first voice enabled VPA.

Siri and similar conversational systems have been made possible as a result of
developments in technology and of increasing user acceptance and adoption, as
explained further in the following sections.

2.4.1 Technological Developments

Various technological advances have contributed to the recent rise of conversational
interfaces.

The renaissance of Artificial Intelligence. Since the mid-1950s, researchers in
artificial intelligence (AI) have wrestled with the challenge of creating computers
that are capable of intelligent behavior. AI has gone through cycles of euphoria and
rejection with some initial successes followed by some spectacular failures. At first,
it was believed that intelligent behavior could be reproduced using models of
symbolic reasoning based on rules of formal logic. This was known as the
knowledge-based approach, in which the focus was on problems that are difficult
for humans but easy for computers—for example, decision-making and playing
chess. Knowledge-based systems (also known as expert systems) were developed in
the 1970s and 1980s to assist with decision-making in complex problems such as
medical diagnosis, while IBM’s chess playing computer Deep Blue defeated a
human world champion in 1996. However, it became evident that various aspects of
intelligent behavior that are easy for humans but difficult for computers, such as
speech recognition and image recognition, could not be solved using these symbolic
approaches but required processes such as the extraction of patterns from data and
learning from experience. As a result, subsymbolic approaches using neural net-
works and statistical learning methods have come to dominate the field. Several
factors have contributed to the recent success of subsymbolic approaches: devel-
opments in graphics processing units (GPUs) that have enabled the massive parallel
computations required to run neural networks; the availability of vast amounts of
data (known as big data) that enable AI systems to learn and become increasingly
more intelligent; and the development of new algorithms (known as deep learning)
that run on GPUs and process these vast amounts of data.2 A sign of the promise of
this new AI is that many major companies such as Google, Microsoft, Amazon,

2http://www.wired.com/2014/10/future-of-artificial-intelligence/. Accessed February 19, 2016.

16 2 The Dawn of the Conversational Interface

http://www.wired.com/2014/10/future-of-artificial-intelligence/

Facebook, and Baidu—China’s leading internet-search company—have recruited
the world’s leading experts in deep learning to support their research and devel-
opment work in areas such as search, learning, natural language understanding, and
personal assistant technology.

Advances in language technologies. Language technologies have benefitted
from the new AI. Speech recognition accuracy has improved dramatically since
around 2012 following the adoption of deep learning technologies. There have also
been major advances in spoken language understanding. Machine learning
approaches to dialog management have brought improved performance compared
with traditional handcrafted approaches by enabling systems to learn optimal dialog
strategies from data. Furthermore, grand challenges in various areas of speech and
language technology, including speech recognition, text-to-speech synthesis, spo-
ken dialog management, and natural language learning, have promoted the explo-
ration and evaluation of different systems and techniques using shared tasks and
data, leading to technological advances and wider cooperation within the research
communities (Black and Eskenazi 2009).

The emergence of the Semantic Web. The vision of the Semantic Web is that
all of the content on the Web should be structured and machine-readable, so that
search using the traditional approach of keywords as input has been replaced by
semantic search based on the meaning of the input. Semantically tagged pages
marked up using encodings such as Resource Description Framework in Attributes
(RDFa) and large structured knowledge bases such as Google’s Knowledge Graph
have enabled search engines to better interpret the semantics of a user’s intent, to
return structured answers to queries, and, for virtual personal assistants such as
Google Now, to support a question/answer type of interaction. Examples of the
more complex types of question that can now be answered by the Google app are
described here.3

Device technologies. Smartphones and other intelligent devices have become
more powerful than the large personal computers of only a few years ago. Indeed,
in one comparison, it was stated that a single Apple iPhone5 has 2.7 times the
processing power of a 1985 Cray-2 supercomputer.4 Moreover, since smartphones
have access to a wide range of contextual information, such as the user’s location,
time and date, contacts, and calendar, the integration of this contextual information
into conversational interfaces enables VPAs to provide help and support that is
relevant and personalized to the individual user.

Increased connectivity. Faster wireless speeds, the almost ubiquitous avail-
ability of WiFi, more powerful processors in mobile devices, and the advent of
cloud computing mean that resource-intensive operations such as speech

3http://insidesearch.blogspot.com.es/2015/11/the-google-app-now-understands-you.html.
Accessed February 19, 2016.
4http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-
more-powerful_id57149. Accessed February 19, 2016.

2.4 Explaining the Rise of the Conversational Interface 17

http://insidesearch.blogspot.com.es/2015/11/the-google-app-now-understands-you.html
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149

recognition and search can be performed in the cloud using large banks of powerful
computers.

The interest of major technology companies in conversational interfaces.
While previously interest in conversational interfaces for VPAs was limited to
relatively small niche companies and to enthusiastic evangelists of the AI dream,
now many of the largest companies in the world are competing to create their own
VPAs, for example, Apple’s Siri, Google’s Google Now, Amazon’s Alexa,
Microsoft’s Cortana, Facebook’s M, and Baidu’s Duer. These VPAs enable com-
panies to more accurately profile the users of their VPAs, enabling them to promote
their e-commerce services and thus gain a competitive advantage.

Notwithstanding these advances, there is still more work to be done before
conversational interfaces achieve a level of performance similar to that of humans.
For example, in looking for a possible way forward, Moore (2013) suggests that it
is necessary to go beyond the domain of speech technology and draw inspiration
from other fields of research that inform communicative interaction, such as the
neurobiology of living systems in general.

2.4.2 User Acceptance and Adoption

Even if a product is technologically advanced, it will not succeed unless it is
accepted and adopted by users. Until recently, it seemed that users stopped using
their VPAs after an initial stage of experimentation. In some cases, they encoun-
tered problems such as speech recognition errors and so reverted to more accus-
tomed and more accurate modes of input. Some users found amusement by saying
“silly” things to their VPA to see what sort of response they would get.
Furthermore, the proliferation of so many virtual personal assistants makes it dif-
ficult to select and adopt one particular VPA for regular use.

Evaluations of VPAs have so far been fairly informal, taking the form either of
showdowns or of surveys. In a showdown, a large bank of questions is submitted to
selected VPAs and the responses are analyzed. In one showdown, Google Now was
compared with Microsoft Cortana and Soundhound’s VPA Hound,5 while in
another, Google Now was compared also with Microsoft Cortana as well as with
Siri.6

Conversational interfaces are appealing to users who wish to engage with Web
services when on the go. Given the processing power and speed of modern
smartphones as well as ongoing Internet connectivity, users no longer need to be
located at a desktop PC to search for information or access Web services. Also, with
devices becoming smaller to aid portability input is easier using a conversational

5http://www.greenbot.com/article/2985727/google-apps/android-virtual-assistant-showdown-google-
now-vs-cortana-vs-hound.html. Accessed February 19, 2016.
6https://www.stonetemple.com/great-knowledge-box-showdown/. Accessed February 19, 2016.

18 2 The Dawn of the Conversational Interface

http://www.greenbot.com/article/2985727/google-apps/android-virtual-assistant-showdown-google-now-vs-cortana-vs-hound.html
http://www.greenbot.com/article/2985727/google-apps/android-virtual-assistant-showdown-google-now-vs-cortana-vs-hound.html
https://www.stonetemple.com/great-knowledge-box-showdown/

interface compared with tapping on the soft keyboards of smartphones. In any case,
some devices will not have keyboards but only microphones for voice input. This is
likely to be the case as more and more devices become linked in the Internet of
Things, where many of the devices will rely exclusively on voice for input and
output.

Young people are also more likely to use conversational interfaces. In a recent
study of the use of voice search, it was reported that teenagers talk to their phones
more than the average adult and more than half of teenagers between 13 and 18 use
voice search daily.7 Voice search is also widely used in China in VPAs such as
Baidu’s Duer as it is more difficult to input text in Chinese and so speech is a more
convenient input mode.

2.4.3 Enterprise and Specialized VPAs

Enterprise and specialized VPAs provide assistance in specific domains and for
specific users. Enterprise and specialized VPAs can assist professionals in their
work—for example, helping doctors to manage their workload, schedules, mes-
sages, and calls, and to obtain up-to-date and reliable information to assist with
diagnosis. They can also assist customers to get help and information about a
company’s products.

IBM Watson for oncology is an example of a specialized VPA that helps
oncologists to make evidence-based treatment decisions based on an analysis of an
individual patient’s medical records and a search for treatment options in a vast
corpus of information from journals, textbooks, and millions of pages of text.8 The
Ask Anna VPA, developed by Artificial Solutions9 to provide help to customers
searching for information about products on the IKEA Web site, is an example of a
customer-facing VPA.10 Other examples include JetStar’s Ask Jess virtual assistant,
developed on the Nuance Nina platform,11 that answers customers’ queries about
bookings, baggage, and seating,12 and Next IT’s Alme, a multimodal, multichannel,
and multilanguage platform for customer service in domains such as health care,
travel, insurance, finance, and retail.13

7https://googleblog.blogspot.fr/2014/10/omg-mobile-voice-survey-reveals-teens.html. Accessed
February 19, 2016.
8http://www.ibm.com/smarterplanet/us/en/ibmwatson/watson-oncology.html. Accessed February
19, 2016.
9http://www.artificial-solutions.com/. Accessed February19, 2016.
10https://www.chatbots.org/virtual_assistant/anna3/. Accessed February 19, 2016.
11http://www.nuance.com/company/news-room/press-releases/Jetstar.docx. Accessed February 19,
2016.
12http://www.jetstar.com/au/en/customer-service. Accessed February 19, 2016.
13http://www.nextit.com/alme/. Accessed February 19, 2016.

2.4 Explaining the Rise of the Conversational Interface 19

https://googleblog.blogspot.fr/2014/10/omg-mobile-voice-survey-reveals-teens.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/watson-oncology.html
http://www.artificial-solutions.com/
https://www.chatbots.org/virtual_assistant/anna3/
http://www.nuance.com/company/news-room/press-releases/Jetstar.docx
http://www.jetstar.com/au/en/customer-service
http://www.nextit.com/alme/

VPAs can provide a commercial advantage for companies in the generation of
advertising revenues and referral fees by directing users to specific services and
Web sites that have been “chosen” by the assistant. Furthermore, as Meisel (2013)
points out, they can promote a company’s brand and services in a similar way to the
company’s Web site, but with the added value of a more personalized and more
enjoyable interaction.

2.4.4 The Cycle of Increasing Returns

It has been predicted in a number of studies that the global market for VPAs will
increase dramatically in the next few years. One factor in addition to those dis-
cussed above is the so-called cycle of increasing returns. User acceptance and
adoption interact with developments in technology to produce a cycle of increasing
returns. As performance improves, more people will use conversational interfaces.
With more usage, there will be more data that the systems can use to learn and
improve. And the more they improve, the more people will want to use them. Given
this cycle, it can be expected that conversational interfaces will see a large uptake
for some time to come and that this uptake will be accompanied by enhanced
functionalities and performance.

2.5 The Technologies that Make up a Conversational
Interface

In this book, we describe the various technologies that make up a conversational
interface and that enable users to engage in a conversation with a device using
spoken language and other modalities. In Part 2, we will focus on spoken language
technologies, as these are the core components of the majority of current conver-
sational interfaces, while in Part 3, we will describe additional aspects of the input
and output such as the recognition and display of emotion and personality.

Looking first at conversational interfaces that make use of spoken language
technologies, Fig. 2.5 shows the typical components of such a system and the
information flow between the components.

Typically, such a conversational interface operates as follows. On receiving
spoken input from the user, the system has to:

• Recognize the words that were spoken by the user (speech recognition).
• Interpret the words, i.e., discover what the user meant and intended by speaking

these words (spoken language understanding).
• Formulate a response, or if the message was unclear or incomplete, interact with

user to seek clarification and elicit the required information (dialog
management).

20 2 The Dawn of the Conversational Interface

• Construct the response, which may be in the form of words or, as in the
examples above, accompanied by visual and other types of information (re-
sponse generation).

• Speak and display the response (text-to-speech synthesis).

However, when people engage in natural conversational interaction, they convey
much more than just the meanings of the words spoken. Their speech also conveys
their emotional state and aspects of their personality. Additionally, in face-to-face
interaction, their nonverbal behaviors, such as their facial expression, gestures, and
body posture, also convey meaning. Other information may also be transmitted
when speaking to a conversational interface. For example, smartphones and other
smart devices have built-in sensors and actuators that gather data about the user and
the environment, including location, motion, orientation, and biosignals such as
heart rate. Figure 2.6 shows these additional inputs to the conversational interface.
We look at these in more detail in Part 3.

As shown in these figures, once the conversational interface has interpreted the
input from the user, it constructs queries to Web services and knowledge sources in
order to perform tasks and retrieve information to be output by the response gen-
eration component. Our focus in this book will be on the conversational interface,
and we will not explore how these Web services and knowledge sources are
accessed and how information to be presented to the user is retrieved, although in
some of the laboratory sessions, we will show how to connect to some existing
services such as Google Search and Google Maps.

Fig. 2.5 The components of a spoken language conversational interface

2.5 The Technologies that Make up a Conversational Interface 21

2.6 Summary

A conversational interface allows people to talk to their devices in an intuitive and
natural way. In this chapter, we have presented some examples of conversational
interfaces that are available on smartphones and other devices.

Conversational interfaces have been made possible by recent advances in
technology, in particular:

• A renaissance in AI, in which deep learning has brought about dramatic
improvements in speech recognition accuracy and more recently in spoken
language understanding and dialog management.

• The development of powerful processors that support the massively parallel
computations required for deep learning algorithms and that provide the pro-
cessing power on small devices such as smartphones that were available only to
supercomputers a few years ago.

• Advances in the technologies of the Semantic Web that enable almost instan-
taneous access to the vast stores of unstructured as well as structured knowledge
on the Internet.

As a result of these technological advances, user acceptance of technologies such
as the conversational interface has increased, leading to increased adoption and
consequently producing more data from which systems can learn, in turn resulting
in further improvements in the technology.

Before we go on to explore the various technologies that make up the conver-
sational interface, we need to understand what we mean by “conversation.” In the

Fig. 2.6 Additional inputs to the conversational interface

22 2 The Dawn of the Conversational Interface

next chapter, we look at the technology of conversation, in which we provide an
overview of the contributions made by researchers in a variety of fields, including
linguistics, psychology, sociology, and AI, to our understanding of the processes of
conversational interaction.

Further Reading
There are a number of books and other resources that cover the topics of virtual
personal assistants as well as related developments in AI and speech and language
technologies. Trappl (2013) explores what is required for a personalized virtual
butler and how such a virtual butler might be useful for an aging population. Stork
(1998) is a collection of papers that examines the extent to which science fiction’s
HAL, the computer in the movie Space Odyssey 2011, has become technologically
feasible—a bit dated now with recent advances in AI, but still worth reading.
Meisel’s online book The Software Society discusses the technology of virtual
personal assistants,14 while the short online book by Bouzid and Ma (2013) pro-
vides an introduction to the principles and techniques behind effective voice user
interface design. An article by Ron Kaplan, Head of Nuance Communications’
Natural Language Understanding R&D Lab, argues for conversational user inter-
faces as a replacement for the traditional graphical user interface.15 The conver-
sational interface is also the subject of a blog by John M Smart.16 Pieraccini (2012)
provides an accessible overview of speech technology and its history, and discusses
the emergence of virtual personal assistants in the final chapter.

There are a number of blogs and other online resources that regularly discuss
virtual personal assistants, including Amy Stapleton’s Virtual Agent Chat,17 Bill
Meisel’s Speech Strategy News,18 and the Conversational Interaction Technology
news board.19 An online article by Buzzanga discusses recent advances in search
that go beyond the use of keywords.20

Exercises

1. Watch the video “Behind the mic: the science of talking with computers.”21 This
short video, produced by Google Creative Lab, features some of the key
researchers in the field talking about speech recognition, language understand-
ing, neural networks, and the use of speech to interact with smart devices.

14http://thesoftwaresociety.com/. Accessed February 19, 2016.
15http://www.wired.com/2013/03/conversational-user-interface/. Accessed February 19, 2016.
16http://www.accelerationwatch.com/lui.html. Accessed February 19, 2016.
17http://virtualagentchat.com/. Accessed February 19, 2016.
18http://www.tmaa.com/speechstrategynews.html. Accessed February 19, 2016.
19http://citia.lt-innovate.eu/. Accessed February 19, 2016.
20https://www.sla.org/wp-content/uploads/2015/06/2015_Buzzanga.pdf. Accessed February 19,
2016.
21https://youtu.be/yxxRAHVtafI. Accessed 2 March 2016.

2.6 Summary 23

http://thesoftwaresociety.com/
http://www.wired.com/2013/03/conversational-user-interface/
http://www.accelerationwatch.com/lui.html
http://virtualagentchat.com/
http://www.tmaa.com/speechstrategynews.html
http://citia.lt-innovate.eu/
https://www.sla.org/wp-content/uploads/2015/06/2015_Buzzanga.pdf
https://youtu.be/yxxRAHVtafI

2. Go to YouTube and search for “virtual personal assistants.” You will find a large
number of videos. Watch some videos that show examples of different VPAs
and take note of the sorts of questions and commands that they can handle.

3. Look for videos on YouTube that show shootouts (or comparisons) of different
VPAs, noting the questions and commands that are used in the tests. You can
also find several interesting videos and demos created in the Interaction Lab of
Heriot Watt University, Edinburgh.22

4. Go to Google Play23 and search for “virtual personal assistants.” A large number
of VPAs will be returned. Select and download two that you can use for a
comparison test. For example, you could download Assistant and Call Mom, as
these are featured later in the book. Using the questions and commands noted in
exercise 2, test and compare the two VPAs, noting where they succeed and
where they fail. For inputs that fail, distinguish between failures due to speech
recognition errors and failures due to the back-end components of the app (e.g.,
if it is not able to make a correct search for the item you requested).

References

Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284:34–43. doi:10.1038/
scientificamerican0501-34

Black AW, Eskenazi M (2009) The spoken dialog challenge. In: Proceedings of the 10th annual
meeting of the special interest group in discourse and dialog (SIGDIAL 2009), Queen Mary
University of London, September 2009, pp 337–340. doi:10.3115/1708376.1708426

Bouzid A, Ma W (2013) Don’t make me tap: a common sense approach to voice usability. ISBN
1-492195-1-7

Meisel W (2013) The personal-assistant model: unifying the technology experience. In:
Neustein A, Markowitz JA (eds) Mobile speech and advanced natural language solutions.
Springer, New York, pp 35–45. doi:10.1007/978-1-4614-6018-3_3

Moore RK (2013) Spoken language processing: where do we go from here? In: Trappl R (ed) Your
virtual butler: the making of. Springer, Berlin, pp 119–133. doi:10.1007/978-3-642-37346-6_
10

Pieraccini R (2012) The voice in the machine: building computers that understand speech. MIT
Press, Cambridge

Stork D (ed) (1998) HAL’s legacy: 2001’s computer as dream and reality. MIT press, Cambridge
Trappl R (ed) (2013) Your virtual butler: the making of. Springer, Berlin. doi:10.1007/978-3-642-

37346-6

22https://sites.google.com/site/hwinteractionlab/demos. Accessed March 2, 2016.
23https://play.google.com/store. Accessed March 2, 2016.

24 2 The Dawn of the Conversational Interface

http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.3115/1708376.1708426
http://dx.doi.org/10.1007/978-1-4614-6018-3_3
http://dx.doi.org/10.1007/978-3-642-37346-6_10
http://dx.doi.org/10.1007/978-3-642-37346-6_10
http://dx.doi.org/10.1007/978-3-642-37346-6
http://dx.doi.org/10.1007/978-3-642-37346-6
https://sites.google.com/site/hwinteractionlab/demos
https://play.google.com/store

Chapter 3
Toward a Technology of Conversation

Abstract Conversation is a natural and intuitive mode of interaction. As humans,
we engage all the time in conversation without having to think about how con-
versation actually works. In this chapter, we examine the key features of conver-
sational interaction that will inform us as we develop conversational interfaces for a
range of smart devices. In particular, we describe how utterances in a conversation
can be viewed as actions that are performed in the pursuit of a goal; how con-
versation is structured; how participants in conversation collaborate to make con-
versation work; what the language of conversation looks like; and the implications
for developers of applications that engage in conversational interaction with
humans.

3.1 Introduction

The main purpose of a conversational interface is to support conversational inter-
action between humans and machines. But what do we mean by conversational
interaction? Generally, the term conversation is used to describe an informal spoken
interaction in which news and views are exchanged and in which one of the main
purposes is the development and maintenance of social relationships. This form of
interaction is also called small talk. Conversation can be contrasted with dialog, a
term that is generally used to describe an interaction with a more transactional
purpose. For example, a user interacts with a spoken dialog system in order to
perform a specific task, such as requesting flight information, booking a flight, or
troubleshooting a faulty device.

The term conversational has also been used to describe systems that display
more human-like characteristics and that support the use of spontaneous natural
language, in contrast to those systems that require a more restricted form of input
from the user, such as single words or short phrases. However, since users are likely
to want to speak to conversational interfaces for a variety of purposes, sometimes to
perform transactions, other times to ask questions, and yet other times simply to

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_3

25

chat, we will disregard these distinctions and use the term conversation to cover all
types of spoken interaction with smart devices.

We distinguish our approach to the analysis of conversational interaction from
what is covered in popular accounts of the art of conversation. Typically, writers
describing the art of conversation provide advice and tips on how to conduct a
successful conversation, for example, by applying strategies such as establishing
shared interests, keeping a conversation going, and successfully bringing a con-
versation to a close. In contrast, in our approach, we will focus on what has been
described as a technology of conversation (Sacks 1984), drawing on insights from
studies of conversational interaction across a range of disciplines, including con-
versation analysis, psychology, linguistics, and artificial intelligence. Taking this
approach will enable us to identify those key characteristics of human–human
conversation that we might find useful to include in a computational model of
advanced conversational interfaces.

3.2 Conversation as Action

When people engage in conversation, they do not just produce utterances, they
perform actions—for example, they ask questions, make promises, pay compli-
ments, and so on. The notion that speakers perform actions with their utterances
was first proposed by Wittgenstein (1958) and developed further by Austin (1962)
and Searle (1969) as a theory of speech acts. The term dialog act was introduced by
Bunt (1979), while other commonly used terms are communicative act (Allwood
1976), conversation act (Traum and Hinkelmann 1992), conversational move
(Carletta et al. 1997), and dialog move (Cooper et al. 1999).

One important insight from speech act theory is that the performance of a speech
act requires that certain conditions be fulfilled. For example, for an utterance to be
intended as a command by a speaker and understood as such by an addressee, the
following conditions are required (based on Searle 1969):

1. The utterance is concerned with some future act that the hearer should perform.
2. The hearer is able to do the act, and the speaker believes that the hearer can do

the act.
3. It is not obvious to the speaker and hearer that the hearer will do the act in the

normal course of events.
4. The speaker wants the hearer to do the act.

These conditions incorporate the intuitions that people normally only ask others
to do actions that they want to have done and that they believe that the other person
is able to carry out the act and would not otherwise have done so without being
asked. Thus, performing a speech act such as a request involves a dialog agent in
reasoning about their own and their addressee’s beliefs, desires, and intentions (or

26 3 Toward a Technology of Conversation

mental states). In the plan-based model of dialog that became prominent in the
1980s, a speech act such as a request was formalized in predicate calculus as an
action schema similar to that used in AI models of planning that specified the
preconditions, effects, and body of the action (Allen 1995). Table 3.1 shows an
action schema for a request.

Using action schemas such as this along with various processes of inference, an
agent could interpret and produce dialog acts in a conversation (see Jurafsky and
Martin 2009: 887–881 for a more detailed example). However, one of the problems
of the plan-based approach was that it was computationally complex and in the
worst case intractable. Also, it has been argued that humans do not necessarily go
through a complicated process of inference when engaging in dialog. Nevertheless,
this early work on speech acts gave rise to an influential approach to dialog theory
known as the BDI (belief, desire, intention) approach that is still current in some
areas of dialog systems research (see further Chap. 4).

A number of different taxonomies of dialog acts have been proposed to label the
functions of utterances in conversation. Traum (2000) compared eight schemes,
showing how there are differences in the distribution of dialog act types across
different domains, schemes, and corpora. For example, the Verbmobil tagset, which
included acts such as suggest, accept, and reject, was intended for a
two-party scheduling domain in which the speakers were involved in planning a
meeting (Alexandersson et al. 1997).

One of the most widely used dialog act tagsets in computational linguistics is
Dialog Act Markup in Several Layers (DAMSL) (Allen and Core 1997). DAMSL is
intended as a more general, domain-independent tagset. In DAMSL, four main
categories of tag are distinguished:

1. Communicative status—whether the utterance is intelligible and whether it was
successfully completed.

2. Information level—the semantic content of the utterance.
3. Forward looking function—how the utterance constrains the future beliefs and

actions of the participants and affects the discourse.
4. Backward looking function—how the utterance relates to the previous

discourse.

Table 3.1 Action schema for a request

REQUEST
(S,H,A)

Constraints Speaker(S) ˄ Hearer(H) ˄ ACT(A) ˄ H is agent of ACT (S is speaker and H
is hearer, and A is an act and H is the agent of the act)

Precondition Want(S,ACT(H)) (speaker wants hearer to do the action)

Effect Want(H,ACT(H)) (the hearer wants to do the act)

Body Believe(H,Want(S,ACT(H))) (the hearer believes that the speaker wants the
hearer to do the act)

3.2 Conversation as Action 27

http://dx.doi.org/10.1007/978-3-319-32967-3_4

The lists of acts with forward and backward looking functions are similar to acts
proposed in other dialog act taxonomies. Forward looking functions describe the
functions of utterances mainly in terms of the speaker’s intentions and the obli-
gations of the speaker and hearer. For example, requests for action (labeled as
Influencing-addressee-future-action) obligate the hearer either to
perform the action or at least to acknowledge the request. There are two subcate-
gories: open option and action directive. Open option suggests an
action without obligating the hearer, for example:

Action directive, on the other hand, obligates the hearer to perform the
action or else to communicate a refusal or inability to perform it, as in the following
example:

In order to assist with labeling, a decision tree was provided to help distinguish
between different types of act. There is also a tool that allows the tags to be applied
though menus, buttons, and text fields.1

Backward looking functions indicate how the current utterance relates to the
previous discourse. An utterance can answer, accept, reject, or try to correct some
previous utterance or utterances. Four dimensions are involved: agreement, sig-
naling understanding, answering, and relating to preceding discourse in terms of
informational content. Backward looking acts are coded in terms of the type of act
as well as the previous elements of the discourse that the acts refer to, as in the
reject act in the preceding example. The following example shows the different
types of response that could be made to an offer:

1http://www.cs.rochester.edu/research/trains/annotation.

28 3 Toward a Technology of Conversation

http://www.cs.rochester.edu/research/trains/annotation

A more elaborate version of the DAMSL coding scheme, Switchboard
Shallow-Discourse Function Annotation (SWBD-DAMSL), was used to annotate
the switchboard corpus, a collection of spontaneous conversations (Jurafsky et al.
1997). A set of about 60 tags was used, many of which provided more subtle
distinctions than the original DAMSL categories.

Another widely used coding scheme is the HCRC Map Coding Scheme,
developed at the Human Communication Research Centre at the University of
Edinburgh. In the map task, two speakers discussed routes on maps. Three levels of
dialog unit were encoded—conversational moves (similar to dialog acts), conver-
sational games, and transactions (Carletta et al. 1997). Conversational moves
included various types of initiation and response, corresponding roughly to the
forward and backward looking functions in DAMSL. A decision tree was provided
to assist in the annotation. Conversational games and transactions described larger
segments of conversation (see further below).

These two schemes differ in that the HCRC scheme uses surface-level definitions
for its categories, whereas in DAMSL the definitions are more intention-based.
What these and other similar schemes have in common is that they extend the basic
categories of speech act theory by including conversational phenomena, such as
grounding and various types of response, along with an indication of how utter-
ances relate to each other in a conversation. In another scheme, Traum and
Hinkelmann (1992) suggested that conversational acts could be viewed in terms of
a hierarchy consisting of four levels: turn taking, grounding, core speech acts, and
argumentation. Examples of these different act types are shown in Table 3.2.

These act types are realized by increasingly larger chunks of conversation as we
move down the list, with turn-taking acts often realized by sublexical items and
argumentation acts often spanning whole conversations.

Table 3.2 Levels of conversation acts (adapted from Traum and Hinkelmann 1992)

Act type Sample acts

Turn taking take-turn keep-turn release-turn assign-turn

Grounding Initiate Continue Acknowledge Repair RequestRepair
RequestAcknowledgement Cancel

Core speech
acts

Inform WH-Question YesNo-Question Accept Request Reject Suggest
Evaluate RequestPermission Offer Promise

Argumentation Elaborate Summarize Clarify Question&Answer Convince Find-Plan

3.2 Conversation as Action 29

The most elaborate approach to dialog acts is the Dialog Act Markup Language
(DiAML) annotation framework, which originated in Bunt’s dynamic interpretation
theory (DIT) (Bunt 1995, 2009). DiAML has been accepted as an ISO standard
24627-2 “Semantic annotation framework, Part 2: Dialog Acts” (Bunt et al. 2012a).
The framework is application independent and can be used to annotate typed,
spoken, and multimodal dialog.

A key insight of DIT is that utterances in dialog are generally multifunctional, so
that utterances often need to be annotated with more than one function. The fol-
lowing example, taken from Bunt (2011: 223), illustrates:

As Bunt explains, B’s utterance 2 begins with the words “let me see,” in which
he stalls for time while he finds the required information rather than simply waiting
until the information is available. In so doing, he performs a turn-taking act and at
the same time signals that he needs time to find the answer to A’s question. More
generally, it can be shown how utterances in a dialog often do not correspond to a
single speech act but to several speech acts performed simultaneously.

DIT is a multidimensional dialog act annotation scheme. Table 3.3 shows the
dimensions identified in DIT.

The process of annotating dialogs using DiAML is supported by a facility in the
ANVIL annotation tool (Kipp 2012) that produces XML-based output in the
DiAML format (Bunt et al. 2012b).

In summary, there are a number of well-established schemes for the annotation
of transcripts of conversations in terms of the dialog acts performed by the utter-
ances of the speakers. Recognizing what dialog act is being performed by an
utterance is relevant for conversational interfaces to help determine the intentions
behind a speaker’s utterance and in order to be able to respond appropriately. For
example, if the user says “is there a Chinese restaurant near here?”, the system has
to decide if the speaker is asking a question, to which the answer might be “yes” or
“no,” or if the speaker is indirectly asking to be given information about local
Chinese restaurants, perhaps with directions of how to get there. Determining the
speaker’s intention has become an important topic in computational models of
conversational interaction, particularly as people do not always express their
intentions directly and so the system requires mechanisms to be able to infer their
intentions from whatever evidence might be available and then provide a helpful
response. We discuss methods for the automatic recognition of dialog acts in
Chap. 8.

30 3 Toward a Technology of Conversation

http://dx.doi.org/10.1007/978-3-319-32967-3_8

Knowing how to respond to a dialog act requires knowledge of what is an
appropriate response. In the next section, we show how utterances in a conversation
combine in recognizable structures and then discuss how these structures can help a
conversational agent select appropriate responses to the user’s utterances.

3.3 The Structure of Conversation

Utterances in a conversation do not occur in isolation but relate to each other in a
number of ways. Various terms have been used to describe these co-occurring
structural units, including adjacency pairs (Schegloff and Sacks 1973), exchanges
(Sinclair and Coulthard 1975), discourse segments (Grosz and Sidner 1986), and
conversational games (Kowtko et al. 1993). Here, we will use the term adjacency
pair, which was first introduced within the framework of conversation analysis
(CA) and is now used widely to describe sequences of related dialog acts. Typical
examples of adjacency pairs are question–answer, greeting–greeting, and offer–
acceptance, for example:

Table 3.3 The dimensions specified in DIT (based on Bunt 2011: 229)

Dimension Description

1. Task/activity Dialog acts whose performance contributes to performing the
task or activity underlying the dialog

2. Autofeedback Dialog acts that provide information about the speaker’s
processing of the previous utterance(s)

3. Allo-feedback Dialog acts used by the speaker to express opinions about the
addressee’s processing of the previous utterance(s), or that solicit
information about that processing

4. Contact management Dialog acts for establishing and maintaining contact

5. Turn management Dialog acts concerned with grabbing, keeping, giving, or
accepting the sender role

6. Time management Dialog acts signaling that the speaker needs a little time to
formulate his contribution to the dialog

7. Discourse structuring Dialog acts for explicitly structuring the conversation, e.g.,
announcing the next dialog act, or proposing a change of topic

8. Own communication
management

Dialog acts where the speaker edits the contribution to the dialog
that he is currently producing

9. Partner communication
management

The agent who performs these dialog acts does not have the
speaker role and assists or corrects the speaker in formulating a
contribution to the dialog

10. Social obligation
management

Dialog acts that take care of social conventions such as greetings,
apologies, thanking, and saying good-bye

3.2 Conversation as Action 31

In CA terminology, the first item in the adjacency pair is called a first pair part
and the second a second pair part. In other schemes, the terms initiation and
response are used.

However, some first pair parts can have alternative second pair parts. For
example, an offer can be followed by a refusal, as in:

In this example, the refusal is also accompanied by an explanation.
Another observation is that the pairs are not always adjacent, as in the following

example:

There are also presequences in which the preconditions of an act such as an
invitation can be checked:

Schemes such as these have proved useful as a basis for annotating transcripts of
conversations and analyzing the structural relationships between utterances.
However, conversation analysts have gone beyond annotation and have looked at
sequences of adjacency pairs to provide explanations for various interactional
phenomena that occur in conversation and to suggest how the participants interpret
these phenomena.

32 3 Toward a Technology of Conversation

To take a simple example, as Schegloff (1968) notes, after one participant has
produced a first pair part, there is an expectation that the second participant will
produce a response that displays an understanding of that first pair part. In this way,
each turn provides an opportunity for the participants to monitor the conversation
and display their understanding. Schegloff (1968) coined the term conditional
relevance to describe how the absence of an expected second pair part is noticeable
and accountable. Evidence of this sequencing principle can be seen in the following
example, discussed in detail in Levinson (1983: 320–321), where a delay in
responding is treated as noticeable:

In this example, the two second pause after A’s question is taken as indicating a
negative answer to the question. This inference is explained in terms of the con-
versational principle of preference organization, which states that alternative
responses to first pair parts are not equivalent alternatives, but that they differ in
terms of their interactional implications. For example, a positive response to an
invitation is likely to occur promptly, whereas a negative response is marked in
some way, for example, by a period of silence or an explanation for the refusal, as
illustrated in the following:

This phenomenon is relevant for human–machine conversations as a means of
explaining the inferences made by human participants when there is a delay in the
machine’s response (see Sect. 3.4.1 on turn taking). For example, a brief period of
silence might lead the user to infer that the system has not understood or is unable
to generate a response. An advanced conversational agent that emulates the pro-
cesses of human conversation would also have to be able to model conversational
phenomena such as these in order to engage naturally in conversation. An example
of how this might be done is provided in the TRIPS system where the generation
manager, which is responsible for the system’s output, can use basic dialog rules to

3.3 The Structure of Conversation 33

acknowledge the user’s utterance while it is still in the process of constructing its
next output (Allen et al. 2001; Stent 2002).

Conversational structure is also important for determining what sort of response
the system should make to a user’s utterance. As mentioned earlier, it is important
to know whether an utterance such as “is there a petrol station near here?” is
intended as a question or as a request for directions. Having determined the dialog
act of the user’s utterance, the system can select an appropriate type of response.
Recent work in statistical dialog management has shown how such a dialog strategy
can be learned from data. For example, in an approach described in Griol et al.
(2008, 2014), dialogs are represented as a sequence of dialog acts by the system and
the user, and the objective of the dialog manager is to find the best response to the
user’s previous utterance. A similar approach has been proposed using reinforce-
ment learning (Frampton and Lemon 2005) (for further detail on statistical dialog
management and reinforcement learning, see Chap. 10).

3.3.1 Dealing with Longer Sequences

Generally, in current conversations with a machine, short interactions consisting of
a single adjacency pair are involved—for example, where the human user asks a
question or issues a command and the machine responds. This is known as a
one-shot conversation. However, in many cases, longer interactions are required.
For example, conversations involving complex transactions such as flight reser-
vations are often broken down into subtasks, such as getting the flight details, which
itself breaks down into asking for departure and arrival information, before making
the reservation. In commercially deployed systems, the progression through the
different subtasks is usually strictly controlled, while some research systems have
explored more flexible mechanisms for handling shifts between subtasks. For
example, in the CMU Communicator spoken dialog system, the structure of an
activity such as creating an itinerary was not predetermined. Although the system
had an agenda with a default ordering for the traversal of the itinerary tree, the user
could change the focus or introduce a new topic (Rudnicky and Wu 1999).

Conversational transactions tend to be less structured, although nevertheless in
conversations in which several topics are discussed the participants need to keep
track of items being referenced at different stages in the conversation, monitoring
topic shifts, and returning to previous topics where necessary. The following
example illustrates how keeping track of topic shifts in a conversation helps in the
interpretation of the pronoun it in utterance 7:

34 3 Toward a Technology of Conversation

http://dx.doi.org/10.1007/978-3-319-32967-3_10

The referent of “it” in A’s last utterance (7) is not Bill’s car, which is the most
recently mentioned element that matches the pronoun syntactically, but the program
that B is installing. In this case, the pronoun and its referent are separated by several
turns. However, the use of discourse cues helps the participants keep track of topic
shifts. In the example presented here, the main topic is the installation of a program.
The intervening turns are part of an unrelated topic (or digression) about Bill and
his car. However, the main topic remains open, and it is possible to refer to ele-
ments that belong to the main topic later in the dialog using anaphoric devices such
as pronouns and definite descriptions. In this example, the beginning of the
digression is signaled by the phrase “by the way” and its end is signaled by the
word “OK.”

Until recently, spoken queries to assistants such as Google Now only supported
one-shot dialogs in which the system either answered or did not answer the user’s
question. In more recent versions of Google Now, it is possible to ask follow-up
questions that include pronouns. For example:

Pronoun resolution and discourse structure in general are likely to become an
important element of the conversational interface as systems become more con-
versational and more human-like. For recent surveys of computational approaches
to discourse structure, see Jurafsky and Martin (2009, Chap. 21) and Webber et al.
(2012).

3.4 Conversation as a Joint Activity

When people engage in a conversation, they collaborate to make the conversation
work (Clark 1996). This does not necessarily mean that the participants have to
agree with each other, but even in conversations where there is disagreement, the

3.3 The Structure of Conversation 35

participants take turns according to general conventions, they take measures to
ensure mutual understanding (grounding), and they work together to resolve
misunderstandings and communicative breakdowns.

3.4.1 Turn Taking in Conversation

Participants in conversation take turns at talking. A simple view of conversational
turn taking is that one participant talks and the other participant waits until that turn
has been completed and then begins to talk. In reality, turn taking is more complex
than this and conversational turn taking has been described as an orderly phe-
nomenon governed by rules (in the form of mutually accepted conventions) that
determine how turns are allocated and how conversational participants can take the
floor (Sacks et al. 1974). Sacks and colleagues made detailed analyses of transcripts
of naturally occurring conversations in which overlaps and periods of silence were
meticulously annotated. One of their observations was that:

Transitions from one turn to a next with no gap and no overlap between them are common.
Together with transitions characterized by slight gap or slight overlap, they make up the
vast majority of transitions.

We have already seen an example where the next speaker does not take the floor,
resulting in a period of silence that gives rise to an inference based on a dispreferred
response. Examples where there is a slight overlap are also interesting as they shed
light on how participants manage turn taking in conversation. As Sacks et al.
indicate, turn taking is locally managed on a turn-by-turn basis. The size of a turn is
not predetermined so that, in order to estimate when a turn is complete, the next
speaker has to estimate a point at which it is potentially complete, i.e., what they
call a transition-relevance place. The following is a simple example where the
heavier shading indicates the point at which the utterances overlap:

A: That’s an interesting house isn’t it?
B: do you like it?

In this example, at the point where A has said the word “house,” the utterance is
potentially complete and B begins to talk, but as A continues with “isn’t it,” the
result is a brief period of overlap. The interesting conclusion that can be drawn from
examples such as these is that participants continually monitor the ongoing talk to
predict transition-relevance places where they can attempt to take the floor.

Turn taking in human–machine conversation takes a different form due to the
requirements of speech recognition technology. From the perspective of the
machine, it is necessary to determine when the user has begun to speak and when
the utterance is complete in order to reduce processing load and to increase
recognition accuracy. The system generally begins listening at a point where the

36 3 Toward a Technology of Conversation

user presses an icon, such as a microphone, to activate the speech recognizer, or
alternatively following a signal such as a beep. An end-pointing algorithm is used to
detect the beginning and end of the portion of the acoustic signal to be analyzed as
speech, where detecting the end of an utterance usually involves detecting a period
of silence at which point it is assumed that the speaker has finished speaking.
Problems can occur if the user continues to speak following the brief period of
silence as the recognizer may not be able to analyze the additional input as part of a
complete utterance, or may have begun producing output that results in overlap.

From the perspective of the user, detecting the end of the machine’s utterance is
usually obvious at the point where the machine has stopped talking, although a brief
period of silence followed by a continuation of the output could cause the user to
begin speaking, resulting in overlap. Some systems allow the user to cut in on the
machine’s output at any point so that an experienced user can cut short a lengthy
prompt when they already know its content. This technique is known as barge-in.
For barge-in to work successfully, the machine’s output has to be terminated
promptly on the detection of input from the user; otherwise, the recognizer may
receive as input a signal containing portions of the machine’s speech along with the
speech of the user. Another problem is that the user, on continuing to hear output
from the machine, will begin to speak louder, or repeat elements of the utterance
that were overlapped. In either case, the speech signal will be distorted and is likely
to be more difficult to recognize accurately, if at all.

In current human–machine conversation, turn taking is more carefully regulated
in order to take account of the requirements of speech recognition technology.
Nevertheless, designers have to take account of the expectations that humans bring
to these interactions—for example, that a pause in the machine’s output signals that
the output is complete. Considerable effort has gone into determining the duration
and timing of pauses, for example, between menu items or between the different
elements of an extended prompt. For further discussion and an example of an
interaction containing turn-taking problems due to inappropriate timing, see Lewis
(2011: 210–221). Recent work on incremental processing in dialog, described in
more detail in Chap. 4, is aimed at producing more human-like conversational
turn-taking behaviors by modeling how humans monitor an ongoing utterance to
determine when to take the turn (Skantze and Hjalmarsson 2013).

3.4.2 Grounding

Participants in conversation cannot be sure that their utterances have been mutually
understood, and so they must engage in a process of joint activity called grounding
(Clark 1996; Clark and Schaefer 1989; Clark and Brennan 1991). The following is
a slightly simplified version of an example discussed in Clark and Brennan (1991:
129):

3.4 Conversation as a Joint Activity 37

http://dx.doi.org/10.1007/978-3-319-32967-3_4

A: Now, - um do you and your husband have a car?
B: Have a car?
A: Yeah.
B: No.

In this example, A knows that he has asked B a question, but as B indicates that
she has not understood the question and seeks clarification, it is only after A’s
response “Yeah” that the question has been grounded. Following B’s subsequent
response “No,” the knowledge that B and her husband do not have a car becomes
mutually understood, i.e., it becomes part of the common ground between A and B.

Clark and colleagues maintain that grounding is a continuous process that par-
ticipants in conversation engage in on a turn-by-turn basis and that grounding can
only be achieved through joint activity. In their model of grounding, a contribution
in a conversation is not viewed as a single communicative act; rather, it is viewed as
a collaboratively produced element consisting of two parts and involving two
participants A and B:

• A presentation phase, in which A presents an utterance to B with the expec-
tation that B will provide some evidence to A that the utterance has been
understood.

• An acceptance phase in which B provides evidence of understanding, on the
assumption that this evidence will enable A to believe that B understood A’s
utterance.

The acceptance phase may take several turns, including sequences of clarifica-
tion requests and repairs. Once both phases are complete, it is argued that it will be
common ground between A and B that B has understood what A meant.

Grounding is often achieved through the use of acknowledgements such as “uh
huh” or “mm,” also known as back-channel responses (Schegloff 1982), as in the
following example (Clark and Brennan 1991: 131):

B: And I went to some second year seminars where there are only about
half a dozen people.

A: mm.
B: and they discussed what a word was.

Here, A’s “mm,” which occurs within the turn of speaker B and overlaps with
B’s and, provides feedback that what is being said has been understood without
actually taking the floor. Another mechanism is to initiate a relevant next turn that,
following Schegloff’s principle of conditional relevance discussed earlier, provides
evidence to a first speaker A that the next speaker B has understood what A said.
For more detail on Clark’s model of grounding, see Clark (1996: 221–252).

38 3 Toward a Technology of Conversation

In human–machine conversation, grounding is generally implemented using
confirmations (also known as verifications), for example:

System: where do you want to fly to?
User: London.
System: Flying to London, …

See Chap. 10 for a discussion of different confirmation strategies employed in
spoken dialog systems and voice user interfaces.

Clark’s model of grounding has provided a basis for more advanced computa-
tional models of conversation developed. Traum (1994) presents a protocol that
determines on a turn-by-turn basis whether utterances have been grounded and what
actions are required to ground them. The protocol is implemented in a natural
language dialog system in which the system reasons about the state of grounding
and performs appropriate actions. These ideas were developed further in informa-
tion state update theory (see Chap. 4) where common ground is one of the central
informational components. A distinction is made between information that is
assumed to be private to a participant and information that is shared, i.e., common
ground. As a dialog progresses, the common ground is updated—for example, as a
result of a grounding act such as an acknowledgement. Table 3.4 shows a sim-
plified example of an update rule triggered by the conversational move assert
(see Matheson et al. 2001 for a more formal account).

Modeling grounding in terms of mental states and conversational obligations has
been further developed within recent versions of Information State Update Theory
but has not been taken up within commercially deployed systems. Nevertheless, it
could be argued that advanced conversational agents, acting, for example, as
conversational companions or social robots, will require a model of common
ground including shared beliefs, obligations, and commitments in order to
demonstrate human-like conversational capabilities.

Table 3.4 An update rule

Name Assert

Condition G (common ground) contains an assert K addressed by A to B

Update Add to G that if A asserts K, then A is trying to get B to believe K and that if B
believes K, then B is also conversationally committed to K

In other words, when A makes an assertion K, A’s intention is to get B to believe K. Furthermore,
if B believes K, then B is also committed to that belief. TrindiKit, the dialog move engine toolkit,
provides support for the development of dialog systems incorporating grounding processes
(Larsson and Traum 2000)

3.4 Conversation as a Joint Activity 39

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_4

3.4.3 Conversational Repair

Miscommunication is a frequent occurrence in conversation, and there is a wide
range of studies of miscommunication in different domains, including differences in
the use of language by males and females (Tannen 2001) and differences between
people from different cultural and linguistic backgrounds (Gumperz 1978).
Coupland et al. (1991) is a collection of papers investigating miscommunication in
terms of gender, generational, and cultural differences, in clinical and organizational
contexts, and in person–machine communication. Clark (1996) has conducted
numerous detailed studies of how humans communicate (and miscommunicate) with
one another, while Nass and Brave (2004) report a range of studies of how people
interact with spoken dialog systems, looking at issues such as how the gender of the
system’s voice has a bearing on whether the system is perceived as being competent
and knowledgeable.

It is useful to distinguish between failures to understand, where the hearer is
unable to interpret what the speaker said, and misunderstandings, where the hear-
er’s interpretation is different from what the speaker intended to convey. Failure to
understand is generally easier to handle and in the simplest case can involve the
hearer asking the speaker to repeat or reformulate. Misunderstandings are more
difficult as it may not be immediately obvious that a misunderstanding has
occurred. Note that detecting and dealing with miscommunication is a requirement
for both participants as they collaborate to achieve mutual understanding.

Researchers in conversation analysis have produced a detailed account of how
conversational repair is organized (Schegloff et al. 1977). Four types of repair were
distinguished, depending on who initiated the repair and who carried it out. The
speaker whose utterance contains a repairable element is described as self, while the
recipient of the utterance is referred to as other. This gives rise to a four-way
distinction:

• Self-initiated self-repair (in own turn, turn 1);
• Self-initiated self-repair (in turn transition);
• Other-initiated self-repair (in turn 2);
• Other-initiated other-repair (in turn 2).

For example, the current speaker may detect a potential problem in the utterance
that they are currently producing and initiate a self-repair, as in:

Another possibility is that the hearer B detects a problem and initiates a clari-
fication request that invites the speaker A to initiate a repair:

40 3 Toward a Technology of Conversation

It is also possible for the hearer to initiate and perform the repair, as in:

Some interesting findings arose from this analysis. On the one hand, the
opportunities for repair are sequentially ordered in that opportunities for
self-initiation of repair occur before those for other-initiation of repair, as indicated
above. Similarly, repair by self occurs before repair by other. These findings led to a
more general conclusion that repairs are organized in terms of a system of pref-
erence in which self-initiation of repair is preferred to other-initiation, while
self-repair is preferred to other-repair. In this analysis, the term preference is used to
describe the feature of markedness. In other words, items that are preferred are
unmarked, while those that are dispreferred are marked. With reference to repair,
this means that dialog acts such as corrections of the other person’s utterance are
normally delayed and marked in some way—for example, with indicators of
uncertainty or hesitation. In this way, the speaker of the utterance containing a
potential error is given the opportunity to self-correct, and corrections by the
recipient of the utterance are modulated so that they appear less direct.

Generally, these detailed insights on conversational repair have not been
addressed in implementations of human–machine conversation where the focus has
been mainly on dealing with miscommunication caused by speech recognition
errors. However, with new research aiming to produce more human-like conver-
sational interfaces, some of these insights are likely to become more relevant. For
example, if the system detects a potential error, one way to rectify it would be to
immediately correct the error, as happens usually in current systems. However, in
terms of the properties of naturally occurring conversation, this would be a dis-
preferred strategy and a more human-like system might use either a more mitigated
form of correction or a request for clarification, or even decide that in this particular
context, it is reasonable to ignore the miscommunication and continue with the
conversation. See McTear (2008) for a review of approaches to miscommunication
in several different disciplines and of methods used in different interactional con-
texts to repair (and sometimes ignore) miscommunication.

However, designing repair strategies by hand would be a complicated and
time-consuming task, and the question arises whether it is possible for a system to
learn repair strategies. Frampton (2009) describes a learned strategy for repairs of
automatic speech recognition (ASR) and spoken language understanding
(SLU) errors using reinforcement learning that enabled the system to get the dialog

3.4 Conversation as a Joint Activity 41

back on track following miscommunication (see Chap. 10 for a detailed description
of reinforcement learning in spoken dialog systems). Other relevant work includes
the dissertations of Skantze (2007) and Bohus (2007) in which data-driven methods
and machine learning were used to find optimal strategies for error handling in
dialog. Skantze investigated the strategies used by humans to deal with errors and
applied a method in which the costs associated with different grounding strategies
could be measured and the strategy with the minimum expected cost selected.
Bohus examined different recovery strategies and, like Skantze, found that strate-
gies such as MoveOn, where the system advances the task by moving on to a
different question rather than asking the user to repeat or rephrase, turned out to be
more productive, given that asking the user to repeat or rephrase often resulted in an
escalation of the error instead of its resolution. For more detail on error handling in
spoken dialog systems, see Jokinen and McTear (2010, Chap. 3).

3.5 The Language of Conversation

The written language that appears in books and newspapers is usually carefully
edited and corrected, making it amenable to analysis using grammars that contain
rules for well-formed sentences. In contrast, the language of conversation is less
regular as it often contains disfluencies, such as hesitation markers, fillers (e.g.,
“and so on,” “you know,” and “if you see what I mean”), fragments, and
self-corrections that reflect the spontaneous production of speech but that make the
processing of the text using methods applicable to written language more prob-
lematic. The following is an example from the Air Travel Information Service
(ATIS) corpus, cited in Jurafsky and Martin (2009: 391):

does United offer any one-way flights uh, I mean one way fares for 160
dollars?

In this example, the speaker changes the object noun phrase “one-way flights” to
“one-way fares,” marking the change by “uh” and “I mean.” The resulting string of
words could not be parsed using a grammar designed for the analysis of
well-formed written text.

There are different ways in which this problem has been addressed. One
approach is to edit the text and attempt to make it more regular. Since some of the
features of spontaneous spoken language are sufficiently predictable, they can be
described using special rules or strategies to filter out the irregularities and produce
sentences that can be parsed using a conventional grammar. For example, utter-
ances including false starts have a typical structure as illustrated in the following
example:

42 3 Toward a Technology of Conversation

http://dx.doi.org/10.1007/978-3-319-32967-3_10

The meeting will be on Mon- uh on Tuesday

reparandum editing term alteration

The reparandum is the item that is to be corrected or replaced. The editing term,
often indicated by a disruption in the prosodic contour, by a word that has been cut
off, or by a hesitation marker such as “uh,” signals that a self-repair is occurring.
Finally, the alteration is the corrected version of the reparandum. Frequently, there
is some similarity between the reparandum and the alteration in terms of the words
used as well as their syntactic structures. For example, a word in the alteration that
replaces a word in the reparandum will often be of a similar word class and have a
similar meaning. Given these features, it is possible to devise methods for detecting
and correcting self-repairs and other types of disfluency in naturally occurring
speech (for further details, see Heeman and Allen 1994).

A second approach, which we will discuss further in Chap. 8, is not to attempt to
parse all of the input but rather to extract key words and phrases that indicate the
entities being referenced in the input. In this way, the irregularities in the input can
be ignored.

3.5.1 Prosodic, Paralinguistic, and Nonverbal Behaviors

While extracting key words and phrases is often sufficient for task-oriented dialogs,
where the main objective is to determine the user’s requirements, as in a flight
booking, in other forms of conversation, such as social chat, there are additional
streams of information over and above the literal content of the words in the
utterance. These additional streams of information include prosodic and paralin-
guistic features as well as nonverbal behaviors.

Prosody refers to features such as the following:

• Overall pitch contour—this can determine the dialog act that is being performed,
for example, “OK” with a rising tone indicates a checking act, whereas a falling
tone indicates acceptance or confirmation.

• Accentuation—the item that receives prominence is generally being marked by
the speaker as being new to the discourse as opposed to the other items that are
treated as being given.

• Phrasing—the grouping of an utterance into meaningful chunks. For example,
“call the ticket office in Belfast” is taken to refer to a ticket office that is in
Belfast, whereas “call the ticket office | in Belfast,” with a pause between
“office” and “Belfast,” would convey the meaning of calling the ticket office
while the hearer is in Belfast.

Prosodic information can support the text-to-speech synthesis component of a
conversational interface by using the correct prosodic forms to distinguish between

3.5 The Language of Conversation 43

http://dx.doi.org/10.1007/978-3-319-32967-3_8

otherwise ambiguous dialog acts, to indicate what information is new, and to group
the utterance into meaningful chunks that will assist the hearer to more easily
understand the utterance (Hirschberg 2002). Similarly, dialog understanding can be
improved by the use of prosodic information that enables the system to track the
dialog structure, to segment utterances correctly, and to predict and interpret dialog
acts (Nöth et al. 2002; Hastie et al. 2002).

Paralinguistics refers to properties of the speech signal that can be used, either
consciously or subconsciously, to modify meaning and convey emotion. Put sim-
ply, it is the study of how something is said as opposed to what is said. Examples of
paralinguistic features include those that accompany and overlay the content of an
utterance and modify its meaning, such as pitch, speech rate, voice quality, and
loudness, as well as other vocal behaviors, such as sighs, gasps, and laughter.
Paralinguistic properties of speech are important in human conversation as they can
affect how a listener perceives an utterance. These effects are particularly marked in
interactions between people from different cultures. For example, a speaker
speaking with a volume that would be normal in his or her own culture could be
perceived as being loud and aggressive by a listener from a different culture.
Similarly, people can be perceived as being sarcastic, dismissive, or disinterested on
account of properties of their voice, even where these effects were not intended.

Nonverbal behavior includes gestures, gaze, body orientation, and posture that
accompany speech in face-to-face conversations between humans. We can distin-
guish between those behaviors that convey information unintentionally and those
that have a communicative function. Clear cases of the former would include dress
and gait, which often indicate a person’s affiliations and attitudes, though not
necessarily intentionally. Pointing as a means of indicating something or nodding to
convey assent are clear cases of intentional nonverbal behaviors that function as
surrogates or accompaniments of speech.

3.5.2 Implications for the Conversational Interface

Prosody, paralinguistics, and nonverbal behavior have a long history of study
within linguistics and psychology but have only recently become hot topics in
human-machine interaction with the emergence of socially aware computing, where
the aim is to bring social intelligence to computers. One aspect of this new area of
research is the study of behavioral cues and social signals and their relevance for
systems that aim to simulate human social intelligence by being able to recognize
and produce human-like social and behavioral cues. Until recently, attention was
focused on how to make speech recognition and spoken language understanding
more accurate through the analysis of this additional information. Now, the
emphasis is on making machines more human-like, for example, in order to develop
embodied conversational agents (ECAs) and social robots. This new research thrust
has brought together researchers in the social sciences and engineering in a new
field known variously as social signal processing (Pentland 2007; Vinciarelli et al.

44 3 Toward a Technology of Conversation

2009), behavioral signal processing (Narayanan and Georgiou 2013), or affective
computing (Schröder et al. 2012). We discuss these topics in greater detail in
Chaps. 14 and 15 and provide a laboratory with exercises in Chap. 16.

3.6 Summary

In this chapter, we have reviewed the key features of conversation that will inform
the design of conversational interfaces. In particular, we have covered the following
aspects:

• Conversation as action—how utterances produced in conversation should be
viewed as actions that speakers carry out in order to achieve their goals and how
addressees interpret these actions. Recognizing what dialog act is being per-
formed by an utterance is relevant for conversational interfaces to help deter-
mine the intentions behind a speaker’s utterance and in order to be able to
respond appropriately. The view of conversation as action originated in speech
act theory and has been further developed in terms of dialog acts and the belief,
desire, intention (BDI) model of dialog. Various dialog act tagsets were
reviewed, including DAMSL and DiAML.

• The structure of conversation—how utterances in a conversation relate to each
other. Various structural units have been used to describe sequences of dialog
acts, including adjacency pairs, exchanges, discourse segments, and conversa-
tional games. In addition to analyzing conversational structure, conversation
analysts have used these structures to explain conversational phenomena, such
as how participants interpret the absence of an expected response.

• Conversation as a joint activity—how participants in conversation collaborate in
taking turns and in reducing the risk of miscommunication through the process
of grounding.

• Conversational repair—the mechanisms for repairing breakdowns in conversa-
tion through various types of repair either by the speaker or by the addressee. As
shown by conversation analysts, types of repair differ in terms of their sequential
properties and preference. Opportunities for self-repairs (repairs by the current
speaker) occur sequentially before opportunities for other-repair (repairs by the
addressee), and other-repairs are dispreferred (or marked)—for example, with
indicators of uncertainty or hesitation.

• The language of conversation—how the language of conversation differs from
the language of written text and the challenges that these differences pose for the
speech recognition and spoken language understanding components. The lan-
guage of conversation also includes prosodic, paralinguistic, and nonverbal
behaviors that enhance conversational interaction and that convey additional
information such as affect and emotional state.

3.5 The Language of Conversation 45

http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_16

In the next chapter, we provide an overview of the origins of conversational
interfaces and highlight a number of key insights and technological achievements
that are relevant for developers of conversational interfaces.

Further Reading
Speech act theory has been influential in the computational modeling of dialog. For
a recent collection of chapters on speech act theory and pragmatics, see Searle
(2013). Bunt and Black (2000) is a collection of chapters on computational prag-
matics, while Geis (2006) examines the relationship between speech acts and
conversational interaction. Fernández (2014) provides a comprehensive overview
of the various dialog phenomena described in this chapter.

There have been a number of recent books on conversation analysis, including
introductions to the main findings, methods, and techniques (Sidnell 2010; Hutchby
and Wooffitt 2008), and a collection of papers by international experts in the areas
of conversation analysis, discourse analysis, linguistics, anthropology, communi-
cation, psychology, and sociology (Sidnell and Stivers 2014). Eggins and Slade
(2005) compare a number of approaches to the analysis of casual conversation,
including conversation analysis, discourse analysis, and the ethnography of
speaking. Hayashi et al. (2013) is a collection of papers by researchers in anthro-
pology, communication, linguistics, and sociology on conversational repair and
human understanding.

Schuller and Batliner (2013) present a detailed survey of computational
approaches to paralinguistics, examining the methods, tools, and techniques used to
automatically recognize affect, emotion, and personality in human speech.

For an overview of computational approaches to conversation, see Allen (1995,
Chap. 17, Defining a conversational agent) and Jurafsky and Martin (2009,
Chap. 24, Dialog and conversational agents).

Exercise
Although conversation is a natural and intuitive behavior for most people, under-
standing the mechanisms of conversational interaction in order to be able to model
them in a conversational interface requires an understanding of the “technology of
conversation.”

There is an excellent online introductory tutorial on the methods of conversation
analysis that provides basic instructions on how to transcribe and analyze con-
versations (Antaki 2002). Some audio/video clips of conversational interactions are
provided along with transcriptions. Following the tutorial will allow you to
appreciate some of the complex issues involved in analyzing and modeling con-
versation, including what to transcribe (e.g., just the words or other aspects such as
paralinguistic features and gestures), basic transcription notation conventions, and
how to analyze the data.

46 3 Toward a Technology of Conversation

References

Allen JF (1995) Natural language understanding, 2nd edn. Benjamin Cummings Publishing
Company Inc., Redwood

Allen JF, Core M (1997) Draft of DAMSL: dialog act markup in several layers. The Multiparty
Discourse Group. University of Rochester, Rochester, USA. http://www.cs.rochester.edu/
research/cisd/resources/damsl/RevisedManual/. Accessed 20 Jan 2016

Allen JF, Ferguson G, Stent A (2001) An architecture for more realistic conversational systems. In:
Proceedings of intelligent user interfaces 2001 (IUI-01), Santa Fe, NM, 14–17 Jan 2001.
doi:10.1145/359784.359822

Alexandersson J, Buschbeck-Wolf B, Fujinami T, Maier E, Reithinger N, Schmitz B, Siegel M
(1997) Dialog acts in VERBMOBIL-2. Verbmobil report 204, May 1997, DFKI GmbH,
Saarbrücken Germany

Allwood J (1976) Linguistic communication as action and cooperation. Gothenburg monographs
in linguistics 2. University of Göteborg, Department of Linguistics

Antaki C (2002) An introductory tutorial in conversation analysis. http://www-staff.lboro.ac.uk/
*ssca1/sitemenu.htm. Accessed on 26 Jan 2016

Austin JL (1962) How to do things with words. Oxford University Press, Oxford
Bohus D (2007) Error awareness and recovery in conversational spoken language interfaces. Ph.D.

dissertation, Carnegie Mellon University, Pittsburgh, PA
Bunt HC (1979) Conversational principles in question-answer dialogs. In: Krallmann D (ed) Zur

Theorie der Frage. Narr Verlag, Essen, pp 119–141
Bunt HC (1995) DIT – dynamic interpretation and dialog theory. In: Taylor MM, Neel F,

Bouwhuis DG (eds) Proceedings from the second Venaco workshop on multimodal dialog.
Benjamins, Amsterdam, pp 139–166

Bunt HC (2009) The DIT++ taxonomy for functional dialog markup. In: Heylen D, Pelachaud C,
Catizone R, Traum DR (eds) Proceedings of the AMAAS 2009 workshop towards a standard
markup language for embodied dialog acts. Budapest, May 2009, pp 13–24

Bunt HC (2011) Multifunctionality in dialog. Comp Speech Lang 25:222–245. doi:10.1016/j.csl.
2010.04.006

Bunt HC, Black W (eds) (2000) Abduction, belief and context in dialog: studies in computational
pragmatics. John Benjamins Publishing Company, Amsterdam. doi:10.1075/nlp.1

Bunt HC, Alexandersson J, Choe J-W, Fang AC, HasidaK, PetukhovaV, Popescu-Belis A,
Traum DR (2012a) ISO 24617-2: A semantically-based standard for dialog annotation. In:
Proceedings of the 8th international conference on language resources and evaluation (LREC
2012), Istanbul, pp 430–437. http://www.lrec-conf.org/proceedings/lrec2012/pdf/180_Paper.
pdf. Accessed 2 Mar 2016

Bunt HC, Kipp M, Petukhova V (2012b) Using DiAML and ANVIL for multimodal dialog
annotation. In: Proceedings of the 8th international conference on language resources and
evaluation (LREC 2012), Istanbul, pp 1301–1308. http://www.lrec-conf.org/proceedings/
lrec2012/pdf/1107_Paper.pdf. Accessed 2 Mar 2016

Carletta J, Isard A, Isard S, Kowtko J, Doherty-Sneddon G, Anderson A (1997) The reliability of a
dialog structure coding scheme. Comput Linguist 23:13–31. http://dl.acm.org/citation.cfm?id=
972686. Accessed 20 Jan 2016

Clark HH (1996) Using language. Cambridge University Press, Cambridge. doi:10.1017/
cbo9780511620539

Clark HH, Brennan SE (1991) Grounding in communication. In: Resnick LB, Levine JM,
Teasley SD (eds) Perspectives on socially shared cognition. American Psychological
Association, Washington, pp 127–149. doi:10.1037/10096-006

Clark HH, Schaefer EF (1989) Contributing to discourse. Cogn Sci 13:259–294. doi:10.1207/
s15516709cog1302_7

References 47

http://www.cs.rochester.edu/research/cisd/resources/damsl/RevisedManual/
http://www.cs.rochester.edu/research/cisd/resources/damsl/RevisedManual/
http://dx.doi.org/10.1145/359784.359822
http://www-staff.lboro.ac.uk/%7essca1/sitemenu.htm
http://www-staff.lboro.ac.uk/%7essca1/sitemenu.htm
http://dx.doi.org/10.1016/j.csl.2010.04.006
http://dx.doi.org/10.1016/j.csl.2010.04.006
http://dx.doi.org/10.1075/nlp.1
http://www.lrec-conf.org/proceedings/lrec2012/pdf/180_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/180_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1107_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1107_Paper.pdf
http://dl.acm.org/citation.cfm?id=972686
http://dl.acm.org/citation.cfm?id=972686
http://dx.doi.org/10.1017/cbo9780511620539
http://dx.doi.org/10.1017/cbo9780511620539
http://dx.doi.org/10.1037/10096-006
http://dx.doi.org/10.1207/s15516709cog1302_7
http://dx.doi.org/10.1207/s15516709cog1302_7

Cooper R, Larsson S, Matheson C, Poesio M, Traum DR (1999) Coding instructional dialog for
information states Trindi project deliverable D1.1. http://www.ling.gu.se/projekt/trindi//
publications.html. Accessed 20 Jan 2016

Coupland N, Giles H, Wiemann J (eds) (1991) Miscommunication and problematic talk. Sage
Publications, London

Eggins S, Slade D (2005) Analysing casual conversation. Equinox Publishing Ltd., Sheffield
Fernández R (2014) Dialog. In: Mitkov R (ed) The Oxford handbook of computational linguistics,

2nd edn. Oxford University Press, Oxford. doi:10.1093/oxfordhb/9780199573691.013.25
Frampton M (2009) Reinforcement learning in spoken dialog systems: optimising repair strategies.

VDM Verlag, Saarbrücken
Frampton M, Lemon O (2005) Reinforcement learning of dialog strategies using the user’s last

dialog act. In: Proceedings of 4th IJCAI workshop on knowledge and reasoning in practical
dialog systems, Edinburgh. https://pureapps2.hw.ac.uk/portal/en/publications/reinforcement-
learning-of-dialog-strategies-using-the-users-last-dialog-act(193e9575–2081-4338-b37a-
d7a0c47e9dc9).html. Accessed 20 Jan 2016

Geis ML (2006) Speech acts and conversational interaction. Cambridge University Press,
Cambridge

Griol D, Hurtado L, Segarra E, Sanchis E (2008) A statistical approach to spoken dialog systems
design and evaluation. Speech Commun 50:666–682. doi:10.1016/j.specom.2008.04.001

Griol D, Callejas Z, López-Cózar R, Riccardi G (2014) A domain-independent statistical
methodology for dialog management in spoken dialog systems. Comp Speech Lang 28:743–
768. doi:10.1016/j.csl.2013.09.002

Grosz BJ, Sidner CL (1986) Attention, intentions, and the structure of discourse. Comput Linguist
12(3):175–204. http://dl.acm.org/citation.cfm?id=12458. Accessed 20 Jan 2016

Gumperz J (1978) The conversational analysis of interethnic communication. In: Ross EL
(ed) Interethnic communication. University of Georgia Press, Athens, pp 13–31

Hastie H, Poesio M, Isard S (2002) Automatically predicting dialog structure using prosodic
features. Speech Commun 36(1–2):63–79. doi:10.1016/S0167-6393(01)00026-7

Hayashi M, Raymond G, Sidnell J (eds) (2013) Conversational repair and human understanding.
Cambridge University Press, Cambridge

Heeman P, Allen JF (1994) Detecting and correcting speech repairs. In: Proceedings of the 32nd
annual meeting of the Association of Computational Linguistics, Las Cruces, pp 295–302.
doi:10.3115/981732.981773

Hirschberg J (2002) Communication and prosody: functional aspects of prosody. Speech Commun
36(1–2):31–43. doi:10.1016/S0167-6393(01)00024-3

Hutchby I, Wooffitt R (2008) Conversation analysis. Polity Press, Oxford
Jokinen K, McTear M (2010) Spoken dialog systems. Synthesis lectures on human language

technologies. Morgan and Claypool Publishers, San Rafael. doi:10.2200/
S00204ED1V01Y200910HLT005

Jurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall, Upper
Saddle River

Jurafsky D, Shriberg E, Biasca D (1997) Switchboard SWBD-DAMSL shallow-discourse-function
annotation coders manual, Draft 13. University of Colorado, Boulder, CO. Institute of
Cognitive Science Technical Report 97-02. https://web.stanford.edu/*jurafsky/ws97/manual.
august1.html. Accessed 20 Jan 2016

Kipp M (2012) Multimedia annotation, querying and analysis in ANVIL. In: Maybury M
(ed) Multimedia information extraction. IEEE Computer Society Press. doi:10.1002/
9781118219546.ch21

Kowtko J, Isard S, Doherty GM (1993) Conversational games within dialog. Research paper
HCRC/RP-31, Human Communication Research Centre, University of Edinburgh

Larsson S, Traum DR (2000) Information state and dialog management in the TRINDI dialog
move engine toolkit. Nat Lang Eng 6(3–4):323–340. doi:10.1017/S1351324900002539

Levinson SC (1983) Pragmatics. Cambridge University Press, Cambridge

48 3 Toward a Technology of Conversation

http://www.ling.gu.se/projekt/trindi//publications.html
http://www.ling.gu.se/projekt/trindi//publications.html
http://dx.doi.org/10.1093/oxfordhb/9780199573691.013.25
https://pureapps2.hw.ac.uk/portal/en/publications/reinforcement-learning-of-dialog-strategies-using-the-users-last-dialog-act(193e9575%e2%80%932081-4338-b37a-d7a0c47e9dc9).html
https://pureapps2.hw.ac.uk/portal/en/publications/reinforcement-learning-of-dialog-strategies-using-the-users-last-dialog-act(193e9575%e2%80%932081-4338-b37a-d7a0c47e9dc9).html
https://pureapps2.hw.ac.uk/portal/en/publications/reinforcement-learning-of-dialog-strategies-using-the-users-last-dialog-act(193e9575%e2%80%932081-4338-b37a-d7a0c47e9dc9).html
http://dx.doi.org/10.1016/j.specom.2008.04.001
http://dx.doi.org/10.1016/j.csl.2013.09.002
http://dl.acm.org/citation.cfm?id=12458
http://dx.doi.org/10.1016/S0167-6393(01)00026-7
http://dx.doi.org/10.3115/981732.981773
http://dx.doi.org/10.1016/S0167-6393(01)00024-3
http://dx.doi.org/10.2200/S00204ED1V01Y200910HLT005
http://dx.doi.org/10.2200/S00204ED1V01Y200910HLT005
https://web.stanford.edu/%7ejurafsky/ws97/manual.august1.html
https://web.stanford.edu/%7ejurafsky/ws97/manual.august1.html
http://dx.doi.org/10.1002/9781118219546.ch21
http://dx.doi.org/10.1002/9781118219546.ch21
http://dx.doi.org/10.1017/S1351324900002539

Lewis JR (2011) Practical speech user interface design. CRC Press, Boca Raton. doi:10.1201/
b10461

Matheson C, Poesio M, Traum DR (2001) Modelling grounding and discourse obligations using
update rules. In: Proceedings of the first annual meeting of the North American chapter of the
ACL, Seattle, April 2001

McTear, M (2008) Handling miscommunication: why bother? In: Dybkjaer L, Minker W
(eds) Recent trends in discourse and dialog. Springer, New York, pp 101–122. doi:10.1007/
978-1-4020-6821-8_5

Narayanan S, Georgiou PG (2013) Behavioral signal processing: deriving human behavioral
informatics from speech and language. Proc IEEE 101(5):1203–1233. doi:10.1109/JPROC.
2012.2236291

Nass C, Brave S (2004) Wired for speech: how voice activates and advances the human-computer
relationship. MIT Press, Cambridge

Nöth E, Batliner A, Warnke V, Haas J, Boros M, Buckow J, Huber R, Gallwitz F, Nutt M,
Niemann H (2002) On the use of prosody in automatic dialog understanding. Speech Commun
36(1–2):45–62. doi:10.1016/S0167-6393(01)00025-5

Pentland A (2007) Social signal processing. Signal Process Mag 24(4):108–111. doi: 10.1109/
MSP.2007.4286569

Rudnicky AJ, Wu X (1999) An agenda-based dialog management architecture for spoken
language systems. In: Proceedings of IEEE automatic speech recognition and understanding
workshop (ASRU99), Chichester, UK, pp 3–7. http://www.cs.cmu.edu/*xw/asru99-agenda.
pdf. Accessed 20 Jan 2016

Sacks H (1984) On doing ‘being ordinary’. In: Atkinson JM, Heritage JC (eds) Structures of social
action: studies in conversation analysis. Cambridge University Press, Cambridge. doi:10.1017/
CBO9780511665868.024

Sacks H, Schegloff EA, Jefferson G (1974) A simplest systematics for the organization of
turn-taking for conversation. Language 50(4):696–735. doi:10.1353/lan.1974.0010

Schegloff EA (1968) Sequencing in conversational openings. Am Anthropol 70:1075–1095.
doi:10.1525/aa.1968.70.6.02a00030

Schegloff EA (1982) Discourse as an interactional achievement: some uses of “uh huh” and other
things that come between sentences. In: Tannen D (ed) Analysing discourse: text and talk.
Georgetown University Roundtable on Languages and Linguistics 1981, Georgetown
University Press, Washington, DC, pp 71–93

Schegloff EA, Sacks H (1973) Opening up closings. Semiotica 8(4):289–327. doi:10.1515/semi.
1973.8.4.289

Schegloff EA, Jefferson G, Sacks H (1977) The preference for self-correction in the organisation of
repair in conversation. Language 53:361–382. doi:10.2307/413107

Schröder M, Bevacqua E, Cowie R, Eyben F, Gunes H, Heylen D, ter Maat M, McKeown G,
Pammi S, Pantic M, Pelachaud C, Schuller B, de Sevin E, Valstar M, Wöllmer M (2012)
Building autonomous sensitive artificial listeners. IEEE Trans Affect Comput 3(2):165–183.
doi:10.1109/T-AFFC.2011.34

Schuller B, Batliner A (2013) Computational paralinguistics: emotion, affect and personality in
speech and language processing. Wiley, Chichester. doi:10.1002/9781118706664

Searle JR (1969) Speech acts. Cambridge University Press, Cambridge. doi:10.1017/
CBO9781139173438

Searle JR (ed) (2013) Speech act theory and pragmatics. Springer, New York. doi:10.1007/978-94-
009-8964-1

Sidnell J (2010) Conversation analysis: an introduction. Wiley-Blackwell, Chichester
Sidnell J, Stivers, T (eds) (2014) The handbook of conversation analysis. Wiley-Blackwell,

Chichester. doi:10.1002/9781118325001
Sinclair JM, Coulthard M (1975) Towards an analysis of discourse. Oxford University Press,

Oxford
Skantze G (2007) Error handling in spoken dialog systems—managing uncertainty, grounding and

miscommunication. Ph.D. dissertation, KTH, Stockholm, Sweden

References 49

http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1007/978-1-4020-6821-8_5
http://dx.doi.org/10.1007/978-1-4020-6821-8_5
http://dx.doi.org/10.1109/JPROC.2012.2236291
http://dx.doi.org/10.1109/JPROC.2012.2236291
http://dx.doi.org/10.1016/S0167-6393(01)00025-5
http://dx.doi.org/10.1109/MSP.2007.4286569
http://dx.doi.org/10.1109/MSP.2007.4286569
http://www.cs.cmu.edu/%7exw/asru99-agenda.pdf
http://www.cs.cmu.edu/%7exw/asru99-agenda.pdf
http://dx.doi.org/10.1017/CBO9780511665868.024
http://dx.doi.org/10.1017/CBO9780511665868.024
http://dx.doi.org/10.1353/lan.1974.0010
http://dx.doi.org/10.1525/aa.1968.70.6.02a00030
http://dx.doi.org/10.1515/semi.1973.8.4.289
http://dx.doi.org/10.1515/semi.1973.8.4.289
http://dx.doi.org/10.2307/413107
http://dx.doi.org/10.1109/T-AFFC.2011.34
http://dx.doi.org/10.1002/9781118706664
http://dx.doi.org/10.1017/CBO9781139173438
http://dx.doi.org/10.1017/CBO9781139173438
http://dx.doi.org/10.1007/978-94-009-8964-1
http://dx.doi.org/10.1007/978-94-009-8964-1
http://dx.doi.org/10.1002/9781118325001

Skantze G, Hjalmarsson A (2013) Towards incremental speech generation in conversational
systems. Comp Speech Lang 27(1):243–262. doi:10.1016/j.csl.2012.05.004

Stent A (2002) A conversation acts model for generating spoken dialog contributions. Comp
Speech Lang 16:313–352. doi:10.1016/s0885-2308(02)00009-8

Tannen D (2001) You just don’t understand: women and men in conversation. Ballentine Books,
New York

Traum DR (1994) A computational theory of grounding in natural language conversation. Ph.D.
dissertation, Department of Computer Science, University of Rochester, New York

Traum DR (2000) 20 questions for dialog act taxonomies. J Seman 17(1):7–30. doi:10.1093/jos/
17.1.7

Traum DR, Hinkelmann EA (1992) Conversation acts in task-oriented spoken dialog. Comput
Intell 8(3):575–599. doi:10.1111/j.1467-8640.1992.tb00380.x

Vinciarelli A, Pantic M, Bourlard H (2009) Social signal processing: survey of an emerging
domain. Image Vis Compu 27(12):1743–1759. doi:10.1016/j.imavis.2008.11.007

Webber B, Egg M, Kordoni V (2012) Discourse structure and language technology. Nat Lang Eng
18(4):437–490. doi:10.1017/S1351324911000337

Wittgenstein L (1958) Philosophical investigations. Blackwell, Oxford

50 3 Toward a Technology of Conversation

http://dx.doi.org/10.1016/j.csl.2012.05.004
http://dx.doi.org/10.1016/s0885-2308(02)00009-8
http://dx.doi.org/10.1093/jos/17.1.7
http://dx.doi.org/10.1093/jos/17.1.7
http://dx.doi.org/10.1111/j.1467-8640.1992.tb00380.x
http://dx.doi.org/10.1016/j.imavis.2008.11.007
http://dx.doi.org/10.1017/S1351324911000337

Chapter 4
Conversational Interfaces:
Past and Present

Abstract Conversational interfaces have a long history, starting in the 1960s with
text-based dialog systems for question answering and chatbots that simulated casual
conversation. Speech-based dialog systems began to appear in the late 1980s and
spoken dialog technology became a key area of research within the speech and
language communities. At the same time commercially deployed spoken dialog
systems, known in the industry as voice user interfaces (VUI), began to emerge.
Embodied conversational agents (ECA) and social robots were also being devel-
oped. These systems combine facial expression, body stance, hand gestures, and
speech in order to provide a more human-like and more engaging interaction. In this
chapter we review developments in spoken dialog systems, VUI, embodied con-
versational agents, social robots, and chatbots, and outline findings and achieve-
ments from this work that will be important for the next generation of
conversational interfaces.

4.1 Introduction

The idea of being able to talk to a machine has been around for a long time, but
it was not until the late 1980s that researchers actually began creating speech-
enabled interactive systems. Major advances in automatic speech recognition
(ASR) technology meant that it was now possible to recognize a user’s spoken
input with a reasonable degree of accuracy. Up to this point, conversational
interfaces had taken the form either of text-based dialog systems, where the main
emphasis was on applying techniques from linguistics and artificial intelligence, or
of chatbots that simulated conversation using simple pattern-matching techniques.
Now speech is promising to become the prime choice for input when we speak to a
conversational interface, whether it is a smartphone, a robot, a smartwatch, or some
other types of devices.

In this chapter, we provide a brief overview of research and development in
conversational interfaces and discuss those findings and achievements that we
believe will be important for the next generation of conversational interfaces.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_4

51

4.2 Conversational Interfaces: A Brief History

Since the 1980s, the idea of a conversational interface with which humans could
interact for a variety of different purposes has been a focus of research and
development in a number of different communities that have largely worked
independently of one another. Spoken dialog systems (SDS) have been developed
in academic and industrial research laboratories, while voice user interface (VUI) is
the term used to refer to similar systems developed for commercial deployment.
Embodied conversational agents (ECAs) are a type of spoken dialog system in
which computer-generated animated characters combine speech with other
modalities including facial expression, body stance, and hand gestures, while social
robots, in a variety of different forms of embodiment, provide services, compan-
ionship, and entertainment. Finally, chatbots are yet another type of conversational
system in which the emphasis has been on providing realistic simulations of casual
conversation (or small talk) rather than helping humans to perform a particular task.

4.2.1 A Typical Interaction with a Spoken Dialog System

The following example illustrates the sorts of issues that were being addressed in
spoken dialog systems research in the period from the early 1990s to up around
2000. The example is taken from an interaction with the Mercury system that was
developed in the Spoken Language Systems Group of the MIT Computer Science
and Artificial Intelligence Laboratory. Mercury provides telephone access to an
online flights database. In this example, taken from a publication by Seneff and
Polifroni (2000), the dialog begins with an open-ended question that invites the user
to state their flight requirements and then continues with questions to elicit further
information from the user (S = system, U = user):

S1: How may I help you?
U1: I want to travel to Washington Dulles on November fourth.
S2: From Boston to Washington Dulles on November 4. Can you provide the
approximate departure time or airline preference?
U2: I need to arrive at around 9 a.m.
S3: Okay. Flights from Boston to Washington Dulles arriving at 9:00 a.m. on
November 4.
One moment please.
The best matching flight is a US Airways flight arriving at 8:59 a.m. I also
have a United flight arriving at 8:36 a.m.
U3: What time does the United flight leave?
S4: United flight 1819 departs at 7:00 a.m. from Boston. Shall I book this
flight for you?

52 4 Conversational Interfaces: Past and Present

U4: Yes please.
S5: United flight 1819 has been added to your itinerary. You depart Boston at
7:00 a.m. and arrive in Washington Dulles at 8:36 a.m. Where would you like
to go next?
U5: I would like to return to Boston.
S6: What date will you be returning on?
U6: The same day.
(dialog continues)

The task for the system is to elicit several items of information such as the
departure and destination locations, desired departure date and time, airline pref-
erence, and whether a return flight is required. One way to do this would be to ask a
separate question for each item of information, using directed dialog (also known
as system-initiative). An alternative strategy is used in this example, in which an
open-ended prompt (S1) invites the user to express the requirements more freely
and U1 provides the destination and date of departure within a single utterance.
Several questions are asked in directed dialog mode (S2, S4, S5, S6), but at U3 the
user asks a question, thus taking the dialog initiative at this point. This type of
dialog is referred to as mixed-initiative, as both the system and the user are able to
ask questions. Mixed-initiative dialog provides a more natural interaction but
requires more complex processing by the ASR and spoken language understanding
(SLU) components.

Another point to note is that the system attempts to confirm its understanding of
the user’s utterances (S2, S3, S5). This is important as the system may have
misrecognized or misunderstood the user’s utterances (indeed, this strategy is also
used for the same reasons by human agents in contact centers to verify that the
user’s requirements have been correctly understood). We will look in more detail at
various aspects of dialog, such as dialog strategies, confirmations, and dialog
control, in Chap. 10.

A key aim in spoken dialog research has been to make the interaction as natural
as possible. An example is utterance U2 where the user responds, “I need to arrive
around 9 a.m.” in response to the question “Can you provide the approximate
departure time or airline preference?” Taken literally this is not a direct response to
the question and many systems would fail at this point because their recognition
grammars would have been tuned to accept either a departure time or an airline
code as a response. Or worse still, “9 a.m.” might have been interpreted as the
departure time. The restriction of recognition grammars to the words predicted in
the user’s response was a strategy for simplifying the ASR and SLU processes in
the interests of improved accuracy. Although this strategy would most likely have
been successful in a carefully designed directed dialog, it could have proved dis-
astrous in a mixed-initiative dialog such as this one.

4.2 Conversational Interfaces: A Brief History 53

http://dx.doi.org/10.1007/978-3-319-32967-3_10

4.2.2 An Interaction that Goes Wrong

While the dialog in the preceding section ran smoothly with no apparent problems,
it is frequently the case that dialogs break down for a variety of reasons. ASR
errors have been a major concern for developers of spoken dialog systems and
various methods have evolved to improve the performance of a system given that
recognition accuracy cannot be guaranteed. The following example, from Bohus
(2007: 23), illustrates some ASR errors that occurred in a spoken language dialog
between a human user and an automated system (the system’s interpretation of the
user’s input is in brackets and upper case):

S1: What city are you leaving from?
U1: Urbana Champaign [OKAY IN THAT SAME PAY].
S2: Sorry I’m not sure I understood what you said. What city are you leaving
from?
U2: Urbana Champaign [FOR MINUTE SINCE HEY].
S3: I’m still having trouble understanding you. To go on, I need you to
answer the following question. What city are you leaving from?
U3: Chicago [CHICAGO].
S4: Traveling from Chicago. Where would you like to go?
U4: Huntsville [SEOUL].
S5: Traveling to Seoul. What day did you need to travel?
U5: No no I’m traveling to Birmingham [THE TRAVELING TO BERLIN P
M].
S6: Traveling in the afternoon. Okay what day would you be departing
Chicago?
U6: Uh the tenth of august [AT THE TENTH OF AUGUST].
S7: A flight tomorrow. I have a Korean Airlines flight departing Chicago at
1:40 p.m., arrives Seoul at 5 p.m. the next day. Do you want to take that?
U7: My destination is Birmingham [FLIGHT DESTINATION MR
WEEKEND].
S8: Traveling on Saturday, August 12th—I have a flight departing Chicago at
1:40 p.m. arrives Seoul at …

As can be seen from this example, the system (S) is unable to correctly recognize
the user’s (U) spoken input for the departure and arrival cities and also makes errors
with the time and date. In the end, the system beliefs the user wants a flight from
Chicago to Seoul whereas in fact what was requested was a flight from Urbana
Champaign to Huntsville. While this example is extreme, it is typical of many real
transactions with automated systems, particularly where there are problems
affecting recognition accuracy such as unusual accents, interference on the channel,
or background noise.

54 4 Conversational Interfaces: Past and Present

4.2.3 Spoken Dialog Systems

Research in spoken dialog systems (SDS) began around the late 1980s and has
typically involved large interdisciplinary research groups in universities and
industrial research laboratories. Before this, dialog systems in the 1960s and 1970s
were text-based and were motivated by efforts to apply techniques from linguistics
to applications involving dialog, for example, in systems such as BASEBALL
(Green et al. 1963), SHRDLU (Winograd 1972), and GUS (Bobrow et al. 1977). By
the early 1980s, researchers were beginning to realize that linguistic competence
alone could not guarantee the “intelligence” of a conversational interface. Dialog
systems should be able to deal with problematic aspects of communication, such as
misconceptions and false assumptions on the part of the user. More generally, in
order to be cooperative and helpful, they should also be able to recognize the
intentions behind the user’s utterances. Systems that were developed to meet these
requirements drew on areas of artificial intelligence such as user modeling and
planning (Allen 1995; Reilly 1987). For a more detailed account of early text-based
dialog systems, see McTear (1987).

In the USA, one of the earliest spoken dialog projects was ATIS (Air Travel
Information Service), funded by DARPA (Hemphill et al. 1990), while in Europe a
major project funded by the European community at this time was SUNDIAL
(McGlashan et al. 1992). In ATIS, the main focus was on developing and putting
into practical use the input technologies of speech recognition and spoken language
understanding that were required to make a flight reservation using spoken com-
munication with a computer over the telephone. In contrast in SUNDIAL, there was
a major focus on dialog management and on how to maintain a cooperative dialog
with the user. ATIS also introduced the concept of collecting resources in the form
of corpora—collections of dialogs from interactions with the system—that were
available for future researchers through the Linguistic Data Consortium (LDC).1 A
further innovation was the establishment of the principle of regular evaluations and
standard processes for evaluation—an important aspect of present-day spoken
dialog systems research (see further Chap. 17).

Building on the results of ATIS and SUNDIAL, research in spoken dialog sys-
tems continued throughout the 1990s, supported by various European Community
research programs, as well as by DARPA projects such as the Communicator
Project, which involved a number of research laboratories and companies across the
USA and also included several affiliated partner sites in Europe (Walker et al. 2001).
There was also extensive research in dialog in other parts of the world, particularly in
Japan, and more recently in Korea and China.

Spoken dialog technology continues to be an active research area, especially in
university research laboratories. Some of the main findings from this research are
discussed in Sect. 4.3.

1https://www.ldc.upenn.edu/. Accessed February 19, 2016.

4.2 Conversational Interfaces: A Brief History 55

http://dx.doi.org/10.1007/978-3-319-32967-3_17
https://www.ldc.upenn.edu/

4.2.4 Voice User Interfaces

Voice-user interfaces (VUI) also began around the 1990s with the realization that
speech could be used to automate self-service tasks, such as call routing, directory
assistance, information enquiries, and simple transactions. One of the first systems
was AT&T’s voice recognition call processing (VRCP) system (Wilpon et al. 1990)
which greeted callers with the message “Please say collect, calling card, or third
party.” On recognizing the caller’s input, the system transferred them to the
requested service. The VRCP system became very successful commercially and has
been used to answer billions of calls per year.

Up until the mid-1990s automated self-service was generally handled by inter-
active voice response (IVR) systems in which the system used recorded spoken
prompts (e.g., “press 1 for balance, press 2 to pay a bill”), and the user’s response
was in the form of key presses on the telephone keypad. The user’s input mode is
often referred to as DTMF (dual tone multifrequency) or touchtone. One of the most
widely known applications is voice mail, but IVR technology has come to be used
in almost any sizeable business to automate call routing and self-service (Brandt
2008).

HMIHY (How May I Help You), developed at AT&T (Gorin et al. 1997), was
one of the first commercially deployed interactive speech systems to address the
task of call routing on a larger scale. HMIHY’s task is to identify the reason for the
customer’s call from unrestricted natural language input and then route the caller to
the appropriate destination. Callers are greeted with an open-ended prompt (“How
may I help you?”) that encourages free-form spoken language input and then the
system engages in dialog to confirm its understanding of the input and if necessary
to request clarification, accept corrections, or collect additional information. By the
end of 2001, HMIHY was handling more than 2 million calls per month and was
showing significant improvements in customer satisfaction.

Although SDSs and VUIs use the same spoken language technologies for the
development of interactive speech applications, there is a difference in emphasis
between the two communities. Generally speaking, academic researchers focus on
making new contributions to knowledge and on publishing their results in academic
journals and conferences. VUI developers, on the other hand, are more concerned
with addressing business needs, such as return on investment, as well as with
human factors issues, such as usability and user satisfaction.

4.2.5 Embodied Conversational Agent, Companions,
and Social Robots

ECAs are computer-generated animated characters that combine facial expression,
body stance, hand gestures, and speech to provide a more human-like and more
engaging interaction. ECAs are being employed increasingly in commercial

56 4 Conversational Interfaces: Past and Present

applications, for example, to read news and answer questions about products on
online shopping Web pages. Because ECAs have been perceived to be trustworthy,
believable, and entertaining, they have been deployed in healthcare settings and
also in role-plays, simulations, and immersive virtual environments. ECAs are
discussed in greater detail in Chap. 15.

Artificial companions and social robots provide companionship and entertain-
ment for humans. They can take the form of physical objects such as digital pets or
robots, or they may exist virtually as software. Artificial companions and social
robots can support activities of daily living and enable independent living at home
for the elderly and for people with disabilities. They can also play an educational
role for children, particularly for children with various types of disability. We
discuss companions and social robots further in Chaps. 13 and 18.

4.2.6 Chatbots

Chatbots, also known as chatterbots, produce simulated conversations in which the
human user inputs some text and the chatbot makes a response. One of the moti-
vations for developers of chatbots is to try to fool the user into thinking that they are
conversing with another human. To date most conversations with chatbots have
been text-based, although some more recent chatbots make use of speech for input
and output and in some cases also include avatars or talking heads to endow the
chatbot with a more human-like personality. Generally, the interaction with chat-
bots takes the form of small talk as opposed to the task-oriented dialogs of SDSs
and VUIs. Another difference is that the chatbot typically responds to the user’s
input rather than taking the initiative in the conversation, although in some cases the
chatbot will ask questions to keep the conversation going. Conversations are
generated using a stimulus–response approach in which the user’s input is matched
against a large set of stored patterns and a response is output (see further Chap. 7).
This contrasts with the more complex mechanisms that are deployed in SDSs,
VUIs, and ECAs.

Chatbots have their origins in the ELIZA system developed by Weizenbaum
(1966). ELIZA simulates a Rogerian psychotherapist, often in a convincing way,
and has inspired many generations of chatbot authors for whom a major motivation
is to develop a system that can pass Turing’s Imitation Game (Turing 1950). The
Loebner Prize Competition, launched in 1991 by Dr. Hugh Loebner, has the aim of
finding a chatbot that can pass the Imitation Game.2

Chatbots are being used increasingly in areas such as education, information
retrieval, business, and e-commerce, for example, as automated online assistants to

2http://www.loebner.net/Prizef/loebner-prize.html. Accessed February 19, 2016.

4.2 Conversational Interfaces: A Brief History 57

http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_18
http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://www.loebner.net/Prizef/loebner-prize.html

complement or even replace human-provided service in a call center. IKEA has an
automated online assistant called Anna, developed by Artificial Solutions.3 Anna
answers questions about IKEA products and opening hours, as well as questions
about what is being served for lunch in the IKEA restaurant. Anna also displays
emotions if she cannot find the requested information.

4.3 What Have We Learned so Far?

What have we learned from this work that is relevant to the next generation of
conversational interfaces? In the following sections, we review some key findings
and achievements grouped according to the following themes:

• Making systems more intelligent.
• Using incremental processing to model conversational phenomena.
• Languages and toolkits for developers.
• Large-scale experiments on system design using techniques from machine

learning.

4.3.1 Making Systems More Intelligent

Spoken dialog systems research has until recently had its foundations in artificial
intelligence, beginning with plan-based systems in the 1980s and continuing with
models of conversational agency and rational interaction in the 1990s. Examples of
this work are the TRAINS and TRIPS projects at the University of Rochester, in
which intelligent planning and conversationally proficient artificial agents were
developed that could engage in dialog with human participants to cooperatively
reason about and solve a complex task (Allen 1995; Allen et al. 2001).

Information State Theory, also known as Information State Update (ISU), is a
theoretically motivated attempt to characterize the dynamics of dialog, with its
origins in work on dialog by Ginzburg (1996). An information state represents what
is known at a given stage in a dialog. As the dialog progresses with the participants
performing dialog moves, such as asking and answering questions and accumu-
lating information, the information state is continually updated (Traum and Larsson
2003). A major thrust of the research was concerned with formalizing the com-
ponents of the theory.

3https://www.chatbots.org/virtual_assistant/anna3/. Accessed February 19, 2016.

58 4 Conversational Interfaces: Past and Present

https://www.chatbots.org/virtual_assistant/anna3/

The contents of an information state may include information about the mental
states of the participants (their beliefs, desires, intentions, obligations, and com-
mitments), as well as information about the dialog (what utterances have been
spoken, the dialog moves generated by these utterances, whether information is
shared between the participants). Update rules consist of applicability conditions
that define when a rule can be applied and effects that define the consequences of
applying a rule.

The theory of information states was implemented as a dialog move engine
(DME), which is a type of dialog management system. The toolkit TrindiKit was
developed as an architecture for the DME, allowing dialog researchers to experi-
ment with different kinds of information states and with rules for updating the states
(Traum and Larsson 2003). TrindiKit was used in a number of prototype dialog
systems, such as the Gothenburg Dialog System (GoDiS), developed at Gothenburg
University by Cooper, Larsson, and others (Larsson et al. 1999). The TRINDI
framework has been extended in a framework called DIPPER (Bos et al. 2003) and
more recently a new toolkit called Maharani has been developed for ISU dialog
management.4

Another line of research took the view that dialog can be characterized as an
example of rational behavior involving the plans, goals, and intentions of the agents
in the dialog. As an example, dialog acts such as clarification requests were
explained in terms of a general principle of rational behavior in which agents have a
commitment to being understood. The theoretical framework for rational agency
was based on a set of axioms that formalized principles of rational action and
cooperative communication (Cohen and Levesque 1990) and one example of the
implementation of the theory was the ARTEMIS system, an agent technology
developed at France Telecom-CNET as a generic framework for specifying and
implementing intelligent dialog agents (Sadek and de Mori 1998). For recent
approaches to plan, intent and activity recognition using statistical methods, see
Sukthankar et al. 2014).

The use of artificial intelligence techniques in spoken dialog systems has
diminished somewhat in recent years with the emergence of statistical and
data-driven approaches. However, the models of conversational agency developed
in this research are still of relevance for more advanced conversational user inter-
faces that go beyond simple information enquiries and transactions to complex
tasks involving problem solving and reasoning. Allen et al. (2001) provide an
informative example in which the agent has to engage in a chain of reasoning in
order to correctly interpret otherwise ambiguous utterances using information from
the current context. Recent theoretical work on computational theories of dialog
includes Ginzburg (2015), Ginzburg and Fernández (2010) and Fernández (2014).

4http://www.clt.gu.se/research/maharani. Accessed February 19, 2016.

4.3 What Have We Learned so Far? 59

http://www.clt.gu.se/research/maharani

4.3.2 Using Incremental Processing to Model
Conversational Phenomena

Traditional spoken dialog systems operate on a turn-by-turn basis in which the
system waits until the user has completed an utterance—as detected by a silence
threshold—and then begins the processes of interpreting the utterance, deciding on
the next action to take, and planning and generating a response. The resulting
latency between turns, although usually fairly brief, makes human–machine inter-
action appear stilted and unnatural, in contrast to dialog between humans where
there is often no gap between the turns. Indeed, as described in Chap. 3, in human
dialog there is often overlap at turn boundaries caused by the listener starting to
speak before the current speaker has finished.

In order to be able to produce an appropriate responsive overlap, the participant
who is currently listening has to monitor the ongoing utterance carefully, determine
its meaning based on what has been heard so far, and plan an appropriate contri-
bution—a process known as incremental processing. Evidence that humans engage
in incremental processing can be found in numerous psycholinguistic studies of
utterance interpretation and production (Levelt 1989; Clark 1996; Tanenhaus 2004).
Incremental processing is deployed in Google Search to provide potential com-
pletions of a user’s query while the user is still typing the query. This allows users
to get results faster and also helps them with the formulation of their query.5 Recent
versions of Google Voice Search also make use of incremental speech processing
by showing words as they are being recognized.

Recent work on incremental processing in dialog is motivated by the goal of
developing technologies to model interactional phenomena in naturally occurring
dialog with the aim of creating more efficient and more natural spoken dialog
systems and of enhancing user satisfaction (Rieser and Schlangen 2011; Baumann
2013). One example of incremental processing in human–human conversations is
the phenomenon of compound contributions—also known as collaborative com-
pletions or split utterances. Compound contributions, which occur when the listener
cuts in on an ongoing utterance and offers a completion, have been found to
constitute almost one-fifth of all contributions in a corpus study conducted by
Howes et al. (2011). DeVault et al. (2011) implemented a virtual agent that could
predict the remainder of an utterance based on an incremental interpretation of
partial speech recognition results and by identifying the point of maximal under-
standing, i.e., the point where the system estimated that it was likely to have
understood the intended meaning. At this point, the system was able to use the
partial hypothesis to generate a completion. Other phenomena that have been
studied include self-corrections (Buß and Schlangen 2011) and incremental speech
generation (Skantze and Hjalmarsson 2013).

5http://www.google.com/instant/. Accessed February 19, 2016.

