
Chapter 16
On the Real Forms of the Exceptional Lie
Algebra e6 and Their Satake Diagrams

Cristina Draper Fontanals and Valerio Guido

Abstract Satake diagrams of the real forms e6;�26, e6;�14 and e6;2 are carefully
developed. The first real form is constructed with an Albert algebra and the other
ones by using the two paraoctonion algebras and certain symmetric construction of
the Freudenthal magic square.
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16.1 Introduction

The real simple Lie algebras were classified by Cartan in 1914 in [4]. This
paper required a great amount of computations, and the classification was realized
without the Cartan involution. Cartan came back to this classification in [6],
where he identified the maximal compactly imbedded subalgebra in each case. The
numbering appeared in that work is the used here in Table 16.1. Soon he completed
the classification by relating Lie algebras and geometry in [5]. This is the paper
containing more information about the exceptional Lie algebras. Several authors
along the twentieth century provided different classifications trying to simplify
Cartan’s arguments. Most of them used a maximally compact Cartan subalgebra,
but not all, Araki’s approach [1] was based on choosing a maximally noncompact
Cartan subalgebra. This method for classifying was a considerable improvement in
clarity and simplicity. The classification was stated in terms of certain diagrams,
called Satake diagrams, described by Helgason in [12, p. 534] based on the facts
developed by Satake in [17]. Although Satake diagrams were contained in [1] and
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the restricted root systems and their multiplicities were given by [5], according
to Helgason’s words [12, p. 534] Cartan stated the results for exceptional algebras
without proof. Since then, many textbooks contain Satake diagrams (more historical
notes can be found in [14] and some examples in [3, 16]), but, as far as we know, it is
very difficult to find details of how these diagrams were obtained in the nonclassical
cases. On the other hand, note that Satake diagrams are called Tits indices by some
mathematical communities. Tits’ famous classification paper [18] uses precisely this
terminology, thus containing the indices of algebraic groups of type E6 [18, pp. 58–
59] not only over the field of real numbers but over some special fields, although
“a detailed justification of the classification tables would require much space” so
that it is omitted. Then Garibaldi and Petersson show explicitly in [10] how Tits
indices are connected with an Albert algebra. Their approach and interests do not
coincide with ours. Our purpose here is to construct the Satake diagrams starting
with concrete models of the real forms, which besides allows to obtain a lot of
valuable information.

In our work in progress about gradings on the five real forms of the exceptional
Lie algebra of type e6, which tries to dive in the structure of such interesting simple
real Lie algebras, Satake diagrams have been very useful because they codify some
aspects of the structure of the corresponding real semisimple Lie algebras, namely,
some questions related to gradings are encoded in the Satake diagram. A result in
this line is the following [7, Theorem 3]: A simple Lie algebra g admits a Z-grading
of the second kind (that is, g D g�2 ˚ g�1 ˚ g0 ˚ g1 ˚ g2 with dim g2 D 1) if and
only if there is a long root ˛ of � such that the multiplicity m N̨ D 1. But, when it
was applied in [11] to obtain a fine grading by the group Z

2 � Z
3
2 on e6;�14 (as well

as on e6;2 and e6;6), it was necessary a more precise knowledge of the restricted roots
than that one summarized in Table 16.1.

The structure of this paper is as follows. After recalling some basic facts about
real forms, we explain how the Satake diagrams are constructed starting with a
Cartan decomposition and a Cartan subalgebra adapted in some sense to this decom-
position. Before proceeding to compute the Satake diagrams of e6;�26, e6;�14 and e6;2

in Sects. 16.5–16.7 respectively, we have enclosed a section about composition and
symmetric composition algebras, Jordan algebras and constructions of exceptional
Lie algebras based on these related structures, just because the constructions we
have taken of our three real forms make use of these nonassociative algebras.

16.2 Preliminaries About Real Forms

Given a real vector space V , we call the complexification of V , and we denote it by
VC, to the complex vector space V ˝R C D V ˚ iV (i 2 C the imaginary unit). If g
is a real Lie algebra, then the complexification gC is a complex Lie algebra with the
usual extension of the bracket, that is,

Œx1 C iy1; x2 C iy2� D Œx1; x2� � Œy1; y2� C i.Œx1; y2� C Œy1; x2�/
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for any x1; x2; y1; y2 2 g. In this case, � W gC ! gC given by �.x C iy/ D x � iy is an
order two conjugate-linear antiautomorphism of gC, called the conjugation related
to g. Note that g coincides with the set of elements of gC fixed by this conjugation.

If L is a complex Lie algebra and g � L is a real subalgebra, it is said that g is
a real form of L when gC D L. Two real forms g1 and g2 of the same complex Lie
algebra L (with related conjugations �1 and �2 respectively) are isomorphic if and
only if there is f 2 Aut.g/ such that �2 D f�1f�1.

Given g a real semisimple Lie algebra, g is said to be split if it contains a Cartan
subalgebra h such that ad h is diagonalizable over R for any h 2 h; and g is said to
be compact if its Killing form is definite (necessarily negative). A well-known result
states that any complex semisimple Lie algebra contains both a split and a compact
real form.

