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Preface

Host defense peptides have been studied over several decades. Interest in the
application of these agents for therapy is growing. This book surveys our current
state of knowledge of host defense peptides and considers their potential for clinical
application as well as some of the barriers to this development.

Host defense peptides are part of the innate immune system of multicellular
eukaryotes. The range of organisms in which host defense peptides have been
discovered is large. These peptides have diverse structures as reviewed in the
chapter by Monique van Hoek. These peptides have been most extensively studied
as antibacterial agents. They have antimicrobial activity not only in the host in
which they are produced, but many of these agents have been shown to be effective
when administered to other hosts. In this chapter some of the unanswered questions
and ongoing areas of development are highlighted in boxes inserted in the text. The
activity of many of these agents is not limited to bacteria, but as reviewed by
Lohner and Leber, some of these agents are antifungal. The structure and chemical
composition of fungi are more similar to mammalian cells than they are to bacteria.
Nevertheless, differences exist in fungi that can be exploited for developing anti-
fungal agents. These include the nature of their cell wall, the structure of their
membrane sterol, ergosterol that is different from cholesterol, as well as the
chemical structure of fungal sphingosine. Host defense peptides can also be
immunomodulatory and inflammo-modulatory. It is therefore not surprising that
these agents can also have antiviral activity. The antiviral activity of host defense
peptides is reviewed by Sousa, Casanova, Stevens, and Barlow. In addition to their
stimulation of inflammation and the immune system, these antiviral host defense
peptides can also directly affect viral particles and have broad spectrum antiviral
activity. The mechanism of action of some of these agents is summarized in a table
and the therapeutic potential of the host defense peptides as antiviral agents is
discussed. A very different application of host defense peptides is discussed by
Gaspar and Castanho, regarding their use in cancer therapy. There is evidence
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suggesting this as a possible application of these agents, but it is suggested that
further development of the application of host defense peptides in this area will
require a more complete understanding of their mechanism of anticancer action. An
application of host defense peptides not often discussed is that of plant host defense
peptides and their possible application in agriculture. Goyal and Mattoo review this
field and show that host defense peptides from plants are structurally diverse and
have a variety of mechanisms of action, including damaging the cell membrane as
well as having intracellular targets.

One of the properties of host defense peptides is that they indirectly protect against
pathogens by mechanisms involving inflammation and immunity. Eicosanoids play
an important role in regulating innate immunity and host defense. One source of the
interaction is from the influence of eicosanoids and of arachidonic acid in the
expression of host defense peptides. In addition, some host defense peptides stimulate
the synthesis of eicosanoids, which themselves are immunomodulatory. The rela-
tionship between host defense peptides and eicosanoids is outlined in the chapter by
Wan, Tang, and Haeggström.

One of the reasons that there is an immediate need to develop novel and potent
host defense peptides is that many organisms are developing resistance to tradi-
tional antibiotics. It had been initially thought that since antimicrobial peptides have
been effective throughout evolution it would be less likely that resistance would
develop. In addition, many of these agents act at the level of the membrane of the
pathogen, giving less opportunity for the development of altered metabolic or
genetic properties of the pathogen. However, over time resistance has developed to
virtually every antibiotic. In long term, it might require something like multidrug
evolution strategies to reverse antibiotic resistance (Baym et al. 2016). However,
until such strategies become developed, drugs to inhibit resistance mechanism may
provide an interim solution, as described by Phoenix, Dennison, and Harris. There
is also a family of compounds that has been used in conjunction with traditional
antibiotics to reverse multidrug resistance in bacteria. These agents are oligomers of
acyl-lysines that are described in the review by Mor. These compounds can also be
linked to insoluble resins for the removal and detection of bacteria.

While there is a large variety of chemical structures and mechanisms of action of
natural host defense peptides, none of them have properties to make them ideally
suited for therapeutic application. There have thus been efforts, such as those
described by Mor, to design novel agents. In addition to novel compounds like the
oligo-acyl-lysines, efforts are being made to utilize the common features of host
defense peptides. Wang describes the development of an algorithm to reveal the
features that are common among host defense peptides from a wide range of
organisms. He suggests that there are two alternative paths that can be used to
optimize the properties of the designed peptide. One is by a combinatorial synthesis
and drug screening. The other is by structure-based rational drug design. The two
methods are not mutually exclusive, but can be used in combination. In the next
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article, Deshayes, Lee, Schmidt, Xian, Kasko, and Wong present the dilemma that
most antimicrobial peptides are both non-specific and toxic to the host and are of
low potency against pathogens, requiring the use of high concentrations. However,
the alternative is the use of antibiotics that are highly potent and specific but against
which the resistance easily develops. This chapter suggests that hybrid molecules
can be designed to combine the best features of non-specific antimicrobial peptides
with the high potency of antibiotics. Additionally, the drug can be made resistant to
proteolytic degradation by using β-peptide linkages.

The final section discusses the perspectives for a more widespread clinical use of
host defense peptides. The role of bacterial infection as a contributor to preterm
birth in humans is discussed in the chapter by James and Bajaj-Elliott. Among the
host defense mechanisms are the actions of host defense peptides. Mansour,
Hancock, and Otto focus their discussion specifically on the treatment of infections
by Staphylococcus aureus. This is the most abundant bacteria in the microbiome
of the skin. This bacteria has developed resistance to almost all known antibiotics.
Infections with methicillin-resistant Staphylococcus aureus (MRSA) have claimed
more lives than HIV/AIDS. Challenges to the development of therapies based on
the use of host defense peptides include the low potency and the weak specificity
of these agents, thus creating a narrow therapeutic window. Host defense peptides
have a short half-life in the body, largely as a result of proteolytic degradation, thus
limiting their efficacy. Another difficulty with the clinical use of host defense
peptides is that they are immunogenic. Thus, these peptides have a dual role in
stimulating the immune system. On the one hand, this property increases their
effectiveness against the invading pathogens; on the other hand, the host defense
peptide itself can become an immunogen, especially because its low potency
requires that it be used at high concentrations. This antigenicity reduces the
effectiveness of these peptides and can even lead to cross-reaction with endogenous
proteins, resulting in autoimmune diseases. Another limitation for the commer-
cialization of host defense peptides as drugs is the high cost of production of
peptide synthesis. This could be ameliorated with the use of shorter peptides or
non-peptide drugs. Further improvements could include synergistic cocktails,
stimulation of endogenous production of host defense peptides, and using drugs to
overcome resistance mechanisms.

There has been much progress in the identification of host defense peptides in a
large number of organisms. Attempts have been made in developing host defense
peptides for diverse applications including in the field of urology for the use in
removing kidney stones; as stimulants of insulin release with potential for type II
diabetes therapy; as useful agents in lung infections; as coatings for implanted
devices such as catheters and other applications. The mechanism of action of host
defense peptides is varied but in general these compounds tend to be non-specific
and do not have very high potency. They also stimulate resistance mechanisms.
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Nevertheless, currently many efforts are made to overcome these limitations and
there is hope that we are at the beginning of a new period in which host defense
peptides will be developed for a variety of therapeutic applications.

Richard M. Epand
Raquel F. Epand

Reference
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Part I
Biological Targets of Host

Defense Peptides



Chapter 1
Diversity in Host Defense
Antimicrobial Peptides

Monique L. van Hoek

Abstract Host defense antimicrobial peptides are part of the innate immune system
of organisms in multicellular eukaryotes. Following the identification of the first
insect antimicrobial peptide, cecropin, in moths in 1980 (Eur J Biochem 106(1):7–16,
1980; Nature 292(5820):246–248, 1981) and the first amphibian peptide magainin in
1987 (Proc Natl Acad Sci USA 84(15):5449–5453, 1987), scientists have been
exploring the diversity of animal antimicrobial peptides through examination of their
sequences, structures and functions. The sequences of antimicrobial host defense
peptides are surprisingly diverse as is the lack of commonalities between animals
across phyla. Although peptides are classified into categories such as cathelicidins and
defensins, the similarity between the active peptides within these categories can
sometimes be difficult to find. This is because these peptides share function, structure,
andmechanismwithin groups but often have very different sequences (ClinMicrobiol
Rev 19(3):491–511, 2006). That is, they have significant structural conservation often
without significant sequence conservation. Sorensen and Borregaard (Comb Chem
High Throughput Screen 8(3):273–280, 2005) beautifully described the diversity of
host defense and antimicrobial peptides as “nature’s attempt at combinatorial
chemistry” (Comb Chem High Throughput Screen 8(3):273–280, 2005). In this
chapter, wewill discuss the diversity of antibacterial peptides from insects and oysters
to reptiles and humans. Questions that could be of interest for future research and seem
to be currently unanswered are highlighted in boxes throughout the text.

1.1 Cathelicidins

The classic example of extreme diversity in antimicrobial peptides is found in the
cathelicidins, a major class of antimicrobial peptides of vertebrates. They are
characterized as being processed from a propeptide that includes an N-terminal

M.L. van Hoek (&)
School of Systems Biology, George Mason University,
MS1H8, 10910 University Blvd, Manassas, VA 20110, USA
e-mail: mvanhoek@gmu.edu

© Springer International Publishing Switzerland 2016
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“cathelin domain” and a C-terminal domain that is cleaved to release the functional
cathelicidin peptide (Kosciuczuk et al. 2012; Lehrer and Ganz 2002; Tomasinsig
and Zanetti 2005). The active antimicrobial cathelicidin peptides are typically
amphipathic, cationic peptides that are produced through proteolytic processing due
to host-derived (or occasionally pathogen-derived) proteases. These peptides have
many activities: they can form pores in bacterial membranes, bind to bacterial
lipopolysaccharide, have intracellular bacterial targets and also exert host-directed
activities such as immune cell recruitment and keratinocyte chemotaxis (Zanetti
2005; Sorensen and Borregaard 2005). Members of the cathelicidin class of pep-
tides can also exhibit antiviral, antifungal, and antiparasitic activities, but the focus
below will be on peptides with antibacterial activity.

Cathelicidin genes have been identified in an ever-increasing number of
organisms. The hagfish, which may be 300 million years old, is perhaps the most
evolutionarily ancient organisms to have a cathelicidin identified. Cathelicidin
genes and active peptides have also been identified in more modern animals such as
pandas (Yan et al. 2012) and wallabys (Carman et al. 2009). Some organisms, like
primates, have only a single alpha-helical cathelicidin gene, while other organisms
such as horse, cattle, sheep, and pigs have multiple cathelicidin genes (Tomasinsig
and Zanetti 2005).

Most of the known cathelicidins adopt a helical structure in membranes.
However, some members of the cathelicidin family such as protegrin, prophenin,
indolicidin, and bactenecin differ from the “helical” cathelicidins in important ways
(Tomasinsig and Zanetti 2005). These peptides can contain proline rich peptide
sequences or cysteine-stapled beta-hairpin peptide structures (Lee et al. 2008). For
example, protegrin’s N-terminal domain has a stimulatory effect on cathepsin-L
(Zhu 2008), opposite to the effect of the human cathelin domain on cathepsin-L.
These unusual cathelicidins represent another facet of the diversity of antimicrobial
peptides. Members of this group of cathelicidin peptides have been shown to have
antimicrobial activities against important pathogens including Burkholderia pseu-
domallei (Madhongsa et al. 2013; Wang et al. 2004) as well as host-directed
activities (Baumann et al. 2014). The remainder of this section will focus primarily
on the helical cathelicidin peptides (Fig. 1.1).

Humans and most primates produce on only a single cathelicidin. In humans,
cathelicidin peptides are stored in the azurophilic granules of neutrophils as the
inactive propeptide, and are processed by enzymes (neutrophil elastase (Cole et al.
2001) or a serine protease (Ponkham et al. 2010)) to generate the mature active
peptide (Tongaonkar et al. 2012). In humans and higher vertebrates, the active
cathelicidin peptide is almost always encoded on Exon 4 of the cathelicidin
encoding gene (Kosciuczuk et al. 2012; Nizet and Gallo 2003; Zanetti et al. 2000;
Tomasinsig and Zanetti 2005). Four cathelicidin-like peptides have been identified
in the chicken (Gallus gallus domesticus) (van Dijk et al. 2011), including
fowlicidin-1, -2 and -3 (also known as chCATH-1, chCATH-2/CMAP27,
chCATH-3) (van Dijk et al. 2005), and chCATH-B1/chCATH-4 (Xiao Y et al.
2006). In humans, the cathelicidin hCAP18 is processed by proteinase 3 inside the
neutrophil granule (Ponkham et al. 2010) or neutrophil elastase in the extracellular
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space (Li et al. 2012) to its active form, LL-37. In the case of chicken cathelicidin,
the pro-cathelin domain peptide is cleaved by a serine protease to release the mature
peptide following stimulation of heterophils with bacterial products (van Dijk et al.
2009).

The human cathelicidin antimicrobial peptide, LL-37, has been studied exten-
sively, and this peptide and smaller fragments have been shown to have both
antimicrobial as well as antibiofilm activities against multiple important pathogens,
including Pseudomonas, Burkholderia, Staphylococcus, and Mycobacteria (Blower
et al. 2015; Dean et al. 2011a, b; Amer et al. 2010; Rivas-Santiago et al. 2013;
Overhage et al. 2008) as well as antifungal (Rapala-Kozik et al. 2015) and antiviral
activities (Barlow et al. 2011). The various “domains” of this peptide are the
subject of current study (Mishra et al. 2013; Wang et al. 2014; Molhoek et al. 2009;
Nagant et al. 2012) to better understand the mechanisms and biological role of these
different activities at a molecular level.

Research question: What sequences define the cleavage site for release of
the cathelicidin active peptide in nonmammalian species?

Fig. 1.1 Classes of CAMP secondary structures. Adapted from “Various AMPs” by Ymahn,
licensed under CC BY 2.0. a α-helical: magainin (Gesell et al. 1997), b unstructured or random
coil: indolicidin (Rozek et al. 2000), c mixed: protegrin-1 (Yang et al. 2003), d β-sheet: human
α-defensin-1 (Zhang et al. 1992). https://commons.wikimedia.org/wiki/File:Various_AMPs.png#/
media/File:Various_AMPs.png
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The active cathelicidin antimicrobial peptides are different in their sequences
between almost all organisms (Fig. 1.2). The features that they most highly share
are their net positive charge (cationic), and the active peptide typically is
unstructured in aqueous solutions but acquires a helical structure in membranes, as
well as having an amphipathic face on the helix, although alternative structures of
the active peptide can be found in this class (Tomasinsig and Zanetti 2005). This
striking lack of conservation in the cathelicidin antimicrobial peptide sequence plus
the relative conservation of the N-terminal domain raises interesting questions
about the evolutionary selective pressure that may have been applied to these
cathelicidin genes (Zhu and Gao 2009; Cheng et al. 2015). Why has each animal
developed a different solution to the *27–37 amino acid antimicrobial peptide that
will be active in innate immunity? That is, instead of converging on a similar and
perhaps best peptide, why does each animal appear to discover a novel peptide with
sufficient antimicrobial activity against a variety of gram-positive and
gram-negative bacteria? Is this an actively selected feature (as it is for the variable
domain of antibodies for example)? Or is the selection pressure due to the presence
of the cathelin domain (Tomasinsig and Zanetti 2005), which is more conserved,
even though it does not have a direct “antimicrobial” activity? Perhaps it has some
other important property?

Research question: What is the evolutionary selection pressure to conserve
the N-terminal domain of cathelicidins?

Cathelicidin genes share a general structure, including an N-terminal cathelin
domain and the C-terminal active peptide. Many papers state that the N-terminal
cathelin domain is “highly conserved” (Wang et al. 2008), but this point deserves
reexamination as more cathelicidins are identified in nonmammalian species.

C    C    C    C  (V) 

C    C    C    C  (V) 

C C C C (V)

C C C C (V) 

Cathelin Domain ~121 aa AMP Domain ~27-37 aa 

Snake 

Dog 

Human 

Chicken 

Fig. 1.2 Generalized organization of cathelicidin genes and relative comparison between four
species. Cathelicidins are defined and identified by the relatively homologous cathelin domain.
Four cysteines are commonly found in the cathelin domain, and a Valine is commonly found just
prior to the cleavage site for the active peptide. The active antimicrobial peptide portion is
nonconserved, represented by different colored antimicrobial peptide domains. As the sequences
diverge from the human CAMP, the conservation of the N-terminal domain decreases, indicated
by the decrease in intensity of the shading
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For example, see Fig. 1.3 from Wang et al. (2008), which shows the cathelin
domain alignment between pig, cow, and human cathelicidins compared to snake,
chicken, and hagfish cathelicidins. Previously reported analyses may have been
somewhat limited by the small number of nonmammalian cathelicidin sequences
that had been deposited in the databases. In this paper regarding snake cathelicidins
and their alignments and phylogenetic analysis (Wang et al. 2008), it is suggested
that mammalian N-terminal domains are “highly conserved” with each other, as
stated in many other papers. However, examination of the chicken, fish, and snake
N-terminal cathelin domains demonstrates significant divergence (Cheng et al.
2015).

Research question: Does the N-terminal domain of hagfish, chicken, or
reptile cathelicidins also inhibit cathepsin or cysteine proteases?

Fig. 1.3 Multiple sequence alignment of snake cathelicidin with other representative catheli-
cidins. This figure (from Wang et al. 2008, “Snake Cathelicidin from Bungarus fasciatus Is a
Potent Peptide Antibiotics”, Plos One (Wang et al. 2008)) is used following the terms of the
Creative Commons Attribution License. The figure legend reads: “Multiple sequence alignment of
snake cathelicidin with other representative cathelicidins. Cathelicidin-BF precursor is aligned
with porcine, bovine, human, chicken and hagfish cathelicdins. Dashes are inserted to optimize the
alignment, and conserved residues are shaded. Two intramolecular disulfide bonds in the cathelin
pro-sequence are shown. Mature cathelicinds are underlined, and their net charge (in parenthesis)
and length are also indicated. The acidic fragment insertion in cathelicidin-BF is boxed.”

1 Diversity in Host Defense Antimicrobial Peptides 7



The extreme diversity of the known cathelicidin peptides is further illustrated in
the phylogenetic tree in Fig. 1.4 from Wang et al. (2008), demonstrating how
“distant” the fish cathelicidins are from mammalian cathelicidins (Wang et al.
2008), and overall identifying three main clusters of cathelicidins within the ver-
tebrates. With the continued discovery of more cathelicidins from other phyla, it is
likely that there are less well conserved cathelin domains in other eukaryotes.

Cathelicidin peptides have been identified and characterized in the elapid snake
family. Highly related cathelicidinswere identified inBungarus fasciatus (BF-CATH/
Bf-CRAMP, Accession B6D434), Ophiophagus hannah (OH-CATH/Oh-CRAMP,
Accession B6S2X2) and Naja atra (NA-CATH/Na-CRAMP, Accession B6S2X0)
(Zhao et al. 2008), and these snake-encoded cathelicidin peptides appear to be gen-
erally similar throughout the reptiles (Zhao et al. 2008; Wang et al. 2008), called
“cathelicidin–OH like” in the databases. The cathelicidin peptide from the Chinese
King cobra, N. atra, has been particularly well studied. The full-length NA-CATH
peptide was synthesized and was found to be antimicrobial against a wide variety of
bacteria (de Latour et al. 2010; Dean et al. 2011a, b; Amer et al. 2010). Smaller
fragments of this peptide (ATRApeptides) have been identified and found to be highly
effective against pathogenic and multidrug resistant bacteria (de Latour et al. 2010;
Dean et al. 2011a, b; Amer et al. 2010), which could be useful for therapeutic
applications.

The precise evolutionary relationship of turtles with other reptiles continues to
be a matter of current debate. Their genomes appear to encode cathelicidin
antimicrobial peptides that are “snake-like” (van Hoek 2014) but encode a
defensin-type peptides (gallinacin-like) that may be more similar to “avian”
beta-defensin peptides. These differences in the turtle antimicrobial host defense
“peptidome” may reflect the arguments currently ongoing in the literature regarding
the precise genomic placement of turtles within the reptilian lineage (Wang et al.
2013; Badenhorst et al. 2015).

One of the most interesting examples of the in vivo function of host defense
antimicrobial peptides is when the lizard loses its tail. The tail regenerates and the
wound bed is rarely infected during this process. Cathelicidin-like peptides
Ac-CATH-1, Ac-CATH-2a, Ac-CATH-2b, and Ac-CATH-3 have been reported in
the genome of the Carolina anole lizard, Anolis carolinensis (Dalla Valle et al.
2012). In addition, cathelicidin 1 and 2 antibody reactive peptides have been
identified by immunocytochemistry staining within granules of heterophilic and
basophilic granulocytes (Alibardi 2014b). Cathelicidin-antibody staining material
was identified in the tail stump wound epidermis and associated with bacteria
within those wounds (Alibardi 2014b).

It has been relatively difficult to predict new, active cathelicidin peptides from
genomic sequences due to the low sequence conservation or homology, and a lack
of understanding about the sequence determinants for cleavage of the active peptide
(Cheng et al. 2015). A potentially useful approach to predicting the cathelicidin
peptide in potential genes is to take a structural approach, accounting for the
C-terminal 28–37 amino acid cationic helical peptide located at the end of the gene.
For example, the following five genes in the Chinese alligator genome (Table 1.1)

8 M.L. van Hoek



Fig. 1.4 Phylogenetic analysis of cathelicidins. This figure is from Wang et al. (2008), “Snake
Cathelicidin from Bungarus fasciatus Is a Potent Peptide Antibiotics”, Plos One, (Wang et al.
2008) and is used following the terms of the Creative Commons Attribution License. The figure
legend reads: “Phylogenetic analysis of cathelicidins”

1 Diversity in Host Defense Antimicrobial Peptides 9
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are all annotated as “cathelicidin-OH like” genes, based on the N-terminal cathelin
homology. Applying sequence analysis, these genes score relatively high in identity
to OH-CATH (39–45 %). However, when examined using this structural
C-terminal focussed approach, we can place the following two requirements:
(1) requiring the presence of a highly charged, cationic, helical region that extends
28–37 amino acids towards the N-terminus from the C-terminal end (we typi-
cally used 35 aa), and (2) not allowing the potential cathelicidin peptide sequence
to enter the predicted cathelin domain (which is usually from amino acid 1–121,
Conserved domains: pfam00666, smart00043). From this analysis, it can be con-
cluded that only two of these five genes (GeneID 102373644 and 102379244) even
have the potential to actually encode a C-terminal cathelicidin-like antimicrobial
host defense peptide of the appropriate charge, length, and helicity. If the
C-terminal 35 amino acids are then compared to OH-CATH, it becomes obvious
that only the last gene on the table (GeneID 102379244) has the potential to be the
homolog of OH-CATH, as it is 55 % identical.

The last gene (102379244), most closely aligns with the physical and structural
parameters of a potential cathelicidin and also has good homology to the
OH-CATH peptide (55 % identical). Most importantly, it meets the physico-
chemical parameters of a cathelicidin peptide. The second to last gene (102373644)
is still potentially of interest, as it matches the physical parameters of a potential
cathelicidin, but has a divergent C-terminal sequence that has low similarity to other
cathelicidin peptides in the APD2 databases (Wang et al. 2009), thus it would be of
interest for further study.

Although cathelicidin genes are often active against a broad-spectrum of
gram-negative and gram-positive bacteria, some are antimicrobial only against the
pathogens to which the host is normally exposed. In their recent paper, (Sun et al.
2015) demonstrated that the cathelicidin newly identified from the toad Bufo bufo
gargarizans Cantor had poor antimicrobial activity against common human
pathogens such as Staphylococcus, E. coli, and Pseudomonas, but demonstrated
strong antimicrobial activity against various aquatic bacteria that are likely part of
the toad’s natural habitat, including Aeromonas hydrophila and Vibrio species.
When we seek novel antimicrobial peptides for human use, we should perhaps be
guided by the evolutionary microbial environment to which different animals are
exposed (Bishop et al. 2015; van Hoek 2014).

1.2 Cecropins

Insects express many unique classes of antimicrobial peptides that differ from those
found in vertebrates (Yi et al. 2014; Ezzati-Tabrizi et al. 2013; Lehrer and Ganz
1999; Bulet and Stocklin 2005); however, here we will briefly focus on cecropins.
Cecropins are an insect-specific group of antimicrobial peptides (AMPs) that were
first discovered in the cecropia moth, Hyalophora cecropia (Steiner et al. 1981).
Cecropin peptides have been found to be antimicrobial for both gram-positive and
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gram-negative bacteria (Steiner et al. 1981; Otvos 2000). Cecropins share some
“thematic similarities” to cathelicidins, but are considered to be a separate group
and are only found in insects. These similarities to cathelicidins include:

i. Cecropin transcripts are proproteins that get processed to the final active AMP.
ii. Cecropins are cationic peptides.
iii. Cecropin peptide shape is disordered in aqueous solutions and assumes an

alpha- helix in the context of membranes.
iv. Cecropins are 3–4 Daltons in size.
v. Cecropins are divergent in their active antimicrobial peptide sequence.
vi. Cecropins are widely expressed within the insect phylum.
vii. The cecropin peptides can bind bacterial lipopolysaccharide (LPS).
viii. Cecropin peptides can destabilize bacterial membranes and cause bacterial cell

lysis.

However, the active antimicrobial peptides of cecropins can have varied and
highly complex structures (Harikrishna et al. 2012), and are significantly different
from the relatively simple alpha-helical peptides like LL-37.

Cecropin peptides remain an area of active study and research, and new cecropin
peptides are still being discovered (Lee et al. 2013; Hu et al. 2013), such as in the
silkworm, Bombyx mori (Cheng et al. 2006; Hong et al. 2008).

In addition, hybrid synthetic peptides using part of cecropin peptide fused with
part of maganin and LL-37 or other peptides are proving to be highly effective
against multiple pathogenic bacteria such as Bacillus anthracis, Burkholderia
cepacia, Francisella tularensis LVS, and Yersinia pseudotuberculosis (Fox et al.
2012).

1.3 Beta-Defensins

Defensins are one of the major classes of antimicrobial peptides in higher verte-
brates and are also present in insects. Insect defensins are typically only active
against gram-positive bacteria (Otvos 2000), while vertebrate defensins have a
broader range of action. Vertebrate defensins are organized into three main sub-
classes: α, β-, and θ-defensins. These *4 kDa cationic peptides are characterized
by having six cysteines arranged in three disulfide bonds, with the pairing of the
bonds being highly characteristic for each type of defensin. Defensins have pre-
dominantly β-sheet characteristic with some α-helices plus intramolecular disulfide
bonds (Fig. 1.4). Defensins are encoded in the genome, and processed from a
pro-defensin molecule by various proteases (Wilson et al. 2009). Defensins are
known to be critical components of innate immunity (Zhao and Lu 2014). The
expression of these defensin peptides are often induced following bacterial or viral
infection as part of the innate immune response (Pierson et al. 2013; Han et al.
2008) except for hBD1 which appears to be constitutively expressed in humans.

12 M.L. van Hoek



θ-Defensins are not known outside of primates, and are not expressed in humans
but have been shown to be very active antiviral peptides (Zhao and Lu 2014).

The beta-defensin peptides are the most conserved of the antimicrobial host
defense peptides among the vertebrates, likely due to the large number of charac-
teristic cysteines. Beta-defensins are defined as peptides that contain a highly
conserved pattern of 6 cysteines with a clearly defined pattern of intramolecular
bonding: Cys1–Cys5, Cys2–Cys4, and Cys3–Cys6 (Wu et al. 2003) (Fig. 1.4). In
humans, β-defensins are commonly expressed in epithelial cells, and are widely
expressed in the body (Garcia et al. 2001). Other than the highly conserved cys-
teines, however, there is significant diversity in the intervening sequences of
beta-defensin peptides (Semple et al. 2006; Cheng et al. 2015).

The first detailed report of an in vivo role for β-defensin peptide expression was
in the anole lizard, Anolis carolinensis. Lizards can lose their tails during predator
escape, and the tail can then regenerate. In this process, a wound is formed, which
does not typically get infected. β-Defensin peptides are found to be expressed both
within the azurophilic granulocytes in the wound-bed as well as in the associated
epithelium (Alibardi 2013b, 2014a), and are observed in phagosomes containing
degraded bacteria. While there is a distinct lack of inflammation in the wound,
which is associated with regeneration (Alibardi et al. 2012), there is a high level of
expression of AcBD15 and AcBD27 (two of the most highly expressed β-defensins
in that tissue) (Alibardi 2013a). Thus, there is a potential role of these defensins in
infection prevention, wound healing and regeneration of the anole lizard tail.

Eggs contain lots of readily available biological material and are interesting places
to discover antimicrobial peptides. Recently, it was found that the β-defensin-like
peptide pelovaterin, identified in the eggshell of the Chinese softshelled turtle, has
antimicrobial activity, and that these peptides may also play an additional role in the
formation of the eggshell through aggregation (Lakshminarayanan et al. 2008). This
may be similar to the role of the gallin, an ovodefensin which is a beta-defensin-like
peptide in avian eggs (Lakshminarayanan et al. 2008; Herve-Grepinet et al. 2010;
Mine et al. 2003).

1.4 Diverse Requirements for Folding

The beta-defensin peptides also demonstrate diverse requirements of folding for
activity. Human beta-defensin 2 (hBD-2) for example must be folded correctly with
the cysteines in the correct bonding pattern to exhibit its full antimicrobial activity
(Wu et al. 2003). For hBD3, it has recently been demonstrated that the disulfide
bonds are dispensable for antimicrobial activity but required for chemotactic
activity (Wu et al. 2003). Furthermore, small fragments of hBD3 that are designed
to be linear also have high antimicrobial activity (Papanastasiou et al. 2009). This
finding has important implications for the potential mechanism of hBD3 action on
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the host and on pathogens, and demonstrates a separation of these two activities
though differences in the structure of the peptides.

Interestingly, almost the opposite is true for hBD1, the constitutively expressed
AMP. Schroeder et al. (2011a, b) demonstrated that by reducing all the disulfide
bonds within hBD1, the antimicrobial activity actually is significantly increased
(Schroeder et al. 2011a, b) compared to the fully oxidized form, which is generally
inactive for antimicrobial activity. This finding, combined with an evaluation of the
redox potential in the lung and other epithelial surfaces, has led to a new appre-
ciation for the potential role of hBD1 in host defense.

1.5 Alpha Defensins

Alpha defensins are highly expressed in many but not all higher organisms (Das
et al. 2010) and are peptides that contain a highly conserved pattern of 6 cysteines
with a clearly defined pattern of intramolecular bonding: Cys1–Cys6, Cys2–Cys4,
and Cys3–Cys5 (Wu et al. 2003). For example, human neutrophil peptide HNP-1,
also called α-defensin 1, is highly expressed in neutrophils and other leukocytes in
humans. HNP-1 is important in the ability of white blood cells to deal with bacterial
pathogens (Lehrer and Lu 2012). Alpha defensins are different from beta-defensins
in their bonding pattern of the six characteristic cysteines, and their more limited
tissue expression pattern.

Although considered by phylogenetic analysis to be in the same phyla as avians
(Sauropsida), reptiles are still generally thought of by most of us as being quite
separate from birds (Alfoldi et al. 2011). Within the reptiles, crocodilians are
considered to be the most closely related to the avian branch. Interestingly, this
evolutionary connection is reflected in the antimicrobial profile (“peptidome”) in
that neither avians nor reptilians encode α-defensin antimicrobial peptides (Xiao
et al. 2004), which are a critical part of mammalian innate immunity (Wilson et al.
2009; Zhao and Lu 2014; Lehrer and Lu 2012; Tongaonkar et al. 2012). Reptile
neutrophil-like cells have granules that contain both cathelicidin-like and β-defensin
peptides, but unlike mammals, no α-defensin peptides. By doing an in-depth
analysis of multiple alpha- and beta-defensin genes, Xiao et al. (2004) conclude that
mammalian alpha-defensin genes may have arisen from early beta-defensin genes
through a process of gene duplication and evolution (Xiao et al. 2004).

Research question: Do chickens and reptiles use beta-defensins in hetero-
phils in the same way as humans use alpha defensins in neutrophils in
response to infection?

14 M.L. van Hoek



1.6 Big-Defensins

Big-defensins (Schmitt et al. 2012; Schulenburg et al. 2007), first identified in
horseshoe crabs in 1995 (Saito et al. 1995), are peptides involved in innate
immunity in invertebrates, such as horseshoe crabs, oysters and mussels.
big-defensins are an unusual antimicrobial peptide when compared to mammalian
or vertebrate defensins and further reflect the diversity of antimicrobial peptides
found in nature (Schmitt et al. 2012). These 79 amino acid long peptides have two
distinct domains: a highly hydrophobic, cationic and likely helical N-terminal
domain and a cationic C-terminal domain with 6 cysteines that closely resembles
mammalian beta-defensins (Saito et al. 1995; Kouno et al. 2008) (Fig. 1.5). Each
domain separately can exert antimicrobial activity. The N-terminal region was
shown to be antimicrobial against gram-positive bacteria, the C-terminal region was
shown to be antimicrobial against gram-negative bacteria, and there appears to be
some combined synergy of the two domains together with regards to LPS binding
(Rosa et al. 2011; Saito et al. 1995; Kouno et al. 2009). Many of the big-defensin
genes are inducible by bacterial products, and their expression is not observed in
uninfected oysters (Rosa et al. 2011).

These “big-defensins” are evolutionarily related to vertebrate defensins in their
C-terminal domain in terms of structure, but still surprisingly distant from human

Fig. 1.5 Structure of big-defensins compared to beta-defensins. The N-terminal region of the
big-defensin “forms a hydrophobic globular domain, and the C-terminal domain adopts a
beta-defensin like shape with the typical beta-defensin Cys1–5, 2–4, 3–6 bonding pattern.”
Figure is reprinted with permission (Kouno et al. 2008). Copyright 2008 American Chemical
Society
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beta-defensins by sequence (Rosa et al. 2015). There are at least 17 different
big-defensins known or predicted in different invertebrates (Schmitt et al. 2012).
Oysters, such as Crassostrea gigas (Rosa et al. 2015; Gonzalez et al. 2007;
Gueguen et al. 2006), have big-defensins that are active only against gram-positive
bacteria. Oyster big-defensins were shown to exert their antibacterial activity by
interfering with Staphylococcus aureus Lipid II and thus interfering with the bac-
teria’s peptidoglycan synthesis (Schmitt et al. 2010), revealing the diversity of
bacterial targets for antimicrobial peptides. Horseshoe crabs express a big-defensin
tachyplesin, which can bind LPS and has activity against both gram-positive and
gram-negative organisms under MIC conditions (Saito et al. 1995; Kushibiki et al.
2014).

1.7 Hepcidins

Hepcidin peptides are liver-expressed peptides containing eight cysteines and are
involved in ferroportin and iron binding through the N-terminus (Rodriguez et al.
2014; Park et al. 2001). Hepcidins appear to have very little direct antimicrobial
activity against pathogens, and exert their activity primarily though regulating free
iron. The host defense hepcidin peptides have a very conserved pattern of 8 cys-
teines (thus containing four disulfide bonds) with highly characteristic bridging
pattern (C7–C22; C10–C13; C11–C19; C14–C22) (Jordan et al. 2009; Clark et al.
2011). However, the intervening sequences are highly divergent, leading to overall
relatively low sequence similarity between distant vertebrates (Table 1.2).
Hepcidin-like sequences were identified in amphibians and reptiles, including the
painted turtle and the anole lizard (Hilton and Lambert 2008). In contrast to the
beta-defensins and cathelicidins, the chicken genome does not appear to encode a
gene for hepcidin peptides (van Hoek 2014), while reptile genomes do, highlighting
an interesting difference between these otherwise highly related organisms.
Chickens do have the ferroportin gene (Tako et al. 2010), so it might be expected
that there is a hepcidin partner of some kind, despite the fact that it can not be
identified by searching the genome.

Research question: Do chickens regulate iron homeostasis with a
ferrpotin/hepcidin system with an as yet unidentified hepcidin or do they
regulate iron homeostasis via some other mechanism?
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1.8 Protein Fragments with Antimicrobial Activity

Over the past decade, there have been increasingly reports of peptides that are
cleavage products of other proteins that have no known role in antimicrobial
response, in which the cleaved products are then shown to have direct antimicrobial
activity. One example of this is the release of histone-derived peptides including
buforin and others, which have antimicrobial activity against many different bac-
teria (Pavia et al. 2012; Bustillo et al. 2014). Similarly, reports of antimicrobial
activity of fragments of lactoferrin show that these fragments have antimicrobial
activity (Bolscher et al. 2006).

Another very interesting example is the release of a c-terminal fragment of the
interferon-inducible CXC chemokines, which have been shown to be antimicrobial
(Crawford et al. 2009). Hughes et al. have demonstrated that the fragment of
CXCL10 is antimicrobial against Bacillus anthracis vegetative cells by targeting
the cell division protein FtsX (Crawford et al. 2011). This example suggests a
possible novel host defense role for these protein fragments that is separate from the
previously understood role of CXCL10 in the host response to bacterial infection
(Crawford et al. 2010).

Using a custom-made particle for harvesting native peptides, and de
novo-assisted peptide sequencing, my collaborators and I have identified antimi-
crobial peptide fragments from alligator plasma, including several that we call
“Apo” peptides, which are C-terminal, alpha-helical cleavage products of alligator
Apolipoprotein C (Bishop et al. 2015; Juba et al. 2015). These apo-peptides were
highly active in EC50 assays against a range of both gram-negative and
gram-positive bacteria (Bishop et al. 2015). The role of these fragments in the
innate immunity of the alligator is not yet known, nor whether their production is
regulated in the face of infection.

Research Question: Is the generation of apo-peptide fragments altered in the
presence of a bacterial infection? Is the expression of the parental peptide
regulated by exposure to bacterial products?

1.9 Conclusions

Antimicrobial peptides are known throughout most of the animal kingdom, from
invertebrates to vertebrates. Although canonical “classes” of antimicrobial peptides
are identified, there is surprising diversity of peptides even within common classes.
The evolutionary reasons for this diversity are unclear. Is there evolutionary pres-
sure to have a diverse arsenal of peptides in different animals, or are the different
peptides “equivalent” solutions to the problem of innate immune host defense?
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Host defense antimicrobial peptides have been classified into families, but
especially within the cathelicidin family, they dominantly share physicochemical
properties within the families, such as size, net charge, physical structure and
location within the encoding gene. Taking a structural approach (rather than a
sequence-based approach such as genomics or proteomics) to understand the
relatedness of host defense antimicrobial peptides can be helpful, especially with
respect to identifying new cathelicidin peptides, for example.

With the advent of high-throughput sequencing, genomes of previously
unstudied animals are being sequenced and their transcriptomes are being deter-
mined. As more peptides are identified and characterized, some of the remaining
issues identified here will be clarified, such as whether cathelicidin prosequences
from organisms distant to mammals will still retain a “cathelin” domain, either in
sequence or in function. The comparison of reptiles to mammals provides useful
examples of the diversity of antimicrobial peptides found within higher organisms.
The known cathelicidin active peptides from reptiles are very different in sequence
than cathelicidin peptides from any other phylum, and the same is true for almost
every active cathelicidin peptide from any animal known. The beta-defensins are
more conserved between phyla, but mostly due to the sequence constraints of the
6-cysteine pattern. The alpha defensins are also more conserved, but interestingly
are not expressed in the avian or non-avian reptiles. Even the hepcidin peptides
predicted in reptiles are highly divergent from the mammalian hepcidin in the
amino acid sequence despite the high constraint of the 8 conserved cysteines out of
25 amino acids. Interesting peptides also include the cecropins and the
big-defensins.

Overall, antimicrobial peptides employ a diverse range of novel and effective
mechanisms to kill bacteria. Some of these mechanisms may surely be harnessed
and enhanced for use by humans in the battle against infection. There are many
interesting research questions to pursue within the area of host defense antimi-
crobial peptides, as the field continues working to potentially develop these pep-
tides as potential therapeutics for clinical use. In itself, the diversity of antimicrobial
peptide sequences suggests that these peptides may be good platforms to develop
further into potential therapies as there are a wide variety of mechanisms employed
by each of these peptides and each peptide may present another of nature’s solu-
tions to the problem of how to kill bacteria.
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Chapter 2
Antifungal Host Defense Peptides

Karl Lohner and Regina Leber

Abstract Fungi infect billions of people every year, yet their contribution to the
global burden of disease is largely unrecognized and the repertoire of antifungal
agents is rather limited. Thus, treatment of life-threatening invasive fungal infec-
tions is still based on drugs discovered several decades ago. In addition, recent data
on resistance emergence of fungi emphasize the urgent need for novel antifungal
treatments. One alternative strategy is based on host defense peptides. Among the
large number of antimicrobial peptides, a group of peptides show primarily anti-
fungal activity by interfering with enzymes of cell wall biosynthesis or specific
membrane lipids such as ergosterol. Both are promising targets for antifungal
peptides, as they are absent in mammalian cells and hence low toxicity of peptides
can be expected. However, most of the antimicrobial peptides exhibit a broad
spectrum activity including antifungal activity. These peptides act on the cell
membrane level and although their structures vary largely, they share a positive net
charge, which facilitates electrostatic interactions with negatively charged lipids of
the target cell, and an amphipathic structure, which facilitates incorporation into the
cell membrane and in turn membrane disruption. Thereby, membrane lipids dif-
fering between mammals and fungi play a central role concerning specificity and
efficacy of these peptides. Hence, understanding their molecular mechanism(s) of
action will aid in the design of novel antifungal agents. Finally, some of these
peptides were shown to act synergistically with conventional drugs, which would
further widen the armory to treat especially life-threatening invasive fungal
infections.
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2.1 Introduction

Of the 1.5 million fungal species, around 300 are reported to be pathogenic in
humans (Taylor et al. 2001). Superficial and mucosal fungal infections are extre-
mely common, but life-threatening invasive fungal infections have increased in
importance (Polvi et al. 2015; Warnock 2007). In a very recent review about yeast
pathogens, Cryptococcus neoformans was described as the leading cause of deaths
due to fungal infections, with a global burden of nearly 1 million cases annually,
and more than 620,000 deaths worldwide (Polvi et al. 2015; Park et al. 2009).
Further, cryptococcal meningitis contribute up to 20 % of AIDS-related mortality in
low-income and middle-income countries every year (Loyse et al. 2013). Candida
albicans, another important fungal pathogen, causes more than 400,000 deaths per
year due to invasive candidiasis (Horn et al. 2009). Risk factors for invasive can-
didiasis include surgery (especially abdominal surgery), burns, long-term stay in an
intensive care unit, and previous administration of broad spectrum antibiotics and
immunosuppressive agents (Kontoyiannis et al. 2003; Zaoutis et al. 2005; Sydnor
and Perl 2011; Pfaller and Diekema 2004; Spampinato and Leonardi 2013). The
Centers for Disease Control and Prevention, Atlanta, reported that roughly one third
of patients, who suffer from bloodstream infections caused by drug-resistant
Candida spp., die during their hospitalization in the US (http://www.cdc.gov/
drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf). Finally, patients
with impaired immune function are also often infected by Aspergillus species (Polvi
et al. 2015; Warnock 2007).

Despite the profound impact of fungal pathogens on human health worldwide,
treatment can be hampered by toxicity, poor tolerability, or a narrow activity
spectrum of antifungal drugs. Nevertheless, invasive fungal infections remain
understudied and underdiagnosed as compared to other infectious diseases (Brown
et al. 2012). Further, the repertoire of antifungal agents is rather limited and
therefore treatment of life-threatening invasive fungal infections is still mainly
based on drugs discovered several decades ago (Butts and Krysan 2012). Polyenes,
azoles, allylamines, and echinocandins represent the most common classes of
antifungals currently used in the clinics. These agents demonstrate high levels of
antifungal activity, although resistance is reported for all classes including
echinocandins, which represent the first and so far only class of licensed antifungal
peptides (Polvi et al. 2015; Drgona et al. 2014; Spampinato and Leonardi 2013;
Chen and Sorrell 2007; Perlin 2015). The fungal-derived echinocandins are cyclic
hexapeptides with N-linked acyl lipid side chains, which inhibit cell wall biosyn-
thesis at the level of (1,3)-β-D-glucan synthase (Boucher et al. 2004). Whereas
native echinocandins were hemolytic and had poor solubility in water, chemical
modifications resulted in molecules with improved properties (Luca and Walsh
2000; Denning 2002). The first licensed echinocandin product was caspofungin
acetate (Cancidas®; Merck) (Denning 2002). Currently, also micafungin
(Mycymine®; Astella Pharma) and anidulafungin (Ecalta®, Pfizer) are available for
treatment of invasive fungal infections. The inhibitory spectrum of these
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synthetically modified lipopeptides, however, does not include the leading fungal
pathogen Cryptococcus neoformans since this pathogen has little or no (1,3)-
β-D-glucan synthase enzyme (Denning 1997; Hector 1993).

Currently, there is considerable interest in antifungal properties of antimicrobial
peptides (AMPs) and research on this topic has strongly expanded during the past
decade. Antimicrobial peptides are produced by diverse life forms including
mammals, plants, amphibians, insects, fungi, and bacteria. More than 2500 natural
or synthetic AMPs are listed in the Antimicrobial Peptide Database (APD, http://
aps.unmc.edu/AP) of which around 900 have antifungal activity (Wang and Wang
2004; Wang et al. 2009) including some proteins such as ribonucleases and pro-
teases. The vast majority of AMPs with antifungal activity is positively charged and
for almost two third of these peptides no secondary structure is determined so far
(Table 2.1). About 15 % of the peptides exhibit either an α-helix or structures
stabilized by disulfide bonds, while peptides that adopt a β-sheet make up to only
*5 %. A similar amount of peptides have a combined α-helical/β-sheet structure
and a very minor fraction (2 %) is rich in unusual amino acids. It is of interest to
note that peptides containing unusual amino acids have a very low content of
hydrophobic residues (mostly ≤10 %), while the percentage of hydrophobic resi-
dues of the majority of peptides with antifungal activity is around 50 % (Table 2.1).
Excellent reviews about antifungal peptides originating from insects and plants
have very recently been published (Faruck et al. 2015; Lacerda et al. 2014; Vriens
et al. 2014; Silva et al. 2014; Nawrot et al. 2014). Furthermore, Matejuk et al.
described peptide-based strategies for antifungal therapies against emerging infec-
tions emphasizing that these peptides may have specific targets showing selective
toxicity or may be multifunctional in their mode of action (Matejuk et al. 2010).
The number of peptides exhibiting primarily antifungal activity such as
echinocandins is much lower than peptides exhibiting a broad antimicrobial activity
supposedly resulting in lysis of the cytoplasmic membrane. This review will focus
on the different fungal targets of peptides that have shown selective toxicity against
fungal pathogens in vitro or in vivo. Further, we will briefly discuss mechanisms of
membrane lysis and describe co-applications of standard drugs and antifungal
peptides.

2.2 Targets for Antifungal Therapy

In terms of numbers of classes of agents that can be used to treat life-threatening
mycoses, the targets of antifungal agents are heavily focused, directly or indirectly,
on the cell envelope (wall and plasma membrane), and particularly on the fungal
membrane sterol, ergosterol, and its biosynthesis (Odds et al. 2003) (Table 2.2,
Fig. 2.1). From the 1950s until the discovery of azoles, polyene antifungal agents
such as amphotericin B, which are known to cause significant nephrotoxicity,
represented the standard of therapy for systemic fungal infections (Ghannoum and
Rice 1999). Amphotericin B (AmpB) has been proposed to interact with plasma
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membrane ergosterol resulting in the formation of ion channel aggregates that are
inserted into lipid bilayers and thereby permeabilize and kill yeast (Kruijff and
Demel 1974; Holz 1974). Anderson et al., however, reported that AmpB exists
primarily in the form of large, extra-membranous aggregates that kill yeast by
extracting ergosterol from lipid bilayers (Anderson et al. 2014; Lohner 2014). The
clinical efficacy and safety of azoles, in particular fluconazole, has led to their
extensive use. The primary target of azoles is a heme protein, which catalyzes
cytochrome P-450-dependent 14-α-demethylation of lanosterol (Hitchcock et al.
1990). Accumulation of zymosterol and squalene was observed, when C. albicans
cells were treated with voriconazole (Sanati et al. 1997). Mammalian cholesterol
synthesis is also blocked by azoles at the stage of 14-α-demethylation, however, the
dose required to effect the same degree of inhibition is much higher than that
required for fungi (Hitchcock et al. 1990; van den Bossche et al. 1978; Ghannoum
and Rice 1999). Allylamines, such as terbinafine and naftifine, have primarily
fungicidal action against many fungi as a result of its specific inhibition of squalene
epoxidase (Ryder 1992). Treated fungi accumulate squalene, while becoming
deficient in ergosterol, which leads to inhibition of growth. Terbinafine has no effect
on cholesterol biosynthesis in vivo (Ryder 1992). Regarding antifungal proteins and
peptides, potential targets of fungal cells including several intracellular targets were
described earlier (Theis and Stahl 2004; Matejuk et al. 2010). Novel antifungal
drugs need to act on targets that are absent or different in mammalian cells.

cell wall

plasma
membrane

Polyenes

squalene

ergosterol

Azoles

Allylamines

membrane-active AFPscell wall specific AFPs

chitin synthase 

glucan synthase

Echinocandins

AFPs with intracellular targets

DNA

Fig. 2.1 Potential targets of antifungal peptides and conventional antifungal drugs. Latter
interfere mainly with the biosynthesis of ergosterol and its physiological function, while the former
predominantly interfere with cell wall biosynthesis and cell membrane integrity
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2.3 Cell Wall-Specific Antifungal Peptides

For pathogenic fungi, the cell wall (Fig. 2.2) is critical for invading the host and
resisting against host defense mechanisms (Latgé and Beauvais 2014). It provides
the cell with sufficient mechanical strength to withstand changes in osmotic pres-
sure imposed by the environment. The fungal cell wall is a complex structure
composed typically of chitin, 1,3-β- and 1,6-β-glucan, mannan and proteins,
although cell wall composition frequently varies markedly between species of fungi
(Adams 2004). Enzymes catalyzing the synthesis of cell wall components are
promising targets for antifungal peptides as they are absent in mammalian cells and
hence low toxicity of peptides can be expected. Disruptions of cell wall structure
have a profound effect on the growth and morphology of the fungal cell, often
rendering it susceptible to lysis and death (Bowman and Free 2006).

2.3.1 Inhibitors of Glucan Synthase

Glucan is the major structural polysaccharide of the fungal cell wall, constituting
approximately 50–60 % of the wall by dry weight (Fleet 1985; Kapteyn et al.
1999). The 1,3-β-glucan serves as the main structural constituent to which other cell
wall components are covalently attached. As a result, the synthesis of 1,3-β-glucan
is required for proper cell wall formation and the normal development of fungi
(Bowman and Free 2006).

Echinocandins (caspofungin, micafungin, and anidulafungin) are now the pre-
ferred first line therapy for patients with invasive candidiasis (Spampinato and
Leonardi 2013). These semi-synthetic lipopeptides are non-competitive inhibitors
of (1,3)-β-D-glucan synthase, an enzyme complex that forms glucan polymers in
fungal cell walls (Denning 1997). This leads to the formation of fungal cell walls
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β-1,3/1,6-glucan

mannoprotein

chitin
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Fig. 2.2 Schematic
representation of the fungal
cell envelope highlighting the
most important components
of the cell wall and
cytoplasmic membrane.
Membrane proteins were
omitted for clarity
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with impaired structural integrity, which in turn results in cell vulnerability to
osmotic lysis (Grover 2010). Their low toxicity may reflect the fact that their target,
(1,3)-β-D-glucan synthase, is not found in humans (Perlin 2015). Echinocandin
drugs are potentially fungicidal against most clinically important Candida spp. but,
are considered fungistatic against Aspergillus (Barchiesi et al. 2005; Ernst et al.
1999; Bowman et al. 2002; 2006; Pfaller et al. 2003). Although these types of drugs
were licensed first in 2001, reports on Candida spp. isolates resistant to
echinocandins are increasingly reported (Perlin 2015). Resistance is attributed to
point mutations in the FKS1 gene, which encodes the major subunit of the glucan
synthase complex (Perlin 2007).

2.3.2 Inhibitors of Chitin Synthase

Chitin, a long linear homo-polymer of β-1,4-linked N-acetylglucosamine, is a
structurally important component of the fungal cell wall. Chitin accounts for only
1–2 % of the yeast cell wall by dry weight (Klis 1994; Klis et al. 2002), whereas the
cell walls of filamentous fungi, such as Neurospora and Aspergillus, are reported to
contain 10–20 % chitin (Nobel et al. 2000; Bartnicki-Garcia 1968; Bowman et al.
2006). Disruption of chitin synthesis leads to disordered cell walls and the fungal
cell becomes malformed and osmotically unstable (Bago et al. 1996; Specht et al.
1996).

Nikkomycins are a group of peptidyl nucleoside antibiotics produced by
Streptomyces ansochromogenes (Chen et al. 2000) and Streptomyces tendae
(Brillinger 1979). Acting as competitive inhibitors of chitin synthase, nikkomycins
inhibit the growth of filamentous fungi and yeasts (Dähn et al. 1976; Feng et al.
2014). Compared to conventional antifungal agents, including fluconazole and
amphotericin B, nikkomycin Z resulted in greater killing of Coccidioides spp. and
was able to sterilize lung lesions in seven of eight mice dosed with 50 mg/kg/day
for 6 days, while the conventional agents tested did not sterilize lung lesions in any
case (Hector et al. 1990). Nikkomycin Z has been used in Phase I clinical trials for
the treatment of coccidioidomycosis (Nix et al. 2009). However, the peptidyl
nucleoside was degraded in rat, mouse and rabbit plasma much faster than in pH 7.5
buffer (Tokumura and Horie 1997). Recently, two novel nikkomycin analogs
(nikkomycin Px and Pz) were generated by mutasynthesis showing similar anti-
fungal activities to those of natural nikkomycins, but with improved stabilities
under different pHs and temperatures (Feng et al. 2014). Polyoxins, which were
isolated from the culture broth of Streptomyces cacaoi, are closely related to
nikkomycins and also act as specific inhibitors of chitin synthase (Hector 1993;
Isono et al. 1969). Polyoxins, which contained hydrophobic amino acids, retained
strong chitin synthase inhibitory activity and were resistant to cellular hydrolysis of
C. albicans (Smith et al. 1986).
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2.3.3 Chitin Binding Peptides

Members of the family of hevein-like antimicrobial peptides carry a conserved
chitin binding site. The hevein-like peptides belong to a unique class of plant
antimicrobials that show resemblance to hevein, the antimicrobial peptide
(AMP) from latex of Hevea brasiliensis (van Parijs et al. 1991; Rogozhin et al.
2015). Their antifungal activity is supposed to be associated with their chitin
binding activity. Binding to chitin is believed to interfere with hyphal growth
resulting in abnormal branching, retardation of elongation and swelling.
Hevein-like peptides are rarely found outside the plant kingdom. Novel hevein-like
peptide precursors were identified by similarity search methods, including one from
a fungal source (Porto et al. 2012). SmAMP3, a new member of the hevein-like
family peptides was isolated recently from leaves of a weed species S. media
(Rogozhin et al. 2015). It is basic and cysteine-rich, with six cysteines linked to
form three disulfide bridges. SmAMP3 demonstrated significant inhibition of spore
germination of fungi with highest activity against B. cinerea (Rogozhin et al. 2015).

Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from
the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of
several filamentous fungi including plant pathogens along with swelling of hyphae
and spores, which indicates serious effects on cell wall rigidity. CTB1 does not
inhibit chitin synthase activity, but it induces cell wall fragility by binding to chitin
(Mizuhara et al. 2011). Also the antifungal activity of penaeidins, a family of
antimicrobial peptides characterized in the shrimp Penaeus vannamei, can be
related to their chitin binding ability (Destoumieux et al. 2000).

2.4 Membrane-Active Antifungal Peptides

As mentioned in the introduction and described above host defense peptides with
primarily antifungal activity are much less abundant than peptides with broad
antimicrobial activity. This is most likely due to evolution creating molecules that
can protect the host from a variety of invaders. Therefore, the predominant fraction
of these peptides shows a broad spectrum activity against bacteria, fungi and even
viruses (Cole and Ganz 2000). Within this plethora of peptides, which predomi-
nantly act on the plasma membrane level, there are some, which interact with
specific membrane lipid components such as ergosterol and sphingolipids, descri-
bed in Sects. 2.4.2 and 2.4.3. However, most of them are supposed to induce lysis
of the cell membrane. The molecular mechanism(s) of membrane rupture mutually
depends on the nature of the peptide and membrane lipid composition (Lohner and
Blondelle 2005; Lohner 2009). Thus, in terms of antifungal drug design it is crucial
that antifungal peptides can discriminate between target and host membrane
(Lohner 2001).
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2.4.1 Broad Spectrum Antimicrobial Peptides

Mammalian and fungal membranes are composed of proteins and three main lipids:
phospholipids, sphingolipids, and sterols (Zinser et al. 1993; Löffler et al. 2000; van
Meer and de Kroon 2011). The phospholipid classes of eukaryotic plasma mem-
branes are asymmetrically distributed as they actively sequester phosphatidyl-
choline (PC) and sphingomyelin (SM) within the outer monolayer of the membrane
(van Meer et al. 2008; Devaux and Morris 2004). PC accounts for >50 % of the
phospholipids in most eukaryotic membranes. It self-organizes spontaneously as a
planar bilayer, in which PC has a nearly cylindrical molecular geometry (Fig. 2.3).
Most PC molecules have one cis-unsaturated fatty acyl chain, which renders the
membrane fluid at room temperature (van Meer et al. 2008; van Meer and de Kroon
2011). Sphingolipids usually contain a long to very long saturated fatty acid (C16–
C32) with an amide linkage to the sphingoid base. They generally adopt a solid gel
phase, but are fluidized by sterols, which supposedly preferentially interact with
them in the membrane (van Meer and de Kroon 2011). Phosphatidylethanolamine
(PE) as well as the negatively charged lipids phosphatidylserine (PS) and phos-
phatidylinositol (PI) are found almost exclusively in the inner leaflet of the bilayer

(i)  interfacial activity

(iii)  clustering

carpet

(iv)  (disk-like) micelles
PC, SMPE

(ii)  dimple

(ii)  quasi-interdigitated (v)  curvature
cubic structures

positive

negative

toroidal pore

Fig. 2.3 Schematic representation of various modes of action of membrane-active peptides.
Arrows indicate some possible mutual reactions, e.g., after peptide binding to and accumulation at
the membrane surface followed by insertion into the membrane interface (carpet model) various
molecular mechanisms may occur, which strongly depend on the nature of both peptide and lipids.
At high peptide concentrations micellization may occur. In the right hand lower corner the
molecular shape of representative lipids are indicated

2 Antifungal Host Defense Peptides 37



(van Meer et al. 2008; Devaux and Morris 2004). The non-bilayer propensity of PE
is essential for the functional embedding of membrane proteins and for processes
such as membrane fusion and fission (Kruijff 1997; Lohner 1996). PE assumes a
conical molecular geometry because of the relatively small size of its polar head-
group (Fig. 2.3) (Seddon and Templer 1995). Membrane asymmetry is known to
affect various bilayer properties, including membrane potential, surface charge,
permeability, shape as well as stability (Devaux 1991; Cheng et al. 2009; Marquardt
et al. 2015). Owing to this asymmetric phospholipid distribution mainly uncharged,
zwitterionic phospholipids are exposed to the outside of the cell membrane of
eukaryotes (Lohner 2001).

Studies on the surface potential and the translocation of anionic phospholipids in
Saccharomyces carlsbergensis unveiled that about 5 % of anionic phospholipids are
in the exofacial side of the plasma membrane (Cerbón and Calderón 1994). When
cationswere added to the culturemedium this value increased slightly but significantly
to 7 %.On the other hand,most of themembrane-active antimicrobial peptides exhibit
a positive net charge under physiological conditions, which facilitates electrostatic
interactions with negatively charged lipids of the target cell, while their amphipathic
structure facilitates incorporation intomembrane layers (Tossi et al. 2000; Lohner and
Blondelle 2005). Therefore, owing to the comparatively low content of anionic lipids
at the surface of fungi as compared to bacteria membrane-destabilization of antifungal
peptides was suggested not to be facilitated by strong electrostatic interactions but
rather by cell leakage due to pore formation, which is supposed to appear far below
micromolar concentrations (Matsuzaki et al. 1995; Matsuzaki 1998). In the toroidal
pore model (Fig. 2.3) peptides together with lipids form transmembrane pores, with
the hydrophilic residues facing the lumen of the pore (Matsuzaki et al. 1996; Huang
2006). However, similar amounts of anionic lipids, i.e., PS, were found to be exposed
on the outermembrane leaflet of cancer cells (Riedl et al. 2011a) shown to be sufficient
to render them as target for cationic antimicrobial peptides without affecting signifi-
cantly membranes of normal cells (Riedl et al. 2011b; Riedl et al. 2015; Hoskin and
Ramamoorthy 2008). Thus, membrane permeabilization of fungal membranes may
also occur by other modes of action than pore formation. In this respect, the most
frequently discussed mechanism is the carpet model (Fig. 2.3), where AMPs accu-
mulate at the cell membrane being aligned parallel to the bilayer surface and insert into
the membrane above a certain threshold concentration resulting in membrane per-
meabilization and eventually disruption (Shai 2002). At the molecular level different
processes may apply that can lead to loss of membrane integrity briefly listed here and
schematically shown in Fig. 2.3:

(i) interfacial activity model, defined as the propensity of amphipathic peptides
to partition into the membrane interface in a way to disrupt the normally
strict segregation of polar and non-polar groups of the lipids (Wimley 2010),

(ii) free volume model, interfacial alignment parallel to the membrane plane
creating “voids” in the hydrophobic core of the membrane, which leads to a
quasi-interdigitated structure in the gel phase and membrane thinning/dimple
formation in the fluid phase (Lohner 2009; Sevcsik et al. 2007; Huang 2000),
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(iii) phase separation, creating domains with different physico-chemical proper-
ties between lipid bulk and peptide-enriched domains (Arouri et al. 2009;
Epand et al. 2010; Epand and Epand 2009, 2011; Lohner 2009),

(iv) disruption of the membrane similar to detergents occurring particularly at
high peptide concentration (Bechinger and Lohner 2006),

(v) modifying membrane curvature strain (Koller and Lohner 2014; Lohner and
Blondelle 2005).

These models may be considered as special cases within the complex interaction
of amphipathic peptides and membrane lipids, which besides of their nature also
depend on a number of factors including environmental factors such as pH, ionic
strength or temperature. Taking this into consideration and the fact that both
molecules are highly dynamic, the SMART (soft membranes adapt and respond)
model was introduced to account for the full range of possibilities (Bechinger
2015). Notably, the fast killing rate within minutes (Boman 2003) as well as the
nature of the target (lipids of the plasma membrane) makes the occurrence of
resistance less likely, since substantial modification of the lipid composition would
affect fungal cell viability.

Although mammalian and fungal plasma membranes are similar in structure and
composition, differences may arise when fungal species that infect humans switch
from yeast cells to mycelium, which is considered to be an important factor in
pathogenesis and in turn may facilitate the design of novel antifungal peptides. The
primary function of hypha formation is to invade the substrate they are adhered to
(Brand 2012). The levels of total lipids, sterols and phospholipids were found to be
different in the mycelial form (log phase) of Candida albicans and in its yeast form
(Mishra and Prasad 1990; Goyal and Khuller 1994). The contents of PC, PS, and PI
in the mycelial form are higher than in the yeast form, whereas the opposite is true
for PE (Mishra and Prasad 1990; Goyal and Khuller 1994). Analyses of the fatty
acid composition showed that mycelial apolar and polar lipid fractions contained
higher levels of polyunsaturated fatty acids (C18:2 and C18:3) as well as C16:0,
C16:1 and C18:0, but lower levels of oleic acid (C18:1) than the corresponding
yeast fractions (Ghannoum et al. 1986). The differences in the fatty acid pattern
resulted in alterations in the thermotropic phase behavior and thus physico-chemical
properties of C. albicans membrane lipids corresponding to its morphological form
(Goyal and Khuller 1994; Ghannoum et al. 1986). The fatty acid pattern of mycelial
lipids from A. niger were also different from its yeast form lipids (Chattopadhyay
et al. 1985). An unusual lipid species, pyrophosphatidic acid (pyro-PA), was
identified in Cryptococcus neoformans (Itoh and Kaneko 1977). Pyro-PA may have
a potential role in signaling and stress response in C. neoformans and it is important
for the mammalian immune response (Shea et al. 2006; Balboa et al. 1999). Unlike
other fungi, membranes of clinical isolates of the pathogenic yeast Cryptococcus
neoformans contain obtusifoliol as major sterol, followed by ergosterol (Ghannoum
et al. 1994). Obtusifoliol is an important intermediate in the synthesis of sterols and
has been observed in several fungal species following treatment with azoles
(Vanden Bossche et al. 1990; Ghannoum et al. 1994). As with the total sterol

2 Antifungal Host Defense Peptides 39



content, there was considerable variation in the types and quantities of sterols
present in isolates from individual patients (Ghannoum et al. 1994). In contrast to
C. neoformans, C. albicans does not show significant strain-to-strain variation in
sterol patterns. Moreover, ergosterol is the predominant sterol in C. albicans
(Ghannoum et al. 1994). In this respect, it is highly interesting to note that minor
structural differences of sterols as deduced from NMR experiments can account for
differential binding of amphotericin B to ergosterol (strong), cholesterol (weak) and
lanosterol (no binding) (Anderson et al. 2014). It was suggested that this has also
important implications for the design of novel antifungal compounds that distin-
guish between ergosterol of fungal and cholesterol of mammalian cell membranes
thereby reducing unwanted side effects (Lohner 2014).

2.4.2 Antifungal Peptides and Ergosterol

Fungal membranes differ from those of higher eukaryotes concerning sterols, which
regulate membrane fluidity. Ergosterol is the major sterol in the membranes of
lower eukaryotes like yeast and fungi, whereas cholesterol predominates in the
plasma membrane of mammalian cells (Henriksen et al. 2006). Antifungal sub-
stances like polyenes, azoles, and allylamines act on ergosterol or its synthesis
(Ryder 1992; Sabatelli et al. 2006; Anderson et al. 2014). Cholesterol and ergos-
terol are similar molecules, but there are slight structural differences: ergosterol has
two additional double bonds as well as a methyl group on the side chain (Hsueh
et al. 2007). These small differences in sterol structure, however, result in stronger
conformational ordering of lipid acyl chains in case of cholesterol and weaker
effects on membrane packing for ergosterol (Hsueh et al. 2007; Urbina et al. 1995).

The small cyclic lipodepsipeptide syringomycin E from Pseudomonas syringae
is a potent antifungal peptide (Segre et al. 1989; Lucca et al. 1999). Syringomycin E
acts on the fungal plasma membrane and alters several of its functions, including
ion transport, protein phosphorylation, and H+-ATPase activity (Zhang and
Takemoto 1986; Suzuki et al. 1992; Reidl et al. 1989; Feigin et al. 1997). The
antifungal activity of syringomycin E is dependent on the presence of sterols in the
plasma membrane of the fungal cells (Takemoto et al. 1993). Furthermore, the
pore-forming activity of syringomycin E can be modulated by the type of sterol.
The energy barrier for the channel formation in membrane bilayers was highest in
presence of cholesterol, while ergosterol was promoting pore-forming activity of
this lipopeptide (Feigin et al. 1997; Blasko et al. 1998). Although syringomycins
are fungicidal against important human pathogenic yeasts, they caused lysis of
sheep erythrocytes (Sorensen et al. 1996).

