
Chapter 2
Antifungal Host Defense Peptides

Karl Lohner and Regina Leber

Abstract Fungi infect billions of people every year, yet their contribution to the
global burden of disease is largely unrecognized and the repertoire of antifungal
agents is rather limited. Thus, treatment of life-threatening invasive fungal infec-
tions is still based on drugs discovered several decades ago. In addition, recent data
on resistance emergence of fungi emphasize the urgent need for novel antifungal
treatments. One alternative strategy is based on host defense peptides. Among the
large number of antimicrobial peptides, a group of peptides show primarily anti-
fungal activity by interfering with enzymes of cell wall biosynthesis or specific
membrane lipids such as ergosterol. Both are promising targets for antifungal
peptides, as they are absent in mammalian cells and hence low toxicity of peptides
can be expected. However, most of the antimicrobial peptides exhibit a broad
spectrum activity including antifungal activity. These peptides act on the cell
membrane level and although their structures vary largely, they share a positive net
charge, which facilitates electrostatic interactions with negatively charged lipids of
the target cell, and an amphipathic structure, which facilitates incorporation into the
cell membrane and in turn membrane disruption. Thereby, membrane lipids dif-
fering between mammals and fungi play a central role concerning specificity and
efficacy of these peptides. Hence, understanding their molecular mechanism(s) of
action will aid in the design of novel antifungal agents. Finally, some of these
peptides were shown to act synergistically with conventional drugs, which would
further widen the armory to treat especially life-threatening invasive fungal
infections.
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2.1 Introduction

Of the 1.5 million fungal species, around 300 are reported to be pathogenic in
humans (Taylor et al. 2001). Superficial and mucosal fungal infections are extre-
mely common, but life-threatening invasive fungal infections have increased in
importance (Polvi et al. 2015; Warnock 2007). In a very recent review about yeast
pathogens, Cryptococcus neoformans was described as the leading cause of deaths
due to fungal infections, with a global burden of nearly 1 million cases annually,
and more than 620,000 deaths worldwide (Polvi et al. 2015; Park et al. 2009).
Further, cryptococcal meningitis contribute up to 20 % of AIDS-related mortality in
low-income and middle-income countries every year (Loyse et al. 2013). Candida
albicans, another important fungal pathogen, causes more than 400,000 deaths per
year due to invasive candidiasis (Horn et al. 2009). Risk factors for invasive can-
didiasis include surgery (especially abdominal surgery), burns, long-term stay in an
intensive care unit, and previous administration of broad spectrum antibiotics and
immunosuppressive agents (Kontoyiannis et al. 2003; Zaoutis et al. 2005; Sydnor
and Perl 2011; Pfaller and Diekema 2004; Spampinato and Leonardi 2013). The
Centers for Disease Control and Prevention, Atlanta, reported that roughly one third
of patients, who suffer from bloodstream infections caused by drug-resistant
Candida spp., die during their hospitalization in the US (http://www.cdc.gov/
drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf). Finally, patients
with impaired immune function are also often infected by Aspergillus species (Polvi
et al. 2015; Warnock 2007).

Despite the profound impact of fungal pathogens on human health worldwide,
treatment can be hampered by toxicity, poor tolerability, or a narrow activity
spectrum of antifungal drugs. Nevertheless, invasive fungal infections remain
understudied and underdiagnosed as compared to other infectious diseases (Brown
et al. 2012). Further, the repertoire of antifungal agents is rather limited and
therefore treatment of life-threatening invasive fungal infections is still mainly
based on drugs discovered several decades ago (Butts and Krysan 2012). Polyenes,
azoles, allylamines, and echinocandins represent the most common classes of
antifungals currently used in the clinics. These agents demonstrate high levels of
antifungal activity, although resistance is reported for all classes including
echinocandins, which represent the first and so far only class of licensed antifungal
peptides (Polvi et al. 2015; Drgona et al. 2014; Spampinato and Leonardi 2013;
Chen and Sorrell 2007; Perlin 2015). The fungal-derived echinocandins are cyclic
hexapeptides with N-linked acyl lipid side chains, which inhibit cell wall biosyn-
thesis at the level of (1,3)-β-D-glucan synthase (Boucher et al. 2004). Whereas
native echinocandins were hemolytic and had poor solubility in water, chemical
modifications resulted in molecules with improved properties (Luca and Walsh
2000; Denning 2002). The first licensed echinocandin product was caspofungin
acetate (Cancidas®; Merck) (Denning 2002). Currently, also micafungin
(Mycymine®; Astella Pharma) and anidulafungin (Ecalta®, Pfizer) are available for
treatment of invasive fungal infections. The inhibitory spectrum of these
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synthetically modified lipopeptides, however, does not include the leading fungal
pathogen Cryptococcus neoformans since this pathogen has little or no (1,3)-
β-D-glucan synthase enzyme (Denning 1997; Hector 1993).

