Chapter 13 Localization in a Duo-Ring and Polynomials Algebra

Daouda Faye, Mohamed Ben Fraj Ben Maaouia, and Mamadou Sanghare

Abstract Let A be a duo-ring and S a non-empty subset of A formed regular device items, \overline{S} the saturated multiplicative subset satisfying the left conditions of Ore generated by S, $A[(X_s)_{s\in S}]$ the polynomials algebra of variables in S, M and M ' two left A- modules, we show that the ring of fractions $S^{-1}A$ exists and is isomorphic to the ring $A[(X_s)_{s\in S}]$ quotiented by the ideal $\langle 1 - sX_s \rangle_{s\in S}$ and also $S^{-1}A$ is isomorphic to $(\overline{S})^{-1}A$.

We have also shown that the module of fractions $S^{-1}M$ exists and $S^{-1}M$ is isomorphic to $(\overline{S})^{-1}A \otimes_A M$, $S^{-1}Tor_n^A(M, M')$ is isomorphic to $Tor_n^{S^{-1}A}(S^{-1}M, S^{-1}M')$ and $S^{-1}Ext_A^n(M, M')$ is isomorphic to $Ext_{S^{-1}A}^n(S^{-1}M, S^{-1}M')$ where n is integer and M is a left A-module of finite type.

Keywords Duo-ring • Regular element • Functor • Ring fraction • Fraction module • Localization

13.1 Introduction

In this paper, A denotes a duo-ring and M a left A -module. Called ring of left fractions of A in respect of a non-empty subset S of A (or localization of A in S), every pair (B, i) where B is a ring and $i : A \rightarrow B$ a morphism of rings such as i(s)

M.B.F. Ben Maaouia Laboratory Algebra, Codes and Cryptography Applications (ACCA), UFR SAT, University Gaston Berger (UGB), St. Louis, Senegal e-mail: maaouiaalg@hotmail.com

M. Sanghare Doctoral School of Mathematics-Computer – UCAD, Cheikh Anta Diop University of Dakar, Dakar, Senegal e-mail: mamadou.sanghare@ucad.edu.sn

© Springer International Publishing Switzerland 2016 C.T. Gueye, M. Siles Molina (eds.), *Non-Associative and Non-Commutative Algebra and Operator Theory*, Springer Proceedings in Mathematics & Statistics 160, DOI 10.1007/978-3-319-32902-4_13

D. Faye (🖂)

Faculty of Sciences and Technologies University, Cheikh Anta Diop de Dakar – UCAD, Laboratory of Algebra, Cryptography, Algebraic Geometry and Application – LACGAA, Dakar, Senegal e-mail: fayeda2@yahoo.fr

is invertible in B for every $s \in S$ and satisfied the following universal properties: for any ring B' and for any morphism $f: A \to B'$ such that f(s) is invertible in B' for every $s \in S$, then there exists a unique morphism $\overline{f}: B \to B'$ such as $\overline{foi} = f$.

In their works, many authors have built fractions rings in the commutative case from S a multiplicative subset of a commutative ring A (see [7, 12, 13]). In [13], M. Rotman built, in the commutative case the ring of fractions $S^{-1}A$ and fractions module S^{-1} , where M S is not any empty part A using the saturated part multiplicative \overline{S} generated by S.

In his works, Mr. Ben Maaouia built, where A is not necessarily commutative, the fractions ring $S^{-1}A$ and fractions module $S^{-1}M$ relatively to a multiplicative subset saturated S which satisfies the left Ore conditions (see [1, 2, 4, 5]).

In this paper we build, where A is not necessarily commutative, the fractions ring $S^{-1}A$ and fractions module S^{-1} relatively to a non-empty subset S formed of regular elements of A.