60 4 Conversational Interfaces: Past and Present

http://dx.doi.org/10.1007/978-3-319-32967-3_3
http://www.google.com/instant/

The main benefit of incremental processing is that dialog is more fluent and effi-
cient. Skantze and Hjalmarsson (2013) compared incremental and non-incremental
versions of their system and found that the incremental version was rated as more
polite and efficient, as well as better at predicting when to speak. Aist et al. (2007)
report similar findings. However, implementing incremental processing is technically
challenging. In current conversational architectures, the information flow among the
components is pipelined, which means that the output from one component is sent
when it is complete as input to the next component in the pipeline. In a system using
incremental processing, however, output is received incrementally and so the data that
have to be processed are partial and potentially subject to revision in the light of
subsequent output. Schlangen and Skantze (2011) present a general, abstract model of
incremental dialog processing while Baumann (2013) provides a detailed discussion
of architectural issues and models for incremental processing across the various
components of a spoken dialog system.

Some open source software has been made available to developers wishing to
implement incremental processing in their spoken dialog systems. INPROTK,
which can be downloaded at Sourceforge,6 was developed in the InPro project that
ran initially at the University of Potsdam and subsequently at the University of
Bielefeld. Another example is Jindigo, a framework for incremental dialog systems
developed in Sweden at KTH.7 Dylan (Dynamics of Language) is an implemen-
tation of dynamic syntax that uses a word-by-word incremental semantic grammar.8

4.3.3 Languages and Toolkits for Developers

Until around 2000 speech-based interactive voice response (IVR) systems were
developed using Computer-Telephone Integration (CTI) technology that required
developers to master intricate details of voice cards, application programming
interfaces (APIs), circuit provisioning, and hardware configuration. In 1999, the
VoiceXML Forum was founded by AT&T, IBM, Lucent, and Motorola with the
aim of developing and promoting a standard World Wide Web Consortium (W3C)
dialog markup language that would allow developers to create speech applications
by building on the existing Web infrastructure, using standard Internet protocols
and without the need for specialized APIs. As reported on the VoiceXML Forum,
VoiceXML application development could be at least three times faster than
development in traditional IVR environments.9 Moreover, the use of a widely
accepted standard such as VoiceXML would facilitate code portability and reuse.
For reasons such as these, VoiceXML came to be widely adopted within the speech

6http://sourceforge.net/projects/inprotk/. Accessed February 19, 2016.
7http://www.speech.kth.se/prod/publications/files/3654.pdf. Accessed February 19, 2016.
8https://sourceforge.net/projects/dylan/. Accessed February 19, 2016.
9http://www.voicexml.org/about/frequently-asked-questions. Accessed February 19, 2016.

4.3 What Have We Learned so Far? 61

http://sourceforge.net/projects/inprotk/
http://www.speech.kth.se/prod/publications/files/3654.pdf
https://sourceforge.net/projects/dylan/
http://www.voicexml.org/about/frequently-asked-questions

industry and there are now countless applications that have been developed using
VoiceXML.

In addition to VoiceXML a number of other voice-related specifications have
been produced by the W3C, including the following: Speech Recognition Grammar
Specification (SRGS); Semantic Interpretation for Speech Recognition (SISR);
Speech Synthesis Markup Language (SSML); Call Control eXtensible Markup
Language (CCXML); Extensible MultiModal Annotation Markup Language
(EMMA); Pronunciation Lexicon Specification (PLS); and State Chart XML: State
Machine Notation for Control Abstraction (SCXML). These specifications are also
used more generally for a range of applications in addition to their use to specify
and implement conversational interfaces. URLs for the specifications can be found
at the end of the References section.

Developing a conversational interface is a complex process involving the inte-
gration of several different technologies. The following platforms enable developers
to sign up for a free account to create VoiceXML applications: Voxeo Evolution
Portal10 and Nuance Café11 (formerly Bevocal Café). Chatbot applications can be
created at Pandorabots12 and ChatScript.13 Chapter 7 features the Pandorabots
platform, which supports the development of chatbots using Artificial Intelligence
Markup Language (AIML), while Chap. 11 provides more detail on VoiceXML
along with a tutorial showing how VoiceXML can be used to implement a spoken
dialog application on the Voxeo platform.

4.3.4 Large-Scale Experiments on System Design Using
Techniques from Machine Learning

Designers of commercially deployed conversational interfaces have to satisfy the
frequently conflicting demands of business needs and of human factors require-
ments. Generally VUI design is based on best practice guidelines that experienced
VUI designers have accumulated over the years (see, for example, Balentine and
Morgan 2001; Balentine 2007; Cohen et al. 2004; Larson et al. 2005; Lewis 2011).
An alternative approach that has emerged recently involves the use of data-driven
methods to explore and evaluate different VUI design choices, making use of the
large amounts of data generated by commercially deployed VUIs. Although this
sort of data is usually not publicly available to researchers, a unique opportunity
arose in the New York based company SpeechCycle where developers were given

10https://evolution.voxeo.com/. Accessed February 19, 2016.
11https://cafe.bevocal.com/. Accessed February 19, 2016.
12http://www.pandorabots.com/. Accessed February 19, 2016.
13http://chatscript.sourceforge.net/. Accessed February 19, 2016.

62 4 Conversational Interfaces: Past and Present

http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://dx.doi.org/10.1007/978-3-319-32967-3_11
https://evolution.voxeo.com/
https://cafe.bevocal.com/
http://www.pandorabots.com/
http://chatscript.sourceforge.net/

access to the logs of millions of calls and were able to conduct a series of research
investigations into topics such as call flow optimization, prompt design, and sta-
tistical grammar tuning.

4.3.4.1 Call Flow Optimization

Usually the design of a VUI’s call flow involves anticipating and handcrafting the
various choices that the user can take at particular points in the dialog and the paths
that the interaction may follow. With large systems a call flow design document
may come to hundreds of pages of call flow graphs (see example in Paek and
Pieraccini 2008: 719). This raises the issue of VUI completeness, i.e., whether it is
possible to exhaustively explore all possible user inputs and dialog paths in order to
determine the best strategies to implement in the call flow (Paek and Pieraccini
2008). While VUI completeness is likely to be extremely difficult to guarantee
using traditional handcrafted techniques, the application of machine learning
techniques to large amounts of logged data has the potential to automate the pro-
cess. A typical approach is to design a call flow that includes potential alternative
strategies, alternate randomly between the strategies and measure the effects of the
different choices using metrics such as automation rate and average handling time.

As an example, Suendermann et al. (2010a) describe a call routing application
that contained four questions in its business logic: service type (e.g., orders, bill-
ings), product (e.g., Internet, cable TV), actions (e.g., cancel, make payment), and
modifiers (credit card, pay-per-view). Implementing the business logic one question
at a time would have resulted in an average of 4 questions per interaction. However,
using call flow optimization an average number of 2.87 questions was achieved, a
reduction of almost 30 %.

The experiments were performed using a technique known as Contender
(Suendermann et al. 2010a, 2011a, b). Contender is implemented as an input
transition in a call flow with multiple output transitions representing alternative
paths in the call flow. When a call arrives at an input transition, one of the choices is
selected randomly. The evaluation of the optimal call flow path is based on a single
scalar metric such as automation rate. This is similar to the reward function used in
reinforcement learning, in which optimal dialog strategies are learnt from data (see
further Chap. 10). The Contender technique has been described as a light version
of reinforcement learning that is more applicable in commercial applications
(Suendermann et al. 2010b).

The use of contenders enabled a large-scale evaluation of design strategies that
would not be feasible using traditional handcrafted methods. For example,
Suendermann and Pieraccini (2012) report that 233 Contenders were released into
production systems and were used to process a total call volume of 39 million calls.
Moreover, the practical value of call flow optimization using the contender tech-
nique was a 30 % reduction in the number of questions that the system had to ask to
complete a transaction. Given the per-minute costs of interactive voice response
hosting and a large monthly call volume, considerable savings could be made of up

4.3 What Have We Learned so Far? 63

http://dx.doi.org/10.1007/978-3-319-32967-3_10

to five-to six-figure US dollars per month. Furthermore, a reduction in abandonment
rates resulting from customer frustration and a quicker transaction completion rate
resulted in improvements in user satisfaction ratings (Suendermann et al. 2010a).

4.3.4.2 Prompt Design

The prompts in a VUI are the outward manifestation of the system for the user that
can convey a company’s brand image through the persona (or personality) of the
conversational interface. Prompts also instruct the user as to what they should say or
do, so they should be designed to be clear and effective. The following is an
example of a badly designed prompt (Hura 2008):

I can help you with the following five options. You can interrupt me and
speak your choice at any time. Please select one of the following: sign up for
new service, add features to my service, move my existing service, problems
with my satellite service, or ask a billing question.

In addition to the lengthy introduction, the menu options are long and complex
as well as partially overlapping as four of the options use the word “service.” These
factors would make it difficult for the caller to locate and remember the option that
they want. Best practice guidelines recommend a concise as opposed to a more
verbose style for the system’s initial prompt, thus saving time (and money for the
provider by reducing the transaction time), as well as placing fewer demands on the
caller’s working memory (Balentine and Morgan 2001). Lewis (2011: 242–244)
presents several examples of techniques for writing effective prompts.

Prompt design was investigated in the experimental work at SpeechCycle. The
following is an example of alternative prompts at the problem capture phase of a
troubleshooting application (Suendermann et al. 2011a):

(a) Please tell me the problem you are having in a short sentence.
(b) Are you calling because you lost some or all of your cable TV service?
followed by (a) if the answer was “no.”
(c) (a) + or you can say “what are my choices” followed by a back-up menu if
the answer was “choices.”
(d) (b) followed by (c) if the answer was “no.”

Based on an analysis of over 600,000 calls, prompt (b) was found to be the
winner. Determining this would have been more a matter of guesswork using
traditional VUI design methods.

64 4 Conversational Interfaces: Past and Present

4.3.4.3 Design and Use of Recognition Grammars

In many VUIs, a simple handcrafted grammar is used in which the words and
phrases that the system can recognize are specified in advance. Handcrafted
grammars are simple to develop and easy to maintain and are appropriate as long as
the user’s input can be restricted to the items in the grammar. When more natural
and more wide-ranging input is expected, other techniques such as statistical lan-
guage models and statistical classifiers are more appropriate. However as these
methods require a large amount of data to train, they are more difficult and more
expensive to build, test, and maintain (see further, Chap. 8).

In order to investigate the effectiveness of statistical spoken language under-
standing grammars (SSLUs), Suendermann et al. (2009) employed a data-driven
approach in which data were collected at each recognition point in a dialog and then
used to generate and update SSLUs, using a corpus of more than two million
utterances collected from a complex call routing and troubleshooting application in
which call durations could exceed 20 min, requiring frequent use of recognition
grammars to interpret the user’s inputs. Generally, a call routing system begins with
a general question such as “How may I help you?” as in the HMIHY system
described earlier, the answer to the question would be interpreted using a semantic
classifier, and the caller would be routed to the appropriate human agent. However,
in a complex troubleshooting application the system takes on the role of the human
agent and continues by asking a series of focused questions that are usually
interpreted using specially handcrafted grammars. Suendermann et al. (2009)
explored whether statistical grammars could be used more effectively at every
recognition context in the interaction. Their method involved tuning the statistical
grammars through a continuous process of utterance collection, transcription,
annotation, language models and classifier training, most of which could be carried
out automatically. After a three-month period of continuous improvement, they
found that the performance of the statistical grammars outperformed the original
rule-based grammars in all dialog contexts, including large vocabulary open-ended
speech, more restricted directed dialogs, and even yes/no contexts.

4.4 Summary

In this chapter, we have looked at the origins of the conversational interface and
have reviewed contributions from the research communities of spoken dialog
systems, VUI, ECA, social robots, and chatbots. Although each of these commu-
nities shares the goal of facilitating human–machine interaction using spoken lan-
guage, in some cases in combination with other modalities, they differ in their goals
and methods. The main aim of academic researchers is to contribute to knowledge,
while in industry the primary aim is to create applications that will bring com-
mercial benefits. The motivation for some of the work on ECA and social robots has
been to create social companions and virtual assistants, for example, in healthcare

4.3 What Have We Learned so Far? 65

http://dx.doi.org/10.1007/978-3-319-32967-3_8

scenarios, while chatbots have been developed either to simulate conversation and
fool judges, as in competitions such as the Loebner prize, to provide entertainment,
or, more recently, to provide a service.

Despite these differences, several themes have emerged that will be significant
for developers of future conversational interfaces. These include the following.

• Research in artificial intelligence has shown how conversational interfaces can
be created that behave intelligently and cooperatively, and how context can be
represented formally in terms of information state updates.

• Research on embodied virtual agents and social robots has aimed to endow
conversational interfaces with human-like characteristics and the ability to
display and recognize emotions.

• Research in incremental processing in dialog has investigated how the con-
versational interaction of systems can be made more human-like.

• Many useful tools and development environments have been produced that
facilitate the development of conversational interfaces.

• Large-scale, data-driven experiments on various aspects of systems, such as
dialog flow, prompt design, and the use of recognition grammars, have provided
a methodology and tools that make development more efficient and more
systematic.

A new dimension for conversational interfaces is that they will involve a whole
new range of devices, possibly linked together in an Internet of Things. In the past,
the interface to a spoken dialog system was usually a headset attached to a com-
puter, while the typical interface for a voice user interface was a phone. With the
emergence of smartphones and more recently of social robots, smartwatches,
wearables, and other devices, new styles of interaction will emerge along with new
challenges for implementation (see further Chap. 13).

Further Reading
There are several books on spoken and multimodal dialog systems, including the
following: McTear (2004), López Cózar and Araki (2005), Jokinen (2009), and
Jokinen and McTear (2010). Rieser and Lemon (2011), Lemon and Pietquin
(2012), and Thomson (2013) cover statistical approaches. The chapters in Dahl
(2004) present practical issues in dialog systems development. Chapter 17 of Allen
(1995) provides an overview of AI-based approaches to conversational agency,
while chapter 24 of Jurafsky and Martin (2009) reviews both AI-based as well as
statistical approaches. Several chapters in Chen and Jokinen (2010) cover spoken
dialog systems and ECA. See also Ginzburg and Fernandez (2010) on formal
computational models of dialog. There are several chapters on interactions with
robots, knowbots, and smartphones in Mariani et al. (2014). Nishida et al. (2014)
investigates how to design conversational systems that can engage in conversational
interaction with humans, building on research from cognitive and computational
linguistics, communication science, and artificial intelligence.

66 4 Conversational Interfaces: Past and Present

http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_17

Books on VUI include Cohen et al. (2004), Balentine (2007), Lewis (2011),
Pieraccini (2012), and Suendermann (2011). See also various chapters in Kortum
(2008).

Cassell et al. (2000) is a collection of readings on ECAs. Perez-Martin and
Pascual-Nieto (2011) is a recent collection. The chapters in Trappl (2013) outline
the prerequisites for a personalized virtual butler, including social and psycholog-
ical as well as technological issues. Andre and Pelachaud (2010) provide a com-
prehensive review of research issues and achievements. See also Lester et al.
(2004). Schulman and Bickmore (2009) describe the use of counseling dialogs
using conversational agents.

Companions and social robots have been investigated in various European Union
(EU)-funded projects, such as follows: COMPANIONS,14 which focused specifi-
cally on interaction with social conversational agents; SEMAINE,15 which involved
ECA; LIREC,16 which investigated how to build long-term relationships with arti-
ficial companions (agents and robots); and CHRIS,17 which was concerned with the
development of cooperative human robot interactive systems. Various social, psy-
chological, ethical, and design issues related to long-term artificial companions are
discussed in chapters by leading contributors from the field in Wilks (2010).

Research relevant to conversational interfaces is published in various speech and
language journals, such as Speech Communication, Computer Speech and
Language, IEEE Transactions on Audio, Speech, and Language Processing,
Computational Linguistics, Natural Language Engineering. In 2009, a new journal
Dialog and Discourse was launched with a focus mainly on theoretical aspects of
dialog. Since 2000, there has been an annual SIGdial conference on topics related to
dialog and discourse, while the Young Researchers Roundtable on Spoken Dialog
Systems (YRRSDS) has held an annual workshop since 2005 to provide a forum for
young researchers to discuss their research, current work, and future plans. The
International Workshop on Spoken Dialog Systems (IWSDS) was first held in 2009
and takes place on an annual basis. There are also special tracks on dialog at
conferences such as INTERSPEECH, ICASSP, ACL, and the Spoken Language
Technology Workshop (SLT). The SemDial workshop series on the Semantics and
Pragmatics of Dialog focuses on formal aspects of semantics and pragmatics in
relation to dialog.

The main industry-based conference is SpeechTEK,18 which is held annually
(see also MobileVoice).19 Speech Technology Magazine20 is a free online magazine
targeted at the speech industry.

14http://www.cs.ox.ac.uk/projects/companions/. Accessed February 2016.
15http://www.semaine-project.eu/. Accessed February 19, 2016.
16http://lirec.eu/project. Accessed February 19, 2016.
17http://www.chrisfp7.eu/index.html. Accessed February 19, 2016.
18http://www.speechtek.com. Accessed February 19, 2016.
19http://mobilevoiceconference.com/. Accessed February 19, 2016.
20http://www.speechtechmag.com/. Accessed February 19, 2016.

4.4 Summary 67

http://www.cs.ox.ac.uk/projects/companions/
http://www.semaine-project.eu/
http://lirec.eu/project
http://www.chrisfp7.eu/index.html
http://www.speechtek.com
http://mobilevoiceconference.com/
http://www.speechtechmag.com/

Exercise
Observing system demos provides insights into the capabilities of a system (as well
as its limitations, although usually these will be avoided or downplayed on a demo).
There are many online demos of spoken dialog systems. The following two systems
provide flexible mixed-initiative interaction:

• MIT FlightBrowser Spoken Language System.21

• CMU Air Travel Reservation Dialog System.22

This video shows an interaction with the CLASSiC project prototype, a statis-
tical spoken dialog system using reinforcement learning (see Chap. 10).23

This is an example of two embodied agents Ada and Grace that act as guides at
the Museum of Science in Boston.24

Watch this amusing conversation between two chatbots.25

You can interact with a version of ELIZA here.26

References

Aist G, Allen JF, Campana E, Gallo CG, Stoness S, Swift M, Tanenhaus MK (2007) Incremental
dialog system faster than and preferred to its nonincremental counterpart. In: Proceedings of
the 29th annual conference of the cognitive science society. Cognitive Science Society, Austin,
TX, 1–4 Aug 2007

Allen JF (1995) Natural language processing, 2nd edn. Benjamin Cummings Publishing Company
Inc., Redwood, CA

Allen JF, Byron DK, Dzikovska M, Ferguson G, Galescu L, Stent A (2001) Towards
conversational human-computer interaction. AI Mag 22(4):27–38

André E, Pelachaud C (2010) Interacting with embodied conversational agents. In: Chen F,
Jokinen K (eds), Speech technology: theory and applications. Springer, New York, pp 122–149.
doi:10.1007/978-0-387-73819-2_8

Balentine B (2007) It’s better to be a good machine than a bad person. ICMI Press, Annapolis,
Maryland

Balentine B, Morgan DP (2001) How to build a speech recognition application: a style guide for
telephony dialogs, 2nd edn. EIG Press, San Ramon, CA

Baumann T (2013) Incremental spoken dialog processing: architecture and lower-level compo-
nents. Ph.D. dissertation. University of Bielefeld, Germany

Bobrow DG, Kaplan RM, Kay M, Norman DA, Thompson H, Winograd T (1977) GUS: a
frame-driven dialog system. Artif Intell 8:155–173. doi:10.1016/0004-3702(77)90018-2

Bohus D (2007). Error awareness and recovery in conversational spoken language interfaces. Ph.D.
dissertation. Carnegie Mellon University, Pittsburgh, PA

21https://youtu.be/RRYj0SMhfH0. Accessed February 19, 2016.
22https://youtu.be/6zcByHMw4jk. Accessed February 19, 2016.
23https://youtu.be/lHfLr1MF7DI. Accessed February 19, 2016.
24https://youtu.be/rYF68t4O_Xw. Accessed February 19, 2016.
25https://youtu.be/vphmJEpLXU0. Accessed February 19, 2016.
26http://www.masswerk.at/elizabot/. Accessed February 19, 2016.

68 4 Conversational Interfaces: Past and Present

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-0-387-73819-2_8
http://dx.doi.org/10.1016/0004-3702(77)90018-2
https://youtu.be/RRYj0SMhfH0
https://youtu.be/6zcByHMw4jk
https://youtu.be/lHfLr1MF7DI
https://youtu.be/rYF68t4O_Xw
https://youtu.be/vphmJEpLXU0
http://www.masswerk.at/elizabot/

Bos J, Klein E, Lemon O, Oka T (2003) DIPPER: description and formalisation of an
information-state update dialog system architecture. In: 4th SIGdial workshop on discourse and
dialog, Sapporo, Japan, 5–6 July 2003. https://aclweb.org/anthology/W/W03/W03-2123.pdf

Brandt J (2008) Interactive voice response interfaces. In: Kortum P (ed) HCI beyond the GUI:
design for haptic, speech, olfactory, and other non-traditional interfaces. Morgan Kaufmann,
Burlington, MA:229-266. doi:10.1016/b978-0-12-374017-5.00007-9

Buß O, Schlangen D (2011) DIUM—an incremental dialog manager that can produce
self-corrections. In: Proceedings of SemDial 2011. Los Angeles, CA, September 2011.
https://pub.uni-bielefeld.de/publication/2300868. Accessed 20 Jan 2016

Cassell J, Sullivan J, Prevost S, Churchill E (eds) (2000) Embodied conversational agents. MIT
Press, Cambridge, MA

Chen F, Jokinen K (eds) (2010) Speech technology: theory and applications. Springer, New York.
doi:10.1007/978-0-387-73819-2

Clark HH (1996) Using language. Cambridge University Press, Cambridge. doi:10.1017/
cbo9780511620539

Cohen MH, Giangola JP, Balogh J (2004) Voice user interface design. Addison Wesley,
New York

Cohen P, Levesque H (1990) Rational interaction as the basis for communication. In: Cohen P,
Morgan J, Pollack M (eds) Intentions in communication. MIT Press, Cambridge, MA:221–256.
https://www.sri.com/work/publications/rational-interaction-basis-communication. Accessed 20
Jan 2016

Dahl DA (ed) (2004) Practical spoken dialog systems. Springer, New York. doi:10.1007/978-1-
4020-2676-8

DeVault D, Sagae K, Traum DR (2011) Incremental interpretation and prediction of utterance
meaning for interactive dialog. Dialog Discourse 2(1):143–170. doi:10.5087/dad.2011.107

Fernández R (2014). Dialog. In: Mitkov R (ed) Oxford handbook of computational linguistics, 2nd
edn. Oxford University Press. Oxford. doi:10.1093/oxfordhb/9780199573691.013.25

Ginzburg J (1996) Interrogatives: questions, facts, and dialog. In: Lappin S (ed) Handbook of
contemporary semantic theory. Blackwell, Oxford, pp 359–423

Ginzburg J (2015) The interactive stance. Oxford University Press, Oxford. doi:10.1093/acprof:
oso/9780199697922.001.0001

Ginzburg J, Fernández R (2010) Computational models of dialog. In: Clark A, Fox C, Lappin S
(eds) The handbook of computational linguistics and natural language processing.
Wiley-Blackwell, Chichester, UK:429-481. doi:10.1002/9781444324044.ch16

Gorin AL, Riccardi G, Wright JH (1997) How may I help you? Speech Commun 23:113–127.
doi:10.1016/s0167-6393(97)00040-x

Green BF, Wolf AW, Chomsky C, Laughery KR (1963) BASEBALL: an automatic question-
answerer. In: Feigenbaum EA, Feldman J (eds) Computer and thought. McGraw-Hill, New
York

Hempill CT, Godfrey JJ, Doddington GR (1990) The ATIS spoken language systems pilot corpus.
In: Proceedings of the DARPA speech and natural language workshop, Hidden Valley,
PA:96-101. doi:10.3115/116580.116613

Howes C, Purver M, Healey P, Mills G, Gregoromichelaki E (2011) On incrementality in dialog:
evidence from compound contributions. Dialog Discourse 2(1):279–311. doi:10.5087/dad.
2011.111

Hura S (2008) Voice user interfaces. In: Kortum P (ed) HCI beyond the GUI: design for haptic,
speech, olfactory, and other non-traditional interfaces. Morgan Kaufmann, Burlington,
MA:197-227. doi:10.1016/b978-0-12-374017-5.00006-7

Jokinen K (2009) Constructive dialog modelling: speech interaction and rational agents. Wiley,
UK. doi:10.1002/9780470511275

Jokinen K, McTear M (2010) Spoken dialog systems. Synthesis lectures on human language
technologies. Morgan and Claypool Publishers, San Rafael, CA. doi:10.2200/
S00204ED1V01Y200910HLT005

References 69

https://aclweb.org/anthology/W/W03/W03-2123.pdf
http://dx.doi.org/10.1016/b978-0-12-374017-5.00007-9
https://pub.uni-bielefeld.de/publication/2300868
http://dx.doi.org/10.1007/978-0-387-73819-2
http://dx.doi.org/10.1017/cbo9780511620539
http://dx.doi.org/10.1017/cbo9780511620539
https://www.sri.com/work/publications/rational-interaction-basis-communication
http://dx.doi.org/10.1007/978-1-4020-2676-8
http://dx.doi.org/10.1007/978-1-4020-2676-8
http://dx.doi.org/10.5087/dad.2011.107
http://dx.doi.org/10.1093/oxfordhb/9780199573691.013.25
http://dx.doi.org/10.1093/acprof:oso/9780199697922.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199697922.001.0001
http://dx.doi.org/10.1002/9781444324044.ch16
http://dx.doi.org/10.1016/s0167-6393(97)00040-x
http://dx.doi.org/10.3115/116580.116613
http://dx.doi.org/10.5087/dad.2011.111
http://dx.doi.org/10.5087/dad.2011.111
http://dx.doi.org/10.1016/b978-0-12-374017-5.00006-7
http://dx.doi.org/10.1002/9780470511275
http://dx.doi.org/10.2200/S00204ED1V01Y200910HLT005
http://dx.doi.org/10.2200/S00204ED1V01Y200910HLT005

Jurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall, Upper
Saddle River, NJ

Kortum P (ed) (2008) HCI beyond the GUI: design for haptic, speech, olfactory, and other
non-traditional interfaces. Morgan Kaufmann, Burlington, MA

Larson JA (2005) Ten criteria for measuring effective voice user interfaces. Speech Technol Mag.
November/December. http://www.speechtechmag.com/Articles/Editorial/Feature/Ten-Criteria-
for-Measuring-Effective-Voice-User-Interfaces-29443.aspx. Accessed 20 Jan 2016

Larsson S, Bohlin P, Bos J, Traum DR (1999) TRINDIKIT 1.0 Manual. http://sourceforge.net/
projects/trindikit/files/trindikit-doc/. Accessed 20 Jan 2016

Lemon O, Pietquin O (eds) (2012) Data-driven methods for adaptive spoken dialog systems:
computational learning for conversational interfaces. Springer, New York. doi:10.1007/978-1-
4614-4803-7

Lester J, Branting K, Mott B (2004) Conversational agents. In: Singh MP (ed) The practical
handbook of internet computing. Chapman Hall, London. doi:10.1201/9780203507223.ch10

Levelt WJM (1989) Speaking. MIT Press, Cambridge, MA
Lewis JR (2011) Practical speech user interface design. CRC Press, Boca Raton. doi:10.1201/

b10461
López Cózar R, Araki M (2005) Spoken, multilingual and multimodal dialog systems:

development and assessment. Wiley, UK doi:10.1002/0470021578
Mariani J, Rosset S, Garnier-Rizet M, Devillers L (eds) (2014) Natural interaction with robots,

knowbots and smartphones: putting spoken dialog systems into practice. Springer, New York
doi:10.1007/978-1-4614-8280-2

McGlashan S. Fraser, N, Gilbert, N, Bilange E, Heisterkamp P, Youd N (1992) Dialogue
management for telephone information systems. In: Proceedings of the third conference on
applied language processing. Association for Computational Linguistics, Stroudsburg,
PA:245-246. doi:10.3115/974499.974549

McTear M (1987) The articulate computer. Blackwell, Oxford
McTear M. (2004) Spoken dialogue technology: toward the conversational user interface.

Springer, New York. doi:10.1007/978-0-85729-414-2
Nishida T, Nakazawa A, Ohmoto Y (eds) (2014) Conversational informatics: a data-intensive

approach with emphasis on nonverbal communication. Springer, New York. doi:10.1007/978-
4-431-55040-2

Paek T, Pieraccini R (2008) Automating spoken dialogue management design using machine
learning: an industry perspective. Speech Commun 50:716–729. doi:10.1016/j.specom.2008.
03.010

Perez-Martin D, Pascual-Nieto I (eds) (2011) Conversational agents and natural language
interaction: techniques and effective practices. IGI Global, Hershey, PA doi:10.4018/978-1-
60960-617-6

Pieraccini R (2012) The voice in the machine: building computers that understand speech. MIT
Press, Cambridge, MA

Reilly RG (ed) (1987) Communication failure in dialog. North-Holland, Amsterdam
Rieser V, Lemon O (2011) Reinforcement learning for adaptive dialog systems: a data-driven

methodology for dialog management and natural language generation. Springer, New York.
doi:10.1007/978-3-642-24942-6

Rieser H, Schlangen D (2011) Introduction to the special issue on incremental processing in
dialog. Dialog and Discourse 1:1–10. doi:10.5087/dad.2011.001

Sadek MD, De Mori R (1998) Dialog systems. In: De Mori R (ed) Spoken dialogs with computers.
Academic Press, London, pp 523–561

Schlangen D, Skantze G (2011) A General, abstract model of incremental dialog processing.
Dialog Discourse 2(1):83–111. doi:10.5087/dad.2011.105

Schulman D, Bickmore T (2009) Persuading users through counseling dialog with a conversa-
tional agent. In: Chatterjee S, Dev P (eds) Proceedings of the 4th international conference on
persuasive technology, 350(25). ACM Press, New York. doi:10.1145/1541948.1541983

70 4 Conversational Interfaces: Past and Present

http://www.speechtechmag.com/Articles/Editorial/Feature/Ten-Criteria-for-Measuring-Effective-Voice-User-Interfaces-29443.aspx
http://www.speechtechmag.com/Articles/Editorial/Feature/Ten-Criteria-for-Measuring-Effective-Voice-User-Interfaces-29443.aspx
http://sourceforge.net/projects/trindikit/files/trindikit-doc/
http://sourceforge.net/projects/trindikit/files/trindikit-doc/
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1201/9780203507223.ch10
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1002/0470021578
http://dx.doi.org/10.1007/978-1-4614-8280-2
http://dx.doi.org/10.3115/974499.974549
http://dx.doi.org/10.1007/978-0-85729-414-2
http://dx.doi.org/10.1007/978-4-431-55040-2
http://dx.doi.org/10.1007/978-4-431-55040-2
http://dx.doi.org/10.1016/j.specom.2008.03.010
http://dx.doi.org/10.1016/j.specom.2008.03.010
http://dx.doi.org/10.4018/978-1-60960-617-6
http://dx.doi.org/10.4018/978-1-60960-617-6
http://dx.doi.org/10.1007/978-3-642-24942-6
http://dx.doi.org/10.5087/dad.2011.001
http://dx.doi.org/10.5087/dad.2011.105
http://dx.doi.org/10.1145/1541948.1541983

Seneff S, Polifroni J (2000) Dialog management in the mercury flight reservation system. In:
Proceedings of ANLP-NAACL 2000, Stroudsburg, PA, USA, 11–16 May 2000. doi:10.3115/
1117562.1117565

Skantze G, Hjalmarsson A (2013) Towards incremental speech generation in conversational
systems. Comp Speech Lang 27(1):243–262. doi:10.1016/j.csl.2012.05.004

Suendermann D (2011) Advances in commercial deployment of spoken dialog systems. Springer,
New York. doi:10.1007/978-1-4419-9610-7

Suendermann D, Pieraccini R (2012) One year of Contender: what have we learned about
assessing and tuning industrial spoken dialog systems? In: Proceedings of the NAACL-HLT
workshop on future directions and needs in the spoken dialog community: tools and data
(SDCTD 2012), Montreal, Canada, 7 June 2012: 45–48. http://www.aclweb.org/anthology/
W12-1818. Accessed 20 Jan 2016

Suendermann D, Evanini K, Liscombe J, Hunter P, Dayanidhi K, Pieraccini R (2009) From
rule-based to statistical grammars: continuous improvement of large-scale spoken dialog
systems. In: Proceedings of the IEEE international conference on acoustics, speech, and signal
processing (ICASSP 2009), Taipei, Taiwan, 19–24 April 2009: 4713–4716. doi:10.1109/
icassp.2009.4960683

Suendermann D, Liscombe J, Pieraccini R (2010a) Optimize the obvious: automatic call flow
generation. In: Proceedings of the IEEE international conference on acoustics, speech, and
signal processing (ICASSP 2010), Dallas, USA, 14-19 March 2010: 5370–5373. doi:10.1109/
icassp.2010.5494936

Suendermann D, Liscombe J, Pieraccini R (2010b) Contender. In: Proceedings of the IEEE
workshop on spoken language technology (SLT 2010), Berkeley, USA, 12–15 Dec 2010: 330–
335. doi:10.1109/slt.2010.5700873

Suendermann D, Liscombe J, Bloom J, Li G, Pieraccini R (2011a) Large-scale experiments on
data-driven design of commercial spoken dialog systems. In: Proceedings of the 12th annual
conference of the international speech communication association (Interspeech 2011),
Florence, Italy, 27–31 Aug 2011: 820–823. http://www.isca-speech.org/archive/interspeech_
2011/i11_0813.html. Accessed 20 Jan 2016

Suendermann D, Liscombe J, Bloom J, Li G, Pieraccini R (2011b) Deploying Contender: early
lessons in data, measurement, and testing of multiple call flow decisions. In: Proceedings of the
IASTED international conference on human computer interaction (HCI 2011), Washington,
USA, 16–18 May 2011: 747–038. doi:10.2316/P.2011.747-038

Sukthankar G, Goldman RP, Geib C, Pynadath DV, Bui HH (eds) (2014) Plan, activity, and intent
recognition: theory and practice. Morgan Kaufmann, Burlington, MA

Tanenhaus MK (2004) On-line sentence processing: past, present and, future. The on-line study of
sentence comprehension: ERPS, eye movements and beyond. In: Carreiras M, Clifton C Jr
(eds) The on-line study of sentence comprehension. Psychology Press, New York: 371–392

Thomson B (2013) Statistical methods for spoken dialog management. Springer theses, Springer,
New York. doi:10.1007/978-1-4471-4923-1

Trappl R (ed) (2013) Your virtual butler: the making-of. Springer, Berlin. doi:10.1007/978-3-642-
37346-6

Traum DR, Larsson S (2003) The information state approach to dialog management. In: Smith R,
Kuppevelt J (eds) Current and new directions in discourse and dialog. Kluwer Academic
Publishers, Dordrecht: 325–353. doi:10.1007/978-94-010-0019-2_15

Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460. doi:10.1093/mind/
lix.236.433

Walker MA, Aberdeen J, Boland J, Bratt E, Garofolo J, Hirschman L, Le A, Lee S, Narayanan K,
Papineni B, Pellom B, Polifroni J, Potamianos A, Prabhu P, Rudnicky A, Sanders G, Seneff S,
Stallard D, Whittaker S (2001) DARPA communicator dialog travel planning systems: the June
2000 data collection. In: Proceedings of the 7th European conference on speech communi-
cation and technology (INTERSPEECH 2001), Aalborg, Denmark, 3–7 Sept 2001: 1371–
1374. http://www.isca-speech.org/archive/eurospeech_2001/e01_1371.html

References 71

http://dx.doi.org/10.3115/1117562.1117565
http://dx.doi.org/10.3115/1117562.1117565
http://dx.doi.org/10.1016/j.csl.2012.05.004
http://dx.doi.org/10.1007/978-1-4419-9610-7
http://www.aclweb.org/anthology/W12-1818
http://www.aclweb.org/anthology/W12-1818
http://dx.doi.org/10.1109/icassp.2009.4960683
http://dx.doi.org/10.1109/icassp.2009.4960683
http://dx.doi.org/10.1109/icassp.2010.5494936
http://dx.doi.org/10.1109/icassp.2010.5494936
http://dx.doi.org/10.1109/slt.2010.5700873
http://www.isca-speech.org/archive/interspeech_2011/i11_0813.html
http://www.isca-speech.org/archive/interspeech_2011/i11_0813.html
http://dx.doi.org/10.2316/P.2011.747-038
http://dx.doi.org/10.1007/978-1-4471-4923-1
http://dx.doi.org/10.1007/978-3-642-37346-6
http://dx.doi.org/10.1007/978-3-642-37346-6
http://dx.doi.org/10.1007/978-94-010-0019-2_15
http://dx.doi.org/10.1093/mind/lix.236.433
http://dx.doi.org/10.1093/mind/lix.236.433
http://www.isca-speech.org/archive/eurospeech_2001/e01_1371.html

Weizenbaum J (1966) ELIZA—a computer program for the study of natural language
communication between man and machine. Commun ACM 9(1):36–45. doi:10.1145/
365153.365168

Wilpon JG, Rabiner LR, Lee CH, Goldman ER (1990) Automatic recognition of keywords in
unconstrained speech using Hidden Markov models. IEEE T Speech Audi P 38(11):1870–1878.
doi:10.1109/29.103088

Wilks Y (ed) (2010) Close engagements with artificial companions. Key social, psychological,
ethical and design issues. John Benjamins Publishing Company, Amsterdam. doi:10.1075/nlp.8

Winograd T (1972) Understanding natural language. Academic Press, New York

W3C Specifications

CCXML http://www.w3.org/TR/ccxml/
EMMAhttp://www.w3.org/TR/2009/REC-emma-20090210/
Pronunciation Lexicon http://www.w3.org/TR/2008/REC-pronunciation-lexicon-20081014/
SISR http://www.w3.org/TR/semantic-interpretation/
SRGF http://www.w3.org/TR/speech-grammar/
SSML http://www.w3.org/TR/speech-synthesis/
State Chart XML http://www.w3.org/TR/2008/WD-scxml-20080516/
VoiceXML http://www.w3.org/TR/2007/REC-voicexml21-20070619/

72 4 Conversational Interfaces: Past and Present

http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.1109/29.103088
http://dx.doi.org/10.1075/nlp.8
http://www.w3.org/TR/ccxml/
http://www.w3.org/TR/2009/REC-emma-20090210/
http://www.w3.org/TR/2008/REC-pronunciation-lexicon-20081014/
http://www.w3.org/TR/semantic-interpretation/
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/2008/WD-scxml-20080516/
http://www.w3.org/TR/2007/REC-voicexml21-20070619/

Part II
Developing a Speech-Based Conversational

Interface

Chapter 5
Speech Input and Output

Abstract When a user speaks to a conversational interface, the system has to be able
to recognize what was said. The automatic speech recognition (ASR) component
processes the acoustic signal that represents the spoken utterance and outputs a
sequence of word hypotheses, thus transforming the speech into text. The other side of
the coin is text-to-speech synthesis (TTS), in which written text is transformed into
speech. There has been extensive research in both these areas, and striking
improvements have been made over the past decade. In this chapter, we provide an
overview of the processes of ASR and TTS.

5.1 Introduction

For a speech-based conversational interface to function effectively, it needs to be
able to recognize what the user says and produce spoken responses. These two
processes are known as ASR and TTS. A poor ASR system will result in the
system failing to accurately recognize the user’s input, while a poor TTS system
produces output that in the worst case is unintelligible or unpleasant.

In this chapter, we provide an overview of the ASR and TTS processes, looking
at the issues and challenges involved and showing how recent research develop-
ments have resulted in more accurate and more acceptable ASR and TTS systems.

5.2 Speech Recognition

ASR has been an active area of research for more than 50 years, but despite much
promise, it is only recently that ASR has entered the mainstream with the emer-
gence of voice-driven digital assistants on smartphones. One important factor in the
adoption of speech as an input mode is that recognition accuracy has improved
considerably in recent years. Now, spoken input has become attractive to a wider
range of users compared with the relatively small number of professional enthu-
siasts who have used voice dictation to create legal and medical documents.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_5

75

A primary goal of ASR research has been to create systems that can recognize
spoken input from any speaker with a high degree of accuracy. This is known as
speaker-independent large vocabulary continuous speech recognition (LVCSR).
Progress toward LVCSR has been made over the past decades across a number of
dimensions, including the following.

• Vocabulary size. The earliest ASR systems were able to recognize only a small
number of words, such as variants on “yes or “no,” or strings of digits.
Gradually, the vocabularies have expanded, first to tens of thousands of words
and now in current systems to vocabularies of millions of words.

• Speaker independence. Originally, users had to read hours of text to voice
dictation systems to create a speaker-dependent model. Applications offering
information and services to unknown, occasional callers—for example, to call
centers—cannot be trained in advance, and so considerable effort has been directed
toward making ASR speaker-independent. Problems still occur when speakers
have atypical speech patterns, such as strong accents or speech disabilities.

• Coarticulation. Continuous speech is difficult to process because there is no
clear marking of boundaries between words, and the pronunciation of an indi-
vidual sound can be affected by coarticulation. For example, “good girl,” when
spoken fluently, is likely to sound like “goo girl” as the “d” in “good” may be
assimilated to the “g” in “girl”. Early ASR systems used isolated word recog-
nition in which the speaker had to make a short pause between each word, but
nowadays, ASR systems are able to handle continuous speech.

• Read speech versus conversational speech. Read speech is more regular and
easier to process than spontaneous speech as the speaker does not have to plan
what to say. The models for early voice dictation systems were based on read
speech, but current ASR systems can handle spontaneously produced conver-
sational speech, although some tasks, such as recognizing and transcribing
speech between humans at multiparty meetings, still pose a challenge.

• Robust speech recognition. ASR tends to degrade under noisy conditions,
where the noise may be transient, such as passing traffic, or constant, such as
background music or speech. Techniques being researched to improve ASR
robustness include signal separation, feature enhancement, model compensation,
and model adaptation. The use of DNN -based acoustic models has also been
found to improve robustness.

• Microphone technology. Generally, good ASR performance has required the
use of a high-quality close-talking microphone. However, users are not likely to
want to put on a headset to address an occasional command to a TV that supports
voice input or to a device at the other side of the room. Also, when users talk
through a smartphone, they might sometimes hold the device near their mouth and
sometimes away from them in order to see the screen, so that the microphone is
not always at the same distance. Recent advances in far-field speech recognition
address this issue using microphone arrays and beam-forming technology that
allows the user to address a device from any direction and at some distance from
the microphones.

76 5 Speech Input and Output

5.2.1 ASR as a Probabilistic Process

When a user speaks to a conversational interface, the ASR component processes the
words in the input and outputs them as a string of text bymatching the input against its
models of the sounds and words of the language being spoken. This process is par-
ticularly difficult because spoken input is highly variable so that there can be no direct
match between the model of a given phone (the smallest unit of sound) or word and its
acoustic representation. The variation is caused by several factors such as:

• Inter-speaker variation due to physical characteristics such as the shape of the
vocal tract, gender and age, speaking style, and accent.

• Intra-speaker variation due to factors such as emotional state, tiredness, and state
of health.

• Environmental noise.
• Channel effects resulting fromdifferentmicrophones and the transmission channel.

What this means is that the pronunciation of a particular phone or word is not
guaranteed to be the same each time, so that the recognition process will always be
uncertain. For this reason, ASR ismodeled as a stochastic process inwhich the system
attempts to find the most likely phone, word, or sentence Ŵ from all possible phones,
words, or sentences in the language L that has the highest probability of matching the
user’s input X. This can be formalized in term of conditional probability as follows:

Ŵ ¼ argmax
W2L

PðW jXÞ ð1Þ

Here, the function argmax returns the highest value for its argument P(W|X).
W is a sequence of symbolsW = w1, w2, w3,…, wn in the acoustic model, and X is a
sequence of segments of the input X = x1, x2, x3,…, xn. This equation states that the
estimate of the best symbol string involves a search over all symbol strings in the
language to find the maximum value of P(W|X), which is the probability of the
string W given the acoustic input X.

As it is not possible to compute P(W|X) directly, Bayes’ rule can be applied to
break it down as follows:

Ŵ ¼ argmax
W2L

PðXjWÞPðWÞ
PðXÞ ð2Þ

Here, the denominator P(X) can be ignored since the observation remains constant as
we search over all sequences of symbols in the language. Thus, the equation becomes:

Ŵ ¼ argmax
W2L

PðXjWÞPðXÞ ð3Þ

In this equation, P(X|W) is the observation likelihood, while P(X) is the prior
probability. P(X|W) represents the acoustic model, and P(X) represents the

5.2 Speech Recognition 77

language model. In the following sections, we describe the acoustic and language
models and how they are combined to search for and output the most likely word
sequence in a process known as decoding.

5.2.2 Acoustic Model

The acoustic model is the basis for estimating P(X|W), the probability that a given
sequence of words W will result in an acoustic output X. To develop the acoustic
model, the system is trained on a corpus of phonetically transcribed and aligned
data and machine-learning algorithms are used to estimate the model parameters.

The first stage of the ASR process involves capturing and analyzing the user’s
input, which is captured by a microphone in the form of an analogue acoustic signal
and converted into a digital signal using an analogue-to-digital converter. The
digital signal is enhanced to remove noise and channel distortions, and then, it
undergoes processes of sampling, quantization, and feature extraction. Sampling
involves measuring the amplitude of the signal at a given point in time. The number
of samples to be taken is determined by the channel. For telephone speech, for
example, 8000 measures are taken for each second of speech. As the amplitude
measurements take the form of real values, quantization transforms these into
integers to enable more efficient storage and processing. Feature extraction involves
extracting those features that are relevant for ASR. Until recently, the most com-
monly used features were mel-frequency cepstral coefficients (MFCCs) that mea-
sure features such as frequency and amplitude.

Once the acoustic representation has been created, the input is divided into
frames, usually 10 ms in length. Each 10-ms frame represents a vector of MFCC
features, and the task of ASR is first to match the phones in its acoustic model to
these frames, then combine the phones into words using a pronunciation dictionary,
and finally estimate the most likely sequence of words given in a language model
that specifies probabilities of word sequences. The first part of matching the input
thus involves initially computing the likelihood of a feature vector x from an input
frame given a phone q in the acoustic model, i.e., p(x|q).

Hidden Markov models (HMMs) have been used in speech recognition since the
late 1970s and in combination with Gaussian mixture models (GMMs) have been the
dominant method for modeling variability in speech as well as its temporal
sequential properties. DNNs have recently replaced GMM–HMM models and are
now being used extensively in current ASR systems. In the following, we first briefly
outline HMMs and GMMs and then describe recent developments using DNNs.

5.2.2.1 HMMs

An HMM is a probabilistic finite state automaton consisting of states and transitions
between states. HMMs can be used to model various types of stochastic process

78 5 Speech Input and Output

involving sequences of events. In the case of ASR, they can model sequences such
as sequences of phones that make up a word, or sequences of words that make up a
sentence. Figure 5.1 shows a simple example of an HMM with two pronunciations
of the word tomato.

In this model, each state represents a phone and a path through the HMM
represents a temporal progression through the word “tomato.” In LVCSR systems,
phones are modeled at the level of subphones, usually called triphones, to account
for variation in the acoustic properties of a phone over time. In recent work, parts of
triphones are detected by detectors known as senones, allowing much more detailed
contextual information to be captured. A tutorial on the basic concepts of speech
recognition and on recent work on senones is provided in the Wiki for the CMU
Sphinx recognizer.1

Note that each state has self-loops, e.g., a11 and a22, so that the system can stay
in a particular state for an arbitrary period of time. In this way, temporal variability
in the speech signal is modeled.

HMMs are trained in order to estimate the two stochastic processes—the state
transition probabilities and the parameters of the emitting probability densities.
Traditionally, HMMs were trained using the forward–backward algorithm, also
known as Baum–Welch algorithm, but more recently, discriminative learning
algorithms have been used (He et al. 2008).

The input to the HMM is a sequence of observed feature vectors o1, o2, …, on,
and the task is to find the best sequence of states that could have produced the input.
Each state in the HMM has a probability distribution of possible outputs (b1(o1),
b2(o2), and so on). As the system proceeds left-to-right from state si to state si+1, the
phone in si is matched against an observed feature vector ot and the output with the
highest probability is returned. Because there is a distributional probability of
outputs at each state and each output can occur in any state, it is possible to obtain
the outputs from the model, but it is not possible to know which state an output
came from. For this reason, the model is “hidden.”

Fig. 5.1 An HMM with two pronunciations of the word “tomato”

1http://cmusphinx.sourceforge.net/wiki/tutorialconcepts. Accessed February 20, 2016.

5.2 Speech Recognition 79

http://cmusphinx.sourceforge.net/wiki/tutorialconcepts

5.2.2.2 GMMs

Until recently, GMMs were used to compute the likelihood of an acoustic feature
vector given an HMM state in terms of probability density functions. While it
would be possible to estimate a single acoustic feature using a univariate Gaussian
model, a multivariate Gaussian is required for MFCC vectors that typically consist
of 39 features in LVCSR, and given that the distribution may be non-normal on
account of variability in the spoken signal, a weighted mixture of multivariate
distributions, as in a Gaussian mixed model, is required. GMMs have been found to
be highly effective in various classification tasks in ASR and have been used in
combination with HMMs to model the sequential properties of speech.

5.2.2.3 Deep Neural Networks

From around 2010, DNNs have replaced GMM–HMM models. DNNs are now
used extensively in industrial and academic research as well as in most commer-
cially deployed ASR systems. Various studies have shown that DNNs outperform
GMM–HMM models in terms of increased recognition accuracy (Hinton et al.
2012; Seide et al. 2011).

A DNN differs from conventional neural networks in that it has multiple hidden
units between the input and output layers, providing greater learning capacity as
well as the ability to model complex patterns of data. These factors have been
critical in enabling dramatic improvements in recognition accuracy due mainly to
deeper and more precise acoustic modeling.

In acoustic modeling using GMMs, the acoustic input sequence is divided into
frames, typically 10 ms in length, and the task is to map a unit in an HMM state,
such as a phone, on to one or more frames. The role of the HMM model was to
model temporal variability in the input, since the duration of a phone can vary
considerably according to factors such as the speaker’s speech rate.

However, there are several problemswith theGMM–HMMmodel. Firstly, in order
to simplify learning of the mapping between acoustic vector frames and HMM states,
it is assumed that the current frame is conditionally independent from all other frames
in the acoustic representation and that the current state is conditionally independent of
all other states given the previous state. These conditional independence assumptions
view speech as a sequence of discrete units and fail to capture the dynamic properties
of speech in the temporal dimension—in particular, changes in the acoustic properties
of phones across frames that reflect human speech production. Thus, in themore static
approach required by the GMM–HMM model, the acoustic input is normalized as
MFCCs and excludes paralinguistic information that has been shown to play a crucial
role in human speech perception (Baker et al. 2009b). DNNs are able tomodel a richer
set of features in the acoustic input. In particular, by taking as input several frames of
acoustic feature vectors, up to about 150-ms duration comparedwith the 10-ms frames
analyzed in the GMM–HMM approach, DNN models are able to capture
spectro-temporal variations that give rise to different forms of a phone across time.

80 5 Speech Input and Output

5.2.3 Language Model

The language model contains knowledge about permissible sequences of words
and, when modeled stochastically, which words are more likely in a given
sequence. There are two types of language model in common use:

• Handcrafted grammars, in which all the permissible word sequences are
specified.

• N-gram language models that provide statistical information on word sequences.

Handcrafted grammars have been used mainly in commercially deployed
VoiceXML-based applications where there is a finite number of ways in which the
input to the application can be expressed so that it can be specified in advance.
Grammars are useful for specifying well-defined sequences such as dates or times.
They are also useful for developers who do not have access to expensive resources
such as n-gram language models nor the data and tools to train their own models.
However, grammar-based language models lack flexibility and break down if
perfectly legal strings are spoken that were not anticipated at design time.

N-gram language models are used for large vocabulary speech recognition. N-
grams are estimated from large corpora of speech data and are often specialized to a
particular domain or a particular type of input. For example, the Google Speech API
makes available language models for free form and Web search. The free-form
language model is used to recognize speech as in the dictation of an e-mail or text
message, whereas the Web search model is used to model more restricted forms of
input such as shorter, search-like phrases, for example, “flights to London” or
“weather in Madrid.”

The basic idea behind n-grams is that a word can be predicted with a certain
probability if we know the preceding n − 1 words. The following simple example
will illustrate:

I want to book two seats on a flight to London

In this example, there are three occurrences of the acoustic sequence represented
phonetically as /tu/, but in two cases, this is rendered as “to” and in one case as “two.”
How do we know which is which? N-gram information helps here as “to” is more
likely following the word “want,” while “two” is more likely following “book.”

In the following section, we base our description on Chap. 4 of Jurafsky and
Martin (2009). Estimating probabilities involves counting the occurrence of a word
given the preceding words. For example, for the sentence “I want to book two seats
on a flight to London,” we might count how many times the word “to” is preceded
in a corpus by the words “I want to book two seats on a flight” and estimate the
probability. More formally, the probability of a word given a sequence of preceding
words is as follows:

5.2 Speech Recognition 81

http://dx.doi.org/10.1007/978-3-319-32967-3_4

Pðwn
1Þ ¼ Pðw1ÞPðw2jw1ÞPðw3jPðw2

1Þ. . .PðwnjPðwn�1
1 Þ ð4Þ

However, estimating the probability of a word given a long sequence of pre-
ceding words is impractical as there would not be enough examples, even in a large
body of data such as is available nowadays on the Web. For this reason, the task is
approximated to a preceding sequence of one or a few words. Using one preceding
word results in bigrams, which were used in ASR tasks for a number of years but
have now been replaced by trigrams and higher-order n-grams as more data have
become available. In the bigram case, the conditional probability of a word given
the preceding word is P(wn|wn−1), and for a trigram, it is P(wn|wn−2, wn−1).
Substituting the bigram approximation into Eq. 4 and applying the joint rule of
probability, the probability for the word sequence can be represented as follows:

Pðwn
1Þ �

Yn

k¼1

Pðwkjwk�1Þ ð5Þ

So, in order to estimate P(I want to book two seats on a flight to London), we
calculate

P Ij\s[ð ÞP wantjIð ÞP tojwantð ÞP bookjtoð ÞP twojbookð ÞP seatsjtwoð Þ. . .

The probabilities are estimated using maximum likelihood estimation (MLE) in
which the counts acquired from a training corpus are normalized. The amount of
training data for n-gram models is typically many millions of words.

One of the problems that developers of n-gram language models face is sparse
data so that a possible n-gram sequence may not have occurred in the data or with
sufficiently low frequency to produce a poor estimate. Various smoothing tech-
niques have been developed to overcome the sparse data problem (see, for example,
the techniques described in Jurafsky and Martin 2009: 131–144).

5.2.4 Decoding

Given a sequence of acoustic likelihoods from the acoustic model, an HMM dic-
tionary of word pronunciations, and a language model of n-grams, the next task is
to compute the most likely word sequence. This task is known as decoding.
Decoding involves searching through the HMM to find the most likely state
sequence that could have generated the observation sequence. However, because
the number of possible states is exponentially large, it is necessary to find a way to
reduce the search. The Viterbi algorithm, which uses dynamic programming, has
been widely applied for decoding in ASR (Viterbi 1967; Forney 20052). Dynamic

2http://arxiv.org/abs/cs/0504020v2. Accessed February 20, 2016.

82 5 Speech Input and Output

http://arxiv.org/abs/cs/0504020v2

programming solves complex problems by breaking them down into simpler sub-
problems. Viterbi stores intermediate results in the cells of a trellis, where each cell
represents the probability of being in the current state after seeing the observations
so far and having passed through the most probable state sequence to arrive at the
current state, i.e., the probability of observing sequence x1 … xn and being in state sj
at time t. At time t, each state is updated by the best score from all states at time
t − 1 and a backtracking pointer is recorded for the most probable incoming state.
Tracing back through the backtracking pointers at the end of the search reveals the
most probable state sequence.

5.3 Text-to-Speech Synthesis

TTS is the process of transforming written text to speech. Synthesized speech has
improved in quality over the past few years and in many cases can sound almost
human-like. The quality and intelligibility of synthesized speech play an important
role in the acceptability of speech-based systems, as users often judge a conver-
sational interface by the quality of the spoken output rather than its ability to
recognize what they say.

TTS is used in many applications in which the message cannot be prerecorded and
has to be synthesized on the fly. These include the following: screen reading for users
with visual impairments, outputting messages at airports and railway stations, pro-
viding step-by-step navigation instructions for drivers, and speaking up to the minute
news and weather reports. One of the best-known users of TTS is the astrophysicist
Stephen Hawking who is unable to speak as a result of motor neuron disease.

In the following sections, we base our description on Chap. 8 of Jurafsky and
Martin (2009). There are two stages in TTS: text analysis and waveform synthesis.
In text analysis, the text to be spoken is transformed into a representation consisting
of phonemes and prosodic information (referred to as a phonemic internal repre-
sentation). Prior to the phonetic and prosodic analysis, the text is normalized, as
described in the next section. In the second stage, the internal representation is
converted to a waveform that can be output as spoken text. Figure 5.2 summarizes
the main elements of the TTS process.

5.3.1 Text Analysis

The TTS component of a conversational interface receives a representation of the text
to be spoken from the response generation component (see Fig. 2.5 in Chap. 2). This
text may contain a number of features that need to be normalized before the text can
be spoken. For example, if it is not clear where the sentence boundaries are, the text

5.2 Speech Recognition 83

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_2

will be spoken in a continuous stream without proper phrasing, making it sound
unnatural and potentially more difficult to process. The text may also include
abbreviations and acronyms that need to be transformed into a form that can be
spoken. The same applies to other items such as dates, numbers, time, phone num-
bers, and currency values.

Determining sentence boundaries involves sentence tokenization. While it might
appear that this should be a simple process with written text in which a full stop
(period) represents the end of a sentence, in practice there can be ambiguity as full
stops can also be used to indicate an abbreviation, as in “St.,” or they can be part of a
date, as in “12.9.97,” or part of a sequence, as in “M.I.5”. Although it is possible to
handcraft a system to perform sentence tokenization, supervised machine-learning
methods are generally used in which classifiers are trained on a set of features that
distinguish between different markers of sentence boundaries.

Abbreviations, acronyms, and other nonstandard words need to be transformed
so that they can be spoken correctly. Some examples are shown in Table 5.1.

As can be seen from these examples, the realization of nonstandard words
depends on knowing their type. For example, “IKEA” should be pronounced as a
word and not as a letter sequence. Often, the words are ambiguous: “2/3” may be a
date, but it could also be a fraction (“two-thirds”), and depending on its position in
the phrase, “st” could be “saint (St. John)” or “street (John St),” or both (“St. John

Fig. 5.2 Basic processes in a TTS system

84 5 Speech Input and Output

St = Saint John Street”). There are also dialect differences—for example, in how
dates are spoken in the USA and UK (USA: “March eight” and UK: “the eighth of
March”). Multifeature classifiers are used to classify the different types of non-
standard words so that they can be expanded into normal words for spoken output.

Homographs, i.e., words that have the same spelling but different pronuncia-
tions, are a problem for TTS. For example, live as a verb is pronounced to rhyme
with “give” (“I live in London”), but as an adjective, it is pronounced to rhyme with
“five” (“The Stones played a live concert in Hyde Park”). Usually, part of speech
tagging can help to disambiguate homographs.

Once the text has been normalized, the next stages are phonetic and prosodic
analysis. Phonetic analysis involves finding a pronunciation for each word in the
text. For words that are known, the pronunciations can be looked up in a pro-
nunciation dictionary that contains all the words of a language and their pronun-
ciations. However, not all words may be represented in a pronunciation dictionary,
so for the unknown words, the pronunciations are constructed using a process
known as grapheme-to-phoneme conversion, in which rules that determine pro-
nunciations based on spellings are applied to transform sequences of letters into
sequences of phonemes. Another problem is that some words can be pronounced
differently depending on their meaning. For example, in English, the word “bass” is
pronounced /beis/ in a sentence such as “he plays bass guitar,” but /baes/ in a
sentence such as “I caught a bass when I was fishing”. This can be solved using
markup such as the Speech Synthesis Markup Language (SSML) (see Sect. 5.2.4).

Table 5.1 Rendering abbreviations, acronyms, and other nonstandard words for TTS

Type Example Realization

Abbreviation St Street/saint

Ms Miz

mph Miles per hour

Letter
sequence

HP h p/Hewlett Packard

dvd d v d

tv t v/television

Acronym IKEA, NATO,
RAM, radar, laser

(pronounced as a word)

Date 2/3 The third of February (US) /the second of March (UK)

March 8 March 8/the eighth of March

Number 1745 One seven four five/one thousand seven hundred and
forty-five /seventeen hundred and forty-five

1900 One nine oh oh/one nine double oh/nineteen
hundred/one thousand nine hundred

Time 2:30 Two thirty/half past two

7.45 Seven fourty-five/a quarter to eight /a quarter of eight

Phone
numbers

653744 Six five three seven four four/sixty five thirty seven
double four

Currency £45.70 Forty-five seventy/forty-five pounds seventy pence

5.3 Text-to-Speech Synthesis 85

Prosody includes phrasing, pitch, loudness, tempo, and rhythm. These are
known as the suprasegmental features of speech as they extend over more than
single segments of sounds. Prosody can indicate differences in the function of an
utterance—for example, intonation can mark the difference between a question and
a statement. Various prosodic features can also express emotional aspects such as
anger or surprise. More generally, prosody is essential in order to make synthesized
speech sound more natural. The main elements of prosody are as follows:

• Prosodic phrasing—how words and phrases group together as meaningful units.
Often, punctuation helps to determine phrasing. For example, there should
usually be a short pause following a comma. Syntactic information about the
grouping of words into phrases is also useful. Given these sorts of information,
classifiers can be trained to determine prosodic boundaries.

• Prosodic prominence—how some words in an utterance are made more salient
through accentuation, emphasis, or longer duration. The information structure of
an utterance determines which words should have prominence, as words that are
accented are marked by the speaker as providing information that is assumed to
be new to the hearer.

• Tune—for example, the use of a final rise in an utterance to indicate a question
or a final fall to indicate a statement. Tune is also used to express attitudes, such
as surprise.

Prosody is an active research area in TTS and sophisticated models have been
developed, including ToBI (Tone and Break Indices) (Beckman et al. 2005) and
Tilt (Taylor 2000).

5.3.2 Waveform Synthesis

The most popular technique for waveform synthesis in current TTS systems
involves concatenative synthesis, in which segments of recorded speech are con-
catenated. Each recorded utterance is divided into units of various sizes, such as
phones, diphones, syllables, words, phrases, and sentences, and the units are
indexed based on acoustic features and stored in a very large database. When a text
is to be synthesized, the best sequence of units that corresponds to the phonetic and
prosodic specifications of the target representation of the text is selected from the
database and combined to form spoken output. This process is known as unit
selection. Unit selection has been found to produce more natural speech compared
with other methods such as diphone synthesis, in which transitions between sounds
are used as units. Sometimes, digital signal processing is applied to smooth con-
catenation points by making small pitch adjustments between neighboring units
when there are pitch deviations.

86 5 Speech Input and Output

In addition to concatenative approaches to TTS, other approaches include
articulatory and biology-inspired methods. In Eunison,3 a recent European Union
(EU) funded project, a new voice simulator is being built based on physical first
principles with a long-term aim of enabling, among other things, more natural
speech synthesis. See also this video.4

5.3.3 Using Prerecorded Speech

Because synthesized speech is not as natural as human speech, prerecorded speech
is often preferred over TTS in commercially deployed applications. This involves
employing professional speakers, often referred to as voice talent, to record all the
possible system outputs. While this is a feasible solution for a system with a limited
range of output that can be predicted at design time, it cannot be used when the text
is unpredictable—as in reading emails, news items, or text messages. In situations
where most of the text is known in advance and some elements have to be inserted
at runtime—as in flight announcements at airports—the output can sound jerky if
there are pitch deviations between the recorded text and the inserted words. Lewis
(2011:171–177) discusses the pros and cons of using prerecorded speech instead of
or in combination with TTS.

5.3.4 Speech Synthesis Markup Language

SSML is a standard produced by the Voice Browser Group of the World Wide Web
Consortium (W3C).5 The aim of SSML is to provide a standard notation for the
markup of text to be synthesized in order to override the default specifications of the
TTS system. The markup can be applied to control various aspects of speech
production. The following are some examples.
Structure analysis. Text can be divided into basic elements to provide more natural
phrasing using <s> for sentence and <p> for paragraph, e.g.

<p>
<s>I want to fly to London on Friday </s>
<s>I need to be there by 3 p.m. </s>
<s>Do you have any business class seats? </s>
</p>

3http://www.eunison.eu/. Accessed February 20, 2016.
4https://www.youtube.com/watch?v=t4YzfGD0f6s&feature=youtu.be.AccessedFebruary 20, 2016.
5http://www.w3.org/TR/speech-synthesis/. Accessed February 20, 2016.

5.3 Text-to-Speech Synthesis 87

http://www.eunison.eu/
https://www.youtube.com/watch?v=t4YzfGD0f6s&feature=youtu.be
http://www.w3.org/TR/speech-synthesis/

Text normalization. Potentially ambiguous items are annotated so that they are
spoken correctly, e.g.

<sub alias = “doctor” > Dr. </sub > Watson
130 Blenheim < sub alias = “drive” > Dr. </sub>

<say-as> This element specifies the type of text contained within the element
and how to render it, e.g.

<say-as interpret-as = “vxml:date”> <value expr = “20151115”/> </say-as>
<say-as interpret-as = “vxml:currency”> <value expr = “USD20.54”/> </say-as>

<phoneme> The phoneme element provides a phonetic pronunciation for an
item of text. For example, the following markup would be used to specify the US
and UK pronunciations of the word “tomato,” respectively:

You say <phoneme ph = ’t ah0 m ey1 t ow0’> tomato </phoneme> , and I
say <phoneme ph = ’t ah0 m aa1 t ow0’> tomato </phoneme>

<break/> This element specifies when to insert a pause in the text, e.g.

Welcome to hotel reservations.
<break time = “240 ms” />
How can I help you?

<prosody> This element specifies various prosodic features such as pitch,
timing, pauses, speech rate, emphasis, and the relative timing of segments and
pauses, e.g.

<prosody duration = “8000 ms”> This is an example with long duration
</prosody>
<prosody rate = “slow”> An example with slow rate of speech </prosody>
<prosody volume = “loud”> An example at a high volume </prosody>
<prosody pitch = “low”> This is an example of low pitch </prosody>

88 5 Speech Input and Output

It should be noted that not all TTS engines implement all of the features listed in
the SSML specification. For example, the Amazon Alexa Skills Kit supports a
subset of the SSML tags.6

5.4 Summary

In this chapter, we have reviewed the technologies of ASR and TTS. Both tech-
nologies have developed considerably over the past few decades, and speech
recognition in particular has begun to show impressive results with the adoption of
DNNs. Speech recognition is never likely to be 100 % accurate, and in situations
where the input is degraded, as in noisy environments, the word error rate is likely to
increase. Developers of commercially deployed voice user interfaces often attempt
to restrict the range of user inputs with carefully designed prompts, as discussed in
Chap. 4. This strategy can also help to make users aware of the limitations of the
system as a highly performing recognizer might generate expectations in the user
that exceed what the system’s dialog manager is able to deal with.

A recent development that affects the technologies of speech recognition and
TTS is the role of personality and emotion in conversational interaction. In addition
to recognizing the words spoken by the user, the system should also detect the
emotions that are being conveyed in spoken utterances and make attributions about
aspects of the user’s personality. On the output side, the system should express its
emotions and personality. Indeed, a whole tradition of creating persona to convey a
company’s brand, or the use of avatars, talking heads, and social robots, has been
building on these technologies. We will examine the roles of emotion and per-
sonality in more detail in Chaps. 14 and 15.

Having looked at the technologies involved in speech recognition and TTS, we
turn in the next chapter to some practical applications of these technologies in
which we will introduce the HTML5 Web Speech API (Web SAPI) that can be
used to add speech input and output to Web pages and the Android Speech APIs
that can be used for speech input and output on mobile devices.

Further Reading

Speech Recognition

Professor Fred Jelinek and his colleagues at IBM Research pioneered the sta-
tistical methods that are the basis of current speech recognition systems (Jelinek
1998). See also Rabiner and Juang (1998). Jurafsky and Martin (2009) is the
standard text on speech processing and natural language processing, covering both
topics in detail. Huang et al. (2001) also provide a detailed account of both aspects

6https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/speech-synthesis-markup-
language-ssml-reference. Accessed February 20, 2016.

5.3 Text-to-Speech Synthesis 89

http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_15
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/speech-synthesis-markup-language-ssml-reference
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/speech-synthesis-markup-language-ssml-reference

of spoken language processing. Deng and Yu (2013) and Yu and Weng (2015)
describe the deep learning approach to ASR using DNNs. Pieraccini (2012) pro-
vides an accessible overview of speech recognition technology and its history. For a
comprehensive account of mathematical models for speech technology, see
Levinson (2005). Esposito et al. (2016) present recent advances in nonlinear speech
processing aimed at modeling the social nature of speech including personality
traits and emotions (see further Chap. 14).

There are also several book chapters reviewing speech recognition technology,
including Furui (2010), Huang and Deng (2010), and Renals and Hain (2010).
Baker et al. (2009a, b) review the current state of speech recognition and outline a
number of challenges for the future. Deng and Li (2013) provide a comprehensive
overview of machine-learning paradigms for speech recognition.

Text-to-Speech Synthesis

Recent books on TTS include Holmes and Holmes (2001), Dutoit (2001), and
Taylor (2009). Chapter 16 of Huang et al. (2001) and Chap. 8 of Jurafsky and Martin
(2009) provide detailed coverage of speech synthesis along with chapters on pho-
netics and digital speech processing. See also Aaron et al. (2005), Suendermann et al.
(2010), Pieraccini (2012), and Black’s comprehensive online tutorial (Black 2000).

Conferences and Journals

Speech recognition and text-to-speech synthesis are main topics at the annual
ICASSP and INTERSPEECH conferences and at the IEEE ASR and Understanding
(ASRU) Workshop, as well as at the commercially oriented SpeechTEK conference.

Key journals are as follows: IEEE Transactions on Audio, Speech, and Language
Processing (since 2014 renamed as IEEE/ACM Transactions on Audio, Speech, and
Language Processing); Speech Communication; Computer Speech and Language.

Exercises

1. Speech recognition. For those readers wishing to acquire a detailed knowledge
of ASR, there is an online course at MIT by Dr. James Glass and Professor
Victor Zue, leading researchers in spoken language technologies.7 The lecture
notes can be downloaded along with a list of exercises.8

2. Text-to-speech synthesis. The Smithsonian Speech Synthesis History Project
collected a history of speech synthesis with voices from 1922 to the 1980s.
Audio clips are available at Dennis Klatt’s History of Speech Synthesis page.9

7http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-345-automatic-speech-
recognition-spring-2003/index.htm. Accessed February 20, 2016.
8http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-345-automatic-speech-
recognition-spring-2003/assignments/. Accessed February 20, 2016.
9http://www.cs.indiana.edu/rhythmsp/ASA/Contents.html. Accessed February 20, 2016.

90 5 Speech Input and Output

http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-345-automatic-speech-recognition-spring-2003/index.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-345-automatic-speech-recognition-spring-2003/index.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-345-automatic-speech-recognition-spring-2003/assignments/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-345-automatic-speech-recognition-spring-2003/assignments/
http://www.cs.indiana.edu/rhythmsp/ASA/Contents.html

Listening to these clips will provide an interesting perspective on how TTS has
progressed over the years.

Compare the samples from the Smithsonian Speech Synthesis History Project
with some current TTS systems that provide online demos. Some examples are as
follows: IVONA Text-to-Speech,10 NaturalReader,11 Cepstral,12 DioSpeech,13

Festival,14 MaryTTS.15

References

Aaron A, Eide E, Pitrelli JF (2005) Conversational computers. Sci Am June: 64–69. doi:10.1038/
scientificamerican0605-64

Baker J, Deng L, Glass J, Khudanpur S, Lee C-H, Morgan N, O’Shaughnessy D (2009a)
Developments and directions in speech recognition and understanding, Part 1. Sig Process
Mag IEEE 26(3):75–80. doi:10.1109/msp.2009.932166

Baker J, Deng L, Khudanpur S, Lee C-H, Glass J, Morgan N, O’Shaughnessy D (2009b)
Updated MINDS report on speech recognition and understanding, Part 2 signal processing
magazine. IEEE 26(4):78–85. doi:10.1109/msp.2009.932707

Beckman ME, Hirschberg J, Shattuck-Hufnagel S (2005) The original ToBI system and the
evolution of the ToBI framework. In: Jun S-A (ed) Prosodic typology—the phonology of
intonation and phrasing, Chapter 2. Oxford University Press, Oxford, pp 9–54. doi:10.1093/
acprof:oso/9780199249633.003.0002

Black A. (2000) Speech synthesis in Festival: a practical course on making computers talk. http://
festvox.org/festtut/notes/festtut_toc.html. Accessed 20 Jan 2016

Deng L, Li X (2013) Machine learning paradigms for speech recognition: an overview. IEEE T
Speech Audi P 21 (5) May 2013:1061–1089. doi:10.1109/tasl.2013.2244083

Deng L, Yu D (2013) Deep learning: methods and applications. Found Trends Signal Process 7(3–
4):197–386. doi:10.1561/2000000039

Dutoit T (2001) An introduction to text-to-speech synthesis. Springer, New York. doi:10.1007/
978-94-011-5730-8

Esposito A, Faundez-Zanuy M, Cordasco G, Drugman T, Solé-Casals J, Morabito FC (eds) (2016)
Recent advances in nonlinear speech processing. Springer, New York

Forney GD Jr (2005) The Viterbi algorithm: a personal history. http://arxiv.org/abs/cs/0504020v2.
Accessed 20 February 2016

Furui S (2010) History and development of speech recognition. In: Chen F, Jokinen K
(eds) Speech technology: theory and applications. Springer, New York:1–18. doi:10.1007/978-
0-387-73819-2_1

He X, Deng L, Chou W (2008) Discriminative learning in sequential pattern recognition. IEEE
Signal Process Mag 25(5):14–36. doi:10.1109/msp.2008.926652

10https://www.ivona.com/. Accessed February 20, 2016.
11http://www.naturalreaders.com/index.html. Accessed February 20, 2016.
12http://www.cepstral.com/en/demos. Accessed February 20, 2016.
13http://speech.diotek.com/en/. Accessed February 20, 2016.
14http://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html. Accessed February 20, 2016.
15http://mary.dfki.de/. Accessed February 20, 2016.

5.4 Summary 91

http://dx.doi.org/10.1038/scientificamerican0605-64
http://dx.doi.org/10.1038/scientificamerican0605-64
http://dx.doi.org/10.1109/msp.2009.932166
http://dx.doi.org/10.1109/msp.2009.932707
http://dx.doi.org/10.1093/acprof:oso/9780199249633.003.0002
http://dx.doi.org/10.1093/acprof:oso/9780199249633.003.0002
http://festvox.org/festtut/notes/festtut_toc.html
http://festvox.org/festtut/notes/festtut_toc.html
http://dx.doi.org/10.1109/tasl.2013.2244083
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1007/978-94-011-5730-8
http://dx.doi.org/10.1007/978-94-011-5730-8
http://arxiv.org/abs/cs/0504020v2
http://dx.doi.org/10.1007/978-0-387-73819-2_1
http://dx.doi.org/10.1007/978-0-387-73819-2_1
http://dx.doi.org/10.1109/msp.2008.926652
https://www.ivona.com/
http://www.naturalreaders.com/index.html
http://www.cepstral.com/en/demos
http://speech.diotek.com/en/
http://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html
http://mary.dfki.de/

Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P,
Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. IEEE Signal Process Mag 82:82–97.
doi:10.1109/msp.2012.2205597

Holmes J, Holmes W (2001) Speech synthesis and recognition. CRC Press, Boca Raton
Huang X, Acero A, Hon H-W (2001) Spoken language processing: a guide to theory, algorithm,

and system development. Prentice Hall, Upper Saddle River, NJ
Huang X, Deng L (2010) An overview of modern speech recognition. In: Indurkhya N, Damerau FJ

(eds) Handbook of natural language processing. CRC Press, Boca Raton, pp 339–366. http://
research.microsoft.com/pubs/118769/Book-Chap-HuangDeng2010.pdf. Accessed 20 Jan 2016

Jelinek F (1998) Statistical methods for speech recognition. MIT Press, Massachusetts
Jurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language

processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall, Upper
Saddle River, NJ

Levinson SE (2005) Mathematical models for speech technology. Wiley, Chichester, UK
Lewis JR (2011) Practical speech user interface design. CRC Press, Boca Raton. doi:10.1201/

b10461
Pieraccini R (2012) The voice in the machine: building computers that understand speech. MIT

Press, Cambridge, MA
Rabiner L, JuangB-H (1998) Fundamentals of speech recognition. PrenticeHall, Upper Saddle River
Renals S, Hain T (2010) Speech recognition. In: Clark A, Fox C, Lappin S (eds) The handbook of

computational linguistics and natural language processing. Wiley-Blackwell, Chichester, UK,
pp 299–322. doi:10.1002/9781444324044.ch12

Seide F, Li G, YuD (2011) Conversational speech transcription using context-dependent deep neural
networks. In: Proceedings of the 12th annual conference of the international speech commu-
nication association (INTERSPEECH 2011). Florence, Italy, 27–31 Aug 2011, pp 437–440

Suendermann D, Höge H, Black A (2010) Challenges in speech synthesis. In: Chen F, Jokinen K
(eds) Speech technology: theory and applications. Springer, New York, pp 19–32. doi:10.1007/
978-0-387-73819-2_2

Taylor P (2000) Analysis and synthesis using the tilt model. J Acoust Soc Am 107(3):1697–1714.
doi:10.1121/1.428453

Taylor P (2009) Text-to-speech synthesis. Cambridge University Press, Cambridge. doi:10.1017/
cbo9780511816338

Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE T Inform Theory 13(2):260–269. doi:10.1109/TIT.1967.1054010

Yu D, Deng L (2015) Automatic speech recognition: a deep learning approach. Springer, New
York. doi:10.1007/978-1-4471-5779-3

Web Pages

Comparison of Android TTS engines http://www.geoffsimons.com/2012/06/7-best-android-text-
to-speech-engines.html

Computer Speech and Language http://www.journals.elsevier.com/computer-speech-and-language/
EURASIP journal on Audio, Speech, and Music Processing http://www.asmp.eurasipjournals.com/
History of text-to-speech systems www.cs.indiana.edu/rhythmsp/ASA/Contents.html
IEEE/ACM Transactions on Audio, Speech, and Language Processing http://www.

signalprocessingsociety.org/publications/periodicals/taslp/
International Journal of Speech Technology http://link.springer.com/journal/10772
Resources for TTS http://technav.ieee.org/tag/2739/speech-synthesis
Speech Communication http://www.journals.elsevier.com/speech-communication/
SSML: a language for the specification of synthetic speech- http://www.w3.org/TR/2004/REC-

speech-synthesis-20040907/

92 5 Speech Input and Output

http://dx.doi.org/10.1109/msp.2012.2205597
http://research.microsoft.com/pubs/118769/Book-Chap-HuangDeng2010.pdf
http://research.microsoft.com/pubs/118769/Book-Chap-HuangDeng2010.pdf
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1002/9781444324044.ch12
http://dx.doi.org/10.1007/978-0-387-73819-2_2
http://dx.doi.org/10.1007/978-0-387-73819-2_2
http://dx.doi.org/10.1121/1.428453
http://dx.doi.org/10.1017/cbo9780511816338
http://dx.doi.org/10.1017/cbo9780511816338
http://dx.doi.org/10.1109/TIT.1967.1054010
http://dx.doi.org/10.1007/978-1-4471-5779-3
http://www.geoffsimons.com/2012/06/7-best-android-text-to-speech-engines.html
http://www.geoffsimons.com/2012/06/7-best-android-text-to-speech-engines.html
http://www.journals.elsevier.com/computer-speech-and-language/
http://www.asmp.eurasipjournals.com/
http://www.cs.indiana.edu/rhythmsp/ASA/Contents.html
http://www.signalprocessingsociety.org/publications/periodicals/taslp/
http://www.signalprocessingsociety.org/publications/periodicals/taslp/
http://springerlink.bibliotecabuap.elogim.com/journal/10772
http://technav.ieee.org/tag/2739/speech-synthesis
http://www.journals.elsevier.com/speech-communication/
http://www.w3.org/TR/2004/REC-speech-synthesis-20040907/
http://www.w3.org/TR/2004/REC-speech-synthesis-20040907/

Chapter 6
Implementing Speech Input and Output

Abstract There are a number of different open-source tools that allow developers
to add speech input and output to their apps. In this chapter, we describe two
different technologies that can be used for conversational systems, one for systems
running on the Web and the other for systems running on mobile devices. For the
Web, we will focus on the HTML5 Web Speech API (Web SAPI), while for mobile
devices we will describe the Android Speech APIs.

6.1 Introduction

There are a number of different open-source tools as well as commercially available
products that allow developers to add speech input and output to their apps. In this
chapter, we describe two different technologies that can be used for conversational
systems, one that runs on the Web and the other on mobile devices. For the Web,
we will focus on the HTML5 Web Speech API (Web SAPI), while for mobile
devices we will describe the Android Speech APIs.

There are several reasons why we have chosen these technologies:

• The HTML5 Web Speech API makes it easy to add speech recognition and
text-to-speech synthesis (TTS) to Web pages, allowing fine control and flexi-
bility in versions of Chrome from version 25 onward.1, 2

• There is a proliferation of Android devices so that it is appropriate to develop
applications for this platform.3

• The Android Speech API is open source and thus is more easily available for
developers and enthusiasts to create apps, compared with some other operating

1https://developers.google.com/web/updates/2013/01/Voice-Driven-Web-Apps-Introduction-to-
the-Web-Speech-API?hl=en. Accessed February 21, 2016.
2https://developers.google.com/web/updates/2014/01/Web-apps-that-talk-Introduction-to-the-
Speech-Synthesis-API?hl=en. Accessed February 21, 2016.
3https://en.wikipedia.org/wiki/Android_(operating_system). Accessed February 21, 2016.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_6

93

https://developers.google.com/web/updates/2013/01/Voice-Driven-Web-Apps-Introduction-to-the-Web-Speech-API%3fhl%3den
https://developers.google.com/web/updates/2013/01/Voice-Driven-Web-Apps-Introduction-to-the-Web-Speech-API%3fhl%3den
https://developers.google.com/web/updates/2014/01/Web-apps-that-talk-Introduction-to-the-Speech-Synthesis-API%3fhl%3den
https://developers.google.com/web/updates/2014/01/Web-apps-that-talk-Introduction-to-the-Speech-Synthesis-API%3fhl%3den
https://en.wikipedia.org/wiki/Android_(operating_system)

systems. Anyone with an Android device can develop their own apps and
upload them to their device for their own personal use and enjoyment.

There are several alternatives to the Google Speech APIs that might be suitable
for those who wish to experiment further. We provide a list of these in Tables 6.1
and 6.2.

Table 6.1 Open-source tools for text-to-speech synthesis

Name Web site

AT&T speech API http://developer.att.com/apis/speech

Cereproc (academic
license)

https://www.cereproc.com/en/products/academic

DioTek http://speech.diotek.com/en/

Festival http://www.cstr.ed.ac.uk/projects/festival/

FLite (CMU) http://www.festvox.org/flite/

FreeTTS http://freetts.sourceforge.net/docs/index.php

Google TTS http://developer.android.com/reference/android/speech/tts/
TextToSpeech.html

iSpeech TTS http://www.ispeech.org/

MaryTTS, DFKI,
Germany

http://mary.dfki.de/

Microsoft http://www.bing.com/dev/speech

Table 6.2 Tools for speech recognition

Name Technology Web site

Android ASR API http://developer.android.com/reference/
android/speech/SpeechRecognizer.html

AT&T speech API http://developer.att.com/apis/speech

CMU PocketSphinx http://www.speech.cs.cmu.edu/pocketsphinx/

CMU Sphinx HMM http://cmusphinx.sourceforge.net/

CMU statistical language
modeling toolkit

Language
modeling

http://www.speech.cs.cmu.edu/SLM_info.
html

HTK, Cambridge HMM http://htk.eng.cam.ac.uk/

iSpeech http://www.ispeech.org/

Julius (Japanese) HMM http://julius.sourceforge.jp/en_index.php

Kaldi Deep neural
net

http://kaldi.sourceforge.net/about.html

RWTH ASR, Aachen,
Germany

HMM http://www-i6.informatik.rwth-aachen.de/
rwth-asr/

Microsoft SDK http://www.bing.com/dev/speech

94 6 Implementing Speech Input and Output

http://developer.att.com/apis/speech
https://www.cereproc.com/en/products/academic
http://speech.diotek.com/en/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.festvox.org/flite/
http://freetts.sourceforge.net/docs/index.php
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html
http://www.ispeech.org/
http://mary.dfki.de/
http://www.bing.com/dev/speech
http://developer.android.com/reference/android/speech/SpeechRecognizer.html
http://developer.android.com/reference/android/speech/SpeechRecognizer.html
http://developer.att.com/apis/speech
http://www.speech.cs.cmu.edu/pocketsphinx/
http://cmusphinx.sourceforge.net/
http://www.speech.cs.cmu.edu/SLM_info.html
http://www.speech.cs.cmu.edu/SLM_info.html
http://htk.eng.cam.ac.uk/
http://www.ispeech.org/
http://julius.sourceforge.jp/en_index.php
http://kaldi.sourceforge.net/about.html
http://www-i6.informatik.rwth-aachen.de/rwth-asr/
http://www-i6.informatik.rwth-aachen.de/rwth-asr/
http://www.bing.com/dev/speech

The code corresponding to the examples in this chapter is in GitHub, in the
ConversationalInterface repository,4 in the folder called chapter6.

6.2 Web Speech API

The Web Speech API is a subset of HTML5 that aims to enable Web developers to
provide speech input and output on Web browsers. The API is not tied to a specific
automatic speech recognition (ASR) or TTS engine and supports both server-based
and client-based ASR and TTS. The API specification5 was published in 2012 by
the Speech API W3C Community Group6 and adopted by important companies in
the sector. The API is not a standard, nor is it included in any standardization track,
but it is supported by some Web browsers such as Google Chrome (speech input
and output) and Safari (speech output).

The API provides all the necessary elements for TTS and ASR. TTS has been
implemented so that different prosody parameters can be tuned, and if there is no
speech synthesizer installed, the text is shown visually on the Web. ASR captures
audio from the microphone and streams it to a server where the speech recognizer is
located. The API is designed to enable brief (one-shot) speech input as well as
continuous speech input. ASR results are provided to the Web along with other
relevant information, such as n-best hypotheses and confidence values.

The code for this section is in the GitHub ConversationalInterface repository, in
the folder /chapter6/WebSAPI/. You can open the example of the Web Speech API
with Google Chrome to see how it works. Bear in mind that ASR only works when
the code is hosted on a server; thus, in order to test the examples with speech input
you will need to upload the files to a server. To make it simpler for you, we have
uploaded the files to our own server.7 You can open them directly with Chrome and
see how they work.

6.2.1 Text-to-Speech Synthesis

In this section, we will explain the basics of TTS capabilities of the Web SAPI, for
which a complete specification is available.8

4http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.
5https://dvcs.w3.org/hg/speech-api/raw-file/9a0075d25326/speechapi.html. Accessed February 21,
2016.
6http://www.w3.org/community/speech-api/. Accessed February 21, 2016.
7https://lsi.ugr.es/zoraida/conversandroid/. Accessed March 2, 2016.
8https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html#tts-section. Accessed February 21,
2016.

6.1 Introduction 95

http://zoraidacallejas.github.io/ConversationalInterface
https://dvcs.w3.org/hg/speech-api/raw-file/9a0075d25326/speechapi.html
http://www.w3.org/community/speech-api/
https://lsi.ugr.es/zoraida/conversandroid
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html%23tts-section

TTS can be performed by using the SpeechSynthesisUtterance class
and the SpeechSynthesis interface that together provide a series of attributes,
methods, and events that allow full control over the TTS engine. We will discuss
some of the most relevant of these.

• Attributes:

– text: the text to be synthesized.
– lang: the language for the synthesis.
– voiceURI: the location of the synthesis engine (if not specified, the default

speech synthesizer is used).
– volume: volume in a range [0, 1] where 1 is the default level.
– rate: speech range in a range [0.1, 10], where 1 is the default rate, 2 is twice

as fast as the default, 0.5 is half as fast as the default, and so on.
– pitch: Pitch in a range [0, 2] where 1 is the default level.

• Methods:

– speak: adds the text to the queue for its synthesis.
– cancel: empties the queue. If any phrase is being synthesized, it is

interrupted.
– pause: pauses the phrase being synthesized.
– resume: restarts the synthesis of a paused phrase.
– getVoices: shows the voices available for speech synthesis.

• Events:

– start: fired when the synthesis starts.
– end: fired when the phrase has been synthesized successfully.
– error: fired when an error occurs during the synthesis.
– pause: fired when the synthesis has been paused.
– resume: fired when the synthesis has been resumed.

Here is an example with the minimum structure for a script using the Web SAPI.
We have created a new instance of a SpeechSynthesisUtterance, initial-
izing it with a text; then, we initiate the synthesis with the start method. In this
case, the text is synthesized when the page is loaded (Code 6.1).

Code 6.1 Fragment from tts_min.html

96 6 Implementing Speech Input and Output

As shown above, there are many other attributes that can be specified in addition
to the text to be synthesized. Code 6.2 shows how they can be configured.

As it is possible to control the synthesis from the HTML code, it is fairly easy to
decide the moment when an utterance is started, paused, or resumed using the visual
interface. Code 6.3 shows how to start synthesizing a text that has been introduced
by the user in the Web. Since it is necessary to pay attention to message encoding
when using languages with special characters (e.g., Spanish), we have included a
small function to address this issue.

The use of events provides an additional level of control, as it allows developers
to manage the different situations that may appear. In Code 6.4, we can observe
how we can couple each of the events (e.g., msg.onStart) with a certain
functionality (e.g., show the message “the synthesis has started” in a TextArea).

Code 6.2 Fragment from tts_att.html

Code 6.3 Fragment from tts_btn.html

6.2 Web Speech API 97

6.2.2 Speech Recognition

Probably you are not aware that your speech browser has ASR capabilities. This is
the case for Google Chrome as can be seen at the Web Speech API Demonstration
page.9 Be careful to enable the Web browser to make use of your microphone when
you are prompted to do so.

As with the TTS examples, we will now show some of the basic capabilities of
ASR in the Web SAPI.10 We will use mainly the SpeechRecognition interface
that provides the following attributes, methods, and events:

• Attributes:

– grammar: a SpeechGrammar object with the recognition grammar.
– lang: the language for recognition.
– continuous: should be false for a single “one-shot” recognition result and

true for zero or more results (e.g., dictation).
– maxAlternatives: maximum number of recognition alternatives (value of

N for the n-best list). The default value is 1.
– serviceURI: localization of the recognition engine (if not specified, the

default one is used).

• Methods:

– start: starts listening.
– stop: stops listening and tries to obtain a recognition result from what has

been heard up to that moment.
– abort: stops listening and recognizing and does not provide any result.

• Events:

– audiostart: fired when the audio starts being captured.

Code 6.4 Fragment from tts_events.html

9https://www.google.com/intl/en/chrome/demos/speech.html. Accessed February 21, 2016.
10https://dvcs.w3.org/hg/speech-api/raw-file/9a0075d25326/speechapi.html#speechreco-section.
Accessed February 21, 2016.

98 6 Implementing Speech Input and Output

https://www.google.com/intl/en/chrome/demos/speech.html
https://dvcs.w3.org/hg/speech-api/raw-file/9a0075d25326/speechapi.html%23speechreco-section

– soundstart: fired when sound has been detected.
– speechstart: fired when the speech that will be used for recognition has

started.
– speechend: fired when the speech that will be used for recognition has ended.
– soundend: fired when sound is no longer detected.
– audioend: fired when the audio capture is finished.
– result: fired when the speech recognizer returns a result.
– nomatch: fired when the speech recognizer returns a result that does not

match the grammar.
– error: fired when an error occurs during speech recognition. Speech

recognition errors can be further studied by using the Speech
RecognitionError interface that provides 8 error codes corresponding to the
most common error events.11

– start: fired when the recognition service has begun to listen to the audio with
the intention of recognizing the input.

– end: fired when the service has been disconnected.

The list of recognition results is managed in the Web SAPI by a
SpeechRecognitionList object, which is a collection of one or more
SpeechRecognitionResult objects depending on whether it was a
non-continuous or continuous recognition. The SpeechRecognitionList has
a length attribute (size of the list), and the item getter, which returns the
SpeechRecognitionResult in a certain position in the list. The
SpeechRecognitionResult has two attributes: length (number of recog-
nition hypotheses) and final (to check whether it is a final or interim recognition
result), and the item getter that allows access to each of the elements in the best list.

For example, in a one-shot speech recognition scenario, the user says “hello how
are you?” and there are the following three best recognition results:

hello how are to?
hello Howard you?
hey Jo are you?

In this example, as it is a one-shot interaction, the system does not generate interim
results so the SpeechRecognitionListwill have length=1, and if we access
the single SpeechRecognitionResult it contains, it will have length=3 (as
the n-best list contains 3 results), and final=true (as it is the final system guess, not
an interim result that may be corrected during continued interaction). In a scenario of
continuous speech recognition, the recognizermay correct interim recognition results,
as shown in theChromedemo.12 Thus, theremay beSpeechRecognitionLists
with lengths greater than 1, and the SpeechRecognitionResults may not be
final.

11https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html#speechreco-error. Accessed
February 21, 2016.
12https://www.google.com/intl/en/chrome/demos/speech.html. Accessed February 21, 2016.

6.2 Web Speech API 99

https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html%23speechreco-error
https://www.google.com/intl/en/chrome/demos/speech.html

These objects can be accessed via a SpeechRecognitionEvent using its
results attribute. In addition, the SpeechRecognitionAlternative
object presents a simple view of the results with two attributes: transcript (a
concatenation of the consecutive SpeechRecognitionResults) and confi-
dence (a value in the range [0, 1], where a higher number indicates that the system
is more confident in the recognition hypothesis).

We will now show how to use these objects in simple programs. In order to run
your applications, you must:

• Upload them to a server. It can be a local server (e.g., using Apache).13

• Use Chrome and give permission to use the microphone when prompted.
• It is also desirable to set the Javascript console to debug errors.

In Code 6.6, when the onresult event is thrown, it generates a
SpeechRecognitionEvent called event, and we query the results attached
to the event (SpeechRecognitionList), which is a list of size length. Each
of the elements of that list (SpeechRecognitionResult) has a list of N
elements corresponding to the n-best recognition results (in this case N <=5). Thus,
the result attached to the event is an array of size lengthx5. In the for loop, we
choose the 1-best element (position 0) for each recognition result and concatenate it
to form the final transcript shown in the interface.

Thus, each element of event.results is a recognized word along with its
alternatives. In this way, event.results[0] is the n-best list corresponding to
the first word recognized and event.results[0][0] is the most probable
hypothesis for that first word (1-best) (Code 6.5).

In Code 6.6 we present an example in which we show the n-best alternatives,
confidence values, and intermediate recognition results.

This can be easily translated into a selection list as shown in Code 6.7. As can be
observed, we only have to include the text corresponding to the transcription of
each recognition result (result[i].transcript) into the options of a
selection HTML form item (select.options).

Finally, Code 6.8 presents an example with continuous speech recognition that
shows the difference between final and interim recognition results.

6.3 The Android Speech APIs

To add voice to our Android apps, we will work with two packages from the
Android Speech API: android.speech and android.speech.tts.

Android.speech.tts contains, among other things, the following classes
and interfaces:

13Remember that we have uploaded to http://lsi.ugr.es/zoraida/conversandroid for you, so that you
do not have to set a server to try the examples provided in the book.

100 6 Implementing Speech Input and Output

http://lsi.ugr.es/zoraida/conversandroid

• TextToSpeech (which provides access to TTS).
• UtteranceProgressListener (which provides access to the progress of

an utterance through the TTS queue).

Code 6.6 Fragment from asr_details.html

Code 6.5 Fragment from asr_simple.html

6.3 The Android Speech APIs 101

• TextToSpeech.Engine and TextToSpeech.EngineInfo which,
respectively, provide constants and parameters for controlling the TTS, and
information about the TTS engines installed.

Android.speech contains the interfaces and classes for ASR, including:

• RecognizerIntent (to support ASR by starting an Intent).
• SpeechRecognizer (the class that provides access to the ASR service).
• RecognitionListener (an interface to receive notifications from the

ASR).

In the following sections, we describe how to use these resources to add TTS and
ASR capabilities to Android apps. Remember that you can find the code in GitHub,
in the ConversationalInterface repository, in the folder called chapter6. It can be
opened and executed in Android Studio. Bear in mind that ASR is not available on
virtual devices, so you will need to use an Android device to execute the files. Also
Android Studio supports Git as a version control system, so you may find it handy
to directly fetch the code from our GitHub repository into your Android Studio.

Code 6.7 Fragment from asr_optionlist.html

102 6 Implementing Speech Input and Output

6.3.1 Text-to-Speech Synthesis

The components of the Google TTS API (package android.speech.tts) are
documented at this Web page.14 Interfaces and classes are listed, and further details
can be obtained by clicking on these.

TTS has been supported in Android since API level 4 and all devices that are
above this level come with a TTS engine. However, some devices have limited
storage and capabilities and may lack some TTS resources or may not have certain
languages available, which is why it is good practice to start TTS by checking the
availability of the TTS engine.

As can be observed in the code of the SimpleTTS app, the first thing we do once
the activity is initialized is to invoke the initTTSmethod to check whether there is
a TTS engine installed in the device. In order to do that, we create an Intent and
start it by indicating that we expect to receive a result. An Intent is an abstract
representation of an action corresponding to an activity or service that can be initiated
from other activities.15 In our case, we will use the ACTION_CHECK_TTS_DATA
Intent that is already provided by the Android API in the TextToSpeech class.
Then, we start it with the startActivityForResultmethod, which receives as
arguments the Intent and an integer request code that univocally identifies it. We have
declared a constant TTS_DATA_CHECK as the request code to identify the check
TTS installation Intent. Once the check is finished, the onActivityResult
method is transparently invoked (Code 6.9).

The onActivityResult method is invoked by all Intents initiated with
startActivityForResult. Thus, the first thing we must do is to check the
Intent for which we are currently receiving a result. To do this, we can check that the

Code 6.8 Fragment from asr_continuous.html

14http://developer.android.com/reference/android/speech/tts/package-summary.html. Accessed
February 22, 2106.
15If you are not familiar with the term, you can learn more here: http://developer.android.com/
guide/components/intents-filters.html. Accessed February 22, 2016.

6.3 The Android Speech APIs 103

http://developer.android.com/reference/android/speech/tts/package-summary.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

request code received corresponds to the request code used to initiate the Intent (in our
case TTS_DATA_CHECK). Then, we manage the result of the Intent. If there is a TTS
engine installed in the device (the result code is CHECK_VOICE_DATA_PASS), we
create a TextToSpeech object and save it in the variable mytts. Now, we can use
mytts everywhere else in the code when we need to use the TTS engine. When the
TTS engine is initialized, we show a Toast16 and set the synthesis language to US
English. If there is no TTS engine installed, then we try to launch its installation from
Google Play (Code 6.10).

Now that we can control the TTS Engine through mytts, we can synthesize
texts as we wish. The SimpleTTS app (see Fig. 6.1) shows a simple behavior: The
user can type a message in a text field and press a button17 to hear it synthesized
back.

This behavior is controlled in a clickListener method attached to the
button where the speak method is invoked. The speak method used to accept
three parameters, but that version has been recently deprecated and now it accepts
four:

1. The text to be synthesized;
2. The queuing strategy; that is, as it is possible that the TTS engine is busy

synthesizing other texts, we must indicate whether we add the new message to
the queue or we remove the current entries in the queue to process it;

Code 6.9 Create and start and Intent that looks for a TTS engine in the device (fragment from
SimpleTTS.java)

16A Toast is a small text pop up shown on the device to provide simple feedbacks and notifica-
tions. Learn more in: http://developer.android.com/guide/topics/ui/notifiers/toasts.html. Accessed
February 22, 2016.
17The input_text and speak_button elements are defined in the simpletts.xml layout
file.

104 6 Implementing Speech Input and Output

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

3. Specific synthesis parameters to tune the engine;
4. A String identifier for the synthesis request. To avoid errors, we have to check

the SDK version to use the new or old version.

However, starting TTS with an Intent in this way does not make full use of
the potential provided by the API. In order to do that, we can employ a more
sophisticated approach. The RichTTS app shows how to do it. On the one hand,
we have added a listView to select the synthesis language and a slider to select
the volume level (Fig. 6.2).

These elements could also have been added to SimpleTTS; that is, they can
also be used with the Intent approach, as we have just added new code to our
previous button click listener (Code 6.11) to set the language and volume (in bold
in Code 6.12). As can be observed, now we are sending TTS parameters when

Code 6.10 Manage the result for the Intent that looks for a TTS engine in the device (fragment
from SimpleTTS.java)

6.3 The Android Speech APIs 105

invoking the speak method. Since Android version Lollipop, these parameters are
included in a Bundle, in earlier versions they are provided within a HashMap.