Currently, there is considerable interest in antifungal properties of antimicrobial
peptides (AMPs) and research on this topic has strongly expanded during the past
decade. Antimicrobial peptides are produced by diverse life forms including
mammals, plants, amphibians, insects, fungi, and bacteria. More than 2500 natural
or synthetic AMPs are listed in the Antimicrobial Peptide Database (APD, http://
aps.unmc.edu/AP) of which around 900 have antifungal activity (Wang and Wang
2004; Wang et al. 2009) including some proteins such as ribonucleases and pro-
teases. The vast majority of AMPs with antifungal activity is positively charged and
for almost two third of these peptides no secondary structure is determined so far
(Table 2.1). About 15 % of the peptides exhibit either an α-helix or structures
stabilized by disulfide bonds, while peptides that adopt a β-sheet make up to only
*5 %. A similar amount of peptides have a combined α-helical/β-sheet structure
and a very minor fraction (2 %) is rich in unusual amino acids. It is of interest to
note that peptides containing unusual amino acids have a very low content of
hydrophobic residues (mostly ≤10 %), while the percentage of hydrophobic resi-
dues of the majority of peptides with antifungal activity is around 50 % (Table 2.1).
Excellent reviews about antifungal peptides originating from insects and plants
have very recently been published (Faruck et al. 2015; Lacerda et al. 2014; Vriens
et al. 2014; Silva et al. 2014; Nawrot et al. 2014). Furthermore, Matejuk et al.
described peptide-based strategies for antifungal therapies against emerging infec-
tions emphasizing that these peptides may have specific targets showing selective
toxicity or may be multifunctional in their mode of action (Matejuk et al. 2010).
The number of peptides exhibiting primarily antifungal activity such as
echinocandins is much lower than peptides exhibiting a broad antimicrobial activity
supposedly resulting in lysis of the cytoplasmic membrane. This review will focus
on the different fungal targets of peptides that have shown selective toxicity against
fungal pathogens in vitro or in vivo. Further, we will briefly discuss mechanisms of
membrane lysis and describe co-applications of standard drugs and antifungal
peptides.

2.2 Targets for Antifungal Therapy

In terms of numbers of classes of agents that can be used to treat life-threatening
mycoses, the targets of antifungal agents are heavily focused, directly or indirectly,
on the cell envelope (wall and plasma membrane), and particularly on the fungal
membrane sterol, ergosterol, and its biosynthesis (Odds et al. 2003) (Table 2.2,
Fig. 2.1). From the 1950s until the discovery of azoles, polyene antifungal agents
such as amphotericin B, which are known to cause significant nephrotoxicity,
represented the standard of therapy for systemic fungal infections (Ghannoum and
Rice 1999). Amphotericin B (AmpB) has been proposed to interact with plasma
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membrane ergosterol resulting in the formation of ion channel aggregates that are
inserted into lipid bilayers and thereby permeabilize and kill yeast (Kruijff and
Demel 1974; Holz 1974). Anderson et al., however, reported that AmpB exists
primarily in the form of large, extra-membranous aggregates that kill yeast by
extracting ergosterol from lipid bilayers (Anderson et al. 2014; Lohner 2014). The
clinical efficacy and safety of azoles, in particular fluconazole, has led to their
extensive use. The primary target of azoles is a heme protein, which catalyzes
cytochrome P-450-dependent 14-α-demethylation of lanosterol (Hitchcock et al.
1990). Accumulation of zymosterol and squalene was observed, when C. albicans
cells were treated with voriconazole (Sanati et al. 1997). Mammalian cholesterol
synthesis is also blocked by azoles at the stage of 14-α-demethylation, however, the
dose required to effect the same degree of inhibition is much higher than that
required for fungi (Hitchcock et al. 1990; van den Bossche et al. 1978; Ghannoum
and Rice 1999). Allylamines, such as terbinafine and naftifine, have primarily
fungicidal action against many fungi as a result of its specific inhibition of squalene
epoxidase (Ryder 1992). Treated fungi accumulate squalene, while becoming
deficient in ergosterol, which leads to inhibition of growth. Terbinafine has no effect
on cholesterol biosynthesis in vivo (Ryder 1992). Regarding antifungal proteins and
peptides, potential targets of fungal cells including several intracellular targets were
described earlier (Theis and Stahl 2004; Matejuk et al. 2010). Novel antifungal
drugs need to act on targets that are absent or different in mammalian cells.
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Fig. 2.1 Potential targets of antifungal peptides and conventional antifungal drugs. Latter
interfere mainly with the biosynthesis of ergosterol and its physiological function, while the former
predominantly interfere with cell wall biosynthesis and cell membrane integrity
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2.3 Cell Wall-Specific Antifungal Peptides

For pathogenic fungi, the cell wall (Fig. 2.2) is critical for invading the host and
resisting against host defense mechanisms (Latgé and Beauvais 2014). It provides
the cell with sufficient mechanical strength to withstand changes in osmotic pres-
sure imposed by the environment. The fungal cell wall is a complex structure
composed typically of chitin, 1,3-β- and 1,6-β-glucan, mannan and proteins,
although cell wall composition frequently varies markedly between species of fungi
(Adams 2004). Enzymes catalyzing the synthesis of cell wall components are
promising targets for antifungal peptides as they are absent in mammalian cells and
hence low toxicity of peptides can be expected. Disruptions of cell wall structure
have a profound effect on the growth and morphology of the fungal cell, often
rendering it susceptible to lysis and death (Bowman and Free 2006).

