Chapter 10 Some Properties of Mono-correct and Epi-correct Modules

Anta Niane Gueye

Abstract Let C be a category. An objet A in C is said to be mono-correct (respectively epi-correct) if for any *B* in \mathfrak{C} , and $f : A \longrightarrow B$, $g : B \longrightarrow A$ two monomorphisms (respectively epimorphisms) then $A \simeq B$. In category *Set*, this property is known as the Cantor Bernstein theorem and it's dual. In category of abelian groups, we show that the Cantor Bernstein theorem is not verified. In *R*-mod, we study some relations between mono-correctness of modules and some algebraic operations as for submodules, direct sum of modules and factor modules.

Keywords Mono-equivalent • Epi-equivalent • Mono-correct • Epi-correct • Hopfian • Co-hopfian

10.1 Introduction

Two objects A , B in a category C are called mono-equivalent (respectively epiequivalent) if there are monomorphisms (respectively epimorphisms) $f : A \longrightarrow$ *B* and *g* : *B* \longrightarrow *A*. The first case is denoted *A* $\stackrel{m}{\sim}$ *B* and the second *A* $\stackrel{e}{\sim}$ *B*. *A* and *B* are called equivalent if there exists an isomorphism $f : A \longrightarrow B$. We denote it by $A \simeq B$.

An object A in a category C is said to be mono-correct (respectively epi-correct) if for every *B* in \mathfrak{C} , $A \cong B$ (respectively $A \cong B$) implies $A \cong B$. A class C of objects in a category $\mathfrak C$ is said to be mono-correct (respectively epi-correct) if for any objects *A*, *B* in $\mathcal{C} A \cong B$ (respectively $A \cong B$) implies $A \cong B$. It is well known by the Cantor-Bernstein theorem and it's dual that the category *Set* is mono-correct and epi-correct but when the objects are provided with some algebraic structures the property of being mono-correct or epi-correct is not always conserved by the

A.N. Gueye (\boxtimes)

Département de Mathèmatiques et Informatique, Laboratoire d'Algèbre, de Cryptologie, de Géométrie Algébrique et Applications (LACGAA), Dakar, Senegal e-mail: gantaniane@yahoo.fr

[©] Springer International Publishing Switzerland 2016

C.T. Gueye, M. Siles Molina (eds.), *Non-Associative and Non-Commutative Algebra and Operator Theory*, Springer Proceedings in Mathematics & Statistics 160, DOI 10.1007/978-3-319-32902-4_10

category. Several papers studying analogues of Cantor-Bernstein theorem in many algebraic structures have been investigated (see $[1-4, 6, 7]$ $[1-4, 6, 7]$ $[1-4, 6, 7]$ $[1-4, 6, 7]$ $[1-4, 6, 7]$).

In this paper, we study some properties of mono-correctness and epi-correctness in modules category. We give examples of \mathbb{Z} -modules that are mono-equivalent but are not mono-correct, and this show that the Cantor-Bernstein theorem is not verified in the category of abelian groups. Studying mono-correctness, epi-correctness and the algebraic operations on modules, we remark that if the ring *R* is semisimple or the *R*-module *M* is semi simple then all submodules and factor modules are monocorrect. Furthermore we establish that any direct summand of an mono-correct (respectively epi-correct) module is mono-correct (respectively epi-correct) and the direct sum of two modules is mono-correct if and only if each of them is monocorrect. We prove also that if an *R*-module *M* contains an injective submodule *N* such that M/N mono-correct, then M is mono-correct.

10.2 Preliminaries

Let *R* be an associative ring with identity and *R*-Mod be the category of left *R*modules.

Let *M* be an *R*-module. We recall the following definitions and facts:

Definition 10.1. Two *R*-modules *M* and *N* are called mono-equivalent (respectively epi-equivalent) if there are monomorphisms (respectively epimorphisms) $f : M \longrightarrow$ *N* and $g: N \longrightarrow M$.

We denote *M* and *N* mono-equivalent by $M \stackrel{m}{\simeq} N$, *M* and *N* epi-equivalent by $M \stackrel{e}{\simeq} N$.