Psd1, a defensin isolated from seeds of the pea Pisum sativum with a compact
cysteine-stabilized α/β motif, showed high partitioning into ergosterol-containing
membranes (as fungal membranes), whereas partitioning of Psd1 into
cholesterol-containing membranes was undetectable (Gonçalves et al. 2012b). This
suggests low toxicity of Psd1 to mammalian (cholesterol-rich) membranes. The
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cationic Psd1 has also increased affinity for membranes containing glycosylce-
ramide, which is the most common fungal glycosphingolipid (Gonçalves et al.
2012b; Vriens et al. 2014; Wilmes et al. 2011). Upon interaction with their target
membrane, plant defensins are either internalized by the fungal cell and interact
with internal targets, or they stay at the cell surface and induce cell death through
induction of a signaling cascade (Vriens et al. 2014).

The human neutrophil peptide 1(HNP1) showed low interaction with gluco-
sylceramide rich membranes, but high sterol selectivity for ergosterol-containing
membranes in vitro (Gonçalves et al. 2012a). The histidine-rich glycoprotein
(HRG) as well as the epithelium-produced growth factor midkine preferentially
lysed ergosterol-containing liposomes over cholesterol-containing ones, indicating
a specificity for fungal versus mammalian membranes (Rydengård et al. 2008;
Nordin et al. 2012). Although these peptides show selectivity for fungal membranes
in vitro, their therapeutic application would be accompanied by dose-limited tox-
icities towards human cells.

2.4.3 Antifungal Peptides and Sphingolipids

Sphingolipids are potentially specific targets for antifungal molecules due to
structural differences between fungal and mammalian sphingolipids such as
9-methyl group branching of the sphingoid base and different degrees of unsatu-
ration in fungal sphingolipids (Thevissen et al. 2005). Sphingolipids and their
biosynthesis have been investigated intensively for the yeast S. cerevisiae. The
three types of sphingolipids (IPC, MIPC, and M(IP)2C) are located primarily in the
plasma membrane (Patton and Lester 1991; Hechtberger et al. 1994). Disruption of
the biosynthetic pathway for the sphingolipid mannosyl di-(inositol phosphoryl)
ceramide (M(IP)2C) in S. cerevisiae resulted in resistance to the plant defensin
DmAMP1 and the synthetic amphipathic peptide mimetic LTX109 indicating that
M(IP)2C is essential for their antifungal action (Thevissen et al. 2000; Bojsen et al.
2013). DmAMP1 was shown to bind to purified M(IP)2C and this binding was
enhanced in the presence of ergosterol (Thevissen et al. 2003).

Another plant defensin, RsAFP2, as well as the insect defensin-like heliomicin,
selectively binds to glucosylceramide from fungi like P. pastoris and C. albicans,
but not to glucosylceramide from human source (Thevissen et al. 2004). S. cere-
visiae that do not contain this sphingolipid is resistant to RsAFP2-induced per-
meabilization and growth inhibition. In contrast to DmAMP1, the interaction of
RsAFP2 with glucosylceramide was not increased in the presence of ergosterol
(Thevissen et al. 2004).

Other plant and insect defensins interacting specifically with sphingolipids are
Psd1 isolated from pea seeds (Medeiros et al. 2010; Wilmes et al. 2011); Sd5
isolated from Saccharum officinarum (De-Paula et al. 2008); MsDef1 from
Medicago sativa (Ramamoorthy et al. 2007) and Drosomycin, an inducible insect
defensin isolated from Drosophila (Gao and Zhu 2008).
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2.5 Intracellular Targets

Some antifungal peptides enter the fungal cell and interact with intracellular targets
after crossing the plasma membrane. Nevertheless, membrane lipids play a role
concerning specificity and efficacy of these antifungal peptides.

Histatin 5 (Hst5), a human basic salivary peptide with strong fungicidal prop-
erties in vitro, becomes internalized and targets to energized mitochondria
(Helmerhorst et al. 1999). The killing of C. albicans by Hst5 is accomplished by an
increase in membrane potential and permeability and the subsequent release of
intracellular ATP (Koshlukova et al. 1999, 2000; Bobek and Situ 2003). However,
non-respiring yeast cells were protected against histatin 5 killing activity
(Helmerhorst et al. 1999). The importance of metabolic activity in the susceptibility
of C. albicans cells to basic proteins, like protamine or HNP-1, was already
reported by Olson et al. (1977) and Lehrer et al. (1988). Interestingly, the amino
acid sequence of histatin 5 resembles the mitochondrial targeting sequence char-
acteristic for mitochondrial proteins that target proteins from cytosol to mito-
chondria (Nicolay et al. 1994; Helmerhorst et al. 1999). Perturbation of
mitochondrial membranes by antifungal peptides may be facilitated by the divalent
negative phospholipid cardiolipin, which is highly enriched in the inner mito-
chondrial membrane (Daum 1985).

Antifungal peptides may also cause inhibition of nuclear migration and nuclear
division as shown for the penta-peptide auristatin PHE (Woyke et al. 2002), which
has fungicidal activity against C. neoformans. This peptide caused complete dis-
ruption of both spindle and cytoplasmic microtubules in C. neoformans. As a
consequence cell cycle arrest was leading to uninucleate, large-budded cells. The
nucleus itself is the intracellular target of the plant defensin PsD1 (Lobo et al.
2007). PsD1 was shown to interact with the cell cycle control protein cyclin F from
N. crassa cells and thereby impaired the progression of the cell cycle (Lobo et al.
2007).

Dermaseptin S3(1-16) and magainin 2 are two unrelated, amphibian-derived
cationic peptides that interacted with DNA in vitro. Both peptides also interfered
with DNA integrity of S. cerevisiae in vivo (Morton et al. 2007). This implies that
both peptides are able to pass through the cytoplasmic membrane of yeast cells and
damage DNA.

PA1b (pea albumin 1 subunit b) is a plant peptide of 37 amino acids purified
from Pisum sativum and acts as an insecticide. The toxicity of PA1b is due to a
specific and direct interaction with the V0 complex of the vacuolar proton pump
(Chouabe et al. 2011). PA1b adopts a typical knottin fold with a triple-stranded
antiparallel ß-sheet and three buried interlocked disulfide bonds (Jouvensal et al.
2003). Antifungal activity has been reported for the knottin-type peptides
Mj-AMP1 and PAFP-S (Cammue et al. 1992; Gao et al. 2001; van der Weerden
et al. 2013).
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2.6 Synergism with Conventional Antifungal Drugs

An attractive therapeutic option might be a combination of antifungal peptides with
conventional antifungal drugs like amphotericin B and azoles. In fact, a substantial
cooperative effect of lactoferrin with amphotericin B, fluconazole, and
5-fluorocytosine was observed against Candida species (Kuipers et al. 1999). The
combination of lactoferrin and fluconazole appeared to be the most successful
combination. Wakabayashi et al. reported on cooperative effects of lactoferrin with
clomitrazole agents against Candida growth (Wakabayashi et al. 1996). Lactoferrin
is an innate host defense protein, which exerts a candidacidal effect in a cation
concentration-dependent manner (Viejo-Díaz et al. 2004). Peptide 2, a short and
potent lactoferrin derivative, suppressed the growth of Candida cells additively by a
combination of peptide 2 with amphotericin B or miconazole (Ueta et al. 2001).
Furthermore, in pilot experiments the effect on the minimal inhibitory concentration
of amphotericin B, fluconazole, and 5-fluorocytosine upon addition of
sub-inhibitory concentrations of the frog skin antimicrobial peptide, PGLa, as well
as of Hst5 and designed analogs was tested (van’t Hof et al. 2000). Thereby,
addition of the peptides to amphotericin B resulted in a synergistic effect against
several Aspergillus, Candida and Cryptococcus strains, while no enhanced activity
was found in combination with fluconazole or 5-fluorocytosine. Tanida et al. also
reported that Hst5 and the human neutrophil peptide, HNP1, acted synergistically
with amphotericin B and itraconazole to suppress Candida colony formation
(Tanida et al. 2006). The synergism between HNP1 and itraconazole was weak
compared to combinations with other peptides. Inhibition of sterol synthesis by
itraconazole might reduce membrane affinity of HNP1 as this peptide was shown to
have high sterol selectivity for ergosterol-containing membranes in vitro
(Gonçalves et al. 2012a). A number of studies concerning synergism between
antifungal peptides of the echinocandin family and amphotericin B or azoles were
performed. Disturbing the integrity of fungal cell walls by echinocandins may
facilitate access of polyenes and triazoles to the cell membrane. Synergy between
cilofungin and amphotericin B, a polyene derivative, was first reported for a murine
model of candidiasis in 1991 (Hanson et al. 1991). Anidulafungin increased the
antimycotic efficacy of amphotericin B and fluconazole against Candida spp.
(Rosato et al. 2012) and pneumocandin L-743,872 enhanced the efficacy of
fluconazole and amphotericin B in vitro against C. neoformans (Franzot and
Casadevall 1997). Caspofungin and amphotericin B were synergistic or synergistic
to additive for a number of clinical isolates of Aspergillus and Fusarium
spp. (Arikan et al. 2002). A successful combined antifungal treatment of a
life-threatening systemic fungal infection by Aspergillus flavus was reported by
Krivan et al. (2006). The infection which developed in a central venous catheter
tunnel progressed rapidly in spite of conventional and subsequent liposomal
amphotericin B therapy. However, the deep fungal infection resolved after 30 days
of dual therapy with liposomal amphotericin B and caspofungin. Therapy with
co-administration of two or three antifungals has been applied by clinicians in

2 Antifungal Host Defense Peptides 43



difficult-to-treat infection. However, there is still no support from randomized,
controlled clinical trials (Hatipoglu and Hatipoglu 2013). Nevertheless, in summary
these studies indicate that the growth inhibitory activity of conventional antifungal
drugs can be enhanced by sub-inhibitory concentrations of antimicrobial peptides
without affecting the cytotoxic activity against mammalian cells, suggesting that
combination therapy can be a promising strategy for treatment of fungal infections.

2.7 Concluding Remarks

A global rise in incidences of invasive fungal infections has been reported, although
true mortality rates are unknown because of a lack of good epidemiological data.
This development has been largely related to modern medical interventions and
immunosuppressive diseases (Brown et al. 2012). For example, in her annual report
of 2011 the UK Chief Medical Officer Dame Sally C. Davies summed up: “Thus we
are now seeing the paradoxical emergence of new infectious disease threats, and the
re-emergence of infections that had previously been thought to be a problem of the
past, as a direct consequence of the success of modern medicine. Examples include
the increased risk of infection in general, but also of unusual infections such as
invasive fungal disease, in patients being treated for non-infectious diseases, such
as patients on immunosuppressive treatments for cancer or inflammatory disease.”
Further, demographic changes resulting in an ever elderly population favors such
disease pattern and demand to manage also infectious complications common in
patients undergoing dialysis for renal failure, and surgery, especially organ trans-
plantation. Unfortunately, clinically available drugs have had only modest success
in reducing the high mortality rates of invasive fungal infections such as candidiasis
and cryptococcosis, their treatment relying on a limited number of antifungal drugs.
In terms of such life-threatening systemic infections amphotericin B, which was
brought onto the market in the 1950s, still remains the first line treatment and is
considered as the gold standard despite its low therapeutic index, which may cause
severe side effects. Furthermore, recent data indicate the emergence of
drug-resistant fungi within hospitals and possibly the larger environment
(Mesa-Arango et al. 2012). Therefore, as a consequence of the current situation
Brown et al. proposed to tackle human fungal infections by (i) raising the general
awareness of the problem, (ii) developing rapid, simple, and cheap diagnostics as
well as (iii) safer and more effective antifungal drugs (Brown et al. 2012).

In this contribution, we focused on one alternative strategy for the development
of novel specific antifungal drugs, which is based on host defense peptides. Among
these peptides a minor group shows primarily antifungal activity, while the majority
of peptides exhibit broad antimicrobial activity. Both classes have targets, which are
absent in mammalian cells and therefore will have strongly reduced or no side
effects. Peptides belonging to the former group of peptides bind to (i) enzymes,
which are essential for the biosynthesis of the cell wall, (ii) ergosterol and
(iii) sphingolipids, both being essential for plasma membrane function. The latter
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group of peptides interacts with the cytoplasmic membrane inducing membrane
permeabilization and cell lysis. Biophysical studies on membrane mimetic systems
demonstrated that these membrane-active peptides have no specific receptor and
thus they should be less prone to resistance development. The molecular mecha-
nism(s) of killing depends on both the physico-chemical properties of the peptides
and the membrane lipid composition. A detailed mechanistic understanding of
antifungal activity will be important to understand the molecular basis for selective
targeting of fungal cells. This in turn is essential for the rational development of
novel antifungal agents that lead to more specific and hence safer therapeutics.
Finally, these peptides may also be used synergistically in combination with con-
ventional antifungal drugs, which would further widen the armory to treat espe-
cially life-threatening invasive fungal infections.
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Chapter 3
Antiviral Host Defence Peptides

Filipa Henderson Sousa, Victor Casanova, Craig Stevens
and Peter G. Barlow

Abstract The ongoing global mortality and morbidity associated with viral
pathogens highlights the need for the continued development of effective, novel
antiviral molecules. The antiviral activity of cationic host defence peptides is of
significant interest as novel therapeutics for treating viral infection and predomi-
nantly due to their broad spectrum antiviral activity. These peptides also display
powerful immunomodulatory activity and are key mediators of inflammation.
Therefore, they offer a significant opportunity to inform the development of novel
therapeutics for treating viral infections by either directly targeting the pathogen or
by enhancing the innate immune response. In this chapter, we review the antiviral
activity of cathelicidins and defensins, and examine the potential for these peptides
to be used as novel antiviral agents.

3.1 Introduction

The ongoing mortality and disease associated with circulating viral infections of
humans and animals, together with the ongoing threat of emerging viral strains
underscores the requirement for the development of novel antiviral molecules. While
vaccination against common viral pathogens is effective and desirable, direct
antiviral therapeutics play a key role in treating diseases caused by viral pathogens
that have no vaccine, that lack a global vaccination programme, or those with
vaccines of limited efficacy. In addition, as the resistance of viral pathogens to
common antiviral drugs increases, new classes of antiviral molecules could provide a
strategy for treatment of both existing and emerging infections for decades to come.

The antiviral activity of Cationic Host Defence Peptides (CHDP; also known as
antimicrobial peptides) is of increasing interest for informing the development of
novel antiviral therapeutics. Due to their broad spectrum activity, CHDP play a key
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role in the innate immune response to both bacterial and viral pathogens. In
addition, CHDP have substantial immunomodulatory activities that can contribute
to the rapid clearance of infections. Therefore, a better understanding of the
antiviral and immunomodulatory activities of CHDP in the context of viral infec-
tion will be of great importance in the race to develop new treatments that are
broadly effective against viral pathogens.

CHDP are small, evolutionarily conserved peptides with a positive charge that
have broad spectrum activity against a range of pathogens, both in vitro and in vivo.
In humans, there are two major families of CHDP; the cathelicidins and the defen-
sins, however, more families exist in mammals, birds, fish, reptiles, arthropods and
plants, each showing antimicrobial potential. While the antiviral activity of many
peptides has been established in a significant number of studies, a comprehensive
understanding of the mechanism(s) of action involved remains elusive. Of particular
interest are the immunomodulatory and inflammomodulatory activities of CHDP,
from gaining a more fundamental understanding of innate responses to infection in
addition to informing development of novel therapeutics. CHDP have been shown to
have the capacity to modulate cell death pathways in infected cells, assist in the
recruitment of immune cells to sites of infection, promote angiogenesis, alter
immune cell differentiation and to mediate production of pro- and anti-inflammatory
cytokines.

In this chapter, we review the antiviral activities of both cathelicidins and
defensins, and also highlight key CHDP from other species that demonstrate
antiviral potential, either through direct antiviral activity or by modulation of the
immune response to the infection.

3.2 The Antiviral Activity of Cathelicidins

Cathelicidins range from 12–88 amino acids in length and are characterised by the
presence of an N-terminal signal sequence which directs the newly synthesised
protein towards the secretory pathway, a conserved cathelin-like domain which has
a high sequence homology with the porcine cysteine protease inhibitor, cathelin and
a variable C-terminal antimicrobial domain which becomes the mature functional
peptide upon proteolytic cleavage.

Cathelicidins were first identified in bovine neutrophils and are widely dis-
tributed in mammals including humans, rhesus monkeys, rats, mice, guinea pigs,
rabbits, sheep, cows, horses and dogs and also in non-mammalian species including
chicken, rainbow trout and hagfish (Zanetti et al. 1993). In humans, only one
cathelicidin has been described—the cationic antimicrobial peptide of 18kDa
(hCAP18), which can be found at high concentrations in the specific granules of
neutrophils and can be expressed by epithelial cells of skin and mucosa of the
respiratory, urogenital and gastrointestinal tracts (De et al. 2000). hCAP18 is
cleaved extracellularly by proteinase-3 to generate its active form LL-37, a linear 37
aminoacids peptide with two leucine residues at the N-terminal and an amphipathic
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α-helical structure (Sorensen et al. 2001). The peptide is known to be expressed by
macrophages, eosinophils, lymphocytes, mast cells and NK, T- and B-cells
(Agerberth et al. 2000).

Mice express the cathelicidin mCRAMP (murine cathelin-related antimicrobial
peptide), which has high sequence identity with hCAP18 and the porcine catheli-
cidin PR-39. mCRAMP shows similar expression and function patterns to its
human ortholog (Gallo et al. 1997) that is stored in neutrophil granules and is
expressed by epithelial cells and leukocytes. mCRAMP knock-out mice have a high
susceptibility to infections when compared to wild type mice (Huang et al. 2007;
Iimura et al. 2005; Kovach et al. 2012).

In contrast to humans andmice, which only express one cathelicidin, pigs express a
variety of cathelicidinswhich differ in activity and structure. The porcine cathelicidins
include five different protegrins (PGs), three α-helical peptides (PMAP-23, -36, -37),
two prophenins (PF-1, -2) and the PR-39 peptide (Zhang et al. 2000). PGs are pro-
duced and stored by porcine neutrophils as inactive propeptides but are proteolytically
cleaved into their active forms by neutrophil elastase in the extracellular environment.
Their expression is enhanced by bacterial LPS, IL-6, retinoic acid and salmonella
infections (Wu et al. 2000) and PG-1 has been shown to have the broadest antimi-
crobial activity spectrum (Yasin et al. 1996a, b). Cathelicidins have also been char-
acterized in many other species, such as sheep, monkeys, horses and cows. In sheep,
eight cathelin-associated peptides have been identified and SMAP-29 (sheep myeloid
antimicrobial peptide 29) is one of the most potent cationic host defence peptide
known in terms of antimicrobial activity, having a wide spectrum of activity against
bacteria, fungi and virus (Tomasinsig and Zanetti 2005).

Cathelicidins play key roles in host defence via direct antimicrobial activity
(Putsep et al. 2002), by acting as critical immunomodulatory molecules and in the
control of inflammation. Recently, a number of studies conducted in humans, mice
and other in vitro models have highlighted the potent antiviral activity of catheli-
cidins. Viruses that are most susceptible to cathelicidins include enveloped DNA
and RNA viruses, and while all of the antiviral mechanisms remain to be elucidated,
there does appear to be a direct effect on the viral envelope. However,
non-enveloped viruses such as adenovirus can also be inactivated by cathelicidins
(Gordon et al. 2005; Barlow et al. 2014). Therefore, the antiviral activity of these
peptides likely comprises complex array of mechanisms that cannot all be explained
by a direct effect on the virus particles.

3.3 RNA Viruses

3.3.1 Influenza Virus (IAV)

Influenza virus (IAV) is an enveloped virus from theOrthomyxoviridae family. Viral
influenza has caused the death of more people in short periods of time than any other
infectious disease (Taubenberger and Morens 2006). There is a well-established
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global vaccination programme in place for preventing influenza infection on an
annual basis, but this is limited to protecting against the prevalent circulating strains,
and therefore emerging new strains can potentially lead to a global pandemic out-
break. Antiviral treatments are available, although the emerging resistance of cir-
culating strains to neurominidase inhibitors, one of the current front-line treatment, is
of serious concern (Nitsch-Osuch and Brydak 2014; Hurt 2014).

Studies have demonstrated the antiviral potential of several cathelicidins against
influenza virus. A study by Barlow et al. 2011 demonstrated the antiviral properties
of human and murine cathelicidins in vivo and in vitro (Barlow et al. 2011).
mCRAMP and LL-37, but not porcine cathelicidin PG-1, showed antiviral prop-
erties when pre-incubated with IAV in vitro. Tripathi et al. (2013) further
demonstrated that pre-incubation of LL-37 peptide with IAV is necessary for
optimal inhibition of IAV, although a host cell pre-treatment or a delayed treatment
with exogenous LL-37 also inhibits IAV replication to an extent (Tripathi et al.
2013). This reveals that LL-37 peptide has the ability to interact with epithelial cells
although the most potent activity of the peptide involves direct interactions with the
virus particles.

In in vivo studies, murine models receiving LL-37 or mCRAMP treatment
showed a significant increase in survival compared to saline treated mice. Mice
treated with PG-1 showed no significant alterations compared to the control group
(Barlow et al. 2011). This demonstrates that antiviral activities of cathelicidins are
species-specific, and it was proposed that LL-37 protects against IAV infection
through modulation of inflammatory response in the lungs. Mice infected with IAV
exhibited a pronounced up-regulation of numerous pro-inflammatory cytokines,
although this was attenuated in LL-37-treated mice, suggesting that LL-37 modu-
lates the inflammatory response by inhibiting excessive inflammation (Barlow et al.
2011).

In order to determine the effects of LL-37 on the cellular uptake and replication
of IAV, qPCR was used to quantify viral infection and replication. The results
showed that LL-37 did not reduce the number of virus particles associated with
cells after 45 min of infection, although at 24 h post-infection, LL-37 caused a
significant reduction in the amount of virus present in cells and in the cell culture
supernatant (Tripathi et al. 2013). Electron microscope images revealed that LL-37
had induced disruption of viral membranes, which may be one possible mechanism
of antiviral activity.

Interestingly, pandemic IAV strains have shown to be more resistant to innate
inhibitors of seasonal IAV strains, such as human and murine cathelicidins.
A recent study compared the antiviral activities of LL-37 and derived fragments
from LL-37 against seasonal and pandemic strains of influenza virus and revealed
that the central fragment of LL-37 showed greater activity against the pandemic
IAV strain than LL-37 in vitro (Tripathi et al. 2015). This finding suggests the
possibility that synthetic derivatives of LL-37 with more potent antiviral activity
could be used as a potential therapeutic for this infection.
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3.3.1.1 Human Immunodeficiency Virus (HIV)

HIV is an enveloped lentivirus of family Retroviridae that causes HIV infection and
acquired immune deficiency syndrome (AIDS). An estimate of 34.2 million people
worldwide live with HIV and around 2.5 million new infections and 1.7 million
deaths were detected in 2011 only (Piot and Quinn 2013). The hallmark of this
infection is the gradual loss of CD4+ T-cells which leads to an acquired immune
deficiency syndrome or AIDS (Simon et al. 2006). The production of up to 1010

viral particles per day together with low fidelity of reverse transcription and
recombination generate viral quasi-species in chronically infected subjects makes
lifelong treatment with a combination of highly active antiretroviral drugs
(HAART) the only option capable of keeping the infection controlled.

Indolicidin, a cathelicidin isolated from large granules of bovine neutrophils,
was the first to show anti-HIV activity (Robinson et al. 1998). It is thought that the
potent antimicrobial properties of indolicidin are related to their ability to disrupt
pathogen membranes. Experimentally, indolicidin directly inactivated the HIV-1
virus particles, an observation that was attributed to a membrane-mediated antiviral
mechanism.

A in vitro study by Bergman et al. (2007) showed that LL-37 could inhibit
HIV-1 replication in peripheral blood mononuclear cells (PBMC), including pri-
mary CD4+ T-cells. This was shown to be independent of formyl peptide
receptor-like-1 (FPRL-1) signalling, a receptor which is thought to be partially
responsible for mediating some of the chemotactic and immunomodulatory effects
of LL-37 (Bergman et al. 2007; Barlow et al. 2006). Another study examined the
anti-HIV effects of LL-37 and its derived fragments, together with BMAP-18, a
fragment derived from bovine cathelicidin BMAP-27, in vitro (Wang et al. 2008).
The peptide sequence order, aromatic residues and helical structures were examined
and were shown to play an important role in HIV inhibition. Again, a central
fragment of LL-37 (known as GI-20), and BMAP-18, were the most active against
HIV-1 compared to LL-37 and BMAP-27. This study essentially provides new
antimicrobial templates that could be used to develop novel anti-HIV therapies.

A more recent study examined the effects of LL-37 and its derived fragments on
HIV-1 reverse transcriptase, HIV-1 integrase and HIV-1 protease (Wong et al.
2011). It was shown that all peptides tested lacked the ability to inhibit translocation
of HIV-1 integrase, an enzyme essential for HIV replication. The most potent
inhibitory effects of the peptides were seen on HIV-1 reverse transcriptase, and the
central peptide, LL13-37, was revealed to have the strongest inhibitory activity.

hCAP-18 has been shown to be strongly expressed in the epithelium of the
epididymis, which suggests an important role of hCAP-18 in the antimicrobial
protection of the reproductive male system (Malm et al. 2000). It has also been
shown that vaginal fluid of healthy women has intrinsic anti-HIV-1 properties and
these were conferred by cationic polypeptides. A depletion of cationic polypeptides
caused a reduction of the intrinsic anti-HIV-1 activity (Venkataraman et al. 2005)
and, in addition to this, cervicovaginal secretions (CVS) of Kenyan women in
HIV-serodiscordant relationships contained HIV neutralizing activity and CVS
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which revealed no intrinsic anti-HIV activity could be enhanced by the addition of
recombinant LL-37 (Levinson et al. 2012). Further studies have revealed that high
concentrations of LL-37 were found in cervicovaginal secretions (CVS) collected
from Kenyan sex workers with bacterial transmitted infections, which are associ-
ated with increased HIV acquisition (Levinson et al. 2009). This finding does not
seem to correlate with previous studies, where CVS contain HIV neutralizing
activity conferred by cationic polypeptides. Therefore, there is a pressing need to
determine the in vivo significance of LL-37 peptide in HIV infections.

3.3.1.2 Junin Virus (JV)

Junin virus (JV) is an enveloped virus of the Arenaviridae family, which causes
Argentine haemorrhagic fever (AHF). A study by Albiol Matanic and Castilla
(2004) assessed the antiviral effects of indolicidin against junin virus, although it
was determined that this cathelicidin was not able to induce substantial rates of viral
inactivation (Albiol Matanic and Castilla 2004). However, the relatively low
virucidal action of indolicidin against junin virus that was observed was thought to
be due to direct inactivation of the virus particles, similar to the antiviral mecha-
nisms proposed for the action of cathelicidins against HIV-1 (Robinson et al. 1998).

3.3.1.3 Dengue Virus (DENV)

Dengue virus (DENV) is an enveloped member of the Flaviviridae family which
causes dengue fever—a mosquito-borne tropical disease. An important target for
antiviral therapies against dengue virus is NS2B/NS3 serine protease, as disruption
of NS2B/NS3 serine protease functions inhibit virus replication. A study by
Tambunan and Alamudi (2010) demonstrated that cationic cyclic peptides have a
high potential to inhibit NS2B/NS3 serine protease activities of dengue virus
(Tambunan and Alamudi 2010). A more recent study proposed that protegrin-1
(PG-1), a cationic cyclic peptide which was originally isolated from porcine blood
cells, is able to inhibit NS2B/NS3 serine protease activity, thus translating to
reduced viral replication in vitro (Rothan et al. 2012).

3.3.1.4 Human Respiratory Syncytial Virus (RSV)

RSV is an enveloped virus and a member of the Paramyxoviridae family, and has
been shown to be responsible for significant numbers of respiratory tract infections.
It is the major cause of viral bronchiolitis in young children (Nair et al. 2010).
A recent study demonstrated that human cathelicidin displays concentration-
dependent antiviral activity against RSV in vitro at physiologically relevant con-
centrations of 25 µg/ml (Currie et al. 2013). LL-37 inhibited RSV replication and
decreased the spread of infection, and these effects were highest when the peptide
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was pre-incubated with RSV or added to cells simultaneously. This study
demonstrated that LL-37 mediates direct effects against the virus particles, similar
to the action of LL-37 against influenza A virus (Tripathi et al. 2013). It was also
demonstrated that a delayed LL-37 exposure, taking place 2 h after infection,
resulted in the loss of antiviral effects which revealed the inability of the peptide to
rescue infected cells. However, pre-treating cells with LL-37 prior to infection
resulted in a reduction of infectivity, suggesting that the peptide is retained by the
epithelial cells exerting a protective antiviral state. These results indicate that LL-37
can protect epithelial cells from viral infection through a mechanism distinct from
direct antiviral activity. In addition, LL-37 was also shown to actively protect
RSV-infected epithelial cells from cell death.

3.3.2 DNA Viruses

3.3.2.1 Vaccinia Virus (VV)

Vaccinia virus (VV) is an enveloped poxvirus, of the family Poxviridae, which is
the active constituent of the vaccine that eradicated smallpox. It has been demon-
strated that individuals with atopic dermatitis (AD) have a predisposition to develop
eczema vaccinatum in response to the vaccine, and that, in these individuals, the
expression of hCAP18 is reduced (Howell et al. 2006). It has been shown that in
normal skin biopsies, the expression of LL-37 was induced by vaccinia virus, but
this was not observed in not in AD skin. Furthermore, a study by Howell et al.
(2004) demonstrated that both LL-37 and the murine cathelicidin, mCRAMP, have
antiviral activity against vaccinia virus, and the antiviral mechanism by which
LL-37 exerts its effect involves the removal of the outer membrane of vaccinia
virus, thus causing envelope damage (Howell et al. 2004; Dean et al. 2010).

3.3.2.2 Herpes Simplex Virus (HSV)

Herpes simplex virus 1 and 2 (HSV-1 and -2) are enveloped viruses of the family
Herpesviridae, that are widely found in humans and are particularly infectious.
While they can be suppressed by some antiviral drugs, they are not normally
susceptible to complete eradication from a host. A study by Yasin et al. (2000)
screened 20 host defence peptides to test their antiviral activity against HSV type 1
and 2 (Yasin et al. 2000). LL-37 was shown to have very little capacity to induce
viral inactivation. However, the bovine cathelicidin, indolicidin, displayed potent
antiviral activity against both HSV types.

Other peptides which were investigated for anti-HSV activity include BMAP-27
and -28 (acronym of “bovine myeloid antimicrobial peptides”), which are cathe-
licidins found in bovine neutrophils. BMAP-27 and -28, and their synthetic 1–18
fragments, were analysed for their in vitro antiviral activity against HSV-1. Only
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BMAP-28 was shown to provide some protection in vitro against HSV-1 whereas
all other peptides were ineffective at non-cytotoxic concentrations (Benincasa et al.
2003). Another study examined the underlying mechanism for the potent antiviral
activity of indocilidin observed against HSV type -1 and -2 in vitro, and suggested
that the mechanism underlining the antiviral activity was related to the ability of the
peptide to disrupt the viral envelope, thus inactivating the virus particles (Albiol
Matanic and Castilla 2004). However, contrary to previous reports, Gordon et al.
2005 reported a potent antiviral activity of LL-37 against HSV-1 in vitro (Gordon
et al. 2005).

It is known that a subgroup of patients with atopic dermatitis (AD) will develop
eczema herpeticum (ADEH) due to a disseminated infection with HSV (Wollenberg
et al. 2003). Patients with AD have decreased expression of host defence peptides,
and it has been suggested that a deficiency of LL-37may cause patients with AD to be
more susceptible to ADEH (Ong et al. 2002). A study by Howell et al. (2006) showed
that LL-37 exhibited direct antiviral activity against HSV-2 in vitro. In addition, a
particularly physiologically relevant model was employed whereby human ker-
atinocytes cells were pre-incubated with HSV for a period of 6 h before treatment
with LL-37 for 18 h to assess whether intracellular viral replication could be inhibited
with physiologic concentrations of LL-37 (Howell et al. 2006). This study showed
that the peptide was able to significantly reduce the levels of HSV gene expression in
infected keratinocytes. In vivo studies using mice deficient in mCRAMP revealed
higher rates of HSV replication compared to the wild type mice, indicating an
important role for host defence peptides in controlling HSV in skin infection.

Interestingly, a recent study tested and compared two different approaches to
fight HSV-1 corneal infection. A sustained release of LL-37 delivered through
nanoparticles incorporated within corneal implants was compared with a cell-based
delivery of LL-37 cDNA transfected into HCECs (human corneal epithelial cells).
LL-37 released from implants showed an ability to inhibit HSV-1 activity, but did
not clear HSV-1 from infected cells. HCEC producing LL-37 also showed direct
anti-HSV-1 activity, although none of these approaches were able to completely
eliminate the virus infection (Lee et al. 2014).

3.3.2.3 Adenovirus (Ad)

Adenovirus is non-enveloped virus that is part of the Adenoviridae family.
Adenoviruses are a major cause of conjunctivitis and keratoconjunctivitis, but can
also cause upper and lower respiratory and gut infections. Although usually
self-limiting, human adenovirus (HAdV) infections are quite contagious and put
immunocompromised individuals at serious risk of severe and recurrent pulmonary
infections, with mortality rates that reach up to 55 % (Lion 2014). Treatment for an
infection is largely supportive therapy rather than direct antiviral therapeutics.

A study by Gordon et al. (2005) investigated the antiviral activity of LL-37
against different adenovirus serotypes (Ad19, Ad8, Ad5 and Ad3) (Gordon et al.
2005). LL-37 demonstrated a significant reduction of Ad19 titer in vitro (2 log
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reduction over 4 h). This study also provided some insight on a potential antiviral
mechanism of cathelicidins, based on the comparison of HSV and Ad19 time-kill
assays. The data demonstrated a rapid killing of HSV-1 which suggested a dis-
ruption of the viral lipid membrane as a possible mechanism. Several other studies
have also proposed similar mechanisms for other cathelicidins (Robinson et al.
1998; Albiol Matanic and Castilla 2004; Dean et al. 2010). Interestingly, for the
Ad19 strain, LL-37 produced a much slower progressive reduction in virus titers.
As adenovirus lacks a viral envelope, this suggests that the direct antiviral mech-
anism of cathelicidins does not involve membrane disruption. Alternative mecha-
nisms have been proposed such as disruption of the adenovirus particles
(detergent-effect) and/or blockage of viral entry into the cell.

3.3.3 Summary—The Antiviral Activity of Cathelicidins

In summary, a review of the current literature shows that cathelicidins have antiviral
properties against a broad spectrum of viruses; the underlying mechanisms likely
involve a direct effect on viral particles as well as the capacity to modulate host
immune responses that may contribute in the clearance of infection. A better
understanding of how cathelicidins interact with virus particles directly, in addition
to their effects on infected host cells, remains to be established. However, it is clear
that cathelicidins are ideal targetable components of the innate immune system that
can be used to inform the development of novel therapeutics with broad activity
targeting a number of viruses (Table 3.1).

3.4 The Antiviral Activity of Defensins

Defensins are small, cysteine-rich cationic peptides that act as important effectors of
the innate immune system (Ding et al. 2009; Ganz 2003). Human defensins are
classified according to their structure, α and β-defensins differing in their disulphide
bond pairing, and θ-defensins, being present in Old World monkeys, displaying a
circular structure (Lehrer 2004). Of note, despite RNA transcripts for θ-defensins
are found in human bone marrow cells, a premature stop codon prevents protein
translation (Nguyen et al. 2010).

Neutrophil α-defensins (HNPs 1–4) are mainly synthesized as prepropeptides in
promyelocytes in the bone marrow, and the mature peptide is stored in the granules
of neutrophils. These peptides are found in lower concentrations in NK-cells,
B-cells, γδ T-cells, monocytes, macrophages and immature dendritic cells
(Rehaume and Hancock 2008). In contrast, human alpha defensins 5 and 6 (HD5
and HD6) are constitutively expressed and secreted as a propeptide in Paneth cells,
salivary glands and also in genital mucosa (Ouellette 2006). Human β defensins
(HBDs) 1-3 are mainly expressed in epithelial cells, but can also be found in
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immune cells, mainly monocyte/macrophages and dendritic cells, whereas 3
θ-defensins (RTD1-3) have been found in rhesus macaque leukocytes (Ganz 2003;
Tang et al. 1999). Retrocyclin, an artificial peptide based on the human θ defensins
pseudogene has been also shown to possess antimicrobial capacity (Tran et al.
2008; Yasin et al. 2004).

Defensins have broad antimicrobial activities, including the capacity to inhibit
viral infections. Despite structural and physical similarities, such as overall size and
positive charge, each defensin has variable antiviral activity. The differences in
activity are likely due to the mechanism of action exhibited by each peptide towards
a particular DNA or RNA virus.

3.4.1 DNA Viruses

3.4.1.1 Herpes Simplex Virus

One of the first viruses which was shown to be inhibited by α-defensins was
HSV-1, which was inactivated after incubation with HNP-1, -2 and -3, an effect that
was abrogated by serum addition (Daher et al. 1986). Further work has shown that
one β defensin (hBD3) and all six α-defensins inhibited HSV-2 infection (Hazrati
et al. 2006). Interestingly, while HNP1-3 and HD5 interacted with the viral gly-
coprotein Gb2 present on the viral envelope, HNP-4 and HD6 bound to heparan
sulfate and heparin, cellular receptors used for HSV-2 to gain entry to cells. All of
these interactions have been shown to result in diminished viral entry. In contrast,
the same study demonstrated that β-defensin 1 and 2 (hBD1 and hBD2) which lack
anti-HSV-2 effects, do not bind to neither Gb2 nor heparan sulfate.

Similar antiviral effects against HSV are displayed by θ defensins, as both rhesus
θ defensins 3 (RTD3) and retrocyclins 1 and 2 (RC1 and RC2) have been
demonstrated to inhibit HSV viral entry to cells (Yasin et al. 2004). Of these
peptides, retrocyclin 2 was shown to interact with the viral glycoprotein Gb2, thus
interfering with viral entry without causing significant cytotoxicity to target cells.
Defensins often display an antiviral activity that spans different steps on the target
virus cycle. In this regard, HNP-1 and HD5 are able to block HSV viral gene
expression even when added after the virus infection, indicating that defensins are
also able to block post-entry events in the HSV cycle.

3.4.1.2 Human Papilloma Virus (HPV)

HNP-1-3 and HD5 but not hBD1, hBD2 or HD6 have been shown to exhibit
antiviral activity against HPV, which is the primary cause of cervical cancer in
sexually transmitted infections (Buck et al. 2006). HNP-1-3 and HD5 block HPV
infection by impairing virion escape from endocytic vesicles. A recent study also
suggested that HD5 blocks viral entry by interacting with viral particles and
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blocking L2 cleavage, a necessary step for successful viral entry and post-entry
events (Wiens and Smith 2015). Detailed studies on HD5 and HPV interactions
suggest that hydrophobic residues, in particular, Arg-28, are very important for the
antiviral activity of HD5 against HPV and other non-enveloped viruses (Gounder
et al. 2012; Tenge et al. 2014).

3.4.1.3 Vaccinia Virus (VV)

Several defensins have been shown to have varying potential to neutralize VV
infection. Incubating VV for 24 h with hBD3 was shown to reduce the number of
viral plaques formed on BSC-1 green monkey kidney cells. In addition, hBD3
reduced the expression of viral DNA-dependent RNA polymerase (Howell et al.
2007) during viral infection. However, HNP-1, hBD1 and hBD2 showed no activity
against this enveloped virus (Howell et al. 2004).

3.4.1.4 JC Polyomavirus (JCPyV) and BK Virus

JC polyomavirus (also known as John Cunningham virus) is a member of the
family polyoviridae, and chronically infects between 70–90 % of the human pop-
ulation. This pathogen only tends to cause clinical symptoms in immunocompro-
mised individuals, where infection spreads to the central nervous system
(Shackelton et al. 2006; Wollebo et al. 2015). In experimental studies, a panel of α
and β-defensins were tested for their capacity to neutralize JCPyV infection,
resulting in HD5 and hBD3 being able to block the infection when incubated at
100 μg/ml with the virus for 1 h before infecting SVG-A human foetal glial cells
(Zins et al. 2014). Interestingly, hBD3 showed significant cytotoxicity on cells at
this concentration, whereas HD5 neutralized JCPyV in a dose-dependent manner
(Zins et al. 2014; Dugan et al. 2008). Of note, HNP1-3 and hBD1, 2 and 4 showed
no anti JCPyV activity. Further experiments also showed that HD5 was able to
interact with JCPyVvirions, stabilizing the viral capsid and thus preventing the viral
genome release (Zins et al. 2014), a novel mechanism of action for a peptide that is
generally thought to employ detergent-like modes of antiviral activity.

BK virus shares 75 % of its genome with JCPyV, and was first isolated from the
urine of a renal transplant individual (Gardner et al. 1971). Around 80 % of healthy
individuals in England have been shown to display antibodies against the virus,
generally in the absence of symptoms (Gardner 1973). If symptoms are noted, these
can consist of fever and nonspecific upper respiratory infection which might lead to
kidney manifestations such as cystitis or nephritis in immunocompromised indi-
viduals or those receiving transplants (Reploeg et al. 2001).

HNP1 and HD5 were shown to reduce viral V-protein expression in VERO cells
when incubated directly with the virus at 20 or 50 μg/ml for 1 h, while hBD2 only
was effective at 50 μg/ml. In contrast, hBD1 showed no inhibitory effect (Dugan
et al. 2008). When the direct antiviral effect of defensins was studied further, HD5
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was shown to interact directly with BK virus particles, inducing aggregation, and
thus reducing viral attachment to cell membranes. Of note, similar antiviral effects
of HD5 were also observed against other related polyomaviruses such as simian
virus-40 (SV40). It was also shown that both HNP-1 and HD5 were also able to
block adenovirus escape from endosomes.

3.4.1.5 Adenovirus (Ad)

It has been shown that hBD-1 and HD-5, when expressed on eukaryotic cell lines,
showed potential to protect those cells against adenoviral infection, in particular
from Av1CF2 (Gropp et al. 1999). Different HAdV species show variable sus-
ceptibility to defensin actions. In this regard, HNP-1 inhibited HAdV A, B and C
infection, while increased HAdV D, E and F infectivity (Smith et al. 2010). HD5
showed similar actions, blocking HAdV A, B, C and E while increasing D and F
infectivity. Interestingly, and similar to other non-enveloped viruses, HD5 interacts
with adenoviral capsids preventing viral uncoating and avoiding its release from
endocytic vesicles (Nguyen et al. 2010; Smith et al. 2010; Smith and Nemerow
2008). Further studies confirmed that Arg-28 residues of HD5 are critical for the
antiviral effects seen against adenovirus (Gounder et al. 2012). Much less is known
about other defensins effects on adenovirus. However, HNP-1 was shown to be
effective at a concentration of 50 μg/ml in blocking adenovirus-type 5 infection of
293 cells, whereas hBD-2 showed a reduced effect (Bastian and Schäfer 2001).

3.4.1.6 Cytomegalovirus (CMV)

CMV is an enveloped virus that belongs to the Herpesviridae family, and is the
most common congenital infection, affecting up to 0.2–2.2 % of all live births
(Huygens et al. 2014). Foetal or perinatal infections can have devastating neuro-
logical consequences for the baby. However, post-natal CMV infections are usually
asymptomatic, establishing lifelong infections without severe consequences on
immune competent individuals.

In the context of CHDP activity against this virus, super physiological con-
centrations (100 and 200 μg/ml) of HNP-1 peptide were shown to directly inhibit
CMV viral particles reducing the PFU/ml by 0.29 and 0.81 log10, respectively
(Daher et al. 1986). However, this virus notably showed less susceptibility to
HNP-1 compared to HSV-1, which was also assessed in the same study.

3.4.1.7 Baculovirus

Baculovirus naturally infects insect larvae hosts, usually Lepidoptera (Butterflies
and moths), with no known diseases caused by this virus in organisms others than
arthropods (Airenne et al. 2013). Due to its efficient reproduction cycle and ability
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to carry large DNA inserts, baculovirus are extensively used as tools for gene
delivery and recombinant production of proteins in insect cells. Baculovirus gp64
protein allows viral fusion in an acidified endosome, an event seen upon infection
of Spodoptera frugiperda insect cells, resulting in gp64 expression and the for-
mation of cell syncytia (Leikina et al. 2005). However, it has been shown that RC-2
peptide is capable of blocking baculovirus fusion with host cells, inhibiting the
virus-mediated syncytium formation.

3.4.2 RNA Viruses

3.4.2.1 Human Immunodeficiency Virus (HIV)

It has been shown that a variety of defensin peptides can have an impact on HIV
infection. HNP-1 is clearly deleterious for viral dissemination, having a direct effect
against a low multiplicity of infection (MOI) of viral particles in the absence of
serum, whereas in the presence of serum HNP-1 acts on host cells (Chang et al.
2005). One of the suggested mechanisms for such cellular effects is the HNP-1
mediated inhibition of the PKC signalling pathway, which is required for viral
uncoating (Fields et al. 1988). Importantly, this HNP-1 effect did not affect the
expression of viral receptors CD4, CXCR4 or CCR5 (Chang et al. 2003).
Interestingly, as a part of its direct effects on HIV viral particles, HNP1-3 peptides
were shown to interact with gp120, a viral glycoprotein, thus impairing viral
attachment to cell membranes. This effect was further potentiated by HNP-1-3
interactions with cellular CD4. Both antiviral effects were reduced, but not com-
pletely abolished by the presence of serum (Demirkhanyan et al. 2012; Furci et al.
2006; Wang et al. 2004). A closely related peptide, HNP-4 was also able to bind
gp120 and CD4 (Wu et al. 2005). A more indirect but also effective anti-HIV effect
of HNP-1-3 peptides is their capacity to increase the secretion of the C-C
chemokines MIP-1α, MIP-1β and RANTES, which can bind to CCR5 to act as
antagonists for viral R5 strains that use CCR5 as a co-receptor (Guo et al. 2004).

In stark contrast to HNP1-3, HD5 and HD6 seem to increase viral infectivity
without any blockage of post-entry viral events (Klotman et al. 2008). Further
assessment of this unexpected effect suggested that HD5 and HD6 actually enhance
viral attachment to the cells (Rapista et al. 2011). Another study, however, showed
HD5 to inhibit HIV infection by blocking gp120–CD4 interaction (Furci et al.
2012). Further work is needed to clarify HD5 effects on the HIV infection process,
particularly when considering sexually transmitted infections may increase HD5
and HD6 secretions in the genital mucosa prior to a possible HIV infection
(Klotman et al. 2008).

Given the importance of HIV interaction with mucosal surfaces, β-defensin
impact on HIV infection has also been investigated. HIV was shown to upregulate
hBD2 and hBD3 release by human oral epithelial cells, and incubation of viral
particles with these peptides protected cells from infection (Quiñones-Mateu et al.
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2003). Interestingly, hBD1 was neither upregulated nor protective in this context.
However, hBD2 and hBD3 did appear to act both directly on viral particles, and
also on the host cell, by downregulating CXCR4 expression. Accordingly, these
peptides were found to be more effective against X4 viral isolates. A later study
found a similar anti-HIV activity of hBD2 and hBD3 to both X4 and R5 strains,
indicating that defensin treatment inhibited early products of reverse transcription
(Sun et al. 2005).

Given the interest in the broad antiviral effects of defensins, rhesus macaque
θ-defensins (RTD) and synthetic retrocyclins (RC) have been also tested for their
anti-HIV activity. RC-1 and RC-2 were shown to bind glycosylated gp120 and
CD4, thus explaining the previously observed protective activity (Cole et al. 2002;
Wang et al. 2003). Interestingly, RTD peptides also showed anti-HIV activity
(Wang et al. 2004). Further work demonstrated that RC-1 was able to block HIV-1
fusion with target cells (Gallo et al. 2006). Finally, rhesus macaque α-defensins 4
(RMAD 4) also showed anti-HIV activity at 150 μg/ml by blocking viral entry
(Tanabe et al. 2004). Interestingly, the same study showed that cryptidin-3 (a mouse
derived α-defensin) actually increased HIV-1 replication. In this regard, guinea pig,
rabbit and rat α-defensins have also been tested for anti-HIV activity, demonstrating
an ability to inhibit infection of T-cell lines (Nakashima et al. 1993).

3.4.2.2 Hepatitis C (HCV)

Hepatitis C infection primarily affects the liver, being a major cause of chronic
hepatitis, cirrhosis, and hepatocellular carcinoma (Maheshwari et al. 2008). HCV
infection is estimated to affect 170 million people worldwide, is frequently
asymptomatic, and spontaneous clearance is seen in a third of infected individuals.
Chronic infection (with viral replication detected for more than 6 months) leads to
hepatic complications. Little is known about the capacity of defensins to impact
viral hepatitis. However, it has been shown that HCV core protein have been shown
to activate the transcription of alpha-defensin genes, indicating that they may play a
role in the innate immune response to the virus (Aceti et al. 2006).

3.4.2.3 Influenza A Virus (IAV)

Early studies have reported HNP-1-3 activity against the A/WSN (H1N1) strain of
IAV (Daher et al. 1986). More detailed work has shown that HNP-1 affects
influenza replication by blocking the PKC signalling pathway on host cells, needed
for viral endosomal trafficking (Salvatore et al. 2007). It was shown that HNP-1 did
not have a direct impact on viral particles, but did increase viral clearance by
neutrophils (Tecle et al. 2007). A similar effect was also observed with HNP-2,
HD5 and to a lesser extent with hBD2 but not with HNP-3 or hBD1. Another
β-defensin, hBD3, was also shown to block IAV infection by blocking
hemagglutinin-mediated fusion and immobilizing membrane proteins (Leikina et al.
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2005). Interestingly, RC2 also showed similar effects to hBD3. Of note, murine β-
defensin 2 and 3 (mBD2 and mBD3) protected mice from infection with the A/PR/8
(H1N1) IAV strain, and in similarity to their human analogues, their activity was
attributed to impaired viral entry (Gong et al. 2010; Jiang et al. 2012).

3.4.2.4 Respiratory Syncytial Virus (RSV)

Defensins are expressed at high concentrations in the inflamed lung, and are usually
upregulated during viral infections of the airway epithelia. In this context, it has
been demonstrated that RSV infection increased hBD2 secretion by alveolar A549
cells, which was subsequently able to block further viral entry by directly disrupting
the viral envelope (Kota et al. 2008). Interestingly RSV did not induce the
expression of hBD1, as this is constitutive, but hBD1 lacked direct anti-RSV
activity. Although alveolar macrophages are permissive to RSV infection, they do
not tend to influence the later development of disease (Pribul et al. 2008). However,
this interaction can result in increased secretion of pro-inflammatory cytokines that
can impact on β-defensin expression in the lungs (Becker et al. 1950).

3.4.2.5 Rhinovirus (HRV)

Rhinovirus is a major cause of common cold and it is associated with asthma
exacerbations (Jartti and Korppi 2011). It has been demonstrated that RV16
infection of primary bronchial epithelial cells results in the induction of hBD2 and
hBD3 mRNA, whereas hBD1 remains unaltered (Duits et al. 2003). It was also
demonstrated that the same serotype also upregulated hBD2 mRNA and protein in
A549 alveolar epithelial cells. Interestingly this effect was conserved in other major
group serotype HRV-14 or in 2 minor group serotypes such as HRV-2 and
HRV-1A.

Further work has investigated the inoculation of human subjects divided into
non-smokers, smokers and COPD groups with RV-16 (Proud et al. 1950).
Interestingly, a larger proportion of smokers (78.6 %) were successfully inoculated
with the virus, compared to those with COPD (66.7 %) or non-smokers (58 %).
RV16 was shown to increase α-defensin secretion in the sputum 9 days
post-infection compared to baseline, but this was only observed in the COPD group
(Mallia et al. 2012). RV-16 infection also resulted in increased neutrophil elastase,
which may subsequently degrade secreted host defence peptides.

3.4.2.6 Echovirus and Reovirus

The Enteric Cytopathic Human Orphan (ECHO) virus, belongs to the
Picornaviridae family. Enteroviruses are mainly found in the gastrointestinal tract,
and can cause opportunistic infections mainly in children by indirect faecal–oral
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transmission, causing febrile illness (Sherris Medical Microbiology 2004). HNP-1
peptide was tested for its antiviral activity against this non-enveloped RNA virus
without showing any direct antiviral effect at concentrations of peptide known to
inhibit HSV-1 (Daher et al. 1986).

In similarity to Echovirus, HNP-1 showed no direct activity against this dsRNA,
non-enveloped virus, which generally causes a mild and limited upper respiratory
and gastrointestinal tract infection which can spread across individuals, and also
across species (Daher et al. 1986). Interestingly, the use of reovirus is being con-
templated in cancer therapy due to its oncolytic activity in melanoma lines and
xenografts (Galanis et al. 2012).

3.4.2.7 Vesicular Stomatitis Indiana Virus (VSIV)

VSIV belongs to the Rhabdoviridae family and is an arthropod-borne virus pri-
marily affecting rodents, cattle, swine and horses. Infected livestock or sand flies
can be a source of infection for humans, which develops as mild flu-like symptoms
(Kuzmin et al. 2009). This enveloped RNA virus showed an intermediate suscep-
tibility to direct inactivation by HNP-1 peptide, reducing its PFU/ml by 0.74 and
0.84 log10 with 50 or 100 μg/ml of peptide, respectively (Daher et al. 1986).

3.4.2.8 SARS Coronavirus (SARS-CoV)

Severe acute respiratory syndrome (SARS) affected over 8000 individuals in 2002–
2003, causing almost 800 deaths, underscoring the importance of testing antiviral
agents (Peiris et al. 2003). It has been shown that intranasal injections of *125 μg
RTD-1 peptide prior to virus inoculation protected BALB/c mice against a
mouse-adapted strain of SARS-CoV (Wohlford-Lenane et al. 2009). Of note,
untreated animals exhibited around 75 % mortality rate, whereas treated ones
showed a 100 % survival. RTD-1 treatment altered lung cytokine responses to the
virus, suggesting immunomodulatory effects where at least in part, behind the
protective action of RTD-1. Interestingly DEFA-3 AND DEFA-4 genes (coding for
HNP-3 and -4) were upregulated in blood samples of patients suffering acute SARS
coronavirus infection (Lee et al. 2005).

3.4.2.9 Dengue Virus (DENV)

Recombinant RC-1 peptide has shown to reduce DENV-2 viral replication in
VERO cells when incubated directly with the viral particles, but also showed a
moderate effect when pre-treating or treating cells post-viral entry (Rothan et al.
2012). This study suggested that RC-1 impacts DENV-2 replication by inhibiting
the activity of viral NS2B-NS3 serine protease. Interestingly further studies showed
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that human skin fibroblasts release HD5 and hBD2 upon infection with DENV-2
(Bustos-Arriaga et al. 2011).

3.4.2.10 Sindbis Virus (SINV)

SINV, a member of the Togaviridae family, is transmitted by a mosquito vector,
and causes sindbis fever which results in arthralgia, malaise and rash. It has been
shown that both RC2 and hBD3 peptide were able to block the virus fusion with
target cells (Leikina et al. 2005) (Table 3.2).

3.5 Other CHDP with Antiviral Activity

In addition to the well-characterized activity of cathelicidins and defensins against a
wide variety of viral pathogens, a number of CHDP from other non-human
organisms have been the focus of a number of studies attempting to understand
whether these peptides, or synthetic derivatives, could be used to inform the design
of novel therapeutics against viral infections specific to humans.

A substantial diversity in CHDP exists across a number of other species that
possess activity against human pathogens. The Antimicrobial Peptide Database
(http://aps.unmc.edu/AP) now contains in excess of 2,500 peptides with demon-
strable antimicrobial activity isolated from six kingdoms, and includes peptides
from bacteria, fungi, plant, amphibians, fish, reptiles and birds. Interestingly,
approximately 170 of these peptides (which include cathelicidins and defensins)
demonstrate antiviral activity against a broad range of viral pathogens.

3.5.1 Cecropin

A family of CHDP with particularly potent activity against human viral pathogens
is the cecropins. These peptides, identified initially in the Cecropia moth
(Hyalophoracecropia) form part of the immune response to infection in a number
of insect orders including Diptera and Lepidoptera, and are typically 30–39 amino
acids in size (Boman 1991). Cecropin and cecropin-like peptides are a highly
conserved, predominantly alpha helical group of peptides that have broad spectrum
antibacterial and antifungal activity (Bulet and Stocklin 2005).

A recent study revealed that the mature form of an induced cecropin-like peptide
found in the salivary glands of the female mosquito, Aedesaegypti, had substantial
antiviral activity against Dengue virus (Luplertlop et al. 2011). The virus utilizes
A.aegypti as a vector for transmission to humans and induces an innate immune
response, characterized by the expression of a cecropin-like peptide, produced by
up-regulation of the AAEL000598 gene. The peptide is subsequently cleaved from
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an immature form into a mature active form. Interestingly the immature (MK) form
of the cecropin-like peptide was more active against all four strains of Dengue virus
tested (Dengue-1, -2, -3 and -4) than the mature (GK) cleaved form. The authors
also established that both the GK and MK forms of the peptide were active against
Chikungunya virus, a pathogen also transmitted by the A. aegypti mosquito that can
cause fever and severe long lasting joint pain. Another study revealed that scorpine,
a hybrid peptide with structural similarities to cecropins and defensins derived
from the venom of the scorpion Pandinus imperator, also exhibited antiviral
activity against dengue virus by inhibiting the replication of Dengue-2 virus
(Carballar-Lejarazu et al. 2008).

Cecropin A is reported to inhibit HIV production by infected T-cells and
fibroblasts in a dose-dependent manner (Wachinger et al. 1998). The mechanism
responsible for this inhibition was found to be reduced viral gene expression and
synthesis of viral products, indicating that Cecropin has an antiviral role beyond
that of direct interaction with the HIV virion.

Cecropins have also been shown to have antiviral activity at early and late points
in the viral infection and replication cycle. For example, both cecropin P1 and
cecropin D have been shown to have antiviral activity at several stages in infection
with porcine reproductive and respiratory syndrome virus (PRRSV), an infection
which can have substantial financial impact in the pig industry. Cecropin P1 is a
peptide initially thought to be produced in the porcine intestine (Lee et al. 1989),
but was later revealed to have been produced by the nematode, Ascarissuum, which
survives in the porcine gut (Andersson et al. 2003). This peptide was shown to
block attachment and replication of the virus in kidney and alveolar macrophage
cell lines, and also reduced the number of infectious viral particles produced after
infection in vitro (Guo et al. 2014). The peptide was also shown to have
immunomodulatory properties by preventing the onset of PRRSV-induced apop-
tosis. Similarly, cecropin D was recently shown to inhibit PRRSV attachment and
replication, and also attenuated apoptosis induced by the virus (Liu et al. 2015).

The broad spectrum antiviral activity of cecropins is further evidenced by a study
demonstrating that cecropin A could inhibit replication of Junin virus, the cause of
Argentine hemorrhagic fever (Albiol Matanic and Castilla 2004). The peptide
inhibited Junin virus-related protein production in host cells, but the authors sug-
gested that the antiviral effects were predominantly limited to later stages in the
virus replication cycle, since the peptide did not appear to alter viral infectivity.
Interestingly, the same study also demonstrated that cecropin A did not exhibit any
inhibitory activity against herpes simplex virus types 1 and 2, suggesting that any
antiviral activity exhibited by these peptides is pathogen specific. It should be noted
that all HSV-1 and HSV-2 contain a DNA genome, in contrast to HIV-1, Junin,
PRRSV and Dengue, which are RNA viruses, and thus the activity of cecropins
against other DNA viruses remains to be understood.

82 F.H. Sousa et al.



3.5.2 Dermaseptin

There have been a substantial number (*1000) Host Defence Peptides identified
from amphibian skin, of which Dermaseptins are a superfamily. These host defence
peptides have a cationic charge due to an abundance of lysine residues, and tend to
be between 27–34 amino acids in size (Amiche et al. 1994). They have been found
in several species of frogs, including the Hylidae (tree frogs) and the Ranidae (true
frogs) (Nicolas and El Amri 2009). Dermaseptins have been demonstrated to have
antimicrobial activity against a wide range of bacterial pathogens involved in
human diseases including Pseudomonas, Salmonella, Staphylococcus, Escherichia
and Enterobacter species. Interestingly, the peptide Dermaseptin S1, a 34-residue
peptide isolated from the frog genus Phyllomedusa, was shown to have
immunomodulatory activity via an ability to stimulate the production of reactive
oxygen species and myeloperoxidase by primary human neutrophils (Ammar et al.
1998). Dermaseptin S2 has also been touted as a potential therapeutic molecule in
the treatment of cancer in a recent study demonstrating antitumor and angiostatic
activity in a range of tumour cell types, likely due to the induction of necrosis (van
Zoggel et al. 2012).

In terms of their antiviral activity, dermaseptins have been shown to be highly
effective against a broad range of viral pathogens, with activity that affects several
steps in the infection and replication process. Dermaseptin-1 was initially identified
to have antiviral activity against two viruses that are known to infect ectothermic
animals; Frog virus 3 from the family Iridoviridae, and Channel catfish virus, a
member of the Herpesviridae family (Chinchar et al. 2004). This study provided
indication that dermaseptin peptides possessed antiviral activity and subsequent
studies were extended to examine the activity against human viral pathogens.

Dermaseptins S1-S5 shown to have direct and varying antiviral activity against
Herpes Simplex Virus-1 in vitro (Belaid et al. 2002). This study identified
Dermaseptin S4 as having the most potent antiviral activity, but only at very early
stages in the viral infection process as experiments suggested that it exerted an
effect when exposed to the virus prior to infection or during viral attachment.
A later study further evaluated the activity of Dermaseptin S1 and derivatives
against Herpes Simplex Virus, demonstrating that the antiviral activity of the parent
peptide could be increased by alteration of the original sequence (Savoia et al.
2010). Interestingly, the same study also showed that some of the derivatives also
exhibited activity against Papillomavirus Psv-16 in vitro, but with very low cyto-
toxicity towards the host cells. A recent study by Bergaoui et al. also demonstrated
that Dermaseptin S4 and synthetic derivatives exhibited activity against Herpes
Simplex Virus-2 with reduced cytotoxicity, although in vivo efficacy remains to be
determined (Bergaoui et al. 2013).

Other studies have revealed a possible role for Dermaseptins in the treatment of
HIV-1 infection. Dermaseptins have been shown to partially inhibit HIV virus
infection of T-cells although cytotoxicity was observed at higher concentrations
(VanCompernolle et al. 2005). Another study by Lorin et al. identified Dermaseptin
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S4 as having potential inhibitory activity against HIV-1 by inhibiting viral infection
of human primary T-lymphocytes (Lorin et al. 2005). The authors attributed this
activity to a direct disruption of the virion and, while the parent peptide elicited
cytotoxicity at higher concentrations, were able to reduce host cell cytotoxicity by
reducing the positive charge of the native peptide through amino acid deletion or
substitution. Notably, the modified peptides were also able to reduce HIV-1 binding
to endometrial cells together with inhibition of capture and transmission of virus from
dendritic cells to CD4+ T-cells. Dermaseptin S9 was also identified as having weak
activity against HIV-1, but a mutant S9 peptide, where three lysine residues were
replaced with arginines, exhibited potent inhibitory activity against HIV-1 although
the mechanism underlying this observation remains unclear (Wang et al. 2010).

3.5.3 Magainin

Magainins are cationic host defence peptides that were originally identified in the
skin and granular secretions of Xenopuslaevis (the African clawed frog) (Zasloff
1987; Giovannini et al. 1987), but have also been identified as inducible peptides in
other species in the Xenopus genus; X. borealis, X. clivii, X. muelleri, X. petersii,
X. amieti and X. andrei (Conlon et al. 2012). These peptides are 23–34 amino acids
in length and the native peptides, together with synthetic derivatives, have been
demonstrated to have broad antimicrobial activity against a range of bacterial
pathogens (Zairi et al. 2009; Chen et al. 1988). There is, however, a limited amount
of information on the activity of magainins against viral pathogens. One study has
assessed the activity of a number of synthetic magainin derivatives against Herpes
Simplex-1 virus, establishing that several peptide derivatives have the capacity to
reduce viral plaque formation in in vitro assays (Egal et al. 1999). Further evidence
of antiviral activity of magainins was also revealed in a study by Chinchar et al.
(2004) which showed magainin II, but not magainin I, was able to reduce the
infectivity of channel catfish virus (CCV) (Chinchar et al. 2004). However, both
magainins exhibited less activity against frog virus 3, indicating that the activity
was likely virus specific.

3.5.4 Melittin

Melittin is an alpha helical peptide that is 26 amino acids in length and was initially
identified in bee venom (Habermann and Jentsch 1967) and later characterized as an
amphipathic peptide with broad ranging antimicrobial activity (Terwilliger and
Eisenberg 1982; Wade et al. 1992). The native melittin peptide and synthetic
analogues have been investigated in a number of studies as potential novel
antimicrobial therapeutics, but their well-characterized antiviral activity against a
number of pathogens is of particular interest.
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One of the first studies to assess the antiviral activity of melittin was published
Wachinger et al. (1992) which identified that melittin and six derivatives reduced
HIV-1 replication in host cells (Wachinger et al. 1992). A subsequent study
revealed that the mechanism underlying this inhibition was that melittin was cap-
able of specifically reducing HIV-associated gene expression in the host cell while
not affecting the overall gene expression profile (Wachinger et al. 1998). This
suggests an important immunomodulatory role for this peptide, rather than direct
antiviral activity, as potentially contributing to the treatment of HIV infection.

Several studies have also characterized the influence of melittin, and synthetic
derivatives upon the establishment and progression of Herpes Simplex Virus
infection. Baghian et al. (1997) synthesized a number of derivatives based upon the
original melittin structure to assess their antiviral activity against HSV-1 virus. One
such peptide was called Hecate, which has an altered amino sequence that changes
the distribution of charged residues within the peptide without altering the overall
amphipathic α-helical structure (Baghian et al. 1997). The authors determined that
Hecate prevented HSV-1 plaque formation and prevented virus spread in in vitro
models while some synthetic melittin analogues were unable to do so, suggesting
that sequence played an important role in the antiviral activity of the peptide. A later
study screened a number of known CHDP against HSV-1 and HSV-2 and estab-
lished that many of the α-helical peptides screened (including magainins, cecropins
and cathelicidin) did not display activity against the viruses (Yasin et al. 2000).
However, melittin did have substantial activity against both HSV-1 and HSV-2,
although the mechanism underlying this observation was not fully described.

More recently, it has been demonstrated that the native melittin peptide showed
antiviral activity towards Junin virus (Albiol Matanic and Castilla 2004), and that
synthetic melittin analogues showed activity towards Tobacco Mosaic Virus
(Marcos et al. 1995). Interestingly, a recent study by Falco et al. (2013) used
melittin-loaded liposomes to specifically target fish viral hemorrhagic septicemia
rhabdovirus (VHSV) (Falco et al. 2013). The authors coated the immunoliposomes
with antibodies targeting the surface G glycoprotein of VHSV, and showed a
reduction in infectivity of greater than 95 %. This approach provides an exciting
avenue for the targeted delivery of antiviral host defence peptides whilst mini-
mizing cytotoxic damage to host cells.

