
Chapter 4
On Deformations of n-Lie Algebras

Abdenacer Makhlouf

Abstract The aim of this paper is to review the deformation theory of n-Lie
algebras. We summarize the 1-parameter formal deformation theory and provide
a generalized approach using any unital commutative associative algebra as a
deformation base. Moreover, we discuss degenerations and quantization of n-Lie
algebras.
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4.1 Introduction

The purpose of this paper is to provide a survey on deformations of n-Lie algebras.
Deformation is one of the oldest techniques used by mathematicians and physicists.
The first instances of the so-called deformation theory were given by Kodaira
and Spencer for complex structures and by Gerstenhaber for associative algebras.
Abstract deformation theory and deformation functors in algebraic geometry were
inspired and developed in the works of André, Deligne, Goldman, Grothendick,
Illusie, Laudal, Lichtenbaum, Milson, Quillen, Schlessinger, and Stasheff. Among
concrete deformation theory developed by Gerstenhaber for associative algebras and
later with Schack for bialgebras, the Lie algebras case was studied by Nijenhuis
and Richardson and then by Fialowski and her collaborators in a more general
framework. Deformations of n-ary algebras were considered in several papers.
Deformation theory is the study of a family in the neighborhood of a given element.
Intuitively, a deformation of a mathematical object is a family of the same kind of
objects depending on some parameters. The main and popular tool is the power
series ring or more generally any commutative algebras. By standard facts of
deformation theory, the infinitesimal deformations of an algebra of a given type
are parametrized by a second cohomology of the algebra. More generally, it is
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stated that deformations are controlled by a suitable cohomology. Deformations
help to construct new objects starting from a given object and to infer some
of its properties. They can also be useful for classification problems. A modern
approach, essentially due to Quillen, Deligne, Drinfeld, and Kontsevich, is that, in
characteristic zero, every deformation problem is controlled by a differential graded
Lie algebra, via solutions of Maurer-Cartan equation modulo gauge equivalence.
Some mathematical formulations of quantization are based on the algebra of
observables and consist in replacing the classical algebra of observables (typically
complex-valued smooth functions on a Poisson manifold) by a noncommutative one
constructed by means of an algebraic formal deformations of the classical algebra.
In 1997, Kontsevich solved a longstanding problem in mathematical physics, that
is every Poisson manifold admits formal quantization which is canonical up to
a certain equivalence. Deformation theory has been applied as a useful tool in
the study of many other mathematical structures in Lie theory, quantum groups,
operads, and so on. Even today it plays an important role in many developments of
contemporary mathematics, especially in representation theory.

The n-ary algebraic structures, which are natural generalizations of binary
operations, appeared naturally in various domains of theoretical and mathemati-
cal physics. Indeed, theoretical physics progress of quantum mechanics and the
discovery of the Nambu mechanics (1973) see [82], as well as a work of Okubo
[85] on Yang-Baxter equation gave impulse to a significant development on n-ary
algebras. The n-ary operations appeared first through cubic matrices which were
introduced in the nineteenth century by Cayley. The cubic matrices were considered
again and generalized by Kapranov et al. in 1994 see [60] and Sokolov in 1972 see
[89]. Another recent motivation to study n-ary operation comes for string theory and
M-Branes where appeared naturally a so called Bagger-Lambert algebra involving a
ternary operation [10]. Hundred of papers are dedicated to Bagger-Lambert algebra.
For other applications in Physics and Mathematical Physics see [1, 12, 14, 22, 24–
27, 29, 50, 51, 57, 63–69, 87].

The first conceptual generalization of binary algebras was the ternary algebras
introduced by Jacobson [59] in connection with problems from Jordan theory and
quantum mechanics, he defined the Lie triple systems. A Lie triple system consists
of a space of linear operators on vector space V that is closed under the ternary
bracket Œx; y; z�T D ŒŒx; y�; z�, where Œx; y� D xy � yx. Equivalently, the Lie triple
system may be viewed as a subspace of the Lie algebra closed relative to the
ternary product. A Lie triple system arose also in the study of symmetric spaces
[74]. More generally, we distinguish two kinds of generalization of binary Lie
algebras. Firstly, n-ary Lie algebras in which the Jacobi identity is generalized by
considering a cyclic summation over S2n�1 instead of S3, see [53, 80] and secondly
n-ary Nambu algebras in which the fundamental identity generalizes the fact that
the adjoint maps are derivations. The corresponding identity is called fundamental
identity and it appeared first in Nambu mechanics [82], the abstract definition of n-
ary Nambu algebras or n-Lie algebras (when the bracket is skew symmetric) was
given by Fillipov in 1985, see [38, 90, 91] for the algebraic formulation of the
Nambu mechanics. The Leibniz n-ary algebras were introduced and studied in [19].
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This article is organized as follows. In Sect. 4.2 we summarize the definitions
of n-ary algebras of Lie type and associative type, and provide some classical
examples. Moreover, we discuss the representations of n-Lie algebras. In Sect. 4.3,
we review homological algebra tools and define the cohomology for n-Lie algebra
that suits with deformation theory. Section 4.4 is dedicated to one-parameter formal
deformations based on formal power series. We also describe the case where the
parameter no longer commutes with the original algebra. In Sect. 4.5, we present a
more general approach based on any commutative associative algebra, generalizing
to n-Lie algebras, the approach developed by Fialowski and her collaborators
for Lie algebras. Section 4.6 deals with algebraic varieties of n-Lie algebras and
degenerations. In Sect. 4.7, we discuss n-Lie-Poisson algebras and quantization.

4.2 Definitions and Examples of n-Lie Algebras and Other
Types of n-ary Algebras

Throughout this paper, K is a field of characteristic zero and N is a K-vector space.

4.2.1 n-Lie Algebras

In this section, we provide basics on n-Lie algebras which are also called Filippov
n-ary algebras or Nambu-Lie algebras. See [2, 3, 15, 28, 38, 47, 49, 54, 61, 79, 90, 93]

Definition 4.1. An n-Lie algebra is a pair .N; Œ�; : : : ; ��/, consisting of a vector space
N and an n-linear map Œ ; � � � ; � W N�n ! N satisfying

Œx1; : : : ; xn�1; Œxn; : : : ; x2n�1�� D
2n�1X

iDn

Œxn; : : : ; xi�1; Œx1; � � � ; xn�1; xi�; xiC1; : : : ; x2n�1�;

(4.1)

and

Œx�.1/; � � � ; x�.n/� D Sgn.�/Œx1; � � � ; xn�; 8� 2 Sn and 8x1; � � � ; xn 2 N (4.2)

where Sn stands for the permutation group on n elements and sgn.�/ denotes the
signature of � .

We call condition (4.1) Nambu identity, it is also called fundamental identity or
Filippov identity.
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Remark 4.1. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra. Let x D .x1; : : : ; xn�1/ 2 Nn�1
and y 2 N. Let Lx be a linear map on N, defined by

Lx.y/ D Œx1; � � � ; xn�1; y�: (4.3)

Then the Nambu identity maybe written

Lx.Œxn; : : : ; x2n�1�/ D
2n�1X

iDn

Œxn; : : : ; xi�1;Lx.xi/; xiC1 : : : ; x2n�1�:

Morphisms of n-Lie algebras are defined as follows.

Definition 4.2. Let .N; Œ�; : : : ; ��/ and .N0; Œ�; : : : ; ��0/ be two n-Lie algebras. A linear
map � W N! N0 is an n-Lie algebras morphism if it satisfies

�.Œx1; � � � ; x2n�1�/ D Œ�.x1/; � � � ; �.x2n�1/�0:

Example 4.1. The polynomial algebra of three variables x1; x2; x3; with the bracket
defined by the functional jacobian:

Œf1; f2; f3� D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ıf1
ıx1

ıf1
ıx2

ıf1
ıx3

ıf2
ıx1

ıf2
ıx2

ıf2
ıx3

ıf3
ıx1

ıf3
ıx2

ıf3
ıx3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
; (4.4)

is a 3-Lie algebra.

We have also this fundamental example:

Example 4.2. Let V D R
4 be the 4-dimensional oriented euclidian space over R.

The bracket of 3 vectors
!
x1;

!
x2;

!
x3 is given by:

Œ
!
x1;

!
x2;

!
x3� D !

x1 � !
x2 � !

x3 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

x11 x12 x13
!
e1

x21 x22 x23
!
e2

x31 x32 x33
!
e3

x41 x42 x43
!
e4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

where .x1r; : : : ; x4r/rD1;2;3 are the coordinates of
!
xr with respect to orthonormal basis

ferg. Then, .V; Œ:; :; :�/ is a 3-Lie algebra.

Remark 4.2. Every 3-Lie algebra on R
4 could be deduced from the previous

example (see [39]).
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4.2.2 n-ary Algebras of Associative Type

There are several possible generalizations of binary associative algebras. A typical
example is the ternary product of rectangular matrices introduced by Hestenes [55]
defined for A;B;C 2Mn;m by AB�C where B� is the conjugate transpose.