2.3.1 Inhibitors of Glucan Synthase

Glucan is the major structural polysaccharide of the fungal cell wall, constituting
approximately 50–60 % of the wall by dry weight (Fleet 1985; Kapteyn et al.
1999). The 1,3-β-glucan serves as the main structural constituent to which other cell
wall components are covalently attached. As a result, the synthesis of 1,3-β-glucan
is required for proper cell wall formation and the normal development of fungi
(Bowman and Free 2006).

Echinocandins (caspofungin, micafungin, and anidulafungin) are now the pre-
ferred first line therapy for patients with invasive candidiasis (Spampinato and
Leonardi 2013). These semi-synthetic lipopeptides are non-competitive inhibitors
of (1,3)-β-D-glucan synthase, an enzyme complex that forms glucan polymers in
fungal cell walls (Denning 1997). This leads to the formation of fungal cell walls
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with impaired structural integrity, which in turn results in cell vulnerability to
osmotic lysis (Grover 2010). Their low toxicity may reflect the fact that their target,
(1,3)-β-D-glucan synthase, is not found in humans (Perlin 2015). Echinocandin
drugs are potentially fungicidal against most clinically important Candida spp. but,
are considered fungistatic against Aspergillus (Barchiesi et al. 2005; Ernst et al.
1999; Bowman et al. 2002; 2006; Pfaller et al. 2003). Although these types of drugs
were licensed first in 2001, reports on Candida spp. isolates resistant to
echinocandins are increasingly reported (Perlin 2015). Resistance is attributed to
point mutations in the FKS1 gene, which encodes the major subunit of the glucan
synthase complex (Perlin 2007).

2.3.2 Inhibitors of Chitin Synthase

Chitin, a long linear homo-polymer of β-1,4-linked N-acetylglucosamine, is a
structurally important component of the fungal cell wall. Chitin accounts for only
1–2 % of the yeast cell wall by dry weight (Klis 1994; Klis et al. 2002), whereas the
cell walls of filamentous fungi, such as Neurospora and Aspergillus, are reported to
contain 10–20 % chitin (Nobel et al. 2000; Bartnicki-Garcia 1968; Bowman et al.
2006). Disruption of chitin synthesis leads to disordered cell walls and the fungal
cell becomes malformed and osmotically unstable (Bago et al. 1996; Specht et al.
1996).

Nikkomycins are a group of peptidyl nucleoside antibiotics produced by
Streptomyces ansochromogenes (Chen et al. 2000) and Streptomyces tendae
(Brillinger 1979). Acting as competitive inhibitors of chitin synthase, nikkomycins
inhibit the growth of filamentous fungi and yeasts (Dähn et al. 1976; Feng et al.
2014). Compared to conventional antifungal agents, including fluconazole and
amphotericin B, nikkomycin Z resulted in greater killing of Coccidioides spp. and
was able to sterilize lung lesions in seven of eight mice dosed with 50 mg/kg/day
for 6 days, while the conventional agents tested did not sterilize lung lesions in any
case (Hector et al. 1990). Nikkomycin Z has been used in Phase I clinical trials for
the treatment of coccidioidomycosis (Nix et al. 2009). However, the peptidyl
nucleoside was degraded in rat, mouse and rabbit plasma much faster than in pH 7.5
buffer (Tokumura and Horie 1997). Recently, two novel nikkomycin analogs
(nikkomycin Px and Pz) were generated by mutasynthesis showing similar anti-
fungal activities to those of natural nikkomycins, but with improved stabilities
under different pHs and temperatures (Feng et al. 2014). Polyoxins, which were
isolated from the culture broth of Streptomyces cacaoi, are closely related to
nikkomycins and also act as specific inhibitors of chitin synthase (Hector 1993;
Isono et al. 1969). Polyoxins, which contained hydrophobic amino acids, retained
strong chitin synthase inhibitory activity and were resistant to cellular hydrolysis of
C. albicans (Smith et al. 1986).
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2.3.3 Chitin Binding Peptides

Members of the family of hevein-like antimicrobial peptides carry a conserved
chitin binding site. The hevein-like peptides belong to a unique class of plant
antimicrobials that show resemblance to hevein, the antimicrobial peptide
(AMP) from latex of Hevea brasiliensis (van Parijs et al. 1991; Rogozhin et al.
2015). Their antifungal activity is supposed to be associated with their chitin
binding activity. Binding to chitin is believed to interfere with hyphal growth
resulting in abnormal branching, retardation of elongation and swelling.
Hevein-like peptides are rarely found outside the plant kingdom. Novel hevein-like
peptide precursors were identified by similarity search methods, including one from
a fungal source (Porto et al. 2012). SmAMP3, a new member of the hevein-like
family peptides was isolated recently from leaves of a weed species S. media
(Rogozhin et al. 2015). It is basic and cysteine-rich, with six cysteines linked to
form three disulfide bridges. SmAMP3 demonstrated significant inhibition of spore
germination of fungi with highest activity against B. cinerea (Rogozhin et al. 2015).

Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from
the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of
several filamentous fungi including plant pathogens along with swelling of hyphae
and spores, which indicates serious effects on cell wall rigidity. CTB1 does not
inhibit chitin synthase activity, but it induces cell wall fragility by binding to chitin
(Mizuhara et al. 2011). Also the antifungal activity of penaeidins, a family of
antimicrobial peptides characterized in the shrimp Penaeus vannamei, can be
related to their chitin binding ability (Destoumieux et al. 2000).

2.4 Membrane-Active Antifungal Peptides

As mentioned in the introduction and described above host defense peptides with
primarily antifungal activity are much less abundant than peptides with broad
antimicrobial activity. This is most likely due to evolution creating molecules that
can protect the host from a variety of invaders. Therefore, the predominant fraction
of these peptides shows a broad spectrum activity against bacteria, fungi and even
viruses (Cole and Ganz 2000). Within this plethora of peptides, which predomi-
nantly act on the plasma membrane level, there are some, which interact with
specific membrane lipid components such as ergosterol and sphingolipids, descri-
bed in Sects. 2.4.2 and 2.4.3. However, most of them are supposed to induce lysis
of the cell membrane. The molecular mechanism(s) of membrane rupture mutually
depends on the nature of the peptide and membrane lipid composition (Lohner and
Blondelle 2005; Lohner 2009). Thus, in terms of antifungal drug design it is crucial
that antifungal peptides can discriminate between target and host membrane
(Lohner 2001).
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2.4.1 Broad Spectrum Antimicrobial Peptides

Mammalian and fungal membranes are composed of proteins and three main lipids:
phospholipids, sphingolipids, and sterols (Zinser et al. 1993; Löffler et al. 2000; van
Meer and de Kroon 2011). The phospholipid classes of eukaryotic plasma mem-
branes are asymmetrically distributed as they actively sequester phosphatidyl-
choline (PC) and sphingomyelin (SM) within the outer monolayer of the membrane
(van Meer et al. 2008; Devaux and Morris 2004). PC accounts for >50 % of the
phospholipids in most eukaryotic membranes. It self-organizes spontaneously as a
planar bilayer, in which PC has a nearly cylindrical molecular geometry (Fig. 2.3).
Most PC molecules have one cis-unsaturated fatty acyl chain, which renders the
membrane fluid at room temperature (van Meer et al. 2008; van Meer and de Kroon
2011). Sphingolipids usually contain a long to very long saturated fatty acid (C16–
C32) with an amide linkage to the sphingoid base. They generally adopt a solid gel
phase, but are fluidized by sterols, which supposedly preferentially interact with
them in the membrane (van Meer and de Kroon 2011). Phosphatidylethanolamine
(PE) as well as the negatively charged lipids phosphatidylserine (PS) and phos-
phatidylinositol (PI) are found almost exclusively in the inner leaflet of the bilayer

(i)  interfacial activity

(iii)  clustering
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(iv)  (disk-like) micelles
PC, SMPE

(ii)  dimple
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Fig. 2.3 Schematic representation of various modes of action of membrane-active peptides.
Arrows indicate some possible mutual reactions, e.g., after peptide binding to and accumulation at
the membrane surface followed by insertion into the membrane interface (carpet model) various
molecular mechanisms may occur, which strongly depend on the nature of both peptide and lipids.
At high peptide concentrations micellization may occur. In the right hand lower corner the
molecular shape of representative lipids are indicated
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(van Meer et al. 2008; Devaux and Morris 2004). The non-bilayer propensity of PE
is essential for the functional embedding of membrane proteins and for processes
such as membrane fusion and fission (Kruijff 1997; Lohner 1996). PE assumes a
conical molecular geometry because of the relatively small size of its polar head-
group (Fig. 2.3) (Seddon and Templer 1995). Membrane asymmetry is known to
affect various bilayer properties, including membrane potential, surface charge,
permeability, shape as well as stability (Devaux 1991; Cheng et al. 2009; Marquardt
et al. 2015). Owing to this asymmetric phospholipid distribution mainly uncharged,
zwitterionic phospholipids are exposed to the outside of the cell membrane of
eukaryotes (Lohner 2001).

Studies on the surface potential and the translocation of anionic phospholipids in
Saccharomyces carlsbergensis unveiled that about 5 % of anionic phospholipids are
in the exofacial side of the plasma membrane (Cerbón and Calderón 1994). When
cationswere added to the culturemedium this value increased slightly but significantly
to 7 %.On the other hand,most of themembrane-active antimicrobial peptides exhibit
a positive net charge under physiological conditions, which facilitates electrostatic
interactions with negatively charged lipids of the target cell, while their amphipathic
structure facilitates incorporation intomembrane layers (Tossi et al. 2000; Lohner and
Blondelle 2005). Therefore, owing to the comparatively low content of anionic lipids
at the surface of fungi as compared to bacteria membrane-destabilization of antifungal
peptides was suggested not to be facilitated by strong electrostatic interactions but
rather by cell leakage due to pore formation, which is supposed to appear far below
micromolar concentrations (Matsuzaki et al. 1995; Matsuzaki 1998). In the toroidal
pore model (Fig. 2.3) peptides together with lipids form transmembrane pores, with
the hydrophilic residues facing the lumen of the pore (Matsuzaki et al. 1996; Huang
2006). However, similar amounts of anionic lipids, i.e., PS, were found to be exposed
on the outermembrane leaflet of cancer cells (Riedl et al. 2011a) shown to be sufficient
to render them as target for cationic antimicrobial peptides without affecting signifi-
cantly membranes of normal cells (Riedl et al. 2011b; Riedl et al. 2015; Hoskin and
Ramamoorthy 2008). Thus, membrane permeabilization of fungal membranes may
also occur by other modes of action than pore formation. In this respect, the most
frequently discussed mechanism is the carpet model (Fig. 2.3), where AMPs accu-
mulate at the cell membrane being aligned parallel to the bilayer surface and insert into
the membrane above a certain threshold concentration resulting in membrane per-
meabilization and eventually disruption (Shai 2002). At the molecular level different
processes may apply that can lead to loss of membrane integrity briefly listed here and
schematically shown in Fig. 2.3:

(i) interfacial activity model, defined as the propensity of amphipathic peptides
to partition into the membrane interface in a way to disrupt the normally
strict segregation of polar and non-polar groups of the lipids (Wimley 2010),

(ii) free volume model, interfacial alignment parallel to the membrane plane
creating “voids” in the hydrophobic core of the membrane, which leads to a
quasi-interdigitated structure in the gel phase and membrane thinning/dimple
formation in the fluid phase (Lohner 2009; Sevcsik et al. 2007; Huang 2000),
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(iii) phase separation, creating domains with different physico-chemical proper-
ties between lipid bulk and peptide-enriched domains (Arouri et al. 2009;
Epand et al. 2010; Epand and Epand 2009, 2011; Lohner 2009),

(iv) disruption of the membrane similar to detergents occurring particularly at
high peptide concentration (Bechinger and Lohner 2006),

(v) modifying membrane curvature strain (Koller and Lohner 2014; Lohner and
Blondelle 2005).

These models may be considered as special cases within the complex interaction
of amphipathic peptides and membrane lipids, which besides of their nature also
depend on a number of factors including environmental factors such as pH, ionic
strength or temperature. Taking this into consideration and the fact that both
molecules are highly dynamic, the SMART (soft membranes adapt and respond)
model was introduced to account for the full range of possibilities (Bechinger
2015). Notably, the fast killing rate within minutes (Boman 2003) as well as the
nature of the target (lipids of the plasma membrane) makes the occurrence of
resistance less likely, since substantial modification of the lipid composition would
affect fungal cell viability.

Although mammalian and fungal plasma membranes are similar in structure and
composition, differences may arise when fungal species that infect humans switch
from yeast cells to mycelium, which is considered to be an important factor in
pathogenesis and in turn may facilitate the design of novel antifungal peptides. The
primary function of hypha formation is to invade the substrate they are adhered to
(Brand 2012). The levels of total lipids, sterols and phospholipids were found to be
different in the mycelial form (log phase) of Candida albicans and in its yeast form
(Mishra and Prasad 1990; Goyal and Khuller 1994). The contents of PC, PS, and PI
in the mycelial form are higher than in the yeast form, whereas the opposite is true
for PE (Mishra and Prasad 1990; Goyal and Khuller 1994). Analyses of the fatty
acid composition showed that mycelial apolar and polar lipid fractions contained
higher levels of polyunsaturated fatty acids (C18:2 and C18:3) as well as C16:0,
C16:1 and C18:0, but lower levels of oleic acid (C18:1) than the corresponding
yeast fractions (Ghannoum et al. 1986). The differences in the fatty acid pattern
resulted in alterations in the thermotropic phase behavior and thus physico-chemical
properties of C. albicans membrane lipids corresponding to its morphological form
(Goyal and Khuller 1994; Ghannoum et al. 1986). The fatty acid pattern of mycelial
lipids from A. niger were also different from its yeast form lipids (Chattopadhyay
et al. 1985). An unusual lipid species, pyrophosphatidic acid (pyro-PA), was
identified in Cryptococcus neoformans (Itoh and Kaneko 1977). Pyro-PA may have
a potential role in signaling and stress response in C. neoformans and it is important
for the mammalian immune response (Shea et al. 2006; Balboa et al. 1999). Unlike
other fungi, membranes of clinical isolates of the pathogenic yeast Cryptococcus
neoformans contain obtusifoliol as major sterol, followed by ergosterol (Ghannoum
et al. 1994). Obtusifoliol is an important intermediate in the synthesis of sterols and
has been observed in several fungal species following treatment with azoles
(Vanden Bossche et al. 1990; Ghannoum et al. 1994). As with the total sterol
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content, there was considerable variation in the types and quantities of sterols
present in isolates from individual patients (Ghannoum et al. 1994). In contrast to
C. neoformans, C. albicans does not show significant strain-to-strain variation in
sterol patterns. Moreover, ergosterol is the predominant sterol in C. albicans
(Ghannoum et al. 1994). In this respect, it is highly interesting to note that minor
structural differences of sterols as deduced from NMR experiments can account for
differential binding of amphotericin B to ergosterol (strong), cholesterol (weak) and
lanosterol (no binding) (Anderson et al. 2014). It was suggested that this has also
important implications for the design of novel antifungal compounds that distin-
guish between ergosterol of fungal and cholesterol of mammalian cell membranes
thereby reducing unwanted side effects (Lohner 2014).