3.5.5 Tachyplesin and Polyphemusin

Tachyplesin is a 17 amino acid cationic β-sheet peptide that was originally identified
in the hemocytes of Tachypleustridentatus (Horseshoe crab) and was demonstrated
to have broad spectrum antimicrobial activity (Nakamura et al. 1988).
Polyphemusin I is a 18 amino acid peptide identified in the hemocytes of the
American horseshoe crab, Limulus polyphemus. Both peptides are thought to play a
key role in the innate immune system of the crab, and have been shown to have potent
LPS binding and neutralization activity (Nakamura et al. 1988; Powers et al. 2006).
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The antiviral activity of Tachyplesin against HIV was investigated byMorimoto et al.
(1991) who showed that the peptide could reduce virus-mediated cytopathic effects
by more than 70 % in in vitro models (Morimoto et al. 1991). The peptide also
reduced the infectivity of the virus, an effect that was shown to be independent on the
reverse transcriptase activity of HIV. Interestingly, subsequent studies by Nakashima
et al. (1992), Murakami et al. (1997) and Xu et al. (1999) characterized the activities
of the isopeptideT22 (Tyr5,12, Lys7-polyphemusin II), and synthetic analogues
against HIV, and determined that the antiviral activity was due to ability of the
peptide to bind to CXCR4 (Xu et al. 1999; Murakami et al. 1997; Nakashima et al.
1992). CXCR4 is a chemokine receptor used by T-cell tropic strains of HIV to infect
host cells. Thus, the host cell mediated mechanism of action of these peptides against
HIV contrasts to the direct antiviral activity exhibited by other CHDP.

Tachplesin peptides have also been demonstrated to have activity against other
viruses that affect humans. It was shown that Tachyplesin peptides were able to
inactivate Vesicular stomatitis virus (VSV; also known as vesicular stomatitis
Indiana virus), a zoonotic member of the family Rhabdoviridae that can infect cattle
and cause disease in humans (Murakami et al. 1991). The same study also identified
that Influenza A (H1N1) was also moderately susceptible, although HSV-1 and -2,
adenovirus-1, reovirus-2 and poliovirus-1 were not susceptible to the antiviral
activities of the peptide. However, a subsequent study, which examined the
antiviral activity of tachyplesin against HSV-1 and HSV-2 using an in vitro cyto-
toxicity model, did suggest that the peptide offered a moderate degree of protection
against both virus strains (Yasin et al. 2000).

3.6 Conclusion

Collectively, the experimental studies presented here highlight the crucial role that
CHDP play in the innate immune response across a wide variety of cell types and
species. These peptides possess powerful antiviral activity, and can modulate the
cellular immune response to provide a key defence mechanism infection and
pathology associated with a myriad of viruses.

While we are beginning to understand some of the underlying mechanisms
through which cathelicidins, defensins and other CHDP mediate their antiviral
effects; research into the activities of these peptides is still in relative infancy. It is
clear, however, that CHDP have huge therapeutic potential as exogenous peptides,
and for the development of powerful synthetic analogues that can be directed
towards specific viral pathogens.
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Chapter 4
Anticancer Peptides: Prospective
Innovation in Cancer Therapy

Diana Gaspar and Miguel A.R.B. Castanho

Abstract Current cancer treatments require improvements in selectivity and effi-
cacy. Surgery, radiation, and chemotherapy approaches result in patient’s suffering
over time due to the development of severe side-effects that simultaneously con-
dition adherence to therapy. Biologically active peptides, in particular antimicrobial
peptides (AMPs), are versatile molecules in terms of biological activities. The
cytotoxic activities of several AMPs turn this group of molecules into an amazing
pool of new templates for anticancer drug development. However, several unmet
challenges limit application of peptides in cancer therapy. The mechanism(s) of
action of the peptides need better description and understanding, and innovative
targets have to be discovered and explored, facilitating drug design and develop-
ment. In this chapter, we explore the natural occurring AMPs as potential new
anticancer peptides (ACPs) for cancer prevention and treatment. Their modes of
action, selectivity to tumor compared to normal cells, preferential targets, and
applications, but also their weaknesses, are described and discussed.

4.1 Introduction

Even though sharing similar characteristics such as replicative immortality, ability
to evade immunosurveillance, and ability to invade surrounding and distant tissues
and organs (Wu et al. 2014), tumor cells are still a challenging target in oncology.
The development of resistance mechanisms and specific contributions of each
tumor microenvironment (TME) contribute for the many difficulties in selectively
targeting diseased rather than normal cells. These limitations in oncology treatment
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are the main reason why cancer diseases remain a leading cause of death
worldwide.

The term cancer refers to a group of diseases characterized by an uncontrolled
growth and by the spread of abnormal cells (Sah et al. 2015). The carcinogenesis
process, triggered either by external factors such as radiation or chemicals, but also
by internal factors such as mutations and hormones (Tanaka 1997), encompasses
many changes on the cells’ biochemistry (Tanaka 2009). Advances in oncotherapy
need to address the particular biochemical signatures of each tumor. Identifying
these signatures and exploiting their vulnerabilities will lead to the development of
selective anticancer drugs than can prolong patients’ lifetime and delay or prevent
tumor metastases.

Conventional therapies including chemotherapy fail in selecting effectively
which cells are to be targeted. While delivering a cytotoxic compound to the tumor,
either a DNA-alkylating agent or a hormone agonist/antagonist, several constraints
determine the fate of both malignant and normal cells. These include the effective
localization of the chemotherapeutic drug, but also drug’s biodistribution and
selectivity determinants (Chen et al. 2014). These therapeutic options have been
successful in converting some fatal cancers into chronic diseases that allow patients
to survive for many years. However, the secondary effects that eventually arise in
this process result in patients’ suffering and slow clinical status deterioration with
stages of myelosuppression, thrombocytopenia, mucositis, and alopecia (Riedl et al.
2011) before culminating in death.

In this scenario, peptide-based drugs raise renewed hope (Wu et al. 2014). The
development of peptide sequences designed to interact with specific molecular
markers, receptors or other tumor cell components, has been of value for applica-
tion in cancer diagnosis, prognosis, and treatment. In this chapter we will review the
use of peptides on cancer treatment, with focuses in their natural sources and
specificity of their mechanism(s) of action.

4.2 Peptide-Based Strategies for Cancer
Treatment—Anticancer Peptides

Peptide-based therapies have many benefits for cancer chemotherapy or supportive
care, such as low cytotoxicity, strong specificity, tumor-penetrating ability, small
size, and ease of modification (Barras and Widmann 2011; Wu et al. 2014). In fact,
peptides have small to intermediate sizes, up to just a few hundreds of amino acids
residues, amenable pharmacokinetic profiles, high uptake into tissues, and rapid
clearance from blood (Wu et al. 2014). Thus, peptides recognizing and binding to
specific membrane proteins or receptors on tumor cells’ membranes are potential
alternative drugs to overcome the limitations of low tissue penetration and low
cellular uptake when using monoclonal antibodies (mAbs), for instance (Wu et al.
2014). Furthermore, peptide’s production is of lower complexity when compared to
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other protein-based therapies and thus, cost-effective (Fosgerau and Hoffmann
2015).

Antimicrobial peptides (AMPs) are a class of natural occurring peptides with
several important targets and activities, from antimicrobial, antiviral, and antifungal
(Reddy et al. 2004; Torcato et al. 2013a, b; Mello et al. 2011) to the modulation of
the immune response (Silva et al. 2012). As part of immune defense (Iwasaki et al.
2009), AMPs are found in eukaryotic organisms of many different species (Reddy
et al. 2004) and their rapid and non-specific interactions with the membrane lipids
of the microbial targets results in the pathogen death with very low chance of
resistance development (Arouri et al. 2009; Fernebro 2011). This interaction is
enhanced by the high proportion of cationic and hydrophobic amino acid residues
present in the structure of the peptides (Seo et al. 2012). AMPs are electrostatically
attracted to the anionic membrane of the microbe and subsequently insert and
disrupt the lipid structures, leading to its permeation (Huang et al. 2014). The
changes that the cell machinery should endure for producing a resistant biological
membrane, capable of neutralizing the action of AMPs is significant biological
effort that has been rarely met until today (Chen et al. 2014).

In addition to their antimicrobial properties, some natural and synthetic AMPs
also have antitumor activities with varying degrees of selectivity towards cancer
cells (Hoskin and Ramamoorthy 2008). In fact, some of these newly found anti-
cancer peptides (ACPs) have been successful in decreasing the burden of tumors in
many animal models (Bhutia and Maiti 2008; Papo and Shai 2005).

The use of ACPs in oncology has been researched either to treat the tumor
directly or to prevent formation of metastases; in this way, they are potential
alternatives or adjuvant to the current therapies. Peptides can be used as drugs,
hormones, or immunization agents (vaccines) (Sah et al. 2015). The biological
effects include inhibition of tumor vasculature growth (angiogenesis), alterations in
protein–protein interaction, changes in gene expression, and apoptosis, among
others (Rosca et al. 2011; Walensky et al. 2004; Zheng et al. 2011).

The main weaknesses of ACPs are poor stability with susceptibility to prote-
olytic degradation and insufficient membrane permeability (Craik et al. 2013).
There are strategies to overcome these limitations and their consequences (Wu et al.
2014), including amino acid substitution (Kohno et al. 2011), fusion of peptides
(Yang et al. 2008), and peptide conjugation with chemotherapeutic drugs (Zhao
et al. 2012).

4.3 Mechanisms of Action, Cellular Targets
and Selectivity of Anticancer Peptides

There is intensive debate on ACPs’ modes of action. Reviews available in the
literature provide detailed description of the many different mechanisms underlying
cancer cell toxicity (Gaspar et al. 2013; Harris et al. 2013; Hoskin and
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Ramamoorthy 2008; Papo and Shai 2005; Mulder et al. 2013). Studies on structure–
activity relationship have shown that some ACPs share with AMPs the ability to
disrupt cell membranes, causing poration or micellization, and additionally induc-
ing necrosis and/or apoptosis (Bhutia and Maiti 2008; Papo and Shai 2005).
Additionally, numerous studies suggest that AMPs and ACPs share similar
mechanisms of membrane interaction (Al-Benna et al. 2011; Harris et al. 2013;
Riedl et al. 2011). This assumption is supported by the structural requirements that
attract AMPs and ACPs to their respective microbial and human cell targets. Other
membranolytic effects include mitochondrial swelling with cytochrome c release
(Mai et al. 2001). However, non-membranolytic mechanisms are expected to be
found for other ACPs (Harris et al. 2013; Sharma 1992) and it is frequent to
discover that one ACP can have more than one cellular target and thus follow more
than one mode of action. The modes of action not involving direct targeting of the
cell membrane, such as interference with nucleic acid synthesis, hormonal recep-
tors, or angiogenesis, have been hypothesized to be part of mediated immunity
(Gaspar et al. 2013; Kuriyama et al. 2013).

Short linear ACPs fold into amphipathic conformations upon membrane inter-
action (Chen et al. 2014; Schweizer 2009), depending on hydrophobicity, amphi-
pathicity, net charge, secondary structure, and oligomerization at the membrane
level (Harris et al. 2013; Hoskin and Ramamoorthy 2008). Uncovering the details
of the molecular mechanisms underlying each ACP mode of action is a technically
challenging but rewarding task because the information gathered from these studies
can be successfully applied in the development of innovative approaches in cancer
treatment (Medina and Schneider 2015). There are ACPs with high specificity and
selectivity for their targets. These include matrix metalloproteinases (MMP) such as
MMP-2 and MMP-9 (Koivunen et al. 1999), the c-Src signaling pathway involved
in tumor angiogenesis (Yi et al. 2009), cyclooxygenase-2 (Vesely et al. 2006), the
heat shock protein 90 (Hsp90) and S100P, a marker for differentiating tumor and
normal cells (Sah et al. 2015).

The details of the mechanisms of membrane-targeting ACPs are also not fully
elucidated. The cellular membrane in tumors is biochemically modified when
compared to normal cells (Huang et al. 2014; Schweizer 2009) because cancer cells
have an higher content of anionic lipids in the outer surface of cytoplasmic
membrane due to the increased fraction of negatively-charged phospholipids such
as phosphatidylserine (PS) (Hoskin and Ramamoorthy 2008; Riedl et al. 2011). The
loss of membrane asymmetry in the lipid distribution between the inner and outer
leaflet of the plasma membrane during cell transformation into a malignant phe-
notype appears to be the cause for the exposure of PS on the surface of cells, which
contributes to the selectivity of ACPs for solid and non-solid tumors (Gaspar et al.
2013). Other anionic components are also present on cancer cells’ membrane such
as O-glycosylated mucins, heparin sulfate and sialylated gangliosides (Gaspar et al.
2013). Cholesterol content on tumor cells’ membrane also modulates cellular
fluidity and condition ACPs activity (Schweizer 2009). The higher transmembrane
potential and the higher surface area of tumor cells, which promotes contact with an
increased number or peptide molecules, further contribute to the preferred action of
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ACPs on tumor cells (Chan et al. 1998; Chaudhary and Munshi 1995; Huang et al.
2014). Peptides such as MPI-1 from the venom wasp Polybia paulista (Wang et al.
2009a), NK-2 derived from the protein NK-lysin found in porcines’ NK- an T-cells
(Schroder-Borm et al. 2005) and the synthetic peptide SVS-1 (Gaspar et al. 2012;
Sinthuvanich et al. 2012) are a few examples of natural and synthetic peptides that
base their preference for solid and hematological tumor cells based on the mem-
brane surface net charge. However, detailed studies using biophysical and imaging
techniques have shown that even though net charge has an important role in
determining membrane interaction, AMPs and ACPs tend to behave differently in
lipid environment (Freire et al. 2015; Gaspar et al. 2012, 2015). SVS-1 and HNP-1
ACPs are examples of this difference (Fig. 4.1). SVS-1 was designed to adopt a β-
sheet structure after contact with the negatively-charged cancer cell membrane and
is preferentially cytotoxic against lung, epidermal, and breast carcinomas when
compared to HUVEC and red blood cells (Gaspar et al. 2012; Sinthuvanich et al.
2012). The mode of action described for SVS-1 is a lytic mechanism involving
cell-surface induced folding into a β-hairpin structure capable of forming pores in
the cell membrane (Sinthuvanich et al. 2012) (Fig. 4.1). The trigger for the peptide

Fig. 4.1 Cell death induced by SVS-1 and HNP-1 peptides. SVS-1 engages electrostatically the
cancer cell membrane (1) and folds into a β-hairpin structure capable of forming pores (solid
arrow) with leakage of the cellular contents (dashed arrow) as shown by TEM (2a, 2d) and SEM
(2c, 2e, 2b, 2f) images. Scale bar: 10 μm for SEM, 2 μm for TEM. HNP-1 (3) interacts with the
negatively-charged cell membrane of the tumor cell (4), translocates into the cell-inducing DNA
fragmentation (6) and fragilizing the cell’s cytoskeleton structure (6) resulting in the collapse of the
cell as shown in the 3D projection of the AFM height image (7). For both SVS-1 and HNP-1, cell
death precedes membrane neutralization, in contrast to typical AMP action (Alves et al. 2010,
Torcato et al. 2013b). Adapted from references Sinthuvanich et al. (2012) and Gaspar et al. (2015)
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folding is the membrane net negative charge but full membrane neutralization is not
mandatory for cell death (Gaspar et al. 2012). It was recently found that SVS-1 is
able to translocate across the cell membrane into the cytoplasm and into the nucleus
when present in concentrations below the minimal inhibitory concentration (MIC50)
necessary for lytic action (Medina and Schneider 2015). The combination of SVS-1
with paclitaxel improves SVS-1 aqueous solubility and the peptide is capable of
delivering and releasing paclitaxel into cancer cells and tumors in vivo without any
adjuvant (Medina and Schneider 2015).

On the contrary, studies with AMPs such as BP100 show a neutralization of the
bacterial membrane that can be correlated with the minimal inhibitory concentration
(MIC) values found to inhibit the growth of Escherichia coli bacteria (Alves et al.
2010). Therefore, one should be cautious when translating conclusions on AMPs
structure-activity studies to ACPs because not all AMPs behave as ACPs.

4.4 Targeting Cancer Cells Using Natural Peptides

More than 7000 natural peptides have been identified until today (Fosgerau and
Hoffmann 2015) and AMPs can be found virtually in all living organisms, from
plants and insects to animals (Salas et al. 2015). Table 4.1 lists selected examples of
these AMPs with anticancer activity.

Natural products derived from plants have contributed greatly to chemotherapy
development. Examples of this are the drugs paclitaxel, vincristine, and vinblastine
(Wu et al. 2014). Plants are also great producers of small cysteine-rich AMPs and
some of them present cytotoxic activities. Cytotoxic classes are mainly represented
by thionins, defensins and cyclotides (Guzman-Rodriguez et al. 2015).

Table 4.1 Selected naturally occurring antimicrobial peptides (AMPs) with anticancer activity

Peptide Source Activity Reference

Pyrularia Plant Changes in Ca2+ influx Evans et al. (1989)

NaD1 Plant Binding to plasma membrane PIP2 Poon et al. (2014)

RA-V Plant Mitochondria-mediated apoptosis with
PDK1-AKT blocking; Inhibition of cell
adhesion and migration through regulation
of adhesion molecules, receptors and
MMPs expression

Fang et al. (2013);
Leung et al. (2015)

Lunasin Plant HAT inhibition and cell cycle progression
repression

Galvez et al. 2001);
Hernandez-Ledesma
et al. 2009)

Gomesin Insect Ca2+ accumulation, loss of mitochondrial
potential, pore formation

Rodrigues et al. (2008);
Paredes-Gamero et al.
(20120

Mastoparan Insect Oxidative stress, mitochondrial
depolarization and apoptosis

de Azevedo (2015)

HNP-1 Human DNA breakdown and cell collapse Gaspar et al. (2015)
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Thionins are small cysteine-rich peptides with diversified activities, in addition
to being antimicrobial. They help seed maturation and germination and have roles
in signal transduction (Stec 2006), and some of them, such as pyrularia, Thi2.1, and
β-purothionin have cytotoxic activity against cervical, lung, and breast cancers
(Evans et al. 1989; Hughes et al. 2000; Loeza-Angeles et al. 2008). In some cases,
anticancer effects are based on changes on Ca2+ influx that depolarize the cellular
membrane (Evans et al. 1989), but for others remain unknown (Loeza-Angeles
et al. 2008).

Plant defensins represent a diversified group in terms of their amino acid
sequence but some of the amino acid positions are highly conserved
(Guzman-Rodriguez et al. 2015). They present powerful antifungal activity (Mello
et al. 2011) and their mode of action is related to membrane destabilization or
insertion followed by pore formation and leakage of essential biomolecules
(Lacerda et al. 2014). Sesquin was the first plant defensin known to be active
against breast cancer and leukemia cells (Wong and Ng 2005b). Other plant
defensins, such as lunatusin (Wong and Ng 2005a) and phaseococcin (Ngai and Ng
2005) are also active on breast cancer and leukemia; however, their mode of action
and selectivity are still poorly described. Several reports on plant defensins show
that this group of peptides might have alternative targets to conventional drugs.
This is the case of NaD1 that can act by direct binding to the plasma membrane
phospholipid phosphatidylinositol 4,5-biphosphate (PIP2) (Poon et al. 2014).

Cyclotides is another group of Cys-rich peptides derived from plants with
cytotoxic activity. These macrocyclic peptides have around 30 amino acid residues
in their sequence and a wide range of biological activities (Craik 2012). Their tight
cyclic structure is of particular relevance because it confers chemical and biological
stability, conferring high pharmaceutical value to the peptides (Guzman-Rodriguez
et al. 2015). They are characterized by a cystine knot with an embedded ring
formed by two disulfide bonds and connecting backbone segments threaded by one
more disulfide bond (Guzman-Rodriguez et al. 2015). Expressed in large quantities
by plants of Rubiaceae and Violaceae families, cyclotides are described mainly as
host protectors (Craik 2012). However, their activities go much further than bio-
cidal protection and include anti-HIV and anticancer effects (Craik 2012). The
mechanism of action described for cyclotides is also very interesting from a ther-
apeutical point of view. For kalatas B1–B9 peptides, the presence of phos-
phatidylethanolamine (PE) headgroups on the cellular membrane favors peptide
binding (Henriques et al. 2012), which is advantageous in the drug design process
for increasing peptide’s selectivity towards specific cancer cells that express higher
contents of this PE phospholipid, for instance. Other described cyclotides include
cycloviolacin O2 and Viba 15 and 17 with activities against lymphoma, melanoma,
and also cervical and gastric cancers (He et al. 2011; Svangard et al. 2007).

More recently, the cyclopeptide deoxybouvardin, RA-V, derived from Rubia
yunnanensis has been characterized with antitumor and anti-angiogenesis activity
(Fang et al. 2013; Leung et al. 2015). This peptide shows anticancer activity against
human and murine breast cancer cells through mitochondria-mediated apoptosis by
blocking PDK1 and AKT interaction and consequently apoptosis resistance
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(Fang et al. 2013). RA-V peptide is also capable of inhibiting breast cancer cell
adhesion and migration through the interference on cofilin signaling and chemokine
receptors. This peptide reduces the expression of several adhesion molecules and
MMPs (Leung et al. 2015).

Lunasin is another example of natural ACP isolated from plants
(Hernandez-Ledesma et al. 2009). This 43-amino acid peptide is found in soy,
wheat, barley, and other seeds (Hernandez-Ledesma et al. 2009) and is a chemo-
preventive agent against oncogenes and chemical carcinogens (Ortiz-Martinez et al.
2014). With an adequate bioavailability following oral administration, lunasin was
shown to prevent skin cancer in a mouse model induced by chemical carcinogens
(Galvez et al. 2001; Hsieh et al. 2004). An epigenetic mechanism of action pro-
posed for this peptide is the selective killing of newly transformed cancer cells by
acting as a histone acetyltransferase (HAT) inhibitor and repressing cell cycle
progression (Hernandez-Ledesma et al. 2009).

Insects are also a good natural source of AMPs with anticancer activity.
Gomesin is a β-hairpin peptide isolated from the hemolymph of Acanthoscurria
gomesiana, a Brazilian spider (Rodrigues et al. 2008). This peptide has the ability to
form pores and is active as a topical agent against melanoma, breast, and colon
carcinomas neuroblastomas and pheochromocytomas (Rodrigues et al. 2008).
Gomesin induces membrane permeabilization through a Ca2+ dependent pathway
which involves particular intracellular events: perturbation of the endoplasmic
reticulum, accumulation of Ca2+ in organelles, of mitochondrial potential and
oxidative stress (Paredes-Gamero et al. 2012). Mastoparan is a 14-amino acid α-
helical cell penetrating peptide from the venom of Vespula lewisii wasp that has
nocive effects on cell membranes (Saar et al. 2005). Mastoparan shows antitumor
activity against human erythroleukemia cells and melanoma (Yamada et al. 2005).
In the latter, tumor cell death occurs through an induce of programmed cell death by
oxidative stress, which causes mitochondrial depolarization (de Azevedo et al.
2015). Apoptosis induced by mastoparan stems from the activation of caspases -9, -
12, and -3, cleavage of PARP, up-regulation of pro-apoptotic proteins Bax and Bim
and down-regulation of the anti-apoptotic Bcl-XL proteins (de Azevedo et al.
2015).

In animals, AMPs with anticancer activity can be found in the immune, diges-
tive, and central nervous systems (CNS) and also in the heart, bones, muscle, and
skin (Wu et al. 2014). Many AMPs from the animal kingdom have been extensively
studied, such as LfcinB. This 25-amino acid residues peptide is isolated from cows’
milk and causes cell death through at least two mechanisms. LfcinB is active
against leukemia cells and diverse solid tumors (Mader et al. 2005) and is capable
of binding to glycosaminoglycans (GAGs) present on the membrane surface
(Jenssen et al. 2004), inducing apoptosis by mitochondrial pathway, and also lysis
of the cellular membrane (Eliassen et al. 2006; Furlong et al. 2008).

One of the most studied groups of peptides derived from humans is the defensins
group. These are disulfide-rich peptides, similar to defensin plants, and comprise
29-35 amino acids with three disulfide bonds (Conibear and Craik 2014). Defensins
are organized in three classes, α-, β-, and Ɵ-defensins (Conibear and Craik 2014).
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The class of α-defensins includes the human neutrophil peptides 1–4 and the human
defensins HD5 and HD6, produced in the Paneth cells of the intestine (Ouellette
and Bevins 2001). The human neutrophil peptides, HNPs, possess antitumoral
effects trough diversified mechanisms (Wang et al. 2009b). HNP-1 to 3 have been
appointed has potential tumor biomarkers (Albrethsen et al. 2005, 2006; Droin et al.
2009). The HNP-1 has been intensively studied for anticancer properties. Produced
and stored in the azurophilic granules of human neutrophils, this peptide is released
when an inactivation of bacteria and yeast is necessary (Ganz and Lehrer 1998).
However, many studies report the importance of this AMP in oncology. The
expression of HNP-1 in models of tumors such as breast and colon stimulates an
immune response from the host against the tumor (Wang et al. 2009c). In addition,
it has been found up-regulated in cancers such as colorectal (Mohri et al. 2009) and
other tumors (Albrethsen et al. 2006; Holterman et al. 2006) and to be linked to
tumor necrosis when expressed intratumorally (Bateman et al. 1992; Muller et al.
2002). HNP-1 mode of action is believed to involve damage to the cell membrane
but also the induction of DNA strand break (Gera and Lichtenstein 1991). A recent
study revealed that HNP-1 attacks solid tumors, human prostate cancer in this
particular case, after translocating into the cell, following DNA and cytoskeleton
damage and final cell collapse (Gaspar et al. 2015) (Fig. 4.1). Cell death occurs
without full neutralization of the cancer cell membrane and although HNP-1
interacts with prostate and leukemia cells, differences on the membrane composi-
tion of each tumor cells dictate the peptide’s preference (Gaspar et al. 2015).

4.5 Final Remarks

Today, hundreds of novel peptide sequences are part of the clinical and preclinical
testing of pharmaceutical companies. As peptide-based therapies are on the spot-
light, a great number of studies report on the role of AMPs on cancer treatment.
With a very particular mode of action involving non-specific interactions, peptides
can be expected to meet the selectivity, efficacy, and safety requisites for successful
drugs with diminutive resistance barriers. However, drug development optimization
is still needed, which requires that the mechanism(s) of action and molecular and
cellular targets, as well as potential off-target effects, are researched and described
with molecular level detail and correlated to human physiology. The future of
peptide applications in oncology and oncotherapeutics depends on how successful
basic research will be in this endeavor.
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Chapter 5
Plant Antimicrobial Peptides

Ravinder K. Goyal and Autar K. Mattoo

Abstract Disease afflicts crop productivity as well as nutritional attributes.
Pathogens have the ability to mutate rapidly and thereby develop resistance to
pesticides. Despite plant’s multilayer of innate defence against pathogens, often the
latter are able to penetrate and establish themselves on plant host. The discovery of
antimicrobial peptides (AMPs) has the promise of durable defence by quickly
eliminating pathogens through membrane lysis. AMPs characteristically are made
up of from fewer than 20 amino acids to about 100 amino acids, and yet are
structurally diverse. AMPs in plants are classified into cyclotides, defensins, lipid
transfer proteins (LTPs), thionins, snakins, hevein-like peptides, knottin-type pep-
tides, and others. It is important to characterize and study mechanism of their action
in order to develop a wide range of structures with the potential to provide durable
plant immunity against pathogens. We bring together recent information on the
mechanisms by which AMPs are able to help the plant to thwart pathogen attack.
Although permeabilizing cellular membrane is a major mechanism known for AMP
action, new and diverse modes of action have recently been unearthed, including
targeting of intracellular function of the pathogen.

5.1 Introduction

A serious impediment to sustainable production and yield of crops is the major loss
due to environmental factors be it of abiotic or biotic nature. The latter factors
mainly involve pathogens and pests which regularly pose significant threat to food
security globally. Pathogens find unique ways to establish themselves on their plant
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hosts, particularly because of their variability, diversity, and ability to mutate. The
host plant, in return, also employs a medley of processes in response to pathogen
attack, but such multilayer nature of host defence also eventually capitulates.
R-gene regulated pathogen resistance is well known in plants (Chisholm et al.
2006). Breeders employed selection pressure for identifying resilient cultivars with
robust ‘R’ resistance factors and incorporated such resistance in high yielding
cultivars. However, such strategy works as long as the ‘R’ resistance does not break
down. The other caveat is that it is often a slow process and restricted to closely
related species. Thus far, elite breeding lines together with the use of chemical
pesticides have contained plant diseases to a large extent. Unfortunately, regular
and excessive pesticide use has led to environmental and human health issues.

Considerable attention has also been given to understanding plant-pathogen
interactions in order to highlight plant genes that durably respond to a pathogen
ingression in order to develop durable disease resistance through ‘innate’ immunity.
In addition to hypersensitive defence response and ‘R’ resistance proteins, plants
also employ barriers through the cell wall and synthesize antimicrobial peptides
(AMPs). The defence employed through the AMPs has generated much attention as
also the recombinant technology as potential alternative strategies to contain
pathogens from devouring their host plants.

5.2 Structure and Classification

Small peptides are generally made in a cell either as precursor proteins or
non-precursor proteins. The precursor protein can possess functional significance or
be nonfunctional. The term nonfunctional is used for those having no known bio-
logical activity, as for nonfunctional precursors. Interestingly, small peptides form,
in certain instances, a part of plant proteins, somewhat buried within the long stretch.
Such buried peptides have a distinct biological activity. The non-precursor-derived
peptides encoded by sORFs are located in or near five regions of a gene (Tavormina
et al. 2015). Some antimicrobial peptides (AMPs) are made as precursor proteins that
need to be processed to produce a functional peptide.

AMPs are grouped according to their origin, primary and secondary structure,
and the presence of disulfide linkages or net charge. Some have either α helical, β
sheets or both αβ secondary structures. Majority of AMPs are rich in basic amino
acids providing them a net positive charge at physiological pH and are called
cationic AMPs. AMPs are made of fewer than 20 amino acids to about 100 amino
acids. Details on each AMP category or family of peptides have been reviewed
(Stotz et al. 2013; van der Weerden et al. 2013; Nawrot et al. 2014). As mentioned
above, peptides have also been classified based on their synthesis as precursor
proteins and/or posttranslational processing into mature peptides (Tavormina et al.
2015). A brief description of the prominent families of AMP members is given
below. The 3D ribbon structures of representative AMPs categorized according to
the prevalent system are illustrated in Fig. 5.1.
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(a) (b)

(c) (d)

Cyclotides Defensins

Lipid Transfer Proteins Thionins

Cyclotide-Hyfl-A Kalata-B 1 TkAMP-D1DmAMP1

At-LTP6 Hv-LTP1 Alpha 1-Purothionin  Br-Thionin

Pn-AMP1 EAFP2StSN1 GASA

(e) (f)

(g) (h)

Hevein-like family Snakins family

 

Knottins MBP family Impatiens family 

Mj-AMP1 Mc-AMP1 Ib-AMP1MBP-1 

Fig. 5.1 a–h 3D ribbon structures of different family members of plant AMPs. The structures
were computed using SWISS-MODEL. Cyclotide Hyfl-A: Hybanthus floribundus (P84647),
Kalata-B1: Oldenlandia affinis (P56254), DmAMP1: Dahlia merckii (P0C8Y4), Tk-AMP-D1:
Triticum kiharae (P84963), At-LTP6: Arabidopsis thaliana (Q9LDB4), Hv-LTP1: Hordeum
vulgare (A8YPK3), Alpha-1-Purothionin: Triticum aestivum (P01543), Br-Thionin: Brassica rapa
subsp. pekinensis (Q9SBK8), StSN1: Solanum tuberosum (Q948Z4), GASA: Fagus sylvatica
(Q0VYL5), Pn-AMP1: Ipomoea nil (P81591), EAFP2: Eucommia ulmoides (P83596), Mj-AMP1:
Mirabilis jalapa (P25403), Mc-AMP1: Mesembryanthemum crystallinum (O81338), MBP-1: Zea
mays L. (P28794), Ib-AMP1: Impatiens balsamina (O24006). AMP name: plant name (GenBank
or UniProt ID)
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5.2.1 Cyclotides

Cyclotides form the largest family of plant AMPs. Violaceae and Rubiaceae fam-
ilies are the richest source of cyclotides but they have also been detected in
Fabaceae, Cucurbitaceae, Poaceae, and Solanaceae families. These AMPs are
characterized by their unique structure where N- and C-termini are attached through
a peptide bond to form a cyclic backbone (Fig. 5.1a). The cyclic structure is made
of approximately 30 amino acids, which contains six cysteine residues engaged in
three internal disulfide bonds to give it a cyclic cystine knot (CCK) structural motif
(Fig. 5.2). The CCK motif provides extraordinary stability to the peptide as also
resistance against proteases. Its surface exposed hydrophobic amino acids influence
its antimicrobial activity. In addition to cysteine residues, Glu in loop 1 is highly
conserved. Its ability to form hydrogen bond contributes to the cyclotides activity.
The ribbon model of two cyclotides, kalata B1 and cyclotide-Hvfl A is presented in
Fig. 5.1a. The cyclotides are synthesized as precursor molecules with a conserved
signal for endoplasmic reticulum (ER) along with pro-region and a highly con-
served N-terminal repeat (NTR). The presence of NTR in multiple numbers can
lead to multiple molecules of cyclotides. The structure, isolation, and synthesis of
cyclotides have been recently reviewed (Burman et al. 2014).

5.2.2 Defensins

Defensins, representing another large family of AMPs, are widely distributed in
plant species. Defensins are the best studied Cys-rich peptides. Initially thought to
be localized to seeds, their distribution in almost all plant organs has since become
apparent. The defensins are synthesized as two types of precursor molecules.
Majority of the defensin precursors contain ER sequence and a mature ‘defensin

Cys 1

Cys 6

Cys 5

Cys 4

Cys 2

Cys 3

Fig. 5.2 Cyclotide backbone connected through three disulfide bonds at designated cysteine
residues to create a CCK motif
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domain’. In another category, the precursors are larger in size and contain an
additional C-terminal prodomain (Aerts et al. 2008). Defensins are rich in cysteine
content, carry a net positive charge, and constituted between 45–54 amino acids.
The conserved eight cysteine residues with disulfide bridges favour triple-stranded
antiparallel β-sheets and one α-helix structure (Fig. 5.1b). One disulfide bond near
N- and C-termini provides extraordinary stability to the peptide. Besides four
disulfide bonds present in a majority of defensins, an additional Cys–Cys has been
noticed in Petunia hybrida peptide (PhD1). The core conserved structure of the
defensin is maintained even with an additional disulfide bond. In addition to con-
served cysteines, glycine residue (near fifth) and second cysteine residue are con-
served with a high priority for an aromatic amino acid before second conserved
cysteine residue (Fig. 5.3). The integrity of disulfide bonds and structural confor-
mation is essential for antimicrobial activity but the stability of the structure does
not directly correlate with the activity. Structure–activity relationship of defensins
has been reviewed (Sagaram et al. 2011; Lacerda et al. 2014). A majority of the

Cys1-Cys8

CcD1   -QNNIC-KTTSKHFKGLCFADSKCRKVCIQEDKFEDG-HCSK--LQRKCLCTKNC 50
TPP3   ---QIC-KAPSQTFPGLCFMDSSCRKYCIKE-KFTGG-HCSK--LQRKCLCTKPC 47
NaD1   ---REC-KTESNTFPGICITKPPCRKACISE-KFTDG-HCSK--ILRRCLCTKPC 47
VaD1   ---RTC-MIKKEGW-GKCLIDTTCAHSCKNR-GYIGG-NCKG--MTRTCYCLVNC 46
NmDef02 ---REC-KA--QGRHGTCFRDANCVQVCEKQAGWSHG-DCR---AQFKCKCIFEC 45
CtAMP1 ---NLC-ERASLTWTGNCGNTGHCDTQCRNWESAKHG-ACHKRGN-WKCFCYFDC 49
Ah-AMP1 ----LCNERPSQTWSGNCGNTAHCDKQCQDWEKASHG-ACHKRENHWKCFCYFNC 50
DmAMP1 ---ELC-EKASKTWSGNCGNTGHCDNQCKSWEGAAHG-ACHVRNGKHMCFCYFNC 50
RsAFP2 --QKLC-QRPSGTWSGVCGNNNACKNQCIRLEKARHG-SCNYVFPAHKCICYFPC 51
At-AFP1 ---KLC-ERPSGTWSGVCGNSNACKNQCINLEKARHG-SCNYVFPAHKCICYFPC 50
Bn-AFP1 ---KLC-ERSSGTWSGVCGNNNACKNQCIRLEGAQHG-SCNYVFPAHKCICYFPC 50
Ns-D1  ---KFC-EKPSGTWSGVCGNSGACKDQCIRLEGAKHG-SCNYKPPAHRCICYYEC 50
Hs-AFP1 DGVKLC-DVPSGTWSGHCGSSSKCSQQCKDREHFAYGGACHYQFPSVKCFCKRQC 54
MsDef1 ---RTC-ENLADKYRGPCFSG--CDTHCTTKENAVSG-RCRDD---FRCWCTKRC 45
VrD2   ---KTC-ENLANTYRGPCFTTGSCDDHCKNKEHLRSG-RCRDD---FRCWCTRNC 47

Cys4-Cys7

Cys3-Cys6

Cys2-Cys5

Fig. 5.3 Alignment of amino acid sequence of plant defensins. CcD1: Capsicum chinense
(Af128239), TPP3: Lycopersicon esculentum (4UJ0), NaD1: Nicotiana tabacum (P32026),
NmDef02: Nicotiana megalosiphon (ACR46857), Ct-AMP1: Clitoria ternatea (AAB34971),
Ah-AMP1: Aesculus hippocastanum (Q7M1F3), DmAMP1: Dahlia merckil (P0C8Y4), At-AFP1:
Arabidopsis thaliana (P30224), Bn-AFP1: Brassica napus (Q39313), Ns-D1: Nigella sativa L.
(P86972), Rs-AFP2: Raphanus sativus (P30230), Hs-AFP1: Heuchera sanguinea (AAB34974),
MsDef1: Medicago sativa (Q9FPM3), VrD2: Vigna radiata (2GL1). The residues enclosed in
eight black bars represent highly conserved cys. The solid lines indicate disulfide bonds engaging
the two cys residues. The two highly conserved gly residues are shown in greenish yellow. The
preference for an aromatic amino acid before 1st conserved gly is labelled in pink. The arrows
represent β-sheet and a helix represents α-helical secondary structures corresponding to the amino
acids above them. AMP name: plant name (GenBank or UniProt ID)
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defensins possesses activity against diverse range of fungi and oomycetes, but some
members are toxic to bacteria.

5.2.3 Lipid Transfer Proteins

The nonspecific, plant lipid transfer proteins (nsLTPs) were first isolated from
potato tubers and later discovered from a wide range of monocotyledonous
(monocots) and dicotyledonous (dicots) species. nsLTPs represent small proteins
deriving their name from their function of transferring lipids between the different
membranes as well as in vitro. They carry lipids nonspecifically, the list includes
phospholipids, fatty acids, their acylCoAs or sterols. LTPs with approximately 100
amino acids are relatively larger in size than defensins. Depending on their size,
LTPs are subcategorized into LTP1s and LTP2s having a molar mass of 9 and
7 kDa, respectively. These are synthesized with an N-terminal signal sequence
directing them to cell walls. Some LTPs possess a C-terminal sequence which
enables their posttranslational modification with a glycosylphosphatidylinositol
molecule. The latter facilitates the integration of LTP on extracellular side of the
plasma membrane. LTPs are structured with eight cysteine residues forming four
disulfide bridges like defensins. However, LTPs are distinct in having four α-helices
in their tertiary structure (Fig. 5.1c), which carve out a hydrophobic cavity to bind
the lipids through hydrophobic interactions. A different arrangement of cysteine
residues in disulfide bonds results in two types of folds—Type 1 and Type 2. These
folds provide different specificity of lipid binding at the LTP binding site with Type
2 fold relatively more flexible and with lower lipid specificity than Type 1.

5.2.4 Thionins

The first plant thionin AMP was isolated in 1942 from wheat flour and labelled as
purothionin. Thionins are yet another class of cysteine-rich peptides that are present
in a wide range of plants. They are smaller in size, *5 kDa containing 45–47
amino acids. Thionins comprise of two distinct groups of plant peptides
—α/β-thionins and γ-thionins with distinguished structural features. Based on
γ-thionins’ more resemblance with defensins than the other group of thionins, it has
been suggested that they should be placed along with defensins (Stec 2006). Both
groups of peptides share about 25 % sequence similarity. Thionins, rich in basic
amino acids providing the peptides a net positive charge, have highly conserved
Lys1, Arg10 and Tyr13 in addition to six Cys residues. The secondary structure
contains two antiparallel α-helices and an antiparallel β-sheet (Fig. 5.1d).
α/β-Thionins are further divided into five sub-types based on the number of
disulfide bonds, net charge, length, or the origin. Thionins I and II contain eight Cys
residues bonded with each other to make four disulfide bridges. Type I are more
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basic and contain 45 amino acids compared to Type II, which have 46–47 amino
acids. Type III are 45–46 amino acids long, containing three disulfide bridges and
being basic as the Type IIs. Like Type III, the Type IV thionins have three disulfide
bonds but possess no charge at neutral pH. Type V are the truncated forms of
thionins demonstrating no activity. Thionins are synthesized as precursor molecules
and demonstrate antimicrobial activity after acidic C-terminal domain is removed
(Ponz et al. 1983). Interestingly, an unprocessed thionin has been identified in
Arabidopsis, providing an example of peptides derived from a functional protein,
without the involvement of a precursor (Tavormina et al. 2015). Further, a thionin
proprotein processing enzyme has been isolated and characterized from barley that
releases the acidic domain of leaf-specific thionin (Plattner et al. 2015). Thionins
have broad-spectrum antimicrobial activity targeting bacterial, fungal and mam-
malian cells.

5.2.5 Snakins

Snakins too are cysteine-rich peptides differing from other cysteine-abundant AMPs
in having relatively more number of disulfide bonds. As the name suggests, there is
a structure motif similarity between snakins and the hemotoxic desintegrin-like
snake venoms. The first snakin, Snakin-1 (StSN1), was isolated from potato tubers
(Segura et al. 1993). The sequence of 63 amino acids long StSN1 did not relate to
previously purified protein sequence. Instead, it depicted homology with some
sequences deduced from plant cDNAs that were induced by the plant hormone
gibberellic acid. This led to their being categorized as GASA (gibberellic acid
stimulated in Arabidopsis) protein family. Later, another snakin, Snakin-2 (StSN2)
was identified in potato tubers that was inducible by certain phytopathogens. The
precursor form of StSN2 is processed into 66 amino acids long peptide that has low
identity (38 %) with StSN1. The members of snakin/GASA family contain
N-terminal signal sequence of 15–20 residues followed by a variable region both in
terms of length, amino acid composition and a region of approximately 60 residues
at C-terminus. The latter contain 12 Cys conserved residues forming six disulfide
bonds and nine other conserved amino acids. Later studies found snakins expressed
in different plant organs and widely spread in both monocots and dicots. Like other
AMPs, the mature snakins are enriched in basic amino acids and thus are positively
charged. The 3D Swiss-Models of some snakins depicted only β-sheets and the
absence of α-helices was conspicuous (Fig. 5.1e).

5.2.6 Hevein-like Peptides

Hevein was discovered in the latex of rubber tree (Hevea brasiliensis). Due to its
chitin-binding property, it inhibits the hyphal growth and confers protection against
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fungal phytopathogens (Van Parijs et al. 1991). Hevein is a relatively small peptide
with 43 residues (4.7 kDa) and contains 3–5 disulfide bridges. The other
chitin-binding peptides that display similarity in their antifungal activity but differ in
amino acid composition from Hevein are grouped in hevein-like peptides. Several
hevein-like peptides have been isolated from plants, including Beta vulgaris (IWF4),
Pharbitis nil (Pn-AMP1) and Eucommia ulmoides (EAFP2). These peptides contain
6, 8 and 10 Cys residues, respectively. The 3D structure of hevein-like peptides
contains three antiparallel β-sheets (Fig. 5.1f). The presence of α-helical turns varies
from peptide-to-peptide. The sequence alignment of hevein-like peptides shows five
Cys residues that are highly conserved and another towards N-terminus is nearly
conserved (Fig. 5.4). The four conserved Cys residues near C-terminus are part of a
conserved domain in the peptides, which seems to follow a pattern of Cys–Cys–Ser–
X–(aromatic amino acid)–Gly–(aromatic amino acid)–Cys–Gly–X4–Tyr–Cys.
Initially, binding to chitin in fungus cell wall was thought to be an essential property
of hevein-like peptides. However, when other hevein-like peptides were isolated
(e.g. Pn–AMP1 and EAFP2) these were found to target fungi irrespective of the
presence of chitin (see van der Weerden et al. 2013). Pn–AMP1 being highly basic
(pI 12.02), with a net positive charge belongs to a broad category of cationic AMPs.
The distribution of hevein-like peptides from aerial parts of plants to seeds indicate
this group of peptides may contribute to plant immune system.

5.2.7 Knottin-Type Peptides

Knottin peptides contain six Cys residues forming three disulfide bonds with one
disulfide bond crossing through the other two like in cyclotides. Like with

Hevein -------EQCGRQAGGK--LCPNN---LCCSQWGWCGSTDEYCSPDHNCQSNCKD-- 43
Ac-AMP2 ------VGEC--VRG----RCPSG---MCCSQFGYCGKGPKYCGR------------ 30
Ar-AMP ------AGEC--VQG----RCPSG---MCCSQFGYCGRGPKYCGR------------ 30
IWF4   ------SGECN-MYG----RCPPG---YCCSKFGYCGGVRAYCG------------- 30
Pn-AMP-1 -------QQCGRQASG--RLCGNR---LCCSQWGYCGSTASYCG--AGCQSQCRS-- 41
Pn-AMP-2 -------QQCGRQASG--RLCGNR---LCCSQWGYCGSTASYCG--AGCQSQCR--- 40
Ee-CBP -------QQCGRQAGN--RRCANN---LCCSQYGYCGRTNEYCCTSQGCQSQCRRCG 45
WjAMP-1 ------------QAGG--QTCPGG---ICCSQWGYCGTTADYCSPNNNCQSNCWASG 40
Fa-AMP1 -------AQCGAQGGG--ATCPGG---LCCSQWGWCGSTPKYCGAG--CQSNCK--- 40
EAFP2  -------QTCASRCP---RPCNAG---LCCSIYGYCGSGAAYCG-AGNCRCQCRG-- 41

Fig. 5.4 Alignment of amino acid sequences of Hevein-like peptides. Hevein: Hevea brasiliensis
(P02877), Ac-AMP2: Amaranthus caudatus (Q9S8Z7), Ar-AMP: Amaranthus caudatus
(Q512B2), IWF4: Beta vulgaris, Pn-AMP1: Ipomoea nil (P81591), Pn-AMP2: Ipomoea nil
(P81591), Ee-CBP: Euonymus europaeus (Q7X9R9), WjAMP-1: Eutrema wasabi (Q8H950),
Fa-AMP-1: Fagopyrum esculentum (P0DKH7), EAFP2: Eucomia ulmoides (P83596). The highly
conserved cys residues are enclosed in black bars. The cys residues labelled in red depict a nearly
conserved cys at this position. The other conserved amino acids (ser, gly, and tyr) are shown in
greenish yellow. The preference for an aromatic amino acid before and after conserved gly is
labelled in pink. AMP name: plant name (GenBank or UniProt ID)
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cyclotides, the Cys-stabilized structure supports a knotted fold. However, the free
N- and C-termini make them distinct from cyclotides (Fig. 5.1g). The first plant
knottin-type peptides, Mj-AMP1 and Mj-AMP2, were identified from Mirabilis
jalapa L. (Cammue et al. 1992), and subsequently from Phytolacca americana
(PAFP-S) and Mesembryanthemum crystallinum (Mc-AMP1). These peptides are
synthesized as precursor proteins and after maturation display antimicrobial activity
against both fungi and bacteria. The structures of Mj-AMP1 and Mc-AMP1 consist
of triple-stranded, antiparallel β-sheets connected through a loop (Nawrot et al.
2014).

5.2.8 Other AMPs

There are several other AMPs that do not relate with the abovementioned categories
of peptides but possess unique amino acid composition or secondary structures.
Some of them are named after the plant source from where they were isolated. For
instance, 1b-AMP1 (Impatiens family) and Shepherin-1 (Shepherin family) were
isolated from Impatiens balsamina and Capsella bursa-pastoris (Shepherds purse),
respectively. The others include vicilin-like, 2S albumin peptides, MBPs, puroin-
dolines, hairpinins, β-barrelins, glycine-rich cysteine-free, and glutamic acid-rich
peptides. A 3D structure of two such AMPs is shown in Fig. 5.1h. A recently
isolated peptide from Benincasa hispida seeds called Hispidulin containing 49
residues does not show homology with any known sequence in the database. As we
make more discoveries, the number of unique peptides that do not share similarity
with known peptides is likely to grow. A wide spectrum of peptides should in the
future provide a better classification rationale.

5.3 Mechanism(s) of Action

Most of the AMPs are able to target several different fungal and bacterial patho-
gens. This broad-spectrum ability suggests that AMPs interfere with the structural
and/or functional cellular components essential for the survival and proliferation of
a pathogen. The protective cell wall of a microorganism is likely the first contact
point with AMPs. The fungal cell wall is complex, assembled in many layers
comprising 80 % heteropolysaccharides (Fig. 5.5a). The inner most layer or plasma
membrane is composed of lipid bilayer with interspersed proteins surrounded by
chitin and β-glucan layers. The outer envelope is made mainly of mannosylated
glycoproteins that aid in host cell wall receptor recognition and interaction.
A Gram-negative bacterial cell wall contains inner lipid bilayer membrane sur-
rounded by a thin layer of peptidoglycan (Fig. 5.5b). Additionally, there is an outer
membrane composed of phospholipids and lipopolysaccharides. The latter are
highly charged molecules providing a net negative charge to the membrane surface.
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The Gram-positive bacteria, however, contain only a very thick layer of peptido-
glycan adjacent to inner membrane. The enrichment of peptidoglycan layer with
acidic polysaccharides such as teichoic and teichuronic acids confers a negative
charge to the membrane. The plant cell wall has distinguishable features of cellu-
lose, hemicellulose, lignins and the absence of peptidoglycan, chitin and β-glucan.
In mammalian membrane phospholipids, phosphatidylcholine and phos-
phatidylethanolamine are neutral in charge.

AMPs from plants or mammalian sources can distinguish the host from its
microbial targets. The studies indicate that structural disparity of prokaryotic and
eukaryotic membranes contribute towards the AMP selectivity (Zasloff 2002;
Yeaman and Yount, 2003; Yount and Yeaman 2013). In spite of significant
structural differences in prokaryotic organisms, the AMPs are known to establish
interaction at the surface of these microbes. The structure of AMPs with
hydrophobic regions and net positive charge supports the interaction with
negatively-charged polar heads and hydrophobic core of the microbial membranes.
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Fig. 5.5 Composition of typical fungal and Gram-negative bacterial cell walls
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A high positive charge in cationic AMPs forges an electrostatic interaction, thus
facilitating their initial binding to the membranes.

The structure of an AMP is critical to its antimicrobial activity. There are several
structural parameters such as conformation, charge, hydrophobicity, hydrophobic
moment, amphipathicity and polar angle that contribute to the toxicity and target
specificity. The topic has been comprehensively reviewed (Yeaman and Yount
2003). Experimental evidence showed the presence of specific binding sites for
AMPs on targeted pathogen envelope. For example, mannosylinositol
phosphoryl-ceramide, an acidic complex sphingolipid in fungal cell wall, was
identified as a high-affinity binding target for a defensin (DmAMP1) from Dahlia
merckii (Thevissen et al. 2003). Thus, it would mean that the binding of an AMP to
a pathogen is not necessarily dictated only by electrostatic interactions but also
recognition of specific cell wall component(s). Once the contact has been made via
an initial interaction and subsequent binding of an AMP with the target, the toxic
effect on the pathogen can then be exerted in two broad ways, membrane perme-
abilization and impairment of intracellular functions as discussed below.

5.3.1 Membrane Permeabilization

Membrane permeabilization occurs after an AMP interacts with the target site of the
pathogen. It results in dissipation of electrochemical gradient across the membrane,
membrane fragmentation, leakage of ions and other cellular contents and ultimately
cell death (Shai 2002). A threshold concentration of an AMP is required for
inducing permeabilization and the phenomenon is time-dependent (Wimley 2010).
More structural deformity of the membrane occurs over time. Membrane perme-
abilization can occur in different ways depending on the interaction dictated by the
structure of an AMP. Models have been proposed to explain the disruptive effect of
AMPs on the membranes (Fig. 5.6).

5.3.1.1 Barrel-Stave Model

In this model, AMP molecules bind to the target membrane as monomers. After
self-aggregation, the molecules get inserted across the membrane to form a trans-
membrane pore (Fig. 5.6b). The hydrophobic regions of α-helix or β-sheets of an
AMP align with the hydrophobic core of target membrane and hydrophilic surfaces
form the lining or lumen of the pore. The peptides engaged in a pore are oriented
parallel to the lipid bilayer. The pore size may vary depending on the peptide and
the degree of aggregation. It can be further expanded in a cooperative manner by
assembling more molecules into the pore. A case study with alamethicin, a
20-residue peptide produced by fungus Trichoderma viride, lent evidence in favour
of the Barrel-Stave pore mechanism.
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5.3.1.2 Toroidal Model

The Toroidal model or Wormhole mechanism is also a pore forming way of
membrane disruption. Its major difference from the Barrel-Stave model is that the
AMP intercalation in lipid bilayer induces positive curvature of phospholipid polar
heads perpendicular to the membrane plane. The peptide provides a stronger
alternative of both hydrophobic and hydrophilic interactions than intramolecular
interactions of lipid molecules. The presence of a peptide, thus, breaks hydropho-
bic–hydrophobic interactions of lipid molecules and favours their realignment to
create toroidal pores (Fig. 5.6c). In contrast to Barrel-Stave model, the lipid
headgroups in toroidal pores are exposed to the lumen of a pore. In vitro studies
with peptide and membrane vesicles have suggested that the threshold of
peptide-to-lipid (P/L) ratio for magainin is 1:30, which is consistent with the
micromolar quantities of peptides required for their toxic effect on pathogen
membranes.

Toroidal model

Barrel-Stave model

Detergent model

Carpet model

(a)

(b)

(c)

(d)

(e)

Adsorption of AMP on 
membrane surface

Fig. 5.6 Models of membrane permeabilization by antimicrobial peptides. After initial attachment
of an AMP on the membrane surface (a), it can disrupt the membrane structure/function either
through pore formation (b, c) or by other mechanisms (d, e)
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5.3.1.3 Carpet Model

Carpet model is a non-pore forming mechanism of AMP action. In contrast to
forming pores, the peptide does not insert into the hydrophobic core of the mem-
brane as observed in pore inducing models but instead orients itself parallel to the
membrane surface and covers it like a carpet. A strong electrostatic interaction
between negatively charged phospholipid polar headgroups and the cationic peptide
distorts the structure of the membrane and its fluidity (Fig. 5.6d). As the peptide
reaches its threshold membrane disintegration or cell lysis is induced. The model
was first proposed to explain the toxic effect of a moth hemolymph cecropin P1,
which aligns parallel with the membrane surface. Its activity was noticeable only at
relatively high concentrations or at high P/L ratio. Dermaseptins from
Phyllomedusa spp are thought to follow carpet model to induce membrane damage.

5.3.1.4 Detergent Model

This is an extended version of the carpet model of AMP action. The peptide
interacts through a mechanism similar to the carpet model, leading to catastrophic
collapse of the membrane. The peptide molecules form micelles with the frag-
mented membrane like a detergent (Fig. 5.6e). The comprehensive breakdown of
the membrane cannot hold its contents and results in cell death.

5.3.2 Impairment of Intracellular Functions

Membrane permeabilization is considered an important attribute of antimicrobial
activity. However, increasing evidence suggests other modes of AMP action in
addition to disruption of membrane functions (Brogden 2005; Muñoz et al. 2013).
The degree of permeabilization for some peptides did not correlate with their
activity, in some the microorganism survived for an extended time period after
membrane disruption. In another study, the active fragments of a bovine peptide
Bac7 did not permeabilize the Escherichia coli membrane but a 2–5 log reduction
in viable cell count was apparent (Gennaro and Zanetti 2000). In vitro studies
showed the ability of an AMP to associate with intracellular targets such as nucleic
acids, proteins or enzymes, which suggested a mechanism of action other than
merely involving the membranes. It is now accepted that AMP action is a combined
outcome of membrane permeabilization and inhibition of intracellular functions. To
facilitate internalization of the peptide into cytoplasm there could be either transient
or permanent disruption of the membrane structure, which may enhance the lethal
effect of an AMP. It is not known how much contribution membrane
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permeabilization makes to the potency of such peptides. Other possibilities such as
passive peptide transport (Henriques et al. 2006) and/or an active energy-dependent
process (Kim et al. 2001) are meaningful. Many plant antifungal defensins interact
with fungal membrane sphingolipids or phospholipids. Subsequently, some of them
are internalized and induce cell death. For example, cellular uptake for MtDef4,
NaD1 and Psd1 has been observed.

Mechanistic details of action for some defensins have been reviewed (Vriens
et al. 2014). Once inside the cell, an AMP can target cellular organelles and affect
their associated functions. Several plant AMPs have been identified that display
cellular toxicity through diverse modes of action. Detailed information on the
targets and pathogens have been reviewed (Goyal and Mattoo 2014). A brief
summary is illustrated in Fig. 5.7. Different members of AMPs interact with diverse
intracellular targets and interfere with their functions. Also, different intracellular
functions can be targeted by the same class of AMPs. There is a large repertoire of
plant AMPs that target a variety of cellular functions (Goyal and Mattoo 2014).
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Fig. 5.7 Plant AMPs targeted cellular functions. The name in oval shape represents AMPs, which
are connected by solid lines to the class they belong to (on the left) and their intracellular targets
(on the right)
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5.4 AMP-Mediated Defence Is Highly Conserved

Protection against life-threatening challenges is a critical determinant of
self-survival. Thus defensive mechanisms evolve as organisms combat living in
changing environments. Based on organisms and their growth environment some of
the defensive mechanisms are widespread although some are unique to a certain
class of organisms. In addition to other modes of protection, plants have developed
a hypersensitive defence response (HR) against biotic and abiotic stresses. In HR,
plants recognize pathogen’s presence through structural signatures called
pathogen-associated molecular patterns (PAMP) via transmembrane receptors such
as receptor-like kinases/proteins. Once the process of recognition is established, a
cascade of signalling is initiated to mount a comprehensive defence against the
pathogen. The immunity conferred through this mechanism is referred to as
PAMP-triggered immunity. In a tug-of-war with the pathogen there is an evolu-
tionary trail to keep the effectiveness of defence in place. The plants have evolved
strategies to counter the evasion mechanisms developed by the pathogen (Chisholm
et al. 2006). It is expected that any type of defence would require allocation of
resources in proportion to its magnitude. The comprehensive changes associated
with HR defence to pathogens divert the resources that would otherwise be used for
growth and development of the plant. Consequently, biotic stresses lead to reduced
plant productivity by down-regulation of photosynthetic genes and reduced pho-
tosynthetic activity. Thus, in HR defence of plant immunity, there is a fitness cost
associated with heightened defence response (Brown 2002; Bolton 2009). Perhaps,
this explains why HR, which is an effective response to contain the pathogen, is not
all-time-deployment (constitutive) defence feature but activated/induced only in
response to a pathogenic or non-pathogenic threat to the plant.

Keeping in view the cost and benefit, the natural selection is likely to favour the
retention of a defensive apparatus that has minimal maintenance cost but has high
deterrence value. A defence through the deployment of AMPs likely incurs low cost
taking into consideration their size and complexity—thus AMPs fit the criterion of a
defensive apparatus that has minimal maintenance cost with a high deterrence
value. It is therefore not surprising that, in addition to animal and plant sources,
AMPs have been identified also in microorganisms including bacteria and fungi
(Paiva and Breukink 2013). This reflects the ubiquitous presence of AMPs, ranging
from microorganisms to higher eukaryotes.

Like eukaryotic AMPs, bacterial species and members of Archaea domain
synthesize peptides with antimicrobial activity involving ribosomal machinery.
These peptides are named bacteriocins, which are active against human and animals
pathogens. The most commonly known bacteriocin is nisin, which is a 34-amino
acid long, cationic and hydrophobic peptide produced by a Gram-positive bac-
terium. Interestingly, nisin uses membrane disruption of the target through pore
formation as observed for eukaryotic AMPs. The negative charge on bacterial
membrane lipids facilitates the binding of cationic nisin and subsequently peptide
molecules aggregate along with lipids to create a pore. Besides being similar in their
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mechanism of action, an evolutionary conservation is apparent in structural relat-
edness of fungal defensin-like peptides. The first defensin-like peptide, plectasin,
identified from a saprophytic fungus, Pseudoplectania nigrella is structurally
similar to defensins from primitive arthropods and molluscs. Like plant defensins,
many fungal defensin-like peptides are cysteine rich and have α-helix and β-sheet
structures. Among the six families of defensin-like peptides predicted by compu-
tational studies in fungal genome three families display high similarity with insect,
invertebrate and plant defensins. A genetic closeness study between certain
eukaryotic AMPs revealed a structural conservation in evolutionary divergent group
of organisms suggesting minimal speciation events during evolution (Goyal and
Mattoo 2014). These observations point to AMPs as integral components of innate
immune defence in organisms early during evolution, while the retention of the
close-to-basic form suggests their importance in the defence architecture of living
organisms. A broad-spectrum activity and protective function across kingdoms
highlights the importance of AMP-mediated defence.

5.5 AMP Potency Across Kingdoms

AMPs display effectiveness at low concentrations and relatively within short
exposure times against pathogens. Their potency has been assessed through in vitro
studies involving a purified candidate peptide and a targeted pathogen grown in
culture media, and generally expressed as IC50 (a concentration of peptide required
to inhibit 50 % growth) or as MIC (minimum inhibitory concentration: a minimum
concentration of peptide required to completely inhibit the growth). The IC50 values
for plant AMPs ranges from <1.0 to >100 µg/ml. For each AMP the IC50 value
varies from pathogen to pathogen. The composition of growth media also affects
the IC50 or MIC values. The effective in vivo concentrations of AMP that provide
immunity against pathogens, however, are largely unknown. The IC50 or MIC
values for some AMPs are given in Table 5.1.

AMPs are known to possess broad-spectrum antimicrobial activity. Both in vitro
studies and in vivo expression of AMPs in transgenics suggested that the antimi-
crobial activity of peptides isolated from an organism is not restricted against its
own pathogenic population but also well beyond the phylum or kingdom. This
characteristic of AMPs is evident from their mode of action where AMPs target
microbial cell walls in addition to binding to specific domains. The activity across
the kingdoms has been observed in plant isolated AMPs, which showed antimi-
crobial activity against mammalian pathogens, including human ones. Conversely,
AMPs isolated from insects, arthropods, amphibians, humans, etc., display toxicity
against a variety of phytopathogens. In cross-kingdom scenarios, the AMPs do not
exhibit cytotoxicity to the host cells. This property of AMPs has enhanced the scope
of their application in disease management of humans or other mammals of
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Table 5.1 Plant AMP IC50 or MIC values against specified microbial pathogens

Peptide Class/family Source Pathogen IC50 or MIC

Circulin-A Cyclotide Chassalia
parviflora

Staphylococcus
aureus

MIC: 0.19 µM

– – – Candida kefyr MIC: 18.6 µM

Circulin-C Cyclotide Chassalia
parviflora

HIV-1 IC50: 50–275 ƞM

Kalata-B1 Cyclotide Oldenlandia affinis Staphylococcus
aureus

MIC: 0.26 µM

– – – Pseudomonas
aeruginosa

MIC: >500 µM

– – – Candida albicans MIC: >500 µM

Rs-AFP2 Defensin Raphanus sativus Pyricularia oryzae IC50: 0.4 µg/ml

– – – Verticiliium dahliae IC50: 1.5 µg/ml

– – – Alternaria brassicola IC50: 2 µg/ml

Ah-AMP1 Defensin Aesculus
hippocastanum

Bacillus subtilis IC50: 100 µg/ml

– – – Leptosphaeria
maculans

IC50: 0.5 µg/ml

Psd2 Defensin Pisum sativum Neurospora crassa IC50: <0.5 µg/ml

– – – Fusarium solani IC50: 8.5 µg/ml

Ace-AMP1 LTP Allium cepa Alternaria brassicola IC50: 2.5 µg/ml

– – – Verticillium dahliae IC50: 0.25 µg/ml

– – – Botrytis cinerea IC50: 3 µg/ml

La-LTP LTP Leonurus artemisia Ralstonia
solanacearum

IC50: 15 µM

– – – Botrytis cinerea IC50: 7.5–15 µM

Cw18 ns-LTP Hordeum vulgare Fusarium solani MIC: 174 µg/ml

Pp-AMP1 Thionin Phyllostachys
pubescens

Erwinia carotovora IC50: 22 µg/ml

– – – Clavibacter
michiganensis

IC50: 14 µg/ml

– – – Fusarium oxysporum IC50: 2 µg/ml

Tu-AMP1 Thionin Tulipa gesneriana Erwinia carotovora IC50: 11 µg/ml

– – – Fusarium oxysporum IC50: 2 µg/ml

AX1 Thionin Beta vulgaris Cercospora beticola MIC: 4 µg/ml

AC-AMP1 Hevein-like Amaranthus
caudatus

Fusarium culmorum IC50: 2 µg/ml

– – – Alternaria brassicola IC50: 7 µg/ml

– – – Bacillus megaterium IC50: 40 µg/ml
(continued)
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commercial interest as well as of plants. Interestingly, plant AMPs have shown
promising results in specifically targeting the human cancerous cells. Some of the
examples of cross protection by AMPs are illustrated in Fig. 5.8.

5.6 Production of AMPs in Plants

The therapeutic application of AMPs in medicine and their ability to protect plants
from host of diseases generated interest in devising strategies to produce AMPs on
a mass scale. A good number of peptide-based drugs have been approved by US

Table 5.1 (continued)

Peptide Class/family Source Pathogen IC50 or MIC

Ee-CBP Hevein-like Euonymus
europaeus

Botrytis cinerea IC50: 0.2 µM

– – – Alternaria brassicola IC50: 0.6 µM

– – – Pythium ultimum IC50: 6.6 µM

Fa-AMP1 Hevein-like Fagopyrum
esculentum

Clavibacter
michiganensis

IC50: 14 µg/ml

– – – Fusarium oxysporum IC50: 19 µg/ml

– – – Geotrichum candidum IC50: 36 µg/ml

StSN1 Snakins Solanum tuberosum Listeria
monocytogenes

MIC: 10 µg/ml

– – – Botrytis cinerea IC50: 2 µM

– – – Colletotrichum
graminicola

IC50: 10 µM

MJ-AMP1 Knottins Mirabilis jalapa Bacillus megaterium IC50: 6 µg/ml

– – – Cercospora beticola IC50: 10 µg/ml

– – – Ascochyta pisi IC50: 200 µg/ml

Pa-AMP1 Knottins Phytolacca
americana

Staphyanococcus sp. IC50: 11 µg/ml

– – – Fusarium oxysporum MIC: 40 µg/ml

Ib-AMP4 Impatiens Impatiens
balsamina

Micrococcus luteus IC50: 5 µg/ml

Penicillium digitatum IC50: 3 µg/ml

Shepherin I Shepherin Capsella
bursa-pastoris

E. coli IC50: <2.5 µg/ml

– – – Fusarium culmorum IC50: 72 µg/ml

MBP-1 MBP Zea maize Fusarium
graminearum

MIC: 60 µg/ml

MiAMP2c-3 Vicilin-like Macadamia
integrifolia

Phytophthora
cryptogea

IC50: 5–
10 µg/ml

Source http://phytamp.pfba-lab-tun.org/main.php (Hammani et al. 2009)
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Fig. 5.8 AMPs showing antimicrobial activity in distantly related hosts to their pathogenic
microbes. a The AMPs from different plant sources (2nd ring from the outside) active against a
variety of human pathogens. b The AMPs from different animal sources possess activity against
plant pathogens
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Food and Drug Administration. Currently, majority of these peptides are produced
through chemical synthesis using either solid-phase or solution-phase syntheses.
Despite high cost of production and environmental effects, chemical synthesis
continues to dominate the peptide synthesis industry. Chemical synthesis has
advantage of incorporating non-natural components or performing other modifi-
cations. Alternate eco-friendly strategies such as biological sources have been
explored to produce AMPs in large quantities. High yield, stability, solubility, ease
of purification of proteins and scalability of the process are generally some of the
criteria for any commercial process. Bacteria and yeast meet most of these criteria
with the ease of being genetically transformed and therefore provide the most
suitable choice to develop platforms for biomolecule production. However, AMPs
are cytotoxic to microorganisms, especially bacteria, and this presents challenges
for their deployment as biofactories. Nevertheless, when a snakin peptide SN1 was
fused with thioredoxin, it was expressed in E. coli. The thioredoxin fusion increased
the solubility of the expressed AMP while rendering it ineffective as a toxic
compound. Yeast offers another avenue for improving AMP yields once the con-
ditions are optimized. For example, an enhancement in yield of a specific peptide
was obtained using a constitutive promoter of glyceraldehyde-3-phosphate dehy-
drogenase, which is essential to carbohydrate metabolism. Also, the protozoic
options, though less common, have been explored.