Definition 10.2. An *R*-module *M* is said to be injective if for any monomorphism of *R*-modules $f : P \longrightarrow Q$ and any homomorphism $g : P \longrightarrow M$, there exists a homomorphism $h: Q \longrightarrow M$ such that $g = h \circ f$.

Remark 10.2.1. The property of being an injective module is preserved under isomorphism.

Definition 10.3. Let *M* be an *R*-module. An element *m* of *M* is said to be divisible if, for every non zero divisor *r* in *R*, there exists $m' \in M$ such that $m = m'r$. *M* is said to be a divisible *R*-module if every element of *M* is divisible.

Proposition 10.2.2 ([\[5\]](#page-5-4)). *An abelian group is injective if and only if it is divisible.*

10.3 The Main Results

Proposition 10.3.1. Let E and F be the Z-modules $E = \bigoplus_{n=1}^{\infty}$ $n=1$ \mathbb{Q}_n *and* $F = \mathbb{Z} \oplus$

 $\left(\bigoplus_{n=1}^{\infty} \mathbb{Q}_n\right)$ where $\mathbb{Q}_n = \mathbb{Q}$ the set of all rational numbers, for each integer $n \geq 1$. $\chi_{n=1}$ /
Then E and F are mono-equivalent.

Proof. Consider the natural injection:

$$
f:\bigoplus_{n=1}^{\infty}\mathbb{Q}_n\longrightarrow\mathbb{Z}\oplus\left(\bigoplus_{n=1}^{\infty}\mathbb{Q}_n\right)
$$

and the morphism

$$
g = \bigoplus_{n=0}^{\infty} g_n : \mathbb{Z} \oplus \left(\bigoplus_{n=1}^{\infty} \mathbb{Q}_n \right) \longrightarrow \bigoplus_{n=1}^{\infty} \mathbb{Q}_n
$$

defined as follows: *g*⁰ is the canonical injection

$$
g_0:\mathbb{Z}\longrightarrow \mathbb{Q}_1
$$

and for $n \geq 1$

$$
g_n:\mathbb{Q}_n\longrightarrow\mathbb{Q}_{n+1}
$$

where g_n is identity of Q. It is clear that *f* and *g* are monomorphism, hence *E* and *F* are mono-equivalent.

Definition 10.4. An *R*-module *M* is said to be mono-correct (respectively epicorrect) if for any *R*-module *N*, $M \stackrel{m}{\simeq} N$ (respectively $M \stackrel{e}{\simeq} N$) implies $M \simeq N$.

Example 10.3.2. Z is epi-correct and mono-correct as Z-module.

Proof. Let *N* be a \mathbb{Z} -module such that $\mathbb{Z} \xrightarrow{e} N$. That is, there are two epimorphisms $f: \mathbb{Z} \longrightarrow N$ and $g: N \longrightarrow \mathbb{Z}$. Then $g \circ f: \mathbb{Z} \longrightarrow \mathbb{Z}$ is a surjective endomorphism of Z. As Z is noetherian, $g \circ f : \mathbb{Z} \longrightarrow \mathbb{Z}$ is bijective and also f is bijective. Then Z is epi-correct. For monocorrectness of \mathbb{Z} , see [\[3\]](#page-5-5).

Proposition 10.3.3. *The category of abelian groups is not mono-correct.*

Proof. We have seen that

$$
\bigoplus_{n=1}^{\infty} \mathbb{Q}_n \stackrel{m}{\simeq} \left(\mathbb{Z} \oplus \left(\bigoplus_{n=1}^{\infty} \mathbb{Q}_n\right)\right)
$$

but there exist any isomorphism between $\bigoplus_{n=1}^{\infty}$ $n=1$ \mathbb{Q}_n and $\mathbb{Z} \oplus \left(\bigoplus_{n=1}^{\infty} \right)$ $n=1$ \mathbb{Q}_n by

Remark [10.2.1](#page-1-0) and Proposition [10.2.2.](#page-1-1) Note that $\bigoplus_{n=1}^{\infty} \mathbb{Q}_n$ is a divisible abelian $n=1$

group and $\mathbb{Z} \oplus \left(\bigoplus^\infty$ $n=1$ \mathbb{Q}_n is not a divisible abelian group.