The importance of the real forms is due to the following. If g is a simple real Lie
algebra, either g is just a complex simple Lie algebra, but considered as a real Lie
algebra, or gC is simple, so that g is a real form of gC.

The real forms of a complex simple Lie algebra L are characterized by the
signature of their Killing form. (By abuse of notation, sometimes we speak about
the signature of L to refer the signature of the Killing form of L.) For instance, the
signature of the split real form coincides with the rank of L and the signature of the
compact real form is equal to � dim L. In the case of the complex simple Lie algebra
of type E6, denoted throughout this work by e6, besides the compact and the split
real forms, there are three more real forms, with signatures �26, �14 and 2.

16.3 Preliminaries About Satake Diagrams

Let g be an arbitrary semisimple Lie algebra over R and kW g � g ! R its Killing
form, which is nondegenerate. Recall [12, Chap. III, §7] that a decomposition
g D t˚ p, for a subalgebra t and a vector space p, is called a Cartan decomposition
if there is a compact real form u of gC such that t D g \ u and p D g \ iu.
There always exists such a decomposition and any two Cartan decompositions are
conjugate under an inner automorphism. The automorphism � W g ! g which sends
tC p to t� p for any t 2 t and p 2 p, is called a Cartan involution. In this case kjp�p

is positive definite and kjt�t is negative definite. Thus, it is said that t is a maximal
compactly imbedded subalgebra of g. Observe that the signature of the Killing form
coincides with dim g � 2 dim t.

Take any maximal abelian subspace a of p. Its dimension is called the real rank of
g (which is independent of the choice of a). For each � in the dual space a� of a, let
g� D fx 2 g j Œh; x� D �.h/x 8h 2 ag. Then � is called a restricted root if � ¤ 0

and g� ¤ 0. Denote by ˙ the set of restricted roots, which is an abstract root system
(not necessarily reduced) according to [3, Proposition 2.3.6], and by m� D dim g�

the multiplicity of the restricted root. Note that the simultaneous diagonalization of
adg a gives the decomposition g D g0 ˚ P

�2˙ g�, for g0 D a ˚ Centt.a/.
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Now we combine the Cartan decomposition of a semisimple Lie algebra and the
root space decomposition of its complexification. Let h be any maximal abelian
subalgebra of g containing a. Then h is a Cartan subalgebra of g (that is, hC is
a Cartan subalgebra of gC), and, if � denotes the root system of gC relative to
hC and hR WD P

˛2� Rh˛ (where the element h˛ 2 ŒgC˛ ; gC�˛� is characterized by
˛.h˛/ D 2), we get hR D a ˚ i.h \ t/. The restricted roots are exactly the nonzero
restrictions of roots to a � hC, that is: if ˛ 2 �, denote by N̨ D ˛jaW a ! R. The
roots in �0 D f˛ 2 � j N̨ D 0g are called the compact roots and those in � n �0

the noncompact roots. Then ˙ D f N̨ j ˛ 2 � n �0g. Note that ˛ 2 �0 if and
only if ˛.h/ � iR. Again �0 is an abstract root system in the Euclidean space of hR
spanned by its elements [3, Proposition 2.3.8].

Take a basis B of the root system � adapted to our situation, that is, if we denote
by B0 D B \ �0 D f˛ 2 B j N̨ D 0g, then the integral linear combinations
of elements in B0 with all the coefficients having the same sign coincide with the
elements in �0 (B0 is a basis of the root system �0). This is equivalent to choose
an ordering �C such that for any ˛ 2 �C n �0 then ��˛ 2 �C, where ��˛.h/ D
˛.�.h// for � the conjugation related to g.

The Satake diagram of the real algebra g is defined as follows. In the Dynkin
diagram associated to the basis B, the roots in B0 are denoted by a black circle �
and the roots in B n B0 are denoted by a white circle ı. If ˛; ˇ 2 B n B0 are such
that N̨ D Ň, then ˛ and ˇ are joined by a curved arrow. Observe that the rank
of gC coincides with the real rank of g plus the number of arrows on the Satake
diagram plus the number of black nodes. We enclose a list for each simple Lie
algebra g which is a real form of e6. The table contains the Dynkin diagram of
NB D f N̨ j ˛ 2 B n B0g, which is a basis of the root system ˙ , joint with the
multiplicities m� and m2� for � 2 NB. This table is extracted from [12, Table VI], that
obtained it from [1].

A consistent extension of this notation is to define the Satake diagram of a
compact semisimple Lie algebra to be the Dynkin diagram of the complexification
gC with all the nodes black.

