Rigorous Numerical Computation of Polynomial
Differential Equations Over Unbounded Domains

Olivier Bournez', Daniel S. Graca>?®™), and Amaury Pouly'?

1 LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
2 CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
dgraca@ualg.pt
3 SQIG/Instituto de Telecomunicagdes, Lisbon, Portugal

Abstract. In this abstract we present a rigorous numerical algorithm
which solves initial-value problems (IVPs) defined with polynomial dif-
ferential equations (i.e. IVPs of the type v' = p(t,), y(to) = yo, where p
is a vector of polynomials) for any value of t. The inputs of the algorithm
are the data defining the initial-value problem, the time 7" at which we
want to compute the solution of the IVP, and the maximum allowable
error € > (. Using these inputs, the algorithm will output a value §r such
that ||gr — y(T')|| < € in time polynomial in 7', —loge, and in several
quantities related to the polynomial IVP.

1 Introduction

With the appearance of fast and cheap digital computing devices in the last
decades, digital computers have become increasingly important as a simulation
tool in many fields, ranging from weather forecast to finance. The idea under-
lying such simulations is simple: pick some system which we want to study and
simulate it on a computer using some numerical method. Quite often we can
obtain in this manner information about the system which we could not collect
otherwise. Think, for example, about the case of weather forecast.

However, this poses a fundamental question: how reliable are these simu-
lations? The truth is that, although historically such simulations have already
given fundamental insights (like suggesting that dynamical systems can have
strange attractors [6]), due to phenomena like sensitive dependence on initial
conditions, in general not much is known about the overall error committed in
such simulations.

It therefore seems to make sense to develop numerical methods with the
property that we can rigorously tell which is the error done when we apply
such methods. This is in contrast to what happens usually in numerical analysis
where, at best, only estimates of the error are presented. On the other side, to
obtain rigorous bounds on the error, we need to use more complicated methods,
which are more amenable for analysis, and which are usually slower or might
even be unfeasible for practical implementation. In general, it is not trivial to
devise numerical methods which are practical to use and for which the error can
be rigorously determined.

© Springer International Publishing Switzerland 2016
1.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 469-473, 2016.
DOI: 10.1007/978-3-319-32859-1_40

470 O. Bournez et al.

To achieve a balance between these contradicting requirements, it makes
sense to consider restricted classes of problems, which are nonetheless general
enough to be of practical importance.

In this paper, we consider initial-value problems (IVPs) defined with poly-
nomial ordinary differential equations (ODEs)

y'(t) = p(y)
{y(fo) =1 (1)

where p is a vector of polynomials. We consider, without loss of generality that
the system is autonomous since the independent variable ¢ can always be writ-
ten as an extra variable y,41 satisfying y;,,; = 1. We note that almost any
IVP written with the “usual” functions of Analysis (trigonometric functions,
exponentials, their inverses and compositions, etc.) can always be rewritten as
a polynomial ODE (see e.g. [3,9]).

Therefore IVPs with the format (1) are sufficiently broad to include a wide
range of IVPs of practical interest. Moreover, since the right-hand side consists
of relatively simple functions (polynomials), we are able to rigorously analyze
the error committed when we solve numerically (1) by using properties of poly-
nomials.

2 Solving IVPs Over Unbounded Domains

It is standard practice to analyze numerical methods which solve IVPs only
over a compact time interval [0, T]. This is both true in the Numerical Analysis
literature (see e.g. [1]) as it is in the Theoretical Computer Science literature
(see e.g. [5]).

However, in practice, people seldom set a valid time interval [0,7] before
implementing a numerical procedure, be it for the simple reason that they some-
times do not even know which might be the relevant value for T before doing
some numerical simulations.

Therefore, it seems desirable to devise numerical methods which make no
prior assumptions on the values which T might take. Of course, the time needed
to execute the algorithm (the computational complexity) depends on T": in gen-
eral, the higher T, the more time the algorithm will take to execute, but it seems
to be a non-trivial task to determine which is the dependence of the execution
time of the algorithm with respect to T.

There is a “conventional wisdom” that the unbounded time domain case can
be reduced to the bounded time one, for which many results exist (see e.g. [4,5]).
However, this is not true, since in the bounded case many parameters which are
important for the (unbounded) complexity are hidden in the constant of the
“big-O” notation. A very simple example illustrates this problem. Assume that
y : I — R? is the solution of

y1(0) =1 yi(t) =yt
1 y2(t) = v (t

o —
<
V)
—~
o~
~—

Rigorous Numerical Computation of Polynomial Differential Equations 471

It follows from [7] that for any fixed, compact I, y is polynomial time computable.
On the other hand, this system can be solved explicitly and yields:

() =€y () = e O yt) = e -1

One immediately sees that, since y is a tower of exponentials, y cannot be poly-
nomial time computable over R.

Note that this discrepancy arises because, in the bounded time case, the size
of compact I is not taken as a parameter of the problem (because it is fixed).
Also note that the dimension d of the system is hardly ever taken into account,
although it has a huge influence on the resulting complexity. More precisely, if T
is bounded then the complexity of computing y(t) can be seen to be polynomial
in ¢, but more than exponential in the length of the interval I and on d: this
part is usually hidden in the “big-O” part of the constants.

3 Contributions

The main contribution of this abstract is to show that there is a numerical
method, which we denote as SolvePIVPEx (see Sect. 4 for more details), which
can rigorously solve IVPs (1) over unbounded domains.