The successful heterologous, ectopic and overexpression of AMPs in plants is
another alternative choice to microbial production. A large leaf biomass and high
seed or tuber yields provide a strong platform for the large scale production
commonly termed as molecular farming of biomolecules. Plant-based systems
could be cost effective and proteins can be synthesized with post-translational
modifications such as disulfide bond formation and glycosylation. Various strate-
gies have been formulated to increase the proportion of AMPs in soluble fraction of
host cells. For enhanced expression, AMP-genes are driven by strong constitutive
and inducible promoters. The cauliflower mosaic virus 35S RNA and ubiquitin are
among the commonly used constitutive promoters. Some of the inducible promoters
tested include wound, win3.12T, and pathogenic, mannopine synthase, specific and
heat shock responsive Os.hsp82 promoters. Plants offer many opportunities to
manipulate the expression of AMPs for desired results. Some of the strategies
employed are briefly described here. For a more descriptive review on plant-based
expression systems, the readers are suggested to go to these recent ones (Holaskova
et al. 2015; Liew and Hair-Bejo 2015).

5.6.1 Sub-cellular Localization of Recombinant Proteins

The recombinant proteins without a signal peptide usually end up in the cytosol.
They accumulate at relatively low concentrations in the soluble forms. A major
portion of these tend to be present as insoluble form perhaps due to the lack of
chaperons or other cellular factors. Also, such ‘free’ proteins tend to become targets
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of endogenous proteases. Therefore to enhance their yield and stability, the
candidate protein genes are constructed such that they get targeted to sub-cellular
locations such as endoplasmic reticulum, chloroplasts, amyloplasts or extracellular
spaces. Chloroplasts in particular have received researchers’ attention due to their
high number in green tissues like leaves. More importantly, these organelles have
their own genome that can be suitably transformed with the desired genes.
Compared to nuclear genome transformation chloroplasts can potentially generate
more than 20,000 copies per cell. Also, chloroplasts being maternal tissue offer a
better control on unintended genetic spread of the recombinant gene.

5.6.2 Tissue/Organ Specific Accumulation

Besides leaves that constitute a large biomass, cereal grains, oilseeds, tubers or
roots, which are the primary storage organs of plant photosynthates, can also serve
as platforms for molecular farming. The monoclonal antibody against hepatitis B
surface antigen (HBsAg), expressed in tobacco, was the first commercialized
plant-derived antibody (Liew and Hair-Bejo 2015). Transformed rice grains are able
to accumulate human lysozyme up to 14 % of total soluble protein. A stronger
promoter such as the ‘rice glutelin 1’ can empower the accumulation of a recom-
binant protein up to 40 % of total cellular protein. A human lactoferrin protein
essential for iron binding was expressed at 25 % of the total proteins. Maize is
another cereal crop that has been used for molecular farming. Although econom-
ically unviable compared to cereals, a higher percentage of recombinant protein can
also be obtained in Arabidopsis seeds.

The large genomes of cereal grains have some merits as well as demerits in
being employed for protein-making factories. First, it is relatively cumbersome to
transform monocots as compared to dicots. The redundancy in the genomes and
associated differentially-active regions can limit the expression of the gene espe-
cially when a single copy gets inserted into those regions. The large genomes on the
other hand are more tolerant to recombinant gene insertions compared to a small
genome like in Arabidopsis. The grains offer a better storage medium of the product
vis-à-vis other tissues with high moisture content. Like in bacteria and yeast, the
stable incorporation of gene in plant genome can be inherited and the seeds then act
as mode of continuum propagation. It is estimated that the production cost of a
recombinant protein in plants could be 10–50 times less than E. coli. Various
veterinary vaccines have been expressed in edible portion of plants.

5.6.3 Plant Cell Cultures and Protein Production

Cell suspension cultures (CSC) are rapidly dividing cells in liquid medium with
appropriate nutrients. They are maintained in closed environments with control of
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light and temperature. The tissue culture resembles with CSC except that the
dividing cells grow on solid support producing a mass of cells. The CSC has added
advantage of excreting the product into liquid medium with appropriate secretary
signals. It makes the product recovery process easier thus cutting down the cost of
production. CSC has better control over the growth process leading to high
batch-to-batch reproducibility, which helps compliance with good manufacturing
practise (cGMP). Both these platforms are more contained in nature than the whole
plant system. They are considered safe therapeutically, environmentally and in
controlling the proliferation of transgene. These factors make the regulatory
approval process easier compared to whole transgenic plants. Taliglucerase alfa
(TGA) developed by Protalix and Pfizer was the first plant-made pharmaceutical
drug approved by FDA. It is a glucocerebrosidase used to treat Gaucher’s Disease.
TGA employs carrot cells and its production on commercial scale involves a series
of bioreactors that can process thousands of litres of growth media. Like TGA and
many more pharmaceutical drugs that are at different stages of commercial pro-
duction and regulatory approval, AMPs can be synthesized on large scale. The
selection of new plant sources and optimization of growth conditions of cell culture
media are being explored. A recombinant human serum albumin has been tested on
a laboratory scale using rice suspension cells in a simplified bioreactor process
leading to sixfold increase in yield. With increasing demand of AMPs as phar-
maceuticals, the CSC advances are expected to be extended to commercial pro-
duction of AMPs.

5.7 AMPs Are More than Just Antimicrobial Compounds

It has become apparent in recent years that the role of AMPs is larger than strictly
being toxic to pathogens. These peptides now appear to be involved in different
phases of plants’ life cycle (Marshall et al. 2011; Stotz et al. 2013; Pelegrini et al.
2011; Goyal and Mattoo 2014). A few examples are: (a). Defensins share structural
similarity with nodule specific cysteine-rich peptides (CRPs) and are abundantly
expressed in seeds (Graham et al. 2004). That plant defensins are multi-taskers
stems from the fact that CRPs are expressed early during bacterial symbiotic
relationship, permeable across bacterial membrane, inhibitory to cell division and
suppress reproduction, and released by nodule-specific secretary pathway (Marshall
et al. 2011; Penterman et al. 2014). Defensin-like polypeptides—LUREs, DEFL,
ZmES-1, DEF2—seem involved in one or the other biological process associated
with pollen tube (pollination) in plants. LUREs mediate guidance of the pollen tube
(Okuda et al. 2009; Takeuchi and Higashiyama 2012); ZmES-4 leads to pollen tube
burst, discharging sperms by targeting potassium channel KZM1 (Amien et al.
2010); PCP–A1 and SP11 peptides contribute to self-incompatibility in Brassica
pollen (Doughty et al. 1998; Takayama et al. 2001). Forward and reverse genetic
manipulation of DEF2 in tomato resulted in traits showing roles of this gene pro-
duct in pollen viability, seeding, and morphology (Stotz et al. 2009); while
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silencing of snakin-1 resulted in negative effects on plant development in potato
(Nahirñak et al. 2012). (b) LTPs are involved in cuticular wax synthesis, pollen
adhesion, guiding the pollen tube towards fertilization, oxylipin-mediated SAR, and
cell wall loosening (Molina and García-Olmedo 1997; Park et al. 2000; Nieuwland
et al. 2005; Chae et al. 2009; DeBono et al. 2009). (c) A synthetic heterologous
AMP, msrA3, when expressed in potato was found to alter floral development and
mitigate normal plant response to abiotic and biotic stresses (Goyal et al. 2013). The
transgenic potato plants were resistant to Fusarium solani and the tuber yield was
significantly higher than the control plants. Detailed investigation showed sup-
pression of HR, wound-induced JA and ROS, in concert with changes in transcript
profiles of related gene markers under both biotic and abiotic stresses (Goyal et al.,
2013). Among other functions, AMPs interact with cellular signalling processes
include oxidative stress and its components ROS and NO, MAPK signalling, HR,
and systemic acquired resistance (SAR) (reviewed in Goyal and Mattoo 2014).
Thus, plant AMPs are potent defence molecules while they also have moonlighting
functions related to plant development processes, similar to what is known about
mammalian AMPs which, in addition to immunomodulating host defence, also
modify physiological responses of the cell (Choi et al. 2012; Hilchie et al. 2013).
Multifunctional role of plant AMPs is summarized in Fig. 5.9.

5.8 Conclusions

Disease afflicts crop productivity as well as nutritional attributes. Pathogens have
the ability to mutate rapidly and thereby develop resistance to pesticides. Despite
plant’s multilayer of innate defence against pathogens, often the latter are able to
penetrate and establish themselves on plant host. The discovery of antimicrobial
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peptides
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hostdefense

Plant 
development

Fig. 5.9 Plant AMPs are multifunctional
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peptides (AMPs) has the promise of durable defence by quickly eliminating
pathogens through membrane lysis, and positively impacting the host’s cellular
machinery for development. AMPs characteristically are made up of from fewer
than 20 amino acids to about 100 amino acids, structurally diverse, and amenable
for higher potency by either alteration of their chemical structure and/or engineering
them to produce higher amounts in heterologous systems in order to provide dur-
able plant immunity against pathogens. For achieving this, it will be important to
first characterize them, understand their mechanism(s) of action, and develop a wide
range of structures. Although permeabilizing cellular membrane is a major mech-
anism known for AMP action, new and diverse modes of action have recently been
unearthed, including targeting of intracellular function of the pathogen.

Crop protection against pathogens is inimical to global food security. Immense
focus on the ‘R’ gene defence for crop survival against pathogens has demonstrated
the short half-life of such a strategy and breakdown of such defence. The discovery
of antimicrobial peptides (AMPs) as generators of durable plant resistance against
target pathogens together with their broad-spectrum activity across kingdoms has
shown their promise in enabling crop resistance to disease.
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Chapter 6
Host Defense Peptides and the Eicosanoid
Cascade

Min Wan, Xiao Tang and Jesper Z. Haeggström

Abstract Host defense peptides (HDPs) and eicosanoids are two important fami-
lies in host defense and inflammation. Most of the naturally occurring HDPs are
cationic and amphipathic short polypeptides with typical length between 15 and 40
amino acid residues. HDPs not only possess potent antimicrobial activity against a
variety of pathogens, they are also widely recognized for their multifunctional roles
in both the innate and adaptive immune responses. On the other hand, arachidonic
acid-derived eicosanoids, including prostaglandins, thromboxanes, leukotrienes and
lipoxins, are small lipid molecules with a 20-carbon backbone, which possess
potent biological properties and participate in regulation of physiological and
pathophysiological processes. In this article, we discuss the biosynthesis and
functions of eicosanoids with emphasis on the roles of eicosanoids in host defense
and regulation of HDP production. Moreover, we review how HDPs regulate
eicosanoid metabolism and conclude that there are positive feedback circuits
between HDP and eicosanoid signaling with implications for certain pathological
conditions, such as infection and allergy.

6.1 Introduction

Arachidonic acid (AA) is released from phospholipids by phospholipases A2

(PLA2), and metabolism of AA leads to several families of lipid mediators col-
lectively known as eicosanoids, including prostaglandins (PGs), thromboxanes,
leukotrienes (LTs), and lipoxins (LXs), along two major pathways, the lipoxyge-
nase (LOX) and the cyclooxygenase (COX) pathways (Haeggstrom and Funk
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2011). Eicosanoids are secreted and act locally in an autocrine or paracrine fashion
through interaction with specific G-protein coupled receptors (GPCR) to exert their
biological effects (Back et al. 2011; Woodward et al. 2011; Serhan 2014). They
possess potent biological activities and are involved in fever, pain, maintenance of
normal hemostasis, regulation of blood pressure, renal function, and reproduction as
well as host defense (Haeggstrom and Funk 2011).

Host defense peptides (HDPs), also known as antimicrobial peptides (AMPs),
are evolutionarily conserved molecules of the innate immune system. Their wide-
spread distribution throughout the animal and plant kingdoms suggests that HDPs
have served a fundamental role in the successful evolution of complex multicellular
organisms (Zasloff 2002). They are not only important molecules in host defense
against a very broad spectrum of microorganisms, such as gram negative and gram
positive bacteria, fungi, parasites, and viruses, via various mechanisms of action,
but also possess diverse immunomodulatory capabilities (Mansour et al. 2014).

Several studies have indicated that inhibition of eicosanoid biosynthesis lethally
impairs insect immune reactions (Stanley-Samuelson et al. 1991) and also that
eicosanoids play an important role in regulating innate immunity and host defense
of mammals (Peters-Golden et al. 2005; Dennis and Norris 2015). The first sug-
gestion that eicosanoids are involved in signaling pathways that lead to HDP
production came from a study demonstrating that an eicosanoid biosynthesis
inhibitor suppressed two HDP gene expressions in response to bacterial challenge
in the fat body of the silkworm, Bombyx mori (Morishima et al. 1997).
Accumulating evidence from the studies on insects suggested a direct induction of
HDPs by AA (Morishima et al. 1997; Sun and Faye 1995), and also a direct
functional link between eicosanoids and the production of HDPs induced by LPS
(Yajima et al. 2003) or peptidoglycan (Morishima et al. 1997). Interestingly, the
studies from our research group and others have also suggested positive feedback
loops between eicosanoids and HDP production in mammalian leukocytes (Wan
et al. 2011; Sun et al. 2013; Kanda et al. 2010; Bernard and Gallo 2010; Niyonsaba
et al. 2001; Kase et al. 2009; Chen et al. 2007).

In this chapter, we will discuss the role of eicosanoids in host defense, and how
HDPs and eicosanoids, two important families of innate immunity interact and
cooperate to regulate the innate immunity and control infections.

6.2 Eicosanoids in Host Defense

PLA2 enzymes are crucial for increasing the levels of free AA for eicosanoid
biosynthesis under most physiological conditions, but particularly following
inflammatory cell activation (Dennis and Norris 2015). Three members of the PLA2

superfamily have been implicated most strongly in cellular eicosanoid production:
cytosolic calcium-dependent PLA2 (cPLA2), cytosolic calcium independent PLA2

(iPLA2) and secreted PLA2 (sPLA2) (Dennis and Norris 2015). Among them,
cPLA2α is the only PLA2 that exhibits preference for hydrolysis of AA from
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phospholipid substrates that occurs in cells stimulated with diverse agonists (Leslie
2015). The observation that mice lacking cPLA2 are profoundly depleted of all
eicosanoids indicates that this enzyme is indispensable for the liberation of AA
in vivo (Fujishima et al. 1999). Because AA is the precursor of eicosanoids, it is
generally accepted that cPLA2α plays a major role in inflammatory diseases (Dennis
et al. 2011).

Early studies on insects demonstrated that eicosanoids play an important role in
bacterial infection by using PLA2 inhibitor, and the functions suppressed by PLA2

inhibitor can be rescued by adding exogenous AA (Stanley-Samuelson et al. 1991,
1997; Yajima et al. 2003; Miller et al. 1994). Subsequent studies further showed that
AA and eicosanoids promote HDP expression in insects (Morishima et al. 1997; Sun
and Faye 1995; Yajima et al. 2003; Hwang et al. 2013). Studies in humans and
mammals demonstrated that eicosanoids affect the immune response by modulating
cellular differentiation, migration, phagocytosis, and cytokine/chemokine produc-
tion, and also play an important role in connecting innate and adaptive immunity by
acting on cells of both systems (Harizi and Gualde 2005). It has been reported that
zymosan and Candida albicans induce cPLA2 activation and eicosanoid production
in macrophages via different signaling mechanisms (Gijon et al. 2000; Suram et al.
2006, 2010). Moreover, a recent report investigated the functional consequences of
cPLA2α activation and the effect of endogenously produced eicosanoids on gene
expression in response to C. albicans by comparing cPLA2α

+/+ and cPLA2α
−/− resident

mouse peritoneal macrophages (RPM), and the results revealed that C. albicans
killing was impaired in cPLA2α deficient RPM, and C. albicans-stimulated cPLA2α

activation and the early production of prostanoids promote an autocrine pathway in
RPM that affects the expression of genes involved in host defense to dampen
inflammation (Suram et al. 2013). In addition, it has also been shown that AA
stimulates human neutrophils to release HDPs to strongly impair bacterial growth
(Chouinard et al. 2013). Interestingly, evidence has been provided that eicosanoids
are involved in lactose and phenylbutyrate (PBA)-induced human cathelicidin
expression in human epithelial cell line HT-29 since a PLA2 inhibitor significantly
suppressed lactose/PBA-induced peptide expression (Cederlund et al. 2014).

We will discuss more details on LTs, PGs and LXs in host defense and
infections.

6.2.1 Prostanoids

Prostanoids are lipid mediators derived from AA via the COX pathway. COX exists
as two isoforms referred to as COX-1 and COX-2. COX-1 is expressed constitu-
tively in most tissues, whereas COX-2 is not detectable in most normal tissues or
resting immune cells, but its expression can be induced by factors such as endo-
toxins, cytokines, growth factors, and carcinogens (Smith et al. 2011). COX
enzymes convert AA to the unstable endoperoxide PGH2, which can be
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metabolized by the actions of specific terminal synthases that are expressed in a cell
type-selective fashion to produce PGE2, PGD2, PGF2α, PGI2 (prostacyclin), and
thromboxane A2 (TXA2), which are collectively called prostanoids (Hirata and
Narumiya 2012). The biosynthesis of prostanoids is summarized in Fig. 6.1.

PGE2 is the most abundant prostanoid in the inflammatory milieu, and it is one
of the best known and most well-characterized prostanoids in terms of
immunomodulation. PGE2 exerts its biological functions through four distinct G
protein–coupled receptors called E prostanoid (EP) receptors, which are numbered
EP1–4 (Woodward et al. 2011). Although PGE2 has myriads of immunomodulatory
effects and induces both pro- and anti-inflammatory effects, the immunosuppressive
actions of PGE2 to limit both the amplitude and duration of immune responses have
been extensively studied and reported (Kalinski 2012; Agard et al. 2013). For
example, PGE2 suppresses macrophage phagocytosis (Aronoff et al. 2004; Lee et al.
2009; Serezani et al. 2012), restrains bacterial killing in alveolar macrophages by
inhibiting NADPH oxidase (Serezani et al. 2007), exacerbates intrauterine group A
Streptococcal infections (Mason et al. 2013), dampens antifungal immunity by
inhibiting interferon regulatory factor 4 functions and interleukin-17 expression in

Fig. 6.1 Biosynthesis of prostanoids. Arachidonic acid (AA) can be metabolized by cyclooxy-
genase (COX) isoforms known as COX-1 and COX-2. Unlike COX-1, which is constitutively
expressed in most tissues and cells, COX-2 remains at low expression in resting cells. However,
COX-2 can be activated by factors such as endotoxins, cytokines, growth factors and carcinogens.
COX isozymes convert AA to the unstable endoperoxide prostaglandin (PG)H2, which is further
metabolized to PGE2, PGD2, PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2) by specific
terminal synthases, in a cell-type restricted fashion. PGs exert their functions via specific G-protein
coupled receptors (GPCR), i.e., EPs, DPs, FP, IP and TPs in an autocrine or paracrine manner
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T cells (Valdez et al. 2012). Moreover, PGE2 suppresses antiviral immunity through
induction of type I interferon and apoptosis in macrophages (Coulombe et al. 2014),
and blockade of PGE2 signaling improves viral control (Chen et al. 2015).
However, it has also been reported that PGE2 induces resistance to HIV-1 infection
by downregulation of the chemokine receptor CCR5 expression to suppress HIV-1
entry into macrophages (Thivierge et al. 1998). Several studies also demonstrate
that PGE2 plays an important role to inhibit Mycobacterium tuberculosis replication
in vitro and in vivo (Chen et al. 2008; Kaul et al. 2012; Mayer-Barber et al. 2014).

Several lines of evidence indicate that PGs are involved in host defense by
modulating HDP expression. Studies from insects have demonstrated that PGs
induce the expression of humoral immune-associated genes, including HDP
cecropin in the beet armyworm, Spodoptera exigua (Shrestha and Kim 2009). In
another study on mosquito Anopheles albimanus has shown that PGE2 reduces
mRNA synthesis of HDP ambicin and attacin in cultured midguts and fat bodies,
while enhancing the cecropin mRNA (Garcia Gil de Munoz et al. 2008). Studies
have also demonstrated that PGD2 induces human β-defensin (hBD)-3 production
in human keratinocytes (Kanda et al. 2010), and one possible mechanism for the
antimicrobial effects of the antimycotic drugs itraconazole and terbinafine
hydrochloride could be to induce hBD-3 in keratinocytes by increasing PGD2

release from keratinocytes (Kanda et al. 2011). Consistently, Bernard et al. also
found that PGD2 and 15-deoxy-D12,14-PGJ2 (a dehydration product of PGD2)
induces the production of hBD-2 and hBD-3 by human keratinocytes (Bernard and
Gallo 2010). However, PGE2 dramatically suppresses hBD-1 expression in human
uterine epithelial cells, and also moderates TNF-α-induced hBD-2 expression in
human uterine epithelial cells (Aronoff et al. 2008).

It is well-established that non-steroidal anti-inflammatory drugs (NSAIDs) block
prostanoid synthesis by inhibiting COX enzymes and are widely used to treat both
acute and chronic inflammation. Some evidence suggests that NSAID use is also
linked to modulation of HDP expression. One report showed that the COX inhibitor
etodolac enhanced hBD-2 mRNA levels in Actinobacillus actinomycetemcomitans
infected human gingival epithelial cells (HGEC) (Noguchi et al. 2003). Since
etodolac almost suppressed the production of PGE2 by A. actinomycetemcomitans
in HGEC, this result indicated that endogenous PGE2 produced by A. actino-
mycetemcomitans in HGEC suppresses hBD-2 expression (Noguchi et al. 2003). In
another report, Bernard et al. demonstrated a critical role for COX-2 in hBD pro-
duction by human keratinocytes and treatment with a COX-2 inhibitor led to
reduced antibacterial activity in these cells (Bernard and Gallo 2010). Interestingly,
one recent report also describes that COX inhibitors aspirin or etoricoxib signifi-
cantly suppress lactose/PBA-induced cathelicidin expression in the human epithe-
lial cell line HT-29 (Cederlund et al. 2014). All these evidences suggest that
prostanoid signaling is involved in the regulation of HDP expression.
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6.2.2 Leukotrienes (LTs)

LT biosynthesis from free unesterified AA is catalyzed by a series of enzymes,
starting from 5-lipoxygenase (5-LOX). Upon an increase in intracellular calcium,
5-LOX translocates to the nuclear membrane and associates with 5-LO-activating
protein (FLAP) to promote dioxygenation and dehydration of AA (Dixon et al.
1990). This process gives rise to the unstable epoxide LTA4, the key intermediate in
leukotriene biosynthesis, which is converted to LTB4 through the action of LTA4

hydrolase (Samuelsson and Funk 1989). LTA4 can also be conjugated with GSH by
LTC4 synthase to produce LTC4, which constitutes the parent compound of the
cysteinyl LTs (cys-LTs) also including LTD4 and LTE4 (Samuelsson et al. 1987).
The biosynthesis of LTs is summarized in Fig. 6.2. LT production is cell type
specific and largely limited to cells of the myeloid lineage. LT signaling is achieved
through a family of GPCR. So far, it has been found that LTB4 binds to two
GPCRs, BLT1 and BLT2 with high and low affinity. Likewise, CysLT1, CysLT2

Fig. 6.2 Biosynthesis of leukotrienes (LTs) at the nuclear membrane. Upon certain stimuli,
intracellular calcium level increases, leading to the translocation of 5-LOX from cytosol to the
nuclear membrane (not depicted in figure). Free AA is presented to 5-LOX by the nuclear
membrane integral protein 5-LO-activating protein (FLAP) and converted to LTA4, the key
intermediate in LT biosynthesis. LTA4 is further converted to LTB4 by LTA4H, and the released
LTB4 acts via its high affinity receptor BLT1 or low affinity receptor BLT2 on target cells.
Meanwhile, LTA4 can also be metabolized to LTC4 by the integral membrane enzyme LTC4s.
LTC4 is further transformed by extracellularly localized γ-glutamyl transpeptidase (GGT) to LTD4,
and further into LTE4 by membrane-bound dipeptidase (MBD). LTC4, LTD4 and LTE4, together
known as cys-LTs, can activate and bind to two main receptors CysLT1 and CysLT2 for their
bioactivities
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and a putative receptor for LTE4 (CysLT3) have been reported to transduce cys-LT
signaling (Back et al. 2011).

LTB4 is best known for its role as a neutrophil chemoattractant, and cys-LTs are
famous for their ability to induce bronchoconstriction in asthma (Peters-Golden and
Henderson 2007). However, LTs are now recognized as important participants in
the host response and they are produced at sites of infection by phagocytes, which
promotes killing of microbes, including bacteria (Bailie et al. 1996; Mancuso et al.
1998, 2010; Serezani et al. 2005; Soares et al. 2013), mycobacteria (Peres et al.
2007; Tobin et al. 2010; Peres-Buzalaf et al. 2011; Tobin et al. 2012), fungi
(Medeiros et al. 2008; Morato-Marques et al. 2011; Secatto et al. 2012, 2014),
parasites (Talvani et al. 2002; Machado et al. 2005; Serezani et al. 2006; Morato
et al. 2014; Canavaci et al. 2014) and virus (Flamand et al. 2004; Gosselin et al.
2005; Gaudreault and Gosselin 2008; Bertin et al. 2012).

Accumulating evidence has clearly demonstrated that LTs, particularly LTB4,
plays a significant role in the control of microbial infections through its ability to
activate host immunity, for instance by promoting HDP release (Peters-Golden
et al. 2005; Le Bel et al. 2014). A study on insects showed that LTB4 induced
expression of humoral immune-associated genes, including HDP cecropin in the
beet armyworm, S. exigua (Shrestha and Kim 2009). Moreover, studies on human
neutrophils demonstrated that LTB4 induces the release of human HDP, including
α-defensins, cathepsin G, elastase, lysozyme C, and LL-37 from human neutrophils
via the BLT1 receptor (Wan et al. 2007; Flamand et al. 2007). Furthermore, it has
been shown that i.v. injection of LTB4 to monkey and human (Flamand et al. 2004,
2007) induces a dose-dependent plasmatic increase in α-defensins. Meanwhile,
evidence has been provided that LTB4-induced HDP production by neutrophils,
transduced via BLT1, plays a role in LTB4-mediated antiviral activity in vitro and
in vivo (Gaudreault and Gosselin 2007, 2008). Recently, it was also reported that
AA induces the release of HDPs (α-defensins and LL-37) from human neutrophils
through metabolism into LTB4 and the activation of BLT1 (Chouinard et al. 2013).
All these studies further support the notion that LTB4-induced HDPs play an
important role in host defense.

6.2.3 Lipoxins (LXs)

In 1984, Serhan and colleagues discovered a new family of eicosanoids called
lipoxins (LXs) (Serhan et al. 1984a, b). LXA4 and LXB4 are positional isomers that
each possesses potent cellular and in vivo actions, whereas LXA4 has been more
widely studied for its functions. The LXs are generated from AA via sequential
action of two or more LOXs during cell–cell interactions by transcellular biosyn-
thetic routes that occur in inflammation and disease pathogenesis (Serhan 2005).
Three transcellular pathways for biosynthesis of LXA4 in human cells are depicted
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in Fig. 6.3. The first pathway involves peripheral blood leukocyte–platelet inter-
actions. The enzyme 5-LOX in leukocytes converts AA to LTA4, which is released
from leukocytes and further transformed by adherent platelets to LXA4 via 12-LOX
(Edenius et al. 1988; Romano and Serhan 1992). The second biosynthetic route is
initiated at mucosal surfaces by 15-LOX that transforms AA to
15S-hydroxy-eicosatetraenoic acid (15S-HETE), which is rapidly taken up by
neutrophils and subsequently converted via 5-LOX to LXA4 (Serhan 1997). In
addition to these two main routes, it has been discovered that aspirin-acetylated
COX-2 can transform AA to 15R-HETE, which is taken up by leukocytes and
converted via 5-LOX to 15-epi-LXA4, also called aspirin-triggered lipoxins
(ATL) (Claria and Serhan 1995).

LXs and ATL act at both temporal and spatially distinct sites from other eico-
sanoids produced during the course of inflammatory responses to actively partici-
pate in anti-inflammation and resolution of inflammation (Serhan 2005). LXs and

Fig. 6.3 Transcellular biosynthesis of lipoxins (LXs). (I) 5-LOX in leukocytes converts AA to
LTA4, which is released from leukocytes and further transformed to LXA4 via the enzyme
12-LOX in adherent platelets. (II) On mucosal surfaces, AA can be transformed via 15-LOX to
15S-hydroxy-eicosatetraenoic acid (15S-HETE), which is rapidly taken up by neutrophils and
converted to LXA4 via 5-LOX. (III) aspirin-acetylated COX-2 transforms AA to 15R-HETE,
which is taken up by leukocytes and converted via 5-LOX to 15-epi-LXA4, a product that is also
called aspirin-triggered lipoxins (ATL)
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n-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid and docosahexaenoic
acid-derived resolvins, protectins and maresins are collectively termed specialized
proresolving mediators (SPM). Recent studies demonstrated that SPMs are
temporally and differentially regulated during infections (Chiang et al. 2012), and
they potently stimulate cessation of PMN infiltration and enhance macrophage
uptake of apoptotic cells, debris and microbes (Serhan 2014), aiding a return to
tissue homeostasis. Accumulated evidence demonstrated that SPM including LXA4

play an important role in infectious diseases. Thus, it has been reported that LXA4

displays protective effects on host defense against fungal pathogen Cryptococcus
neoformans (Colby et al. 2015), parasite Toxoplasma gondii (Aliberti et al. 2002)
and Trypanosoma cruzi (Molina-Berrios et al. 2013), respiratory viruses (Kim
1990; Shirey et al. 2014) and influenza A virus (Cilloniz et al. 2010), and cerebral
malaria (Shryock et al. 2013). Moreover, LXA4 exhibits beneficial effects on
bacteria Porphyromonas gingivalis-induced periodontitis (Serhan et al. 2003) and
LPS-induced preterm birth (Rinaldi et al. 2015). Interestingly, ATL combined with
antibiotics protects mice from Escherichia coli-induced sepsis (Ueda et al. 2014). In
contrast, LXA4 seems to exert detrimental effects on Mycobacterium tuberculosis
infection (Chen et al. 2008; Bafica et al. 2005).

Interestingly, it has been demonstrated that LXA4 and other SPM also can
regulate HDP expression. We have shown that resolvin E1 (RvE1) dampens LTB4-
induced human cathelicidin LL-37 release from human neutrophils via binding to
BLT1 (Wan et al. 2011). On the other hand, ATL induces the expression of an
antimicrobial peptide/protein called bactericidal permeability-increasing protein in
epithelial cells (Canny et al. 2002). Campbell et al. concluded that generation of
SPM in the resolution phase elicits the induction of “nonclassical” AMPs to
accelerate return to homeostasis via continued bacterial killing, and inhibition of
LPS signaling; meanwhile, SPMs can block and/or counteract the release of
“classical” AMPs from leukocytes, dampening the proinflammatory signals
(Campbell et al. 2011).

It is noteworthy that LXs act as agonists at specific GPCRs, in particular
FPR2/ALX, to regulate cellular responses in inflammation and resolution (Fiore
et al. 1994). Actually, FPR2/ALX binds both protein and lipid ligands that evoke
opposing biological responses. For example, ALX mediates the proinflammatory
actions of LL-37 (Wan et al. 2011) and the acute-phase protein serum amyloid A
(SAA) (Bozinovski et al. 2012). In contrast, ALX also mediates the
anti-inflammatory actions of the lipid LXA4 (Fiore et al. 1994) and protein annexin
A1 (AnxA1) (Perretti and D’Acquisto 2009). Actually, lipid and peptide ligands act
with different affinities and bind to distinct pockets on the receptor, thus making a
direct competition unlikely (Filep 2013). In one recent report, Cooray et al. iden-
tified that AnxA1, but not SAA, stimulated ALX homodimerization and activated
the p38 MAPK/MAPKAPK/Hsp27 signaling cascade (Cooray et al. 2013).
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6.3 HDPs and Eicosanoid Productions

Although first studied for their antimicrobial activity, HDPs are now widely rec-
ognized for their multifunctional roles in both the innate and adaptive immune
responses. Their diverse immunomodulatory capabilities include the modulation of
pro- and anti-inflammatory responses, chemoattraction, enhancement of extracel-
lular and intracellular bacterial killing, cellular differentiation and activation of the
innate and adaptive compartments, wound-healing, and modulation of autophagy as
well as apoptosis and pyroptosis (Mansour et al. 2014). Increasing evidence
demonstrate that HDPs also promote eicosanoid productions in various cell types to
form a positive feedback loop between HDP and eicosanoid production, which
plays an important role in several pathophysiological conditions.

6.3.1 Positive Feedback Loops Between HDPs
and Eicosanoids

6.3.1.1 HDPs and LTB4 in Host Defense

Human α-defensins, also known as human neutrophil peptides (HNP), are a major
product of activated neutrophils. HNP types 1–4 are abundant in human neu-
trophils, constituting 5 % of all neutrophil proteins and 30–50 % of the total protein
content of the azurophilic granules in neutrophils (Ganz et al. 1985). It has been
shown that LTB4 triggers the release of α-defensins from circulating neutrophils
(Flamand et al. 2004; Gaudreault and Gosselin 2008; Flamand et al. 2007).
Moreover, HNP promote LTB4 production in human alveolar macrophages in a
dose-dependent manner (Spencer et al. 2004), suggesting α-defensins and LTB4

could interact through a positive feedback loop. In addition, our research group and
others have demonstrated that LTB4 also induces hCAP18/LL-37 release from
neutrophils via the BLT1 receptor (Wan et al. 2007; Flamand et al. 2007). LL-37 is
present at high concentrations as the inactive proform hCAP-18 in the secondary
granules of neutrophils (Sorensen et al. 1997). Once hCAP18 is secreted from
neutrophils, it is processed into the active LL-37 peptide by proteinase 3 that is
present in the primary granules of these cells (Gudmundsson et al. 1996; Sorensen
et al. 2001). Interestingly, we also identified that LL-37 induces intracellular cal-
cium mobilization, activates p38 MAP kinase, promotes phosphorylation of cPLA2

and translocation of 5-LOX, which promotes LTB4 release from human neutrophils
via the GPCR FPR2/ALX (Wan et al. 2007, 2011), and from human macrophages
via P2X7R (Wan et al. 2014), indicating that a positive feedback loop exists
between cathelicidin and LTB4 production as well.

Considering the importance of LTB4-induced HDPs from neutrophils in antiviral
activity in vitro and in vivo (Flamand et al. 2004, 2007; Gaudreault and Gosselin
2008), the positive feedback loop between LTB4 and HDPs could be vital to
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amplify the host antiviral activity. Recently, Chaves et al. provided evidence that
P2X7R activation in macrophages leads to LTB4 formation, which is required for L.
amazonensis elimination (Chaves et al. 2014). In our recent studies, we further
demonstrate that LL-37 promotes LTB4 production in human macrophage via
P2X7R (Wan et al. 2014) and that LL-37 enhances bacterial clearance by macro-
phages (Wan et al. 2014). Macrophages can also import LL-37 released from LTB4-
challenged neutrophils to promote intracellular bacterial clearance (Tang et al.
2015). All these evidences suggest the presence of positive feedback circuits
between HDPs and LTB4 that are important in host defense against various
pathogens.

Intriguingly, we have also shown that anti-inflammatory lipid mediators LXA4

and RvE1 might counteract the proinflammatory circuit between LL-37 and LTB4

in human neutrophils by blocking the receptors FPR2/ALX and BLT1, respec-
tively, that signal in a LTB4/LL-37 positive feedback loop in neutrophils (Wan et al.
2011). It is noteworthy that both LTB4 and LL-37 are involved in many chronic
inflammatory diseases, such as atherosclerosis (Funk 2005; Qiu et al. 2006; Edfeldt
et al. 2006), inflammatory bowel diseases (Hawthorne et al. 1992; Schauber et al.
2006) and cancers (Satpathy et al. 2015; von Haussen et al. 2008). Therefore, it
appears essential to interfere with and dampen LTB4/LL-37 co-driven inflammatory
responses.

6.3.1.2 HDPs and PGD2/cys-LTs in Allergy

Human β-defensins (hBDs) are mainly produced by epithelia of several organs
including skin, and participate in host defense by killing invading pathogens, as
well as promoting both innate and adaptive immune responses (Yang et al. 1999).
Among four hBDs identified in epithelium so far, hBD-1 is generally constitutively
produced by various epithelial tissues such as those in the urogenital and respiratory
tracts, and skin (Valore et al. 1998), whereas the expressions of hBD-2, hBD-3, and
hBD-4 are inducible (Singh et al. 1998).

It has been reported that PGD2 induces hBDs including hBD-2 and hBD-3
production in human keratinocytes (Kanda et al. 2010; Bernard and Gallo 2010).
PGD2 is the major prostaglandin produced by mast cells and is involved in allergic
diseases such as asthma (Matsuoka et al. 2000). Interestingly, it has been reported
that hBD-2 works as a chemotaxin for mast cells (Niyonsaba et al. 2002), and
induces intracellular calcium mobilization, AA release and PGD2 production in rat
peritoneal mast cells via COX-1 (Niyonsaba et al. 2001; Kase et al. 2009).
Furthermore, hBD-3 and hBD-4 also act on mast cells and enhances their
chemotaxis and degranulation, which results in the release of PGD2 (Chen et al.
2007). Moreover, cathelicidins can activate mast cells as well. For example, LL-37
was shown to induce intracellular calcium mobilization, AA release and PGD2

production in rat peritoneal mast cells via COX-1 (Niyonsaba et al. 2001).
Furthermore, rat cathelicidin rCRAMP and human cathelicidin LL-37 trigger
generation and release of cys-LTs and other pro-inflammatory mediators in mast
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cells (Babolewska et al. 2014; Babolewska and Brzezinska-Blaszczyk 2015). Work
in our laboratory has also revealed that LL-37 induces synthesis and release of
cys-LTs from human eosinophils via FPR2/ALX by enhancing cPLA2 activity and
inducing intracellular translocation and assembly of 5-LOX and LTC4S at perin-
uclear locations and lipid bodies (Sun et al. 2013). In addition, we could observe
that eosinophils from asthmatics express significantly higher hCAP18 protein levels
compared with those from healthy subjects, and eosinophils isolated from asth-
matics released more hCAP18 upon leukotriene stimulation than did cells from
healthy subjects (Sun et al. 2013). Hence, this study suggested that a positive
feedback loop also exists between leukotrienes and LL-37 in eosinophils, which
might contribute to asthma progress. The results from all these studies indicate that
the proinflammatory circuit between HDPs and eicosanoids in mast cells and
eosinophils may be undesirable for the host during an antimicrobial process, and
could be a potential therapeutic target for allergic diseases, such as asthma.

6.3.2 Other HDPs and Eicosanoid Production

One early study investigated the effects of two magainin peptides originally isolated
from the skin of the African claw toad (Xenopus laevis) on eicosanoid synthesis by rat
peritoneal macrophages stimulatedwith LPS and lipidA from Salmonella. The results
showed that depending on the type of peptide used and on its concentration, these two
magainin peptides exhibited different effects on LPS or lipid A-induced macrophage
eicosanoid synthesis (TXB2 and 6-keto-PGF1α) (Matera et al. 1993). Another family
of α-helical HDPs, pleurocidins, originate from fish and are structurally and func-
tionally similar to cathelicidins (Cole et al. 1997; Patrzykat et al. 2003). Chiou et al.
demonstrated that cecropin and pleurocidin induce gene expression of IL-1β and
COX-2 in a trout macrophage cell line (Peter Chiou et al. 2006), suggesting a
proinflammatory role of pleurocidin in the vertebrate immune system. One recent
report illustrated that pleurocidins activated human mast cells to induce intracellular
calcium mobilization and production of cys-LTs and PGD2 in human mast cells
through the FPR2/ALX receptor (Pundir et al. 2014). Moreover, catestatin, a neu-
roendocrine antimicrobial peptide, can also activate human mast cells to induce
intracellular calcium mobilization and the production of cys-LTs, PGD2 and PGE2

(Aung et al. 2011). Another report revealed that hBD-3 and LL-37 function as
proinflammatory mediators to up-regulate COX-2 expression and PGE2 synthesis in
human gingival fibroblasts (Chotjumlong et al. 2010, 2013). Furthermore, we also
identified that LL-37 elicited a biphasic release of eicosanoids in macrophages with
early, Ca2+-dependent formation of LTB4 andTXA2 (measured as TXB2) followed by
a late peak of TXA2 (measured as TXB2), generated via induction of COX-2 by
internalized LL-37 (Wan et al. 2014). Importantly, our findings provide evidence that
LL-37 is an endogenous regulator of eicosanoid-dependent inflammatory responses
in vivo, since intraperitoneal injection of mice with murine cathelicidin-related
antimicrobial peptide (mCRAMP) induces significantly higher levels of LTB4 and
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TXA2 in mouse ascites rich in macrophages. Conversely, cathelicidin-deficient
(Cnlp-/-) mice produce much less LTB4 and TXB2 in vivo in response to TNF-α
comparedwith controlmice (Wan et al. 2014). Additionally, we also found that LL-37
induces angiogenesis via PGE2–EP3 signaling in endothelial cells, and mCRAMP
also induced prostaglandin-dependent angiogenesis in vivo, which could be blocked
by aspirin (Salvado et al. 2013).

6.4 Conclusion

As two important components in innate immunity and inflammation, plenty of
studies on HDPs and eicosanoids have been undertaken. Accumulated evidence
demonstrates that HDPs not only kill pathogens directly, but also possess potent
immunoregulatory activities including regulation of eicosanoid production.
Meanwhile, eicosanoids participate in host defense via various mechanisms, one of

Fig. 6.4 The crosstalk between LL-37, a human HDP, and eicosanoids in leukocytes.
Inflammation is induced (e.g., by microbes), and neutrophils are recruited to the sites of
inflammation guided by chemoattractants, such as LTB4. LTB4 can trigger the release of
hCAP18/LL-37 via BLT1. The released LL-37 conversely induces LTB4 production from
neutrophils via FPR2/ALX, or from macrophages via P2X7R, by triggering intracellular calcium
mobilization, activating p38 MAP kinase, promoting phosphorylation of cPLA2 and translocation
of 5-LOX. Similarly, the released LL-37 also induces LTB4 production from macrophages.
Therefore, there is a positive feedback loop between LL-37 and LTB4 production in leukocytes,
which can be blocked by the anti-inflammatory lipid mediators LXA4 and RvE1 by competition
with LL-37 or LTB4 for binding at FPR2/ALX or BLT1, respectively. Moreover, the
neutrophil-released LL-37 can also be taken up by macrophages, leading to further eicosanoid
production such as TXA2 or facilitated intracellular bacterial killing
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which is to modulate HDP production. The crosstalk between these two families of
molecules has been concluded in Fig. 6.4. Considering the involvement of these
two families of peptides and lipids in several pathophysiological situations, such as
infections and allergy, intervention in positive cross-signaling loops has become a
potential strategy for treatments against infection, allergy, and other inflammatory
diseases.
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Chapter 7
Bacterial Resistance to Host Defence
Peptides

David A. Phoenix, Sarah R. Dennison and Frederick Harris

Abstract Currently, antimicrobial drug resistance is a global problem that threat-
ens to precipitate a ‘Post-antibiotic era’ in which the ability of common infections
and minor injuries to kill is a very real possibility. A potential solution to this
problem is the development of host defence peptides, which are endogenous
antibiotics that kill microbes via membranolytic action, based in part on the belief
that microbes were unlikely to develop resistance to this action. However, the
incidence of microbes exhibiting resistance to the action of host defence peptides is
growing and an increasingly diverse spectrum of mechanisms is being reported to
underpin this resistance. These mechanisms can be broadly categorized as those that
either: destroy these peptides, such as through the production of bacterial proteases;
intercept/shield these peptides, such as by the release of host cell proteoglycans by
bacterial enzymes; or export these peptides, such as via the use of bacterial efflux
pumps. Here we give an overview of these mechanisms, with a focus on recent
developments in this area, and then discuss the potential of inhibitors of these
resistance mechanisms to treat infections due to bacterial pathogens.
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7.1 Introduction

Antimicrobial drug resistance is a global problem, the gravity of which, was
highlighted by a recent report issued by the World Health Organization, which
stated that: …. Antimicrobial resistance threatens the effective prevention and
treatment of an ever-increasing range of infections caused by bacteria, parasites,
viruses and fungi. An increasing number of governments around the world are
devoting efforts to a problem so serious that it threatens the achievements of
modern medicine. A post-antibiotic era—in which common infections and minor
injuries can kill—far from being an apocalyptic fantasy, is instead a very real
possibility for the twenty first Century (World Health Organization 2014).

This rhetoric harks back to the pre-antibiotic era when currently treatable
infections such as syphilis were endemic and almost incurable whilst infections
such as diarrhoea and pneumonia and those caught post-surgically were the main
causes of death (Zaffiri et al. 2012). This era is generally taken to have ended
towards the early part of the last century with the discovery and commercial use of
the first antibiotics such as Salvarsan, Penicillin and Streptomycin (Pringle 2013;
Aminov 2010; Radecka et al. 2014). With the advent of these drugs, so began what
came to be known as the ‘Golden age of antibiotics’ which led to an increase in
human life expectancy of circa 8 years (Mills and Dougherty 2012), accompanied
by a rapid loss of interest in the therapeutic potential of natural host antibiotics and
the importance of this immune defence strategy (Zaffiri et al. 2012; Bentley 2009).
However, in the early 1960s, the rise of multi-drug-resistant (MDR) microbial
pathogens coupled to the concomitant loss of efficacy by conventional antibiotics
signalled the end of this ‘Golden age’ (Mills and Dougherty 2012; Davies 2006;
Katz et al. 2006; Cole 2014; Tremolieres 2010) and prompted a resurgence of
interest in the development of host defence peptides (HDPs) (Phoenix et al. 2013a,
2014; Franco and Parachin 2014; Drider and Rebuffat 2011).

Research into HDPs produced by prokaryotes has its origins in the 1920s (Drider
and Rebuffat 2011), which accelerated in the 1960s and currently, these peptides
have a range of therapeutic and biotechnical applications such as in the areas of
food science, pharmaceutics and clinical medicine (Drider and Rebuffat 2011;
Balciunas et al. 2013; Nishie et al. 2012; Duquesne et al. 2007; Yang 2014).
However, MDR organisms with resistance to the action of these peptides are
becoming a major problem (Bastos et al. 2015; Cotter et al. 2013; Hassan et al.
2012; Nawrocki et al. 2014), particularly in the cases of nisin, which is extensively
used in food preservation (Zhou et al. 2014; Draper et al. 2015; Kaur et al. 2011),
and polymixins and daptomycin, which are regarded as last-resort options in the
treatment of Gram-negative and Gram-positive infections, respectively (Stefania
et al. 2015; Bayer et al. 2013; Vilhena and Bettencourt 2012; Yu et al. 2015;
Olaitan et al. 2014; Bialvaei and Kafil 2015). Research into HDPs from eukaryotes
is generally taken to have its origins in the early 1960s, which led to a number of
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landmark studies and the first major reports of these peptides in the 1980s (Phoenix
et al. 2013). In 1981, Boman and colleagues injected bacteria into the pupae of the
silk moth, Hyalophora cecropia, and isolated several inducible antimicrobial
peptides (Hultmark et al. 1980), which were later characterized and named ‘ce-
cropins’ (Steiner et al. 1981). In the mid-1980s, antimicrobial peptides were
identified by Lehrer and colleagues in rabbits and humans, which are now known as
α-defensins (Selsted et al. 1983, 1984, 1985; Ganz et al. 1985). Soon after, in 1987,
Zasloff and co-workers isolated and characterized antimicrobial peptides from the
African clawed frog, Xenopus laevis, and named these peptides magainins after the
Hebrew word for ‘Shield’ thereby acknowledging their defence role (Zasloff 1987).
Since these earlier studies, over 2500 HDPs have been reported in the APD2
database (Wang et al. 2009, 2010) and today many of these peptides are undergoing
extensive investigation as putative antimicrobials including a number of HDPs that
have strong clinical potential and are in clinical trials (Fox 2013; Kang et al. 2014;
Ashby et al. 2014). Currently, one of the most promising examples of these HDPs is
pexiganan, a homologue of magainin (Locilex®) that is currently in phase III
clinical trials as a broad-spectrum, topical treatment for patients with mild infec-
tions of diabetic foot ulcers (Fox 2013; ClinicalTrials.gov 2014).

The perceived clinical potential of HDPs in part derives from the view held
around the time of their discovery, which was that these peptides had maintained
their antimicrobial capacity over evolutionary time (108 years), despite their con-
tinual presence in microbial environments, and microbes were therefore, unlikely to
develop resistance to their action (Zasloff 2002). However, today, although low, the
incidence of microbes exhibiting resistance to the action of HDPs is growing and an
increasingly diverse spectrum of mechanisms is being reported to underpin this
resistance (Nawrocki et al. 2014; Koprivnjak and Peschel 2011; Guilhelmelli et al.
2013; Gruenheid and Le Moual 2012). Moreover, recent in vitro studies showed
that bacterial resistance to HDPs could be evolved experimentally within a few
hundred generations (Pranting et al. 2008; Habets et al. 2012; Dobson et al. 2013)
and that such bacteria can survive better in vivo as demonstrated in an animal model
(Dobson et al. 2014). In particular, it has been shown that bacterial resistance to
pexiganan can be experimentally evolved (Perron et al. 2006), which in this case
also provides cross-resistance to human HDPs that act as key components of the
innate immune response to infection (Habets and Brockhurst 2012). Clearly, this
situation could severely undermine the ability of the innate immune system to
control and clear microbial infections and thereby pose grave potential risks for
anti-infective therapies based on HDPs (Dobson et al. 2014). Here we give an
overview of mechanisms that underpin bacterial resistance to the action of HDPs
with a focus on recent developments in this area. We then discuss the potential of
inhibitors of these resistance mechanisms to treat infections due to bacterial
pathogens.
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7.2 Bacterial Interaction with HDPs

Bacteria resistance to the action of HDPs is an aspect of host–pathogen interactions
that result from mutual inhibition, evasion and adaption strategies that have evolved
over millions of years and is a part of ongoing highly dynamic co-evolutionary
processes (Peschel and Sahl 2006). In this context, the production of HDPs by
eukaryotes can also be considered a resistance mechanism to protect the host from
bacterial infection (Heimlich et al. 2014). Indeed, the relatively recent discovery of
HDPs helped to explain why plants and insects remain free from infections for most
of the time (Phoenix et al. 2013a) although they lack adaptive immune systems
(Jones and Dangl 2006; Spoel and Dong 2012; Vilcinskas 2013; Lemaitre and
Hoffmann 2007). The vast majority of HDPs are cationic to facilitate direct elec-
trostatic interaction with anionic components of the bacterial cell envelope
(Guilhelmelli et al. 2013; Phoenix et al. 2013; Cruz et al. 2014) although a number of
these peptides are anionic and use varying strategies to interact with these anionic
envelope components (Harris et al. 2009, 2011; Phoenix et al. 2013). It is believed
that, in general, HDPs engage in low affinity, electrostatic interactions with nega-
tively charged components of the cell envelope to promote their passage through the
envelope, although this process is not well understood (Fig. 7.1). It has been sug-
gested that these low affinity interactions result in the formation of polyelectrolyte
complexes with peptidoglycan and/or lipopolysaccharide (LPS), which helps these
peptides attach to the cell wall and diffuse or migrate to the cytoplasmic membrane
(CM) of the target bacteria (Dorner and Lienkamp 2014; Brogden 2005; Phoenix
et al. 2013; McPhee et al. 2009). It is generally accepted that an essential step in the
antibacterial mechanisms of all HDPs is interaction with the CM (Phoenix et al.
2013; Teixeira et al. 2012; Epand and Epand 2011; Harris et al. 2013), which is rich
in anionic lipids. These lipids comprise over 80 % of the total lipid found in the
membranes of Gram-positive bacteria and up to 30 % of the total lipid present in
membranes of Gram-negative bacteria (Epand and Epand 2011). In most cases,
interaction with the CM is the major site of action for HDPs and these interactions
generally lead to either lysis or permeabilisation of the membrane (Zasloff 2002;
Guilhelmelli et al. 2013; Phoenix et al. 2013a, b, c; Cruz et al. 2014; Harris et al.
2009, 2011, 2013; Teixeira et al. 2012; Epand and Epand 2011; Schmidt and Wong
2013), although in some cases, these peptides are translocated across the bilayer to
attack intracellular targets such as DNA (Silhavy et al. 2010; Nicolas 2009; Marcos
and Gandia 2009; Splith and Neundorf 2011; Last et al. 2013; Henriques et al. 2006;
Wilmes et al. 2011; Anaya-Lopez et al. 2013).

In response, Gram-positive and Gram-negative bacteria have developed sensor
systems that are able to detect the presence of both cationic and anionic HDPs and
induce adaptive mechanisms of resistance to these peptides (Heimlich et al. 2014;
Otto 2009; Poole 2012; Kindrachuk and Napper 2008). A well characterized
example in the case of Gram-negative bacteria is the two-component regula-
tory system, PhoPQ, in which PhoQ, a transmembrane kinase sensor, detects HDPs
thereby inducing the phosphorylation and activation of the cytoplasmic
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Fig. 7.1 Bacterial cell envelopes. Fig. 7.1 shows the cell envelope for Gram-positive bacteria
(a) and Gram-negative bacteria (b). Essentially, the bacterial cell envelope is a complex
multilayered structure that serves to protect these organisms from the external environment. The
envelope of Gram-negative bacteria comprises three principal layers; the outer membrane (OM),
which is predominantly formed from lipopolysaccharide (LPS), a thin peptidoglycan cell wall, and
the cytoplasmic membrane (CM), which is primarily formed from phospholipids. The OM and CM
delimit the periplasm, which is an aqueous cellular compartment (Fig. 7.1b) (Silhavy et al. 2010).
In contrast, the Gram-positive cell envelope possesses no outer membrane and includes a
peptidoglycan layer that is many times thicker than that found in Gram-negative bacteria.
Threading through this peptidoglycan layer are long polymers, including teichoic acids, which are
covalently attached to peptidoglycan, and lipoteichoic acids, which are anchored to the headgroups
of membrane lipids. Sandwiched between this peptidoglycan layer and the CM of Gram-positive
bacteria is the periplasm, which is much thinner than that of Gram-negative bacteria (Fig. 7.1a).
Interaction with the CM of Gram-positive and Gram-negative bacteria to facilitate their
antibacterial activity is a requirement of all known HDPs (Guilhelmelli et al. 2013; Phoenix
et al. 2013a, c; Cruz et al. 2014; Teixeira et al. 2012; Epand and Epand 2011; Harris et al. 2013). It
is believed that these peptides, which are predominantly cationic (Phoenix et al. 2013; Brogden
2005), target bacteria via the overall net negative charge on the outer surface of their cell
envelopes, primarily due to the presence of techoic and lipotechoic acids in the case of
Gram-positive organisms and LPS in the case of Gram-negative bacteria (Splith and Neundorf
2011). Low affinity, electrostatic interactions between HDPs and negatively charged components
of the cell envelope, such as peptidoglycan moieties and/or LPS, then helps these peptides attach to
the cell wall and migrate to the CM of the target bacteria (Dorner and Lienkamp 2014; Brogden
2005; Phoenix et al. 2013; McPhee et al. 2009). Interaction with the CM of both Gram-positive
and Gram-negative bacteria, which is rich in anionic lipids (Epand and Epand 2011), then
generally leads to either lysis or permeabilisation of the membrane, which in most cases is the site
of action of HDPs (Zasloff 2002; Guihelmelli et al. 2013; Phoenix et al. 2013a, b, c; Cruz et al.
2014; Harris et al. 2009, 2011, 2013; Teixeira et al. 2012; Epand and Epand 2011; Schmidt and
Wong 2013), or the translocation of these peptides across the bilayer to attack intracellular targets
such as DNA (Nicolas 2009; Marcos and Gandia 2009; Splith and Neundorf 2011; Last et al.
2013; Henriques et al. 2006; Wilmes et al. 2011; Anaya-Lopez et al. 2013).
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transcription factor, PhoP (Otto 2009; Poole 2012; Vasil and Darwin 2012;
Groisman 2001). This regulatory system responds to environmental stressors and
modulates the expression of genes that contribute to the modification of LPS in the
outer membrane (OM) (Fig. 7.1), leading to increased resistance to HDPs
(Gruenheid and Le Moual 2012; Needham and Trent 2013; Band and Weiss 2015).
In this capacity, the PhoPQ regulatory system has been best described in
Salmonella typhimurium (Dalebroux and Miller 2014; Bader et al. 2003) but has
also been demonstrated to play an analogous role in other pathogens (Heimlich
et al. 2014; Poole 2012; Kindrachuk and Napper 2008; Band and Weiss 2015)
including: Pseudomonas aeruginosa (Breidenstein et al. 2011; Miller et al. 2011),
Escherichia coli (Alteri et al. 2011; Rubin et al. 2015), Klebsiella pneumoniae
(Llobet et al. 2011; Cheng et al. 2010), Erwina amylovora (Nakka et al. 2010) and
Serratia marcescens (Lin et al. 2014). Sensor systems for the detection of HDPs in
Gram-positive bacteria are less well described than those in Gram-negative bacteria
(Otto 2009; Poole 2012) and one of the most intensively studied of these systems is
the GraSR regulon of Staphylococcus aureus and Staphylococcus epidermis (also
known as the Aps regulon), which has recently been shown to also involve graX.
This gene is also involved in resistance to HDPs and is cotranscribed with graRS,
encoding a regulatory cofactor of the GraSR signalling pathway, which effectively
constitutes a three-component system, GraXSR (Heimlich et al. 2014; Yang et al.
2012; Li et al. 2007; Muzamal et al. 2014; Falord et al. 2012). In this system, the
transmembrane kinase sensor, GraS, detects HDPs, resulting in the phosphorylation
and activation of the cytoplasmic transcription factor, GraR, to induce membrane
modifications and the use of transport systems that mediate resistance to these
peptides (Otto 2009; Poole 2012; Yang et al. 2012; Li et al. 2007; Falord et al.
2011; Joo and Otto 2015; Matsuo et al. 2011). In addition to those induced by
PhoPQ and GraXSR, a variety of other bacterial resistance mechanisms to HDPs,
both adaptive and intrinsic, are encountered by HDPs as they migrate through the
envelope systems of these organisms to interact with the CM (Fig. 7.1) (Nawrocki
et al. 2014; Koprivnjak and Peschel 2011; Guilhelmelli et al. 2013; Anaya-Lopez
et al. 2013; Band and Weiss 2015; Dorotkiewicz-Jach et al. 2015; German et al.
2008).

7.3 Bacterial Defences to the Action of HDPs

In their quest to attain the CM of bacteria, HDPs must traverse through multiple
layers of the cell envelopes possessed by these organisms, including capsules, the
outer membrane, peptidoglycan and the periplasm (Fig. 7.1). In response, bacteria
have acquired defence mechanisms that are active at multiple points along the
passage of these peptides through the cell envelope (Nawrocki et al. 2014;
Koprivnjak and Peschel 2011; Guihelmelli et al. 2013; Anaya-Lopez et al. 2013;
Band and Weiss 2015; Dorotkiewicz-Jach et al. 2015) and can be broadly
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categorized as those that either destroy, intercept/shield or export these peptides
(LaRock and Nizet 2015).

7.3.1 Bacterial Resistance Mechanisms that Destroy HDPs

In relation to the destruction of HDPs, this can be indirect through bacterial
modulation of the host expression of these peptides, thereby reducing their con-
centration and potential for antibacterial action (Guihelmellai et al. 2013). For
example, Shigella flexneri (Islam et al. 2001; Sperandio et al. 2008), which is a
Gram-negative pathogen that causes bacillary dysentery (Lima et al. 2015), was
shown to subvert the host immune system by downregulating the expression of
human LL-37 and HBD-1. This downregulation of host gene expression appeared
to significantly reduce the production of these HDPs thereby facilitating deeper
invasion of human intestinal crypts by the organism (Islam et al. 2001; Sperandio
et al. 2008).

However, the major mechanism used by bacteria to destroy HDPs is directly
through the use of proteases (Nawrocki et al. 2014; Koprivnjak and Peschel 2011;
Guihelmelli et al. 2013; Anaya-Lopez et al. 2013; Band and Weiss 2015), which are
used by these organisms for a variety of purposes during the infection process
(Frees et al. 2013). Based on the active residues that are involved in catalysis,
proteases can be divided into six major groups: cysteine proteases, threonine pro-
teases, glutamic proteases, aspartic proteases, metalloproteases and serine proteases
with members of these last three of these groups being the most abundant (Barrett
et al. 2012). Currently, there appears to be only one major report of a cytostolic
protease mediating bacterial resistance to HDPs, which is oligopeptidase B (OpdB),
a serine peptidase with unknown physiological function (Coetzer et al. 2008;
Mohamed Mustafa et al. 2012; Szeltner and Polgar 2008). It was found that OpdB
was able to degrade a variety of proline-rich HDPs with intracellular targets, such as
the Bac7(1-35) and Bac7(1-16) derivatives of bovine Bac7, so conferring E. coli
with reduced sensitivity to their action (Mattiuzzo et al. 2007, 2014).

There is evidence to suggest that the degradation of some HDPs is mediated by
periplasmic proteases as in the case of Burkholderia cenocepacia, and other species
of this genus, which degrade apiarian, melittin and other HDPs using the
periplasmic serine protease, MucD (Loutet et al. 2011). A periplasmic serine pro-
tease, DegP (HtrA), along with extracellular serine proteases, metalloproteases and
aspartic proteases has also been associated with resistance to lactoferrin B in E. coli
but whereas the proteolytic activity of these extracellular proteases was shown to
contribute to this resistance mechanism, the role of DegP, which has a number of
physiological functions, is currently unclear (Ulvatne et al. 2002).

However, in most cases, bacterial resistance to HDPs is associated with extra-
cellular proteases (Nawrocki et al. 2014; Koprivnjak and Peschel 2011; Gruenheid
and Le Moual 2012; Anaya-Lopez et al. 2013; Band and Weiss 2015;
Dorotkiewicz-Jach et al. 2015), which are in close contact with host components
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(Frees et al. 2013). For example, Porphyromonas gingivalis, which is the
Gram-negative pathogen most associated with chronic periodontal disease (Mysak
et al. 2014; Bostanci and Belibasakis 2012), is highly proteolytic and secretes three
proteases known as gingipains that belong to the cysteine family of proteases and
cleave substrates after arginine and lysine residues (Guo et al. 2000; Grenier and La
2011). The gingipains have been shown to degrade a plethora of HDPs, including
LL-37, HBD-1, human HBD-2, HBD-3 and histatin 5; magainin 2; ranine der-
maseptin and brevinin; arctian cecropin B; and vespine mastoparan (Carlisle et al.
2009; Devine et al. 1999; Gutner et al. 2009; Maisetta et al. 2011). Some
Gram-negative pathogens also degrade HDPs through the use of omptins, which is
an expanding family of outer membrane (OM) proteases mainly found in
Enterobacteriaceae. These proteases possess a unique active site that combines
elements of both serine and aspartate proteases, and interaction with LPS has been
shown to be critical for their activity. High overall levels of sequence homology
exist between omptins of different bacteria suggesting that their use by
Gram-negative pathogens to degrade HDPs may be common (Gruenheid and Le
Moual 2012; Band and Weiss 2015; Lin et al. 2002; Hritonenko and Stathopoulos
2007; Haiko et al. 2009; Kukkonen and Korhonen 2004). As an example, enter-
opathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are two
clinically important human gastrointestinal pathogens (Wong et al. 2011). Recent
studies on the omptin produced by these E. coli strains, OmpT, showed that the
protease was able to degrade LL-37 in EHEC more efficiently than in EPEC due to
differences in the regulation of ompT genes, which resulted in higher levels of the
protease in EHEC (Thomassin et al. 2012). A follow-up study suggested that this
differential expression of OmpT by EHEC and EPEC was due to these E. coli
strains colonizing different niches of the human gastrointestinal tract where they
would be exposed to different patterns of host HDPs. For example, EHEC most
likely developed high OmpT expression to survive the high levels of LL-37 in the
large intestine whereas low expression of the protease in EPEC is sufficient to
counter the trace amounts of LL-37 in the small intestine (Thomassin et al. 2012).
Consistent with these latter studies, work on uropathegenic E coli (UPEC), which is
the causative agent of most urinary tract infections (Ulett et al. 2013), demonstrated
that OmpT from this strain of the organism can degrade LL-37 but only when the
protease is expressed at high levels. It was suggested that OmpT was not essential
for resistance to LL-37 in the case of UPEC and that resistance to HDPs mediated
by this omptin was specific to a given bacterial pathogen (Brannon et al. 2013).
More recent work on adherent-invasive E. coli (AIEC), which is associated with
Crohn’s disease (Agus et al. 2014), demonstrated that plasmid-encoded ArlC is a
protease belonging to the OmpT family of proteases and appeared to degrade a
range of HDPs, including LL-37, HBD-1 and human HNP-5 (McPhee et al. 2014).
It was suggested by these latter authors that the degradation of HDPs by AEIC
resulted from combinatorial proteolytic activity between ArlC and OmpT (McPhee
et al. 2014), which is chromosomally encoded and common to the E. coli lineage
(Kukkonen and Korhonen 2004). These results were consistent with previous
studies on E. coli, which demonstrated that the plasmid encoded protease, OmpP,
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degraded piscine protamine, which is abasic peptide that serves as an HDP, with an
enhanced degradation capacity seen in strains carrying both this omptin and
chromosomal OmpT (Hwang et al. 2007). Other work on E. coli has also reported
that OmpT was able to efficiently degrade protamine (Stumpe et al. 1998) and
provide the organism with resistance to HDPs present in urine, which appeared to
include HBD-1 to HBD-6, and HNP-1 to HNP-6 (Hui et al. 2010). In relation to
Gram-positive bacteria, Streptococcus pyogenes, which over the past two decades
has caused a resurgence of several infective syndromes such as soft tissue infections
(STIs) and scarlet fever (Wong and Yuen 2012), has been shown to produce the
cysteine protease, SpeB (Schmidtchen et al. 2002). This protease was shown to
degrade LL-37 both in vitro and in vivo in biopsy specimens from patients with
severe STIs due to the organism (Schmidtchen et al. 2002; Johansson et al. 2008).
SpeB also plays a role in another strategy used by Gram-positive bacteria to resist
HDPs, which involves the formation of complexes that retain their proteases near
the bacterial surface. In addition to HDPs (Schmidtchen et al. 2002), SpeB cleaves
other host proteins such as fibrin and immunoglobulins (Nelson et al. 2011;
Rasmussen and Bjorck 2002) and the protease was found to complex with the host
proteinase inhibitor, α2-macroglobulin (α2 M), during infection by the organism
(Nyberg et al. 2004). These catalytically active complexes were retained on the
bacterial cell surface by high affinity association with the S. pyogenes G-related
α2M-binding protein (GRAB) (Nelson et al. 2011; Rasmussen and Bjorck 2002;
Nyberg et al. 2004). Although trapped in this complex, SpeB retained its ability to
degrade LL-37 and interestingly, its activity against the peptide was enhanced, as
evidenced by the reduced killing of S. pyogenes in vitro (Nyberg et al. 2004).