On the other hand, we now make use of the UtteranceProgressListener
class and the OnInitListener interface instead of using an Intent.

UtteranceProgressListener18 is an abstract class with methods that are
automatically invoked:

• When an utterance starts being synthesized (onStart).
• When an utterance has successfully completed processing (onDone).
• When it has been stopped in progress or flushed from the synthesis queue

(onStop).
• When an error occurs during processing (onError).

Most of these methods are abstract, and thus, their code must be provided in the
subclasses. This makes sense, as there is no general management for situations such

Fig. 6.1 Interface of the
SimpleTTS app

18http://developer.android.com/reference/android/speech/tts/UtteranceProgressListener.html.
Accessed February 22, 2016.

106 6 Implementing Speech Input and Output

http://developer.android.com/reference/android/speech/tts/UtteranceProgressListener.html

as these and so it is left to the programmer to indicate what to do when these events
happen. The challenge here is that our RichTTS class already is a subclass of
Activity (extends Activity), and as Java does not support multiple inheritance
(i.e., in Java a class can only have one superclass), it is not possible for RichTTS to
be an Activity and an UtteranceProgressListener simultaneously. To
get around this problem, we set an UtteranceProgressListener only for our
particular TextToSpeech instance (mytts) and indicate how each event will be
managed. In our case, we will just show toasts19 (Code 6.13).

We must be careful when implementing the methods, as in different Android
versions different approaches are used. In versions earlier than API level 15 (Ice
Cream Sandwich), the deprecated OnUtteranceCompletedListener was
used. From API level 15 on, UtteranceProgressListener replaced it.
Recently, in API level 21 (Lollipop), the onError method changed, and now
instead of having only one parameter (the utterance id), it has two (utterance id and

Fig. 6.2 Interface of the
RichTTS app

19In order to show toasts from a listener, make sure that you run them on the UI thread.

6.3 The Android Speech APIs 107

Code 6.11 Initiate synthesis when the button is pressed (fragment from SimpleTTS.java)

Code 6.12 Including language and volume when initiating speech synthesis (fragment from
RichTTS.java)

108 6 Implementing Speech Input and Output

error code). All these changes can be handled by checking the SDK version pro-
grammatically (see the setTTS method in RichTTS.java).

The second mechanism that we are using to make a richer use of TTS is to
implement the OnInitListener interface that offers another abstract method
(onInit) that is called to signal the completion of the TTS engine initialization.
Again, we have implemented it to show a toast (Code 6.14).

Code 6.13 Managing TTS events with UtteranceProgressListener (fragment from the setTTS
method of RichTTS.java)

6.3 The Android Speech APIs 109

6.3.2 Speech Recognition

Similar to TTS, there are different ways in which ASR can be introduced in
Android apps:

1. Using the RecognizerIntent class, by creating an Intent for ASR.
2. Using the SpeechRecognizer class to start the ASR service and imple-

menting the RecognitionListener interface that provides methods that
implement the management of the different events that may occur.

Both can use the same ASR engine, and thus, the ASR performance is equivalent
when using either strategy. The main difference is that using an Intent (option 1) is
easier to program and requires fewer lines of code. However, it provides a less rich
event control compared with the use of the SpeechRecognizer class (option 2).
Also if the app should be constantly listening, it is necessary to use option 2, as the
Intent stops listening when the user remains silent for a certain period of time.

SimpleASR presents an example using option 1. The user can select the ASR
parameters (language model and maximum number of results) and then press a
button. When the button is pressed, the app starts listening and provides a list of
recognition results along with their recognition confidence scores (Fig. 6.3).

In the onClickListener of the button, we first check whether ASR is
available on the device by making sure it is not a virtual device and that the device
is able to resolve the RecognizerIntent. If everything is ok, we set the
recognition parameters and invoke the listen method in which we actually start
the Intent (Code 6.15).

Code 6.14 Implementation of the OnInitListener interface RichTTS.java

110 6 Implementing Speech Input and Output

In the listen method, we can see how we create a RecognizerIntent to
attempt to recognize speech for which many extras can be specified (see the specifi-
cation of theRecognizerIntent class formore details20). In our app,we have just
included the required EXTRA_LANGUAGE_MODEL and the EXTRA_MAX_
RESULTS parameters. With respect to the language models, there are two options:

• LANGUAGE_MODEL_FREE_FORM for free-form speech recognition with a
more dictation-like language model.

• LANGUAGE_MODEL_WEB_SEARCH that uses a language model based on Web
search that is more keyword based and less determined by language modeling
rules.

The EXTRA_MAX_RESULTS parameter is used to limit the maximum number
of recognition hypotheses returned by the speech recognizer.

As the implementation of the API is likely to stream audio to remote servers
where the ASR is actually performed, it is necessary to start the Intent with
startActivityForResult and not just with startActivity. The result is
processed in the onActivityResult method (Code 6.16).

Fig. 6.3 Interface of the SimpleASR app

20http://developer.android.com/reference/android/speech/RecognizerIntent.html.

6.3 The Android Speech APIs 111

http://developer.android.com/reference/android/speech/RecognizerIntent.html

In the onActivityResult method, if the ASR is successful (RESULT_OK),
two main pieces of data are retrieved:

• The n-best list of recognition hypotheses, which is a collection of Strings rep-
resenting the alternative phrases recognized by the system.

Code 6.15 Checking that speech recognition is supported (fragment from SimpleASR.java)

112 6 Implementing Speech Input and Output

• A vector of floats representing the confidence scores corresponding to each of
the n recognition hypotheses. This information has only been available since
API level 14 (Ice Cream Sandwich), so we must make sure that we do not try to
request it in devices that do not support it.

In our app, these two pieces of information are combined in the output to show a
list view in the graphical interface with all the recognition hypotheses and their
confidence scores (Code 6.17).

The RichASR app presents an implementation that uses option 2 and thus offers
a more fine-grained coverage of recognition events. In our case, we use a simple
method to handle these events by displaying messages in a TextView on the
interface, as shown in Fig. 6.4.

In the RichASR app, we will use a SpeechRecognition object called
myASR that is initialized when the activity starts, after checking that the device
supports speech recognition (Code 6.18).

The listen method, which is invoked when pressing the button, is similar to
the previous example, but this time we also indicate the recognition language.
However, in this case, we do not use startActivityForResult, but use the
Intent as a parameter to the startListening method of a
SpeechRecognizer object that we have called myASR (Code 6.19).

As shown in Code 6.18, it is possible to set a RecognitionListener for the
SpeechRecognizer object. This involves implementing the
RecognitionListener interface (RichASR implements
RecognitionListener), which defines numerous methods that are invoked
when different ASR events occur. For example:

Code 6.16 Setting the ASR parameters (fragment from SimpleASR.java)

6.3 The Android Speech APIs 113

Code 6.17 Retrieving speech recognition results (fragment from SimpleASR.java)

114 6 Implementing Speech Input and Output

• When the ASR engine is ready to listen (onReadyForSpeech).
• When it encounters an error (onError).
• When it detects speech (onBeginningOfSpeech).
• When speech stops (onEndOfSpeech).
• When it receives buffered and partial results (onBufferReceived,

onPartialResults).
• When it finishes recognizing (onResults).

We have implemented a very simple behavior for these methods in RichASR,
which involves showing a message in a TextView in the interface (called
feedbackTxt), except that with the onResults method we show the
ListView with the recognition results and their confidences.

Each time that ASR is used in an app, either with Intent or with
SpeechRecognition (option 1 or 2), the following permissions must be
specified in the Manifest file:

• Recording audio, thus giving access to the device microphone.
• Including access to the Internet to stream audio for speech processing.

Fig. 6.4 Interface of the
RichASR app

6.3 The Android Speech APIs 115

• Checking the Internet connection to check whether the device is connected to
Internet before attempting to start ASR (Code 6.20).

Previously when the permissions were declared in the Manifest and users wanted
to install the app, they would be warned about the permissions it required and these
would be granted if they continued with the installation. However, since Android
Marshmallow (API level 23), users can grant permissions to apps while the apps are
running. According to Google21 this gives more control to users over the app as
they may grant some permissions (e.g., accessing the contact list) and revoke others
(e.g., tracking the device’s location), and they can do this at any time and not only
during installation.

Thus, as permissions may be revoked at any time, we cannot take for granted
that our apps have the permissions that are required to perform certain tasks. In
particular, when using ASR, we cannot assume that our app has permission to
record audio in the user’s device. That is why we have created the
checkASRPermission method, which is invoked every time we attempt to
listen. As can be observed in Code 6.21, we check whether the permission is
granted, and if not, we explicitly request it. This request is an asynchronous process
for which the callback is the onRequestPermissionsResult method that
informs the user whether the permission was granted or denied.

Code 6.18 Instantiating a SpeechRecognizer in RichASR.java

21http://developer.android.com/intl/es/training/permissions/requesting.html.

116 6 Implementing Speech Input and Output

http://developer.android.com/intl/es/training/permissions/requesting.html

6.3.3 Using Speech for Input and Output

Now, we are ready to combine rich ASR and TTS management into an app that has
speech input and output. We already have the necessary resources, and the

Code 6.19 Fragment of the listen method in RichASR.java

Code 6.20 Fragment of the AndroidManifest.xml file in SimpleASR and RichASR

6.3 The Android Speech APIs 117

challenge is now to create a mechanism to make our code reusable so that we can
use the same speech management code for every app that we want to build. We
show how this can be done in the TalkBack app. The app contains two java files:
VoiceActivity and MainActivity. VoiceActivity contains the code to
process ASR and TTS with a rich event control, and MainActivity provides an
example showing how it can be used within a particular app.

VoiceActivity is an abstract class created so that it can be extended by the
main activity of apps that include speech input and output. The initializa-
tion, listen, and speak methods are already implemented, and developers
using this class only need to provide code for the abstract methods that indicate how
to respond to the different ASR and TTS events, a management issue that changes
from app to app.

VoiceActivity arranges together the code that uses SpeechRecognizer
and TextToSpeech in order to manage ASR and TTS. As the names of the ASR
and TTS events are similar (e.g., onError), we have redirected some methods to
others, for example, in pieces of code such as Code 6.22.

As can be observed now that we are paying attention to the complete picture, the
reason for these redirections is to “rename” the methods so that they can be easily
understood outside the VoiceActivity class. Thus, public void onError

Code 6.21 Fragment to check the permission required to recognize speech

118 6 Implementing Speech Input and Output

(String utteranceId) and public void onError(int errorCode)
are very similar, but public void onTTSError(String utteranceId)
and public void processASRError(int errorCode) are very easily
distinguishable.

As can be observed, the methods to manage the TTS events (onTTSDone,
onTTSError and onTTSStart) have not been implemented in the
VoiceActivity class and thus are defined as abstract. For ASR, we are just
interested in some of these situations, managed by the following abstract methods:

• processAsrResults processes recognition results.
• processAsrReadyForSpeech to process the situation when the ASR is

ready to listen.
• processError which is used not only to cope within the onError event, but

also when the ASR result was NOMATCH; that is, the engine heard speech, but it
could not be linked to any recognizable phrase.

The idea is that the actual code to manage these events is provided as near to the
interface as possible, in the class that implements VoiceActivity. This way
VoiceActivity is very versatile and can be used as a basic structure to include
speech input and output capabilities in any app.

In the onRequestPermissionsResult (Code 6.21) that we have imple-
mented in VoiceActivity, we now invoke the abstract methods
showRecordPermissionExplanation and onRecordAudio
PermissionDenied, so that each app can, respectively, implement its own

Code 6.22 Fragment of the VoiceActivity class (TalkBack app)

6.3 The Android Speech APIs 119

management of the situation in which it is necessary to explain why the app must
have a certain permission and when it is not possible to perform speech recognition
because the user does not grant access to the microphone.

We have also encoded a more detailed control of the locale. When using TTS,
it is important to indicate the language that is being employed, as even a single word
may be pronounced differently in different languages (e.g., “Paris” is pronounced
differently in French and English), or even in the same language, (e.g., “tomato” has
different pronunciations in British and American English). In the VoiceActivity
class, we have included different methods to manage different situations:

• If the user indicates both language and country code (e.g., en-US), then we try to
use them both.

• If only the language code is indicated (e.g., en), then the default country code,
which is determined by checking the device settings, is used.

• If the language is not specified, then the language and country are determined
according to the device settings.

As it may happen that a locale is specified but is not available in the device, we
check that the language is available using the isLanguageAvailable method
of the TextToSpeech class (Code 6.23).

Another detail that we have not yet discussed is the inclusion of an utterance
id in the speak methods. This has been included to have a means of controlling

Code 6.23 Setting Locale for TTS (fragment of the VoiceActivity class in TalkBack app)

120 6 Implementing Speech Input and Output

cases such as which utterance is ready to be synthesized; which utterance has
already been synthesized; or whether an error was encountered while synthesizing.

MainActivity presents an example of how to use the VoiceActivity
class. It is a very simple application that asks the user to say something, and then, it
synthesizes back the recognized String, but it shows clearly how ASR and TTS can
be synchronized using the event control.

MainActivity is defined as a subclass of VoiceActivity and thus must
implement all the abstract methods; that is, it must say how to manage the TTS and
ASR events. In this case, it is simple: When the user presses the button (onClick),
we synthesize a message asking the user to say something; when the synthesis is
finished (onTTSDone), we start listening; and when we obtain recognition results
(processASRResults), we synthesize back what was recognized by the sys-
tem. Also, we process other events (e.g., when the system is ready to start listening
—processAsrReadyForSpeech) to change the appearance of the button so
that the user knows when the system is listening.

We have defined two ids for the utterances: ID_PROMPT_QUERY and
ID_PROMPT_INFO to distinguish prompts functioning as questions from prompts
functioning as statements or information providing. Using these identifiers, when a
prompt is synthesized and the onTTSDone method is executed, if the prompt was a
question, we immediately start listening, which is not the case when the prompt was
a statement (Code 6.24).

6.4 Summary

In this chapter, we have shown how speech input and output can be processed in
Android devices. We have covered different approaches from simple Intents to
more complex processing using specific classes and interfaces related to speech
recognition and synthesis that cover the most frequent events. Finally, we have
discussed an application that considers all the different factors and have created a
class called VoiceActivity that can be used for any app that uses speech input

Code 6.24 Using the prompt IDs to start listening after a question is posed (fragment of the
VoiceActivity class in TalkBack app)

6.3 The Android Speech APIs 121

and output. This code will be used in other chapters of the book as the speech
front-end to many different services.

Further Reading
We have focused in this chapter on the facilities provided by Google, but there are
many tools that can be used for speech recognition and synthesis within Android.
Some well-known tools for text-to-speech synthesis and speech recognition are listed
in Tables 6.1 and 6.2.

Wolf Paulus has created an Android app called Horsemen of Speech
Recognition that integrates several ASR engines into a single app.22 You can try
different inputs with each ASR engine and examine the different results returned.

Web Speech API Tutorials
Tutorials with topics already covered in this chapter:

• Voice-Driven Web Apps: Introduction to the Web Speech API.23

• How to use the Web Speech API.24

• Using the Web Speech API to Create Voice-Driven HTML5 Games.25

• Working with the Web Speech API.26

More advanced tutorials:

• Auto-translate. This tutorial uses the Web Speech API to input speech from the
microphone (speech to text) and speech synthesis (text to speech) to play back
your translated speech using the Google Translate API.27

• Using Voice to Drive the Web: Introduction to the Web Speech API.28

Exercises
Web Speech API

1. Prosody: Implement a Web form with a text area to input a text, different
elements to choose prosody features, and a button to start synthesizing the text
using the prosody selected. Hint.29

22https://play.google.com/store/apps/details?id=com.techcasita.android.reco. Accessed February
22, 2016.
23http://updates.html5rocks.com/2013/01/Voice-Driven-Web-Apps-Introduction-to-the-Web-
Speech-API. Accessed February 22, 2016.
24http://stiltsoft.com/blog/2013/05/google-chrome-how-to-use-the-web-speech-api/. Accessed
February 22, 2016.
25http://html5hub.com/using-the-web-speech-api/#i.1vh8jnvry3ex4w. Accessed February 22,
2016.
26http://grahamhinchly.wordpress.com/2013/11/14/working-with-the-web-speech-api/. Accessed
February 22, 2016.
27http://www.moreawesomeweb.com/demos/speech_translate.html. Accessed February 22, 2016.
28http://www.adobe.com/devnet/html5/articles/voice-to-drive-the-web-introduction-to-speech-api.
html. Accessed February 22, 2016.
29http://www.broken-links.com/tests/webspeech/synthesis.php. Accessed February 22, 2016.

122 6 Implementing Speech Input and Output

https://play.google.com/store/apps/details?id=com.techcasita.android.reco
http://updates.html5rocks.com/2013/01/Voice-Driven-Web-Apps-Introduction-to-the-Web-Speech-API
http://updates.html5rocks.com/2013/01/Voice-Driven-Web-Apps-Introduction-to-the-Web-Speech-API
http://stiltsoft.com/blog/2013/05/google-chrome-how-to-use-the-web-speech-api/
http://html5hub.com/using-the-web-speech-api/%23i.1vh8jnvry3ex4w
http://grahamhinchly.wordpress.com/2013/11/14/working-with-the-web-speech-api/
http://www.moreawesomeweb.com/demos/speech_translate.html
http://www.adobe.com/devnet/html5/articles/voice-to-drive-the-web-introduction-to-speech-api.html
http://www.adobe.com/devnet/html5/articles/voice-to-drive-the-web-introduction-to-speech-api.html
http://www.broken-links.com/tests/webspeech/synthesis.php

2. Voices: Implement a form that shows the voices available in your browser and
allows you to select one of them for speech synthesis. Hints:

– Demo of Web Speech API Speech Synthesis interface (text to speech).30

– Getting started with the Speech Synthesis API.31

– Web Apps that talk—Introduction to the Speech Synthesis API.32

3. Recognition configuration: Implement a Web form in which the speech
recognition parameters can be configured from the interface.

Android

1. Engines: Extend the RichTTS app with a ListView in which the user can
choose the TTS engine employed. Hint.33

2. TTS to file: Extend the RichTTS app to save the synthesized message into a
file. Hint.34

3. Web search: Extend the TalkBack app to perform a Web search with the
recognition result obtained. Hint.35

30http://html5-examples.craic.com/google_chrome_text_to_speech.html. Accessed February 22,
2016.
31http://blog.teamtreehouse.com/getting-started-speech-synthesis-api. Accessed February 22,
2016.
32https://developers.google.com/web/updates/2014/01/Web-apps-that-talk-Introduction-to-the-
Speech-Synthesis-API. Accessed February 22, 2016.
33http://developer.android.com/reference/android/speech/tts/TextToSpeech.html#getEngines().
Accessed February 22, 2016.
34http://developer.android.com/reference/android/speech/tts/TextToSpeech.html#synthesizeToFile
(java.lang.CharSequence,android.os.Bundle,java.io.File,java.lang.String). Accessed February 22,
2016.
35http://developer.android.com/reference/android/content/Intent.html#ACTION_WEB_SEARCH.

6.4 Summary 123

http://html5-examples.craic.com/google_chrome_text_to_speech.html
http://blog.teamtreehouse.com/getting-started-speech-synthesis-api
https://developers.google.com/web/updates/2014/01/Web-apps-that-talk-Introduction-to-the-Speech-Synthesis-API
https://developers.google.com/web/updates/2014/01/Web-apps-that-talk-Introduction-to-the-Speech-Synthesis-API
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html%23getEngines()
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html%23synthesizeToFile(java.lang.CharSequence%2candroid.os.Bundle%2cjava.io.File%2cjava.lang.String)
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html%23synthesizeToFile(java.lang.CharSequence%2candroid.os.Bundle%2cjava.io.File%2cjava.lang.String)
http://developer.android.com/reference/android/content/Intent.html%23ACTION_WEB_SEARCH

Chapter 7
Creating a Conversational Interface Using
Chatbot Technology

Abstract Conversational interfaces can be built using a variety of technologies.
This chapter shows how to create a conversational interface using chatbot tech-
nology in which pattern matching is used to interpret the user’s input and templates
are used to provide the system’s output. Numerous conversational interfaces have
been built in this way, initially to develop systems that could engage in conver-
sation in a human-like way but also more recently to create automated online
assistants to complement or even replace human-provided services in call centers.
In this chapter, some working examples of conversational interfaces using the
Pandorabots platform are presented, along with a tutorial on AIML, a markup
language for specifying conversational interactions.

7.1 Introduction

In Chap. 6, we showed how to add speech input and output to a mobile app using
the Google Speech APIs. However, speech input and output are only one part of the
tasks that we might require from a conversational interface. Our query might be
about the weather in London or for directions to the nearest Starbucks. We will
want our query to be interpreted by the conversational interface as a request to
answer a question or to carry out some action. We will also want the app to respond
with something related to what we asked for, such as a spoken answer to our
question about the weather or a display of information such as a map with the
requested directions.

Consider once again the components of a spoken language-based conversational
interface that we described in Chap. 2 (Fig. 7.1).

As we can see, once the user’s input has been recognized by the speech recog-
nition component, it has to be interpreted in order to determine its meaning. In some
approaches, this might involve a thorough analysis of the input using techniques
from spoken language understanding (SLU)—for example, a grammar to represent
the permissible inputs and a parser to apply the grammar to the input and to extract a
semantic representation. Then, the dialog manager has to decide what actions to

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_7

125

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_2

take, using as a basis this semantic representation and other relevant information
such as the current context. This will result in some output being generated—words
to be spoken and possibly output in other modalities, such as images, lists, and
maps. For these tasks, additional components are required, in particular: SLU (see
Chaps. 8 and 9), dialog management (DM) (see Chaps. 10 and 11), and response
generation (RG) (see Chap. 12).

In this chapter, we will present a simpler approach that has been widely applied
in chatbot technology, as illustrated in Fig. 7.2. In this approach, the input is
matched against a large store of possible inputs (or patterns) and an associated
response is outputted. The chatbot approach was first used in the ELIZA system
(Weizenbaum 1966) and has continued until the present day in the form of apps that
provide an illusion of conversation with a human as well as in areas such as
education, information retrieval, business, and e-commerce, for example, as auto-
mated online assistants to complement or even replace human-provided services in
a call center (see further Chap. 4).

More recently, chatbot technology has been extended to support the develop-
ment and deployment of virtual personal assistants by incorporating methods for
interpreting commands to the device or queries to Web services—for example, to
search for information on the Internet, access information on the device, such as
contacts and calendars, perform a task on the device such as launching an app,
setting an alarm, or placing a call.

We will use the Pandorabots platform, a popular Web service that enables
developers to create and host chatbots, to show how a conversational interface can
be created with chatbot technology. We first introduce Pandorabots and then

Fig. 7.1 The components of a spoken language-based conversational interface

126 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_12
http://dx.doi.org/10.1007/978-3-319-32967-3_4

provide a brief overview of AIML (Artificial Intelligence Markup Language),
which is used to specify conversations for a chatbot on the Pandorabots platform.
Following this, we will show how to embed a Pandorabots chatbot in an Android
app and how to provide speech input and output. We will then show how the
chatbot can be extended to handle commands to the device and queries to Web
services. In the final section, we will show how this approach can be further
extended.

The code corresponding to the examples in this chapter is in GitHub, in the
folder chapter7 of the ConversationalInterface1 repository.

7.2 Introducing the Pandorabots Platform

Pandorabots is a bot-hosting service launched in 2002 that enables chatbot devel-
opers (referred to in Pandorabots as botmasters) to develop, test, and deploy
chatbots (or more simply bots) without requiring a background in programming.2

AIML was developed by Dr. Richard Wallace as a language for specifying con-
versations with chatbots and was used by Wallace to develop the chatbot ALICE

Fig. 7.2 Using Pandorabots for spoken language understanding, dialog management, and
response generation

1http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.
2http://www.pandorabots.com/. Accessed February 20, 2016.

7.1 Introduction 127

http://zoraidacallejas.github.io/ConversationalInterface/
http://www.pandorabots.com/

(Artificial Linguistic Internet Computer Entity) which won the Loebner Prize in
2000, 2001, and 2004. The Loebner prize is awarded to the chatbot that in an
annual competition is considered by judges to be the most human-like. Other award
winning bots developed using AIML include Mitsuki, Tutor, Izar, Zoe, and
Professor. Currently more than 221,000 chatbots in many languages are hosted on
the platform. The platform has recently been revamped so that in addition to the
original chatbot-hosting server there are now facilities on a Developers Portal to
support the deployment of chatbots on the Web and on mobile devices.

Many chatbots that are currently available on mobile devices were created using
Pandorabots and AIML. These include the following: Voice Actions by Pannous
(also known as Jeannie), Skyvi, Iris, English Tutor, BackTalk, Otter, and
Pandorabot’s own CallMom app. CallMom can perform the same sorts of tasks as
other chatbots but also includes a learning feature so that it can learn personal
preferences and contacts and can be taught to correct speech recognition errors.
More information about Pandorabots and chatbots in general can be found at the
ALICE A.I. Foundation site.3 See also the Chatbots.org website.4

As mentioned in the previous section, in order to simulate conversation, chatbot
technology makes use of pattern matching in which the user’s input is matched
against a large set of stored patterns and a response is output that is associated with
the matched pattern. The technique was first used in the ELIZA system and has
been deployed in subsequent chatbots ever since. Authoring a chatbot on
Pandorabots involves creating a large number of AIML categories that at their most
basic level consist of a pattern against which the user’s input is matched and an
associated template that specifies the chatbot’s response. Code 7.1 is a simple
example of an AIML category.

Code 7.1 AIML category for “What are you?”

3http://www.alicebot.org/. Accessed February 20, 2016.
4https://www.chatbots.org/. Accessed February 20, 2016.

128 7 Creating a Conversational Interface Using Chatbot Technology

http://www.alicebot.org/
https://www.chatbots.org/

In this example, if the user’s input is matched against the text in the pattern, the
system executes the contents of the template. Matching in AIML is done by the
Graphmaster, which stores all the patterns in a graph. The graph consists of a
collection of nodes called Nodemappers that map the branches from each node. The
root of the Graphmaster is a Nodemapper with a large number of branches, one for
each of the first words of the patterns. In the case of ALICE, there were around
40,000 patterns with about 2000 different first words (Wallace 2003). Matching
involves traversing the graph on a word-by-word basis from the root to a terminal
node. Interestingly, this process bears some similarity to the process of incremental
processing by humans where an input sentence is analyzed on a word-by-word
basis as opposed to waiting for the utterance to be completed (Crocker et al. 1999;
see also Chap. 4). More detail about pattern matching in AIML can be found in
Wallace (2003) and also at the AliceBot Web page.5 A formal definition of the
Graphmaster and matching is provided in Wallace (2009).

Once a pattern has been matched, the contents of the associated template are
output. In the example above, the contents are in the form of text, so the output is a
message consisting of that text, but the template can also contain executable code
and various tags that can be used to compute more complex and more flexible
responses, as will be explained in Sect. 7.6.

In the remainder of this chapter, we will provide a series of exercises showing
the steps required to generate a bot (see Fig. 7.3).

Exercise 7.1: Creating a bot in Pandorabots Playground Pandorabots provides
a Web-based platform called Playground for testing bots developed in AIML. In
this section, we describe how to create an account in Playground and develop your

Fig. 7.3 The steps required to generate a bot

5http://www.alicebot.org/documentation/matching.html. Accessed February 20, 2016.

7.2 Introducing the Pandorabots Platform 129

http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://www.alicebot.org/documentation/matching.html

first bot using a built-in library of AIML files. The AIML files for the bot that we
will build in the next sections are in GitHub ConversationalInterface repository in
the folder chapter7/AIML.

1. To access Playground, go to the Pandorabots Web page6 and click on the
Playground tab, or you can also go directly to the Playground page.7 Here you
can sign up for a 10-day free trial account and log in using your Facebook,
Google, Twitter, or Yahoo account. You will find a QuickStart tutorial, a more
detailed tutorial, and a tab for FAQs, as shown in Fig. 7.4.

2. Once you have created an account, you can start to create bots, interact with
them and develop them further. The following are brief instructions. For more
detailed instructions, see the Playground Web site.

3. Click on the My Bots tab to see a list of your bots. (If you have just signed up
for an account, the list will be empty.)

4. Click on the Create Bot tab to create a bot. Give it a name, for example,
“talkbot.”

5. You will have a set of default AIML files.
6. To get started, you can make use of the chatbot base called Rosie, which is a

collection of AIML files. Rosie provides conversational interaction. The files in
the Rosie chatbot base allow you to get started quickly without having to write
any AIML code. This page8 includes a number of other useful resources. Go to
the page and upload the files found under the lib directory.

7. Select your bot. This will bring up the editor screen for your bot (Fig. 7.5).
8. Click on the Train tab. Now you can test your bot by asking questions.

Fig. 7.4 The Playground home page (reproduced with permission from Pandorabots, Inc.)

6http://www.pandorabots.com/. Accessed February 20, 2016.
7https://playground.pandorabots.com/en/. Accessed February 20, 2016.
8https://github.com/pandorabots/rosie. Accessed February 20, 2016.

130 7 Creating a Conversational Interface Using Chatbot Technology

http://www.pandorabots.com/
https://playground.pandorabots.com/en/
https://github.com/pandorabots/rosie

7.3 Developing Your Own Bot Using AIML

As you may have noticed, the chatbot bases provided by Pandorabots cover many
of the aspects of conversational speech. However, if you want your bot to be able to
respond to questions in a specific domain, you will need to create new AIML code.
In this section, we provide a brief tutorial on AIML that we will use as a basis for
creating a chatbot that provides answers to frequently asked questions in the domain
of type 2 diabetes. A more comprehensive tutorial can be found on the Pandorabots
Playground page.

The following are some of the questions that a user might ask:

What is type 2 diabetes?
What are the main symptoms of type 2 diabetes?
What is the main cause of type 2 diabetes?
How do you treat type 2 diabetes?
Can type 2 diabetes be cured?
Does exercise help?
Tell me about blood sugar.
What are the long term complications?

To be able to answer questions such as these, we need to create categories that
will specify the range of inputs and the answers that we wish to associate with them.

7.3.1 Creating Categories

A first step is to collect questions and their answers and to create categories con-
sisting of patterns and templates, for example (Code 7.2):

Fig. 7.5 The Playground editor screen (reproduced with permission from Pandorabots, Inc.)

7.3 Developing Your Own Bot Using AIML 131

However, it will quickly become clear that there are many ways of asking the
same question, for example:

What is the main cause of type 2 diabetes?
What causes type 2 diabetes?
What are the causes of type 2 diabetes?
What is the main cause?
What are the causes?
How do you get type 2 diabetes?

Rather than list all of these synonymous questions and their answers (which in
this case would all be the same), AIML makes use of a technique in which syn-
onymous questions are mapped on to one canonical pattern using the <srai> tag,
as in (Code 7.3).

In this example, the bot’s response is retrieved recursively by finding the
response in the category that contains the pattern of the canonical pattern what is
the main cause of type 2 diabetes. However, given the possible com-
binatorial explosion of synonymous questions, specifying all the required symbolic
reductions remains a formidable task.

Code 7.2 AIML category for “What is type 2 diabetes?”

Code 7.3 AIML category for “What is type 2 diabetes?” including an <srai> tag

132 7 Creating a Conversational Interface Using Chatbot Technology

7.3.2 Wildcards

The use of wildcards also enables similar patterns to be mapped on to one canonical
form. For example, the wildcard * matches one or more words in the input, so that
the following patterns can be treated as variants at different levels of
expressiveness:

What are the main symptoms of type 2 diabetes?
What are the * symptoms of type 2 diabetes?
What are the * symptoms *?

Another wildcard ^ can match zero or more words, so that in the following code,
the input “what are the main symptoms” would be matched along with other inputs
including words after the word “symptoms” (Code 7.4).

The words captured by a wildcard can be repeated back in the template by using
the <star/> tag. For example, in response to a question about symptoms, the
human might say, “I feel tired,” for which the pattern and template in Code 7.5
would cover any symptom mentioned.

This will allow an interaction such as:

Human: I feel tired.
Bot: When do you feel tired?

There can be more than one wildcard in a pattern, and they can be repeated back
in the template by using <star index = “x”>, where x corresponds to the
position of the wildcard in the input (Code 7.6).

This will allow an interaction such as:

Human: I feel tired and I have a headache.
Bot: So you feel tired and you have a headache.

While wildcards are a useful way of avoiding redundancy in patterns, as in any
other system using wildcards there is the potential for false positives, where an
input may be matched against an unintended canonical pattern, resulting in

Code 7.4 AIML code using the ^ wildcard

7.3 Developing Your Own Bot Using AIML 133

unexpected system responses. Looking again at Code 7.5, if the human inputs a
time expression, this will be matched and repeated in the bot’s response, resulting in
an incongruous output:

Human: I feel tired when I get up in the morning.
Bot: When do you feel tired when you get up in the morning?

Careful testing of patterns would help to avoid this sort of problem, but it may be
difficult to test exhaustively for every possible input and how it would be matched
against patterns containing wildcards.

7.3.3 Variables

Variables can be used to set and retrieve information from an interaction that is
stored as a predicate, for example (Code 7.7). The value of the medication
predicate can be retrieved later using <get>, as in (Code 7.8).

Code 7.5 AIML code using the * wildcard and the <star/> tag

Code 7.6 AIML code using the <star/> tag at several positions

134 7 Creating a Conversational Interface Using Chatbot Technology

7.3.4 Sets and Maps

Repetition can be avoided in patterns where a word forms part of a set—for
example, all color words can be declared in a set of colors so that separate patterns
do not have to be written for inputs such as:

I like red cars.
I like blue cars.
I like green cars.

To create a set, click on the plus button of the Files tab of the Editor and select
the set type. For example, create a file called color and add some colors. The set
can then be used in a category containing a pattern as shown in Code 7.9.

This technique can be used to address the problem of lexical alternation, for
example, dealing with morphological variants of a word, as in the forms “find,”
“finding,” and “found.”

Code 7.7 AIML code that defines a predicate called “medication”

Code 7.8 AIML code that uses the value of a predicate

Code 7.9 An AIML set

7.3 Developing Your Own Bot Using AIML 135

Maps are used to specify associations between sets. For example, a set could be a
list of US states and a map could be a function that associates an element in the set
of states with an element in a set of state capitals, as in Table 7.1.

Using maps, it is then possible to use a single category as shown in Code 7.10 to
ask and answer questions about any US state, for example:

What is the capital of Alabama?
What is the capital of Arizona?
What is the capital of California?

Pandorabots has some built-in sets and maps for collections such as natural
numbers, singular and plural nouns. For further details on sets and maps, see
Wallace (2014b).

7.3.5 Context

There are several mechanisms in Pandorabots for dealing with aspects of the
conversational context. The simplest of these is the tag <that> which enables the
system to remember the last sentence it has said. Consider the following example:

Human: I have problems with my blood sugar.
Bot: is blood sugar your main problem?
Human: yes.
Bot: what medication are you taking for your blood sugar?

Table 7.1 Sets in AIML State set State2capital set

Alabama Alabama:Montgomery

Arizona Arizona:Phoenix

California California:Sacramento

… …

Code 7.10 An AIML map

136 7 Creating a Conversational Interface Using Chatbot Technology

This interaction can be specified as in Code 7.11. Here, the second category is
bound to a context where it will only be matched if the last sentence spoken by the
bot was “Is blood sugar your main problem?”.

A more wide-ranging mechanism involves setting a topic. For example, the topic
could be set to blood sugar and only those patterns within the scope of the topic
will be matched. This is illustrated in Code 7.12.

AIML has a number of other features including the ability to learn from infor-
mation provided by the human interlocutor. For more details, consult the
Pandorabots tutorial9 or the AIML2.0 specification (Wallace 2014a).

One of the main advantages of the pattern-matching approach as implemented in
AIML and similar languages is its simplicity. AIML makes use of an efficient
matching algorithm that conducts a graph search through the prestored patterns on a
word-by-word basis so that responses can be provided in real time. Also, given that
the application is typically the simulation of conversation, it is not always critical if
the user’s input cannot be matched against a pattern. In this case, the ultimate
default category is invoked to help keep the conversation going. For example, the
chatbot can say something like “tell me more about yourself,” which may cause the
user to say something that will be matched by a pattern. Indeed, the art of chatbot
programming is to provide sufficient responses in the ultimate default category that
can be generated randomly and that can help the system recover from failures to
match the user’s input. This feature is probably not so useful in applications like the
diabetes bot that simulate the answering of frequently asked questions in a particular
domain.

Code 7.11 Dealing with context using the AIML <that> tag

9https://playground.pandorabots.com/en/tutorial/. Accessed February 20, 2016.

7.3 Developing Your Own Bot Using AIML 137

https://playground.pandorabots.com/en/tutorial/

Exercise 7.2: Creating the diabetes bot

1. Click on the Create Bot tab to create a bot. You can call it “Diabetes.”
2. You will have a set of default AIML files. Add a new file called “questions.”

You can upload a sample file from the ones you will find in the
ConversationalInterface repository /chapter7/AIML/.

3. Select your bot. This will bring up the editor screen for your bot, as shown in
Fig. 7.6.

4. Click on the Train tab. Now you can test your bot by asking questions.

You will soon find that your bot is unable to answer all of your questions, in
which case you will need to add more categories. You can edit and further develop
the bot by following the more detailed instructions in the Playground tutorials. If
you wish to make your bot available to other members within the Clubhouse—a
community of other botmasters—to do this you need to click on the tab Publish
Bot.

Code 7.12 Setting a topic in AIML

138 7 Creating a Conversational Interface Using Chatbot Technology

7.4 Creating a Link to Pandorabots from Your Android
App

Once you have sufficiently developed your bots in Playground, you are ready to
deploy them. In this section, we show how to embed a Pandorabots bot into an
Android app. There are several reasons why you might wish to embed your bot in
an app:

• The Playground only allows you to interact with your bot using the Web
interface provided.

• The Playground allows you to make your bot available to other registered bot
masters by publishing it in the Clubhouse, but you cannot make it publicly
accessible on a Web site or by deploying it as a mobile application. For this, you
need to create an account on the Developer Portal.

• By embedding the bot in an Android app, your app can be deployed on an
Android mobile phone or tablet and can be made available to others to use, just
like any other Android app.

• You can provide a speech-based front end to your app using the Google Speech
APIs.

• You can add additional functions, such as making commands to access device
functions—for example, to launch an app or to check the time. You can also link
to other Web services, such as search and maps.

7.4.1 Creating a Bot in the Developer Portal

Exercise 7.3: Signing up for an account on the Developer Portal The Developer
Portal provides all the necessary tools and SDKs for deploying bots anywhere. To
sign up to the Developer Portal:

Fig. 7.6 The Playground editor screen for the diabetes bot (reproduced with permission from
Pandorabots, Inc.)

7.4 Creating a Link to Pandorabots from Your Android App 139

1. Click on the Dev Portal tab on the Pandorabots main page or go directly to the
Developer Portal.10

2. Sign up for an account. You have to register for a plan. Accounts are free for a
10-day trial period after which different plans are available depending on needs.
You should try to iron out any problems with your AIML code in Playground
before moving your bot over to the Developer Portal. If you find that you need
to make more API calls than allowed on your plan, you can upgrade your plan,
as required.

3. Once your account and plan have been approved, you can retrieve your
user_key and application_id, which are required in order to make API
calls.

Exercise 7.4: Using the APIs to create a bot, upload and compile files, and talk
to a bot There are two ways to use the APIs:

1. Using the Pandorabots CLI (command line interface).
2. Using an HTTP client-like cURL.

Both are supported, though the easiest way is to use the Pandorabots CLI.11

The CLI can be installed by going to the Developer Portal home page and
scrolling down to the section entitled Getting Started, which is below the
pricing information. Detailed instructions are also provided here.12

The CLI is written in Javascript, so it is first necessary to setup node.js before
installing the CLI. An installer for node.js for both OS X and Windows users is
available here.13

Node.js includes npm, a Javascript package manager that you can use to
install the CLI using the command (Code 7.13).

This will install the CLI and make the pb and pandorabots commands
available for use in the command line, for example (Code 7.14).

The CLI needs to be configured using a JSON file called chatbot.json in
order to allow these commands. The chatbot.json configuration file stores

Code 7.13 Installing the CLI in node.js

Code 7.14 Using the pb command to upload a file

10https://developer.pandorabots.com/. Accessed February 20, 2016.
11https://github.com/pandorabots/pb-cli. Accessed February 20, 2016.
12http://blog.pandorabots.com/introducing-the-pandorabots-cli/. Accessed February 20, 2016.
13http://nodejs.org/download/. Accessed February 20, 2016.

140 7 Creating a Conversational Interface Using Chatbot Technology

https://developer.pandorabots.com/
https://github.com/pandorabots/pb-cli
http://blog.pandorabots.com/introducing-the-pandorabots-cli/
http://nodejs.org/download/

basic information about your application: the app_id, the user_key, and the
botname. When a CLI command is run, all the required information is added from
chatbot.json. To create this file, you can use the init command and the CLI
will prompt for all the required information. First create a directory for chatbot.
json, then run init, as shown in Code 7.15.

This will now allow various commands to be run, such as shown in Code 7.16.
A complete list of the commands is available here.14

Code 7.15 Configuring the CLI

Code 7.16 Examples of pb commands

Code 7.17 The pb command for uploading a file

Code 7.18 The curl command for uploading a file

14https://github.com/pandorabots/pb-cli. Accessed February 20, 2016.

7.4 Creating a Link to Pandorabots from Your Android App 141

https://github.com/pandorabots/pb-cli

Using cURL to talk to the API requires more complex commands. For example,
to upload a file using the CLI, you would type the command shown in Code 7.17.

However, using curl you would have to insert the values for user_key,
app_id and botname and type something like the command shown in Code
7.18.

Some API resources that provide assistance with API calls are available here.15

For example, the resource in Fig. 7.7 shows an alternative way to create a bot.
These resources are also useful for observing the feedback provided to the API

call and the text of the API calls, as this may be useful when linking to an app
programmatically.

Exercise 7.5: Creating and testing a bot on the Pandorabots Developer Portal

1. Create a bot using either the CLI or the cURL command.
2. Upload one or more AIML files to your bot.
3. Compile the bot (Note: each time a file is modified or uploaded the bot must be

compiled in order for the changes to be available in a conversation.
4. Talk to the bot using the input patterns in your AIML files.

Fig. 7.7 Creating a bot in the Developer Portal (reproduced with permission from Pandorabots,
Inc.)

15https://developer.pandorabots.com/docs. Accessed February 20, 2016.

142 7 Creating a Conversational Interface Using Chatbot Technology

https://developer.pandorabots.com/docs

7.4.2 Linking an Android App to a Bot

In this section, we describe how to link from an Android app to a Pandorabots bot
that has been created on the Developer Portal. This is shown in the TalkBot
app. The app works as follows: the user can press a button to say something to the
bot, the recognized utterance is passed on to Pandorabots and using its corre-
sponding AIML code it generates a response that is retrieved by the Android app. If
the response is simple (e.g., a text), it is synthesized back to the user, whereas if the
response includes mobile functions (see Sect. 7.5), they are executed and the results
are synthesized to the user (e.g., checking the battery level and informing about it).

We have arranged the classes in this app in different packages (folders) as shown
in Fig. 7.8.

• In Pandora, we have included the classes to connect to Pandorabots
(PandoraConnection), process the results received
(PandoraResultProcessor, FindLocation), and manage possible
errors (PandoraException, PandoraErrorCode).

• In VoiceInterface, we include the VoiceActivity class to process the speech
interface. This is exactly the same class as was used in the TalkBack app
(Chap. 6).

• In the root, we have the MainActivity class. This class specifies the main
behavior of our app.

The MainActivity class is very similar to the one presented for the
TalkBack app in Chap. 6. In TalkBack, in order to demonstrate speech
recognition and TTS we simply took the best result from speech recognition and
spoke it out using TTS (Code 7.19).

Now in TalkBot, we want to send the recognized result of the user’s input to
the Pandorabots service and get a response. The following code accomplishes this
and then calls a method to process the response (Code 7.20).

Additionally in the catch section, there is a call to the method
processBotErrors, which deals with a number of possible errors such as
invalid keys and ids for connecting to Pandorabots, no match for the input, and
Internet connection errors.

Fig. 7.8 Packages and
classes for the TalkBot app

7.4 Creating a Link to Pandorabots from Your Android App 143

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_6

When a response is returned from Pandorabots, it is handled in the
processBotResults method (Code 7.21).

Here, there are two cases to consider:

1. The result is in the form of text to be output as a spoken response. In this case,
the method removeTags is called to remove any HTML tags. The resulting
string is spoken using TTS.

2. The result contains an <oob> tag, indicating that the response requires further
processing to determine what sort of mobile function is being requested. In this
case, the result is sent to the method processOobOutput in the class
OOBProcessor. This will be discussed further in Sect. 7.5.

Connecting with Pandorabots
Some parameters are declared in MainActivity that are required to make a

connection to your bot on Pandorabots. You must insert your own values (Code
7.22).

These values are used in the PandoraConnection class to establish the
connection with Pandorabots. We have included them in MainActivity to make
the PandoraConnection class independent of the actual bot used. By doing
this, you can use PandoraConnection every time you want to use a bot in your
Android apps without changing a single line of the code and just adjusting these
parameters in the initial activity that uses the code (MainActivity in our case).

Code 7.19 Fragment of the processAsrResults method in the MainActivity class
(TalkBack app, Chap. 6)

Code 7.20 Fragment of the processAsrResults method in the MainActivity class
(TalkBot app)

144 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_6

PandoraConnection is a simplified version of a class created by Richard
Wallace as a Java API to the Pandorabots service.16 The class has been edited and
simplified to adapt it to the requirementsof ourAndroid app.Theclass does the following:

1. The connection parameters specified in MainActivity are initialized.
2. The user’s input string is sent to the chatbot on the Pandorabot’s service and the

bot’s response is returned as a JSON object from which the responses to be
returned to MainActivity are extracted. In order to do that, the apache http
client libraries are employed, which requires including them as dependencies in
the build.gradle file (Code 7.23).

Code 7.21 Fragment of the processBotResults method in the MainActivity class
(TalkBot app)

Code 7.22 Initializing the Pandorabots connection parameters in the MainActivity class
(TalkBot app)

16https://github.com/pandorabots/pb-java. Accessed February 20, 2016.

7.4 Creating a Link to Pandorabots from Your Android App 145

https://github.com/pandorabots/pb-java

Exercise 7.6: Speech enabling conversational interaction in the TalkBot app
Run the app and interact with it using inputs similar to those that you used to
interact with the bot in Playground. Remember that for the code to work you must
include your own connection parameters. Figure 7.9 shows the interface for the
app.

Code 7.23 Fragment of the talk method in the PandoraConnection class (TalkBot app)

Fig. 7.9 Interface of the
TalkBot app

146 7 Creating a Conversational Interface Using Chatbot Technology

7.5 Introducing Mobile Functions

Chatbot technology has been extended to support the development of virtual per-
sonal assistants that can carry out commands to the device and answer queries to
Web services. A recent addition to AIML supports these mobile functions. The
following is an example (Code 7.24).

Here, the <oob> tags separate content within the template that is not part of the
response to be spoken to the user: In this case, including a tag indicating that the
task involves search and that the content of the search is the item retrieved from the
wildcard *. In other words, if the user says “Show me a Web site about speech
recognition” the bot outputs the words “let’s try a Google Search” and encloses the
command to search for speech recognition within <oob> tags. Figure 7.10 shows
the result of this interaction:

In the next section, we explain how to realize this interaction in our Android app.

7.5.1 Processing the <oob> Tags

In TalkBot, we capture the user’s input using Google speech recognition and
send the text to Pandorabots. Once the text is matched against a pattern in the AIML
file, the content of the template is sent back to the MainActivity class. If the
content is only text, it is spoken out using the Google TTS.

However, if the template contains an <oob> tag, we need to check for this and
take some action. In this case, we call a new class OOBProcessor in
MainActivity that contains a number of methods for processing the content of
the <oob> tag and executing the required commands.

First, we need to separate the items in the template into <oob> content and text to
be spoken to the user. This processing is done in the PandoraResultProcessor
class. The processOobOutputmethod processes the JSON object returned from
Pandorabots and extracts the content of the label that, as shown in Code 7.25.

Code 7.24 Including mobile functions in AIML with <oob> tags

7.5 Introducing Mobile Functions 147

The text within the <oob> tags is assigned to a variable oobContent and the
remaining text is assigned to textToSpeak (Code 7.26).

Next, we analyze oobContent to determine the type of command—for
example, “search,” “battery,” and “maps”—that is contained in the tag embedded
within the <oob> tag, using the processOobContent method. In this case, we
extract <launch>calendar</launch>, which enables us to determine that
the command is to launch an app and that the app is the calendar. With this

Fig. 7.10 Response to the query “show me a Web site about speech recognition.” Accessed at
22:38 on February 17, 2016. Google and the Google logo are registered trademarks of Google Inc.,
used with permission

Code 7.25 JSON object returned from query to Pandorabots

148 7 Creating a Conversational Interface Using Chatbot Technology

information, we can call the launchApp method with the required parameters
(Code 7.27).

Other commands, such as “search” and “maps” are handled in a similar way.
However, each command has to be implemented appropriately, depending on how
it is handled in Android. For example, to launch an app we need to check whether
that app actually exists on the device, as the user could speak the name of an app
and have the name recognized, but this does not guarantee that there is an app of
that name on that particular device. The launchApp method does the following:

1. Gets a list of app names and package names on the device.
2. Checks if the app requested is on the device.
3. If not, reports to the user.
4. If yes, gets the package name of the requested app.
5. Launches the app.

7.5.2 Battery Level

The batteryLevel method checks the level of the battery on the user’s device
given an input such as “what is my battery level?” The following code launches an
Android intent to check the battery level and convert the raw battery level to a
percentage number that can be spoken out (Code 7.28).

7.5.3 Search Queries

Two categories are tagged with an <oob> tag that includes <search> (Code
7.29).

Given inputs such as “tell me about speech recognition,” the text of the search
query is extracted and passed to the Android ACTION_WEB_Search intent to be
executed and the text in the template is spoken using TTS (Code 7.30).

Code 7.26 Assigning the text with the <oob> tags

Code 7.27 Calling the launchApp method

7.5 Introducing Mobile Functions 149

Code 7.28 The batteryLevel method of the PandoraResultProcessor class
(TalkBot app)

Code 7.29 AIML code including a <search>

Code 7.30 Fragment of the search method of the PandoraResultProcessor class
(TalkBot app)

150 7 Creating a Conversational Interface Using Chatbot Technology

7.5.4 Location and Direction Queries

In this section, we show how to make queries about locations and directions, for
example:

Where is New York?
Show me directions from New York to Boston.

We distinguish between absolute queries, such as these, in which all the
parameters of the query are mentioned explicitly, and relative queries, in which the
user’s current location is assumed implicitly, as in:

Find the nearest Starbucks.
Show me directions to Boston.

The motivation for making this distinction is to avoid potential problems with
the use of contextual information. For example, given the following sequence:

Show a map of Boston.
Find the nearest Starbucks.

It is possible that Boston could be assigned as the current context so that the next
question is interpreted as

Find the nearest Starbucks in Boston.

instead of

Find the nearest Starbucks relative to my current location.

Without direct access to the context mechanisms being applied, it is not possible
to resolve this. Indeed, in interaction between humans it is not always clear whether
a subsequent question relates to a previous one or whether it is part of a new topic.

In order to deal with this in AIML, we identify those inputs that contain absolute
queries and those that contain relative queries by inserting an additional tag

7.5 Introducing Mobile Functions 151

<myloc> into relative queries and adding additional code to find the user’s current
location. The following is a high-level overview of these processes.

Identify location queries

1. Check if oobContent contains <map>.
2. Parse to extract the values for the map query (mapText,textToSpeak).
3. Call the mapSearch method.

mapSearch

1. Speak the content of textToSpeak.
2. Replace spaces in mapText with “+”.
3. Use the ACTION_VIEW action and specify the location information in the intent

data with the Geo URI scheme.
4. Start activity (Code 7.31).

Relative queries are marked up in AIML shown in Code 7.32.
A relative query results in the following actions:

1. The tag <myloc> causes the FindLocation class to be instantiated in order
to find the latitude and longitude of the user’s current location.

2. The ACTION_VIEW action is called with the values for latitude (lat) and
longitude (lng) for the user’s current location found.

Directions are handled in a similar way. For example, if the input is a relative
directions query, as in “directions to Boston,” the <myloc> tag causes

Code 7.31 Fragment of the mapSearch method of the PandoraResultProcessor class
(TalkBot app)

Code 7.32 AIML relative query

152 7 Creating a Conversational Interface Using Chatbot Technology

FindLocation to be called to find the latitude and longitude values of the user’s
current location, assuming the current location as the origin of the directions query
(Code 7.33).

Exercise 7.7: Testing the app

1. Run the sample code with a range of inputs that includes oob processing. You
can find the oob.aiml file in the chapter7/AIML folder in our GitHub
ConversationalInterface repository.

2. Note any queries that do not work.
3. Try to determine the problem, for example:

– Is it a speech recognition error?
– Is it due to missing categories in AIML?
– Are additional or modified Java methods required?

7.6 Extending the App

We can extend the app in a number of ways. For example, we could add more
AIML categories to allow a wider range of inputs. Another extension would be to
add more commands to the device and queries to Web services. The CallMom
app17 illustrates how this can be done.

In our application, we made use of Google Search and Google Maps to provide
responses to queries. CallMom also consults a number of external knowledge
sources, including Wolfram Alpha, DbPedia, Trueknowledge.com, Answers.com,
Weather Service, various shopping sites, and other Pandorabots.

Most chatbot markup languages nowadays have methods for representing infor-
mation. For example, inAIML2.1 there is a facility to create ontologies that enable the
chatbot to make use of and reason with knowledge, while ChatScript has a facility for
invoking WordNet ontologies. Another approach extends the reference implemen-
tation of AIML to enable the extraction of domain knowledge from semantic Web
ontologies using a scripting language called OwlLang and to store new knowledge
obtained from the conversations in the ontologies (Lundqvist et al. 2013).

Code 7.33 Fragment of the getDirections method in the PandoraResultProcessor
class (TalkBot app)

17http://callmom.pandorabots.com/static/callmombasic/features.html. Accessed February 20, 2016.

7.5 Introducing Mobile Functions 153

http://callmom.pandorabots.com/static/callmombasic/features.html

7.7 Alternatives to AIML

AIML is a widely used markup language for specifying chatbots. However, there are
some alternatives, the most notable of which is ChatScript. ChatScript was devel-
oped in 2010 by Wilcox (2011a, b) and is used mainly to provide natural language
understanding capabilities for characters in games, but has also been used for the
chatbot Rose that won the Loebner Prize competition in 2014. While AIML’s pattern
matching is word-based, in ChatScript it is meaning-based, supporting sets of words
called concepts to represent synonyms, as shown in Code 7.34.

This allows rules to be written that respond to all sorts of meat (Code 7.35).
Here, the input pattern (in parentheses) contains the concept “meat” that can be

matched by any of the words in the concept *meat. The chatbot’s response is the
text following the input pattern.

ChatScript is available as open source18, and there is also a tutorial on how to
build a conversational bot using ChatScript.19

Other alternatives to AIML are Api.ai20 and Wit.ai.21 Chapter 9 shows how to
use the Api.ai platform to extract a semantic analysis from the user’s input.

7.8 Some Ways in Which AIML Can Be Further
Developed

In this section, we review some ways in which AIML has been extended as well as
some suggestions for further developments.

7.8.1 Learning a Chatbot Specification from Data

Creating a chatbot in a language such as AIML typically involves hand coding a
large number of categories, a process that can take several years if starting from
scratch. Developers creating a chatbot on the Pandorabots Web site can make use of
libraries of AIML categories to get started. For commercial developers on a special
license, there is also a tool called Pattern Suggester that is part of Program AB, the
most recent reference implementation of AIML 2.0. Pattern Suggester helps to
automate the process of creating new patterns through a type of unsupervised

18http://sourceforge.net/projects/chatscript/. Accessed February 20, 2016.
19http://inspiredtoeducate.net/inspiredtoeducate/learn-to-build-your-own-conversational-robot-
using-chatscript/. Accessed February 20, 2016.
20https://api.ai/. Accessed February 20, 2016.
21https://wit.ai/. Accessed February 20, 2016.

154 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://sourceforge.net/projects/chatscript/
http://inspiredtoeducate.net/inspiredtoeducate/learn-to-build-your-own-conversational-robot-using-chatscript/
http://inspiredtoeducate.net/inspiredtoeducate/learn-to-build-your-own-conversational-robot-using-chatscript/
https://api.ai/
https://wit.ai/

learning for patterns.22 In one experiment, by searching through 500,000 inputs in
logs from the CallMom app, the Pattern Suggester was able to find new patterns and
create graphs at a rate of 6 categories per minute (Wallace 2014c).

A similar approach is the use of machine-learning techniques to read text from a
corpus and convert it to the required AIML format. Abu Shawar and Atwell (2005)
trained a bot using text from the Dialog Diversity Corpus, the spoken part of the
British National Corpus (BNC), and online FAQ (Frequently Asked Questions)
Web sites. They were able to generate more than one million categories extracted
from the BNC. FAQs are a good corpus source as they have a clear turn-taking
structure that can be easily adapted to the AIML pattern-template format.
Several FAQ chatbots were generated, including one using the FAQ of the School
of Computing at the University of Leeds, and a Python tutor trained on the public
domain Python programming language FAQ Web site. De Gasperis et al. (2013)
describe an algorithm in which texts in a corpus are used in a bottom-up procedure
that chooses portions of text to be used as answers along with a keyword analysis of
each piece of selected text to build questions. Each text representing an answer is
then associated with possible questions and their formal variants (or paraphrases).
Wu et al. (2008) describe an approach involving automatic chatbot knowledge
acquisition from online forums using rough sets and ensemble learning.

AIML 2.0 contains learning features that enable the system to be taught new
information and other chatbots such as Cleverbot,23 Jabberwacky,24 and Kyle25 are
also able to learn. Cleverbot employs a data mining approach in which it memorizes
everything that is said to it and then searches through its saved conversations to find
a response to new input, while Jabberwacky models the way humans learn lan-
guage, facts, contexts, and rules. Kyle models the way humans learn language,
knowledge, and context, making use of the principles of positive and negative
feedback.

Code 7.34 Declaring a concept in ChatScript

Code 7.35 Using a concept in ChatScript

22https://code.google.com/p/program-ab/. Accessed February 20, 2016.
23http://www.cleverbot.com/. Accessed February 20, 2016.
24http://www.jabberwacky.com/j2about. Accessed February 20, 2016.
25http://www.leeds-city-guide.com/kyle. Accessed February 20, 2016.

7.8 Some Ways in Which AIML Can Be Further Developed 155

https://code.google.com/p/program-ab/
http://www.cleverbot.com/
http://www.jabberwacky.com/j2about
http://www.leeds-city-guide.com/kyle

7.8.2 Making Use of Techniques from Natural Language
Processing

One potential criticism of chatbot technology is that it does not make use of
theoretically driven approaches and dialog technology but instead uses a simple
pattern-matching approach within a stimulus-response model. It could be argued
that incorporating additional technologies into AIML would make the authoring
process more difficult. It would be useful to conduct empirical studies to ascertain
the effectiveness of the additional technologies for the authoring process as well as
for pattern matching and RG. As it is, pattern matching in AIML is fast and
efficient, even when searching a large number of patterns. Moreover, from a
practical viewpoint it could be argued that in reality most language use in inter-
action with a chatbot does not need to address the ambiguous and complex sen-
tences that are the concern of theoretical linguists and that a stimulus–response
model has the merits of simplicity and practical utility (see discussion of this issue
by Wallace.26

Nevertheless, there have been some useful suggestions as to how AIML could be
enhanced using techniques from natural language processing, most notably in a
paper by Klüwer (2011). One problem concerns the authoring of patterns. In order
to be able to handle surface variation in input, i.e., alternative syntactic structures
and alternative lexical items, an AIML botmaster has to manually create a large
number of alternative patterns. Klüwer describes some natural language processing
technologies that could be used to optimize pattern authoring. For example, surface
variation in patterns could be addressed by using dependency structures (see
Chap. 8) rather than surface strings so that all variations on a sentence with the
same dependency structure would be associated with a single pattern. To handle
sentences that have the same meaning but different surface forms—for example, the
active and passive forms of a sentence—a semantic analysis of the different forms
of the sentence would abstract from their surface forms and allow the different
forms to be associated with a single pattern. These techniques could also help to
address the problem of false positives when the user’s input is matched erroneously
with patterns including wildcards that are used to cover variations in surface
structure.

Natural language processing technology could also be used to generate alter-
native output to allow for greater flexibility. With current chatbots, the output is
generally static, having either been defined manually as a system response or
assembled from templates in which some variables are given values at runtime. In
AIML, it is possible to code a set of alternative responses that are generated
randomly and there is also a <condition> tag that allows particular actions in a
template to be specified conditionally. ChatScript makes use of a C-style scripting
language that can be used along with direct output text to produce more flexible

26http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html. Accessed February 20, 2016.

156 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html

responses. For an approach to the automatic generation of output from abstract
representations, see Berg et al. (2013).

7.9 Summary

In this chapter, we have shown how to create a chatbot that can engage in con-
versational interaction and also perform functions on a mobile device such as
launching apps and accessing Web services. We have used the Pandorabots plat-
form to run the chatbot and have specified the conversational interaction using
AIML. Using this approach, we have not needed to implement components for
SLU, DM, and RG, as the pattern-matching capabilities of AIML and the associated
templates are able to handle a wide range of user inputs and produce appropriate
system responses. We have shown how the app developed in this chapter can be
further extended, and we have reviewed some alternatives to AIML.

In the following chapters, we will examine more advanced technologies that are
used to develop conversational interfaces, beginning with SLU in Chap. 8.

Further Reading
For readers interested in the Turing test, the collection of papers by an impressive
range of scholars in Epstein et al. (2009) explores philosophical and methodological
issues related to the quest for the thinking computer. The collection also includes
Turing’s 1950 paper “Computing machinery and intelligence.” There is also an
interesting paper by Levesque discussing the science of artificial intelligence in
which the Turing test is criticized for relying too much on deception. A set of
questions, known as the Winograd schema questions, is proposed as a more useful
test of intelligence.27

References

Abu Shawar B, Atwell E, Roberts A (2005) FAQChat as an information retrieval system. In:
Vetulani Z (ed) Human language technologies as a challenge. Proceedings of the 2nd language
and technology conference, Wydawnictwo Poznanskie, Poznan, Poland, 21–23 April 2005:
274–278. http://eprints.whiterose.ac.uk/4663/. Accessed 20 Jan 2016

Berg M, Isard A, Moore J (2013) An openCCG-based approach to question generation from
concepts. In: Natural language processing and information systems. 18th international
conference on applications of natural language to information systems, NLDB 2013, Lecture
notes in computer science, vol 7934. Springer Berlin Heidelberg, Salford, UK, 19–21 June
2013, pp 38–52. doi:10.1007/978-3-642-38824-8_4

Crocker MW, Pickering M, Clifton C Jr (1999) Architectures and mechanism for language
processing, 1st edn. Cambridge University Press, Cambridge. doi:10.1017/cbo9780511527210

27http://www.cs.toronto.edu/*hector/Papers/ijcai-13-paper.pdf. Accessed February 20, 2016.

7.8 Some Ways in Which AIML Can Be Further Developed 157

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://eprints.whiterose.ac.uk/4663/
http://dx.doi.org/10.1007/978-3-642-38824-8_4
http://dx.doi.org/10.1017/cbo9780511527210
http://www.cs.toronto.edu/%7ehector/Papers/ijcai-13-paper.pdf

De Gasperis G, Chiari I, Florio N (2013) AIML knowledge base construction from text corpora.
In: Artificial intelligence, evolutionary computing and metaheuristics, vol 427. Studies in
computational intelligence, pp 287–318. doi:10.1007/978-3-642-29694-9_12

Epstein R, Roberts G, Beber G (eds) (2009) Parsing the turing test: philosophical and
methodological issues in the quest for the thinking computer. Springer, New York. doi:10.
1007/978-1-4020-6710-5

Klüwer T (2011) From chatbots to dialog systems. In: Perez-Marin D, Pascual-Nieto I
(eds) Conversational agents and natural language interaction: techniques and effective
practices. IGI Global Publishing Group, Hershey, Pennsylvania, pp 1–22. doi:10.4018/978-1-
60960-617-6.ch001

Lundqvist KO, Pursey G, Williams S (2013) Design and implementation of conversational agents
for harvesting feedback in eLearning systems. In: Hernandez-Leo D, Ley T, Klamma R,
Harrer A (eds) Scaling up learning for sustained impact. Lecture notes in computer science, vol
8095, pp 617–618. doi:10.1007/978-3-642-40814-4_79

Wallace R (2003) The elements of AIML Style. ALICE A.I. Foundation, Inc. http://www.alicebot.
org/style.pdf. Accessed 20 Jan 2016

Wallace R (2009) Anatomy of A.L.I.C.E. In: Epstein R, Roberts G, Beber G (eds) Parsing the
turing test: philosophical and methodological issues in the quest for the thinking computer.
Springer, New York, pp 81–210. doi:10.1007/978-1-4020-6710-5_13

Wallace R (2014a) AIML 2.0 working draft. https://docs.google.com/document/d/
1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub. Accessed 20 Jan 2016

Wallace R (2014b) AIML—sets and maps in AIML 2.0. https://docs.google.com/document/d/
1DWHiOOcda58CflDZ0Wsm1CgP3Es6dpicb4MBbbpwzEk/pub. Accessed 20 Jan 2016

Wallace R (2014c) AIML 2.0—virtual assistant technology for a mobile era. In: Proceedings of the
mobile voice conference 2014, San Francisco, 3–5 March http://wp.avios.org/wp-content/
uploads/2014/conference2014/35_mctear.pdf. Accessed 20 Jan 2016

Weizenbaum J (1966) ELIZA—a computer program for the study of natural language
communication between man and machine. Commun ACM 9(1):36–45. doi:10.1145/
365153.365168

Wilcox B (2011a) Beyond Façade: pattern matching for natural language applications. http://www.
gamasutra.com/view/feature/134675/beyond_façade_pattern_matching_php. Accessed 20 Jan
2016

Wilcox B (2011b) Fresh perspectives—a Google talk on natural language processing http://www.
gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_
Natural_Language_Processing.php. Accessed 20 Jan 2016

Wu Y, Wang G, Li W, Li Z (2008) Automatic chatbot knowledge acquisition from online forum
via rough set and ensemble learning. IEEE Network and Parallel Computing (NPC 2008). IFIP
International Conference, pp 242–246. doi:10.1109/npc.2008.24

Web sites

Alice A.I. Foundation www.alicebot.org
AIML matching http://www.alicebot.org/documentation/matching.html
AIML tutorial http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html
AIML 2.0 Working Draft https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQE

iG-HkXRXusukADpFnDs4/pub
API.ai https://api.ai/
CallMom app http://callmom.pandorabots.com/static/callmombasic/features.html
Chatbots.org https://www.s.org/
Cleverbot http://www.cleverbot.com/
Jabberwacky http://www.jabberwacky.com/j2about
Kyle http://www.leeds-city-guide.com/kyle

158 7 Creating a Conversational Interface Using Chatbot Technology

http://dx.doi.org/10.1007/978-3-642-29694-9_12
http://dx.doi.org/10.1007/978-1-4020-6710-5
http://dx.doi.org/10.1007/978-1-4020-6710-5
http://dx.doi.org/10.4018/978-1-60960-617-6.ch001
http://dx.doi.org/10.4018/978-1-60960-617-6.ch001
http://dx.doi.org/10.1007/978-3-642-40814-4_79
http://www.alicebot.org/style.pdf
http://www.alicebot.org/style.pdf
http://dx.doi.org/10.1007/978-1-4020-6710-5_13
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1DWHiOOcda58CflDZ0Wsm1CgP3Es6dpicb4MBbbpwzEk/pub
https://docs.google.com/document/d/1DWHiOOcda58CflDZ0Wsm1CgP3Es6dpicb4MBbbpwzEk/pub
http://wp.avios.org/wp-content/uploads/2014/conference2014/35_mctear.pdf
http://wp.avios.org/wp-content/uploads/2014/conference2014/35_mctear.pdf
http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.1145/365153.365168
http://www.gamasutra.com/view/feature/134675/beyond_fa%c3%a7ade_pattern_matching_php
http://www.gamasutra.com/view/feature/134675/beyond_fa%c3%a7ade_pattern_matching_php
http://www.gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_Natural_Language_Processing.php
http://www.gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_Natural_Language_Processing.php
http://www.gamasutra.com/blogs/BruceWilcox/20120104/90857/Fresh_Perspectives_A_Google_talk_on_Natural_Language_Processing.php
http://dx.doi.org/10.1109/npc.2008.24
http://www.alicebot.org
http://www.alicebot.org/documentation/matching.html
http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://api.ai/
http://callmom.pandorabots.com/static/callmombasic/features.html
https://www.s.org/
http://www.cleverbot.com/
http://www.jabberwacky.com/j2about
http://www.leeds-city-guide.com/kyle

Node.js http://nodejs.org/download/
Pandorabots http://www.pandorabots.com/
Pandorabots blog http://blog.pandorabots.com/
Pandorabots Command Line Interface (CLI) https://github.com/pandorabots/pb-cli
Pandorabots CLI instructions http://blog.pandorabots.com/introducing-the-pandorabots-cli/Node.js
Pandorabots Developer Portal https://developer.pandorabots.com/
Pandorabots Github https://github.com/pandorabots
Pandorabots Playground https://playground.pandorabots.com/en/
Pandorabots Playground tutorial https://playground.pandorabots.com/en/tutorial/
Pandorabots Rosie library https://github.com/pandorabots/rosie
Pandorabots Twitter https://twitter.com/pandorabots
Wit.ai https://wit.ai/

Web sites 159

http://nodejs.org/download/
http://www.pandorabots.com/
http://blog.pandorabots.com/
https://github.com/pandorabots/pb-cli
http://blog.pandorabots.com/introducing-the-pandorabots-cli/Node.js
https://developer.pandorabots.com/
https://github.com/pandorabots
https://playground.pandorabots.com/en/
https://playground.pandorabots.com/en/tutorial/
https://github.com/pandorabots/rosie
https://twitter.com/pandorabots
https://wit.ai/

Chapter 8
Spoken Language Understanding

Abstract Spoken language understanding (SLU) involves taking the output of the
speech recognition component and producing a representation of its meaning that
can be used by the dialog manager (DM) to decide what to do next in the inter-
action. As systems have become more conversational, allowing the user to express
their commands and queries in a more natural way, SLU has become a hot topic for
the next generation of conversational interfaces. SLU embraces a wide range of
technologies that can be used for various tasks involving the processing of text. In
this chapter, we provide an overview of these technologies, focusing in particular
on those that are relevant to the conversational interface.

8.1 Introduction

In a conversational interface, the spoken language understanding (SLU) component
takes the output from the speech recognition (ASR) component and produces a
representation of its meaning that it passes on to the dialog manager (DM) for
further processing (see Chap. 10 for further details on the dialog management
component).

In order to appreciate the issues involved in SLU, let us consider the following
examples of the sorts of utterances that might be spoken to a conversational
interface:

1. Set the alarm for 8 o’clock tomorrow morning.
2. Is there an Italian restaurant near here?
3. Tell me about spoken dialog systems.
4. Are you sad?

Analyzing these utterances informally, we might conclude that utterance 1 is a
request to do an action (setting the alarm) in which the content of the request is a
time value along the lines of “8:00 current date +1.” Utterance 2 looks like a yes/no

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_8

161

http://dx.doi.org/10.1007/978-3-319-32967-3_10

question, but often an utterance such as this is interpreted as a request—in this case,
to find an Italian restaurant near the speaker’s current location and return some
answers, perhaps with addresses and a map (this is what usually happens when a
question like this is put to virtual personal assistants such as Google Now).
Utterance 3 has the form of a request but its purpose is to obtain information, so it is
more like a question that would be sent to a question answering system or to an
online encyclopedia such as Wikipedia. Finally, utterance 4 is also a question but
unlike utterance 3 it is more like the sort of question that occurs in everyday
conversation.

Note that we have mentioned several different concepts in this analysis of the
meaning of these examples. We have referred to the function of the utterance—i.e.,
whether it is a question, request for action, statement, or some other type of dialog
act. For conversational interfaces, knowing the function of the user’s utterance—
generally known as the dialog act being performed—is important in order to be
able to recognize the speaker’s intention and to decide what would be an appro-
priate type of response. So, for example, if the hearer interprets utterance 2 as a
question, then it would be sufficient to answer “yes” or “no,” whereas if it is
interpreted as a request, then a more extensive answer is required, such as directions
to the nearest Italian restaurant.

A conversational interface also needs to determine what the utterance is about.
There can be two aspects to this: determining the domain of the utterance—is it
about flight reservations, weather forecasts, stock quotes, and so on—and deter-
mining the user’s intent—for example, within the flight reservations domain, is it to
book a flight, change a booking, query a booking, and so on? In the examples
above, there were utterances about setting alarms, finding restaurants, getting
information about spoken dialog systems, and asking about personal feelings. In a
multidomain system, it may be useful to first determine the domain and then
determine the user’s intent, although in many cases these two aspects are reduced to
identifying the user’s intent along with the relevant elements of the utterance—
known as its entities (or slots). So, for example, in utterance 2 the intent might be
something like FindRestaurant and the entities might be cuisine:
Italian and location:near.

Various meaning representation languages have been used in semantic analysis
to represent the content of utterances. In traditional semantic analysis, First Order
Predicate Calculus (FOPC) has been used widely to represent literal content. FOPC
has the advantage that it provides a sound basis for inference; that is, there are
mechanisms that allow valid conclusions to be derived logically from the repre-
sented propositions. Generally, however, in practical conversational interfaces
representations in the form of sets of attribute-value pairs have been used to capture
the information in an utterance that is relevant to the application. Thus, in a rep-
resentation of utterance 2 above the different elements of meaning that we have
discussed—the dialog act type (request), the topic (FindRestaurant), and the attri-
butes (cuisine, location)—may be represented as follows:

162 8 Spoken Language Understanding

request(topic = FindRestaurant, cuisine = Italian, location = near)

One major issue for the SLU module of a conversational interface is that it has to
deal with spoken language. Spoken language is less regular than the language of
written texts. As discussed in Chap. 3, spoken utterances are often ill-formed in that
they may contain characteristics of spontaneous speech, such as hesitation markers,
self-corrections, and other types of disfluency. For example, a well-formed utter-
ance such as “is there an Italian restaurant near here” might have been spoken more
like:

is there uh is there—uh a Fre—I mean an Italian restaurant uh near here

Another problem is that the output of ASR may contain recognition errors that
make the string to be analyzed more difficult to interpret.

Finally, the output from ASR may not be a single utterance but an n-best list,
with potentially up to 100 hypotheses in the list. The simplest approach is to take
the 1st-best hypothesis and pass it on to SLU, but this is not necessarily the optimal
solution as some other hypothesis might be a closer transcription of what the user
actually said. However, processing all the items in the n-best list in order to dis-
cover the most appropriate one could have a significant bearing on the real-time
performance of the SLU component. An alternative that has been shown to work
effectively is the use of word confusion networks, a special kind of lattice that
encodes competing words in the same group (Hakkani-Tür et al. 2006).

8.2 Technologies for Spoken Language Understanding

Compared to ASR, SLU is much more diverse as it embraces a variety of different
technologies and approaches. The choice of a particular approach will depend on
the task to be performed by SLU—for example, it may be important to perform
fairly low-level tasks such as normalizing the input before going on to higher-level
tasks. Extracting the meaning may in some cases only require identifying keywords
in the input while in other cases a deeper understanding may be required. In the
following sections, we review a number of different technologies and approaches.
These technologies and approaches are not necessarily mutually exclusive and it is
often the case that several technologies are applied at different stages of the
interpretation process.

8.1 Introduction 163

http://dx.doi.org/10.1007/978-3-319-32967-3_3

8.3 Dialog Act Recognition

Dialog act recognition—also known as intent determination or spoken utterance
classification (Tur and Deng 2011)—involves determining the function of an
utterance in a dialog, for example, whether it is a question, suggestion, offer, and so
on. As described in Chap. 3, there are a number of taxonomies of dialog acts that
seek to account for the range of functions that utterances might have in a
conversation.

In the 1980s and early 1990s, dialog act recognition involved the application of
AI models of plan inference and reasoning (Allen 1995). An alternative approach
using statistical methods emerged in the late 1990s in which dialog act interpre-
tation is modeled as a supervised classification task.

Statistical dialog act recognition involves training classifiers on a corpus of
dialog utterances where each utterance is annotated in terms of the dialog act it
performs and features are identified that support the annotation. The Switchboard
corpus (Godfrey et al. 1992) has been used in many studies, and tag sets for
annotating a corpus include DAMSL (Allen and Core 1997), which provides a
domain-independent set of dialog act types. In some cases, domain-specific tags
have been employed, for example, in the Verbmobil dialog act tag set where the
dialog acts are related specifically to planning schedules (Suzanne et al. 1995).
Among the features often used for classification are the following:

• Words and phrases in the utterance, usually in the form of n-grams—for
example, “please” is a good cue word for a request and the n-gram “are you” for
a Yes–No Question (Webb et al. 2005).

• Prosody—for example, different prosodic features can help distinguish between
the interpretation of “OK” as an Agreement or as a Back-channel act where the
hearer indicates understanding of the preceding dialog act but does not attempt
to take the floor (Shriberg et al. 1998).

• Syntactic and semantic information derived from deep linguistic processing
(Klüwer et al. 2010).

• Dialog act sequences, in the form of dialog act n-grams (Nagata and Morimoto
1994).

Stolcke et al. (2000) used a combination of lexical, collocational, and prosodic
features as well as dialog act sequences. They modeled dialogs as an HMM and
dialog acts as observations from the model states. In other work, Bayesian networks
have been used for classification (Keizer et al. 2002; Klüwer et al. 2010). For an
overview of approaches to dialog act recognition, see Jurafsky and Martin (2009:
876–882) and Tur and Hakkani-Tür (2011).

Dialog state tracking (also known as belief tracking) is similar to dialog act
recognition. Dialog state tracking involves estimating a user’s goal in a spoken
dialog system. In order to compare models and dialog state tracking algorithms, a
series of dialog state tracking challenges have been organized in which a set of
labeled dialogs is provided against which participants apply their algorithms (Black

164 8 Spoken Language Understanding

http://dx.doi.org/10.1007/978-3-319-32967-3_3

et al. 2011; Williams 2012; see also the Web page at Microsoft Research for Dialog
State Tracking Challenge1). At the time of writing, the most recent challenge took
place at the International Workshop on Spoken Dialog Systems (IWSDS) in 2016.2

8.4 Identifying Intent

Intent identification is similar to dialog act recognition as it also involves classifying
the user’s utterance. Dialog act recognition has been developed primarily in aca-
demic research where the aim has been to find a taxonomy of dialog acts that can
classify the whole range of different functions that a user’s utterance can take in a
conversation—such as asking questions, making promises, acknowledging
responses, and requesting clarification. In commercial work, on the other hand, for
example, in domain-specific spoken dialog systems and in interactions with virtual
personal assistants and social robots, a narrower range of utterance functions is
used, such as asking a question, issuing a command, and providing information.
These functions are combined with a domain or task and are known as the user’s
intent—for example, a query to book a flight, a statement to provide a departure
time, or a command to set an alarm.

A precursor of current approaches to intent identification was the classification
of calls to call centers in order to automatically route the caller to the appropriate
agent. For example, in the HMIHY system described in Chap. 4 a caller’s utterance
was classified into one of a predefined set of categories (or call types). A number of
different machine-learning techniques have been employed in call classification
(Tur and Deng 2011).

Identifying the intent of an utterance can be seen as the first stage of the clas-
sification of the utterance before extracting the slot value pairs appropriate to that
intent. For example, if the intent is identified as a hotel booking, a set of slots
relevant to booking a hotel room is selected. Wu et al. (2010) found that this
two-stage classification helped to constrain the semantic analysis of the content of
the utterance, as the slots to be filled were restricted to those relevant to the
identified intent. This would be important in transactions involving multiple
domains, as in the ATIS task where utterances were mainly about flight reservations
but there could also be questions about ground transportation and airplane speci-
fications (Tur and Deng 2011).

There are a number of platforms including Api.ai,3 Wit.ai,4 and Microsoft’s
Language Understanding Intelligent Service (LUIS)5 that enable developers to

1http://research.microsoft.com/en-us/events/dstc/. Accessed February 20, 2016.
2http://www.colips.org/workshop/dstc4/. Accessed February 20, 2016.
3https://api.ai/. Accessed February 20, 2016.
4https://wit.ai. Accessed February 20, 2016.
5https://www.luis.ai/. Accessed February 20, 2016.

8.3 Dialog Act Recognition 165

http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://research.microsoft.com/en-us/events/dstc/
http://www.colips.org/workshop/dstc4/
https://api.ai/
https://wit.ai
https://www.luis.ai/

specify and train the natural language understanding component of a conversational
interface by defining the intents and entities associated with the utterances that users
are likely to say (see Williams et al. 2015a, b for more detail on LUIS). In Chap. 9,
we provide a tutorial on how to do this using the Api.ai platform.

8.5 Analyzing the Content of the User’s Utterances

The main task for SLU is to analyze the content of the user’s utterance and to
provide a representation of its meaning. Most research in SLU has focused on this
task. Determining the content of the user’s utterance is essential when interpreting a
search query and retrieving a ranked set of relevant documents; understanding a
question and finding an answer from a collection of retrieved documents; extracting
the key items of interest from a piece of text; or finding the required values to fill
slots in a semantic frame. In the following sections, we review a number of different
approaches that are used widely in SLU and that are relevant to applications
involving conversational interfaces.

8.5.1 Tokenization

Tokenization is one of the first steps in language processing in which a text is
broken up into units called tokens and normalized for further processing. Tokens
may be words, punctuation marks, or other units such as numbers. Compared with
languages such as Chinese where there are no explicit word boundaries, tok-
enization would appear to be relatively straightforward in languages such as
English where words are generally separated by white space. However, there are
some problematic cases. For example, should “New York” count as one or two
tokens? Contracted items are also an issue. For example: “aren’t” could be rendered
as “are” + “n’t,” although there is still the issue that “n’t” is not a word in English
and would need to be normalized to “not” for further processing as a linguistically
significant unit. Other problems in English involve abbreviations—for example,
should “dr.” be normalized as “doctor” or “drive” and is a period (or full stop) a
signal of an abbreviation or indicating the end of a sentence?

8.5.2 Bag of Words

One of simplest ways to analyze the user’s input is to collect the words as a set (or
bag), ignoring any syntactic structure or word order information but counting the
occurrences of each word. This approach is also known as the vector space model.
Stop words—i.e., words that do not contribute to the content of the text—are often

166 8 Spoken Language Understanding

http://dx.doi.org/10.1007/978-3-319-32967-3_9

deleted. Words that are morphological variants—for example, “walk,” “walks,”
“walking,” “walked”—are represented as the base form of the word (in this case,
“walk”) through a process known as lemmatization. The bag-of-words method is
applied widely in information retrieval to retrieve documents that are relevant to the
user’s query, and in document classification to train a classifier based on word
frequencies. The bag-of-words approach implicitly defines the topic of a query by
retrieving documents or text matching the words. One application for conversa-
tional interfaces is in question answering, where the bag-of-words approach can be
used to identify documents in which the answer to a user’s question can be found.

An advantage of the bag-of-words approach is that it does not require any
linguistic knowledge. However, for some queries a more precise analysis might be
required that takes into account linguistic information such as syntactic structure
and semantic content. For example, the terms in the two sentences “John chased the
dog” and “the dog chased John” would have the same vector representation but it is
obvious that the different orderings of the words result in different meanings.

8.5.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI), is
another technique that does not require specific linguistic knowledge such as
syntactic structure or semantics. In LSA, documents are also represented as bags of
words but instead of comparing the actual words LSA compares the meanings (or
concepts) behind the words. Patterns of words that frequently occur together in
documents are grouped under the assumption that words that are close in meaning
will occur in similar pieces of text. The words in a document are listed in a matrix in
which each row stands for a unique word and each column represents a document.
Each cell in the matrix represents the frequency with which a particular word
appears in the document that is represented by that cell’s column. Since the matrix
is often very large and sparse, a process known as singular value decomposition is
applied to the matrix to transform it and reduce its dimensionality. As a result, a
pattern of occurrences and relations is created that shows measures of word simi-
larities by mapping together terms that occur frequently in the same context. LSA
can also create mappings between terms that do not directly co-occur but that
mutually co-occur with other terms.

LSA has been used for a number of natural language processing (NLP) tasks, for
example, to predict query-document topic similarity judgments so that documents
of similar topical meaning can be retrieved even though different words are used in
the query and document.

8.5 Analyzing the Content of the User’s Utterances 167

8.5.4 Regular Expressions

Regular expressions provide a method for pattern matching of surface strings. As
shown in Chap. 7, pattern matching is used in chatbot applications in which the
user’s input is matched at the surface level against a large set of stored patterns. In
the simplest case, patterns take the form of a sequence of words but more powerful
matching can be achieved through the use of wildcards that can represent an
arbitrary string within the input. For example, in the pattern my name is *, the
symbol * can stand for any words that follow the specific words my name is.

Patterns are a form of regular expression. Regular expressions are used widely in
NLP tasks to specify text strings for applications such as Web search and infor-
mation extraction. They are particularly useful for predicable stretches of text, such
as dates, currencies, and post codes. Moreover, the processing of a regular
expression can be implemented using a finite state automaton, thus avoiding the
computational complexity of the types of parsing algorithm required for more
complex NLP tasks.

8.5.5 Part-of-Speech Tagging

Part-of-speech (POS) tagging involves labeling each word in the input with a tag
that indicates its syntactic role, for example, whether it is a noun, verb, adverb,
preposition, and so on. POS tags may be useful in regular expressions to specify
particular items, such as proper nouns that represent names, or to help disambiguate
words that can be tagged with more than one POS—for example, the word “book”
can be either a noun or a verb, but in a sentence such as “book a flight” it should be
tagged as a verb, since a noun would not be syntactically appropriate in a string
preceding a determiner and another noun. For this reason, words are often tagged
with their parts of speech as a first stage in syntactic parsing. Figure 8.1 shows an
example of POS tagging using the Stanford CoreNLP online demo.6

Part-of-speech taggers can be either rule-based or stochastic. In rule-based
taggers, a large set of hand-written rules is created that help to disambiguate words
such as “book” that can have more than one part of speech. So, for example, if
“book” is preceded by a determiner, then it is a noun and not a verb. Stochastic
part-of-speech taggers approach the problem of ambiguity by learning tag proba-
bilities from a training corpus and treating tagging as a sequence classification
problem using Hidden Markov models (HMMs).

6http://nlp.stanford.edu:8080/corenlp/process. Accessed February 20, 2016.

168 8 Spoken Language Understanding

http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://nlp.stanford.edu:8080/corenlp/process

8.5.6 Information Extraction

Information extraction involves extracting information from texts to create
machine-readable summaries or to create structured representations for knowledge
bases and ontologies. In named entity recognition (NER), items such as persons,
organizations, dates, and locations are extracted. Figure 8.2 shows an example of
NER using the Stanford CoreNLP online demo.7

Relation extraction goes beyond NER by determining the relations among the
named entities—for example, who did what to whom and when. Relations are used
in a variety of applications, such as the Unified Medical Language System (UMLS),
which consists of 134 entity types and 54 relations and is used to specify relations
between items for medical purposes, such as “injury disrupts physiological func-
tion.” Another example is Wikipedia’s InfoBox relations in which a template is
used to collect and present information about a topic across related articles.

Entities are used in platforms such as LUIS, Api.ai, and Wit.ai to specify the
words and phrases relevant to a particular domain. For example, words such as
“Italian,” “Indian,” and “Chinese” would be examples of the cuisine entity in the
Restaurant domain.

8.5.7 Semantic Role Labeling

Semantic role labeling is a form of shallow semantic parsing in which the argu-
ments of a verb are classified according to their semantic roles (Gildea and Jurafsky
2002). For example, in the string “book a flight to London on Friday,” the object
(sometimes known as the theme) of the verb “book” is “a flight,” while “to London”
is a location (or destination), and “on Friday” is a date. Semantic role labeling helps
determine the meaning of a sentence independently of its syntactic structure. For
example, in the sentences “obesity may cause diabetes” and “diabetes may be

Fig. 8.1 Example of POS tagging using the Stanford CoreNLP online demo

Fig. 8.2 Example of named entity recognition using the Stanford CoreNLP online demo

7http://nlp.stanford.edu:8080/corenlp/process. Accessed February 20, 2016.

8.5 Analyzing the Content of the User’s Utterances 169

http://nlp.stanford.edu:8080/corenlp/process

caused by obesity,” the semantic roles of “diabetes” and “obesity” are the same
even though their syntactic roles are different in the two sentences.

Automated semantic role labeling involves a series of steps. First the predicate of
a sentence is identified and labeled, then the constituents that function as its argu-
ments are found, and finally the semantic roles of those arguments are determined.
Different predicates have different numbers of arguments. For example: “laugh” and
“fall” are one-place predicates and “chase” and “kick” are two-place predicates.
Automatic semantic role labellers are trained using supervised machine learning and
resources such as FrameNet and PropBank. Often a syntactic analysis of the sentence
is performed in order to identify the predicate and the constituents that function as its
arguments, and then various features, such as the phrase type of the constituent, the
constituent’s headword, and the path in the parse tree from the constituent to the
predicate, are used to classify the arguments (Gildea and Jurafsky 2002).

Semantic role labeling is useful for many NLP tasks. With reference to con-
versational interfaces, determining the semantic roles in an utterance is used in
question answering systems where the semantic structures in the question are
matched against similar structures in a collection of documents in order to find a
potential answer to the question. Semantic role labeling can also be seen as a first
step in creating a full semantic representation of an input in which a semantic
grammar would then be used to specify the relations between the semantic roles.

8.6 Obtaining a Complete Semantic Interpretation
of the Input

The methods described so far typically do not require a complete analysis of the
user’s utterance but rather extract from the utterance the parts that are relevant for a
particular type of application. In this section, we consider the use of grammars to
provide a semantic interpretation of the whole of the user’s utterance. Obtaining the
semantic interpretation can be done either directly using a semantic grammar or in a
two-stage process in which the utterance is first parsed syntactically and then
analyzed for its semantic interpretation. We discuss first the use of semantic
grammars as they have been used widely to interpret the utterances spoken to
conversational interfaces.

8.6.1 Semantic Grammar

The semantic grammar approach uses grammar rules in which the constituents of
the utterance are classified in terms of their semantic roles. In the following
example, the left-hand side of the rule specifies a non-terminal symbol that

170 8 Spoken Language Understanding

represents a semantic role, while the right-hand side specifies either terminal
symbols that represent words in the input or another non-terminal symbol (e.g.,
CITY):

Taking the utterance “book a flight to London on Friday” as input, the following
is a possible output from the application of these rules:

The Phoenix spoken language system, which outperformed many other systems
in the ATIS evaluations (Ward 1991), used manually constructed semantic gram-
mars to detect keywords in an utterance and convert them to semantic tags.

Semantic grammars provide a shallow analysis and are not suitable for appli-
cations where finer distinctions need to be captured. For example, there is only one
word that is different in the following sentences but the meaning representations
should be different:

1. List all employees of the companies who are based in the city center
2. List all employees of the companies that are based in the city center

The interpretation of sentence 1 is that it is asking for a listing of employees who
are based in the city center while the interpretation of sentence 2 is that it is asking
for a listing of employees who are not necessarily based in the city center but who
work for companies based there. This difference can only be picked up by an
analysis that reflects the difference between the use of “who” and “that” in such
sentences. Semantic grammars would not pick up such subtle distinctions.

Handcrafted semantic grammars have been used widely in commercial
VoiceXML-based applications to output a semantic interpretation directly from the
ASR output. Finite state grammars are defined as language models for recognition
using SRGS (Speech Recognition Grammar Specification) (Hunt and McGlashan

8.6 Obtaining a Complete Semantic Interpretation of the Input 171

2004), and the rules in the grammars are augmented with semantic interpretation tags
based on Semantic Interpretation for Speech Recognition (SISR) (Van Tichelen and
Burke 2007). Recognition is made less complex by specifying grammars for the
predicted inputs at each step in a dialog. For example, if the system’s prompt
requires a “yes” or “no” response, then a grammar restricted to variants of “yes” and
“no” is defined. A similar strategy is applied to other predictable inputs such as dates,
times, and credit card details. However, this approach is not viable in more complex
applications, for example in troubleshooting dialogs, where user inputs are more
varied and less predictable, nor in user-directed systems where the user can issue a
wide range of questions or commands to a conversational interface.

8.6.2 Syntax-Driven Semantic Analysis

In syntax-driven semantic analysis, it is assumed that the units retrieved using
syntactic analysis can be mapped on to units of semantic analysis. Two grammar
formalisms have been used widely for syntactic analysis: context-free grammar
(CFG) and dependency grammar (DG).

8.6.2.1 Context-Free Grammar

CFG is based on the notion of constituency, where a constituent in a sentence is a
group of words that forms a unit, for example, a noun phrase or a verb phrase.
Figure 8.3 shows some CFG and lexical rules along with a parse tree based on
application of the rule to the string “book a flight to London on Friday.”

This is a syntactic representation of the input. To obtain a semantic interpreta-
tion, each of the constituents is analyzed using semantic attachment rules. Of
course, a realistic grammar capable of parsing the diverse input to a conversational
interface would require thousands of rules.

Adding more rules quickly gives rise to syntactic ambiguity, as the rules may
combine with one another to produce multiple readings of a sentence. For example,
in the rules in Fig. 8.3 PP is a constituent of NP. However, a PP can also be a
constituent of VP as in the rule:

VP → Verb NP PP

Here, the PP modifies the action described, as in a sentence such as “book a
flight with my credit card” where the meaning of the sentence is that the credit card

172 8 Spoken Language Understanding

is associated with the act of booking. The rule in this case is an example of VP
attachment. On the other hand, in the sentence “book a flight to London on Friday,”
we would want the PP “on Friday” to be attached to “flight” and not to “book,” as
shown in Fig. 8.3, as otherwise we would have a reading in which the booking was
to done on Friday. In fact, both readings would be syntactically possible given the
rules and a parser would have no way of distinguishing between the two readings.
This issue can quickly escalate. For example, Jurafsky and Martin (2009: 467)
show how for the sentence “Show me the meal on Flight UA 386 from San
Francisco to Denver” there are 14 alternative parse trees due to attachment
ambiguities.

Finding all the parses for sentences with multiple readings could result in
inefficient parsing of constituents, since the parser would repeatedly apply all the
alternative rules in order to produce the subtrees associated with the different
readings. For example, in the sentence “book a flight in the evening,” the PP “in the
evening” would be parsed as part of the VP rule and then again as part of the NP
rule. Chart parsing has been proposed as a solution to this problem. With chart
parsing, a data structure called a chart is used to store the parses of constituents as
they are parsed so that they do not have to be parsed again later, and then the
permissible combinations are constructed from the entries in the chart.
Chart parsing is an example of dynamic programming in which solutions to

Fig. 8.3 CFG rules, lexical rules, and parse tree for the phrase “a flight to London on Friday”

8.6 Obtaining a Complete Semantic Interpretation of the Input 173

subproblems are stored and then combined to construct an overall solution,
resulting in efficiency gains.

Another problem is that where there are multiple parses for an utterance, there is
no simple way of deciding which is the best parse. One solution to this problem is
to use probabilistic parsers in which the CFG rules are assigned probability dis-
tributions, for example:

NP → Det Noun PP (0.2)

This rule states that the probability of this rule expansion is 0.2 in relation to the
other NP rules in the grammar. The probabilities are learned from data such as a
treebank of parsed sentences, for example, the Penn Treebank (Taylor et al. 2003).
Thus, given appropriate probability assignments, the attachment of the PP in the
evening in the sentence “book a flight in the evening” would return NP attachment
as the most likely parse.

8.6.2.2 Dependency Grammar

DGs are an alternative to CFGs (Kübler et al. 2009). Here the focus is not on
constituency as determined by CFG rules but on binary semantic or syntactic
relations between the words in a sentence. Figure 8.4 shows a dependency repre-
sentation for the sentence “book a flight”:

Here the arrow labeled det from “flight” to “a” indicates that “flight” is the
headword in the sequence “a flight” and “a” is a dependent word, in this case
functioning as a modifier. The word “book” is the headword in a dependency
relation with the word “flight,” which functions as dobj (direct object). Figure 8.5
shows an analysis of the sentence “book a flight to London on Friday”:

Here the pp relations represent the interpretation that the dependencies are
between “flight” and “London,” and “flight” and “Friday.”

DGs have certain advantages over CFGs, particularly for parsing spontaneous
spoken language (Béchet and Nasr 2009; Béchet et al. 2014). Another advantage is

Fig. 8.4 Dependency parse
for the sentence “book a
flight”

174 8 Spoken Language Understanding

that a single dependency structure can represent a number of surface level varia-
tions, whereas in a CFG different constituency structures would be required.

8.7 Statistical Approaches to Spoken Language
Understanding

Up until the 1980s, NLP was dominated by the knowledge-based (or symbolic)
paradigm in which grammars were handcrafted and meaning was represented using
logic-based formalisms. At this time, the focus was on parsing written texts. In the
1990s, a paradigm shift occurred in which probabilistic and data-driven models that
had already been deployed successfully in speech recognition were now applied to
natural language understanding. The availability of large corpora of spoken and
written text led to an increased use of machine-learning techniques so that the
previously handcrafted rules of the knowledge-based paradigm could be learned
automatically from labeled training data. At the same time, attention turned to SLU,
for which statistical methods have proved to be more robust as they degrade
gracefully with input that is previously unseen and potentially ill-formed.

Generally in statistically based semantic parsing, which is often referred to as
decoding, the focus has been on extracting those aspects of meaning that are
relevant to a particular task and domain rather than on developing a more general
approach to semantic interpretation. Decoding is formalized as a pattern recognition
problem in which the goal is to find a semantic representation of the meaning M of
an utterance W that has the maximum a posteriori probability P(M|W). Applying
Bayes rule, this can be rewritten as the following decision rule (Wang et al. 2011):

M̂ ¼ argmax
M

PðMjWÞ ¼ argmax
M

PðW jMÞPðMÞ ð8:1Þ

Here P(M), the semantic prior, represents the probability of the meaningM, and P
(W|M), the lexicalization model, represents the probability of the utterance given M.

Two main types of statistical approach have been proposed in recent years to
address the SLU task: generative and discriminative models (Raymond and

Fig. 8.5 Dependency parse for the sentence “book a flight to London on Friday”

8.6 Obtaining a Complete Semantic Interpretation of the Input 175

Riccardi 2007; Mairesse et al. 2009; Dinarelli 2010). The parameters of generative
models refer to the joint probability of concepts and semantic constituents.
Discriminative models learn a classification function based on conditional proba-
bilities of concepts given words.

Generative models are robust to over-fitting and they are less affected by errors
and noise. However, they cannot easily integrate complex structures.
Discriminative models can easily integrate very complex features that can capture
arbitrarily long-distance dependencies. On the other hand, they usually over-fit
training data. These two statistical alternatives lead to very different and complex
models depending on whether the SLU task involves dealing with simple classi-
fication problems or sequence labeling problems. Different models for SLU com-
bine the strengths of both approaches (Dinarelli 2010).

8.7.1 Generative Models

The most representative generative models for language understanding are based on
the Hidden Vector State model (HVS), Stochastic Finite State Transducers (SFST),
and Dynamic Bayesian Networks (DBN).

8.7.1.1 The Hidden Vector State Model

The HVS model extends the discrete Markov model encoding the context of each
state as a vector. State transitions are performed as stack shift operations followed
by a push of a preterminal semantic category label as for a tree parser. As detailed in
He and Young (2006), all the parameters of the model are denoted by λ and each
state at time t is denoted by a vector of semantic concept labels.

ct ¼ c1t; c2t; . . .; cDtt½ � ð8:2Þ

where c1t is the preterminal concept and cDtt is the root concept.
The joint likelihood function is defined as:

LðkÞ ¼ logPðW ;C;NjkÞ ð8:3Þ

where W is the word sequence, C is the concept vector sequence, and N is the
sequence of stack pop operations.

The auxiliary function Q is defined to apply the Expectation-Maximization
(EM) technique to maximize the expectation of L(λ) given the observed data and
current estimates:

176 8 Spoken Language Understanding

QðkjkkÞ ¼ E logPðW ;C;NjkÞjW ; kk
� �X

C;N

PðC;NjW ; kÞ logPðW ;C;NjkkÞ ð8:4Þ

The term P(W, C, N) is decomposed as follows:

PðW ;C;NÞ ¼
YT
t¼1

PðntjWt�1
1 ;Ct�1

1 Þ � P ct½1�jWt�1
1 ;Ct�1

1 ; nt
� � � PðwtjWt�1

1 ;Ct
1Þ

ð8:5Þ

These three terms are approximated in He and Young (2006) to solve this
equation choosing a value for nt, then selecting a preterminal concept tag ct[1], and
finally selecting a word wt.