Consider an n-ary operation m W N ˝ � � � ˝ N ! N or m W N � � � � � N �! N.
The n-ary operation is said to be symmetric (resp. skew-symmetric) if

m.x�.1/ ˝ � � � ˝ x�.n// D m.x1 � � � ˝ xn/; 8� 2 Sn and 8x1; � � � ; xn 2 N; (4.5)

resp.

m.x�.1/ ˝ � � � ˝ x�.n// D Sgn.�/m.x1 ˝ � � � ˝ xn/; 8� 2 Sn and 8x1; � � � ; xn 2 N;

(4.6)

where Sgn.�/ denotes the signature of the permutation � 2 Sn.
It is said to be commutative if

X

�2Sn
Sgn.�/m.x�.1/ ˝ � � � ˝ x�.n// D 0; 8x1; � � � ; xn 2 N: (4.7)

Remark 4.3. A symmetric ternary operation is commutative.

We have the following type of “associative” ternary operations.

Definition 4.3. A totally associative n-ary algebra is given by a K-vector space N

and an n-ary operation m satisfying, for all x1; � � � ; x2n�1 2 N,

m.m.x1˝� � �˝xn/˝� � �˝x2n�1/ D m.x1˝� � �˝xi˝m.xiC1˝� � �˝xiCn/˝� � � x2n�1/8i:

Example 4.3. Let fe1; e2g be a basis of a 2-dimensional space N D K
2, the ternary

operation on N given by

m.e1 ˝ e1 ˝ e1/ D e1
m.e1 ˝ e1 ˝ e2/ D e2
m.e1 ˝ e2 ˝ e2/ D e1 C e2
m.e2 ˝ e1 ˝ e1/ D e2

m.e2 ˝ e2 ˝ e1/ D e1 C e2
m.e2 ˝ e2 ˝ e2/ D e1 C 2e2
m.e1 ˝ e2 ˝ e1/ D e2
m.e2 ˝ e1 ˝ e2/ D e1 C e2

defines a totally associative ternary algebra.

Definition 4.4. A weak totally associative n-ary algebra is given by a K-vector
space N and a ternary operation m, satisfying for all x1; � � � ; x2n�1 2 N,

m.m.x1 ˝ � � � ˝ xn/˝ � � � ˝ x2n�1/ D m.x1 ˝ � � � ˝ m.xn ˝ � � � ˝ x2n�1//:
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Naturally, any totally associative n-ary algebra is a weak totally associative n-ary
algebra.

Definition 4.5. A partially associative n-ary algebra is given by a K-vector space
N and an n-ary operation m satisfying, for all x1; � � � ; x2n�1 2 N,

n�1X

iD0
m.x1 ˝ � � � ˝ xi ˝ m.xiC1 ˝ � � � ˝ xiCn/˝ � � � x2n�1/ D 0:

Example 4.4. Let fe1; e2g be a basis of a 2-dimensional space N D K
2, the ternary

operation on N given by m.e1˝ e1˝ e1/ D e2 defines a partially associative ternary
algebra.

Remark 4.4. Let .N; �/ be a bilinear associative algebra. Then, the n-ary operation,
defined by m.x1 ˝ � � � ˝ xn/ D x1 � : : : � xn determines on the vector space N a
structure of totally associative n-ary algebra which is not partially associative See
the following references for further results [7, 62, 70, 72, 75].

The category of totally (resp. partially) n-ary algebras is encoded by non-
symmetric operad denoted tAs.n/ (resp. pAs.n/). The space on p-ary non-symmetric
operations of tAs.n/ is given by tAs.n/in�i�1 D K, tAs.n/p D 0 otherwise. If we put the
degree k � 2 on the generating operation of pAs.n/, then the non-symmetric operads
tAs.n/ and pAs.n/ are Koszul dual to each other. Moreover, the Koszulity can be
proved by the rewriting method [73].

There is another generalization of Jacobi condition that leads to another type of
n-ary Lie algebra.

Definition 4.6. An n-ary Lie algebra is a skew-symmetric n-ary operation Œ ; � � � ; �
on a K-vector space N satisfying 8x1; � � � ; x2n�1 2 N the following generalized
Jacobi condition

X

�2S2n�1

Sgn.�/ŒŒx�.x1/; � � � ; x�.xn�1/�; x�.xn/; � � � ; x�.x2n�1/� D 0:

As in the binary case, there is a functor which makes correspondence to any
partially associative n-ary algebra an n-ary Lie algebra (see [45, 46]).

Proposition 4.1. To any partially associative n-ary algebra on a vector space
N with n-ary operation m, one associates an n-ary Lie algebra on N defined
8x1; � � � ; xn 2 N by the bracket

Œx1; � � � ; xn� D
X

Sgn.
�2Sn

�/m.x�.1/ ˝ � � � ˝ x�.n//: (4.8)
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4.2.3 Representations of n-Lie Algebras

In this section we consider adjoint representations of n-Lie algebras and show that
any n-Lie algebra can be represented by a Leibniz algebra.

Definition 4.7. A representation of an n-Lie algebra .N; Œ�; : : : ; ��/ on a vector space
N is a skew-symmetric multilinear map � W Nn�1 �! End.N/, satisfying for x; y 2
Nn�1 the identity

�.x/ ı �.y/ � �.y/ ı �.x/ D
n�1X

iD1
�.x1; : : : ; ady.xi/; : : : ; xn�1/; (4.9)

where ady.xi/ D Œy1; � � � ; yn�1; xi� is an endomorphism of N.

Two representations � and �0 on N are equivalent if there exists f W N ! N an
isomorphism of vector space such that f .x � y/ D x �0 f .y/ where x � y D �.x/.y/ and
x �0 y D �0.x/.y/ for x 2 Nn�1 and y 2 N:

Example 4.5. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra. The map ad defined in (4.3)
is a representation. The identity (4.9) is equivalent to Nambu identity. It is called
adjoint representation.

Leibniz algebras were introduced by Loday. A Leibniz algebra is a pair .A; Œ�; ��/
consisting of a vector space A, a bilinear map Œ�; �� W A � A ! A satisfying, for
x; y; z 2 A,

Œx; Œy; z�� D ŒŒx; y�; z�C Œy; Œx; z��: (4.10)

Let .N; Œ�; : : : ; ��/ be an n-Lie algebras and ^n�1N be the set of elements
x1 ^ : : :^ xn�1 that are skew-symmetric in their arguments. We denote by L.N/ the
space ^n�1N and call it the fundamental set. Let x D x1^ : : :^ xn�1 2 ^n�1N; y D
y1 ^ : : : ^ yn�1 2 ^n�1N; z 2 N. Let L W ^n�1N �! End.N/ be a linear map
defined as

L.x/ � z D Œx1; : : : ; xn�1; z�; (4.11)

and extending it linearly to all elements of ^n�1N. Notice that L.x/ � z D adx.z/. We
define a bilinear map Œ ; � W ^n�1N � ^n�1N �! ^n�1N by

Œx; y� D L.x/ � y D
n�1X

iD1

�
y1; : : : ;L.x/ � yi; : : : ; yn�1

�
: (4.12)

Lemma 4.1. The map L satisfies

L.Œx; y�/ � z D L.x/ � �L.y/ � z� � L.y/ � �L.x/ � z�; (4.13)

for all x; y 2 L.N/; z 2 N.
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Proposition 4.2. The pair
�
L.N/; Œ ; �

�
is a Leibniz algebra.

Proof. Straightforward verification, see [23] .

We obtain a similar result if we consider the space TN D ˝n�1N instead of L.N/.

4.2.4 Central Extensions

We recall some basics about extensions of n-Lie algebras.

Definition 4.8. Let A;B;C be three n-Lie algebras (n � 2). An extension of B by A
is a short sequence:

A
�! C

�! B;

such that � is an injective homomorphism, � is a surjective homomorphism, and
Im� � ker�. We say also that C is an extension of B by A.

Definition 4.9. Let A, B be two n-Lie algebras, and A
�! C

�! B be an extension
of B by A.

• The extension is said to be trivial if there exists an ideal I of C such that
C D ker�˚ I.

• It is said to be central if ker� � Z.C/.

We may equivalently define central extensions by a 1-dimensional algebra (we will
simply call it central extension) this way:

Definition 4.10. Let N be an n-Lie algebra. We call central extension of N the
space NN D N˚Kc equipped with the bracket:

Œx1; : : : ; xn�c D Œx1; : : : ; xn�C ! .x1; : : : ; xn/ c and Œx1; : : : ; xn�1; c�c D 0;
8x1; : : : ; xn 2 N;

where ! is a skew-symmetric n-linear form such that Œ�; : : : ; ��c satisfies the Nambu
identity (or Jacobi identity for n D 2).

Proposition 4.3 ([23]).

1. The bracket of a central extension satisfies the Nambu identity if and only if ! is
a 2-cocycle for the scalar cohomology of n-Lie algebras.