2.4.2 Antifungal Peptides and Ergosterol

Fungal membranes differ from those of higher eukaryotes concerning sterols, which
regulate membrane fluidity. Ergosterol is the major sterol in the membranes of
lower eukaryotes like yeast and fungi, whereas cholesterol predominates in the
plasma membrane of mammalian cells (Henriksen et al. 2006). Antifungal sub-
stances like polyenes, azoles, and allylamines act on ergosterol or its synthesis
(Ryder 1992; Sabatelli et al. 2006; Anderson et al. 2014). Cholesterol and ergos-
terol are similar molecules, but there are slight structural differences: ergosterol has
two additional double bonds as well as a methyl group on the side chain (Hsueh
et al. 2007). These small differences in sterol structure, however, result in stronger
conformational ordering of lipid acyl chains in case of cholesterol and weaker
effects on membrane packing for ergosterol (Hsueh et al. 2007; Urbina et al. 1995).

The small cyclic lipodepsipeptide syringomycin E from Pseudomonas syringae
is a potent antifungal peptide (Segre et al. 1989; Lucca et al. 1999). Syringomycin E
acts on the fungal plasma membrane and alters several of its functions, including
ion transport, protein phosphorylation, and H+-ATPase activity (Zhang and
Takemoto 1986; Suzuki et al. 1992; Reidl et al. 1989; Feigin et al. 1997). The
antifungal activity of syringomycin E is dependent on the presence of sterols in the
plasma membrane of the fungal cells (Takemoto et al. 1993). Furthermore, the
pore-forming activity of syringomycin E can be modulated by the type of sterol.
The energy barrier for the channel formation in membrane bilayers was highest in
presence of cholesterol, while ergosterol was promoting pore-forming activity of
this lipopeptide (Feigin et al. 1997; Blasko et al. 1998). Although syringomycins
are fungicidal against important human pathogenic yeasts, they caused lysis of
sheep erythrocytes (Sorensen et al. 1996).

Psd1, a defensin isolated from seeds of the pea Pisum sativum with a compact
cysteine-stabilized α/β motif, showed high partitioning into ergosterol-containing
membranes (as fungal membranes), whereas partitioning of Psd1 into
cholesterol-containing membranes was undetectable (Gonçalves et al. 2012b). This
suggests low toxicity of Psd1 to mammalian (cholesterol-rich) membranes. The
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cationic Psd1 has also increased affinity for membranes containing glycosylce-
ramide, which is the most common fungal glycosphingolipid (Gonçalves et al.
2012b; Vriens et al. 2014; Wilmes et al. 2011). Upon interaction with their target
membrane, plant defensins are either internalized by the fungal cell and interact
with internal targets, or they stay at the cell surface and induce cell death through
induction of a signaling cascade (Vriens et al. 2014).

The human neutrophil peptide 1(HNP1) showed low interaction with gluco-
sylceramide rich membranes, but high sterol selectivity for ergosterol-containing
membranes in vitro (Gonçalves et al. 2012a). The histidine-rich glycoprotein
(HRG) as well as the epithelium-produced growth factor midkine preferentially
lysed ergosterol-containing liposomes over cholesterol-containing ones, indicating
a specificity for fungal versus mammalian membranes (Rydengård et al. 2008;
Nordin et al. 2012). Although these peptides show selectivity for fungal membranes
in vitro, their therapeutic application would be accompanied by dose-limited tox-
icities towards human cells.

2.4.3 Antifungal Peptides and Sphingolipids

Sphingolipids are potentially specific targets for antifungal molecules due to
structural differences between fungal and mammalian sphingolipids such as
9-methyl group branching of the sphingoid base and different degrees of unsatu-
ration in fungal sphingolipids (Thevissen et al. 2005). Sphingolipids and their
biosynthesis have been investigated intensively for the yeast S. cerevisiae. The
three types of sphingolipids (IPC, MIPC, and M(IP)2C) are located primarily in the
plasma membrane (Patton and Lester 1991; Hechtberger et al. 1994). Disruption of
the biosynthetic pathway for the sphingolipid mannosyl di-(inositol phosphoryl)
ceramide (M(IP)2C) in S. cerevisiae resulted in resistance to the plant defensin
DmAMP1 and the synthetic amphipathic peptide mimetic LTX109 indicating that
M(IP)2C is essential for their antifungal action (Thevissen et al. 2000; Bojsen et al.
2013). DmAMP1 was shown to bind to purified M(IP)2C and this binding was
enhanced in the presence of ergosterol (Thevissen et al. 2003).

Another plant defensin, RsAFP2, as well as the insect defensin-like heliomicin,
selectively binds to glucosylceramide from fungi like P. pastoris and C. albicans,
but not to glucosylceramide from human source (Thevissen et al. 2004). S. cere-
visiae that do not contain this sphingolipid is resistant to RsAFP2-induced per-
meabilization and growth inhibition. In contrast to DmAMP1, the interaction of
RsAFP2 with glucosylceramide was not increased in the presence of ergosterol
(Thevissen et al. 2004).

