
Chapter 13
Localization in a Duo-Ring and Polynomials
Algebra

Daouda Faye, Mohamed Ben Fraj Ben Maaouia, and Mamadou Sanghare

Abstract Let A be a duo-ring and S a non-empty subset of A formed regular device
items, S the saturated multiplicative subset satisfying the left conditions of Ore
generated by S, A Œ.Xs/s2S� the polynomials algebra of variables in S, M and M ’ two
left A- modules, we show that the ring of fractions S�1A exists and is isomorphic to
the ring A Œ.Xs/s2S� quotiented by the ideal h1 � sXsis2S and also S�1A is isomorphic
to .S/�1A.

We have also shown that the module of fractions S�1M exists and S�1M is iso-
morphic to .S/

�1
A ˝A M, S�1TorAn .M;M0/ is isomorphic to TorS

�1A
n .S�1M; S�1M0/

and S�1ExtnA .M;M0/ is isomorphic to Extn
S�1A

�
S�1M; S�1M0� where n is integer and

M is a left A-module of finite type.

Keywords Duo-ring • Regular element • Functor • Ring fraction • Fraction
module • Localization

13.1 Introduction

In this paper, A denotes a duo-ring and M a left A -module. Called ring of left
fractions of A in respect of a non-empty subset S of A (or localization of A in S),
every pair .B; i/ where B is a ring and i W A ! B a morphism of rings such as i.s/
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is invertible in B for every s 2 S and satisfied the following universal properties: for
any ring B0 and for any morphismf W A ! B0 such that f .s/ is invertible in B0 for
every s 2 S, then there exists a unique morphism f W B ! B0 such as f oi D f :

In their works, many authors have built fractions rings in the commutative
case from S a multiplicative subset of a commutative ring A (see [7, 12, 13]). In
[13], M. Rotman built, in the commutative case the ring of fractions S�1A and
fractions module S�1, where M S is not any empty part A using the saturated part
multiplicative S generated by S.

In his works, Mr. Ben Maaouia built, where A is not necessarily commutative, the
fractions ring S�1A and fractions module S�1M relatively to a multiplicative subset
saturated S which satisfies the left Ore conditions (see [1, 2, 4, 5]).

In this paper we build, where A is not necessarily commutative, the fractions ring
S�1A and fractions module S�1 relatively to a non-empty subset S formed of regular
elements of A.

Thus we have shown the following results, if S is a non-empty part of a duo ring
A formed of regular elements, then:

1. S, saturated multiplicative subset generated by S satisfies the left Ore conditions.
2. the ideal h1 � sXsis2S of the polynomials algebra in S variables A Œ.Xs/s2S�

generated by the set of polynomials f1 � sXs; s 2 Sg is two-sided.
3. S�1A exists and S�1A D A Œ.Xs/s2S�=h1 � sXsis2S .

4. S�1A Š .S/
�1
A

5. By asking S�1M D .S/�1M , we have S�1M Š .S/
�1
A ˝A M.

Therefore S�1M Š A Œ.Xs/s2S�=h1 � sXsis2S ˝A M.

6. S�1TorAn .M;M0/ QDTorS
�1A

n .S�1M; S�1M0/ where n is a integer.
7. S�1ExtnA .M;M0/ Š Extn

S�1A

�
S�1M; S�1M0� where n is a integer and M is an A

-module of finite type.

13.2 Preliminary Definitions and Results

A is a ring and M a left A -module, then the left ring of fractions S�1A and the
fractions module S�1M exist if and only if S is a saturated multiplicative part of A
that satisfies the conditions of Ore (see [6] Chap. 1). Note that the existence of such
a party is not evident in any ring.

In a duo-ring, all the regular elements form a saturated multiplicative party
checking Ore conditions (see [2] Chap. 2). Thus if S is a part of a duo-ring A formed
from regular elements, then S generates saturated multiplicative subset S which
checks the Ore conditions. Then we can localize from a party formed of regular
elements of a duo-ring.