2. Two central extensions of an n-Lie algebra A given by two maps !1 and !2 are
isomorphic if and only if !2 � !1 is a 2-coboundary for the scalar cohomology
of n-Lie algebras.
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4.3 Deformation Cohomology of n-Lie Algebras

The basic concepts of homological algebra are those of a complex and homomor-
phisms of complexes, defining the category of complexes, see for example [92].
A chain complex C: is a sequence C D fCpgp of abelian groups or more generally
objects of an abelian category and an indexed set ı D fıpgp of homomorphisms
ıp W Cp ! Cp�1 such that ıp�1 ııp D 0 for all p. A chain complex can be considered
as a cochain complex by reversing the enumeration Cp D C�p and ıp D ı�p. A

cochain complex C is a sequence of abelian groups and homomorphisms � � � ı
p�1

�!
Cp ıp�! CpC1 ıpC1

�! � � � with the property ıpC1ııp D 0 for all p. The homomorphisms
ıp are called coboundary operators or codifferentials. A cohomology of a cochain
complex C is given by the groups Hp.C/ D Kerıp=Imıp�1.

The elements of Cp are p-cochains, the elements of Zp WD Kerıp are p-cocycles,
the elements of Bp WD Imıp�1 are p-coboundaries. Because ıpC1 ı ıp D 0 for all p,
we have 0 � Bp � Zp � Cp for all p. The pth cohomology group is the quotient
Hp D Zp=Bp.

The cohomology of n-Lie algebras is induced by the cohomology of Leibniz
algebras. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra and the pair .L.N/ D N˝n�1; Œ�; ��/
be the Leibniz algebra associated to N where the bracket is defined in (4.12).

Theorem 4.1. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra.
Let Cp.N;N/ D Hom.˝pL.N/ ˝ N;N/ for p � 1 be the cochains set and

� W Cp.N;N/! Cp.L.N/;L.N// be the linear map defined for p D 0 by

�'.x1 ˝ � � � ˝ xn�1/ D
n�1X

iD1
x1 ˝ � � � ˝ '.xi/˝ � � � ˝ xn�1

and for p > 0 by

.�'/.a1; � � � ; apC1/ D
n�1X

iD1
x1pC1 ˝ � � � ˝ '.a1; � � � ; an�1 ˝ xipC1/˝ � � � ˝ xn�1

pC1;

where aj D x1j ˝ � � � ˝ xn�1
j : Then there exists a cohomology complex .C�.N;N/; ı/

for n-Lie algebras such that d ı� D � ı ı:
The coboundary map ı W Cp.N;N/ ! CpC1.N;N/ is defined for ' 2

Cp.N;N/ by
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ıpC1 .a1; : : : ; ap; apC1; z/ D
pC1X

1�i<j

.�1/i �
a1; : : : ;bai; : : : ; aj�1; Œai; aj�; : : : ; apC1; z

�

C
pC1X

iD1
.�1/i �

a1; : : : ;bai; : : : ; apC1;L.ai/ � z
�

C
pC1X

iD1
.�1/iC1L.ai/ �  

�
a1; : : : ;bai; : : : ; apC1; z

�

C .�1/p� .a1; : : : ; ap; / � apC1
� � z;

where

�
 .a1; : : : ; ap; / � apC1

� � z D
n�1X

iD1
Œx1pC1; : : : ;  .a1; : : : ; ap; xipC1/; : : : ; xn�1

pC1; z�;

for element ai 2 L.N/, z 2 N.

In particular, for p D 1, we get the set of 2-cocycles

Z2.N;N/ D f W Nn ! N satisfying ı2 D 0g;

where for a1 D x11 ˝ � � � ˝ xn�1
1 and a2 D x12 ˝ � � � ˝ xn�1

2

ı2.a1; a2; z/ D (4.14)

�
n�1X

iD1
 .x12; � � � ; Œx11; � � � xn�1

1 ; xi2�; � � � xn�1
2 ; z/ �  .x12; � � � ; xn�1

2 ; Œx11; � � � ; xn�1
1 ; z�/

C .x11; � � � ; xn�1
1 ; Œx12; � � � ; xn�1

2 ; z�/C Œx11; � � � ; xn�1
1 ;  .x12; � � � ; xn�1

2 ; z/� (4.15)

�Œx12; � � � ; xn�1
2 ;  .x11; � � � ; xn�1

1 ; z/� �
n�1X

iD1
Œx12; � � � ;  .x11; � � � xn�1

1 ; xi2/; � � � xn�1
2 ; z�:

For p D 0,  W N! N and .x1; � � � ; xn/ 2 Nn, we have

ı1 .x1; � � � ; xn/ D � .Œx1; � � � ; xn�/C
nX

iD1
Œx1; � � � ;  .xi/ � � � xn� (4.16)

Notice that a linear map  W N ! N such that ı1 D 0 is a 1-cocycle and
it corresponds to a derivation of the n-Lie algebra. The set of 2-coboundaries is
defined as



4 On Deformations of n-Lie Algebras 65

B2.N;N/ D f W Nn ! N W 9' W N! N such that  D ı1'g:

Hence, the second cohomology group, which plays an important role in deformation
theory, is defined as

H2.N;N/ D Z2.N;N/=B2.N;N/:

4.4 Formal Deformation of n-Lie Algebras

In this section we study one parameter formal deformations of n-Lie algebras. This
approach were introduced by Gerstenhaber for associative [41] and by Nijenhuis
and Richardson for Lie [84]. Since then the approach was extended to many other
algebraic structures. The main results connect formal deformation to cohomology
groups. The noncommutative case was studied by Pincson [86]. See the following
references for further results about deformations [16, 17, 31, 32, 40, 42–44, 54, 78,
83, 93].

4.4.1 One-Parameter Formal Deformation of n-Lie Algebras

Let KŒŒt�� be the power series ring in one variable t and coefficients in K and NŒŒt��
be the set of formal series whose coefficients are elements of the vector space N,
(NŒŒt�� is obtained by extending the coefficients domain of N from K to KŒŒt��).
Given a K-n-linear map ' W N � : : : � N ! N, it admits naturally an extension
to a KŒŒt��-n-linear map ' W NŒŒt�� � : : : � NŒŒt�� ! NŒŒt��, that is, if xi D

X

j�0
ajit

j,

1 	 i 	 n then '.x1; : : : ; xn/ D
X

j1;:::;jn�0
tj1C:::Cjn'.aj11 ; : : : ; a

jn
n /.

Definition 4.11. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra. A one-parameter formal
deformation of the n-Lie algebra N is given by a KŒŒt��-n-linear map

Œ�; : : : ; ��t W NŒŒt�� � : : : �NŒŒt��! NŒŒt��

of the form Œ�; : : : ; ��t D
X

i�0
tiŒ�; : : : ; ��i where each Œ�; : : : ; ��i is a skew-symmetric

KŒŒt��-n-linear map Œ�; : : : ; ��i W N� : : :�N! N (extended to a KŒŒt��-n-linear map),
and Œ�; : : : ; ��0 D Œ�; : : : ; �� such that for .xi/1�i�2n�1

Œx1; : : : ; xn�1; Œxn; : : : ; x2n�1�t�t DP2n�1
iDn Œxn; : : : ; xi�1; Œx1; � � � ; xn�1; xi�t;

xiC1; : : : ; x2n�1�t: (4.17)
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The deformation is said to be of order k if Œ�; : : : ; ��t D
kX

iD0
tiŒ�; : : : ; ��i and

infinitesimal if t2 D 0.
The condition (4.17) may be written for x D .xi/1�i�n�1; y D .xi/n�i�2n�2 2

L.N/ and by setting z D x2n�1

Lt.Œx; y�/ � .z/ D Lt.x/ �
�
Lt.y/ � z

� � Lt.y/ �
�
Lt.x/ � z

�
; (4.18)

where Lt.x/ � z D Œx1; : : : ; xn�1; z�t.

Assume that the deformation is infinitesimal and set D Œ�; � � � ; ��1. Then Eq. (4.18)
is equivalent to

�
x1; : : : :; xn�1;  .y1; : : : :; yn/

�C  �
x1; : : : :; xn�1; Œy1; : : : :; yn�

�

D
nX

iD1

�
y1; : : : :; yi�1;  .x1; : : : :; xn�1; yi/; yiC1; : : : ; yn

�

C
nX

iD1
 

�
y1; : : : :; yi�1; Œx1; : : : :; xn�1; yi�; yiC1; : : : ; yn

�
:

This identity may be viewed as the 2-cocycle condition ı2Œ�; : : : :; ��1 D 0 defined
in (4.15).

More generally, let .N; �/ and .N; �/ be two n-ary operations, �; � W Nn ! N.
We define a .2n � 1/-ary operation � ı � by

� ı �.x1; : : : ; xn�1; xn; : : : ; x2n�1/ D �.x1; : : : ; xn�1; �.xn; : : : ; x2n�1// (4.19)

�
2n�1X

iDn

�.xn; : : : ; xi�1; �.x1; � � � ; xn�1; xi/; xiC1; : : : ; x2n�1/:

Then, an n-ary operation � on a vector space N satisfies Nambu identity if and only
if � ı � D 0.

Therefore, the Nambu identity (4.17) is equivalent to an infinite system, called
deformation equation,

(
kX

iD0
Œ�; : : : ; ��i ı Œ�; : : : ; ��k�i D 0 k D 0; 1; 2; � � � (4.20)

For an arbitrary k > 1; the kth equation of the previous system may be written

ı2Œ�; : : : ; ��k D
k�1X

iD1
Œ�; : : : ; ��i ı Œ�; : : : ; ��k�i:
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Assume that a deformation of order m satisfies the deformation equation. The
truncated deformation is extended to a deformation of order mC 1 if

ı2Œ�; : : : ; ��m D
m�1X

iD1
Œ�; : : : ; ��i ı Œ�; : : : ; ��m�i:

The right-hand side of this equation is called the obstruction to find Œ�; : : : ; ��m
extending the deformation.