8.7.1.2 Stochastic Finite State Transducers Models

SFSTs model the SLU task as a translation process from words to concepts, using
Finite State Machines (FSM) to implement the stochastic language models
(Raymond and Riccardi 2007). An FSM is defined for each elementary concept.
They can be manually designed or learned using an annotated corpus. Each
transducer takes words as input and outputs the concept tag conveyed by the
accepted sentence.

All these transducers are grouped together into a single transducer, called λW2C,
which is the union of all of them. A stochastic conceptual language model is
computed as the joint probability PðW ;CÞ:

PðW ;CÞ ¼
Yk
i¼1

PðwicijhiÞ ð8:6Þ

where
hi ¼ fwi�1ci�1. . .w1c1g This term is usually approximated by

fwi�1ci�1;wi�2ci�2g as a 3-gram model.
C ¼ fc1; c2; . . .; ckg is the sequence of concepts.
W ¼ fw1;w2; . . .;wkg is the sequence of words.

This model, called λSLM, is also encoded as an FSM. Given a new sentence
W and its FSM representation λW, the translation process is to find the best path of
the transducer resulting in the next composition:

kSLU ¼ kW � kW2C � kSLM ð8:7Þ

In the SFST model, the best sentence segmentation (concept boundaries and
labels) is computed over all possible hypotheses in λSLU.

8.7 Statistical Approaches to Spoken Language Understanding 177

8.7.1.3 Dynamic Bayesian Networks Models

Two interesting studies of DBNs for SLU are described in Lefèvre (2006, 2007).
These models integrate automatic concept labeling and attribute-value extraction
into a single model, thus allowing a complete stochastic modeling.

The concept of decoding is reformulated in this approach to combine the concept
sequence with the value sequence as follows:

ĉN1 ; v̂
N
1 ¼ argmaxcN1 ;vN1 pðc

N
1 ; v

N
1 jwT

1 Þ argmaxcN1 ;vN1 pðw
T
1 jcN1 ; vN1 Þp vN1 jcN1

� �
pðcN1 Þ ð8:8Þ

where the concepts cN1 are hypothesized by means of:

ĉN1 ¼ argmaxcN1

X
vN1

argmaxcN1 ;vN1 pðw
T
1 jcN1 ; vN1 Þp vN1 jcN1

� �
p cN1
� � ð8:9Þ

Factored language models (FLM) can be used to improve the estimates of the
terms in the previous equation (Bilmes and Kirchhoff 2003).

8.7.2 Discriminative Models

The most representative discriminative models for language understanding are
based on support vector machines (SVMs) (Raymond and Riccardi 2007) and
conditional random fields (CRFs) (Lafferty et al. 2001).

8.7.2.1 Support Vector Machines Models

SVMs are machine-learning algorithms included into the class of linear classifiers.
They learn a hyperplane Hð~xÞ ¼ ~w~xþ b ¼ 0 that divides training examples with
maximum margin, where the learned parameters are given as follows:

• ~x, the feature vector representation of a classifying object o,
• ~w 2 R,
• b 2 R (Vapnik 1998).

Applying the lagrangian optimization theory, the hyperplane can be represented
in the following dual form: X

i¼1...l

yiai xi
!~xþ b ¼ 0 ð8:10Þ

where xi
! are the training examples, yi is the label associated with xi

! (+1 or −1), and
ai are the lagrange multipliers.

SVMs are applied to the SLU task to solve the concept-labeling problem as a
sequence of classification problems using binary classifiers that can be trained

178 8 Spoken Language Understanding

taking into account non-local features and deciding the current concept in the
sequence locally without using decisions made at previous steps.

8.7.2.2 Conditional Random Fields Models

CRFs are log-linear models that train conditional probabilities, taking into account
features of the input sequence. Conditional dependence is captured using feature
functions and a factor for probability normalization. A sequence level normalization
leads to a linear chain CRF and a positional level normalization leads to the
maximum entropy model (Bender et al. 2003).

The conditional probabilities of the concept sequences c1N ¼ c1; . . .; cN given the
word sequences w1

N ¼ w1; . . .;wN are calculated by means of:

p cN1 jwN
1

� � ¼ 1
Z

YN
n¼1

exp
XM
m¼1

km � hm cn�1; cn;w
nþ 2
n�2

� � !
ð8:11Þ

where km is the vector of parameters to be trained, hmðcn�1; cn;wnþ 2
n�2 Þ are the

feature functions used to capture dependencies between input features (words and
other features that can be associated with words in a certain window around the
current word to be labeled) and the output concept (Macherey et al. 2009). Lexical,
Prefix and Suffix, Capitalization, Transition, Prior, and Compound Features are
usually used (Dinarelli 2010).

One of the problems for statistical SLU is the need for large amounts of
annotated data to train the models. Increasingly, resources are becoming available
in the public domain, for example, the ATIS corpus (Dahl et al. 1994), the DARPA
Communicator corpus (Walker et al. 2002), and the LUNA corpus (Dinarelli et al.
2009; Hahn et al. 2011).

8.7.3 Deep Learning for Natural and Spoken Language
Understanding

Since around 2006 deep learning methods have begun to outperform other
machine-learning methods in areas such as speech recognition and image pro-
cessing, and more recently also in NLP and SLU.

In deep learning for NLP (or deep NLP), syntactic categories such as N, V, NP,
VP, and S, which are traditionally treated as discrete atomic categories, are rep-
resented as vector representations. At the level of individual words, word embed-
dings are used to encode among other things syntactic and semantic relationships of
words to neighboring words, typically using a window of 5 words on each side of
the word being represented. This allows semantically similar words to be mapped to
neighboring points in a continuous vector space (Mikolov et al. 2013a).

8.7 Statistical Approaches to Spoken Language Understanding 179

Deep learning has been used successfully to perform many of the NLP tasks
discussed in this chapter, including part-of-speech tagging, chunking (identifying
phrases such as NP and VP), NER, and semantic role labeling (Collobert et al.
2011). For syntactic processing, a compositional approach is used in which a
recursive neural network (RNN) combines two word vectors into a single vector
representing a phrase and then combines the phrases into a higher-level category
such as a sentence, working bottom-up from individual words to the higher-level
categories (Mikolov et al. 2013b).

The deep NLP approach allows richer information to be captured compared with
traditional vector-based approaches such as bag of words in which structural
relations between words and phrases are not captured. In recent work, a compo-
sitional vector grammar (CVG) parser was used to jointly find syntactic structure
and compositional semantic information by combining a probabilistic CFG with an
RNN (Socher et al. 2013a). The grammar finds discrete syntactic categories such as
NP and VP in the input while the RNN captures compositional semantic infor-
mation. One advantage of this approach is that sentences that are syntactically
ambiguous can be resolved using the more fine-grained semantic information—for
example, in sentences involving PP-attachment, as in “book a flight on Friday”
(where the flight is on Friday), as opposed to “book a flight with my credit card”
(where the booking is made with a credit card).

Deep learning has been used for slot filling tasks, in which the items of infor-
mation are extracted from the input that are required to fill slots in a semantic frame,
for example, in a domain such as flight reservations to fill the slots for the departure
and arrival cities. Mesnil et al. (2015) compared the use of RNNs with CRF
approaches and found that the RNN-based models outperformed the CRF baseline
in terms of error reduction on the Airline Travel Information Service (ATIS)
benchmark. Other uses of deep learning in NLP include: logical semantics
involving learning to identify logical relationship such as entailment and contra-
diction (Bowman et al. 2015), question answering (Kumar et al. 2015), and sen-
timent analysis (Socher et al. 2013b).

8.8 Summary

In this chapter, we have provided an overview of the various technologies of SLU,
with particular reference to those technologies that are relevant to the extraction of
the meaning of a user’s utterance in an interaction with a conversational interface.
We looked at various tasks, in particular dialog act recognition, topic identification,
intent recognition, entity extraction, and analysis of the content of the user’s
utterance. A wide range of techniques and approaches was reviewed. Some of these
involve low-level tasks such as tokenization that are used to analyze the text for
higher-level tasks such as semantic analysis. There is no single method in SLU that
is applicable in all tasks and in all types of application. On the whole, statistical
techniques dominate the research literature, but there are still many proponents of

180 8 Spoken Language Understanding

handcrafted approaches, particularly in industry where designers wish to have
greater control over the output of their systems and how this output is obtained.

In the next chapter, we introduce the Api.ai platform and provide a tutorial
introduction with exercises that will enable readers to specify and extract semantic
information from utterances. We will also describe some other open source tools
that have been used widely for SLU.

Further Reading
In addition to Jurafsky and Martin (2009), which covers formal as well as stochas-
tic approaches to SLU, and Huang et al. (2001), which focuses mainly on stochastic
approaches, Allen (1995) provides a comprehensive overview of the
knowledge-based tradition in NLP. Manning and Schütze (1999) is a thorough
introduction to statistical approaches to natural language understanding with a useful
companionWeb site.8 Tur and deMori (2011) is a collection of chapters on statistical
SLU. The chapter by Wang et al. (2011) in this collection is a detailed tutorial on
semantic frame-based SLU. Henderson and Jurčíček (2012) describe three different
parsers developed within the EU CLASSIC project (Lemon and Pietquin 2012) and
evaluate their performance against several other parsers, including Phoenix. Reese
(2015) is a practical guide to NLP with Java, focusing in particular on various
approaches to organize and extract useful text from unstructured data. Dahl (2013)
provides an excellent tutorial overview of approaches to NLP and of its application in
areas including mobile personal assistants, dialog systems, and question answering.

Deep learning is a new approach to NLP. Online materials include: lectures 14,
15, and 16 in Chris Manning’s Natural Language Processing course (CS
224 N/Ling 284) at Stanford9; Richard Socher’s Deep Learning for Natural
Language Understanding (CS224d) at Stanford10; Goldberg’s Primer on neural
network models for NLP11; and a series of videos by Chris Potts.12

SLU is a main topic at several academic conferences, in particular, ACL,13

INTERSPEECH,14 LREC,15 COLING,16 CoNLL,17 NAACL,18 and EACL.19 Natural
language is also a topic at commercially oriented conferences such as SpeechTEK20

8http://nlp.stanford.edu/fsnlp/. Accessed February 20, 2016.
9http://web.stanford.edu/class/cs224n/. Accessed February 20, 2016.
10http://cs224d.stanford.edu/. Accessed February 20, 2016.
11http://u.cs.biu.ac.il/*yogo/nnlp.pdf. Accessed February 20, 2016.
12https://www.youtube.com/playlist?list=PLfmUaIBTH8exY7fZnJss508Bp8k1R8ASG. Accessed
February 20, 2016.
13https://www.aclweb.org/. Accessed February 20, 2016.
14http://www.interspeech2016.org/. Accessed February 20, 2016.
15http://lrec-conf.org/. Accessed February 20, 2016.
16http://nlp.shef.ac.uk/iccl/. Accessed February 20, 2016.
17http://ifarm.nl/signll/conll/. Accessed February 20, 2016.
18http://naacl.org/. Accessed February 20, 2016.
19http://www.eacl.org/. Accessed February 20, 2016.
20http://www.speechtek.com/. Accessed February 20, 2016.

8.8 Summary 181

http://nlp.stanford.edu/fsnlp/
http://web.stanford.edu/class/cs224n/
http://cs224d.stanford.edu/
http://u.cs.biu.ac.il/%7eyogo/nnlp.pdf
https://www.youtube.com/playlist?list=PLfmUaIBTH8exY7fZnJss508Bp8k1R8ASG
https://www.aclweb.org/
http://www.interspeech2016.org/
http://lrec-conf.org/
http://nlp.shef.ac.uk/iccl/
http://ifarm.nl/signll/conll/
http://naacl.org/
http://www.eacl.org/
http://www.speechtek.com/

and MobileVoice.21 Key journals are: IEEE Transactions on Audio, Speech, and
Language Processing (since 2014 renamed as IEEE/ACM Transactions on Audio,
Speech, and Language Processing); Speech Communication; Computer Speech and
Language; Computational Linguistics; and Natural Language Engineering.

References

Allen JF (1995) Natural language understanding, 2nd edn. Benjamin Cummings Publishing
Company Inc., Redwood

Allen JF, Core M (1997) Draft of DAMSL: dialog act markup in several layers. The Multiparty
Discourse Group, University of Rochester, Rochester. http://www.cs.rochester.edu/research/
cisd/resources/damsl/RevisedManual/. Accessed 20 Jan 2016

Béchet F, Nasr A (2009) Robust dependency parsing for spoken language understanding of
spontaneous speech. In: Proceedings of the 10th annual conference of the international speech
communication association (Interspeech2009), Brighton, UK, 6–10 Sept 2009, pp 1027–1030.
http://www.isca-speech.org/archive/archive_papers/interspeech_2009/papers/i09_1039.pdf.
Accessed 21 Jan 2016

Béchet F, Nasr A, Favre B (2014) Adapting dependency parsing to spontaneous speech for open
domain language understanding. In: Proceedings of the 15th annual conference of the
international speech communication association (Interspeech2014), Singapore, 14–18 Sept
2014, pp 135–139. http://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_
0135.pdf. Accessed 21 Jan 2016

Bender O, Macherey K, Och F-J, Ney H (2003) Comparison of alignment templates and maximum
entropy models for natural language understanding. In: Proceedings of the 10th conference of
the European chapter of the association for computational linguistics, Budapest, Hungary, 12–
17 Apr 2003, pp 11–18. doi:10.3115/1067807.1067811

Bilmes JA, Kirchhoff K (2003) Factored language models and generalized parallel backoff. In:
Proceedings of the 2003 conference of the North American chapter of the association for
computational linguistics on human language technology (HLT-NAACL 2003), Edmonton,
Canada, 27 May–1 June 2003, pp 4–6. doi:10.3115/1073483.1073485

Black AW, Burger S, Conkie A, Hastie H, Keizer S, Lemon O, Merigaud N, Parent G, Schubiner G,
Thomson B,Williams JD, Yu K, Young S, Eskenazi M (2011) Spoken dialogue challenge 2010:
comparison of live and control test results. In: Chai JY, Moore JD, Passonneau RJ, Traum DR
(eds) Proceedings of the SIGDial 2011 conference, Portland, Oregon, June 2011. http://www.
aclweb.org/anthology/W/W11/W11-2002.pdf. Accessed 23 Jan 2016

Bowman SR, Potts C, Manning CD (2015) Recursive neural networks can learn logical semantics.
In: Proceedings of the 3rd workshop on continuous vector space models and their
compositionality (CVSC), Beijing, China, 26–31 July 2015, pp 12–21. doi:10.18653/v1/
w15-4002

Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language
processing (almost) from scratch. J Mach Learn Res 12:2493–3537. http://arxiv.org/pdf/1103.
0398.pdf

Dahl DA (2013) Natural language processing: past, present and future. In: Neustein A,
Markowitz JA (eds), Mobile speech and advanced natural language solutions. Springer Science
+Business Media, New York, pp 49–73. doi:10.1007/978-1-4614-6018-3_4

Dahl DA, Bates M, Brown M, Fisher W, Hunicke-Smith K, Pallett D, Pao C, Rudnicky A,
Shriberg E (1994) Expanding the scope of the ATIS talk: the ATIS-3 corpus. In: Proceedings

21http://www.mobilevoiceconference.com/. Accessed February 20, 2016.

182 8 Spoken Language Understanding

http://www.cs.rochester.edu/research/cisd/resources/damsl/RevisedManual/
http://www.cs.rochester.edu/research/cisd/resources/damsl/RevisedManual/
http://www.isca-speech.org/archive/archive_papers/interspeech_2009/papers/i09_1039.pdf
http://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_0135.pdf
http://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_0135.pdf
http://dx.doi.org/10.3115/1067807.1067811
http://dx.doi.org/10.3115/1073483.1073485
http://www.aclweb.org/anthology/W/W11/W11-2002.pdf
http://www.aclweb.org/anthology/W/W11/W11-2002.pdf
http://dx.doi.org/10.18653/v1/w15-4002
http://dx.doi.org/10.18653/v1/w15-4002
http://arxiv.org/pdf/1103.0398.pdf
http://arxiv.org/pdf/1103.0398.pdf
http://dx.doi.org/10.1007/978-1-4614-6018-3_4
http://www.mobilevoiceconference.com/

of the workshop on human language technology (HLT’94), Association for computational
linguistics, Stroudsburg, pp 43–48. doi:10.3115/1075812.1075823

Dinarelli M (2010) Spoken language understanding: from spoken utterances to semantic
structures. Dissertation, University of Trento, 2010. http://eprints-phd.biblio.unitn.it/280/

Dinarelli M, Quarteroni S, Tonelli S, Moschitti A, Riccardi G (2009) Annotating spoken dialogs:
from speech segments to dialog acts and frame semantics. In: Proceedings of SRSL 2009, the
2nd workshop on semantic representation of spoken language, Association for computational
linguistics, Athens, Greece, March, pp 34–41. doi:10.3115/1626296.1626301

Gildea D, Jurafsky D (2002) Automatic labeling of semantic roles. Comp Linguist 28(3):245–288.
doi:10.1162/089120102760275983

Godfrey JJ, Holliman EC, McDaniel J (1992) Switchboard: telephone speech corpus for research
and development. In: Proceedings of the international conference on acoustics, speech, and
signal processing (ICASSP-92), vol 1. San Francisco, 23–26 March, pp 517–520. doi:10.1109/
icassp.1992.225858

Hahn S, Dinarelli M, Raymond C, Lefevre F, Lehnen P. De Mori R, Moschitti A, Ney H,
Riccardi G (2011) Comparing stochastic approaches to spoken language understanding in
multiple languages. IEEE Trans Speech Audio Proc 19(6):1569–1583. doi:10.1109/tasl.2010.
2093520

Hakkani-Tür D, Béchet F, Riccardi G, Tur G (2006) Beyond ASDR 1-best: using word confusion
networks in spoken language understanding. Comp Speech Lang 20(4):495–514. doi:10.1016/
j.csl.2005.07.005

He Y, Young S (2006) Spoken language understanding using the hidden vector state model.
Speech Commun 48(3–4):262–275. doi:10.1016/j.specom.2005.06.002

Henderson J, Jurčíček F (2012) Data-driven methods for spoken language understanding. In:
Lemon O, Pietquin O (eds) Data-driven methods for adaptive spoken dialogue systems:
computational learning for conversational interfaces. Springer, New York, pp 19–38. doi:10.
1007/978-1-4614-4803-7_3

Huang X, Acero A, Hon H-W (2001) Spoken language processing: a guide to theory, algorithm,
and system development. Prentice Hall, Upper Saddle River

Hunt A, McGlashan S (2004) Speech recognition grammar specification version 1.0. http://www.
w3.org/TR/speech-grammar/. Accessed 21 Jan 2016

Jurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall, Upper
Saddle River

Keizer S, op den Akker R, Nijholt A (2002) Dialogue act recognition with Bayesian networks for
Dutch dialogues. In: Proceedings of the 3rd SIGdial workshop on discourse and dialogue,
Philadelphia, PA, pp 88–94. doi: 10.3115/1118121.1118134

Klüwer T, Uszkoreit H, Xu F (2010) Using syntactic and semantic based relations for dialog act
recognition. In: Proceedings of the 23rd international conference on computational linguistics
(COLING’10), Association for computational linguistics, Stroudsburg, pp 570–578. http://
www.aclweb.org/anthology/C10-2065.pdf. Accessed 21 Jan 2016

Kübler S, McDonald R, Nivre J (2009) Dependency parsing. Synthesis lectures on human
language technologies. Morgan and Claypool Publishers, San Rafael. doi:10.2200/
S00169ED1V01Y200901HLT002

Kumar A, Irsoy O, Ondruska P, Iyyer M, Bradbury J, Gulrajani I, Socher R (2015) Ask me
anything: dynamic memory networks for natural language processing. arXiv: http://arxiv.org/
abs/1506.07285. Accessed 21 Jan 2016

Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In: Proceedings of the 18th international conference on
machine learning (ICML’01), Williamstown, MA, USA, 28 June–1 July 2001, pp 282–289.
http://dl.acm.org/citation.cfm?id=655813

Lefèvre F (2006) A DBN-based multi-level stochastic spoken language understanding system.
In IEEE spoken language technology workshop, Palm Beach, Aruba, 10–13 Dec 2006, pp 82–
85. doi:10.1109/slt.2006.326822

References 183

http://dx.doi.org/10.3115/1075812.1075823
http://eprints-phd.biblio.unitn.it/280/
http://dx.doi.org/10.3115/1626296.1626301
http://dx.doi.org/10.1162/089120102760275983
http://dx.doi.org/10.1109/icassp.1992.225858
http://dx.doi.org/10.1109/icassp.1992.225858
http://dx.doi.org/10.1109/tasl.2010.2093520
http://dx.doi.org/10.1109/tasl.2010.2093520
http://dx.doi.org/10.1016/j.csl.2005.07.005
http://dx.doi.org/10.1016/j.csl.2005.07.005
http://dx.doi.org/10.1016/j.specom.2005.06.002
http://dx.doi.org/10.1007/978-1-4614-4803-7_3
http://dx.doi.org/10.1007/978-1-4614-4803-7_3
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/speech-grammar/
http://dx.doi.org/10.3115/1118121.1118134
http://www.aclweb.org/anthology/C10-2065.pdf
http://www.aclweb.org/anthology/C10-2065.pdf
http://dx.doi.org/10.2200/S00169ED1V01Y200901HLT002
http://dx.doi.org/10.2200/S00169ED1V01Y200901HLT002
http://arxiv.org/abs/1506.07285
http://arxiv.org/abs/1506.07285
http://dl.acm.org/citation.cfm?id=655813
http://dx.doi.org/10.1109/slt.2006.326822

Lefèvre F (2007) Dynamic bayesian networks and discriminative classifiers for multistage
semantic interpretation. In: Proceedings of the IEEE international conference on acoustics,
speech and signal processing (ICASSP’07), vol 4. Honolulu, HI, USA, 15–20 Apr 2007,
pp 13–16. doi:10.1109/ICASSP.2007.367151

Lemon O, Pietquin O (eds) (2012) Data-driven methods for adaptive spoken dialogue systems:
computational learning for conversational interfaces. Springer, New York. doi:10.1007/978-1-
4614-4803-7

Macherey K, Bender O, Ney H (2009) Applications of statistical machine translation approaches to
spoken language understanding. IEEE Trans Speech Audio Proc 17(4):803–818. doi:10.1109/
tasl.2009.2014262

Mairesse F, Gašić M, Jurčíček F, Keizer S, Thomson B, Yu K, Young S (2009) Spoken language
understanding from unaligned data using discriminative classification models. In: Proceedings
of the IEEE international conference on acoustics, speech and signal processing (ICASSP’09),
Taipei, Taiwan, 19–24 Apr 2009, pp 4749–4752. doi:10.1109/icassp.2009.4960692

Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT Press,
Cambridge

Mesnil G, Dauphin Y, Yao K, Bengio Y, Deng L, Hakkani-Tur D, He X, Heck L, Tur G, Yu D,
Zweig G (2015) Using recurrent neural networks for slot filling in spoken language
understanding. IEEE/ACM Trans Speech Audio Proc 23(3):530–539. doi:10.1109/taslp.2014.
2383614

Mikolov T, Chen K, Corrado GS, Dean J (2013a) Efficient representation of word representations
in vector space. In: Proceedings of the international workshop on learning representations
(ICLR) 2013, Scottsdale, AZ, USA, 2–4 May 2013. http://arxiv.org/pdf/1301.3781.pdf.
Accessed 21 Jan 2016

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of
words and phrases and their compositionality. In: Proceedings of the twenty-seventh
conference on neural information processing systems 26 (NIPS 2013), Lake Tahoe, 5–10
Dec 2013. http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf. Accessed 21 Jan 2016

Nagata M, Morimoto T (1994) First steps toward statistical modeling of dialogue to predict the
speech act type of the next utterance. Speech Commun 15:193–203. doi:10.1016/0167-6393
(94)90071-x

Raymond C, Riccardi G (2007) Generative and discriminative algorithms for spoken language
understanding. In: Proceedings of the 8th annual conference of the international speech
communication association (Interspeech 2007), Antwerp, Belgium, 27–31 Aug, pp 1605–1608.
http://www.isca-speech.org/archive/archive_papers/interspeech_2007/i07_1605.pdf. Accessed
21 Jan 2016

Reese RM (2015) Natural language processing with Java. Packt Publishing Ltd., Birmingham
Shriberg E, Bates R, Stolcke A, Taylor P, Jurafsky D, Ries K, Coccaro N, Martin R, Meteer M,

Ess-Dykema CV (1998) Can prosody aid the automatic classification of dialog acts in
conversational speech? Lang Speech 41(3–4):439–487. http://www.ncbi.nlm.nih.gov/pubmed/
10746366. Accessed 21 Jan 2016

Socher R, Bauer J, Manning CD, Ng AY (2013a) Parsing with compositional vector grammars. In:
Proceedings of the 51st meeting of the association for computational linguistics (ACL) 2013,
Sofia, Bulgaria, 4–9 Aug. http://www.aclweb.org/anthology/P/P13/P13-1045.pdf. Accessed 21
Jan 2016

Socher R, Perelygin A, Wu JY, Chuang J, Manning CD, Ng AY, Potts C (2013b) Recursive deep
models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013
conference on empirical methods in natural language processing (EMNLP 2013), Seattle,
Washington, USA, 18–21 Oct 2013, pp 1631–1642. http://www.aclweb.org/anthology/D/D13/
D13-1170.pdf. Accessed 21 Jan 2016

Stolcke A, Ries K, Coccaro N, Shriberg E, Bates R, Jurafsky D, Taylor P, Martin R, Meteer M,
Van Dykema C (2000) Dialogue act modelling for automatic tagging and recognition of
conversational speech. Comp Linguist 26(3):339–371. doi:10.1162/089120100561737

184 8 Spoken Language Understanding

http://dx.doi.org/10.1109/ICASSP.2007.367151
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1109/tasl.2009.2014262
http://dx.doi.org/10.1109/tasl.2009.2014262
http://dx.doi.org/10.1109/icassp.2009.4960692
http://dx.doi.org/10.1109/taslp.2014.2383614
http://dx.doi.org/10.1109/taslp.2014.2383614
http://arxiv.org/pdf/1301.3781.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://dx.doi.org/10.1016/0167-6393(94)90071-x
http://dx.doi.org/10.1016/0167-6393(94)90071-x
http://www.isca-speech.org/archive/archive_papers/interspeech_2007/i07_1605.pdf
http://www.ncbi.nlm.nih.gov/pubmed/10746366
http://www.ncbi.nlm.nih.gov/pubmed/10746366
http://www.aclweb.org/anthology/P/P13/P13-1045.pdf
http://www.aclweb.org/anthology/D/D13/D13-1170.pdf
http://www.aclweb.org/anthology/D/D13/D13-1170.pdf
http://dx.doi.org/10.1162/089120100561737

Suzanne J, Klein A, Maier E, Maleck I, Mast M, Quantz J (1995) Dialogue acts in Verbmobil.
Report 65, University of Hamburg, DFKI GmbH, University of Erlangen, TU Berlin

Taylor A, Marcus M, Santorini B (2003) The penn treebank: an overview. In: Abeillé A
(ed) Treebanks: building and using parsed corpora. Kluwer Academic Publishers, Dordrecht,
pp 5–22. doi:10.1007/978-94-010-0201-1_1

Tur G, de Mori R (eds) (2011) Spoken language understanding: systems for extracting semantic
information from speech. Wiley, Chichester. doi:10.1002/9781119992691

Tur G, Deng L (2011) Intent determination and spoken utterance classification. In: Tur G, de
Mori R (eds) Spoken language understanding: systems for extracting semantic information
from speech. Wiley, Chichester, pp 93–118. doi:10.1002/9781119992691.ch4

Tur G, Hakkani-Tür D (2011) Human/human conversation understanding. In: Tur G, de Mori R
(eds) Spoken language understanding: systems for extracting semantic information from
speech. Wiley, Chichester, pp 225–255. doi:10.1002/9781119992691.ch9

Van Tichelen L, Burke D (2007) Semantic interpretation for speech recognition (SISR) version
1.0. http://www.w3.org/TR/semantic-interpretation/. Accessed 21 Jan 2016

Vapnik VN (1998) Statistical learning theory. Wiley, Chichester
Walker MA, Rudnicky A, Prasad R, Aberdeen J, Bratt EO, Garofolo J, Hastie H, Le A, Pellom B,

Potamianos A, Passonneau R, Roukos S, Sanders G, Seneff S, Stallard D (2002) DARPA
communicator: cross-system results for the 2001 evaluation. In: Proceedings of the 7th
international conference on spoken language processing (ICSLP2002), vol 1. Denver,
Colorado, pp 273–276. http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_
0269.pdf. Accessed 21 Jan 2016

Wang YY, Deng L, Acero A (2011) Semantic frame-based spoken language understanding. In:
Tur G, de Mori R (eds) Spoken language understanding: systems for extracting semantic
information from speech. Wiley, Chichester, pp 41–91. doi:10.1002/9781119992691.ch3

Ward W (1991) Understanding spontaneous speech: the Phoenix system. In: Proceedings of the
IEEE international conference on acoustics, speech, and signal processing (ICASSP-91),
Toronto, Canada, 14–17 Apr, pp 365–367. doi:10.1109/icassp.1991.150352

Webb N, Hepple M, Wilks Y (2005) Dialogue act classification using intra-utterance features. In:
Proceedings of the AAAI workshop on spoken language understanding, Pittsburgh, PA,
pp 451–458. http://staffwww.dcs.shef.ac.uk/people/Y.Wilks/papers/AAAI05_A.pdf. Accessed
21 Jan 2016

Williams JD (2012) A belief tracking challenge task for spoken dialog systems. In: NAACL-HLT
Workshop on future directions and needs in the spoken dialog community: tools and data.
NAACL 2012, Montreal, 7 June, 2012, 23–24. http://www.aclweb.org/anthology/W12-1812.
Accessed 23 Jan 2016

Williams JD, Kamal E, Ashour M, Amr H, Miller J, Zweig G (2015a) Fast and easy language
understanding for dialog systems with Microsoft Language Understanding Intelligent Service
(LUIS). In: Proceedings of the SIGDIAL 2015 conference, Prague, Czech Republic, 2–4 Sept
2015, pp 159–161. doi:10.18653/v1/w15-4622

Williams JD, Niraula NB, Dasigi P, Lakshmiratan A, Suarez CGJ, Reddy M, Zweig G (2015b)
Rapidly scaling dialog systems with interactive learning. In: Lee GG, Kim HK, Jeong M, Kim
J-H (eds) Natural language dialog systems and intelligent assistants. Springer, New York,
pp 1–12. doi:10.1007/978-3-319-19291-8_1

Wu W-L, Lu R-Z, Duan J-Y, Liu H, Gao F, Chen Y-Q (2010) Spoken language understanding
using weakly supervised learning. Comp Speech Lang 24(2):358–382. doi:10.1016/j.csl.2009.
05.002

References 185

http://dx.doi.org/10.1007/978-94-010-0201-1_1
http://dx.doi.org/10.1002/9781119992691
http://dx.doi.org/10.1002/9781119992691.ch4
http://dx.doi.org/10.1002/9781119992691.ch9
http://www.w3.org/TR/semantic-interpretation/
http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_0269.pdf
http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_0269.pdf
http://dx.doi.org/10.1002/9781119992691.ch3
http://dx.doi.org/10.1109/icassp.1991.150352
http://staffwww.dcs.shef.ac.uk/people/Y.Wilks/papers/AAAI05_A.pdf
http://www.aclweb.org/anthology/W12-1812
http://dx.doi.org/10.18653/v1/w15-4622
http://dx.doi.org/10.1007/978-3-319-19291-8_1
http://dx.doi.org/10.1016/j.csl.2009.05.002
http://dx.doi.org/10.1016/j.csl.2009.05.002

Chapter 9
Implementing Spoken Language
Understanding

Abstract There is a wide range of tools that support various tasks in spoken
language, some of which are particularly relevant for processing spoken language
understanding in conversational interfaces. Here, the main task is to detect the
user’s intent and to extract any further information that is required to understand the
utterance. This chapter provides a tutorial on the Api.ai platform that has been
widely used to support the development of mobile and wearable devices as well as
applications for smart homes and automobiles. The chapter also reviews some
similar tools provided by Wit.ai, Amazon Alexa, and Microsoft LUIS, and looks
briefly at other tools that have been widely used in natural language processing and
that are potentially relevant for conversational interfaces.

9.1 Introduction

As we saw in Chap. 8, spoken language understanding is not a uniform technology.
Some tasks such as tokenization and part-of-speech tagging are used for low-level
processing that will contribute to subsequent stages of analysis, while others per-
form more high-level tasks such as providing a semantic interpretation of an
utterance. For conversational interfaces, a widely used approach involves detecting
the intent behind the user’s utterance and extracting the relevant entities. The intent
might be some action such as setting an alarm, scheduling a meeting, sending a text
message, or booking a table at a restaurant. The entities are those elements of
meaning that are essential to the execution of the action, such as the time for the
alarm or the meeting, the recipient of the text message and its content, or the
number of people for the restaurant booking.

A number of spoken language understanding platforms take the approach of
intent recognition and entity extraction, including Api.ai, Wit.ai, Amazon Alexa,
and Microsoft LUIS. In this chapter, we will focus mainly on the Api.ai platform. In
the final part of the chapter, we will provide an overview of some other tools that
are used widely for spoken language understanding.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_9

187

http://dx.doi.org/10.1007/978-3-319-32967-3_8

9.2 Getting Started with the Api.ai Platform

In 2010, the company Api.ai released the highly rated and widely used virtual
personal assistant known as Assistant or Assistant.ai (previously known as
Speaktoit Assistant). More recently, the platform on which Assistant is based has
been made available to developers.1 The Api.ai platform supports the development
of mobile apps as well as apps involving wearables, robots, motor vehicles, smart
homes, and smart TV. Currently, 15 languages are available, including English,
German, French, Chinese, Korean, Portuguese, and Spanish, on a range of plat-
forms and coding languages, including iOS, Apple Watch, Android, Cordova,
Python, C#, Xamarin, Windows Phone, and Unity.

The following is an example of an interaction with the Api.ai platform:

User input: Where is the nearest Italian restaurant
System output (simplified):
action: maps.places,
parameters:
“cuisine”: “Italian”,
“request_type”: “address”,
“sort”: [“nearest”],
“venue_type”: “restaurant”.

The system output displays information associated with the intent that has been
identified from the user’s input. Intents are one of the key concepts in Api.ai.
An intent represents a mapping between the user’s input and the action to be taken
by the app—in this case, a map search for a place. The parameters specify further
details about the action that are extracted as entities from the user’s input. We will
describe how to specify Intents and entities later in the chapter.

9.2.1 Exercise 9.1 Creating an Agent in Api.ai

On the Api.ai platform, an app is known as an agent. There is a range of documents
and videos on the Api.ai Web site that explain how to develop an agent using the
Api.ai platform.2 Here for the sake of exposition, we provide a simplified set of
instructions.

1https://api.ai/. Accessed February 21, 2016.
2https://docs.api.ai/v3/docs/get-started. Accessed February 21, 2016.

188 9 Implementing Spoken Language Understanding

https://api.ai/
https://docs.api.ai/v3/docs/get-started

1. Go to the platform Web site and sign up for a free account.
2. Create an agent called locations. This will result in the screen as shown in

Fig. 9.1.
3. Choose a language for your agent (the default is English).
4. Scroll down to the section API keys. Here, you will see three keys listed. For the

Android app that we will create shortly, you will need the subscription key and
the client access token. Take a note of these and where to find them when you
need them later for your app.

The developer access token will also be required if you wish to create intents and
entities using curl commands.

9.2.2 Exercise 9.2 Testing the Agent

You can test your agent by typing or speaking queries into the test console, which is
in the top right corner of the Api.ai developer console, as shown in Fig. 9.2.

Fig. 9.1 Creating an agent in Api.ai (reproduced with permission from Api.ai)

9.2 Getting Started with the Api.ai Platform 189

1. Test and train your agent by typing in queries such as:

Where is the nearest Italian restaurant
Find me an Italian restaurant
Show me directions to an Italian restaurant
I am hungry

You will see that all of these queries will return the action: maps.places, but
there will be differences in the parameters and their values. For example, for the
input “where is the nearest Italian restaurant,” the parameters, shown in Table 9.1,
are returned.

At this point, you might be wondering how the system is able to process your
queries and return the responses, particularly as you have not yet specified any
spoken language understanding rules for your agent. The answer is that Api.ai
provides a range of built-in domains (or predefined knowledge packages).3 When
you make a request in the test console, the responses that you have specified for
your agent will be displayed along with those produced from the Domains
Knowledge Base. Currently as we do not have our own specified inputs, only those
from the Domains Knowledge Base will be displayed. When we make our query
using an app, the response that we have specified for the agent will be displayed,
unless none is available, in which case a domain response will be returned.

Fig. 9.2 The Api.ai
developer console
(reproduced with permission
from Api.ai)

Table 9.1 Parameters and
values for the input “where is
the nearest Italian restaurant”

Parameter Value

Cuisine Italian

Request_type Address

Sort [“Nearest”]

Venue_type Restaurant

3http://api.ai/docs/domains/. Accessed February 21, 2016.

190 9 Implementing Spoken Language Understanding

http://api.ai/docs/domains/

You may find that you do not need to specify your own intents and entities for
your app since the Domains Knowledge Base is quite extensive and is continually
being expanded. However, if you find that not all inputs receive appropriate
responses or if you are creating an app for a domain that is not covered in the
Domains Knowledge Base, then you will need to specify the Intents and entities.
We will show how to do this later. First, we will show how to create an Android
app that allows you to interact with your agent.

9.3 Creating an Android App for an Agent

For this app, we will use the VoiceActivity class that was introduced in Chap. 6
and that we used to interact with the Pandorabots platform in Chap. 7. As before, we
will process a speech recognition result, but this time we will send it to Api.ai’s
AIDataService for processing. An alternative would be to use Api.ai’s inte-
grated speech recognition available with their Android SDK. The SDK and sample
code and a tutorial showing how to do this can be found here.4 There is also a tutorial
on how to use your own speech recognition in conjunction with the SDK library.

In this app, we will take a recognized string and call the AIDataService to
process the string and produce a semantic parse that will be displayed on the device
as the recognized query, the recognized action (i.e., intent), and the parameters of
the intent.

9.3.1 Exercise 9.3 Producing a Semantic Parse

1. Create an Android app and call it Understand.
2. Modify the MainActivity class that we used in Chap. 6 and adapt it for use

with the Api.ai platform.

Note: you can download the following code from GitHub, in the folder chapter9
of the ConversationalInterface5 repository. To run the code, you will need to insert
the subscription key and the client access token that were provided when you
created your agent. In the following, we explain the modifications to
MainActivity and other changes that are required to run the app.

Modifications to MainActivity

1. Add the following additional imports (Code 9.1).
2. Change the value of the LOGTAG to Understand
3. Add a TextView to the main.xml file to display the results of the spoken

language understanding analysis (Code 9.2).

4https://github.com/api-ai/api-ai-android-sdk#android-sdk-for-apiai. Accessed February 21, 2016.
5http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.

9.2 Getting Started with the Api.ai Platform 191

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_7
http://dx.doi.org/10.1007/978-3-319-32967-3_6
https://github.com/api-ai/api-ai-android-sdk%23android-sdk-for-apiai
http://zoraidacallejas.github.io/ConversationalInterface/

4. In the onCreate method, add a reference to the TextView to display the
results of the spoken language processing (Code 9.3).

5. Modify the method processAsrResults, as follows:

– Remove the section containing the query to Pandorabots and the processing
of the Pandorabots response.

– Add the method: apiSLU(userQuery). The main work will be done in
this method.

– Remove the methods processBotErrors, processBotResults,
and removeTags, which are not required for this application.

6. In the method apiSLU():

– Set up the configuration of the AIDataService using the API keys
Client Access Token and Subscription Key that can be found if
you look at the settings for your agent (Code 9.4).

Code 9.3 Reference to the TextView in the onCreate method

Code 9.2 The TextView for the Understand app

Code 9.1 Additional imports in MainActivity

192 9 Implementing Spoken Language Understanding

7. Send the request to the AIService and get a response using a background
thread (Code 9.5).

8. To process the response, we will extract the intent’s action and its parameters
and show them as a formatted string in the GUI by means of
resultTextView (Code 9.6).
To use the AIDataService, we need to declare the Api.ai sdk as a
dependency in the build.gradle (Module:app) file along with refer-
ences to gson and commons:io.

Code 9.4 Configuration of the AIDataService

Code 9.5 Sending a request to the AIService and getting a response

9.3 Creating an Android App for an Agent 193

9.3.2 Exercise 9.4 Testing the App

Test the app with a variety of relevant inputs. For the input “where is the nearest
Italian restaurant” you should receive an output as displayed in Fig. 9.3.

Code 9.6 Extracting and displaying the intent and its parameters

Fig. 9.3 Output from the
query “where is the nearest
Italian restaurant”

194 9 Implementing Spoken Language Understanding

9.4 Specifying Your Own Entities and Intents

So far we have made use of the built-in entities and Intents provided in the Domains
Knowledge Base. However, we may need to specify Intents and entities for our
agents that are not provided. The documents and videos at the Api.ai Web site show
how to do this. Here, we will provide a basic overview. More details can be found
by consulting the Api.ai documentation as well as the tutorials.

If we try a number of queries such as “where is the nearest Italian restaurant” we
will see that the parameter venue_type is returned with the value restaurant.
Similarly, by substituting other locations, we can return different values for
venue_type, as shown, for example, in Table 9.2:

Before we create new entities and intents, we should check how similar entities
and Intents are represented in the Domains Knowledge Base in order to maintain
consistency. If we look at the section Maps: Places in the Domains Knowledge
Base, we can see from the extract shown in Fig. 9.4 that the relevant action for
matching expressions about locations is maps.places. This is followed by a list
of parameters under the heading Data, along with notes and examples. For the
complete listing, see the documentation.6 Note that there are also built-in system
entities for concepts such as color, date and time, email, geography, names
(common given names), music (artists and genres), numbers, and phones.7

We will focus on the venue_type parameter. The following are some entities
that are not currently included:

Discotheque,
Football stadium,
Running club,
Tea shop (Note: coffee shop is included).

9.4.1 Exercise 9.5 Creating Entities

1. Click on the tab Create new entity.
2. Name the new entity venue_type.

Table 9.2 Additional values
for the venue_type
parameter

Location Venue_type

Petrol station Gas station

Chemist Drugstore

Pub Pub

Golf course Golf

6https://docs.api.ai/docs/maps-and-points-of-interest#maps-places. Accessed February 21, 2016.
7http://api.ai/docs/getting-started/entity-overview.html#system-entities. Accessed February 21,
2016.

9.4 Specifying Your Own Entities and Intents 195

https://docs.api.ai/docs/maps-and-points-of-interest%23maps-places
http://api.ai/docs/getting-started/entity-overview.html%23system-entities

3. Enter the locations listed above (“discotheque,” “football stadium,” etc.) in the
rows labeled Enter synonym.

4. As there can be more than one way to express an entity, you can add further
synonyms on the same row as the entity. For example, “discotheque” can have
the synonym “disco.”

5. When you have added the entities and their synonyms, click Save. Your list of
entities should look like this (Fig. 9.5).

Fig. 9.4 Parameters for the maps.places domain in the Domains Knowledge Base (repro-
duced with permission from Api.ai)

196 9 Implementing Spoken Language Understanding

Now that we have created some entities, we need to associate these entities with
the expressions in an intent that the user might use to make requests. Note that to
refer to an entity within an intent, you need to prefix it with the symbol @, for
example, @venue_type.

9.4.2 Exercise 9.6 Creating an Intent

1. Click on the tab Create an intent.
2. Name your intent that makes reference to your entities: @venue_type.
3. In the section entitled User says, enter the expressions that the user can say.

The following is a list of some of the expressions that a user might say when
looking for a location:

Where is the nearest @venue_type
I am looking for the nearest @venue_type
Find me the nearest @venue_type
Find me a @venue_type [nearby, around here, in this neighborhood, in this
area]
Is there a@venue_type [nearby, aroundhere, in this neighborhood, in this area]

(Note: The items in square brackets are alternatives)

Fig. 9.5 New entities for the parameter venue_type (reproduced with permission from Api.ai)

9.4 Specifying Your Own Entities and Intents 197

Normally, there would be a much larger set of expressions to cover all of the
different ways in which the user might express Intents, but these examples will
suffice for the purposes of illustration.

You will notice that the entity reference is automatically expanded e.g.,
@venue_type:venue_type. The additional part is the alias, which acts like a
variable name that can be referenced later to specify the parameter name as
$alias—for example, in this case, it is venue_type. We will explain aliases in
more detail later.

You now need to add an action to your intent to specify the type of intent—in
this case, following the action types specified for similar queries in the Domains
Knowledge Base, we will call the action maps.place.

Fig. 9.6 The intent page (reproduced with permission from Api.ai)

198 9 Implementing Spoken Language Understanding

One parameter has already been added automatically: venue_type with the
value $venue_type. You will need to add further parameters, for which the
values should be inserted in the default value cell:

request_type address

sort nearest

At this point, your intent page for the expressions listed above should look like
this (Fig. 9.6).

9.4.3 Exercise 9.7 Testing the Custom Entities and Intents

You can now test your agent in the test console using various combinations of the
sentences listed in Fig. 9.3. For the query “where is the nearest football stadium”
the action: maps.places is returned along with the parameters and values shown
in Table 9.3.

9.5 Using Aliases

Aliases act like variable names. They are required since an expression might use an
entity more than once and the alias helps to keep them distinct. For example, a
travel app might need to reference a source city as well as a destination city. To do
this, the @city entity should have different aliases to represent the source and the
departure, e.g., @city:fromCity and @city:toCity. These can then be
referred to as $fromCity and $toCity, respectively.

9.6 Using Context

Contexts represent the current context of a user expression. This is useful for dealing
with follow-up queries on the same topic. For example, the first query might be:

Where is the nearest running club

Table 9.3 Parameters and
values for the input “where is
the nearest football stadium”

Parameter Value

Request_type Address

Sort Nearest

Venue_type Football stadium

9.4 Specifying Your Own Entities and Intents 199

and the next query might be:

and the nearest football stadium

In order to make this possible, we need to set contexts for the queries—an output
context for the initial query and an input context for the follow-up query.

9.6.1 Exercise 9.8 Defining Contexts

1. Open the intent: Where is the nearest @venue_type.
2. Click on “Define contexts.”
3. Add an output context, e.g., location.
4. Add a new intent for the expression: and the nearest @venue_type.
5. For this intent, to make it a follow-up query, add the input context: location.
6. Also, in case of another follow-up query, add the output context: location.

Variables can be collected in a context for later reference. To retrieve a
parameter, type: #context-name.parameter-name.

Contexts expire after 5 queries or 5 min, unless they are set again. For more
information on context, see here.8

9.7 Creating a Slot Filling Dialog

In the apps created so far, the interaction has taken the form of a one-shot dialog in
which the user specified everything required in the input and the system extracted
the user’s intent and its parameters. However, in many interactions, the user may
not specify all the required parameters in a single utterance and the app has to
collect the remaining parameters in a subsequent dialog. In VoiceXML, each field
represents a parameter value to be elicited from the user (see Chap. 11). Api.ai
provides a different approach in which the possible user inputs are listed and the
parameters in the inputs are marked as required and associated with prompts that
the system uses to elicit any missing parameters.9,10 In the following, we provide a
simple example for setting an alarm.

8http://api.ai/docs/getting-started/quick-start-contexts.html. Accessed February 21, 2016.
9https://api.ai/blog/2015/11/09/SlotFilling/. Accessed February 21, 2016.
10https://docs.api.ai/docs/dialogs. Accessed February 21, 2016.

200 9 Implementing Spoken Language Understanding

http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://api.ai/docs/getting-started/quick-start-contexts.html
https://api.ai/blog/2015/11/09/SlotFilling/
https://docs.api.ai/docs/dialogs

Let us assume that to set an alarm, the system needs to know the time and the
day, but that the user may not necessarily specify values for both these parameters
in the initial input. Examples of complete inputs would be:

Set the alarm 7 tomorrow.
Wake me 7 tomorrow.

Examples of incomplete inputs might be:

Set the alarm.
Set the alarm 7.
Wake me tomorrow.
Wake me 7.

We can create a single intent to handle a range of inputs such as these as follows.
Note that you will have to experiment with wildcards if you want to accept input
such as “set the alarm for seven on Friday.”

9.7.1 Exercise 9.9 Creating a Slot-Filling Dialog

1. Create an agent called “alarm.”
2. Create an intent called “set alarm.”
3. List examples of the user inputs, but replace the time expression with the

variable @sys.any:time and the day expression with the variable @sys.any:day.
4. Scroll down to the list of parameters—in this case, you should see the param-

eters time and day listed.
5. Mark these parameters as required and provide prompts to elicit their values.

The resulting parameter list should look like Fig. 9.7.
6. Finally, create the speech response in which the elicited values are spoken back

using the variables $time and $day, for example, Setting the alarm for
$time $day.

Fig. 9.7 Parameters for setting an alarm (reproduced with permission from Api.ai)

9.7 Creating a Slot Filling Dialog 201

Note that currently the Understand app only provides a semantic interpre-
tation for your initial input so you will have to test these additional functionalities
using the Api.ai developer console. To include these functionalities in the app, you
would need to extend it to capture the prompts from the system, the user responses,
and the system feedback.

You can take this example further by allowing the user to confirm these values or
to edit and correct them. This involves creating additional Intents and also speci-
fying input and output contexts to link the Intents together. An example of how to
do this is provided here.11 Again, you can test these additions in the developer
console or you can extend the Understand app to include them.

9.7.2 Exercise 9.10 Additional Exercises

1. Add further intents to allow the user to confirm or correct the time and date
values. Clear the context so that each new interaction begins with a new context.
You can see an example of how to do this here.12

2. Implement some other examples that might require a parameter collection dialog
—for example, booking a table at a restaurant.

3. Compare this approach to the approach used in VoiceXML for slot filling (see
Chap. 11).

9.8 Overview of Some Other Spoken Language
Understanding Tools

There is a wide range of tools available to support various tasks in spoken language
understanding. Some of these are intended for processing spoken language
understanding in conversational interfaces where the main task is to detect the
user’s intent (what action they wish to have performed) along with any further
information that is required to complete the action (the entities or slots associated
with the intent). Other tools provide different functions, ranging from lower-level
tasks such as tokenization and part-of-speech tagging to tasks such as a deep
semantic analysis of the input. In the following sections, we provide a brief
overview of a selection of these tools.

11https://api.ai/blog/2015/11/09/SlotFilling/. Accessed February 21, 2016.
12https://api.ai/blog/2015/11/23/Contexts/. Accessed February 21, 2016.

202 9 Implementing Spoken Language Understanding

http://dx.doi.org/10.1007/978-3-319-32967-3_11
https://api.ai/blog/2015/11/09/SlotFilling/
https://api.ai/blog/2015/11/23/Contexts/

9.8.1 Tools Using Intents and Entities

Intent detection and entity extraction are used by a number of providers, including
Wit.ai, Amazon Alexa, and Microsoft LUIS. In the following, we provide a brief
overview of these platforms.

9.8.1.1 Wit.ai

Wit.ai,13 which was acquired in January 2015 by Facebook, provides an API for
creating voice-activated interfaces and, in particular, for extracting a semantic
representation from the user’s utterances. Its approach is similar to that of Api.ai.
The developer begins by listing some utterances that the app should understand.
Next, an existing intent can be selected from the Wit.ai community or a custom
intent can be created. Entities can be highlighted in the input utterances, and built-in
entities can be selected or custom entities can be specified. Once a sufficient set of
sample utterances has been collected and labeled, they can be tested and validated
in the console. Machine learning is then applied to the utterances that have been
validated and to similar utterances from the community to generate new classifiers.

Wit.ai has a feature called roles that is similar to the alias feature in Api.ai.
For example, it might be necessary to label a location as either an origin or a
destination in an utterance such as “I want to go from Belfast to London.” The
built-in entity wit/location would capture both “Belfast” and “London” as
locations but by specifying their roles in the utterance “Belfast” would be assigned
the role origin and “London” the role destination.

Normally, entities are declared by specifying a word or phrase, known as a span,
in the utterance to which the entity refers. However, there are some entities that
cannot be specified in this way, as their values cannot be inferred from a particular
span in the utterance but only from the utterance as a whole. These entities are
known as spanless entities. The following example from the Wit.ai documentation
illustrates the following14:

1. It’s too hot here.
2. Can you make it more hot.

The entity that should be extracted from 1 should be temperature = down,
while for 2, the entity should be temperature = up. However, the single word
“hot” is not sufficient and the meaning has to be inferred from the utterance as a
whole.

13https://wit.ai/. Accessed February 21, 2016.
14https://wit.ai/docs/console/complete-guide#advanced-topics-link. Accessed February 21, 2016.

9.8 Overview of Some Other … 203

https://wit.ai/
https://wit.ai/docs/console/complete-guide%23advanced-topics-link

There is also a feature called state that preserves context, as in the following
example:

System: Do you prefer email or SMS?
User: SMS.

To specify that the system should be in a specific state when it expects responses
such as “email” or “SMS,” additional intents for email_answer and
sms_answer are created that will only be activated in certain defined states.

Wit.ai is available on several platforms, including iOS, Android,15 Windows,
and Raspberry Pi. Further details about the Wit.ai platform can be found at the
documentation page.16

9.8.1.2 Amazon Alexa

Amazon Alexa is the voice service that powers Amazon Echo and other devices
such as Amazon Fire and Amazon TV. Alexa consists of a set of skills that rep-
resent tasks such as performing an action and searching for information. The Alexa
Skills Kit (ASK) provides a number of APIs and tools for adding skills to Alexa.
There is a wide range of built-in skills, including playing music from various
providers, answering general knowledge questions, and carrying out actions such as
setting alarms.17 Designing a skill involves defining a voice interface18 that spec-
ifies a mapping between the user’s utterances and the intents that the system can
handle. This mapping consists of two inputs:

1. An intent schema in the form of a JSON structure.
2. The spoken input data, consisting of sample utterances and custom values.

As with other similar approaches, an Intent represents an action that the user
wishes to have carried out. Intents can also have slots. For example, an Intent called
SetAlarm would have a slot for the time. ASK provides a number of built-in
Intents as well as support for slot types such as AMAZON.NUMBER, AMAZON.
DATE, AMAZON.TIME, AMAZON.US_CITY, and others. Developers can create
their own custom slot types in which the values can be anything that can be spoken
by the user that is supported by the skill.

15https://wit.ai/docs/android/3.1.0/quickstart. Accessed February 21, 2016.
16https://wit.ai/docs. Accessed February 21, 2016.
17https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/getting-started-guide.
Accessed February 21, 2016.
18https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/defining-the-voice-
interface. Accessed February 21, 2016.

204 9 Implementing Spoken Language Understanding

https://wit.ai/docs/android/3.1.0/quickstart
https://wit.ai/docs
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/getting-started-guide
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/defining-the-voice-interface
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/defining-the-voice-interface

The Sample Utterances File contains all the possible utterances for a particular
intent with the slots specified using curly brackets, as in:

What {TIME} do you want to set the alarm for?

There are three types of intent in Alexa:

1. Full intents,
2. Partial intents,
3. No intent.

With a full Intent, the user says everything in a single utterance that is required to
fulfill their request, as in a one-shot query. With a partial intent, one or more slots
are missing and the system has to prompt for the missing values. This is similar to a
slot-filling dialog (see further Chap. 11). A no intent is where the user’s intent is
unclear and the system has to request clarification by presenting a short list of
options to choose from.19

Users interact with Alexa either by asking a question or by telling Alexa to do
something. Requests are sent to the Alexa service in the cloud and routed to the
specific service that provides the logic and a response. The response can be a
spoken message as well as a card that is displayed in the Alexa app. The text to be
spoken can be marked up using the Speech Synthesis Markup Language (SSML).

9.8.1.3 Microsoft Language Understanding Intelligent Service (LUIS)

The Microsoft Language Understanding Intelligent Service (LUIS) is part of
Microsoft’s Project Oxford20 that provides APIs for several areas of artificial
intelligence, including vision, speech, and language understanding. For language
understanding, LUIS enables developers to apply machine learning techniques to
create custom Intents and entities or use preexisting models from Bing and Cortana.

The process of creating Intents and entities in LUIS involves first specifying the
Intents and entities relevant to a particular domain and then listing some sample
utterances and labeling them according to their intents and the entities. A model is
built using machine learning that is then trained and retrained through a process
known as active learning. In active learning, an initial classifier is trained from a
small seed set of labeled examples; then, this classifier is applied to a larger set of
unseen examples and problematic classifications are identified. These examples are

19https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/alexa-skills-kit-voice-
design-handbook. Accessed February 21, 2016.
20https://www.projectoxford.ai/. Accessed February 21, 2016.

9.8 Overview of Some Other … 205

http://dx.doi.org/10.1007/978-3-319-32967-3_11
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/alexa-skills-kit-voice-design-handbook
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/alexa-skills-kit-voice-design-handbook
https://www.projectoxford.ai/

labeled and the classifier is retrained. The process continues until a satisfactory level
of performance is achieved.

As with other platforms, a large set of prebuilt entities is provided. To improve
the performance of the classifier, the developer can specify features to be used by
the machine learning algorithm in the identification of entities. For example, a
feature such as SearchPhrase might include a list of many words and phrases
that could be used in a spoken search query, such as “tell me about” or “information
about”. There are also several tools to assist with the development process, such as
the Interactive Classification and Extraction (ICE) tool. For further details, see the
papers by Williams et al. (2015a, b) as well as the video demo at the LUIS Web
site.21

9.8.2 Toolkits for various other NLP Tasks

Stanford CoreNLP22 is a suite of natural language processing tools for a variety of
tasks including tokenization, sentence splitting, part-of-speech (POS) tagging,
morphological analysis, named entity recognition, syntactic parsing, coreference
resolution, and sentiment analysis (Manning et al. 2014). Several languages are
supported. The output can also be formatted as XML, JSON, and CoNLL, or
displayed using a pretty print format.

The Apache OpenNLP tools23 support various natural language processing
tasks including tokenization, sentence segmentation, part-of-speech tagging, named
entity extraction, chunking, parsing, and coreference resolution. There is a tutorial
on how to use Apache OpenNLP through a set of simple examples here.24

GATE25 is open-source free software that has been developed over more than
15 years at the University of Sheffield, England. GATE supports a variety of text
processing tasks, including an information extraction system (ANNIE), parsing,
morphological analysis, tagging, and semantic annotation.

LingPipe26 is a toolkit for processing text involving tasks such as part-of-speech
tagging, named entity recognition, topic classification, spelling correction, and
sentiment analysis (Baldwin and Dayanidhi 2014).

Natural Language Toolkit (NLTK)27 is a platform for building Python pro-
grams to analyse natural language data, including a suite of libraries for

21https://www.luis.ai/. Accessed February 21, 2016.
22http://nlp.stanford.edu/software/corenlp.shtml. Accessed February 21, 2016.
23http://opennlp.apache.org/. Accessed February 21, 2016.
24http://www.programcreek.com/2012/05/opennlp-tutorial/. Accessed February 21, 2016.
25https://gate.ac.uk/. Accessed February 21, 2016.
26http://aliasi.com/lingpipe/index.html. Accessed February 21, 2016.
27http://www.nltk.org/. Accessed February 21, 2016.

206 9 Implementing Spoken Language Understanding

https://www.luis.ai/
http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.apache.org/
http://www.programcreek.com/2012/05/opennlp-tutorial/
https://gate.ac.uk/
http://aliasi.com/lingpipe/index.html
http://www.nltk.org/

classification, tokenization, stemming, tagging, parsing, and semantic reasoning.
The Natural Language Toolkit is described in an online book.28

AlchemyAPI29 provides tools for a number of text processing tasks including
entity extraction, sentiment analysis, keyword extraction, concept tagging, relation
extraction, taxonomy classification, author extraction, language detection, text
extraction, and feed detection. AlchemyAPI was acquired in March 2015 by IBM
and is being integrated into IBM’s Watson platform to provide deep learning
technology for next-generation cognitive computing applications.

9.9 Summary

There is a wide range of tools that can be used to process the input to a conver-
sational interface and produce a semantic analysis. Many of these tools treat the
semantic analysis as the identification of the intent behind the user’s utterance along
with the parameters that are related to this intent. We have provided a tutorial and a
set of exercises showing how to produce a semantic analysis using the Api.ai
platform. Other platforms such as Wit.ai, Amazon Alexa, and Microsoft LUIS take
a similar approach but differ in the tools that they provide. The final part of the
chapter looked briefly at a number of other tools that may be used for spoken
language processing tasks.

The next stage for the conversational interface is to take the semantic interpre-
tation of the user’s input and decide how to respond. This is the task for the dialog
manager. Chapter 10 reviews current approaches to dialog management, while
Chap. 11 provides tutorials showing how dialog management can be implemented.

Further Reading
Most of the Web sites referenced above provide online demos. There is also a
collection of online demos at the Conversational Technologies Web site.30 Some
open-source NLP tools are described here.31 This page provides a list of NLP tools
and resources.32

28http://www.nltk.org/book/. Accessed February 21, 2016.
29http://www.alchemyapi.com/. Accessed February 21, 2016.
30http://www.conversational-technologies.com/nldemos/nlDemos.html. Accessed February 21,
2016.
31https://opensource.com/business/15/7/five-open-source-nlp-tools. Accessed February 21, 2016.
32http://ils.unc.edu/*stephani/nlpsp08/resources.html#tools. Accessed February 21, 2016.

9.8 Overview of Some Other … 207

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://www.nltk.org/book/
http://www.alchemyapi.com/
http://www.conversational-technologies.com/nldemos/nlDemos.html
https://opensource.com/business/15/7/five-open-source-nlp-tools
http://ils.unc.edu/%7estephani/nlpsp08/resources.html%23tools

References

Baldwin B, Dayanidhi K (2014) Natural language processing with Java and LingPipe Cookbook.
Packt Publishing, Birmingham, UK

Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014) The stanford
CoreNLP natural language processing toolkit. In: Proceedings of the 52nd annual meeting of
the association for computational linguistics: system demonstrations, Baltimore, 23–25 June
2014, pp 55–60. doi:10.3115/v1/p14-5010

Williams JD, Kamal E, Ashour M, Amr H, Miller J, Zweig G (2015a) Fast and easy language
understanding for dialog systems with Microsoft language understanding intelligent service
(LUIS). In: Proceedings of the SIGDIAL 2015 conference, Prague, Czech Republic, 2–4 Sept
2015, pp 159–161. doi:10.18653/v1/w15-4622

Williams JD, Niraula NB, Dasigi P, Lakshmiratan A, Suarez CGJ, Reddy M, Zweig G (2015b)
Rapidly scaling dialog systems with interactive learning. In Lee GG, Kim HK, Jeong M, Kim
J-H (eds) Natural language dialog systems and intelligent assistants. Springer, New York,
pp 1–12. doi:10.1007/978-3-319-19291-8_1

208 9 Implementing Spoken Language Understanding

http://dx.doi.org/10.3115/v1/p14-5010
http://dx.doi.org/10.1007/978-3-319-19291-8_1

Chapter 10
Dialog Management

Abstract One of the core aspects in the development of conversational interfaces
is to design the dialog management strategy. The dialog management strategy
defines the system’s conversational behaviors in response to user utterances and
environmental states. The design of this strategy is usually carried out in industry
by handcrafting dialog strategies that are tightly coupled to the application domain
in order to optimize the behavior of the conversational interface in that context.
More recently, the research community has proposed ways of automating the
design of dialog strategies by using statistical models trained with real conversa-
tions. This chapter describes the main challenges and tasks in dialog management.
We also analyze the main approaches that have been proposed for developing
dialog managers and the most important methodologies and standards that can be
used for the practical implementation of this important component of a conversa-
tional interface.

10.1 Introduction

This chapter describes the main aspects, tasks, and approaches involved in the
dialog management (DM) process. Section 10.2 defines the DM process and the
tasks involved. To illustrate the complexity of dialog strategy design, this section
analyzes two frequently arising design issues: the interaction strategy and the choice
of a confirmation strategy.

Dialog management can be classified into handcrafted approaches using rules,
which are described in Sect. 10.3, and statistical approaches using machine learning
methodologies, which are described in Sect. 10.4. Statistical approaches have been
proposed to model the variability in user behaviors and to allow the exploration of a
wider range of strategies. This section provides two detailed examples of the
practical application of reinforcement learning and corpus-based supervised
learning for the development of statistical dialog managers.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_10

209

10.2 Defining the Dialog Management Task

As has been described in previous chapters, different modules and processes must
cooperate to achieve the main goal of a conversational interface. Automatic speech
recognition (ASR) is the process of obtaining the text string corresponding to an
acoustic input (see Chap. 5). Once the speech recognition component has recog-
nized what the user uttered, it is necessary to understand what was said. Spoken
language understanding (SLU) is the process of obtaining a semantic interpretation
of a text string (see Chap. 8). This generally involves morphological, lexical,
syntactical, semantic, discourse, and pragmatic knowledge.

DM relies on the fundamental task of deciding what action or response a system
should take in response to the user’s input. There is no universally agreed definition
of the tasks that this component has to carry out to make this decision. Traum and
Larsson (2003) state that DM involves four main tasks:

1. Updating the dialog context.
2. Providing a context for interpretation.
3. Coordinating other modules.
4. Deciding the information to convey and when to do it.

Thus, the dialog manager has to deal with different sources of information such
as the SLU results, results of database queries, application domain knowledge, and
knowledge about the users and the previous dialog history. The complexity of DM
depends on the task, the extent to which the dialog is flexible, and who has the
initiative in the dialog, the system, the user, or both.

Although DM is only one part of the information flow of a conversational
interface, it can be seen as one of the most important tasks given that this com-
ponent encapsulates the logic of the speech application. The selection of a particular
action depends on multiple factors, such as the output of ASR (e.g., measures that
define the reliability of the recognized information), the dialog interaction (e.g., the
number of repairs carried out so far), the application domain (e.g., guidelines for
customer service), and the responses and status of external back-ends, devices, and
data repositories. Given that the actions of the system directly impact users, the
dialog manager is largely responsible for user satisfaction. Because of these factors,
the design of an appropriate DM strategy is at the core of conversational interface
engineering.

ASR is not perfect, so one of the most critical aspects of the design of the dialog
manager involves error handling. The ASR and SLU components make errors, and
so conversational interfaces are generally less accurate than humans. For all of this
technology to work, severe limitations need to be imposed on the scope of the
applications and this requires a great amount of manual work for designers. One
common way to alleviate errors is to use techniques aimed at establishing a con-
fidence level for the ASR result and to use that to decide when to ask the user for
confirmation, or whether to reject the hypothesis completely and reprompt the user.
Too many confirmations as well as too many reprompts could annoy users. So it is

210 10 Dialog Management

http://dx.doi.org/10.1007/978-3-319-32967-3_5
http://dx.doi.org/10.1007/978-3-319-32967-3_8

important to reduce the number of confirmations and rejections to a minimum while
at the same time preserving a reasonable level of accuracy.

In order to complete the tasks described above and to decide “what to say” and
“what to do,” the dialog manager needs to track the dialog history and update its
representation of the current state of the dialog. In addition, the dialog manager
needs a dialog strategy that defines the conversational behavior of the system, for
example, when to take the initiative in a dialog or when to establish common
ground. The performance of a conversational interface is highly dependent on the
quality of its DM strategy.

Unfortunately, the design of a good strategy is far from trivial since there is no
clear agreement as to what constitutes a good strategy. User populations are often
diverse, thus making it difficult to foresee which form of system behavior will lead
to a quick and successful completion of the dialog. In addition, the omnipresence of
ASR errors leads to constant uncertainty about the true intentions of the user. As
applications become more complex, the process of designing robust dialog strate-
gies becomes very time-consuming and expensive.

To further illustrate the complexity involved in dialog strategy design, the fol-
lowing subsections briefly discuss two frequently arising design issues: interaction
strategies and the choice of a confirmation strategy.

10.2.1 Interaction Strategies

The interaction strategy of a conversational interface determines who takes the
initiative in the dialog—the system, the user, or both. Three types of interaction
strategies are often distinguished in the literature: user-directed, system-directed,
and mixed-initiative.

When user-directed initiative is used, the user always has the initiative in the
dialog, and the system just responds to the user’s queries and commands. The main
problem with this strategy is that the user may think that they are free to say
whatever they want, which tends to cause ASR and SLU errors. The following
example shows a user-directed dialog with the EDECAN dialog system for booking
sports facilities at the Technical University of Valencia, Spain (Griol et al. 2014).

System: Welcome to the sports service. How can I help you?
User: I want to book a basketball court.
System: You can see the available courts on the screen.
User: I want a court for November 12th in the afternoon.
System: Sorry, do you want a court from 15 to 21 hours?
User: Yes.
System: There are several courts available on Friday November 12th. Please
select one of them.
User: The one at 7 pm.

10.2 Defining the Dialog Management Task 211

System: There is only one court with the required features. Do you want to
book it?
User: Yes.
System: The basketball court has been booked. Anything else?
User: Yes, I want to know my list of court bookings.
System: You can see the courts on the screen. Anything else?
User: Yes, cancel the one at 12 am.
System: The specified court has been released. Anything else?
User: No, thank you.
System: Thank you for using the sports service. Goodbye.

When system-directed initiative is used, the system has the initiative in the
dialog, and the user just answers its queries. The advantage of this strategy is that it
helps to constrain the user’s input, leading to more efficient dialogs. The disad-
vantage is a lack of flexibility, as the user is restricted to behaving according to the
system’s expectations, providing the necessary data to perform some action in the
order specified by the system. The following example shows a system-directed
dialog with the LUNA dialog system that supports problem-solving tasks in the
domain of software/hardware repair (Griol et al. 2014).

System: Help Desk, I am Paola! How may I help you?
User: Hello I have a problem with the printer. It is not printing.
System: Where do you work?
User: For CSI Piemonte.
System: Tell me your name and surname.
User: My name is Ugo Foscolo.
System: I didn’t hear you very well. Please repeat and speak louder.
User: Ugo Foscolo.
System: Can you tell me your phone number?
User: Zero eleven forty fifty sixty-three.
System: Can you tell me the brand and model?
User: Epson EPL nine thousand.
System: Is the printer on now?
User: It is on.
System: Can you tell me the message on the printer display?
User: It says No network connection.
System: Can you see the printer from the control panel of your PC?
User: It is active.
System: Now, I will tell you the number of the ticket for your call. Your ticket
number is 2609192. Have you noted it down?
User: Yes.

212 10 Dialog Management

System: Thank you! A technical expert from Help Desk will contact you as
soon as possible. Have a nice day!

When the mixed-initiative strategy is used, both the user and the system can take
the initiative in the dialog. The advantage is that the system can guide the user in the
tasks that are to be performed, while the user can take the initiative, ask questions,
introduce new topics, and provide overinformative responses. In the following
example of a mixed-initiative dialog with the LUNA dialog system involving the
provision of railway information related to timetables, fares, trip times, types of
trains, and services the user responds to the system’s question about the destination
city by stating the day as well as the city (Griol et al. 2008).

System: Welcome to the railway information system. How can I help you?
User: I want to know timetables from Madrid.
System: Do you want to leave from Madrid?
User: Yes.
System: Tell me the destination city.
User: To Granada next Friday.
System: Do you want timetables for next Friday?
User: Yes
System: I have the following information about trains from Madrid to
Granada. There is only one train at 8.30. Anything else?
User: No, thank you.
System: Thanks for using this service. Have a good trip.

Although not shown in this dialog, an example of a mixed-initiative dialog in
which the user takes the initiative instead of responding directly to the system’s
question is shown in the following example:

System: Do you want timetables for next Friday?
User: Are there trains before 6 in the morning?

The problem with mixed-initiative dialogs is that the user can potentially say
anything and by introducing a different topic may cause the system to lose track of
its agenda. Thus, mixed-initiative dialogs require advanced ASR and SLU capa-
bilities as well as the ability to maintain and monitor the dialog history and the
system’s agenda.

10.2 Defining the Dialog Management Task 213

10.2.2 Error Handling and Confirmation Strategies

Because of the limitations of current ASR and SLU technologies that are employed
in conversational interfaces, it is necessary to assume that the information captured
by these components (and possibly also by sensors) may be uncertain or ambigu-
ous. Error propagation from the ASR and SLU modules is one of the main prob-
lems that the dialog manager must try to detect and correct.

To deal with the uncertainty problem, the ASR and SLU components typically
employ confidence scores attached to the frame slots, for example, real numbers in
the range between 0 and 1. A confidence score that falls below a threshold indicates
that the data item in the slot must be either confirmed or rejected by the system.

Two types of confirmation strategy are often employed: explicit confirmation
and implicit confirmation. With explicit confirmation, the system generates an
additional dialog turn to confirm the data item obtained from the previous user turn,
as in the following example:

User: I want to know timetables from Madrid.
System: Do you want to leave from Madrid?
User: Yes.

The disadvantage of explicit confirmations is that the dialog tends to be lengthy
due to these additional confirmation turns, and this makes the interaction less
efficient and even excessively repetitive if all the data items provided by the user
have to be confirmed.

The following is an example of an implicit confirmation:

User: I want to know timetables from Madrid.
System: What time do you want to leave from Madrid?

When the implicit confirmation strategy is used, the system includes some of the
user’s previous input in its next question. If the user answers the question directly,
for example, in this case by stating a departure time, then it is assumed that the
previous information about the destination is implicitly confirmed and no additional
turns are required. However, it is the user’s responsibility to make a correction if the
system has misrecognized the information and this can lead to the user producing
utterances that are beyond the scope of the ASR and SLU components, for example:

User: I want to know timetables from Madrid.
System: What time do you want to leave from Madrid?

214 10 Dialog Management

User: No, I just wanted to know about times from Madrid but I might be
departing from somewhere else depending on whether I have the use of the
car next Friday.

These confirmation strategies are useful for avoiding misunderstandings, for
example, when the system has understood something from its interaction with the
user but is uncertain about how accurate it is. One related, but different situation is
non-understanding, which occurs when the system has not been able to collect any
data from its interaction with the user. In this case, two typical strategies for
handling the error are to ask the user to repeat the input, or to ask for it to be
rephrased.

In the case of multimodal conversational interfaces, the input information can
also be ambiguous. For example, input made with a pen on a touch-sensitive screen
can have three different purposes: pointing (as a substitute for the mouse), hand-
writing, and drawing. In order to address this problem, the system must employ
some method to try to automatically decide the mode in which the pen is being used
and/or employ an additional dialog turn to get a confirmation from the user about
the intended mode.

A number of different approaches to DM have been developed within the
research community and in industry (Lee et al. 2010; Wilks et al. 2011). These
approaches can be classified into two main categories: handcrafted approaches
using rules and statistical or data-driven approaches using machine learning
methodologies. Hybrid approaches are also possible in which these two main
approaches are combined. The following sections discuss approaches to DM.

10.3 Handcrafted Approaches to Dialog Management

One of the simplest DM strategies is finite state-based DM, in which a generic
program implements the application with an interaction model based on finite state
machines. This approach is usually confined to highly structured tasks in which
system-directed initiative is used and the user’s input is restricted to utterances
within the scope of the ASR and SLU components (Barnard et al. 1999; Lee et al.
2010). This knowledge-based approach generally uses finite state automata with
handcrafted rules. The user’s actions determine the transitions between the system
responses that constitute the nodes of the finite state automaton, and the user’s
responses to the system prompts are coded in recognition grammars.

Although this approach has been deployed in many practical applications
because of its simplicity, these early applications only support a strict
system-directed dialog interaction, in which at each turn the system directs the user
by proposing a small number of choices for which there is a limited grammar or
vocabulary to interpret the input. Directed dialog has been efficient in terms of

10.2 Defining the Dialog Management Task 215

accuracy and cost of development. However, although libraries and dialog modules
have been created that can be reused and adapted to different applications, the
weakest point of this approach is its lack of versatility and poor domain portability
(Acomb et al. 2007; Pieraccini et al. 2009).

Unlike the finite state approach, frame-based dialog managers do not have a
predefined dialog path but use a frame structure comprised of one slot for piece of
information that the system has to gather from the user (McTear 2004). The
advantage of this approach is that the system can capture several data at once and
the information can be provided in any order (more than one slot can be filled per
dialog turn and in any order). The form interpretation algorithm (FIA), the basis for
the VoiceXML standard, is an example of a model of frame-based dialog man-
agement (see Chap. 11). Using frames, it is possible to specify the whole topic of a
dialog. A study by Lemon et al. (2001) is an example of a frame-based system, as is
the COMIC DM system (Catizone et al. 2003). The core idea is that humans
communicate to achieve goals and during the interaction the mental state of the
speakers may change. Thus, frame-based dialog managers model dialog as a
cooperation between the user and the system to reach common goals. Utterances are
not considered as text strings but as dialog acts in which the user communicates
their intentions.

Amore advanced approach is Information StateTheory, also knownas Information
StateUpdate (ISU), introduced inChap. 4 (TraumandLarsson 2003). The information
state of a dialog represents the information needed to uniquely distinguish it from all
others. It comprises the accumulated user interventions and previous dialog actions on
which the next system response can be based. The information state is also sometimes
known as the conversation store, discourse context, ormental state. In the information
state approach, the main tasks for the dialog manager are to update the information
state based on the observed user actions and based on this update to select the next
system action as specified in the update rules.

Plan-based approaches take the view that humans communicate to achieve goals,
including changes to the mental state of the listener. Plan-based theories of com-
municative action and dialog (e.g., Allen and Perrault 1980; Appelt 1985; Cohen
and Levesque 1990) claim that the speaker’s speech act is part of a plan and that it
is the listener’s task to identify and respond appropriately to this plan (Wilks et al.
2011). Plan-based approaches attempt to model this claim and explicitly represent
the (global) goals of the task.

Conversational games theory (Carletta et al. 1995; Kowtko et al. 1993) uses
techniques from both discourse grammars and plan-based approaches by including
a goal or plan-oriented level in its structural approach. It can be used to model
conversations between a human and a computer in a task-oriented dialog (Williams
1996). This approach deals with discourse phenomena such as side sequences and
clarifications by allowing games to have another game embedded within them
(Wilks et al. 2011).

Additionally, when it is necessary to execute and monitor operations in a
dynamically changing application domain, an agent-based approach can be
employed. A modular agent-based approach to DM makes it possible to combine

216 10 Dialog Management

http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_4

the benefits of different dialog control models, such as finite state-based dialog
control and frame-based DM (Chu et al. 2005).

As previously discussed, in most settings, application developers, together with
voice user interface (VUI) designers, typically handcraft DM strategies using rules
and heuristics. As it is extremely challenging to anticipate every possible user input,
handcrafting dialog management strategies is an error-prone process that needs to
be iteratively refined and tuned, which requires considerable time and effort. The
VoiceXML standard, which was introduced briefly in Chap. 4, is an example of the
handcrafted approach that is used widely in industry to develop voice user inter-
faces. Chap. 11 provides an overview of VoiceXML along with exercises in how to
build a simple dialog system using VoiceXML.

One of the main problems with handcrafted approaches to DM is that it is
extremely challenging to anticipate every possible user input and design appropriate
strategies to handle it. The process is error-prone and requires considerable time and
effort to iteratively refine and tune the dialog strategies.

10.4 Statistical Approaches to Dialog Management

Machine learning approaches to DM try to reduce the effort and time required to
handcraft DM strategies and, at the same time, facilitate the development of new
dialog managers and their adaptation to deal with new domains. The application of
machine learning approaches to DM strategy design is a rapidly growing research
area. The main idea is to learn optimal strategies from corpora of real human–
computer dialog data using automated “trial-and-error” methods instead of relying
on empirical design principles (Young 2002).

Statistical approaches to DM present additional important advantages. Rather
than maintaining a single hypothesis for the dialog state, they maintain a distri-
bution over many hypotheses for the correct dialog state. In addition, statistical
methodologies choose actions using an optimization process, in which a developer
specifies high-level goals and the optimization works out the detailed dialog plan.
Finally, statistical DM systems have shown, in research settings, more robustness to
speech recognition errors, yielding shorter dialogs with higher task completion rates
(Williams and Young 2007).

The main trend in this area is an increased use of data to improve the perfor-
mance of the system. As described in Paek and Pieraccini (2008), there are three
main aspects of spoken dialog interaction where the use of massive amounts of data
can potentially improve the automation rate and ultimately the penetration and
acceptance of speech interfaces in the wider consumer market. They are as follows:

• Task-independent behaviors (e.g., error correction and confirmation behavior).
• Task-specific behaviors (e.g., logic associated with certain customer care

practices).
• Task interface behaviors (e.g., prompt selection).

10.3 Handcrafted Approaches to Dialog Management 217

http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_11

Statistical models can be trained using corpora of human–computer dialogs with
the goal of explicitly modeling the variability in user behavior that can be difficult
to address by means of handwritten rules (Schatzmann et al. 2006). Additionally, it
is possible to extend the strategy learned from the training corpus with handcrafted
rules that include expert knowledge or specifications about the task (Suendermann
and Pieraccini 2012; Laroche et al. 2008; Torres et al. 2008; Young et al. 2013).

The goal is to build systems that exhibit more robust performance, improved
portability, better scalability, and easier adaptation to other tasks. However, model
construction and parameterization are dependent on expert knowledge, and the
success of statistical approaches is dependent on the quality and coverage of the
models and data used for training (Schatzmann et al. 2006). Moreover, the training
data must be correctly labeled for the learning process. The size of currently
available annotated dialog corpora is usually too small to sufficiently explore the
vast space of possible dialog states and strategies. Collecting a corpus with real
users and annotating it requires considerable time and effort.

To address these problems, researchers have proposed alternative techniques that
facilitate the acquisition and labeling of corpora, such as Wizard of Oz (Fraser and
Gilbert 1991; Lane et al. 2004), bootstrapping (Fabbrizio et al. 2008; Abdennadher
et al. 2007), active learning (Cohn et al. 1994; Venkataraman et al. 2005), automatic
dialog act classification and labeling (O’Shea et al. 2012; Venkataraman et al.
2002), and user simulation (Schatzmann et al. 2006; Callejas et al. 2012).

Another relevant problem is how to deal with unseen situations, that is, situa-
tions that may occur during the dialog and that were not considered during training.
To address this point, it is necessary to employ generalizable models in order to
obtain appropriate system responses that enable the system to continue with the
dialog in a satisfactory way.

Another difficulty is in the design of a good dialog strategy, which in many cases
is far from being trivial. In fact, there is no clear definition of what constitutes a
good dialog strategy (Schatzmann et al. 2006; Lemon and Pietquin 2012). Users are
diverse, which makes it difficult to foresee which form of system behavior will lead
to a quick and successful dialog completion, and speech recognition errors may
introduce uncertainty about the user’s intentions.

Statistical approaches to DM can be classified into three main categories: dialog
modeling based on reinforcement learning (RL), corpus-based statistical dialog
management, and example-based dialog management. Example-based approaches
can be considered a specific case of corpus-based statistical dialog management,
given that they usually perform dialog modeling by means of prepared dialog
examples (Murao et al. 2003; Lee et al. 2009). These approaches assume that the
next system action can be predicted when the dialog manager finds dialog examples
that have a similar dialog state to the current dialog state (Lee et al. 2010). The best
example is then selected from the candidate examples by calculating heuristic
similarity measures between the current input and the example.

Hybrid approaches to DM combine statistical and rule-based approaches to try to
reduce the amount of dialog data required for parameter estimation and to allow
system designers to directly incorporate their expert domain knowledge into the

218 10 Dialog Management

dialog models (Lison 2015). In the following sections, we provide a detailed
description of reinforcement learning and corpus-based approaches.

10.4.1 Reinforcement Learning

The most recent research advances in reinforcement learning (RL) for building
spoken conversational interfaces have been reviewed and summarized in a survey
paper by Frampton and Lemon (2009). An earlier survey can be found in
Schatzmann et al. (2006). See also Rieser and Lemon (2011).

The most widespread methodology for machine learning of dialog strategies
involves modeling human–computer interaction as an optimization problem using
Markov decision processes (MDPs) and reinforcement learning methods (Levin and
Pieraccini 1997; Levin et al. 2000; Singh et al. 1999). The main drawback of this
approach is that the large state space required for representing all the possible dialog
paths in practical spoken conversational interfaces makes its direct representation
intractable. In addition, while exact solution algorithms do exist, they do not scale
to problems with more than a few states/actions (Young et al. 2010, 2013).

Partially observable MDPs (POMDPs) outperform MDP-based dialog strategies
since they provide an explicit representation of uncertainty (Roy et al. 2000). This
enables the dialog manager to avoid and recover from recognition errors by sharing
and shifting probability mass between multiple hypotheses of the current dialog
state.

Another disadvantage of the POMDP methodology is that the optimization
process is free to choose any action at any time. As a result, there is no obvious way
to incorporate domain knowledge or constraints such as business rules. In addition,
in the worst case, spurious actions might be taken with real users, an especially
serious concern if POMDP-based systems are going to handle financial or medical
transactions. POMDP-based systems have been limited to small-scale problems,
since the state space would be huge and exact POMDP optimization is again
intractable (Young et al. 2010).

Formally, a partially observable MDP is defined as a tuple {S, A, T, R, O, Z, λ,
b0} where

• S is a set of the system states;
• A is a set of actions that the system may take;
• T defines a transition probability P(s′|s, a);
• R defines the immediate reward obtained from taking a particular action in a

particular state r(s, a);
• O is a set of possible observations that the system can receive from the world;
• Z defines the probability of a particular observation given the state and machine

action P(o′|s′ a);
• λ is a geometric discount factor 0 ≤ λ ≤ 1; and
• b0 is an initial belief state b0(s).

10.4 Statistical Approaches to Dialog Management 219

The operation of a POMDP is as follows. At each moment, the system is in an
unobserved state s. The system selects an action am, receives a reward r, and
transits to a state (unobserved) s′, where s′ only depends on s and am. The system
receives an observation o′, which depends on s′ and am. Although the observation
allows the system to have some evidences about the state s in which the system is
now, s is not exactly known, and b(s) (belief state) is defined to indicate the
probability of the system being in the state s.

Based on b, the machine selects an action a 2 A, receives a reward r(s, a),
and transitions to state s′, which depends only on s and a. The machine then
receives an observation o′ 2 O, which is dependent on s′ and a. In each moment,
the probability of the system being in a specific state is updated taking into account
o′ and a, as shown in Eq. 10.1.

b0 s0ð Þ ¼ P s0jo0; a; bð Þ ¼ P o0js0m; am; b
� �

P s0mjam; b
� �

P o0jam; bð Þ

¼ P o0js0m; am; b
� �P

sm2Sm P s0mjam; b; sm
� �

P smjam; bð Þ
P o0jam; bð Þ

¼ k � P o0js0; að Þ
X

s2S P s0ja; sð ÞbðsÞ
ð10:1Þ

where k = P (o’|a, b) is a normalization constant (Kaelbling et al. 1998). At
each time t, the system receives a reward r(bt, am,t), which depends on bt and
the selected action am,t. The reward accumulated during the dialog is called a
return and can be calculated by means of Eq. 10.2.

R ¼
X1
t¼0

ktRðbt; am;tÞ ¼
X1
t¼0

kt
X
s2S

btðsÞrðs; am;tÞ ð10:2Þ

Each action am,t is determined by the policy π(bt), and the construction of the
POMDP model implies to find the strategy π* which maximizes the return at every
point b. Due to the vast space of possible belief states, however, the use of
POMDPs for any practical system is far from straightforward. The optimal policy
can be represented by a set of policy vectors where each vector vi is associated
with an action a(i) 2 Am and vi(s) equals the expected value of taking action a
(i) in state s. Given a complete set of policy vectors, the optimal value function and
corresponding policy are computed as shown in Eq. 10.3.

Vp� ðbÞ ¼ max
i
fvi; bg

220 10 Dialog Management

and

Vp� ðbÞ ¼ max
i
fvi; bg ð10:3Þ

The application of a POMDP to model a conversational interface is based on the
classical architecture of these systems as shown in Fig. 10.1. As this figure shows,
the user has an internal state Su corresponding to a goal to be accomplished and the
dialog state Sd represents the previous history of the dialog. Based on the user’s
goal prior to each turn, the user decides some communicative action (also called an
intention) Au, expressed in terms of dialog acts and corresponding to an audio
signal Yu.

Then, the speech recognition and language understanding modules take the

audio signal Yu and generate the pair eAu;C
� �

. This pair consists of an estimate of

the user’s action Au and a confidence score that provides an indication of the
reliability of the recognition and semantic interpretation results. This pair is then
passed to the dialog model, which is in an internal state Sm and decides what action
Am the dialog system should take. This action is also passed back to the dialog
manager so that Sm may track both user and machine actions. The language gen-
erator and the text-to-speech synthesizer take Am and generate an audio response Ym.
The user listens to Ym and attempts to recover Am. As a result of this process, users
update their goal state Su and their interpretation of the dialog history Sd. These
steps are then repeated until the end of the dialog.

One of the main challenges for conversational interfaces is that eAu usually
contains recognition errors (i.e., eAu 6¼ Au). As a result, the user’s action Au, the
user’s state Su, and the dialog history Sd are not directly observable and can never
be known to the system with certainty. However, eAu and the confidence scores C
provide evidence from which Au, Su, and Sd can be inferred.

Therefore, when using POMDPs to model a conversational interface, the
POMDP state Sm expresses the unobserved state of the world and can naturally be
factored into three distinct components: the user’s goal Su, the user’s action Au, and
the dialog history Sd. Hence, the factored POMDP state S is defined as Sm = (su,

Fig. 10.1 Modeling a dialog system by means of POMDPs (Young et al. 2013)

10.4 Statistical Approaches to Dialog Management 221

au, sd). The belief state b is then a distribution over these three components:
sm = bs = b(su, au, sd). The observation o is the estimate of the user dialog acteAu. In the general case, this will be a set of N-best hypothesized user acts, each with
an associated probability:

o ¼ ~a1u; p1
� �

; ~a2u; p2
� �

; . . .; ~aNu ; pN
� �� � ð10:4Þ

where pn ¼ P ~aNu jo
� �

for n ¼ 1. . .N:
The transition function for an SDS-POMDP follows directly by substituting the

factored state into the regular POMDP transition function and making indepen-
dence assumptions:

P s0mjsm; am
� � ¼ P s0u; a

0
u; s

0
djsu; au; sd; am

� �
¼ P s0ujsu; am

� �
P a0ujs0u; am
� �

P s0djs0u; a0u; sd; am
� � ð10:5Þ

The observation model is obtained by making similar reasonable independence
assumptions regarding the observation function, giving

P o0js0m; am
� � ¼ P o0js0u; a0u; s0d; am

� � ¼ P o0ja0u
� � ð10:6Þ

The above factoring simplifies the belief update equation as shown in Eq. 10.7.

b0 s0u; a
0
u; s

0
d

� � ¼ k � P o0ja0u
� �

|fflfflfflffl{zfflfflfflffl}
Observationmodel

P a0ujs0u; am
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
User actionmodel

X
su

P s0ujsu; am
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
User goal model

�
X
sd

P s0djs0u; a0u; sd; am
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dialogmodel

bðsu; sdÞ
ð10:7Þ

As shown in the previous equation, the probability distribution for a0u is called
the user action model. It allows the observation probability to be scaled by the
probability that the user would speak a0u given the goal s0u and the last system
prompt am. The user goal model determines the probability of the user goal
switching from su to s0u following the system prompt am. Finally, the dialog model
enables information relating to the dialog history to be maintained such as
grounding and focus.

10.4.1.1 Reinforcement Learning: Some Problems and Some Solutions

Scaling the dialog model to handle real-world problems remains a significant
challenge for RL-based systems, given that the complexity of a POMDP grows with
the number of user goals, and optimization quickly becomes intractable. The
summary POMDP method (Young et al. 2010) provides a way to scale up the
POMDP model for so-called slot-filling spoken dialog systems. In this approach,

222 10 Dialog Management

the belief state and actions are mapped down to a summarized form where opti-
mization becomes tractable.

The original belief space and actions are called master space and master actions,
while the summarized versions are called summary space and summary actions.
The updated belief state b is then mapped into a summary state ~b, where an
optimized dialog policy is applied to compute a new summary machine action ãm.
The summary machine action is then mapped back into the master space where it is
converted to a specific machine dialog act am.

The optimization of the policy in these two spaces is usually carried out using
techniques such as point-based value iteration or Q-learning, in combination with a
user simulator. Q-learning is a technique for online learning where a sequence of
sample dialogs is used to estimate the Q functions for each state and action. The
optimal action for each point p is given by

�ap ¼ argmax
�a

Qða; pÞ ð10:8Þ

Given that a good estimate of the true Q-value can be obtained if sufficient
dialogs are completed, user simulation is usually introduced to reduce the
time-consuming and expensive task of obtaining these dialogs with real users.
Simulation is usually done at a semantic dialog act level to avoid having to
reproduce the variety of user utterances at the word or acoustic levels.

Agenda-based state representations, like the one described in (Thomson et al.
2007), factor the user state into an agenda A and a goal G. The goal G consists of
constraints C that specify the detailed goal of the dialog and requests R that specify
the desired pieces of information.

The user agenda A is a stack-like structure containing the pending user dialog
acts that are needed to elicit the information specified in the goal. At the beginning
of each dialog, a new goal G is randomly selected. Then, the goal constraints C are
converted into user and system inform acts (au and am acts) and the requests R into
request acts. A bye act is added at the bottom of the agenda to close the dialog once
the goal has been fulfilled. The agenda is ordered according to priority, with A[N]
denoting the top item and A[1] denoting the bottom item. As the dialog pro-
gresses, the agenda and goal are dynamically updated and acts are selected from the
top of the agenda to form user acts au.

Young et al. (2010) present an approach that scales the POMDP framework for
the implementation of practical spoken conversational interfaces by defining two
state spaces. Approximate algorithms have also been developed to overcome the
intractability of exact algorithms, but even the most efficient of these techniques
such as point-based value iteration (PBVI) cannot scale to the many thousands of
states required by a statistical dialog manager (Williams et al. 2006).

10.4 Statistical Approaches to Dialog Management 223

Composite summary point-based value iteration (CSPBVI) has suggested the
use of a small summary space for each slot where PBVI policy optimization can be
applied. However, policy learning in this technique can only be performed off-line,
i.e., at design time, because policy training requires an existing accurate model of
user behavior. An alternative technique for online training based on Q-learning is
presented in Thomson et al. (2007), which allows the system to adapt to real users
as new dialogs are recorded. This technique does not require any model of user
behavior, so user simulation techniques are proposed to iteratively learn the dialog
model.

Other authors have combined conventional dialog managers with a fully
observable Markov decision process (Singh et al. 2002; Heeman 2007), or proposed
using multiple POMDPs and selecting actions using handcrafted rules (Williams
et al. 2006). In Williams (2008), the robustness of the POMDP approach is com-
bined with the developer control available in conventional approaches: The (con-
ventional) dialog manager and POMDP run in parallel, but the dialog manager is
augmented so that it outputs one or more allowed actions at each time
step. The POMDP then chooses the best action from this limited set. Results from a
real voice dialer application show that adding the POMDP machinery to a standard
dialog system yields a significant improvement.

Crook et al. (2014) describe an evaluation of a POMDP-based spoken dialog
system using crowd-sourced calls with real users. The evaluation compares a
“hidden information state” POMDP system that uses a handcrafted compression of
the belief space with the same system using instead an automatically computed
belief space compression.

In Tetreault and Litman (2008), the authors aimed to evaluate the best
state-space representations so that RL can be used to find an optimal dialog policy.
The authors presented three metrics for the tutoring domain and ways to build
confidence intervals for model switching. In the work reported in Gašić et al.
(2011), online optimization of dialog policy was conducted in spoken dialog sys-
tems via live interaction with human subjects.

Jurčíček et al. (2012) presented two RL algorithms for learning the parameters of
a dialog model. The Natural Belief Critic algorithm is designed to optimize the
model parameters while the policy is kept fixed. The Natural Actor and Belief Critic
algorithm jointly optimizes both the model and the policy parameters. The algo-
rithms were evaluated on a statistical dialog system for the tourist information
domain modeled as a POMDP. The experiments indicated that model parameters
estimated to maximize the expected reward function provide improved performance
compared to the baseline handcrafted parameters.

Thomson and Young (2010) used expectation–propagation (EP) to infer the
unobserved dialog state together with the model parameters. The main advantage of
this algorithm is that it is an off-line method and it does not rely on annotated data.
However, it requires the model to be generative (i.e., the observations must be
conditioned on the dialog state).

Wierstra et al. (2010) used recurrent neural networks (RNN) to approximate the
policy. This method selects a new system action based on the accumulated

224 10 Dialog Management

information in the internal memory and the last observation. Png and Pineau (2011)
presented a framework based on a Bayes-adaptive POMDP algorithm to learn an
observation model. In this work, a dialog model was factored into a transition
model between hidden dialog states and an observation model, and only learning of
the observation model was considered.

Lopes et al. (2015) have very recently presented a data-driven approach to
improve the performance of SDSs by automatically finding the most appropriate
terms to be used in system prompts. Speakers use one another’s terms (entrain)
when trying to create common ground during a spoken dialog. Those terms are
commonly called primes, since they influence the interlocutors’ linguistic
decision-making. The proposed approach emulates human interaction, with a sys-
tem built to propose primes to the user and accept the primes that the user proposes.
Live tests with this method show that the use of on-the-fly entrainment reduces
out-of-vocabulary and word error rate and also increases the number of correctly
transferred concepts.

Lison (2015) has also recently presented a modeling framework for DM based
on the concept of probabilistic rules, which are defined as structured mappings
between logical conditions and probabilistic effects. Probabilistic rules are able to
encode the probability and utility models employed in DM in a compact and
human-readable form. As a consequence, they can reduce the amount of dialog data
required for parameter estimation and allow system designers to directly incorporate
their expert domain knowledge into the dialog models.

Other interesting approaches for statistical DM are based on modeling the sys-
tem by means of Hidden Markov models (HMMs) (Cuayáhuitl et al. 2005) or using
Bayesian networks (Paek and Horvitz 2000; Meng et al. 2003).

10.4.2 Corpus-Based Approaches

Griol et al. (2014) describe a corpus-based approach to DM based on the estimation
of a statistical model from the sequences of the system and user dialog acts obtained
from a set of training data. The next system response is selected by means of a
classification process that considers the complete history of the dialog.

Another main characteristic is the inclusion of a data structure that stores the
information provided by the user. The main objective of this structure is to easily
encode the complete information related to the task provided by the user during the
dialog history and then to consider the specific semantics of the task and include
this information in the proposed classification process.

In order to control the interactions with the user, the proposed dialog manager
represents dialogs as a sequence of pairs (Ai, Ui), where Ai is the output of the
dialog system (the system answer) at time i and Ui is the semantic representation of
the user turn (the result of the understanding process of the user input) at time i;
both expressed in terms of dialog acts (Griol et al. 2008). Each dialog is represented
by:

10.4 Statistical Approaches to Dialog Management 225

ðA1;U1Þ; . . .; ðAi;UiÞ; . . .; ðAn;UnÞ

where A1 is the greeting turn of the system and Un is the last user turn. We refer to a
pair (Ai, Ui) as Si, the dialog sequence at time i.

In this framework, we consider that, at time i, the objective of the dialog
manager is to find the best system answer Ai. This selection is a local process for
each time i that takes into account the previous history of the dialog, that is to say,
the sequence of states of the dialog preceding time i:

bAi ¼ argmax
Ai2A

PðAi j S1; . . .; Si�1Þ ð10:9Þ

where set A contains all the possible system answers.
Following Eq. 10.9, the dialog manager selects the next system prompt by

taking into account the sequence of previous pairs (Ai, Ui). The main problem
with resolving this equation is that the number of possible sequences of states is
usually very large. To solve the problem, we define a data structure in order to
establish a partition in this space, i.e., in the history of the dialog preceding time i.
This data structure, which we call Dialog Register (DR), contains the information
provided by the user throughout the previous history of the dialog.

After applying the above considerations and establishing the equivalence rela-
tion in the histories of the dialogs, the selection of the best Ai is given by:

bAi ¼ argmax
Ai2A

PðAi j DRi�1; Si�1Þ ð10:10Þ

Each user turn supplies the system with information about the task; i.e., the user
asks for a specific concept and/or provides specific values for certain attributes.
However, a user turn can also provide other kinds of information, such as
task-independent information (for instance, Affirmation, Negation, and
Not-Understood dialog acts). This kind of information implies some decisions
that are different from simply updating the DRi−1. Hence, for the selection of the
best system response Ai, we take into account the DR that results from turn 1 to
turn i − 1, and we explicitly consider the last state Si−1.

We propose solving Eq. 10.10 using a classification process, in which every
dialog situation (i.e., each possible sequence of dialog acts) is classified taking into
account a set of classes C, in which a class contains all the sequences that provide
the same set of system actions (responses). The objective of the dialog manager at
each moment is to select a class of this set c 2 C, so that the system answer is the
one associated with the selected class.

The classification function can be defined in several ways. Griol et al. (2014)
propose the use of a multilayer perceptron (MLP) (Rumelhart et al. 1986), where
the input layer holds the input pair (DRi−1, Si−1) corresponding to the Dialog
Register and the state. The values of the output layer can be seen as an

226 10 Dialog Management

approximation of the a posteriori probability of the input belonging to the associ-
ated class c 2 C.