Moreover, several authors have worked on class are not necessarily commutative
duo-rings as Rdao in 1970 (see [9]), Brungs in 1975 (see [2]), Mr. Sangharé in
1989 in his thesis of State (see [2]) and in his article “On S-duo-rings” (see [2]),
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Ben Maaouia in 2003 in his thesis 3rd cycle (see [6]), in 2011 in his article entitled
“Localisation in the duo-ring” (see [2]) and in his thesis of State (see [2] Chap. 2).

Definition 2.1. Let A be a ring, A is said:

1. left duo-ring if every left ideal is two-sided,
2. right duo-ring if every right ideal is two-sided
3. duo-ring if it is left duo-ring and right duo-ring.

Example 13.2.

1) Any commutative ring A is a commutative duo-ring.
2) All non-commutative valuation ring is a non-commutative ring duo (see [8, 10,

12]).
3) (see [3, 14, 15]) Let F be the field of polynomial functions with coefficients in

Q, where Q is the field of rational numbers. The elements of F are ordered as
follows:
.qntn C : : :C q0/.q

0

mt
m C : : :C q

0

0/ > 0 if and only if qnq
0

m > 0.
Let F be the field of polynomial functions with coefficients in Q, where Q is

the field of rational numbers. The elements of F are ordered as follows:.
We consider R D QffGCgg the ring of formal series

P
q˛g˛ où q˛ 2 Q and

fg˛g is a suite of well-ordered G with elements g˛ > .1; 0/.
Then, R is a duo-ring.

Definition 2.3. Let A be a ring and S a part of A. It is said that :

1. S is a multiplicative part of A if 1A 2 S and S is stable by multiplication; ie for all
x; t 2 S; , xt 2 S; .

2. S is a saturated multiplicative part if: for all x, t 2 A; xt 2 S; imply x 2 S; and
t 2 S; .

Definition 2.4 (Ore Conditions). Let S saturated multiplicative part of a ring A.
It is said that S satisfies the left Ore conditions (right respectively) if:

1. 8 a 2 A; 8 s 2 S , they exist t 2 S; and b 2 A; such as
ta D bs (respectively at D sb). It is said that s is left switchable (right

respectively).
2. 8 a 2 A; si s 2 S such as as D 0 (respectively sa D 0), then there exists

t 2 S; such as ta D 0 (respectively at D 0). It is said that S is left invertible
(right respectively).

Example 2.5.

1. The set of regular elements of a duo-ring A is a saturated multiplicative part of A
that satisfies the left and right Ore conditions (see [2]).

2. If s is a regular element of a duo-ring A, the set S D ˚
sk; k 2 N

�
is a saturated

multiplicative subset of A which satisfies left and right Ore conditions.

Definition 2.6. Let A be a ring and S a saturated multiplicative part of A.
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Called saturated multiplicative subset generated by S, the smallest saturated
multiplicative part containing S denoted S if it exists.

Proposition 2.7. Let A be a duo-ring and S a non-empty saturated multiplicative
part of A consists of regular elements. Then S generates a saturated multiplicative
subset S that satisfies the Ore conditions.

Proof. Let F be the set of all saturated multiplicative parts of A containing S and
satisfies the left Ore conditions. F is not empty, indeed, the set of regular elements of
A is a saturated multiplicative part of A containing S and verifies the Ore conditions
(see [6]). So the smallest saturated multiplicative part of A containing S and vérifies
the Ore conditions is called saturated multiplicative subset generated by S, denotes
by S.

13.3 Fractions Rings and Polynomial Algebra

Theorem 3.1. Let A be a duo-ring, S of a non-empty part of A consists of regular
elements, A Œ.Xs/s2S� algebra of polynomials in S variables with coefficients in A.