Thus we have shown the following results, if S is a non-empty part of a duo ring A formed of regular elements, then:

- **1.** \overline{S} , saturated multiplicative subset generated by *S* satisfies the left Ore conditions.
- 2. the ideal $(1 sX_s)_{s \in S}$ of the polynomials algebra in S variables $A[(X_s)_{s \in S}]$ generated by the set of polynomials $\{1 - sX_s, s \in S\}$ is two-sided.
- 3. $S^{-1}A$ exists and $S^{-1}A = A[(X_s)_{s \in S}]/(1 sX_s)_{s \in S}$.
- 4. $S^{-1}A \cong (\overline{S})^{-1}A$
- 5. By asking $S^{-1}M = (\overline{S})^{-1}M$, we have $S^{-1}M \cong (\overline{S})^{-1}A \otimes_A M$. Therefore $S^{-1}M \cong A[(X_s)_{s\in S}]/(1-sX_s)_{s\in S} \otimes_A M.$
- **6.** $S^{-1}Tor_n^A(M, M') = Tor_n^{S^{-1}A}(S^{-1}M, S^{-1}M')$ where n is a integer. **7.** $S^{-1}Ext_A^n(M, M') \cong Ext_{S^{-1}A}^n(S^{-1}M, S^{-1}M')$ where n is a integer and M is an A -module of finite type.

Preliminary Definitions and Results 13.2

A is a ring and M a left A -module, then the left ring of fractions $S^{-1}A$ and the fractions module $S^{-1}M$ exist if and only if S is a saturated multiplicative part of A that satisfies the conditions of Ore (see [6] Chap. 1). Note that the existence of such a party is not evident in any ring.

In a duo-ring, all the regular elements form a saturated multiplicative party checking Ore conditions (see [2] Chap. 2). Thus if S is a part of a duo-ring A formed from regular elements, then S generates saturated multiplicative subset \overline{S} which checks the Ore conditions. Then we can localize from a party formed of regular elements of a duo-ring.

Moreover, several authors have worked on class are not necessarily commutative duo-rings as Rdao in 1970 (see [9]), Brungs in 1975 (see [2]), Mr. Sangharé in 1989 in his thesis of State (see [2]) and in his article "On S-duo-rings" (see [2]), Ben Maaouia in 2003 in his thesis 3rd cycle (see [6]), in 2011 in his article entitled "Localisation in the duo-ring" (see [2]) and in his thesis of State (see [2] Chap. 2).

Definition 2.1. Let *A* be a ring, *A* is said:

- 1. left duo-ring if every left ideal is two-sided,
- 2. right duo-ring if every right ideal is two-sided
- 3. duo-ring if it is left duo-ring and right duo-ring.

Example 13.2.

- 1) Any commutative ring A is a commutative duo-ring.
- **2**) All non-commutative valuation ring is a non-commutative ring duo (see [8, 10, 12]).
- **3**) (see [3, 14, 15]) Let F be the field of polynomial functions with coefficients in Q, where Q is the field of rational numbers. The elements of F are ordered as follows:
 - $(q_n t^n + \ldots + q_0)(q'_m t^m + \ldots + q'_0) > 0$ if and only if $q_n q'_m > 0$.

Let F be the field of polynomial functions with coefficients in Q, where Q is the field of rational numbers. The elements of F are ordered as follows:.

We consider $R = Q\{\{G^+\}\}$ the ring of formal series $\sum q_{\alpha}g_{\alpha}$ où $q_{\alpha} \in Q$ and $\{g_{\alpha}\}$ is a suite of well-ordered G with elements $g_{\alpha} \ge (1, 0)$.

Then, R is a duo-ring.

Definition 2.3. Let *A* be a ring and *S* a part of *A*. It is said that :

- 1. *S* is a multiplicative part of *A* if $1_A \in S$ and *S* is stable by multiplication; ie for all $x, t \in S, xt \in S$.
- 2. *S* is a saturated multiplicative part if: for all $x, t \in A$, $xt \in S$, imply $x \in S$, and $t \in S$, .

Definition 2.4 (Ore Conditions). Let *S* saturated multiplicative part of a ring *A*. It is said that *S* satisfies the left Ore conditions (right respectively) if:

- 1. $\forall a \in A, \forall s \in S$, they exist $t \in S$, and $b \in A$, such as ta = bs (respectively at = sb). It is said that s is left switchable (right respectively).
- 2. $\forall a \in A, si \ s \in S$ such as as = 0 (respectively sa = 0), then there exists $t \in S$, such as ta = 0 (respectively at = 0). It is said that S is left invertible (right respectively).

Example 2.5.

