
Chapter 11
Strongly Split Poisson Algebras

Antonio J. Calderón Martín and Diouf Mame Cheikh

Abstract Split Poisson algebras are one of the most known examples of graded
Poisson algebras. Since an important category in the class of graded algebras is
the one of strongly graded algebras, we introduce in a natural way the category of
strongly split Poisson algebras and show that if .P; f�; �g/ is a centerless strongly
split Poisson algebra, thenP is the direct sum of split-ideals, each one being a split-
simple strongly split Poisson algebra. In case of being P infinite dimensional and
locally finite, we also show that if .P; f�; �g/ is furthermore simple then it is the
direct limit of finite dimensional simple (strongly) split Poisson algebras.
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11.1 Introduction and Previous Definitions

We begin by noting that, unless otherwise stated, all of the Poisson algebras are
considered of arbitrary dimension and over an

Definition 11.1. A Poisson algebra P is a Lie algebra .P; f�; �g/ over an arbitrary
base fieldK, endowed with an associative product, denoted by juxtaposition, in such
a way that the following Leibniz identity

fxy; zg D fx; zgy C xfy; zg
holds for any x; y; z 2 P:
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Poisson algebras has attracted the interest of many authors in the last years, as
consequence in part for their applications in physics and geometry (see for instance
[1, 2, 8, 10–12]). A subalgebra ofP is a linear subspace closed by both the Lie and
the associative products. An ideal I of P is a subalgebra satisfying fI;Pg C IP C
PI � I.

In order to study the structure of arbitrary Poisson algebras, the first author
introduced in [6] the concept of split Poisson algebra as a Poisson algebra in which
the underlying Lie algebra structure is split. So, let us recall the concept of a split
Lie algebra, (see for instance [5] or [16]). A splitting Cartan subalgebra H of a
Lie algebra L is defined as a maximal abelian subalgebra, (MASA), of L satisfying
that the adjoint mappings ad(h) for h 2 H are simultaneously diagonalizable. If L
contains a splitting Cartan subalgebra H, then L is called a split Lie algebra. From
here:

Definition 11.2. A split Poisson algebra is a Poisson algebra P in which the Lie
algebra .P; f�; �g/ is split respect to a MASA H of .P; f�; �g/.
This means that we can decompose P as the direct sum

P D H ˚ .
M

˛2�

P˛/

where P˛ D fv˛ 2 P W fh; v˛g D ˛.h/v˛ for any h 2 Hg, for a linear functional
˛ 2 H� and � WD f˛ 2 H�nf0g W P˛ ¤ 0g is the corresponding root system.
The subspaces P˛ for ˛ 2 H� are called root spaces of P (respect to H/ and the
elements ˛ 2 � [ f0g are called roots of P respect to H.

By the other hand, we also recall that a graded algebra

A D
M

g2G
Ag;

that is, A is the direct sum of linear subspaces indexed by the elements in an abelian
group .G; C/ in such a way that AgAh � AgCh, is called a strongly graded algebra
if the condition AgAh D AgCh holds for any g; h 2 G, see [9, 13].

Since by [6, Lemma 1] we know that in any split Poisson algebra P we have

H D P0; fP˛;Pˇg � P˛Cˇ; P˛Pˇ � P˛Cˇ (11.1)

for any ˛; ˇ 2 �[f0g, we get thatP becomes a graded Poisson algebra by means of
the abelian free group generated by �. Taking into account the above observations
we introduce the category of strongly split Poisson algebras as follows.

Definition 11.3. A split Poisson algebra P with set of nonzero roots � is called a
strongly split Poisson algebra if H D P

˛2�

.fP˛;P�˛g C P˛P�˛/ and given ˛; ˇ 2
� such that ˛ C ˇ 2 � then we have fP˛;Pˇg C P˛Pˇ D P˛Cˇ:
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As examples of strongly split Poisson algebras we can consider the finite
dimensional semisimple Poisson algebras, the Poisson algebras associated to L�-
algebras and to semisimple locally finite split Lie algebras and the split Poisson
algebras considered in [5, Sect. 2] among other classes of Poisson algebras (see
[14–16]).