Then the application:

' W A Œ.Xs/s2S� �! �
S
��1

A

P 7�! ' .P/ D P ..1=s/s2S/ :

is an algebra homomorphism ker' D h1 � sXsis2S where h1 � sXsis2S is the
two-sided ideal of the algebra of polynomials A Œ.Xs/s2S� generated by the set of
polynomials f1 � sXs; s 2 Sg.

Moreover, one has the isomorphism A Œ.Xs/s2S�=h1 � sXsis2S Š �
S
��1

A où S is

saturated multiplicative subset generated by the elements .1 � sXS/s2S.

Proof. Let P and Q be two polynomials; we have :

'.P C Q/ D .P C Q/..1=s/s2S/ D .P.1=s//s2S_ C .Q.1=s//s2S D '.p/C '.Q/

'.PQ/ D .PQ/..1=s/s2S/ D .P.1=s//s2S_.Q.1=s//s2S D '.p/'.Q/

'.1AŒ.Xs/s2S� D '.1A/ D 1=1 D 1.S/�1A

'.�P/ D .�P/..1=s/s2S/ D �.P.1=s/s2S/ D �'.P/

check that ker' D h1 � sXsis2S.
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1. if P D .1 � sXS/s2S alors P. 1s / D .1 � s: 1s /s2S D 0,
then h1 � sXsis2S � ker'.

2. if P … h1 � sXsi, then '.P/ ¤ 0 ) P … ker'.

Therefore ker' D h1 � sXsis2S and so h1 � sXsis2S is a two-sided ideal.
Hence, according to the universal property of the Rings quotients, we have the

isomorphism A Œ.Xs/s2S�=h1 � sXsis2S Š �
S
��1

A

Theorem 3.2 (Existence of Fractions Ring). Let A be a duo-ring and S a non-
empty part of regular elements of A. Then the ring of left fractions of A on S, S�1A
exists.

Proof. Let X D fxs W s 2 Sg such that the application:

' W X ! S
xs 7! ' .xs/ D s

:

is a bijection.
Let A Œ.Xs/s2S� be the ring of polynomials over A in S variables and

I D h1 � sXsis2S the two-sided ideal generated by the set f1 � sxs W s 2 Sg.

Show that S�1A D A Œ.Xs/s2S�=I. As I is a two-sided ideal, then A Œ.Xs/s2S� =I is a
ring and a same algebra.

Définissons

i W A ! A Œ.Xs/s2S�=I
a 7! i .a/ D a C I

:

the canonical map.
We have 1 � sXs D 0 ) sXs D s:Xs D 1 likewise Xs:s D Xs: s D 1 because

variables commute with the constants (A elements) in A Œ.Xs/s2S�.
So s D i.s/ . And as fractions ring S�1A of A in S exists to isomorphism, one can

take S�1A D A Œ.Xs/s2S�=I.

Proposition 3.3. Let S a non-empty rings of a duo-part A consists of regular
elements. Let S saturated multiplicative subset generated by S. So we have:
�
S
��1

A Š S�1A.

Proof. This proposal is the result of Theorems 3.1 and 3.2.

Proposition 3.4. Let A be a duo-ring, M left A -module, S a non-empty subset of A
consists of regular elements, s a element of S. While the application:

�s W M ! M
m 7! sm

:
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is bijective for every s 2 S if M is a S�1A -module. Fractions module called left of
M with respect to S, every pair .P; hP/ where P is a left S�1A -module (that is to

say,
�s W P ! P

p 7! sp
is bijective for every s 2 S and hP W M ! P is called canonical

morphism, which is the solution of universal problem solution:

That is to say, if ' W M ! M0 is a morphism of left A -modules where M is a S�1
A-module, then there exists a unique morphism
' W P ! M0 such as 'oh D '.

Notation. The left fractions module of M on S, if it exists, is denote by .S�1M; h/or
S �1 M if there is no confusion.

Remark 3.5. A is a duo-ring and S of a non-empty A consists of regular elements.
So if the left fractions module of M on S exists, it is unique up to isomorphism.