Definition 10.5. An *R*-module *M* is said to be hopfian (respectively co-hopfian) if every surjective (respectively injective) endomorphism $f : M \rightarrow M$ is an automorphism.

Remark 10.3.4 ([\[3\]](#page-5-5) and [\[2\]](#page-5-6)). The following facts are well known:

- For a commutative ring R, any co-hopfian module is mono-correct.
- If *R* is a strongly Π -regular ring, then any finitely generated module is monocorrect.

Proposition 10.3.5. *Let R be a ring.*

- *1. Any hopfian R-module is epi-correct.*
- *2. If R is commutative then any finitely generated R-module is epi-correct.*

Proof. Let *M* be a hopfian module, *N* an *R*-module and $f : M \longrightarrow N$, $g : N \longrightarrow M$ two epimorphisms. We have that $g \circ f$ is a surjective endomorphism of *M*, then *f* is bijective.

For the second point, remark that if *R* is a commutative ring, **Vasconcelos** have shown that any finitely generated module is hopfian.

Proposition 10.3.6. *Let M be a mono-correct (respectively epi-correct) module and K be a direct summand of M. Then K is mono-correct (respectively epi-correct).*

Proof. Let $M = K \bigoplus K'$ and let *N* be a module such that $K \stackrel{m}{\simeq} N$ (respectively $K \stackrel{e}{\simeq} N$).

That is, there are two monomorphisms (respectively epimorphisms) $f: K \longrightarrow N$ and $g: N \longrightarrow K$. Then *f* and *g* induce monomorphisms (respectively epimorphisms) $f \oplus 1_{K'} : M \longrightarrow N \bigoplus K'$ and $g \oplus 1_{K'} : N \bigoplus K' \longrightarrow M$.

Since *M* is mono-correct (respectively epi-correct), then $M \simeq N \bigoplus K'$, hence $K \oplus K' \simeq N \oplus K'$, thus $K \simeq N$.

Proposition 10.3.7. *Let* M_1 , M_2 *be R-modules and* $M = M_1 \bigoplus M_2$ *. Then M is mono-correct if and only if M*1*, M*² *are mono-correct.*

Proof. If *M* is mono-correct, then by Proposition $10.3.6 M_1$ $10.3.6 M_1$, M_2 are mono-correct. Conversely, $M = M_1 \bigoplus M_2$ with M_1, M_2 mono-correct. Let *N* be an *R*-module *f*, *g* be two monomorphisms as follows: $f : M \longrightarrow N$ and $g : N \longrightarrow M$. Let $g(N) = N_1 \bigoplus N_2$, hence $N \simeq N_1 \bigoplus N_2$. Now, consider the following morphisms:

$$
f_1: M_1 \xrightarrow{f|_{M_1}} f(M_1) \xrightarrow{g|_{f(M_1)}} N_1, g_1: N_1 \longrightarrow M_1.
$$

and

$$
f_2: M_2 \xrightarrow{f_{|_{M_2}} f(M_2)} f(M_2) \xrightarrow{g|_{f(M_2)}} N_2, g_2: N_2 \longrightarrow M_2.
$$

 f_1 , g_1 , f_2 , g_2 are monomorphisms and M_1 , M_2 mono-correct, thus $M_1 \simeq N_1$, $M_2 \simeq N_2$, hence $M_1 \bigoplus M_2 \simeq N_1 \bigoplus N_2 \simeq N$.

Definition 10.6. Let *M* be an *R*-module. An *R*-module *P* is said to be generated by *M* or *M*-generated if, for every pair of distinct morphisms $f, g: P \longrightarrow Q, Q \in$ *R*-Mod, there is a morphism $h : M \longrightarrow P$ and $hf \neq hg$.