Let us focuss for a while on the concept of split-ideal in the framework of
split Poisson algebras. Observe that the set of linear mappings fad.h/ W h 2 Hg,
where ad.h/ W P ! P is defined by ad.h/.v/ D fh; vg, is a commuting set
of diagonalizable Lie endomorphisms. Hence, given any ideal I of P, since I is
invariant under this set we get that we can write

I D .I \ H/ ˚ .
M

˛2�

.I \ P˛//: (11.2)

From here, if I \ H ¤ 0, then I adopts a split like expression (respect to I \ H).
This motivate us to introduce the concept of split-ideal as follows. An ideal I of a
split Poisson algebra P is called a split-ideal if I \ H ¤ 0. A split Poisson algebra
P will be called split-simple if fP;Pg;PP ¤ 0 and it has no proper split-ideals.
Finally, we recall that a root system � is called symmetric if it satisfies that ˛ 2 �

implies �˛ 2 �. Throughout the paper � will be always supposed symmetric.

11.2 Main Results

In the following, P denotes a strongly split Poisson algebra and

P D H ˚ .
M

˛2�

P˛/

the corresponding root spaces decomposition.

Definition 11.4. Let ˛ 2 � and ˇ 2 � be two nonzero roots. We say that ˛ is
connected to ˇ if there exists a family ˛1; ˛2; : : : ; ˛n 2 � satisfying the following
conditions:

1. ˛1 D ˛:

2. f˛1 C ˛2; ˛1 C ˛2 C ˛3; : : : ; ˛1 C � � � C ˛n�1g � �:

3. ˛1 C ˛2 C � � � C ˛n D �ˇ for some � 2 f˙1g:
We also say that f˛1; : : : ; ˛ng is a connection from ˛ to ˇ.

It is straightforward to verify that the relation connection is an equivalence
connection, see [5] or [6]. So we can consider the quotient set

�= �D fŒ˛� W ˛ 2 �g:
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Now, for any Œ˛� 2 �= � we are going to introduce the linear subspace

PŒ˛� WD HŒ˛� ˚ VŒ˛�

where

HŒ˛� WD P
ˇ2Œ˛�

.fPˇ;P�ˇg C PˇP�ˇ/ � H and VŒ˛� WD L
ˇ2Œ˛�

Pˇ:

Proposition 11.1. Any PŒ˛� is a split-ideal of P. If furthermore .P; f�; �g/ is
centerless then PŒ˛� is split-simple.

Proof. First, let us show that

fPŒ˛�;Pg D fHŒ˛� ˚ VŒ˛�;H ˚ .
M

ˇ2Œ˛�

Pˇ/ ˚ .
M

�…Œ˛�

P� /g � PŒ˛�: (11.1)

Clearly, see Eq. (11.1), we have fHŒ˛�;H ˚ .
L

ˇ2Œ˛�

Pˇ/g C fVŒ˛�;Hg � VŒ˛�.

Since in case fPı;P� g ¤ 0 for some ı; � 2 � with ı C � ¤ 0, the connections
fı; �g and fı; �; �ıg imply Œı� D Œı C �� D Œ� �, we get fVŒ˛�;

L
ˇ2Œ˛�

Pˇg � PŒ˛� and

fVŒ˛�;
M

�…Œ˛�

P� g D 0: (11.2)

Taking now into account the fact HŒ˛� WD P
ˇ2Œ˛�

.fPˇ;P�ˇg C PˇP�ˇ/, Jacobi

identity and Leibniz identity together with Eq. (11.2) finally give us

fHŒ˛�;
M

�…Œ˛�

P� g D 0 (11.3)

and so Eq. (11.1) holds.
Second, let us verify that

PŒ˛�P D .HŒ˛� ˚ VŒ˛�/.H ˚ .
M

ˇ2Œ˛�

Pˇ/ ˚ .
M

�…Œ˛�

P� // � PŒ˛�: (11.4)