It turns out that the obstruction is a 3-cocycle. Then, if H3 .N;N/ D 0, it follows
that all obstructions vanish and every Œ�; : : : ; ��m 2 Z2 .N;N/ defines a deformation
of order mC 1.

In the following, we characterize equivalent and trivial deformations.

Definition 4.12. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra. Given two deformations
Nt D .NŒŒt��; Œ�; : : : ; ��t/ and N

0

t D .NŒŒt��; Œ�; : : : ; ��0t/ of N where Œ�; : : : ; ��t D
kP

i�0
tiŒ�; : : : ; ��i and Œ�; : : : ; ��0t D

kP
i�0

tiŒ�; : : : ; ��0i with Œ�; : : : ; ��0 D Œ�; : : : ; ��00 D Œ�; : : : ; ��.
We say that Nt and N

0

t are equivalent if there exists a formal automorphism 	t W
NŒŒt�� �! NŒŒt�� that may be written in the form 	t D P

i�0
	iti, where 	i 2 End.N/

and 	0 D Id such that

	t.Œx1; � � � ; xn�t/ D Œ	t.x1/; � � � ; 	t.xn/�0t : (4.21)

A deformation Nt of N is said to be trivial if Nt is equivalent to N, viewed as an
n-ary algebra on NŒŒt��.

Let .N; Œ�; : : : ; ��/ be an n-Lie algebra and Œ�; : : : ; ��1 2 Z2.N;N/.
The 2-cocycle Œ�; : : : ; ��1 is said to be integrable if there exists a family

.Œ�; : : : ; ��i/i�0 such that Œ�; : : : ; ��t D P
i�0

tiŒ:; :�i defines a formal deformation

Nt D .N; Œ�; : : : ; ��t/ of N.

Theorem 4.2. Let .N; Œ�; : : : ; ��/ be an n-Lie algebra and .NŒŒt��; Œ�; : : : ; ��t/, where
Œ�; : : : ; ��t D

X

i�0
tiŒ�; : : : ; ��i, be a one-parameter formal deformation.

1. The first term Œ�; : : : :; ��1 is a 2-cocycle, that is Œ�; : : : :; ��1 2 Z2.N;N/.

2. There exists an equivalent deformation N
0

t D .N; Œ�; : : : ; ��0t /, where Œ�; : : : ; ��0t DP
i�0

tiŒ�; : : : ; ��0i such that Œ�; : : : ; ��01 2 Z2.N;N/ and Œ�; : : : ; ��01 62 B2.N;N/.

Moreover, if H2.N;N/ D 0, then every one-parameter formal deformation is
trivial.

The proof is similar to the case n D 2.
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4.4.2 Noncommutative One-Parameter Formal Deformations

In previous formal deformation theory, the parameter commutes with the original
algebra. Motivated by some nonclassical deformation appearing in quantization
of Nambu mechanics, Pinczon introduced a deformation called noncommutative
deformation where the parameter no longer commutes with the original algebra. He
developed also the associated cohomology [86].

Let N be a K-vector space and � be an endomorphism of N. We give NŒŒt�� a
KŒŒt��-bimodule structure defined for every ap 2 A; �q 2 K by :

X

p�0
apt

p �
X

q�0
�qt

q D
X

p;q�0
�qapt

pCq;

X

q�0
�qt

q �
X

p�0
apt

p D
X

p;q�0
�q�

q.ap/t
pCq:

Definition 4.13. A � -deformation of an n-ary algebra N is a KŒŒt��-algebra structure
on NŒŒt�� which is compatible with the previous KŒŒt��-bimodule structure and such
that

NŒŒt��=.NŒŒt��t/ Š A:

A generalization of these deformations was proposed by Nadaud [81] where he
considered deformations based on two commuting endomorphisms � and 
 . The
KŒŒt��-bimodule structure on NŒŒt�� is defined for a 2 N by the formulas t �a D �.a/t
and a � t D 
.a/t, (a � t being the right action of t on a).

The remarkable difference with commutative deformation is that the Weyl
algebra of differential operators with polynomial coefficients over R is rigid for
commutative deformations but has a nontrivial noncommutative deformation; it is
given by the enveloping algebra of the Lie algebra osp.1; 2/.

4.5 Global Deformations

This approach follows from a general fact in Schlessinger’s works [88] and was
developed by A. Fialowski and her collaborators for different kind of algebras (Lie
algebra, Leibniz algebras . . . .[32, 34–37]). In the sequel we extend this approach to
n-Lie algebras. Let B be a commutative algebra over a field K of characteristic 0 and
an augmentation morphism " W A ! K (a K-algebra homomorphism, ".1B/ D 1).
We set m" D Ker."/; m" is a maximal ideal of B. A maximal ideal m of B such that
A=m Š K, defines naturally an augmentation. We call .B;m/ base of deformation.

Definition 4.14. A global deformation of base .B;m/ of an n-Lie algebra
.N; Œ�; : : : ; ��/ is a structure of B-algebra on the tensor product B ˝K Nn with a
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bracket Œ�; : : : ; ��B such that " ˝ id W B ˝ N ! K ˝ N D N is an n-ary algebra
homomorphism. i.e. 8a; b 2 B and 8x1; � � � ; xn 2 N :

1. Œa1 ˝ x1; � � � ; an ˝ xn�B D .a1 : : : an ˝ id/Œ1˝ x1; � � � ; 1˝ xn�B .B�linearity/
2. The bracket Œ�; : : : ; ��B satisfies Nambu identity.
3. "˝ id .Œ1˝ x1; � � � ; 1˝ xn�B/ D 1˝ Œx1; : : : ; xn�

Every formal deformation of an n-Lie algebra N, in Gerstenhaber sense, is a
global deformation with a basis .B;m/ where B D KŒŒt�� and m D tKŒŒt��.

Remark 4.5. Condition 1 shows that to describe a global deformation it is enough to
know the brackets Œ1˝x1; : : : ; 1˝xn�B; where x1; � � � ; xn 2 N: The conditions 1 and
2 show that we have an n-Lie algebra and the last condition insures the compatibility
with the augmentation. We deduce

Œ1˝ x1; � � � ; 1˝ xn�B D 1˝ Œx1; : : : ; xn�C
X

i

˛i ˝ zi with ˛i 2 m; zi 2 N:

• A global deformation is called trivial if the structure of n-ary B-algebra on B˝KN

satisfies Œ1˝ x1; : : : ; 1˝ xn�B D 1˝ Œx1; : : : ; xn�:
• Two deformations of an n-Lie algebra with the same base are called equivalent

(or isomorphic) if there exists an algebra isomorphism between the two copies of
B˝K N\, compatible with "˝ id:

• A global deformation with base .B;m/ is called local if B is a local K-algebra
with a unique maximal ideal mB. If, in addition m2 D 0, the deformation is called
infinitesimal.

• Let B0 be another commutative algebra over K with augmentation "0 W B0 ! K

and ˚ W B! B0 an algebra homomorphism such that ˚.1B/ D 1B0 and "0 ı ˚ D
". If a deformation �B with a base .B;Ker."// of A is given we call push-out
Œ�; : : : ; ��B0 D ˚�Œ�; : : : ; ��B a deformation of A with a base .B0;Ker."0// with the
following algebra structure on B0 ˝A D .B0 ˝B B/˝A D B0 ˝B .B˝A/

Œa0
1˝B .a1 ˝ x1/ ; � � � ; a0

n˝B .an ˝ xn/�B0 WD a0
1 : : : :a

0
n˝B Œa1˝x1; � � � ; an˝xn�B;

with a0
1; a

0
2 2 B0; a1; a2 2 B; x1; x2 2 A. The algebra B0 is viewed as a B-module

with the structure aa0 D a0˚ .a/. Suppose that

Œ1˝ x1; � � � ; 1˝ xn�B D 1˝ Œx1; � � � ; xn�C
X

i

˛i ˝ zi

with ˛i 2 m; zi 2 N. Then

Œ1˝ x1; � � � ; 1˝ xn�B0 D 1˝ �Œx1; � � � ; xn�C
X

i

˚.˛i/˝ zi

with ˛i 2 m; zi 2 N.
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One may address the problem of finding, for a fixed algebra, particular deforma-
tions which induces all the others in the space of all deformations (moduli space) or
in a fixed category of deformations. The problem of constructing universal or versal
deformations of Lie algebras was considered for the categories of deformations over
infinitesimal local algebras and complete local algebras (see [32, 35, 36]). They
show that if we consider the infinitesimal deformations, i.e. the deformations over
local algebras B such that m2B D 0 where mB is the maximal ideal, then there exists
a universal deformation (the morphism between base algebras is unique). If we
consider the category of complete local rings, then there does not exist a universal
deformation but only versal deformation (there is no unicity for the morphism).