Theorem 1 (Complexity and Correctness of SolvePIVPEx). Let t € R,
e >0, and assume that y satisfies (1) over [to,t]. Let

x = SolvePIVPEx(tg, yo, p, t,€)

where SolvePIVPEx is a numerical method described in Sect. /. Then

“lz—-y@) lI<e
— the arithmetic complexity of the algorithm is bounded by

poly(k?, Len(to, t),log || yo ||, — loge)
— the bit complexity of the algorithm is bounded by
poly(k, Len(to,), log || yo ||, log Xp, —loge)

where k is the mazimum degree of the components of p, d is the number of
components of p, Xp is the sum of the absolute values of the coefficients of p,
and Len(to, t) is a bound on the length of the curve y(-) from the point (to,y(to))
to the point (t,y(t)).

472 O. Bournez et al.

4 The Numerical Method SolvePIVPEx and Sketch
of the Proof of Theorem 1

For reasons of space, we will not present the algorithm defining the numer-
ical method SolvePIVPEx nor the detailed proof of Theorem 1 (see [8] for
more details). However, in this section, we briefly sketch the ideas underlying
SolvePIVPEx and the proof of Theorem 1.

The numerical method SolvePIVPEXx is based on a generic adaptive Taylor
meta-algorithm which numerically solves (1). This is a meta-algorithm in the
sense that, in a first approach, we leave open the question of how we choose
some of the parameters of the algorithm. The goal of this meta-algorithm is,
given as input ¢t € Q and 0 < ¢ < 1 and the initial condition of (1), to compute
r € Q% such that || x —y(t) || < e.

We assume that the meta-algorithm uses the following values:

— n € N is the number of steps of the algorithm

—tg <ty <...<t, =1t are the intermediate times

— 0t; =t — t; € Q are the time steps

— fori e {0,...,n—1}, w; € Nis the order at time ¢; and p; > 0 is the rounding
error at time t;

— §; € Q7 is the approximation of y at time ¢;.

This meta-algorithm works by solving the ODE (1) with initial condition
y(t;) = g; over a small time interval [t;, ¢;41], yielding as a result the approxima-
tion g;+1 of y(t;4+1). This approximation over this small time interval is obtained
using a Taylor approximation of order w; (we also do not fix, in a first approach,
the value w; to analyze its influence on the error and on the time complexity of
the algorithm. After this analysis is done, we can choose appropriate values for
w;) using the polynomial algorithm given in [2]. This procedure is repeated recur-
sively over [to,t1], [t1,t2], - .., [ti, tix1], ... until we reach the desire time ¢, = ¢.
This introduces three potential sources of errors: (i) a global error due to the
fact that, on the interval [t;, ¢;11] we do not solve y’ = p(y) with the initial value
y(t;) but instead with the initial value g;; (ii) a truncation error over [t;,t;41]
because we only compute a truncated Taylor series of the solution instead of
the full Taylor series; (iii) a rounding error because we might only have a finite
number of bits to store partial results.

Using the crucial fact that the right-hand side of (1) consists of polynomials,
at each time step t;, one can present an argument based on Cauchy majorants
to establish a lower bound on the local radius of convergence. We can choose
the step length ¢;11 — ¢; to be a constant fraction of the estimated radius of
convergence, and the majorants can also be used to select a suitable truncation
order w;. One can also show, using Gronwalls Lemma, that the propagation of
errors from one step to the next can be controlled, and depends on a bound
on the length of the curve y(-) over the domain under consideration. This last
parameter needs to be fed to the algorithm, but we can automatically determine
a suitable value for it, since we can decide if a (rational) value is large enough

Rigorous Numerical Computation of Polynomial Differential Equations 473

to be fed as a bound to the length of the curve. By using some (arbitrary, say
the value 1) initial guess and by restarting the method with a larger guess if
needed, we can continue this procedure until we decide that we have obtained a
high enough value which can be used as a bound for the length of the curve.

Proceeding in this manner we end up fixing the parameters of the meta-
algorithm (length of time steps, order of the Taylor approximation of each step,
etc.) and we end up with an algorithm SolvePIVPEx which satisfies the condi-
tions of Theorem 1.

Acknowledgments. D. Graca was partially supported by Fundag¢ao para a Ciéncia e
a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto de Telecomunicages
through the FCT project UID/EEA /50008,/2013.

References

1. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York
(1989)

2. Bostan, A., Chyzak, F., Ollivier, F., Salvy, B., Schost, E., Sedoglavic, A.: Fast
computation of power series solutions of systems of differential equations. In: SODA
2007, pp. 1012-1021, January 2007

3. Graga, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differ-
ential equations. Adv. Appl. Math. 40(3), 330-349 (2008)

4. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-
space complete. Comput. Complex. 19(2), 305-332 (2010)

5. Ko, K.I.: Computational Complexity of Real Functions. Birkhauser, Basel (1991)

6. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130141 (1963)

7. Miller, N., Moiske, B.: Solving initial value problems in polynomial time. In: Pro-
ceedings of 22 JAIIO - PANEL 1993, Part 2, pp. 283-293 (1993)

8. Pouly, A.: Continuous Models of Computation: From Computability to Complexity.
Ph.D. thesis, Ecole Polytechnique/Universidade do Algarve (2015)

9. Warne, P.G., Warne, D.P., Sochacki, J.S., Parker, G.E., Carothers, D.C.: Explicit
a-priori error bounds and adaptive error control for approximation of nonlinear
initial value differential systems. Comput. Math. Appl. 52(12), 1695-1710 (2006).
http://dx.doi.org/10.1016/j.camwa.2005.12.004

http://dx.doi.org/10.1016/j.camwa.2005.12.004

	Rigorous Numerical Computation of Polynomial Differential Equations Over Unbounded Domains
	1 Introduction
	2 Solving IVPs Over Unbounded Domains
	3 Contributions
	4 The Numerical Method SolvePIVPEx and Sketch of the Proof of Theorem
	References