Since HŒ˛� � H D P0 we have, (take into account Eq. (11.1)), that

HŒ˛�.
M

ˇ2Œ˛�

Pˇ/ C VŒ˛�H � VŒ˛�:

We also have by arguing with the associative product as we did above with the Lie
product that
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VŒ˛�.
M

ˇ2Œ˛�

Pˇ/ � PŒ˛�

and

VŒ˛�.
M

�…Œ˛�

P� / D 0: (11.5)

Now, by taking also into account the expression of HŒ˛�, Eq. (11.5), Leibniz identity
and associativity we get

HŒ˛�.
M

�…Œ˛�

P� / D 0I

while by taking into account the fact H D P0, Leibniz identity and associativity we
have

HŒ˛�H � HŒ˛�:

We have shown that Eq. (11.4) holds. In a similar way we can prove

PPŒ˛� � PŒ˛�

and so we have showedPŒ˛� is an ideal ofP. Since Eq. (11.3) implies fHŒ��;VŒ˛�g D
0 for any Œ�� ¤ Œ˛�, the facts H D P

Œˇ�2�=�
HŒˇ� and ˛ ¤ 0 allow us to get HŒ˛� ¤ 0.

From here, we can also assert that PŒ˛� is a strongly split Poisson ideal admitting
the split decomposition

PŒ˛� D HŒ˛� ˚ .
M

ˇ2Œ˛�

Pˇ/:

Suppose now .P; f�; �g/ is centerless and let us show PŒ˛� is split-simple.
Consider a split-ideal I of PŒ˛�. By Eq. (11.2) we can write I D .I \ HŒ˛�/ ˚
.

L
ˇ2Œ˛�

.I \ Pˇ// with I \ HŒ˛� ¤ 0: For any 0 ¤ h 2 I \ HŒ˛�, the fact .P; f�; �g/
is centerless gives us that there exists ˇ 2 Œ˛� such that fh;Pˇg ¤ 0. From here we
get fI \ HŒ˛�;Pˇg D Pˇ and so 0 ¤ Pˇ � I.

Given now any ı 2 Œ˛� n f˙ˇg, the fact that ˇ and ı are connected allows us to
take a connection f˛1; ˛2; : : : ; ˛ng from ˇ to ı. Since ˛1; ˛2; ˛1 C ˛2 2 � we have
fP˛1 ;P˛2gCP˛1P˛2 D P˛1C˛2 � I as consequence ofP˛1 D Pˇ � I. In a similar
way fP˛1C˛2 ;P˛3gCP˛1C˛2P˛3 D P˛1C˛2C˛3 � I and we finally get by following
this process thatP˛1C˛2C˛3C���C˛n D P�ı � I for some � 2 ˙1. From here we have
HŒ˛� � I and as consequence, taking also into account that Equation (11.3) allows us
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to assert fHŒ˛�;Pıg D Pı for any ı 2 Œ˛�, that VŒ˛� � I. We have showed I D PŒ˛�

and so PŒ˛� is split-simple.

Theorem 11.1. Any strongly split Poisson algebra P such that .P; f�; �g/ is cen-
terless is the direct sum of split-ideals, each one being a split-simple strongly split
Poisson algebra.

Proof. Since we can write the disjoint union � D S
Œ˛�2�n�

Œ˛� we have P D
P

Œ˛�2�n�
PŒ˛�. Let us now verify the direct character of the sum: given x 2 PŒ˛� \

P
Œˇ� 2 �= �

ˇ œ ˛

PŒˇ�; since by Eqs. (11.2) and (11.3) we have fPŒ˛�;PŒˇ�g D 0 for

Œ˛� ¤ Œˇ�, we obtain

˚
x;PŒ˛�

� C

8
ˆ̂<

ˆ̂:
x;

X

Œˇ� 2 �= �

ˇ œ ˛

PŒˇ�

9
>>=

>>;
D 0:

From here fx;Pg D 0 and so x D 0, as desired. Consequently we can write

P D
M

Œ˛�2�n�
PŒ˛�:

Finally, Proposition 11.1 completes the proof.