- 1. The set of regular elements of a duo-ring *A* is a saturated multiplicative part of *A* that satisfies the left and right Ore conditions (see [2]).
- 2. If *s* is a regular element of a duo-ring *A*, the set $S = \{s^k, k \in \mathbb{N}\}$ is a saturated multiplicative subset of *A* which satisfies left and right Ore conditions.

Definition 2.6. Let *A* be a ring and *S* a saturated multiplicative part of *A*.

Called saturated multiplicative subset generated by *S*, the smallest saturated multiplicative part containing *S* denoted \overline{S} if it exists.

Proposition 2.7. Let A be a duo-ring and S a non-empty saturated multiplicative part of A consists of regular elements. Then S generates a saturated multiplicative subset \overline{S} that satisfies the Ore conditions.

Proof. Let *F* be the set of all saturated multiplicative parts of *A* containing *S* and satisfies the left Ore conditions. *F* is not empty, indeed, the set of regular elements of *A* is a saturated multiplicative part of *A* containing *S* and verifies the Ore conditions (see [6]). So the smallest saturated multiplicative part of *A* containing *S* and vérifies the Ore conditions is called saturated multiplicative subset generated by *S*, denotes by \overline{S} .

13.3 Fractions Rings and Polynomial Algebra

Theorem 3.1. Let A be a duo-ring, S of a non-empty part of A consists of regular elements, $A[(X_s)_{s \in S}]$ algebra of polynomials in S variables with coefficients in A.

Then the application:

$$\varphi : A [(X_s)_{s \in S}] \longrightarrow (\overline{S})^{-1} A$$
$$P \longmapsto \varphi (P) = P ((1/s)_{s \in S})$$

is an algebra homomorphism ker $\varphi = \langle 1 - sX_s \rangle_{s \in S}$ where $\langle 1 - sX_s \rangle_{s \in S}$ is the two-sided ideal of the algebra of polynomials $A[(X_s)_{s \in S}]$ generated by the set of polynomials $\{1 - sX_s, s \in S\}$.

Moreover, one has the isomorphism $A[(X_s)_{s\in S}]/(1-sX_s)_{s\in S} \cong (\overline{S})^{-1}A$ où \overline{S} is saturated multiplicative subset generated by the elements $(1-sX_s)_{s\in S}$.

Proof. Let *P* and *Q* be two polynomials; we have :

$$\begin{split} \varphi(P+Q) &= (P+Q)((\frac{1}{s})_{s\in S}) = (P(\frac{1}{s}))_{s\in S-} + (Q(\frac{1}{s}))_{s\in S} = \varphi(p) + \varphi(Q) \\ \varphi(PQ) &= (PQ)((\frac{1}{s})_{s\in S}) = (P(\frac{1}{s}))_{s\in S-}(Q(\frac{1}{s}))_{s\in S} = \varphi(p)\varphi(Q) \\ \varphi(1_{A[(X_{s})_{s\in S}]} = \varphi(1_{A}) = \frac{1}{1} = 1_{(\overline{S})^{-1}A} \\ \varphi(\lambda P) &= (\lambda P)((\frac{1}{s})_{s\in S}) = \lambda(P(\frac{1}{s})_{s\in S}) = \lambda\varphi(P) \end{split}$$

check that ker $\varphi = \langle 1 - sX_s \rangle_{s \in S}$.

- 1. if $P = (1 sX_S)_{s \in S}$ alors $P(\frac{1}{s}) = (1 s.\frac{1}{s})_{s \in S} = 0$, then $\langle 1 - sX_s \rangle_{s \in S} \subseteq \ker \varphi$.
- 2. if $P \notin (1 sX_s)$, then $\varphi(P) \neq 0 \Rightarrow P \notin \ker \varphi$.

Therefore ker $\varphi = \langle 1 - sX_s \rangle_{s \in S}$ and so $\langle 1 - sX_s \rangle_{s \in S}$ is a two-sided ideal.

Hence, according to the universal property of the Rings quotients, we have the isomorphism $A[(X_s)_{s \in S}]/(1 - sX_s)_{s \in S} \cong (\overline{S})^{-1}A$

Theorem 3.2 (Existence of Fractions Ring). Let A be a duo-ring and S a nonempty part of regular elements of A. Then the ring of left fractions of A on S, $S^{-1}A$ exists.