7.3.2 Bacterial Resistance Mechanisms that Intercept/Shield
HDPs

Bacterial defence mechanisms that intercept HDPs have been developed by both
Gram-positive and Gram-negative bacteria and include extracellular or
surface-linked proteins and polysaccharides that intercept and directly bind to these
peptides, thereby inhibiting their passage through the bacterial envelope and
blocking access to the CM (Nawrocki et al. 2014; Koprivnjak and Peschel 2011;
Gruenheid and Le Moual 2012; Anaya-Lopez et al. 2013; Band and Weiss 2015;
Dorotkiewicz-Jach et al. 2015). These molecules can be derived from host cells as
in the case of anionic proteoglycans, which can be cleaved and released from the
surface of fibroblasts and epithelial cells by bacterial enzymes to sequester HDPs
(Menozzi et al. 2002; Zamfir et al. 2003). A major example of these proteoglycans
is decorin and it was found that when this molecule was incubated with a range of
bacteria, including S. pyogenes and P. aeruginosa, it was cleaved by the bacterial
proteases, SpeB and this proteolytic action released a number of products, including
dermatan sulphate, which was able to bind HNP-1 and render these organisms
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resistant to the action of the peptide (Zamfir et al. 2003; Schmidtchen et al. 2001).
Similarly, several studies showed that the incubation of P. aeruginosa with
syndecan-1, which is a proteoglycan found on the surface of epithelial cells, led to
cleavage of the molecule and release of its soluble ectodomain (heparin sulphate
chains), which was able to bind LL-37 and other HDPs. These studies also showed
that in a murine model of lung infection, the shedding of syndecan-1 was activated
by P. aeruginosa and that either inhibition of this shedding or inactivation of the
shed ectodomain’s heparan sulphate chains prevented lung infection in the murine
model (Park et al. 2000, 2001).

Bacterially produced polysaccharides involved in resistance to HDPs are com-
posed of structurally diverse polymers and can be attached to the cell surface of
bacteria through covalent linkages with the cell wall when they are known as
capsules or capsular polysaccharides. Other extracellular polysaccharides can be
polymers that are loosely attached to the cell surface and are generally referred to as
exopolysaccharides (EPS) (Yother 2011; Taylor and Roberts 2005; Nwodo et al.
2012; Schmid et al. 2015). These extracellular polysaccharides play critical roles in
bacterial survival strategies, including the promotion of both virulence and host
colonization (Mishra and Jha 2013; Ullrich 2009), and there is evidence to suggest
that they also mediate resistance to HDPs in both Gram-positive bacteria and
Gram-negative bacteria via the binding or electrostatic repulsion of HPDs
(Nawrocki et al. 2014; Koprivnjak and Peschel 2011; Guihelmelli et al. 2013;
Anaya-Lopez et al. 2013; Band and Weiss 2015; Dorotkiewicz-Jach et al. 2015).
Major examples of secreted EPS are polysaccharide intercellular adhesin (PIA),
also known as poly-N-acetylglucosamine (PNAG), and poly-γ-glutamic acid
(PGA). These molecules are both cationic EPS that are produced by a range of
staphylococci, including S. Epidermidis and S. aureus, and homologous systems
have been reported in other bacteria (Nawrocki et al. 2014; Joo and Otto 2015).
Several studies on S. epidermidis suggested that both PIA and PGA were able to
bind HDPs and endow the organism with resistance to LL-37, HBD-3, and the
human anionic HDP, dermcidin (Vuong et al. 2004a, b; Kocianova et al. 2005). It
was suggested that whilst this protection from HDPs was likely to include elec-
trostatic repulsion, other resistance mechanisms such as those based on the mod-
eration of electrostatic sequestration could also contribute to bacterial resistance to
these peptides (Joo and Otto 2015). As an example of a surface-anchored EPS,
several studies on Campylobacter jejuni, which is an important human foodborne
pathogen that causes diarrheal disease (Sahin et al. 2015), showed that truncation of
the core of lipooligosaccharide, which is a low molecular weight form of LPS,
increased the sensitivity of the organism to HDPs such as LL-37, HNP-5, murine
cryptdin-4 and avian fowlicidin-1. It was suggested that truncation of these core
regions might remove negatively charged sialic acids, which bind cationic AMPs
and thereby endow the organism with resistance to these peptides (Naito et al. 2010;
Keo et al. 2011).

One of the first secreted proteins reported to intercept and bind HDPs was the
serum inhibitor of complement (SIC), which is produced by S. pyogenes and was
first characterized for its role protecting the organism against killing by the
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membrane attack complex (Åkesson et al. 1996). However, SIC was later found to
not only interfere with the activation of the contact system but to also bind and
inhibit the action of a range of HDPs generated through complement and contact
activation, including LL-37, HNP-1, HBD-1 to HBD-4, and murine CRAMP
(mCRAMP). SIC was also shown to enhance the dissemination and attenuate the
virulence of S. pyogenes in murine models of infection by the organism (Pence
et al. 2010; Frick et al. 2003, 2011a, b; Fernie-King et al. 2004). The SIC protein of
S. pyogenes has also been shown to bind and neutralize the activity of
BRAK/CXCL14 and midkine (Frick et al. 2011b), which are chemokines with
antibacterial activity (Gela et al. 2014; Wolf and Moser 2012). The same study
showed that the FAF surface protein of Finegoldia magna (Peptostreptococcus
magnus), which is a commensal organism of human skin that can act as an
opportunistic pathogen (Murphy and Frick 2013), also bound these chemokines but
more efficiently than SIC of S. pyogenes. It was suggested that this difference in
efficiency of binding antibacterial chemokines might be related to the differing
requirements of the two organisms for virulence (Frick et al. 2011b). The FAF
surface protein is used by F. magna to adhere to the basement membrane of the
human epidermis (Murphy et al. 2014) and has previously been shown to bind and
inactivate LL-37 in a similar manner to SIC of S. Pyogenes (Frick et al. 2008).
More recent studies have identified several proteins with homology to SIC that have
similar activity against HDPs such as HBD-3 and LL-37, including DRS, which is
also found in strains of S. pyogenes (Fernie-King et al. 2007), and DrsG, which
occurs in Streptococcus dysgalactiae (Smyth et al. 2014), an emerging pathogen of
fishes and mammals (Abdelsalam et al. 2013).

Both Gram-positive and Gram-negative bacteria are known to use
surface-anchored proteins to intercept HDPs (Nawrocki et al. 2014; Koprivnjak and
Peschel 2011; Guihelmelli et al. 2013; Anaya-Lopez et al. 2013; Band and Weiss
2015; Dorotkiewicz-Jach et al. 2015), such as the long filamentous, proteinaceous
structures known as pili or fimbriae that extend from their surface and are often
involved in the initial adhesion of the bacteria to host tissues during colonization. In
the former case, these surface structures are formed by the covalent polymerization
of adhesive pilin subunits and in the latter case, they are composed of
non-covalently associated protein subunits called pilins or fimbrins (Proft and Baker
2009; Danne and Dramsi 2012; Telford et al. 2006; Fronzes et al. 2008). As an
example of these protein structures, curli are a fairly recently identified class of pili,
which are essentially amyloid fibres formed from repeating subunits of the major
pilin CsgA (curlin). Curli are expressed on the outer surfaces of Enterobacteriaceae,
which are best characterized in species of Escherichia and Salmonella. These
surface structures have been implicated in a number of biological processes,
including biofilm formation, cell aggregation, host cell adhesion and invasion (Proft
and Baker 2009; Fronzes et al. 2008; Evans and Chapman 2014; Costa et al. 2015).
However, in a recent study, curli expressed by UPEC increased the resistance of the
organism to the action of LL-37 by binding the peptide via the overall negative
charge carried by the CsgA subunits of the curli (Kai-Larsen et al. 2010). In the case
of Gram-positive bacteria, the fimbrial M pili protein is produced by S. pyogenes
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(Telford et al. 2006) and is multifunctional during infection, being linked to both
host tissue adherence and invasive disease (Bisno et al. 2003; Ghosh 2011). Several
studies have shown that one M protein variant encoded by the isolates most
commonly associated with infection, M1, can protect S. pyogenes by directly
binding and neutralizing HDPs, such as LL-37 and mCRAMP (Cole et al. 2010;
Lauth et al. 2009). Furthermore, the sequestration of LL-37 by M1 also promotes
the survival of S. pyogenes in neutrophil extracellular traps (NETs) (Cole et al.
2010; Lauth et al. 2009), which are able to engulf and kill microbial pathogens and
are formed from networks of extracellular fibres, primarily composed of DNA from
neutrophils that are associated with HDPs (Brinkmann and Zychlinsky 2012;
Cooper et al. 2000; Halverson et al. 2015). High levels of LL-37 were associated
with DNA within these structures but the function of this association appeared to be
stabilizing the structure of NETs against bacterial nuclease degradation rather than
antibacterial activity, which is lost when the peptide binds to DNA (Neumann et al.
2014). More recent studies have suggested that the sequestration of LL-37 by M1
promotes the survival of S. pyogenes by reducing the availability of the peptide to
participate in the formation of NETs. It appears that, upon bacterial infection,
LL-37 released by host cells translocates to the nucleus of neutrophils, leading to
disruption of the nuclear membrane, the release of DNA and the formation of NETs
(Neumann et al. 2014; von Koeckritz-Blickwede 2012). Another protective con-
sequence of the M1-mediated sequestration of HDPs may be to inhibit the recently
reported ability of these peptides to target the ExPortal of S. pyogenes membranes
(Vega and Caparon 2012; Port et al. 2014), which is a unique microdomain of these
membranes that is specialized for protein secretion and processing (Rosch and
Caparon 2005; Rosch et al. 2007; Vega et al. 2013). The disruption of ExPortal
organization in the organism’s membranes by HDPs leads to a redistribution of
ExPortal components into the peripheral membrane and the inhibition of secreted
defence molecules including the protease SpeB, described above, but interestingly,
not SIC (Vega and Caparon 2012; Port et al. 2014).

Resistance to HDPs can also be mediated by intrinsic properties of the OM and
CM such as membrane fluidity, the formation of outer membrane vesicles (OMVs)
and lipid receptors in the CM (Nawrocki et al. 2014; Koprivnjak and Peschel 2011;
Band and Weiss 2015; Yeaman and Yount 2003; Schaffer 2006). Membrane
fluidity encompasses the order, the mobility and the viscoelastic properties of the
bilayer and several studies showed that strains of S. aureus with elevated levels of
longer chain, unsaturated lipids in their CM exhibited higher degrees of fluidity and
were more resistant to the action of human thrombin-induced platelet microbicidal
protein-1 (tPMP-1), which is a basic peptide released by human platelets and
effectively serves as an HDP, in comparison to their wild-type counterparts. (Bayer
et al. 2000; Koo et al. 1996; Yeaman et al. 1998). Similarly, increased membrane
fluidity and cell wall thickness appeared to mediate the resistance of
methicillin-resistant S. aureus (MRSA), which is a major nosocomial pathogen that
causes severe morbidity and mortality (Batabyal et al. 2012), to tPMP-1 and HNP-1
(Mishra et al. 2012). However, in contrast, work on other strains of S. aureus has
shown that production of the carotenoid, staphyloxanthin, enhanced resistance to
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HNP-1 by increasing order in the fatty acid tails of CM lipids and thereby
increasing the rigidity of these membranes (Mishra et al. 2011; Pelz et al. 2005;
Katzif et al. 2005). More recently, a number of studies have shown that lysylated
phosphatidylglycerol (LysylPG), a cationic lipid found in S. aureus (Phoenix et al.
2013; Epand and Epand 2011; van Meer et al. 2008), can induce rigidity of the
organism’s CM, thereby inhibiting the insertion of magainin 2 (Shireen et al. 2013)
and 6W-RP-1, a synthetic HDP (Kilelee et al. 2010). Studies on NK-2, which is
also a synthetic HDP and derived from mammalian NK-lysin (Andra et al. 2004),
suggested that this lysylPG mediated rigidifying effect, resulted from the binding of
cationic HDPs to the CM of S. aureus via and the bridging of anionic lipid
headgroups, thereby increasing the acyl chain order of the membrane (Andra et al.
2011). Interestingly, a similar lysylPG-mediated rigidifying effect was reported to
contribute to the resistance of S. aureus to the action of maximin H5 (Dennison
et al. 2015), which belongs to a suite of anionic HDPs, found in the skin secretions
and brains of toads from the Bombina genus (Lai et al. 2002; Liu et al. 2011).
However, studies on the interaction of the peptide with the CM of S. aureus showed
that maximin H5 was effectively functioning as a cationic AMP via amidated
residues at the two termini of its primary structure (Dennison et al. 2015). These
amidated terminal residues are relatively accessible to external molecules whereas
the anionic residues possessed by the peptide are buried within its α-helical
hairpin-type structure (Phoenix et al. 2015; Dennison et al. 2015; Dennison et al.
2013). Studies on maximin H5 also showed that in addition to the rigidifying effect
of lysylPG on the CM of the organism, this lipid mediated a protective effect by
decreasing the affinity of the peptide for these membranes (Dennison et al. 2015). It
is well established that cationic HDPs induce the incorporation of lysylPG into the
S. aureus membranes via the GraXSR mediated expression of MprF, an enzyme
that modifies anionic phospholipids with lysine (or alanine) effectively decreasing
the net negative charge of these membranes and shielding them from the action of
these peptides (Otto 2009; Li et al. 2007a; b). Resistance to the action of HPDs by
the alteration of net charge on bacterial membranes through the modification of
both CM and OM lipids has been described for many Gram-positive and
Gram-negative bacteria, and has been extensively reviewed elsewhere (Nawrocki
et al. 2014; Koprivnjak and Peschel 2011; Goyita et al. 2013; Gruenheid and Le
Moual 2012; Anaya-Lopez et al. 2013; Band and Weiss 2015). However, it has
been suggested that the bacterially mediated alteration of charge on CM and OM
lipids is more likely to contribute to resistance to HDPs via the modulation of the
fluidity of these membranes than electrostatic effects (Kilelee et al. 2010; Andra
et al. 2011; Dennison et al. 2015). In combination, these studies show that both
increases and decreases in membrane fluidity can lead to increased resistance to
HDPs and similar results have been reported for other Gram-positive bacteria
(Mehla and Sood 2011, 2013; Goyita et al. 2013). In relation to Gram-negative
bacteria, some organisms resist HDPs by changing the fluidity of the OM through
the modification of LPS, such as by the addition of hydrophobic lipid chains to lipid
A phosphates, the glucosamine backbone or existing acyl chains (Koprivnjak and
Peschel 2011; Needham and Trent 2013; Band and Weiss 2015). As an example, a
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recent study on Francisella novicida, which are best known for their intracellular
parasitic capabilities (Kingry and Petersen 2014), showed that increasing the length
of lipid A acyl chains led to rigidity of the OM and resistance to the action HDPs
whereas decreasing the length of these acyl chains led to increased fluidity and
susceptibility to these peptides (Li et al. 2012). However, one of the best charac-
terized examples of bacteria that utilize this mechanism to resist the action of HDPs
is S. typhimurium (Dalebroux and Miller 2014), which employs PhoPQ-mediated
changes to the structure of lipid A to reduce the fluidity of the OM, rendering the
organism resistant to a range of HPDs (Koprivnjak and Peschel 2011; Band and
Weiss 2015). Major examples of these peptides include LL-37, HNP-1, C18G,
murine cryptidin 2, porcine protegrin-1 and leporine NP1, NP2 and NP5 (Guo et al.
1998; Belden and Miller 1994; Guina et al. 2000; Miller et al. 1990; Bader et al.
2005; Gunn and Miller 1996). In addition to LPS, another major component of the
OM is phospholipid (Silhavy et al. 2010) and in S. typhimurium, the PhoPQ
mediated addition of palmitoyl groups to phosphatidylglycerol leads to decreased
fluidity in the OM and resistance to C18G, which is derived from human protein
platelet factor 4, and other HDPs (Dalebroux et al. 2014). It has also been suggested
that modulation of CM fluidity may help to protect Gram-negative bacteria from
HDPs (Band and Weiss 2015) as in the case of P. aeruginosa and Rhizobium
tropici, which is a soilborne symbiont of several legumes (Ormeno-Orrillo et al.
2012). Several studies showed that the presence of lysylPG in the CM of
P. aeruginosa and R. tropici, helped to protect these organisms from the action of
protamine, poly-l-lysine and other HDPs (Sohlenkamp et al. 2007; Arendt et al.
2012). LysylPG and aminoacyl-PG homologues have also been identified in other
Gram-negative species (Arendt et al. 2012; Roy 2009) and taken in combination,
these results suggested that the regulation of membrane fluidity to induce resistance
to HDPs may be widely used by Gram-negative bacteria (Heimlich et al. 2014;
Poole 2012; Needham and Trent 2013). It is clear from the above studies that
membrane fluidity has a variable effect on bacterial resistance to HDPs and it is still
an open question as to why this is the case but it has been proposed that this may
reflect the fact that different resistance mechanisms may be specific for different
peptides (Koprivnjak and Peschel 2011; Mehla and Sood 2013).

Another recently described intercept mechanism of resistance to HDPs is the
production of outer membrane vesicles (OMVs) by Gram-negative bacteria, which
are spherical, membrane structures that contain many components found within the
OM of the parent organism. Gram-negative bacteria shed OMVs constitutively
throughout their normal growth and it has been proposed that they have roles in
virulence, inflammation and the envelope stress response of these organisms
(Kaparakis-Liaskos and Ferrero 2015; Olsen and Amano 2015; Manning and
Kuehn 2013). However, it is becoming increasingly clear that OMVs also play an
important role in providing bacteria with resistance to HDPs (Band and Weiss
2015) as shown by studies on E. Coli and S. typhimurium. In this work, it was
demonstrated that HDPs induced the production of OMVs, suggesting a regulated
response by these organism, with the result that these peptides were adsorbed, or
‘bound’ by these vesicles thereby neutralizing their antibacterial action (McBroom
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and Kuehn 2007; Manning and Kuehn 2011). A similar mechanism based on
OMVs was reported more recently for resistance to the action of HDPs, including
the prokaryotic HDP, polymixin B (PmB), by Vibrio tasmaniensis (Vanhove et al.
2015; Destoumieux-Garzón et al. 2014), which is a marine pathogen that infects
oyster haemocytes (Destoumieux-Garzón et al. 2014; Romalde et al. 2014).
Interestingly, studies on Vibrio cholera, which causes cholera in humans (Harris
et al. 2012), found that OMVs produced by the organism were unable to protect it
against a lethal concentration of LL-37. However, growing V. cholera in the
presence of a sublethal concentration of PmB induced the release of OMVs that
were larger in size and the secretion of a biofilm-associated extracellular matrix
protein (Bap1) that associated with OmpT in these vesicles. Bap1, which is neg-
atively charged, then bound LL-37 on the surface of these OMVs endowing V.
cholerae with resistance to the action of the peptide (Destoumieux-Garzón et al.
2014; Duperthuy et al. 2013). In combination, these results clearly showed that the
production of OMVs is an inducible mechanism of bacterial defence to HDPs that is
able to provide cross-resistance to these peptides in some cases (Band and Weiss
2015). No analogous resistance mechanism to HDPs appears to have been reported
for Gram-positive bacteria and Archaebacteria although a similar process of
shedding membrane vesicles by these organisms has been described (Olsen and
Amano 2015; Manning 2013; Avila-Calderón et al. 2015).

Most recently, studies on E. coli identified a previously unreported and novel
‘intercept’ mechanism of resistance to HDPs that involved the use of a CM receptor
(Phoenix et al. 2015; Dennison et al. 2013). As described above, maximin H5 is an
anionic amphibian peptide (Lai et al. 2002; Liu et al. 2011) and was shown to
possess membranolytic activity towards both S. aureus and erythrocytes (Lai et al.
2002; Dennison et al. 2013, 2015). This activity appeared to be primarily driven by
the formation of an oblique orientated α-helix by its amidated N-terminal segment,
H2N-ILGPVLGLVS, which induced deep bilayer insertion by the peptide at an
angle of circa 45° (Fig. 7.2a). The amidated C-terminal segment, VLGIL-NH2, of
maximin H5 was also found to play a key role in its membranolytic activity by
forming an intra-peptide hydrogen-bonding network with the N-terminal region of
the peptide that stabilized the levels of its oblique-orientated α-helical structure
(Fig. 7.2a) (Dennison et al. 2005, 2015; Phoenix et al. 2013). However, further
investigations into the antimicrobial action of maximin H5 showed that it had no
activity against other Gram-positive bacteria, Gram-negative bacteria, fungi or
enveloped viruses (Lai et al. 2002; Dennison et al. 2013, 2015; Wang et al. 2010).
A clear difference between these two groups of microbes was the presence of PE in
the target membranes of organisms resistant to the action of maximin H5 and the
absence of this lipid in the target membranes of microbes susceptible to its mem-
branolytic activity (Epand and Epand 2011; van Meer et al. 2008; van Meer and de
Kroon 2011; Lohner and Prenner 1999; Lösel 1900; Ratledge and Wilkinson 1988;
Aloia et al. 1993). Studies on E. coli showed that maximin H5 had no propensity to
partition into membranes derived from this organism, or other PE-containing
membranes, and the peptide was predicted by MD simulations to remain bound to
the surface of these bilayers via a variety of peptide–lipid interactions and
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intra-peptide associations (Figs. 7.2b, c). The major contributions to this peptide–
membrane binding came from hydrogen bonding between phosphate and ammo-
nium groups within the PE headgroup and residues in both terminal regions of
maximin H5 (Phoenix et al. 2015; Dennison et al. 2013). Essentially, in relation to
the membranolytic form of the peptide (Fig. 7.2a) (Dennison et al. 2015), maximin
H5 appeared to undergo a conformational change in the presence of PE that led to
random coil structure in its N-terminal segment, H2N-ILGPVLGLVS, and the
absence of intra-peptide interactions between this segment and the C-terminal
segment, VLGIL-NH2, of the peptide (Figs. 7.2b, c) (Phoenix et al. 2015; Dennison
et al. 2013). Taken in combination, these data suggest that maximin H5 has high

Fig. 7.2 Molecular dynamic simulations of maximin H5–membrane interactions. In Fig. 7.2a the
peptide is partitioned into DMPC membranes via an oblique orientated α-helix formed by its
amidated N-terminal segment, H2N-ILGPVLGLVS that induces deep bilayer at an angle of circa
45°. The amidated C-terminal segment, VLGIL-NH2, of maximin H5 forms an intra-peptide
hydrogen-bonding network with the N-terminal region of the peptide that stabilizes the levels of its
oblique-orientated α-helical structure (Dennison et al. 2005, 2015; Phoenix et al. 2013).
Figure 7.2b, maximin H5 is bound to the surface of DMPE membranes and has clearly undergone
a conformational change in relation to its membranolytic form (Dennison et al. 2015). Figure 7.2c
shows a more detailed description of PE-bound maximin H5, indicating that the peptide possesses
random coil structure in its N-terminal segment, H2N-ILGPVLGLVS, and there is an absence of
intra-peptide interactions between this segment and the C-terminal segment, VLGIL-NH2
(Figs. 7.2b, c) that stabilizes the oblique-orientated α-helical structure observed in the peptide’s
membranolytic form (Fig. 7.2a) (Phoenix et al. 2015; Dennison et al. 2013).
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affinity for PE that induces immobilization of the peptide on the surface of mem-
branes, thereby inhibiting the ability of the peptide to adopt the membrane inter-
active, oblique-orientated α-helical structure necessary for its antimicrobial activity.

7.3.3 Bacterial Resistance Mechanisms that Export HDPs

Efflux systems are complexes of mostly membrane bound proteins that serve as
energy-dependent transporters to extrude compounds from the cells of organisms
across the three domains of life (Gupta et al. 2011; Saier 1998), including
eukaryotes, such as humans (Miller 2015; Misaka et al. 2013; Köck and Brouwer
2012; Zhang et al. 2015; Kathawala et al. 2015), fish (Luckenbach et al. 2014;
Ferreira et al. 2014) and fungi (Morace et al. 2014; Prasad and Rawal 2014; Viti
et al. 2014), archaebacteria (Gudhka et al. 2015; Tanaka et al. 2013) and bacteria
(Costa et al. 2015; Viti et al. 2014; Delmar et al. 2014; Sun et al. 2014; Lycklama
and Driessen 2012; Palmer and Berks 2012; Davidson et al. 2008; Handzlik et al.
2013; Klein and Lewinson 2011). As is the case for every other living creature, all
bacteria possess efflux pumps genes that are highly conserved, with all members of
the same bacterial species possessing the same pumps. It is also now known that the
expression of efflux pump genes is tightly controlled by various local and global
transcriptional regulators, which suggested that drug efflux pumps have physio-
logical functions. Currently, it is believed that bacterial efflux pumps play a general
detoxification role in various physiological processes associated with these
organisms along with contributions to other processes including cell-to-cell com-
munication, biofilm formation, stress adaptation, development, pathogenesis and
virulence (Sun et al. 2014; Alvarez-Ortega et al. 2013; Piddock 2006). However,
these efflux pumps have emerged as major elements in the intrinsic and acquired
resistance of bacterial pathogens to antibiotics and HDPs (Radecka et al. 2014;
Nawrocki et al. 2014; Koprivnjak and Peschel 2011; Guihelmelli et al. 2013;
Anaya-Lopez et al. 2013; Band and Weiss 2015; Dorotkiewicz-Jach et al. 2015;
German et al. 2008; Handzlik et al. 2013; Andersen et al. 2015; Bhardwaj and
Mohanty 2012; Kumar and Schweizer 2005; Blair et al. 2014; Nikaido and Pagès
2012; Poole 2000; Van Bambeke et al. 2003; Fernández and Hancock 2012;
Martinez et al. 2009). The efflux pumps possessed by bacteria can be classified as
belonging to five different groups depending upon a range of factors, including their
amino acid sequence, number of transmembrane spanning regions, component
stoichiometry, energy coupling mechanism, substrates, transport mode and phy-
logeny (Fig. 7.3): the major facilitator superfamily (MFS); the ATP-binding cas-
sette (ABC) superfamily; the small multidrug resistance (SMR) family; the
resistance-modulation-division (RND) superfamily; and the multidrug and toxic
compound extrusion (MATE) superfamily (Fig. 7.3) (Saier 1998; Sun et al. 2014;
Andersen et al. 2015; Paulsen 2003; Zgurskaya 2009; Putman et al. 2000; Li and
Nikaido 2004, 2009; Collu and Cascella 2013). Except for the RND superfamily,
which is only found in Gram-negative bacteria (Fernando and Kumar 2013; Anes
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et al. 2015), efflux systems of the remaining four superfamilies are widely dis-
tributed across both these latter organisms (Nawrocki et al. 2014; Band and Weiss
2015; German et al. 2008; Zgurskaya 2009) and Gram-positive bacteria (Handzlik
et al. 2013). Most recently, a novel group of efflux pumps have been identified in
Gram-negative bacteria, which, as yet, is largely uncharacterized and has been
designated the PACE (proteobacterial antimicrobial compound efflux) family
(Hassan et al. 2013; 2015). ABC efflux systems form the only multidrug pump
superfamily that are primary transporters with extrusion powered by the direct
hydrolysis of ATP by the transporter itself. The remaining four efflux systems are
secondary transporters and extrude multiple drugs utilizing energy derived from H+

gradients in the case of the RND, MFS and SMR superfamilies and Na+/H+ gra-
dients in the case of the MATE superfamily (Fig. 7.3) (Saier 1998; Sun et al. 2014;
Andersen et al. 2015; Paulsen 2003; Zgurskaya 2009; Putman et al. 2000; Li and
Nikaido 2004, 2009).

Fig. 7.3 The membrane location of bacterial efflux pumps. a Gram-positive bacteria.
b Gram-negative bacteria. Figure 7.3 was revised from Piddock (2006) and shows the membrane
location and typical substrates of major bacterial efflux pumps involved in multiple drug resistance.
Shown in Fig. 7.3a are monopartite systems of the MFS (Major facilitator superfamily), the SMR
(Small multidrug resistance) and MATE (multidrug and toxic compound extrusion) superfamilies.
Representative examples of these monopartite systems include: LmrA from Lactococcus lactis, an
ABC transporter (Poelarends et al. 2002); QacA from S. aureus, an MFS transporter (Brown and
Skurray 2002); NorM from Vibrio parahaemolyticus, a MATE transporter (Morita et al. 2000);
and QacC (also known as smr) from S. aureus (Costa et al. 2013). Shown in Fig. 7.3b are tripartite
systems of the RND (resistance-modulation-division), ABC and MFS superfamilies, which are
represented by the E. coli transporter complexes: AcrAB–TolC (Nikaido and Zgurskaya 2001),
MacAB–TolC (Kobayashi et al. 2001) and EmrAB–TolC (Lewis 2000). These efflux systems
differ in their energy sources with ABC transporters driven by ATP hydrolysis, MFS and SMR and
RND transporters utilizing energy derived from H+ gradients and MATE transporters employing
energy derived from Na+/H+ gradients (Piddock 2006).
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Efflux systems can occur as monopartite systems as in the case of ABC, MFS,
MATE and SMR transporters in the membranes of Gram-positive bacteria
(Fig. 7.3). The MFS superfamily is one of the biggest groups of secondary trans-
porters and includes a number of examples of these monopartite systems (Kumar
et al. 2013; Reddy et al. 2012; Law et al. 2008; Yan 2013, 2015; Saidijam et al.
2006). For example, in Gram-positive bacteria, LmrP of Lactococcu lactis appears
to capture its substrates from within the membrane or from the cytoplasm of these
organisms, and then use H+ antiport to transport them to the extracellular space
(Poelarends et al. 2002; Masureel et al. 2014). In Gram-negative bacteria, the MFS
transporter, EmrD of E. coli, is located in the CM of the organism and is believed to
use H+ antiport to carry captured substrates across these membranes to the
periplasmic space (Yin et al. 2006; Baker et al. 2012). In the case of Gram-negative
bacteria, to accommodate the double membrane systems of these organisms, efflux
pumps can participate in tripartite assemblies that span these membrane systems
(Fig. 7.3). In these tripartite assemblies, RND ABC and MFS transporter proteins
located in the CM of Gram-negative bacteria are linked by periplasmic adaptor
proteins (PAPs) to discrete channels in the outer membrane to create continuous
conduits from the cytoplasm to the extracellular space (Li and Nikaido 2009;
Hinchliffe et al. 2013; Bavro et al. 2015; Yamaguchi et al. 2015; Zgurskaya et al.
2015; Lin et al. 2014; Huang et al. 2013). Using the RND efflux pump,
AcrA/AcrB/TolC, from E. coli as an example (Fig. 7.3), it is believed that the
transporter protein, AcrB, captures its substrates either from within the CM or from
the cytoplasm, and then transports them to the extracellular space through the outer
membrane channel formed by TolC. Cooperation between AcrB and TolC is
mediated by the PAP, AcrA, and efflux through RND systems is driven by energy
derived from H+ gradients (Sun et al. 2014; Amaral et al. 2012). A detailed
description of current understanding of mechanisms underpinning the activity of
these efflux systems is beyond the scope of this review but it is believed that they all
essentially use variants of the ‘alternating access’ model (Slotboom 2014; Forrest
et al. 2011; Jardetzky 1966), which involves substrate binding in the membrane
embedded region of MATE, SMR, MFS and ABC transporters and in the
periplasmic domain of RND transporters (Sun et al. 2014; Murakami 2008; Wong
et al. 2014; Yu et al. 2013; Wilkens 2015; Radestock and Forrest 2011; Madej
2014). The physiological substrates of these efflux systems are believed to be
primarily endogenous metabolites that are noxious to the host organism and viru-
lence determinants that are secreted during stress adaptation, development and
pathogenesis (Sun et al. 2014; Piddock 2006; Martinez et al. 2009; Piddock 2006;
Poole 2008). However, the generally broad-range specificity of these efflux systems
also enables them to extrude many non-physiological substrates (Sun et al. 2014;
Nikaido and Pagès 2012; Wong et al. 2014; Yu et al. 2013; Elkins and Mullis
2006), which appears to underpin the role of these systems in the multiple resis-
tance shown by bacteria to antibiotics (Radecka et al. 2014; Handzlik et al. 2013;
Andersen et al. 2015; Bhardwaj and Mohanty 2012; Kumar and Schweizer 2005;
Blair et al. 2014; Nikaido and Pagès 2012; Poole 2000; Van Bambeke et al. 2003;
Fernández and Hancock 2012) and, as is becoming increasingly clear, their
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defences against the action of HDPs (Nawrocki et al. 2014; Koprivnjak and Peschel
2011; Guihelmelli et al. 2013; Anaya-Lopez et al. 2013; Band and Weiss 2015;
Dorotkiewicz-Jach et al. 2015; German et al. 2008).

7.3.3.1 MFS Efflux Pumps

Studies on S. aureus appeared to show that the efflux system, QacA, which is
carried on the MDR plasmid pSK1, endowed the organism with resistance to the
leporine tPMP-1, which is released from thrombin-stimulated rabbit platelets and
serves as an HDP. However, this efflux pump did not confer the organism with
resistance to other structurally unrelated HDPs, including HNP-1and protamine,
suggesting that this resistance may be specific to tPMP-1 (Kupferwasser et al.
1999). QacA-dependent resistance to the action of tPMP-1 was found to confer a
survival advantage upon S. aureus in animal models of infection and also to cor-
relate with the diagnosis of endocarditis in humans (Bayer et al. 1998; Dhawan
et al. 1998; Kupferwasser et al. 2002). However, later studies suggested that the
mechanism used by the organism to resist the action of tPMP-1 may not relate to
efflux function of QacA but may result from the impact of the transporter upon
membrane structure or fluidity, or some function unrelated to H+ dependent peptide
efflux (Bayer et al. 2006). More recently, orthologs of QacA have been identified in
other staphylococci, as well as in species of Enterococcus and Bacillus and Qac
efflux systems of the SMR superfamily have been reported in both S. aureus and S.
epidermis, which is a frequent cause of nosocomial infections (Gomes et al. 2014),
although in most cases, the ability of these proteins to transport HDPs has yet to be
investigated (Fernández-Fuentes et al. 2014; Solheim et al. 2007; Wassenaar et al.
2015). Most recently, studies on S. aureus showed that the efflux system, NorA, did
not appear to endow the organism with resistance to a range of human HDPs,
including HNP-1, HNP-2, HNP-3, HNP-5, HBD-2, HBD-3 and LL-37 (Rieg et al.
2009). Yersinia enterocolitica is a human gastrointestinal pathogen which causes
yersiniosis, an illness characterized by diarrhoea, ileitis and mesenteric lym-
phadenitis (Gupta et al. 2015) and was found to possess resistance to the HDPs,
arctian cecropin P1 and melittin, which appeared to involve the MFS transporter,
RosAB (Bengoechea and Skurnik 2000). This pump, which acts as a potassium
antiporter, is induced by the presence of HDPs and is activated at 37 °C
(Bengoechea and Skurnik 2000), which is similar to conditions encountered within
the host during infection (Straley and Perry 1995). It was proposed that the RosAB
system protects host bacteria by acidifying the cytoplasm to inhibit the action of
HDPs (Bengoechea and Skurnik 2000).

7.3.3.2 RND Efflux Pumps

The efflux pump, MtrCDE, of Neisseria gonorrhoeae was the first one demon-
strated to export HDPs to the extracellular milieu (Shafer et al. 1998) and along
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with the analogous efflux pump in Neisseria meningitidis mediates resistance to an
array of these peptides, including protegrin-1, LL-37 and cancrine tachyplesin-1.
These results indicated that MtrCDE was able to recognize structurally different
HDPs, for example protegrin-1 and tachyplesin-1 adopt β-type structures whereas
LL-37 assumes an α-helical conformation (Shafer et al. 1998; Tzeng et al. 2005;
Wang 2008; Johansson et al. 1998; Bellm et al. 2000; Nakamura et al. 1988). The
importance of the MtrCDE, efflux pump to the resistance of N. gonorrhoeae to
HDPs was emphasized by in vivo studies using a murine model of female gono-
coccal genital tract infection. These studies showed that mutant forms of the
organism, which lacked MtrCDE were more susceptible to the host immune system
and it was hypothesized that CRAMP-38, which is an alternatively processed form
of mCRAMP, was likely to be present on urogenital mucosae, would select for
these mutants (Jerse et al. 2003). More recently, studies were conducted on clinical
and murine vaginal isolates of N. gonorrhoeae with mutations in mtrR, which
encodes a repressor forMtrCDE. These studies showed that mutations upstream of
mtrC, on the promoter of mtr, or in the binding site of the mtr gene product, MtrR,
increased the resistance of the organism to LL-37 and CRAMP-38 by increasing the
levels of MtrE and mtrC RNA stability. Additionally, these studies showed that
these mutants had increased in vivo fitness in female murine genital tract infection,
as compared to type strains of N. gonorrhoeae, which was ascribed in part to
increased resistance to CRAMP-38 (Warner et al. 2008). Vibrio parahaemolyticusis
a marine pathogen that causes vibriosis in fish and gastroenteritis of humans
through the consumption of uncooked contaminated seafoods (Wang et al. 2015),
and the use of proteonomic-based analyses suggested that AcrAB/TolC and other
efflux systems bestowed the organism with resistance to a variety of synthetic HDPs
and piscine pleurocidin (Shen et al. 2010). K. pneumonia is a prevalent pathogen
able to cause a range of diseases from pneumonia to upper respiratory tract
infections (Hawkey 2015). Work on the organism showed that AcrAB–TolC,
endowed it with resistance to HDPs present in the human lung, including HNP-1,
HBD-1 and HBD-2, which was supported by experiments on a murine model of
pneumonia whose lungs were infected by K. pneumonia (Padilla et al. 2010). More
recently, studies on E. coli have shown that AcrAB/TolC plays a role in the
resistance of the organism to LL-37 and a number of synthetic HDPs (Goldberg
et al. 2013) whilst this latter transporter along with EmrAB/TolC was found to play
a major role in the resistance of the organism to protamine (Weatherspoon-Griffin
et al. 2014). This observation contrasts with other investigations showing that
neither AcrAB/TolC in E. coli (Rieg et al. 2009) nor the efflux pumps
MexAB/OprM, MexCD/OprJ and MexGHI/OpmD in P. aeruginosa endowed these
organisms with resistance to human HDPs such as LL-37, HNP-1, HNP-3, HD-5,
HBD-2 and HBD-3. In combination, these results indicate that the specificity of
RND efflux pumps for HDPs can vary between not only bacterial species but also
between strains of the same species and as yet more work is required to understand
the exact mode of resistance (Rieg et al. 2009; Strempel et al. 2013).
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7.3.3.3 3ABC Efflux Pumps

A recent study suggested that the ABC transporter, VraFG, was involved in the
resistance of S. aureus to tPMP-1 but not HNP-1 (Yang et al. 2012) whilst work on
this latter organism and S. epidermis also suggested that the transporter was
involved in resistance to LL-37, HBD-3 and bovine indolicidin, but not dermcidin.
However, although these peptides were able to induce the expression of VraFG in
the case of both organisms, this ability varied between S. aureus and S. epidermidis
due to structural differences between the GraXRS sensors used by these bacteria to
detect HDPs (Li et al. 2007a, b). Studies on Streptococcus pneumoniae showed that
LL-37, CRAMP38 and CRAMP39, which is another alternatively processed form
of mCRAMP, were also able to induce the expression of MefE/Mel, which is a half
ABC transporter, and thereby confer the organism with resistance to the action of
these peptides (Zähner et al. 2010). In these studies on Gram-positive bacteria, the
mechanisms underpinning the transport of HDPs were not determined but, in
addition to acting as efflux systems, ABC transporters are known to serve as
importers, such as in the case of BceAB-type transporters (Davidson et al. 2008;
Winter and Lawrence 2011), which includes VraFG (Nawrocki et al. 2014). ABC
importers are believed to transport HDPs from their site of action, such as the
periplasm/CM interface, to the cytoplasm where they are inactivated, most likely
through proteolytic degradation to be recycled as nutrients (German et al. 2008;
Gebhard 2012).

There has been considerable research in the use of ABC transporters by
Gram-negative bacteria to mediate resistance to HDPs and there is evidence for
import mechanisms in a number of cases (Gruenheid and Le Moual 2012; Costa
et al. 2015; Lewis et al. 2012). For example, S. typhimurium causes a systemic
disease in mice that serves as an animal model of typhoid caused by the organism in
humans (Wick 2011). A recent study on the organism suggested that a compro-
mised ability to proliferate inside activated macrophages and decreased virulence in
a murine typhoid model was related to the activity of an ABC-type transport
system, YejABEF, which putatively imports HDPs into the organism. It was found
that inactivation of the ATPase component of the transporter led to increased
sensitivity to protamine, melittin, HBD-1 and HBD-2 (Eswarappa et al. 2008).
However, the strongest evidence for the import of HDPs into bacterial cells by ABC
transporters would seem to come from SapABCDF, which is found in a number of
Gram-negative bacteria (Gruenheid and Le Moual 2012; Lewis et al. 2012). The
operon coding for SapABCDF was first identified in studies on S. typhimurium,
which led to the suggestion that this transporter mediated the resistance of the
organism to HDPs, such as protamine and melittin (Parra-Lopez et al. 1993).
Strongly supporting this suggestion, more recent studies on Salmonella typhi,
which is the major cause of typhoid (Kariuki et al. 2015), showed that some
naturally occurring strains of the organism had genetic islands inserted within the
SapABCDF operon that rendered S. typhi susceptible to protamine (Rodas et al.
2010). Most recently, studies on UPEC showed that loss of genes in the
SapABCDF operon led to increased susceptibility to HDPs by the organism
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(Subashchandrabose et al. 2013). A number of studies have shown that SapABCDF
has a variable specificity for HDPs as in the case of Erwinia chrysanthemi (Dickeya
dadantii), which causes soft rot diseases in a wide range of crops (Reverchon and
Nasser 2013), where SapABCDF rendered the organism resistant to the plant HDPs
α-thionin and snakin-1 but not defensin-Pth1 (Lopez-Solanilla et al. 1998). In
Haemophilus ducreyi, which causes the genital infection chancroid (Lewis 2003),
SapABCDF mediated resistance to LL-37 but not other HDPs such as HNP-1 and
HBD-4 (Mount et al. 2010). Most recently, studies on Campylobacter jejuni
identified SapABCDF as a mediator of resistance to the avian HDP, fowlicidin-1
but not arctian cecropin A or ranine magainin (Hoang et al. 2012). In contrast,
SapABCDF did not appear to confer Vibrio fischeri, which is a marine foodborne
pathogen (Norsworthy and Visick 2013), with resistance to any HDPs investigated,
including LL-37 (Lupp et al. 2002). Clearly, these studies suggested that
SapABCDF does not endow all bacteria expressing the transporter with resistance
to HDPs and that the specificity of the transporter for these peptides.

Work on S. typhimurium first revealed that SapA, the periplasmic-binding
component of the SapABCDF system, was required for resistance to HDPs and
suggested that these peptides bind directly to SapA with subsequent import into the
cytoplasm mediated by the transporter (Parra-Lopez et al. 1993). It was speculated
that a similar mechanism of SapA mediated import into the cytoplasm may underpin
the resistance shown by E. chrysanthemi to HDPs based on the conservation of gene
order and the sequence similarity between SapABCDF of the latter organism and
that of S. Typhimurium (Lopez-Solanilla et al. 1998). Non-typeable Haemophilus
influenzae (NTHI) is a leading cause of otitis media (OD), or infection of the middle
ear (Thanavala and Lugade 2011), and studies employing a chinchilla model of OD
showed that inactivation of SapA in the SapABCDF transporter conferred NTHI
with increased sensitivity to killing by β-defensin 1 from the host animal (Mason
et al. 2005). In a more recent study on NTHI it was shown that SapABCDF mediated
haeme transport into the cytoplasm of the organism via SapA binding and that
HDPs, including HNP-1, HBD-2, HBD-3, LL-37 and melittin, competed with
haeme for binding to the SapA protein (Mason et al. 2011). Taken together, these
studies clearly suggested that SapABCDF served as an importer when mediating
bacterial resistance to HDPs, which was confirmed by a recent investigation and led
to the proposal of a model to describe the process (Fig. 7.4) (Shelton et al. 2011).
According to this model, breaching of the outer membrane by HDPs such as pro-
tamine through their antimicrobial action leads to an increase in the local concen-
tration of these peptides and elevated expression of the SapABCDF transporter. In
turn, this leads to the binding of HDPs to SapA in the periplasmic space and transport
of these peptides across the cytoplasmic membrane by SapABCDF transporter to the
cytosol where they are subject to proteolytic degradation. A reduction in the critical
threshold concentration of HDPs in the periplasm returns the organism to a home-
static state of innate immune resistance (Fig. 7.4). A number of studies have sug-
gested that this return to homeostatic immune resistance may involve other Sap
proteins, including SapG, SapJ and SapD, in Sap-dependent K+ transport.
(Parra-Lopez et al. 1994; Mason et al. 2006). A study on Vibrio vulnificus, which is a
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highly virulent foodborne pathogen that can cause swound infections and septi-
caemia (Oliver 2015), led to the identification TrkA, which is highly homologous to
SapG and appears to be component of a Trk K+ uptake transporter that mediated
resistance to protamine by the organism (Chen et al. 2004). It was hypothesized that
protamine forms channels in the membrane system of V. vulnificus through which K+

leaks from the cell and in response, TrkA-mediated activity rapidly pumps K+ into
the cell to restore homeostasis, thereby preventing death of the organism until it is
detoxified from protamine (Chen et al. 2004).

Fig. 7.4 SapABCDF mediated uptake of HDPs in Gram-negative bacteria. Figure 7.4 was revised
from Shelton et al. (2011) and shows a proposed model for the SapABCDF mediated uptake of
HDPs by Gram-negative bacteria. According to this model, low concentrations of HDPs are
resisted by defence mechanism associated with the outer membrane (OM; ChoP and Lipid A
acylation, red) a However, as HDPs breach the outer membrane through their antimicrobial action
b an increase in the local concentrations of these peptides elevates the production of the
SapABCDF transporter. This leads to the binding of HDPs to SapA in the periplasmic space and
transport of these peptides across the cytoplasmic membrane where they are susceptible subject to
proteolytic degradation c A reduction in the critical threshold concentration of HDPs in the
periplasm returns the organism to a homestatic state of innate immune resistance d
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7.4 Discussion

This chapter has shown that both Gram-positive bacteria and Gram-negative bac-
teria have a formidable arsenal of defence mechanisms to combat the action of
HDPs from a diverse range of eukaryotes ranging from humans and amphibians to
rodents and insects. However, it is generally accepted that Gram-positive bacteria
are less well characterized in this capacity than Gram-negative bacteria and it seems
likely that continued research on the former organisms will reveal new mechanisms
of resistance to HDPs (Nawrocki et al. 2014). Indeed, a number of the resistance
mechanisms discussed in this chapter have been only reported relatively recently,
such as use of the M pili protein of S. pyogenes to bind HDPs and protect the
organism from both NETs and attack on its CM Exportal domain by these peptides.
In the case of Gram-negative bacteria, curli expressed by E. Coli are also able to
sequester HDPs, impeding the progress of these peptides into the cell envelope
whilst PE receptors in the CM of the organism are able to bind and immobilize
HDPs, inhibiting their ability to insert into these membranes. Also recently,
Gram-negative bacteria have been reported to employ OMVs to sequester HDPs
and a mechanism has been presented to help explain the use of ABC transporters by
these bacteria to mediate the uptake and proteolytic degradation of these peptides.
Most recently, the first new family of multidrug efflux pumps to be described in
15 years was reported, namely the PACE group of transporters, which were
identified in Gram-negative bacteria. These transporters appear to be widespread in
Gram-negative pathogens and their known substrates only currently include bio-
cides, such as chlorhexidine. Whether PACE transporters will provide their host
bacteria with resistance to HDPs or not is awaiting investigation (Hanson et al.
2015).

This chapter has also shown that a given bacterium can use multiple mechanisms
to resist HDPs, illustrated by S. aureus which utilizes efflux pumps and EPS along
with changes in both the fluidity and surface charge of the CM for this purpose.
However, for a given organism, the respective contribution made by each resistance
mechanism to combatting the action of HDPs can be unclear. For example, in the
case of S. aureus, the relative importance of changes to CM fluidity and surface
charge to resisting HDPs appears to vary according to the nature of the HDPs
concerned. Moreover, a high level of heterogeneity exists between bacterial species
in relation to the relative importance of each these resistance mechanisms. Indeed,
the relative importance of resistance mechanisms to HDPs can vary between dif-
ferent strains of the same species as in the case of EHEC and EPEC. Both of these
E. coli strains use an OM protease to degrade HDPs but the expression of this
protease is differentially regulated according to the profile of the peptides
encountered by each strain in its host niche (Thomassin et al. 2012).

As described above, resistance to HDPs often accompanies and increases the
virulence of both Gram-positive and Gram-negative pathogens, which makes these
pathogens highly dangerous in the clinical environment. Clearly then, a better
understanding of the mechanisms used by bacteria to resist HDPs will enable
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illumination of the interaction between bacterial pathogens and their hosts, and help
facilitate the many current efforts to exploit HDPs for therapeutic and other pur-
poses (Ashby et al. 2014; Eckert 2011; da Costa et al. 2015; Mohammad et al.
2015). However, knowledge of these bacterial resistance mechanisms can also
provide an alternative approach to the therapeutic development of HDPs, which is
to develop compounds that target these resistance mechanisms themselves. Ideally,
these compounds would target resistance mechanisms to HDPs that are conserved
across bacterial pathogens such as MprF, which as described above is found in both
Gram-positive and Gram-negative pathogens. It has previously been shown that the
inactivation of MprF renders bacteria susceptible to not only HDPs but also dap-
tomycin, regarded as a last-resort option in the treatment of some infections (Ernst
and Peschel 2011). Based on these observations it has been suggested that inhibitors
of MprF have great potential for either complementing or replacing conventional
antibiotic therapies (Escaich 2010; Weidenmaier et al. 2003). It has also been
suggested that a similar purpose could be served by inhibitors of enzymes that are
responsible for the D-alanylation of cell wall teichoic acids in Gram-positive
bacteria (Koprivnjak and Peschel 2011; Weidenmaier et al. 2003). Similarly to
MprF, DltABCD endows bacteria with resistance to HDPs by reducing the net
negative surface charge of their membranes (Nawrocki et al. 2014; Anaya-Lopez
et al. 2013) and it has previously been shown that inhibitors of DltA, which is
involved in the first step of D-alanylation, were able to inhibit the growth of
Gram-positive bacteria, especially when used in combination with other antibiotics
(May et al. 2005). A more recent study has suggested that combinations of com-
pounds that target D-alanylation and other processes related to the teichoic acid
pathway are attractive propositions as antibacterial agents. Potential advantages of
this combination therapy are that its targets are absent from humans and it may have
the capacity to treat infections due to MRSA (Santa Maria et al. 2014).

In relation to Gram-negative bacteria, LPS mediates a number of mechanisms of
resistance to HDPs, such as through the modulation of OM fluidity as discussed
above (Gruenheid and Le Moual 2012; Band and Weiss 2015). Recent advances in
understanding of the LPS biosynthetic pathway has led to the proposal that
enzymes involved in this pathway are optimal targets for antibacterial agents as they
are conserved among diverse, clinically relevant bacteria and have no counterpart in
humans (Cipolla et al. 2011). Based on these observations, a major focus in the
development of novel agents against Gram-negative bacteria has been designing
inhibitors of different aspects of LPS biosynthesis, such as the production of lipid A
and sugar (Kdo) moieties found in the core domain of the lipid (Gabrielli et al.
2012). For example, lipid A anchors LPS to membranes and is essential for the
assembly of LPS in most Gram-negative bacteria and more recent studies on the
biosynthesis of lipid A have shown that the first three enzymes in its biosynthesis
show promise as targets for antibacterial agents (Lee et al. 2013). Most recently, an
inhibitor of LpxC, the enzyme responsible for the first committed step in the
biosynthesis of lipid A was reported to be efficacious against P. aeruginosa and
members of the Enterobacteriaceae both in vitro and various models of bacterial
infection (Tomaras et al. 2014).
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As described above, efflux pumps are ubiquitous in bacteria and constitute a
major mechanism in the resistance of these organisms to HDPs thus making them
obvious potential targets for the development of antibacterial agents. The
three-dimensional structures of some bacterial efflux pumps are available, which in
these cases potentially permits the rational design of efflux pump inhibitors (EPIs)
to block their function (Delmar et al. 2014; Opperman and Nguyen 2015). A variety
of other approaches to identifying EPIs have been reported and a number of nat-
urally occurring compounds able to function in this capacity are known for both
Gram-positive and Gram-negative bacteria (Fernández and Hancock 2012; Mandal
et al. 2014). For example, recent work has isolated a compound from a plant in the
Lauraceae family, Persea lingue Nees, and identified a series of different chemical
molecules through virtual screening that were able to inhibit the NorA efflux pump
of S. aureus (Holler et al. 2012; Brincat et al. 2011). It has also been shown that
efflux pumps play a major role in the resistance to HDPs exhibited by biofilms,
which are communities of microorganisms that adhere to surfaces and are generally
embedded within a self-produced matrix of extracellular polymeric substance
(Guihelmelli et al. 2013; Otto 2006). In response, some EPIs have been shown able
to inhibit biofilm formation making them attractive targets for development as
anti-biofilm agents (Soto 2013), which could be of great advantage in the medical
arena as biofilms are far more recalcitrant to antimicrobial agents than their
planktonic counterparts and they dominate the occurrence of chronic bacterial
infections (Bjarnsholt 2013; Wu et al. 2015).

In conclusion, this chapter has shown that bacteria have acquired a multiplicity
of resistance mechanisms to the action of HDPs but in the ongoing war between
bacteria and mankind, this may be their undoing by providing targets for
antibacterials with the potential to act in their own right or complement the action of
HDPs, antibiotics, biocides and other anti-infectives.
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Chapter 8
Engineered OAKs Against Antibiotic
Resistance and for Bacterial Detection

Amram Mor

Abstract As bacterial resistance to antibiotics continues to threaten modern
healthcare worldwide, the need for new approaches that control bacterial infections
becomes evermore urgent. Membrane-active compounds (MACs) are currently
gaining interest for their potential to address various antibiotic resistance chal-
lenges. Since MACs are able to target multiple vital bacterial functions simulta-
neously, they may have the advantage of fighting the infection while avoiding many
of the known resistance mechanisms. This chapter reviews current data regarding
the attempts to use oligomers of acylated cations (OACs) as a platform for opti-
mizing the hydrophobic/cationic balance required for selective nonspecific mem-
brane interactions of MACs, under in vitro and in vivo conditions. With the
perspective gained over nearly a decade after their conception and after a few dozen
investigations involving several hundreds of analogs, we describe the properties of
a few representative lysyl-based OAC (OAK) sequences. These sequences reflect
the OAC concept evolution from the original focus on bactericidal MACs that later
shifted onto bacteriostatic derivatives and presently concentrates on seemingly
inactive analogs that nonetheless improve the control of bacterial infections.
Collectively, the current data appear to substantiate the potential of OAC-based
MACs as a valuable resource for therapeutic antibacterial development, including
for systemic applications.

8.1 Introduction

The continuous escalation of multidrug resistant (MDR) bacteria (Schaberle and
Hack 2014; Eckert 2011) is inevitably leading to the dwindling supply of clinical
treatment options (Haney and Hancock 2013). Thus, along with the multitude of
strategies currently employed in an attempt to maintain an effective arsenal of
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available chemotherapeutic products (Kinch et al. 2014; Silver 2011; Fischbach and
Walsh 2009), there is a genuine need for new infection control approaches in order
to meet the formidable capacity of bacteria to challenge new and old generations of
antibiotics (Blair et al. 2015; McCallum et al. 2010; Poole 2012). In this respect,
membrane active compounds (MACs) are presently gaining a renewed interest for
their potential to control MDR infections (Klitgaard et al. 2008; Hurdle et al. 2011;
Allen et al. 2014) by affecting critical processes that rely on common principles
such as in bacterial sensing/communication (Gooderham and Hancock 2009; Daly
et al. 2015), membrane proteins localization during division (Strahl and Hamoen
2010) and virulence (Daly et al. 2015; Sully et al. 2014). The molecular basis for
these effects are relatively ill understood, however.

Based on their hydrophobic attributes MACs are dividable into two main clas-
ses; MACs having a pronounced hydrophobic character and borderline
hydrophobic MACs. Members of the first class, tend to disrupt the bilayer structure
abruptly, following deep insertion within the cytoplasmic membrane (Epand and
Vogel 1999; Epand et al. 2010; Westerhoff et al. 1989) which, often culminates in a
rapid bactericidal outcome at low micromolar concentrations (Hancock and
Chapple 1999; Rotem and Mor 2009). Members of the second class are subject to
more superficial membrane interactions and consequently believed to cause milder
structural damages at the same low concentrations. As many bacteria can readily
repair these damages (Hicks et al. 1994; Padan et al. 2005), such MACs might be
considered altogether inactive molecules, although they can exhibit a minimal
inhibitory concentration (MIC) at higher doses or display a bacteriostatic mode of
action. Thus, even though transient, such superficial membrane damages appear
nonetheless to inflict crippling injuries that clearly bare high cost on bacterial
metabolism. For instance, the ordered packing of phospholipid can be distorted by
the steric hindrance of bulky MACs, to the point that allows leakage of small ions
such as protons, thereby leading to loss of the transmembrane potential (TMP). The
repair process therefore, can be an exploitable window of opportunity toward
controlling bacterial infections since their energy sources become depleted fol-
lowing membrane depolarization, thereby inhibiting vital bioenergetics and trans-
port functions. Thus, despite maintaining near-normal proliferation rates, the
penalties for bacteria can be devastating since, by inhibiting efflux pumps or export
of resistance factors, such MACs might in fact sensitize bacteria to efflux substrate
antibiotics (as they can now accumulate in the cytoplasm and exert their toxic
effect) or restore sensitivity to formerly efficient antibiotics (for lack of resistance
factors), respectively. By extension, such MACs might also significantly affect
bacterial communication and virulence, as discussed in Sect. 8.2.

Host defense peptides (HDPs) can include both classes of MACs, as illustrated in
Fig. 8.1. One might wonder which of these MAC classes are preferable for the
developing therapeutic drugs. As the issue is out of the scope of this review, we briefly
illustrate the debate with two opposing arguments: on one hand, the latter compounds
might be advantageous since their milder action reduces the risk for complications
associated with endotoxins released by bactericidal counterparts (Marr et al. 2006;
Schuerholz et al. 2012). On the other hand, exposure of bacteria to sublethal drug
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concentrations is not without potential detrimental effects, as variousmulticomponent
sensory systems were implicated in bacterial resistance to MACs. For instance,
Gram-positive bacteria (GPB) sense sub-MIC levels of antimicrobial peptides and
confer resistance to these peptides in a GraRS–VraFG pathway-dependent manner

Fig. 8.1 Hypothetical interactions between a MAC and a mixed phospholipid bilayer. At the
top is an equation describing the interaction between a MAC (M) and the phospholipid membrane
(P). The cartoon underneath, illustrates the idea that electrostatic attraction is the initial force
driving adhesion between a cationic M and anionic P to form a reversible complex (MP). This
complex can reorganize to form different types of a more stable complex MP*, thereby perturbing
the membrane structure in a manner that depends mainly on M’s insertion within the membrane.
The table at the bottom, lists parameters describing the binding of representative OAKs to a P
composed of POPE:PG (3:1) as determined by SPR and analyzed by the 2-step model (Gaidukov
et al. 2003). Our interpretation of these data, envisions that the apparent affinity constant
describing the global interaction is the product of the individual constants for each step (K1 and
K2), respectively, describing the kinetic ratio (kon/koff) for the adhesion and the insertion steps. In
that case, the observed values suggest that despite the fact that roughly 10 times less C12K-7α8
molecules adhere to the membrane (compared with C12ɷ7K-β12), their tendency for insertion is
much stronger. High tendency for insertion, in turn, can be correlated to massive bilayer
disturbances (Rotem et al. 2008a). In contrast, C12ɷ7K-β12 molecules tendency for insertion is very
low and hence likely to remain stuck in superficial interactions that cause milder damages (e.g.,
membrane depolarization) (Sarig et al. 2010)
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(Yang et al. 2012; Koprivnjak and Peschel 2011). The subsequent cell modifications
can reduce the cytoplasmicmembrane net negative charge (e.g., by addition of a lysine
or alanine to phosphatidyl glycerol and lipoteichoic acid, respectively (Andra et al.
2011; Fedtke et al. 2004)), thereby reducing the electrostatic attraction between
bacteria and cationic MACs. The fact that this induction occurred on exposure to
polymyxin B and to RP-1 but not to daptomycin or hNP-1 (Yang et al. 2012), suggests
that it might concern only certain antimicrobial peptides. In Gram-negative bacteria
(GNB), several similar two-component systems for magnesium ions (Gooderham and
Hancock 2009; Fernandez et al. 2010) were shown to be activated by a variety of
HDPs (Fernandez et al. 2010; Shprung et al. 2012) and resulted in the modification of
lipid A by addition of amino arabinose and phosphoethanolamine (Koprivnjak and
Peschel 2011).

Many antibacterial HDPs increase outer membrane permeability through per-
turbation of the lipopolysaccharides (LPS) structure/function of Gram-negative
species (Vaara et al. 2008; Zhang et al. 2000; Sawyer et al. 1988). These peptides
can ultimately alter functions of the cytoplasmic membrane such as the permeability
barrier (Epand et al. 2010; Ruhr and Sahl 1985; Zasloff 2002; Hancock 2005) and
cell wall synthesis (Reisinger et al. 1980; Sass et al. 2010), namely as a conse-
quence of charge clustering (Epand et al. 2010, 2008a; Epand and Epand 2009;
Jean-Francois et al. 2008). Similarly, various chemical mimics of HDPs also
interact with LPS (Jahnsen et al. 2013; Rotem et al. 2008a) and perturb the outer
(Mensa et al. 2011) and cytoplasmic membranes, even at sub-MIC (Jammal et al.
2015; Goldberg et al. 2013; Livne et al. 2010), suggesting that certain membrane
damages, such as those sustained at sub-MIC conditions, may underlie bacterial
sensitization to antibiotics, as illustrated in Fig. 8.2.

Furthermore, as evident in current literature, there is an emerging interest in
developing new combination therapies involving mixtures of classical antibiotics
and antimicrobial HDPs (Dhand et al. 2011; Sakoulas et al. 2014; Paul et al. 2014;
Li et al. 2014). However, despite their promising attributes, some HDPs can suffer
from shortcomings such as protease sensitivity, systemic toxicity and/or high
production costs, which hamper their systemic therapeutic potential. Therefore, at
least theoretically, de novo designed chemical mimics of HDPs may be better
adapted in addressing some of these challenges (Rotem and Mor 2009; Jahnsen
et al. 2013; Jammal et al. 2015; Goldberg et al. 2013; Livne et al. 2010; Kaneti et al.
2013; Liu et al. 2004). HDP-mimics may better promote efficient systemic therapies
owing to their improved pharmacokinetics (Jammal et al. 2015; Radzishevsky et al.
2007; Choi et al. 2009) whereas their structural simplicity should better support
fine-tuning mechanistic studies. In the following sections, the review will focus on
attempts to mimic natural MACs using oligomers of acylated cations (OACs).
Table 8.1 lists a few representative lysyl-based OACs (OAKs) that will be
emphasized throughout the review as they reflect the actual evolution of the con-
cept, which originally concentrated on bactericidal MACs, moved on to bacterio-
static derivatives and ended up converging on seemingly inactive but promising
analogs.
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8.2 Membrane-Active Antibacterial OAKs

Unlike animal cells whose cytoplasmic membrane contains a very low amount of
anionic lipids, bacterial membranes are typically rich in anionic phospholipids
whose relative proportion can reach 20–30 % in Gram-negative bacteria and nearly
100 % in Gram-positive bacteria (Ratledge andWilkinson 1988; Yeaman and Yount
2003). As the OAC platform consists exclusively of fatty acyls and amide-linked

Fig. 8.2 Potential membrane damages affecting permeability and efflux functions. The left
panel is a cartoon representation of a typical efflux pump, AcrAB-TolC, a member of the resistance
nodulation division (RND) family, exclusively found in Gram-negative bacteria. It is able to
extrude an antibiotic (or an HDP) from the cytoplasm or periplasm (P) in exchange for proton
influx (Paulsen et al. 1996). The right panel illustrates two potential MAC-induced damages:
(1) Cations (e.g., Ca++) that normally stabilize the negative phosphate charges of the outer
membrane (OM) LPS layer, are displaced by a MAC, owing to its higher affinity to LPS. However,
due to its bulkier size, the MAC distorts the ordered packing of LPS molecules, thereby leading to
cracks that allow entry of solutes (including of MACs), to the peptidoglycan (PG) layer, as
described by the self-promoted uptake theory (Hancock and Chapple 1999). Option (2) illustrates
potential fates of a moderately hydrophobic MAC (such as C12ɷ7K-β12 from Fig. 8.1) that adheres
to anionic phospholipids of the cytoplasmic membrane (CM), a step likely facilitated by the
negative inside electrochemical difference of potential existing across the CM. Such a MAC is
predicted to assume only a superficial position on the CM outer leaflet (Sarig et al. 2010).
Nonetheless, MAC accumulation over the CM might distort (again) the phospholipids ordered
packing, to the point that allows leakage of small ions (such as protons) thereby leading to loss of
the transmembrane potential and consequently loss of the energy source driving the function of
efflux pumps and many other membrane proteins. Moreover, such MACs are also likely to alter the
lipid environment of membrane proteins whose function relies on specific chemophysical
characteristics (such as charge, fluidity, or bilayer thickness), or modify the proteins relative
positions (see, for instance, the distorted alignment between AcrB and TolC in the CM and OM,
respectively) which could also lead to a malfunctioning complex
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cationic aminoacyls (Radzishevsky et al. 2007; Livne et al. 2009; Radzishevsky
et al. 2008), it is particularly suitable for engineering high-affinity MACs.