16.4 Preliminaries About Related Algebras

16.4.1 Composition Algebras

A real composition algebra .C; n/ is an R-algebra C endowed with a nonde-
generate quadratic form (the norm) nWC ! R which is multiplicative, that
is, n.xy/ D n.x/n.y/ for all x; y 2 C. Denote also by n to the polar form
n.x; y/ WD n.x C y/ � n.x/ � n.y/. A composition algebra is called split if its norm
is isotropic.
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Table 16.1 Satake diagrams, restricted root systems and multiplicities

Satake diagram of (B, ) Dynkin diagram of ¯ mB m2

EI 1 0

EII 1 3 4 5 6

2

<
1 3 2 4

{
1 (i= 2,4)
2 (i= 1,3)

0
0

EIII 1 3 4 5 6

2

<
1 2

{
8 (i= 1)
6 (i= 2)

1
0

EIV 1 6

1 6
8 0

l l

a

q

a a a a a

a

a a

a a

a a a

a
a

a a

a a a a

The unital composition algebras are called Hurwitz algebras. Each Hurwitz
algebra satisfies a quadratic equation

x2 � t.x/x C n.x/1 D 0;

where the linear map t.x/ WD n.x; 1/ is called the trace. Besides it has a standard
involution defined by Nx WD t.x/1 � x, so that n.x/ D xNx.

There is a standard process to construct these algebras starting from algebras
of lower dimension, the so-called Cayley-Dickson doubling process. Let A be a
Hurwitz algebra with norm n and let be 0 ¤ ˛ 2 R. Then the product A � A is
endowed with the following product:

.a; b/.c; d/ D .ac C ˛ Ndb; da C bNc/: (16.1)

This new algebra, denoted by CD.A; ˛/, has .1; 0/ as a unit, it contains a copy of
A (� f.a; 0/ j a 2 Ag) and the element u D .0; 1/ satisfies u2 D ˛1, so that it
can be identified with A ˚ Au. In particular dim.CD.A; ˛// D 2 dimA. Moreover
CD.A; ˛/ is endowed with the quadratic form n..a; b// D n.a/ � ˛n.b/, being a
Hurwitz algebra if and only if A is associative.

It can be easily proved that there are seven real Hurwitz algebras up to
isomorphism, of dimensions 1, 2, 4 and 8, namely:

• the ground field R (the involution is the identity);
• the split algebra R ˚ R Š CD.R; 1/ (with componentwise product and the

exchange involution);
• the algebra of complex numbers C D h1; ii Š CD.R; �1/ (the involution is the

conjugation);
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• the matrix algebra Mat2�2.R/ Š CD.C; 1/ (the norm is given by the determi-
nant);

• the quaternion division algebra H D h1; i; j; ki Š CD.C; �1/, with i2 D j2 D
k2 D ijk D �1 (the fundamental formulas discovered by Hamilton in 1843);

• the octonion division algebra O D h1; i; j; k; l; il; jl; kli Š CD.H; �1/, where the
multiplication table is obtained from Eq. (16.1) for CD.H; �1/ D H ˚ Hl with
l2 D �1;

• and the split octonion algebra Os Š CD.H; 1/. This algebra has a standard basis
fe1; e2; u1; u2; u3; v1; v2; v3g where e1 and e2 are orthogonal idempotents (e1 C
e2 D 1),

e1uj D uj D uje2; uivi D �e1; uiuiC1 D viC2 D �uiC1ui;
e2vj D vj D vje1; viui D �e2; viviC1 D uiC2 D �viC1vi;

(16.2)

all the remaining products of basis elements are 0, and the polar form of the norm
of two basis elements is zero except for n.e1; e2/ D 1 D n.ui; vi/, i D 1; 2; 3.

16.4.2 Symmetric Composition Algebras

A real composition algebra .C; n/ is called a symmetric composition algebra if the
(nondegenerate multiplicative) quadratic form satisfies n.xy; z/ D n.x; yz/ for any
x; y; z 2 C. The multiplication is usually denoted by � instead of by juxtaposition,
specially if there is some ambiguity.

Again its dimension is forced to be 1, 2, 4 or 8. The only examples are para-
Hurwitz and pseudo-octonion algebras.

• If C is a Hurwitz algebra, the same vector space with new product

x � y D NxNy

for any x; y 2 C (and the same norm) is a symmetric composition algebra called
the para-Hurwitz algebra attached to the Hurwitz algebra C. We will denote it
by pC.

• Consider the algebra of 3�3 traceless matrices sl.3;C/ with the involution x� D
pNxtp�1 given by certain regular matrix p. Note that the (real) subspace of the
antihermitian matrices S D fx 2 sl.3;C/ j x� D �xg is closed for the product

x � y D !xy � !2yx � ! � !2

3
tr.xy/I3;

where ! D e
2� i
3 2 C is a primitive cubic root of 1 (so N! D !2) and I3

denotes the identity matrix. The obtained real algebra .S; �/, endowed with the
norm n.x/ D � 1

2
tr.x2/, turns out to be a symmetric composition algebra, called

pseudo-octonion algebra or Okubo algebra. We will use the notation O in case
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p D I3 and Os when p D
�

1 0 0

0 0 1

0 1 0

�

. Thus O coincides with su.3/ as a vector

space and Os with su.2; 1/. Observe that the norm nWO ! R is definite, while
nWOs ! R is isotropic.

These pseudo-octonion algebras are not isomorphic to any para-Hurwitz algebra.
They were introduced by Susumu Okubo (see [15, (4.35) and (4.9)], where the defi-
nition appears with a minor modification) while he was working in Particle Physics.
In particular, there are 4 real symmetric composition algebras of dimension 8: pO
and pOs (also called para-octonion algebras), O and Os.