Proof. Let $X = \{x_s : s \in S\}$ such that the application:

$$\varphi: X \to S$$
$$x_s \mapsto \varphi(x_s) = s$$

is a bijection.

Let $A[(X_s)_{s \in S}]$ be the ring of polynomials over A in S variables and $I = \langle 1 - sX_s \rangle_{s \in S}$ the two-sided ideal generated by the set $\{1 - sx_s : s \in S\}$.

Show that $S^{-1}A = A[(X_s)_{s \in S}]/I$. As *I* is a two-sided ideal, then $A[(X_s)_{s \in S}]/I$ is a ring and a same algebra.

Définissons

$$i: A \to A \left[(X_s)_{s \in S} \right] / I$$
$$a \mapsto i (a) = a + I$$

the canonical map.

We have $\overline{1-sX_s} = \overline{0} \Rightarrow \overline{sX_s} = \overline{s}.\overline{X_s} = \overline{1}$ likewise $\overline{X_s.s} = \overline{X_s}.\overline{s} = \overline{1}$ because variables commute with the constants (A elements) in A $[(X_s)_{s\in S}]$.

So $\overline{s} = i(s)$. And as fractions ring $S^{-1}A$ of A in S exists to isomorphism, one can take $S^{-1}A = A[(X_s)_{s \in S}]/I$.

Proposition 3.3. Let S a non-empty rings of a duo-part A consists of regular elements. Let \overline{S} saturated multiplicative subset generated by S. So we have:

$$\left(\overline{S}\right)^{-1}A \cong S^{-1}A.$$

Proof. This proposal is the result of **Theorems 3.1 and 3.2**.

Proposition 3.4. Let A be a duo-ring, M left A -module, S a non-empty subset of A consists of regular elements, s a element of S. While the application:

$$\mu_s: M \to M$$
$$m \mapsto sm$$

is bijective for every $s \in S$ if M is a $S^{-1}A$ -module. Fractions module called left of M with respect to S, every pair (P, h_P) where P is a left $S^{-1}A$ -module (that is to say, $\mu_s : P \to P$ so bijective for every $s \in S$ and $h_P : M \to P$ is called canonical morphism, which is the solution of universal problem solution:

That is to say, if $\varphi : M \to M'$ is a morphism of left *A* -modules where *M* is a S^{-1} *A*-module, then there exists a unique morphism $\overline{\varphi} : P \to M'$ such as $\overline{\varphi}oh = \varphi$.

Notation. The left fractions module of *M* on *S*, if it exists, is denote by $(S^{-1}M, h)or$ S⁻¹ M if there is no confusion.

Remark 3.5. A is a duo-ring and S of a non-empty A consists of regular elements. So if the left fractions module of M on S exists, it is unique up to isomorphism.

Definition 3.6. Let *A* be a duo-ring, *S* is a non-empty subset of *A* consists of regular elements and *M* a left *A* -module. Then we define the left module of fractions *M* on *S* denote $S^{-1}M$ by $S^{-1}M = (\overline{S})^{-1}M$ where $(\overline{S})^{-1}M$ is the left fractions module of *M* with respect to the saturated multiplicative part \overline{S} satisfying the left Ore conditions (see [2] and [4]).

Theorem 3.7. Let A a duo-ring, S a non-empty part of A consists of regular elements and M a left A -module. So the couple $((\overline{S})^{-1}A \otimes_A M, h)$ where h is the morphism defined by:

$$h: M \to (\overline{S})^{-1}A \otimes_A M$$
$$m \mapsto 1 \otimes m$$

is a left fractions module of M on S.

Proof. Let $\varphi : M \to M'$ be a morphism where M' is a $S^{-1}A$ -module

The morphism:

$$(\overline{S})^{-1}A \times M \to M'$$
$$(a/\sigma, m) \mapsto (a/\sigma)\varphi(m)$$

where $a \in A$ and $\sigma \in \overline{S}$ is A-bilinear. There exists a unique morphism $\overline{\varphi} : (\overline{S})^{-1}A \otimes_A M \to M'$ such as $\overline{\varphi} \circ h = \varphi$. As h(M) generates $(\overline{S})^{-1}A \otimes_A M$, then $\overline{\varphi}$ is the unique morphism making the following diagram commutative.