Let B be a complete local algebra over K, so B D  �limn!1.B=mn/ (inductive
limit), where m is the maximal ideal of B and we assume that B=m Š K.

A formal global deformation of N with base .B;m/ is an algebra structure on the

completed tensor product B
^˝ N D  �limn!1..B=mn/˝N/ such that "

^˝ id W B ^˝
N! K ˝N D N is an algebra homomorphism.

The formal global deformation of N with base .KŒŒt��; tKŒŒt��/ are the same as
formal one parameter deformation of Gerstenhaber.

4.6 The Algebraic Varieties Lienm and Degenerations

Let N be an m-dimensional vector space over K and fe1; � � � ; emg be a basis of N. An
n-linear bracket Œ�; : : : ; �� can be defined by specifying the mnC1 structure constants
Ck
i1;��� ;in 2 K where

Œei1 ; : : : ; eim � D
mX

kD1
Ck
i1;��� ;inek:

The Nambu identity and skew-symmetry limits the sets of structure constants Ck
i1;��� ;in

to a subvariety of Km2.m�1/���.m�nC1/ which we denote by Lienm. It is generated by the
polynomial relations

mX

kD1
Ck
j1;��� ;jnC

s
i1;��� ;in�1;k �

nX

rD1

mX

kD1
Ck
i1;��� ;in�1;jrC

s
j1;��� ;jr�1;k;jrC1;���jn D 0; (4.22)

1 	 i1 � � � ; in�1; j1; � � � ; jn; s 	 m:

Therefore, Lienm carries a structure of algebraic variety which is quadratic, non regu-
lar and in general non-reduced. The natural action of the group GLm.K/ corresponds
to the change of basis : two n-Lie algebras .N; Œ�; : : : ; ��1/ and .N; Œ�; : : : ; ��2/ are
isomorphic if there exists f in GLm.K/ such that N2 D f �N1, that is :

8x1; � � � ; xn 2 N Œx1; : : : ; xn�2 D f�1.Œf .x1/; : : : ; f .xn/�1:
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The orbit of an n-Lie algebra N0 D .N; Œ�; : : : ; ��0/, denoted by # .N0/, is the set
of all its isomorphic n-Lie algebras.

A point in Lienm is defined by m2.m�1/ � � � .m�nC1/ parameters, which are the
structure constants Ck

i1;��� ;in satisfying (4.22). The orbits are in 1-1-correspondence
with the isomorphism classes of m-dimensional n-Lie algebras. The stabilizer
subgroup of N0

stab .N0/ D ff 2 GLm .K/ W N0 D f �N0g

is Aut .N0/, the automorphism group of N0. The orbit # .N0/ is identified with the
homogeneous space GLm .K/ =Aut .N0/. Then

dim# .N0/ D m2 � dimAut .N0/ :

The orbit # .N0/ is provided, when K D C (a complex field), with the structure of
a differentiable manifold. In fact, # .N0/ is the image through the action of the Lie
group GLm .K/ of the point N0, considered as a point of Hom

�
N˝n;N

�
. The Zariski

tangent space to Lienm at the point N0 corresponds to Z2.N;N/ and the tangent space
to the orbit corresponds to B2.N;N/.

The first approach to study varieties Lienm is to establish classifications of n-Lie
algebras up to isomorphisms for a fixed dimension. Classification of n-Lie algebras
of dimension less than or equal to nC2 is known, see [11, 38]. We have the following
results.

Theorem 4.3 ([38]). Any n-Lie algebra N of dimension less than or equal to nC 1
is isomorphic to one of the following n-ary algebras: (omitted brackets are either
obtained by skew-symmetry or 0)

1. If dimN < n then A is abelian.
2. If dimN D n, then we have 2 cases:

a. A is abelian.
b. Œe1; : : : ; en� D e1:

3. if dimN D nC 1 then we have the following cases:

a. A is abelian.
b. Œe2; : : : ; enC1� D e1.
c. Œe1; : : : ; en� D e1.
d. Œe1; : : : ; en�1; enC1� D aen C benC1I Œe1; : : : ; en� D cen C denC1, with C D�

a b
c d

�
an invertible matrix. Two such algebras, defined by matrices C1 and

C2, are isomorphic if and only if there exists a scalar ˛ and an invertible
matrix B such that C2 D ˛BC1B�1.

e. Œe1; : : : ;bei; : : : ; en� D aiei for 1 	 i 	 r, 2 < r D dimD1.A/ 	 n, ai ¤ 0
f. Œe1; : : : ;bei; : : : ; en� D aiei for 1 	 i 	 nC 1 which is simple.
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Theorem 4.4 ([11]). Let K be an algebraically closed field. Any .n C 2/-
dimensional n-Lie algebra N is isomorphic to one of the n-ary algebras listed
below, where N1 denotes ŒN; : : : ;N�:

1. If dimN1 D 0 then N is abelian.
2. If dimN1 D 1, let N1 D he1i, then we have

a. N1 � Z.N/ : Œe2; : : : ; enC1� D e1.
b. N1 ª Z.N/ : Œe1; : : : ; en� D e1.

3. If dimN1 D 2, let N1 D he1; e2i, then we have

a. Œe2; : : : ; enC1� D e1I Œe3; : : : ; enC2� D e2.
b. Œe2; : : : ; enC1� D e1I Œe2; e4; : : : ; enC2� D e2I Œe1; e4; : : : ; enC2� D e1.
c. Œe2; : : : ; enC1� D e1I Œe1; e3; : : : ; enC1� D e2.
d. Œe2; : : : ; enC1� D e1I Œe1; e3; : : : ; enC1� D e2I Œe2; e4; : : : ; enC2� D

e2I Œe1; e4; : : : ; enC2� D e1.
e. Œe2; : : : ; enC1� D ˛e1 C e2I Œe1; e3; : : : ; enC1� D e2.
f. Œe2; : : : ; enC1� D ˛e1 C e2I Œe1; e3; : : : ; enC1� D e2I Œe2; e4; : : : ; enC2� D
e2I Œe1; e4; : : : ; enC2� D e1.

g. Œe1; e3; : : : ; enC1� D e1I Œe2; e3; : : : ; enC1� D e2.

where ˛ 2 K n f0g
4. If dimN1 D 3, let N1 D he1; e2; e3i, then we have

a. Œe2; : : : ; enC1� D e1I Œe2; e4; : : : ; enC2� D �e2I Œe3; : : : ; enC2� D e3.
b. Œe2; : : : ; enC1� D e1I Œe3; : : : ; enC2� D e3 C ˛e2I Œe2; e4; : : : ; enC2� D

e3I Œe1; e4; : : : ; enC2� D e1.
c. Œe2; : : : ; enC1� D e1I Œe3; : : : ; enC2� D e3I Œe2; e4; : : : ; enC2� D e2I Œe1; e4; : : : ,

enC2� D 2e1.
d. Œe2; : : : ; enC1� D e1I Œe1; e3; : : : ; enC1� D e2I Œe1; e2; e4; : : : ; enC1� D e3.
e. Œe1; e4; : : : ; enC2� D e1I Œe2; e4; : : : ; enC2� D e3I Œe3; : : : ; enC2� D ˇe2 C .1C
ˇ/e3, ˇ 2 K n f0; 1g.

f. Œe1; e4; : : : ; enC2� D e1I Œe2; e4; : : : ; enC2� D e2I Œe3; : : : ; enC2� D e3.
g. Œe1; e4; : : : ; enC2� D e2I Œe2; e4; : : : ; enC2� D e3I Œe3; : : : ; enC2� D se1 C te2 C

ue3. And n-Lie algebras corresponding to this case with coefficients s; t; u and
s0; t0; u0 are isomorphic if and only if there exists a non-zero element r 2 K

such that

s D r3s0I t D r2t0I u D ru0:

5. If dimN1 D r with 4 	 r 	 nC 1, let A1 D he1; e2; : : : ; eri, then we have

a. Œe2; : : : ; enC1� D e1I Œe3; : : : ; enC2� D e2I : : : I Œe2; : : : ; ei�1; eiC1; : : : ; enC2� D
eiI Œe2; : : : ; er�1; erC1; : : : ; enC2� D er.

b. Œe2; : : : ; enC1� D e1I : : : I Œe1; : : : ; ei�1; eiC1; enC1� D eiI : : :; Œe1; : : : ; er�1 ,
erC1; enC1� D er.
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The second approach to study the algebraic variety Lienm is to describe its
irreducible components. This problem was considered for binary Lie algebras of
small dimensions but it is still open for n-Lie algebras. The main approach uses
formal deformations and degenerations. A degeneration notion is a sort of dual
notion of a deformation. It appeared first in physics literature [58]. Degeneration
is also called specialisation or contraction. We provide first the geometric definition
of a degeneration, using Zariski topology.

Definition 4.15. Let N0 D .N; Œ�; : : : ; ��0/ and N1 D .N; Œ�; : : : ; ��1/ be two m-
dimensional n-Lie algebras. We said that N0 is a degeneration of N1 if N0 belongs
to the closure of the orbit of N1 in Lienm (N0 2 # .N1/).

Therefore, N0 and N1 are in the same irreducible component.

A characterization of degeneration for Lie algebras, in the global deformations
viewpoint, was given by Grunewald and O’Halloran in [52]. It generalizes naturally
to n-Lie as follows.