One of the first sequences investigated for its membrane-active properties was
dodecanoyllysysl-[aminooctanoyllysyl]7 referred to as C12K-7α8, (Radzishevsky
et al. 2007) that preferentially targeted Gram-negative bacteria by exerting a rapid
biocidal effect. The bactericidal outcome was proposed to stem from the peptides
high binding affinity to the cytoplasmic membrane phospholipids, despite strong
interactions with cell wall components as well. Various mechanistic studies support
the view that C12K-7α8 causes rapid bacterial death through disruption of the
cytoplasmic membrane (Radzishevsky et al. 2007; Rotem et al. 2008b; Epand et al.
2008b). Conversely, a shorter analog (C12K-5α8) having significantly lower apti-
tude for disrupting the membrane and displaying significantly slower time-kill
curves, was proposed to rather inhibit the biosynthetic process. Being more
hydrophobic but less cationic, C12K-5α8 was allegedly able to reduce many elec-
trostatic interactions on the way from the cell wall to the cytoplasmic membrane.
Hence, unlike the case of C12K-7α8, the functional transmembrane potential dif-
ference might actually promote internalization of C12K-5α8, thereby enabling its
interaction with intracellular targets, as exemplified with nucleic acids (Rotem et al.
2008b).

Two different studies have used either isothermal titration calorimetry (ITC
(Epand et al. 2008b)) or surface plasmon resonance (SPR (Rotem et al. 2008b))
technologies to compare the binding properties of these analogs to model phos-
pholipid membranes. The studies independently confirmed the higher binding
affinity of C12K-7α8 (also observed using DSC and NMR studies) while moreover
indicating that only C12K-7α8 had the ability to induce the clustering of anionic
lipids. This clustering effect may lead to the lateral segregation of domains rich in
anionic versus zwitterionic lipids, producing phase boundary defects that ultimately
breach the permeability barrier of the cytoplasmic membrane.

Further studies of this ability to induce clustering of anionic lipids eventually led
to the idea to exploit this property for co-encapsulation of synergistic drugs in
lipid-based stable structures, called cochleates, whose aim would be to shield ini-
tially, and ultimately co-deliver the drugs. Inspired by reports on antimicrobial
peptides that exhibited synergistic action with conventional antibiotics (Livne et al.
2010), such a potential role for C12K-7α8 was investigated toward fighting MDR
phenomena in Gram-negative bacteria. MIC determination against multiple E. coli
MDR strains revealed combinations with sub-MIC OAK levels that acted syner-
gistically with several antibiotics, thus lowering their MICs by several orders of
magnitude. Attempts to shed light into the molecular basis for this synergism
suggested that bacterial sensitization to antibiotics was derived mainly from the
OAK’s capacity to overcome the efflux-enhanced resistance mechanism, by pro-
moting backdoor entry of otherwise excluded antibiotics (Fig. 8.2). Synergistic
action between distinct molecular entities is, however, likely to suffer from
numerous challenges during systemic therapy (namely owing to differential phar-
macokinetics, body distribution, or tissue penetration), that might challenge the
sensitization effect observed in vitro. Consequently, a follow-up work has aimed to
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facilitate the simultaneous delivery of the synergistic drugs to the infection site
while co-encapsulated within a delivery system. Out of several systems screened,
OAK-based cochleates turned out to be quite remarkable in their capacity for rapid,
stable, and high capacity co-encapsulation of drugs (Sarig et al. 2011; Epand et al.
2011). Such cochleates have also demonstrated advantages in systemic therapeutic
efficacy in treating severe murine bacterial infection, as elaborated in Sect. 8.3.

While C12K-7α8 is preferentially active on Gram-negative bacteria, its analog
dodecanoyllysysl-[lysylaminodecanoyllysyl]3 (referred to as C12K-3β10) presents
an indiscriminate activity over many more bacterial species (MIC90 = 5 µM), yet
displays low hemotoxicity, namely at concentrations as high as >100 µM. The main
difference between these closely related OAKs (i.e., having similar HQ properties
as shown in Table 8.1) pertains to their building blocks in that the acyl-lysyl (α)
subunits were replaced with lysyl-acyl-lysyl (β) subunits. Consequently, subunits
juxtaposition creates a structural motive (lysyl-lysyl) that is absent in the α-OAKs.
This motive turned out to be critical in broadening the spectrum of activity, namely
to include a wide range of Gram-positive bacteria (Livne et al. 2009) and of cancer
cells (Held-Kuznetsov et al. 2009).

Interestingly, although C12K-3β10 exerts an essentially bactericidal effect, E. coli
bacteria, are killed faster than S. aureus (i.e., within minutes versus hours), suggesting
the involvement of different mechanisms of action. This contrastedwith data obtained
from SPR analysis that compared the OAK’s binding properties using POPG:PE and
POPG:CL bilayers (respective molar ratio of 20:80 and 60:40, to mimic the cyto-
plasmic membranes of the investigated bacteria), suggesting that the OAK presented
quite similar membrane binding affinities (i.e., Kapp = 1.1 and 0.9 × 106 M−1,
respectively). Mechanistic studies addressing this discrepancy suggested a peculiar
mode of action involving OAK accumulation in the cell wall due to its differential
affinity to GPB cell wall specific components. This blocks the advancement of OAK
(and other) molecules toward the cytoplasmic membrane and leads to the observed
outcome where S. aureus bacteria have undergone a transient rapid bactericidal stage
that over time converted to a bacteriostatic effect (Livne et al. 2009).

Contrasting with the broad-spectrum activity of C12K-3β10, its shorter version
ɷ7-dodecenoyl-lysyl-lysyl-aminododecanoyl-lysyl (referred to as C12ɷ7K-β12) is
principally active on Gram-positive bacteria only (Sarig et al. 2010). Additionally,
while maintaining a similar potency in inhibiting bacterial growth (MIC90 = 5 µM),
C12ɷ7K-β12 is no longer endowed with the capability for rapid killing of bacteria,
even at concentrations of several MIC multiples. These characteristics of C12ɷ7K-β12
antibacterial activity correlate well with its membrane binding properties, exhibiting
clearly lesser binding affinity to model bilayers mimicking the cytoplasmic mem-
brane of Gram-negative compared with Gram-positive bacteria, i.e., Kapp = 5 × 103

versus 2 × 107 M−1, respectively, as determined by SPR (Sarig et al. 2010). Here
again, the tempting option to conclude for a causative relationship, is counterargued
by the finding that, C12ɷ7K-β12 was potently active on the isogenic mutant strains
where efflux pump components were deleted (Goldberg et al. 2013). This suggested
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that the OAK’s inactivity rather resulted from the GNB capacity for rapid extrusion
of this OAK through efflux pumps, unlike the previous analogs (i.e., C12K-7α8 and
C12K-3β10).

Otherwise, C12ɷ7K-β12 is believed to exert a bacteriostatic effect over GPB
owing to its distinct interactions with their cytoplasmic membrane. Once the OAK
has adhered to the bilayer outer leaflet (e.g., in S. aureus), the deep insertion within
the bilayer (observed for bactericidal OAKs such as C12K-7α8 and C12K-3β10) is
prevented by its particular chemophysical attributes, thereby limiting the extent of
membrane damage that this OAK can inflict (Sarig et al. 2010). In support of this
view is the fact that its hydrophobic analogs such as C16ɷ7K-β12 are rapidly bac-
tericidal to GPB (Sarig et al. 2008). This superficial interaction of C12ɷ7K-β12 with
the cytoplasmic membrane can nonetheless drastically alter various membrane
protein functions that rely on its specific chemophysical characteristics (e.g., charge
and/or fluidity) for carrying out a function, such as during signal transduction.
Moreover, small solutes might leak out owing to the steric hindrance introduced by
the OAK that distorts the membrane and induces its depolarization, which in turn
also affects additional membrane functions, such as efflux.

Although exhibiting lesser binding affinity for GNB cytoplasmic membrane
mimics, various assays assessing membrane damages provide evidence for the
ability of C12ɷ7K-β12 to induce membrane depolarization at low micromolar con-
centrations (Goldberg et al. 2013). As mentioned above, C12ɷ7K-β12 seems to be a
good substrate for GNB efflux pumps, unlike C12K-7α8 or C12K-3β10, hence, its high
MIC over these species (MIC90 ≥ 50 µM). From both respects therefore, membrane
depolarization of GNB by C12ɷ7K-β12, is unexpected (Goldberg et al. 2013).
Moreover, the literature often reports that depolarization is associated with bacterial
death that normally occurs shortly thereafter (Silverman et al. 2003). It is therefore
surprising (again), why is depolarization dissociated from bacterial death, since the
number of colony-forming units remains unchanged over time, for at least several
hours (Sarig et al. 2010). A possible explanation for these discrepancies maybe
directly related to C12ɷ7K-β12 binding properties to GNB versus GPB cytoplasmic
membranes, as determined by SPR. The binding parameters suggest not only a lower
apparent binding affinity (recall, Kapp = 5 × 103 versus 2 × 107 M−1, respectively),
they also suggested a lower propensity for insertion within the membrane (i.e.,
Kinsertion = k2on/k2off <1 versus >1, respectively, as illustrated in Fig. 8.1).
Consequently, the events taking place upon adhesion to the cytoplasmic membrane
of GNB are probably only slightly deviant from those described above for GPB,
summarized as follows: The OAK can readily translocate across the outer mem-
brane, like many HDPs (Hancock and Chapple 1999) as illustrated in Fig. 8.2. After
reaching the periplasmic space, the OAK molecules undergo partitioning as they are
simultaneously attracted to the inner membrane phospholipids and the efflux pumps.
Since the OAK’s tendency for insertion within the bilayer is quite low (as illustrated
in Fig. 8.1), it is likely to be extruded by RND pumps, unlike C12K-7α8 for instance,
whose deeper insertion in the bilayer likely contributes to its ability to evade
extrusion by the efflux pump. Therefore, the observable rapid membrane
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depolarization of Gram-negative bacteria by C12ɷ7K-β12, must be due to the action
of the partitioned fraction of OAK molecules that managed to escape efflux.

Furthermore, membrane depolarization itself was associated with the sensitiza-
tion of various MDR pathogenic species (e.g., Pseudomonas aeruginosa, Klebsiella
pneumoniae, Salmonella enterica, and Escherichia coli) to ribosome-targeting
antibiotics such as erythromycin, an excellent substrate of RND pumps. On this
basis, sensitization was proposed to be TMP dependent since it correlated well with
inhibition of their efflux pumps (Goldberg et al. 2013), that require a working
membrane potential as energy source (Paulsen et al. 1996; Poole 2005). Thus,
besides illustrating an interesting case of a highly potent synergistic antibacterial
activity that emanated from combination of individually inactive compounds, this
study has moreover highlighted the ability of MACs to overcome innate resistance
to erythromycin and alike antibiotics.

Further investigation of this sub-MIC bacterial sensitization effect and its per-
tinence to the TMP revealed additional consequences in Gram-positive bacteria. As
for GNB, C12(ω7)K-β12 was able to simultaneously overcome multiple resistance
mechanisms in multidrug resistant clinical isolates of Staphylococcus aureus
strains, which became significantly sensitive to several antibiotics including cell
wall-targeting β-lactams (e.g., oxacillin, piperacillin, and penicillin G) as well as
ciprofloxacin and tetracycline, respectively, targeting DNA and ribosomes.
However, while sensitization of the cytoplasm targeting drugs might be attributed to
proton motive force-dependent efflux pumps (e.g., norA and tetK), this could not be
the case for S. aureus sensitization to β-lactams, whose resistance mechanism is
more likely to involve alterations in processing enzymes such as β-lactamase and/or
penicillin binding protein 2a. Also noteworthy is the fact that, in addition to the
OAC’s ability to reduce the β-lactams MIC by up to three orders of magnitude
(Kaneti et al. 2013), the study revealed that the rate at which S. aureus acquired
resistance to β-lactams was considerably delayed in the presence of C12(ω7)K-β12.
Thus, the OAC interaction with S. aureus has achieved a double score: (a) resen-
sitization to an antibiotic and (b) prevention of developing renewed resistance to
that antibiotic. Importantly, antibiotic sensitization was shown to prevail under
in vivo conditions, as well (Kaneti et al. 2013) as elaborated in Sect. 8.3.

Studies attempting to shed light into the molecular basis for this remarkable
phenomenon suggest that the OAC’s ability to resensitize S. aureus to β-lactam
antibiotics is linked to inhibition of signal transduction cascades, as follows. Binding
of a β-lactam antibiotic to its receptor extracellular domain induces a conformational
change in the intracellular domain thereby allowing it to function as a protease that
cleaves the β-lactamase gene repressor and consequently permits transcription of the
Bla divergon (Wilke et al. 2004). Accordingly, qPCR was used to show that bacterial
exposure to a β-lactam has indeed induced the signal transduction cascade for both
blaZ and mecA (respectively encoding for β-lactamase and penicillin binding protein
2a). In contrast, addition of sub-MIC OAK has significantly reduced expression of
both resistance factors, thereby providing support to the view that C12(ω7)K-β12
interactions with the plasma membrane led to superficial damages (as evidenced by
the depolarization assay) which in turn inhibited the signal transduction cascade.
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A similar sensitization effect was obtained for bacteria exposed to sub-MIC of
another MAC, the ionophore carbonylcyanide 3-chloro-phenylhydrazone (CCCP),
in the presence of oxacillin, thereby further supporting the causative relationship
between membrane damages (as reflected by depolarization) and the synergistic
effects observed with the OAK (Kaneti et al. 2013).

This ability to interfere with expression of resistance factors has motivated
additional investigations as to the effects of C12(ω7)K-β12 on MRSA, namely with
respect to the occurrence of additional important signal transduction systems that
are disrupted by sub-MIC OAK. The findings argue for the ability of sub-MIC
OAK to inhibit quorum sensing (QS)-mediated lipolytic activity and activities of
various virulence factors such as α-hemolysin and phenol-soluble modulins
(PSM)-mediated cytotoxicity to erythrocytes and neutrophils (unpublished data).
Similar effects were observed for the cyclodepsipeptide solonamide B, that was
reported to reduce expression of RNAIII, the effector molecule of the agr quorum
sensing system (Nielsen et al. 2014). Solonamide B too did not exhibit antimi-
crobial activity but displayed specific QS inhibitory traits that reduced the S. aureus
cytotoxicity toward human neutrophils and rabbit erythrocytes in a dose-dependent
manner. The authors have concluded that solonamide B interferes with agr acti-
vation by binding to the transmembrane (AgrC) sensor histidine kinase and thereby
preventing interactions between AgrC and the auto-inducing peptides. The simi-
larities observed between C12(ω7)K-β12 and solonamide B suggest a similar mode of
action whereby C12(ω7)K-β12 like solonamide B may inhibit AgrC function through
direct binding, or that both compounds indirectly interfere with the signal trans-
duction as MACs do. Future investigation might resolve this issue.

These findings also prompted the undertaking of a structure–activity relation-
ships (SAR) study focusing on the sequence C12(ω7)K-β12, aiming to assess the
ability of OAKs to generate MACs that are devoid of antibiotic activity per se, but
whose membrane perturbing properties might enhance the potency of some other
antibacterial entity. Such a compound could be exploited for widening the sensi-
tivity spectrum of GNB to include excellent antibiotics that are excluded by the
outer membrane, namely due to their hydrophobicity. Also, the established inac-
tivity of such a compound would have a mechanistic advantage in clarifying the
issue of “who is doing what” during combination studies. This study revealed an
analog (C10K-β12) that was a very good substrate of the RND family of efflux
pumps and therefore inefficient on its own, in affecting the growth of
Gram-negative bacteria (actually, even less efficient than C12(ω7)K-β12, being less
hydrophobic). Yet, these analogs have also exhibited similar MAC properties,
inducing membrane damages at sub-MIC (e.g., at 1–2 micromolar), including
permeabilization of the outer membrane and depolarization of the cytoplasmic
membrane (Jammal et al. 2015). In fact, C10K-β12 has enabled erythromycin and
rifampicin to, respectively, exert their mode of action (i.e., bacteriostatic and bac-
tericidal, respectively), likely by permeabilizing the outer membrane to rifampin
and the cytoplasmic membrane to erythromycin. This study, therefore, provided
strong arguments for the capacity of an OAK that is devoid of antibiotic activity to
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sensitize GNB to rifampicin, reducing its MIC by up to four orders of magnitude,
which was significantly higher than for the gold standard polymixin B. Possibly,
this is due to the multiplicity of the types of simultaneous damages inflicted by such
OAKs, including their ability to avoid interactions with cell wall components such
as LPS, as well as the reciprocal drug’s ability (OAK and antibiotic) to potentiate
each other. Intriguingly, in the absence of exogenous antibiotics, C10K-β12 exhib-
ited an improved capacity to control infection in vivo, as discussed below.

8.3 OAKs In vivo Properties

Several OAKs have shown efficacy in various mice models of infection. The
sequence C12K-7α8 was one of the first investigated for its in vivo properties using
the peritonitic sepsis model (intraperitoneal (ip) treatment an hour after ip infection
of neutropenic mice and the effect evaluated by monitoring survival for 6 days). In
this model, the infecting bacterial inoculum (4 ± 1 × 106 CFU of extended spec-
trum beta-lactamase producing E. coli) corresponded to 2–3 times the LD50 (lethal
dose at which half the animals are killed) and survival was as low as 0 % in the
vehicle-treated groups. Under these conditions C12K-7α8 prevented mortality to a
similar extent as ciprofloxacin which increased the survival rates by up to 100 %
after either single or multiple doses (1 or 4 mg/kg). As the lowest therapeutic dose
was 2 mg/kg/day these results predict a therapeutic index (ratio of toxic to thera-
peutic dose >10) (Rotem et al. 2008a; Radzishevsky et al. 2007). Analysis of mice
blood after single-dose ip administration revealed that C12K-7α8 was present in the
bloodstream within minutes but did not exceed the low micromolar level. A propos,
noteworthy is the fact that a short version of this OAK (i.e., C12K-2α8) demon-
strated a maximal level of about 5 µM in mice blood upon ip administration of
5 mg/kg of body weight, whereas sustainable significantly higher concentrations in
blood were also achievable (e.g., nearly 0.1 mM at 25 mg/kg). While C12K-2α8
was devoid of antibacterial activity, it showed efficacy in experimental malaria
where the blood stage of the disease revealed to be quite sensitive. Thus, in
Plasmodium vinckei-infected mice, C12K-2α8 presented an ED50 (50 % effective
dose) of 22 mg/kg while toxicity emerged at the dose 4 × 50 mg/kg/day (Zaknoon
et al. 2011). Interestingly, C12K-2α8 inhibited in vitro parasite growth at submi-
cromolar concentrations IC50 (50 % inhibitory concentration) was 0.3 ± 0.1 µM,
but was devoid of hemolytic activity (i.e., displaying <1 % hemolysis at a con-
centration 1000-fold higher than IC50). The fact that the early (ring) stage of the
parasite developmental cycle was more sensitive (by 4- to 5-fold) than the intra-
cellular feeding stage (trophozoite), further supports the view that the antiplas-
modial mechanism was non-membranolytic to the host red blood cells.

Another antibacterial study of C12K-7α8 used a pneumonia infection model,
where mice were infected with Pseudomonas aeruginosa and treated by inhalation
(25 µg per mouse). The OAK was similarly efficient as the antipseudomonal
antibiotic tobramycin, reducing the lung bacterial population by up to 2 log units as
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compared to inoculated vehicle controls (unpublished data). Collectively, these
studies seem to indicate that C12K-7α8 might be useful in the treatments of severe
infections caused by Gram-negative pathogens. However, when tested against the
thigh infection model (e.g., ip treatment an hour after intramuscular infection of
neutropenic mice and the effect evaluated by monitoring viable bacteria extracted
from the thigh 24 h post treatment), C12K-7α8 failed to reduce bacterial load sig-
nificantly, suggesting a rather poor potential for systemic efficacy probably due to
poor tissue penetration.

Given its in vitro synergistic action with conventional antibiotics (Livne et al.
2010), a potential role of C12K-7α8 in systemic therapy was investigated against
Gram-negative bacteria (Epand et al. 2011). As mentioned above (Sect. 8.2)
co-encapsulation of synergistic drugs in OAK-based cochleates may offer advan-
tages toward overcoming potential problems arising during a systemic combination
therapy, such as attenuating toxicity, shielding from undesired interactions and/or
rectifying differential pharmacokinetic traits of the synergistic drugs. The maximal
tolerated dose (MTD) of free C12K-7α8 was compared by single IV administration
to ICR mice of free or cochleated C12K-7α8. While the MTD of free OAK was
estimated at 5 mg OAK/kg of mouse weight, the MTD observed for the cochleated
version was estimated at least 5-fold higher, as no detectable signs of toxicity were
apparent at the highest tested dose (i.e., 20 mg/kg), indicating that encapsulation of
C12K-7α8 has significantly reduced its systemic toxicity. As mention above, pre-
vious attempts aiming to assess the therapeutic potential of C12K-7α8 have shown
encouraging outcome in topical but not in genuine systemic treatment models.
While not necessarily promising an improved outcome, these acute toxicity results
open the possibility for increasing the administrated doses beyond the free MTD,
which in turn might achieve an improved therapeutic outcome. Regardless of this
issue, the cochleates approach demonstrated moreover, that systemic treatments
using single-dose administrations of co-encapsulated C12K-7α8 and erythromycin,
have significantly increased the therapeutic efficacy and protected mice from lethal
bacterial infections in a dose-dependent manner (Livne et al. 2010; Sarig et al.
2011).

The use of lysyl-acyl-lysyl (β) building blocks in OAKs design also appears
beneficial. We already mentioned that it enabled to broaden the spectrum of
activity, namely to include a wide range of Gram-positive and Gram-negative
bacteria. As it turned out, this structural motif seems also to improve the OAK’s
bioavailability since at least from preliminary efficacy studies using the thigh
infection model, various β-OAKs demonstrated the ability to significantly affect the
colony forming units (CFU) upon systemic administration. Thus, unlike α-OAKs
(e.g., C12K-7α8 and C12K-5α8) that exhibited in vivo antibacterial efficacy only
upon using topical (or semi-topical such as ip-ip) applications, C12K-3β10 and C12

(ω7)K-β12 were efficient at 2 mg/kg in reducing the viability of Staphylococcus
aureus, an important human and animal pathogen (Zetola et al., 2005), albeit, they
were assessed under somewhat different conditions (i.e., using normal ICR mice
infected with S. aureus ATCC 29213). However, assessment of the shorter β-OAK
version (C12(ω7)K-β12) in the thigh infection model indicated quite comparable
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efficacies on using different systemic routes for administrating the OAK (including
ip, subcutanous (sc) and intreavenous (iv)), where the OAK has reduced bacterial
load similarly to vancomycin. The MTD for iv and ip routes were 5 and 10 mg/kg,
respectively, whereas the sc route was well tolerated at least up to 20 mg/kg. It is
estimated that C12(ω7)K-β12 rapidly enters circulation and remains stable for several
hours.

Another antibacterial β-OAK worth mentioning is the sequence C12K-2β12 that
demonstrated in vitro and in vivo efficacies against Helicobacter pylori, namely
when using an experimental infection of Mongolian gerbils treated orogastrically
(Makobongo et al. 2012), suggesting that the OAK concept may be a valuable
resource for therapeutic treatment of H. pylori infection, as well. Together, these
studies suggest that the potential of β-OAKs for antibacterial therapeutic devel-
opment includes systemic monotherapy.

C12(ω7)K-β12 was also investigated for its potential in combination therapy. As
the OAK was able to overcome resistance of S. aureus clinical isolates to β-lactam
antibiotics (e.g., oxacillin, piperacillin, and penicillin G) under in vitro conditions, it
was verified whether this resensitization effect could prevail under in vivo condi-
tions as well. Using the ip-ip version of the mouse peritonitis-sepsis model, various
single doses of oxacillin and OAK combinations were able to prevent death induced
by a lethal infection, in a synergistic dose-dependent manner (Kaneti et al. 2013).

Another study targeting GNB by combining C12(ω7)K-β12 and erythromycin,
tested their ability to affect disease course systemically, using the mouse thigh
infection model in neutropenic mice that were inoculated intramuscularly with a
clinically isolated MDR strain of E. coli and treated subcutaneously. Unlike indi-
vidual treatments with OAK or erythromycin, treatments with the combined drugs
have significantly enhanced growth inhibition of E. coli in most mice (Goldberg
et al. 2013). Collectively, these findings suggest a potentially useful approach for
expanding the antibiotics sensitivity spectrum of MDR Gram-negative bacteria to
include efflux substrates. Another important outcome of this study is the realization
that in vivo antibiotic sensitization of bacteria can prevail without the requirement
for encapsulation and delivery of the synergistic drugs.

Possibly more interesting is the combination of two virtually inactive drugs on
GNB such as rifampin and C10K-β12, whose systemic efficacy was further chal-
lenged by distinct modes of administration (oral and subcutaneous, respectively)
without encapsulation (Jammal et al. 2015). Vehicle treatment of neutropenic mice
inoculated with K. pneumoniae resulted in rapid death of most mice (20 and 10 %
survival) within 1–2 days. Under these conditions, single dose treatments with
rifampin, C12(ω7)K-β12 or C10K-β12, were unable to significantly improve the sur-
vival rates, as they yielded 10, 20 and 25 % survivors at day 7, respectively. In
contrast, administration of rifampin combined with C12(ω7)K-β12 increased mice
survival from 20 to 40 %, while the combination including C10K-β12 has further
increased the survival rate to 60 %. The improved in vivo performance of C10K-β12
compared with C12(ω7)K-β12 were attributed to two factors: a better bioavailability
and a higher capacity to permeabilize the outer membrane of GNB.
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Noteworthy is the most recent SAR study that revealed a closely related analog
of C10K-β12 displaying quite intriguing in vivo properties (unpublished data).
Namely, it is the first OAK to exhibit potent systemic efficacy against GNB using
single dose monotherapy. It is intriguing not only because the systemic efficacy was
the highest achieved in the OACs history thus far, but also because this outcome
was achieved despite lack of antibiotic activity in vitro. Thus, using neutropenic
mice infected ip with E. coli or K. pneumonia, the new analog increased the number
of surviving mice in the sepsis-peritonitis model (by up to 90 %) and fully inhibited
the number of viable bacteria in the thigh infection model after subcutaneous OAC
administrations. The still ongoing mechanistic studies suggest that the new analog
is endowed with improved bioavailability, as its free concentration in mice blood
was higher than that of C10K-β12 (for instance, achieving 12 versus 5 micromolar,
60 min after administration of 12 mg/kg). However, while this quantitative infor-
mation might justify the higher potency, the cause for the antibiotic effect remains
to be determined since the MIC is consistently >50 micromolar (in culture medium,
this concentration inhibited growth of some strains by about 10 %, at most). One
direction taken is to verify the possibility of an OAK-mediated recruitment of the
immune system.

8.4 Resin-Linked OAKs

Besides investigating OAKs potential in controlling bacterial infections, their
ability to capture bacteria in the resin-linked (ROAK) form, was also investigated
(Rotem et al. 2010; Marjieh et al. 2015). The first idea examined was whether
OAK’s binding affinity to bacteria might be exploited toward bacterial filtration
from liquid media and/or eventual additional downstream applications. Having
established their capacity to capture bacteria under different environmental condi-
tions, it was next attempted to improve that capacity by investigating the SAR
involved. Subsequently, the ROAKs aptitude to release the captured bacteria was
examined and finally, the potential use of ROAKs in downstream applications was
assessed by exploiting the capture/release capacities.

Following a preliminary SAR study, the sequence K-7α12 was initially selected
for this investigation as its charge and hydrophobic characteristics were clearly
implicated in bacterial capture by ROAK beads (Rotem et al. 2010). Using confocal
microscopy for visualization of ROAK-bound bacteria (Fig. 8.3), and SPR tech-
nology for measuring bacterial binding to an OAK-linked chip, it was concluded
that ROAKs are highly apt for rapid capture of various pathogens in different
media, under incubation or continuous flow conditions. A single ROAK bead
(average diameter of 50–100 µm) is estimated to capture >1,000 bacteria in con-
taminated culture medium, saline, or tap water. Moreover, after a brief ethanol
treatment/elution, the ROAK-bound bacteria were readily identifiable by real-time
PCR.
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Further characterization of bacterial capture by ROAKs in a recent follow-up
study is summarized as follows:

(1) ROAKs maintained high-capture efficacy (80–100 %) for various represen-
tative species including medically relevant bacteria, while using inoculums
differing by several orders of magnitude, starting from 1 × 104 CFU per
milliliter medium;

(2) Bacterial capture in water and in the presence of salts at concentrations at least
up to 100 mM was essentially similar, whereas only molar concentrations
achieved significant levels of inhibition, bivalent salts being more potent
inhibitors;

(3) No significant interference was detected at pH range 3–9, reflecting the
hydrophobic forces at play;

(4) Partial bacterial capture (up to 23 %) occurred in contaminated whole blood,
whereas 10-fold blood dilution enabled to increase the captured fraction to
50 %. These findings stand in line with previous data demonstrating efficient
bacterial capture in wastewaters (Rotem et al. 2010), thereby consolidating the
view of a high-affinity interaction between bacteria and ROAK beads;

Fig. 8.3 Bacterial filtration using a ROAK column. The right panel is cartoon illustrating the
principle of a ROAK-packed column used for continuous flow analysis of bacterial contamina-
tions. Typically, 10 mg ROAK beads are packed in a glass pipette (restrained by glass fibers) and
preconditioned in saline. Contaminated liquid media (e.g., tap water, saline, buffered solutions, or
biological fluids) are passed through the column at a flow rate of 2.5 ml/min using a peristaltic
pump. The captured bacteria can be released using a minimal elution solution (typically 2 ml of
70 % ethanol or 0.5 M CaCl2 in water, to obtain dead or live free bacteria, respectively) for
downstream analysis such as bacterial quantification by qPCR or determination of the numbers of
colony forming units (Marjieh et al. 2015). The left panel is a “zoom” image showing
GFP-expressing bacteria associated with a ROAK bead as analyzed by confocal fluorescence
microscopy (Rotem et al. 2010)
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(5) Free bacteria can be recovered nonetheless, as demonstrated after washing
ROAK-bound E. coli with an eluting agent (for instance, ethanol, NaCl and
CaCl2, respectively yielding <1, 5 and 17 %, recovery).

Attempts to establish the minimal requirements for effective bacterial capture,
point to an N-terminal lysyl residue being critical for maintaining significant cap-
ture activity, whereas OAK sequences composed of 3–4 acyl-lysyl subunits are
sufficient for efficient capture. However, the data also suggest that such optimum
maybe species- and/or strain dependent. For instance, K-4α12 was the shortest
sequence to maintain similar capture of Pseudomonas aeruginosa as its parent
sequence K-7α12, whereas for Escherichia coli or Klebsiella pneumonia, it was
K-3α12. Thus, further studies are needed to validate this notion.

Based on these data, the capture and release capabilities were exploited for active
filtration of bacteria-contaminated liquids in column chromatography. For this
purpose, a glass pipette loaded with ROAK beads was utilized (as illustrated in
Fig. 8.3) to filter saline inoculums spiked with a constant number of E. coli bacteria
(6.0 ± 0.5 log CFU). Both the K-7α12 and K-3α12 ROAKs maintained a high
capacity for bacterial capture under these continuous flow conditions, however, the
elution yield from the K-3α12 column was substantially higher. The data therefore
argue that the K-3α12 ROAK column assay represents a rapid bacterial enrichment
procedure since bacterial counts were increased by a factor of about 7. Moreover,
by applying a higher inoculum volume (100 ml, as often required in standard tests
(Guidelines for drinking water quality. WHO 2008; (Rompre et al. 2002)), the
concentration factor was increased to about 20-fold, a number that, at least theo-
retically, should further increase with increasing sample volumes. Collectively,
these data provide evidence for the ability of ROAKs to deplete a sample of bacteria
using extremely high-affinity sequences (e.g., K-7α12) or, the ability to improve the
sensitivity of qPCR-based bacterial detection by using moderate affinity OAKs
(e.g., K-3α12). Thus, in addition to its compositional simplicity and robustness, the
new attributes highlight potential advantages of the OAK approach over approaches
that use antibodies (Iqbal et al. 2000) or AMPs (Mannoor et al. 2010), including in
terms of how environmental conditions (pH, ionic strength, and complexity) might
affect their performances.

8.5 Concluding Remarks

Various studies sustain the notion that combination therapies targeting the mem-
brane potential may represent an advantageous approach for controlling bacterial
infections by disabling the devastating effects related to both antibiotic resistance
and virulence factors. This notion was illustrated herein, through MAC investiga-
tions using the OAC platform. Together, the data show promise as to the concept’s
capacity to generate small molecules that simultaneously affect multiple membrane
functions, control systemic bacterial infections in single and combination therapy
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and overcome (and/or delay) innate and acquired resistance to antibiotics. In the
future, therefore, side-by-side with conventional antibiotics development programs,
we anticipate to witness an increased interest for exploring MACs that target signal
transduction. In particular, owing to their simplicity and robustness, new OAC
generations maybe also useful in elucidating the mechanisms involved in the
alleged inhibition of quorum sensing and possibly for immune modulation.

Similarly, ROAKs were able to deplete liquid samples of bacterial content after
incubation and during flow settings, illustrating the efficient capture of different
bacterial species under a wide range of ionic strength and pH conditions. The
studies also showed circumstances for the significant release of captured bacteria,
live or dead, toward further analysis. The data therefore support the potential
usefulness of this simple, robust, and efficient approach for rapid capture/analysis of
bacteria from tap water and, possibly, from more complex media. As an effective
tool for dissecting the relative roles of parameters considered most crucial for
antimicrobial activities (i.e., charge and hydrophobicity), new OAC-linked surfaces
might also pave the way to new potential applications (e.g., as biosensors, magnetic
beads, etc.), so as to allow sensitive detection of bacteria in water and foods and/or
their filtration from biological fluids such as blood.
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Chapter 9
Structural Analysis of Amphibian, Insect,
and Plant Host Defense Peptides Inspires
the Design of Novel Therapeutic Molecules

Guangshun Wang

Abstract Host defense antimicrobial peptides (AMPs) are the key components of
innate immune systems of both invertebrates and vertebrates. They play an
important role in preventing microbial invasion and regulating immune response.
This chapter intends to identify nature’s peptide design strategies based on a
structural analysis of select AMPs from amphibians, insects, and plants. The plant
kingdom and amphibian/insect classes have 250–1000 peptide entries in the
antimicrobial peptide database. Both insects and plants deploy AMPs with a variety
of structural scaffolds (α-helix, β-sheet, αβ-structure, and non-αβ structure). In
contrast, amphibians make numerous defense peptides (combinatory libraries)
based almost solely on the classic amphipathic α-helix structure. Thus, these 3-D
structures suggest two general strategies for peptide discovery: (1) screening a
library of peptides with a fixed backbone structure and (2) rational design by
selecting a structural scaffold with a known target (e.g., cell walls, membranes,
ribosomes, or nucleic acids). It is demonstrated that peptide library screening can be
combined with structure-based design to better achieve the molecular design goals.

9.1 Introduction

The discovery of cecropins in insects, magainins in frogs, and defensins from
humans in the 1980s (Selsted et al. 1985; Steiner et al. 1981; Zasloff 1987) led to a
rapid increase in the number of antimicrobial peptides (AMPs) identified from
bacteria, archeae, protists, fungi, plants, and animals (Wang 2013; Wang et al.
2015). As of August 20, 2015, there are 2,600 AMPs in the antimicrobial peptide
database (APD) (Wang 2015a; Wang and Wang 2004; Wang et al. 2009). These
host defense peptides are key components of the innate immune systems of all life
forms (i.e., innate immune peptides). AMPs are expressed in all the exposed tissues
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where pathogens may have a chance to invade. These small proteins play a big role
in a variety of biological systems. Not only do they kill invading bacteria, viruses,
fungi, parasites, but also participate in other biological processes, including
antioxidant, protease inhibition, apoptosis, immune modulation, and wound healing
(Zasloff 2002; Fjell et al. 2012; Boman 1995; Wang 2010; Tossi and Sandri 2002;
Haney et al. 2009; Marsh and Goode 1994; Lai and Gallo 2009).

The aim of this chapter is to compare the structural scaffolds of AMPs from
amphibians, insects, and plants so that useful strategies may be derived for peptide
design. These kingdoms/groups were chosen because of a large number of peptides
in each (253–994 entries in the APD database, Wang and Wang 2004; Wang et al.
2009). In addition, there is a food chain relationship between these organisms. While
insects can feed on plants, frogs and toads can engulf insects. Of course, amphibians
can also become the food of other organisms such as reptiles. Here AMPsmight serve
as poisons to retard the action of predators. Indeed, plant AMPs can be insecticidal.
Multiple AMPs and other poisons on the skin of frogs can scare away predators.

This chapter starts with a systematic classification of 3-D structures of AMPs.
Based on this classification, structural studies of natural AMPs from insects,
amphibians, and plants are highlighted. Unlike insects and plants, amphibians use
almost exclusively helical structure for defense. In an era of antibiotic resistance,
elucidation of nature’s peptide design strategies inspires the discovery of novel
antimicrobials to combat antibiotic resistant bacteria (superbugs).

9.2 Structural Classification of Host Defense Peptides

9.2.1 The Dominant Role of NMR Spectroscopy

It is well appreciated that 3-D structure can provide in-depth insight into biological
functions of polypeptides. X-ray diffraction and nuclear magnetic resonance
(NMR) spectroscopy are two established methods for structural determination to
atomic resolution. The X-ray diffraction method was established earlier than NMR.
The crystal structure of myoglobin was solved in 1958 (Perutz 1962), while the first
NMR structure for bull seminal proteinase inhibitor (BUSI) was not determined until
1985 (Wüthrich 2002). The structural data were initially scattered in the literature or
in different laboratories. It was clear that a centralized platform could benefit
development of the science itself and the public. The Protein Data Bank (PDB) is
such are source that collects structures of biomolecules with an ultimate goal of
construction of a structural view for life (Rose et al. 2015). While the journals require
the deposition of data, not all structures are deposited. As of August 20, 2015, there
are 99,264 structures determined by X-ray diffraction and 11,100 structures solved
by NMR indicating the majority of the structures originated from the X-ray method.

The APD (Wang and Wang 2004; Wang et al. 2009) is a widely used resource
that annotates biological source, activity, sequence, 3-D structure, and literature of
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AMPs. Both crystal and NMR structures are annotated including those not
deposited into the PDB. When there are multiple structures solved for a single AMP
under different conditions, the APD usually provides a link to the high resolution
structure in the PDB. Of a total of 350 unique structures annotated in the APD, 307
are determined by NMR spectroscopy and 43 by X-ray diffraction (Table 9.1).
Hence, NMR is the major player in structural studies of AMPs.

It can be helpful to make a comment on the major role of NMR. Most of the
linear peptides do not have a defined structure in aqueous solution, making it
difficult to grow crystals, a prerequisite for structural determination by X-ray
crystallography. However, it was possible to crystallize some disulfide bond sta-
bilized peptides such as defensins (Lehrer and Lu 2012) because they do have a
folded structure in aqueous solution. Another factor is that the majority of AMPs
are likely to target membranes and growing crystals for membrane-associated
peptides is a challenging task (Wang 2008a; Brown and Ladizhansky 2015). All
these explain the paucity of crystal structures of AMPs in the APD (Wang et al.
2009).

It was a perfect time for NMR spectroscopy to be developed into a tool for
structural determination in the 1980s when the AMP field started to grow rapidly.
Fortunately, there is no need to grow crystal for NMR studies. Direct measurements
in solution made it convenient for NMR to follow the conformational change of a
peptide with the solution conditions (Wang 2010, 2008b). In particular,
membrane-mimetic models can be used to mimic bacterial membranes. In complex
with membranes, many linear AMPs become structured, allowing for structural
determination. For structural determination of AMPs by solution NMR spec-
troscopy, the commonly used membrane-mimicking models are organic solvents or
detergent micelles. In addition, the lipid bilayer model is suitable for solid-state
NMR studies (Wang 2008a; Brown and Ladizhansky 2015; Wüthrich 1986).

In the case of large complexes there is a clear advantage to utilize the X-ray
diffraction technique. Recently, the structures of proline-rich peptides in complex
with bacterial ribosomes have been determined (Seefeldt et al. 2015; Roy et al.
2015). When used simultaneously, the two techniques could provide complemen-
tary information. Crystal structure is known to provide higher resolution, whereas
NMR can identify the crystal form more resembling that measured under physio-
logical conditions. More importantly, NMR can shed light on polypeptide motions

Table 9.1 3-D structural
statistics in the PDBa and
APDb

Database PDB APD

X-ray 99,264 (89.9 %) 43 (12.3 %)

NMR 11,100 (10.1 %) 307 (87.7 %)

Sum 110,364 350
aData obtained from the PDB (http://www.rcsb.org/pdb/home/
home.do); bData obtained from theAPD (http://aps.unmc.edu/AP).
Accessed on August 20, 2015
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on wide time scales, ranging from nanoseconds to days (Wang et al. 2005a). In
addition, solid-state NMR studies can provide insight into peptide oligomerization,
orientation and dynamics in the lipid bilayer model (Brown and Ladizhansky 2015;
Strandberg and Ulrich 2015; Hong 2006). Collectively, these biophysical methods
could uncover structure and dynamics of AMPs in complex with different molec-
ular targets.

9.2.2 Structural Classification of AMPs

Boman classified AMPs into three classes: α-helical, β-sheet (usually disulfide bond
connected), and rich in amino acids such as Pro, His, Arg, and Trp (Boman 1995).
Others have added looped structures or circular peptides as a new class (Fjell et al.
2012; Vale et al. 2014). Based on whether there are α and β structures in the
peptides, Wang classified the 3-D structures of natural AMPs into four major
families: α, β, αβ, and non-αβ (Wang 2010). The α family consists of helical AMPs,
while the β family contains a collection of AMPs with β-sheet structures. AMPs in
the αβ family contain a mixture of α and β structures, which may, or may not, be
packed into a single protein fold. Peptides in the non-αβ family do not have a
well-defined α or β structure. Representative structures can be viewed in the APD
face page (http://aps.unmc.edu/AP). Each structural family of peptides may be
further classified based on the number of α-helices or β-strands (Wang 2015a; Fjell
et al. 2012).

Table 9.2 provides the statistics for the known AMP structures from insects,
amphibians, and plants annotated in the APD (Wang 2015a). There are 46 AMP
structures from amphibians, 34 from insects, and 40 from plants. It is evident that
different structural scaffolds have been found for insect and plant AMPs. However,
the known 3-D structures from amphibian AMPs are entirely helical (Table 9.2). In
the following three sections I highlight representative structures from these
organisms.

Table 9.2 Structural classes of amphibian, insect, and plant antimicrobial peptidesa

Source Total
peptides

NMR
structures

α-helix β-sheet αβ-structure Non-αβ
structure

Amphibians 994 46 46 0 0 0

Insects 252 34 19 2 11 2

Plants 320 40 2 10 25 0
aData obtained from the APD (http://aps.unmc.edu/AP) on August 20, 2015 (Wang and Wang
2004; Wang et al. 2009) based on the Wang classification (Wang 2010)
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9.3 Structures of Amphibian Antimicrobial Peptides

Amphibians are famous for abundance in biologically active peptides (Zasloff 2002;
Marsh and Goode 1994; Xu and Lai 2015; Mangoni 2006; Bowie et al. 2012;
Conlon et al. 2004). Currently, the APD collected 994 amphibian AMPs,
accounting for 38.2 % of the 2,600 entries (Wang et al. 2009). The major families
are magainins, brevinins, esculentins, temporins, ranalexins, ranatuerins, palustrins,
tigerinins, japonicins, and nigrocins (Conlon et al. 2004). These AMPs can have
different biological activities. In the APD, 889 are annotated to be antibacterial, 38
antiviral, 397 antifungal, 29 antiparasitic, 15 antioxidant, and 66 anticancer.
However, only 46 of the amphibian AMPs have known 3-D structures (Table 9.2).
The sequence and activity of representative amphibian AMPs with known 3-D
structure are given in Table 9.3. It is clear that amphibian AMPs varying activity
spectrum. In addition, amphibian AMPs, such as magainin 2 and PGLa, can also
work together to achieve a synergistic effect (Marsh and Goode 1994).

Magainins (Table 9.3) were the first AMPs identified from the African clawed
frogs Xenopuslaevis (Zasloff 1987). They have demonstrated to have antibacterial,
antiviral, antifungal, and antiparasitic activities (Zasloff 2002). Using solution NMR
methods, Opella and colleagues found a similar helical structure for magainin 2 in
several membrane-mimetic models, including trifluoroethanol (TFE), deuterated
sodium dodecylsulfate (SDS), and dodecylphosphocholine (DPC) (Gesell et al.
1997). Therefore, the structure of this peptide does not appear to be influenced by
such environmental conditions. The orientation of the peptide in a lipid bilayer
model was also determined by solid-state NMR. The amphipathic helix was found

Table 9.3 Structure and activity of representative AMPs from amphibians

APD
ID

Name Peptide sequence Structurea Activityb References

144 Magainin 2 GIGKFLHSAKKFGK
AFVGEIMNS

α G, F, C Zasloff (1987),
Gesell et al.
(1997)

13 Aurein 1.2 GLFDIIKKIAESF-amide α G, V, F,
C

Rozek et al.
(2000), Wang
et al. (2005b)

1534 Temporin-SHf FFFLSRIF-amide α G, F Abbassi et al.
(2010)

1656 Esculentin-1c GIFSKLAGKKIKNLISGLKNIGK
EVGMDVVRTGIDIAGCKIKGEC

α G Kang et al. (2010)

493 Distinctin Chain 1: ENREVPPGFTALIKTL
RKCII;
Chain 2: NLVSGLIEARKYL
EQLHRKLKNCKV

α G Dalla Serra et al.
(2008)

764 Dermaseptin
S9

GLRSKIWLWVLLMIW
QESNKFKKM

α G Lequin et al.
(2006)

308 Buforin II TRSSRAGLQFPVGRVHRLLRK α G, F, C Yi et al. (1996)
aExcept for distinctin, the structures were determined in membrane-mimetic environments such as TFE, SDS,
and DPC. bAntimicrobial activity as annotated in the APD: G, bacteria; F, fungi; V, viruses; C, cancer cells; and
I, insects (Wang and Wang 2004; Wang et al. 2009)
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to be located on the surface of the membrane (Bechinger et al. 1991). However, it
was also proposed that this peptide could create a pore in membranes based on
other biophysical studies (Tamba et al. 2010). Such a conflict may reflect the
difference in the model membrane environments or experimental conditions. Thus,
it is not always trivial to link structure to mechanism of action (Haney et al. 2009).

Aureins were isolated from Australian frogs (Bowie et al. 2012). Among them,
aurein 1.2 (Table 9.3) is one of the shortest antibacterial and anticancer peptides
(Rozek et al. 2000). It showed a good activity against Leuconostoclactis and
Listeria innocua with a minimal inhibitory concentration (MIC) at 6 µg/ml and
moderate to weak activities against Bacillus cereus, Staphylococcus epidermidis,
Streptococcus uberis, and Micrococcus luteus (50–100 µg/ml). The 3-D structure
of this peptide was determined in TFE (Rozek et al. 2000). A high quality structure
was also solved in SDS micelles (Wang et al. 2005b). The micelle-bound structure
(Fig. 9.1a) was refined using dihedral angles derived from 13C and 15N chemical
shifts measured at natural abundance (Wang et al. 2005b; Li et al. 2006a). In this
high quality structure, the C-terminal aromatic ring of F13 bends toward the
hydrophobic surface as a result of direct NOE cross peaks between the side chains
of F13 and I9 (Fig. 9.1a). Furthermore, NMR studies of aurein 1.2 in the dioctanoyl
phosphatidylglycerol (D8PG) model provide novel insights into peptide-PG inter-
actions. There are direct contacts between the aromatic rings (both F3 and F13) and
the anionic lipid (Wang et al. 2005b). Solid-state NMR studies revealed a preferred
binding to anionic membranes and a 50° tilt of the helix axis relative to the
membrane surface (Marcotte et al. 2003). At elevated concentrations, aurein 1.2
generated an isotropic 31P NMR peak in a lipid system mimicking the E. coli
membranes (Wang et al. 2005b). An isotropic membrane phase involving aurein 1.2
was also suggested by the solid-state 15N NMR study (Boland and Separovic 2006).
These results suggest that aurein 1.2 works like a detergent and can disrupt bacterial
membranes by the carpet mechanism (Fernandez et al. 2012).

Temporins are a family of amphibian AMPs (Mangoni 2006) with very short
peptide sequences (8–17 amino acid residues for 110 temporins in the APD Wang
2015a). A unique feature of these peptides is that they usually have only few basic
residues. Temporin-SHf, with eight residues (Table 9.3), is the shortest temporin
from the African frog Pelophylaxsaharica (Abbassi et al. 2010). It is active against
B. megaterium (MIC 3 µM), S. aureus ATCC 25,923 (12.5 µM), E. faecalis ATCC
29,212 (50 µM), E. coli ML-35p (30 µM), and E. coli ATCC 25,922 (25 µM), and
E. coli D21 (100 µM). Residues 3–8 adopted a non-amphipathic helical structure in
either SDS or DPC micelles. Of the eight residues, 50 % are aromatic Phe. Some of
these Phe aromatic rings may interdigitate into the membrane in a manner similar to
those in aurein 1.2 (F3 and F13 in Fig. 9.1a).

Many amphibian AMPs in the APD (34 %) are known to be amidated at the
C-terminus. This amidation can be essential for peptide activity and helicity
(Dennison et al. 2012). Approximately another one third of amphibian AMPs
potentially forms a “Rana box” usually in the C-terminal region. A Rana box is
characterized by a set of residues sandwiched between a pair of Cys residues that
form a disulfide bond (Clark et al. 1994). It appears that such a local structure
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provides an alternative way to stabilize the C-terminal end of the peptide. In
addition, the hydrophobic nature of such a disulfide bond should not be ignored
(Wang and Wang 2015). For nigrocin-2, the helical conformation (residues 3–18)
was found to extend into the Rana box region (between Cys15 and Cys21),
allowing the C-terminal Cys21 to bend over to form a disulfide bond with Cys15

Fig. 9.1 Structures of amphibian antimicrobial peptides. a Aurein 1.2 (PDB entry: 1VM5)
(Wang et al. 2005b), b distinctin (PDB entry: 1XKM) (Dalla Serra et al. 2008), c the orientation of
chain 1 of distinctin in lipid bilayers (Resende et al. 2009), d an alternative orientation of chain 1
of distinctin in lipid bilayers obtained by a 180° rotation of the model in panel C as indicated, e the
orientation of chain 2 of distinctin in lipid bilayers determined by solid-state NMR, and f a
proposed membrane-binding model for distinctin in a lipid bilayer. A similar bilayer, although not
displayed, is assumed to be underneath the structures in panels C, D, and E. Chains 1 and 2 of
distinctin (sequences in Table 9.3) are labeled in panels B and F. Disulfide bonds are represented
with a pair of balls and are recently proposed to be important for membrane binding (Wang and
Wang 2015) as shown in panel F
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(Park et al. 2001). In the case of gaegurin-4, the Rana box (C31-C37) appeared to
extend beyond the helical regions of the peptide (Park et al. 2000a). These authors
found two helical regions (residues 2–10 and 16–32) for gaegurin-4 in TFE.
A subsequent NMR study using 15N-labeled peptide revealed the same structure in
SDS micelles (Park et al. 2007). Structurally, the middle region of the peptide was
proposed to be “flexible”. However, such a motion picture is not consistent with
heteronuclear 15NNOE measurements, which indicate a rigid conformation span-
ning the entire peptide backbone. Interestingly, another study suggests two helical
regions covering residues 2–23 and 25–34, which better agree with the heteronu-
clear NOE values above (Chi et al. 2007). Due to the spectral resolution issue,
NMR studies of longer amphibian peptides were carried out either in organic
solvents by 2-D homonuclear NMR (Kang et al. 2010) or in micelles by
heteronuclear 3-D NMR methods at elevated temperatures e.g., human cathelicidin
LL-37 (Wang 2008b). It should be pointed out that some amphibian AMPs did
show subtle conformational differences in different models. In the case of
maximin-4, a major difference was observed in the break region, although the
overall helix-break-helix structure is similar in SDS micelles or in 50 % methanol
(Toke et al. 2011). Clearly, it is important to determine the structure of an AMP in a
relevant model. In this regard, 19F, which is usually not in natural products, pro-
vides a unique probe for studying the structure and dynamics of AMPs in native
membranes by NMR (Koch et al. 2012).

Distinctin represents an interesting and unique case where two peptide chains are
linked via one disulfide bond (Table 9.3). Unlike the majority of amphibian AMPs,
this peptide spontaneously dimerizes and adopts a helix bundle structure in water
(Fig. 9.1b). Interestingly, such a structure is critical for peptide stability to proteases
but not antimicrobial activity (Dalla Serra et al. 2008). However, the helix bundle
structure did not persist in the presence of membranes (Resende et al. 2009).
A recent solid-state NMR study determined the orientation of both chains of dis-
tinctin (Verardi et al. 2011). Consistent with a previous solid-state NMR study
(Resende et al. 2009), the short helix in chain 1 was more tilted at an angle of 24°
(Fig. 9.1c), the longer helix (chain 2) is nearly parallel to the membrane surface
(Fig. 9.1e). Chain 1 was proposed to insert into the membrane with the charged and
disordered region in the membrane (Fig. 9.1c) (Verardi et al. 2011). This is unlikely
because burying the N-terminal charged moiety of the peptide (bold in Table 9.3
and Fig. 9.1) into the membrane is energetically unfavorable. Therefore, I propose
an alternative model for chain 1, where chain 1 is inverted (i.e., 180°). In this model
(Fig. 9.1d), the hydrophobic face retains its membrane-bound state, while the
disordered region is now exposed to the aqueous phase. Such a chain 1 orientation
is consistent with angle dependent solid-state NMR measurements, which have
multiple solutions owing to the cos2θ−1 relationship. Remarkably, half of the
structure determined in the solution state (Dalla Serra et al. 2008) is fully consistent
with the solid-state NMR measurements, where chain 1 is more tilted if chain 2 sits
on the membrane surface (Fig. 9.1f). The alternative membrane-binding model
proposed here for distinctin enables both helices to attach to the lipid bilayer
through their hydrophobic surfaces (see Fig. 9.1d, e). This allows the helix bundle
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structure (Fig. 9.1b) to directly open into two on bacterial membrane surfaces
(Fig. 9.1f). Thus, distinctin provides an excellent example that illustrates the
complementary nature of solution and solid-state NMR methods. The solid-state
NMR studies (Resende et al. 2009; Verardi et al. 2011) shed light on how the helix
bundle structure might open and bind to membranes (Fig. 9.1).

Not all amphibian peptides are located on the membrane surface, however.
Dermerceptin S9, which was identified from the South African hylid frog
Phyllomedusa sauvagei, is such an example that can form a transmembrane helix
(Lequin et al. 2006). This was made possible by a string of hydrophobic residues in
the middle of the peptide sequence (Table 9.3). Such a sequence differs from those
that form an amphipathic helix structure.

Beyond membranes, can an amphibian AMP cross cellular membranes and work
on an intracellular target? The answer is yes. Buforin II is a well characterized
example for this. This peptide actually binds to DNA or RNA (Cho and Kim 2010).
Its 3-D structure was determined in TFE (Yi et al. 1996) rather than in complex
with DNA. The structure of buforin II helped identify the importance of the amino
acid Pro in membrane penetration and cellular entrance (Table 9.3). This structure
inspires the design of cell-penetrating peptides.

In summary, the helical structure is universal in amphibian AMPs. Interestingly,
these helical AMPs can kill pathogens by different mechanisms. Many target
bacterial membranes. Some peptides are proposed to form a pore in bacterial
membranes (Tamba et al. 2010), whereas other AMPs, such as aurein 1.2 and
temporin-SHf, are too short (8–13 residues) to form a transmembrane pore by
themselves. Therefore, such short AMPs may disrupt bacterial membranes like a
detergent to disintegrate bacterial membranes (Boland and Separovic 2006).
Remarkably, some AMPs such as buforin II could, however, cross the membrane
and associate with internal targets such as nucleic acids. These results imply that
one can design AMPs with different activities and even mechanisms of action by
altering amino acids on the same helical backbone.

9.4 Structures of Insect Antimicrobial Peptides

Insects are invertebrates that do not have adaptive immune systems. The discovery
of AMPs in insects is a milestone, establishing their fundamental role in innate
immunity for survival of these organisms during microbial infections (Lemaitre and
Hoffmann 2007). Cecropins were the first AMPs identified from insects in 1980
(Steiner et al. 1981). Currently, there are 253 insect AMPs in the APD (Wang et al.
2009). Among them, 227 have known antibacterial activities. Insect AMPs can also
have antiviral (9 entries in the APD), antifungal (91 peptides), and antiparasitic (9
entries) activities. As summarized in Table 9.2, insect AMPs could adopt various
structural scaffolds. Of the 34 known structures, 19 insect AMPs are α-helical and
two form β-sheet structures. Another 11 peptides contain both α and β structure
(i.e., αβ structure). Finally, there are two insect AMPs with a non-αβ structure.
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9.4.1 The α-Helical Family

The structure of cecropin A was first studied by 2-D NMR in 1988 (Holak et al.
1988). In 15 % 1, 1, 1, 3, 3, 3-hexafluoro-2-isopropanol (HFIP), two helical regions
(α1: residues 15–21 and α2: residues 24–37) were found. The angle between the
two helices could not be determined because of the paucity in NOE restraints for
that region. Likewise, sarcotoxin IA has a helix-hinge-helix structure (α1: 3–23 and
α2: 28–38) (Iwai et al. 1993). Helical structures have also been found for other
insect AMPs, including Spodopteralitura (Sl) moricin (Oizumi et al. 2005), mas-
toparan B (Yu et al. 2000), spinigerin (Landon et al. 2006), stomoxyn (Landon et al.
2006), and lassiglossins (Cerovský et al. 2009). Most of these NMR studies were
conducted using organic solvents as a membrane-mimetic model. The
helix-promoting ability of these solvent systems is in the following order:
acetonitrile < H2O < methanol < HFIP. This trend explains why HFIP was chosen
in some cases as a helix-promoting agent. For spinigerin (25 residues), CD studies
suggest a similar helical structure in SDS, DPC, and TFE. In SDS micelles, the
helical region of spinigerin was mapped to residues 4–23 by NMR (Lee et al. 2003).

9.4.2 The β-Sheet Family

The structures of thanatin and alo3 belong to the β-sheet family. Thanatin (“thanato”
means death) is an inducible insect AMP with a broad activity spectrum against both
bacteria and fungi (Table 9.4). Structurally, thanatin forms a hairpin structure with
an antiparallel β-sheet from residue 8 to the C-terminus (Fig. 9.2a). The two
β-strands are located between residues 8–12 and 17–21, while a short helical turn
spans residues 13–15 (Mandard et al. 1998). The only disulfide (S–S) bond between
Cys11 and Cys18 is indispensable for antimicrobial activity (Imamura et al. 2008).
This S–S bond is also important for salt tolerance and pore formation in membranes.
However, C-terminal amidation had no effect on the activity of thanatin. An alter-
native form of thanatin synthesized in D-amino acids retained activity against
Gram-positive bacteria and fungi, but not Gram-negative E. coli. Among the three
alo peptides identified from the insect Acrocinus longimanus, alo-3 is most potent
against fungi. It contains three pairs of S–S bonds (see Fig. 9.2b) and a
triple-stranded antiparallel β-sheet (β1: residues 7–9; β2: 22–23; and β3: 31–33)
(Barbault et al. 2003). Alo-3 has a unique fold belonging to the cystine knot family.

9.4.3 The αβ Structural Family

Drosomycin is the first inducible antifungal peptide from insects (Fehlbaum et al.
1994). The inducing agent can be microbes or injury. The expression of this AMP is
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mediated through the Toll pathway (Lemaitre et al. 1996). The 3-D structure of
drosomycin was solved by NMR (Landon et al. 1997). It consists of one α-helix
(residues 30–34) and three β-strands (β1: residues 2–3; β2: 30–34; and β3: 38–42)
stabilized by four S–S bonds (see Fig. 9.2c), leading to a cysteine-stabilized alpha
beta (CSαβ) motif. The CSαβ motif is also observed in heliomicin (Lamberty et al.
2001) and phormia defensin A (Cornet et al. 1995). Similar to drosomycin,
heliomicin is active against a large number of fungi. Importantly, heliomicin
remained active in the presence of >100 mM NaCl. Although ARD1 (Landon et al.
2004) differs from heliomicin (Lamberty et al. 2001) by only two residues (N17D
and A20G), it is more active against the human pathogens Aspergillus fumigatus
and Candida albicans. Based on sequence alignment with defensins from the insect
family, residues K23 and R24 at the end of the helix of heliomicin were mutated to
leucines, leading to a gain in antibacterial activity due to the generation of an
amphipathic helix. The gain in activity is not due to a conformational change. Like
some plant defensins, heliomicin also binds specifically to glucosylceramides in
fungal membranes (Vriens et al. 2014; Thevissen et al. 2004).

Table 9.4 Structure and activity of select insect antimicrobial peptides

APD
ID

Name Peptide sequence Structurea Activityb References

139 Cecropin A KWKLFKKIEKVGQNIRDGIIK
AGPAVAVVGQATQIAK

α G, V Holak et al.
(1988)

230 Sarcotoxin IA GWLKKIGKKIERVGQHTRDA
TIQGLGIAQQAANVAATAR

α G Iwai et al. (1993)

554 SlMoricin GKIPVKAIKKAGAAIGKGL
RAINIASTAHDVYSFFKPKHKKK

α G Oizumi et al.
(2005)

200 Mastoparan B LKLKSIVSWAKKVL α G+, C Yu et al. (2000)

399 Spinigerin HVDKKVADKVLLLKQLRIMRLL
TRL

α G, V, F Landon et al.
(2006), Lee et al.
(2003)

484 Stomoxyn RGFRKHFNKLVKKVKHTISETAHV
AKDTAVIAGSGAAVVAAT

α G, F Landon et al.
(2006)

1465 Lasioglossin LL-I VNWKKVLGKIIKVAK α G Lee et al. (2003)

102 Thanatin GSKKPVPIIYCNRRTGKCQRM β G, F Mandard et al.
(1998)

813 Alo-3 CIKNGNGCQPNGSQNGCCSGY
CHKQPGWVAGYCRRK

β F Barbault et al.
(2003)

672 Drosomycin DCLSGRYKGPCAVWDNETCRR
VCKEEGRSSGHCSPSLKCWCEGC

αβ F Landon et al.
(1878)

31 Heliomicin DKLIGSCVWGAVNYTSDCNGECK
RRGYKGGHCGSFANVNCWCET

αβ F Lamberty et al.
(2001)

216 Phormiadefensin
A

ATCDLLSGTGINHSACAAHCLL
RGNRGGYCNGKGVCVCRN

αβ G+ Cornet et al.
(1995)

1166 Diapause-specific
peptide (DSP)

AVRIGPCDQVCPRIVPERHECC
RAHGRSGYAYCSGGGMYCN

αβ F Kouno et al.
(2007)

172 Drosocin GKPRPYSPRPTSHPRPIRV Non-αβ G McManus et al.
(1999a)

170 Pyrrhocoricin VDKGSYLPRPTPPRPIYNRN Non-αβ G Rosengren et al.
(2004)

a, bSame as in Table 9.3
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In addition to antifungal activity, a 41-residue dispause-specific peptide
(DSP) from the leaf beetle can block the Ca2+ channel. The structure of DSP is
composed of two α-helices (α1: 5–9 and α2: 19–24) and two β-strands (β1: 30–34
and β2: 37–40). The arrangement of the three S–S bonds in DSP (Fig. 9.2d) differs
from those in other antifungal peptides and conotoxins. However, they have similar
surface residues for channel inhibition. Except for one additional helix following
β1, the overall structure of DSP is very similar to those of the insect- and
plant-derived antifungal peptides. In particular, a similar hydrophobic patch bor-
dered by a basic residue is required for antifungal activity. Therefore, the dual
activity of DSP is determined by the 3-D structure (Kouno et al. 2007). This finding
has an important implication in peptide design.

9.4.4 The Non-αβ Structural Family

Some insect AMPs are rich in prolines. For example, drosocin (Table 9.4) is a
19-residue Pro-rich peptide that can be glycosylated at T11. This glycosylation
greatly reduced peptide activity. NMR studies found that drosocin was largely
random coiled in water, but adopted some turn structures near residues 4–7, 10–13,
17, and 18 in the presence of 50 % TFE. However, glycosylation only had a subtle
effect on the overall conformation of drosocin and the pKa of His13 (McManus et al.

Fig. 9.2 Structures of insect antimicrobial peptides. a thanatin (PDB entry: 8TFV) (Mandard
et al. 1998), b alo-3 (PDB entry: 1Q3 J) (Barbault et al. 2003), c drosomycin (PDB entry: 1MYN)
(Landon et al. 1878), and d DSP (PDB entry: 2E2F) (Kouno et al. 2007). Secondary structures (α
and β) are labeled and disulfide bonds are represented with a pair of balls to emphasize the
hydrophobic nature of the bond
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1999a). Although the structural basis is not yet clear, glycosylation could reduce the
interaction of the peptide with bacteria. Also, the linear and cyclic forms of
pyrrhocoricin (Table 9.4) were investigated. A similar turn structure was found for
both forms of peptides (Rosengren et al. 2004). Different from traditional
membrane-targeting AMPs, these Pro-rich peptides can enter cells and bind to heat
shock proteins (reviewed in Cho and Kim 2010). The 3-D structure between a
portion of heat shock protein DnaKand a Pro-rich peptide oncocin was determined
by X-ray crystallography (Knappe et al. 2011). However, recent studies suggest that
these peptides inhibit protein translation by binding to ribosomes (Krizsan et al.
2014; Mardirossian et al. 2014). Based on the structure of the peptide in complex
with ribosomes (Seefeldt et al. 2015; Roy et al. 2015), one may design better peptide
therapeutics.

In summary, insect AMPs are capable of adopting a plethora of structural scaf-
folds (Fig. 9.2). While the helical structure prefers bacterial membranes, defensins
can recognize specific lipids in fungal membranes or even block ion channels
(Vriens et al. 2014). As discussed recently (Wang et al. 2015), proline-rich peptides,
previously found to bind to heat shock proteins (Cho and Kim 2010), actually
associate with ribosomes to shut down the bacterial machinery (Krizsan et al. 2014;
Mardirossian et al. 2014). Chemical modifications such as glycosylation can also
modulate peptide activity. It appears that the structural diversity of insect AMPs
provides a basis for functioning by different mechanisms. This observation implies
that our design can start from a known peptide scaffold with desired activity.

9.5 Structures of Plant Antimicrobial Peptides

Plant AMPs are expressed in roots, flowers, leaves, and stems. There are 320 plant
AMPs in the APD (Wang et al. 2009). Among them, 135 peptides are known to
inhibit fungi and 92 have an effect on bacteria. 30 plant AMPs are active against
viruses, while 11 peptides are toxic against parasites. In addition, at least seven
plant AMPs showed insecticidal effects. Importantly, some of these peptides are not
only active against phytopathogens but also human pathogens. Such an activity
spectrum indicates the important role plant AMPs play in innate immunity. Plant
AMPs may find potential applications in agriculture for pest control and human
health as therapeutic agents (Vriens et al. 2014; Kaas et al. 2010; Nawrot et al.
2014; Wang 2015b). Here I highlight representative plant AMPs from each struc-
tural class (Table 9.5).