So according to the universal property of the localization, $(\overline{S})^{-1}A \otimes_A M$ is a module of fractions M with respect to \overline{S} .

Corollary 3.8. Let A be a duo-ring, S a non-empty part of A consists of regular elements, M a left A- module and $S^{-1}M$ a left fractions of module M on S. Then $S^{-1}M \cong (\overline{S})^{-1}A \otimes_A M$ Consequently $S^{-1}M \cong A[(X_s)_{s \in S}]/(1 - sX_s)_{s \in S} \otimes_A M$

Proof. Indeed just take in Proposition 3.7 $(\bar{S})^{-1}A = A[(X_s)_{s \in S}/(1 - sX_s)_{s \in S}])$ applying Propositions 3.1 and 3.2. The proof follows from **Propositions 3.1, 3.2** and 3.7.

13.4 Properties for Functions $S^{-1}()$, Ext and Tor

In this section, we show that if A is a duo-ring, S a non-empty subset of A consists of regular elements, M a A -module, then the functor $S^{-1}()$ commutes with the functors Tor(M,) and Ext(M,).

Proposition 4.1. *A is a duo-ring, S a non-empty part of A consists of regular elements. Let B and M of A -modules where B is finitely. Then there exists a natural isomorphism* $\psi_B : S^{-1}Hom_A(B, M) \to Hom_{S^{-1}A}(S^{-1}B, S^{-1}M)).$

Proof. Just build the natural isomorphisms $\theta_B : Hom_A(B, S^{-1}M) \to Hom_{S^{-1}B}(S^{-1}B, S^{-1}M)$ et $\varphi_B : S^{-1}Hom_A(B, M) \to Hom_A(B, S^{-1}M)$ and consequently take $\psi_B = \theta_B \circ \varphi_B$.

- a) Suppose that $B = A^n$ is an A-module of finite type. Let b_1, b_2, \ldots , $(b_n$ a basis B, then $\frac{b_1}{1}, \frac{b_2}{1}, \ldots, \frac{b_n}{1}$ is a basis of $S^{-1}B = \overline{(S)}^{-1}A \otimes_A A^n$. The morphism $\theta_{A^n} : Hom_A(B, S^{-1}M) \to Hom_{S^{-1}A}(S^{-1}B, S^{-1}M)$ defined by $\theta_{A^n}(f) = \tilde{f}$ with $\tilde{f}(\frac{b_i}{\delta}) = \frac{f(b_i)}{\delta}$ is well defined and is an isomorphism.
- b) Now let *B* A *-module* a finitely generated, then the sequence $A^t \rightarrow A^n \rightarrow B \rightarrow 0$ is exact.

Let us apply this result contravariant functors $Hom_A(-, P)$ et $Hom_{S^{-1}A}(-, P)$ où $P = S^{-1}M$. We obtain the following commutative diagram or lines are exact:

$$\begin{array}{ccccc} 0 \longrightarrow Hom_{A}(B,P) & \longrightarrow & Hom_{A}(A^{n},P) & \longrightarrow & Hom_{A}(A^{t},P) \\ & \downarrow & \theta_{B} & \downarrow & \theta_{A^{n}} & \downarrow & \theta_{A^{t}} \\ 0 \longrightarrow Hom_{S^{-1}A}(S^{-1}B,P) \longrightarrow Hom_{S^{-1}A}(S^{-1}A^{n},P) \longrightarrow Hom_{S^{-1}A}(S^{-1}(A)^{t},P) \end{array}$$

Because θ_{A^n} and θ_{A^t} are isomorphisms then according [11], θ_B and there is an isomorphism.