16.4.3 Constructions of Exceptional Lie Algebras Based
on Symmetric Composition Algebras

Let .S; �; q/ be a symmetric composition algebra and let

o.S; q/ D fd 2 End.S/ j q.d.x/; y/ C q.x; d.y// D 0 8x; y 2 Sg

be the corresponding orthogonal Lie algebra. Consider the subalgebra of o.S; q/3

defined by

tri.S; �; q/ D f.d0; d1; d2/ 2 o.S; q/3 j d0.x � y/ D d1.x/ � y C x � d2.y/ 8x; y 2 Sg;

which is called the triality Lie algebra in [8]. The order three automorphism #

given by

# W tri.S; �; q/ �! tri.S; �; q/; .d0; d1; d2/ 7�! .d2; d0; d1/;

is called the triality automorphism. Take the element of tri.S; �; q/ (denoted by
tri.S/ when there is no ambiguity) given by

tx;y WD
�

�x;y;
1

2
q.x; y/id � rxly;

1

2
q.x; y/id � lxry

�

; (16.3)

where �x;y.z/ D q.x; z/y�q.y; z/x, rx.z/ D z�x, and lx.z/ D x� z for any x; y; z 2 S.
Let .S; �; q/ and .S0; ?; q0/ be two real symmetric composition algebras. Take

nonzero scalars "0; "1; "2 2 R and consider " D ."0; "1; "2/ and the following vector
space,

g".S; S0/ WD tri.S; �; q/ ˚ tri.S0; ?; q0/ ˚ .

2M

iD0

�i.S ˝ S0//;
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where �i.S ˝ S0/ is just a copy of S ˝ S0 (i D 0; 1; 2), and the anticommutative
product on g".S; S0/ is determined by the following conditions:

• tri.S; �; q/ ˚ tri.S0; ?; q0/ is a Lie subalgebra of g".S; S0/,
• Œ.d0; d1; d2/; �i.x ˝ x0/� D �i.di.x/ ˝ x0/,
• Œ.d0

0; d0
1; d0

2/; �i.x ˝ x0/� D �i.x ˝ d0
i.x

0//,
• Œ�i.x ˝ x0/; �iC1.y ˝ y0/� D "iC2�iC2..x � y/ ˝ .x0 ? y0//,
• Œ�i.x ˝ x0/; �i.y ˝ y0/� D "iC1"iC2.q0.x0; y0/# i.tx;y/ C q.x; y/# 0i.t0x0;y0//,

for any .d0; d1; d2/ 2 tri.S/, .d0
0; d0

1; d0
2/ 2 tri.S0/, x; y 2 S, x0; y0 2 S0, i D 0; 1; 2

indices taken modulo 3, and where # and # 0 denote the corresponding triality
automorphisms.

When one of the involved symmetric composition algebras has dimension 2
(respectively 1) and the other one has dimension 8, the anticommutative algebra
g".S; S0/ defined in this way turns out to be a real form of e6 (respectively of f4)
according to the following table (note that R D pR):

.1; 1; 1/ R pC p.R ˚ R/

pO; O f4;�52 e6;�78 e6;�26

pOs; Os f4;4 e6;2 e6;6

.1; �1; 1/ R pC p.R ˚ R/

pO; O f4;�20 e6;�14 e6;�26

pOs; Os f4;4 e6;2 e6;6

In other words, all the real forms of e6 (and of f4) can be obtained with this
construction (details in [9]). Furthermore, all the real forms of any exceptional
simple Lie algebra appear by choosing symmetric composition algebras S and S0
of various dimensions.

16.4.4 Jordan Algebras

A Jordan algebra is a commutative (nonassociative) algebra satisfying the Jordan
identity .x2y/x D x2.yx/: An important example is H3.O/ D fx D .xij/ 2
Mat3�3.O/ j x D Nxtg with the product x � y D 1

2
.xy C yx/, which is an exceptional

Jordan algebra denoted by A. We will make use of the subspace of zero trace
elements (for tr.x/ D P

i xii 2 R), which will be denoted by A0.
The real forms of the complexified algebra A

C are called real Albert algebras,
and they are quite involved in the real forms of the exceptional Lie algebras. There
are three of them up to isomorphism: A, H3.Os/, and a third one constructed in
[13] by doing slight modifications to the construction of H3.O/ (more precisely,

considering x� D pNxtp�1 for p D
�

1 0 0

0 0 1

0 1 0

�

instead of being p the identity matrix).

We follow the approach in [2] for a homogeneous description convenient for our
aims.
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Given a real symmetric composition algebra .S; �; q/ of dimension 8, and a set of
three nonzero scalars " D ."0; "1; "2/ 2 f˙1g3, we define the commutative algebra

A."0;"1;"2/.S/ WD R
3 ˚ .