Definition 10.7. Let *M* be an *R*-module. An *R*-module *N* is said to be subgenerated by *M* if *N* is isomorphic to a submodule of an *M*-generated module.

We let $\sigma[M]$ denote the full subcategory of *R*-Mod whose objects are all *R*-modules subgenerated by *M*.

Theorem 10.3.1 ([\[6\]](#page-5-2)). *For a module M, the following assertions are equivalent:*

- 1. The class of all modules in $\sigma[M]$ is mono-correct.
- 2. every module in $\sigma[M]$ is mono-correct.
- *3. M is semisimple.*

Proposition 10.3.8. *Let R be a ring and M an R-module.*

- *1. If any proper submodule of M is mono-correct, then M is mono-correct.*
- *2. If M is semi simple, then all submodules and all factor modules of M are monocorrect.*
- *3. If R is semi simple, then all R-module are mono-correct.*

Proof. Let *N* be an *R*-module and $f : M \longrightarrow N$, $g : N \longrightarrow M$ be two monomorphisms. We have $g(N) \simeq N$ and $g(N)$ is a submodule of M. If $g(N)$ is not a proper submodule of *M*, then $g(N) = M$. If $g(N)$ is a proper submodule of *M*, then $g(N)$ is mono-correct. Now let us consider:

 $h: M \xrightarrow{f} N \xrightarrow{g} g(N)$ and the canonical injection $k: g(N) \longrightarrow M$.

h, *k* are monomorphisms and then $M \simeq g(N) \simeq N$

For the second point, remark that all submodules and all factor modules of *M* belong to $\sigma[M]$, and by Theorem [10.3.1,](#page-4-0) they are all mono-correct.

For the third point, note that if *R* is semi simple then $\sigma[R] = R$ -Mod

Proposition 10.3.9. *Let M be an R-module and N a submodule of M. If N is an injective R-module and M*=*N mono-correct then M is mono-correct.*

Proof. Let *K* be a submodule of *M* and $f : M \longrightarrow K$ a monomorphism. We have that $N \simeq f(N)$, $K/f(N) \simeq K/N$ and $K/f(N)$ is a submodule of M/N . Let us consider the following commutative diagram:

i, *i*' are canonical injections, *p*, *p*^{\prime} are canonical surjections and *f*^{\prime} is the restriction of *f* on *N*. Since *f* is injective, *f'* is an isomorphism, *p* is surjective, we have that \bar{f} is injective by the five lemma.

 $f: M/N \longrightarrow K/f(N), i: K/f(N) \longrightarrow M/N$ are monomorphisms and *M*/*N* mono-correct then $M/N \simeq K/f(N)$. As *N* is an injective *R*-module, $M = N \bigoplus N'$, and $K = f(N) \bigoplus K'$, hence $N' \simeq K'$, thus $M \simeq K$.

References

- 1. I.G. Connell, Some rings theoretic Schroder-Bernstein theorems. Am. Math. Soc. **132**, 335–351 (1968). <http://dx.doi.org/10.2307/1994844>
- 2. A.N. Guèye, C.T. Guèye, On mono-correct modules. Br. J. Math. Comput. Sci. **3**(4), 598–604 (2013); SCIENCEDOMAIN International
- 3. A.N. Guèye, C.T. Guèye, M. Sangharè, A new characterization of commutative strongly ˘-regular rings. J. Math. Res. **4**(5), 30–33 (2012). Canadian Center of Science and Education, <http://dx.doi:10.5539/jmr.V4n5p30>
- 4. S.K. Rososhek, Correctness of modules (russ.). Izvestiya VUZ. Mat. **22**(10), 77–82 (1978); translated in Russian Mathematics, Allerton Press
- 5. D.W. Sharpe, P. Vamos, *Injective Modules*. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 62 (Cambridge, University Press, 1972)
- 6. R. Wisbauer, Correct classes of Modules. Algebra Discret. Math. 1–13 (2005)
- 7. V. Trnkova, V. Koubek, The Cantor-Bernstein Theorem for functors. Commun. Math. Univ. Carol. **14**(2), 197–204 (1973)