The isomorphism θ_B is defined by:

$$\theta_B(\beta) = \beta$$
 où $\beta \in Hom_A(B, P)$

and

$$\begin{split} \tilde{\beta} : S^{-1}B \to P = S^{-1}M \\ \frac{b}{\delta} \mapsto \frac{\beta(b)}{\delta}. \end{split}$$

build now φ_B by

$$\varphi_B: S^{-1}Hom_A(B, M) \to Hom_A(B, S^{-1}M)$$

by

$$\varphi_B: rac{g}{\delta}\mapsto g_\delta$$

where

$$g_{\delta} : B \to S^{-1}M$$
$$b \mapsto g_{\delta}(b) = \frac{g(b)}{\delta}$$

Recall (see [11]) que $S^{-1}Hom_A(B, M) = (\overline{S})^{-1} \otimes_A Hom_A(B, M)$ and φ_B is an isomorphism if *B* is a free finitely *A*-module.

En appliquant à la suite exacte $A^t \to A^n \to B \to 0$ les foncteurs contravariants exacts à gauche : $Hom_A(-, M)$ et $Hom_A(-, S^{-1}M)$, on obtient le diagramme commutatif suivant

$$\begin{array}{cccc} 0 \longrightarrow S^{-1}Hom_{A}(B,M) \longrightarrow & S^{-1}Hom_{A}(A^{n},M) \longrightarrow & S^{-1}Hom_{A}(A^{t},M) \\ & & \downarrow \varphi_{B} & & \downarrow \varphi_{A^{n}} & & \downarrow \varphi_{A^{t}} \\ 0 \longrightarrow Hom_{A}(B,S^{-1}M) \longrightarrow Hom_{A}(A^{n},S^{-1}M) \longrightarrow Hom_{A}(A^{t},S^{-1}M) \end{array}$$

 φ_{A^n} and φ_{A^t} being isomorphisms, according [11] φ_B is an isomorphism.

Lemma 4.2 ([11]). Let A and B, and two rings $T : {}_{A}Mod \rightarrow {}_{B}Mod$ an exact and additive functor. So T commutes with the homology functor H_n : any complex (C, d) of the category ${}_{A}Comp$ and any relative integer n, we have :

 $H_n(TC, Td) \cong TH_n(C, d).$

Lemma 4.3 ([11]). A is a ring; for every left A -module B, we have $: \otimes_A B \cong Tor_0^A(-, B)$; that is to say for all A -module right R we have: $R \otimes_A B \cong Tor_0^A(R, B)$.

Theorem 4.4. Let A be a duo-ring and S of a non-empty A consists of regular elements. Then for any natural number $n \ge 0$ and all A -modules M and M', we have : $\mathbf{S}^{-1}\mathbf{Tor}_{\mathbf{n}}^{\mathbf{A}}(\mathbf{M},\mathbf{M}') \cong \mathbf{Tor}_{\mathbf{n}}^{\mathbf{S}^{-1}\mathbf{A}}(\mathbf{S}^{-1}\mathbf{M},\mathbf{S}^{-1}\mathbf{M}')$.

Proof.

- a) For n = 0 is deduced Lemmas 4.2 and 4.3 : $Tor_0^A(M, M') \cong M_k \otimes M'$ et $Tor_0^{S^{-1}A}(S^{-1}M, S^{-1}M') \cong S^{-1}M \otimes S^{-1}M'$, whence $S^{-1}(M \otimes_A M') \cong S^{-1}M \otimes_A S^{-1}M'$.
- b) Let now $P_{M'}$ projective resolution of M'. As the functor S^{-1} keeps productivity (see [2]), then $S^{-1}(\mathbf{P}_{M'})$ is a projective resolution $S^{-1}M'$.

According to the **Theorem 4.1**, proving the existence of isomorphism ψ_B , we deduce the isomorphism complex

 $S^{-1}(M\otimes_A P_{M'})\cong S^{-1}M\otimes_{S^{-1}A}S^{-1}(P_{M'}).$

Therefore their homology groups are isomorphic and as the functor $S^{-1}()$ is exact (according to [6]) and by definition the functor *Tor*, we have : $\mathbf{H_n}(\mathbf{S^{-1}}(\mathbf{M} \otimes_{\mathbf{A}} \mathbf{P_{M'}}) \cong \mathbf{S^{-1}} \mathbf{H_n}(\mathbf{M} \otimes_{\mathbf{A}} \mathbf{P_{M'}}) \cong \mathbf{S^{-1}} \mathbf{Tor_n^A}(\mathbf{M}, \mathbf{M'})$; as well as $S^{-1}(\mathbf{P_{M'}})$ is a projective resolution $S^{-1}M'$, so

$$H_n(S^{-1}M \otimes_{S^{-1}A}S^{-1}(P_{M'})) \cong Tor_n^{S^{-1}A}(S^{-1}M, S^{-1}M').$$