2M

iD0

�i.S//;

where �i.S/ is just a copy of S (i=0,1,2) and the product is given by

• .˛0; ˛1; ˛2/.ˇ0; ˇ1; ˇ2/ D .˛0ˇ0; ˛1ˇ1; ˛2ˇ2/,
• .˛0; ˛1; ˛2/�i.x/ D 1

2
.˛iC1 C ˛iC2/�i.x/;

• �i.x/�iC1.y/ D "iC2�iC2.x � y/,
• �i.x/�i.y/ D 2 "iC1"iC2q.x; y/.EiC1 C EiC2/,

where the indices have been taken modulo 3 and fE0;E1;E2g denotes the canonical
basis of R3. This algebra A".S/ is an Albert algebra, and conversely, the three real
Albert algebras appear in this way (for suitable " and S).

This construction of the Albert algebras is related to the construction of the real
forms of f4 in the above subsection. Namely, there is a Lie algebra isomorphism
between the Lie algebra of derivations Der.A".S// and g".S;R/ D tri.S/ ˚
.˚2

iD0�i.S// (where S ˝ R has of course been identified with S) given by the map

	W g".S;R/ ! Der.A".S//; (16.4)

where if .d0; d1; d2/ 2 tri.S; �; q/, then 	.d0; d1; d2/ is the derivation of A".S/ given
by 	.d0; d1; d2/.˛0; ˛1; ˛2/ D 0 and 	.d0; d1; d2/.�i.x// D �i.di.x//; and 	.�i.x// is
the derivation of A".S/ given by 2Œl�i.x/; lEiC1

� for l the left multiplication operator.

16.5 Satake Diagram and Facts on e6;�26

Consider g D Der.A/ ˚ A0, which is endowed with a Lie algebra structure for the
Lie bracket Œx; y� WD Œlx; ly� 2 Der.A/ if x; y 2 A0 (l the left multiplication operator)
and the natural action of Der.A/ on A0. It is well known [13] that g is a real form of
e6 of signature �26, but also will be a consequence of the computation of its Satake
diagram.

First, the decomposition g D t ˚ p, for

t D Der.A/;

p D A0;

is a Cartan decomposition, since kjp is positive definite and kjt is negative definite,
being kW g�g ! R the Killing form. (In particular, the signature of g is �52C26 D
�26.) The maximal compactly imbedded subalgebra t is of type F4.
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For unifying the notation, note the isomorphism A.1;1;1/.pO/ Š A such that

.˛0; ˛1; ˛2/ C �0.x/ C �1.y/ C �2.z/ 7!
0

@
˛0 2z 2Ny
2Nz ˛1 2x
2y 2Nx ˛2

1

A :

So, we will work with g � 	.g.1;1;1/.pO;R// ˚ .A.1;1;1/.pO//0, being 	 the map
defined in Eq. (16.4).

Second, we find h D a˚.h\t/ a Cartan subalgebra of g such that a is a maximal
abelian subalgebra of p. If we fix the basis of the octonion division algebra

fe0; e1; e2; e3; e4; e5; e6; e7g WD f1; i; j; k; l; il; jl; klg; (16.5)

(the bilinear form 1
2
q relative to this basis is the identity matrix of size 8), then we

can take

a D hfE0 � E1;E2 � E0gi � A0;

h \ t D hf	.te0;e1 /; 	.te2;e3 /; 	.te4;e5 /; 	.te6;e7 /gi � 	.tri.pO//;

with the notation for the elements in the triality Lie algebra considered in Eq. (16.3).
Third, we decompose the complex Lie algebra gC relative to its Cartan algebra

hC D h ˝R C. Take as a basis

h1 D 1
2
	.te0;e1 /; h3 D 1

2
	.te4;e5 /; h5 D E2 � E0;

h2 D 1
2
	.te2;e3 /; h4 D 1

2
	.te6;e7 /; h6 D E0 � E1;

and an arbitrary element h D P6
iD1 wihi 2 hC. A long but straightforward

computation shows that ad h diagonalizes gC with set of eigenvalues � union of:

• fi.˙wj ˙ wk/ j j ¤ k; 1 	 j; k 	 4g in 	.tri.pO//,
• f˙iwj ˙ w5Cw6

2
j 1 	 j 	 4g in 	.�0.pO// ˚ �0.pO/,

• f 1
2
.i."1w1 C "2w2 C "3w3 C "4w4/ ˙ .2w5 � w6// j "i D ˙1; ˘4

iD1"i D 1g in
	.�1.pO// ˚ �1.pO/,

• f 1
2
.i."1w1 C "2w2 C "3w3 C "4w4/ ˙ .w5 � 2w6// j "i D ˙1; ˘4

iD1"i D �1g in
	.�2.pO// ˚ �2.pO/.