9.5.1 The α-Helical Family

In contrast to amphibians, helical AMPs are rarely found in plants. However, a few
interesting members appeared. Maize Basic Peptide 1 (MBP-1) is the first such
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AMP, which is active against both bacteria and fungi. The basic nature of the
peptide results primarily from the abundance of arginines (33.3 %) in the sequence.
MBP-1 in phosphate buffer is helical based on CD spectra. Synthetic peptide, after
oxidation, has a similar activity to the native peptide (Duvick et al. 1992). Sequence
analysis in the APD revealed 59.4 % similarity to EcAMP1, another arginine-rich
peptide recently found in plants (Nolde et al. 2011). NMR studies found a unique
helical hairpin structure stabilized by two disulfide bonds (C7-C29 and C11-C25)
(Fig. 9.3a). EcAMP1 is able to inhibit the growth of several plant fungal pathogens,
including F. graminearum (IC50 4.5 µM), F. oxysporum (8.5 µM), and
B. sorokiniana (18.2 µM). EcAMP1 binds to fungal cell surface followed by
internalization without membrane disruption. Tk-AMP-X2, a third member of the
α-helical hairpin structure, was reported in 2013 (Berkut et al. 2014). This helical
hairpin structure is an attractive template for designing peptide drugs. Based on
structural similarity between Tk-AMP-X2 and scorpion potassium channel block-
ers, amino acid mutations conferred Kv1.3 channel blocking property to a
Tk-AMP-X2 variant. Again, we saw peptide examples that could share the same
structural scaffold but not identical activity.

Table 9.5 Select plant AMPs with known 3-D structures or unique sequences

APD
ID

Name Sequence Structurea Activityb References

1760 EcAMP1 GSGRGSCRSQCMRRHED
EPWRVQECVSQCRRRRGGGD

α F Nolde et al. (2011)

2377 Tk-AMP-X2 ADDRCERMCQRYHDRREKK
QCMKGCRYG

α F Berkut et al. (2014)

913 Ib-AMP1 QWGRRCCGWGPGRRYCVRWC β (2S-S) G, F Tailor et al. (1997)

729 Kalata B1 GLPVCGETCVGGTCNTPGCTC
SWPVCTRN

β (3S-S) G+, V, I Tam et al. (1999)

479 PAFP-S AGCIKNGGRCNASAGPPYCCSS
YCFQIAGQSYGVCKNR

β (3S-S) F Marcus et al.
(1997)

428 MiAMP1 SAFTVWSGPGCNNRAERYSKCG
CSAIHQKGGYDFSYTGQTAALYNQ
AGCSGVAHTRFGSSARACNPFG
WKSIFIQC

β (3S-S) G+, F Shao et al. (1999)

2041 β-
Purothionin

KSCCKSTLGRNCYNLCRARGAQ
KLCANVCRCKLTSGLSCPKDFPK

αβ (3S-S) G, F Hernandez-Lucas
et al. (1974)

979 NaD1 RECKTESNTFPGICITKPPCRKA
CISEKFTDGHCSKILRRCLCTKPC

αβ (4S-S) F, I Lay et al. (2003)

483 PsD1 KTCEHLADTYRGVCFTNASCDD
HCKNKAHLISGTCHNWKCFCTQNC

αβ (4S-S) F Almeida et al.
(2002)

981 PhD1 ATCKAECPTWDSVCINKKPCVAC
CKKAKFSDGHCSKILRRCLCTKEC

αβ (5S-S) F Janssen et al.
(2003)

511 Shepherin I GYGGHGGHGGHGGHGGHGGH
GHGGGGHG

Non-αβ
(Gly-rich)

G–, F Park et al. (2000b)

512 Shepherin II GYHGGHGGHGGGYNGGGGH
GGHGGGY
NGGGHHGGGGHG

Non-αβ
(Gly-rich)

G–, V, F Park et al. (2000b)

aStructural classification based on the presence or absence of α-helices and β-sheet (Wang 2010). bG, antibacterial; G+,
active against Gram-positive bacteria; G-, active against Gram-negative bacteria; F, antifungal; I, insecticidal; and V,
virucidal. Data taken from the APD (Wang et al. 2009)
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9.5.2 The β-Sheet Family

In the APD, 10 peptides are annotated to have a β-sheet structure determined by
NMR. I. balsamina antimicrobial peptides (Ib-AMPs) contains two disulfide bonds
(C6-C16 and C7-C20) (Tailor et al. 1997). The NMR study of Ib-AMP1 was
reported (Patel et al. 1998). This low resolution structure displays some feature
resembling gomesin with a β-hairpin structure (Silva et al. 2000).

Circular AMPs have been found from bacteria, plants, and animals (Wang
2012). A large number of circular peptides called cyclotides exists in plants.
Approximately 50 % of plant AMPs collected in the APD (Wang et al. 2009) are
cyclotides. Not all of them are well characterized in terms of structure and activity.
However, kalata B1 has been widely studied as a model peptide. It was initially
isolated by Gran in 1973 as a uterotonic compound (Gran 1973). Antimicrobial

Fig. 9.3 Structures of plantantimicrobial peptides. a EcAMP1 (PDB entry: 2L2R) (Nolde
et al. 2011), b kalata B1 (PDB entry: 4TTM) (Wang et al. 2014), c MiAMP1 (PDB entry: 1C01)
(McManus et al. 1999), d β-purothionin (PDB entry: 1BHP) (Stec et al. 1995), e NaD1 (PDB
entry: 1MR4) (Lay et al. 2012), and f PhD1 (PDB entry: 1N4 N) (Janssen et al. 2003). For clarity,
disulfide bonds are only displayed in panels A, B, E, and F
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activity was demonstrated in 1999 (Tam et al. 1999). The peptide was most active
against S. aureus (0.26 µM) and antibacterial activity was salt dependent. The
circular structure of kalata B1 was established in 1995 (Saether et al. 1995). This
results from a peptide bond formation between the N and C-termini of the peptide.
The three pairs of disulfide bonds define the folding of the polypeptide chain in
space. This overall fold is important for anti-HIV activity, since the acyclic per-
mutant is inactive. Kalata B1 also has insecticidal activity (natural pesticide).
A crystal structure was also solved using the racemic crystallization method
(Fig. 9.3b) (Wang et al. 2014). NMR studies of the ternary complex identified
amino acid residues in loop 5 (W23, P24, and V25) and loop 6 (L2, P3, and V4) are
important for membrane binding (Shenkarev et al. 2006). It binds to phos-
phatidylethanolamine (PE) and leads to pore formation (41–70 Å) in lipid bilayers
(Huang et al. 2009). Oligomerization on the membrane surface could be important
for this process. Because of the stability of the cyclotides, there is great interest to
make use of this scaffold. For example, efforts have been made to graft a peptide
segment to the loop 5 or 6 region to confer desired functions (Northfield et al. 2014;
Aboye et al. 2012).

There are also other types of β-sheet folds stabilized by three disulfide bonds.
MiAMP1 is the first AMP isolated from M. integrifolia (Marcus et al. 1997). It
showed a good antifungal activity against A. heliarzthi, C. gloeosporioides,
F. oxysporum, L. maculans, P. grunzinicolu, S. sclerotiorum, V. dahlia, and
S. cerevisiae. This small protein contains three disulfide bonds: C1-C64, C21-C76,
and C23-C49 and adopts a unique Greek keyβ-barrel fold (Fig. 9.3c) (McManus
et al. 1999). This two-layer β-sheet fold was proposed to be important for protein
stability but not activity (Stephens et al. 2005). Another antifungal peptide, PAFP-S
isolated from the seeds of Phytolacca Americana, also contains three disulfide
bonds: C3-C20, C10-C24, and C19-C35 (Shao et al. 1999). The global fold
involves a cystine knotted three-stranded antiparallel β-sheet (residues 8–10, 23–27,
32–36), a flexible loop (residues 14–19), and four β-reverse turns (residues 4–8, 11–
14, 19–22, 28–32). This structure features all the characteristics of the knottin fold.
A hydrophobic surface, comprising Y23, F25, I27, Y32, and V34, is bordered by
basic R9, K36, and R38. Such an amphipathic surface may be important for
antimicrobial activity (Gao et al. 2001).

9.5.3 The Mixed αβ Structural Family

There are 33 plant AMP structures in the APD that contain both α and β structures
(Wang et al. 2009). These αβ structures can be further classified based on the
number of disulfide bonds. Seventeen such peptides possess three disulfide bonds,
while another 13 are stabilized by four disulfide bonds. The rest three peptides are
stabilized by five disulfide bonds. Selected structures are described below.

Beta-purothionin is an early and representative member of plant thionins with
three disulfide bonds. Antimicrobial activity was noticed long time ago based on a
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mixture of α and β-thionin proteins. In 1974, antimicrobial activities against plant
pathogens for the purified component proteins were observed (Hernandez-Lucas
et al. 1974). The primary and tertiary structures of this small protein were deter-
mined in 1976 and 1995, respectively (Mak and Jones 1976; Stec et al. 1995). In
the 3-D structure of β-purothionin, there are two helices and two β-strands
(Fig. 9.3d). This fold is shared by viscotoxin A3 (Romagnoli et al. 2000) and some
other thionins (Kaas et al. 2010). It appears that the differences in the potential
surface determine different activities of these AMPs with the same fold.

NaD1 is a Nicotianaalata defensin stabilized by four disulfide bonds. It showed
activity against F. oxysporum, B. cinerea, A. niger, Cryptococcus species, as well as
the yeasts S. cerevisiae and C. albicans (Lay et al. 2003). In addition, it displayed
insecticidal activity. Like RsAMP2 (which recognizes fungal glucosylceramides
and induces apoptosis in Candida albicans) (Thevissen et al. 2012), NaD1 is unable
to disrupt lipid vesicles. The antifungal activity involves specific interactions with
the fungal cell wall (surface protein) followed by membrane permeation and entry
of the cell to affect internal targets (van der Weerden et al. 2008, 2010). NaD1 itself
forms a dimer in the crystal and oligomerization increases peptide activity (Lay
et al. 2012). Each monomer contains a three-stranded β-sheet (Fig. 9.3e). In 2014,
the crystal structure of the NaD1:PIP2 complex was solved. Remarkably, seven
dimers of NaD1 (14 monomers) oligomerize into an arch configuration to coop-
eratively bind the anionic head groups of 14 phosphatidylinositol 4, 5-bisphosphate
(PIP2) molecules (Poon et al. 2014). Recently, tomato defensin TPP3 was found to
oligomerize and bind to PIP2 in the same manner (Baxter et al. 2015). Finally,
several other plant AMPs were found to share the same structural fold in the
monomeric state. Examples include PsD1 (Almeida et al. 2002), VrD2 (Lin et al.
2007), and MtDef4 (Sagaram et al. 2013). PhD1 is the first member of plant
defensins that shares the same cysteine-stabilized αβ motif (Janssen et al. 2003) as
NaD1 (Fig. 9.3e) yet is stabilized by five disulfide bonds (Fig. 9.3f). Additional
disulfide bonds could be responsible for the increased stability of the peptide.

9.5.4 The Non-αβ Structural Family

There are no 3-D structures in this category for plant AMPs in the current APD.
However, we may predict that glycine-rich peptides could be the members in this
structural family. Shepherins I and II are such peptide isolated from plants (Park
et al. 2000b). In these peptides, a string of glycines is split by histidines (Table 9.5).
These Gly-rich peptides are active against Gram-negative bacteria and fungi [refs].
Gly-rich AMPs against Gram-negative bacteria have also been found in spiders
(Wang and Wang 2015; Lorenzini et al. 2003). Different from plant counterparts,
these spider peptides are longer and contain more amino acid types such as
tyrosines, glutamines, arginines, lysines, and leucines. Thus, these two types of
Gly-rich AMPs may have different targets yet to be elucidated. Recently, a Gly-rich
cathelicidin has been found in amphibians (Hao et al. 2012). This design has been
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utilized by other organisms as well, indicating a common defense strategy in nature
(Wang 2014).

In summary, the majority structures of plant AMPs contain β-sheets stabilized by
disulfide bonds. Surprisingly, there are α-helical hairpin structures, also stabilized
by disulfide bonds. In addition, Gly-rich peptides have been found in plants.
Therefore, plants deploy defense peptides with a variety of structures (Fig. 9.3).

9.6 Peptide Design Strategies and Therapeutic Potential

To humans, AMPs constitute a rich resource for designing useful molecules.
The APD has annotated 2,600 such peptides, primarily from natural sources. There
are 2,149 entries known to be antibacterial, 170 antiviral, 943 antifungal, and 80
antiparasitic (Wang and Wang 2004; Wang et al. 2009). Consequently, efforts are
spent on the design of novel antimicrobial agents urgently needed to combat
pathogenic bacteria, viruses, fungi, and parasites. Unlike traditional antibiotics,
resistance to AMPs is rare or has not been observed (Zasloff 2002; Fjell et al. 2012;
Wang 2010). Such observations further stimulated the research in this field.

This chapter presents a structural view for AMPs from amphibians, insects, and
plants, three eukaryotic groups with abundant peptides in the APD (Wang et al.
2009; Wang 2015a). Structural studies of AMPs inspired most of the peptide design
if not all. The structural analysis in this chapter uncovers two general peptide design
strategies for host defense. On one hand, the classic amphipthic helix motif is
universal in amphibian AMPs. Hence, amphibians are master in generating multiple
defense molecules based on the same helix backbone, leading to a natural com-
binatorial library. The diversity is achieved by deploying different types of side
chains along the peptide backbone, enabling them to act on bacterial membranes or
to target DNA (Table 9.6). This is remarkable considering a single frog may deploy
up to one hundred such peptides. Such a combinatory peptide library generates a set
of molecular devices that enable the execution of numerous functional roles for the
survival of frogs, including antimicrobials, protease inhibition, antioxidant, wound
healing, and immune modulation (Xu and Lai 2015). Different from amphibians,
plants utilize primarily β-sheet scaffolds (usually involving 2–6 disulfide bonds) to
generate numerous defense molecules. It is estimated that 50,000 cyclotides exist in
plants (Kaas et al. 2010). These cyclotides, which share the same structural fold,
gain distinct properties by presenting different amino acids at the loop regions (i.e.,
another natural combinatorial library). These examples from both amphibians and
plants underscore a fundamental design strategy for host defense in nature–the same
peptide scaffold can be duplicated many times to achieve functional diversity by
deploying different side chains on the binding surfaces.

On the other hand, insects, however, have come up with a different defense
strategy, where multiple AMPs with various structural scaffolds (Table 9.4) are
designed perhaps to recognize different targets (Table 9.6). Insect Pro-rich peptides
are now established to bind to ribosomes (Seefeldt et al. 2015; Roy et al. 2015).
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Likewise, humans also deploy different AMPs with varying structural scaffolds
(Wang 2014). Remarkably, bacteriocins (i.e., bacterial AMPs) vary substantially in
both structural scaffold and posttranslational modification (Perez et al. 2014). These
peptides with different structural scaffolds may kill the same bacterium by different
mechanisms (Table 9.6). For example, lantibiotics such as nisin usually target cell
wall (Hsu et al. 2004), whereas microcin J25 (MccJ25) can inhibit RNA polymerase
(Mukhopadhyay et al. 2004). To humans, these natural molecules with desired
functions may be directly utilized to improve life quality. For example, nisin has
been long employed as a food preservative. Daptomycin and colistin are peptide
antibiotics (i.e., AMPs) already in clinical use. In addition, numerous 3-D structures
of AMPs serve as excellent starting templates for us to design novel therapeutic
peptides. One of the important design goals is to achieve peptide stability to pro-
teases so that the peptide becomes more druggable. Perhaps humans have been
inspired by the amphibian Rana box in designing the helix staple motif that
enhances peptide stability. The Rana box consists of a string of amino acids
bracketed by a disulfide bond (Xu and Lai 2015), whereas the helix staple motif
connects two side chains via a chemical bridge (Walensky and Bird 2014; Muñoz
et al. 1995). The helical hairpin structure is a surprise to us because the majority of
plant defense peptides contain a β-sheet structural unit. Interestingly, Tk-AMP-X2,
an antimicrobial helical hairpin molecule can be engineered to block channels
(Berkut et al. 2014). There is now also high interest in harnessing plant cyclotide
scaffolds owing to its known stability to proteases. In particular, new therapeutic
molecules can be generated via grafting a “drug epitope” for a specific biological
function such as receptor binding (Northfield et al. 2014; Aboye et al. 2012). Thus,
the use of AMPs is not limited to development of novel antimicrobials to combat
superbugs.

The optimization of a therapeutic peptide is a demanding task due to multiple
parameters such as potency, stability, and low cytotoxicity. Computer software
(Fjell et al. 2012) as well as database (Wang 2013) can be helpful. Recently, we
found it useful to combine library screening with structure-based design. Library
screening led to the identification of a chymotrypsin-resistant template designed
based on human cathelicidin LL-37 (Li et al. 2006b), whereas structure-based
design enhanced its potency against MRSA (Wang et al. 2014). 17BIPHE2, one of

Table 9.6 Select antimicrobial peptides and their proposed targets

Source AMP Structure Molecular target

Frogs Magainins α Bacterial membrane (pore?)

Frogs Buforin α Bacterial DNA/RNA

Insects Pro-rich AMPs Non-αβ Bacterial ribosomes

Insects Defensins αβ Glucosylceramides in fungal membranes

Plants Kalata B1 β Phosphatidylethanolamine (PE)

Bacteria MccJ25 β Inhibition of RNA polymerase

Bacteria Nisin Non-αβ Bacterial cell wall (lipid II)

9 Structural Analysis of Amphibian, Insect, and Plant Host Defense … 247



the designed peptides in the family, showed antimicrobial activity against the
ESKAPE pathogens, which include Enterococcus faecium, S. aureus, Klebsiella
pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter
species. In vivo, the peptide prevented biofilm formation and reversed the che-
mokine pattern found for the S. aureus biofilms (Wang et al. 2014). Such a com-
bined therapeutic benefit, namely, antimicrobial and immune boosting is exactly
what patients need.

In conclusion, structure studies revealed two major strategies for peptide dis-
covery: combinatory library screening and structure-based rational design. One may
also combine peptide library screening with structure-based design to achieve
multiple design goals. In addition, two compounds may be jointly utilized to
eliminate established biofilms that cannot be removed by a single antibiotic (Wang
et al. 2015). Indeed, the APD (Wang 2015a) has annotated five bacterial AMPs
(e.g., nisin, pediocin PA-1, circular gramicidin S, polymyxin E/colistin, and dap-
tomycin) already in use, and additional candidates (leads) are under developments
or in clinical trials (Zasloff 2002; Fjell et al. 2012). Thus, the AMP field will
continue to inspire the design of novel antimicrobials as well as other therapeutic
molecules.
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Chapter 10
How to Teach Old Antibiotics New Tricks

Stephanie Deshayes, Michelle W. Lee, Nathan W. Schmidt,
Wujing Xian, Andrea Kasko and Gerard C.L. Wong

Abstract Antimicrobial peptides (AMPs), or more generally host defense pep-
tides, have broad-spectrum antimicrobial activity and use nonspecific interactions
to target generic features common to the membranes of many pathogens. As a
result, development of resistance to such natural defenses is inhibited compared to
conventional antibiotics. The disadvantage of AMPs, however, is that they are
often not very potent. In contrast, traditional antibiotics typically have strong
potency, but due to a broad range of bacterial defense mechanisms, there are many
examples of resistance. Here, we explore the possibility of combining these two
classes of molecules. In the first half of this chapter, we review the fundamentals of
membrane curvature generation and the various strategies recently used to mimic
this membrane activity of AMPs using different classes of synthetic molecules. In
the second half, we show that it is possible to impart membrane activity to
molecules with no previous membrane activity, and summarize some of our recent
works which aim to combine advantages of traditional antibiotics and AMPs into a
single molecule with multiple mechanisms of killing as well as multiple mecha-
nisms of specificity.
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10.1 Introduction

The emergence of antibiotic resistance poses a serious and growing global health
problem with at least 2 million illnesses and 23,000 deaths in the United States
every year. Resistance essentially arises from antibiotic misuse and overuse both
within human and veterinary medicine, especially in livestock. Approximately
70 % of hospital acquired infections in the United States are resistant to at least one
antibiotic. Despite the important need for new antimicrobial agents, the antibiotic
pipeline is running dry. The growing gap between the decline of antibiotic devel-
opment and the escalating evolution of drug resistance has become one of the most
urgent challenges for global health.

Antimicrobial peptides (AMPs), or more generally, host defense peptides, have
coevolved with prokaryotes for millennia. AMPs have broad-spectrum antimicro-
bial activity and utilize nonspecific interactions to target generic features common
to the outer membranes of many pathogens, hence development of resistance to
such natural defenses is inhibited compared to conventional antibiotics. However,
the disadvantage of AMPs is that they are not usually potent. In contrast, traditional
antibiotics, such as the aminoglycosides, which inhibits of protein synthesis by
ribosomal binding, are quite potent as antibiotics, but due to a broad range of
bacterial mechanisms, there are many examples of resistance (Anguita-Alonso et al.
2005; Magnet and Blanchard 2005; Mingeot-Leclercq et al. 1999; Vakulenko and
Mobashery 2003). In this review, we summarize some of our recent works which
try to combine advantages of these two classes of compounds, and explore situa-
tions where the antibacterial actions of these compounds may be synergistic.

10.2 Natural Host Defense Peptides and How They Work:
The Importance of Membrane Activity

Antimicrobial peptides (AMPs) comprise an important part of innate host defense
(Zasloff 2002; Brogden 2005a; Shai 1999; Hancock and Lehrer 1998; Hancock
and Sahl 2006; Yeaman and Yount 2003). Here we present only a cursory
introduction since AMPs are described in more detail elsewhere in this volume.
AMPs act as natural antibiotics to protect the host from bacterial infections.
Collectively, AMPs display broad-spectrum antimicrobial activity and target
organisms ranging from viruses to parasites (Zasloff 2002; Brogden 2005a;
Hancock and Sahl 2006). To date, well over 1,000 AMPs have been discovered in
both prokaryotic and eukaryotic cells. In animals, the tissues and organs exposed to
airborne pathogens tend to produce most AMPs. For example, whereas our skin is
constantly in contact with large numbers of microorganisms, it is rarely infected
because many cell types residing in the skin (including keratinocytes, sebocytes,
eccrine glands, and mast cells) produce AMPs in response to microbial invasion
(Schauber and Gallo 2008).
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Whereas many commonly used antibiotics like β-lactams, quinolones, macro-
lides, and tetracyclines have core structural features that are responsible for their
antibacterial activities, AMP sequences are highly diverse and do not have a
common core structure. We know that most AMPs tend to be relatively short (<50
amino acids) and share two fundamental features: net cationic charge (+2 to +9) and
amphiphilicity (Zasloff 2002; Brogden 2005a; Shai 1999; Hancock and Lehrer
1998; Hancock and Sahl 2006; Yeaman and Yount 2003). AMPs are often clas-
sified according to their secondary structures (Table 10.1). The α-helical AMPs
include magainins (Zasloff 1987) from frogs and LL-37 cathelicidins (Dürr et al.
2006) from humans, and the β-sheet AMPs include protegrins (Kokryakov et al.
1993) from pigs and defensins (Ganz 2003; Lehrer 2004; Selsted and Ouellette
2005) from mammals. A third group is categorized by extended linear peptides with
sequences dominated by a few amino acid species, like the tryptophan-rich
indolicidin (Selsted et al. 1992) from cattle, and the arginine- and proline-rich
PR-39 (Agerberth et al. 1991) from pigs.

The role of AMPs is not restricted to acting as direct microbicides, many host
defense peptides execute important defensive and regulatory functions in their hosts

Table 10.1 Examples of antimicrobial peptides, classified according to their secondary structure

Peptide Source Peptide sequence

α-helix

Magainin-1 Frog GIGKFLHSAGKFGKAFVGEIMKS

Magainin-2 Frog GIGKFLHSAKKFGKAFVGEIMNS

LL-37
(cathelicidin)

Human LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES

Cecropin A Silk moth KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK-NH2

Melittin Honey bee GIGAVLKVLTTGLPALISWIKRKRQQ-NH2

PMAP-23
(cathelicidin)

Porcine RIIDLLWRVRRPQKPKFVTVWVR

Dermaseptin S1 Frog ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ

β-sheet

Protegrin-1 Porcine RGGRLC1YC2RRRFC2VC1VGR-NH2

α-Defensin
(HNP3)

Human DC1YC2RIPAC3IAGERRYGTC2IYQGRLWAFC3C1

β-Defensin (TAP) Bovine NPVSC1VRNKGIC2VPIRC3PGSMKQIGTC2VGRAVKC1C3RKK

θ-defensin Monkey GFC1RC2LC3RRGVC3RC2IC1TR (cyclic)

Lactoferricin B Bovine FKCRRWQWRMKKLGAPSITCVRRAF

Bactenecin Bovine
neutrophils

RLCRIVVIRVCR (cyclic)

PR-39 Porcine RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP-NH2

Indolicidin
(cathelicidin)

Bovine
neutrophils

ILPWKWPWWPWRR-NH2

Cysteines paired in disulphide linkages are noted by common numerical subscripts. The C-terminal
protecting group abbreviation NH2 is for carboxyamide
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including immunomodulatory, and anti-inflammatory properties systems, which are
not found in traditional antibiotics.AMPs have been shown to interactwith components
of the innate and adaptive immune systems (Bowdish et al. 2005; Schmidt et al. 2015a).
Recentwork has even shown that theAMPLL-37 plays a role in autoimmune disorders
such as lupus (Lande et al. 2011) and psoriasis (Lande et al. 2007).

The general mechanism of AMP activity is believed to involve the selective
disruption and permeabilization of microbial membranes causing leakage of cellular
components, breakdown of membrane potential, and cell death. While some AMPs
employ alternative modes of action or act upon multiple bacterial cell targets, most
of them interact strongly with lipid bilayers and can alter their structure. The pref-
erential action of AMPs against bacterial membranes and not against eukaryotic
membranes is thought to be rooted in the compositional differences between bac-
terial cell membranes and eukaryotic cell membranes (Zasloff 2002; Brogden 2005a;
Shai 1999; Hancock and Sahl 2006; Matsuzaki 1999; Matsuzaki et al. 1998; Huang
2000). Microbial cell surfaces are decorated with polyanionic molecules like
lipopolysaccarides in Gram-negative bacteria, and lipoteichoic acids in
Gram-positive bacteria (Hancock and Sahl 2006). Additionally, the outer leaflet of
bacterial plasma membranes contains large amounts of anionic lipids such as those
with phosphatidylglycerol (PG) and cardiolipin (CL) head groups. The membranes
of the Gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae
are composed primarily of PG and CL lipids. Phosphatidylethanolamine (PE) is the
principle zwitterionic phospholipid found in Gram-negative bacteria such as
Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium (Epand
and Epand 2011). The lipid compositions of animal cell membranes differ from
bacteria plasma membranes in a number of ways (Zasloff 2002; Zachowski 1993;
van Meer et al. 2008): mammalian cell membranes have more lipids with neutral
zwitterionic head groups such as phosphatidylcholine (PC) and sphingomyelin
(SM). Moreover, their lipid compositions are asymmetrically distributed between the
inner and outer bilayer leaflets. PC and SM are found in the outer leaflet of human
erythrocytes, while PE and the anionic lipids phosphatidylserine (PS), and phos-
phatidylinositol (PI) are found on the inner leaflet. Finally, sterols such as cholesterol
constitute a major component (for cholesterol *30 % by mole) of animal plasma
membranes. Consistent with the above differences, in vitro studies on both natural
and synthetic cationic membrane-active antimicrobials have shown that the presence
of anionic lipids increases membrane disruption and permeabilization (Shai 1999).

To interact with bacterial cells, AMPs must first be attracted to their membrane
surfaces, which is believed to occur through nonspecific electrostatic binding
between the cationic region of the peptide and anionic components on the surface.
These peptides adsorb and orient parallel to the surface, and are then partitioned
into the amphiphilic interface (between the hydrophilic and hydrophobic regions of
the membrane). This process is driven by the hydrophobic interactions that control
hydrophobic insertion. The amphipathic nature of AMPs is essential for this
behavior, as the hydrophobic region of the peptide allows direct interaction with the
lipid components of the membrane. To understand peptide–membrane interactions
better, we review several biophysical aspects of membranes.
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10.2.1 Membrane Curvature: Definition of Terms

Adsorption of antimicrobial peptides (AMPs) onto a membrane can alter the
membrane curvature and remodel the membrane. Here, we briefly review the
membrane curvature generation by AMPs, and describe how we can leverage recent
work to design molecules that permeate membranes, but have in addition other
functions besides permeation of membranes.

We begin with a description of recent work on AMPs, which shows how different
peptide-induced effects combine to form complex curvatures. Central to this
approach is the idea that bulk phase diagrams can be quite informative in identifying
structural tendencies in peptide–membrane interactions and resultant induced cur-
vature. We illustrate the approach by identifying some basic sequence principles for
peptides that permeate membranes based on induced curvature considerations, and
apply these principles to impart membrane-permeability to nonmembrane-active
molecules, such as traditional antibiotics that do not have membrane permeating
functions.

Membrane deformations can be described using geometric concepts. There are
many good reviews and books on this topic, so we include a cursory treatment to
acquaint the reader with the basic concepts useful in thinking about peptide-induced
membrane curvature, rather than a unified and rigorous treatment. On a 2D
membrane surface that exists in 3D space, the curvature at any point on the surface
can be defined by a tangent plane at that point. Planes that are perpendicular to this
tangent plane intersect the surface as a normal section, and each normal section is
associated with a curvature at the tangent point, defined as c = 1/R, with R being the
radius of curvature. One can see that there are many different possible normal
sections, and many different curvatures that can be defined through that point. The
maximum and minimum curvatures that go through the point correspond to normal
sections that are orthogonal to one another. These curvatures are called the prin-
cipal curvatures. The two principal curvatures can therefore be defined as, c1 = 1/
Rmax and c2 = 1/Rmin (with Rmax and Rmin being the principal radii of curvature)
(Fig. 10.1).

Fig. 10.1 The membrane of
a pore features a curved
surface with a saddle shape,
which is characterized by
principal curvatures c1 and c2
(directions indicated by
arrows) that are opposite in
sign and together create
negative Gaussian curvature
(NGC)
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These quantities can be used to construct two types of curvatures that are useful
in describing the shape of a surface, the mean curvature H and the Gaussian
curvature K:

H ¼ 1
2
ðc1 þ c2Þ

K ¼ c1c2

By convention, a membrane monolayer that bends to form a convex hydrophilic
surface is said to have positive curvature, while a monolayer that bends in the
opposite direction to form a concave hydrophilic surface is said to have negative
curvature. The lipid molecules that make up a bilayer have a specific “shape” and
can contribute to the membrane curvature. (Here we point out that “molecular
shape” can be determined by different effects. In addition to steric shapes, patterns
of hydrogen bonding can also be important, for example.) Israelachvili et al. have
described how the properties of a specific amphiphile can impact packing and
therefore the morphology of self-assembled system (Israelachvili et al. 1980). This
model describes an average geometric shape for a lipid molecule via a dimen-
sionless packing parameter, S, which depends on the repulsive steric and electro-
static interactions between the polar lipid head groups and the attractive
hydrophobic interactions and repulsive steric forces experienced by the lipid tails:

S ¼ V
A0Lc

where V is the molecular volume of the lipid tails, A0 is the optimum area occupied
by the lipid head group, and Lc is the length of the lipid tails. Lipids tend to form
specific aggregates of different geometries as a function of their packing parameters.
Generally, S\ 1

3 forms spherical aggregates, 1
3 \ S\ 1

2 forms cylindrical aggre-
gates, 1

2 \ S\ 1 forms planar aggregates, and S [ 1 forms inverted aggregates.
For example, a lipid molecule with S\ 1

2 tends to be cone- or wedge shaped and
has positive intrinsic curvature, whereas a lipid molecule with S [ 1 is shaped like
an inverted cone and tends to have negative intrinsic curvature. Clearly, insertion of
objects of different shapes into the lipid membrane can impact geometric packing
and thereby induce different curvatures.

Deforming a membrane away from its native state is associated with an energetic
cost determined by the elasticity of the membrane. The energetics of membrane
shape changes have been described by Helfrich (1973). Deformation of the mem-
brane would have an energetic cost that is dependent on the mean and Gaussian
curvatures, so that the curvature elasticity energy per unit area of bending a
membrane is given by

f ¼ 2jðH � c0Þ2 þ jGK
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where c0 is the spontaneous curvature (or equivalently intrinsic curvature). The
energy cost per unit area is controlled by the bending modulus j, and the Gaussian
modulus jG, which are elastic constants. These constants describe the bending
elasticity of the membrane and the resistance of the membrane to topological
transitions, respectively. The total elastic energy of a symmetric membrane (c0 = 0)
is obtained by integrating the Helfrich energy density over the membrane surface:

F ¼
Z

dAð2jH2 þ jGKÞ

The first term is due to the energetic cost of bending the membrane, while the
second term accounts for energetic costs of distortions related to topology. To
motivate this qualitatively, one can use the Gauss–Bonnet theorem:

Z
KdA ¼ 4pð1� gÞ

where the integer g is the genus of the surface, often described as the number of
“holes.” Qualitatively, a sphere has plenty of curvature, but it has no holes: A
sphere is a g = 0 surface. On the other hand, a “donut,” which has a single hole, is a
surface with g = 1 (Siegel and Kozlov 2004). In fact, for each additional hole, the
genus increases by one. One can see that the more negative the total integrated
Gaussian curvature is on the surface, the “holier” the surface is. In contrast, closed
surfaces with no holes have a total Gaussian curvature on the surface that is
positive.

The Helfrich approach is almost always used as a starting point in the context of
curvature induced by protein–membrane interactions. It should be noted that the
Helfrich formalism is not the only way to parametrize a curvature energy func-
tional, due to the Gauss–Bonnet theorem (Deserno 2009). Moreover, Helfrich
theory is based on the assumption of small membrane curvatures. For example, a
curvature is considered small if the corresponding radius of curvature is larger than
the membrane thickness, which is approximately 4 nm. Therefore, this type of
elastic theory approaches its limits as the radius of curvature becomes comparable
to the membrane thickness (Zimmerberg and Kozlov 2006; Shearman et al. 2006).
This can be seen when we consider a saddle-like membrane shape, which can be
found in bicontinuous cubic phases. Because the mean curvature is zero, the
Helfrich elastic energy per unit area is the product of the Gaussian modulus and the
Gaussian curvature, which typically yields a positive value for minimal surfaces
(Siegel and Kozlov 2004). In this case, minimization of the curvature elastic energy
would reduce the lattice parameter to an arbitrarily small value, which is not
observed experimentally (Shearman et al. 2006). Such nonphysical behavior can be
corrected by including higher order terms in the expression for curvature elastic
energy, which allows for cubic phase stability (Ljunggren and Eriksson 1992;
Seddon and Templer 1993).
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10.2.2 Empirical Observations of AMP-Induced Membrane
Curvature

Now that we have a biophysical description of membranes, we can examine what
happens when AMPs interact with membranes. Much of the pioneering work on
AMPs has focused on membrane permeation (often via pore formation), and the
formulation of models for such permeation, such as “barrel stave” (Yeaman and
Yount 2003; Shai and Oren 2001; Yang et al. 2001; Ehrenstein and Lecar 1977;
Spaar et al. 2004; Jenssen et al. 2006), “toroidal pore” (Matsuzaki et al. 1998, 1996,
1997; Yang et al. 2001; Jenssen et al. 2006; Bechinger 2009; Ludtke et al. 1996;
Tang et al. 2007), and “carpet” models (Shai and Oren 2001; Jenssen et al. 2006;
Brogden 2005b; Bechinger et al. 1991; Pouny et al. 1992; Gazit et al. 1994;
Matsuzaki et al. 1994) (Fig. 10.2). However, empirically, it is known that there are
many diverse ways for AMPs to act against bacterial membranes beyond these
basic models. Scanning Electron Microscopy (SEM) reveals the formation of blebs
on P. aeruginosa membranes after exposure to sheep cathelicidin SMAP29
(Saiman et al. 2001; Kalfa et al. 2001). Micrographs of polymyxin Btreated E. coli
showed surface vesicularization (Falagas et al. 2005), which are finger-like mem-
brane protrusions that fragment into small vesicles in ways that are analogous to a
Raleigh instability. Similar protrusions are seen in EM images of E. coli membranes
treated with protegrin-1 (Gidalevitz et al. 2003). Similar effects are qualitatively
observed in AFM studies on supported lipid bilayers treated with protegrin-1 (Lam
et al. 2006). Moreover, recent work shows that the pore-forming AMP melittin can
induce budding by promoting lipid phase separation (Yu et al. 2010). This diversity

Fig. 10.2 Mechanisms of AMP-induced pore formation in bacterial membranes: “barrel stave”
model, “carpet” model, and “toroidal” pore model. Cationic residues of peptides are colored blue
while hydrophobic residues are yellow. Reprinted with permission from Palermo et al. (2013).
Copyright © 2013 American Chemical Society
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of structural outcomes suggests that there are many ways to destabilize membranes
beyond pore formation. AMPs can permeate membranes and compromise barrier
function through various processes including blebbing, budding, and vesicular-
ization. Furthermore, the resultant membrane destabilization mechanism is due to
interplay between the unique properties of both the AMP and membrane. Rather
than debate whether a specific AMP uses a particular mechanism, an interesting
alternate question to ask is what these different membrane permeation mechanisms
(pore formation, blebbing, budding, and vesicularization) have in common.

From the survey on membrane curvature generation above, it can be seen that
the biophysics of AMPs and cell membranes can cooperatively lead to a broad
range of local membrane distortions, specific combinations of which can be topo-
logically active and lead to membrane destabilization. Induction of positive
Gaussian curvature can be seen in the generation of micelles from flat membranes.
Negative Gaussian curvature (NGC) seen in lyotropic cubic phases are expected to
be especially disruptive since this type of curvature is geometrically required
(Gelbart et al. 1994) for pore formation and many known AMP-induced membrane
destabilizing processes (Schmidt and Wong 2013; Schmidt et al. 2010) (Fig. 10.3).
For example, NGC can be seen in the lining of a transmembrane pore, the neck of a
bud, and the base of a bleb.

As a prototypical example, we examine defensins, which are a potent class of
membrane-disruptive AMPs that have been extensively studied. In our recent work,
we used synchrotron small-angle X-ray scattering (SAXS) to measure the curvature
deformation modes induced in model cell membranes of various lipid compositions

Fig. 10.3 Saddle-splay curvature manifests in different membrane destabilizing processes, such as
in the interior of a transmembrane pore (a), at the bases of tubules (b) and blebs (c), and at the
necks of vesicularization and budding events (b, d)
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by these AMPs, and elucidate the relationships between induced curvature and
membrane disruption processes. In particular, SAXS is used to characterize the
phase behavior of the peptide–lipid complexes generated by representative defen-
sins from each of the three defensin families, α-defensins (Crp-4), β-defensins
(HBD-2, HBD-3), and θ-defensins (RTD-1, BTD-7). Specifically, we assayed the
effects of negative intrinsic curvature lipids on phase behavior, as bacterial mem-
branes generally have higher concentrations of negative intrinsic curvature lipids
(PE, CL) compared to eukaryotic cell membranes. These results can be best sum-
marized in phase diagrams (Schmidt et al. 2011). Defensins typically generate NGC
in model bacterial membranes rich in negative intrinsic curvature lipid PE.
Moreover, when the concentration of PE is decreased, so that the target lipid
composition is closer to those of mammalian membranes, this tendency to generate
NGC is drastically reduced. These observations are consistent with vesicle leakage
assays, and with the known activity profile of defensins, which permeate bacterial
membranes but not eukaryotic membranes.

This observed trend of selective NGC generation and permeation in bacterial
membranes but not in eukaryotic membranes is quite general, and can be observed in
other membrane permeating molecules, natural AMPs, AMP mutants, and synthetic
mimics of AMPs (Schmidt and Wong 2013; Schmidt et al. 2011, 2012a, b; Mishra
et al. 2011a; Hu et al. 2013; Lee et al. 2014) (and unpublished data). Generation of
NGC is also observed in a broad range of CPPs and transporter sequences (Schmidt
et al. 2010; Mishra et al. 2008a, 2011b; Zhao et al. 2012). In systems where the
activity is strongly determined by membrane permeation, the correlation between
NGC generation and mutant activity is striking: AMP defensin mutants (Schmidt
et al. 2012a) with decreased activity are correlated with reduced NGC generation
across the phase diagram. Circular transporter sequences with increased activity over
their linear counterparts also have increased NGC generation (Zhao et al. 2012a).

10.2.3 Composite Mechanisms of Curvature Generation
and the Action of AMPs

One interesting question to ask is how AMPs generate NGC. This is a deep
question that requires much additional rigorous work beyond what is available
today to answer fully. However, in the compass of this review, we can sketch out a
qualitative answer based on some of our recent studies.

AMPs are cationic and hydrophobic. Target bacterial membranes are anionic, as
previously mentioned. This will lead to a thermodynamic driving force toward
membrane wrapping to optimize charge compensation, which allows a large entropy
gain from counterion release. Therefore, if considered alone, electrostatic interac-
tions between a cationic AMP and an anionic membrane will generally result in
membrane wrapping and negative curvature generation in the target membrane.
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Embedding the hydrophobic portions of an AMP into the membrane requires dis-
placing lipids in order to accommodate the peptide sterically. The required amount
of displacement will be related to details such as the amount and type of
hydrophobicity. In general, however, the above can lead to two consequences. One
is membrane thinning, which has been well studied. The other is an increase of
hydrophobic volume in the perturbed outer monolayer leaflet (McMahon and Gallop
2005; Campelo et al. 2008; Drin and Antonny 2010). This differential gain in
hydrophobic volume of the outer leaflet compared to the inner leaflet has the effect of
bending the membrane. When considered in this way, hydrophobic interactions
between an amphipathic AMP and a membrane will generally result in positive
membrane curvature generation. The ability of AMPs to generate both negative and
positive membrane curvatures near the same nanoscopic location (in a manner that
does not mutually cancel) is important for its ability to destabilize membranes.

In our recent work, we found that different types of cationic amino acids in
AMPs can favor different types of membrane curvatures. Lysine and arginine
comprise the majority of cationic amino acids in AMPs, and they can both generate
negative curvature with an anionic membrane via membrane wrapping. To
understand the differences between lysine and arginine, we used density functional
calculations to investigate interactions between phosphates of lipid head groups
with guanidinium (side chain of arginine), and compare with the behavior between
phosphates and amines (side chain of lysine) (Schmidt et al. 2012b). Differences
between these two cationic side chains are the most apparent when multiple side
chains are packed close to one another, as they are in AMPs. The guanidinium
group can rigidly coordinate two phosphates along the planar Y-shape of the
group. By stacking their guanidinium groups “face to face,” arginine side chains
can maintain a diphosphate coordination. In contrast, the I shape of the amine group
along with its monodentate hydrogen-bonding abilities cannot organize phosphates
in this way, which results in a significant energetic penalty when amine groups are
placed in close proximity. These results suggest that arginines in AMPs can
undergo stable bidentate hydrogen bonding with lipid head groups, thereby
“cross-linking” lipid head groups into an effectively larger head group area, and
thereby generating positive curvature along the peptide chain. This effect is anal-
ogous to the molecular crowding mechanism observed when protein aggregation is
on the membrane surface, which has been demonstrated by recent studies to induce
high membrane curvature (Baumgart et al. 2011; Stachowiak et al. 2010, 2012;
Sens et al. 2008). The crowding mechanism creates lateral steric pressure to drive
membrane bending and aids in the formation of lipid buds and tubules (Stachowiak
et al. 2010, 2012; Farsad and Camilli 2003). Molecular dynamics simulations on the
interactions of arginine and lysine homopolymers with lipid membranes showed the
above behavior qualitatively (Wu et al. 2013). This positive curvature from lipid
head crowding is induced in a direction perpendicular to the negative curvature
from electrostatic wrapping. Therefore, arginine produces NGC, in agreement with
experiments (Mishra et al. 2008a, 2011b). Lysines, in contrast, can only undergo
monodentate hydrogen bonding with lipid head groups, and cannot generate this
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additional positive curvature through steric interactions. Lysines therefore only
produce negative mean curvature, which is also in agreement with experiments.

The model described above is consistent with a number of empirical observa-
tions that are otherwise difficult to explain. We find that increasing the spacing
between side chains in guanidinium homopolymers decreases the amount of NGC
they can generate, since increasing the average distance between guanidinium
groups relieves the stress from head group steric interactions that lead to positive
curvature generation (Schmidt et al. 2012b; Mishra et al. 2011b). Furthermore, a
critical number of arginines are needed in polyarginine before the peptide can
generate NGC; tetraarginine (R4) produced only inverted hexagonal phases with
negative mean curvature, and at least five arginine residues are necessary before
cubic phases are generated (Mishra et al. 2011b). Taken together, lipid head group
organization by arginine and lysine generates distinct types of membrane curvature
deformations: Arginine generates NGC (positive and negative curvatures along the
two perpendicular principal directions), whereas lysine generates negative curvature
along one direction only. Membrane curvature generation based on head group
reorganization are inherently sensitive to head group chemistry, therefore such
mechanisms can be the basis for specific peptide–lipid interactions.

Many membrane disruption mechanisms require NGC, as noted above. Since
AMPs need to disrupt membranes, the topological requirement to generate NGC
places constraints on the arginine, lysine, and hydrophobic contents of AMPs. For
example, there will be a compositional trade-off between the relative amounts of
arginine and lysine plus hydrophobicity used in an AMP sequence. Arginine can
generate NGC (both positive and negative curvature in perpendicular directions);
lysine generates negative curvature only; hydrophobicity generates positive cur-
vature only. These observations suggest that we may be able to mimic the
NGC-generating abilities of arginine using a combination of lysine and
hydrophobic amino acids: A decrease in arginine content in an AMP sequence can
be offset by an increase in both lysine and hydrophobic content. This trade-off in
composition is indeed observed when we analyze the sequences of 1080 cationic
AMPs in the antimicrobial peptide database (Schmidt et al. 2011; Wang and Wang
2004). To show that this principle of trade-off is robust and independent of detailed
definitions of physical chemical parameters such as hydrophobicity, AMP
hydrophobicity was determined using three distinct, widely used hydrophobicity
scales: the Kyte–Doolittle scale (Kyte and Doolittle 1982), the Eisenberg
Consensus scale (Eisenberg et al. 1982), and the Wimley–White biological scale
(Hessa et al. 2005). All three scales show a strong positive trend between the
average hydrophobicity and lysine content in AMPs (Schmidt et al. 2011).
Interestingly, a similar trend was found for cell-penetrating peptides (CPPs) (Mishra
et al. 2011b). For CPPs the same qualitative trade-off is found, but with signifi-
cantly less hydrophobicity compared to AMPs (Fig. 10.4). We hypothesize that this
is related to the shorter membrane residence times of CPPs, since CPPs cross
membranes rather than stay on the membrane and kill the cell.
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10.3 Synthetic Mimics to Address Limitations
of Natural AMPs

Despite their remarkable antibacterial properties and their low susceptibility to
multidrug resistant mechanisms, AMPs suffer from several drawbacks such as
susceptibility to proteolysis, toxicity, poor tissue distribution, and cost of production,
thus only few AMPs have been found suitable for pharmaceutical applications. To
address these limitations, efforts have been made to develop artificial systems
mimicking AMPs. Synthetic mimics of AMPs (SMAMPs) consist of a broad family
based on AMP properties (e.g., amphiphilicity) but whose backbone is not solely
composed of α-amino acids. Scientists have optimized SMAMPs design strategy to
improve their stability in physiological conditions, and lower their synthesis cost
while ensuring high antimicrobial potency. SMAMPs have been extensively
reviewed (Li et al. 2012; Henderson and Lee 2013; Dorner and Lienkamp 2014; Som
et al. 2008a; Scott et al. 2008; Rotem and Mor 2009; Giuliani and Rinaldi 2011a;
Engler et al. 2012). For the reader’s convenience, we will summarize some important
facts before focusing on the most recent advances in the design of SMAMPs.

10.3.1 Prerequisites for Antimicrobial Activity

A unique feature of natural AMPs is their amphiphilic secondary structure where
hydrophobic and hydrophilic residues are spatially segregated to opposite sides of
the α-helical axis such that the nonpolar face interacts with the bilayer core whilst
the polar face is engaged in electrostatic interactions with the membrane lipid

Fig. 10.4 The trade-off between arginine content and lysine plus hydrophobicity content is
observed among the sequences of cationic AMPs and CPPs. Generally, as the average
hydrophobicity (<Hydrophobicity>) of an AMP or CPP increases, the number of arginines
(NR) decreases relative to the number of lysines (NK). a Reprinted with permission from Schmidt
et al. (2011). Copyright © 2011 American Chemical Society. b Reprinted from Mishra et al.
(2011b) with permission from Proceedings of the National Academy of Sciences
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headgroups. Many examples in the literature have reported a direct correlation
between the membrane-disruptive ability of AMPs and their conformation and it
was first thought that a highly defined secondary structure was a crucial prerequisite
for antimicrobial activity (Chen et al. 2005; Patch and Barron 2003; Sato and Feix
2006). However, researchers discovered later that peptides of L- and D-amino acids,
which did not have α-helical structure, were still highly active (Shai and Oren 2001;
Hong et al. 1999; Oren and Shai 1997). While a regular conformation (compared to
the structural precision of α-helices or β-sheets) is not absolutely required, a facial
amphiphilic structure seems to be critical to obtain high antimicrobial activity.
Indeed, their ability to bind membrane depends on a subtle balance of hydropho-
bicity and charge distribution so they can self-organize to a globally amphiphilic
conformation when they are in contact with bacterial membranes.

To be considered as SMAMPs, the synthetic candidates need to demonstrate
good selectivity for bacteria over mammalian cells. Because of their positive
charges, natural AMPs can selectively discriminate between negatively charged
bacterial membranes and mammalian cells that are mostly made of zwitterionic
phospholipids (neutral overall charge). The selective toxicity (selectivity) can be
quantified by comparing the hemolytic activity to the antimicrobial activity. Thus,
the selectivity is defined as the ratio of the hemolytic concentration against ery-
throcytes (HC50) and the minimum inhibitory concentration (MIC) against bacteria
where HC50 is the concentration to lyse 50 % of human red blood cells and MIC is
the lowest concentration to inhibit bacterial growth.

10.3.2 AMP-like Peptides

Peptide derivatives are the closest, structurally, to natural AMPs, and include ali-
phatic oligoamides (of which β-peptides are the best known), aromatic oligoamides,
peptoids, AA peptides (which are named for their N-acylated-N-aminoethyl amino
acid unit), and oligoacyllysines. Due to their similarity to natural peptides, similar
synthetic approaches (such as solid phase synthesis) can be used to produce these
analogs. Compared to natural peptides, aliphatic oligoamides, aromatic oligoa-
mides, peptoids, AA peptides, and oligoacyllysines may exhibit increased resis-
tance to proteolysis in vivo, prolonging their lifetime and activity. Representative
structures are depicted in Fig. 10.5. Each of these classes of peptidomimics has
been reviewed (Giuliani and Rinaldi 2011b; Matsuzaki 2009; Som et al. 2008b;
Vaara 2009; Mendez-Samperio 2014; Mojsoska and Jensses 2015; Gangloff et al.
2015), therefore only a few recent and outstanding examples are highlighted herein.

Aliphatic oligoamides are constructed from derivatives of amino acids in which
the amino group resides on a carbon other than the carbon alpha to the carbonyl
group (as is the case for natural peptides, α-peptides). For example, β-peptides are
constructed from β-amino acids, in which the amino group is bonded to the carbon
beta to the carbonyl, rather than the carbon alpha to the carbonyl (standard amino
acids/peptides). Likewise, γ-peptides are constructed from amino acids in which the
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amino group is bonded to the carbon gamma to the carbonyl. These aliphatic oli-
goamides may be homogenous (i.e., all β-linkages) or mixed (i.e., β-γ peptides).
Additional carbon atoms are introduced into the peptide backbone in these peptide
homologs, which introduces torsional flexibility. Most reported β-peptides adopt
helical structures, although other structures such as antiparallel hairpin and sheet-like
structures have also been reported. The structures of aliphatic oligoamides, like α-
peptides, are stabilized by intra- and/or interchain hydrogen bonding. Side-chain
interactions can also stabilize 3D structures. β-peptides are the most widely inves-
tigated type of aliphatic oligoamides. In 2000, Gellman’s group reported β-17, a
beta-peptide comprising hydrophobic (R, R)-trans-2-aminocyclopentane carboxylic
acid (ACPC) and cationic (3R,4S)-trans-4-aminopyrrolidine-3-carboxylic acid
(APC) repeat units (Porter et al. 2000). Thus, the structure of β-17 mimics the
amphipathic, helical structure of natural antimicrobials. Compared to a derivative of
magainin, GIGKFLHAAKKFAKAFVAEIMNS-NH2, β-17 exhibited similar
activity (defined as comparable MIC and MBC values) against clinical isolates of
vancomycin-resistant E. faecium and methicillin-resistant S. aureus, as well as
nonpathogenic laboratory strains of B. subtilis and E. coli. Furthermore, β-17
exhibited lower hemolytic activity compared to the magainin derivative. Since this
seminal report, other magainin analogs have been investigated (Liu and DeGrado
2001). While these compounds had similar antimicrobial activity to β-17, they also
exhibited higher hemolytic activity. In general, β-peptides exhibit similar potency to
natural AMPs (1 μg/mL range) (Porter et al. 2005). More recently, mixed
α-/β-peptides have been investigated. In one approach, β-amino acids substituted at
the 2-position with lipophilic side groups were combined with a C-terminus
α-arginine (Hansen et al. 2010). In another approach, the two β-amino acids utilized
by Gellman, ACPC, and APC were combined with α-leucine and α-lysine (Schmitt
et al. 2004). In both studies, the antimicrobial and hemolytic activity was not very
different from earlier β-peptide investigations.

Fig. 10.5 General structures of α-peptides, β-peptides, γ-peptides, aromatic oligoamides,
peptoids, α-AA peptides and γ-AA peptides, and an oligoacyllysine, C16(ω7)K-β12
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Aromatic oligoamides contain aromatic or heteroaromatic rings linked by amide
bonds. Similar to aliphatic oligoamides, their 3D structures are stabilized by
hydrogen bonds. In contrast to aliphatic oligoamides, the rigid structure of the
aromatic group may limit torsional flexibility along the backbone by restricting
bond rotation. This conformational restriction allows aromatic oligoamides to
recapture the amphipathic secondary structure of natural AMPs. The first
oligoarylamides reported were alternating oligomers of 1, 3-phenylene diamine and
isophthalic acid (Tew et al. 2002). These oligoarylamides exhibited good antimi-
crobial activity and good selectivity for prokaryotes over eukaryotes (red blood
cells). Additional structural modifications were made to increase the backbone
rigidity followed, although the activity of the original phenethylene oligoarylamides
was sufficiently high. These oligoarylamides cause changes in permeability of the
outer membrane of E. coli, although the permeabilization of the inner membrane
was more limited (Mensa et al. 2011). Nonetheless, treatment of E. coli resulted in
activation of genes related to membrane stress, and combined with morphological
changes observed by electron microscopy, interaction of the oligoarylamides with
the membrane is implicated in their antimicrobial activity.

Peptoids are N-substituted oligo/polyglycines; due to their structure, these
compounds lack backbone chirality and backbone amide hydrogen bonding. As a
result, the 3D structure of peptoids is dictated by the side-chain chemistry.
Incorporation of bulky chiral monomers or aromatic side chains allows the for-
mation of a stable α-helical structure (Wu et al. 2001). Several groups investigated
the structural requirements for biological activity of peptoids (Nandel and Saini
2007; Fowler and Blackwell 2009; Masip et al. 2005). In 2008, Barron’s group
reported a library of 15 peptoids that mimic natural helical AMPs. The N-side
chains in the peptoids included cationic residues analogous to lysine and histidine,
hydrophobic residues incorporating phenylethyl, naphthylethyl, methylbutyl, and
sec-butyl groups, and an anionic group analogous to glutamic acid. Ten of the
peptoids exhibited low MICs against E. coli and B. subtilis, comparable to a
magainin derivative and melittin (Chongsiriwatana et al. 2008). Notably, the pep-
toids containing negatively charged residues exhibited poor antimicrobial activity,
as did shorter sequences. Six of the ten peptoids with MICs comparable to melittin
exhibited lower hemolytic activity (greater selectivity for prokaryotes) than melittin.
Kirshenbaum compared the antimicrobial activity of linear peptoids to cyclic
peptoids, and found that macrocyclization further enhanced peptoid activity (Huang
et al. 2012). Generally, peptoids exhibit superior membrane permeability compared
to peptides (Kwon and Kodadek 2007).

AA peptides, like aliphatic oligoamides, may be connected at different carbon
groups. Indeed, α- and γ-AA peptides have been reported (Ishitsuka et al. 2006;
Claudon et al. 2010; Hu et al. 2011; Niu et al. 2011). These peptides have been
shown to adopt amphipathic conformations in contact with bacterial membranes,
analogous to AMPs, and generally exhibit activity comparable to or exceeding that
of magainin. Initial efforts focused on the synthesis of libraries of linear AA pep-
tides. Cyclic AA peptides have also been reported (James et al. 2011; Walsh et al.
2013). Compared to their linear counterparts, the cyclic AA peptides have a more
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stable amphipathic structurally, no doubt owing to the more restricted backbone
conformation. Interestingly, recent work on homologous linear and cyclic
membrane-active peptides suggests that the cyclic topology is more efficient in
generating negative Gaussian curvature in PE-rich membranes, which is necessary
for membrane permeation, as mentioned above (Zhao et al. 2012b). Generally, the
antimicrobial activity of AA peptides is enhanced by increasing hydrophobicity, but
this also tends to increase hemolytic activity unless balanced by an increase in
cationic residues. Interestingly, Li et al. recently reported a library of AA peptides
functionalized with lipid tails (to increase hydrobicity) that exhibit high activity
against a broad range of both Gram-positive and Gram-negative bacteria without
exhibiting significant hemolytic activity (Li et al. 2014)

Oligoacyllysines (OAKs) comprise alternating acyl chains and cationic amino
acids. The originally reported OAKs contained fatty acid chains with either four or
eight carbons alternated with a lysine (Radzishevsky et al. 2007). Compared to
other peptidomimics, OAKs have a relatively simple structure, and their design
deliberately prevents the formation of stable secondary structures. The structure is
clearly amphipathic and possesses significant flexibility about the backbone due to
the large number of C–C bonds. In the seminal report, only the octanoyl-based
OAKs inhibited the growth of E. coli. However, modification of N-terminal acyl
group with a twelve-carbon fatty acid chain (dodecanoyl) not only enhanced the
activity of the octanoyl-based OAKs, but also imparted activity to the
butyroyl-based OAKs. In addition to inhibiting the growth of bacteria such as
E. coli, Acinetobacter, Klebsiella, and Pseudomonas, their lead compound
C12K-7α8 (representing dodecyl, lysine, and acyl-linked octanoyl) exhibited vir-
tually no hemolytic activity. Since this initial report, OAKs have evolved to include
variations in number of cationic residues, length of fatty acid chain, and unsatu-
ration in the fatty acid chain. A representative example, C16(ω7)K-β12 is depicted in
Fig. 10.5 (Sarig et al. 2008), and exhibits an average MIC of 6 ± 5 μg/mL against
a panel of *50 different bacteria.

10.3.3 AMP-like Polymers

Most peptide synthesis is carried out in the solid phase, which is an expensive
technique. This situation led scientists to find alternative routes and move to syn-
thetic polymers with diverse backbones including poly(norbornenes) (Ilker et al.
2004; Altay et al. 2015), poly(methacrylates) (Locock et al. 2014), nylon-3
copolymers (Liu et al. 2015; Chakraborty et al. 2014), polyacrylamide (Palermo
et al. 2009), polyolefin (Song et al. 2011), polyvinylpyridines (Sambhy et al. 2008),
polyanilines (Gizdavic-Nikolaidis et al. 2011), polycarbonate (Nederberg et al.
2011; Ng et al. 2014; Engler et al. 2013), and poly(vinylether) (Oda et al. 2011).
Some excellent reviews have covered the advent of the field of antimicrobial
polymers (Dorner and Lienkamp 2014; Palermo and Kuroda 2010; Muñoz-Bonilla
and Fernández-García 2012; Kuroda and Caputo 2013).
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Contrary to peptide-like oligomers, polymeric SMAMPs have random sequences
of hydrophobic and cationic groups along their backbone and a molecular weight
distribution. These heterogeneities make them unlikely to form defined secondary
conformations but more presumably random coils that self-organize in an irregular
yet globally amphiphilic structure when in contact with bacterial membranes.
Polymer-based SMAMPs exhibited potent antimicrobial activity suggesting that
their activity relies on their physicochemical properties, rather than specific-defined
sequence and secondary structure (Dorner and Lienkamp 2014; Palermo et al. 2013).

The molecular and physical properties of synthetic polymers need to be easily
tuned to achieve proper amphiphilic balance that would induce good antimicrobial
activity and cell selectivity. Nylon-3 polymers offer considerable possibilities in
that regard. Nylon-3 polymers are synthetic polyamides with a β-amino acid
skeleton similar to the polyamide backbone of proteins and are highly tunable in
terms of physicochemical properties (Fig. 10.6). Gellman and coworkers synthe-
sized the first nylon-3 polymer-based SMAMP in 2007 by anionic ring-opening
polymerization (AROP) of β-lactams (Mowery et al. 2007). Since then, Gellman’s
group investigated how tuning the amphiphilicity balance affects the antimicrobial
activity and cell selectivity of the polymers (Epand et al. 2008; Zhang et al. 2012;
Liu et al. 2012a, b, 2014; Dohm et al. 2010). To do so, the chain length, the
structure, and the ratio of hydrophobic and cationic units, and the nature of the C-
and N-terminal were varied. A general trend was observed: increasing the number
of hydrophobic units enhances the antimicrobial activity reaching a minimal MIC
value after which the MIC goes up again. Indeed, above a certain degree of
hydrophobicity, the polymers become less soluble forming aggregates that do not
permeate the bacterial membranes but can still insert erythrocytes; so polymers
become less active and less selective against bacteria leading to toxicity issues.
Kuroda’s group reached similar conclusion with random amphiphilic poly
(methacrylates) (Kuroda and DeGrado 2005; Kuroda et al. 2009). An optimal
balance between hydrophobicity and solubility is crucial to achieve high antimi-
crobial activity while retaining high selectivity. Most polymer-based SMAMPs are
binary copolymers in which one subunit is hydrophobic and the other cationic
conferring them higher charge density and higher level of hydrophobicity than

Fig. 10.6 Examples of nylon-3 polymers. R represents the side-chain group for βNM:CH
copolymers. Reprinted with permission from Liu et al. (2015). Copyright © 2015 American
Chemical Society
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natural AMPs. With the intent of mimicking AMPs with higher fidelity, Wong and
Gellman have prepared ternary nylon-3 copolymers with either a serine-like or
glycine-like subunit (Fig. 10.7) and have shown that partial replacement of the
hydrophobic subunit with a “neutral” component reduced hemolysis without
affecting the antibacterial activity (Chakraborty et al. 2014). Wong and Gellman’s
groups also demonstrated that the antibacterial activity of nylon-3 polymers was
correlated with two interdependent mechanisms of action: membrane permeation
and DNA binding (Lee et al. 2014). Indeed, nylon-3 polymers can induce NGC,
which is topologically required for membrane-disruptive process and cellular entry
as mentioned above. Nevertheless, their membrane permeation ability was shown to
be concentration dependent. At low concentrations, the polymers can cross cell
membranes without total membrane disruption and kill bacteria by binding to DNA,
while at higher concentrations they can completely disrupt membranes.

Besides hydrophobicity, cationic charges also play a major role in antimicrobial
activity and cell selectivity as they allow polymers to bind to the negatively charged
bacterial membranes. It has been demonstrated that primary amines are more
favorable to confer high antimicrobial properties than secondary or tertiary amines,
as they are partially protonated at physiological pH (Palermo and Kuroda 2009;
Palermo et al. 2011). Interestingly, SMAMPs with permanently charged quaternary
ammonium groups were less or not active suggesting that the chemical structure of
the cationic groups, and not uniquely the number of cationic charges, also impacts
the complexation with phosphate lipid headgroups by a combination of hydrogen
bonding and electrostatic interactions. Although protonoted positively charged
amines enhance the initial binding of SMAMPs to the outer leaflet of bacterial cell
membranes, it has been speculated that the presence of deprotonated amine groups
at physiological pH might facilitate the insertion of the polymers into the inner
leaflet of cell membrane (Palermo et al. 2011). However, highly charged polymers
may not be suitable for biomedical applications as they seem to favor hemolysis
and/or hemagglutination (Palermo and Kuroda 2009; Sovadinova et al. 2011a). In
the view of reducing hemolysis, Punia et al. incorporated nonionic and hydrophilic
poly(ethylene glycol) (PEG) side chains to acrylic copolymers to reduce
hydrophobic interactions of copolymers with red blood cells (RBCs) (Punia et al.
2015). Indeed, PEG is known to interact with RBCs through hydrogen bonds and

Fig. 10.7 Ternary nylon-3 copolymers that contain either a serine-like or glycine-like subunit,
along with a hydrophobic subunit and a cationic subunit. Reproduced with permission from
Chakraborty et al. (2014) (http://pubs.acs.org/doi/pdf/10.1021/ja507576a)
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weakly adsorb on their surface protecting them from foreign body contact. Thus, a
series of copolymers with hexamethyleneamine (6-carbon long lipophilic spacer
arm with pendant cationic groups) and PEG side chains were synthesized. While
homopolymers of hexamethyleneamine were highly hemolytic, the addition of
33 mol% of hydrophilic PEG side groups led to >1300 times reduction in hemolytic
activity while maintaining high antibacterial activity. However, too much PEG
induced a drastic loss of antibacterial activity due to the shielding effect of the PEG
preventing the hexamethyleneamine units from interacting with the bacterial cell
surface.

A number of studies have also investigated the incorporation of functional groups
that mimic specific amino acids such as arginine (Budhathoki-Uprety et al. 2012;
Locock et al. 2013; Gabriel et al. 2008) and tryptophan (Trp) (Locock et al. 2014)
instead of the traditional mimics of lysine (amine-based cationic groups). Trp residue
has been identified at high concentrations in various AMPs including indolicidin,
tritrpticin, and lactoferrampin and has the unique ability to insert into membranes
and associate with the positively charged choline headgroups of the lipid bilayer
(Chan et al. 2006). Locock et al. synthesized polymethacrylates with indole pendant
groups to mimic tryptophan-rich cationic peptides (Locock et al. 2014). The
copolymers combined a Trp-like momoner with either 2-aminoethylmethacrylate as
a mimic of lysine or 2-guanidinylmethacrylate as a mimic of arginine (Fig. 10.8). All
polymers displayed antibacterial activities against both Staphylococcus epidermidis
and methicillin-resistant Staphylococcus aureus (MRSA). The most potent and the
least hemolytic polymers were those with the lowest indole content which could
indicate that no lipophilic component is required for potent antimicrobial activity;
nevertheless cationic homopolymers with no indole group showed moderate to
strong hemagglutination suggesting that a minimal level of hydrophobicity is nec-
essary to achieve low agglutination-based toxicity while retaining high antimicrobial
activity and high selectivity. The trend observed here (decreasing level of
hydrophobicity giving higher antimicrobial activity) is in contradiction with most
studies reported in the literature on this topic indicating that each system is unique
and the nature of the cationic and hydrophobic groups ensure varying types and

Fig. 10.8 Random copolymers containing amine–indole side chains as lysine-tryptophan mimics
and guanidine–indole side chains as arginine–tryptophan mimics. Reprinted with permission from
Locock et al. (2014). Copyright © 2014 American Chemical Society
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degrees of amphiphilicity and a direct comparison with other polymeric systems is
not necessarily relevant.