Other plant and insect defensins interacting specifically with sphingolipids are
Psd1 isolated from pea seeds (Medeiros et al. 2010; Wilmes et al. 2011); Sd5
isolated from Saccharum officinarum (De-Paula et al. 2008); MsDef1 from
Medicago sativa (Ramamoorthy et al. 2007) and Drosomycin, an inducible insect
defensin isolated from Drosophila (Gao and Zhu 2008).
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2.5 Intracellular Targets

Some antifungal peptides enter the fungal cell and interact with intracellular targets
after crossing the plasma membrane. Nevertheless, membrane lipids play a role
concerning specificity and efficacy of these antifungal peptides.

Histatin 5 (Hst5), a human basic salivary peptide with strong fungicidal prop-
erties in vitro, becomes internalized and targets to energized mitochondria
(Helmerhorst et al. 1999). The killing of C. albicans by Hst5 is accomplished by an
increase in membrane potential and permeability and the subsequent release of
intracellular ATP (Koshlukova et al. 1999, 2000; Bobek and Situ 2003). However,
non-respiring yeast cells were protected against histatin 5 killing activity
(Helmerhorst et al. 1999). The importance of metabolic activity in the susceptibility
of C. albicans cells to basic proteins, like protamine or HNP-1, was already
reported by Olson et al. (1977) and Lehrer et al. (1988). Interestingly, the amino
acid sequence of histatin 5 resembles the mitochondrial targeting sequence char-
acteristic for mitochondrial proteins that target proteins from cytosol to mito-
chondria (Nicolay et al. 1994; Helmerhorst et al. 1999). Perturbation of
mitochondrial membranes by antifungal peptides may be facilitated by the divalent
negative phospholipid cardiolipin, which is highly enriched in the inner mito-
chondrial membrane (Daum 1985).

Antifungal peptides may also cause inhibition of nuclear migration and nuclear
division as shown for the penta-peptide auristatin PHE (Woyke et al. 2002), which
has fungicidal activity against C. neoformans. This peptide caused complete dis-
ruption of both spindle and cytoplasmic microtubules in C. neoformans. As a
consequence cell cycle arrest was leading to uninucleate, large-budded cells. The
nucleus itself is the intracellular target of the plant defensin PsD1 (Lobo et al.
2007). PsD1 was shown to interact with the cell cycle control protein cyclin F from
N. crassa cells and thereby impaired the progression of the cell cycle (Lobo et al.
2007).

Dermaseptin S3(1-16) and magainin 2 are two unrelated, amphibian-derived
cationic peptides that interacted with DNA in vitro. Both peptides also interfered
with DNA integrity of S. cerevisiae in vivo (Morton et al. 2007). This implies that
both peptides are able to pass through the cytoplasmic membrane of yeast cells and
damage DNA.

PA1b (pea albumin 1 subunit b) is a plant peptide of 37 amino acids purified
from Pisum sativum and acts as an insecticide. The toxicity of PA1b is due to a
specific and direct interaction with the V0 complex of the vacuolar proton pump
(Chouabe et al. 2011). PA1b adopts a typical knottin fold with a triple-stranded
antiparallel ß-sheet and three buried interlocked disulfide bonds (Jouvensal et al.
2003). Antifungal activity has been reported for the knottin-type peptides
Mj-AMP1 and PAFP-S (Cammue et al. 1992; Gao et al. 2001; van der Weerden
et al. 2013).
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2.6 Synergism with Conventional Antifungal Drugs