Take B D f˛1; ˛2; ˛3; ˛4; ˛5; ˛6g � � for ˛iW hC ! C given by

˛1.h/ D 1
2
.iw1 � iw2 � iw3 � iw4 C w5 � 2w6/;

˛2.h/ D i.w1 C w2/;

˛3.h/ D i.�w1 C w2/;

˛4.h/ D i.�w2 C w3/;

˛5.h/ D i.�w3 C w4/;

˛6.h/ D 1
2
.�2iw4 C w5 C w6/:

Again it is a long and direct computation to check that B is a basis of the root system
�, since � � P6

iD1 Z�0˛i [ P6
iD1 Z�0˛i. The choice of B is well adapted to the
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situation, since the set of compact roots in the basis, B0 D f˛ 2 B j ˛.a/ D 0g D
f˛ 2 B j ˛.h5/ D ˛.h6/ D 0g, that is,

B0 D f˛2; ˛3; ˛4; ˛5g;
turns out to be a basis of the set of compact roots �0 D fi.˙wj ˙ wk/ j j ¤ k; 1 	
j; k 	 4g (which is of typeD4). As ˛1.w5h5Cw6h6/ D 1

2
.w5�2w6/ ¤ 1

2
.w5Cw6/ D

˛6.w5h5 C w6h6/, then the nodes related to ˛1 and ˛6 are not joined in the Satake
diagram, which is

1 3 4 5 6

2

a a a

a

a a

Finally the set of restricted roots is ˙ D ˙fw5Cw6

2
; w5�2w6

2
; 2w5�w6

2
g, which is a

root system of type A2 (with basis NB), more precisely, ˙ D ˙f˛1; ˛6; ˛1 C ˛6g.
The multiplicities are

m˛1 D 8; m˛6 D 8:

16.6 Satake Diagram and Facts on e6;�14

Consider g D g.1;�1;1/.pO; pC/, which is a real form of e6 of signature �14

according to Sect. 16.4.3, but also will be a consequence of the next computations.
Take the decomposition g D t ˚ p, for

t D tri.pO/ ˚ tri.pC/ ˚ �1.pO ˝ pC/;

p D �0.pO ˝ pC/ ˚ �2.pO ˝ pC/;

which is a Cartan decomposition since t˚ip Š g.1;1;1/.pO; pC/ Š e6;�78 is compact.
Thus kjp is positive definite and kjt is negative definite, being kW g � g ! R the
Killing form. (In particular, the signature of g is �46 C 32 D �14.) The maximal
compactly imbedded subalgebra t is of type D5 C Z.

Second, we find h D a˚.h\t/ a Cartan subalgebra of g such that a is a maximal
abelian subalgebra of p. With the basis of pO fixed in Eq. (16.5), in which the two
first elements fe0; e1g can be considered as a basis of the paracomplex algebra pC,
we take

a D hf�0.e0 ˝ e1/; �0.e1 ˝ e0/gi;
h \ t D hfte2;e3 ; te4;e5 ; te6;e7 ; .0; � 0

e0;e1
; �� 0

e0;e1
/gi;

with the notations tx;y given in Eq. (16.3), and where the primes are again used for
the second symmetric composition algebra involved, in this case, pC.
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Now we decompose the complex Lie algebra gC relative to its Cartan algebra
hC D h ˝R C. Take as a basis

h1 D 1
2
te2;e3 ; h3 D 1

2
te6;e7 ; h5 D 1

2
�0.e0 ˝ e1/;

h2 D 1
2
te4;e5 ; h4 D 1

4
.0; � 0

e0;e1
; �� 0

e0;e1
/; h6 D 1

2
�0.e1 ˝ e0/;

and an arbitrary element h D P6
iD1 wihi 2 hC. We get that ad h acts on

• the eigenvector te0;e2 C ite0;e3 C �0..e2 C ie3/ ˝ e1/ with eigenvalue �iw1 � w5,
• the eigenvector te2;e4 C ite3;e4 C ite2;e5 � te3;e5 with eigenvalue �iw1 � iw2,
• the eigenvector �0.e0 ˝ e0/ � �0.e1 ˝ e1/ C te0;e1 C t0e0;e1

with eigenvalue w5 Cw6,

where that kind of eigenvectors spans tri.pO/ ˚ tri.pC/ ˚ �0.pO ˝ pC/, and on

• the eigenvector �1..e0 C ie1/ ˝ .e0 C ie1// C �2..e0 � ie1/ ˝ .ie0 C e1// with
eigenvalue 1

2
.iw1 C iw2 C iw3 � iw4 � w5 � w6/.

Analogously, it is checked that ad h diagonalizes gC with eigenvalues

� D f˙iwk ˙ w5; ˙iwk ˙ w6 j k D 1; 2; 3g
[ fi.˙w1 ˙ w2/; i.˙w1 ˙ w3/; i.˙w2 ˙ w3/g
[ f˙w5 ˙ w6g
[ f 1

2
.i.˙w1 ˙ w2 ˙ w3 ˙ w4/ ˙ w5 ˙ w6/g:

The choice of a basis is usually the most difficult task. In this case, a suitably adapted
choice is B D f˛1; ˛2; ˛3; ˛4; ˛5; ˛6g � � for ˛iW hC ! C given by

˛1.h/ D 1
2
.�iw1 � iw2 � iw3 � iw4 � w5 C w6/;

˛2.h/ D �iw1 C w5;

˛3.h/ D i.w2 C w3/;

˛4.h/ D i.w1 � w2/;

˛5.h/ D i.w2 � w3/;