As stated before, the DR contains information about concepts and values for the
attributes provided by the user throughout the previous history of the dialog. For the
dialog manager to determine the next answer, the exact values of the attributes are
assumed to be not significant. They are important for accessing databases and for
constructing the output sentences of the system. However, the only information
necessary to predict the next action by the system is the presence or absence of
concepts and attributes. Therefore, the codification proposed for each slot in the DR
is in terms of three values, {0, 1, 2}, according to the following criteria:

• (0) The concept is unknown, or the value of the attribute is not given.
• (1) The concept or attribute is known with a confidence score that is higher than

a given threshold.
• (2) The concept or attribute has a confidence score that is lower than the given

threshold.

To decide whether the state of a certain value in the DR is 1 or 2, the system
employs confidence measures provided by the ASR and SLU modules (Torres et al.
2005).

The previously described process allows every task to be modeled based only on
the information provided by the user in the previous turns and its own model. In
other dialog systems, the dialog manager generates the next system response taking
also into account the information generated by the module that controls the
application (that is denoted as the application manager (AM)). For example, the
AM can validate restrictions, apply privacy policies, or carry out computations that
define the next system response (for instance, selecting a different system action
depending on the result of a query to the databases of the application). Thus, the
output of this module has to be taken into account for the selection of the best
system action.

For this reason, for this kind of task, two phases are proposed for the selection of
the next system turn. In the first phase, the information contained in the DR and the
last state Si−1 are considered to select the best request to be made to the AM:

bAi ¼ argmax
A1i2A1

PðAi j DRi�1; Si�1Þ ð10:11Þ

where A1 is the set of possible requests to the AM.
In the second phase, the system answer eA2 is generated taking into account eA1

and the information provided by the AM (AMi):

bA2i ¼ argmax
A2i2A2

PðAijAMi;A1iÞ ð10:12Þ

where eA2 is the set of possible system answers.

10.4 Statistical Approaches to Dialog Management 227

Figure 10.2 shows the scheme proposed for the development of the dialog
manager for this kind of task, detailing the two phases described for the generation
of the system response. The use of two MLPs is proposed to deal with the specific
information defined for each phase.

The AM makes it possible to consider specific requisites (e.g., special require-
ments, policies, or specific routines) that endow conversational interfaces with a
more sophisticated behavior that is different from only requiring information from
the user and checking or updating a repository. This phase also makes it possible for
systems to deal with specific cases for the different attributes, given that the exact
values for each attribute are considered to access the data repositories. In addition,
the statistical dialog model supports user adaptation, which makes it suitable for
different application domains with varying degrees of complexity.

10.5 Summary

Given the current state of the dialog, the principal role of the dialog manager is to
choose an action that will result in a change of dialog state. The strategy followed
by the dialog manager, sometimes referred to as the policy, should be designed to
enable successful, efficient, and natural conversations.

This is a challenging goal, and in most commercially deployed conversational
interfaces, a human designer handcrafts the dialog manager. This handcrafted
approach is limited for several reasons: it is not always easy to specify the optimal
action at each state of the dialog; a dialog behavior that is generic and static is
usually assumed for the entire user population; designing such strategies is
labor-intensive, especially for large systems.

Machine learning approaches to DM try to reduce the effort and time required by
handcrafted DM strategies; they isolate domain knowledge from the dialog strategy;

Fig. 10.2 Scheme of the architecture proposed in the corpus-based DM methodology

228 10 Dialog Management

and they facilitate the development of new dialog managers and their adaptation to
new domains.

DM is discussed further in Chap. 11 where we provide practical exercises related
to the application of rule-based and statistical DM techniques for a specific task.
Chap. 17 will discuss the most relevant approaches for the evaluation of DM.

Further Reading
Wilks et al. (2011) present a detailed survey of DM approaches and architectures,
along with practical examples of dialog systems developed using these approaches
and architectures. Lee et al. (2010) present a detailed survey covering design issues
and approaches to DM and techniques for modeling. The paper also explains the
use of user simulation techniques for the automatic evaluation of spoken conver-
sational interfaces.

Some recent research advances in RL for building SDSs were reviewed and
summarized in a survey paper by Frampton and Lemon (2009). An earlier survey
can be found in Schatzmann et al. (2006). See also Rieser and Lemon (2011),
Lemon and Pietquin (2012), and Thomson (2013). Young et al. (2013) provide an
overview of the state of the art in the development of POMDP-based spoken dialog
systems.

Meena et al. (2014) summarize the main approaches to turn taking in human
conversations. They also explore a range of automatically extractable features for
online use, covering prosody, lexicosyntax, and context, and different classes of
learning algorithms for turn taking in human–machine conversations.

References

Abdennadher S, Aly M, Bühler D, Minker W, Pittermann J (2007) Becam tool—a semi-automatic
tool for bootstrapping emotion corpus annotation and management. In: Proceedings of the
international conference on spoken language processing (Interspeech’2007), Antwerp,
Belgium, 27–31 Aug 2007, pp 946–949. http://met.guc.edu.eg/Repository/Faculty/
Publications/69/Paper.pdf

Acomb K, Bloom J, Dayanidhi K, Hunter P, Krogh P, Levin E, Pieraccini R (2007) Technical
support dialog systems: issues, problems, and solutions. In: Proceedings of the
NAACL-HLT-Dialog’07 workshop on bridging the gap: Academic and Industrial Research
in Dialog Technologies, Rochester, NY, USA, 26 Apr 2007, pp 25–31. http://dl.acm.org/
citation.cfm?id=1556332&CFID=585421472&CFTOKEN=72903197

Allen JF, Perrault CR (1980) Analyzing intentions in dialogs. Artif Intell 15(3):143–178. doi:10.
1016/0004-3702(80)90042-9

Appelt DE (1985) Planning English sentences. Cambridge University Press, Cambridge. doi:10.
1017/CBO9780511624575

Barnard E, Halberstadt A, Kotelly C, Phillips M (1999) A consistent approach to designing
spoken-dialog Systems. In: Proceedings of the IEEE workshop on automatic speech
recognition and understanding (ASRU’99), Keystone, Colorado, USA, pp 1173–1176

Callejas Z, Griol D, Engelbrecht K, López-Cózar R (2012) A clustering approach to assess real
user profiles in spoken dialogue systems. In: Mariani J, Rosset S, Garnier-Rizet M, Devilliers L
(eds) Natural language interaction with robots: putting spoken dialog systems into practice.
Springer, New York, pp 327–334. doi:10.1007/978-1-4614-8280-2_29

10.5 Summary 229

http://dx.doi.org/10.1007/978-3-319-32967-3_11
http://dx.doi.org/10.1007/978-3-319-32967-3_17
http://met.guc.edu.eg/Repository/Faculty/Publications/69/Paper.pdf
http://met.guc.edu.eg/Repository/Faculty/Publications/69/Paper.pdf
http://dl.acm.org/citation.cfm?id=1556332&CFID=585421472&CFTOKEN=72903197
http://dl.acm.org/citation.cfm?id=1556332&CFID=585421472&CFTOKEN=72903197
http://dx.doi.org/10.1016/0004-3702(80)90042-9
http://dx.doi.org/10.1016/0004-3702(80)90042-9
http://dx.doi.org/10.1017/CBO9780511624575
http://dx.doi.org/10.1017/CBO9780511624575
http://dx.doi.org/10.1007/978-1-4614-8280-2_29

Carletta JC, Isard A, Isard S, Kowtko J, Doherty-Sneddon G, Anderson A (1995) The coding of
dialog structure in a corpus. In: Andernach T, van de Burgt SP, van der Hoeven GF
(eds) Proceedings of the Twente workshop on language technology: corpus-based approaches
to dialogue modelling, University of Twente, Netherlands, June 1995

Catizone R, Setzer A, Wilks Y (2003) Multimodal dialogue management in the COMIC project.
In: Jokinen K, Gamback B, Black W, Catizone R, Wilks Y (eds) Proceedings of the 2003
EACL workshop on dialogue systems: interaction, adaptation and styles of management,
Budapest, Hungary, 13–14 Apr 2003. http://aclweb.org/anthology/W/W03/W03-2705.pdf

Chu S, O’Neill I, Hanna P, McTear M (2005) An approach to multistrategy dialog management.
In: Proceedings of the 9th international conference on spoken language processing
(Interspeech2005), Lisbon, Portugal, pp 865–868. http://www.isca-speech.org/archive/
archive_papers/interspeech_2005/i05_0865.pdf

Cohen P, Levesque H (1990) Rational interaction as the basis for communication. In: Cohen P,
Morgan J, Pollack M (eds) Intentions in communication. MIT Press, Cambridge, MA,
pp 221–256. https://www.sri.com/work/publications/rational-interaction-basis-communication.
Accessed 20 Jan 2016

Cohn DA, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15
(2):201–221. doi:10.1007/BF00993277

Crook PA, Keizer S, Wang Z, Tang W, Lemon O (2014) Real user evaluation of a POMDP spoken
dialog system using automatic belief compression. Comput Speech Lang 28(4):873–887.
doi:10.1016/j.csl.2013.12.002

Cuayáhuitl H, Renals S, Lemon O, Shimodaira H (2005) Human-computer dialogue simulation
using Hidden Markov models. In: Proceedings of the IEEE workshop on automatic speech
recognition and understanding (ASRU2005), San Juan, Puerto Rico, 27 Nov 2005, pp 290–
295. doi:10.1109/ASRU.2005.1566485

Fabbrizio GD, Tur G, Hakkani-Tür D, Gilbert M, Renger B, Gibbon D, Liu Z, Shahraray B (2008)
Bootstrapping spoken dialogue systems by exploiting reusable libraries. Nat Lang Eng 14
(3):313–335. doi:10.1017/S1351324907004561

Frampton M, Lemon O (2009) Recent research advances in reinforcement learning in spoken
dialog systems. Knowl Eng Rev 24(4):375–408. doi:10.1017/S0269888909990166

Fraser M, Gilbert G (1991) Simulating speech systems. Comput Speech Lang 5(1):81–99. doi:10.
1016/0885-2308(91)90019-M

Gašić M, Jurčíček F, Thomson B, Yu K, Young S (2011) On-line policy optimisation of spoken
dialog systems via live interaction with human subjects. In: Proceedings of IEEE workshop on
automatic speech recognition and understanding (ASRU), Waikoloa, Hawaii, 11–15 Dec 2011,
pp 312–317. doi:10.1109/ASRU.2011.6163950

Griol D, Hurtado LF, Segarra E, Sanchis E (2008) A statistical approach to spoken dialog systems
design and evaluation. Speech Commun 50(8–9):666–682. doi:10.1016/j.specom.2008.04.001

Griol D, Callejas Z, López-Cózar R, Riccardi G (2014) A domain-independent statistical
methodology for dialog management in spoken dialog systems. Comput Speech Lang 28
(3):743–768. doi:10.1016/j.csl.2013.09.002

Heeman, P (2007) Combining reinforcement learning with information-state update rules. In:
Proceedings of the 8th annual conference of the North American chapter of the Association for
Computational Linguistics (HLT-NAACL2007), Rochester, New York, USA, 22–27 Apr
2007. http://aclweb.org/anthology/N07-1034

Jurčíček F, Thomson B, Young S (2012) Reinforcement learning for parameter estimation in
statistical spoken dialog systems. Comput Speech Lang 26(3):168–192. doi:10.1016/j.csl.2011.
09.004

Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable
stochastic domains. Artif Intell 101(1–2):99–134. doi:10.1016/s0004-3702(98)00023-x

Kowtko JC, Isard SD, Doherty, GM (1993) Conversational games within dialogue. Human
Communication Research Centre, University of Edinburgh, (HCRC/RP-31). doi:10.1.1.52.5350

230 10 Dialog Management

http://aclweb.org/anthology/W/W03/W03-2705.pdf
http://www.isca-speech.org/archive/archive_papers/interspeech_2005/i05_0865.pdf
http://www.isca-speech.org/archive/archive_papers/interspeech_2005/i05_0865.pdf
https://www.sri.com/work/publications/rational-interaction-basis-communication
http://dx.doi.org/10.1007/BF00993277
http://dx.doi.org/10.1016/j.csl.2013.12.002
http://dx.doi.org/10.1109/ASRU.2005.1566485
http://dx.doi.org/10.1017/S1351324907004561
http://dx.doi.org/10.1017/S0269888909990166
http://dx.doi.org/10.1016/0885-2308(91)90019-M
http://dx.doi.org/10.1016/0885-2308(91)90019-M
http://dx.doi.org/10.1109/ASRU.2011.6163950
http://dx.doi.org/10.1016/j.specom.2008.04.001
http://dx.doi.org/10.1016/j.csl.2013.09.002
http://aclweb.org/anthology/N07-1034
http://dx.doi.org/10.1016/j.csl.2011.09.004
http://dx.doi.org/10.1016/j.csl.2011.09.004
http://dx.doi.org/10.1016/s0004-3702(98)00023-x

Lane I, Ueno S, Kawahara T (2004) Cooperative dialogue planning with user and situation models
via example-based training. In: Proceedings of workshop on man-machine symbiotic systems,
Kyoto, Japan, 23–24 Nov 2004, pp 93–102

Laroche R, Putois G, Bretier P, Young S, Lemon O (2008) Requirements analysis and theory for
statistical learning approaches in automaton-based dialogue management. CLASSiC Project
Deliverable 1.1.1. Edinburgh University, Edinburgh, UK. http://www.classic-project.org/
deliverables/d1.1.1.pdf

Lee C, Jung S, Kim S, Lee G (2009) Example-based dialog modeling for practical multi-domain
dialog system. Speech Commun 51(5):466–484. doi:10.1016/j.specom.2009.01.008

Lee CJ, Jung SK, Kim KD, Lee DH, Lee GG (2010) Recent approaches to dialog management for
spoken dialog systems. J Comput Sci Eng 4(1):1–22. doi:10.5626/JCSE.2010.4.1.001

Lemon O, Pietquin O (eds) (2012) Data-driven methods for adaptive spoken dialog systems:
computational learning for conversational interfaces. Springer, New York. doi:10.1007/978-1-
4614-4803-7

Lemon O, Bracy A, Gruenstein A, Peters S (2001) The Witas multimodal dialog system I. In:
Proceedings of the 7th Eurospeech conference on speech communication and technology
(INTERSPEECH’01), Aalborg, Denmark, 3–7 Sept 2001, pp 1559–1562. http://www.isca-
speech.org/archive/eurospeech_2001/e01_1559.html

Levin E, Pieraccini R (1997) A stochastic model of human-machine interaction for learning dialog
strategies. In: Proceedings of the 5th European conference on speech communications and
technology (Eurospeech1997), Rhodes, Greece, pp 1883–1886. http://www.isca-speech.org/
archive/eurospeech_1997/e97_1883.html

Levin E, Pieraccini R, Eckert W (2000) A stochastic model of human-machine interaction for
learning dialog strategies. IEEE T on Speech Audi P 8(1):11–23. doi:10.1109/89.817450

Lison P (2015) A hybrid approach to dialogue management based on probabilistic rules. Comput
Speech Lang 34(1):232–255. doi:10.1016/j.csl.2015.01.001

Lopes J, Eskenazi M, Trancoso I (2015) From rule-based to data-driven lexical entrainment
models in spoken dialog systems. Comput Speech Lang 31(1):87–112. doi:10.1016/j.csl.2014.
11.007

McTear M (2004) Spoken dialogue technology: toward the conversational user interface. Springer,
New York. doi:10.1007/978-0-85729-414-2

Meena R, Skantze G, Gustafson J (2014) Data-driven models for timing feedback responses in a
pap task dialogue system. Comput Speech Lang 28(4):903–922. doi:10.1016/j.csl.2014.02.002

Meng HH, Wai C, Pieraccini R (2003) The use of belief networks for mixed-initiative dialog
modeling. IEEE Trans Speech Audio Process 11(6):757–773. doi:10.1109/TSA.2003.814380

Murao HK, Kawaguchi N, Matsubara S, Ymaguchi Y, Inagaki Y (2003) Example-based spoken
dialogue system using WOZ system sog. In: Proceedings of the 4th SIGDIAL workshop on
discourse and dialogue, Sapporo, Japan, 5–6 July 2003, pp 140–148. http://www.aclweb.org/
anthology/W/W03/W03-2112.pdf

O’Shea J, Bandar Z, Crockett K (2012) A multi-classifier approach to dialog act classification
using function words. In: Nguyen NT (ed) Transactions on computational collective
intelligence VII. Lecture notes in computer science, vol 7270, pp 119–143. doi:10.1007/
978-3-642-32066-8_6

Paek T, Horvitz E (2000) Conversation as action under uncertainty. In: Proceedings of the 16th
conference on uncertainty in artificial intelligence, Stanford, CA, USA, pp 455–464. http://
arxiv.org/pdf/1301.3883.pdf

Paek T, Pieraccini R (2008) Automating spoken dialog management design using machine
learning: an industry perspective. Speech Commun 50:716–729. doi:10.1016/j.specom.2008.
03.010

Pieraccini R, Suendermann D, Dayanidhi K, Liscombe J (2009) Are we there yet? Research in
commercial spoken dialog systems. In: Matoušek V, Mautner P (eds) Text, speech and
dialogue: 12th international conference, TSD 2009, Pilsen, Czech Republic, 13–17 Sept 2009,
pp 3–13. doi:10.1007/978-3-642-04208-9_3

References 231

http://www.classic-project.org/deliverables/d1.1.1.pdf
http://www.classic-project.org/deliverables/d1.1.1.pdf
http://dx.doi.org/10.1016/j.specom.2009.01.008
http://dx.doi.org/10.5626/JCSE.2010.4.1.001
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://www.isca-speech.org/archive/eurospeech_2001/e01_1559.html
http://www.isca-speech.org/archive/eurospeech_2001/e01_1559.html
http://www.isca-speech.org/archive/eurospeech_1997/e97_1883.html
http://www.isca-speech.org/archive/eurospeech_1997/e97_1883.html
http://dx.doi.org/10.1109/89.817450
http://dx.doi.org/10.1016/j.csl.2015.01.001
http://dx.doi.org/10.1016/j.csl.2014.11.007
http://dx.doi.org/10.1016/j.csl.2014.11.007
http://dx.doi.org/10.1007/978-0-85729-414-2
http://dx.doi.org/10.1016/j.csl.2014.02.002
http://dx.doi.org/10.1109/TSA.2003.814380
http://www.aclweb.org/anthology/W/W03/W03-2112.pdf
http://www.aclweb.org/anthology/W/W03/W03-2112.pdf
http://dx.doi.org/10.1007/978-3-642-32066-8_6
http://dx.doi.org/10.1007/978-3-642-32066-8_6
http://arxiv.org/pdf/1301.3883.pdf
http://arxiv.org/pdf/1301.3883.pdf
http://dx.doi.org/10.1016/j.specom.2008.03.010
http://dx.doi.org/10.1016/j.specom.2008.03.010
http://dx.doi.org/10.1007/978-3-642-04208-9_3

Png S, Pineau J (2011) Bayesian reinforcement learning for POMDP-based dialogue systems. In:
Proceedings of international conference on acoustics, speech and signal processing
(ICASSP2011), Prague, Czech Republic, 22–27 May 2011, pp 2156–2159. doi:10.1109/
ICASSP.2011.5946754

Rieser V, Lemon O (2011) Reinforcement learning for adaptive dialogue systems: a data-driven
methodology for dialogue management and natural language generation. Springer, New York.
doi:10.1007/978-3-642-24942-6

Roy N, Pineau J, Thrun S (2000) Spoken dialogue management using probabilistic reasoning. In:
Proceedings of the 38th annual meeting of the Association for Computational Linguistics
(ACL2000), Hong Kong, China, 1–8 Oct 2000. https://aclweb.org/anthology/P/P00/P00-1013.
pdf

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error
propagation. In: Rumerhart DE, McClelland JL (eds) Parallel distributed processing:
explorations in the microstructure of cognition, vol 1. MIT Press, Cambridge, pp 318–362.
http://dl.acm.org/citation.cfm?id=104293

Schatzmann J, Weilhammer K, Stuttle M, Young S (2006) A survey of statistical user simulation
techniques for reinforcement-learning of dialogue management strategies. Knowl Eng Rev 21
(2):97–126. doi:10.1017/s0269888906000944

Singh S, Kearns M, Litman D, Walker M (1999) Reinforcement learning for spoken dialog
systems. In: Proceedings of neural information processing systems (NIPS 1999), Denver, USA,
pp 956–962. http://papers.nips.cc/paper/1775-reinforcement-learning-for-spoken-dialogue-
systems.pdf

Singh S, Litman D, Kearns M, Walker M (2002) Optimizing dialogue management with
reinforcement learning: experiments with the NJFun system. J Artif Intell Res 16:105–133.
doi:10.1613/jair.859

Suendermann D, Pieraccini R (2012) One year of contender: what have we learned about assessing
and tuning industrial spoken dialog systems? In: Proceedings of the NAACL-HLT workshop
on future directions and needs in the spoken dialog community: tools and data (SDCTD 2012),
Montreal, Canada, 7 June 2012, pp 45–48. http://www.aclweb.org/anthology/W12-1818
Accessed 20 Jan 2016

Tetreault JR, Litman D (2008) A reinforcement learning approach to evaluating state
representations in spoken dialogue systems. Speech Commun 50(8–9):683–696. doi:10.
1016/j.specom.2008.05.002

Thomson B (2013) Statistical methods for spoken dialog management. Springer theses. Springer,
New York. doi:10.1007/978-1-4471-4923-1

Thomson B, Young S (2010) Bayesian update of dialog state: a POMDP framework for spoken
dialogue systems. Comput Speech Lang 24(4):562–588. doi:10.1016/j.csl.2009.07.003

Thomson B, Schatzmann J, Weilhammer K, Ye H, Young S (2007) Training a real-world
POMDP-based dialogue system. In: Proceedings of NAACL-HLT-Dialog’07 workshop on
bridging the gap: academic and industrial research in dialog technologies, Rochester, NY,
USA, pp 9–16. http://dl.acm.org/citation.cfm?doid=1556328.1556330

Torres F, Hurtado LF, García F, Sanchis E, Segarra E (2005) Error handling in a stochastic dialog
system through confidence measures. Speech Commun 45:211–229. doi:10.1016/j.specom.
2004.10.014

Torres F, Sanchis E, Segarra E (2008) User simulation in a stochastic dialog system. Comput
Speech Lang 22(3):230–255. doi:10.1016/j.csl.2007.09.002

Traum DR, Larsson S (2003) The information state approach to dialog management. In: Smith R,
Kuppevelt J (eds) Current and new directions in discourse and dialog. Kluwer Academic
Publishers, Dordrecht, pp 325–353. doi:10.1007/978-94-010-0019-2_15

Venkataraman A, Stolcke A, Shriberg E (2002) Automatic dialog act labeling with minimal
supervision. In: Proceedings of the 9th australian international conference on speech science
and technology, Melbourne, Australia, 2–5 Dec 2002. https://www.sri.com/sites/default/files/
publications/automatic_dialog_act_labeling_with_minimal.pdf

232 10 Dialog Management

http://dx.doi.org/10.1109/ICASSP.2011.5946754
http://dx.doi.org/10.1109/ICASSP.2011.5946754
http://dx.doi.org/10.1007/978-3-642-24942-6
https://aclweb.org/anthology/P/P00/P00-1013.pdf
https://aclweb.org/anthology/P/P00/P00-1013.pdf
http://dl.acm.org/citation.cfm?id=104293
http://dx.doi.org/10.1017/s0269888906000944
http://papers.nips.cc/paper/1775-reinforcement-learning-for-spoken-dialogue-systems.pdf
http://papers.nips.cc/paper/1775-reinforcement-learning-for-spoken-dialogue-systems.pdf
http://dx.doi.org/10.1613/jair.859
http://www.aclweb.org/anthology/W12-1818
http://dx.doi.org/10.1016/j.specom.2008.05.002
http://dx.doi.org/10.1016/j.specom.2008.05.002
http://dx.doi.org/10.1007/978-1-4471-4923-1
http://dx.doi.org/10.1016/j.csl.2009.07.003
http://dl.acm.org/citation.cfm?doid=1556328.1556330
http://dx.doi.org/10.1016/j.specom.2004.10.014
http://dx.doi.org/10.1016/j.specom.2004.10.014
http://dx.doi.org/10.1016/j.csl.2007.09.002
http://dx.doi.org/10.1007/978-94-010-0019-2_15
https://www.sri.com/sites/default/files/publications/automatic_dialog_act_labeling_with_minimal.pdf
https://www.sri.com/sites/default/files/publications/automatic_dialog_act_labeling_with_minimal.pdf

Venkataraman A, Liu Y, Shriberg E, Stolcke A (2005) Does active learning help automatic dialog
act tagging in meeting data. In: Proceedings of interspeech-2005, Lisbon, Portugal, 4–8 Sept
2005, pp 2777–2780. http://www.isca-speech.org/archive/interspeech_2005/i05_2777.html

Wierstra D, Förster A, Peters J, Schmidhuber J (2010) Recurrent policy gradients. Logic J IGPL 18
(5):620–634. doi:10.1093/jigpal/jzp049

Wilks Y, Catizone R, Worgan S, Turunen M (2011) Some background on dialogue management
and conversational speech for dialogue systems. Comput Speech Lang 25(2):128–139. doi:10.
1016/j.csl.2010.03.001

Williams S (1996) Dialogue management in mixed-initiative, cooperative, spoken language
system. Proceedings of 11th twente workshop on language technology (TWLT11) dialogue
management in natural language systems, Enschade, Netherlands. doi: http://users.mct.open.ac.
uk/sw6629/Publications/twlt96.pdf

Williams, JD (2008) The best of both worlds: Unifying conventional dialog systems and
POMDPs. In: Proceedings of the international conference on spoken language processing
(InterSpeech-2008), Brisbane, Australia, 22–16 Sept 2016, pp 1173–1176. http://www.isca-
speech.org/archive/interspeech_2008/i08_1173.html

Williams JD, Young S (2007) Partially observable Markov decision processes for spoken dialog
systems. Comput Speech Lang 21(2):393–422. doi:10.1016/j.csl.2006.06.008

Williams JD, Poupart P, Young S (2006) Partially observable Markov decision processes with
continuous observations for dialog management. In: Dybkær L, MinkerW (eds) Recent trends in
discourse and dialogue. Springer, New York, PP 191–217. doi: 10.1007/978-1-4020-6821-8_8

Young S (2002) Talking to machines (statistically speaking). In: Proceedings of the 7th
international conference on spoken language processing, Denver, Colorado, USA, 16–20 sept
2002, pp 9–16. http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_0009.pdf

Young S, Gašić M, Keizer S, Mairesse F, Schatzmann J, Thomson B, Yu K (2010) The Hidden
Information State model: a practical framework for POMDP-based spoken dialogue
management. Comp Speech Lang 24(2):150–174. doi:10.1016/j.csl.2009.04.001

Young S, Gašić M, Thomson B, Williams J (2013) POMDP-based statistical spoken dialog
systems: a review. In: Proceedings of the IEEE 101(5), Montreal, Canada, pp 1160–1179.
doi:10.1109/JPROC.2012.2225812

References 233

http://www.isca-speech.org/archive/interspeech_2005/i05_2777.html
http://dx.doi.org/10.1093/jigpal/jzp049
http://dx.doi.org/10.1016/j.csl.2010.03.001
http://dx.doi.org/10.1016/j.csl.2010.03.001
http://users.mct.open.ac.uk/sw6629/Publications/twlt96.pdf
http://users.mct.open.ac.uk/sw6629/Publications/twlt96.pdf
http://www.isca-speech.org/archive/interspeech_2008/i08_1173.html
http://www.isca-speech.org/archive/interspeech_2008/i08_1173.html
http://dx.doi.org/10.1016/j.csl.2006.06.008
http://dx.doi.org/10.1007/978-1-4020-6821-8_8
http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_0009.pdf
http://dx.doi.org/10.1016/j.csl.2009.04.001
http://dx.doi.org/10.1109/JPROC.2012.2225812

Chapter 11
Implementing Dialog Management

Abstract There is a wide range of tools that support the generation of rule-based
dialog managers for conversational interfaces. However, it is not as easy to find
toolkits to develop statistical dialog managers based on reinforcement learning and/or
corpus-based techniques. In this chapter, we have selected the VoiceXML standard to
put into practice the handcrafted approach, given that this standard is used widely
in industry to develop voice user interfaces. The second part of the chapter describes
the use of a statistical dialog management technique to show the application of this
kind of methodology for the development of practical conversational interfaces.

11.1 Introduction

As we saw in Chap. 10, a number of different approaches to dialog management
(DM) have been developed within the research community and in industry. These
approaches can be classified into two main categories: handcrafted approaches
using rules and statistical or data-driven approaches using machine learning
methodologies. Hybrid approaches are also possible in which these two main
approaches are combined.

The Form Interpretation Algorithm (FIA), the basis for the Voice Extensible
Markup Language (VoiceXML) standard, is an example of a model of handcrafted
DM. Section 11.2 provides a description of the main features of the World Wide
Web Consortium (W3C) VoiceXML standard along with an exercise consisting of
several steps to iteratively develop a VoiceXML-based conversational interface
acting as a pizzeria service.

Statistical approaches to DM can be classified into three main categories: DM
based on reinforcement learning (RL), corpus-based statistical DM, and
example-based DM. Example-based approaches can be considered a specific case
of corpus-based statistical DM, given that they also make use of transcribed
examples of dialogs. These approaches assume that the next system action can be
predicted when the dialog manager finds dialog examples that have a similar dialog
state to the current dialog state. Section 11.3 describes the use of a corpus-based

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_11

235

http://dx.doi.org/10.1007/978-3-319-32967-3_10

DM technique, as described in Chap. 10, to develop a conversational interface for
the same practical application domain.

11.2 Development of a Conversational Interface Using
a Rule-Based Dialog Management Technique

VoiceXML was introduced briefly in Chaps. 4 and 10. In this section, we provide
an overview of the main elements of VoiceXML that will be used in the exercises,
in which we create a VoiceXML-based conversational interface. For more detail,
see the W3C VoiceXML specification.1

VoiceXML supports the development of interactive spoken conversational
interfaces that include the recognition of spoken and DTMF input, text-to-speech
synthesis, dialog management, audio playback, recording of spoken input, tele-
phony, and mixed-initiative conversations.

Figure 11.1 shows a comparative architecture of a VoiceXML system and an
Internet application. Although the figure clearly shows the similarity between the two
approaches, the VoiceXML application has some additional complexity when com-
pared to the Internet application. Internet users enter a URL to access an application,
while VoiceXMLusers dial a telephone number. Once connected, the public switched
telephone network (PSTN) or mobile network communicates with the voice gateway.
The gateway then forwards the request over hypertext transfer protocol (HTTP) to a
Web server that can service the request. On the server, standard server-side tech-
nologies such as PHP, JSP, ASP, or CGI can be used to dynamically generate the
VoiceXML content and grammars that are then returned to the voice gateway. On the
gateway, a voice browser interprets the VoiceXML code using a voice browser. The
content is then spoken to the user over the telephone using prerecorded audio files or
synthesized speech. If user input is required at any point during the application cycle, it
can be entered via either speech or DTMF. This process is repeated several times
during the use of a typical VoiceXML-based application.

As shown in Fig. 11.1, the voice gateway incorporates many important voice
technologies, including ASR, telephony dialog control, DTMF, TTS, and prere-
corded audio playback. According to the VoiceXML specification, a VoiceXML
platform must support document acquisition (acquire VoiceXML documents for
use within the voice browser), audio output (TTS and prerecorded audio files),
audio input (spoken and DTMF inputs), and transfer (make connections to a third
party through a communications network such as the telephone network).

The top-level element of a VoiceXML file is <vxml>, which is mainly a
container for dialogs. There are two types of dialog constructs: <form> and
<menu>. Forms present information and gather input, while menus offer choices of
what to do next. Code 11.1 shows an example of a VoiceXML form.

1http://www.w3.org/TR/voicexml20/. Accessed February 26, 2016.

236 11 Implementing Dialog Management

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://www.w3.org/TR/voicexml20/

Fig. 11.1 Comparative architecture of a VoiceXML system and an Internet application

Code 11.1 A VoiceXML form

11.2 Development of a Conversational Interface … 237

In this form, there is a field called “survey” in which there is a prompt that asks
the user a question and a grammar providing the recognition vocabulary for the
user’s response. The <filled> element is executed when the user has supplied a
value for the field. In this case, there is a condition stating that if the response is
“cinema,” the system will speak a prompt, otherwise it transfers to another
VoiceXML document.

Code 11.2 shows an example of a menu.
In this menu, the system offers a choice between watching films at the cinema or

at home and, depending on the user’s response, transfers to another VoiceXML
document. Menus can be seen as shorthand for forms, containing a single anony-
mous field that prompts the user to make a choice and transitioning to different
places based on that choice. Like a regular form, a menu can have its grammar
scoped so that it is active when the user is executing another dialog.

Forms are the key component of VoiceXML documents. A form contains the
following:

• A set of form items—input items that can be completed by user input and
control items that cannot, such as <block>.

• Declarations of non-form item variables.
• Event handlers.
• Actions within the <filled> element—procedural logic that is executed when

certain combinations of input item variables are assigned.

Forms are interpreted by the Form Interpretation Algorithm (FIA). The FIA has a
main loop that repeatedly selects a form item and then visits it. The selected form

Code 11.2 A VoiceXML menu

238 11 Implementing Dialog Management

item is the first in document order whose guard condition is not satisfied. The
default guard condition verifies if the field’s form item variable has a value i.e., it is
not undefined, so that if a simple form contains only fields, the user will be
prompted for each field in turn. This way, the default DM process that can be
specified in VoiceXML consists of asking for the values of each of the input fields
in the same order as they were specified by the developer of the application
(system-directed dialog applications).

Each input item specifies an input item variable to gather from the user. Input
items have prompts to tell the user what to say or key in, grammars that define the
allowed inputs, and event handlers that process any resulting events (e.g., help
required, no input provided, or no match with the inputs specified in the grammar).

The <prompt> element controls the output of synthesized speech and prere-
corded audio. Attributes of <prompt> control whether a user can interrupt the
prompt, define conditions that must evaluate to true in order for the prompt to be
played, emit different prompts if the user is doing something repeatedly, or specify
speech markup elements using Speech Synthesis Markup Language (SSML), for
example, emphasis, prosody, and pauses.

The <grammar> element specifies the utterances that a user may speak to
perform an action or supply information and, for a matching utterance, returns a
corresponding semantic interpretation. Formats supported by VoiceXML platforms
include the W3C Speech Recognition Grammar Specification (SRGS),2 the
Augmented BNF (ABNF),3 and the Java Speech Grammar Format (JSGF).4

Grammars are specified using the <grammar> element within a <field>.
Grammars can be inline, i.e., they are specified within the VoiceXML document, or
they can be external, located using a Uniform Resource Identifier (URI) that can be
absolute or relative. The <option> element can be used when a simple set of
alternatives is all that is needed to specify the valid input values for a field. Each
<option> element contains PCDATA that is used to generate a speech grammar
according to the same grammar generation method used by the <choice> element
(see the example of a menu above).

Code 11.3 is an example of an inline grammar using the ABNF grammar format.
In this example, the user can say “blue,” “green,” or “red” in response to the
system’s prompt.

Code 11.4 shows a grammar specified using the <option> element. Here, the
user can either say the words specified in the options or use the keypad to input
DTMF.

2Speech Recognition Grammar Specifications. Available at: http://www.w3.org/TR/speech-
grammar/. Accessed February 26, 2016.
3Augmented BNF for Syntax Specifications. Available at: https://cafe.bevocal.com/docs/grammar/
abnf.html. Accessed February 26, 2016.
4JSpeech Grammar Format Specifications. Available at: https://www.w3.org/TR/jsgf/. Accessed
February 26, 2016.

11.2 Development of a Conversational Interface … 239

http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/speech-grammar/
https://cafe.bevocal.com/docs/grammar/abnf.html
https://cafe.bevocal.com/docs/grammar/abnf.html
https://www.w3.org/TR/jsgf/

Code 11.5 shows how an external grammar is referenced using the src attribute
within the <grammar> element, while Code 11.6 is a grammar in grxml format that
allows the user to state a color and a figure within the same utterance.

Input item grammars are always scoped to the containing input item. Link
grammars are given the scope of the element that contains the link. Form grammars
are by default given dialog scope, so that they are active only when the user is in the

Code 11.3 Inline grammar using the ABNF grammar format

Code 11.4 Grammar using the <option> element

Code 11.5 Reference to an external grammar

240 11 Implementing Dialog Management

form. Finally, menu grammars are also by default given dialog scope and are active
only when the user is in the menu.

Event handlers in VoiceXML define what to do when the user asks for help
(<help> event), the user has asked to exit (<exit> event), the user has not
responded within the timeout interval (<noinput> event), and the user’s input
was not recognized (<nomatch> event). They also deal with several error events
(e.g., when a fetch of a document has failed, a requested platform resource was not
available during execution, or an operation is not authorized by the platform). The
<throw> element throws an event, for which the corresponding actions can be
defined by means of the <catch> element.

The FIA can be customized in several ways to develop mixed-initiative dialog
applications. The first possibility is to assign a value to a form item variable so that
its form item will not be selected. A second possibility is to use the <clear> element
to set a form item variable to undefined, which forces the FIA to revisit the form
item again.

Input fields can also have guard conditions that activate only when other fields
have been filled or when more advanced conditions hold true. These advanced
conditions can, for instance, be defined using the shadow variables of the <field>
element. These variables include the raw string of the words that were recognized
(name$.utterance), the mode in which user input was provided: DTMF or
voice (name$.inputmode), script variables containing the semantic

Code 11.6 The FiguresAndColors.grxml external grammar

11.2 Development of a Conversational Interface … 241

interpretation of the field (name$.interpretation), and the confidence level
for the field in a range from 0.0 to 1.0 (name$.confidence).

Another method is to explicitly specify the next form item to visit using <goto
nextitem>. This forces an immediate transition to that form item even if any
cond attribute that is present evaluates to “false.” No variables, conditions, or
counters in the targeted form item will be reset. The form item’s <prompt> will be
played even if it has already been visited. If the <goto nextitem> occurs in a
<filled> action, the rest of the <filled> action and any pending <filled>
actions will be skipped.

A mixed-initiative dialog may be completed in several ways. One common
authoring style combines an <initial> element that prompts for a general
response with <field> elements that prompt for specific information. More com-
plex techniques, such as using the cond attribute on <field> and <filled> ele-
ments and the previously described shadow variables, may achieve a similar effect.

The <initial> element is visited when the user is initially being prompted for
form-wide information, and the FIA has not yet entered into the directed mode
where each field is visited individually. Like <field> items, the <initial>
element has prompts, catches, and event counters. The <filled> element performs
actions that are executed when a combination of one or more input items in the
form is filled. This element usually contains conditional logic specified by means of
the <if>, <else>, and <elseif> elements, for example, to verify that an origin
city is not the same as the city provided for the destination. If a form has form-level
grammars, its input items can be filled in any order, and more than one input item
can be filled as a result of a single user utterance. Form grammars can be active
when the user is in other dialogs. The user can speak to any active grammar and can
have input items set and actions taken in response.

11.2.1 Practical Exercises Using VoiceXML

The main objective of this exercise is to develop a spoken conversational interface
acting as a pizzeria service. Different platforms and interpreters are available to test
conversational interfaces developed using the VoiceXML standard.5 These plat-
forms usually provide developers with certified interpreters for specific versions of
the VoiceXML standard, the ASR and TTS interfaces, and the VoIP and telephony
technologies.

To carry out the exercise that is described in this section, we propose the use of
the Voxeo Evolution IVR Developer Portal.6 With this platform, you can develop

5A detailed list of VoiceXML platforms can be found at: http://www.voicexml.org/solutions/
category/voicexml-platforms/. Accessed February 27, 2016.
6https://voxeo.com/developers/the-evolution-ivr-voip-developer-portal/. Accessed February 27,
2016.

242 11 Implementing Dialog Management

http://www.voicexml.org/solutions/category/voicexml-platforms/
http://www.voicexml.org/solutions/category/voicexml-platforms/
https://voxeo.com/developers/the-evolution-ivr-voip-developer-portal/

and test VoiceXML-based applications for free. The platform also offers discussion
forums and extensive tutorials, sample applications, sample grammars, and com-
prehensive reference guides. The Web interface can be accessed here.7 There is
detailed guide explaining how to create an account to join the Voxeo Community,
how to upload files to the IVR server by means of the Files, Logs, &
Reports functionality, and how to use the Application Manager to map the
application to a telephone number.8

You can download the code for the exercises from GitHub, in the
ConversationalInterface repository,9 in the folder called chapter11/PizzaVXML.

Exercise 11.1
Develop a VoiceXML-based pizzeria service (pizza1.vxml) including:

• A welcome message.
• Two fields: type and size. Include in each field:

– A system query to ask for information (prompt).
– A grammar with some keywords for recognition (type.grxml and

size.grxml grammars).

The following instructions explain how to create an application and associate it
with a starting VoiceXML file.

1. Click on the Account tab and in Files, Logs, Reports, create a new directory
called pizzeria in the folder root/www/.

2. In the folder pizzeria, create a new file called pizza1.vxml, using the
code listed in Code 11.7.

3. In Application Manager, create a new application called PizzaRules and select
the radio button voice phone calls. Under Voice Application Type for
Region select USA, for App Type VoiceXML, and for ASR/TTS Nuance 9.

4. To associate your application with a VoiceXML file, at Voice URL, click on
file manager, and then in the pop-up window, click on the folder where your
file was created (pizzeria) and on the file pizza.vxml. Note that you will
have to change this mapping when you want to test later versions, e.g., piz-
za2.vxml. Note also that it may take a short time before the application is
updated on the server and available to test.

5. Click on Create Application and your application will be created.
6. You will see some telephone numbers (Skype and inum) on the right-hand side

of the page that you can use to call and test your application.

Solution to Exercise 11.1: Code 11.7 shows the VoiceXML code for pizza1.
vxml. Codes 11.8 and 11.9 show the grammars. The grammar files should be
placed in the grammar folder.

7http://evolution.voxeo.com/. Accessed February 26, 2016.
8http://help.voxeo.com/go/help/. Accessed February 26, 2016.
9http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.

11.2 Development of a Conversational Interface … 243

http://evolution.voxeo.com/
http://help.voxeo.com/go/help/
http://zoraidacallejas.github.io/ConversationalInterface/

Code 11.7 pizza1.vxml

Code 11.8 type.grxml

244 11 Implementing Dialog Management

Run your application using a service such as Skype and test it with the inputs
specified in the grammars. You can add more items to the grammars to allow a
wider range of inputs.

Exercise 11.2
Extend pizza1.vxml to create pizza2.vxml:

• Ask the user to repeat what they said if they are wrong, and provide all possible
options if they are wrong a second time. (Use of <nomatch> with count).

• When all fields are filled, synthesize a message indicating that the order will be
ready soon and play an audio track. (Use of the <filled> element at form level
and the audio label).

Solution to Exercise 11.2: Code 11.10 shows the VoiceXML code for pizza2.
vxml. Use the grammars that were used in Exercise 11.1 (Codes 11.8 and 11.9).

Test the application by saying words that are not in the vocabulary in order to
throw a <nomatch> event—for example, “vegetarian” for type and “medium”
for size.

Code 11.9 size.grxml

11.2 Development of a Conversational Interface … 245

Code 11.10 pizza2.vxml

246 11 Implementing Dialog Management

Exercise 11.3
Extend pizza2.vxml as follows to create pizza3.vxml:

• After filling all the fields, confirm if the order is correct and if it is not, reorder
all the data pieces.

– Incorporate a confirmation field with yes/no options.
– If the user says “no,” empty the corresponding field value (<clear> tag).

Solution to Exercise 11.3: Code 11.11 shows the VoiceXML code for pizza3.
vxml. Use the grammars that were used in Exercise 11.1 (Codes 11.8 and 11.9) as
well as the grammar in Code 11.12.

Exercise 11.4
Extend pizza3.vxml as follows to create pizza4.vxml:

• Allow mixed-initiative dialogs in which the second time that the system does
not understand the long request, ask for each data piece step by step.

Solution to Exercise 11.4: Code 11.13 shows the VoiceXML code for pizza4.
vxml. Use the grammars that were used in Exercise 11.3 (Codes 11.8, 11.9, and
11.12) as well as the grammar in Code 11.14.

1. Test the application with inputs such as “a large Sicilian pizza,” “a small
margherita pizza,” and various other combinations of the sizes and types
specified in the grammar.

2. Try inputs that do not match the order rule in complete.grxml (e.g.,
“large” or “Sicilian” to see how the FIA moves into directed dialog mode.

Code 11.10 (continued)

11.2 Development of a Conversational Interface … 247

3. You can add further variation to the inputs that can be recognized by using the
repeat attribute (repeat = “0-1”). For help on how to do this, consult the
VoiceXML documentation10 or the Voxeo tutorials.11

Exercise 11.5
Extend pizza4.vxml as follows to create pizza5.vxml:

• Allow users to ask for help at any moment of the dialog.

Solution toExercise11.5:Code11.15 shows theVoiceXMLcode forpizza5.vxml.
Use the grammars that were used in Exercise 11.4 (Codes 11.8, 11.9, 11.12, and 11.14).

Test the application by saying “help” at different times during the interaction.

Code 11.11 pizza3.vxml

10https://www.w3.org/TR/voicexml20/. Accessed February 27, 2016.
11http://help.voxeo.com/go/help/xml.vxml. Accessed February 27, 2016.

248 11 Implementing Dialog Management

https://www.w3.org/TR/voicexml20/
http://help.voxeo.com/go/help/xml.vxml

Code 11.11 (continued)

11.2 Development of a Conversational Interface … 249

Code 11.12 confirmation.grxml

Code 11.11 (continued)

250 11 Implementing Dialog Management

Code 11.13 pizza4.vxml

11.2 Development of a Conversational Interface … 251

Code 11.13 (continued)

252 11 Implementing Dialog Management

Code 11.13 (continued)

Code 11.14 complete.grxml

11.2 Development of a Conversational Interface … 253

Code 11.14 (continued)

254 11 Implementing Dialog Management

Code 11.15 pizza5.vxml

11.2 Development of a Conversational Interface … 255

Code 11.15 (continued)

256 11 Implementing Dialog Management

11.3 Development of a Conversational Interface Using
a Statistical Dialog Management Technique

In this section, we will generate a statistical dialog manager to solve the same
problem: a pizza ordering service. In this case, instead of designing the dialog flow,
we will use a corpus of dialogs in a pizza service to automatically learn the best
dialog strategy.

The statistical methodology for dialog management that is proposed to solve this
exercise was described in Chap. 10 (Sect. 10.4.2). This corpus-based approach to
dialog management is based on the estimation of a statistical model from the
sequences of system and user dialog acts obtained from a set of training data. The
next system response is selected by means of a classification process that considers
the complete history of the dialog.

Code 11.15 (continued)

11.3 Development of a Conversational Interface … 257

http://dx.doi.org/10.1007/978-3-319-32967-3_10

Another main characteristic is the inclusion of a data structure that stores the
information provided by the user. The main objective of this structure, called the
Dialog Register (DR), is to easily encode the complete information related to
the task provided by the user during the dialog history, then to consider the specific
semantics of the task, and to include this information in the proposed classification
process. See Griol et al. (2014) for a complete description of this statistical
methodology for DM.

We have extended the definition of the pizza ordering service after Exercise 11.5
to allow users to provide the following task-dependent information items:

• Type of order (delivery or pick up),
• Number of pizzas,
• Types of pizzas,
• Sizes of pizzas,
• Types of pizza dough, and
• Drinks (optional field).

Users can also provide the following task-independent information items:

• Acceptance,
• Rejection, and
• Not-understood.

The Dialog Register defined for the task consists of 6 fields corresponding to the
previously described task-dependent items of information:

Type_Order Number_Pizzas Types_Pizzas Sizes_Pizzas Types_Doughs Drinks

The set of system actions (responses) defined for the task includes:

1. Welcome (Opening).
2. Ask the type of order (Ask_Type_Order).
3. Ask the number of pizzas (Ask_Number_Pizzas).
4. Ask the types of pizzas (Ask_Types_Pizzas).
5. Ask the sizes of pizzas (Ask_Sizes_Pizzas).
6. Ask the types of dough (Ask_Types_Doughs).
7. Ask the drinks (Ask_Drinks).
8. Confirm the type of order (Confirm_Type_Order).
9. Confirm the number of pizzas (Confirm _Number_Pizzas).

10. Confirm the types of pizza (Confirm _Types_Pizzas).
11. Confirm the sizes of pizzas (Confirm _Sizes_Pizzas).
12. Confirm the types of dough (Confirm _Types_Doughs).
13. Confirm the drinks (Confirm _Drinks).
14. Closing (Closing).

258 11 Implementing Dialog Management

A set of 100 dialogs was automatically generated by means of a dialog simu-
lation technique, which allows to acquire a dialog corpus annotated in terms of the
user and system dialog acts defined for the task (Griol et al. 2013). These dialogs
allow users to provide and/or confirm one or more task-independent items of
information in a single user turn and also perform these actions without following a
strict order.

As described in Chap. 10, for the dialog manager to determine the next system
answer the exact values of the attributes in the DR are assumed to be not significant.
They are important for accessing databases and for constructing the output sen-
tences of the system. However, the only information necessary to predict the next
action by the system is the presence or absence of concepts and attributes.
Therefore, the codification proposed for each slot in the DR is in terms of three
values, {0, 1, 2}, according to the following criteria:

• (0) The value for the slot is unknown or not given.
• (1) The value of the slot is known with a confidence score that is higher than a

given threshold.
• (2) The value of the slot has a confidence score that is lower than the given

threshold.

To decide whether the state of a certain value in the DR is 1 or 2, the system
employs confidence measures provided by the ASR and SLU modules.

Using this codification for the DR, when a dialog starts (in the greeting turn) all
the values in the Dialog Register are initialized to 0. The information provided by
the users at each dialog turn is used to update the previous DR and obtain the
current one, as shown in Fig. 11.2.

Fig. 11.2 Excerpt of a simulated dialog with its corresponding Dialog Register and active
task-independent information for one of the turns

11.3 Development of a Conversational Interface … 259

http://dx.doi.org/10.1007/978-3-319-32967-3_10

This figure shows the semantic interpretation and confidence scores (in brackets)
for a user’s utterance provided by the SLU module. In this case, the confidence
score assigned to the slot Types_Pizzas is very low. Thus, a value of 2 is added in
the corresponding position of DR1. The slot Number_Pizzas is recognized with a
high confidence score, adding a value of 1 in the corresponding position of DR1.

The updated DR, the active task-independent information (Acceptance,
Rejection, and Not-Understood dialog acts), and the codification of the labeling of
the last system turn (A1) are considered as an input to a classifier that provides the
probabilities of selecting each next system response according to the current state of
the dialog represented by means of the described input. This process is repeated to
predict the next system response after each user turn.

You can find the set of simulated dialogs in the ConversationalInterface
repository,12 in the folder called chapter11/PizzaStat.

Each dialog sample in the corpus consists of 11 elements delimited by a comma:

• Last system response: The last system response is coded using a natural number
between 1 and 14, which represents each one of the system responses in the
same order that they were previously presented in the chapter.

• Current Dialog Register (e.g., 012000): The Dialog Register consists of the 6
fields representing task-dependent dialog acts, which are coded as previously
described.

• Task-independent information provided in the current user turn (e.g., 000): This
information corresponds to the Acceptance, Rejection, and Not-Understood
dialog acts. These dialogs are represented using the same codification defined
for the DR.

• Next system response (natural number between 1 and 14).

To train a classifier using the set of provided samples, we propose the use of the
Waikato Environment for Knowledge Analysis (Weka) Software.13 Detailed doc-
umentation about this software can be found at here.14 Different classifier functions
can be selected using the software (artificial neural networks, decision trees, Naïve
Bayes, etc.). You can test each one of these classifiers with the Weka ARFF file that
has been generated with the samples in the corpus using the file Dialog_Pizza.
arff that you can download from the ConversationalInterface repository,15 in the
folder called chapter11/PizzaStat.

Open this file with Weka, select a specific classifier at the Classify tab of the
Weka Explorer, and specify 5-fold cross-validation with the 80 % of the corpus for
training and the remaining 20 % of the corpus as a test partition. Repeat the Weka
prediction with different classifiers and study which one provides better results

12http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.
13http://www.cs.waikato.ac.nz/ml/weka/. Accessed February 26, 2016.
14http://www.cs.waikato.ac.nz/ml/weka/documentation.html. Accessed February 26, 2016.
15http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.

260 11 Implementing Dialog Management

http://zoraidacallejas.github.io/ConversationalInterface/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/documentation.html
http://zoraidacallejas.github.io/ConversationalInterface/

T
ab

le
11

.1
C
on

fu
si
on

m
at
ri
x
(W

ek
a)

a
b

c
d

e
f

g
h

i
j

k
l

m
n

<!
—

cl
as
si
fi
ed

as

0
0

0
0

0
0

0
0

0
0

0
0

0
0

a
=
1

0
60

0
0

0
0

0
0

0
0

0
0

0
0

b
=
2

0
0

35
0

0
0

0
0

0
0

0
0

0
0

c
=
3

0
0

0
89

0
0

0
0

0
0

0
0

0
0

d
=
4

0
0

0
0

11
0

0
0

0
0

0
0

0
0

0
e
=
5

0
0

0
0

0
15

6
0

0
0

0
0

0
0

0
f
=
6

0
0

0
0

0
0

16
6

0
0

0
0

0
0

0
g
=
7

0
0

0
0

0
0

0
24

0
0

0
0

0
0

h
=
8

0
0

0
0

0
0

0
0

24
0

0
0

0
0

i
=
9

0
0

0
0

0
0

0
0

0
28

0
0

0
0

j
=
10

0
0

0
0

0
0

0
0

0
0

21
0

0
0

k
=
11

0
0

0
0

0
0

0
0

0
0

0
10

0
0

l
=
12

0
0

0
0

0
0

0
0

0
0

0
0

58
0

m
=
13

0
0

0
0

0
0

0
0

0
0

0
0

0
17

4
n
=
14

11.3 Development of a Conversational Interface … 261

regarding the number of system responses selected by the classifier that are cor-
rectly predicted.

As an example, the results that are provided following this process when the
multilayer perceptron (MLP) is selected as the classifier functions are as follows:

Correctly Classified Instances: 955 (98.657 %)
Incorrectly Classified Instances: 13 (1.343 %)
Kappa statistic: 0.9847
Mean absolute error: 0.0063
Root mean squared error: 0.0441
Relative absolute error: 5.0366 %
Root relative squared error: 17.6224 %
Total Number of Instances: 968

As can be observed, the statistical dialog manager successfully predicts the next
system response at a rate of 98.657 %, where this percentage denotes the cases in
which the system response that is selected by the MLP is the same as the reference
response annotated in the corresponding dialog sample. The confusion matrix that
is provided by Weka is shown in Table 11.1.

You can also try to design an ensemble of classifiers to try to improve the results
that are obtained.

11.4 Summary

In this chapter, we have provided exercises showing how to develop practical
dialog managers by means of rule-based and statistical techniques. The VoiceXML
language has been selected given that it is an approach used widely in industry to
develop handcrafted dialog managers for spoken conversational interfaces. We
have selected the same practical application domain to implement a corpus-based
statistical dialog manager.

The next stage for the conversational interface is to take the action decided by
the dialog manager and determine the content of the response and how best to
express it. Chapter 12 describes the fundamental aspects and main approaches for
response generation.

Further Reading
A detailed explanation of the use of the VoiceXML standard can be found in the
references provided in the chapter. Detailed tutorials and examples of VoiceXML
applications are also available at the Voxeo Web site.16

16http://help.voxeo.com/go/help/xml.vxml.voicexml. Accessed 17 April 2016.

262 11 Implementing Dialog Management

http://dx.doi.org/10.1007/978-3-319-32967-3_12
http://help.voxeo.com/go/help/xml.vxml.voicexml

Further practical applications of the proposed statistical methodology for dialog
management are described in Griol et al. (2008, 2009), while additional tutorials
about the Weka software and the ARFF data format can be found here17,18.

References

Griol D, Hurtado LF, Segarra E, Sanchis E (2008) A dialog management methodology based on
neural networks and its application to different domains. Lect Notes Comput Sci 5197:643–
650. doi:10.1007/978-3-540-85920-8_78

Griol D, Riccardi G, Sanchis E (2009) A statistical dialog manager for the LUNA project. In:
Proceedings of 10th annual conference of the international speech communication association
(INTERSPEECH), Brighton, UK, pp 272–275. 6–10 Sept 2009. http://disi.unitn.it/*riccardi/
papers/Interspeech09-DM.pdf

Griol D, Carbo J, Molina JM (2013) An automatic dialog simulation technique to develop and
evaluate interactive conversational agents. Appl Artifi Intell 27(9):759–780. doi:10.1080/
08839514.2013.835230

Griol D, Callejas Z, López-Cózar R, Riccardi G (2014) A domain-independent statistical
methodology for dialog management in spoken dialog systems. Comput Speech Lang 28
(3):743–768. doi:10.1016/j.csl.2013.09.002

17https://sourceforge.net/projects/weka/files/documentation/Initial%20upload%20and%20presen
tations/Weka_a_tool_for_exploratory_data_mining.ppt/download?use_mirror=netix. Accessed
17 April 2016.
18http://weka.wikispaces.com/ARFF. Accessed 17 April 2016.

11.4 Summary 263

http://dx.doi.org/10.1007/978-3-540-85920-8_78
http://disi.unitn.it/%7ericcardi/papers/Interspeech09-DM.pdf
http://disi.unitn.it/%7ericcardi/papers/Interspeech09-DM.pdf
http://dx.doi.org/10.1080/08839514.2013.835230
http://dx.doi.org/10.1080/08839514.2013.835230
http://dx.doi.org/10.1016/j.csl.2013.09.002
https://sourceforge.net/projects/weka/files/documentation/Initial%2520upload%2520and%2520presentations/Weka_a_tool_for_exploratory_data_mining.ppt/download%3fuse_mirror%3dnetix
https://sourceforge.net/projects/weka/files/documentation/Initial%2520upload%2520and%2520presentations/Weka_a_tool_for_exploratory_data_mining.ppt/download%3fuse_mirror%3dnetix
http://weka.wikispaces.com/ARFF

Chapter 12
Response Generation

Abstract Once the dialog manager has interpreted the user’s input and decided
how to respond, the next step for the conversational interface is to determine the
content of the response and how best to express it. This stage is known as response
generation (RG). The system’s verbal output is generated as a stretch of text and
passed to the text-to-speech component to be rendered as speech. In this chapter, we
provide an overview of the technology of RG and discuss tools and other resources.

12.1 Introduction

Once the dialog manager has interpreted the user’s input and decided how to
respond, the next step is to determine the content of the response (content deter-
mination) and how best to express it (content realization). Compared with the other
components of a conversational interface, there are no readily available tools for
response generation (RG).

There are two main approaches to RG. In many spoken dialog systems and
especially in commercial voice user interfaces, a simple approach is adopted in
which the system outputs predetermined responses, using either canned text or
templates in which the values of variables can be inserted at runtime. This approach
works well in fairly restricted interactions. However, a more elaborate approach is
required where the content to be output cannot be determined in advance and where
it needs to be edited and cast in a form suitable for spoken output. In this case,
techniques from natural language generation (NLG) are required.

12.2 Using Canned Text and Templates

The following are examples of the types of output provided by a typical spoken
dialog system or voice user interface when engaged in a fairly tightly constrained
task such as flight booking:

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_12

265

• Prompts to elicit information from the user, e.g., “What time do you want to
leave?”

• Messages indicating some problem, e.g., “Sorry, I didn’t get that.”
• Requests for confirmation, e.g., “So you want to fly to London?”
• Retrieved information from a knowledge source, e.g., “There is a flight from

Belfast to London on Friday morning departing at 7.05 a.m.”

These outputs can be handled using simple methods such as canned text and
template filling.

Canned text can be used in interactions where the system has to elicit a pre-
determined set of values from the user—such as departure time, destination, and
airline. The prompts can be designed in advance along with messages indicating
problems and errors and can be executed at the appropriate places in the dialog.
Templates provide some degree of flexibility by allowing information to be inserted
into the prompt or message. For example, to confirm that the system has under-
stood, the following prompt might be used:

So you want to go to $Destination on $Day?

Here, $Destination and $Day are filled by values elicited in the preceding
dialog. Templates can become quite complex and can involve some form of
computation using rules to construct the message, as in the responses provided by
chatbots using markup languages such as AIML (see Chap. 7).

There is an extensive literature on the design of effective prompts, based on best
practice guidelines as well as studies of usability (Balentine and Morgan 2001;
Cohen et al. 2004; Hura 2008; Lewis 2011).

Prompts can be directive or non-directive. Directive prompts state explicitly
what the user should say, for example, “Select savings account or current account,”
while non-directive prompts are more open-ended, for example, “How may I help
you?” Usability studies of directive versus non-directive prompts have found that
directive prompts are more effective as they make users more confident in what they
are required to say (Balentine and Morgan 2001). One way to improve the usability
of non-directive prompts is to include an example prompt, for example, “You can
say transfer money, pay a bill, or hear last 5 transactions” (Balentine and Morgan
2001). Lewis (2011: 222–229) provides a detailed overview of experimental studies
of non-directive prompts, summarizing key recommendations for design.

Prompts that present menu choices are another design challenge. Given a large
number of menu choices, the Voice User Interface (VUI) designer has to choose
whether to present more options in each menu, leading to fewer menus (i.e., a
broader menu design), or whether to divide the choices into a menu hierarchy with
more menus but fewer options in each menu (i.e., a deeper design). One

266 12 Response Generation

http://dx.doi.org/10.1007/978-3-319-32967-3_7

consideration that has guided menu design is the limits of human working memory
—for example, if a large number of options are provided for each menu. Various
experimental studies are summarized in Lewis (2011: 231–239).

Designing reprompts is another consideration. If a prompt has to be repeated,
either because the user has not responded at all or because the user has responded
incorrectly, it is preferable not to simply repeat the prompt but rather to change it
depending on the circumstances. For example, if the original prompt was unsuc-
cessful in eliciting more than one item of information, the reprompt can be short-
ened (or tapered) to ask for less information:

System: Please tell me your home address, including postal code and city
name
User: (answers, but system fails to understand)
System: Sorry I didn’t get that, please repeat your home address

Another situation is where it appears that the user does not know what to do or
say, in which case an incremental prompt can be used that provides more detailed
instructions:

System: how many would you like?
User: what?
System: how many shares do you want to buy? For example, one hundred
User: a thousand
System: I’m sorry, I still didn’t get that. Please state the number of shares you
would like to buy or enter the number using your keypad

Finally, a leading prompt indicates which words the user should provide in their
response:

System: welcome to Automated Banking Services. To transfer money, say
transfer, to pay a bill, say pay a bill, …

The main problem with canned text and templates is a lack of flexibility.
Designers have to anticipate all the different circumstances that might occur in a
dialog and design rules to appropriately adapt the system output.

12.2 Using Canned Text and Templates 267

12.3 Using Natural Language Generation Technology

In some cases, the methods of canned text and templates are not sufficient for
generating an appropriate response. For example, the content to be output may need
to be structured in such a way that it is easy for the user to understand. There may
be a large number of flights that match the user’s requirements, so that the RG
component has to decide how many to present at a time. Or there may be different
ways of presenting the information, for example, comparing different attributes of
the flights—price, departure times, and stopovers—or recommending a particular
flight based on known user preferences. Another issue is that when the user has
requested some information, as in a Web search, the retrieved content may need to
be summarized and structured in a form suitable for spoken output by the TTS
component and not simply read out in its entirety.

NLG technology can handle information that cannot be predicted at design time,
such as the results of a Web search that need to be processed and cast into a form
suitable for spoken output. Applications that use NLG technology include weather
forecasts generated from weather prediction data, textual summaries of electronic
medical records, financial and business reports based on the analysis of retail sales
data, and flight information obtained from airline schedules.

NLG has been viewed as consisting of several stages of processing that are
ordered in a pipeline model (Fig. 12.1).

When the input to the pipeline takes the form of data, such as the numerical data
in weather predictions, there are two preliminary stages (Reiter 2007):

1. Signal analysis—the analysis of numerical and other data, involving looking for
patterns and trends using numerical pattern recognition algorithms.

2. Data interpretation—identification of complex messages, in which there are
causal and other relations between the messages. Generally, symbolic reasoning
approaches based on domain knowledge have been used for this stage.

Reiter (2007) discusses an example from the BABYTALK project1 in which
textual summaries of medical data about babies in a neonatal intensive care unit are
generated (Portet et al. 2009). The data include numerical sensor data, such as heart
rate, blood pressure, temperature, and medical records of medications administered
and blood test results. Data interpretation involves creating the text of the messages
by deciding how important particular events are and detecting relationships between
events.

The next stages consist of the stages in the original pipeline model presented in
Reiter and Dale (2000): document planning, microplanning, and realization. These
stages are applied to textual content that has been retrieved from sources such as
knowledge bases and databases.

1http://www.abdn.ac.uk/ncs/departments/computing-science/babytalk-308.php. Accessed
February 21, 2016.

268 12 Response Generation

http://www.abdn.ac.uk/ncs/departments/computing-science/babytalk-308.php

12.3.1 Document Planning

Document planning consists of two substages: content determination and discourse
planning. Content determination involves deciding what information to commu-
nicate. Not all of the information that has been retrieved may need to be spoken to
the user, or it may need to be delivered in stages. For example, it is not appropriate
to use speech to convey long lists of information to a user. Similarly, the infor-
mation to be conveyed might need to be adapted to the needs of different users.
Content determination involves filtering the information and summarizing it, where
required. For example, in the Mercury Flight information system described in
Chap. 4, there were rules specifying how the output should be expressed depending
on the number of flights retrieved (Seneff 2002).

Once the content has been determined, the next stage—discourse planning—
involves structuring and organizing the content so that it is easy for the user to
process. In some cases, a particular message type will have a regular structure. For

Fig. 12.1 The NLG pipeline

12.3 Using Natural Language Generation Technology 269

http://dx.doi.org/10.1007/978-3-319-32967-3_4

example, a set of instructions typically describes the required actions in the order of
their execution, using connecting words such as “first,” “next,” and “finally.”
Well-structured texts can be modeled using schemas that set out the main com-
ponents of the text and reflect how the text is organized sequentially (McKeown
1985). A more elaborate approach, derived from rhetorical structure theory,
describes the relations between the elements of a text, for example, indicating that a
second sentence is an elaboration of a preceding sentence or that it expresses a
contrast (Mann and Thompson 1988). The following is an example of a contrast,
indicated by the cue word “however”:

There is an early morning flight to London. However, it has been delayed by
90 minutes.

The output of the document planning stage is a document plan.

12.3.2 Microplanning

Microplanning, also known as sentence planning, is concerned with creating the
sentences to convey the information. There are three main tasks in microplanning:

1. Referring expressions.
2. Aggregation.
3. Lexical selection.

Dealing with referring expressions involves determining how to refer to an entity
in a text within a particular context. For example, if some entity that has already
been mentioned is to be referred to again, it should be possible to refer to that entity
using a pronoun, as in the following example:

There is a flight to London at 3 p.m. It arrives at 4.05.

Aggregation is the issue of combining content into meaningful portions, for
example, by using conjunctions, ellipsis, or combinations of these, as in the fol-
lowing examples:

The flight departs at 9. It arrives at 10 (no aggregation).
The flight departs at 9, and it arrives at 10 (aggregation with conjunction).
The flight departs at 9 and [] arrives at 10 (aggregation with conjunction and
ellipsis).

270 12 Response Generation

Lexical selection involves choosing the appropriate words to express the content.
In most simple systems, a single lexical item is associated with each entity in the
database. However, using different expressions provides more variation in the text,
as in the following examples:

The first flight departs at 9. The second flight departs at 10. The third flight
departs at 11 (no variation).
The first flight departs at 9. The departure times of the next flights are 10 and
11.

Variation in lexical selection may be useful when outputting text to different
users with different levels of expertise—for example, more technical terms for
experienced users of some technology and more general descriptive terms to novice
users.

12.3.3 Realization

Realization is the stage involving linguistic analysis in which rules of grammar are
applied, for example, to enforce subject–verb agreement, insert function words,
choose the correct inflections of content words, order the words within the sentence,
and apply rules of spelling. A grammar is used that provides a set of choices for
linguistic realization, for example, between active and passive sentences, as in the
following examples:

Bad weather has delayed the flight.
The flight has been delayed by bad weather.

Where the output takes the form of speech, as in most of the output from a
conversational interface, marking the text for prosody is also important (Theune
2002). The use of prosody makes spoken output more natural and easier to process.
Prosody covers variations in pitch, loudness, tempo, and rhythm within an utter-
ance. For example, some of the words in an utterance are more accented (or
emphasized) than others, particularly if they express information that is assumed to
be new to the hearer. Also, the utterance may be divided into intonational phrases,
sometimes with a brief pause between the phrases. Failure to consider prosody
results in the robotic speech typical of early TTS systems. In cases where the output
can be predicted in advance, it can be marked up by hand using markup languages
such as the W3C’s Speech Synthesis Markup Language (SSML) that includes

12.3 Using Natural Language Generation Technology 271

markup tags such as <emphasis>, <break>, and <prosody>.2 A compatible TTS
engine would be required that could interpret and render the tags. In cases where the
output text cannot be determined in advance, as in arbitrary text retrieved from the
Web, prosodic markup has to be done automatically at runtime.

12.4 Statistical Approaches to Natural Language
Generation

NLG technology has been applied mainly to texts such as monologues or written
texts where the content is known in advance. However, in spoken dialog, the
content emerges dynamically as the dialog proceeds so that a more adaptive
approach is required. The pipeline architecture used in NLG is also problematic, as
the processing at earlier stages such as document planning cannot take account of
issues that might arise at later stages in the pipeline. For example, there might be
problems with realizing the content at the syntactic, lexical, or phonetic levels that
should have been taken into account at the earlier content determination stage.
Recent work using statistical machine learning models has begun to address these
issues. The following example is taken from a research project in which the system
had to present information about restaurants to a user (Lemon 2011; Lemon et al.
2010; Rieser et al. 2010, 2014).

Information presentation requires the system to maintain a balance between
presenting enough information to respond to the user’s requirements while avoiding
overloading the user with too much information. Three strategies were identified for
the presentation of information, given a set of records returned from a database of
restaurants:

• summary (e.g., “I found twenty-six restaurants … eleven are in the expensive
price range …”).

• recommend (e.g., “The restaurant XX has the best overall quality …”).
• compare (e.g., “The restaurant XX is in the cheap price range … and the

restaurant YY is in the moderate price range …”).

These could also be combined, so that, for example, a summary could be fol-
lowed by a recommend, or by a compare followed by a recommend. Furthermore,
decisions were required to determine how many attributes of a restaurant to present
and in what order, and at the realization stage how many sentences to use and what
lexical choices to make.

The decisions involved in RG were modeled using a Markov decision process
(MDP) and reinforcement learning (RL), in which each state in the MDP repre-
sented a dialog context and system actions represented decisions that received a
reward on transition to the next state (see Chap. 10 for a more detailed discussion

2http://www.w3.org/TR/speech-synthesis/. Accessed February 21, 2016.

272 12 Response Generation

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://www.w3.org/TR/speech-synthesis/

on RL). The aim was to maximize the long-term expected reward of taking deci-
sions that would result in an optimal policy for generating the content. Moreover,
by treating information presentation as a joint optimization problem combining
content structuring and selection of attributes, it was possible to consider
lower-level actions at the same time as higher-level actions, which would not be
possible using the traditional pipelined architecture for NLG. The following is an
example of a strategy learnt by the RL policy:

If the initial number of items returned from the database is
high, start with a summary.

If the user selects an item, stop generating.
Otherwise, continue with a recommend.

If the number of database items is low, start with a compare
and then continue with a recommend, unless the user selects an
item.

An important issue is that the strategies are context dependent as the system
bases its decisions for generation on features in the state space at each generation
step. It would be a difficult task to hand-code all the rules required to handle such a
large number of permutations of contextual features and provide similar adaptivity.

12.5 Response Generation for Conversational Queries

Finding answers to questions posed to spoken dialog systems and voice user
interfaces has traditionally involved sending a query to a structured information
source such as a database—for example, to get flight information, stock quotes, and
weather reports. The system first engages with the user in a slot-filling dialog to
elicit the values of a number of parameters and then queries the information source
with these values to obtain the required information. This information is translated
into natural language text using the NLG techniques described earlier.

However, conversational interfaces also support general knowledge questions
such as the following:

Who is the president of France?
When was Google founded?
Where is the Eiffel Tower?

Although it might be possible to find answers to questions like these in a
database, more typically the answers are to be found in digitally stored documents
on the World Wide Web and in other online sources such as books and journals.
Because these sources consist of text and do not conform to a predefined data

12.4 Statistical Approaches to Natural Language Generation 273

model, they are viewed as being unstructured. Modern search engines can handle
queries to such unstructured sources with amazing efficiency and speed, although
generally the response to a search query takes the form of a list of Web pages where
the required information has to be retrieved by consulting one or more of the links.

For a conversational interface, a different type of response is required in the form
of a short stretch of text that can be spoken to the user. One approach uses the
technology of question answering (QA) to find answers in large collections of
unstructured text on the World Wide Web. Alternatively structured knowledge
sources, often referred to as semantic repositories, have been created in which
knowledge is structured and linked.3 The following section provides an overview of
these technologies followed by a brief discussion of how text summarization can
also be used to create a response that can be spoken by a conversational interface.

12.5.1 Question Answering

QA is one of the earliest applications of natural language processing, going back to
systems developed in the 1960s. Typically, most systems deal with factoid ques-
tions, for which answers can usually be found in short stretches of text that have
been retrieved using information retrieval techniques from a collection of docu-
ments. Finding an answer may involve identifying named entities in the question,
such as a person, time, or location, as in the examples above, and retrieving a
ranked set of passages of text containing matching named entities from a large
collection of documents.

QA has three main stages: question processing, passage retrieval and ranking,
and answer processing (see Jurafsky and Martin (2009, Chap. 23) for a detailed
account of QA). As far as the RG component of a conversational interface is
concerned, the main task is to take the output of the QA system and generate a
stretch of text that can be spoken as an answer to the user’s question. In many cases,
the output may be suitable without further editing, while in other cases some editing
may be required, using the NLG techniques discussed earlier.

There are many systems that provide QA technology, including IBM’s Watson
and the Evi system. Watson4 is a powerful question answering system that was
originally developed using IBM’s DeepQA architecture to answer questions on the
Jeopardy quiz show, where it won first prize in 2011.5 Watson uses a combination
of NLP, hypothesis generation and evaluation, and dynamic machine learning to
extract knowledge from millions of documents containing structured as well as
unstructured contents. Watson is now being used for QA in domains such as health

3http://linkeddata.org/. Accessed February 21, 2016.
4http://www.ibm.com/smarterplanet/us/en/ibmwatson/. Accessed February 21, 2016.
5http://ibmresearchnews.blogspot.co.uk/2011/12/dave-ferrucci-at-computer-history.html.
Accessed February 21, 2016.

274 12 Response Generation

http://linkeddata.org/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/
http://ibmresearchnews.blogspot.co.uk/2011/12/dave-ferrucci-at-computer-history.html

care to provide clinical decision support. Ferrucci et al. (2010) provide an overview
of the DeepQA project and the implementation of Watson. There is also a
description of how to build a simple demo application that allows users to ask
questions about films and filmmaking.6

Evi7 runs on Android and iPhone smartphones and Kindle Fire tablets. Users can
ask questions using speech. Evi examines all the possible meanings of the words in
the user’s question to find the most likely meaning of the question and draws on a
database of nearly a billion facts to find an answer, using a series of logical
deductions. Evi was developed by a technology company based in Cambridge,
England (formerly known as True Knowledge). Evi was acquired by Amazon in
2012 and is now part of the Amazon group.

12.5.2 Structured Resources to Support Conversational
Question Answering

In order to be able to find answers to a user’s query, a conversational interface has
to be able to access knowledge bases that contain the relevant information.
Increasingly, there has been a trend toward developing large semantic repositories
in which this knowledge is stored in a machine-readable and accessible form
(de Melo and Hose 2013). We briefly describe three of these repositories:
WolframAlpha, Google’s Knowledge Graph, and DBpedia.

WolframAlpha is a system for dynamically computing answers to free-form
natural language questions by drawing on a vast store of curated, structured data.8

WolframAlpha provides several of its own personal assistant apps in areas such as
personal fitness, travel, and personal finance and is used as a knowledge source by a
number of virtual personal assistants to generate answers to user’s questions.

Knowledge Graph was introduced by Google in 2012 as a knowledge base that is
constructed mainly from crowd-sourced and manually curated data. Knowledge
Graph provides structured information about a topic as well as a short summary that
may be used as a spoken answer in queries to Google Now.9 In a new venture, Google
introduced Knowledge Vault in 2014, which includes information from structured
sources as well as unstructured sources across the entire World Wide Web.

DBpedia extracts structured information from Wikipedia and makes it available
on the Web.10 The English version of DBpedia includes 4.58 million things, most

6http://www.ibm.com/developerworks/cloud/library/cl-watson-films-bluemix-app/. Accessed
February 21, 2016.
7https://www.evi.com/. Accessed February 21, 2016.
8http://www.wolframalpha.com/tour/what-is-wolframalpha.html. Accessed February 21, 2016.
9https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html.
Accessed February 21, 2016.
10http://wiki.dbpedia.org/about. Accessed February 21, 2016.

12.5 Response Generation for Conversational Queries 275

http://www.ibm.com/developerworks/cloud/library/cl-watson-films-bluemix-app/
https://www.evi.com/
http://www.wolframalpha.com/tour/what-is-wolframalpha.html
https://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
http://wiki.dbpedia.org/about

of which are classified in an ontology, including persons, creative works, music
albums, films, and video games, and there are also versions in 125 languages. The
DBpedia dataset can be accessed online via a SPARQL query endpoint and as
linked data.11 See Lehmann et al. (2015) for a recent overview paper about the
DBpedia project.

12.5.3 Text Summarization

In some cases, an answer to a question might take the form of a summary of the
contents of one or more documents. A summary is a reduction of the original text
that preserves its most important points. The snippets produced by Web search
engines are examples of such summaries. In the simplest kind of summary, phrases
and sentences from the document(s) are selected and combined to form the sum-
mary, known as an extract. This is the most common form of summary using
current technology. A different approach produces an abstract, in which a semantic
representation is built of the contents of the document(s) and used to create a
summary involving similar processes to those used in NLG, i.e., content determi-
nation, discourse planning (structuring), and microplanning (sentence realization)
(see Jurafsky and Martin 2009, Chap. 23 for a detailed account). There may also be
a process of sentence simplification to produce a more suitable form of output as a
spoken message.

12.6 Summary

RG involves determining the content of the response to the user’s query and deciding
howbest to express it. The simplest approach is to use predetermined responses, either
in the form of canned text or in the form of templates in which the variables can be
inserted at runtime. UsingNLG technology provides greaterflexibility as the text to be
output can be tailored to the needs of the user and adapted or summarized to meet the
requirements of a spoken response. NLG has traditionally been viewed as consisting
of several stages of processing that are ordered in a pipeline model. Recently, sta-
tistical models have been applied to RG. In these models, there is greater flexibility as
the content can emerge dynamically over the course of the dialog, whereas in the
traditional pipeline approach processing at earlier stages cannot take account of issues
that might arise at later stages in the pipeline.

RG for spoken dialog systems and voice user interfaces normally involves trans-
lating structured information retrieved from a database into a form suitable for a
spoken response. A different approach is required for queries that access unstructured

11http://dbpedia.org/OnlineAccess. Accessed February 21, 2016.

276 12 Response Generation

http://dbpedia.org/OnlineAccess

content on the World Wide Web. Here, techniques drawn from QA, text summa-
rization, and sentence simplification are proving useful.

So far, we have focused on the spoken language aspects of conversational
interfaces, where the interaction has involved queries and commands to virtual
personal assistants on smartphones. In the next part, we look first in Chap. 13 at
other smart devices that require a conversational interface, such as smart watches,
wearables, and social robots. Then, in Chaps. 14 and 15, we show how conver-
sational interfaces can be made more believable and acceptable by incorporating the
ability to recognize and produce emotions, affect, and personality.

Further Reading
Reiter and Dale (2000) is a collection of chapters dealing with standard text on
NLG. Here, the main elements of NLG are described on which most NLG research
has been based. Stent and Bangalore (2014) is a recent collection of chapters
dealing with NLG for interactive systems, including approaches using RL and
data-driven methods. See also the collection edited by Krahmer and Theune (2010).
Reiter (2010) reviews recent developments in NLG, while Lemon et al. (2010)
present several case studies illustrating statistical approaches. See also Janarthanam
and Lemon (2014) and Mairesse and Young (2014).

Information about NLG can be found at the Web page of the ACL Special
Interest Group on Natural Language Generation (SIGGEN).12 There is also an NLG
Systems Wiki that lists NLG systems, including links to home pages and key
references.13 See also the Web page for the NLG Group at the University of
Aberdeen.14 SimpleNLG is a Java API that was developed at the University of
Aberdeen to facilitate the generation of natural language text.15 A list of tools for
implementing NLG can be found at the ACL Wiki page.16

Until recently, NLG has not been used widely in real-world applications, but since
2009 several companies have been launched that generate text from data using NLG
techniques. These include ARRIA,17 Automated Insights,18 NarrativeScience,19 and
Yseop Smart NLG.20

De Melo and Hose (2013) provide a comprehensive tutorial on searching the Web
of data. For a collection of readings on QA, see Maybury (2004) and Strzalkowski

12http://www.siggen.org/. Accessed February 21, 2016.
13http://www.nlg-wiki.org/systems/. Accessed February 21, 2016.
14http://www.abdn.ac.uk/ncs/departments/computing-science/natural-language-generation-187.
php. Accessed February 21, 2016.
15https://github.com/simplenlg/simplenlg. Accessed February 21,2016.
16http://aclweb.org/aclwiki/index.php?title=Downloadable_NLG_systems. Accessed February 21,
2016.
17http://www.arria.com/. Accessed February 21, 2016.
18http://automatedinsights.com/. Accessed February 21, 2016.
19http://www.narrativescience.com/. Accessed February 21, 2016.
20http://www.slideshare.net/gdm3003/searching-the-web-of-data-tutorial. Accessed February 21,
2016.

12.6 Summary 277

http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://www.siggen.org/
http://www.nlg-wiki.org/systems/
http://www.abdn.ac.uk/ncs/departments/computing-science/natural-language-generation-187.php
http://www.abdn.ac.uk/ncs/departments/computing-science/natural-language-generation-187.php
https://github.com/simplenlg/simplenlg
http://aclweb.org/aclwiki/index.php%3ftitle%3dDownloadable_NLG_systems
http://www.arria.com/
http://automatedinsights.com/
http://www.narrativescience.com/
http://www.slideshare.net/gdm3003/searching-the-web-of-data-tutorial

and Harabagiu (2008). For a fairly non-technical coverage of the technologies
behind IBM’s Watson, see Baker (2012). The standard textbook on text summa-
rization is Mani (2001). See also Mani and Maybury (1999) and Jones (2007).

References

Baker S (2012) Final Jeopardy: the story of Watson, the computer that will transform our world.
Houghton Mifflin Harcourt, New York

Balentine B, Morgan DP (2001) How to build a speech recognition application: a style guide for
telephony dialogs, 2nd edn. EIG Press, San Ramon

Cohen MH, Giangola JP, Balogh J (2004) Voice user interface design. Addison Wesley, New
York

de Melo G, Hose K (2013) Searching the web of data. In: Serdyukov P et al (ed) Advances in
information retrieval: Proceedings of 35th European conference on IR research, ECIR 2013,
Moscow, Russia, 24–27 Mar 2013. Lecture Notes in Computer Science, vol 7814. Springer
Publishing Company, pp 869–873. doi:10.1007/978-3-642-36973-5_105

Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW,
Nyberg E, Prager J, Schlaefer N, Welty C (2010) Building Watson: an overview of the
DeepQA project. AI Mag 31(3):59–79. http://dx.doi.org/10.1609/aimag.v31i3.2303. Accessed
20 Jan 2016

Hura S (2008) Voice user interfaces. In: Kortum P (ed) HCI beyond the GUI: design for haptic,
speech, olfactory, and other non-traditional interfaces. Morgan Kaufmann, Burlington, pp 197–
227. doi:10.1016/b978-0-12-374017-5.00006-7

Janarthanam S, Lemon O (2014) Adaptive generation in dialogue systems using dynamic user
modeling. Comp Linguist 40(4):883–920. doi:10.1162/coli%5Fa%5F00203

Jones KS (2007) Automatic summarizing: the state of the art. Inf Proc Manage 43(6):1449–1481.
doi:10.1016/j.ipm.2007.03.009

Jurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall, Upper
Saddle River

Krahmer E, Theune M (eds) (2010) Empirical methods in natural language generation:
data-oriented methods and empirical methods. Springer, New York. doi:10.1007/978-3-642-
15573-4

Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, Hellmann S, Morsey M,
van Kleef P, Auer S, Bizer C (2015) DBpedia—a large-scale, multilingual knowledge base
extracted from Wikipedia. Semant Web J 6(2):167–195. doi:10.3233/SW-140134

Lemon O (2011) Learning what to say and how to say it: joint optimisation of spoken dialogue
management and natural language generation. Comp Speech Lang 25(2):210–221. doi:10.
1016/j.csl.2010.04.005

Lemon O, Janarthanam S, Rieser V (2010) Statistical approaches to adaptive natural language
generation. In: Lemon O, Pietquin O (eds) Data-driven methods for adaptive spoken dialogue
systems: computational learning for conversational interfaces. Springer, New York. doi:10.
1007/978-1-4614-4803-7_6

Lewis JR (2011) Practical speech user interface design. CRC Press, Boca Raton. doi:10.1201/
b10461

Mani I (2001) Automatic summarization. John Benjamins, Amsterdam. doi:10.1075/nlp.3
Mani I, Maybury M (eds) (1999) Advances in automatic text summarization. MIT Press,

Cambridge
Mann WC, Thompson SA (1988) Rhetorical structure theory: toward a functional theory of text

organization. Text 8(3):243–281. doi:10.1515/text.1.1988.8.3.243

278 12 Response Generation

http://dx.doi.org/10.1007/978-3-642-36973-5_105
http://dx.doi.org/10.1609/aimag.v31i3.2303
http://dx.doi.org/10.1016/b978-0-12-374017-5.00006-7
http://dx.doi.org/10.1162/coli%5Fa%5F00203
http://dx.doi.org/10.1016/j.ipm.2007.03.009
http://dx.doi.org/10.1007/978-3-642-15573-4
http://dx.doi.org/10.1007/978-3-642-15573-4
http://dx.doi.org/10.3233/SW-140134
http://dx.doi.org/10.1016/j.csl.2010.04.005
http://dx.doi.org/10.1016/j.csl.2010.04.005
http://dx.doi.org/10.1007/978-1-4614-4803-7_6
http://dx.doi.org/10.1007/978-1-4614-4803-7_6
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1201/b10461
http://dx.doi.org/10.1075/nlp.3
http://dx.doi.org/10.1515/text.1.1988.8.3.243

Mairesse F, Young S (2014) Stochastic language generation in dialogue using factored language
models. Comp Linguist 40(4):763–799. doi:10.1162/coli%5Fa%5F00199

Maybury M (ed) (2004) New directions in question answering. AAAI/MIT Press, Menlo Park and
Cambridge

McKeown KR (1985) Text generation: using discourse strategies and focus constraints to generate
natural language text. Cambridge University Press, Cambridge. doi:10.1017/
cbo9780511620751

Portet F, Reiter E, Gatt A, Hunter J, Sripada S, Freer Y, Sykes C (2009) Automatic generation of
textual summaries from neonatal intensive care data. Artif Intell 173:789–816. doi:10.1016/j.
artint.2008.12.002

Reiter E (2007) An architecture for data-to-text systems. In: Proceedings of ENLG-2007 11th
European workshop on natural language generation. Schloss Dagstuhl, Germany, pp 97–104.
doi:10.3115/1610163.1610180

Reiter E (2010) Natural language generation. In: Clark A, Fox C, Lappin S (eds) Handbook of
computational linguistics and natural language processing. Wiley, Chichester, pp 574–598.
doi:10.1002/9781444324044.ch20

Reiter E, Dale R (2000) Building natural language generation systems. Cambridge University
Press, Cambridge. doi:10.1017/cbo9780511519857

Rieser V, Lemon O, Liu X (2010) Optimising information presentation for spoken dialog systems.
In: Proceedings of the 48th annual meeting of the association for computational linguistics,
Uppsala, Sweden, 11–16 July 2010, pp 1009–1018. http://www.aclweb.org/anthology/P10-
1103. Accessed 20 Jan 2016

Rieser V, Lemon O, Keizer S (2014) Natural language generation as incremental planning under
uncertainty: adaptive information presentation for statistical dialogue systems. IEEE/ACM
Trans Audio Speech Lang Proc 22(5):979–994. doi:10.1109/tasl.2014.2315271

Seneff S (2002) Response planning and generation in the Mercury flight reservation system. Comp
Speech Lang 16:283–312. doi:10.1016/s0885-2308(02)00011-6

Stent A, Bangalore S (2014) Natural language generation in interactive systems. Cambridge
University Press, Cambridge. doi:10.1017/cbo9780511844492

Strzalkowski T, Harabagiu S (eds) (2008) Advances in open domain question answering. Springer,
New York. doi:10.1007/978-1-4020-4746-6

Theune M (2002) Contrast in concept-to-speech generation. Comp Speech Lang 16:491–531.
doi:10.1016/s0885-2308(02)00010-4

References 279

http://dx.doi.org/10.1162/coli%5Fa%5F00199
http://dx.doi.org/10.1017/cbo9780511620751
http://dx.doi.org/10.1017/cbo9780511620751
http://dx.doi.org/10.1016/j.artint.2008.12.002
http://dx.doi.org/10.1016/j.artint.2008.12.002
http://dx.doi.org/10.3115/1610163.1610180
http://dx.doi.org/10.1002/9781444324044.ch20
http://dx.doi.org/10.1017/cbo9780511519857
http://www.aclweb.org/anthology/P10-1103
http://www.aclweb.org/anthology/P10-1103
http://dx.doi.org/10.1109/tasl.2014.2315271
http://dx.doi.org/10.1016/s0885-2308(02)00011-6
http://dx.doi.org/10.1017/cbo9780511844492
http://dx.doi.org/10.1007/978-1-4020-4746-6
http://dx.doi.org/10.1016/s0885-2308(02)00010-4

Part III
Conversational Interfaces and Devices

Chapter 13
Conversational Interfaces: Devices,
Wearables, Virtual Agents, and Robots

Abstract We are surrounded by a plethora of smart objects such as devices,
wearables, virtual agents, and social robots that should help to make our life easier
in many different ways by fulfilling various needs and requirements.
A conversational interface is the best way to communicate with this wide range of
smart objects. In this chapter, we cover the special requirements of conversational
interaction with smart objects, describing the main development platforms, the
possibilities offered by different types of device, and the relevant issues that need to
be considered in interaction design.

13.1 Introduction

So far we have discussed conversational interfaces on smartphones. In this chapter,
we turn to other smart objects that also require a conversational interface, such as
various types of wearable device, virtual agents, and social robots.

Smartphones and wearable devices have built-in sensors and actuators that
gather data about the user and the environment, including location, motion, ori-
entation, and biosignals such as heart rate. The interpretation of the data from the
sensors is sometimes performed in a small built-in processor, but it is usually
performed outside the wearable in another device with higher computational power
such as a smartphone, usually through Bluetooth or Wi-fi communication. As
discussed in Sect. 13.2, this is one of the reasons why wearables are not as
widespread as other technologies, as in many cases they are used just as another
interface to the smartphone.

Currently, wearables can obtain data from users that until recently was not
accessible on regular consumer gadgets at affordable prices. This opens a new
world of possibilities for developers wishing to exploit this data and to create
exciting applications. For example, the “quantified self” movement1 aims to exploit

1http://quantifiedself.com. Accessed February 22, 2016.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_13

283

http://quantifiedself.com

this technology by allowing users to quantify their daily activities, mainly in terms
of physical and physiological data (e.g., heart rate, sleeping hours, etc.), so that they
can monitor their activity and gain a better understanding of themselves (Chan et al.
2012). Many applications are being developed to foster health, self-knowledge,
motivation, and active and healthy living. Calvo and Peters (2014) have called
applications such as these “positive computing”.

Designing conversational interfaces is even more critical in the case of robots. As
robotsmove from industrial applications to other domains inwhich a relationshipwith
the user is crucial, e.g., companionship, health care, education, and entertainment,
there has been an increasing focus on making robots more human-like in their
appearance and, more importantly, in their communicative capabilities.

In the following sections, we describe the issues involved in designing and
implementing conversational interfaces for these wearables, virtual agents, and
social robots.

13.2 Wearables

Wearable computing devices (wearables) have expanded rapidly in recent years as a
result of factors such as the availability of wireless access and acceptance by the
public of wearable designs (Baker et al. 2015). Initially, wearables were seen as the
next stage in a movement in personal computing from fixed desktop PCs to portable
devices such as laptops, then to smaller devices such as smartphones and tablets,
and finally to wearables. Wearables are small computing systems that the user can
carry comfortably, just like an item of clothing or jewelry. However, it soon became
apparent that, in addition to being portable, having the devices near to the user’s
body could also provide additional sources of valuable information.

13.2.1 Smartwatches and Wristbands

Smartwatches and wristbands are the most common wearable technologies. They
can be used as an interface to a smartphone so that the user can receive notifications
and messages without having to take the phone out of a bag or pocket. Users can
specify that only urgent notifications should appear on their smartwatches so that
they are only interrupted when something important happens (e.g., calls from
certain contacts, or messages with a certain content). However, some users like to
stay constantly connected and do not want to miss a single thing, so that the
wearable provides a stimulus that is nearer to them, such as a vibration on the wrist
as opposed to the vibration of the mobile phone inside a purse, or a stimulus that
might otherwise be missed, for example, when exercising.

284 13 Conversational Interfaces: Devices, Wearables …

However, some wearables such as smartwatches can also run apps that are
developed specifically for the device. Many apps for mobile phones also have
smartwatch versions that have been developed using special APIs. Some smart-
watches can be used with different wearable vendors, such as Android Wear,2 and
others are vendor specific, such as Pebble Developer,3 or WatchKit for Apple
Watch.4 Chapter 16 presents a laboratory on how to develop multimodal applica-
tions with Android Wear.

Smartphones and wristbands can also make use of sensors to measure pulse,
body temperature, galvanic skin response (GSR), heart rate, and skin temperature.
In some cases, the devices have displays that provide feedback to the user, while in
other cases the information gathered by the sensors is sent to a smartphone where
different apps can display the interpreted data. For example, heart rate data is
typically shown on the screen of the device, while sleep-tracking data acquired
during the night is usually shown as a graphic on a smartphone.

Usually, smartphone apps that allow users to monitor their data are vendor
specific; that is, the company that sells the wearable device provides the app. Apps
may contain historical data, for example, by establishing and tracking goals, such as
the number of steps to walk during the week or the number of hours of sleep, and
by linking with a community of users and providing challenges, for example, to see
who exercises more during a weekend. This is the case with apps provided by
companies such as Adidas, Fitbit, Garmin, Jawbone, MisFit, Nike, and Polar. Many
of these companies also provide developer APIs and SDKs, for example, Fitbit,
Garmin, and Polar. There are also solutions for developers who want to integrate
training data into their applications, for example, Google Fit5 and Apple HealthKit.6

With these APIs, health and fitness data is stored in secure locations and can be
easily discovered and tracked.

13.2.2 Armbands and Gloves

Armbands and gloves are used mainly for gesture control. Their positioning allows
muscle sensors to detect changes in movements of the arm and gestures of the
hands (see Fig. 13.1).7 This allows them to capture movements to control devices
remotely, for example, by defining a gesture to play music, or making a robot
reproduce hand movements.

2http://developer.android.com/wear/index.html. Accessed February 22, 2016.
3http://developer.getpebble.com/. Accessed February 22, 2016.
4https://developer.apple.com/watchkit/. Accessed February 22, 2016.
5https://developers.google.com/fit/. Accessed February 22, 2016.
6https://developer.apple.com/healthkit/. Accessed February 22, 2016.
7https://www.myo.com/. Accessed February 22, 2016.

13.2 Wearables 285

http://dx.doi.org/10.1007/978-3-319-32967-3_16
http://developer.android.com/wear/index.html
http://developer.getpebble.com/
https://developer.apple.com/watchkit/
https://developers.google.com/fit/
https://developer.apple.com/healthkit/
https://www.myo.com/

13.2.3 Smart Glasses

Glasses with mountable microphones or video cameras can function as augmented
reality glasses for navigation. Using a wireless connection, they can provide virtual
information to the user that is superposed on what they are looking at (Fig. 13.2).

Despite the huge enthusiasm that greeted the appearance of Google glasses, their
development is still in its infancy. In fact, Google stopped their glasses beta pro-
gram in January 2015, although the project has not been officially canceled. There
are several glasses in the market, but most of them are beta versions, for example,
the Sony SmartEyeglass, for which there is a developer version.8

Glasses can also incorporate holographic technology, as in Microsoft’s
HoloLens.9 A Developer Edition was made available in 2016. Interestingly,
Microsoft has paid special attention to ways of interacting with the glasses, focusing
primarily on spoken communication, as this enhances the feeling of immersion
created by the combination of augmented and virtual reality.

Glasses should be light to wear, and the superposed information should not be
disruptive for the user. Currently, smart glasses are still quite large and heavy
compared with normal glasses, and they may result in some discomfort for users.
Sony recommend in their terms and conditions that the use of their glasses should
be limited to 2 hours a day to reduce discomfort, eye strain, fatigue, and dizziness.
Smart glasses can also help users who regularly use normal glasses by monitoring
their sight problems. For example, Shima glasses10 offer developers and beta testers
the possibility to have their prescription embedded within the device.

There are some issues with smart glasses that still need to be resolved. One of
these is privacy, since users can record video and audio with the glasses and this
could infringe on the privacy of other people. Another issue is safety, as a user may

Fig. 13.1 The Myo gesture
control armband, made by
Thalmic Labs (reproduced
with permission from Thalmic
Labs)

8http://developer.sonymobile.com/products/smarteyeglass/. Accessed February 22, 2016.
9https://www.microsoft.com/microsoft-hololens/en-us/development-edition. Accessed 17 April 2016.
10http://www.laforgeoptical.com/. Accessed February 22, 2016.

286 13 Conversational Interfaces: Devices, Wearables …

http://developer.sonymobile.com/products/smarteyeglass/
https://www.microsoft.com/microsoft-hololens/en-us/development-edition
http://www.laforgeoptical.com/

be reading the information displayed in the glasses while driving or doing other
critical and potentially harmful activities.

13.2.4 Smart Jewelry

Smart jewelry is a more fashionable alternative to smartwatches and fitness trackers.
Different start-ups are creating smart jewelry. For example, Vinaya presents
Bluetooth-connected smart pendants that connect to the iPhone and vibrate to
provide notifications of important events. Indeed, their Web page,11 in which they
show their ring sketched like a pret-a-porter dress design, looks more like the Web
page of a fashion magazine than a technology company. Ringly12 displays rings
with different colors and materials that notify text messages, e-mail, WhatsApp
messages, phone calls, social networks, etc., and MEMI13 presents bracelets with
similar functionalities.

However, though these examples of smart jewelry look similar to a normal piece
of jewelry, their capacity is limited to notifications and they do not have sensing

Fig. 13.2 Scenarios for smart glasses

11http://www.vinaya.com/. Accessed February 22, 2016.
12https://ringly.com/. Accessed February 22, 2016.
13http://www.memijewellery.com/. Accessed February 22, 2016.

13.2 Wearables 287

http://www.vinaya.com/
https://ringly.com/
http://www.memijewellery.com/

capabilities. Integrating sensors would require a larger piece of jewelry, as is the
case with the Bellabeat LEAF.14 LEAF can be used as a pendant or clip, making it
less like the jewelry of Vinaya, although it still has a very aesthetic design. The
functionalities of LEAF are similar to those of fitness trackers, for example, activity
tracking and sleep monitoring. This is the same for the Misfit pendant15 (Fig. 13.3).
Other companies plan to offer sensing functionalities on devices that look like real
jewelry, for example, EarO-Smart.16 These devices are usually targeted at female
customers and sometimes include applications designed for women, for example, to
track sleep patterns during menstrual cycles.

13.2.5 Smart Clothing

Clothes with embedded sensors are a relatively new technology that has been
emerging recently. This technology is being embraced mainly in the health and
fitness domains, as many of the available products monitor vital signs and
biomechanics. Athletes can wear smart clothing that allows coaches to monitor
them and to spot who is under pressure, how to avoid and control injuries, as well
as enabling them to compare players and to compare the same player in different
positions.17

Some items of smart clothing such as shirts or body suits can collect data such as
heart rate, breathing rate, or the intensity of a workout and can provide feedback on

Fig. 13.3 The Misfit pendant
(reproduced with permission
from Misfit)

14https://www.bellabeat.com/. Accessed February 22, 2016.
15https://store.misfit.com/. Accessed February 22, 2016.
16http://earosmart.com/. Accessed February 22, 2016.
17http://www.catapultsports.com/uk/. Accessed February 22, 2016.