Definition 3.6. Let A be a duo-ring, S is a non-empty subset of A consists of regular
elements and M a left A -module. Then we define the left module of fractions M on
S denote S�1M by S�1M D .S/�1M where .S/�1M is the left fractions module of M
with respect to the saturated multiplicative part S satisfying the left Ore conditions
(see [2] and [4]).

Theorem 3.7. Let A a duo-ring, S a non-empty part of A consists of regular
elements and M a left A -module. So the couple (.S/�1A ˝A M, h/ where h is the
morphism defined by:

h W M ! .S/�1A ˝A M
m 7! 1˝ m

is a left fractions module of M on S.

Proof. Let ' W M ! M0 be a morphism where M’ is a S�1A-module
The morphism:

.S/
�1
A � M ! M0

.a=�;m/ 7! .a=�/'.m/

where a 2 A and � 2 S is A-bilinear. There exists a unique morphism ' W .S/�1A˝A

M ! M0 such as ' ı h D '. As h.M/ generates .S/�1A ˝A M, then ' is the unique
morphism making the following diagram commutative.

So according to the universal property of the localization, .S/�1A ˝A M is a
module of fractions M with respect to S.

Corollary 3.8. Let A be a duo-ring, S a non-empty part of A consists of regular
elements, M a left A- module and S�1M a left fractions of module M on S. Then

S�1M Š .S/
�1
A ˝A M Consequently S�1M Š A Œ.Xs/s2S�=h1 � sXsis2S ˝A M

Proof. Indeed just take in Proposition 3.7 .NS/�1A D AŒ.Xs/s2S=.1 � sXs/s2S�/
applying Propositions 3.1 and 3.2. The proof follows from Propositions 3.1, 3.2
and 3.7.
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13.4 Properties for Functions S�1( ), Ext and Tor

In this section, we show that if A is a duo-ring, S a non-empty subset of A consists of
regular elements, M a A -module, then the functor S�1./ commutes with the functors
Tor.M; / and Ext.M; /.

Proposition 4.1. A is a duo-ring, S a non-empty part of A consists of regular
elements. Let B and M of A -modules where B is finitely. Then there exists a natural
isomorphism  B W S�1HomA.B;M/ ! HomS�1A.S

�1B; S�1M//.

Proof. Just build the natural isomorphisms �B W HomA.B; S�1M/ ! HomS�1B.S
�1B,

S�1M/ et 'B W S�1HomA.B;M/ ! HomA.B; S�1M/ and consequently take
 B D �B ı 'B.

a) Suppose that B D An is an A -module of finite type. Let b1, b2, . . ., (bn a basis
B, then b1

1
; b2
1
; : : : ; bn

1
is a basis of S�1B D .S/�1A ˝A An.

The morphism �An W HomA.B; S�1M/ ! HomS�1A.S
�1B; S�1M/ defined by

�An.f / D Qf with Qf . bi
ı
/ D f .bi/

ı
is well defined and is an isomorphism.

b) Now let B A �module a finitely generated, then the sequence At ! An ! B ! 0

is exact.

Let us apply this result contravariant functors HomA.�;P/ et HomS�1A.�;P/ où
P D S�1M. We obtain the following commutative diagram or lines are exact:

0 �! HomA.B;P/ �! HomA.An;P/ �! HomA.At;P/
# �B # �An # �At

0 �! HomS�1A.S
�1B;P/ �! HomS�1A.S

�1An;P/ �! HomS�1A.S
�1.A/t;P/

:

Because �An and �At are isomorphisms then according [11], �B and there is an
isomorphism.

The isomorphism �B is defined by:

�B.ˇ/ D Q̌ où ˇ 2 HomA.B;P/

and

Q̌ W S�1B ! P D S�1M
b
ı

7! ˇ.b/
ı
:

build now 'B by

'B W S�1HomA.B;M/ ! HomA.B; S
�1M/
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by

'B W g
ı

7! gı:

where

gı W B ! S�1M
b 7! gı.b/ D g.b/

ı

:

Recall (see [11]) que S�1HomA.B;M/ D .S/�1 ˝A HomA.B;M/ and 'B is an
isomorphism if B is a free finitely A-module.