An attractive therapeutic option might be a combination of antifungal peptides with
conventional antifungal drugs like amphotericin B and azoles. In fact, a substantial
cooperative effect of lactoferrin with amphotericin B, fluconazole, and
5-fluorocytosine was observed against Candida species (Kuipers et al. 1999). The
combination of lactoferrin and fluconazole appeared to be the most successful
combination. Wakabayashi et al. reported on cooperative effects of lactoferrin with
clomitrazole agents against Candida growth (Wakabayashi et al. 1996). Lactoferrin
is an innate host defense protein, which exerts a candidacidal effect in a cation
concentration-dependent manner (Viejo-Díaz et al. 2004). Peptide 2, a short and
potent lactoferrin derivative, suppressed the growth of Candida cells additively by a
combination of peptide 2 with amphotericin B or miconazole (Ueta et al. 2001).
Furthermore, in pilot experiments the effect on the minimal inhibitory concentration
of amphotericin B, fluconazole, and 5-fluorocytosine upon addition of
sub-inhibitory concentrations of the frog skin antimicrobial peptide, PGLa, as well
as of Hst5 and designed analogs was tested (van’t Hof et al. 2000). Thereby,
addition of the peptides to amphotericin B resulted in a synergistic effect against
several Aspergillus, Candida and Cryptococcus strains, while no enhanced activity
was found in combination with fluconazole or 5-fluorocytosine. Tanida et al. also
reported that Hst5 and the human neutrophil peptide, HNP1, acted synergistically
with amphotericin B and itraconazole to suppress Candida colony formation
(Tanida et al. 2006). The synergism between HNP1 and itraconazole was weak
compared to combinations with other peptides. Inhibition of sterol synthesis by
itraconazole might reduce membrane affinity of HNP1 as this peptide was shown to
have high sterol selectivity for ergosterol-containing membranes in vitro
(Gonçalves et al. 2012a). A number of studies concerning synergism between
antifungal peptides of the echinocandin family and amphotericin B or azoles were
performed. Disturbing the integrity of fungal cell walls by echinocandins may
facilitate access of polyenes and triazoles to the cell membrane. Synergy between
cilofungin and amphotericin B, a polyene derivative, was first reported for a murine
model of candidiasis in 1991 (Hanson et al. 1991). Anidulafungin increased the
antimycotic efficacy of amphotericin B and fluconazole against Candida spp.
(Rosato et al. 2012) and pneumocandin L-743,872 enhanced the efficacy of
fluconazole and amphotericin B in vitro against C. neoformans (Franzot and
Casadevall 1997). Caspofungin and amphotericin B were synergistic or synergistic
to additive for a number of clinical isolates of Aspergillus and Fusarium
spp. (Arikan et al. 2002). A successful combined antifungal treatment of a
life-threatening systemic fungal infection by Aspergillus flavus was reported by
Krivan et al. (2006). The infection which developed in a central venous catheter
tunnel progressed rapidly in spite of conventional and subsequent liposomal
amphotericin B therapy. However, the deep fungal infection resolved after 30 days
of dual therapy with liposomal amphotericin B and caspofungin. Therapy with
co-administration of two or three antifungals has been applied by clinicians in
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difficult-to-treat infection. However, there is still no support from randomized,
controlled clinical trials (Hatipoglu and Hatipoglu 2013). Nevertheless, in summary
these studies indicate that the growth inhibitory activity of conventional antifungal
drugs can be enhanced by sub-inhibitory concentrations of antimicrobial peptides
without affecting the cytotoxic activity against mammalian cells, suggesting that
combination therapy can be a promising strategy for treatment of fungal infections.

2.7 Concluding Remarks

A global rise in incidences of invasive fungal infections has been reported, although
true mortality rates are unknown because of a lack of good epidemiological data.
This development has been largely related to modern medical interventions and
immunosuppressive diseases (Brown et al. 2012). For example, in her annual report
of 2011 the UK Chief Medical Officer Dame Sally C. Davies summed up: “Thus we
are now seeing the paradoxical emergence of new infectious disease threats, and the
re-emergence of infections that had previously been thought to be a problem of the
past, as a direct consequence of the success of modern medicine. Examples include
the increased risk of infection in general, but also of unusual infections such as
invasive fungal disease, in patients being treated for non-infectious diseases, such
as patients on immunosuppressive treatments for cancer or inflammatory disease.”
Further, demographic changes resulting in an ever elderly population favors such
disease pattern and demand to manage also infectious complications common in
patients undergoing dialysis for renal failure, and surgery, especially organ trans-
plantation. Unfortunately, clinically available drugs have had only modest success
in reducing the high mortality rates of invasive fungal infections such as candidiasis
and cryptococcosis, their treatment relying on a limited number of antifungal drugs.
In terms of such life-threatening systemic infections amphotericin B, which was
brought onto the market in the 1950s, still remains the first line treatment and is
considered as the gold standard despite its low therapeutic index, which may cause
severe side effects. Furthermore, recent data indicate the emergence of
drug-resistant fungi within hospitals and possibly the larger environment
(Mesa-Arango et al. 2012). Therefore, as a consequence of the current situation
Brown et al. proposed to tackle human fungal infections by (i) raising the general
awareness of the problem, (ii) developing rapid, simple, and cheap diagnostics as
well as (iii) safer and more effective antifungal drugs (Brown et al. 2012).

In this contribution, we focused on one alternative strategy for the development
of novel specific antifungal drugs, which is based on host defense peptides. Among
these peptides a minor group shows primarily antifungal activity, while the majority
of peptides exhibit broad antimicrobial activity. Both classes have targets, which are
absent in mammalian cells and therefore will have strongly reduced or no side
effects. Peptides belonging to the former group of peptides bind to (i) enzymes,
which are essential for the biosynthesis of the cell wall, (ii) ergosterol and
(iii) sphingolipids, both being essential for plasma membrane function. The latter
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group of peptides interacts with the cytoplasmic membrane inducing membrane
permeabilization and cell lysis. Biophysical studies on membrane mimetic systems
demonstrated that these membrane-active peptides have no specific receptor and
thus they should be less prone to resistance development. The molecular mecha-
nism(s) of killing depends on both the physico-chemical properties of the peptides
and the membrane lipid composition. A detailed mechanistic understanding of
antifungal activity will be important to understand the molecular basis for selective
targeting of fungal cells. This in turn is essential for the rational development of
novel antifungal agents that lead to more specific and hence safer therapeutics.
Finally, these peptides may also be used synergistically in combination with con-
ventional antifungal drugs, which would further widen the armory to treat espe-
cially life-threatening invasive fungal infections.
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