190

Theorem 4.5. Let S be a non-empty part formed of regular elements of a Noetherian duo-ring A, and M a A-Module left finitely. So

 $S^{-1}Ext_A^n(M, M') \cong Ext_{S^{-1}A}^n(S^{-1}M, S^{-1}M')$ for every $n \ge 0$ and every A-module left M'.

Proof. As *A* is Noetherian and *M* is finitely generated, according [11], there is a projective resolution P_M of *M* for which each term is of finite type.

According to the **Theorem 4.1**, there is a natural isomorphism: $\psi_M : S^{-1}Hom(M, M') \rightarrow Hom_{S^{-1}A}(S^{-1}M, S^{-1}M')$

for everything A-module M'.

We deduce the isomorphism complex :

 $S^{-1}(Hom_A(P_M, M')) \cong Hom_{S^{-1}A}(S^{-1}(P_M), S^{-1}M').$ Applying the homology functor H_n we have:

 $H_n\left(S^{-1}\left(Hom_A\left(P_M,M'\right)\right)\right) \cong S^{-1}H_n\left(Hom_A\left(P_M,M'\right)\right) \cong S^{-1}Ext_A^n\left(M,M'\right)$ then the functor $S^{-1}()$ is exact therefore we have:

 $H_n\left(Hom_{S^{-1}A}\left(S^{-1}P_M,S^{-1}M'\right)\right) = Ext_{S^{-1}A}^n\left(S^{-1}M,S^{-1}M'\right)$ because $S^{-1}\left(P_M\right)$ is a projective resolution.

References

- 1. M. Ben Maaouia, *These 3éme cycle*. Localisation et enveloppe plate dans un duo-anneau (Université Cheikh Anta Diop, Dakar, Juillet, 2003)
- 2. M. Ben Maaouia, *These d'Etat*. Anneaux et modules de fractions-Enveloppes et couvertures plates dans les duo-anneaux (Université Cheikh Anta Diop, Dakar, 2011)
- M. Ben Maaouia, M. Sangharé, Localisation dans les duo anneaux. Afr. Mat., Sér. III 20, 163–179 (2009)
- M. Ben Maaouia, M. Sangharé, Anneaux et modules de fractions. Int. J. Algebra 6(13–16), 775–798 (2012)
- M. Ben Maaouia, M. Sangharé, Anneau de Valuation Non nécessairement commutatif et Duoanneau de Dedekind. Global J. Pure Appl. Math. 8(1) 49–63 (2012)
- 6. H.H. Brungs, Three questions on Duo-Rings. Pac. J. Math 58(2), 345-349 (1975)
- A. Chambert-Loir, Algèbre commutative. Cours de l'Universite de Rennes I (2006–2007), pp. 85–87
- 8. T. Guy, On duo- rings. Can. Math. Bull. 3, 167-172 (1960)
- 9. F. Rdao, Non injectives collineations on some sets in Desarguesian projective planes and extension of non-commutative valuations. Aequat. Math. **4**, 307–321 (1970)
- 10. G. Renault, Algèbre Non Commutative, Gauthier-Villars, Montréal (1975)
- 11. J.J. Rotman, Notes on Homological Algebra (University of Illinois, Urbana, 1968)
- 12. J.J. Rotman, An Introduction to Homological Algebra (Académic, New York, 1972)
- J.J. Rotman, Advanced Modern Algebra, 1st edn. (Prentice Hall, Upper Saddle River, 2002), pp. 898–921
- 14. M. Sangharé, On S-Duo-Rings, Commun. Algebra. 20(8), 2183–2189 (1992)
- M. Sangharé, *These d'Etat*. Sur les I-Anneaux, les S-Anneaux et les F-Anneaux (Université Cheikh Anta Diop, Dakar, 1993)