288 13 Conversational Interfaces: Devices, Wearables …

https://www.bellabeat.com/
https://store.misfit.com/
http://earosmart.com/
http://www.catapultsports.com/uk/

which parts of the body are under too much pressure.18,19,20 There are also socks
that analyze and improve running form by tracking the position of the feet and the
foot-landing technique, helping to prevent injuries while also tracking data such as
the number of steps taken, the distance covered, calories, and cadence.21 There are
also belts that adjust automatically when you eat too much. Generally, these items
of smart clothing are connected to specific apps that can be used on a mobile phone
to monitor the information coming from the shirt sensors.

In addition to applications for athletes, smart clothing can help with health
monitoring by keeping track of cardiac, respiratory, and activity data for people
suffering from diverse conditions. Another application is monitoring the sleep of
babies.

13.3 Multimodal Conversational Interfaces for Smart
Devices and Wearables

Smart devices and wearables have introduced new interaction scenarios that have
different implications for interface development. With smaller and simpler wear-
ables such as fitness bands, communication between the system and the user can be
restricted to small buttons for user–system interaction and light-emitting diodes
(LEDs) and vibration for system–user interaction. With more sophisticated devices
such as smartwatches, spoken interaction is augmented with visual responses based
on cards.

The principles of conversation described in Chap. 3 apply also to wearables and
smartphones with respect to prompt and menu design, relevant dialog act selection,
the design of confirmations, turn taking, and grounding strategies. However, there
are some additional aspects that must be considered. For example, developers must
take into account that users have preconceived ideas about how to operate a par-
ticular device. Currently, the spoken interaction paradigm for wearables and
smartphones is more command-like than conversational; thus, designers who intend
to build a conversational interface for these devices must be aware that users may
not address the device in a conversational way unless they are instructed on how to
do so by the system.

Another relevant aspect is an Internet connection. Many systems still perform
speech recognition online and thus require an active Internet connection while the
user is speaking to the device. Thus, developers must consider whether voice is the
best alternative depending on whether the device is likely to be connected to the
Internet, and even when the device is always likely to be connected, they must

18http://www.hexoskin.com/. Accessed February 22, 2016.
19http://omsignal.com/pages/omsignal-bra. Accessed February 22, 2016.
20http://www.heddoko.com/. Accessed February 22, 2016.
21http://www.sensoriafitness.com/. Accessed February 22, 2016.

13.2 Wearables 289

http://dx.doi.org/10.1007/978-3-319-32967-3_3
http://www.hexoskin.com/
http://omsignal.com/pages/omsignal-bra
http://www.heddoko.com/
http://www.sensoriafitness.com/

predict mechanisms to maintain communication with users if the connection is
temporarily lost. In this situation, the solution is usually to balance the different
modalities that are available on the device to obtain the best combination of oral,
visual, and gestural communication. Unfortunately, guidelines for developers using
Android22 and iOS23 focus mainly on how to program the interfaces rather than on
design issues, though Microsoft provides some speech design guidelines for
Windows Phones.24

With respect to visual interfaces, cards are becoming a useful design pattern
since they can be placed beneath or beside one another and stacked on top of each
other so that they can be swiped and easily navigated. The content of Web pages
and apps is increasingly becoming an aggregation of many individual pieces of
content from heterogeneous services on to cards, and interaction with our smart-
phones and devices is more and more a flow of notifications from a wide range of
different apps.25 Many companies now use cards, from social networks such as
Twitter (Twitter Cards for multimedia) and Facebook (each input in the wall is
shown as a card in the history of the user), blogs (e.g., Pinterest was one of the first
to move the blog concept from posts to visual cards), all sorts of apps (e.g., Apple
Passbook), and even operating systems (e.g., cards on Windows 8) and Web
applications (e.g., Google Now uses a wide range of cards26).

Chris Tse, from cardstack.io, discusses patterns of card UI design and good
design practice.27 He places the types of card in a continuum from long-lived to
short-lived cards. At the long-lived end of the spectrum, cards function as records,
for example, Apple Passbook, while at the medium end they function as teasers and
at the short-lived end they function as alerts.

The anatomy of a card is usually context, lens, and triggers (Fig. 13.4). For
example, in the figure, we can see that cards present small pieces of information in a
highly browsable way that some people might even find addictive.28

Hierarchy is not relevant with cards. Card collections display cards that are at the
same level of importance, even if they have varied layouts (see Fig. 13.5) or are
related to different issues. The focus is on the ability of the user to scan through
them. Card collections usually scroll vertically, though there are many different

22http://developer.android.com/intl/es/training/wearables/apps/voice.html. Accessed February 22,
2016.
23https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeech
Synthesizer_Ref. Accessed February 22, 2016.
24https://msdn.microsoft.com/en-us/library/windows/apps/jj720572%28v=vs.105%29.aspx.
Accessed February 22, 2016.
25https://blog.intercom.io/why-cards-are-the-future-of-the-web/. Accessed February 22, 2016.
26https://www.google.com/landing/now/#cards. Accessed February 22, 2016.
27https://speakerdeck.com/christse/patterns-of-card-ui-design. Accessed February 22, 2016.
28More in: https://www.google.com/design/spec/components/cards.html#cards-actions. Accessed
February 22, 2016.

290 13 Conversational Interfaces: Devices, Wearables …

http://developer.android.com/intl/es/training/wearables/apps/voice.html
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref
https://msdn.microsoft.com/en-us/library/windows/apps/jj720572%2528v%3dvs.105%2529.aspx
https://blog.intercom.io/why-cards-are-the-future-of-the-web/
https://www.google.com/landing/now/%23cards
https://speakerdeck.com/christse/patterns-of-card-ui-design
https://www.google.com/design/spec/components/cards.html%23cards-actions

Fig. 13.4 A sample card

Fig. 13.5 Sample card
collection showing cards with
different layouts (https://
www.google.com/design/
spec/components/cards.
html#cards-content. Accessed
February 24, 2016). Google
and the Google logo are reg-
istered trademarks of Google
Inc., used with permission

13.3 Multimodal Conversational Interfaces … 291

https://www.google.com/design/spec/components/cards.html%23cards-content
https://www.google.com/design/spec/components/cards.html%23cards-content
https://www.google.com/design/spec/components/cards.html%23cards-content
https://www.google.com/design/spec/components/cards.html%23cards-content

containers that can be used29 that allow a seamless experience with many different
screen sizes and devices (see Fig. 13.6). However, card-centric user interfaces may
not be suitable for all contexts.30

Speech and card interfaces may be complemented by augmented reality appli-
cations. Molineux and Cheverst (2012) outline very interesting case studies of
museum guidance supported by on-device object recognition, phone–cam interac-
tions for large public displays, way finding for individuals with cognitive impair-
ments, and hand-gesture manipulation of projected content.

Smartphones and wearables allow gestural interaction. This can be done in
general-purpose devices such as smartphones thanks to sensors like the
accelerometer and in specific wearables such as the armbands shown in Fig. 13.1.
Dunne et al. (2014) present a study of the effect of gestural interaction on weara-
bility. The authors distinguish two types of gestural interactions: passive and active.
In passive interactions, the device listens for movements that trigger certain actions.
In active interactions, the user consciously performs movements to provide
instructions to the device.

For active input, designers must find a trade-off between clarity and visual
distinction of the input. That is, if a gesture is remarkably different from everyday
movements, it will be easily recognizable by the device, but also by other people (it
has a “social weight”). On the other hand, if the gesture is more natural, it is less
noticed as it is more likely that everyday movements are interpreted as an input
gesture by the device.

Currently, there is no standard vocabulary for gestures, which makes it difficult
to generate interfaces that are usable. In fact, we have learnt from visual languages

Fig. 13.6 Different types of card container

29http://thenextweb.com/dd/2015/06/16/how-cards-are-taking-over-web-design/. Accessed
February 22, 2016.
30http://ux.stackexchange.com/questions/60495/what-are-the-advantages-of-a-card-centric-user-
interface. Accessed February 22, 2016.

292 13 Conversational Interfaces: Devices, Wearables …

http://thenextweb.com/dd/2015/06/16/how-cards-are-taking-over-web-design/
http://ux.stackexchange.com/questions/60495/what-are-the-advantages-of-a-card-centric-user-interface
http://ux.stackexchange.com/questions/60495/what-are-the-advantages-of-a-card-centric-user-interface

(like sign language) that visual expressions are inherently ambiguous and that
general-purpose visual languages often fail. Instead, experts recommend focusing
design on specific domains and contexts (Ardito et al. 2014).

Other authors are working on silent speech interfaces (Bedri et al. 2015), where
the user “talks silently,” moving the mouth and/or tongue as if to pronounce a
phrase that is not vocalized. These interfaces are usually meant for people who have
lost their capacity to produce intelligible speech because of neurological or motor
injuries but who are still able to articulate mouth and tongue. To build these
interfaces, different sensors can be placed in the mouth and in earplugs to recognize
tongue and jaw movements. However, it is difficult to distinguish silent speech from
other actions such as eating. Similarly, Jeon and Lee (2013) have studied the use of
non-speech sounds on mobile devices.

As can be observed, wearable devices and smartphones have opened many new
possibilities for multimodal interfaces that must be addressed from a multidisci-
plinary perspective, bringing together interaction designers, usability researchers,
and general human–computer interaction (HCI) practitioners to analyze the
opportunities and directions to take in designing more natural interactions based on
spoken language. This has been a topic for recent technical and scientific work-
shops, some of which have the aim of gaining more widespread acceptance of
speech and natural language interaction (Munteanu et al. 2014).

13.4 Virtual Agents

Virtual characters that are able to display multimodal behaviors are being used
nowadays for a variety of purposes, from unidirectional communication in which
they take the role of a presenter and the user simply listens as if they are watching a
TV show, to conversational partners from a wide spectrum of more directed
information-providing tasks, to open tasks such as artificial companions.

These characters have been endowed with different visual appearances. Some
early characters were cartoon like. For example, Smartakus, an animated character
with the shape of an “i,” was used in the SmartKom Project to present information
(Wahlster et al. 2001). Then, more anthropomorphic agents appeared. For example,
the August talking head had lip-synchronized speech synthesis, nonverbal behavior,
and approach and gaze behavior to show awareness of the user’s actions (Gustafson
et al. 1999), while the REA agent used eye gaze, body posture, hand gestures, and
facial displays to contribute to the conversation and organize her own interventions
(Cassell et al. 2000).

The focus in current systems is on developing agents with a full body. Humans
depend to a great extent on embodied behaviors to make sense and engage in
face-to-face conversations. The same happens with machines: embodied agents
help to leverage naturalness and users judge the system’s understanding to be worse
when it does not have a body (Cassell 2001). According to Cassell et al. (2000), the
body is the best way to alternate multiple representations in order to convey

13.3 Multimodal Conversational Interfaces … 293

multimodal information and to regulate conversation. Embodied conversational
agents (ECAs) exhibit multimodal communicative capabilities comprising voice,
gestures, facial expressions, gaze, and body posture and may play different roles of
varying complexity, for example, as companions for the elderly, as toys, virtual
trainers, intelligent tutors, or as Web/sales agents.

However, embodiment plays a central role for the system’s output, enabling the
agent to produce gestures and behaviors that enhance the image its projects, and
also for its perceptual functions. Advances in the understanding of human cognition
have demonstrated that our minds are not reasoning devices that can be isolated
from our bodies. Rather, they are tied to the physical world to the extent that we
understand concepts as relations between our bodies and the world. Early agents
had limited perceptual abilities and the knowledge they had about the environment
and the user was limited. According to André and Pelachaud (2010), for an ECA to
be believable, it must be equipped with a sensory mechanism that makes it possible
to render sophisticated attending behaviors.

13.5 Multimodal Conversations with Virtual Agents

ECAs should be endowed with refined communicative, emotional, and social
capabilities. This means that apart from task-oriented functions, they should also
integrate interpersonal goals. Many studies have demonstrated that there is a sig-
nificant improvement in engagement and likeability when interacting with agents
that display believable nonverbal behaviors. For example, Bickmore and Cassell
(2005) show the importance of small talk to build rapport and trust with the REA
agent, an ECA that acted as a real estate agent. Interactional functions helped create
and maintain an open channel of communication between the user and the agent.

André and Pelachaud (2010) provide a concise but comprehensive overview of
the design of ECAs. According to their description, many ECAs rely on
Information State dialog managers like TRINDI (Traum and Larsson 2003) (see
Chaps. 4 and 10). Also, their multimodal behavior is learnt from human–human
conversations from which models are extracted and refined. Data-driven approaches
are still not fully adopted, and so a vast amount of data must be gathered and
annotated to observe the wide range of gestures and expressions that occur in
face-to-face communication. In addition, not only the gestures themselves must be
simulated, but also special attention must be paid to their temporal dynamics,
co-occurrence, and the different meanings that may be conveyed when merging
several gestures.

The design and development of the multimodal behaviors of ECAs has focused on
issues such as the reusability of the components and the separation of behavior
planning from behavior generation and realization. Different standards are being
defined to establish common architectures and languages, such as the Situation,
Agent, Intention, Behavior, Animation (SAIBA) framework, the Behavior Markup
Language (BML), and the Functional Markup Language (FML) (described in

294 13 Conversational Interfaces: Devices, Wearables …

http://dx.doi.org/10.1007/978-3-319-32967-3_4
http://dx.doi.org/10.1007/978-3-319-32967-3_10

Chap. 15). These elements are able to encode affect, coping strategies, emphasis, turn
management strategies, as well as head, face, gaze, body movements, gestures, lip
movements, and speech. Other languages, e.g., Multimodal Utterance Representation
Markup Language (MURML), focus on coupling verbal utterances with gestures that
are associated with linguistic elements (Kopp and Wachsmuth 2004).

A lot of effort has also been put on building emotional models for ECAs, as will
be described in Chaps. 14 and 15. For example, ECAs may be built to be artificial
companions, and in that case, the objective of the system may be more related to
emotion (e.g., making someone happy or confident) than accomplishing a certain
task. As stated by Cowie, “companionship is an emotional business,” and this
encompasses several social, psychological, and ethical issues that are described in
detail in Wilks (2010).

13.6 Examples of Tools for Creating Virtual Agents

Greta.31 Greta is a real-time three-dimensional ECA developed by the Greta Team
at Telecom ParisTech. Greta is based on a 3D model of a woman compliant with the
Moving Picture Experts Group (MPEG-4) animation standard and is able to
communicate using a rich palette of verbal and nonverbal behaviors in standard
languages. Greta can talk and simultaneously show facial expressions, gestures,
gaze, and head movements.

The Virtual Human Toolkit.32 The Institute for Creative Technologies
(ICT) Virtual Human Toolkit is a collection of modules, tools, and libraries
designed to aid and support researchers and developers with the creation of ECAs.
It provides modules for multimodal sensing, character editing and animation, and
nonverbal behavior generation.

SmartBody.33 SmartBody is a character animation platform developed originally
at the University of Southern California that is included in the Virtual Human
Toolkit but can also be used separately. It provides locomotion, steering, object
manipulation, lip-syncing, gazing, and other nonverbal behaviors. The software is
provided free and open source under the GNU Lesser General Public License
(LGPL) and is multiplatform (it works onWindows, Linux, OSx, Android, and iOS).

MAX and the Articulated Communicator Engine (ACE).34 ACE is a toolkit
for building ECAs with a kinematic body model and multimodal utterance gener-
ation based on MURML. MAX is an ECA developed for cooperative construction
tasks that has been under development at the University of Bielefeld for more than a
decade.

31http://perso.telecom-paristech.fr/*pelachau/Greta/. Accessed February 24, 2016.
32https://vhtoolkit.ict.usc.edu/. Accessed February 24, 2016.
33http://smartbody.ict.usc.edu. Accessed February 24, 2016.
34http://www.techfak.uni-bielefeld.de/*skopp/max.html. Accessed February 24, 2016.

13.5 Multimodal Conversations with Virtual Agents 295

http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://dx.doi.org/10.1007/978-3-319-32967-3_15
http://perso.telecom-paristech.fr/%7epelachau/Greta/
https://vhtoolkit.ict.usc.edu/
http://smartbody.ict.usc.edu
http://www.techfak.uni-bielefeld.de/%7eskopp/max.html

13.7 Social Robots

Robots are moving out of factories and increasingly entering our homes. This has
provoked a paradigm shift: in this new scenario, users are not trained to operate the
robots; instead, the users are naïve and untrained and so the robots must be able to
communicate with them in an intuitive and natural fashion (Mathur and Reichling
2016). This can be achieved by endowing robots with the ability to hold conver-
sations with their users. The complexity of these interactions may vary depending
on the type and function of the robot.

On the one hand, robots may be understood as tools that can be used to access
functionality and request information using a command-like interface. On the other
hand, robots may be conceptualized as “hedonic” systems with which humans can
engage in more complex relationships using a conversational interface. Robots such
as these are known as social robots. With social robots, humans apply the social
interaction models that they would employ with other humans, since they perceive
the robots as social agents with which humans can engage in stronger and more
lasting relationships. Social robots can also provide entertainment, sociability,
credibility, trust, and engagement (de Graaf et al. 2015).

In the literature, there are many examples demonstrating that human beings
attribute social identity to robots, even when the robots are seen as tools. Sung et al.
(2007) show how some users attribute personalities to their cleaning robots. Hoenen
et al. (2016) discuss how robots (in particular, the non-anthropomorphic ones) can
be considered as social entities and how the social identity of a robot can be
established through social interaction. Peca et al. (2015) show that interactivity
between humans and objects can be a key factor in whether infants perceive a robot
as a social agent. In this study, infants aged 9–17 months witnessed an interaction
between an adult and a robot and they made inferences regarding its social agency
based on the responsiveness of the robot.

Children often address robots as social agents. For example, Kahn et al. (2012)
show how children believed that the robot used in experiments had feelings and was
a social being that they considered as a friend with whom they could entrust secrets.
Given findings such as these, one of the most promising application domains for
social robots is to build robots for children, for entertainment and pedagogic pur-
poses, and also to provide help for children suffering from conditions such as
autism. However, currently, social interactions with most commercial robots are
usually very predictable, so the robot loses its magic with continued use and
children eventually lose interest.

Robots are also considered as an aid for aging populations by improving their
quality of life and helping them to stay fit and healthy, supporting autonomy, and
mitigating loneliness. To obtain these benefits, adults must accept robots as part of
their home environment, find them easy to operate, and perceive them as social
counterparts. Different studies have shown that people’s acceptance of robots
depends on a variety of social factors including safety, fun, social presence, and
perceived sociability (Heerink et al. 2010). Also it is important that the robots adhere

296 13 Conversational Interfaces: Devices, Wearables …

to human social rules including friendliness, speech styles, and ways of addressing
the user. Other studies highlight barriers to the acceptance of robots by older adults,
including older adults’ uneasiness with technology, a feeling of stigmatization, and
ethical/societal issues associated with robot use (Wu et al. 2014).

Some authors have warned about particular undesired effects of social robots.
For example, Turkle (2012) discusses the negative impact that robots may have on
our ability to build human relationships and deal with complexities and problems
when we have robots as companions that can cater for every need:

Our population is aging; there will be robots to take care of us. Our children are neglected;
robots will tend to them. We are too exhausted to deal with each other in adversity; robots
will have the energy. Robots won’t be judgmental.

However, other authors even find it plausible that robots may be used in the
future to influence their users to become more ethical (Borenstein and Arkin 2016).

13.8 Conversational Interfaces for Robots

Interacting with social robots puts several unique requirements on the conversa-
tional interface (Cuayáhuitl et al. 2015). As far as spoken language interaction is
concerned, a robot has to be able to predict the direction of the arrival of speech
within a wide area and be able to distinguish voice from noise, whereas with other
devices, speech is directed toward a microphone that is usually held close to the
user’s mouth. This is known as speech localization. Other aspects of speech
localization include exhibiting social interaction cues such as approaching the
speaker or looking at them and also managing turn taking in single and multiparty
conversations. As far as language understanding is concerned, robots need to be
able to understand and use language beyond a restricted set of commands. Given
that they operate in a situated environment, robots have the advantage that they can
learn language by extracting representations of the meanings of natural language
expressions that are tied to perception and actuation in the physical world
(Matuszek et al. 2012). Flexible and optimized dialog management is also crucial.
Robots should be able to engage in mixed initiative dialog and perform affective
interaction (Mavridis 2015). They should also be able to recognize and produce
multimodal behaviors that accompany speech (Lourens et al. 2010). See Chap. 15
for a more detailed discussion of expressive behaviors.

All these challenges must be addressed in order to develop social robots.
According to Looije et al. (2010), social behaviors such as turn taking and emo-
tional expressions are essential for a robot to be perceived as trustworthy. Social
robots must also be compliant with social norms. Awaad et al. (2015) maintain that
this involves a mixture of knowledge about procedures (knowing how to accom-
plish tasks) and functional affordances of objects (knowing what objects are used
for). For example, they argue that robots should know that if no glasses are
available when serving water, then a mug is a valid substitution, and that such a

13.7 Social Robots 297

http://dx.doi.org/10.1007/978-3-319-32967-3_15

substitution is socially acceptable. Also, there may be aspects of human-human
interactions that users may not wish to see in robots, such as social control or
criticism (Baron 2015). Breazeal (2003, 2004) argues for taking the robot’s per-
spective when tackling the relevant design issues, including naturalness, user
expectation, user–robot relationship, and teamwork.

There are various requirements that need to be considered in the design of a
social robot if it is to act as a companion. Luh et al. (2015) developed a scale of
“companionship” for virtual pets based on the companionship features of real pets.
The most important factors were enjoyment, psychological satisfaction, autonomy,
responsibility, and interactive feedback. Benyon and Mival (2007) describe per-
sonification technologies in term of utility, form, emotion, personality, trust, and
social attitudes, all of which should be considered during design. Pearson and
Borenstein (2014) emphasize ethical aspects of creating companions for children,
while Leite et al. (2013) present a detailed survey of studies of long-term human–
robot interactions and provide directions for future research, including the need for
continuity and incremental novel behaviors, affective interactions, empathy, and
adaptation.

Looking at negative attitudes toward robots, the Negative Attitudes toward
Robots Scale (NARS) and Robot Anxiety Scale (RAS) study negative attitudes and
anxiety toward robots that may lead to users adopting a strategy of avoiding
communication with robots (Nomura et al. 2006; Kanda and Ishiguro 2012). Other
authors have related these factors to their perceived ease of use, which is directly
related to the interface and how it influences social presence and perceived
enjoyment (Heerink et al. 2010).

In summary, the integration of social robots into everyday life depends to a great
extent on their ability to communicate with users in a satisfying way, for which
multimodal conversation is of paramount importance (Fortunati et al. 2015). The
effects of expressive multimodal behaviors and the display of emotions and per-
sonality are discussed in Chap. 15.

13.9 Examples of Social Robots and Tools for Creating
Robots

13.9.1 Aldebaran Robots

The Aldebaran robots are the most widespread robots within the scientific com-
munity. Their family of robots includes NAO,35 Pepper, and Romeo (Fig. 13.7).
NAO is a small robot that has been used extensively for research and educational
purposes. Pepper and Romeo are more recent. The former was created for SoftBank

35https://www.aldebaran.com/en/humanoid-robot/nao-robot. Accessed February 22, 2016.

298 13 Conversational Interfaces: Devices, Wearables …

http://dx.doi.org/10.1007/978-3-319-32967-3_15
https://www.aldebaran.com/en/humanoid-robot/nao-robot

Mobile (an important mobile phone operator in Japan)36 and has been endowed
with emotion recognition capabilities, and the latter is a robot intended for research
purposes.37 All of the robots include sensors and actuators and incorporate a
microphone and speakers to allow conversational interaction.38

13.9.2 Jibo

Jibo39 is a social robot that was not designed with humanoid characteristics but
more like a Disney or Pixar character with a single eye and a moving head and body
that are used to give him a personality and promote social engagement (Fig. 13.8).
Jibo can track faces and capture photographs, process speech, and respond using
natural social and emotive cues. Developers can add skills and content to Jibo by
using the Jibo SDK that provides animation tools for movements and displays,
timeline tools for sequencing, behavior tools for engagement, and a visual simu-
lator. You can see a video of Jibo here.40

Fig. 13.7 Aldebaran’s NAO, Romeo, and Pepper robots (reproduced with permission from
Aldebaran)

36https://www.aldebaran.com/en/a-robots/who-is-pepper. Accessed February 22, 2016.
37http://projetromeo.com/en/. Accessed February 22, 2016.
38http://www.theverge.com/2016/1/6/10726082/softbank-pepper-ibm-watson-collaboration.
Accessed February 22, 2016.
39https://www.jibo.com/. Accessed February 22, 2016.
40https://www.youtube.com/watch?v=3N1Q8oFpX1Y. Accessed February 22, 2016.

13.9 Examples of Social Robots and Tools for Creating Robots 299

https://www.aldebaran.com/en/a-robots/who-is-pepper
http://projetromeo.com/en/
http://www.theverge.com/2016/1/6/10726082/softbank-pepper-ibm-watson-collaboration
https://www.jibo.com/
https://www.youtube.com/watch?v=3N1Q8oFpX1Y

13.9.3 FurHat

The FurHat platform was developed by human–computer interaction experts at
Furhat Robotics with a strong background in dialog systems.41 FurHat (Fig. 13.9) is
a robotic head based on a projection system that renders facial expressions, with
motors to move the neck and head. Developers can use an open-source SDK, and
there are libraries for speech recognition and synthesis as well as face recognition
and tracking (Al Moubayed et al. 2012). You can see a video of FurHat here.42

13.9.4 Aisoy

Aisoy43 is a programmable robot to encourage creative thinking in children and
improve their ability to solve challenging problems. Aisoy can be programmed by
children (with Scratch or Blocky), but it also has an SDK for programming in
higher-order languages. It is based on the Raspberry Pi and can be used for con-
versational applications as it incorporates a microphone and speakers (Fig. 13.10).

Fig. 13.8 Jibo, the social
robot (reproduced with
permission from Jibo)

41http://www.furhatrobotics.com/. Accessed February 22, 2016.
42https://www.youtube.com/watch?v=v84e6HMFbyc. Accessed February 22, 2016.
43http://www.aisoy.com/.

300 13 Conversational Interfaces: Devices, Wearables …

http://www.furhatrobotics.com/
https://www.youtube.com/watch?v=v84e6HMFbyc
http://www.aisoy.com/

Fig. 13.10 The Aisoy robot
(reproduced with permission
from Aisoy Robotics)

Fig. 13.9 Furhat (reproduced
with permission from Furhat
Robotics)

13.9 Examples of Social Robots and Tools for Creating Robots 301

13.9.5 Amazon Echo

Amazon Echo44 is similar to social robots such as Jibo and Pepper except that it
does not provide an anthropomorphic physical embodiment. Instead, it has the form
of a cylinder about 9 inches tall containing a microphone array and speakers. Echo
is connected to Alexa, a cloud-based voice service that provides a range of capa-
bilities known as skills, including information, creating shopping lists, providing
news and traffic information, streaming music, and also some home control func-
tions such as controlling lights. The use of far-field speech recognition and
beam-forming technology means that Echo can hear from any direction and cope
with ambient noise such as music playing in the background.

13.9.6 Hello Robo

The idea behind Hello Robo is that personal robotics should be more accessible and
affordable to everyone.45 Open-source robots have been developed that can be
replicated using a desktop 3D printer. Examples are maki and poly.46

13.9.7 The Open Robot Hardware Initiative

Open robot hardware was created to provide resources and open-source hardware
for developers of robotics applications. The Web site has information about dif-
ferent projects and provides tutorials on topics including robotic arms and hands,
humanoid robots, vehicles and drones, legged robots, swarm robots, actuators and
sensors, and modules for specific application domains such as social, health, and
educational robotics.47

13.9.8 iCub.org: Open-Source Cognitive Humanoid Robotic
Platform

The EU project RobotCub generated the iCub humanoid robot (Fig. 13.11) that is
currently used worldwide and can be obtained from the Italian Institute of
Technology for a fee. It has 53 motors that move the head, arms and hands, waist,

44http://www.amazon.com/echo. Accessed February 22, 2016.
45http://www.hello-robo.com/. Accessed March 1, 2016.
46http://inmoov.fr. Accessed March 1, 2016.
47http://www.openrobothardware.org/linkedprojects. Accessed February 22, 2016.

302 13 Conversational Interfaces: Devices, Wearables …

http://www.amazon.com/echo
http://www.hello-robo.com/
http://inmoov.fr
http://www.openrobothardware.org/linkedprojects

and legs. It can see and hear, and it has a sense of proprioception (body configu-
ration) and movement (using accelerometers and gyroscopes). It is open source, and
its code and even the production drawing describing its mechanical and electronic
parts are available on the web page.48

13.9.9 SPEAKY for Robots

SPEAKY for Robots49 (Bastianelli et al. 2015) aims to foster the definition and
deployment of voice user interfaces (VUIs) in robotic applications where human–
robot interaction is required. The goal is to develop a Robotic Voice Development
Kit (RVDK).

13.9.10 The Robot Operating System (ROS)

ROS is an open-source project that aims to develop a platform for writing robot
software and sharing code solutions and algorithms.50 It is particularly interesting
for students as it breaks the expert-only barrier.

Fig. 13.11 The iCub robot
(reproduced with permission)

48http://www.icub.org/. Accessed February 22, 2016.
49http://www.dis.uniroma1.it/*labrococo/?q=node/373. Accessed February 22, 2016.
50http://www.ros.org/. Accessed February 22, 2016.

13.9 Examples of Social Robots and Tools for Creating Robots 303

http://www.icub.org/
http://www.dis.uniroma1.it/%7elabrococo/%3fq%3dnode/373
http://www.ros.org/

13.10 Summary

A variety of smart devices, wearables, virtual agents, and social robots are being
developed that provide new ways to interact with Web services and with our
environment. However, the potential for these devices still has to be realized as
often their interface does not go beyond the command-and-control metaphor. In this
chapter, we have addressed the possibilities and challenges for designers and
developers of multimodal conversational interfaces to smart devices, wearables,
virtual agents, and robots.

Further Reading
Trappl (2013) is a book of readings about agents and robots as butlers and com-
panions. The chapters cover psychological and social considerations, experiences
with and prerequisites for virtual or robotic companions, acceptability, trustwor-
thiness, social impact, and usage scenarios involving spoken communication.
Nishida et al. (2014) cover various aspects of conversational artifacts with a special
emphasis on conversational agents. Markowitz (2014) is a comprehensive exami-
nation of conversational robots from technical, functional, and social perspectives,
including aspects such as how to endow robots with conversational capabilities and
how they can autonomously learn language. Also covered are the social aspects of
spoken interaction with robots and how they will shape the future. There is also a
special issue of the Information Society Journal about social robots and how robots
are moving from the industrial to the domestic sphere.51 Roberto Pieraccini,
Director of Advanced Conversational Technologies at Jibo, Inc., reviews the
challenges that social robots bring to voice interaction and how the technologies for
interacting with social robots differ from those for telephone applications and
personal assistants.52

The Mobile Voice Conference is a forum for industrial perspectives and new
advances in speech interfaces for mobile devices.53 The Conversational Interaction
Technology Web site is an excellent source of information about recent innovations
in speech technology, including wearables, devices, and robots.54 Trends in
wearables can be found here.55,56

Hexoskin has created a community of researchers that use their smart clothes for
remote monitoring and provide software for data analysis and a list of scientific
projects and papers.57 Alpha2 is a programmable robot with a built-in speech

51http://www.tandfonline.com/toc/utis20/31/3. Accessed February 22, 2016.
52http://robohub.org/the-next-era-of-conversational-technology/. Accessed February 22, 2016.
53http://mobilevoiceconference.com/. Accessed February 22, 2016.
54http://citia.lt-innovate.eu/. Accessed February 22, 2016.
55https://www.wearable-technologies.com. Accessed February 22, 2016.
56http://urbanwearables.technology/. Accessed February 22, 2016.
57http://www.hexoskin.com/pages/health-research. Accessed February 22, 2016.

304 13 Conversational Interfaces: Devices, Wearables …

http://www.tandfonline.com/toc/utis20/31/3
http://robohub.org/the-next-era-of-conversational-technology/
http://mobilevoiceconference.com/
http://citia.lt-innovate.eu/
https://www.wearable-technologies.com
http://urbanwearables.technology/
http://www.hexoskin.com/pages/health-research

system that incorporates voice search as well as giving verbal reminders and
receiving speech commands.58

There are numerous conferences on the challenges of social robots, for example,
the International Conference on Social Robotics (ICSR).59 There is also an
International Journal on Social Robotics that covers the latest developments in all
aspects of social robotics.60 Royakkers and vanEst (2015) present a literature
review of some relevant questions raised by the new robotics, including ethical
issues.

RoboHelper is a human–human dialog corpus between an elderly person and a
human helper that is being used as a baseline for training robotic companions (Chen
et al. 2015). The corpus contains the transcribed dialogs that have been annotated
using the Anvil tool.61

Exercises

1. Visit the Web pages of companies specializing in smart jewelry or smart clothes
and examine what sorts of conversational interface are provided in the products.

2. Consider some new forms of conversational interface. There is a series of demos
from the Interaction and Communication Design Lab at Toyohashi University of
Technology in Japan of interactions with objects in the environment such as a
Sociable Trash Box and a Sociable Dining Table.62 Look at these demos and
consider the usefulness of conversational interfaces for these sorts of objects.

References

Al Moubayed S., Beskow J, Skantze G, Granström B (2012) Furhat: A Back-projected human-like
robot head for multiparty human-machine interaction. In: Esposito A, Esposito AM,
Vinciarelli A, Hoffmann R, Müller VC (eds) Cognitive Behavioural Systems. Lecture Notes
in Computer Science Vol. 7403, Springer Verlag, Berlin:114–130. doi:10.1007/978-3-642-
34584-5_9

André E, Pelachaud C (2010) Interacting with embodied conversational agents. In: Chen F,
Jokinen K (eds) Speech technology: theory and applications. Springer, New York, pp 122–149.
doi:10.1007/978-0-387-73819-2_8

Ardito C, Costabile MF, Jetter H-C (2014) Gestures that people can understand and use. J Vis
Lang Comput 25:572–576. doi:10.1016/j.jvlc.2014.07.002

Awaad I, Kraetzschmar GK, Hertzberg J (2015) The role of functional affordances in socializing
robots. Int J Soc Robot 7:421–438. doi:10.1007/s12369-015-0281-3

58http://www.ubtrobot.com/en/html/archive/2015092816.html. Accessed February 22, 2016.
59http://www.icsoro.org/. Accessed February 22, 2016.
60http://link.springer.com/journal/12369. Accessed February 22, 2016.
61http://www.anvil-software.org/.
62http://www.icd.cs.tut.ac.jp/en/project.html. Accessed 12 April 2016.

13.10 Summary 305

http://dx.doi.org/10.1007/978-3-642-34584-5_9
http://dx.doi.org/10.1007/978-3-642-34584-5_9
http://dx.doi.org/10.1007/978-0-387-73819-2_8
http://dx.doi.org/10.1016/j.jvlc.2014.07.002
http://dx.doi.org/10.1007/s12369-015-0281-3
http://www.ubtrobot.com/en/html/archive/2015092816.html
http://www.icsoro.org/
http://springerlink.bibliotecabuap.elogim.com/journal/12369
http://www.anvil-software.org/
http://www.icd.cs.tut.ac.jp/en/project.html

Baker PMA, Gandy M, Zeagler C (2015) Innovation and wearable computing: a proposed
collaborative policy design framework. IEEE Internet Comput 19:18–25. doi:10.1109/MIC.
2015.74

Baron NS (2015) Shall we talk? Conversing with humans and robots. Inf Soc 31:257–264. doi:10.
1080/01972243.2015.1020211

Bastianelli E, Nardi D, Aiello LC et al (2015) Speaky for robots: the development of vocal
interfaces for robotic applications. Appl Intell 1–24. doi:10.1007/s10489-015-0695-5

Bedri A, Sahni H, Thukral P et al (2015) Toward silent-speech control of consumer wearables.
Computer 48:54–62. doi:10.1109/MC.2015.310

Benyon D, Mival O (2007) Introducing the Companions project: Intelligent, persistent,
personalised interfaces to the Internet. In: Proceedings of the 21st British HCI group annual
conference on people and computers: HCI…but not as we know it (BCS-HCI’07), pp 193–194.
http://dl.acm.org/citation.cfm?id=1531462&dl=ACM&coll=DL&CFID=
566912806&CFTOKEN=59937217

Bickmore T, Cassell J (2005) Social dialogue with embodied conversational agents. In:
Kuppevelt J, Dy L, Bernsen NO (eds) Advances in natural multimodal dialogue systems.
Springer, Netherlands, pp 23–54. doi:10.1007/1-4020-3933-6_2

Borenstein J, Arkin R (2016) Robotic nudges: the ethics of engineering a more socially just human
being. Sci Eng Ethics 22:31–46. doi:10.1007/s11948-015-9636-2

Breazeal C (2003) Emotion and sociable humanoid robots. Int J Hum-Comput Stud 59:119–155.
doi:10.1016/S1071-5819(03)00018-1

Breazeal C (2004) Social interactions in HRI: the robot view. IEEE Trans Syst Man Cybern Part C
Appl Rev 34:181–186. doi:10.1109/TSMCC.2004.826268

Calvo RA, Peters D (2014) Positive computing: technology for wellbeing and human potential.
The MIT Press, Cambridge, MA

Cassell J (2001) Embodied conversational agents. representation and intelligence in user
interfaces. In: Proceedings of the American Association for the advancement of artificial
intelligence (AAAI’01), pp 67–83. http://dx.doi.org/10.1609/aimag.v22i4.1593

Cassell J, Sullivan J, Prevost S, Churchill EF (eds) (2000) Embodied conversational agents. MIT
Press, Cambridge

Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E (2012) Smart wearable systems: current
status and future challenges. Artif Intell Med 56:137–156. doi:10.1016/j.artmed.2012.09.003

Chen L, Javaid M, Di Eugenio B, Zefran M (2015) The roles and recognition of haptic-ostensive
actions in collaborative multimodal human-human dialogues. Comp Speech Lang 34(1):201–
231. doi:10.1016/j.csl.2015.03.010

Cuayáhuitl H, Komatani K, Skantze G (2015) Introduction for speech and language for interactive
robots. Comput Speech Lang 34:83–86. doi:10.1016/j.csl.2015.05.006

De Graaf MMA, Allouch SB, Klamer T (2015) Sharing a life with Harvey: exploring the
acceptance of and relationship-building with a social robot. Comput Hum Behav 43:1–14.
doi:10.1016/j.chb.2014.10.030

Dunne LE, Profita H, Zeagler C et al (2014) The social comfort of wearable technology and
gestural interaction. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th
annual international conference of the IEEE, Chicago, IL, pp:4159–4162, 26–30 Aug 2014.
doi:10.1109/EMBC.2014.6944540

Fortunati L, Esposito A, Lugano G (2015) Introduction to the special issue “Beyond industrial
robotics: social robots entering public and domestic spheres”. Inf Soc 31:229–236. doi:10.
1080/01972243.2015.1020195

Gustafson J, Lindberg N, Lundeberg M (1999) The August spoken dialogue system. Proceedings
of the 6th European conference on speech and communication technology
(EUROSPEECH’99), Budapest, Hungary, pp 1151–1154, 5–9 Sept 1999. http://www.isca-
speech.org/archive/eurospeech_1999/e99_1151.html

Heerink M, Kröse B, Evers V, Wielinga B (2010) Assessing acceptance of assistive social agent
technology by older adults: the almere model. Int J Soc Robot 2:361–375. doi:10.1007/s12369-
010-0068-5

306 13 Conversational Interfaces: Devices, Wearables …

http://dx.doi.org/10.1109/MIC.2015.74
http://dx.doi.org/10.1109/MIC.2015.74
http://dx.doi.org/10.1080/01972243.2015.1020211
http://dx.doi.org/10.1080/01972243.2015.1020211
http://dx.doi.org/10.1007/s10489-015-0695-5
http://dx.doi.org/10.1109/MC.2015.310
http://dl.acm.org/citation.cfm?id=1531462&dl=ACM&coll=DL&CFID=566912806&CFTOKEN=59937217
http://dl.acm.org/citation.cfm?id=1531462&dl=ACM&coll=DL&CFID=566912806&CFTOKEN=59937217
http://dx.doi.org/10.1007/1-4020-3933-6_2
http://dx.doi.org/10.1007/s11948-015-9636-2
http://dx.doi.org/10.1016/S1071-5819(03)00018-1
http://dx.doi.org/10.1109/TSMCC.2004.826268
http://dx.doi.org/10.1609/aimag.v22i4.1593
http://dx.doi.org/10.1016/j.artmed.2012.09.003
http://dx.doi.org/10.1016/j.csl.2015.03.010
http://dx.doi.org/10.1016/j.csl.2015.05.006
http://dx.doi.org/10.1016/j.chb.2014.10.030
http://dx.doi.org/10.1109/EMBC.2014.6944540
http://dx.doi.org/10.1080/01972243.2015.1020195
http://dx.doi.org/10.1080/01972243.2015.1020195
http://www.isca-speech.org/archive/eurospeech_1999/e99_1151.html
http://www.isca-speech.org/archive/eurospeech_1999/e99_1151.html
http://dx.doi.org/10.1007/s12369-010-0068-5
http://dx.doi.org/10.1007/s12369-010-0068-5

Hoenen M, Lübke KT, Pause BM (2016) Non-anthropomorphic robots as social entities on a
neurophysiological level. Comput Hum Behav 57:182–186. doi:10.1016/j.chb.2015.12.034

Jeon M, Lee J-H (2013) The ecological AUI (Auditory User Interface) design and evaluation of
user acceptance for various tasks on smartphones. In: Kurosa M (ed) Human-computer
interaction modalities and techniques: 15th international conference, HCI International 2013,
pp 49-58, Las Vegas, USA, 21–26 July. doi:10.1007/978-3-642-39330-3_6

Kahn PH, Kanda T, Ishiguro H, Freier NG, Severson RL, Gill BT, Ruckert JH, Shen S (2012)
“Robovie, you’ll have to go into the closet now”: children’s social and moral relationships with
a humanoid robot. Dev Psychol 48(2):303–314. doi:10.1037/a0027033

Kanda T, Ishiguro H (2012) Human-robot interaction in social robotics. Edición: New. CRC Press,
Boca Raton. doi: http://www.crcnetbase.com/doi/book/10.1201/b13004

Kopp S, Wachsmuth I (2004) Synthesizing multimodal utterances for conversational agents.
Comput Anim Virtual Worlds 15(1):39–52. doi:10.1002/cav.6

Leite I, Martinho C, Paiva A (2013) Social robots for long-term interaction: a Survey. Int J Soc
Robot 5:291–308. doi:10.1007/s12369-013-0178-y

Looije R, Neerincx MA, Cnossen F (2010) Persuasive robotic assistant for health self-management
of older adults: design and evaluation of social behaviors. Int J Hum Comput Stud 68:386–397.
doi:10.1016/j.ijhcs.2009.08.007

Lourens T, van Berkel R, Barakova E (2010) Communicating emotions and mental states to robots
in a real time parallel framework using Laban movement analysis. Robot Auton Syst 58:1256–
1265. doi:10.1016/j.robot.2010.08.006

Luh D-B, Li EC, Kao Y-J (2015) The development of a companionship scale for artificial pets.
Interact Comput 27:189–201. doi:10.1093/iwc/iwt055

Markowitz JA (ed) (2014) Robots that talk and listen: technology and social impact. Walter de
Gruyter GmbH & Co. KG, Berlin; Boston. doi:http://dx.doi.org/10.1515/9781614514404

Mathur MB, Reichling DB (2016) Navigating a social world with robot partners: a quantitative
cartography of the Uncanny Valley. Cognition 146:22–32. doi:10.1016/j.cognition.2015.09.
008

Matuszek C, FitzGerald N, Zettlemoyer L, Bo L, Fox D (2012) A joint model of language and
perception for grounded attribute learning. In: Proceedings of the 29th international conference
on machine learning (ICML’12), Edinburgh, Scotland, pp 1671–1678. https://homes.cs.
washington.edu/*lsz/papers/mfzbf-icml12.pdf

Mavridis N (2015) A review of verbal and non-verbal human–robot interactive communication.
63. Robot Auton Syst 63:22–35. doi:10.1016/j.robot.2014.09.031

Molineux A, Cheverst K (2012) A survey of mobile vision recognition applications. In:
Tiwary US, Siddiqui TJ (eds) Speech, image and language processing for human computer
interaction. IGI Global, New York. doi:10.4018/978-1-4666-0954-9.ch014

Munteanu C, Jones M, Whittaker S, Oviatt S, Aylett M, Penn G, Brewster S, d’Alessandro N
(2014) Designing speech and language interactions. In: CHI ‘14 extended abstracts on human
factors in computing systems (CHI EA ‘14). ACM, New York, USA, pp 75–78. doi:10.1145/
2559206.2559228

Nishida T, Nakazawa A, Ohmoto Y (eds) (2014) Conversational informatics: a data-intensive
approach with emphasis on nonverbal communication. Springer, New York. doi:10.1007/978-
4-431-55040-2

Nomura T, Suzuki T, Kanda T, Kato K (2006) Measurement of negative attitudes toward robots.
Interact Stud 7:437–454. doi:10.1075/is.7.3.14nom

Pearson Y, Borenstein J (2014) Creating “companions” for children: the ethics of designing
esthetic features for robots. AI Soc 29:23–31. doi:10.1007/s00146-012-0431-1

Peca A, Simut R, Cao H-L, Vanderborght B (2015) Do infants perceive the social robot Keepon as
a communicative partner? Infant Behav Dev. doi:10.1016/j.infbeh.2015.10.005

Royakkers L, van Est R (2015) A literature review on new robotics: automation from love to war.
Int J Soc Robot 7:549–570. doi:10.1007/s12369-015-0295-x

References 307

http://dx.doi.org/10.1016/j.chb.2015.12.034
http://dx.doi.org/10.1007/978-3-642-39330-3_6
http://dx.doi.org/10.1037/a0027033
http://www.crcnetbase.com/doi/book/10.1201/b13004
http://dx.doi.org/10.1002/cav.6
http://dx.doi.org/10.1007/s12369-013-0178-y
http://dx.doi.org/10.1016/j.ijhcs.2009.08.007
http://dx.doi.org/10.1016/j.robot.2010.08.006
http://dx.doi.org/10.1093/iwc/iwt055
http://dx.doi.org/10.1515/9781614514404
http://dx.doi.org/10.1016/j.cognition.2015.09.008
http://dx.doi.org/10.1016/j.cognition.2015.09.008
https://homes.cs.washington.edu/%7elsz/papers/mfzbf-icml12.pdf
https://homes.cs.washington.edu/%7elsz/papers/mfzbf-icml12.pdf
http://dx.doi.org/10.1016/j.robot.2014.09.031
http://dx.doi.org/10.4018/978-1-4666-0954-9.ch014
http://dx.doi.org/10.1145/2559206.2559228
http://dx.doi.org/10.1145/2559206.2559228
http://dx.doi.org/10.1007/978-4-431-55040-2
http://dx.doi.org/10.1007/978-4-431-55040-2
http://dx.doi.org/10.1075/is.7.3.14nom
http://dx.doi.org/10.1007/s00146-012-0431-1
http://dx.doi.org/10.1016/j.infbeh.2015.10.005
http://dx.doi.org/10.1007/s12369-015-0295-x

Sung J-Y, Guo L, Grinter RE, Christensen HI (2007) “My Roomba is Rambo”: intimate home
appliances. In: Krumm J, Abowd GD, Seneviratne A, Strang T (eds) UbiComp 2007:
ubiquitous computing. Springer, Berlin, pp 14–162. doi:10.1007/978-3-540-74853-3_9

Trappl R (ed) (2013) Your virtual butler: the making of. Springer, Berlin. doi:10.1007/978-3-642-
37346-6

Traum DR, Larsson S (2003) The information state approach to dialog management. In: Smith R,
Kuppevelt J (eds) Current and new directions in discourse and dialog. Kluwer Academic
Publishers, Dordrecht, pp 325–353. doi:10.1007/978-94-010-0019-2_15

Turkle S (2012) Alone together: why we expect more from technology and less from each other.
Basic Books, New York

Wahlster W, Reithinger N, Blocher A (2001) Smartkom: Multimodal communication with a
life-like character. In: Proceedings of the 7th European conference on speech communication
and technology (Eurospeech 2001), Aalborg, Denmark, pp 1547–1550, 3–7 Sept 2001. http://
www.isca-speech.org/archive/eurospeech_2001/e01_1547.html

Wilks Y (ed) (2010) Close engagements with artificial companions. Key social, psychological,
ethical and design issues. John Benjamins Publishing Company, Amsterdam. doi:10.1075/nlp.8

Wu Y-H, Wrobel J, Cornuet M, Kerhervé H, Damnée S, Rigaud A-S (2014) Acceptance of an
assistive robot in older adults: a mixed-method study of human-robot interaction over a
1-month period in the Living Lab setting. Clin Interv Aging 9:801–811. doi:10.2147/CIA.
S56435

308 13 Conversational Interfaces: Devices, Wearables …

http://dx.doi.org/10.1007/978-3-540-74853-3_9
http://dx.doi.org/10.1007/978-3-642-37346-6
http://dx.doi.org/10.1007/978-3-642-37346-6
http://dx.doi.org/10.1007/978-94-010-0019-2_15
http://www.isca-speech.org/archive/eurospeech_2001/e01_1547.html
http://www.isca-speech.org/archive/eurospeech_2001/e01_1547.html
http://dx.doi.org/10.1075/nlp.8
http://dx.doi.org/10.2147/CIA.S56435
http://dx.doi.org/10.2147/CIA.S56435

Chapter 14
Emotion, Affect, and Personality

Abstract Affect is a key factor in human conversation. It allows us to fully
understand each other, be socially competent, and show that we care. As such, in
order to build conversational interfaces that display credible and expressive
behaviors, we should endow them with the capability to recognize, adapt to, and
render emotion. In this chapter, we explain the background to how emotional
aspects and personality are conceptualized in artificial systems and outline the
benefits of endowing the conversational interface with the ability to recognize and
display emotions and personality.

14.1 Introduction

Emotion plays a key role in human interaction. For this reason, communication
between a conversational system and humans should be more effective if the system
can process and understand the human’s emotions as well as displaying its own
emotions. Picard (1997) coined the term affective computing at a time when
emotion was not considered a relevant aspect of the design of artificial systems.
Now there is very active research community working on affective computing, with
several international conferences and journals. This work has demonstrated the
many benefits that emotion can bring to artificial systems, including increased
usability, efficiency, trust, rapport, and improved communication. Affective com-
puting is also used in commercial applications such as sentiment analysis and
opinion mining for marketing and branding.

Affective computing is cross-disciplinary, involving research in computer sci-
ence and engineering, cognitive science, neuroscience, and psychology. Each of
these fields has its own terminology and sometimes within the same field there is a
lack of consensus on the meaning of some concepts and how they can be repre-
sented and formalized. For example, terms such as emotion, feeling, affect, affective
states, mood, and social and interpersonal stances are used. For a review of different
research traditions and theories of emotions, see Johnson (2009).

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_14

309

14.2 Computational Models of Emotion

Computational models of emotion are based partly on theoretical models from
psychology, neuroscience, sociology, and linguistics. In the following sections, we
provide an overview of three approaches that are used widely in computational
models: the dimensional, discrete, and appraisal approaches.

14.2.1 The Dimensional Approach

In the dimensional approach, emotion is represented as a point in a continuous
dimensional space. Dimensional theories understand emotion as a label or artificial
psychological concept that is assigned to positions in this space.

Many systems focus on the single dimension of valence, i.e., whether the
emotion is positive or negative (some authors use the terms “pleasant” or “un-
pleasant” instead). Though the full spectrum in the valence axis could be considered
(i.e., a range of different values from totally positive to totally negative), usually this
approach is used for polarity analyses consisting only of a positive versus a negative
classification.

A second dimension is arousal, representing how energetic the emotion is (also
known as activation/deactivation). Some authors use an intensity (or strength)
dimension instead. Although arousal and intensity are often used interchangeably,
there is a slight difference in meaning. For example, depression has a very low rate
of arousal but can still be a very intense emotion.

To place categories (emotion adjectives) in the valence–arousal space, a circular
representation has been adopted and different authors provide catalogs of emotion
words placed as points in this space (see an example in Fig. 14.1).

This model allows emotion to be represented in a way that is easily computable
and also easy for humans to interpret. For example, it was used by the
FEELTRACE tool (Cowie et al. 2000) to represent how emotion develops over
time. Figure 14.2 shows an example where the user being monitored was initially
afraid (a negative and active emotion) and progressively calmed down to finish up
being serene (a positive and passive emotion).

Although two dimensions usually suffice for most systems, there are also models
with more dimensions. The best known is the pleasure, arousal, and dominance
(PAD) emotional state model (Mehrabian 1997) that employs 3 dimensions:
pleasure (valence), arousal, and dominance. Other representations include control
over the emotion (high control versus low control), and how constructive or
obstructive the emotion is (Scherer 2005). As it is difficult to depict a 4-dimensional
space, these representations are usually projected into a two-dimensional
representation.

An advantage of dimensional models is that emotions can be represented in a
space, and thus, it is possible to quantify the extent to which an emotion is similar to

310 14 Emotion, Affect, and Personality

another emotion by measuring the distance between the two points that represent
those emotions in the space. This can be useful when comparing emotional states,
tracking changes in emotions, or measuring the quality of the annotation in corpora
of emotions.

Fig. 14.1 A circumflex model of affect

Fig. 14.2 Example of a FEELTRACE display during emotion tracking (reproduced with
permission)

14.2 Computational Models of Emotion 311

14.2.2 The Discrete Approach

Usually, there is no need to have such a fine-grained representation of emotion and
it is sufficient to use a discrete approach in which a number of categories are
considered and each unit (e.g., word or utterance) is classified into one of these
categories. In this case, the first challenge is to determine which categories or labels
to consider.

One approach is to employ repertoires of basic categories of emotion. These
repertoires follow Darwin’s theory that emotions are biologically determined and
universal. Different authors have compiled an extensive body of research on how
diverse cultures from all over the world consistently select the same labels to
describe the same facial expressions, pictures, voices, or self-reports of emotion.
However, some authors maintain that emotions are not universal and are to a great
extent a cultural construct.

Well-known categories of emotion include the following: Ekman’s six basic
emotions—anger, disgust, fear, happiness, sadness, and surprise (Ekman 1999); or
the eight basic emotions—trust, fear, surprise, sadness, disgust, anger, anticipation,
and joy, described by Plutchik (2003). However, many authors create their own list
of emotional terms depending on the application domain.

Some of these theories also have a dimensional component. For example,
Plutchik’s evolutionary theory of emotions can be represented as a cone, as shown
in Fig. 14.3. In his model, there are 8 primary emotions that can appear with
different degrees of intensity and that are in fact poles of the same axis (joy is
opposite to sadness, fear to anger, anticipation to surprise, and disgust to trust).
Moving from the center of the wheel to an extreme, the intensity of the emotion
decreases (e.g., annoyance versus rage), and mixing two primary emotions results
in a secondary emotion, e.g., fear and trust generate submission, and anticipation
and joy generate optimism.

14.2.3 The Appraisal Approach

Other theories focus on appraisal as the main element. Different patterns of
appraisal elicit different physiological and behavioral reactions. This approach is
predominant in psychological and computational perspectives on emotion as it
emphasizes the connection between emotion and cognition. In practical terms,
appraisal models allow us not only to detect the emotion itself (e.g., being able to
assign a label to what the user said), but also to determine what is the target of that
emotion and the events, beliefs, desires, and/or intentions that provoked it.
Computational appraisal models often provide elaborate mechanisms that encode
the appraisal process in which significant events in the environment are evaluated to
determine the nature of the emotional reaction.

312 14 Emotion, Affect, and Personality

There are many computational appraisal models that follow an architecture
where information flows like the circle proposed by Marsella et al. (2010), as shown
in Fig. 14.4. In the figure, by agent we refer to either an artificial agent or the
human user.

The main appraisal model used in affective computing is the Ortony, Clore, and
Collins (OCC) model (Ortony et al. 1990). This model focuses on the cognitive
structure of emotions, studying the eliciting conditions of emotions, and how users
set their goals and behaviors accordingly. However, according to Gratch et al.
(2009) the focus of OCC on cognitive components (appraisal dimension) and not on
the overall emotion process results in very narrow computational models. Gratch
et al. describe some alternatives that include other emotional elements such as
somatic processes and behavioral responses, while others have proposed more
comprehensive theories that not only encompass a wider range of emotional
components (e.g., cognitions, somatic processes, behavioral tendencies, and
responses) but also articulate basic process assumptions whereby emotions con-
tinuously influence and are influenced by cognition (Moors et al. 2013). Several
authors have investigated these approaches within general agent architectures, for
example, with the belief–desire–intention (BDI) and the biologically inspired
cognitive architectures (BICA) models (Reisenzein et al. 2013; Hudlicka 2014).

Fig. 14.3 Plutchik’s wheel of emotions (sourceWikimedia) (https://en.wikipedia.org/wiki/Contrasting_
and_categorization_of_emotions#/media/File:Plutchik-wheel.svg Accessed 26 February 2016)

14.2 Computational Models of Emotion 313

https://en.wikipedia.org/wiki/Contrasting_and_categorization_of_emotions%23/media/File:Plutchik-wheel.svg
https://en.wikipedia.org/wiki/Contrasting_and_categorization_of_emotions%23/media/File:Plutchik-wheel.svg

14.3 Models of Personality

Personality can be defined as the characteristics of a person that uniquely influence
their cognitions, motivations, and behaviors in different situations. Thus, person-
ality is an important aspect to consider for understanding the user’s behavior.

Digital personalities can be created with a consistent behavioral style that con-
veys the impression of having coherent characteristics of cognitions, motivations,
behaviors, and emotions (Iurgel and Marcos 2007). Moreover, several studies have
shown that users often assign personality to synthetic characters (Nass and Lee
2000; see also Trappl’s TED talk1). Hence, there is a great interest in finding
appropriate models to render consistent personalities that enable believable inter-
actions with the agents.

Personality is usually modeled in terms of a space in which dimensions are based
on psychological constructs called traits. Personality traits are consistent patterns of
thoughts, feelings, or actions that remain stable during our lives and cause us to
react consistently to the same situations over time. Trait psychologists have defined
a taxonomy of five traits that, as in the case of dimensional models of emotion, have
been shown to be replicable cross-culturally and to capture individual differences in
personality. The “big five” traits, also known as the “OCEAN” model on account of
their initials, are as follows: openness, conscientiousness, extroversion,

Fig. 14.4 Interpretation of Marsella’s component model for computational appraisal models

1https://www.youtube.com/watch?v=aixduAt3fL0. Accessed February 26, 2016.

314 14 Emotion, Affect, and Personality

https://www.youtube.com/watch?v=aixduAt3fL0

agreeableness, and neuroticism (McCrae and John 1992). Each tuple or point in this
space is usually addressed as a personality profile.

This model of personality traits has been widely adopted by the conversational
agents community, although some authors provide their own features to represent
personality-related phenomena in their systems, using either discrete approaches
(choosing personality adjectives from a list), or using their own dimensional models
that have been defined in a more ad hoc manner. For example, Leite et al. (2013)
assess the friendliness of their robots using the dimensions: stimulation of com-
panionship, help, intimacy, reliable alliance, self-validation, and emotional security.

Although the OCEAN model is frequently used as is to recognize the personality
of users, usually only two of the five traits are used for rendering the system’s
behavior due to the complexity of modeling the traits. Thus, bi-dimensional models
employ two main axes: introversion/extraversion and neuroticism/stability:

• Introversion/extraversion. Extraversion is being outgoing, talkative, and in need
of external stimulation. Extraverts are under-aroused and bored and in need of
stimuli, while introverts are over-aroused and need peace and calm.

• Neuroticism/stability. Neuroticism has high levels of negative affect such as
depression and anxiety. Neurotic people, who have very low activation
thresholds, are unable to inhibit or control their emotional reactions, and
experience negative affect in the face of very minor stressors.

Although it would be possible to use a wide range of values within these axes,
usually personalities are classified in the bi-dimensional model into four groups:
stable extraverts (talkative, easy-going, and lively); unstable extraverts (excitable,
impulsive, and irresponsible); stable introverts (calm, reliable, peaceful); and
unstable introverts (quiet, reserved, pessimistic).

Another different dimension employed by some authors is psychoticism–so-
cialization. Psychotic behavior is a key factor in tough-mindedness,
non-conformity, and inconsideration. Examples of adjectives related to psychoti-
cism are “aggressive,” “egocentric,” “manipulative,” and “achievement-oriented.”

14.3.1 The Detection of Personality

The personality of a user can be retrieved before interaction with the system as part
of a process of creating a model of the user in order to fine-tune the agent. Thus in
an adjustment phase, the user may be asked for personal data, such as age and
gender, and also asked to answer a personality questionnaire. Then, the information
collected is stored in the system, which adapts its behavior accordingly. Some of the
most frequently used personality tests are as follows:

• The NEO-FFI test, Revised NEO Personality Inventory (NEO PI-R), in which
there are several questions for each personality trait in the Big Five model.

14.3 Models of Personality 315

• The Eysenck personality questionnaire (EPQ-R) that comprises three subscales:
introversion/extraversion, neuroticism/stability, psychoticism/socialization,
along with the Lie scale that was introduced in order to measure to what extent
subjects attempted to control their scores.

• The Ten-Item Personality Inventory (TIPI). This test is especially interesting for
the purpose of assessing the user’s personality because, unlike the other tests, it
is very short (10 items) and thus it is not as tedious for the user to respond to it.

Although this approach enables the creation of reliable models, it relies on the
fact that the user who configured it at the beginning will be the only user of the
system. Although this may be an appropriate assumption in some settings, e.g., a
personal assistant on the user’s mobile phone that will presumably always interact
with the phone owner, this may not be the case for other application domains. The
solution in these cases is to build an automatic personality recognizer.

Automatic personality detection has been widely studied recently in application
domains related to text mining. For example, different studies have shown how to
infer the user’s personality from their behavior in social networks, including their
writing style, number of friends, and even in terms of the number of likes and
dislikes they give to different content (Ortigosa et al. 2014).

In the area of conversational interaction, in addition to text, acoustics can also be
a good indicator of personality. Polzehl (2015) provides an extensive review of
speech-based automatic personality estimation. This topic was also addressed in the
INTERSPEECH 2012 Speaker Trait Challenge where participants were asked to
determine the Big 5 personality profiles of speakers based on acoustic data. The
annotated corpus used, the Speaker Personality Corpus (Mohammadi and
Vinciarelli 2012), is freely available to the research community. The features and
classifiers employed were similar to those that will be described for emotion
recognition in Chap. 15 (Schuller et al. 2012).

14.3.2 Simulating Personality

If interactions with simulated agents are to be believable, users must be able to
apply their models of human communication to the agents and the agents must have
a convincing and intuitive behavior (Schonbrodt and Asendorpf 2011). Thus, it is
important that these agents become recognizable individuals in order to have
life-like interaction capabilities. There are two fundamental questions that will be
addressed in the following subsections: which personality should be conveyed
depending on the objectives of our system, and once we know the personality we
would like to convey, what methods can be used to render it?

316 14 Emotion, Affect, and Personality

http://dx.doi.org/10.1007/978-3-319-32967-3_15

14.3.2.1 Which Personality to Render

Several studies have shown that people like personalities that are similar to their
own, a phenomenon known as the “similarity-attraction principle.” This principle
also applies to personalities in conversational systems. For example, Nass and Lee
(2000) showed that users are more attracted to voices that exhibit a similar per-
sonality to their own; users regard a TTS voice that exhibits a similar personality to
their own as more credible; and users evaluate voice-based products more posi-
tively if they match their personality. Also similarity has been shown to increase the
perceived agent’s intelligence and competence. Thus, a popular approach for using
personality in conversational interfaces is to adapt the agent’s personality to match
the users’ personality in an attempt to foster the agent’s likeability.

However, in some cases, the opposite principle applies. For example, in the case
of human–robot interaction with a robotic pet, Lee et al. (2006) showed that par-
ticipants preferred interacting with a robot with a personality that was comple-
mentary to their own and judged it as more intelligent and attractive.

Other authors, such as Mairesse and Walker (2010), propose tailoring the agent’s
personality according to the application domain. For example, in a tutoring system
they suggest using extrovert and agreeable pedagogic agents, whereas for a psy-
chotherapy agent it could be interesting to use more “disturbing” personalities.
They also point out that the personality used by telesales agents should match the
company’s brand.

14.3.2.2 How to Render Personality

People consistently associate different verbal and non-verbal markers with certain
speaker personality characteristics. For instance, the personality of the agent can be
implemented by adjusting the linguistic and acoustic content of the system’s
interventions. Firstly, regarding language generation, Mairesse and Walker (2011)
present the PERSONAGE system that has more than 25 parameters for tuning a
natural language generator to generate personalities in the range extravert versus
introvert. Some of the lessons learnt from this study are as follows:

• Sentences: Introverts communicate fewer content items in the same phrase,
introduce fewer repetitions, and produce fewer restatements. However, they
employ more complex syntactic structures. Introverts are more prone to negative
content and, if an item with positive and negative content has to be conveyed, an
introvert would focus more on the negative aspect and an extravert on the
positive. Furthermore, introverts would use more negations (e.g., saying “it is
not bad” instead of “it is good”). On the other hand, extraverts use more
self-references and fewer unfilled pauses.

• Vocabulary: Extraverts use more social language and display better backchannel
behaviors. Additionally, as opposed to introverts, they use more implicit lan-
guage (e.g., “the food is good” instead of “the restaurant has good food”) as well

14.3 Models of Personality 317

as more informal language, and they also tend to exaggerate more. Introverts
employ a richer vocabulary that is more formal and with a higher presence of
hedging constructions.

Regarding speech synthesis, Nass and Lee (2000) present a study of TTS fea-
tures with the following results:

• Speech rate: Extraverts speak more rapidly than introverts.
• Volume: Extraverts speak more loudly than introverts.
• Pitch: Extraverts speak with higher pitch and with more pitch variations.

More recent findings in the study of personality recognition can also be applied
to speech synthesis. For example, Schuller and Batliner (2013) present an extensive
description of the paralinguistics of personality that is relevant to TTS.

When rendering introvert versus extrovert personalities using the parameters
described, it is necessary to take into account other possible effects on perception,
for example:

• Speech rate: a slow speaking rate sounds cool; however, faster speakers appear
more convincing, confident, intelligent, and objective.

• Pauses: fewer pauses and repeats, and a more dynamic voice give the impression
of confidence.

• Volume: louder voices are judged to be friendlier.
• Pitch: high-pitched voices sound less benevolent and less competent, whereas

low pitch raises the degree of apparent confidence. Besides, voices are evaluated
as attractive when they are less monotonous and very clear with a low pitch.

• Pitch-range: speech with more variable intonation is evaluated as more
benevolent.

For embodied conversational agents (ECAs) (see Chap. 15) that display gestures
and facial expressions Neff et al. (2010) present a comprehensive list of features to
differentiate the behaviors of introverts and extraverts, including:

• Body attitude: introverts lean backwards and extraverts lean forwards.
• Gesture amplitude, speed, direction, and rate: extraverts produce more gestures

that are wider and face outwards, while introverts produce fewer gestures and
they face inwards.

• Timing: the response latency of extraverts is shorter and their gestures are faster
and smoother.

• Energy and persistence: extraverts are more energetic, but gestures from
introverts are more persistent.

When using robots, another feature to be considered is their shape, which has
been shown to have an effect on the robot’s perceived personality (Hwang et al.
2013).

318 14 Emotion, Affect, and Personality

http://dx.doi.org/10.1007/978-3-319-32967-3_15

14.4 Making Use of Affective Behaviors
in the Conversational Interface

There are a number of reasons conversational interfaces should incorporate infor-
mation about affective behaviors. For example, as discussed in Chap. 10, dialog
managers may have different inputs that enrich the knowledge that the system relies
on in order to decide how to continue the interaction with the user. One of these
information sources may be the recognition of the user’s emotional state, which can
be considered in isolation (as another input), or which can be included in some
other higher-order component such as a user model or a model of the interaction
context.

Bui et al. (2009, 2010) extend POMDPs with an affective component. Each state
consists of the user’s goal, emotional state, actions, and dialog state. However, their
approach has been implemented only in a one-slot dialog. To make it more scalable,
other authors such as Pittermann et al. (2009) provide semi-stochastic dialog
models that have a stochastic component but also some rules, and the user’s
emotion is considered within the user model. In Griol et al. (2014), the user’s
perceived emotion is merged with the predicted user intention and input in a sta-
tistical dialog manager to enable it to decide the best system action and adapt the
system’s responses accordingly.

Apart from the selection of the system’s next action, the adaptation of the
system’s behavior can be done in terms of tuning some of the dialog parameters,
such as the style of prompting, the strategy, and frequency of system feedback, the
confirmation strategy, the dialog initiative, and the dialog flow. Also multimodal
output can be adapted to emotion (see Chap. 15).

In the following sections, we will briefly present the main interaction strategies
and goals that can be generated as a result of recognizing the user’s emotion.
Although the interaction goals and strategies of conversational agents are very
varied and depend to a great extent on the application domain, there are common
goals such as making the interaction more fluid and satisfactory, fostering the
acceptability, perceived social competence and believability of the agent, and
keeping the user engaged during the interaction.

14.4.1 Acknowledging Awareness and Mirroring Emotion

A simple and effective strategy is to acknowledge that the agent knows that the user
is displaying certain emotions. One way would be to explicitly show awareness of
the user’s emotions. This can be done in applications that are supposed to monitor
the user’s state (e.g., stress control applications that use biosignals to monitor the
user), or as a strategy for social interaction (e.g., in a pedagogic system where the
students are shown their recognized emotions during learning).

14.4 Making Use of Affective Behaviors in the Conversational Interface 319

http://dx.doi.org/10.1007/978-3-319-32967-3_10
http://dx.doi.org/10.1007/978-3-319-32967-3_15

Another strategy is to align the emotional response of the agent with the rec-
ognized emotional state of the user, an approach known as mirroring. Mirroring is a
sign of human empathy and interpersonal competence and can be an appropriate
behavior to enable an agent to be perceived as socially competent.

Mirroring can be performed by any of the emotion synthesis strategies covered
in Chap. 15. For example, by adjusting the pace and tone of the agent’s synthetic
voice to the user, or in terms of choice of vocabulary, head posture, gestures, and
facial expressions. As discussed by Marinetti et al. (2011), interlocutors explicitly
and implicitly convey and react to emotional information. This mutual adjustment
can be deliberate or automatic, and that is why those agents that only react to
explicit full-blown emotions seem artificial, as they miss the subtle mechanisms of
this interpersonal process.

Different studies that address more complex mirroring strategies include more
subtle mechanisms, as is the case with the social dynamics of laughter, in which the
user’s state is not copied but interpreted in different ways that affect the system’s
behavior at several levels. Also there are databases available to study the ways in
which mimicry and synchronization take place between human interlocutors (Sun
et al. 2011).

Schröder et al. (2012) demonstrated that it is possible to increase the accept-
ability of ECAs through the use of backchannel behaviors such as head nods,
smiles, and expressions such as “wow” or “uh-huh.” Also mimicry approaches have
been shown to be successful in causing different social effects in users, e.g., con-
tagious smiling. Agents that use effective mirroring strategies are perceived as being
more empathic, and one of the consequences is an increase of rapport. For example,
the Rapport Agent presented in Gratch and Marsella (2013) showed that its mimicry
strategies had an impact on the users’ feelings of rapport and embarrassment and
also on the extent to which they engaged in intimate self-disclosure during the
conversation.

14.4.2 Dealing with and Provoking the User’s Emotions

In most application domains, it is important to not only acknowledge the user’s
emotional state but also to do something about it. In most approaches discussed in
the literature, agents have been designed to avoid user frustration. Clear examples
are tutoring systems, in which affective information can be used to choose the best
pedagogic strategy to avoid frustration during learning. Several authors have
explored this topic by attempting to frustrate users and then assess how they
respond to agents with different degrees of empathic responses. Beale and Creed
(2009) present a survey of these studies that highlight the potential for empathetic
responses to enhance perceptions of agents and reduce feelings of frustration caused
by a computer game.

However, there are also applications in which it is interesting to provoke neg-
ative emotional responses in users, as an uncomfortable experience can also make

320 14 Emotion, Affect, and Personality

http://dx.doi.org/10.1007/978-3-319-32967-3_15

them reflect on their feelings and responses. In fact, as highlighted by Boehner et al.
(2007), some authors have pointed out that the ultimate goal of affective systems
should not be that the agent understands the user’s emotions better, but that, thanks
to the agent, the user becomes more aware of their own emotions. Sustained
affective interactions can help users examine their emotional experiences over time.
Attention to emotion has proven to be helpful for emotion regulation, and even
labeling the affective states can help to reduce their ambiguity and facilitate coping,
which can be important for diminishing dysfunctional behaviors such as drinking to
handle negative affect. For example, FearNot!, developed during the EU projects
Victec and eCircus, explored the use of negative ECAs for different purposes,
including the treatment of phobias (Vannini et al. 2011).

14.4.3 Building Empathy

If agents are to be perceived as social actors by users, their behavior should be
social, which implies being empathic and trustworthy, especially in application
domains such as coaches, tutors, health care, and social companions.

Looije et al. (2010) build on the concepts of empathy and trust and divide
empathy into three dimensions—complimentary, attentive, and compassionate—
aspects that they take into account for a model of motivational interviewing for
daily health self-management (harmonization of food, exercise, and medication).
Similarly, Bickmore et al. (2010) present a relational agent for antipsychotic
medication adherence for which the ability to conduct social and empathic chat as
well as providing positive reinforcement and feedback is very important.

Moridis and Economides (2012) studied the implications of parallel and reactive
empathy in tutoring agents. Parallel empathy describes a person displaying an
emotional state similar to that of another individual, which expresses the ability to
identify with the emotions of others. Reactive empathy provides insight for
recovering from that emotional state. The authors showed that combining both
types of empathy by displaying adequate emotional expressions moved students
from a state of fear to a more neutral state. Similarly, McQuiggan and Lester (2007)
present the CARE system, which supports empathetic assessment and interpreta-
tion. CARE induces a dual model of empathy. One component is used at runtime to
support empathetic assessment and the other is used to support empathetic
interpretation.

However, the ways in which empathy (especially parallel empathy) is portrayed
have to be carefully considered. Beale and Creed (2009) showed that persuasive
health messages appeared to be more effective (based on subjective measures) when
they were presented with a neutral emotional expression as opposed to emotions
that were consistent with the content of the presented message.

14.4 Making Use of Affective Behaviors in the Conversational Interface 321

14.4.4 Fostering the User’s Engagement

Engagement is a key aspect of human–computer interaction. In application domains
where the agent is supposed to maintain long-term interactions with their users, a
sustained interaction with an agent that always behaves in the same way would be
likely to decrease user satisfaction over time.

In particular, humor may be of a great help. Dybala et al. (2009) have studied the
influence of humorous stimuli and demonstrated that they enhance the positive
involvement of users in conversation and their intentions to continue using the
system. Also when users lose interest in the system this has a stronger effect than
other negative indicators such as user frustration. For example, in tutoring systems
boredom has been demonstrated to be more persistent and associated with poorer
learning and less user satisfaction than frustration.

Engagement is influenced not only by the agent’s behavior but is also deter-
mined by the model of the user. Pekrun et al. (2014) improved the engagement of
students by considering their achievement goals and emotions. For example, they
considered that in educational settings mastery goals are coupled with students’
positive affect and enjoyment of learning and a negative link with anger and
boredom. On the other hand, it has been shown that performance-approach goals
are positively related to students’ pride and hope, and performance-avoidance goals
to their anxiety, shame, and sense of hopelessness. Similarly, Sellers (2013) pro-
vides insight into different layers of motivation and their coupled emotions for
pedagogic systems.

Predictions of emotions that will happen in the future are also interesting as
another source of information. Although the focus of conversational interfaces is to
provide an immediate response, when the aim is to sustain long-term relations with
the user the ability of the system to learn from a long history of previous interac-
tions has become more important. The conversational nature of human–ECA
interaction is beneficial for obtaining more information from the user, who is in
some cases keener to self-disclose with an artificial interlocutor (Kang and Gratch
2014). Thus, there is more space for using sentiment analysis approaches to extract
knowledge from large amounts of data. This is also relevant for producing a variety
of behaviors and fostering engagement and trust. For these reasons, it could be
beneficial to build long-term user models that include predictions of future user
actions and affect.

14.4.5 Emotion as Feedback on the System’s Performance

As discussed before, the emotional state of the user is also influenced by their inter-
action with the system, and some authors have employed dialog features such as the
dialog duration and the degree of difficulty in obtaining pieces of information from the
system as a predictor of negative user states (Callejas and López-Cózar 2008;

322 14 Emotion, Affect, and Personality

Callejas et al. 2011). Similarly, working in the other direction, the user’s emotions can
be used to predict the system’s performance so that the system can adapt its behavior
dynamically and avoid further malfunctions. This idea has been researched by several
authors, for example, Schmitt and Ultes (2015).

14.5 Summary

Although affect and personality may seem unrelated to machines, scientists have
shown that mechanisms to understand and exhibit emotion and personality in
artificial agents are essential for human–computer interaction. This chapter has
presented an overview of computational models of emotion and personality and the
role they can play to improve different aspects of conversational interaction
between humans and machines. The next chapter will build on these concepts and
discuss how to endow artificial agents with the ability to understand and show
emotional and rich expressive behaviors.

Further Reading
Sander and Scherer (2009) is a reference for non-specialists interested in emotions,
moods, affect, and personality. It provides encyclopedic entries sorted in alpha-
betical order that cover the main affect-related concepts and the role that emotion
plays in society, social behavior, and cognitive processes. For an introduction to
emotion science from different perspectives including psychology and neuro-
science, see Fox (2008). Scherer (2005) provides an excellent review of emotion
theories from the perspective of computational models, including a review of
emotion recognition. Marsella et al. (2010) and Marsella and Gratch (2014)
examine computational models of emotion, while Trappl et al. (2002) introduces
the components of human emotion and how they can be incorporated into machines
as well as presenting interesting discussions between the contributing authors about
the topics covered.

Exercise
On the shoulders of giants. These are some prominent researchers working on
affective computing. Visit their Web pages to familiarize yourself with their latest
advances, publications, and the projects they are involved in.

• Rafael Calvo2 is a professor at the University of Sydney, ARC Future Fellow,
director of the Positive Computing Lab, and co-director of the Software
Engineering Group that focuses on the design of systems that support well-being
in areas of mental health, medicine, and education.

• Roddy Cowie3 is a professor at the School of Psychology at Queen’s University
Belfast. He has been Head of Cognitive and Biological Research Division, chair

2http://rafael-calvo.com/.
3http://www.qub.ac.uk/schools/psy/Staff/Academic/Cowie/. Accessed February 26, 2016.

14.4 Making Use of Affective Behaviors in the Conversational Interface 323

http://rafael-calvo.com/
http://www.qub.ac.uk/schools/psy/Staff/Academic/Cowie/

of the School Research Committee, head of postgraduate research, director of
research for the Emotion, Perception, and Individual Characteristics cluster.

• Jonathan Gratch4 is a research professor of Computer Science and Psychology
and Director or Virtual Human Research at the University of Southern
California (USC) Institute for Creative Technologies and co-director of the USC
Computational Emotion Group.

• Eva Hudlicka5 is a principal scientist at Psychometrix Associates, which she
founded in 1998 to conduct research in computational affective modeling and its
applications in health care. Prior to founding Psychometrix in 1998, Dr.
Hudlicka was a senior scientist at Bolt, Beranek and Newman in Cambridge,
MA.

• Stacy Marsella6 is a professor in the College of Computer and Information
Science with a joint appointment in Psychology. Prior to joining Northeastern,
he was a research professor in the Department of Computer Science at the
University of Southern California, and a research director at the Institute for
Creative Technologies.

• Ana Paiva7 is an associate professor in the Department of Computer Science
and Engineering of Instituto Superior Técnico from the Technical University of
Lisbon. She is also the group leader of GAIPS, a research group on agents and
synthetic characters at INESC-ID.

• Paolo Petta,8 head of the Intelligent Agents and New Media group at the
Austrian Research Institute for Artificial Intelligence.

• Rosalind W. Picard9 is founder and director of the Affective Computing
Research Group at the Massachusetts Institute of Technology (MIT) Media Lab,
co-director of the Media Lab’s Advancing Wellbeing Initiative, and faculty
chair of MIT’s Mind + Hand + Heart Initiative. She has co-founded Empatica,
Inc., creating wearable sensors and analytics to improve health, and Affectiva,
Inc. delivering technology to help measure and communicate emotion.

• Klaus Scherer is a professor emeritus at the University of Geneva. He founded
and directed the Centre Interfacultaire en Science Affectives and the Swiss
Center for Affective Sciences.10

• Mark Schröder11 is a senior researcher at DFKI GmbH in Saarbrücken,
Germany, and has acted as coordinator and Project leader of very important
emotion-related EU research projects. He is the leader of the DFKI Speech
Group, and chair of the W3C Emotion Markup Language Incubator Group.

4http://people.ict.usc.edu/*gratch/. Accessed February 2016.
5https://www.cics.umass.edu/faculty/directory/hudlicka_eva. Accessed February 26, 2016.
6http://www.ccs.neu.edu/people/faculty/member/marsella/. Accessed February 26, 2016.
7http://gaips.inesc-id.pt/*apaiva/Ana_Paiva_Site_2/Home.html. Accessed February 26, 2016.
8http://www.ofai.at/*paolo.petta/. Accessed February 26, 2016.
9http://web.media.mit.edu/*picard/. Accessed February 26, 2016.
10http://www.affective-sciences.org/user/scherer. Accessed February 26, 2016.
11http://www.dfki.de/*schroed/index.html. Accessed February 26, 2016.

324 14 Emotion, Affect, and Personality

http://people.ict.usc.edu/%7egratch/
https://www.cics.umass.edu/faculty/directory/hudlicka_eva
http://www.ccs.neu.edu/people/faculty/member/marsella/
http://gaips.inesc-id.pt/%7eapaiva/Ana_Paiva_Site_2/Home.html
http://www.ofai.at/%7epaolo.petta/
http://web.media.mit.edu/%7epicard/
http://www.affective-sciences.org/user/scherer
http://www.dfki.de/%7eschroed/index.html

• Robert Trappl12 is head of the Austrian Research Institute for Artificial
Intelligence in Vienna, which was founded in 1984. He is a professor emeritus
of Medical Cybernetics and Artificial Intelligence at the Center for Brain
Research, Medical University of Vienna. He was a full professor and head of the
department of Medical Cybernetics and Artificial Intelligence, University of
Vienna, for 30 years.

References

Beale R, Creed C (2009) Affective interaction: how emotional agents affect users. Int J
Hum-Comput Stud 67:755–776. doi:10.1016/j.ijhcs.2009.05.001

Bickmore TW, Puskar K, Schlenk EA, Pfeifer LM, Sereika SM (2010) Maintaining reality:
relational agents for antipsychotic medication adherence. Interact Comput 22(4):276–288.
doi:10.1016/j.intcom.2010.02.001

Boehner K, DePaula R, Dourish P, Sengers P (2007) How emotion is made and measured. Int J
Hum-Comput 65(4):275–291. doi:10.1016/j.ijhcs.2006.11.016

Bui TH, Poel M, Nijholt A, Zwiers J (2009) A tractable hybrid DDN–POMDP approach to
affective dialogue modeling for probabilistic frame-based dialogue systems. Nat Lang Eng 15
(2):273–307. doi:10.1017/S1351324908005032

Bui TH, Zwiers J, Poel M, Nijholt A (2010) Affective dialogue management using factored
POMDPs. In: Babuška R, Groen FCA (eds) Interactive collaborative information systems:
studies in computational intelligence. Springer, Berlin, pp 207–236. doi:10.1007/978-3-642-
11688-9_8

Callejas Z, López-Cózar R (2008) Influence of contextual information in emotion annotation for
spoken dialogue systems. Speech Commun 50(5):416–433. doi:10.1016/j.specom.2008.01.001

Callejas Z, Griol D, López-Cózar R (2011) Predicting user mental states in spoken dialogue
systems. EURASIP J Adv Signal Process 1:6. doi:10.1186/1687-6180-2011-6

Cowie R, Douglas-Cowie E, Savvidou S, McMahon E, Sawey M, Schröder M (2000)
FEELTRACE: an instrument for recording perceived emotion in real time. In: Proceedings
of the International Speech Communication Association (ISCA) workshop on speech and
emotion. Newcastle, Northern Ireland, pp 19–24

Dybala P, Ptaszynski M, Rzepka R, Araki K (2009) Activating humans with humor—a dialogue
system that users want to interact with. IEICE T Inf Syst E92-D(12):2394–2401. doi:10.1587/
transinf.E92.D.2394

Ekman P (1999) Basic emotions. In: Dalgleish T, Power MJ (eds) Handbook of cognition and
emotion. Wiley, Chichester, pp 45–60. doi:10.1002/0470013494.ch3

Fox E (2008) Emotion science: cognitive and neuroscientific approaches to understanding human
emotions. Palgrave Macmillan, Basingstoke

Gratch J, Marsella S (eds) (2013) Social emotions in nature and artifact. Oxford University Press,
Oxford. doi:10.1093/acprof:oso/9780195387643.001.0001

Gratch J, Marsella S, Petta P (2009) Modeling the cognitive antecedents and consequences of
emotion. Cogn Syst Res 10(1):1–5. doi:10.1016/j.cogsys.2008.06.001

Griol D, Molina JM, Callejas Z (2014) Modeling the user state for context-aware spoken
interaction in ambient assisted living. Appl Intell 40(4):749–771. doi:10.1007/s10489-013-
0503-z

12http://www.ofai.at/*robert.trappl/. Accessed February 26, 2016.

14.5 Summary 325

http://dx.doi.org/10.1016/j.ijhcs.2009.05.001
http://dx.doi.org/10.1016/j.intcom.2010.02.001
http://dx.doi.org/10.1016/j.ijhcs.2006.11.016
http://dx.doi.org/10.1017/S1351324908005032
http://dx.doi.org/10.1007/978-3-642-11688-9_8
http://dx.doi.org/10.1007/978-3-642-11688-9_8
http://dx.doi.org/10.1016/j.specom.2008.01.001
http://dx.doi.org/10.1186/1687-6180-2011-6
http://dx.doi.org/10.1587/transinf.E92.D.2394
http://dx.doi.org/10.1587/transinf.E92.D.2394
http://dx.doi.org/10.1002/0470013494.ch3
http://dx.doi.org/10.1093/acprof:oso/9780195387643.001.0001
http://dx.doi.org/10.1016/j.cogsys.2008.06.001
http://dx.doi.org/10.1007/s10489-013-0503-z
http://dx.doi.org/10.1007/s10489-013-0503-z
http://www.ofai.at/%7erobert.trappl/

Hudlicka E (2014) Affective BICA: challenges and open questions. Biol Inspired Cogn Archit
7:98–125. doi:10.1016/j.bica.2013.11.002

Hwang J, Park T, Hwang W (2013) The effects of overall robot shape on the emotions invoked in
users and the perceived personalities of robot. Appl Ergon 44(3):459–471. doi:10.1016/j.
apergo.2012.10.010

Iurgel IA, Marcos AF (2007) Employing personality-rich virtual persons. New tools required.
Comput Graph 31(6):827–836. doi:10.1016/j.cag.2007.08.001

Johnson G (2009) Emotion, theories of. Internet Encycl Philos http://www.iep.utm.edu/emotion/
Kang S-H, Gratch J (2014) Exploring users’ social responses to computer counseling interviewers’

behavior. Comput Hum Behav 34:120–130. doi:10.1016/j.chb.2014.01.006
Lee KM, Peng W, Jin S-A, Yan C (2006) Can robots manifest personality? An empirical test of

personality recognition, social responses, and social presence in human-robot interaction.
J Commun 56(4):754–772. doi:10.1111/j.1460-2466.2006.00318.x

Leite I, Pereira A, Mascarenhas S, Martinho C, Prada R, Paiva A (2013) The influence of empathy in
human–robot relations. Int J Hum-Comput St 71(3):250–260. doi:10.1016/j.ijhcs.2012.09.005

Looije R, Neerincx MA, Cnossen F (2010) Persuasive robotic assistant for health self-management
of older adults: design and evaluation of social behaviors. Int J Hum-Comput St 68(6):386–
397. doi:10.1016/j.ijhcs.2009.08.007

Mairesse F, Walker MA (2010) Towards personality-based user adaptation: psychologically
informed stylistic language generation. User Model User-Adap 20(3):227–278. doi:10.1007/
s11257-010-9076-2

Mairesse F, Walker MA (2011) Controlling user perceptions of linguistic style: trainable
generation of personality traits. Comput Linguist 37(3):455–488. doi:10.1162/COLI_a_00063

Marinetti C, Moore P, Lucas P, Parkinson B (2011) Emotions in social interactions: unfolding
emotional experience. In: Cowie R, Pelachaud C, Petta P (eds) Emotion-oriented systems,
cognitive technologies. Springer, Berlin, pp 31–46. doi:10.1007/978-3-642-15184-2_3

Marsella S, Gratch J (2014) Computationally modeling human emotion. Commun ACM 57
(12):56–67, doi:10.1145/2631912

Marsella S, Gratch J, Petta P (2010) Computational models of emotion. In: Scherer KR, Bänziger
T, Roesch EB (eds) Blueprint for affective computing: a source book. Oxford University Press,
Oxford, pp 21–41

McCrae RR, John OP (1992) An introduction to the five-factor model and its applications. J Pers
60(2):175–215. doi:10.1111/j.1467-6494.1992.tb00970.x

McQuiggan SW, Lester JC (2007) Modeling and evaluating empathy in embodied companion
agents. Int J Hum-Comput St 65(4):348–360. doi:10.1016/j.ijhcs.2006.11.015

Mehrabian A (1997) Comparison of the PAD and PANAS as models for describing emotions and
for differentiating anxiety from depression. J Psychopathol Behav 19(4):331–357. doi:10.1007/
BF02229025

Mohammadi G, Vinciarelli A (2012) Automatic personality perception: prediction of trait
attribution based on prosodic features. IEEE T Affect Comput 3(3):273–284. doi:10.1109/T-
AFFC.2012.5

Moors A, Ellsworth P, Scherer KR, Frijda NH (2013) Appraisal theories of emotion: state of the
art and future development. Emot Rev 5(2):119–124. doi:10.1177/1754073912468165

Moridis CN, Economides AA (2012) Affective learning: empathetic agents with emotional facial
and tone of voice expressions. IEEE T Affect Comput 3(3):260–272. doi:10.1109/T-AFFC.
2012.6

Nass C, Lee KM (2000) Does computer-generated speech manifest personality? An experimental
test of similarity-attraction. In: Proceedings of the SIGCHI conference on human factors in
computing systems (CHI’00). The Hague, Netherlands, 1–6 April 2000:329–336. doi:10.1145/
332040.332452

Neff M, Wang Y, Abbott R, Walker M, (2010) Evaluating the effect of gesture and language on
personality perception in conversational agents. In: Allbeck J, Badler N, Bickmore T,
Pelachaud C, Safonova A (eds) Intelligent virtual agents 6356. Springer, Berlin, pp 222–235.
doi:10.1007/978-3-642-15892-6_24

326 14 Emotion, Affect, and Personality

http://dx.doi.org/10.1016/j.bica.2013.11.002
http://dx.doi.org/10.1016/j.apergo.2012.10.010
http://dx.doi.org/10.1016/j.apergo.2012.10.010
http://dx.doi.org/10.1016/j.cag.2007.08.001
http://www.iep.utm.edu/emotion/
http://dx.doi.org/10.1016/j.chb.2014.01.006
http://dx.doi.org/10.1111/j.1460-2466.2006.00318.x
http://dx.doi.org/10.1016/j.ijhcs.2012.09.005
http://dx.doi.org/10.1016/j.ijhcs.2009.08.007
http://dx.doi.org/10.1007/s11257-010-9076-2
http://dx.doi.org/10.1007/s11257-010-9076-2
http://dx.doi.org/10.1162/COLI_a_00063
http://dx.doi.org/10.1007/978-3-642-15184-2_3
http://dx.doi.org/10.1145/2631912
http://dx.doi.org/10.1111/j.1467-6494.1992.tb00970.x
http://dx.doi.org/10.1016/j.ijhcs.2006.11.015
http://dx.doi.org/10.1007/BF02229025
http://dx.doi.org/10.1007/BF02229025
http://dx.doi.org/10.1109/T-AFFC.2012.5
http://dx.doi.org/10.1109/T-AFFC.2012.5
http://dx.doi.org/10.1177/1754073912468165
http://dx.doi.org/10.1109/T-AFFC.2012.6
http://dx.doi.org/10.1109/T-AFFC.2012.6
http://dx.doi.org/10.1145/332040.332452
http://dx.doi.org/10.1145/332040.332452
http://dx.doi.org/10.1007/978-3-642-15892-6_24

Ortigosa A, Carro RM, Quiroga JI (2014) Predicting user personality by mining social interactions
in facebook. J Comput Syst Sci 80(1):57–71. doi:10.1016/j.jcss.2013.03.008

Ortony A, Clore GL, Collins A (1990) The cognitive structure of emotions. Cambridge University
Press, Cambridge

Pekrun R, Cusack A, Murayama K, Elliot AJ, Thomas K (2014) The power of anticipated
feedback: effects on students’ achievement goals and achievement emotions. Learn Instr
29:115–124. doi:10.1016/j.learninstruc.2013.09.002

Picard RW (1997) Affective computing. The MIT Press, Cambridge
Pittermann J, Pittermann A, Minker W (2009) Handling emotions in human-computer dialogues.

Springer Science & Business Media, Netherlands. doi:10.1007/978-90-481-3129-7
Plutchik R (2003) Emotions and life: perspectives from psychology, biology, and evolution.

American Psychological Association, Washington, DC
Polzehl T (2015) Personality in speech: assessment and automatic classification. Springer, New

York. doi:10.1007/978-3-319-09516-5
Reisenzein R, Hudlicka E, Dastani M, Gratch J, Hindriks KV, Lorini E, Meyer J-JC (2013)

Computational modeling of emotion: toward improving the inter- and intradisciplinary
exchange. IEEE T Affect Comput 4(3):246–266. doi:10.1109/t-affc.2013.14

Sander D, Scherer KR (eds) (2009) The Oxford companion to emotion and the affective sciences.
Oxford University Press, Oxford

Scherer K (2005) What are emotions? And how can they be measured? Soc Sci Inform 44(4):695–
729. doi:10.1177/0539018405058216

Schmitt A, Ultes S (2015) Interaction quality: assessing the quality of ongoing spoken dialog
interaction by experts—and how it relates to user satisfaction. Speech Commun 74:12–36.
doi:10.1016/j.specom.2015.06.003

Schonbrodt FD, Asendorpf JB (2011) The challenge of constructing psychologically believable
agents. J Media Psychol-GER 23(2):100–107. doi:10.1027/1864-1105/a000040

Schröder M, Bevacqua E, Cowie R, Eyben F, Gunes H, Heylen D, ter Maat M, McKeown G,
Pammi S, Pantic M, Pelachaud C, Schuller B, de Sevin E, Valstar M, Wöllmer M (2012)
Building autonomous sensitive artificial listeners. IEEE T Affect Comput 3(2):165–183.
doi:10.1109/T-AFFC.2011.34

Schuller B, Batliner A (2013) Computational paralinguistics: emotion, affect and personality in
speech and language processing. Wiley, Chichester. doi:10.1002/9781118706664

Schuller B, Steidl S, Batliner A, Nöth E, Vinciarelli A, Burkhardt F, van Son R, Weninger F,
Eyben F, Bocklet T, Mohammadi G, Weiss B (2012) The INTERSPEECH 2012 speaker trait
challenge. In: Proceedings of the 13th annual conference of the international speech
communication association (Interspeech 2012), Portland, 9–13 Sept 2012. http://www.isca-
speech.org/archive/interspeech_2012/i12_0254.html

Sellers M (2013) Toward a comprehensive theory of emotion for biological and artificial agents.
Biol Inspired Cogn Archit 4:3–26. doi:10.1016/j.bica.2013.02.002

Sun X, Lichtenauer J, Valstar M, Nijholt A, Pantic M (2011) A multimodal database for mimicry
analysis. In: D’Mello S, Graesser A, Schuller B, Martin J-C (eds) Affective computing and
intelligent interaction, Lecture Notes in Computer Science. Springer, Berlin, pp 367–376.
doi:10.1007/978-3-642-24600-5_40

Trappl R, Petta P, Payr S (eds) (2002) Emotions in humans and artifacts. MIT Press, Cambridge
Vannini N, Enz S, Sapouna M, Wolke D, Watson S, Woods S, Dautenhahn K, Hall L, Paiva A,

André E, Aylett R, Schneider W (2011) “FearNot!”: a computer-based anti-bullying-programme
designed to foster peer interventions. Eur J Psychol Educ 26(1):21–44. doi:10.1007/s10212-
010-0035-4

References 327

http://dx.doi.org/10.1016/j.jcss.2013.03.008
http://dx.doi.org/10.1016/j.learninstruc.2013.09.002
http://dx.doi.org/10.1007/978-90-481-3129-7
http://dx.doi.org/10.1007/978-3-319-09516-5
http://dx.doi.org/10.1109/t-affc.2013.14
http://dx.doi.org/10.1177/0539018405058216
http://dx.doi.org/10.1016/j.specom.2015.06.003
http://dx.doi.org/10.1027/1864-1105/a000040
http://dx.doi.org/10.1109/T-AFFC.2011.34
http://dx.doi.org/10.1002/9781118706664
http://www.isca-speech.org/archive/interspeech_2012/i12_0254.html
http://www.isca-speech.org/archive/interspeech_2012/i12_0254.html
http://dx.doi.org/10.1016/j.bica.2013.02.002
http://dx.doi.org/10.1007/978-3-642-24600-5_40
http://dx.doi.org/10.1007/s10212-010-0035-4
http://dx.doi.org/10.1007/s10212-010-0035-4

Chapter 15
Affective Conversational Interfaces

Abstract In order to build artificial conversational interfaces that display behaviors
that are credible and expressive, we should endow them with the capability to
recognize, adapt to, and render emotion. In this chapter, we explain how the
recognition of emotional aspects is managed within conversational interfaces,
including modeling and representation, emotion recognition from physiological
signals, acoustics, text, facial expressions, and gestures and how emotion synthesis
is managed through expressive speech and multimodal embodied agents. We also
cover the main open tools and databases available for developers wishing to
incorporate emotion into their conversational interfaces.

15.1 Introduction

Building on the overview of approaches to affect, emotion, and personality pre-
sented in Chap. 14, this chapter discusses how these features can be incorporated
into conversational interfaces to make them more believable and more expressive.
The first section looks at the Emotion Markup Language (EmotionML), a recom-
mendation of the W3C for annotating features of emotion. Next, we provide a
detailed discussion of the processes of emotion recognition, looking at the phases of
data collection and annotation, learning, and optimization, and at the behavioral
signals that are used to recognize emotion, including physiological signals, par-
alinguistic features in speech and text, facial expressions, and gestures. This is
followed by an overview of the synthesis of emotion. For each of the different
aspects discussed, we provide a list of various tools that are available for
developers.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_15

329

http://dx.doi.org/10.1007/978-3-319-32967-3_14

15.2 Representing Emotion with EmotionML

The Emotion Markup Language (EmotionML)1 is a recommendation of the W3C
published by the Multimodal Interaction Working Group. At the time of writing, the
latest version is 1.0, published in 2014. Emotion Markup Language 1.0 is designed
to be practically applicable and based on concepts from research in affect and
emotion. EmotionML can be used to represent emotions and related concepts fol-
lowing any of the approaches described in Chap. 14.

The root element of an EmotionML file is <emotionml>, which may contain
different <emotion> elements that represent the annotated emotions. Depending
on the model used to represent emotions, the <emotion> element may include a
dimension set, category set, or appraisal set attribute indicating the
dimensional space, list of categories, or appraisal model, respectively. For each of
these representations, different tags may be nested inside the <emotion> element.

The <dimension> element can be used for dimensional models. The attributes
required are a name for the dimension and a value, and optionally, a confidence can
be assigned to the annotation. Each <emotion> that is annotated may have as
children as many <dimension> elements as are required by that space. For example,
in the tridimensional space of pleasure (valence), arousal, and dominance (PAD),
there would be three dimension elements. As anger can be characterized by low
pleasure, high arousal, and high dominance, it would be represented as shown in
Code 15.1.

It is possible to define the dimension set manually or to use previously defined
models that can be found in the document Vocabularies for EmotionML.2 In this
document, there are lists of emotion vocabularies that can be used with EmotionML
that follow scientifically valid inventories corresponding to categories (e.g.,
Ekman’s Big Six), dimensions (e.g., Mehrabian’s PAD), appraisals (e.g., the
Ortony, Clore, and Collins (OCC) model of emotion), and action tendencies (e.g.,
Frijda’s action tendencies).