11.3 On Locally Finite Split Poisson Algebras

Throughout this section the base field K will be algebraically closed and of
characteristic 0.

A Lie algebra L is called locally finite if every finite subset of L is contained or
equivalently generates a finite dimensional subalgebra of L. Since we are working
in a split framework, we recall that the class of semisimple locally finite split Lie
algebras can be characterized among all split algebras by the property that all its
roots are integrable, i.e., corresponding to sl.2;K/ subalgebras acting in a locally
finite fashion (see [16, III.19]). As a consequence, any nonzero root space L˛ of a
semisimple locally finite split Lie algebra .L; Œ�; ��/ satisfies dimL˛ D dimL�˛ D 1

and ˛.ŒL˛;L�˛�/ ¤ 0. By [16, Proposition I.7 (v) and Theorem III.19]) we also
know that in any of such an algebras, if ˛; ˇ; ˛ C ˇ 2 � then ŒL˛;Lˇ� D L˛Cˇ and
H D P

˛2�

ŒL˛;L�˛�. Hence the class of semisimple locally finite split Lie algebras is

contained in the one of strongly split Lie algebras and so any Poisson structure
associate to this family of Lie algebras gives rise to a family of strongly split
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Poisson algebras, (in particular the results in our previous sections would apply).
We introduce the class of locally finite Poisson algebras in a natural way as follows.

Definition 11.5. A Poisson algebra P is called locally finite if every finite subset
of P is contained in a finite dimensional subalgebra of P.

Our goal in this section is to prove that any infinite dimensional locally finite split
Poisson algebra with .P; f�; �g/ simple, (by the above comments strongly split), is
the direct limit of a family of finite dimensional simple (strongly) split Poisson
algebras. Hence, from now on

P D H ˚ .
M

˛2�

P˛/

will denote such an algebra.
Let S be a non empty finite subset of �; and denote byPS the Poisson subalgebra

of P generated by the set fP˛ W ˛ 2 S [ �Sg which will be called the subalgebra
of P associated to S. Taking into account that the above comments on semisimple
locally finite split Lie algebras, Leibniz identity and associativity allow us to write
PS D fHS CfPS;PSg where fHS is the linear spam of the set fP˛P�˛ W ˛ 2 S[�Sg,
by arguing as in [4, Proposition 2.7] we can verify .PS; f�; �g/ is a finite dimensional
semisimple split subalgebra of the Lie algebra .P; f�; �g/. It is well known from the
theory of finite dimensional semisimple Lie algebras that PS can be written

PS D
nSM

iD1

PSi ;

with any PSi a finite dimensional simple Lie algebra. Let us verify any PSi is
actually a (finite dimensional) simple Poisson algebra. By taking into account
PSj D fPSj ;PSjg for any j 2 f1; : : : ; nSg, Leibniz identity gives us PSiPSj D
PSifPSj ;PSjg � PSj whence i ¤ j. From here, by writing now PSiPSj D
fPSi ;PSigPSj , Leibniz identity allows us to assert PSiPSj D 0 if i ¤ j. This fact

implies PSiPS D PSi.
nSL
iD1

PSi/ � PSiPSi . Since Leibniz identity gives us that

PSiPSi is a Lie ideal of the semisimple Lie algebra .PS; f�; �g/ then PSiPSi D
kL

rD1

PSr with k � nS and for any r 2 f1; : : : ; kg being PSr D PSj for some

j 2 f1; : : : ; nSg. If some PSr ¤ PSi then, by the one hand Leibniz identity gives

fPSiPSi ;PSrg D 0 and by the other hand fPSiPSi ;PSrg D f
kL

rD1

PSr ;PSrg D PSr ¤
0, a contradiction. From here PSiPSi D PSi and so PSiPS � PSi . In a similar way
we get PSPSi � PSi and hence PSi is a (simple) Poisson ideal of PS.