Theorem 4.5. Let N0 and N1 be two m-dimensional n-Lie algebras over K with
brackets Œ�; : : : ; ��0 and Œ�; : : : ; ��1. The n-Lie algebra N0 is a degeneration of N1 if
and only if there is a discrete valuation K-algebra B with residue field K whose
quotient field K is finitely generated over K of transcendence degree one (one
parameter), and there is an m-dimensional n-Lie algebra Œ�; : : : ; ��B over B such
that Œ�; : : : ; ��B ˝K Š Œ�; : : : ; ��1 ˝K and Œ�; : : : ; ��B ˝K Š Œ�; : : : ; ��0.
We call such a degeneration, a global degeneration. A formal degeneration is defined
as follows.

Definition 4.16. Let N1 D .N; Œ�; : : : ; ��1/ be an m-dimensional n-Lie algebra. Let t
be a parameter in K and fftgt¤0 be a continuous family of invertible linear maps on
N over K.

The limit (when it exists) of a sequence ft � N1 , N0 D limt!0 ft � N1, is a
formal degeneration of N1 in the sense that N0 is in the Zariski closure of the set
fft �N1gt¤0 :

The bracket Œ�; : : : ; ��0 is given by

8x1; � � � ; xn 2 N Œx1; : : : ; xn�0 D lim
t!0

f�1
t .Œft.x1/; : : : ; ft.xn/�1:

We have the following observations.

1. The bracket Œ�; : : : ; ��t D f�1
t ı Œ�; : : : ; ��1 ı ft � ft satisfies Nambu identity. Thus,

when t tends to 0 the condition remains satisfied.
2. The linear map ft is invertible when t ¤ 0 and may be singular when t D 0:

Then, we may obtain by degeneration a new n-Lie algebra.
3. The definition of formal degeneration may be extended naturally to infinite

dimensional case.
4. When K is the complex field, the multiplication given by the limit, follows from

a limit of the structure constants, using the metric topology. In fact, ft � Œ�; : : : ; ��1
corresponds to a change of basis when t ¤ 0. When t D 0, they give eventually
a new point in Lienm.
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5. If ft is defined by a power series, the images of ft �N are in general in the Laurent
power series ring N

��
t; t�1

��
. But when the degeneration exists, it lies in the

power series ring N ŒŒt��.
6. Every formal degeneration is a global degeneration.

Remark 4.6. Rigid n-Lie algebras will have a special interest, an open orbit of a
given n-Lie algebra is dense in the irreducible component in which it lies. Then, its
Zariski closure determines an irreducible component of Lienm, i.e. all n-Lie algebras
in this irreducible component are degenerations of the rigid n-Lie algebra and
there is no n-Lie algebra which degenerates to the rigid n-Lie algebra. Two non-
isomorphic rigid n-Lie algebras correspond to different irreducible components. So
the number of rigid n-Lie algebra classes gives a lower bound of the number of
irreducible components of Lienm. Note that not all irreducible components are Zariski
closure of open orbits.

4.7 n-Lie-Poisson Algebras and Quantization

4.7.1 n-Lie-Poisson Algebras

We introduce the notion of n-Lie-Poisson algebra.

Definition 4.17. An n-Lie-Poisson algebra is a triple .N; �; f:; :; :g/ consisting of a
K-vector space N, a bilinear map � W N � N ! N and an n-ary bracket f�; : : : ; �g
such that

1. .N; �/ is a binary commutative associative algebra,
2. .N; f�; : : : ; �g/ is a n-Lie algebra,
3. the following Leibniz rule

fx1; : : : :; xn�1; �.xn; xnC1/g D �.xn; fx1; : : : ; xn�1; xnC1g/C �.fx1; : : : :; xng; xnC1/

holds for all x1; : : : ; xnC1 2 N.

A morphism of n-Lie-Poisson algebras is a linear map that is a morphism of the
underlying n-Lie algebras and associative algebras.

Example 4.6. Let C1.R3/ be the algebra of C1 functions on R
3 and x1; x2; x3 the

coordinates on R
3. We define the ternary brackets as in (4.4), then .C1.R3/; f:; :; :g/

is a ternary 3-Lie algebra. In addition the bracket satisfies the Leibniz rule:
ffg; f2; f3g D f fg; f2; f3g C ff ; f2; f3gg where f ; g; f2; f3 2 C1.R3/ and the multi-
plication being the pointwise multiplication that is fg.x/ D f .x/g.x/. Therefore, the
algebra is a 3-Lie-Poisson algebra.

This algebra was considered already in 1973 by Nambu [82] as a possibility of
extending the Poisson bracket of standard hamiltonian mechanics to bracket of three
functions defined by the Jacobian. Clearly, the Nambu bracket may be generalized
further to an n-Lie-Poisson allowing for an arbitrary number of entries.
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4.7.2 Quantization of Nambu Mechanics

The quantization problem of Nambu Mechanics was investigated by Dito et al.
[29, 30], see also [20, 21, 94]. Let M be an m-dimensional C1-manifold and A

be the algebra of smooth real-valued functions on M.
Assume that A carries a structure of n-Lie-Poisson structure, where the commu-

tative associative multiplication is the pointwise multiplication. The skew-symmetry
of the Nambu bracket and the Leibniz identity imply that there exists an n-vector
field � on M such that

ff1; : : : :; fng D �.df1; : : : ; dfn/; 8f1; : : : :; fn 2 A: (4.23)

An n-vector field is called a Nambu tensor if its associated Nambu bracket defined
by (4.23) satisfies the Nambu identity (4.1).

Definition 4.18. A Nambu-Poisson manifold .M; �/ is a manifold M on which is
defined a Nambu tensor �. Then M is said to be endowed with a Nambu-Poisson
structure.

The dynamics associated with a Nambu bracket on M is specified by n � 1
Hamiltonians H1; : : : ;Hn�1 2 A and the time evolution of f 2 A is given by

df

dt
D fH1; : : : ;Hn�1; f g: (4.24)

Then f 2 A is called an integral of motion for the system defined by (4.24) if it
satisfies fH1; : : : ;Hn�1; f g D 0.

It follows from the Nambu identity that a Poisson-like theorem exists for Nambu-
Poisson manifolds:

Theorem 4.6. The Nambu bracket of n integrals of motion is also an integral of
motion.

It turns out that a direct application of deformation quantization to Nambu-
Poisson structures is not possible, a solution to the quantization problem was
presented in the approach of Zariski quantization of fields (observables, functions, in
this case polynomials). Instead of looking at the deformed Nambu bracket as some
skew-symmetrized form of an n-linear product, the Nambu bracket is deformed
directly.

In the case of previous example, the usual Jacobian bracket is replaced by any n-
ary bracket having the preceding properties, we get a “modified Jacobian” which is
still a Nambu bracket. That is to say, the “modified Jacobian” is skew- symmetric,
it satisfies the Leibniz rule with respect to the new bracket and the Nambu identity
is verified.
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The deformed bracket is given by

Œf1; f2; f3� D
X

".

�2S3
�/
@f1
@x�1
� @f2
@x�2
� @f3
@x�3

;

where S3 is the permutation group of f1; 2; 3g and ".�/ is the signature. In this
approach the whole problem of quantizing Nambu-Poisson structure reduces to the
construction of the deformed product �. A non-trivial abelian deformation of the
algebra of polynomials on R

m doesn’t exist because of the vanishing of the second
Harrison cohomology group. Nevertheless, it is possible to construct an abelian
associative deformation of the usual pointwise product of the following form

f �ˇ g D T.ˇ.f /˝ ˇ.g//; (4.25)

where ˇ maps a real polynomial on R
3 to the symmetric algebra constructed over

the polynomials on R
3 .ˇ W A! Symm.A//. T is an “evaluation map” which allows

to go back to (deformed) polynomials .T W Symm.A/ �! A/.
It replaces the (symmetric) tensor product by a symmetrized form of a “partial”

Moyal product on R
3 (Moyal product on a hyperplane in R

3 with deformation
parameter t). The extension of the map ˇ to deformed polynomials by requiring
that it annihilates (non-zero) powers of t, will give rise to an Abelian deformation of
the usual product (T restores a t-dependence). In general (4.25) does not define an
associative product and we look for a ˇ which makes the product �ˇ associative.

4.7.3 Ternary Virasoro-Witt Algebras

Curtright, Fairlie and Zachos provided the following ternary q-Virasoro-Witt alge-
bras constructed through the use of su.1; 1/ enveloping algebra techniques.

Definition 4.19. The ternary algebras defined on the linear space VW generated by
fQn;Rngn2Z and the skewsymmetric ternary brackets:

ŒQk;Qm;Qn� D .k � m/.m � n/.k � n/RkCmCn (4.26)

ŒQk;Qm;Rn� D .k � m/.QkCmCn C znRkCmCn/ (4.27)

ŒQk;Rm;Rn� D .n � m/RkCmCn (4.28)

ŒRk;Rm;Rn� D 0 (4.29)

is called ternary Virasoro-Witt algebras.