Code 15.1 Representing anger in a dimensional space with EmotionXML

1https://www.w3.org/TR/emotionml/. Accessed February 27, 2016.
2http://www.w3.org/TR/emotion-voc/. Accessed March 1, 2016.

330 15 Affective Conversational Interfaces

http://dx.doi.org/10.1007/978-3-319-32967-3_14
https://www.w3.org/TR/emotionml/
http://www.w3.org/TR/emotion-voc/

The <category> element can be used for discrete models in which emotion is
assigned a name attribute. As shown in Code 15.2, an item has been tagged as
“anger,” but in this case, it is not represented as a point in a space but as a category
chosen from a catalog called “big6.”

Here, we can see how to define the vocabulary manually, though we could have
used a predefined catalog as in the previous example using <emotion
category-set = “http://www.w3.org/TR/emotion-voc/xml#big6”>. Optionally,
it is possible to include a confidence attribute indicating the annotator’s confidence
that the annotation for the category is correct.

The <appraisal> element allows the use of appraisal models. The only required
element is the name, but again we can also specify a value and a confidence attribute.
For example, according to Scherer, anger entails appraising an event as incongruent
with one’s goals and values and intentionally caused. Note that, as discussed earlier in
Chap. 14, with the appraisal model we are not interested in representing anger, but
rather a situation that could be appraised as anger (Code 15.3).

Code 15.2 Representing anger as an emotion category with EmotionXML

Code 15.3 Representing appraisal of anger with EmotionXML

15.2 Representing Emotion with EmotionML 331

http://www.w3.org/TR/emotion-voc/xml%23big6
http://dx.doi.org/10.1007/978-3-319-32967-3_14

Usually, it is necessary to tag more than one emotional item, and EmotionML
facilitates different mechanisms to include time stamps and durations. For example,
it is possible to indicate the absolute starting and finishing time or a starting time
and duration. In the following example, we see that surprise starts at moment
1268647334000 and ends at 1268647336000, while anger starts at 1268647400000
and lasts 130 ms (Code 15.4).

To indicate relative durations, it is also possible to include an identifier for the
<emotion> element. For example, we can say that anger starts 66,000 ms after
surprise (Code 15.5).

Also, the <trace> element can be used to represent a periodic sampling of the
value of an emotion (Code 15.6).

Code 15.4 Including time stamps and durations in EmotionXML

Code 15.6 Representing a sampled emotion in EmotionXML

Code 15.5 Including relative durations in EmotionXML

332 15 Affective Conversational Interfaces

According to its specification, EmotionML is conceived as a multipurpose
language that can be used for manual annotation of corpora, as a standard language
for the output of emotion recognizers, or to specify the emotional behavior gen-
erated by automated systems. In its specification, there are also different examples
of how it can be used in combination with other compatible languages such as
Extensible Multimodal Annotation Markup Language (EMMA), Synchronized
Multimedia Integration Language (SMIL), or Speech Synthesis Markup Language
(SSML).

15.3 Emotion Recognition

The processes involved in building an emotion recognizer are shown in Fig. 15.1.
In this section, we focus on the following phases: data collection and annotation,
learning, and optimization.

During the data collection phase different signals are recorded from the user and
preprocessed to eliminate noise and other phenomena that may degrade them. The
question here is which information can be obtained from the user that is a reliable
source of emotional information and how to acquire it. Emotion recognition can be
performed using any of the input modalities of the conversational interface (e.g.,
detecting emotion in the user’s voice or facial expression) or using a combination of
them. It can also take into account the appraisal mechanisms in users and the effect
that the interaction itself may have on their emotional responses.

However, raw signals are not appropriate inputs for a classifier. They must be
sampled and different features and statistics are usually computed in order to make

Fig. 15.1 Processes involved in building an emotion recognizer

15.2 Representing Emotion with EmotionML 333

them suitable for processing. Thus, the features are not only the raw values com-
puted from the input signal (e.g., heart rate or voice volume), but statistical mea-
sures (e.g., heart rate variance and average volume). Sometimes there is a
classification process in order to obtain meaningful features to be entered into the
emotion recognizer. For example, from the recorded video, we may just focus on
the mouth and from the mouth apply a classifier to determine whether the user is
smiling or not. The unit being used for classification can also have an important
impact on the performance of the classifier. Schuller and Batliner (2013) present a
discussion of the advantages and disadvantages of different units.

Once we have obtained a database with all the recognition units (e.g., system
utterances) represented as feature vectors, the database must be annotated to assign
an emotion to each of the units. The annotation procedure depends on how the data
was collected. The data can be obtained from acted emotions, elicited emotions, or
spontaneous naturally occurring emotions. Acted data by professionals can be
appropriate for some modalities although they miss some of the subtleties of
emotional response production that cannot be consciously produced. For other
signals, such as physiological data, databases of acted emotions are not suitable.
With respect to elicited emotions, it is important to avoid inducing emotions dif-
ferent from the target emotion and eliminating the chances of inducing several
emotions. There are some widespread emotion elicitation methods using pictures,
films, music, and personal images (Calvo et al. 2014). Some authors have tuned
video games or produced faulty versions of systems to induce negative emotions in
users. Spontaneous emotions are the most natural, but they demand a complex
emotion annotation process in order to obtain a reliable database. Also, they may
have the drawback that not all emotions are frequent in all application domains and
usually databases of spontaneous emotions are unbalanced.

Once annotated, the emotional database is used to train a pattern recognition
algorithm that from a feature vector generates a classification hypothesis for an
emotion. Different algorithms have been compared to check their suitability for this
task, as will be described in the following sections.

As the overall idea is to recognize emotional states automatically from patterns
of input features, there must be a process of feature design and optimization to keep
only the relevant features. If too many features are considered, they may mislead the
recognition process and slow it down to the point that it cannot be computable
online (while the user is interacting with the system). On the other hand, the feature
set must contain all the relevant features so that recognition is reliable. Sometimes
feature selection is done offline, and on other occasions, algorithms are used that
automatically select the best features while the system is operating.

The process used to recognize the user’s emotion while interacting with a system
is shown in Fig. 15.2.

Emotion recognition is a vast research area. In the following sections, we will
describe the different sources of information that can be used in the recognition of
emotion along with some discussion of the challenges involved.

334 15 Affective Conversational Interfaces

15.3.1 Emotion Recognition from Physiological Signals

Different emotional expressions result in changes in autonomic activity, producing
physiological signals that can be measured and used for emotion recognition. This
activation affects different areas. Jerritta et al. (2011) classify them into cardio-
vascular system, electrodermal activity (EDA), respiratory system, muscular sys-
tem, and brain activity and present a detailed table of measures. In this section, we
will describe some of the most relevant of these.

The advantage of physiological signals is that they can be collected continuously
to check for changes or patterns. The signals are robust against social artifacts that
can hide emotions (e.g., a polite smile when the person is tense). As explained in
Jerritta et al. (2011), even if a person does not overtly express his/her emotion
through speech, gestures, or facial expression, a change in physiological patterns is
inevitable and detectable because the sympathetic nerves of the autonomous ner-
vous system become activated when a person is positively or negatively excited.

On the other hand, recording physiological signals requires sensors that,
although in most cases they are not invasive, can be intrusive and uncomfortable for
users. As discussed in Chap. 13, there are an increasing number of devices that can
be connected to computers and smartphones and that provide sensing capabilities.
However, developers will have to find a balance between the wearability and price
of the equipment and its reliability as a source of information for recognizing
emotion, since the cheap sensing devices that most users would find in stores are
not sufficiently reliable in most cases and sensors that are reliable are expensive and
mostly only used in laboratory conditions.

15.3.1.1 The Cardiovascular System

A heartbeat is a series of electrical impulses, involving depolarization and repo-
larization of the muscle whose electrical waveforms can be recorded. For example,
electrocardiography (ECG) detects the electrical activity of the heart through
electrodes attached to the outer surface of the skin and reflects emotional states such
as tension or stress.

Fig. 15.2 The process of emotion recognition

15.3 Emotion Recognition 335

http://dx.doi.org/10.1007/978-3-319-32967-3_13

With every beat, the volume of blood is pushed and the generated pulse wave
travels from the heart to all regions of the body. Blood volume pulse (BVP), also
called heart photoplethysmography (PPG), sensors detect blood flow by using
infrared light through the tip of a finger and measuring how much light is reflected.

The typical features for emotion classification obtained with the techniques
described are heart rate variability (HRV), respiratory sinus arrhythmia (RSA),
cardiac output, interbeat interval (IBI), and blood pressure (BP). Using these fea-
tures, it is possible to differentiate mainly valence (distinguishing between positive
and negative emotions), but it is also possible to recognize mental stress and effort.
In this way, decreasing heart rate is a cue of relaxation and happiness, and
increasing HRV is a sign of stress, anger, fear, and frustration.

Anger increases diastolic BP to the greatest degree, followed by fear, sadness,
and happiness, and can be distinguished from fear by larger increases in blood pulse
volume, while an increased interbeat interval can be used to detect amusement and
sadness.

15.3.1.2 Electrodermal Activity

EDA measures the skin’s ability to conduct electricity, which reflects changes in
sympathetic nervous systems due to emotional responses and is specifically cor-
related with arousal (e.g., it usually increases for amusement and sadness as found
in emotion elicitation using films). It is usually measured in terms of skin con-
ductance (SC) and galvanic skin response (GSR).

Sensors for SC and GSR, which are usually placed on fingers, are based on
applying a small voltage to the skin to measure its conductance or resistance. As SC
depends on the activity of the sweat glands, it is important to consider the per-
spiration component when measuring these features. Sometimes skin temperature is
used to measure the temperature at the surface of the skin, usually also on the
fingers. It is important to take into account that the temperature varies depending on
where the sensor is placed on the user’s body and even on the time of day or the
activity.

15.3.1.3 The Respiratory System

Typical features related to the respiratory system are breaths per minute, respiration
volume, and relative breath amplitude. These features measure how deep and fast
the user breathes and can be gathered with a sensor incorporated in a band fixed to
the user’s chest that accounts for chest expansions. An increasing respiration rate is
related to anger and joy and a decreased respiration rate with relaxation and bliss.
Respiratory cues can then be used to recognize arousal. However, it is important to
consider that shocking events may cause the user’s respiration to cease for a

336 15 Affective Conversational Interfaces

moment. Also, this can be indicative of negative valence as negative emotions may
cause irregular respiratory patterns.

Breathing is linked to cardiac features and is also related to talking. These
correlations must be considered in multimodal conversational interfaces in order to
avoid interdependencies.

15.3.1.4 The Muscular System

A frequent method for gathering information from the muscular system is elec-
tromyography (EMG), which measures the electric impulses generated by muscles
during their activity: the higher the amplitude of the electric signal, the higher the
power of muscular contraction, although the signal can be very subtle, and thus, it is
mainly used for strong emotions.

Although it can be useful to distinguish facial expressions, facial EMG requires
fixing electrodes on the user’s face, which can be intrusive, and thus, other
approaches based on video are usually employed to recognize emotions from facial
expressions and gestures (see further Sect. 15.3.3).

15.3.1.5 Brain Activity

Brain activity is usually measured by means of electroencephalography (EEG) and
brain imaging methods such as positron emission tomography. EEG measures the
electrical voltages generated by neurons when they fire. There are different fre-
quency subsets: high beta (20–40 Hz), beta (15–20 Hz), sensorimotor rhythm
(13–15 Hz), alpha (8–13 Hz), theta (4–8 Hz), and delta (2–4 Hz). The meaning of
the signals gathered and their relations to emotional states are described in Bos
(2006).

EEG is still not very well suited for practical implementations because of the
high sensitivity to physiological artifacts such as eye blinks and electrostatic
artifacts.

15.3.1.6 Classification Based on Physiological Cues

Usually, classification based on physiological cues makes use of a combination of
the features described in order to obtain patterns for a certain emotion. For example,
Jang et al. (2014) report that the responses of the autonomous system for fear
comprise broad sympathetic activation including cardiac acceleration, increased
myocardial contractility, vasoconstriction, and electrodermal activity (EDA).

It is interesting to note that the accuracy of arousal discrimination is usually
higher than that for valence. The reason might be that the change in the arousal

15.3 Emotion Recognition 337

level corresponds directly to the intensity of activities such as sweat glands and BP,
which is straightforward to measure with single features, while the valence dif-
ferentiation of emotion requires a multifactor analysis (Kim and André 2008).

With respect to classification accuracy, Kim and André (2008) report results
from early studies that already attained over 80 % accuracy. Picard et al. (2001)
obtained a recognition accuracy of over 80 % on average with a linear approach;
Nasoz et al. (2003) achieved an emotion classification accuracy of 83 %; and Haag
et al. (2004) classified arousal and valence separately using a neural network
classifier and obtained recognition accuracy rates of 96.6 and 89.9 %, respectively.
Kim et al. (2004) obtained a classification ratio of over 78 % for three emotions
(sadness, stress, and anger) and over 61 % for four emotions (sadness, stress, anger,
and surprise) by adopting support vector machines as a pattern classifier. In all these
approaches, the emotion database used was acted or elicited, which may make the
results more difficult to replicate in spontaneous settings.

A more recent study by Jerritta et al. (2011) presents a detailed survey of more
than 40 studies on physiological emotion recognition with accuracies ranging from
66 to 95 % using support vector machines, linear discriminant analysis, Bayesian
networks, Hidden Markov models, k-nearest neighbors, and neural networks, with
databases containing from 1 to 154 subjects.

15.3.1.7 Open Tools for the Analysis of Physiological Signals

The Augsburg Biosignal Toolbox (AuBT)3 is a toolbox written in MATLAB and
developed at the University of Augsburg. The toolbox can be used to analyze
physiological signals by extracting their features, automatically selecting the rele-
vant features, and using these features to train and evaluate a classifier. AuBT
includes two corpora: a corpus containing physiological data of a single user in four
different emotional states (Augsburg database of biosignals (AuDB)) and a corpus
containing physiological data recorded from a single user under varying stress
DRIving under VArying WORKload (DRIVAWORK).

AuDB was collected by recording ECG, EMG, SC, and respiratory features of
one participant while listening to music in order to induce one of the emotions of
joy, anger, sadness, and pleasure. There were 25 separate sessions on different days
with a total of 200 min of data.

DRIVAWORK contains recordings of ECG, EMG, SC, temperature, BVP, and
respiratory features along with audio and video recordings of participants in a
simulated car drive. It contains a total of 15 h from 24 participants where relaxed
and stressed states were elicited by giving the participants different tasks on top of a
driving task.

3https://www.informatik.uni-augsburg.de/de/lehrstuehle/hcm/projects/tools/aubt/. Accessed February
27, 2016.

338 15 Affective Conversational Interfaces

https://www.informatik.uni-augsburg.de/de/lehrstuehle/hcm/projects/tools/aubt/

15.3.2 Emotion Recognition from Speech

For conversational interfaces, the user’s spoken input is probably the most relevant
source of emotional information in that it encodes the message being conveyed (the
textual content) as well as how it is conveyed (paralinguistic features such as tone
of voice).

15.3.2.1 Paralinguistic Features

Many acoustic features can be obtained from the speech signal, although there is no
single approach for classifying them. Batliner et al. (2011) distinguish segmental
and suprasegmental features.

Segmental features are short-term spectral and derived features, including
mel-frequency cepstral coefficients (MFCCs), linear predictive coding (LPC), and
wavelets. Suprasegmental features model prosodic types such as pitch, intensity
duration, and voice quality. Features can be represented as raw data or they can be
normalized, standardized, and presented as statistics (means, averages, etc.).

The main groups of acoustic features used for emotion recognition are listed
below. Usually, for each of these groups, different features are computed, including
statistics such as minimum, maximum, variance, mean, and median.

• Intensity (energy). Intensity is the physical energy of the speech signal and
models the loudness of a sound as perceived by the human ear.

• Duration. Duration models temporal aspects of voiced and unvoiced segments.
It can be computed over the whole signal or on higher-order phonological units,
e.g., words, to be correlated with their linguistic content.

• Zero Crossing Rate (ZCR). ZCR counts the number of times the speech signal
changes its sign and thus at some point equals zero. It is useful to tell whether a
speech signal is voiced (low ZCR) or not.

• Pitch/Fundamental frequency. The fundamental frequency F0 is very repre-
sentative of emotion, as human perception is very sensitive to changes in pitch.

• Linear Prediction Cepstral Coefficients (LPCCs). Spectral features represent
phonetic information. Their extraction can be based on LPC. The main idea of
linear prediction is that the current speech sample can be predicted from its
predecessors, i.e., it can be approximated by a linear combination of previous
samples.

• Mel-Frequency Cepstral Coefficients (MFCCs). MFCCs are among the most
widely used speech features for automatic speech processing including speech
and speaker recognition. They are computed by transforming the signal into a
cepstral space. Coefficient 0 describes the signal energy. Coefficients 1–12
(approximately) describe mainly the phonetic content, and higher-order coeffi-
cients describe more the vocal tract and thus speaker characteristics.

15.3 Emotion Recognition 339

• Formants. Cepstral coefficients are very widespread features for speech pro-
cessing, but they have a poor performance with noisy speech. Thus, to handle
real-life speech, they can be supplemented with formant parameters. Formants
are used to model changes in the vocal tract shape and they vary according to
the spoken content, in particular formants F1 and F2 and their bandwidths.

• Wavelets represent a multilevel analysis of time, energy, and frequencies of a
speech signal and account for its sharp transitions and drifts.

• Voice Quality. Voice quality features are based on acoustical models of the
vocal folds. They model jitter, shimmer, and further microprosodic events.

For a review of emotionally relevant features and extraction techniques, see
(Batliner et al. 2011; Cowie and Cornelius 2003; Ververidis and Kotropoulos
2006). A summary of commonly associated emotion effects in relation to normal
speech is shown in Table 15.1.

15.3.2.2 Classification of Paralinguistic Features

Since 2009, the INTERSPEECH Conference, organized by the International Speech
Communication Association (ISCA), has held Computational Paralinguistics
Challenges. Not all editions have focused on emotion, but they have provided an
opportunity to share databases, to replicate and compare results, and to compile the
best features and algorithms to be used for classification. All subchallenges allow
contributors to use their own features and machine learning algorithms, although
participants adhere to the definition of training, development, and test sets. Thus,
results are directly comparable, and it is easy for the interested reader to check
which approaches have obtained the best results in each challenge.4

Table 15.1 Common effects of emotion in speech features of Western languages (based on
Väyrynen 2014)

Anger Fear Joy Sadness Disgust Surprise

Speech rate > ≫ > or < < n >

Pitch average o o ≫ < n >

Pitch range ≫ ≫ ≫ < > >

Pitch changes Abrupt Normal Smooth up Down Down terminal High

Intensity > = > < < >

Voice quality Breathy Irregular Breathy Resonant Grumbled Breathy

Articulation Tense Precise Normal Slurring Normal

The symbols “>,” “≫,” and “o” represent increase and symbols “<,” “≪,” and “n” decrease,
while “=” indicates no perceived change

4http://compare.openaudio.eu/. Accessed February 27, 2016.

340 15 Affective Conversational Interfaces

http://compare.openaudio.eu/

15.3.2.3 Open Tools for the Analysis of Paralinguistic Features

There are several tools—most of them open source—that provide the algorithms to
perform acoustic analysis and visualization, as well as tools for scripting and
classification.

Praat phonetics software, developed at the University of Amsterdam, is an
open-source software package for the analysis of speech (Boersma and Weenink
2016). Praat implements algorithms to perform the main phonetic measurement and
analysis procedures, including working with waveforms and spectrograms, mea-
suring pitch, pulses, harmonics, formants, intensity, and sound quality parameters.
Praat also features graphic representations and statistics and allows users to create
their own scripts and communicate with other programs. On its Web page5, it is
possible to find information about how to use it to compute the features described
previously. There is also a Praat Users Group in yahoo6 and conversations about
Praat in other communities of programmers such as Stack Overflow.7

EmoVoice/Open SSI. The Open Social Signal Interpretation framework (Open
SSI)8 offers tools to record, analyze, and recognize human behavior in real time,
including gestures, mimics, head nods, and emotional speech (Wagner et al. 2013).
EmoVoice was developed in the Human-Centered Multimedia Lab in the
University of Augsburg and has been used by several EU-funded projects related to
affective interaction. EmoVoice is integrated into the Social Signal Interpretation
(SSI) framework and provides modules for real-time recognition of emotions from
acoustics. The modules include speech corpus creation, segmentation, feature
extraction, and online classification. The phonetic analysis used by EmoVoice relies
on the algorithms provided by Praat.

openSMILE. The Speech and Music Interpretation by Large-space Extraction
(SMILE) tool also provides general audio signal processing, feature extraction, and
statistics as in the previously described tools. Its input/output formats are compliant
with other widespread tools for machine learning such as the Hidden Markov
Toolkit, Waikato Environment for Knowledge Analysis (WEKA), and the Library
for Support Vector Machines (LibSVM). openSMILE was started at the Technical
University of Munich by Florian Eyben, Martin Wöllmer, and Björn Schuller
(Eyben et al. 2013) and is now maintained by audEERING and distributed free of
charge for research and personal use.9

Databases. In order to train emotion recognizers, there is a need for emotionally
labeled corpora. There are different corpora that have been released under varying
licenses. The Association for the Advancement of Affective Computing compiles
the main databases and tools and is constantly updated. For example, they have the

5http://www.fon.hum.uva.nl/praat/. Accessed February 27, 2016.
6https://uk.groups.yahoo.com/neo/groups/praat-users. Accessed February 27, 2016.
7http://stackoverflow.com/questions/tagged/praat. Accessed February 27, 2016.
8http://hcm-lab.de/projects/ssi/. Accessed February 27, 2016.
9http://www.audeering.com/research/opensmile. Accessed February 27, 2016.

15.3 Emotion Recognition 341

http://www.fon.hum.uva.nl/praat/
https://uk.groups.yahoo.com/neo/groups/praat-users
http://stackoverflow.com/questions/tagged/praat
http://hcm-lab.de/projects/ssi/
http://www.audeering.com/research/opensmile

HUMAINE, Belfast Naturalistic, and Geneva Vocal Emotion Expression Stimulus
databases.10 We recommend readers to check this Web page as it contains infor-
mation about projects, journals and conferences, researchers, tools, and databases
related to affective computing. Also, the European Language Resources Association
(ELRA) has a catalog of spoken, written, and multimodal resources, some of them
related to emotion.11

15.3.2.4 Extracting Affective Information from Text

In conversational interfaces, the user’s spoken input is translated into text by means
of an automatic speech recognizer. The text is used to extract the semantics of the
message conveyed and to compute the most adequate system response. However,
the text also carries information about the user’s emotional state. This is encoded in
the words and grammatical structure. For example, saying “as you wish” is not the
same as saying “do what the hell you want.”

There are many techniques for extracting affective information from text. Most
of these involve applying techniques that are widely used for ASR and SLU to this
new classification task. For example, emotion recognition from text uses prepro-
cessing stages that are common to techniques used in SLU, such as stemming
(separating lexemes from morphemes in order to avoid a dimensionality problem,
especially in highly inflective languages) and stopping (removing non-relevant
words). For the processing of affect, non-linguistic vocalizations such as sighs,
yawns, laughs, and cries are important and are usually included as vocabulary.

The main approaches used are bag of words, n-grams, rule models, and semantic
analysis. Of these, bag of words and n-grams are widely used because of their
simplicity.

Bag of words. The main idea behind this approach is that words have an
affective charge and some words are more frequent in expressions produced under
certain emotional states than others. In this approach, the emotional salience of each
word in the vocabulary to be considered is computed in a training corpus that is
emotionally annotated. Then, when a new user utterance is ready to be processed,
an overall emotional score is computed taking into account the most representative
emotional category for each word in the utterance.

Sometimes we can also use already prepared vocabularies so that we just have to
count the number of appearances of each word to compute the probability of each
emotion being considered. For example, “hell” is very likely to appear under an
anger setting, and thus, “do what the hell you want” can we considered as anger,
while “as you wish” could be considered neutral as the vocabulary employed would
have a low probability of being related to any affect category.

10http://emotion-research.net/toolbox/toolbox_query_view?category=Database. Accessed February
27, 2016.
11http://catalog.elra.info/. Accessed February 27, 2016.

342 15 Affective Conversational Interfaces

http://emotion-research.net/toolbox/toolbox_query_view%3fcategory%3dDatabase
http://catalog.elra.info/

N-grams. Sometimes considering words in isolation does not provide accurate
results, as it may be necessary to account for the relation between the different
words in the phrase. For example, if the user says “this is fun as hell!”, “hell”
should not be considered an indicative of anger. Using n-grams (see Chap. 8), we
could account for how the preceding structure “fun as” changes the polarity of
“hell” from negative to positive. In current work, mostly unigrams and bigrams
(and very rarely trigrams) have been employed for emotion recognition, e.g., Polzin
and Waibel (2000).

Rule-based approaches. These approaches are based on expert knowledge of
the topic and have been extensively used in opinion mining, usually to determine
the polarity of opinion (whether it is positive or negative). For example, saying that
the battery of a wearable is rechargeable is usually categorized as a positive
opinion. This is, however, a tricky method in application domains that are very
variable, for example, saying that a smartphone is big might have been negative
some years ago but is positive now (and may be negative again in the future).

The rules can also be applied to quantify the effects of connectors and qualifiers
in combination with a bag-of-words approach. Thus, if the word “funny” indicates
positive polarity, “extremely funny” should have even a more positive value, and a
rule-based approach can be used to indicate explicitly how much higher. Similarly,
if we say someone is “friendly and kind,” this is more positive than just “friendly”
or just “kind.”

The rules may also change depending on user models. For example, in a tutoring
system, if a student says that he or she finds a problem difficult, it may be bad for a
student who is having problems with the subject and who may become frustrated,
but good for a student who is doing well and who likes challenges.

Linguistic analysis. Emotion can also be obtained from text by means of a
semantic analysis using the techniques described in Chap. 8.

Usually, techniques such as these are used for sentiment analysis (see the dis-
cussion on the difference between the semantic analysis and affective interaction
communities in Clavel and Callejas (2016)). Sentiment analysis is becoming very
popular for opinion mining (e.g., for companies to control conversations about their
brands in social networks). Although the bag-of-words and n-gram approaches can
also be employed in this area, it is very relevant to detect which is the object of the
opinion/affect, something that is also very important for emotion recognition when
using appraisal approaches.

The conversational context. Irrespective of the approach used, the information
derived from the current user utterance must be interpreted in the context of the
ongoing dialog. Techniques used to evaluate the contribution of the semantics of
the input to the conversation and how the system response is computed are
described in Chap. 10. With respect to the affect-related interpretation, it is possible
to use the conversational context to compute the probability of each emotional state
of the user more reliably. For example, if the system has been faulty, this may cause
a negative user state (Callejas et al. 2011).

15.3 Emotion Recognition 343

http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_8
http://dx.doi.org/10.1007/978-3-319-32967-3_10

15.3.2.5 Open Tools for Extracting Emotional Information from Text

Tools for processing natural language text and that can also be used for extracting
emotional information from text were described in Chap. 9, for example, the
Natural Language Toolkit (NLTK)12 and Apache OpenNLP.13

Specialized databases. The following are lexical resources for sentiment anal-
ysis and/or opinion mining. Sentiment lexicons are the most crucial resource for
most sentiment analysis algorithms.

• SentiWordNet.14 SentiWordNet assigns to each synset of WordNet three sen-
timent scores: positivity, negativity, and objectivity (Baccianella et al. 2010).

• Affective Norms for English Words (ANEW).15 This dataset provides nor-
mative emotional ratings for a large number of words in the English language in
terms of pleasure, arousal, and dominance.

• Opinion and sentiment lexicons and other resources by Bing Liu, author of
books and scientific papers on sentiment analysis (Liu 2015).16

• General Inquirer Home Page.17 The Harvard General Inquirer is a lexicon
attaching syntactic, semantic, and pragmatic information to part-of-speech tag-
ged words.

• Sentiment in finance and accounting. Words appearing in documents from
1994 to 2014. The dictionary reports count statistics, proportion statistics, and
nine sentiment category identifiers (e.g., negative, positive, uncertainty, liti-
gious, modal, constraining) for each word.18

• Creating your own sentiment lexicon. Sometimes, especially when working in
a very specific application domain, it is necessary to build a specific sentiment
lexicon. This is a very demanding task, but it is possible to expand existing
resources to facilitate this process. In Feldman (2013), there is a description of
how to do this from WordNet by using a vocabulary of seed adjectives and
introducing synonyms with “sentiment consistency.”

15.3.3 Emotion Recognition from Facial Expressions
and Gestures

Some authors have identified facial expressions as themost important clue for emotion
detection, and in fact, emotion recognition from facial features is one of the research

12http://www.nltk.org/. Accessed February 27, 2016.
13https://opennlp.apache.org/. Accessed February 27, 2016.
14http://sentiwordnet.isti.cnr.it/. Accessed February 27, 2016.
15http://csea.phhp.ufl.edu/media.html#bottommedia. Accessed February 27, 2016.
16https://www.cs.uic.edu/*liub/FBS/sentiment-analysis.html. Accessed February 27, 2016.
17http://www.wjh.harvard.edu/*inquirer/. Accessed February 27, 2016.
18http://www3.nd.edu/*mcdonald/Word_Lists.html. Accessed February 27, 2016.

344 15 Affective Conversational Interfaces

http://dx.doi.org/10.1007/978-3-319-32967-3_9
http://www.nltk.org/
https://opennlp.apache.org/
http://sentiwordnet.isti.cnr.it/
http://csea.phhp.ufl.edu/media.html%23bottommedia
https://www.cs.uic.edu/%7eliub/FBS/sentiment-analysis.html
http://www.wjh.harvard.edu/%7einquirer/
http://www3.nd.edu/%7emcdonald/Word_Lists.html

topics with a longer trajectory in the area (Ekman 1999). There are two approaches for
facial expression analysis: message based and sign based (Calvo et al. 2014).

Message-based analysis is based on the assumption that the face “is the mirror of
the soul” and that it displays a representation of a person’s emotional state. Some
authors have provided evidence of facial expressions that signal a reduced number
of basic emotions that are recognizable across cultures. Darwin described facial
expressions for more than 30 emotions, and the work by Ekman is quite paradig-
matic on “universal” basic emotions (Ekman 2003; Ekman and Rosenberg 2005).
There are even studies of homologous emotion recognition from facial expressions
in primates.

However, many other authors are not comfortable with the assumption of
message-based measurement and believe that interpreting the meaning of an
expression depends on the context. For example, the same expression may indicate
different emotional states depending on the context in which it was produced and
the person who produced it. Also, facial expressions could be posed, and thus, there
would be no correspondence between the real emotional state of the user and their
facial expression.

Sign-based analysis is more similar to the speech signal analysis described
earlier. The idea is to obtain relevant features from corpora of annotated facial
expressions and by means of a machine learning approach to learn patterns that
show the relation between the feature tuples and the annotated emotion.

There are different methods employed to discretize facial expressions into rel-
evant inputs for classification. The most relevant is the Facial Action Coding
System (FACS) (Ekman and Rosenberg 2005), which deconstructs facial expres-
sions into action units (AUs) chosen from a repertoire of more than 40 indicating
their presence or absence or their intensity (see some examples in Fig. 15.3).

Fig. 15.3 Sample action units

15.3 Emotion Recognition 345

Once the AUs have been detected, a classification process can be used to
determine the emotion, although some authors have also detected mappings that
allow the use of rule-based approaches.

15.3.3.1 The Facial Expression Recognition Process

The process of facial expression recognition is shown in Fig. 15.4:
Face detection. Face detectors are reviewed in Zhang and Zhang (2010). The

main challenge here is to overcome events that make image analysis difficult, as the
user’s face is not captured in its totality or in the correct position for an optimal
feature extraction. For instance, head motion, partial coverage of the face (e.g., if
the user puts their hand in front of their face or there is another obstacle between the
camera or the face), and non-frontal poses.

Face normalization. There are individual differences in head shape, skin color,
facial proportion as well as effects of the spatial face position that can be reduced by
converting the face detected to a canonical size and orientation.

Facial feature detection and tracking. The features typically used for emotion
recognition from facial expressions are based on the local spatial position or dis-
placement of specific points and regions of the face:

• Position and shape features (also called geometric features) that account for
shapes (e.g., eyebrows) and positions (e.g., edges of the mouth).

• Motion features that account for the movement of facial muscles (e.g., optical
flow or dynamic models of specific regions).

• Appearance features that represent changes in skin texture (e.g., wrinkles).

Geometric features refer to facial landmarks such as the eyes or brows. They can
be represented as points, a connected face mesh, active shape model, or face
component shape parameterization.

As described in Calvo et al. (2014), we can further divide geometric features into
sparse (e.g., eyes or eye corners) or dense (e.g., the contours of the eyes and other
permanent facial features). An advantage of the latter is that they provide infor-
mation from which to infer a 3D pose. To track a dense set of facial features, active

Fig. 15.4 The process of facial expression recognition

346 15 Affective Conversational Interfaces

appearance models (AAMs) are often used that describe shape by a 2D triangulated
mesh. In particular, the coordinates of the mesh vertices define the shape and the
vertex locations correspond to a source appearance image from which the shape is
aligned (see Fig. 15.5).

Motion features include optical flow and dynamic textures or motion history
images (MHI). These methods all encode motion in a video sequence.

Appearance features represent changes in skin texture such as wrinkling and
deepening of facial furrows and pouching of the skin. Many techniques for
describing local image texture have been proposed. A major challenge is that
lightning conditions affect texture. Biologically inspired appearance features, such
as Gabor wavelets or magnitudes, are more robust.

AU recognition. The features described can be directly used to recognize an
emotional state or can be used to recognize action units that are then used as a basis
for emotion recognition (i.e., Features → Emotion or Features →
AUs → Emotion).

Feature selection. As happened with speech and physiological signals, there can
be many features derived from facial expressions that could be used for classifi-
cation, but it is important to reduce dimensionality. The same methods as in the
previous cases apply (e.g., component analysis, bootstrapping), but there are also
some that are specific to visual features, including eigenmaps and locality pre-
serving projections.

15.3.3.2 Classification of Emotions from Facial Expressions

Most approaches use supervised learning with previously annotated data. For a
review, see Ryan et al. (2009). Calvo et al. (2014) discuss two approaches to
supervised learning:

Fig. 15.5 Schema of an
AAM mesh

15.3 Emotion Recognition 347

1. Static modeling—typically posed as a discriminative classification problem in
which each video frame is evaluated independently.

2. Temporal modeling—frames are segmented into sequences and typically
modeled with a variant of dynamic Bayesian networks (e.g., Hidden Markov
models, conditional random fields).

Temporal dynamics also help the study of transitions between emotions. In
conversational interfaces, temporal models are also interesting for coping with the
effect of the movement of the facial muscles while talking and how they may
interfere with one another.

15.3.3.3 Emotion Recognition from Gestures

Although gestures convey important affective information, they have not been
exploited much yet. The process followed is the same as in Fig. 15.5, but with other
features focusing on the body instead of on the face.

Usually, to avoid interpersonal differences of body shape and other aspects,
work focuses on different abstract representations:

• Skeleton. A representation of the skeleton is used. In order to do this, either
professional equipment or generally available commercial applications such as
Microsoft Kinect have been used.

• Silhouette and blobs. For example, hand blobs from which motion features are
extracted (acceleration, fluidity, symmetry, duration). See, for example, the
work by Castellano et al. (2010).

15.3.3.4 Tools for Recognizing Facial Expressions and Gestures

ANVIL.19 ANVIL is a free video annotation tool. It offers multilayered annotation
based on a user-defined coding scheme. During coding, the user can see color-coded
elements on multiple tracks in time alignment. Some special features are cross-level
links, non-temporal objects, coding agreement analysis, 3D viewing ofmotion capture
data, and a project tool for managing whole corpora of annotation files (Kipp 2012).

MUMIN annotation model. Implemented in various annotation tools, this model
deals with communicative nonverbal behaviors such as facial expressions, head
movements, hand gestures, body postures, and gaze. The MUMIN coding scheme,
developed in the Nordic Network on Multimodal Interfaces, is intended as a general
instrument for the study of gestures (in particular, hand gestures and facial displays)
in interpersonal communication, focusing on the role played by multimodal
expressions for feedback, turn management, and sequencing (Allwood et al. 2008).

19http://www.anvil-software.org/. Accessed February 27, 2016.

348 15 Affective Conversational Interfaces

http://www.anvil-software.org/

Databases

• Danish first encounter NOMCO corpus20 (Paggio and Navarretta 2011).
• Cohn–Kanade database.21 The Cohn–Kanade AU-coded facial expression

database is for research in automatic facial image analysis and synthesis and for
perceptual studies. Cohn–Kanade is available in two versions. The first version
comprises 486 sequences from 97 posers, and the second includes both posed
and non-posed (spontaneous) sequences.

• The MMI facial expression database22 (Pantic et al. 2005). This database
consists of over 2900 videos and high-resolution still images of 75 subjects
annotated for the presence of AUs in videos (event coding) and partially coded
on the frame level, indicating for each frame whether an AU is in either the
neutral, onset, apex, or offset phase.

• A complete overview of publicly available data sets that can be used in research
on automatic facial expression analysis is provided in Pantic and Bartlett (2007).

15.4 Emotion Synthesis

Emotion synthesis is based to a large extent on the same features described for
emotion recognition, so we will focus mainly on the tools and resources available.

There is an extensive body of work that shows that humans assign human
characteristics to artificial interlocutors. Especially relevant are the experimental
results achieved by Nass who shows that we often assign emotional content to
synthetic voices and treat conversational systems as social counterparts (Nass and
Lee 2000; Nass and Yen 2012).

15.4.1 Expressive Speech Synthesis

In the case of speech synthesis, the same parameters described in Sect. 15.3.2 can
be applied to color a message conveyed with emotion. This area of study is known
as expressive speech synthesis (ESS).

There are several approaches to ESS. On the one hand, it is possible to modify
naturally synthesized speech based on the prosodic rules that generated the desired
expression. That is, once we have a series of rules that determine which parameters
to change to synthesize emotional speech, we tweak those parameters to convey the
desired emotion (e.g., make it faster and louder in order to sound angry).

20http://metashare.cst.dk/repository/browse/danish-first-encounters-nomco-corpus/6f4ee05644421
1e2b2e00050569b00003505d6478d484ae2b75b737aab697e99/. Accessed February 27, 2016.
21http://www.pitt.edu/*emotion/ck-spread.htm. Accessed February 27, 2016.
22http://mmifacedb.eu/. Accessed February 27, 2016.

15.3 Emotion Recognition 349

http://metashare.cst.dk/repository/browse/danish-first-encounters-nomco-corpus/6f4ee056444211e2b2e00050569b00003505d6478d484ae2b75b737aab697e99/
http://metashare.cst.dk/repository/browse/danish-first-encounters-nomco-corpus/6f4ee056444211e2b2e00050569b00003505d6478d484ae2b75b737aab697e99/
http://www.pitt.edu/%7eemotion/ck-spread.htm
http://mmifacedb.eu/

On the other hand, we could use recordings corresponding to the target emotion
that are already available in a database. To gain flexibility, the recordings can
consist of small units that can correspond to the target emotion or to other emotions
that are blended to generate new styles.

The procedure followed in both cases is the same as described for TTS (see
Chap. 5), but accepting the target emotion as another input. Additional details on
work addressing each of these techniques can be found in the comprehensive reviews
by Govind and Prasanna (2012), Schröder (2009), and van Santen et al. (2008).

15.4.1.1 Tools

The same tools described in Sect. 15.3.2 apply here. For the specific case of speech
synthesis, EmoFilt23 is a very interesting tool for readers who want to experiment
with ESS, as it shows very clearly how to generate emotions from a neutral voice by
configuring the synthesis parameters. EmoFilt is an open-source program based on
the free-for-non-commercial-use MBROLA synthesis engine (Burkhardt 2005).

15.4.2 Generating Facial Expressions, Body Posture,
and Gestures

Embodied conversational agents (ECAs) are able to display facial expressions and
gestures (see Chap. 14). Based on the earlier discussion of emotion perception in
facial expression and gestures (Sect. 15.3.3), it is possible to generate static snap-
shots of emotional expression (e.g., by generating the relevant action units).
However, expressive behaviors for conversational interfaces involve not only
choosing the appropriate features but also deciding how they are realized and
especially what are the dynamic qualities of the signals generated.

With respect to facial expressions, different approaches have been used in the
literature, from interpolating discrete emotions to fuzzy logic, or by superposing
different facial areas corresponding to different emotions. For gestures and body
movements, different dynamic models are used based on features that correspond to
temporal, spatial, power, and fluidity aspects. A comprehensive description can be
found in the following references (Pelachaud 2009; Niewiadomski et al. 2013).

In addition to the synthesis of these general qualities, given that the generation of
multimodal expressive behavior encompasses many details, it is possible to find
very complex research on narrower aspects, such as emotional eye movement and
gaze or smiling.

23http://emofilt.syntheticspeech.de/. Accessed February 27, 2016.

350 15 Affective Conversational Interfaces

http://dx.doi.org/10.1007/978-3-319-32967-3_5
http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://emofilt.syntheticspeech.de/

15.4.2.1 Tools for Generating Facial Expressions, Body Posture,
and Gestures

SAIBA, FML, and BML. SAIBA is a model for unifying multimodal behavior
generation for ECAs. It consists of three stages: intent planning, behavior planning,
and behavior realization. Figure 15.6 shows the general architecture and an
example of the FML and BML files generated.24

The intent planner decides the communicative intention, the behavior planner
schedules the communicative signals, and finally the behavior realizer realizes the
behaviors scheduled to generate the corresponding animation. As shown in
Fig. 15.6, the interface between stages (1) and (2)—intent planning and behavior
planning—describes communicative and expressive intent without any reference to
physical behavior. This information (e.g., the agent’s current goals, emotional state,
and beliefs) can be specified with the Functional Markup Language (FML),25 which
provides a semantic description that accounts for the aspects that are relevant and
influential in the planning of verbal and nonverbal behaviors (Cafaro et al. 2014).

The interface between stages (2) and (3)—behavior planning and behavior
realization—describes multimodal behaviors as they are to be realized by the final

Fig. 15.6 The SAIBA model

24The example code shown is from the SEMAINE project: http://semaine.opendfki.de/wiki/FML.
Accessed February 27, 2016.
25http://secom.ru.is/fml/. Accessed February 27, 2016.

15.4 Emotion Synthesis 351

http://semaine.opendfki.de/wiki/FML
http://secom.ru.is/fml/

stage of the generation process (e.g., speech, facial expressions, and gestures). The
Behavior Markup Language (BML) was proposed to provide a general description
of the multimodal behavior that can be used to control the agent (Kopp et al. 2006).

Alma.26 Alma is a computational model of real-time affect for virtual characters.
It contains appraisal rules for emotion, mood, and personality to control the
physical behavior of ECAs. It also provides a CharacterBuilder tool based on the
AffectML language. It has been programmed in Java, and its code is available in
GitHub.

EMA (Marsella and Gratch 2009). EMA is another computational model of
emotion, based on the time dynamics of emotional reactions that can be used to
generate naturalistic emotional behaviors for ECAs.

Fatima.27 Fatima is an autonomous agent architecture based on BDI and OCC,
initially developed to control the minds of the agents in FearNot! (in the European
project VICTEC). The architecture focuses on using emotions and personality to
influence the agent’s behavior.

Other tools. The general-purpose tools cited in Chap. 14 to develop ECAs can
also be employed to render emotional behaviors.

15.4.3 The Uncanny Valley

Many experiments have demonstrated that a higher degree of human likeness
increases the appeal of agents and robots. However, when building very realistic
agents, there is the danger of falling into the so-called uncanny valley (Kätsyri et al.
2015). As shown in Fig. 15.7, as the agent becomes more sophisticated, it is more
familiar and better accepted by users until it reaches a point when it becomes
disturbing because it is very real but still not as natural as would be expected (that is
the valley), and then as they become more human-like, the acceptability increases
again.

The generation of rich expressive behaviors may lead to expectations in users
that, when not addressed, may negatively affect their perception of the system. Ben
Mimoun et al. (2012) present an interesting discussion of the reasons for the failure
of ECAs, including an exaggeration of expectations. They present some solutions,
such as explaining clearly to users the limitations of the agent and its functionality.

As discussed in Mathur and Reichling (2016), humans seem to appear to infer
trustworthiness from affective cues (e.g., subtle facial expressions) that are known
to contribute to human–human social judgments, and thus, affective interaction is a
key to developing believable and likeable conversational interfaces.

26http://alma.dfki.de. Accessed February 27, 2016.
27http://sourceforge.net/projects/fearnot/files/FAtiMA/FAtiMA/. Accessed February 27, 2016.

352 15 Affective Conversational Interfaces

http://dx.doi.org/10.1007/978-3-319-32967-3_14
http://alma.dfki.de
http://sourceforge.net/projects/fearnot/files/FAtiMA/FAtiMA/

15.5 Summary

Endowing conversational interfaces with the ability to display believable and
expressive behaviors involves modeling and representing information from physi-
ological signals, acoustic and paralinguistic features of speech and text, facial
expressions, and gestures. Features of emotion can be marked up using the W3C
Emotion Markup Language (EmotionML). The processes of implementing emotion
recognition and synthesis include stages of data collection and annotation, learning,
and optimization. There is a wide range of tools and databases available to
developers who wish to incorporate emotional behaviors into conversational
interfaces.

Further Reading
Schuller and Batliner (2013) give a complete survey of paralinguistics, including
interesting aspects that we have not covered, such as the difference between acted
versus spontaneous, felt versus perceived, intentional versus instinctual, universal
versus culture-specific, and many details on emotion modeling such as type and
segmentation units, features, balancing, partitioning, and laboratory versus life
approaches. There is also a full chapter on corpus engineering, corpora and
benchmarks, and a “hands-on” practical tutorial with openSMILE.

Petta et al.’s study (2011) is a collection of 41 chapters describing the
HUMAINE project, funded by the European Commission. Calvo et al. (2014)
present a comprehensive survey of affective computing, while Gratch and Marsella
(2013) cover social aspects of emotion processing.

Fig. 15.7 Interpretation of the Uncanny Valley

15.5 Summary 353

Exercises

1. Not that easy! Put yourself in the agent’s shoes and take a test28 of emotion
recognition (if you take it in a language that you cannot speak, it will give you
an even better perspective).

2. A world of opportunities. Go over the tools and databases that have been
presented throughout the chapter and get familiarized with them, as they are
open and provide instructions that will enable you to easily develop simple
emotion recognizers and synthesizers.

3. What a feeling! Follow the demos created by Christopher Potts for the
Sentiment Symposium Tutorial29 to see how sentiment analysis works using
natural language processing.

References

Allwood J, Cerrato L, Jokinen K, Naravetta C, Paggio P (2008) The MUMIN coding scheme for
the annotation of feedback, turn management and sequencing phenomena. Lang Resour Eval
41(3/4):273–287. doi:10.1007/s10579-007-9061-5

Baccianella S, Esuli A, Sebastiani F (2010) SentiWordNet 3.0: an enhanced lexical resource for
sentiment analysis and opinion mining. In: International conference on language resources and
evaluation (LREC2010). European Language Resources Association (ELRA), Malta, 17–23
May 2010, pp 2200–2204

Batliner A, Schuller B, Seppi D, Steidl S, Devilliers L, Vidrascu L, Vogt T, Aharonson V, Amir N
(2011) The automatic recognition of emotions in speech. In: Cowie R, Pelachaud C, Petta P
(eds) Emotion-oriented systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 71–99.
doi:10.1007/978-3-642-15184-2_6

Ben Mimoun MS, Poncin I, Garnier M (2012) Case study—embodied virtual agents: an analysis on
reasons for failure. J Retail Consum Serv 19(6):605–612. doi:10.1016/j.jretconser.2012.07.006

Boersma P, Weenink D (2016) Praat: doing phonetics by computer. http://www.fon.hum.uva.nl/
praat/

Bos DO (2006) EEG-based emotion recognition; the influence of visual and auditory stimuli.
http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Oude_Bos-Danny.pdf

Burkhardt F (2005) Emofilt: the simulation of emotional speech by prosody-transformation. In:
Proceedings of the 9th European conference on speech communication and technology
(Interspeech2005), Lisbon, Portugal, 4–8 Sept 2005, pp 509–512. http://www.isca-speech.org/
archive/interspeech_2005/i05_0509.html

Cafaro A, Vilhjálmsson HH, Bickmore T, Heylen D, Pelachaud C(2014) Representing
communicative functions in SAIBA with a unified function markup language. In:
Bickmore T, Marsella S, Sidner C (eds) Intelligent virtual agents. Springer International
Publishing, Switzerland, pp 81–94. doi:10.1007/978-3-319-09767-1_11

Callejas Z, Griol D, López-Cózar R (2011) Predicting user mental states in spoken dialogue
systems. EURASIP J Adv Signal Process 1:6. doi:10.1186/1687-6180-2011-6

28http://www.affective-sciences.org/content/exploring-your-ec. Accessed February 27, 2016.
29http://sentiment.christopherpotts.net/. Accessed February 27, 2016.

354 15 Affective Conversational Interfaces

http://dx.doi.org/10.1007/s10579-007-9061-5
http://dx.doi.org/10.1007/978-3-642-15184-2_6
http://dx.doi.org/10.1016/j.jretconser.2012.07.006
http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-Oude_Bos-Danny.pdf
http://www.isca-speech.org/archive/interspeech_2005/i05_0509.html
http://www.isca-speech.org/archive/interspeech_2005/i05_0509.html
http://dx.doi.org/10.1007/978-3-319-09767-1_11
http://dx.doi.org/10.1186/1687-6180-2011-6
http://www.affective-sciences.org/content/exploring-your-ec
http://sentiment.christopherpotts.net/

Calvo RA, D’Mello S, Gratch J, Kappas A (eds) (2014) The Oxford handbook of affective
computing, 1st edn. Oxford University Press, Oxford. doi:10.1093/oxfordhb/9780199942237.
001.0001

Castellano G, Leite I, Pereira A, Martinho C, Paiva A, McOwan PW (2010) Affect recognition for
interactive companions: challenges and design in real world scenarios. J Multimodal User
Interfaces 3(1–2):89–98. doi:10.1007/s12193-009-0033-5

Clavel C, Callejas Z (2016) Sentiment analysis: from opinion mining to human-agent interaction.
IEEE Trans Affect Comput 7(1):74–93. doi:10.1109/TAFFC.2015.2444846

Cowie R, Cornelius R (2003) Describing the emotional states that are expressed in speech. Speech
Commun 40(1–2):5–32. doi:10.1016/S0167-6393(02)00071-7

Ekman P (1999) Basic emotions. In: Dalgleish T, Power MJ (eds) Handbook of cognition and
emotion. Wiley, Chichester, pp 45–60. doi:10.1002/0470013494.ch3

Ekman P (2003) Emotions revealed: recognizing faces and feelings to improve communication
and emotional life, 1st edn. Times Books, New York

Ekman P, Rosenberg EL (eds) (2005) What the face reveals: basic and applied studies of
spontaneous expression using the facial action coding system (FACS), 2nd edn. Oxford
University Press, Oxford. doi:10.1093/acprof:oso/9780195179644.001.0001

Eyben F, Weninger F, Gross F, Schuller B (2013) Recent developments in openSMILE, the
munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM
international conference on multimedia (MM’13), Barcelona, Spain, 21–25 Oct 2013,
pp 835–838. doi:10.1145/2502081.2502224

Feldman R (2013) Techniques and applications for sentiment analysis. Commun ACM 56(4):82.
doi:10.1145/2436256.2436274

Govind D, Prasanna SRM (2012) Expressive speech synthesis: a review. IJST 16(2):237–260.
doi:10.1007/s10772-012-9180-2

Gratch J, Marsella S (eds) (2013) Social emotions in nature and artifact. Oxford University Press,
Oxford 10.1093/acprof:oso/9780195387643.001.0001

Haag A, Goronzy S, Schaich P, Williams J (2004) Emotion recognition using bio-sensors: first
steps towards an automatic system. In: André E, Dybkjær L, Minker W, Heisterkamp P
(eds) Affective dialogue systems. Springer Berlin Heidelberg, New York, pp 36–48. doi:10.
1007/978-3-540-24842-2_4

Jang E-H, Park B-J, Kim S-H, Chung M-A, Park M-S, Sohn J-H (2014) Emotion classification
based on bio-signals emotion recognition using machine learning algorithms. In: Proceedings
of 2014 international conference on information science, Electronics and Electrical
Engineering (ISEEE), Sapporo, Japan, 26–28 April 2014, pp 104–109. doi:10.1109/
InfoSEEE.2014.6946144

Jerritta S, Murugappan M, Nagarajan R, Wan K (2011) Physiological signals based human
emotion recognition: a review. In: 2011 IEEE 7th international colloquium on signal
processing and its applications (CSPA), Penang, Malaysia, 4–6 March 2011, pp 410–415.
doi:10.1109/CSPA.2011.5759912

Kätsyri J, Förger K, Mäkäräinen M, Takala T (2015) A review of empirical evidence on different
uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of
eeriness. Front Psychol 6:390. doi:10.3389/fpsyg.2015.00390

Kim J, André E (2008) Emotion recognition based on physiological changes in music listening.
IEEE Trans Pattern Anal 30(12):2067–2083. doi:10.1109/TPAMI.2008.26

Kim KH, Bang SW, Kim SR (2004) Emotion recognition system using short-term monitoring of
physiological signals. Med Biol Eng Comput 42(3):419–427. doi:10.1007/BF02344719

Kipp M (2012) ANVIL: a universal video research tool. In: Durand J, Gut U, Kristofferson G
(eds) Handbook of corpus phonology. Oxford University Press, Oxford. doi:10.1093/oxfordhb/
9780199571932.013.024

Kopp S, Krenn B, Marsella S, Marshall AN, Pelachaud C, Pirker H, Thórisson KR, Vilhjálmsson H
(2006) Towards a common framework for multimodal generation: the behavior markup
language. In: Gratch J, Young M, Aylett R, Ballin D, Olivier P (eds) Intelligent virtual agents.
Springer International Publishing, Switzerland, pp 205–217. doi:10.1007/11821830_17

References 355

http://dx.doi.org/10.1093/oxfordhb/9780199942237.001.0001
http://dx.doi.org/10.1093/oxfordhb/9780199942237.001.0001
http://dx.doi.org/10.1007/s12193-009-0033-5
http://dx.doi.org/10.1109/TAFFC.2015.2444846
http://dx.doi.org/10.1016/S0167-6393(02)00071-7
http://dx.doi.org/10.1002/0470013494.ch3
http://dx.doi.org/10.1093/acprof:oso/9780195179644.001.0001
http://dx.doi.org/10.1145/2502081.2502224
http://dx.doi.org/10.1145/2436256.2436274
http://dx.doi.org/10.1007/s10772-012-9180-2
http://dx.doi.org/10.1093/acprof:oso/9780195387643.001.0001
http://dx.doi.org/10.1007/978-3-540-24842-2_4
http://dx.doi.org/10.1007/978-3-540-24842-2_4
http://dx.doi.org/10.1109/InfoSEEE.2014.6946144
http://dx.doi.org/10.1109/InfoSEEE.2014.6946144
http://dx.doi.org/10.1109/CSPA.2011.5759912
http://dx.doi.org/10.3389/fpsyg.2015.00390
http://dx.doi.org/10.1109/TPAMI.2008.26
http://dx.doi.org/10.1007/BF02344719
http://dx.doi.org/10.1093/oxfordhb/9780199571932.013.024
http://dx.doi.org/10.1093/oxfordhb/9780199571932.013.024
http://dx.doi.org/10.1007/11821830_17

Liu B (2015) Sentiment analysis: mining opinions, sentiments, and emotions. Cambridge
University Press, New York. doi:10.1017/CBO9781139084789

Marsella SC, Gratch J (2009) EMA: a process model of appraisal dynamics. Cogn Syst Res 10
(1):70–90. doi:10.1016/j.cogsys.2008.03.005

Mathur MB, Reichling DB (2016) Navigating a social world with robot partners: a quantitative
cartography of the Uncanny Valley. Cognition 146:22–32. doi:10.1016/j.cognition.2015.09.
008

Nasoz F, Alvarez K, Lisetti CL, Finkelstein N (2003) Emotion recognition from physiological
signals using wireless sensors for presence technologies. Cogn Technol Work 6(1):4–14.
doi:10.1007/s10111-003-0143-x

Nass C, Lee KM (2000) Does computer-generated speech manifest personality? An experimental
test of similarity-attraction. In: Proceedings of the SIGCHI conference on human factors in
computing systems (CHI’00), The Hague, Netherlands, 1–6 April 2000, pp 329–336. doi:10.
1145/332040.332452

Nass C, Yen C (2012) The man who lied to his laptop: what we can learn about ourselves from our
machines. Penguin Group, New York

Niewiadomski R, Hyniewska SJ, Pelachaud C (2013) Computational models of expressive
behaviors for a virtual agent. In: Gratch J, Marsella S (eds) Social emotions in nature and
artifact. Oxford University Press, Oxford, pp 143–161. doi:10.1093/acprof:oso/
9780195387643.003.0010

Paggio P, Navarretta C (2011) Head movements, facial expressions and feedback in danish first
encounters interactions: a culture-specific analysis. In: Stephanidis C (ed) Universal access in
human-computer interaction users diversity. Springer Berlin Heidelberg, New York, pp 583–
590. doi:10.1007/978-3-642-21663-3_63

Pantic M, Bartlett MS (2007) Machine analysis of facial expressions. In: Delac K, Grgic M
(eds) Face recognition. I-Tech Education and Publishing, Vienna, Austria, pp 377–416. doi:10.
5772/4847

Pantic M, Valstar MF, Rademaker R, Maat L (2005) Web-based database for facial expression
analysis. In: IEEE International conference on multimedia and expo (ICME), Amsterdam, The
Netherlands, 6–8 July 2005, pp 317–321. doi:10.1109/ICME.2005.1521424

Pelachaud C (2009) Modelling multimodal expression of emotion in a virtual agent. Philos
Trans R Soc B Biol Sci 364(1535):3539–3548. doi:10.1098/rstb.2009.0186

Petta P, Pelachaud C, Cowie R (eds) (2011) Emotion-oriented systems: the Humaine handbook.
Springer, Berlin Heidelberg. doi:10.1007/978-3-642-15184-2

Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: analysis of
affective physiological state. IEEE Trans Pattern Anal 23(10):1175–1191. doi:10.1109/34.
954607

Polzin TS, Waibel A (2000) Emotion-sensitive human-computer interfaces. In: International
speech communication association (ISCA) tutorial and research workshop on speech and
emotion. Newcastle, Northern Ireland, UK, pp 201–206

Ryan A, Cohn JF, Lucey S, Saragih J, Lucey P, De La Torre F, Rossi A (2009) Automated facial
expression recognition system. In: 43rd annual international Carnahan conference on security
technology, Zurich, Switzerland, 5–8 Oct 2009, pp 172–177. doi:10.1109/CCST.2009.
5335546

Schröder M (2009) Expressive speech synthesis: past, present, and possible futures. In: Tao J,
Tan T (eds) Affective information processing. Springer, London, pp 111–126. doi:10.1007/
978-1-84800-306-4_7

Schuller B, Batliner A (2013) Computational paralinguistics: emotion, affect and personality in
speech and language processing. Wiley, Chichester, UK. doi:10.1002/9781118706664

Van Santen J, Mishra T, Klabbers E (2008) Prosodic processing. In: Benesty J, Sondhi MM,
Huang Y (eds) Springer handbook of speech processing. Springer, Berlin Heidelberg, pp 471–
488. doi:10.1007/978-3-540-49127-9_23

Väyrynen E (2014) Emotion recognition from speech using prosodic features. Doctoral
Dissertation, University of Oulu, Finland. http://urn.fi/urn:isbn:9789526204048

356 15 Affective Conversational Interfaces

http://dx.doi.org/10.1017/CBO9781139084789
http://dx.doi.org/10.1016/j.cogsys.2008.03.005
http://dx.doi.org/10.1016/j.cognition.2015.09.008
http://dx.doi.org/10.1016/j.cognition.2015.09.008
http://dx.doi.org/10.1007/s10111-003-0143-x
http://dx.doi.org/10.1145/332040.332452
http://dx.doi.org/10.1145/332040.332452
http://dx.doi.org/10.1093/acprof:oso/9780195387643.003.0010
http://dx.doi.org/10.1093/acprof:oso/9780195387643.003.0010
http://dx.doi.org/10.1007/978-3-642-21663-3_63
http://dx.doi.org/10.5772/4847
http://dx.doi.org/10.5772/4847
http://dx.doi.org/10.1109/ICME.2005.1521424
http://dx.doi.org/10.1098/rstb.2009.0186
http://dx.doi.org/10.1007/978-3-642-15184-2
http://dx.doi.org/10.1109/34.954607
http://dx.doi.org/10.1109/34.954607
http://dx.doi.org/10.1109/CCST.2009.5335546
http://dx.doi.org/10.1109/CCST.2009.5335546
http://dx.doi.org/10.1007/978-1-84800-306-4_7
http://dx.doi.org/10.1007/978-1-84800-306-4_7
http://dx.doi.org/10.1002/9781118706664
http://dx.doi.org/10.1007/978-3-540-49127-9_23
http://urn.fi/urn:isbn:9789526204048

Ververidis D, Kotropoulos C (2006) Emotional speech recognition: resources, features and
methods. Speech Commun 48(9):1162–1181. doi:10.1016/j.specom.2006.04.003

Wagner J, Lingenfelser F, Baur T, Damian I, Kistler F, André E (2013) The social signal
interpretation (SSI) framework: multimodal signal processing and recognition in real-time. In:
Proceedings of the 21st ACM international conference on Multimedia (MM’13), Barcelona,
Spain, 21–25 Oct 2013, pp 831–834 doi:10.1145/2502081.2502223

Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Microsoft TechReport
MSR-TR-2010-66. http://research.microsoft.com/apps/pubs/default.aspx?id=132077

References 357

http://dx.doi.org/10.1016/j.specom.2006.04.003
http://dx.doi.org/10.1145/2502081.2502223
http://research.microsoft.com/apps/pubs/default.aspx?id=132077

Chapter 16
Implementing Multimodal Conversational
Interfaces Using Android Wear

Abstract When they first appeared, conversational systems were developed as
speech-only interfaces accessible usually via landline phones. Currently, they are
employed in a wide variety of devices such as smartphones and wearables, with
different input and output capabilities. Traditional speech-based multimodal inter-
faces were designed for Web and desktop applications, but current devices pose
particular restrictions and challenges for multimodal interaction that must be tackled
differently. In this chapter, we discuss these issues and show how they can be
solved practically by building several apps for smartwatches using Android Wear
that demonstrate the different alternatives available.

16.1 Introduction

Android Wear extends the technology of Android to wearables, enabling synchro-
nization with the smartphone to send and receive notifications and data between
applications, provide access to sensors and hardware on the wearable, and support
the creation of appropriate layouts and voice actions. Google provides regularly
updated information about how to build apps for wearables with Android Wear.1

Android Wear builds its user interface (UI) model around two functions:
suggest and demand. With these functions, either the device suggests useful and
timely information to the user, or the user explicitly demands certain information or
actions from the device.

The suggest function is based on the context stream: users do not have to
launch applications to check for updates, and they can simply glance at a vertical
list of cards showing useful information (see Chap. 13 for more detail on cards).
Users swipe vertically to navigate from card to card and horizontally from right to
left to obtain further information on a card, or they press buttons to perform actions
on the card. They swipe from left to right to dismiss a card so that it is removed
from the screen until it has useful information to display (see Fig. 16.1).

1http://developer.android.com/intl/es/training/building-wearables.html. Accessed February 22, 2016.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_16

359

http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://developer.android.com/intl/es/training/building-wearables.html

The demand function is based on the cue card. When the user cannot find the
desired information in the context stream, they can tap on the background of the
home screen or say “Ok Google” to show the cue card. This card is a kind of menu
with a list of options that the user can select on the screen by swiping up and
tapping, or by voice (the options shown in Fig. 16.2 are in fact voice commands).

Apart from the suggest and demand options, Android Wear devices can run
full-screen apps that are shown on top of the main stream for which the interaction
pattern is defined by the developer (though there are some guidelines that can be
followed to make these apps more usable2).

Fig. 16.1 Interaction with Android cards using swiping gestures

Fig. 16.2 Sample cue card
Google and the Google logo
are registered trademarks of
Google Inc., used with
permission

2http://developer.android.com/intl/es/design/wear/structure.html. Accessed February 22, 2016.

360 16 Implementing Multimodal Conversational Interfaces …

http://developer.android.com/intl/es/design/wear/structure.html

We will focus on issues related to the multimodal interface. Firstly, we will
describe the novelties of these graphical UIs with respect to traditional UIs,
including layouts, cards, and watch faces. Then, we will describe how to add voice
actions and spoken notifications. These are the functionalities that have been
explicitly addressed in Android Wear. However, we are also interested in conver-
sational capabilities, so we will go a step further to explain how to create con-
versational multimodal interfaces using the available technology.

You can download the code corresponding to the examples in this chapter from
the folder chapter16 of the ConversationalInterface3 repository.

16.2 Visual Interfaces for Android Wear

Wearables use similar layouts to handheld Android devices, but their specific
properties must be considered when designing wearable apps as they may not be
portable from a smartphone to a smartwatch or even from a square smartwatch to a
round smartwatch.4

Also, the information shown by the wearable must be processable at a glance
and actionable, that is, it should be easy to generate commands and work with the
information displayed. They must also be attractive and fit the screen of the
wearable. Table 16.1 shows the primary components of the Android Wear UI.

The actions that can be used to navigate between these components are tapping,
pressing with a finger for some seconds, swiping, pressing with the palm of the
hand, or speaking. The design of application patterns is based on combining the
elements in Table 16.1 with these navigation actions and involves creating a card
map with a story of the valid actions that will enable navigation between cards, as
shown in Fig. 16.3.

Android Wear provides developers with tutorials and materials5 including

• Specification (size, position, color, etc) of the primary Android Wear UI com-
ponents (e.g., peek cards, text notifications, actions, etc.).

• Sample notification and application patterns.
• Specific cards for sample apps.
• Specification of watch faces.
• Layout templates.
• Sticker sheets, icons, typographies, and color palettes.

3http://zoraidacallejas.github.io/ConversationalInterface/. Accessed March 2, 2016.
4http://developer.android.com/intl/es/training/wearables/ui/layouts.html. Accessed February 22,
2016.
5http://developer.android.com/intl/es/design/downloads/index.html#Wear. Accessed February 22,
2016.

16.1 Introduction 361

http://zoraidacallejas.github.io/ConversationalInterface/
http://developer.android.com/intl/es/training/wearables/ui/layouts.html
http://developer.android.com/intl/es/design/downloads/index.html%23Wear

Table 16.1 Primary Android Wear UI components

Component Elements Example

Notification card Background photograph
Text string
App icon
Action button

Action button Text string
App white icon

Confirmation Animation
Caption

Picker (1D or 2D) Options a list of cards

(continued)

362 16 Implementing Multimodal Conversational Interfaces …

16.3 Voice Interfaces for Android Wear

Using voice input in Android Wear is relatively straightforward, as the interaction
has been devised to be mainly oral. There are two options:

• Using voice actions. Google distinguishes two types of voice action: system
provided and app provided.6 System-provided actions are predefined voice
actions that come with the Wear platform, while app-provided actions are
declared by the programmer.

• Using the general-purpose speech recognition capabilities described in Chap. 6.

Table 16.1 (continued)

Component Elements Example

Speech entry Hint text

Fig. 16.3 Sample interface design for a gardening app

6http://developer.android.com/intl/es/training/wearables/apps/voice.html. Accessed February 22,
2016.

16.3 Voice Interfaces for Android Wear 363

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://developer.android.com/intl/es/training/wearables/apps/voice.html

16.3.1 System-Provided Voice Actions

These are voice actions that are supported by the Android Wear platform. To use
them, we must follow three simple steps:

1. Define an intent filter.7

2. Handle the intent in our app.
3. Update our app completion status.

As an example, we present the MorningCoffee app that communicates with
an intelligent coffee machine to prepare coffee for the time requested by the user.
This app shows how to program a custom treatment for a system-defined voice
action (set an alarm). Instead of setting the alarm as usual, when this system action
is launched, the MorningCoffee app is executed. To build the app on your
device, follow the instructions in the tutorials of the “Further Reading” section.

MorningCoffee is a native app, that is, it is directly installed in the wearable
and thus can be directly executed in the smartwatch by selecting it in the menu.
Alternatively, it can be invoked through a system-defined command to set the
alarm. As shown in Fig. 16.4, when the user chooses MorningCoffee in the
menu of the smartwatch, they can select the time to set the coffee alarm and then
they obtain a message that the coffee will be ready by that time. Alternatively, the
user can go to the microphone in the smartwatch and speak a command such as “set
an alarm for 7 am,” and the same processing is done and the same final message is
obtained.

The app was built following the three steps mentioned earlier. To build it from
scratch in Android Studio, be sure that you select that the target Android device is
“Wear” rather than “Phone or Tablet,” as these are selected by default.

Firstly, in the Manifest file, we define an intent filter for the SET_ALARM
action and specify that the activity CoffeeActivity will process it (Code 16.1).

As we have associated the SET_ALARM intent with our app, the first time that
you try to set an alarm using a voice action the smartphone will prompt you to
choose how you are going to manage that action in the future, with the built-in
Alarm app, or with MorningCoffee.

There is a list of the voice intents supported by the Android Wear platform with
their respective actions, categories, extras, and mime types.8 These include call a
taxi, take a note, set an alarm, set timer, start and stop watch, start and stop bike
ride/run/workout, show heart rate, and show step count.

7See the most common intents here: http://developer.android.com/intl/es/guide/components/
Intents-common.html. Accessed February 22, 2016.
8http://developer.android.com/intl/es/training/wearables/apps/voice.html. Accessed February 22,
2016.

364 16 Implementing Multimodal Conversational Interfaces …

http://developer.android.com/intl/es/guide/components/Intents-common.html
http://developer.android.com/intl/es/guide/components/Intents-common.html
http://developer.android.com/intl/es/training/wearables/apps/voice.html

We handle the intent in CoffeeActivity where we just obtain the hour and
minute of the alarm (which are the extras of the intent) and show a message in a
TextView. The default value if no extras are indicated is 7:00 am (Code 16.2).

The CoffeeActivity class would suffice to manage the voice action, but if
the MorningCoffee app is selected from the smartphone menu, it will do
nothing, as it will not be the result of an intent to set an alarm. That is why in the
MainActivity class, we have included the code necessary to start the intent to
set the alarm from a GUI in which the user selects the time and presses a button
(Code 16.3).

Fig. 16.4 Screenshots of the MorningCoffee app

Code 16.1 Fragment of the AndroidManifest.xml file of the MorningCoffee app

16.3 Voice Interfaces for Android Wear 365

16.3.2 Developer-Defined Voice Actions

There are several different ways in which developers can use their own voice
actions. We will discuss three of these:

• Voice actions to start apps.

Code 16.2 Fragment of the CoffeeActivity.java file of the MorningCoffee app

Code 16.3 Fragment of the MainActivity.java file of the MorningCoffee app

366 16 Implementing Multimodal Conversational Interfaces …

• Notification-related voice actions.
• General-purpose voice actions.

Voice actions to start apps
Users can start apps directly with the command “Start X” where X is the name of
the activity. In order to provide this functionality, the developer must register for a
“start” action indicating a label for the activity that will be started, as shown in the
following code, where the specified intent filter recognizes “Start MyPrettyApp”
and launches MainActivity (Code 16.4).

Notification-related voice actions
Notifications usually offer the possibility of providing a response. For example,
when you are notified about an e-mail, you should be able to respond to it. On a
wearable where there is no keyboard, the user can take the phone and type a
response, but it is perhaps more appropriate to respond directly on the device (e.g.,
smartwatch), either by tapping on a list of predefined responses or by speaking
directly to the device. In some cases, there will not be a list of responses, for
example, for responding to an e-mail.

In order to receive notifications correctly on your smartwatch, you must make
sure that you have given the Android Wear app on your smartphone the appropriate
permissions and that the wearable accepts notifications and is not in theater mode.9

The CookingNotifications app (Fig. 16.5) shows how to build different
types of notifications. This time the app is not installed on the smartwatch but
instead on the smartphone, although the notifications will appear on both devices
and the actions to respond to them are different.

When a button is clicked, a notification is issued. The first button issues a simple
notification that only shows an icon, a title, and a descriptive text (Fig. 16.6). This
is done in the ShowSimpleNotification method of MainActivity.java.

Code 16.4 Fragment of the Manifest of an app that can be started with a voice command

9You can check how to do this here: https://support.google.com/androidwear/answer/6090188?hl=
en. Accessed February 22, 2016.

16.3 Voice Interfaces for Android Wear 367

https://support.google.com/androidwear/answer/6090188?hl=en
https://support.google.com/androidwear/answer/6090188?hl=en

Fig. 16.5 Screenshot of the CookingNotifications app

Fig. 16.6 Simple notification—behavior triggered by the “SIMPLE NOTIFICATION” button
(CookingNotifications app)

368 16 Implementing Multimodal Conversational Interfaces …

As can be observed in Code 16.5, we first create the layout for the notification
indicating the icon, title, and description, then we instantiate the notification
manager service and issue the notification.

The same code can be used to issue notifications with attached actions just by
including the Intent associated with the particular action (Code 16.6).

The result is a notification with a small button to perform an action on both the
smartphone and the smartwatch as shown in Fig. 16.7. On the phone, the notifi-
cation presents a button that when clicked directs to a recipes Web page. On the
smartwatch, the notification appears and can be swiped to show the action button,
which when pressed opens the recipes Web page on the smartphone.

We can also create actions that receive voice input in response to a notification
using the RemoteInput class as explained here.10 To do so, we proceed as in the
previous example, replacing the URL action by the voice action created in Code
16.7. As can be observed, we create a PendingIntent that when finished is
processed in SecondActivity.

Code 16.5 Creating and issuing a simple notification (fragment of MainActivity.java in
the CookingNotifications app)

10http://developer.android.com/intl/es/training/wearables/notifications/voice-input.html. Accessed
February 22, 2016.

16.3 Voice Interfaces for Android Wear 369

http://developer.android.com/intl/es/training/wearables/notifications/voice-input.html

Unlike in the previous example with the URL action, voice actions can only be
performed on the wearable, so they are attached to the notification specifying that it
is an action specific to the wearable with WearableExtender (Code 16.8).

As can be observed in Fig. 16.8, the notification shown on the smartphone is
simple and does not have actions, whereas the notification shown on the wearable
allows a voice response.

Code 16.6 Fragment of the showActionNotification method that attaches an action
Intent to a notification (in MainActivity.java, CookingNotifications app)

Fig. 16.7 Notification with an action—behavior triggered by the “ACTION NOTIFICATION” button
(CookingNotifications app)

370 16 Implementing Multimodal Conversational Interfaces …

Unlike the methods described in Chap. 6, there is the possibility to specify a recog-
nition grammar defined in XML, which is usually added to res/values/strings.
xml (Code 16.9).

To add it to the speech input, we would have code as in Code 16.7, but adding
the recognition choices to the RemoteInput object (Code 16.10).

As is observed in Fig. 16.9, now the user is presented with the options in a cue
card that are defined in the grammar and they can select them either by speaking the
command or by tapping on it in the GUI.

Code 16.7 Fragment of the getVoiceAction method that creates the voice action (in
MainActivity.java, CookingNotifications app)

Code 16.8 Fragment of the showVoiceNotification method that attaches the voice action to
the notification (in MainActivity.java, CookingNotifications app)

16.3 Voice Interfaces for Android Wear 371

http://dx.doi.org/10.1007/978-3-319-32967-3_6

To obtain and process the user’s response, we will use the activity declared in
the reply action’s intent (SecondActivity) and obtain the recognized text using
getResultsFromIntent(). For the code to work, the activity must be
declared in the application’s Manifest (Code 16.11). The results of processing
the voice input in the CookingNotifications app are shown in Fig. 16.10.

Fig. 16.8 Notification with unrestricted voice response—behavior triggered by the “voice
notification (unrestricted)” button (CookingNotifications app)

Code 16.9 Recognition grammar (fragment of strings.xml in the app
CookingNotifications)

372 16 Implementing Multimodal Conversational Interfaces …

Code 16.10 Adding a recognition grammar to a RemoteInput (fragment of the
getGrammarAction method in MainActivity.java, CookingNotifications app)

Fig. 16.9 Notification with grammar-based voice response—behavior triggered by the “VOICE
NOTIFICATION (GRAMMAR)” button (CookingNotifications app)

16.3 Voice Interfaces for Android Wear 373

General-purpose speech recognition
The speech input and output capabilities described in Chap. 6 are also available for
Android Wear. This makes speech interaction in Android very powerful and easy to
port between devices. To show it, we present the WriteBack app, a native app
(installed in the wearable) that uses the VoiceActivity class presented in
Chap. 6 to process spoken interaction with the smartwatch.

This app is very similar to TalkBack (Chap. 6), as it presents a button that the
user can press to initiate speech recognition and the result is presented back to the
user. However, instead of being synthesized back, it is just shown as text in a
TextView (Fig. 16.11). This is because most smartwatches still do not have TTS
capabilities, but the TTS methods provided by VoiceActivity could be
implemented as in TalkBack for wearables with TTS capabilities.

Code 16.11 Processing the recognized spoken input (fragment of SecondActivity.java,
CookingNotifications app)

Fig. 16.10 Result of processing the voice input (CookingNotifications app)

374 16 Implementing Multimodal Conversational Interfaces …

http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_6
http://dx.doi.org/10.1007/978-3-319-32967-3_6

We have kept the app simple to emphasize how we have been able to port the
speech processing mechanisms that we implemented previously from a smartphone
to a smartwatch without introducing changes in the code of the VoiceActivity
class and with just some minor edits in the MainActivity class.

We leave it as an exercise for the reader to compare the MainActivity class
in WriteBack and TalkBack and to verify that minimum editing has been
required. The edits include: 1) a different onCreate method that in WriteBack
initializes the components in the watch GUI with WatchViewStub, although
even that piece of code is autogenerated when creating the new Android Wear
project and 2) replacing synthesized messages with texts in the GUI. In order for the
code to work, remember to include the required permissions in the Manifest file.

16.4 Summary

Wearable devices present new opportunities for spoken multimodal interfaces, as
due to their size restrictions their operation requires interfaces that are attractive,
simple, and easily actionable. In this chapter, we have explained how to build these
types of interface with Android Wear and have presented three apps for smart-
watches that illustrate the main alternatives offered by this technology: using pre-
defined system voice actions, using voice actions provided by our apps, and using
general-purpose Android speech recognition mechanisms.

Further Reading
To build an app in your device, couple your wearable with your smartphone and
activate the debugging modes. You can find detailed instructions in the following
tutorials:

• http://developer.android.com/intl/es/training/wearables/apps/creating.html.
Accessed February 22, 2016

Fig. 16.11 Interacting with the WriteBack app

16.3 Voice Interfaces for Android Wear 375

http://developer.android.com/intl/es/training/wearables/apps/creating.html

• https://software.intel.com/en-us/android/articles/android-wear-through-adb.
Accessed February 22, 2016

• http://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-
debug-bridge-utility/. Accessed February 22, 2016

Bear in mind that in some systems (e.g., some Mac operating systems), it is nec-
essary to write adb connect 127.0.0.1:4444 instead of localhost:4444.

376 16 Implementing Multimodal Conversational Interfaces …

https://software.intel.com/en-us/android/articles/android-wear-through-adb
http://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/
http://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/

Part IV
Evaluation and Future Directions

Chapter 17
Evaluating the Conversational Interface

Abstract The evaluation of conversational interfaces is a continuously evolving
research area that encompasses a rich variety of methodologies, techniques, and
tools. As conversational interfaces become more complex, their evaluation has
become multifaceted. Furthermore, evaluation involves paying attention not only to
the different components in isolation, but also to interrelations between the com-
ponents and the operation of the system as a whole. This chapter discusses the main
measures that are employed for evaluating conversational interfaces from a variety
of perspectives.

17.1 Introduction

The evaluation of a conversational interface usually takes place either during the
development stage and/or just before it is released to the public. Evaluation may
fulfill different purposes—for example, to compare a system with previous versions
in order to assess the adequacy of changes; to compare different systems; or to
predict system behavior.

When the evaluation is done cyclically over a certain system, the benchmark is
the system being developed and comparisons are made of the system’s performance
at several points during the development process. At the time of the initial
assessment, there is no reference system against which a comparison can be made.
In this case, an a priori estimation of the operation of the system is usually carried
out during the specification phase and subsequent evaluations are made to assess
deviations from the expected behavior.

In comparative assessment, a system may be evaluated with respect to another
system with the same features but using a different technology, or with respect to a
completely different system or technology. This evaluation has been used in
important projects such as the DARPA Communicator (Walker et al. 2002).

Performance metrics are useful as they allow the weak points of the system to be
detected and suggest ways to overcome these, especially at the early stages of
development. However, they do not necessarily produce relevant information about

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_17

379

the quality of the system. As suggested by Engelbrecht (2012), quality involves
users of a system making comparisons of the perceived qualities of the system
against its desired qualities. For this reason, quality can only be measured by taking
into account the opinions of users.

Bernsen et al. (1998) make a three-way distinction between performance eval-
uation, which measures the performance of the system and its components in terms
of quantitative parameters; diagnostic evaluation, which detects design and
implementation errors; and adequacy evaluation, which describes how well the
system and its components fit their purpose and meet the needs and expectations of
users.

Traditionally, the criteria that have been used for evaluation have been divided
into objective and subjective metrics:

• Objective metrics are computed from logs of the interactions of users with the
system, such as the duration of the dialog or the word error rate (WER), which
considers the number of substituted, deleted, and inserted words in the output of
the speech recognizer.

• Subjective metrics elicit the opinions of users about some aspect of quality, such
as the intelligibility of the synthesized speech.

This classification is very widespread, although it is not always accurate to say
that performance metrics are “objective” as they may involve judgments by human
subjects (Möller 2005). For example, expert evaluators are required to calculate
WER, as they must listen to the real input of the user and compare it with the
recognizer’s hypothesis in order to calculate the number of errors. Thus, instead of
the subjective versus objective distinction, some authors make a distinction between
quality judgments (subjective metrics) and interaction parameters, where the latter
can be measured instrumentally (e.g., the duration of the dialog), or calculated by
experts (e.g., WER).

Other important concerns are the objects of the evaluation (e.g., the whole
system or a certain component), the environment in which it will take place (e.g.,
controlled laboratory conditions or field study), and the life cycle phase in which it
takes place (e.g., a prototype or the final fully operative version). These issues will
be described in detail in the following sections.

17.2 Objective Evaluation

First, we will describe how systems are evaluated in terms of their overall per-
formance and the performance of their components; that is, how systems are
evaluated “objectively” using interaction parameters.

380 17 Evaluating the Conversational Interface

17.2.1 Overall System Evaluation

There have been several attempts to create a full list of metrics to be used for the
evaluation of conversational interfaces. Some authors have proposed catalogs of
important aspects to be considered for evaluation. For instance, Dybkjaer and
Bernsen (2000) proposed the following list:

modality appropriateness, input recognition adequacy, naturalness of user speech, output
voice quality, output phrasing adequacy, feedback adequacy, adequacy of dialog initiative,
naturalness of the dialog structure, sufficiency of task and domain coverage, sufficiency of
the system’s reason capabilities, sufficiency of interaction guidance, error handling ade-
quacy, sufficiency of adaptation to user differences, number of interaction problems, user
satisfaction.

As can be observed, these are quite broad categories rather than particular
metrics, and measuring each of the criteria proposed would involve considering a
mixture of interaction parameters and user judgments.

In the late 1990s, various comprehensive evaluation frameworks were developed
for use within the scientific community. The Expert Advisory Group on Language
Engineering Standards (EAGLES) proposed a list of metrics that were applied and
interpreted following an innovative framework.1 This framework provided guide-
lines on how to carry out the evaluation and how to make the results available in
such a way that they could be easily interpretable and comparable. In the DISC
project, best practice guidelines were proposed that complemented the EAGLES
proposal by using life cycle development methodologies (Dybkjaer et al. 1998).
Dybkjaer et al. (2004) and López-Cózar and Araki (2005) provide detailed reviews
of this work and Möller et al. (2007) present a review of the de facto criteria
extracted from all these studies and an example of their usage to evaluate a par-
ticular dialog system.

The most popular methodology for performing overall system evaluation is
PARAdigm for DIalogue Evaluation System (PARADISE) (Walker et al. 1997,
1998). This method models performance as a weighted function of the following:

task success (exact scenario completion), dialog efficiency (task duration, system turns, user
turns, total turns), dialog quality (word accuracy, response latency), and user satisfaction
(sum of TTS performance, ease of task, user expertise, expected behavior, and future use).

The application of PARADISE to the evaluation of a dialog system requires
dialog corpora extracted from controlled experiments in which users have to
evaluate satisfaction on a scale after they have interacted with the system.

Other authors have focused on how to obtain and study speech corpora to
compute evaluation measures. These are frequently large corpora extracted from
system usage or from human–human dialogs. In the case of human–human corpora,
human behavior can be used as a baseline to compare against the system’s behavior.

1http://www.ilc.cnr.it/EAGLES/browse.html. Accessed March 2, 2016.

17.2 Objective Evaluation 381

http://www.ilc.cnr.it/EAGLES/browse.html

Despite its age, Gibbon et al. (1997) is an interesting reference on the statistical
analysis of data corpora for system evaluation.

Some organizations also focus on the study and definition of assessment corpora
and techniques, for example, the International Committee for Co-ordination and
Standardisation of Speech Databases (COCOSDA2), which supports the develop-
ment of spoken language resources and procedures for the purpose of building
and/or evaluating spoken language technology, and the European Language
Resources Association (ELRA3), which focuses on the collection and distribution
of linguistic resources.

17.2.2 Component Evaluation

Each of the components of the conversational interface can also be evaluated
independently using specific evaluation metrics. Next, we will describe how the
speech recognition, spoken language understanding, dialog management, natural
language generation, and text-to-speech synthesis components may be evaluated.

17.2.2.1 Automatic Speech Recognition

The National Institute of Standards and Technology (NIST) has conducted evalu-
ations of speech technologies since the mid-1980s. Training and development
datasets have been provided for different speech domains, including conversational
telephone speech, broadcast speech, air travel planning kiosk speech, and meeting
speech, and speech has been recorded under various noise conditions, with varied
microphones, and in English, Arabic, and Mandarin.4 Three evaluation tasks are
included:

• Speech-to-text transcription, in which the spoken words are transcribed auto-
matically using ASR technology and the transcripts are evaluated against
transcripts of the same speech data by human transcribers.

• “Who spoke when” diarization—annotation of the transcript of a meeting to
indicate when each participant speaks but without outputting speaker names or
identifying speakers.

• Speaker attributed speech-to-text, in which the spoken words are transcribed and
also associated with a speaker.

The most recent evaluation was held in 2007 (Fiscus et al. 2008).

2http://www.cocosda.org/. Accessed February 29, 2016.
3http://www.elra.info/en/. Accessed February 29, 2016.
4http://itl.nist.gov/iad/mig/publications/ASRhistory/index.html. Accessed February 29, 2016.

382 17 Evaluating the Conversational Interface

http://www.cocosda.org/
http://www.elra.info/en/
http://itl.nist.gov/iad/mig/publications/ASRhistory/index.html

The primary metric for speech-to-text evaluation is the WER. WER is calculated
by comparing the recognized text against a reference, such as a transcription by a
human expert, using the following formula in which error types are substitutions
(S), deletions (D), and insertions (I), and N represents the total number of words:

WER ¼ 100
ðSþDþ IÞ

N
% ð17:1Þ

Generally, WER in commercial ASR systems has improved over time but it is
important to distinguish between different speech domains, some of which are more
challenging than others, as well as other factors such as microphone and noise
factors that can have a significant effect on accuracy.

Other related measures are Word Accuracy (WA), defined as the contrary to
WER (1-WER), Word Insertion Rate, Word Substitution Rate, and Word Deletion
Rate.

17.2.2.2 Spoken Language Understanding

Evaluation of the SLU component involves comparing the output of SLU with a
reference representation from a test set. The most commonly used metrics are as
follows:

• Sentence accuracy: the percentage of correct syntactic or semantic
representations.

%fc ¼ 100� num: of sentences correctly represented
total number of sentences

ð17:2Þ

• Concept error rate (also known as slot error rate): the percentage of incorrectly
identified concepts or slots. This can also be expressed in terms of concept
accuracy rate:

%Pf ¼ 100� num. of correct concepts in the hypothesis
num. of semantic concepts in the hypothesis

ð17:3Þ

• Slot precision/recall/F1 score: the precision/recall score for slots, often com-
bined as the F1 score. Precision corresponds to the ratio of correctly identified
slots over all slots detected, whereas recall is the ratio of identified slots over all
slots that should have been identified. Thus, precision reflects the system’s
ability to reject incorrect answers while recall measures its ability to find as
many correct answers as possible. F1 is a method for measuring the balance
between precision and recall since if you try to improve recall you frequently
obtain a lower score for precision, and vice versa.

17.2 Objective Evaluation 383

Precision ¼ num. of reference slots correctly detected by SLU
num. of slots detected by SLU

ð17:4Þ

Recall ¼ num. of reference slots correctly detected by SLU
num. of total reference slots

ð17:5Þ

F1 ¼ 2� ðPrecision� RecallÞ
PrecisionþRecall

ð17:6Þ

As in the case of the ASR component, it is necessary to label each semantic
concept generated by the SLU component as correct or wrong (incorrect concepts,
inserted, deleted, and substituted) in order to compute these metrics.

In a number of evaluations, it has been found that the performance of statistical
models is at least competitive with that of handcrafted models. For example,
Henderson and Jurčíček (2012) found that the statistical parsers developed in the
CLASSiC project (Lemon and Pietquin 2012) outperformed the handcrafted
Phoenix semantic parser when parsing ASR output from the TownInfo dataset.
Similar results have been reported in many other studies—see chapters in (Tur and
de Mori 2011).

17.2.2.3 Dialog Management

A number of different statistical metrics have been proposed for the evaluation of
the DM strategy (Scheffler and Young 2001; Schatzmann et al. 2005). These may
be divided into three groups:

• High-level features of the dialog: average length of the dialog (number of dialog
turns), average number of actions per dialog turn, proportion of user versus
system talk, and ratio of user versus system actions.

• Style of the dialog: frequency of different speech acts, ratio of goal-directed
actions versus grounding actions versus dialog formalities versus misunder-
standings, and user cooperativeness (proportion of slot values provided when
requested).

• Success rate and efficiency of the dialog goal achievement rates and goal
completion times.

Sometimes, the evaluation is carried out by comparing the dialogs generated by
the dialog manager under study with respect to a desired behavior, e.g., human–
human conversations in the same application domain, or with respect to other
systems or versions of the same system.

In addition to these metrics, some other measures can be used specifically for the
purposes of comparison, such as perplexity and distance measures. Another method
is to use the Common Answer Specification (CAS) protocol that compares the
system’s chosen response with a canonical response in a database. This method
allows an automatic evaluation once the reference responses have been specified

384 17 Evaluating the Conversational Interface

and a labeled dialog corpus is available. It also makes a direct comparison between
systems easier. However, the CAS assessment procedure is rather limited as it is
done on the sentence level and it does not account for partially correct answers.

Perplexity is a commonly used evaluation metric in the field of statistical lan-
guage modeling for testing how well a given model predicts the sequence of words
in a given test dataset. It is a useful metric for determining whether the dialogs
contain similar action sequences (or dialog state sequences). The definition of
perplexity (PP) is based on the per-action (per state) entropy H representing the
amount of non-redundant information provided by each new action (state) on
average.

PP ¼ 2bH ð17:7Þ

The latter can be approximated as follows:

H ¼ � 1
m
log2 Pða1;a2; . . .; amÞ ð17:8Þ

where P(a1, a2, …, am) is the probability estimate assigned to the action sequence
a1, a2, …, am by a dialog model (Young 2002).

Another interesting method for measuring similarity between dialogs is pre-
sented in Cuayahuitl et al. (2005). The authors propose training HMMs to compute
the similarity between two dialog corpora in terms of the distance between the two
HMMs. The assumption is that the smaller the distance between the two HMMs,
the greater the similarity between the two corpora. To compute the distance
between two HMMs, the authors propose the symmetrized Kullback-Leibler
divergence, which is defined as:

DðP;QÞ ¼ DKLðPjjQÞþDKLðQjjPÞ
2

ð17:9Þ

where DKL is the distance between the probability distributions P and Q.
Williams (2008) proposes the divergence between the distributions of dialog

scores between different corpora as a measure of the quality of the dialogs. The
normalized Cramer-von Mises divergence is proposed for evaluating and
rank-ordering dialogs. The dialog manager maintains a representation of the state of
the dialog in a process called dialog state tracking (DST). Numerous techniques
have been proposed for dialog state tracking; however, direct comparisons between
these methods have not been possible because past studies use different domains
and system components for ASR, SLU, and DM.

The Dialog State Tracking Challenge (DSTC) has addressed this problem by
providing a corpus of 15 K human–computer dialogs in a standard format, along
with a suite of 11 evaluation metrics (Williams et al. 2013). The challenge received
a total of 27 entries from 9 research groups. This was a similar challenge to the
Spoken Dialog Challenge 2010, which investigated how different spoken dialog

17.2 Objective Evaluation 385

systems perform on the same task (Black et al. 2010). The results showed con-
siderable variation both between systems and between the control and live tests.
However, even though the systems were quite different in their designs, similar
correlations were observed between WER and task completion for all the systems.

17.2.2.4 Natural Language Generation

Evaluation of texts produced by natural language generation (NLG) systems has
used the following methodologies (Reiter and Belz 2009):

• Task-based evaluation
• Evaluation by humans
• Automatic evaluation

Task-based evaluation measures the impact of the generated texts on task per-
formance by end users—for example, whether persuasive texts actually have an
effect on human behavior by persuading users to stop smoking (Reiter et al. 2003)
or by convincing them by means of evaluative arguments that something is
desirable or right (Carenini and Moore 2006). While task-based evaluations provide
useful feedback, they are expensive to conduct in terms of time and money, and
they depend on the goodwill of the subjects performing the tasks.

Evaluations by humans involve human judges rating texts using ordinal scales or
comparing different versions of a text. Commonly used metrics include the number
of times the user requires the system to repeat the response provided by the system,
user response time, the number of times the user does not provide a response, and
the number of out of vocabulary words. Judges can also be asked to edit the
generated texts and then the generated and edited texts can be compared to see what
changes have been suggested. Evaluations by humans are quicker and less costly to
conduct than task-based evaluations. We will see how user judgments can be
considered for evaluating conversational interfaces in Sect. 17.3.

In automatic evaluation, generated texts are compared to reference texts authored
by humans. This is a method used in other areas of natural language processing,
such as machine translation. The metrics used include string-edit distance, tree
similarity, and the Bilingual Evaluation Understudy (BLEU) metrics used widely in
machine translation evaluation. As Reiter and Belz (2009) found in an extensive
investigation of the validity of various metrics for the automatic evaluation of NLG
systems, automatic evaluation was most reliable and useful for comparing the
linguistic quality of generated texts, i.e., the realization stage, but not for higher
levels such as content or discourse structure, i.e., the document planning and
microplanning stages.

Evaluation of statistical approaches to NLG usually involves comparisons of a
baseline system with a system based on reinforcement learning (see Chap. 10),
looking at objective measures such as task completion and subjective measures
such as user satisfaction. For example, in the study described in Lemon et al. (2010)

386 17 Evaluating the Conversational Interface

http://dx.doi.org/10.1007/978-3-319-32967-3_10

the trained information presentation strategy outperformed a baseline system that
used conventional hand-coded prompts in terms of task completion rate.

17.2.2.5 Text-to-Speech Synthesis

Evaluation of TTS is usually done by human listeners who make judgments about
the quality of the synthesized speech using metrics for intelligibility and natural-
ness. In recent evaluations, a common speech dataset has been used—for example,
in the Blizzard challenge, which has been running annually since 2005. The basic
idea behind the Blizzard challenge is to take an agreed speech dataset and build a
synthetic voice using the data that can synthesize a prescribed set of test sentences.
The performance of each synthesizer is evaluated using listening tests5—see also
Bennett (2005) and Black and Tokuda (2005).

Jekosch (2005) provides a systematic review of voice and speech quality per-
ception, including a model of speech quality measurements and the issues that must
be controlled, such as the sound source, acoustic conditions, and type of speech
context. Some studies of the evaluation of synthesized speech put special emphasis
on cognitive and perceptual factors in the listener. For example, the study by
Delogu et al. (1998) highlights speech perception, memory, and attention.

17.2.3 Metrics Used in Industry

The metrics described in the preceding sections are also used in industry to measure
the quality of their voice user interfaces (VUI), to compare them to those of their
competitors, and to evaluate the appropriateness of any changes that are made in the
voice interface of their own companies. James Larson presents a comprehensive list
of criteria for measuring effective VUIs,6 while Jason Brome presents some
informal best practices for VUI design.7 Suhm (2008) presents an interesting
industrial perspective on the design of VUIs based on the limitations of the current
technologies (e.g., ASR and SLU errors) and of the users (e.g., limitations of
working memory). Also included is a survey of the industry know-how acquired
through the evaluation of commercial systems, and a description of how to mine
call recordings to obtain a variety of information and to detect problems.

Commercial systems have some particular requirements for evaluation given that
a common objective is to reduce costs and ensure user satisfaction. There are a
number of objective metrics that can be collected from the data of user–system

5http://festvox.org/blizzard/. Accessed February 29, 2016.
6http://www.speechtechmag.com/Articles/Editorial/Feature/Ten-Criteria-for-Measuring-Effective-
Voice-User-Interfaces-29443.aspx. Accessed February 28, 2016.
7http://help.voxeo.com/go/help/xml.vxml.bestprac.vui. Accessed February 28, 2016.

17.2 Objective Evaluation 387

http://festvox.org/blizzard/
http://www.speechtechmag.com/Articles/Editorial/Feature/Ten-Criteria-for-Measuring-Effective-Voice-User-Interfaces-29443.aspx
http://www.speechtechmag.com/Articles/Editorial/Feature/Ten-Criteria-for-Measuring-Effective-Voice-User-Interfaces-29443.aspx
http://help.voxeo.com/go/help/xml.vxml.bestprac.vui

calls. Time-to-task measures the amount of time that it takes to start engaging in a
task after any instructions and other messages provided by the system. The correct
transfer rate measures whether the customers are correctly redirected to the
appropriate human agent, while the containment rate measures the percentage of
calls not transferred to human agents and that are handled by the system. This
metric is useful in determining how successfully the system has been able to reduce
the costs of customer care through automation. The converse of the containment
rate is the abandonment rate that measures the percentage of callers who hang up
before completing a task with an automated system.

New applications in industry such as conversational interfaces have brought new
challenges for evaluation. For example, personal assistants such as Cortana, Siri, or
Google Now are used mainly to perform Web searches, so specific evaluation
metrics and methods have been developed to estimate search satisfaction (White
2016). Jiang et al. (2015) present a study with Cortana where they analyze search
behavior and its associated satisfaction levels and their relation to search outcomes
and search effort.

17.3 Subjective Evaluation

As discussed before, the quality of a conversational interface is a perceptual event
that compares whether what the users perceive is what they expected or desired.
Thus, even if a system performs well from an “objective” perspective, it may not
meet the users’ expectations and thus be judged to be of low quality. In order to
avoid this, it is important to assess the perception of users about the system after
interacting with it. In this way, a holistic evaluation of the system should also
consider the impressions of users of different dimensions of quality. Usually, this is
done using a single process in which the opinions of users about the system are
gathered through questionnaires after the interaction in order to check whether their
expectations were matched.

The Subjective Assessment of Speech System Interfaces (SASSI) questionnaire
is a widely used test for all types of speech interfaces. SASSI uses Likert scales to
obtain quantitative measures of the users’ agreement with 34 statements related to
six factors: system response accuracy, likeability, cognitive demand, annoyance,
habitability, and speed (Hone and Graham 2000). SASSI was adopted by the speech
community as a basis for subjective evaluation and has been extended and now
recommended for evaluating telephone-based speech interfaces by the International
Telecommunication Union (ITU-T) in its Recommendation P.851.8 This recom-
mendation describes methods for conducting subjective evaluations of
telephone-based spoken dialog systems and establishes quality dimensions that can
also be employed to evaluate other types of conversational interface. The

8https://www.itu.int/rec/T-REC-P.851-200311-I/en. Accessed February 28, 2016.

388 17 Evaluating the Conversational Interface

https://www.itu.int/rec/T-REC-P.851-200311-I/en

recommendation is comprehensively documented in terms of the different ques-
tionnaires that may be employed, covering the following:

• The user’s background: personal information (e.g., age and gender), task-related
information (e.g., how often a user uses the system to perform a task and their
motivation), and system-related information (e.g., previous experience with
speech interfaces).

• Individual interaction: information provided from the system (e.g., availability
and consistency), speech input/output (e.g., perceived system understanding and
perceived intelligibility), the system’s interaction behavior (e.g., flexibility and
congruence with expectation), the perceived system personality (e.g., friendli-
ness and politeness), the impression on the user (e.g., pleasantness and cognitive
demand), and perceived task fulfillment (e.g., task success and reliability).