Clearly, there has been much progress in making synthetic molecules that mimic
AMPs. One interesting question to ask is whether there is anything to be gained to
move beyond mimesis of AMPs by synthetic molecules. At the beginning of the
review, we mentioned that it may be possible to combine the different advantages of
AMPs and traditional antibiotics. We describe an example below.

10.4 Engineered Hybrid Antibiotics to Address
Limitations of Both AMPs and Traditional
Antibiotics

From the discussion above it is apparent that the permeation activity of
membrane-active antimicrobials is derived from a fundamental motif of net cationic
charge and amphiphilicity, not from conserved core structures. Collectively, it is
generally not necessary for natural AMPs and AMP mimics to have specific
structural features, or for them to adopt certain conformations, although these
characteristics can improve potency and selectivity. Synthetic AMPs can be con-
structed using a variety of chemistries, and designed with diverse chemical com-
positions. One consequence of this chemical flexibility is that synthetic AMPs do
not have to be solely made of peptides or peptide-like polymers but can also be
hybrids. Indeed, synthetic hybrids can be rationally designed by combining two or
more entities in order to generate synergistic effects into a single platform and
promote desired properties such as better biocompatibility, greater antimicrobial
potency, higher bacterial selectivity, and better cellular uptake. This field has been
previously reviewed elsewhere (Li et al. 2012). The principal constraint is the
antimicrobial which must have the correct proportions of cationic amino acids
(arginine and lysine) and hydrophobicity so that it can generate the requisite NGC
curvature to compromise the barrier function of bacterial membranes by permeation
(also referred to as permeabilization). This raises the exciting possibility that many
different molecules can be equipped with membrane activity through chemical
modification. In this section we focus on our recent work on developing an
aminoglycoside-AMP hybrid and how this approach allows antibiotics to enter
bacteria through an entirely new mechanism relative to those used by traditional
aminoglycosides.

Most traditional antibiotics such as β-lactams, quinolones, tetracyclines, macro-
lides, sulphonamides, aminoglycosides, phenicols, do not permeabilize bacterial
membranes (Hancock and Bell 1988). β-lactam antibiotics inactivate the series
penicillin-binding proteins responsible for building the cell wall (Hancock and Bell
1988; Kohanski et al. 2010). This peptidoglycan network is externally located in
Gram-positive bacteria and confined to the periplasm in Gram-negative bacteria.
β-lactams, therefore, do not need to cross the cytoplasmic membrane, and they are
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believed to reach the periplasm by passing through porins in the outer membranes of
Gram-negative bacteria (Hancock and Bell 1988; Pagès et al. 2008; Nikaido 2003).
The other classes of antibiotics act on intracellular targets. The tetracyclines, mac-
rolides, aminoglycosides, and phenicols disrupt translation by binding to the ribo-
some, whereas the quinolones and sulfonamides inhibit DNA synthesis by targeting
DNA gyrase, and enzymes responsible for tetrahydrofolic acid synthesis, respec-
tively (Kohanski et al. 2010). All of these drugs must enter the cells to be effective
antimicrobials. Like for the β-lactams, the drugs are believed to be transported
though the outer membrane by porins (Hancock and Bell 1988; Pagès et al. 2008;
Nikaido 2003). While traversing the cytoplasmic membrane is complex and may be
accomplished through distinct, parallel systems that can be antibiotic-specific, it is
generally accepted that the lipophilic antibiotics can cross directly through cyto-
plasmic membrane by passive diffusion (Hancock and Bell 1988). The aminogly-
cosides are polycationic so they cannot simply diffuse through membranes, however,
and our understanding of how aminoglycosides cross the cytoplasmic membranes of
bacteria is incomplete (Taber et al. 1987; Allison et al. 2011). In general, amino-
glycoside uptake is proposed to occur through an active transport mechanism that is
energy dependent and relies on the proton motive force (PMF) (Taber et al. 1987;
Allison et al. 2011). The polycationicity, action on an intracellular target, and distinct
uptake mechanism make aminoglycosides good candidate molecules for
“weaponizing” them with the membrane permeation ability of AMPs.

To understand the benefits building aminoglycoside-AMP hybrids it is helpful to
compare aminoglycosides and AMPs both in terms of their mechanisms of action
and antimicrobial profiles. Aminoglycosides are potent antibiotics that have a
specific mechanism of action and a well-defined target. They bind the decoding
aminoacyl site on the 16S rRNA component of the 30S ribosomal subunit, which
causes mistranslation and inhibition of the bacterial ribosome leading to cell death
(Fourmy et al. 1996; Vicens and Westhof 2002). Common bacteria-resistance
mechanisms include target modification through posttranscriptional methylation of
critical binding positions in the 16S rRNA, and drug modification by aminogly-
coside phosphotransferases, acetyltransferases, and adenylytransferases. Plasmid-
or chromosomally encoded enzymes are responsible for the modifications (Magnet
and Blanchard 2005). Bacteria also limit the concentration of aminoglycosides in
cells by energy-dependent drug efflux using pumps, and by reducing uptake across
the cytoplasmic membrane (Magnet and Blanchard 2005). Poor uptake into cells is
implicated as the reason why aminoglycosides are not active against a wide variety
of microbes, including ones considered intrinsically resistant such as anaerobic
bacteria (Taber et al. 1987; Davis 1987), as well as persistent bacteria, a slow or
nongrowing bacterial phenotype characterized by negligible susceptibility to many
clinical antibiotics (Cohen et al. 2013; Lewis 2007; Lewis 2010). As described
above, AMPs collectively have broad-spectrum antimicrobial activity and utilize
nonspecific interactions to target generic features common to membranes of
microbes. Through coevolution with multicellular hosts bacteria have
well-developed mechanisms which mitigate the effects of AMPs. Defense mecha-
nisms often involve membrane modification. For example, in response to cationic
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peptides, the staphylocci decrease the net negative charge of their cell envelope
through D-alanylation of cell surface teichoic acids and lysylation of phos-
phatidylglycerol (Peschel et al. 2001; Li et al. 2007a, b), and a variety of
Gram-negative bacteria can modify their cell surface via lipopolysaccharide
(LPS) remodeling (Guo et al. 1997; Derzelle et al. 2004; Rebeil et al. 2004). While
these responses can reduce the susceptibility of bacteria to AMPs, it is believed that
absolute resistance is difficult to attain since this would require large-scale changes
in membrane composition (Zasloff 2002; Perron et al. 2006). Indeed, observations
from serial passage studies showed bacteria that exhibited a slower upward “creep”
in MIC from repeated exposure to synthetic AMPs, whereas resistance to con-
ventional antibiotics occurred at a much faster pace (Sovadinova et al. 2011b).
Furthermore, membrane-active antimicrobials may retain activity against persister
cells, since an intact membrane is required for cell viability regardless of metabolic
state (Hurdle et al. 2011). Despite their broad-spectrum activity, a major drawback
of AMPs is that they often display moderate potency in vitro, which can vary
widely among AMPs, and different types of bacteria display different degrees of
susceptibility (Fjell et al. 2012). In principle, aminoglycoside-AMP hybrid mole-
cules have the ability to overcome the deficiencies of both aminoglycosides and
AMPs. Deterministic design of these molecules requires a general methodology for
combining their distinct antimicrobial functions without mutual interference.

Using above fundamental principles that govern how peptides generate
saddle-splay membrane curvature, we can accelerate our process of antibiotic dis-
covery. We hypothesized that we can impart aminoglycoside antibiotics with
membrane permeability by conjugating a peptide sequence so the resulting amino-
glycoside–peptide conjugate acts as an AMP. We chose tobramycin because it is a
potent aminoglycoside that is used in the clinic. Tobramycin is the standard of care
as an aerosol therapy for suppressing infections in the lungs of patients with cystic
fibrosis (Döring et al. 2012), and it is among the most common antibiotics
impregnated into the bone cements used for arthroplasty revisions in joint implants
(Zimmerli et al. 2004). In addition, the sole primary hydroxyl group in tobramycin is
amenable to conjugation and this hydroxyl group is not essential for RNA binding
(Asensio et al. 2005; Hanessian et al. 1977). The peptide sequence was derived from
ANTP penetratin (Derossi et al. 1994) a well-known cationic, amphiphilic
cell-penetrating peptide (CPP) (Derossi et al. 1998), which generates saddle-splay
curvature (Mishra et al. 2008b, 2011c). CPPs also compromise the barrier function
of cell membranes and enter cells, but they are less lytic than AMPs (Mishra et al.
2011c). Furthermore, a number of AMPs including indolicidin, buforin, and
tachyplesin are proposed to use membrane activity to cross bacterial membranes and
kill bacteria by binding to intracellular targets (Hsu et al. 2005; Park et al. 1998;
Yonezawa et al. 1992). We designed a 12-amino-acid peptide, called Pen, and
connected it to tobramycin to produce the membrane-active aminoglycoside–peptide
conjugate (MAAPC) hybrid, Pentobra (Fig. 10.9a). Small-angle X-ray scattering
experiments on small unilamellar vesicles with lipid compositions mimicking bac-
terial cytoplasmic membranes showed treatment with Pentobra restructured the
vesicles into bicontinuous cubic phases, indicating that Pentobra can generate
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saddle-splay curvature in model bacterial membranes (Schmidt et al. 2014), in a
manner similar to AMPs. Conversely, tobramycin could not induce cubic phase
formation in vesicles. These results were consistent with permeabilization experi-
ments on bacteria (Schmidt et al. 2014). Single micromolar concentrations of
Pentobra readily permeabilized the cytoplasmic membranes of E. coli, whereas per-
meabilization profiles from concentrations of tobramycin well above theMIC (>10×)
were indistinguishable from background (Fig. 10.9b). The generation of saddle-splay
membrane curvature and permeabilization of bacteria membranes by Pentobra sup-
ports the approach of using saddle-splay curvature design rules to renovate existing
antibiotics by giving them the additional function of membrane activity.

The ability of Pentobra to permeate bacterial membranes suggests that MAAPCs
may have therapeutic value in situations where aminoglycoside antibiotics are not
effective. One significant health problem is that bacterial communities almost
always contain subpopulations of cells, known as persisters that are not susceptible
to conventional antibiotics (Lewis 2007; Balaban et al. 2004; Gefen and Balaban

Fig. 10.9 a Structure of Pentobra that combines the ribosomal activity of tobramycin and the
membrane activity of an AMP. b Pentobra permeabilizes E. coliML35 inner membranes. Pentobra
displays dose-dependent killing activity against persister cells. c S. aureus S113 and d E. coli Dh5
α. Reproduced with permission from Schmidt et al. (2014) (http://pubs.acs.org/doi/pdf/10.1021/
nn502201a)
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2009). These bacteria are usually slow growing or nongrowing whose reduced
metabolism allows them to survive antibiotic treatment, since most drugs target
active growth processes (Lewis 2010). While a small fraction of cells in actively
growing cell cultures are persistent, under conditions of limited nutrients and in
biofilms the fraction of persistent bacteria can reach a substantial portion of the cell
population (Keren et al. 2004). Stationary cultures of S. aureus are entirely com-
posed of persisters (Allison et al. 2011; Keren et al. 2004). Once antibiotic treat-
ment has ceased persisters can become active and renew infection (Keren et al.
2004; Bigger 1944), and continued exposure of bacteria to antibiotics increases the
likelihood for the emergence of genetic resistance (Lewis 2010; Keren et al. 2004).
Drug tolerance is believed to contribute to chronic infections (Lewis 2010; Mulcahy
et al. 2010), and there are scarce potential therapeutic strategies against persistent
bacteria (Allison et al. 2011; Conlon et al. 2013). To examine whether MAAPCs
might have therapeutic value we conducted plate killing assays comparing the
activities of Pentobra and tobramycin against persistent bacteria. Remarkably,
Pentobra showed dose-dependent bactericidal activity against both model
Gram-negative (E. coli) (Fig. 10.9c) and Gram-positive (S. aureus) (Fig. 10.9d)
persisters with reductions reaching 4–6 logs at the highest drug concentrations
tested, while equivalent molar concentrations of tobramycin were not bactericidal
(Schmidt et al. 2014). Follow-up experiments in our lab indicate that Pentobra
outperforms tobramycin to a similar degree against persistent P. aeruginosa cells,
and Pentobra is superior to both Pen peptide alone and the simple mixture of Pen
peptide plus tobramycin (Deshayes et al. unpublished). This last result, in partic-
ular, demonstrates the benefit of using drugs that are multifunctional as opposed to
cocktails of single function antibiotics for synergistic activity. Moreover, Pentobra
is noncytotoxic to eukaryotic cells (Schmidt et al. 2014, 2015b). These results show
that equipping aminoglycosides with membrane activity is a promising approach to
eradicate pathogenic organisms that are recalcitrant to existing therapies.

Another shortcoming of aminoglycoside antibiotics is that, in vitro, they are not
active against anaerobic bacteria. It is hypothesized that the lower PMF across the
membranes of anaerobes impairs internalization (Taber et al. 1987; Davis et al.
1986), since aminoglycosides bind the ribosomes of anaerobic bacteria and ones
that use oxygen with similar affinities (Bryan et al. 1979). The issue is thought to be
drug uptake. To determine if additional membrane activity could expand the
activity spectrum of aminoglycosides to anaerobic bacteria we examined the
activity of Pentobra against Propionibacterium acnes (Wang et al. 1977; Dréno
et al. 2004), a major etiological agent in acne (Ross et al. 2003; McInturff et al.
2005) and the dominant pathogen in prosthetic shoulder implant infections
(Achermann et al. 2014). Pentobra showed potent bactericidal activity (4–6 log unit
decrease in cfu) against P. acnes clinical isolates in standard liquid culture killing
assays and in assays utilizing human comedone extracts that are more representative
of the lipid-rich environment of human skin (Fig. 10.10a–d) (Schmidt et al. 2015b).
Conversely, both Pen peptide and tobramycin alone were much less effective. These
results suggest that MAAPCs might have therapeutic value against anaerobic
pathogens and they have potential as topical antimicrobial agents.

10 How to Teach Old Antibiotics New Tricks 277



10.5 Clinical Development

This section summarizes recent clinical developments in the field of natural and
synthetic AMPs. As mentioned above, several drawbacks have hindered the clinical
development of AMPs such as poor in vivo activity, poor bioavailability, high cost
of manufacturing, low stability, and systemic toxicity. Whereas the development of
AMPs for clinical use is challenging, and to date, only nisin, gramicidin, dapto-
mycin, and polymyxins have been granted Food and Drug Administration
(FDA) approval (Carmona-Ribeiro and de Melo 2014), many efforts are devoted to
accelerate their clinical development in order to face the decline in new antibiotics
and the alarming rise in antibiotic resistance. For instance, while pexiganan
(a 22-amino-acid synthetic analog of magainin isolated from the skin of the African

Fig. 10.10 Antimicrobial activity of Pentobra, tobrmaycin, and Pen peptide against P. acnes in
the microcomedones isolated from (a–d) four donors’ faces using deep cleaning pore strips.
Reproduced with permission from Schmidt et al. (2015b). Copyright Elsevier (2015)
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Clawed Frog) did not receive FDA approval for the topical treatment of diabetic foot
ulcers in 1999, it is currently 50 % enrolled in two Pivotal Phase III clinical studies
for the treatment of mild infections of diabetic foot ulcers, thanks to the tenacity of
the company Dipexium Pharmaceuticals (ClinicalTrials.gov registration numbers
NCT01594762 and NCT01590758). Omiganan (a bovine indolicidin-based peptide)
is another example of AMPs that has first failed but has recently reentered in clinical
studies. Indeed, the phase III clinical trial of omiganan 1 % gel, named Omigard (as
a topical antimicrobial agent for the prevention of catheter-related infections spon-
sored by Carrus Capital Corporation) has been discontinued because no additional
effect was observed over existing therapies. However, Cutanea Life Sciences Inc.
has initiated enrolment in a phase II trial for acne vulgaris (NCT02571998) and plans
a phase III trial for rosacea (NCT02576860). Other synthetic AMPs have demon-
strated promising outcomes in human clinical trials. hLF1-11 (the N-terminal peptide
of human lactoferrin) has shown efficacy and safety in clinical trials (phase I/II) for
the treatment of various infectious (Brouwer et al. 2011) and it has also been tested in
the clinic for its immunomodulatory activity (Yeung et al. 2011; van der Does et al.
2010). OP-145 (previously named P60.4Ac), a synthetic 24-mer peptide derived
from LL-37, has been proven to be safe and effective in patients with chronic otitis
media (chronic middle ear infection) in a clinical phase I/II trial (Malanovic et al.
2015; Peek et al. 2009). LTX-109 (Lytix Biopharma), a topical AMP, has suc-
cessfully completed phase I/II clinical trials and exhibited safety and potency in the
treatment of impetigo and in patients nasally colonized with methicillin-resistant/-
sensitive staphylococcus aureus (MRSA/MSSA) (Nilsson et al. 2015).

It is worth noting that the majority of AMPs currently in clinical trials are natural
or analogs of natural AMPs with all the associated obstacles. However, the new
classes of synthetic mimics of AMPs (SMAMPs) have the potential to circumvent
many AMP limitations. In contrast to the isolation and/or modification (substitu-
tion, deletion, or addition of amino acids) of natural AMPs, SMAMPs are designed
with optimized physicochemical characteristics that make them more robust, more
active, and more selective. Among the new SMAMPs, the engineered hybrids are
very promising at present as they combine multiple functional fragments. For
instance, Pentobra leverages the benefits of an AMP with those of a conventional
antibiotic while limiting the likelihood for bacteria to acquire resistance.

10.6 Conclusion and Outlook

Unlike conventional antibiotics which pathogens readily evade by resistance
mutations, antimicrobial peptides (AMPs) are believed to be less affected by resis-
tance phenomena due to their inherently hybrid mode of action. Indeed, AMPs kill
microorganisms by permeating membranes, thus in order for bacteria to acquire
systematic resistance against AMPs, they would need to change their whole mem-
brane composition, which is known to be difficult since AMPs have remained
effective against bacteria for millenia.
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However, a major problem limiting the success of AMPs in clinical application
is their susceptibility to proteolytic degradation reducing their activity in vivo. In
order to curb this problem and based on the observation that AMP usually adopt an
amphiphilic behavior essential for selective disruption and permeabilization of
microbial membranes, many artificial systems (SMAMPs) including β-peptides,
peptoids, AMP-like polymers, and hybrids have been designed to mimic AMPs
with greater stability. To take it to the next level, our recent work suggests that we
can identify basic sequence principles for peptides to permeate membranes based
on induced curvature, and inform strategies to impart membrane-permeability to
nonmembrane-active molecules with diverse functions, as example by our recent
design Pentobra, which leverages the benefits of an AMP with those of a con-
ventional antibiotic (tobramycin) and offers unique synergistic antibacterial actions
that allow significantly greater potency against recalcitrant bacteria than the parent
drug or the mixture of both entities.
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Chapter 11
Antimicrobial Peptides and Preterm Birth

Catherine P. James and Mona Bajaj-Elliott

Abstract Preterm birth (delivery before 37 completed weeks of pregnancy) is a
major problem worldwide, leading to high mortality and significant long-term
morbidity. A complex interaction between ascending lower genital tract infection
and the maternal immune system is a likely underlying component of pathogenesis.
In this chapter we consider the ways in which expression of antimicrobial peptides
in the maternal genital tract may modulate the risk of ascending genital tract
infection and thus the risk of preterm birth.

11.1 Preterm Birth and Ascending Lower Genital Tract
Infection

Preterm birth (PTB, delivery before 37 completed weeks of gestation) is a major
problem in the United Kingdom and worldwide, leading to a high mortality rate and
long-term morbidity in babies who survive—particularly those born before
32 weeks (Marlow et al. 2005; Moore et al. 2012). There are currently no proven
strategies that both prevent PTB and improve neonatal outcome, making the search
for new preventative therapies a priority (Iams et al. 2008). Prematurity is the single
largest direct cause of neonatal deaths worldwide (one million, or 35 % of all
deaths) and contributes to 50 % of all neonatal deaths (Blencowe et al. 2012): PTB
kills more babies than any other single cause).
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The processes leading to preterm delivery are poorly understood. The patho-
genesis of PTB is multifactorial, and many mechanisms have been proposed. There
is increasing evidence that intrauterine infection in a significant proportion
(40–70 % cases of preterm deliveries) is associated with chorioamnionitis
(inflammation of the fetal membranes) (Tita and Andrews 2010) Two main models
of intrauterine infection leading to PTB have been proposed: (a) pathogens from
either a systemic infection or a remote localized infective focus disseminate
hematogenously and initiate an immune response in the intrauterine cavity, and/or
(b) pathogens from the extensive vaginal microbiome may gain access to the rel-
atively sterile intrauterine cavity via the cervical canal.

The intrauterine cavity is separated from the prolific bacterial load of the vagina
by the three centimeters or so of simple columnar epithelium that make up the
endocervical canal. As the intrauterine cavity is demonstrably either sterile or has
only minimal bacteria present in uncomplicated pregnancies at term (Jones et al.
2009), it is clear that under normal conditions the cervix must act as an effective
barrier to the migration of bacteria from the vagina.

11.2 The Cervix as an Antimicrobial Barrier

The integrity of the cervical canal as an antimicrobial barrier is likely to rely on a
number of interrelated physical and chemical factors; these include the apical
surface lining of the endocervical columnar epithelium and provision of innate and
cellular immunity from resident and recruited immune (e.g., macrophages and
T-cells) and nonimmune (epithelium/fibroblast) cells via the production of
cytokines and chemokines. Many of the “gate-keeper” functions of the cervix are
coordinated by the cervical mucus plug (CMP), a large (c.10 g), viscous structure
which fills the cervical canal during pregnancy. The CMP is a dynamic structure
unique to pregnancy. Scanning electron microscopy reveals that the ultrastructure
undergoes significant change during pregnancy, from a largely porous mesh early in
the first trimester, to a dense and highly compact mesh at later gestations (Becher
et al. 2009).

Molecularly, the CMP is an anionic mucinous glycoprotein skeleton. This serves
as a ligand for a variety of molecules, including cytokines and water. In addition,
the complex network inhibits the diffusion of larger molecules and pathogens
through the CMP by steric exclusion (Becher et al. 2009). The anionic charge of the
mucin skeleton also allows the CMP to retain positively charged molecules,
including the many highly cationic antimicrobial peptides (AMPs) of the innate
immune system.

More than 800 unique AMPs have been identified in a variety of species, but the
two main classes of AMP in mammals are cathelicidins and defensins. Despite
expressing only one cathelicidin, humans express a range of defensins; these are
classified as alpha defensins or beta defensins depending on the cysteine motif of
their beta sheet secondary structure (Fellermann and Stange 2001).
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Alpha defensins, also called human neutrophil peptides (HNPs), are small pep-
tides with broad spectrum antimicrobial and/or immunoregulatory properties and are
mainly found in the azurophilic granules of neutrophils and in the Paneth cells of the
small intestine (Wiesner and Vilcinskas 2010). In contrast, beta defensin expression
is not restricted as they can be expressed by all epithelia (Pazgier et al. 2006) and
reports indicate expression in circulating immune cells (Jansen et al. 2009).

Defensins were originally described as endogenously occurring antimicrobials.
Indeed, collectively they exhibit a considerable antimicrobial spectrum against a
range of Gram positive and Gram negative pathogens (Table 11.1). Their mecha-
nism(s) of antimicrobial activity is related to their amphipathic design, in which
clusters of hydrophobic and cationic amino acids are spatially organized in discrete
sections of the molecule (Zasloff 2002). This design allows the interaction of the
cationic, hydrophilic surface of the peptide with the (anionic) bacterial membrane,
during which there is displacement of the membrane lipids and subsequent alter-
ation of membrane structure. Many mechanisms of bacterial killing have been
proposed, all of which hinge on this single premise of charge-dependent interaction;
suggested mechanisms include membrane depolarisation, leakage of intracellular
components through compromised bacterial membranes or other disturbances of
bacterial membrane function (Zasloff 2002).

Peptides using charge-dependent mechanisms of bacterial killing are able to
execute activity in the micromolar concentration range. This capacity is inhibited
under conditions of increased ionic strength, for example in a salty environment.
HBD3 alone is able to kill in a relatively salt independent fashion (Harder et al.
2001). In addition to this salt insensitivity, HBD3 has potent antimicrobial activity
against viruses and fungi (Pazgier et al. 2006). Although the precise mechanisms
underlying these properties are not yet clear, the reader is encouraged to read the

Table 1 The antimicrobial spectrum of HBD1, HBD2, and HBD3

HBD1 HBD2 HBD3

Escherichia coli Escherichia coli Escherichia coli

Pseudomonas aeruginosa Pseudomonas aeruginosa Pseudomonas aeruginosa

Klebsiella pneumoniae Klebsiella pneumoniae Klebsiella pneumoniae

Staphylococcus aureus Staphylococcus aureus Staphylococcus aureus

HIV-1 Streptococcus pneumoniae Streptococcus pneumoniae

– Candida albicans Streptococcus pyogenes

– Candida parapsilosis Staphylococcus carnosus

– Candida krusei Burkholderia cepacia

– Enterococcus faecalis Saccharomyces cerevisiae

– HIV-1 Candida albicans

– – Candida parapsilosis

– – Candida krusei

– – Enterococcus faecalis

– – HIV-1
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accompanying chapters that provide an update to our current understanding of
AMP action and function.

In addition to their antimicrobial capacity, HBDs also play an important
immunoregulatory role. HBD1 is constitutively expressed but may be upregulated
in the context of infection or inflammation (Bajaj-Elliott et al. 2002). This may be
IFN-γ dependent (Prado-Montes de Oca 2010). HBD1 induces CCL5/RANTES
production by peripheral blood monocytes and, in common with HBD2, can act as
a chemoattractant for immature dendritic cells (iDCs) and memory T-cells via
CCR6, effectively mediating innate-adaptive immune signaling (Pazgier et al.
2007). HBD3 modulates HIV-1 infectivity via CXCR4, induces antigen presenting
cell maturation via TLR1 and TLR2 and is chemoattractant for CCR2 (Röhrl et al.
2010). In addition, HBD3 has been shown to compete with melanocyte stimulating
hormone alpha (MSHα), the ligand of the melanocortin 1 receptor (MC1r), in
myeloid cells; this competition inhibits the induction of the anti-inflammatory
cytokine IL-10 in cells expressing MC1r (Prado-Montes de Oca 2010).

Further immunomodulatory properties of HBD3 include the activation of
monocytes via TLR1 and TLR2 to produce IL-8, IL-6 and IL-1β but not IL-10. In
contrast to these largely proinflammatory properties, HBD3 can also neutralize
lipopolysaccharide (LPS) and inhibit TNFα and IL-6 accumulation (Semple et al.
2010, 2011). The net effect of HBD3 action is therefore difficult to discern as it can
be proinflammatory and/or anti-inflammatory. The available information raises the
hypothesis that HBD3 pro- and/or anti-inflammatory function in vivo may be
context dependent.

11.3 Antimicrobial Peptides and Preterm Birth

The potential role of AMPs, secretory leukocyte protease inhibitor (SLPI), and
elafin in the pathogenesis of PTB has been investigated. The CMP itself displays
direct antimicrobial activity in vitro, and both peptides have been identified as
components of the CMP (Hein et al. 2002; Stock et al. 2009). Low cervicovaginal
levels of elafin have been associated with bacterial vaginosis (BV) (Stock et al.
2009); conversely, it has been suggested that high concentrations of elafin in cer-
vicovaginal fluid are associated with cervical shortening and may be predictive of
PTB (Abbott et al. 2014). High cervicovaginal concentrations of the human
cathelicidin LL37 have also been associated with bacterial vaginosis in pregnancy
(a risk factor for PTB) (Frew et al. 2014).

HBDs have also been identified in the CMP (Frew and Stock 2011). Numerous
studies (Cobo et al. 2011; Polettini et al. 2011; Buhimschi et al. 2009) have focused
on the expression of HBDs in the amniotic fluid, fetal membranes, and the placenta
in women who deliver preterm. Although these studies suggest that there may be an
association between increased expression (transcriptional and translational) of these
peptides and PTB, currently no mechanistic studies have been reported. There are
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also no reports detailing cervicovaginal HBD expression in women at increased risk
of PTB, although two studies report an association between increased alpha
defensins in cervicovaginal fluid and PTB (Xu et al. 2008; Lucovnik et al. 2011).

11.4 Progesterone, AMPs and Preterm Birth

Significant data showing that progesterone can prolong pregnancy in women at risk
of PTB have raised questions about its mode of action (Maggio and Rouse 2014).
The gestation extending effects of progesterone are most pronounced in those
women who have both a history of prior preterm deliveries and a reduced cervical
length (below 25 mm when measured by transvaginal ultrasound) in the pregnancy
in question. It is clear that women with a reduced cervical length will also have a
reduced surface area of endocervical epithelium. The precise mechanism(s) by
which progesterone treatment may compensate for this reduced surface area
remains ambiguous, and the long-term outcome of children born to women treated
with progesterone has yet to be determined.

The risk of ascending genital tract infection is highest when serum progesterone
is at its lowest in the menstrual cycle (Wira et al. 2015), and limited data suggest
that progesterone may modulate HBD protein expression in primary endometrial
cells and transformed cell cultures (King et al. 2003). Furthermore, vaginal pro-
gesterone has been shown to increase the expression of HBD1 in mice, albeit not at
the protein level (Nold et al. 2013). This has clear implications for the regulation of
mucosal immunity in pregnancy. Progesterone receptors A and B are expressed by
the cervix in vivo, and it has recently been shown that the ectocervical cell line
Ect1/E6E7 and vaginal cell line VK2/E6E7 also express these receptors (Africander
et al. 2011). It therefore seems probable that HBD expression by cervical epithelia
may also be progesterone sensitive. It is probable that the explanation for the
gestation extending effects of progesterone will include a combination of actions,
but this limited evidence suggests that regulation of lower genital tract antimicrobial
peptide expression may play a role, perhaps by reducing the risk of ascending
infection.

11.5 Conclusion

Emerging evidence is providing a tantalizing glimpse linking increased risk of
ascending infection and preterm birth. In addition to the mother’s adaptive and
innate immune response, the cervical antimicrobial barrier is likely to be the key
determinant of the status quo. Further studies are needed to confirm the potential
protective role of AMPs in reducing the risk of ascending infection in susceptible
(those with a history of preterm births) individuals. If confirmed, manipulation of
AMP expression may be a viable future therapeutic option.
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Chapter 12
Host Defense Peptides and Their
Advancements in Translational
Staphylococcus aureus Research

Sarah C. Mansour, Robert E.W. Hancock and Michael Otto

Abstract Staphylococcus aureus is responsible for a multitude of infections
ranging from skin and soft tissue infections to more severe invasive diseases. In
response to S. aureus, host defense peptides (HDPs) are produced as nature’s own
sentinel effector molecules. HDPs are small, often cationic, molecules that possess
numerous biological activities, such as antimicrobial activity, cellular recruitment,
anti-inflammatory properties, and wound healing, all of which play a role in con-
trolling S. aureus infections. In hopes of capitalizing on the powerful anti-infective
functions of HDPs, there has been a considerable amount of interest in deriving
HDP-based therapeutics. Here, we highlight current advancements in HDP
research, constraints to commercial development, and solutions for safer and more
feasible HDP-based therapies against S. aureus.

12.1 Staphylococcal Species and Colonization

Staphylococci are the most abundant bacterial inhabitants of the human skin
microbiome. Humans are generally colonized with many different Staphylococcal
species, with S. epidermidis, a coagulase-negative Staphylococcus (CoNS), being
the most universal and dominant colonizer. The skin is colonized with many other
CoNS species including S. haemolyticus, S. saprophyticus, S. capitis, S. hominis, S.
warneri, S. cohnii, and S. simulans (Coates et al. 2014). Staphylococcal species
differ in their ability to cause disease. Most CoNS are commensal, causing
opportunistic infections in immune-compromised individuals (Otto 2010).
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Coagulase-positive S. aureus, however, has received considerable attention for its
ability to cause disease even in healthy individuals. Colonization is known to be a
risk factor for S. aureus infection and 20 % of the population is persistently col-
onized while 30 % carry S. aureus transiently. S. aureus causes a wide spectrum of
diseases ranging from mild skin and soft tissue infections (boils, abscess, impetigo)
to life-threatening diseases, such as severe sepsis, pneumonia, toxic shock syn-
drome, and endocarditis. S. aureus is also capable of forming multicellular com-
munities or recalcitrant biofilms, resulting in a high incidence of indwelling device
and catheter-related infections.

Adding to its severity, S. aureus is a highly adaptable human pathogen. In fact,
resistance tomethicillin was reported in 1961, only 1 year after it was first introduced.
Initially confined to hospitals and other health care facilities, methicillin-resistant
Staphylococcus aureus (MRSA) affected mainly immune-compromised individuals.
Since the mid 1990s, however, there has been an explosion in the number of MRSA
cases reported in the community, affecting healthy individuals that may have not
been previously exposed to the healthcare environment (Herold et al. 1998, David
and Daum 2010). Moreover, the incidence of vancomycin-intermediate and
vancomycin-resistant S. aureus (VISA and VRSA, respectively) have increased
(Tiwari and Sen 2006). Alarmingly, resistance to almost all clinically available
antibiotics has emerged (Waldvogel 1999; Levin et al. 2005; Gu et al. 2013).

During the past half-century, very few new antibiotic classes have been devel-
oped that can effectively target S. aureus. To highlight this urgency, MRSA
infections have claimed more lives than human immunodeficiency virus/acquired
immune deficiency syndrome (HIV/AIDS) in the western world (Klevens et al.
2007). With the antibiotic pipeline running dry and multi-drug resistance on the
rise, there has been considerable interest to exploit HDPs for the treatment of S.
aureus infections. In this chapter, we will explore advancements in anti-S. aureus
HDP research and HDP-directed translational breakthroughs.

12.2 Important Anti-staphylococcal HDPs

Host defense peptides (HDPs; also often referred to as antimicrobial peptides,
AMPs) are an essential part of the innate defense response against S. aureus. HDPs
are generally cationic and range in size from 12 to 50 amino acids, roughly 50 % of
which are hydrophobic resulting in an overall amphipathic structure. In vitro, the
bactericidal activity exhibited by HDPs is mediated by integration within the
cytoplasmic membrane, resulting in pore formation and subsequent lysis.

HDPs are produced by a variety of cell types, either constitutively as a constant
line of defense, or inducibly upon infection. Generally speaking, two major classes
of HDPs, cathelicidins and defensins, have been described. However, other HDPs
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such as RNase7 and dermcidin are important members of the constitutive cutaneous
defense mechanism protecting us against initial S. aureus colonization.

12.2.1 Defensins

Humans express α- and β-defensins, small cysteine-rich amphipathic peptides that
are 18-45 amino acid residues long and stabilized by three disulfide bonds. All
defensins are initially synthesized as prepropeptides and become propeptides after
cleavage of a signal peptide. Proper folding and activation of the defensin requires
proteolytic cleavage of the anionic propiece, a segment of the peptide considered
important for maintaining charge balance and minimizing host toxicity.

Four α-defensins (HNP1-4) are produced in the azurophilic granules of human
neutrophils as well as epithelial and certain hematopoietic cells (natural killer cells
and monocytes). Despite accounting for almost half of the degranulating neutrophil
proteins, α-defensins do not effectively kill S. aureus (Lehrer 2007). Instead, certain
HNPs have shown to neutralize S. aureus toxins. For example, HNP3 was shown to
bind to both Panton–Valentine leukocidin subunits, LukS-PV, and Luk-PV, par-
tially reducing pore formation and neutrophil lysis (Cardot-Martin et al. 2015).

In humans, four types of β-defensins have been characterized (hβD1-4), and are
subcategorized based on the number and location of their disulfide bridges. hβD1
was first isolated from human plasma; and hβD2 and hβD3 were subsequently
isolated from psoriatic scale extracts (Harder et al. 1997, 2001). hβ4has been
identified in lung tissue and is produced by bronchial and bronchiolar epithelium
(Yanagi et al. 2005). β-defensins are expressed broadly by epithelial cells such as
keratinocytes as well as certain leukocytes. In most tissues, hβD1 is expressed
constitutively, while expression of hβD2 and hβD3 is induced upon
pro-inflammatory stimuli with cytokines, various microorganisms and microbial
products as well as upon tissue injury (Menzies and Kenoyer 2006). Of all the β-
defensins, hβD-3 represents the most potent anti-staphylococcal peptide, retaining
the highest antimicrobial activity in vivo (Kisich et al. 2007).

β-defensin expression is mediated by recognition of pathogen-associated
molecular patterns (PAMPs) by toll like receptors (TLRs). TLR2 recognizes
common cell wall constituents from S. aureus such as peptidoglycan, lipopeptides
and lipotechoic acid, and instigates a number of pro-inflammatory intracellular
signaling events. Specifically, S. aureus activates the TLR2-mediated p38 MAPK
signaling cascade, which regulates the expression of a number of inflammatory
mediators (through AP-1 transcription factors) such as cytokines, chemokines and
certain HDPs such as hβD2 and hβD3 (Menzies and Kenoyer 2006). Moreover,
internalized S. aureus has shown to activate the nucleotide-binding oligomerization
domain 2 (NOD-2), an intracellular receptor that recognizes muramyl dipeptide in
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peptidoglycan, and may by responsible for hβD2 production by keratinocytes (Voss
et al. 2006). Lastly, wounding of human skin results in the activation of the epi-
dermal growth factor receptor, which leads to the enhanced production of hβD3
(Sorensen et al. 2006).

12.2.2 Cathelicidin

The human cathelicidin (hCAP-18) is an α-helical amphipathic cationic peptide
constitutively expressed in the phagosomes of neutrophils, and inducibly in the
mucosal epithelia and keratinocytes. Recent studies by Zhang et al. have shown that
dermal adipocytes are also an important source of cathelicidin during cutaneous S.
aureus infection, as mice defective in adipogenesis produced lower levels of this
HDP (Zhang et al. 2015).

Upon release, hCAP-18 becomes proteolytically cleaved by proteinase 3,
releasing the inactive N-terminal cathelin domain and generating the active peptide
LL-37. LL-37 is 37 amino acid residues in length and is produced in a vitamin
D-dependent manner. Moreover, two other cleavage products, RK-31 and KS-30
have been identified, and demonstrates even greater antimicrobial activity compared
to LL-37 (Murakami et al. 2002).

12.2.3 RNAse 7

In 2002, RNase7 was first characterized in human skin as a peptide that exhibits
broad-spectrum antimicrobial activity (Harder and Schroder 2002). RNAse7 is
constitutively expressed in epidermis and in the stratum corneum of healthy skin,
however, can be further induced upon bacterial challenge as well as stimulation by
IL-1β and IFN-γ (Harder and Schroder 2002). Importantly, RNAse7 is considered
an important part of the constitutive host defense, preventing colonization and
infection. For example, after 2 h of S. aureus bacterial challenge, RNAse7 levels in
the stratum corneum of human skin explants are significantly up-regulated at levels
high enough to prevent S. aureus colonization (Simanski et al. 2010).

12.2.4 Dermcidin

Dermcidin is expressed constitutively in eccrine sweat glands and secreted into
sweat onto the epidermal surface, preventing bacterial colonization and serving as
an integral cutaneous defense mechanism (Schittek et al. 2001). Post-secretory
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proteolytic processing of dermcidin protein (110 amino acid long) in sweat, results
in the 47-aa peptide (DCD-1), 48-aa peptide (DCD-IL) or truncated peptide
SSL-46, which all display broad-spectrum activity against Escherichia coli,
Enterococcus faecalis, Candida albicans and S. aureus (Flad et al. 2002). Within
human sweat, DCD-1 is found at concentrations (1–10 μg/mL) sufficiently high to
kill microorganisms, and its activity is retained in pH and salt conditions that are
characteristic of sweat (Schittek et al. 2001). Interestingly, dermcidin does not
possess any homology to known HDPs. Notably, in contrast to most AMPs, it
possesses a net negative charge. This suggests that the mode of action of dermcidin
might be different from other HDPs that rely on electrostatic interactions. While the
mode of action of dermcidin remained obscure for a long time, it has recently been
shown to form pores (Song et al. 2013).

12.3 HDP-Related Diseases

A growing body of evidence has demonstrated that deficiency of certain HDPs
predisposes individuals to S. aureus infection. For example, lower induction of
hβD-3 in S. aureus-infected human skin explants, has been correlated to more
severe S. aureus skin infection as well as greater susceptibility to reoccurring
infection (Zanger et al. 2010). Moreover, lesions taken from individuals with atopic
dermatitis (AD), a skin disease that is correlated to increased susceptibility to S.
aureus, produced significantly lower levels of hβD-2, hβD-3 and LL-37 (Ong et al.
2002). Furthermore, reduced production of dermcidin has been shown to contribute
to the propensity of AD patients to recurrent bacterial skin infections (Rieg et al.
2005). This deficiency of dermcidin in sweat is correlated to reduced antimicrobial
activity against S. aureus in vivo (Flad et al. 2002). Interestingly, A/J mice, which
are more susceptible to S. aureus bacteremia compared to C57BL6 mice, have
polymorphisms in their defensin genes (Ahn et al. 2010). Furthermore, mice defi-
cient of cathelicidin-related antimicrobial peptide (CRAMP) produced larger
lesions when injected with Group A Streptococcus compared to normal littermates
(Nizet et al. 2001).

Conversely, elevated levels of certain HDPs have been linked with increased
resistance to S. aureus. For example, elevated levels of hβD-2 and LL-37 found in
psoriatic lesions prevent S. aureus colonization (Ong et al. 2002). Moreover, high
baseline levels of RNAse7 expression in the healthy skin confer protection against
S. aureus skin infections (Zanger et al. 2009).

HDP deficiency can be attributed to an impairment of particular T cell responses.
T cell responses, specifically those associated with Th17 cells, are especially
important for HDP production. Th17 cytokines IL-17A and IL-22 were shown to
up-regulate antimicrobial peptide expression namely, hβD-2, hβD-3 and catheli-
cidin, in keratinocytes (Liang et al. 2006). Further evidence that supports a role of
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Th17 cells in cutaneous immunity is derived from studies, in which mice deficient
in IL-17-producing epidermal γδT cells demonstrated higher susceptibility to S.
aureus skin infection (Cho et al. 2010). In patients with autosomal dominant
hyper-IgE syndrome, impaired Th17 cell differentiation, caused by a mutation in
signal transducer and activator of transcription 3 (STAT3) (Renner et al. 2008), was
linked to a variety of recurrent bacterial including S. aureus infections (Milner et al.
2008).

Furthermore, a predominance of Th2 cytokines can specifically impair the
production of hβD-2 and hβD-3 (Nomura et al. 2003). Elevated levels of Th2
cytokines in skin lesions from AD patients are thought to promote S. aureus col-
onization by enhancing S. aureus binding to fibronectin and fibrinogen (Cho et al.
2001). Moreover, specific S. aureus-secreted super antigens such as enterotoxins A
and B as well as toxic shock syndrome toxin-1 (TSST-1) elicit dermal infiltration of
eosinophils and mononuclear cells, which skews the immune response toward a
Th2 environment, exacerbating S. aureus-infected skin lesions in AD patients
(Laouini et al. 2003).

12.4 Immune-Regulatory Roles of HDPs

Over the years, the immune-regulatory roles of HDPs have become more appre-
ciated. HDPs exert a broad range of activities that refine host defenses to respond to
infection, such as chemoattraction, suppression of pro-inflammatory mediators, and
wound healing (Mansour et al. 2014). As the antimicrobial activities of many HDPs
are significantly dampened at physiological conditions, some would argue that the
immune-modulatory activities of HDPs are comparatively more relevant.

In fact, many of the studies highlighting antimicrobial activity are based on
in vitro experiments using purified HDP extracts. Moreover, many experiments are
performed under conditions (i.e., low ionic strength, neutral pH) that allow for
optimal killing, while conditions that would better represent the physiological sit-
uation, such as by inclusion of divalent cations, anions, serum components, gly-
cosaminoglycans, mucin and 150 mM NaCl, antagonize peptide activity. For
example, when minimal inhibitory concentrations (MIC) assays are conducted on
LL-37 under low salt conditions (often ≤20 mM NaCl), the MIC against a number
of common bacteria is between 1 and 30 μg/ml. However, in the presence of more
relevant ionic conditions (100 mM NaCl), the antimicrobial activity of LL-37 is 2–
8 fold lower (Turner et al. 1998) with essentially no activity against S. aureus at
concentrations as high as 100 μg/ml. Moreover, under these same conditions, the
antimicrobial activity of hβD-1 and hβD2 is completely lost. However, the
importance of HDPs has been validated in the aforementioned human and animal
studies (See Sect. 12.3). These findings have led many to believe that the most
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important function of HDPs is to refine the host responses. Here we will highlight
the diverse immune-modulatory roles of HDPs that enhance host defenses against
S. aureus.

12.4.1 Chemoattraction

Interestingly, certain HDPs and chemokines share similar structure as they are both
amphipathic and cationic. In fact, an evolutionary relationship between chemokines
and HDPs have been inferred based on their strong involvement in the host innate
immune response (Yount and Yeaman 2006). Specifically, HDPs were shown to
possess a number of chemoattractant capabilities, assisting in the recruitment of
immune cells that are important for resolving infection. When produced at suffi-
ciently high concentrations, HDPs can directly act as chemokines, whereas at lower
concentrations, they can promote the release of cytokines from other leukocytes
(Mansour et al. 2014). For instance, if induced at high enough concentrations,
LL-37 can directly attract neutrophils and eosinophils via interactions with
formyl-peptide receptors (Tjabringa et al. 2006). However, since these activities are
only promoted at LL-37 concentrations above physiological conditions, it is unli-
kely they possess this direct activity in vivo. On the other hand, LL-37 can indi-
rectly promote chemoattraction by stimulating epithelial cells to release IL-8, an
important chemokine for neutrophils and monocytes. Similarly, when human
peripheral blood mononuclear cells (PBMCs) are stimulated by LL-37 in culture,
they produce neutrophil chemokine IL-8, as well as monocyte chemoattractant
protein-1 (MCP-1) and MCP-3 (Davidson et al. 2004). In mice, injection of
cathelicidin-related antimicrobial peptide (CRAMP) results in the recruitment of
neutrophils and monocytes (Kurosaka et al. 2005). This enhanced chemokine
production may have important therapeutic implications, as local application of
MCP-1 has been shown to reduce S. aureus infection in an osteomyelitis rat model
by increasing the number of neutrophils, the first responders to S. aureus infection
(Li et al. 2010).

Human defensins display a variety of chemotactic roles inducing the migration
of immature dendritic cells and lymphocytes, promoting adaptive immunity. For
example, hβD2 is capable of enhancing mobility of immature dendritic and memory
T cells via interactions with chemokine CCL-20 receptor CCR6 (Yang et al. 1999).
Along with CCR6, β-defensins bind to chemokine receptor CCR2 expressed on
monocytes, dendritic cells, and certain macrophage subsets. Importantly,
CCR2-mediated recruitment of monocytes is essential for innate immune defense
and clearance of bacteria in vivo (Kurihara et al. 1997; Jia et al. 2008). Moreover,
HNP1 and HNP2 have been shown to serve as a chemotactic for CD4 and CD8 T
cells as well as immature dendritic cells via unidentified receptors (Yang et al.
2000).
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12.4.2 Wound Healing

LL-37 plays a role in the re-epithelialization of skin wounds and wound closure.
Upon skin injury, high levels of LL-37 precursor protein, hCAP18, is produced in
the wound bed and it has been suggested that LL-37 plays a role in epithelial cell
proliferation. Similarly, low levels of LL-37 precursor protein hCAP18, have been
correlated with delayed wound closure and chronic ulcers. Moreover, treatment of
anti-LL-37 antibodies inhibited epithelial healing in an ex vivo wound healing
model in a dose-dependent manner (Heilborn et al. 2010). Furthermore, hβD3
accelerated wound healing in an S. aureus-infected porcine diabetic wound.

12.4.3 Anti-inflammatory

Certain HDPs are important for protecting the host from a harmful cytokine storm
that is imposed during bacterial infection. For example, LL-37 has shown to
attenuate the production of pro-inflammatory mediators (IL-1β, IL-6, IL-8, and
TNF-α) in neutrophils when subjected to S. aureus (Alalwani et al. 2010).
Likewise, in PBMCs, production of anti-inflammatory IL-10 is up-regulated. This
effect on cytokine release is mediated by LL-37 binding directly to an internal
signaling molecule, GAPDH, impairing p38 MAPK signaling and subsequent
transcription of chemokines and cytokines (Mookherjee et al. 2009). As inflam-
mation has shown to exacerbate conditions such as pneumonia and early stage
sepsis, anti-inflammatory activities of HDPs can be considered an asset provided
bacterial clearance is not compromised. Fortunately, certain HDPs such as LL-37
enhance neutrophil-killing capacity by increasing S. aureus phagocytosis and
enhancing ROS production (Alalwani et al. 2010). Similarly, mice deficient in
cathelicidin-related antimicrobial peptide (CRAMP) or murine cathelicidin showed
significantly less bactericidal activity against S. aureus.

12.5 S. aureus HDP Evasion Techniques

Despite the numerous anti-infective roles of HDPs, S. aureus can tolerate relatively
high concentrations of these peptides (Peschel et al. 1999). As with other innate and
adaptive immune responses, S. aureus has developed multiple HDP evasion
mechanisms (summarized in Fig. 12.1). It is thought that cationic HDPs and
HDP-resistance mechanisms have co-evolved to allow S. aureus to quickly adapt to
these integral and ancient host defense components (Peschel et al. 1999).

S. aureus can recognize challenges by various HDPs using the antimicrobial
peptide sensor (Aps) system, which induces several resistance mechanisms (Li et al.
2007a, b). One major Aps-regulated mechanism is the activation of the dltABCD
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operon, which incorporates positively charged D-alanine onto S. aureus anionic
teichoic acids, conferring a greater positive charge and ultimately repelling HDPs
such as defensins and LL-37 (Peschel et al. 1999). Moreover, to reduce anionic
charge, S. aureus expresses multiple peptide resistance factor, MprF, which
transfers lysine to anionic membrane lipid phosphatidylglycerol (PG), and
translocates the lysyl-PG to the outer membrane leaflet conferring a net +1 charge
and resulting in α-defensins and LL-37 repulsion (Peschel et al. 2001). Indeed,
MprF contributes to clinical failures of daptomycin, the only currently available
AMP therapy used to combat S. aureus infections (Jones et al. 2008). Interestingly,
MRSA strains are more resistant to LL-37 compared to less positively net-charged
methicillin-susceptible S. aureus (MSSA) isolates, verifying electrostatic repulsion
as a major resistance mechanism (Ouhara et al. 2008).

S. aureus secretes an array of factors that contribute to resistance against the
innate immune system and HDPs. LL-37 is susceptible to proteolytic degradation by
two major S. aureus-secreted proteases, aureolysin and V8 protease. Specifically, V8
protease is involved in hydrolyzing particular peptide bonds, while aureolysin
cleaves LL-37, abolishing its antimicrobial activity (Sieprawska-Lupa et al. 2004).

Fig. 12.1 S. aureus HDP immune evasion mechanisms. a. HDP repulsion via hydrophobic
surface molecules. Cell-wall bound proteins such as IsdA, decrease bacterial hydrophobicity,
resulting in increased resistance to certain HDPs. b. HDP inactivity via staphylokinase
(SAK) interference. SAK has shown to form a complex with alpha-defensins, abrogating their
activity. Also, SAK binds directly to cathelicidin, enhancing SAK-dependent plasminogen
activation, fibrinolysis and bacterial dissemination. c. Cell surface modifications repel HDPs.
Activation of the dltABCD operon and expression of MprF, incorporate positively charged amino
acids to cell surface constituents, causing repulsion of positively charged HDPs. Steric hindrance is
created via theO-acetylation of peptidoglycan muramic acid preventing lysozyme from targeting S.
aureus. d. Degradation of HDPs by secreted enzymes. Aureolysin and V8 protease are two
major S. aureus-secreted proteases that cleave and inactivate HDPs
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Furthermore, the exoprotein staphylokinase (SAK) has been shown to form a
complex with alpha-defensins, abrogating the effect of these peptides in vitro and
in vivo (Jin et al. 2004). S. aureus also exploits the production of cathelicidin as it
binds directly to staphylokinase, which enhances SAK-dependent plasminogen
activation and fibrinolysis, resulting in bacterial dissemination and enhanced viru-
lence (Braff et al. 2007). Dermcidin has also been shown to induce global regulatory
changes, resulting in the expression of dermcidin-degrading proteases in S. epi-
dermidis and S. aureus (Lai et al. 2007). Furthermore, S. aureus expresses IsdA, a
cell-wall bound heme-binding protein that decreases bacterial hydrophobicity,
resulting in increased resistance to bactericidal human skin fatty acids as well as
cathelicidins and β-defensins (Clarke et al. 2007).

Growth states have also been associated with increased resistance to HDPs. For
example, S. aureus small colony variants (SCVs), which have been associated with
slow growth and complex physiological and metabolic changes, are less susceptible
to RNase 7, hβD2, hβD3, and LL-37 (Glaser et al. 2014).

Finally, peptidoglycan O-acetyltransferase OatO, is a major determinant of
lysozyme resistance in S. aureus. The enzymatic activity of OatA results in the
O-acetylation of the C6 hydroxyl group of muramic acid found in peptidoglycan,
creating steric hindrance and preventing lysozyme binding to peptidoglycan (Bera
et al. 2005).

12.6 Therapeutics

HDPs demonstrate modest direct antimicrobial activity with concomitant
immune-modulatory activities, making them ideal starting points for deriving new
therapies to treat multi-drug resistant S. aureus infections. Furthermore, while
antibiotics typically impair a specific and essential bacterial process, HDPs target
multiple hydrophobic and anionic bacterial targets, making it more difficult for
bacteria to develop resistance. Much work has been performed to exploit the pow-
erful activities of natural HDPs through the creation of synthetic mimetics. This has
led to the creation of peptides with improved anti-infective and anti-inflammatory
activities. For example, innate defense regulator-1 (IDR-1) was derived conceptually
from the bovine AMP, bactenecin. In an invasive peritonitis model, IDR-1 was
protective against MRSA by enhancing levels of monocyte chemokines, thereby
recruiting monocytes and macrophages to combat infection. Moreover, IDR-1
reduced levels of harmful pro-inflammatory cytokine responses, which also aided in
resolving the infection (Scott et al. 2007). High-throughput screening of bactenecin
derivatives led to the identification of IDR-1002, a peptide that demonstrated
enhanced chemokine induction and greater protection compared to IDR-1 in an S.
aureus peritonitis murine infection model (Nijnik et al. 2010). This heightened
anti-infective activity was attributed to increased recruitment of neutrophils and
monocytes to the site of the infection. Synergistic therapy combining two peptides
has also demonstrated efficacy in live infection models. For instance, combining
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LL-37 and IDR-1ameliorated MRSA-induced pneumonia by significantly attenu-
ating anti-inflammatory cytokine release (mainly TNF-α and IL-6) in bron-
choalveolar lavage fluid, reducing pulmonary tissue damage. Furthermore, another
12-amino acid bactenecin derivative, IDR-1018, possessed very potent
immune-modulatory properties through the induction of chemokine and suppression
of pro-inflammatory responses. Along with these activities, IDR-1018 demonstrated
accelerated wound healing in an S. aureus-infected porcine wound model compared
to LL-37 (Steinstraesser et al. 2012). Interestingly, this activity was not conserved in
an immune-compromised infection model, demonstrating the importance of a
functional immune state for peptide activity. Furthermore, in an orthopedic implant
S. aureus murine infection model, IDR-1018 accelerated the clearance of S. aureus
by enhancing the recruitment of macrophages (Choe et al. 2015). In this model,
IDR-1018 also enhanced osseointegration, which is typically impaired with S.
aureus bone infection.

12.7 Constraints to HDP Therapeutic Development

Their numerous anti-infective roles make HDPs intriguing candidates for S. aureus
infections. Nevertheless, there are many hurdles that must be overcome before they
may become commercially available. Here, we will highlight these issues, which
include toxicity, immunogenicity, susceptibility to proteolytic degradation, and
cost.

12.7.1 Toxicity

Unfortunately, a major impediment for the pharmaceutical exploitation of HDPs is
their toxicity. This toxicity can be due to many reasons, one of which is the
potential of HDPs to stimulate immune responses, which can have unforeseen
consequences. In fact, high levels of HDPs have been previously linked to diseases.
For example, in humans, abnormally high levels of cathelicidin in facial skin have
been linked to rosacea (Yamasaki et al. 2007). In mice, injection of LL-37 in mouse
skin induced inflammatory hallmarks of rosacea, such as erythema and vascular
dilatation (Yamasaki et al. 2007). This coincided with an increase in IL-8 pro-
duction and neutrophil infiltration. Moreover, significantly elevated levels of LL-37
have been identified in psoriatic lesional skin (Morizane et al. 2012), where
heightened levels of LL-37 were shown to increase the expression of TLR9 on
keratinocytes. The enhanced TLR9 expression sensitizes keratinocytes to their
ligands, CpG or genomic DNA, resulting in the increased production of type I IFNs,
which exacerbate psoriasis (Morizane et al. 2012). Furthermore, LL-37 and hβD2
were shown to stimulate histamine release from mast cells (Niyonsaba et al. 2001).
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Interestingly, LL-37-induced mast cell activation results in the release of β-tryptase,
a LL-37 degrading enzyme (Duplantier and van Hoek 2013).

Hydrophobic cores of HDPs and synthetic mimetics have been shown to
self-associate, aggregate, integrate into zwitterionic membranes, and cause
hemolysis (Yin et al. 2012). Although not much is known about whether aggre-
gation is responsible for the observed immune-modulatory effects displayed by
HDPs, hydrophobicity (within a certain window) is required for bacterial membrane
insertion. Therefore, these properties must be tampered with carefully, preventing
peptide inactivation or increase of toxicity (Bahar and Ren 2013).

It is thought that since HDPs have been conserved throughout evolution, they
should represent feasible anti-infective strategies (Mansour et al. 2014). In addition,
HDPs can be altered to reduce toxicity. For instance, judicious formulation such as
nanoparticle encapsulations can alter charge distribution and minimize toxic
aggregation. Peptide lengths can be adjusted to minimize toxicity. For example, a
shortened 15-amino acid derivative of melittin proved to be 300 times less toxic
than melittin (Subbalakshmi et al. 1999). Simple high-throughput screening
methodologies that measure cytolytic properties can be used to select for new
peptide candidates with reduced toxicity (Haney et al. 2015). Moreover, after HDP
targets are identified, computer-aided system biology approaches can be used to
predict molecular pathways that may be interrupted, preventing undesirable
off-targets of new HDP therapies.

12.7.2 Degradation

Another potential constraint that would reduce efficacy of HDP therapy is the risk
of proteolytic degradation. As previously indicated, HDPs are inactivated and
degraded by S. aureus-secreted enzymes and proteases (See Sect. 12.5).
Furthermore, endogenous host enzymes readily degrade HDPs. Notably, digestive
enzymes such as trypsin and chemotrypsin cleave peptides at basic and
hydrophobic residues altering important structural and functional features of HDPs
(Kim et al. 2014).

Many measures can be taken to tackle degradation issues of HDP therapy. Since
host proteases cleave peptide bonds between naturally occurring residues, incor-
porating non-proteinogenic amino acids such as ornithine and β-didehy-
drophenylalanine into HDP structures can potentially improve metabolic stability
(Bahar and Ren 2013). Moreover, cyclization of linear peptides has been shown to
increase protease resistance of HDPs (Rozek et al. 2003). As host proteases only
cleave peptides with L-enantiomeric backbones, the incorporation of D-amino acids
in peptides can drastically reduce degradation, as has been shown with LL-37
(Wang et al. 2014). Presumably due to increased stability, D-amino acid peptides
demonstrated greater protective activity compared to their L-counterparts against
lethal multi-drug resistant bacteria (de la Fuente-Nunez et al. 2015). However, little
is known regarding the pharmacokinetics and toxicity surrounding D-peptide
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therapies and whether such manipulations would affect immune-modulatory targets.
Furthermore, such modifications in peptide structure and composition are likely to
increase the costs of peptide synthesis. Kim et al., described a more economical
approach to designing peptides with residues that are systemically arranged to avoid
protease-targeted sites (Kim et al. 2014). By using this method and maintaining the
structural features that are important for HDP activity (amphipathy, cationic char-
acter, helicity, etc.), peptides with retained antimicrobial activity but heightened
stability against host proteases could be derived.

12.7.3 Immunogenicity

As mentioned, HDPs are capable of interacting with cells of both the innate and
adaptive arms of the immune system, eliciting a number of immunomodulatory
roles. While these characteristics may serve as the basis for their protection, pep-
tides may also prove to be immunogenic, stimulating an undesirable humoral
response.

Immunogenicity, specifically through the development of anti-therapeutic anti-
bodies, has been reported in a number of current FDA-approved antibody and
protein-based therapies (Baker et al. 2010). Initially, these events can be triggered
when the foreign peptide is recognized by an antigen-presenting cell (APC). For
example, scavenging dendritic cells can phagocytose and present the foreign pep-
tides via the exogenous MHC class II processing pathway, ultimately priming T cell
responses. Capturing of antigen by dendritic cells is typically mediated by the FcR
receptors that can interact with peptide-immune complexes. Indeed, LL-37 and
certain defensins have also been shown to interact with TLRs on the surface of
dendritic cells. These interactions can further activate the cells, resulting in the
maturation and expression of lymphocyte co-stimulatory receptors initiating a
T-cell dependent anti-peptide response (Yang et al. 2009). T-cell independent
anti-peptide responses are speculated to be triggered by aggregated peptides that
effectively cross-link B cell receptors, enabling the activation of B cells. Such
responses can result in the generation of neutralizing antibodies or in some cases,
antibodies that cross-react with endogenous proteins. Overall, immunogenicity may
result in ineffective peptides or occasionally, autoimmune diseases.

Some proof of concept methods for reducing immunogenicity of protein ther-
apies has involved the use of immunosuppressive therapies (Reding 2006) or
slowly inducing tolerance to therapies. Furthermore, removal of T cell epitopes
through rational sequence design and targeted amino acid substitutions can lower
the development of immunogenicity of protein therapies (Jones et al. 2009).
Immunogenicity of peptide derivatives can be assayed using various in vitro T cell
assays.
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12.7.4 Cost

Another constraint that has hindered mass production of HDPs for therapeutic use is
the high cost of synthesis. Peptide synthesis using classic fluorenylmethoxycar-
bonyl (F-moc) chemistry can range between $50 and $400 per gram of peptide,
making widespread clinical usage unrealistic. As peptides are antagonized by
physiological conditions and degraded by host or bacterial proteases, relatively high
doses may be required to attain the desired therapeutic effects. Moreover, deriving
large peptide libraries (>100 peptides) to screen for optimized peptide candidates
can become exorbitantly expensive.

Although cost of peptide synthesis has remained one of the major barriers to use
of HDPs, several solutions have been proposed in the literature. For example,
deriving synthetic HDP mimetics with shorter sequences can tackle the high cost of
production. For example, efforts to re-engineer GF-17, a short and active fragment
of LL-37, has led to the development of 17BIPHE2, a peptide with enhanced
activity against S. aureus, which has also shown anti-biofilm properties in a mouse
model of catheter-related S. aureus infection (Wang et al. 2014). Importantly,
peptides must contain a minimum of 7–8 amino acids to maintain amphipathic
structures, and for α-helical AMPs, 22 amino acids are required to completely span
the bacterial lipid bilayer (Bahar and Ren 2013). Furthermore, exceptional
anti-infective activity of synthetic mimetics can potentially lower dosage and thus
cost of peptide therapy. The classical approach to optimize peptide activity is
through rational design of large synthetic peptide libraries via systematic single
amino acid substitutions of short HDP backbone templates (Haney et al. 2015).
High-throughput screening methodologies can then select peptides that are opti-
mized for various biological properties. For example, screening for anti-S. aureus
biofilm activity, chemokine induction and endotoxin suppression, led to the
selection of the optimized peptide IDR-2009 (Haney et al. 2015). Lastly, exploiting
biological expression systems to derive recombinant fusion peptides serves as a
scalable and low cost alternative for peptide synthesis (Li 2009). However,
purification of peptides from prokaryotic systems must be carried out carefully to
prevent endotoxin and bacterial contamination.

12.8 The Future of HDP Therapy

12.8.1 Synergistic Cocktails

Many of the aforementioned issues hindering widespread clinical use of HDPs can
be tackled by administrating synergistic drug cocktails. Indeed, HDPs have pre-
viously shown to act synergistically with each other as well as with conventional
antibiotics. For example, studies have demonstrated that when β-defensins are
combined at sub-effective concentrations with human cathelicidin (LL-37) and
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lysozyme, they exhibit additive or synergistic activity, which may be important for
retaining in vivo activity (Midorikawa et al. 2003; Chen et al. 2005). Likewise,
HDPs and synthetic mimetics display strong synergistic interactions with a number
of conventional antibiotics (Reffuveille et al. 2014). Presumably, synergistic
combination therapy would drastically lower the dosage of peptide and antibiotic
required, reducing the overall cost of peptide therapy and toxicity.

12.8.2 Stimulating Natural HDP Production

Enhancing nature’s own arsenal may represent a safer and more feasible method for
HDP-directed therapies. Studies have demonstrated that inducing LL-37 by stim-
ulating keratinocytes with both butyrate and vitamin D3 increases antimicrobial
activity of keratinocytes against S. aureus (Schauber et al. 2008). Furthermore,
topical treatment with the vitamin D analog, calcipotriol, following acute skin
infection enhanced levels of hCAP18/LL-37 in human skin (Heilborn et al. 2010).
As LL-37 has been shown to promote re-epithelialization and tissue repair, thera-
pies that promote LL-37 production may serve as effective wound treatments.
However, as previously noted (Sect. 12.7.1), LL-37 displays a wide variety of
immune-regulatory activities and levels must be carefully tuned to avoid any
adverse consequences.

12.8.3 Impairing CAMP Resistance Mechanisms

An interesting and unexplored avenue for HDP-targeted therapy is to inactivate
CAMP resistance mechanisms to sensitize S. aureus to HDPs. Studies by Li et al.
have shown that mutants of the Aps HDP-sensing system are less virulent in an S.
aureus murine infection model (Li et al. 2007a, b). Likewise, inactivating Dlt
reduces the D-alanine addition to teichoic acids, thereby increasing S. aureus
susceptibility to HDPs (Peschel et al. 1999). Consistent with these findings, mutants
lacking dltA and mprF are more susceptible to HDPs and have attenuated virulence
in vivo (Peschel et al. 1999; Collins et al. 2002; Kristian et al. 2003; Weidenmaier
et al. 2005). Moreover, targeting secreted proteases that degrade HDPs may help to
enhance the activity of HDPs.

12.9 Conclusions

HDPs serve as one of the first lines of defense against S. aureus infections.
Specifically, defensins, cathelicidins, dermcidins, and RNAse 7 display potent
anti-staphylococcal activity along with a number of immune-modulatory roles.
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Despite these various biological activities, S. aureus has developed numerous HDP
evasion techniques that function for example by repelling positively charged HDPs
and abrogating peptide activity. Nevertheless, many HDPs as well as synthetic
peptidomimetics have demonstrated exceptional anti-S. aureus activity. Scalable
and commercial use of HDPs or their synthetic counterparts is, however, con-
strained by the cost of production, toxicities, immunogenicity and degradation. The
future of HDP therapeutic development relies on re-engineering peptides with
greater biological activity and reduced toxicities, deriving synergistic cocktails,
identifying new HDP-stimulants and sensitizing bacteria to HDPs.
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