˛6.h/ D 1
2
.�iw1 � iw2 C iw3 C iw4 � w5 C w6/;

because it is straightforward to check � � P6
iD1 Z�0˛i [ P6

iD1 Z�0˛i (so that B
is a basis of the root system �) and also B0 D f˛ 2 B j ˛.a/ D 0g D f˛ 2 B j
˛.h5/ D ˛.h6/ D 0g is

B0 D f˛3; ˛4; ˛5g;
a basis of �0 D fi.˙w1 ˙ w2/; i.˙w1 ˙ w3/; i.˙w2 ˙ w3/g (a root system of type
A3). As ˛1.w5h5 Cw6h6/ D 1

2
.�w5 Cw6/ D ˛6.w5h5 Cw6h6/, the nodes related to

˛1 and ˛6 are joined by an arrow and then the Satake diagram is

1 3 4 5 6

2a
a a a a a
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In this case the set of restricted roots is ˙ D f˙w5; ˙w6; ˙w5 ˙ w6; 1
2
.˙w5 ˙

w6/g, which coincides with

˙ D ˙fˇ1; ˇ2; ˇ1 C ˇ2; 2ˇ1 C ˇ2; 2ˇ1; 2ˇ1 C 2ˇ2g

for ˇ1 D ˛1 C ˛2 C ˛3 C ˛4 and ˇ2 D �˛2, since ˇ1 D w5Cw6

2
and ˇ2 D �w5.

Thus ˙ is a nonreduced root system of type BC2. The multiplicities of the restricted
roots are

mw5Cw6
2

D 8;

mw5Cw6 D 1;

m�w5 D 6:

We can observe that the noncompact (obviously long) roots in the basis (˛1 and
˛2) have (restricted) multiplicity different from 1 (so that their root vectors cannot
be used to obtain Z-gradings as in [7, Theorem 3], as recalled in Introduction), but
the maximal root ˛1 C 2˛2 C 2˛3 C 3˛4 C 2˛5 C ˛6 D w5 C w6 has (restricted)
multiplicity 1 and the Z-grading does appear.

16.7 Satake Diagram and Facts on e6;2

Consider g D g.1;1;1/.pOs; pC/, which is a real form of e6 of signature 2 according to
Sect. 16.4.3, although this fact will also be a consequence of the next computations.
The description of a Cartan decomposition is more involved than in the previous
cases, so we will work with this algebra a little bit before giving one. Recall that
d D � 0

e0;e1
2 o.pC; n/ acts in the paracomplex algebra by sending e0 to 2e1 and e1 to

�2e0, and tri.pC/ D f.ˇ0d; ˇ1d; ˇ2d/ j P2
iD0 ˇi D 0g is a two-dimensional abelian

algebra. Take

h1 D te1;e2 ; h3 D tu2;v2 ; h5 D 1
4
.� 0

e0;e1
; � 0

e0;e1
; �2� 0

e0;e1
/;

h2 D tu1;v1 ; h4 D tu3;v3 ; h6 D 1
4
.� 0

e0;e1
; �2� 0

e0;e1
; � 0

e0;e1
/;

where we are taking the standard basis of Os as in Eq. (16.2). It turns out thatP6
iD1 Chi is a Cartan subalgebra of gC. More concretely, an arbitrary element

P4
iD1 wihi 2 h0 D hh1; h2; h3; h4i is ad-diagonalizable with eigenvalues

• 0 in tri.pC/ ˚ h0,
• ˚l D f˙wj ˙ wk j j ¤ k; 1 	 j; k 	 4g in tri.pOs/ (to be precise, ˚l [ f0g),
• ˚0 D f˙wj j 1 	 j 	 4g in �0.pOs ˝ pC/,
• ˚1 D f 1

2
."1w1 C"2w2 C"3w3 C"4w4/ j "i D ˙1; ˘4

iD1"i D 1g in �1.pOs ˝pC//,
• ˚2 D f 1

2
."1w1C"2w2C"3w3C"4w4/ j "i D ˙1; ˘4

iD1"i D �1g in �2.pOs˝pC//;
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and w5h5 C w6h6 acts with eigenvalues

• 0 in tri.pC/ ˚ tri.pOs/,
• 
 i

2
.w5 C w6/ in �0.x ˝ .e0 ˙ ie1// for all x 2 pOs,

• ˙i. 1
2
w5 � w6/ in �1.x ˝ .e0 ˙ ie1// 2 �1.pOs ˝ pC//,

• ˙i.w5 � 1
2
w6/ in �2.x ˝ .e0 ˙ ie1// 2 �2.pOs ˝ pC//.

In particular g0 D g.1;1;1/.pOs;Re0/, which is a real split subalgebra of g isomorphic
to f4;4, has h0 as a Cartan subalgebra with roots ˚ D ˚l[˚0 [˚1 [˚2 (observe that
˚l are the long roots of ˚ and ˚0 [ ˚1 [ ˚2 are the short ones, which correspond
to

P2
iD0 �i.pOs ˝ Re0/).