En appliquant à la suite exacte At ! An ! B ! 0 les foncteurs contravariants
exacts à gauche : HomA.�;M/ et HomA.�; S�1M/, on obtient le diagramme
commutatif suivant

0 �! S�1HomA.B;M/ �! S�1HomA.An;M/ �! S�1HomA.At;M/
# 'B # 'An # 'At

0 �! HomA.B; S�1M/ �! HomA.An; S�1M/ �! HomA.At; S�1M/

'An and 'At being isomorphisms, according [11] 'B is an isomorphism.

Lemma 4.2 ([11]). Let A and B, and two rings T W AMod ! BMod an exact and
additive functor . So T commutes with the homology functor Hn : any complex .C; d/
of the category AComp and any relative integer n, we have :

Hn.TC;Td/ Š THn.C;d/.

Lemma 4.3 ([11]). A is a ring; for every left A -module B, we have : ˝AB Š
TorA0 .�;B/ ; that is to say for all A -module right R we have: R ˝A B Š TorA0 .R;B/.

Theorem 4.4. Let A be a duo-ring and S of a non-empty A consists of regular
elements. Then for any natural number n � 0 and all A -modules M and M0, we
have : S�1TorAn .M;M

0/ QDTorS
�1A

n .S�1M;S�1M0/.

Proof.

a) For n D 0 is deduced Lemmas 4.2 and 4.3 :
TorA0 .M;M

0/ Š Mk ˝ M0 et TorS
�1A
0 .S�1M; S�1M0/ Š S�1M ˝ S�1M0, whence

S�1.M ˝A M0/ Š S�1M ˝A S�1M0.
b) Let now PM0 projective resolution of M0.

As the functor S�1 keeps productivity (see [2]), then S�1(PM0 ) is a projective
resolution S�1M0.

According to the Theorem 4.1, proving the existence of isomorphism  B, we
deduce the isomorphism complex
S�1.M ˝ APM0/ Š S�1M ˝ S�1AS

�1.PM0/.
Therefore their homology groups are isomorphic and as the functor S�1./

is exact (according to [6]) and by definition the functor Tor, we have :
Hn.S�1.M ˝ APM0/ Š S�1Hn.M ˝ APM0/ Š S�1TorAn .M;M

0/; as well as
S�1(PM0/ is a projective resolution S�1M0, so
Hn.S�1M ˝ S�1AS

�1.PM0// Š TorS
�1A

n .S�1M;S�1M0/.
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Theorem 4.5. Let S be a non-empty part formed of regular elements of a Noethe-
rian duo-ring A, and M a A-Module left finitely. So

S�1ExtnA .M;M0/ Š Extn
S�1A

�
S�1M; S�1M0� for every n � 0 and every A-module

left M0.

Proof. As A is Noetherian and M is finitely generated, according [11], there is a
projective resolution PM of M for which each term is of finite type.

According to the Theorem 4.1, there is a natural isomorphism:
 M W S�1Hom .M;M0/ ! HomS�1A

�
S�1M; S�1M0�

for everything A-module M0.
We deduce the isomorphism complex :

S�1 .HomA .PM;M0// Š HomS�1A

�
S�1 .PM/ ; S�1M0�.

Applying the homology functor Hn we have:
Hn

�
S�1 .HomA .PM;M0//

� Š S�1Hn .HomA .PM;M0// Š S�1ExtnA .M;M0/ then the
functor S�1 ./ is exact therefore we have:
Hn

�
HomS�1A

�
S�1PM; S�1M0�� D Extn

S�1A

�
S�1M; S�1M0� because S�1 .PM/ is a

projective resolution.
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