From here, we can consider the family of finite dimensional simple Poisson
subalgebras of P,
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fPSigS2F;i2f1;:::;nSg;

where F denotes the family of all non empty finite subsets of �: If we now denote
by fiSi;Tjg the inclusion mappings, we will show that

R WD .fPSigS2F;i2f1;:::;nSg; fiSi;Tjg/ (11.1)

is a direct system. First, we note that by arguing as in [3, Lemma 1 and Corollary 2]
or [4, Sect. 2], we can prove the next lemma:

Lemma 11.1. Let .L; Œ�; ��/ be a finite dimensional semisimple split Lie algebra.
Then the following assertions hold

1. If ˛ is a nonzero root, then L˛ belongs to a simple component Lj.
2. If ˛ and ˇ are two connected nonzero roots, then L˛ and Lˇ belong to the same

simple component Lj:

By returning to Eq. (11.1), we assert that given

PSi ;PTj 2 fPSigS2F;i2f1;:::;nSg;

there exists

PQi0
2 fPSigS2F;i2f1;:::;nSg

such that PSi ;PTj � PQi0
. Indeed, let us fix ˛0 2 Si. Since as consequence of

Proposition 11.1 we have thatP has all of its nonzero roots connected, then we have
that for any ˇ 2 Si [ Tj there exists a connection from ˛0 to ˇ, which we denote
by C˛0;ˇ . We also have that Q WD S

ˇ2Si[Tj

C˛0;ˇ is a finite set of � and therefore

we can consider the finite dimensional semisimple subalgebra associatedPQ. Write

PQ D
nQL
iD1

PQi , eachPQi being a simple Poisson subalgebra ofPQ. By Lemma 11.1-

1, there exists PQi0
such that P˛0 � PQi0

. Finally, by Lemma 11.1-2, PSi ;PTj �
PQi0

: Therefore, R is a direct system of finite dimensional simple Poisson algebras.
Let us denote by lim! R D .P0; fejgj/ the direct limit of this direct system. Since

the pair .P; fijg/, where ij denotes the inclusion mapping, satisfies the conditions
of the direct limit for R, we have that the universal property of the direct limit gives
us the existence of a unique monomorphism ˚ W P0 ! P such that ˚ıej D ij. Since
P0 D S

j
ej.Pj/, (see for instance [7]), we have ˚.P0/ D ˚.

S
j
ej.Pj// D S

j
Pj; and

therefore ˚ is an isomorphism from P0 onto
S
j
Pj. Let us show that P D S

j
Pj.

Indeed, if x 2 P, by Theorem 11.1 we can write x D
nP

iD1

h˛i C
mP
jD1

v�j with ˛i; �j 2 �,

v�j 2 P�j and where any h˛i 2 fP˛i ;P�˛ig. Consider T D f˛i W i D 1; : : : ; ng[f�j W
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j D 1; : : : ;mg � � and, following the above notation, T 0 D S
ˇ2T

Cı0;ˇ , ı0 being a

fixed element of T . We have T 0 is a finite set of � that gives us the semisimple finite

dimensional Poisson algebra associated PT0 : Write PT0 D
rL

iD1

PT0

i
, where PT0

i
;

i D 1; : : : ; r are simple finite dimensional Poisson algebras. As R is a direct system
for the inclusion then there exists a finite dimensional simple Poisson subalgebra

PP0 such that
rS

iD1

PT0

i
� PP0 and therefore x 2 PP0 as we wished to show. From

here, we can state the next result.

Theorem 11.2. LetP be an infinite dimensional locally finite split Poisson algebra
with .P; f�; �g/ simple. Then there exists a direct system, with the inclusion,

R D .fPjgj2J; fikjgj�k/

of finite dimensional simple Poisson subalgebras of P such that

P D lim! R:
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