Actually the previous ternary algebra is a ternary Nambu-Lie algebra only in the
cases z D ˙2{.
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Larsson showed in [71] that the above ternary Virasoro-Witt algebras can be
constructed by applying, to the Virasoro representation acting scalar densities (i.e.
primary fields), the ternary commutator bracket

Œx; y; z� D x � Œy; z�C y � Œz; x�C z � Œx; y� (4.30)

D x � .y � z/ � x � .z � y/C y � .z � x/ � y � .x � z/C z � .x � y/ � z � .y � x/

where the dot denotes the associative multiplication and Œ�; �� the binary commutator
bracket of its corresponding Lie algebra. He considered the operators

Em D e{mx

Lm D e{mx.�{ d
dx
C �m/

Sm D e{mx.�{ d
dx
C �m/2

which lead to the binary commutators

ŒLm;Ln� D .n � m/LmCn; ŒEm;En� D nEmCn; ŒLm;En� D 0:

Therefore, one obtains the ternary brackets

ŒLk;Lm;Ln� D .� � �2/.k � m/.m � n/.n � k/EkCmCn (4.31)

ŒLk;Lm;En� D .m � k/.LkCmCn C .1 � 2�/nEkCmCn/ (4.32)

ŒLk;Em;En� D .m � n/EkCmCn (4.33)

ŒEk;Em;En� D 0 (4.34)

The brackets involving S’s are not needed to recover the ternary Virasoro-Witt
algebras. The brackets (4.26)–(4.29) are obtained by taking

Lm D � 4
p
�.1 � �/Qk; Em D . 4

p
�.1 � �//�1Rk; z D 1 � 2�

p
�.1 � �/ :

Naturally, these ternary algebras are 3-Lie algebras only for � D ˙2{.
Remark 4.7. One may notice that the ternary commutator (4.30) does not lead
automatically to ternary Nambu-Lie algebra when starting from an associative
algebra and the corresponding Lie algebra given by the binary commutators. See
[4, 9] for triple commutator leading to 3-Lie algebras and ternary Hom-Nambu-Lie
algebras [8]. More general construction of .n C 1/-Lie algebras induced by n-Lie
algebras was studied in [5].



78 A. Makhlouf

References

1. V. Abramov, B. Le Roy, R. Kerner, Hypersymmetry: a Z3-graded generalization of supersym-
metry. J. Math. Phys. 38(3), 1650–1669 (1997)

2. F. Ammar, A. Makhlouf, S. Silvestrov, Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras.
J. Phys. A Math. Theor. 43(26), 265204 (2010)

3. F. Ammar, S. Mabrouk, A. Makhlouf, Representations and cohomology of n-ary multiplicative
Hom-Nambu-Lie algebras. J. Geom. Phys. 61(10), 1898–1913 (2011)

4. J. Arnlind, A. Makhlouf, S. Silvestrov, Ternary Hom-Nambu-Lie algebras induced by Hom-Lie
algebras. J. Math. Phys. 51(043515), 11 pp. (2010)

5. J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of n-Lie algebras and n-ary Hom-Nambu-
Lie algebras. J. Math. Phys. 52(12), 123502, 13 pp. (2011)

6. H. Ataguema, A. Makhlouf, Deformations of ternary algebras. J. Generalized Lie Theory Appl.
1, 41–55 (2007)

7. H. Ataguema, A. Makhlouf, Notes on cohomologies of ternary algebras of associative type.
J. Generalized Lie Theory Appl. 3(3), 157–174 (2009)

8. H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of n-ary Nambu algebras and beyond.
J. Math. Phys. 50(8), 083501 (2009)

9. H. Awata, M. Li, D. Minic, T. Yoneya, On the quantization of Nambu brackets. J. High Energy
Phys. 0102, 013 (2001)

10. J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes (2007).
ArXiv:0711.0955

11. R. Bai, G. Song, Y. Zhang, On classification of n-Lie algebras. Front. Math. China 6, 581–606
(2011)

12. N. Bazunova, A. Borowiec, R. Kerner, Universal differential calculus on ternary algebras. Lett.
Math. Phys. 67, 195–206 (2004)

13. M. Bordemann, A. Makhlouf, T. Petit, Déformation par quantification et rigidité des algèbres
enveloppantes. J. Algebra 285(2), 623–648 (2005)

14. A. Borowiec, W.A. Dudek, S. Duplij, Basic concepts of ternary Hopf algebras. J. Kharkov
Natl. Univ. Ser. Nuclei Particles Fields 529(3(15)), 21–29 (2001)

15. M.R. Bremmer, L.A. Peresi, Ternary analogues of Lie and Malcev algebras. Linear Algebra
Appl. 414, 1–18 (2006)

16. R. Carles, Rigidité dans la variété des algèbres. CRASc Paris 286, 1123–1226 (1978)
17. R. Carlsson, Cohomology of associative triple systems. Proc. Am. Math. Soc. 60, 1–7 (1976)
18. R. Carlsson, N-ary algebras. Nagoya Math. J. 78, 45–56 (1980)
19. J.M. Cassas, J.-L. Loday, T. Pirashvili, Leibniz n-algebras. Forum Math. 14, 189–207 (2002)
20. T.L. Curtright, C.K. Zachos, Branes, strings, and odd quantum Nambu brackets, in Quantum

Theory and Symmetries (World Scientific, Hackensack, NJ, 2004), pp. 206–217
21. T.L. Curtright, C.K. Zachos, Nambu dynamics, deformation quantization, and superintegrabil-

ity, in Superintegrability in Classical and Quantum Systems. CRM Proceedings Lecture Notes,
vol. 37 (American Mathematical Society, Providence, RI, 2004), pp. 29–46

22. J.A. De Azcarraga, P.J.C. Bueno, Multibracket simple Lie algebras, in Physical Applications
and Mathematical Aspects of Geometry, Groups and Algebra, vol. I (World Scientific,
Singapore, 1997), pp. 103–107

23. J.A. De Azcarraga, M. Izquierdo, n-ary algebras: a review with applications. J. Phys. A Math.
Theor. 43 (2010). doi:10.1088/1751-8113/43/29/293001

24. J.A. De Azcarraga, A.M. Perelomov, P.J.C. Bueno, The Schouten-Nijenhuis bracket, cohomol-
ogy and generalized Poisson structures. J. Phys. A 29(24), 7993–8009 (1996)

25. J.A. De Azcarraga, J.M. Izquierdo, P.J.C. Bueno, On the higher-order generalizations of
Poisson structures. J. Phys. A Math. Gen. 30, 607–616 (1997)

26. M. Rauch de Traubenberg, Some results on cubic and higher order extensions of the Poincaré
algebra (2008). ArXiv:0811.1465

27. M. Rauch de Traubenberg, Ternary algebras and groups. J. Phys. Conf. Ser. 128 (2008)

10.1088/1751-8113/43/29/293001


4 On Deformations of n-Lie Algebras 79

28. M. Rauch de Traubenberg, M. Slupinski, J. Slupinski, Finite-dimensional Lie algebras of order
F. J. Math. Phys. 43, 5145–5160 (2002)

29. G. Dito, M. Flato, D. Sternheimer, L. Takhtajan, Deformation quantization and Nambu
mechanics. Commun. Math. Phys. 183, 1–22 (1997)

30. G. Dito, M. Flato, D. Sternheimer, Nambu mechanics, n-ary operations and their quantization,
in Deformation Theory and Symplectic Geometry. Mathematical Physics Studies, vol. 20
(Kluwer, Dordrecht, 1997), pp. 43–66

31. A. Fialowski, Deformation of Lie algebras. Math USSR Sbornik 55(2), 467–473 (1986)
32. A. Fialowski, An example of formal deformations of Lie algebras, in Deformation Theory of

Algebras and Structures and Applications, ed. by M. Hazewinkel, M. Gerstenhaber. NATO
Advanced Science Institute Series C, vol. 297 (Kluwer, Dordrecht, 1988)

33. A. Fialowski, D. Fuchs, Construction of miniversal deformations of Lie algebras. J. Funct.
Anal. 161(1), 76–110 (1999)

34. A. Fialowski, J. O’Halloran, A comparison of deformations and orbit closure. Commun.
Algebra 18(12), 4121–4140 (1990)

35. A. Fialowski, G. Post, Versal deformations of Lie algebra L2. J. Algebra 236(1), 93–109 (2001)
36. A. Fialowski, M. Schlichenmaier, Global deformation of the Witt algebra of Krichever-

Novikov type. Commun. Math. Phys. 260(3), 579–612 (2005)
37. A. Fialowski, G. Mukherjee, A. Naolekar, Versal deformation theory of algebras over a

quadratic operad. Homol. Homotopy Appl. 16(1), 179–198 (2014)
38. V.T. Filippov, n-ary Lie algebras. Sibirskii Math. J. 24, 126–140 (1985) (Russian)
39. P. Gautheron, Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37, 103–116

(1996)
40. P. Gautheron, Simple facts concerning Nambu algebras. Comm. Math. Phys. 195(2), 417–434

(1998)
41. M. Gerstenhaber, On the deformations of rings and algebras. Ann. Math. 79, 84, 88, 59–103,

1–19, 1–34 (1964, 1966, 1968)
42. M. Gerstenhaber, A. Giaquinto, Compatible deformation, in Contemporary Mathematics, vol.