• The user’s overall impression of the system (e.g., overall impression, perceived
usability, and expected future use).

Another frequently used questionnaire is AttrakDiff (Hassenzahl 2001).
Although it is not designed specifically for conversational interfaces and has been
used in many areas (e.g., Web site evaluation), it can be employed to assess the
perceived quality of speech interfaces according to its subscales for system
attractiveness, pragmatic quality, hedonic quality-stimulation, and hedonic
quality-identity.

Various subjective metrics are used in industry to measure the quality of a user’s
experience with a VUI, including caller satisfaction (see Sect. 17.3.1), ease of use,
quality of audio output, and perceived first-call resolution rate. Perceived first-call
resolution rate measures the extent to which a caller is able to achieve their goals on
the first call as opposed to having to call back on more than one occasion. More
generally, since an interaction with an automated system is often the first contact
that customers have with a company, the VUI should be consistent in its behaviors
and maintain the value of the company’s brand.

17.3.1 Predicting User Satisfaction

The questionnaire approach is very useful for obtaining information from users.
However, it is a time consuming and costly process and it may be difficult to get
real system users to answer a questionnaire after interacting with the system. Also
asking real users to leave a judgment after interaction can bias the evaluation toward
the experience of users with a particular profile (those who are willing to respond to
a satisfaction questionnaire). This is why subjective evaluation is usually performed
with recruited subjects, but the results obtained with them may not always be
translatable to real settings with the final users (in Sect. 17.4, we will discuss in
more detail the differences between laboratory and field studies and between
recruited users and end users).

17.3 Subjective Evaluation 389

One solution is to complement real field studies with automatic methods that
create predictions of user satisfaction based on factors related to the system’s
performance, characteristics of the user, and the environmental and contextual
conditions in which the interaction takes place. Figure 17.1 shows a summary of
some factors that can be considered in relation to user satisfaction. Using this
scheme, it is possible to automatically assess whether the user is satisfied with the
interaction. In order to learn such models, different approaches can be employed. In
the following subsections, we will describe some of the approaches that are used
widely in the conversational interfaces community.

17.3.1.1 Prediction of User Satisfaction Using PARADISE

The PARADISE framework mentioned earlier has also been used to develop
models of user satisfaction prediction from dialog data based on the weighted linear
combination of different measures (Walker et al. 2000). The goal of this evaluation
method was to maximize user satisfaction by maximizing task success and mini-
mizing interaction costs (see, Fig. 17.2).

Costs are quantified using different measures of efficiency and quality. The
weights of each measure are computed via a multivariable linear regression in
which user satisfaction is considered as the dependent variable, and task success,
efficiency, and quality measures are considered as independent variables. User
satisfaction is predicted by means of the cost of task success and several other costs
associated with the interaction:

User satisfaction ¼ aN task successð Þð Þ �
XN
i¼1

wiN costs of the dialogð Þ ð17:10Þ

where the distributions of the measures related to the success of the task and the
costs of the dialog are normalized to a normal distribution with mean = 0 and
variance = 1.

The measures of the success of the task most commonly used are the Kappa
Factor (K) and the task completion rate. The Kappa Factor was proposed in the
initial formulation of the PARADISE model. This factor is calculated from a
confusion matrix showing the values of the attributes exchanged between the user
and the system, so that the main diagonal of the matrix indicates the cases in which
the system correctly recognized and understood the information provided by the
user. The following expression is used:

K ¼ P Að Þ � PðEÞ
1� PðEÞ ð17:11Þ

390 17 Evaluating the Conversational Interface

Fig. 17.1 Factors that intervene in models of user satisfaction (from Möller 2005, Fig. 2.9,
reproduced with the permission from Springer)

17.3 Subjective Evaluation 391

http://dx.doi.org/10.1007/978-3-319-32967-3_2

where P(A) is the probability of the system correctly recognizing and understanding
the information provided by the user, and P(E) estimates the number of times the
system could provide a correct response by chance, calculated by:

PðEÞ ¼
Xn
i¼1

ti
T

� �2
ð17:12Þ

where ti is the sum of attempts in the column i and T is the total sum of attempts.
The task completion rate is the percentage of times that the system successfully

fulfills the users’ requests. The dialogs have to be manually transcribed and labeled
in order to obtain this measure.

The most important efficiency measures are as follows:

• The average time required to complete a task.
• The average time per turn.
• The average number of turns per task.
• The minimum number of turns or time required to complete a task.
• The types of confirmations strategies that are used.
• The number of words correctly recognized per turn.

These measures can be calculated considering all the dialogs or only the suc-
cessful ones.

The most important measures for evaluating the quality of the system are as
follows:

Fig. 17.2 The PARADISE framework

392 17 Evaluating the Conversational Interface

• The recognition rate (percentage of correctly recognized words).
• The rate of correct semantic concepts (percentage of semantic concepts correctly

generated by the SLU module).
• The percentage of errors successfully corrected (efficiency of the techniques

used for error detection and correction).
• The response time of the system (the time used by the system to recognize and

understand the words spoken by the user).
• The response time of the user (the time spent by the user to provide a response).
• The number of times the user does not provide an answer.
• The number of times the user requests repetition.
• The number of times the user requests help.
• The number of times the user interrupts the system.

The generality of PARADISE as an assessment framework for conversational
interfaces relies on the fact that it decouples the requirements of the task and the
behavior of the interface, comparing dialog strategies, measuring the quality of
complete dialogs and subdialogs, specifying the specific contributions to the overall
performance, and comparing interfaces by normalizing the complexity of the task.
The main drawbacks of the model include the excessive coupling between user
satisfaction and usability, the complexity of predicting user satisfaction from the
information recorded in the log files of the system, the difficulty in interpreting the
questionnaires, and usage limited to controlled experiments (and not usually with
real users). The PARADISE framework has also been enhanced to enable the
evaluation of multimodal dialog systems. For example, it was used in the
SmartKom Project to create the PROMISE framework (Beringer et al. 2002).

17.3.1.2 Other Models for Predicting User Satisfaction

Just as the availability of corpora and new statistical learning models have fostered
the use of statistical approaches for the development of the different components of
the conversational interface, so also statistical models have become common for the
purposes of evaluation.

The main idea behind these models is to build a corpus of user–system inter-
actions that incorporates the values of the interaction parameters as well as user
responses to opinion questionnaires. Then, a machine-learning approach is used to
learn the relation between the different parameters with the aim of obtaining a
model that can predict system quality from a set of metrics that can be calculated
automatically during the operation of the system. For example, Möller et al. (2008)
presented prediction models based on two databases corresponding to the BoRIS
and INSPIRE systems and used interaction metrics to estimate judgments related to
perceived quality and usability. In order to do so, they used different models
including linear regression, decision trees, and neural networks. Similarly, Yang
et al. (2012) used collaborative filtering to predict user evaluations of unrated
dialogs assuming that they will be similar to the ratings received by similar dialogs.

17.3 Subjective Evaluation 393

Models of prediction have also provided a basis for newly derived metrics such
as interaction quality (IQ) that delivers complementary information with respect to
user satisfaction (Schmitt and Ultes 2015).

In addition to the prediction of user satisfaction, other general purpose models
have been used to measure acceptance and to predict system usage—for example,
the technology acceptance model (TAM) that predicts, among other factors, system
usage in terms of perceived usefulness and perceived ease of use (Davis et al. 1989)
(see, Fig. 17.3).

17.4 Evaluation Procedures

Apart from the metrics employed, there are other factors that are relevant to the
evaluation process, such as differences between laboratory and field or real-world
settings, the different subjects that can participate in the evaluation (recruited vs.
simulated users), and whether the evaluated system is a complete or an incomplete
prototype.

17.4.1 Evaluation Settings: Laboratory Versus Field

In laboratory interactions, subjects are asked to interact with the system in accor-
dance with predefined scenarios. Scenarios describe a particular task that the user
has to achieve by interacting with the system—for example, book a certain flight.
Usually, these tasks are categorized in terms of the different topics or functionality
that the system can deal with, and within each category in terms of the final
objective of the dialog. Thus, they allow maximum control over the task carried out
by the test subjects while at the same time covering a wide range of possible
situations (and possible problems) in the interaction.

Compared to field evaluations, laboratory interactions are cheaper, easier to
achieve, and permit control of all the variables, thus ensuring that the effect of a

Fig. 17.3 The technology acceptance model

394 17 Evaluating the Conversational Interface

certain change in a system is due to that particular improvement and no other
uncontrolled variable. Scenarios make it easier to compare results obtained in
different dialogs and to control the influence of the task on the experiments.

In some cases, more relaxed scenarios can be used in which the objective is not
so accurately defined but the domain of the conversation is restricted. This is the
case with companion agents, where sometimes the conversation does not match a
particular objective but it still relates to a certain topic.

A problem with laboratory settings is that the scenarios may differ from the tasks
that a user would have selected in a non-predefined interaction. In contrast, field
evaluation is based on real users interacting with the final system spontaneously.
Field tests involve evaluations of real system–user interactions in which the user
employs the system freely without following predefined scenarios created by the
evaluators. This is the best way to obtain a valid judgment on some system char-
acteristics such as its helpfulness or difficulties in achieving a certain goal, since
with predefined scenarios there is no real motivation and the user’s opinion may not
reflect what would happen in a real-life situation.

Field evaluations are not replicable as the interaction context is highly variable.
This can also be their main advantage as they gather results from different users
(differences in gender, voice, knowledge, experience of using the system), talking
on different devices, and in different environments. As the results obtained from
field tests are robust to this heterogeneity, they are more relevant for predicting the
real behavior of systems.

To study the implications of using field tests, some authors have focused on
non-restricted evaluation studies. This is the case with the Let’s Go system that was
evaluated using interactions of real users who phoned the system to get information
about bus schedules (Raux et al. 2005). The evaluation involved reporting the
results of interaction parameters. The corpus acquired was open for research pur-
poses and has been used and augmented by many research groups. Schmitt et al.
(2012) present a parameterization that includes new metrics, including emotion.

17.4.2 Wizard of Oz

In prototyping development life cycles, the different stages of system development
(especially design, implementation, and testing) are performed iteratively, gener-
ating prototypes that are increasingly more complex. This implies that the iteration
of some components may not be complete or even implemented at all but it is still
interesting to perform an evaluation of the prototype. This is solved using the
Wizard of Oz (WOZ) technique.

In WOZ, users believe that they are interacting with a real system when in reality
a human (the wizard) simulates all or a part of it. In order for this technique to be
effective, it must be very carefully planned as the wizard cannot improvise but has
to behave just like the system would behave. In order to do that, the prospective
system behavior that is specified in the current design must be clear and the wizard

17.4 Evaluation Procedures 395

must be adequately trained to execute it. To make users believe that they are
interacting with a system, the wizard needs to be able to select the system’s
response in real time so that it is synthesized appropriately for the user.

Despite its complexity, WOZ is a good method for performing evaluations of the
system-in-the-loop, that is, early tests prior to implementation, thus saving the cost
of having to revise an already-implemented system if it turns out to be unacceptable
due to issues of performance or usability (Bernsen et al. 1998).

However, it is important to pay attention to possible misleading effects resulting
from the superior capabilities of a human wizard compared with a conversational
agent. For example, the design of the dialog manager may lead the system to
behave in a way that the wizard knows is erroneous. It is important that the wizard
adheres to the design rather than making use of their own knowledge and capa-
bilities. This is not easy to do, which is why WOZ is usually automated as much as
possible so as to constrain the behavior of the wizard.

In some settings, for example, when the human wizard replaces the ASR or SLU
components, different error-generation approaches have been applied to introduce
errors at a rate that simulates the performance of the components as it would be
when simulated by the wizard.

17.4.3 Test Subjects

When discussing the difference between laboratory and field conditions, we were
also implicitly distinguishing between recruited and real users. Recruited users are
subjects who are asked to participate in the evaluation (usually for some incentive).
The users recruited should be representative of the target population that represents
the final users of the system and they must be sufficiently numerous to provide
evaluation results that are statistically significant.

Users can also be recruited to gather evaluation corpora from which to compute
models, e.g., satisfaction prediction models. In both cases, achieving a high number
of users poses a challenge for developers, especially in academia where it is difficult
to recruit some population groups. We will focus on two ways to mitigate this
problem: crowdsourcing and user simulation.

17.4.3.1 Crowdsourcing

Crowdsourcing is a rather novel approach that involves recruiting users through the
Internet by means of a service created for that effect. Traditionally, academics have
used students as test subjects, but student populations may not be representative of
the final user groups in all contexts. Collecting user judgments with crowdsourcing
makes it possible to have a large number of dialogs evaluated by a large population
in a short period of time. This allows the results to be more representative and the
process to be more cost effective.

396 17 Evaluating the Conversational Interface

Crowdsourcing services act as intermediaries between a body of workers and the
creators of tasks (developers). Developers create well-defined tasks and define a
profile of the workers that may be assigned to it (e.g., age, gender, education,
language, and experience). Workers are paid for their responses to the assignments
and developers can approve or reject their results. The most widespread crowd-
sourcing platform within the speech community is Amazon Mechanical Turk,9 but
some other platforms are also being employed, such as CrowdFlower,10

microWorkers,11 and Crowdee,12 a spin-off of the Department of Quality and
Usability at the Technical University of Berlin.

Eskenazi et al. (2013) present a detailed study of crowdsourcing for speech
processing, describing the benefits of this recruitment procedure and also the issues
that developers should consider. For example, there may be bots, malicious indi-
viduals, and well-intentioned individuals, such as non-native speakers, who are not
well enough qualified or suitable for the task. As a partial solution, in some plat-
forms it is possible to check the ratio of responses that were accepted for a certain
worker and establish a threshold for accepting workers for your evaluations.

Different studies show that evaluation results for conversational interfaces using
crowdsourcing are reliable. For example, Jurčíček et al. (2011) compared the results
of Mechanical Turk with results obtained from evaluators recruited locally in their
university (Cambridge, UK) and found that the results were consistent and
indistinguishable.

As crowdsourcing has become popular, new authors are providing interesting
insights on how to avoid cheaters in evaluations, how to perform evaluations that
require spoken interaction with a system within the crowdsourcing platform, and
how to control the quality of the results. For example, at the INTERSPECH 2015
conference there was a special session on “Advanced Crowdsourcing for Speech
and Beyond” where experts discussed these topics.13

17.4.3.2 User Simulation

Systems can also be evaluated automatically, that is, by creating software that
interacts with the conversational interface as if it were a real user. The idea is to
learn possible user responses to the system’s interventions from a corpus of real
user data (e.g., from previous versions of the system or from human–human con-
versations in the same domain), or to generate rules that produce user responses for
each system intervention. These rules can be as detailed as desired, from learning

9https://www.mturk.com/mturk/welcome. Accessed on February 28, 2016.
10http://www.crowdflower.com/. Accessed on February 28, 2016.
11https://microworkers.com/. Accessed on February 28, 2016.
12https://www.crowdee.de/en/. Accessed on February 28, 2016.
13The papers presented at the special session are accessible here: http://www.isca-speech.org/
archive/interspeech_2015/#Sess074. Accessed February 29, 2016.

17.4 Evaluation Procedures 397

https://www.mturk.com/mturk/welcome
http://www.crowdflower.com/
https://microworkers.com/
https://www.crowdee.de/en/
http://www.isca-speech.org/archive/interspeech_2015/%23Sess074
http://www.isca-speech.org/archive/interspeech_2015/%23Sess074

general user models to simulating users that behave differently according to user
profiles. In this way, user simulators make it possible to generate a large number of
dialogs in a very simple way, reducing the time and effort needed for the evaluation
of a conversational interface each time it is modified.

Eckert et al. (1997) identified the following advantages of user simulation:

• It allows the automatic evaluation of a large number of dialogs without
expensive manual investigation.

• As there is less manual work, the results are less error-prone.
• The characteristics of different user populations can be easily modeled.
• The same user model can be used to perform a comparative evaluation of other

competing systems.
• The simulations can also be used for other purposes such as optimizing dialog

strategies.

It is possible to classify different approaches with regard to the level of
abstraction at which they model the conversation between the system and the
simulated user, which is related to whether the integrated system or only some of its
components are to be evaluated. For example, to evaluate the dialog manager, user
simulators are frequently built at the level of intentions by generating dialog acts
rather than actual spoken text (see Chap. 10). This approach is very popular and has
been used with different learning techniques, including reinforcement learning
(Schatzmann et al. 2006), n-gram models, and other statistical approaches (Griol
et al. 2014).

Modeling interaction at the intention level avoids the need to reproduce the
enormous variety of speech signals and word sequences that can be produced
during interactions with the system. However, for a holistic system evaluation it is
necessary to test the performance of components such as ASR and SLU. For
example, López-Cózar et al. (2007) employ a corpus of possible user utterances for
each semantic representation that is input to the speech recognizer, thus evaluating
the whole interaction cycle. These approaches can be complemented by channel
simulation techniques to generate noise and realistic ASR errors (Jung et al. 2009).

17.5 Summary

Evaluating conversational interfaces encompasses a variety of methodologies and
tools. Evaluation examines not only whether systems operate correctly and are
usable but also whether they can engage in a believable manner in social com-
munication. Evaluation can take place during the development of a system as well
as when the system is due for public release.

Criteria that are used for evaluation can be either objective metrics that are
computed from logs of the interactions of users with the system, or subjective
metrics based on the opinions of users about the system. Different metrics are used
for the different components of a system.

398 17 Evaluating the Conversational Interface

http://dx.doi.org/10.1007/978-3-319-32967-3_10

In conducting evaluation, it is important to consider differences between labo-
ratory and real-world settings as well as whether the test subjects have been
recruited specially for the evaluation or are real users of the system.
Laboratory-based evaluations with recruited users allow the evaluation to be more
tightly controlled but have the drawback that they might not reflect usage of the
system by real users. However, evaluations in the field with real users can produce
highly variable results, as it is not easy to control the interactions. For these reasons,
other methods such as simulated users and crowdsourcing have become more
prevalent in recent years.

Further Reading
There are many other aspects that are involved in system evaluation that it is not
possible to cover here, including:

• Multimodal conversation. Kühnel (2012) presents a systematic review of how
the quality aspects of multimodal interactive systems can be quantified,
including multimodal behavior as well as output and input aspects.

• System personality and social interaction. Callejas et al. (2014) present an
overview of models and approaches for the evaluation of personality based
mainly on assessing whether the personality perceived by users matches the
personality that the development team intended to reproduce, also covering the
effect of the users’ own personality on their perceptions.

• Human–robot interaction evaluation. Sim and Loo (2015) provide a discussion
of the strengths and weaknesses of the main assessment and evaluation
methodologies that includes a very wide range of models covering aspects such
as friendship, personality matching, empathy, acceptance, and task performance.

• Embodied conversational agents (ECAs). The evaluation of ECAs includes,
among other things, metrics related to appearance and behavioral believability,
social behaviors, domain knowledge, agency, responsiveness, reliability, and
final visuals and interaction mechanisms (Ruttkay and Pelachaud 2004).

References

Bennett C (2005) Large scale evaluation of corpus-based synthesizers: results and lessons from the
Blizzard challenge 2005. In: Proceedings of the 9th European conference on speech
communication and technology (Interspeech’2005—Eurospeech), Lisbon, Portugal, 4–8 Sept
2005, pp 105–108. http://www.isca-speech.org/archive/interspeech_2005/i05_0105.html

Beringer N, Kartal U, Louka K, Schiel F, Türk U (2002) PROMISE: a procedure for multimodal
interactive system evaluation. In: Proceedings of the LREC workshop on multimodal resources
and multimodal systems evaluation, Las Palmas, Spain, 1 June 2002, pp 77–80. http://www.
lrec-conf.org/proceedings/lrec2002/pdf/50.pdf

Bernsen NO, Dybkjær H, Dybkjær L (1998) Designing interactive speech systems: from first ideas
to user testing. Springer, London. doi:10.1007/978-1-4471-0897-9

Black A, Tokuda K (2005) The Blizzard challenge—2005: evaluating corpus-based speech
synthesis on common datasets. In: Proceedings of Interspeech’2005—Eurospeech, 9th

17.5 Summary 399

http://www.isca-speech.org/archive/interspeech_2005/i05_0105.html
http://www.lrec-conf.org/proceedings/lrec2002/pdf/50.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/50.pdf
http://dx.doi.org/10.1007/978-1-4471-0897-9

european conference on speech communication and technology, Lisbon, Portugal, 4–8 Sept
2005, pp 77–80. http://www.isca-speech.org/archive/interspeech_2005/i05_0077.html

Black A, Burger S, Langner B, Parent G, Eskenazi M (2010) Spoken dialog challenge 2010. In:
Proceedings of IEEE spoken language technology workshop (SLT), Berkeley, California USA,
12–15 Dec 2010, pp 448-453. doi:10.1109/SLT.2010.5700894

Callejas Z, Griol D, López-Cózar R (2014) A framework for the assessment of synthetic
personalities according to user perception. Int J Hum-Comput Stud 72:567–583. doi:10.1016/j.
ijhcs.2014.02.002

Carenini G, Moore JD (2006) Generating and evaluating evaluative arguments. Artif Intell
170:925–952. doi:10.1016/j.artint.2006.05.003

Cuayáhuitl H, Renals S, Lemon O, Shimodaira H (2005) Human-computer dialogue simulation
using Hidden Markov models. In: Proceedings of the IEEE automatic speech recognition and
understanding workshop (ASRU’05), San Juan, Puerto Rico, 27 Nov–1 Dec 2005, pp 290–
295. doi:10.1109/ASRU.2005.1566485

Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of computer technology: a
comparison of two theoretical models. Manage Sci 35:982–1003. doi:10.1287/mnsc.35.8.982

Delogu C, Conte S, Sementina C (1998) Cognitive factors in the evaluation of synthetic speech.
Speech Commun 24:153–168. doi:10.1016/S0167-6393(98)00009-0

Dybkjaer L, Bernsen NO (2000) Usability issues in spoken language dialogue systems. Nat Lang
Eng 6(3–4):243–271. doi:10.1017/s1351324900002461

Dybkjaer L, Bernsen NO, Carlson R, Chase L, Dahlbäck N, Failenschmid K, Heid U,
Heisterkamp P, Jönsson A, Kamp H, Karlsson I, Kuppevelt J, Lamel L, Paroubek P,
Williams D (1998) The DISC approach to spoken language systems development and
evaluation. In: Proceedings of the first international conference on language resources and
evaluation, Granada, Spain, 28–30 May 1998, pp 185–189

Dybkjaer L, Bernsen NO,MinkerW (2004) Evaluation and usability of multimodal spoken language
dialogue systems. Speech Commun 43(1–2):33–54. doi:10.1016/j.specom.2004.02.001

Eckert W, Levin E, Pieraccini R (1997) User modeling for spoken dialogue system evaluation. In:
IEEE workshop on automatic speech recognition and understanding, Santa Barbara, CA, 14–
17 Dec 1997, pp 80–87

Engelbrecht K-P (2012) Estimating spoken dialog system quality with user models. Springer
Science & Business Media, Berlin. doi:10.1007/978-3-642-31591-6

Eskenazi M, Levow G-A, Meng H, Parent G, Suendermann D (eds) (2013) Crowdsourcing for
speech processing: applications to data collection, transcription, and assessment. Wiley,
Chichester. doi:10.1002/9781118541241

Fiscus JG, Ajot J, Garofolo JS (2008) The rich transcription 2007 meeting recognition evaluation.
In: Stiefelhagen R, Bowers R, Fiscus J (eds) Multimodal technologies for perception of
humans. Springer, Berlin, pp 373–389. doi:10.1007/978-3-540-68585-2_36

Gibbon D, Moore R, Winski R (1997) Handbook of standards and resources for spoken language
systems. Walter de Gruyter, Berlin

Griol D, Callejas Z, López-Cózar R, Riccardi G (2014) A domain-independent statistical
methodology for dialog management in spoken dialog systems. Comput Speech Lang 28:743–
768. doi:10.1016/j.csl.2013.09.002

Hassenzahl M (2001) The effect of perceived hedonic quality on product appealingness. Int J
Hum-Comput Interact 13:481–499. doi:10.1207/S15327590IJHC1304_07

Henderson J, Jurčíček F (2012) Data-driven methods for spoken language understanding. In:
Lemon O, Pietquin O (eds) Data-driven methods for adaptive spoken dialogue systems:
computational learning for conversational interfaces. Springer, New York, pp 19–38. doi:10.
1007/978-1-4614-4803-7_3

Hone KS, Graham R (2000) Towards a tool for the subjective assessment of speech system
interfaces (SASSI). Nat Lang Eng 6:287–303. doi:10.1017/S1351324900002497

Jekosch U (2005) Voice and speech quality perception: assessment and evaluation. Springer,
Berlin. doi:10.1007/3-540-28860-0

400 17 Evaluating the Conversational Interface

http://www.isca-speech.org/archive/interspeech_2005/i05_0077.html
http://dx.doi.org/10.1109/SLT.2010.5700894
http://dx.doi.org/10.1016/j.ijhcs.2014.02.002
http://dx.doi.org/10.1016/j.ijhcs.2014.02.002
http://dx.doi.org/10.1016/j.artint.2006.05.003
http://dx.doi.org/10.1109/ASRU.2005.1566485
http://dx.doi.org/10.1287/mnsc.35.8.982
http://dx.doi.org/10.1016/S0167-6393(98)00009-0
http://dx.doi.org/10.1017/s1351324900002461
http://dx.doi.org/10.1016/j.specom.2004.02.001
http://dx.doi.org/10.1007/978-3-642-31591-6
http://dx.doi.org/10.1002/9781118541241
http://dx.doi.org/10.1007/978-3-540-68585-2_36
http://dx.doi.org/10.1016/j.csl.2013.09.002
http://dx.doi.org/10.1207/S15327590IJHC1304_07
http://dx.doi.org/10.1007/978-1-4614-4803-7_3
http://dx.doi.org/10.1007/978-1-4614-4803-7_3
http://dx.doi.org/10.1017/S1351324900002497
http://dx.doi.org/10.1007/3-540-28860-0

Jiang J, Awadallah AH, Jones R, Ozertem U, Zitouni I, Kulkarni RG, Khan OZ (2015) Automatic
online evaluation of intelligent assistants. In: Proceedings of the 23rd international conference
on World Wide Web (WWW ‘15), Florence, Italy, 18–22 May 2015, pp 506–516. http://www.
www2015.it/documents/proceedings/proceedings/p506.pdf

Jung S, Lee C, Kim K, Jeong M, Lee GG (2009) Data-driven user simulation for automated
evaluation of spoken dialog systems. Comput Speech Lang 23(4):479–509. doi:10.1016/j.csl.
2009.03.002

Jurčíček F, Keizer S, Gašić M, Mairesse F, Thomson B, Yu K, Young S (2011) Real user
evaluation of spoken dialogue systems using Amazon Mechanical Turk. In: Proceedings of the
12th annual conference of the international speech communication association (Interspeech
2011), Florence, Italy, 27–31 Aug 2011, pp 3061–3064. http://www.isca-speech.org/archive/
interspeech_2011/i11_3061.html

Kühnel C (2012) Quantifying quality aspects of multimodal interactive systems. Springer, Berlin.
doi:10.1007/978-3-642-29602-4

Lemon O, Pietquin O (eds) (2012) Data-driven methods for adaptive spoken dialog systems:
computational learning for conversational interfaces. Springer, New York. doi:10.1007/978-1-
4614-4803-7

Lemon O, Janarthanam S, Rieser V (2010) Statistical approaches to adaptive natural language
generation. In: Lemon O, Pietquin O (eds) Data-driven methods for adaptive spoken dialogue
systems: computational learning for conversational interfaces. Springer, New York. doi:10.
1007/978-1-4614-4803-7_6

López Cózar R, Araki M (2005) Spoken, multilingual and multimodal dialog systems:
development and assessment. Wiley, Chichester. doi:10.1002/0470021578

López-Cózar R, Callejas Z, McTear M (2007) Testing the performance of spoken dialogue
systems by means of an artificially simulated user. Artif Intell Rev 26:291–323. doi:10.1007/
s10462-007-9059-9

Möller S (2005) Quality of telephone-based spoken dialogue systems. Springer
Sciennce + Business Media, Heidelberg. doi:10.1007/b100796

Möller S, Smeele P, Boland H, Krebber J (2007) Evaluating spoken dialogue systems according to
de-facto standards: a case study. Comput Speech Lang 21(1):26–53. doi:10.1016/j.csl.2005.11.
003

Möller S, Engelbrecht K-P, Schleicher R (2008) Predicting the quality and usability of spoken
dialogue services. Speech Commun 50:730–744. doi:10.1016/j.specom.2008.03.001

Raux A, Langner B, Black A, Eskenazi M (2005) Let’s go public! Taking a spoken dialog system
to the real world. In: Proceedings of the 9th European conference on speech communication
and technology (Interspeech’2005—Eurospeech), Lisbon, Portugal, 4–8 September 2005,
pp 885–888. http://www.isca-speech.org/archive/interspeech_2005/i05_0885.html

Reiter E, Belz A (2009) An investigation into the validity of some metrics for automatically
evaluating natural language generation systems. Comput Linguist 35:529–558. doi:10.1162/
coli.2009.35.4.35405

Reiter E, Robertson R, Osman LM (2003) Lessons from a failure: generating tailored smoking
cessation letters. Artif Intell 144:41–58. doi:10.1016/S0004-3702(02)00370-3

Ruttkay Z, Pelachaud C (eds) (2004) From brows to trust. Evaluating embodied conversational
agents. Springer, Netherlands. doi:10.1007/1-4020-2730-3

Schatzmann J, Georgila K, Young S (2005) Quantitative evaluation of user simulation techniques
for spoken dialogue systems. In: Proceedings of the 6th SIGdial workshop on discourse and
dialogue, Lisbon, Portugal, 2–3 Sept 2005, pp 45–54. http://www.isca-speech.org/archive_
open/sigdial6/sgd6_045.html

Schatzmann J, Weilhammer K, Stuttle M, Young S (2006) A survey of statistical user simulation
techniques for reinforcement-learning of dialogue management strategies. Knowl Eng Rev
21:97. doi:10.1017/S0269888906000944

Scheffler K, Young S (2001) Automatic learning of dialogue strategy using dialogue simulation
and reinforcement learning. In: Proceedings of 49th annual meeting of the association for

References 401

http://www.www2015.it/documents/proceedings/proceedings/p506.pdf
http://www.www2015.it/documents/proceedings/proceedings/p506.pdf
http://dx.doi.org/10.1016/j.csl.2009.03.002
http://dx.doi.org/10.1016/j.csl.2009.03.002
http://www.isca-speech.org/archive/interspeech_2011/i11_3061.html
http://www.isca-speech.org/archive/interspeech_2011/i11_3061.html
http://dx.doi.org/10.1007/978-3-642-29602-4
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1007/978-1-4614-4803-7
http://dx.doi.org/10.1007/978-1-4614-4803-7_6
http://dx.doi.org/10.1007/978-1-4614-4803-7_6
http://dx.doi.org/10.1002/0470021578
http://dx.doi.org/10.1007/s10462-007-9059-9
http://dx.doi.org/10.1007/s10462-007-9059-9
http://dx.doi.org/10.1007/b100796
http://dx.doi.org/10.1016/j.csl.2005.11.003
http://dx.doi.org/10.1016/j.csl.2005.11.003
http://dx.doi.org/10.1016/j.specom.2008.03.001
http://www.isca-speech.org/archive/interspeech_2005/i05_0885.html
http://dx.doi.org/10.1162/coli.2009.35.4.35405
http://dx.doi.org/10.1162/coli.2009.35.4.35405
http://dx.doi.org/10.1016/S0004-3702(02)00370-3
http://dx.doi.org/10.1007/1-4020-2730-3
http://www.isca-speech.org/archive_open/sigdial6/sgd6_045.html
http://www.isca-speech.org/archive_open/sigdial6/sgd6_045.html
http://dx.doi.org/10.1017/S0269888906000944

computational linguistics: human language technologies (HLT), Portland, Oregon USA, 19–24
June 2011, pp 12–18. http://dl.acm.org/citation.cfm?id=1289246

Schmitt A, Ultes S (2015) Interaction quality: assessing the quality of ongoing spoken dialog
interaction by experts—and how it relates to user satisfaction. Speech Commun 74:12–36.
doi:10.1016/j.specom.2015.06.003

Schmitt A, Ultes S, Minker W (2012) A parameterized and annotated spoken dialog corpus of the
CMU let’s go bus information system. In: Proceedings of the eight international conference on
language resources and evaluation (LREC’12). Istanbul, Turkey. http://www.lrec-conf.org/
proceedings/lrec2012/summaries/333.html

Sim DYY, Loo CK (2015) Extensive assessment and evaluation methodologies on assistive social
robots for modelling human–robot interaction—a review. Inf Sci 301:305–344. doi:10.1016/j.
ins.2014.12.017

Suhm B (2008) IVR Usability engineering using guidelines and analyses of end-to-end calls. In:
Human factors and voice interactive systems. Springer US, Boston, MA, pp 1–41. doi:10.1007/
978-0-387-68439-0_1

Tur G, de Mori R (eds) (2011) Spoken language understanding: systems for extracting semantic
information from speech. Wiley, Chichester, UK. doi:10.1002/9781119992691

Walker MA, Litman DJ, Kamm CA, Abella, A (1997) PARADISE: a framework for evaluating
spoken dialogue agents. In: Proceedings of the 8th conference on European chapter of the
association for computational linguistics (EACL), Madrid, Spain, 7–12 July 2005, pp 271–280.
https://aclweb.org/anthology/P/P97/P97-1035.pdf

Walker MA, Litman DJ, Kamm CA, Abella A (1998) Evaluating spoken dialogue agents with
PARADISE: two case studies. Comput Speech Lang 12(4):317–347. doi:10.1006/csla.1998.
0110

Walker M, Kamm CA, Litman DJ (2000) Towards developing general models of usability with
PARADISE. Nat Lang Eng 6(3–4):363–377. doi:10.1017/s1351324900002503

Walker MA, Rudnicky A, Prasad R, Aberdeen J, Bratt EO, Garofolo J, Hastie H, Le A, Pellom B,
Potamianos A, Passonneau R, Roukos S, Sanders G, Seneff S, Stallard D (2002) DARPA
Communicator: cross-system results for the 2001 evaluation. In: Proceedings of the 7th
international conference on spoken language processing (ICSLP2002), vol 1, Denver,
Colorado, pp 273–276. http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_
0269.pdf. Accessed 21 Jan 2016

White RW (2016) Interactions with search systems. Cambridge University Press, Cambridge
Williams JD (2008) Evaluating user simulations with the Cramér-von Mises divergence. Speech

Commun 50(10):829–846. doi:10.1016/j.specom.2008.05.007
Williams JD, Raux A, Ramachandran D, Black A (2013) The dialog state tracking challenge. In:

Proceedings of the 4th annual SIGdial meeting on discourse and dialogue (SIGDIAL), Metz,
France, 22–24 Aug 2013, pp 404–413. http://www.aclweb.org/anthology/W13-4065

Yang Z, Levow G-A, Meng H (2012) Predicting user satisfaction in spoken dialog system
evaluation with collaborative filtering. IEEE J Sel Top Signal Process 6:971–981. doi:10.1109/
JSTSP.2012.2229965

Young S (2002) The statistical approach to the design of spoken dialogue systems. Tech Report
CUED/F-INFENG/TR.433. Cambridge University Engineering Department. http://mi.eng.
cam.ac.uk/*sjy/papers/youn02b.ps.gz

402 17 Evaluating the Conversational Interface

http://dl.acm.org/citation.cfm?id=1289246
http://dx.doi.org/10.1016/j.specom.2015.06.003
http://www.lrec-conf.org/proceedings/lrec2012/summaries/333.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/333.html
http://dx.doi.org/10.1016/j.ins.2014.12.017
http://dx.doi.org/10.1016/j.ins.2014.12.017
http://dx.doi.org/10.1007/978-0-387-68439-0_1
http://dx.doi.org/10.1007/978-0-387-68439-0_1
http://dx.doi.org/10.1002/9781119992691
https://aclweb.org/anthology/P/P97/P97-1035.pdf
http://dx.doi.org/10.1006/csla.1998.0110
http://dx.doi.org/10.1006/csla.1998.0110
http://dx.doi.org/10.1017/s1351324900002503
http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_0269.pdf
http://www.isca-speech.org/archive/archive_papers/icslp_2002/i02_0269.pdf
http://dx.doi.org/10.1016/j.specom.2008.05.007
http://www.aclweb.org/anthology/W13-4065
http://dx.doi.org/10.1109/JSTSP.2012.2229965
http://dx.doi.org/10.1109/JSTSP.2012.2229965
http://mi.eng.cam.ac.uk/%7esjy/papers/youn02b.ps.gz
http://mi.eng.cam.ac.uk/%7esjy/papers/youn02b.ps.gz

Chapter 18
Future Directions

Abstract As a result of advances in technology, particularly in areas such as
cognitive computing and deep learning, the conversational interface is becoming a
reality. Given the vast number of devices that will be connected in the so-called
Internet of Things, a uniform interface will be necessary both for users and for
developers. We describe current developments in technology and review a number
of application areas that will benefit from conversational interfaces, including smart
environments, health care, care of the elderly, and conversational toys and educa-
tional assistants for children. We also discuss the need for developers of conver-
sational interfaces to focus on bridging the digital divide for under-resourced
languages.

18.1 Introduction

In the course of this book, we have shown how conversational interfaces that allow
humans to interact with machines using natural spoken language have long been a
dream but are now beginning to become a reality. In this chapter, we describe future
prospects for the conversational interface. We look at two aspects: advances in
technology and applications that use conversational interfaces.

18.2 Advances in Technology

While speech recognition was long seen as a major stumbling block due to high
error rates, more recently it has become apparent that language understanding and
conversational ability are also important aspects of an intelligent conversational
interface. In this section, we outline some recently emerging technologies and
indicate areas for future development.

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3_18

403

18.2.1 Cognitive Computing

Although our focus in this book has been on what is required to design and
implement a conversational interface that would enable humans to communicate
naturally with virtual personal assistants and other smart devices, ultimately there
also has to be an intelligence behind the conversational interface that acts on the
interpretation of the human’s queries and commands and provides appropriate
responses. As Sara Basson,1 formerly of IBM Research and now at Google, puts it:

The key to these systems is not their ability to communicate through speech and language,
but that these systems will be intelligent, personalized, and constantly learning—about the
environment, about the users, and their preferences and expectations. Speech and language
technologies will not drive the era of cognitive systems, but cognitive systems may well
drive the era of speech and language interaction. Perhaps it wasn’t enough for speech
technology to get smarter and better. The underlying systems needed to be smarter and
better, in order to take adequate advantage of speech interfaces.

The technology being referred to here has been called cognitive computing. In
cognitive computing, several technologies are combined, including natural lan-
guage processing, information retrieval, machine learning, and reasoning. The first
and best-known demonstration of cognitive computing was IBM’s Watson. Watson
is a computer system that was developed initially to compete with human cham-
pions in the American TV quiz show Jeopardy. In order to compete effectively,
Watson had to scan through 200 million pages of structured and unstructured
documents to find potential answers, evaluate and rank the answers to come up with
a single answer with a sufficient degree of confidence, and beat the human com-
petitors to the buzzer within a time of 3 s. In 2011, Watson competed in Jeopardy
against two former winners and received the first prize.

Since the success in Jeopardy, Watson is now being used to provide intelligent
question answering capabilities in specialist domains such as health care and
financial services. With cognitive computing, it is predicted that computer systems
will be able to learn by interacting with data, to reason about the information
extracted from the data, and to interact intelligently with humans and extend human
capabilities—in other words, to contribute to the ultimate virtual personal assistant.

18.2.2 Deep Learning

Deep learning involves extracting patterns from data and classifying them by
learning multiple layers of representation and abstraction. One of the attractions of
deep learning is that the models and algorithms that are used in one application can
be applied to a diverse range of other applications. For example, applications

1http://www.speechtechmag.com/Articles/Column/The-View-from-AVIOS/Building-Smarter-
Systems-with-Cognitive-Computing-94590.aspx. Accessed February 21, 2016.

404 18 Future Directions

http://www.speechtechmag.com/Articles/Column/The-View-from-AVIOS/Building-Smarter-Systems-with-Cognitive-Computing-94590.aspx
http://www.speechtechmag.com/Articles/Column/The-View-from-AVIOS/Building-Smarter-Systems-with-Cognitive-Computing-94590.aspx

involving computer vision, speech recognition, natural language understanding,
audio processing, information retrieval, and robotics can all make use of the same
models and algorithms, whereas with previous approaches, problem-specific
methods would have been used for the different applications (LeCun et al. 2015).
The success of deep learning can be attributed to the availability of vast amounts of
data, more powerful processors to process this data, and new models for learning, in
particular, a fast learning algorithm developed by Hinton and colleagues for
learning deep belief networks (Hinton et al. 2006).

With respect to conversational interfaces, deep learning has brought about
dramatic improvements in speech recognition, language understanding, and ques-
tion answering. The next area for development is conversational interaction.
Currently, most interaction with virtual personal assistants is not conversational.
Instead, this interaction consists mainly of one-shot queries to which the assistant
provides a response. There is generally no way to engage in dialog, except in a
fairly limited sense as in Google’s Voice Interactions, where the user can ask
follow-up questions.2 Moreover, the conversational capabilities of most current
virtual personal assistants are rule-based, meaning that dialog designers predict and
design a range of user inputs and system responses in the form of rules.

An alternative to this approach is to have the system learn from the interactions
in which it engages. This is the approach being adopted by Steve Young, Professor
of Information Engineering at the University of Cambridge. Young proposes that
conversational systems should be able to learn online from their interactions with
users, learn from their mistakes, and gradually become more intelligent as a result
of participating in more interactions. In the approach being developed by Young
and colleagues in research projects in the Dialogue Systems Group and in the
spin-off company VocalIQ (VIQ), deep learning is combined with reinforcement
learning (see Chap. 10). Young draws the analogy of a child gradually learning to
become more conversationally competent by engaging in and learning from con-
versations. As Young3 put it:

VIQ is learning across whole dialogs. What the system is trying to do is get a reward from
the user. The system’s reward is to satisfy the user’s need. It might take a long conversation
before the user gets what they want, but as long as the system ends up with a positive
reward for that interaction, it propagates the reward back amongst everything it’s done over
the dialog.

Apple acquired VocalIQ in October 2015, and the expectation is that VocalIQ’s
self-learning platform will make a major contribution to the next generation of
conversational interfaces.4

2https://developers.google.com/voice-actions/interaction/. Accessed February 21, 2016.
3http://www.fastcolabs.com/3027067/this-cambridge-researcher-just-embarrassed-siri. Accessed
February 21, 2016.
4http://techone3.in/apple-buys-artificial-intelligence-startup-vocaliq-to-expand-siri-3734/.
Accessed February 21, 2016.

18.2 Advances in Technology 405

http://dx.doi.org/10.1007/978-3-319-32967-3_10
https://developers.google.com/voice-actions/interaction/
http://www.fastcolabs.com/3027067/this-cambridge-researcher-just-embarrassed-siri
http://techone3.in/apple-buys-artificial-intelligence-startup-vocaliq-to-expand-siri-3734/

18.2.3 The Internet of Things

The Internet of Things (IoT) is a term used to refer to a massive network of
connected devices and sensors that can collect and exchange data. Indeed, it has
been predicted that by 2020, the IoT network will consist of more than 29 billion
connected devices.5 IoT enables communication between these devices and sensors
and also in some cases with virtual personal assistants as well as humans who can
make use of this information. For example, a smart car not only will assist drivers
with advice about traffic flow and congestions but will also be able to communicate
with devices in the home to do tasks such as controlling security and heating or
checking with the refrigerator what food items need to be bought when the car is in
the vicinity of the user’s favorite supermarket.

Applications involving the IoT will make use of technologies such as cognitive
computing and the conversational interface. For example, IBM recently introduced
the notion of Cognitive IoT in which systems not only will interact with data but
will also learn and adapt.6 Conversational interfaces are likely to be the only way to
communicate with devices as many of them will not have conventional graphical
user interfaces (GUIs) to accept input from human users and display output.
Moreover, given the large number of devices that we might communicate with in
our activities of daily living, a single and unique conversational interface will be
preferable to a situation in which each device has its own interface. As recom-
mended by Deborah Dahl, principal at Conversational Technologies and chair of
the Multimodal Interaction Working Group at the Worldwide Web Consortium
(W3C), the use of a standard for speech understanding results such as the W3C’s
Extensible Multimodal Annotation (EMMA) would provide an interface between
VPAs and devices in IoT that would make it easier for users and developers to
interact with this wide variety of connected devices.7

18.2.4 Platforms, SDKs, and APIs for Developers

Given the technological advances discussed in the preceding sections, it will be
important for developers to have access to platforms, SDKs, and APIs that will
enable them to develop powerful and effective conversational interfaces. In this
section, we first review some tools that are currently available and then make some
suggestions for future work.

5http://www.businesswire.com/news/home/20131003005687/en/Internet-Poised-Change-IDC.
Accessed February 21, 2016.
6http://www.ibm.com/internet-of-things/. Accessed February 21, 2016.
7http://www.speechtechmag.com/Articles/Column/Standards/Talking-to-Everything-User-
Interfaces-for-the-Internet-of-Things-103795.aspx. Accessed February 21, 2016.

406 18 Future Directions

http://www.businesswire.com/news/home/20131003005687/en/Internet-Poised-Change-IDC
http://www.ibm.com/internet-of-things/
http://www.speechtechmag.com/Articles/Column/Standards/Talking-to-Everything-User-Interfaces-for-the-Internet-of-Things-103795.aspx
http://www.speechtechmag.com/Articles/Column/Standards/Talking-to-Everything-User-Interfaces-for-the-Internet-of-Things-103795.aspx

There have been many tools that have been developed in industry and univer-
sities to enable researchers to build spoken dialog systems and voice user interfaces.
Some of these tools are proprietary and some are open source. A recent addition is
Sirius, an open end-to-end virtual personal assistant that was developed by Clarity
Lab at the University of Michigan (Hauswald et al. 2015).8 Sirius includes the key
elements of a virtual personal assistant, such as speech recognition, image match-
ing, natural language processing, and question answering, building on open-source
projects that include technologies similar to those found in commercial systems: for
example, for speech recognition, several technologies are available, including
Gaussian mixture models (GMMs) and deep neural networks; for natural language
processing technologies such as regular expressions, conditional random fields, and
part-of-speech tagging; for question answering the OpenEphyra system, which uses
techniques similar to those used in IBM’s Watson; and for image processing
Speeded Up Robust Features (SURF), a local feature detector and descriptor that
uses state-of-the-art image matching algorithms. Developers can select from the
available technologies and customize them by using their own components and
algorithms.

To support the development of cognitive systems, IBM has made available the
IBM Watson Developer Cloud that provides services enabling developers to create
cognitive applications on the IBM Bluemix cloud platform. Language services
include Dialog, Language Translation, Natural Language Classifier, and
AlchemyLanguage, a collection of APIs that offer text analysis using natural lan-
guage processing technologies, such as entity extraction, sentiment analysis, lan-
guage detection, and parsing. Other relevant services for developers of
conversational interfaces are Speech to Text and Text to Speech.9 Similarly,
Microsoft’s Project Oxford offers a series of APIs, including Speech, Speaker
Recognition, and Language Understanding.10

Other platforms for developers of conversational interfaces include: Houndify,11

Silvia,12 and the Teneo platform from Artificial Solutions.13 The Virtual Human
Toolkit from the Institute of Creative Technologies at the University of Southern
California is a set of tools and libraries for creating virtual human conversational
characters that interact using speech and also track and analyze facial expressions,
body posture, and acoustic features as well as generating nonverbal behaviors.14

8http://sirius.clarity-lab.org/. Accessed February 21, 2016.
9http://www.ibm.com/smarterplanet/us/en/ibmwatson/watson-cloud.html. Accessed February 21,
2016.
10https://www.projectoxford.ai/. Accessed February 21, 2016.
11http://www.soundhound.com/houndify. Accessed February 21, 2016.
12http://silvia4u.info/technology/. Accessed February 21, 2016.
13http://www.artificial-solutions.com/natural-language-interaction-products/. Accessed February
21, 2016.
14https://vhtoolkit.ict.usc.edu/. Accessed February 21, 2016.

18.2 Advances in Technology 407

http://sirius.clarity-lab.org/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/watson-cloud.html
https://www.projectoxford.ai/
http://www.soundhound.com/houndify
http://silvia4u.info/technology/
http://www.artificial-solutions.com/natural-language-interaction-products/
https://vhtoolkit.ict.usc.edu/

Platforms, SDKs, and APIs such as these provide a useful resource to developers,
given the complexity of the components required to design and implement a con-
versational interface. In the future, tools will also be required that will make it easier
for developers to easily integrate conversational interfaces with other types of
application and device. At present, most of this integration is done on an ad hoc basis,
but there is a need to have agreed standards and tools that can be used by developers
wishing to adapt and tailor their applications to their specific requirements.

18.3 Applications that Use Conversational Interfaces

Until recently, interacting with applications using speech involved either stilted,
system-directed dialogs over the telephone or commands using a restricted
vocabulary to control objects in the environment. However, given the developments
in technology outlined above as well as in earlier chapters of this book, virtual
personal assistants and social robots can process conversational and multimodal
input from users and retrieve and process data from sources on the Web and from
personal and environmental sensors, and they can use this data to respond to and
interact intelligently with users. In the following sections, we outline a number of
application areas that are currently benefitting from these new developments in
conversational technology and offer some suggestions for future work.

18.3.1 Enterprise Assistants

While VPAs such as Google Now, Siri, Cortana, Alexa, M, and many others are
intended primarily to assist individual users to find information and accomplish
tasks, there is an increasing demand for specialized enterprise assistants that will
provide customer-facing support for a company’s products and services as well as
customer-enabling support that helps customers find information about those par-
ticular products and services that meet their current requirements. As Meisel15 has
predicted, enterprise agents such as these will be as necessary for companies as
traditional company Web sites.

Several companies are heavily involved in specialized enterprise assistants,
including Interactions,16 NextIT,17 and Nuance Nina.18 Enterprise agents bring

15http://wp.avios.org/wp-content/uploads/2015/conference2015/Bill%20Meisel.pdf. Accessed
February 21, 2016.
16http://www.interactions.com/. Accessed February 21, 2016.
17http://www.nextit.com/. Accessed February 21, 2016.
18http://www.nuance.com/for-business/customer-service-solutions/nina/index.htm. Accessed
February 21, 2016.

408 18 Future Directions

http://wp.avios.org/wp-content/uploads/2015/conference2015/Bill%2520Meisel.pdf
http://www.interactions.com/
http://www.nextit.com/
http://www.nuance.com/for-business/customer-service-solutions/nina/index.htm

enormous benefits to companies. For example, NextIT claim that their virtual
assistant for Amtrak, Ask Julie, saved $1 million in customer service e-mail costs
alone, while Nuance provide a number of case studies showing how their appli-
cations address the challenges of customer service.19 Similarly, Kasisto show how
their specialized intelligent conversational agent enhances interactions involving
mobile financial applications.20

As the technology for conversational interfaces matures, we can expect that an
ever-increasing number of companies and enterprises will want to deploy virtual
personal assistants with conversational interfaces. There will be a need for tools that
make use of standard processes and techniques and that can be easily mastered and
tailored to the specific needs of particular businesses.

18.3.2 Ambient Intelligence and Smart Environments

Ambient intelligence (AmI) is a term used to refer to the way devices in IoT work
together to support people in their activities of daily living within smart environ-
ments such as the home and the car. The conversational interface provides a natural
way for humans to interact with these smart environments.

The vision of the smart home is that the devices within the home will be
connected with each other and that many appliances and processes, such as con-
trolling lighting, heating, and security, will be automated. For example, the lighting
might automatically adjust to take account of the time of day and the presence of
people in a particular part of the house. Likewise, in a smart car, various functions
will be automated, such as adjusting the headlamps in response to ambient weather
and visibility conditions.

The conversational interface is likely to be the preferred method for commu-
nicating with smart devices. For example, in the home, it would be easier to say
“Turn up the heating to 20° in the living room” as opposed to going to the ther-
mostat and carrying out the action manually. For elderly people and people with
disabilities, using a conversational interface would certainly be an advantage.
Similarly, in smart cars, there are many actions that would be dangerous to perform
manually, such as searching for music on the vehicle’s audio device.

The next years are likely to see many developments in the area of AmI and smart
environments. This is where a conversational interface will be important both for
users and for developers. As Deborah Dahl21 puts it in respect of users:

19http://www.nuance.com/for-business/resource_library/index.htm. Accessed February 21, 2016.
20http://kasisto.com/. Accessed February 21, 2016.
21http://www.speechtechmag.com/Articles/Column/Standards/Talking-to-Everything-User-
Interfaces-for-the-Internet-of-Things-103795.aspx. Accessed February 21, 2016.

18.3 Applications that Use Conversational Interfaces 409

http://www.nuance.com/for-business/resource_library/index.htm
http://kasisto.com/
http://www.speechtechmag.com/Articles/Column/Standards/Talking-to-Everything-User-Interfaces-for-the-Internet-of-Things-103795.aspx
http://www.speechtechmag.com/Articles/Column/Standards/Talking-to-Everything-User-Interfaces-for-the-Internet-of-Things-103795.aspx

Right now there are more than 100 apps in the iTunes Store and Google Play Store for
controlling just one type of light bulb, the Philips Hue. Finding and using the right app for
all of our connected objects will be very difficult. To manage this, we need a natural,
generic means of communication that doesn’t require installing and learning to use hun-
dreds of apps.

And with reference to developers:

IoT interfaces will be much easier to develop if the results they produce are not only
available to developers, but are in a standard format too. That way developers won’t have to
work with completely different API formats for all the current personal assistants and all
those that may come along in the future.

18.3.3 Health care

Conversational interfaces in which users can talk with a virtual nurse or doctor have
been in use since around 2000. The first systems provided telephone-based moni-
toring and advice, for example, the Homey system, a telemedicine service for
hypertensive patients (Giorgino et al. 2005), and the DI@L-log system that mon-
itored users with type 2 diabetes (Harper et al. 2008). The dialogs in these systems
were system-directed, in that the system asked a series of questions to elicit
information from the user. For example, the DI@L-log system asked users to
provide values for their weight, blood pressure, and blood glucose levels and then
output relevant advice or, in the case of a problem, such as an excessive rise in
blood pressure or blood glucose levels, generated an alert to the user’s clinician.

A new generation of conversational interface, known as relational agents, pro-
vides more natural interaction. These relational agents are being developed in the
Relational Agents Group22 at Northwestern University, Boston, by Bickmore and
colleagues (Schulman et al. 2011; Bickmore et al. 2016). Relational agents build
and maintain long-term relationships with people and use technologies such as
those developed in the embodied conversational agent (ECA) tradition that include
features of face-to-face communication, for example, hand gestures, facial
expressions, body posture, and spoken interaction. The effectiveness of conversa-
tional interfaces in terms of user satisfaction has been demonstrated in a number of
studies, for example, Bickmore et al. (2016).

Within the commercial world, there are several companies that specialize in
conversational interfaces in the healthcare domain, for example, NextIT’s ALME
health coach23 and Nuance’s healthcare solutions.24 Sense.ly provide a number of
solutions in the healthcare domain, including a virtual nurse called Molly.25 As the

22http://relationalagents.com/. Accessed February 21, 2016.
23http://www.nextithealthcare.com/. Accessed February 21, 2016.
24http://www.nuance.com/for-healthcare/index.htm. Accessed February 21, 2016.
25http://sense.ly/. Accessed February 21, 2016.

410 18 Future Directions

http://relationalagents.com/
http://www.nextithealthcare.com/
http://www.nuance.com/for-healthcare/index.htm
http://sense.ly/

costs of health care escalate, we can expect that virtual assistants for specialist areas
of health care will be an important supplement to care provided by healthcare
professionals.

18.3.4 Companions for the Elderly

In Chap. 13, we discussed social robots such as Amazon Echo, Jibo, and Pepper
that act as personal assistants in the home by answering queries, providing infor-
mation, and in some cases controlling devices in a smart home. Pepper is also being
used in stores in Japan to welcome and inform customers.

Social robots are increasingly being used for more specialized functions, such as
acting as companions for the elderly. This is a particularly important issue given
aging populations in many countries. Various European Union (EU) research
projects have investigated the use of artificial companions, such as LIREC26 and
COMPANIONS.27 Similarly, Dahl et al. (2011) describe a personal assistant that
enables elderly users to perform various tasks of everyday living using an intuitive
conversational interface, while McCarthy et al. (2015) discuss usability aspects of
mobile devices for the elderly.

In addition to providing companionship, building relationships, and supporting
the sorts of tasks that can also be performed using VPAs on a smartphone, some
social robots provide physical support for activities of daily living to enable
independent living at home. Recent projects involving social robots that provide
physical as well as cognitive and social assistance include the EU projects
ACCOMPANY28 and Mobiserv29 and a project at Toyota in Japan involving a
household robot called Robina that in addition to conversing with people can
provide medical and nursing care, perform housework, and carry and use objects.30

Another type of application involves activity monitoring, in which environ-
mental sensors are used to detect the execution status of activities along with
biosensors that log information about the user such as heart rate and body tem-
perature. One example is the Planning and Execution Assistant and Trainer (PEAT)
that helps elderly users and those with cognitive impairments to plan activities. The
system monitors their progress and helps to replan when changes occur in the
plan.31 Another example is a system developed at the Toronto Rehabilitation

26http://lirec.eu/project. Accessed February 21, 2016.
27http://www.cs.ox.ac.uk/projects/companions/. Accessed February 21, 2016.
28http://accompanyproject.eu/. Accessed February 21, 2016.
29http://www.mobiserv.info/. Accessed February 21, 2016.
30http://www.toyota-global.com/innovation/partner_robot/family_2.html#h201. Accessed
February 21, 2016.
31http://www.brainaid.com/. Accessed February 21, 2016.

18.3 Applications that Use Conversational Interfaces 411

http://dx.doi.org/10.1007/978-3-319-32967-3_13
http://lirec.eu/project
http://www.cs.ox.ac.uk/projects/companions/
http://accompanyproject.eu/
http://www.mobiserv.info/
http://www.toyota-global.com/innovation/partner_robot/family_2.html%23h201
http://www.brainaid.com/

Institute that detects when a person has fallen in the home and engages in a
conversation to provide support and assistance.32

Conversational interfaces for the elderly pose a number of problems. The speech
of an elderly person, in particular someone suffering from dementia, will be more
difficult to recognize automatically. Furthermore, the content of the utterances of an
elderly person may also be difficult to process semantically, particularly if that
person is confused, overexcited, or anxious. Additionally, instructions spoken to an
elderly person on how to carry out a sequence of actions, for example, to prepare a
meal, need to be carefully delivered with the option to repeat and pause, and also, if
the interface is conversational, to ask for clarifications and alternative explanations.
For reasons such as these, conversational interfaces for the elderly will need to be
specially adaptive and responsive to the needs of these users.

18.3.5 Conversational Toys and Educational Assistants

Social robots such as Amazon Echo and Jibo are described as family robots with
which all members of the family including children can interact. However, there are
also conversational toys and various types of educational assistant that are specif-
ically intended for young children. These include toys that behave in a similar way
to VPAs on smartphones and in smart robots, i.e., answering questions, carrying out
commands, and engaging in chat, as well toys and gadgets that play a more edu-
cational role.

Hello Barbie from Mattel in conjunction with ToyTalk is an example of a
commercially available conversational toy. Hello Barbie is operated by pressing a
push-to-talk button on its belt buckle. The speech recognition technology is spe-
cially tuned to the speech of young children, and chatbot technology is used to
respond to the children’s inputs and to retrieve answers from data sources on the
Web. The toy has some ability to learn, for example, by remembering what the
child said previously and using this information in future conversations. A video
and some examples of what Barbie can say are available at the Mattel Web site.33

Some other commercially available conversational toys are reviewed in the
VirtualAgentChat blog34 (see also Stapleton 2016).

The educational benefits of conversational toys and educational assistants and
issues concerning their usability are being studied in a number of research projects.
MIT’s Personal Robots Group has a range of projects, including Storytelling
Companion, which investigates the effectiveness of a social robot for children’s
language learning, and DragonBot, a robot that runs on Android phones and that
helps preschool children with learning language. Information about these and other

32http://www.idapt.com/. Accessed February 21, 2016.
33http://hellobarbiefaq.mattel.com/. Accessed February 21, 2016.
34http://virtualagentchat.com/category/conversational-toys/. Accessed February 21, 2016.

412 18 Future Directions

http://www.idapt.com/
http://hellobarbiefaq.mattel.com/
http://virtualagentchat.com/category/conversational-toys/

robots at MIT’s Personal Robots Group can be found here.35 Other research
includes the following: the EU ALIZ-E project that investigates how children
interact with social robots over a longer period of time36; the TRIK robot that helps
children with severe communication disabilities to learn language (Ljunglöf et al.
2009); and the Robots4Autism project that uses robots and tablets to teach social
and conversational skills to children with autism.37

Conversational toys for children have certain special requirements. Firstly, they
have to be able to process the speech input of young children, and secondly, they
have to be able to engage with children across different stages of development,
including children with delayed or impaired communication.

Automatic recognition of children’s speech poses particular challenges. Due to
the physiological characteristics of children, for example, a shorter vocal tract and
articulators that are still under development, their speech has particular character-
istics such as a higher fundamental frequency compared with adults. Articulation
problems include the production of consonantal clusters, which at different stages of
development typically involve consonantal cluster reduction (e.g., “stop” pro-
nounced as “top”) and substitutions (e.g., “frog” pronounced as “fwog”). Moreover,
these characteristics change over time as the child matures. In addition to these
acoustic characteristics, there are also issues with language models for children’s
speech as children’s vocabulary and word combinations differ from those of adults
and also change over time. Various studies have addressed the problems associated
with automatic recognition of children’s speech, for example, Hagen et al. (2007)
and Russell and D’Arcy (2007); see also the deliverable from the EU project
iTalktoLearn.38

Another problem for conversational interfaces involving children concerns the
sorts of topics that interest children across different ages, as well as children’s
ability to engage in dialog using conventional principles of conversation, such as
turn-taking and topic management (Narayanan and Potamianos 2002;
Kruijff-Korbayová et al. 2012; Gray et al. 2014).

In addition to the research issues discussed here, there is a need for sophisticated
conversational interfaces that will enable children to take roles and interact in
various games and adventures. ToyTalk has produced a number of apps in which
children can have conversations with characters in a range of games and adven-
tures.39 Further work is required to make it easier for developers to integrate
conversational interfaces with similar apps and also with the wide range of serious
games that are becoming available and that can be used to educate children in a
novel way. For an overview of the use of natural language processing techniques in
serious games, see Picca et al. (2015).

35http://robotic.media.mit.edu/project-portfolio/. Accessed February 21, 2016.
36http://www.aliz-e.org/. Accessed February 21, 2016.
37http://www.robokindrobots.com/robots4autism-home/. Accessed February 21, 2016.
38http://www.italk2learn.eu/wp-content/uploads/2014/09/D3.1.pdf. Accessed February 21, 2016.
39https://www.toytalk.com/. Accessed February 21, 2016.

18.3 Applications that Use Conversational Interfaces 413

http://robotic.media.mit.edu/project-portfolio/
http://www.aliz-e.org/
http://www.robokindrobots.com/robots4autism-home/
http://www.italk2learn.eu/wp-content/uploads/2014/09/D3.1.pdf
https://www.toytalk.com/

18.3.6 Bridging the Digital Divide for Under-Resourced
Languages

We have shown the importance of conversational interfaces for many different
aspects of technological advance and the many benefits they bring for their users.
However, only a small fraction of the languages in the world have the resources
required to implement conversational interfaces (e.g., there are currently 40 lan-
guages supported by Google Voice Search and more than 6000 languages in the
world).

It is necessary to distinguish between minority and under-resourced languages.
Minority languages are spoken by a minority of the population of a territory or by a
small number of people in the world, while under-resourced languages are those
with a limited presence on the Web and a lack of electronic resources for speech
and language processing (e.g., recordings, vocabularies, dictionaries, and tran-
scriptions). Minority languages are not necessarily under-resourced. For example,
Iberian languages other than Spanish, such as Galician, Basque, and Catalan, have
many resources provided by the main technological companies (e.g., Google, iOS)
and active research groups in speech and natural language processing technologies,
while languages with a high number of speakers of languages from developing
countries, such as Swahili or Bengali, are under-resourced.

META, the Network of Excellence forging the Multilingual Europe Technology
Alliance, conducted a large study in 2012 on European languages to assess the level
of support they receive through language technologies.40 The results showed that
21 European languages (most of them official) were facing “digital extinction” as
there were no relevant updated online contents and services in those languages.
Currently, EU research efforts are directed toward covering all European languages
and generating pan-European multilingual digital services. For example, the CITIA
Baselayer for Multilingual Speech Technology41 emphasizes the need to cover this
gap: there are over 50 million speakers of the 25 languages comprising the twenty
sixth to the fiftieth most used in Europe (Finnish to Montenegrin). To address the
challenge, they propose the construction of an open multilingual infrastructure and
in 2014 and 2015 have built a technology road map that will enable this vision.42

Besacier et al. (2014) present a comprehensive survey of the challenges and
methods that are currently being used to tackle them. The methods mainly involve
generating new resources in the target language, or trying to bootstrap systems and
resources developed for other languages into the target language, or a combination of
both. On the one hand, there is the possibility of adopting new acquisition
methodologies so that new resources can be compiled using crowdsourcing and

40http://www.meta-net.eu/whitepapers/overview. Accessed February 21, 2016.
41http://www.lt-innovate.org/citia/citia-baselayer-multilingual-speech-technology. Accessed
February 21, 2016.
42https://directory.sharpcloud.com/html/#/story/e505f7dc-2b77-41cf-9646-28b752e600b7.
Accessed February 21, 2016.

414 18 Future Directions

http://www.meta-net.eu/whitepapers/overview
http://www.lt-innovate.org/citia/citia-baselayer-multilingual-speech-technology
https://directory.sharpcloud.com/html/%23/story/e505f7dc-2b77-41cf-9646-28b752e600b7

other approaches. This poses difficulties, for example, in finding and reaching native
speakers and experts with technical skills and a good knowledge of the target lan-
guage. On the other hand, different authors are investigating how to use already
available resources for other languages. This can be done either by porting resources
from better covered languages (the cross-lingual approach), or by using the source
and target languages together (the multilingual approach) (Schultz and Kirchhoff
2006). The Workshop on Spoken Language Technologies for Under-resourced
languages (SLTU)43 brings together researchers working on these topics.

18.4 Summary

Looking at future prospects for the conversational interface, there are two aspects:
developments in technology that will enable conversational interfaces to become
more usable and effective and a range of appropriate applications where a con-
versational interface can be usefully employed.

Cognitive computing combined with deep learning enables virtual personal
assistants to access and harness the vast range of data and knowledge on the
Internet and use it to provide information, advice, and services to human users. By
linking together millions of smart devices, IoT provides the infrastructure for
intelligent interaction with these devices. New development environments are
required to make it easier for developers to create systems that include these
advanced technologies. As more interfaces are developed, there will be more users
of these interfaces and this will in turn provide more opportunities for the next
generation of developers.

There are many applications of the conversational interface. For businesses,
specialized assistants provide a friendly and natural face to customers. For indi-
vidual users, virtual personal assistants are being developed for a variety of contexts
and users: to enable people to interact with devices in smart environments such as
smart homes and smart cars; to provide more effective health care; applications for
elderly people support independent living; and conversational toys and educational
assistants provide entertainment and learning opportunities for young children.

There are still many problems to be resolved. Technology is advancing at
incredible rates, and some of the techniques described in this book will soon be
overtaken by new developments. Currently, there is a wide variety of solutions.
What will be important in the future is to focus more on aspects such as usability.
People will not want to have a multitude of interfaces and assistants and are likely
to prefer a scenario where there is one main assistant that interacts seamlessly with
other specialist assistants through a single common conversational interface.
Realizing this scenario remains a significant challenge for developers in the coming
years.

43http://www.mica.edu.vn/sltu/. Accessed 21 February 2016.

18.3 Applications that Use Conversational Interfaces 415

http://www.mica.edu.vn/sltu/

Further Reading
A search of the Internet will return many documents on recent developments in
conversational interfaces. Here are two particularly interesting articles: “The future of
voice: what’s next after Siri, Alexa, and OKGoogle,”44 and “Advanced AI to power a
new generation of intelligent voice interfaces,”45 which also includes a useful dia-
gram showing how voice interfaces require much more than just speech recognition
and what other components are required to intelligently process a user’s query.

The techniques used to build Watson are described in a collection of papers
published in the IBM Journal of Research and Development (Ferrucci 2012). Baker
(2012) provides a popular account of the building of Watson and its participation in
the Jeopardy quiz show. Various IBMwhite papers provide further information about
Watson and its use as a tool for the development of cognitive applications.46,47,48

There are numerous references on deep learning. We can point to a forthcoming
book that is available online.49 For conversational interfaces using deep learning and
reinforcement learning, there is a lecture available on iTunes by Steve Young
entitled “Towards open-domain spoken dialogue systems” in the MIT-Apple Human
Language Technology Lecture Series.50 A paper by Vinyals and Le, researchers at
Google, describes a neural conversational model that learns how to generate fluent
and accurate responses in conversation from a dataset of movie transcripts.51

Regarding applications, in addition to the references within the main text of this
chapter, we can point to the following: the Journal of Ambient intelligence and
Smart Environments52; the Web page of the Workshop on Child Computer
Interaction (WOCCI)53; and an article on digital assistants for smart cars.54

44http://recode.net/2015/10/27/the-future-of-voice-whats-next-after-siri-alexa-and-ok-google/.
Accessed February 21, 2016.
45https://mindmeld.com/. Accessed 21 February 2016.
46http://www.ibm.com/smarterplanet/us/en/ibmwatson/what-is-watson.html. Accessed February
21, 2016.
47http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_
WhitePaper.pdf. Accessed February 21, 2016.
48http://www.ibm.com/developerworks/cloud/library/cl-watson-films-bluemix-app/. Accessed
February 21, 2016.
49http://www.deeplearningbook.org/. Accessed 21 February 2016.
50https://itunes.apple.com/us/itunes-u/human-language-technology/id787393959?mt=10.
Accessed February 21, 2016.
51http://arxiv.org/abs/1506.05869. Accessed 21 February 2016.
52http://www.iospress.nl/journal/journal-of-ambient-intelligence-and-smart-environments/.
Accessed February 21, 2016.
53http://www.wocci.org/2016/home.html. Accessed February 21, 2016.
54http://www.patentlyapple.com/patently-apple/2015/10/apple-has-acquired-vocal-iq-a-company-
with-amazing-focus-on-a-digital-assistant-for-the-autonomous-car-beyond.html. Accessed
February 21, 2016.

416 18 Future Directions

http://recode.net/2015/10/27/the-future-of-voice-whats-next-after-siri-alexa-and-ok-google/
https://mindmeld.com/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/what-is-watson.html
http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf
http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf
http://www.ibm.com/developerworks/cloud/library/cl-watson-films-bluemix-app/
http://www.deeplearningbook.org/
https://itunes.apple.com/us/itunes-u/human-language-technology/id787393959%3fmt%3d10
http://arxiv.org/abs/1506.05869
http://www.iospress.nl/journal/journal-of-ambient-intelligence-and-smart-environments/
http://www.wocci.org/2016/home.html
http://www.patentlyapple.com/patently-apple/2015/10/apple-has-acquired-vocal-iq-a-company-with-amazing-focus-on-a-digital-assistant-for-the-autonomous-car-beyond.html
http://www.patentlyapple.com/patently-apple/2015/10/apple-has-acquired-vocal-iq-a-company-with-amazing-focus-on-a-digital-assistant-for-the-autonomous-car-beyond.html

References

Baker S (2012) Final Jeopardy: man vs machine and the quest to know everything. Houghton
Mifflin, Boston

Besacier L, Barnard E, Karpov A, Schultz T (2014) Automatic speech recognition for
under-resourced languages: a survey. Speech Commun 56:85–100. doi:10.1016/j.specom.
2013.07.008

Bickmore TW, Utami D, Matsuyama R, Paasche-Orlow M (2016) Improving access to online
health information with conversational agents: a randomized controlled experiment. J Med
Internet Res 18(1):e1

Dahl D, Coin E, Greene M, Mandelbaum P (2011) A conversational personal assistant for senior
users. In: Perez-Martin D, Pascual-Nieto I (eds) Conversational agents and natural language
interaction: techniques and effective practices. IGI Global, Hershey, pp 282–301

Ferrucci DA (ed) (2012) IBM Watson: the science behind an answer. IBM J Res Dev 3(4), May–
June 2012 (Baker S)

Giorgino T, Azzini I, Rognoni C, Quaglini S, Stefanelli M, Gretter R, Falavigna D (2005)
Automated spoken dialogue system for hypertensive patient home management. Int J Med
Inform 74(2–4):159–167

Gray SS, Willett D, Lu J, Pinto J, Maergner P, Bodenstab N (2014) Child automatic speech
recognition for US English: child interaction with living-room-electronic-devices. In:
Proceedings of workshop on child computer interaction (WOCCI) 2014, Interspeech 2014
Satellite Event, Singapore, 19 Sept 2014. http://www.wocci.org/proceedings/2014/wocci2014_
proceedings.pdf

Hagen A, Pellom B, Cole R (2007) Highly accurate children’s speech recognition for interactive
reading tutors using subword units. Speech Commun 49(12):861–873

Harper R, Nicholl P, McTear M, Wallace J, Black LA, Kearney P (2008) Automated phone
capture of diabetes patients readings with consultant monitoring via the web. In: Proceedings of
engineering of computer based systems (ECBS) 2008, 15th annual IEEE international
conference, Belfast, UK, 31 Mar–4 Apr 2008, pp 219–226

Hauswald J, Laurenzano MA, Zhang Y, Li C, Rovinski A, Khurana A, Dreslinski R, Mudge T,
Petrucci V, Tang L, Mars J. (2015) Sirius: an open end-to-end voice and vision personal
assistant and its implications for future warehouse scale computers. In: Proceedings of the
twentieth international conference on architectural support for programming languages and
operating systems (ASPLOS), ASPLOS ’15, New York, NY, USA, 2015:223–228

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural
Comput 18:1527–1554

Kruijff-Korbayová I, Cuayáhuitl H, Kiefer B, Schröder M, Cosi P, Paci P, Sommavilla G,
Tesser F, Sahli H, Athanasopoulos G, Wang W, Enescu V, Verhelst W (2012) Spoken
language processing in a conversational system for child-robot interaction. In: Proceedings of
workshop on child computer interaction (WOCCI) 2012, Interspeech 2012 Satellite Event,
Portland, Oregon, 14 Sept 2012

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. doi:10.1038/
nature14539

Ljunglöf P, Larsson S, Mühlenbock K, Thunberg G (2009) TRIK: a talking and drawing robot for
children with communication disabilities. In: Jokinen K, Bick P (eds) Proceedings of the 17th
Nordic conference of computational linguistics (NODALIDA) 2009, vol 4, pp 275–278

McCarthy S, Sayers H, McKevitt P, McTear M, Coyle K (2015) Intelligently adapted mobile
interfaces for older users. In: Xhafa F, Moore P, Tadros G (eds) Advanced technological
solutions for e-health and dementia patient monitoring. Medical Information Science Reference
(IGI Global), Hershey PA, USA, pp 36–61

Narayanan S, Potamianos A (2002) Creating conversational interfaces for children. IEEE T Speech
Audi P 10(2):65–78

References 417

http://dx.doi.org/10.1016/j.specom.2013.07.008
http://dx.doi.org/10.1016/j.specom.2013.07.008
http://www.wocci.org/proceedings/2014/wocci2014_proceedings.pdf
http://www.wocci.org/proceedings/2014/wocci2014_proceedings.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539

Picca D, Jaccard D, Eberlé G (2015) Natural language processing in serious games: a state of the
art. Int J Serious Games 2(3):77–97

Russell M, D’Arcy S (2007) Challenges for computer recognition of children’s speech. In:
Proceedings of the ISCA special interest group on speech and language technology in
education (SLaTE) 2007, Farmington, Pennsylvania USA, 1–3 Oct 2007, pp 108–111

Schultz T, Kirchhoff K (eds) (2006) Multilingual speech processing. Elsevier Academic Press,
Amsterdam

Schulman D, Bickmore TW, Sidner CL (2011) An intelligent conversational agent for promoting
long-term health behaviour change using motivational interviewing. In: AI and health
communication, papers from the 2011 AAAI spring symposium, Technical Report SS-11–01,
AAAI Press, Menlo Park, California, pp 61–64

Stapleton A (2016) Conversational toys and devices. In: Proceedings of mobile voice conference
2016, San Jose, CA, 11–12 Apr 2016

418 18 Future Directions

Index

A
Acoustic model, 76–78, 80, 82
Advances in technology, 403
Affect, 309, 311, 315, 320–323
Affective norms for english words (ANEW),

344
Aisoy, 300
AlchemyAPI, 207
Amazon Alexa, 204
Amazon Echo, 302
Ambient intelligence, 409, 416
Android, 188, 189, 191, 204
Android App, 139, 143, 191
Android speech APIs, 93, 100
Android wear, 359–361, 363, 367, 374, 375
ANVIL, 348
Apache OpenNLP tools, 206
Api.Ai platform, 188
APIs, 406
Appraisal approach, 310, 312
Armbands and gloves, 285
Articulated communicator engine (ACE), 295
Artificial intelligence (AI), 1, 2, 16, 409
Artificial intelligence markup language

(AIML), 127–132, 137, 138, 140, 142,
143, 147, 151–156

Automatic speech recognition (ASR), 75, 89,
90, 95, 98, 102, 110–113, 116–119,
121, 122, 382

B
Bag of words, 166, 180, 342
Battery level, 149
BML, 351
Brain activity, 337

C
Call flow optimization, 63
Canned text, 265–267, 276

Cardiovascular system, 335
Cards, 289–291
Chatbot, 15, 51, 52, 57, 62, 65, 68, 126–128,

130, 137, 145, 147, 153–157
Chatter bot, 146
Co-articulation, 76
Cognitive computing, 404, 406, 415
Cohn–Kanade database, 349
Command line interface (CLI), 140–142
Companions, 56, 411
Component evaluation, 382
Computational models, 310
Conditional random fields models, 179
Confidence score, 110, 113
Confirmation strategy, 209, 211, 214
Connectivity, 17
Context-free grammar, 172
Conversation

as action, 26
joint activity of, 35
language of, 42
structure of, 31

Conversational context, 343
Conversational interaction, 11, 130, 146
Conversational interface, 4, 5, 15, 18, 20, 51,

52, 283, 284, 289, 297, 304, 305, 319,
329, 337, 339, 342, 348, 350, 352, 353

applications of, 408
evaluation of, 379
healthcare, 410
implications for, 44
interacting with, 12

Conversational queries, 273
Conversational repair, 40, 41, 45, 46
Conversational speech, 76
Conversational structure, 34, 45
Conversational toys, 412
Conversation analysis, 26, 31, 40, 46

© Springer International Publishing Switzerland 2016
M. McTear et al., The Conversational Interface,
DOI 10.1007/978-3-319-32967-3

419

Corpus-based dialog management, 209, 218,
225, 228, 235

Crowdsourcing, 396, 397, 399
Cycle of increasing returns, 20

D
Databases, 341
Decoding, 82
Deep learning, 179–181, 404, 405, 415, 416
Deep neural network (DNN), 76, 78, 80, 89, 90
Dependency grammar, 172, 174
Detection of personality, 315
Devices, 283–285, 288–290, 292, 293, 297,

304
Device technologies, 17
Dialog act, 27–31, 34, 41, 43–45, 162, 164,

180
Dialog act recognition, 164
Dialog management, 209, 210, 215–217, 384
Dialog register, 258–260
Dimensional approach, 310
Directed dialog, 53, 65
Discrete approach, 312, 315
Discriminative model, 175, 178
Disfluency, 43
Document planning, 268–270, 272
Duration, 339
Dynamic Bayesian networks models, 178

E
Educational assistants, 412, 415
Electrodermal activity (EDA), 336
EMA, 352
Embodied conversational agent (ECA), 51, 52,

56, 65–67, 294
EmoFilt, 350
Emotion, 2, 6, 309–314, 316, 319, 321, 323,

324
EmotionML, 329, 330, 332, 333, 353
Emotion recognition, 329, 333–335, 338, 339,

342–349, 353
Emotion synthesis, 349
EmoVoice/Open SSI, 341
Enterprise assistants, 19, 408
Entity, 187, 195, 198, 199, 203, 206
Error handling, 210, 214
Evaluation procedures, 394
Evaluation settings, 394
Event handler, 238, 239, 241
Expressive speech synthesis (ESS), 349

Extensible multimodal annotation (EMMA),
406

F
Face normalization, 346
Facial expressions, 329, 337, 344–348,

350–352
Fatima, 352
Finite state dialog, 215–217
FML, 351
Formants, 340
Form interpretation algorithm (FIA), 235, 238
Frame-based dialog, 216
FurHat, 300
Future directions

introduction to, 403

G
GATE, 206
Gaussian mixture models (GMMs), 80
General inquirer home page, 344
Generative model, 176
Gestures, 329, 335, 337, 341, 344, 348,

350–353
Grammar, 236, 238–240, 243
Grammar design, 53, 61, 63, 65, 66
Grounding, 29, 36–39, 42, 45

H
Handcrafted approaches, 215
Handcrafted (rule-based) dialog management,

209, 215, 217, 224, 235, 262
Hello Robo, 302
Hidden Markov model (HMM), 78–80, 82
Hidden vector state model, 176
HTML5 Web speech API, 93
Humanoid robotic platform, 302

I
Identifying Intent, 165
Incremental processing, 58, 60, 61, 66
Information extraction, 168, 169
Information state, 58, 59, 66
Information State Theory, 216
Intensity (energy), 339
Intent, 162, 164, 165, 180, 187–189, 191, 193,

195, 197, 199–205, 207
Internet of things (IoT), 15, 19, 406, 409, 410,

415
INTERSPEECH, 340

420 Index

J
Jibo, 299

L
Language model, 78, 81, 82, 110, 111
Language processing, 156
Language technologies, 17
Language understanding intelligent service

(LUIS), 205
Latent semantic analysis, 167
Linear prediction cepstral coefficients (LPCCs),

339
Linear predictive coding (LPC), 339
LingPipe, 206
Linguistic analysis, 343
Locale, 120
Longer sequences, 34

M
Machine learning, 17, 62, 203, 205
MAX, 295
Mel-frequency cepstral coefficients (MFCCs),

339
Metrics used in industry, 387
Microphone technology, 76
Microplanning, 268, 270, 276
Mixed-initiative dialog, 53, 213, 242, 247
MMI facial expression database, 349
Multimodal conversational interfaces, 289,

304, 359
Multimodal conversations, 294
MUMIN annotation model, 348
Muscular system, 337

N
National Institute of Standards and Technology

(NIST), 382
Natural language generation (NLG), 265, 268,

272, 277, 386
Natural language toolkits, 206
Negative attitudes towards robots scale

(NARS), 298
N-grams, 81, 82, 343
NOMCO corpus, 349
Nonverbal behavior, 43–45
Notifications, 359, 361, 367–369, 371

O
Objective evaluation, 380
Open robot hardware initiative, 302
openSMILE, 341

P
Pandorabots platform, 127
Pandorabots playground, 129
PARADISE framework, 390, 392
Paralinguistic features, 329, 339–341, 353
Paralinguistics, 44, 46
Part of speech tagging, 168
Pattern matching, 128, 129, 137, 154, 156
Performance metrics, 379, 380
Personality, 314–318, 323
Physiological cues, 337
Physiological signals, 329, 335, 338, 347, 353
Pitch/Fundamental frequency, 339
Praat phonetics software, 341
Prerecorded speech, 87
Prompt design, 63, 64, 66
Prompts, 266, 267
Prosody, 44, 45, 86, 88

Q
Question answering (QA), 274, 275, 277

R
Read speech, 76
Realization, 265, 268, 271, 272, 276
Recognition result, 98–100, 110, 114, 115,

119, 121
Regular expression, 168
Reinforcement learning, 209, 218, 219, 222,

272, 277
Renaissance, 16
Respiratory system, 336
Response generation, 265, 268, 272, 273, 276
Robot anxiety scale (RAS), 298
Robot operating system (ROS), 303
Robots, 283, 284, 296–298, 302, 304
Robust speech recognition, 76
Rule-based approaches, 343

S
Semantic grammar, 170, 171
Semantic interpretation, 170
Semantic role, 169–171, 180
Semantic web, 16, 17, 22
Sentiment lexicon, 344
SentiWordNet, 344
Simulating personality, 316
Situation, agent, intention, behavior, animation

(SAIBA), 351
Slot filling dialog, 200
SmartBody, 295

Index 421

Smart clothing, 288
Smart devices, 1, 2, 5
Smart environments, 409
Smart glasses, 286
Smart jewelry, 287
Smart watches, 15, 284, 285, 287, 289
Social robot, 15, 56, 284, 296–300, 302, 304
Software development kits (SDKs), 406, 408
Speaker independence, 76
SPEAKY, 303
Specialized databases, 344
Speech act, 26, 27, 29, 30, 45, 46
Speech input, 75, 93
Speech output, 75, 93
Speech recognition, 75, 89, 98, 110, 122
Speech synthesis, 95
Speech synthesis markup language (SSML), 87
Spoken dialog system, 51, 52, 54, 55, 58–61,

65–68
Spoken dialog system, interaction with, 52
Spoken language technology, 1, 2
Spoken language understanding (SLU), 161,

163, 175, 179, 187, 202, 383
Statistical approach, 272, 277
Statistical dialog management, 218, 257
Statistical spoken language understanding, 181
Stochastic finite state transducers models, 177
Subjective evaluation, 388, 389
Support vector machines models, 178
Syntax-driven semantic analysis, 172
System-directed dialog, 212, 215, 239
System evaluation, 381

T
Technological developments, 16
Technology of conversation, 25
Templates, 265–268, 276
Text analysis, 83
Text summarization, 274, 276–278
Text-to-speech synthesis (TTS), 75, 83, 89, 90,

93, 103, 122, 387
Tokenization, 166, 180

Toys, 412, 413, 415
Turn taking, 36, 37

U
Uncanny valley, 352
Under-resourced languages, 414, 415
Unstructured data, 274, 276
User acceptance, 18
User adoption, 18
User satisfaction, 381, 386, 387, 389–391, 393,

394
User simulation, 396–398

V
Virtual agents, 283, 284, 293–295, 304
Virtual Human Toolkit, 295
Virtual personal assistant, 15, 17, 18, 23, 24
Visual interface, 361
Vocabulary size, 76
Voice actions, 359, 361, 363, 364, 366, 367,

370, 375
Voice interface, 363
Voice quality, 340
Voice search, 11, 12, 15, 19
Voice user interface, 51, 52, 56, 65–67, 387,

389
VoiceXML, 216, 217, 235–239, 241–243, 262

W
Waveform synthesis, 83, 86
Wavelets, 340
Wearables, 2, 5, 15, 283–285, 289, 292, 304,

359, 361, 375
Web speech, 95, 122
Wit.ai, 203
Wizard of Oz (WOZ), 395, 396
Wristbands, 284

Z
Zero crossing rate (ZCR), 339

422 Index

	Foreword
	Preface
	Contents
	About the Authors
	Abbreviations
	1 Introducing the Conversational Interface
	Abstract
	1.1 Introduction
	1.2 Who Should Read the Book?
	1.3 A Road Map for the Book
	1.3.1 Part I: Conversational Interfaces: Preliminaries
	1.3.2 Part II: Developing a Speech-Based Conversational Interface
	1.3.3 Part III: Conversational Interfaces and Devices
	1.3.4 Part IV: Evaluation and Future Prospects

	Part I Conversational Interfaces: Preliminaries
	2 The Dawn of the Conversational Interface
	Abstract
	2.1 Introduction
	2.2 Interacting with a Conversational Interface
	2.3 Conversational Interfaces for Smart Watches and Other Devices
	2.4 Explaining the Rise of the Conversational Interface
	2.4.1 Technological Developments
	2.4.2 User Acceptance and Adoption
	2.4.3 Enterprise and Specialized VPAs
	2.4.4 The Cycle of Increasing Returns

	2.5 The Technologies that Make up a Conversational Interface
	2.6 Summary
	References

	3 Toward a Technology of Conversation
	Abstract
	3.1 Introduction
	3.2 Conversation as Action
	3.3 The Structure of Conversation
	3.3.1 Dealing with Longer Sequences

	3.4 Conversation as a Joint Activity
	3.4.1 Turn Taking in Conversation
	3.4.2 Grounding
	3.4.3 Conversational Repair

	3.5 The Language of Conversation
	3.5.1 Prosodic, Paralinguistic, and Nonverbal Behaviors
	3.5.2 Implications for the Conversational Interface

	3.6 Summary
	References

	4 Conversational Interfaces: Past and Present
	Abstract
	4.1 Introduction
	4.2 Conversational Interfaces: A Brief History
	4.2.1 A Typical Interaction with a Spoken Dialog System
	4.2.2 An Interaction that Goes Wrong
	4.2.3 Spoken Dialog Systems
	4.2.4 Voice User Interfaces
	4.2.5 Embodied Conversational Agent, Companions, and Social Robots
	4.2.6 Chatbots

	4.3 What Have We Learned so Far?
	4.3.1 Making Systems More Intelligent
	4.3.2 Using Incremental Processing to Model Conversational Phenomena
	4.3.3 Languages and Toolkits for Developers
	4.3.4 Large-Scale Experiments on System Design Using Techniques from Machine Learning
	4.3.4.1 Call Flow Optimization
	4.3.4.2 Prompt Design
	4.3.4.3 Design and Use of Recognition Grammars

	4.4 Summary
	W3C Specifications

	Part II Developing a Speech-Based Conversational Interface
	5 Speech Input and Output
	Abstract
	5.1 Introduction
	5.2 Speech Recognition
	5.2.1 ASR as a Probabilistic Process
	5.2.2 Acoustic Model
	5.2.2.1 HMMs
	5.2.2.2 GMMs
	5.2.2.3 Deep Neural Networks

	5.2.3 Language Model
	5.2.4 Decoding

	5.3 Text-to-Speech Synthesis
	5.3.1 Text Analysis
	5.3.2 Waveform Synthesis
	5.3.3 Using Prerecorded Speech
	5.3.4 Speech Synthesis Markup Language

	5.4 Summary
	References
	Web Pages

	6 Implementing Speech Input and Output
	Abstract
	6.1 Introduction
	6.2 Web Speech API
	6.2.1 Text-to-Speech Synthesis
	6.2.2 Speech Recognition

	6.3 The Android Speech APIs
	6.3.1 Text-to-Speech Synthesis
	6.3.2 Speech Recognition
	6.3.3 Using Speech for Input and Output

	6.4 Summary

	7 Creating a Conversational Interface Using Chatbot Technology
	Abstract
	7.1 Introduction
	7.2 Introducing the Pandorabots Platform
	7.3 Developing Your Own Bot Using AIML
	7.3.1 Creating Categories
	7.3.2 Wildcards
	7.3.3 Variables
	7.3.4 Sets and Maps
	7.3.5 Context

	7.4 Creating a Link to Pandorabots from Your Android App
	7.4.1 Creating a Bot in the Developer Portal
	7.4.2 Linking an Android App to a Bot

	7.5 Introducing Mobile Functions
	7.5.1 Processing the lessthan oob greaterthan Tags
	7.5.2 Battery Level
	7.5.3 Search Queries
	7.5.4 Location and Direction Queries

	7.6 Extending the App
	7.7 Alternatives to AIML
	7.8 Some Ways in Which AIML Can Be Further Developed
	7.8.1 Learning a Chatbot Specification from Data
	7.8.2 Making Use of Techniques from Natural Language Processing

	7.9 Summary
	References
	Web sites

	8 Spoken Language Understanding
	Abstract
	8.1 Introduction
	8.2 Technologies for Spoken Language Understanding
	8.3 Dialog Act Recognition
	8.4 Identifying Intent
	8.5 Analyzing the Content of the User’s Utterances
	8.5.1 Tokenization
	8.5.2 Bag of Words
	8.5.3 Latent Semantic Analysis
	8.5.4 Regular Expressions
	8.5.5 Part-of-Speech Tagging
	8.5.6 Information Extraction
	8.5.7 Semantic Role Labeling

	8.6 Obtaining a Complete Semantic Interpretation of the Input
	8.6.1 Semantic Grammar
	8.6.2 Syntax-Driven Semantic Analysis
	8.6.2.1 Context-Free Grammar
	8.6.2.2 Dependency Grammar

	8.7 Statistical Approaches to Spoken Language Understanding
	8.7.1 Generative Models
	8.7.1.1 The Hidden Vector State Model
	8.7.1.2 Stochastic Finite State Transducers Models
	8.7.1.3 Dynamic Bayesian Networks Models

	8.7.2 Discriminative Models
	8.7.2.1 Support Vector Machines Models
	8.7.2.2 Conditional Random Fields Models

	8.7.3 Deep Learning for Natural and Spoken Language Understanding

	8.8 Summary
	References

	9 Implementing Spoken Language Understanding
	Abstract
	9.1 Introduction
	9.2 Getting Started with the Api.ai Platform
	9.2.1 Exercise 9.1 Creating an Agent in Api.ai
	9.2.2 Exercise 9.2 Testing the Agent

	9.3 Creating an Android App for an Agent
	9.3.1 Exercise 9.3 Producing a Semantic Parse
	9.3.2 Exercise 9.4 Testing the App

	9.4 Specifying Your Own Entities and Intents
	9.4.1 Exercise 9.5 Creating Entities
	9.4.2 Exercise 9.6 Creating an Intent
	9.4.3 Exercise 9.7 Testing the Custom Entities and Intents

	9.5 Using Aliases
	9.6 Using Context
	9.6.1 Exercise 9.8 Defining Contexts

	9.7 Creating a Slot Filling Dialog
	9.7.1 Exercise 9.9 Creating a Slot-Filling Dialog
	9.7.2 Exercise 9.10 Additional Exercises

	9.8 Overview of Some Other Spoken Language Understanding Tools
	9.8.1 Tools Using Intents and Entities
	9.8.1.1 Wit.ai
	9.8.1.2 Amazon Alexa
	9.8.1.3 Microsoft Language Understanding Intelligent Service (LUIS)

	9.8.2 Toolkits for various other NLP Tasks

	9.9 Summary
	References

	10 Dialog Management
	Abstract
	10.1 Introduction
	10.2 Defining the Dialog Management Task
	10.2.1 Interaction Strategies
	10.2.2 Error Handling and Confirmation Strategies

	10.3 Handcrafted Approaches to Dialog Management
	10.4 Statistical Approaches to Dialog Management
	10.4.1 Reinforcement Learning
	10.4.1.1 Reinforcement Learning: Some Problems and Some Solutions

	10.4.2 Corpus-Based Approaches

	10.5 Summary
	References

	11 Implementing Dialog Management
	Abstract
	11.1 Introduction
	11.2 Development of a Conversational Interface Using a Rule-Based Dialog Management Technique
	11.2.1 Practical Exercises Using VoiceXML

	11.3 Development of a Conversational Interface Using a Statistical Dialog Management Technique
	11.4 Summary
	References

	12 Response Generation
	Abstract
	12.1 Introduction
	12.2 Using Canned Text and Templates
	12.3 Using Natural Language Generation Technology
	12.3.1 Document Planning
	12.3.2 Microplanning
	12.3.3 Realization

	12.4 Statistical Approaches to Natural Language Generation
	12.5 Response Generation for Conversational Queries
	12.5.1 Question Answering
	12.5.2 Structured Resources to Support Conversational Question Answering
	12.5.3 Text Summarization

	12.6 Summary
	References

	Part III Conversational Interfaces and Devices
	13 Conversational Interfaces: Devices, Wearables, Virtual Agents, and Robots
	Abstract
	13.1 Introduction
	13.2 Wearables
	13.2.1 Smartwatches and Wristbands
	13.2.2 Armbands and Gloves
	13.2.3 Smart Glasses
	13.2.4 Smart Jewelry
	13.2.5 Smart Clothing

	13.3 Multimodal Conversational Interfaces for Smart Devices and Wearables
	13.4 Virtual Agents
	13.5 Multimodal Conversations with Virtual Agents
	13.6 Examples of Tools for Creating Virtual Agents
	13.7 Social Robots
	13.8 Conversational Interfaces for Robots
	13.9 Examples of Social Robots and Tools for Creating Robots
	13.9.1 Aldebaran Robots
	13.9.2 Jibo
	13.9.3 FurHat
	13.9.4 Aisoy
	13.9.5 Amazon Echo
	13.9.6 Hello Robo
	13.9.7 The Open Robot Hardware Initiative
	13.9.8 iCub.org: Open-Source Cognitive Humanoid Robotic Platform
	13.9.9 SPEAKY for Robots
	13.9.10 The Robot Operating System (ROS)

	13.10 Summary
	References

	14 Emotion, Affect, and Personality
	Abstract
	14.1 Introduction
	14.2 Computational Models of Emotion
	14.2.1 The Dimensional Approach
	14.2.2 The Discrete Approach
	14.2.3 The Appraisal Approach

	14.3 Models of Personality
	14.3.1 The Detection of Personality
	14.3.2 Simulating Personality
	14.3.2.1 Which Personality to Render
	14.3.2.2 How to Render Personality

	14.4 Making Use of Affective Behaviors in the Conversational Interface
	14.4.1 Acknowledging Awareness and Mirroring Emotion
	14.4.2 Dealing with and Provoking the User’s Emotions
	14.4.3 Building Empathy
	14.4.4 Fostering the User’s Engagement
	14.4.5 Emotion as Feedback on the System’s Performance

	14.5 Summary
	References

	15 Affective Conversational Interfaces
	Abstract
	15.1 Introduction
	15.2 Representing Emotion with EmotionML
	15.3 Emotion Recognition
	15.3.1 Emotion Recognition from Physiological Signals
	15.3.1.1 The Cardiovascular System
	15.3.1.2 Electrodermal Activity
	15.3.1.3 The Respiratory System
	15.3.1.4 The Muscular System
	15.3.1.5 Brain Activity
	15.3.1.6 Classification Based on Physiological Cues
	15.3.1.7 Open Tools for the Analysis of Physiological Signals

	15.3.2 Emotion Recognition from Speech
	15.3.2.1 Paralinguistic Features
	15.3.2.2 Classification of Paralinguistic Features
	15.3.2.3 Open Tools for the Analysis of Paralinguistic Features
	15.3.2.4 Extracting Affective Information from Text
	15.3.2.5 Open Tools for Extracting Emotional Information from Text

	15.3.3 Emotion Recognition from Facial Expressions and Gestures
	15.3.3.1 The Facial Expression Recognition Process
	15.3.3.2 Classification of Emotions from Facial Expressions
	15.3.3.3 Emotion Recognition from Gestures
	15.3.3.4 Tools for Recognizing Facial Expressions and Gestures

	15.4 Emotion Synthesis
	15.4.1 Expressive Speech Synthesis
	15.4.1.1 Tools

	15.4.2 Generating Facial Expressions, Body Posture, and Gestures
	15.4.2.1 Tools for Generating Facial Expressions, Body Posture, and Gestures

	15.4.3 The Uncanny Valley

	15.5 Summary
	References

	16 Implementing Multimodal Conversational Interfaces Using Android Wear
	Abstract
	16.1 Introduction
	16.2 Visual Interfaces for Android Wear
	16.3 Voice Interfaces for Android Wear
	16.3.1 System-Provided Voice Actions
	16.3.2 Developer-Defined Voice Actions

	16.4 Summary

	Part IV Evaluation and Future Directions
	17 Evaluating the Conversational Interface
	Abstract
	17.1 Introduction
	17.2 Objective Evaluation
	17.2.1 Overall System Evaluation
	17.2.2 Component Evaluation
	17.2.2.1 Automatic Speech Recognition
	17.2.2.2 Spoken Language Understanding
	17.2.2.3 Dialog Management
	17.2.2.4 Natural Language Generation
	17.2.2.5 Text-to-Speech Synthesis

	17.2.3 Metrics Used in Industry

	17.3 Subjective Evaluation
	17.3.1 Predicting User Satisfaction
	17.3.1.1 Prediction of User Satisfaction Using PARADISE
	17.3.1.2 Other Models for Predicting User Satisfaction

	17.4 Evaluation Procedures
	17.4.1 Evaluation Settings: Laboratory Versus Field
	17.4.2 Wizard of Oz
	17.4.3 Test Subjects
	17.4.3.1 Crowdsourcing
	17.4.3.2 User Simulation

	17.5 Summary
	References

	18 Future Directions
	Abstract
	18.1 Introduction
	18.2 Advances in Technology
	18.2.1 Cognitive Computing
	18.2.2 Deep Learning
	18.2.3 The Internet of Things
	18.2.4 Platforms, SDKs, and APIs for Developers

	18.3 Applications that Use Conversational Interfaces
	18.3.1 Enterprise Assistants
	18.3.2 Ambient Intelligence and Smart Environments
	18.3.3 Health care
	18.3.4 Companions for the Elderly
	18.3.5 Conversational Toys and Educational Assistants
	18.3.6 Bridging the Digital Divide for Under-Resourced Languages

	18.4 Summary
	References

	Index