As f 1
2
.w1 �w2 �w3 �w4/;w4;w3 �w4;w2 �w3g is a basis of the root system ˚ ,

then we have an ordering with positive roots ˚C D fwj˙wk j j < kg[fwj j 1 	 j 	
4g [ f 1

2
.w1 C "2w2 C "3w3 C "4w4/ j "i D ˙1g. Take, for each ˛ 2 ˚C, elements

e˛ 2 .g0/˛ and f˛ 2 .g0/�˛ such that Œe˛; f˛� D h˛ (defined as in Sect. 16.3 by
˛.h˛/ D 2). That implies that k0.e˛; f˛/ > 0 (and k0..g0/˛; .g0/ˇ/ D 0 if ˛Cˇ ¤ 0)
for k0 the Killing form of g0. In particular ih0 ˚hfe˛ � f˛ j ˛ 2 ˚Cgi˚hfi.e˛ C f˛/ j
˛ 2 ˚Cgi Š f4;�52 is a compact real form of .g0/C.

Note that, for each i D 0; 1; 2, the map 
iW g ! g given by

• 
ijtri.pOs/˚tri.pC/ D id,
• 
ij�i.pOs˝pC/ D � id,
• 
i.�j.x ˝ ek// D .�1/kC1�j.x ˝ ekC1/ if j ¤ i, x 2 pOs and k D 0; 1 (mod 2),

is an automorphism. In particular k.
i.e˛/; 
i.f˛// D k.e˛; f˛/ (a positive multiple
of k0.e˛; f˛/) for each ˛ 2 ˚C. Since �i.pOs ˝ Re1/ D 
iC1.�i.pOs ˝ Re0//, then

tri.pC/ ˚ ih0 ˚ hfe˛ � f˛ j ˛ 2 ˚Cgi ˚ hfi.e˛ C f˛/ j ˛ 2 ˚Cgi˚
˚2

iD0

�hf
i.e˛ � f˛/ j ˛ 2 ˚C \ ˚iC1gi ˚ hfi
i.e˛ C f˛/ j ˛ 2 ˚C \ ˚iC1gi�

is a compact real form of gC. That means that a Cartan decomposition of g is the
following:

t D tri.pC/ ˚ hfe˛ � f˛ j ˛ 2 ˚Cgi ˚ �˚2
iD0hf
i.e˛ � f˛/ j ˛ 2 ˚C \ ˚iC1gi� ;

p D h0 ˚ hfe˛ C f˛ j ˛ 2 ˚Cgi ˚ �˚2
iD0hf
i.e˛ C f˛/ j ˛ 2 ˚C \ ˚iC1gi� ;

and the signature of g turns out to be 38�36 D 2. Thus h D a˚ .h\ t/ is a suitably
adapted Cartan subalgebra for

a D h0 � p;

h \ t D tri.pC/;

and we have already done the simultaneous diagonalization of the complex Lie
algebra gC relative to hC: An arbitrary element

P6
iD1 wihi 2 hC diagonalizes gC

with eigenvalues
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� D f˙wj ˙ wk j j ¤ k; 1 	 j; k 	 4g [ f˙wj ˙ i
2
.w5 C w6/ j 1 	 j 	 4g

[ f 1
2
."1w1 C "2w2 C "3w3 C "4w4/ ˙ i. 1

2
w5 � w6/ j "i D ˙1; ˘4

iD1"i D 1g
[ f 1

2
."1w1 C "2w2 C "3w3 C "4w4/ ˙ i.w5 � 1

2
w6/ j "i D ˙1; ˘4

iD1"i D �1g:

Take B D f˛1; ˛2; ˛3; ˛4; ˛5; ˛6g � � for ˛iW hC ! C given by

˛1.h/ D 1
2
.w1 � w2 � w3 � w4 C i.2w5 � w6//;

˛2.h/ D w2 � w3;

˛3.h/ D 1
2
.2w4 � iw5 � iw6/;

˛4.h/ D w3 � w4;

˛5.h/ D 1
2
.2w4 C iw5 C iw6/;

˛6.h/ D 1
2
.w1 � w2 � w3 � w4 � i.2w5 � w6//:

It is straightforward to check that B is a basis of the root system �, since � �P6
iD1 Z�0˛i [ P6

iD1 Z�0˛i. In this occasion all the roots are noncompact, �0 D
f˛ 2 � j ˛.a/ D 0g D f˛ 2 � j ˛.hi/ D 0 8i D 1; : : : ; 4g D ;, so that B0 D ;
and all the nodes are white. Besides ˛1 D ˛6W P4

iD1 wihi 7! 1
2
.w1 � w2 � w3 � w4/

and ˛3 D ˛5W P4
iD1 wihi 7! w4. Hence, the Satake diagram is:

a1 a3 a4 a5 a6

a2

Finally, the set of restricted roots ˙ is just ˚ , that is, a root system of type F4

with basis f˛1; ˛2; ˛3; ˛4g. And f˛ 2 � j ˛ D ˛ig D f˛ig if i D 2; 4, so that the
multiplicities are given by

m˛2 D 1; m˛4 D 1;

m˛1 D 2; m˛3 D 2:
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