229 (American Mathematical Society, Providence, RI, 1998), pp. 159–168
43. M. Gerstenhaber, S.D. Schack, Relative Hochschild cohomology, rigid algebras and the

Bockstein. J. Pure Appl. Algebras 43, 53–74 (1986)
44. M. Gerstenhaber, S.D. Schack, Algebras, bialgebras, quantum groups and algebraic deforma-

tions, in Contemporary Mathematics, vol. 134 (American Mathematical Society, Providence,
RI, 1992), pp. 51–92

45. A.V. Gnedbaye, Les algèbres K-aires et leurs opérades. C. R. Acad. Sci. Paris Sér I 321,
147–152 (1995)

46. A.V. Gnedbaye, Opérades, algèbres de Leibniz et triples de Jordan. Mémoire de synthèse pour
l’habilitation à diriger des recherches. IRMA Strasbourg (2003)

47. M. Goze, M. Rausch de Traubenberg, Hopf algebras for ternary algebras. J. Math. Phys. 50(6),
063508 (2009)

48. N. Goze, R. Remm, Dimension theorem for free ternary partially associative algebras and
applications. J. Algebra 348, 14–36 (2011)

49. M. Goze, N. Goze, E. Remm, n-Lie algebras. Afr. J. Math. Phys. 8(1), 17–28 (2010)
50. J. Grabowski, Abstract Jacobi and Poisson structures. J. Geom. Phys. 9, 45–73 (1992)
51. J. Grabowski, G. Marmo, Remarks on Nambu-Poisson and Nambu-Jacobi brackets. J. Phys. A

Math. Gen. 32, 4239–4247 (1999)
52. F. Grunewald, J. O’Halloran, A characterization of orbit closure and applications. J. Algebra

116, 163–175 (1988)
53. Ph. Hanlon, M. Wachs, On Lie k-algebras. Adv. Math. 113, 206–236 (1995)
54. B. Harris, Cohomology of Lie triple systems and Lie algebras with involution. Trans. Am.

Math. Soc. 98, 148–162 (1961)
55. M.R. Hestenes, On ternary algebras. Scripta Math. 29(3–4), 253–272 (1973)
56. N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra

Colloq. 6(1), 51–70 (1999)



80 A. Makhlouf

57. R. Ibanez, M. de Leon, J.C. Marrero, D.M. de Diego, Dynamics of generalized Poisson and
Nambu-Poisson brackets. J. Math. Phys. 38(5), 2332–2344 (1997)

58. E. Inonu, E.P. Wigner, On the contraction of groups and their representations. Proc. Natl. Acad.
Sci. U.S.A. 39, 510–524 (1953)

59. N. Jacobson, Lie and Jordan triple systems. Am. J. Math. 71, 149–170 (1949)
60. M. Kapranov, M. Gelfand, A. Zelevinskii, Discriminants, Resultants and Multidimensional

Determinants (Birkhauser, Berlin, 1994)
61. Sh.M. Kasymov, On a theory of n-Lie algebras. Algebra Logic 26, 155–166 (1987)
62. P. Katsylo, D. Mikhailov, Ternary quartics and 3-dimensional commutative algebras. J. Lie

Theory, 7(2), 165–169 (1997)
63. R. Kerner, Z3-graded algebras and non-commutative gauge theories, in Spinors, Twistors,

Clifford Algebras and Quantum Deformations, ed. by Z. Oziewicz, B. Jancewicz, A. Borowiec
(Kluwer, Dordrecht, 1993), pp. 349–357

64. R. Kerner, Z3-grading and ternary algebraic structures, in Proceedings du Workshop “New
Symmetries and Differential Geometry”. Clausthal 1993, ed. by V. Dobrev, M.D. Doebner, S.
Ushveridze (World Scientific, Singapore, 1994), pp. 375–394

65. R. Kerner, Z3-graded ternary algebras, new gauge theories and quarks in Proceedings du
Workshop “Topics in Quantum Field Theory”, Maynooth 1995, ed. by T. Tchrakian (World
Scientific, Singapore, 1995), pp. 113–126

66. R. Kerner, The cubic chessboard: geometry and physics. Classical Quantum Gravity 14,
A203–A225 (1997)

67. R. Kerner, Ternary algebraic structures and their applications in physics, in Proceedings of
BTLP 23rd International Colloquium on Group Theoretical Methods in Physics (2000). ArXiv
math-ph/0011023

68. R. Kerner, Generalized cohomologies and differentials of higher order, in Proceedings de la
Conference DGMTP de Tianjin (Chine), ed. by G. Wang (World Scientific, Singapore, 2006)

69. R. Kerner, L. Vainerman, On special classes of n-algebras. J. Math. Phys. 37(5), 2553–2565
(1996)

70. A.G. Kurosh, Multioperator rings and algebras. Russ. Math. Surv. 24(1), 1–13 (1969)
71. T.A. Larsson, Virasoro 3-algebra from scalar densities (2008). arXiv:0806.4039
72. W.G. Lister, Ternary rings. Trans. Am. Math. Soc. 154, 37–55 (1971)
73. J.-L. Loday, B. Vallette, Algebraic Operads. A Series of the Comprehensive Studies in

Mathematics (Springer, Berlin, 2012)
74. O. Loos, Symmetric Spaces, vol. 1 (W.A. Benjamin, New York, 1969), pp. 103–112
75. O. Loos, Assoziative tripelsysteme. Manuscripta Math. 7, 103–112 (1972)
76. A. Makhlouf, The irreducible components of the nilpotent associative algebras. Revista

Mathematica de la Universidad Complutence de Madrid 6(1) (1993)
77. A. Makhlouf, Algèbre associative et calcul formel. Theoret. Comput. Sci. 187, 123–145 (1997)
78. A. Makhlouf, M. Goze, Classification of rigid algebras in low dimensions, in Collection:

Travaux en Cours, ed. by M. Goze (Hermann, Paris, 1996)
79. P.W. Michor, I. Vaisman, A note on n-ary Poisson brackets, in Proceedings of the 19th Winter

School “Geometry and Physics” (Srní, 1999). Rend. Circ. Mat. Palermo (2), Suppl. No. 63
(2000), pp. 165–172

80. P.W. Michor, A.M. Vinogradov, n-ary Lie and associative algebras. Rend. Sem. Mat. Univ. Pol.
Torino 54, 373–392 (1996)

81. F. Nadaud, Generalized deformations, Koszul resolutions, Moyal products. Rev. Math. Phys.
10(5), 685–704 (1998)

82. Y. Nambu, Generalized Hamiltonian mechanics. Phys. Rev. D7, 2405–2412 (1973)
83. Yu.A. Neretin, An estimate for the number of parameters defining an n-dimensional algebra.

Math USSR-Izv. 30(2), 283–294 (1988)
84. A. Nijenhuis, J.R. Richardson, Cohomology and deformations in graded Lie algebras. Bull.

Am. Math. Soc. 72, 1–29 (1966)
85. S. Okubo, Triple products and Yang-Baxter equation (I): octonionic and quaternionic triple

systems. J. Math. Phys. 34, 3273–3291 (1993)



4 On Deformations of n-Lie Algebras 81

86. G. Pincson, Noncommutative deformation theory. Lett. Math. Phys. 41, 101–117 (1997)
87. A.E. Santana, R. Muradian, Hopf structure in Nambu-Lie n-algebras. Theor. Math. Phys.

114(1) (1998)
88. M. Schlessinger, Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)
89. N.P. Sokolov, Introduction to the Theory of Multidimensional Matrices (Naukova Dumaka,

Kiev, 1972)
90. L. Takhtajan, On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160,

295–315 (1994)
91. L. Takhtajan, A higher order analog of Chevally-Eilenberg complex and deformation theory of

n-algebras. St. Petersburg Math. J. 6, 429–438 (1995)
92. Ch.A. Weibel, An Introduction to Homological Algebra. Cambridge Studies in Advanced

Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994)
93. K. Yamaguti, On the cohomology space of Lie triple systems. Kumamoto J. Sci. Ser. A 5,

44–52 (1960)
94. C. Zachos, T. Curtright, Branes, quantum Nambu brackets and the hydrogen atom. Czechoslo-

vak J. Phys. 54(11), 1393–1398 (2004)


	4 On Deformations of n-Lie Algebras
	4.1 Introduction
	4.2 Definitions and Examples of n-Lie Algebras and Other Types of n-ary Algebras
	4.2.1 n-Lie Algebras
	4.2.2 n-ary Algebras of Associative Type
	4.2.3 Representations of n-Lie Algebras
	4.2.4 Central Extensions

	4.3 Deformation Cohomology of n-Lie Algebras
	4.4 Formal Deformation of n-Lie Algebras
	4.4.1 One-Parameter Formal Deformation of n-Lie Algebras
	4.4.2 Noncommutative One-Parameter Formal Deformations

	4.5 Global Deformations
	4.6 The Algebraic Varieties Lienm and Degenerations 
	4.7 n-Lie-Poisson Algebras and Quantization
	4.7.1 n-Lie-Poisson Algebras
	4.7.2 Quantization of Nambu Mechanics
	4.7.3 Ternary Virasoro-Witt Algebras

	References


