
Ilias S. Kotsireas · Siegfried M. Rump
Chee K. Yap (Eds.)

 123

LN
CS

 9
58

2

6th International Conference, MACIS 2015
Berlin, Germany, November 11–13, 2015
Revised Selected Papers

Mathematical Aspects of Computer
and Information Sciences



Lecture Notes in Computer Science 9582

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Ilias S. Kotsireas • Siegfried M. Rump
Chee K. Yap (Eds.)

Mathematical Aspects of Computer
and Information Sciences

6th International Conference, MACIS 2015
Berlin, Germany, November 11–13, 2015
Revised Selected Papers

123



Editors
Ilias S. Kotsireas
Wilfrid Laurier University
Waterloo, ON
Canada

Siegfried M. Rump
Hamburg University of Technology
Hamburg
Germany

Chee K. Yap
New York University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-32858-4 ISBN 978-3-319-32859-1 (eBook)
DOI 10.1007/978-3-319-32859-1

Library of Congress Control Number: 2016935965

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

Mathematical Aspects of Computer and Information Sciences (MACIS) is a series of
biennial conferences focusing on research in mathematical and computational aspects
of computing and information science. It is broadly concerned with algorithms, their
complexity, and their embedding in larger logical systems. At the algorithmic level,
there is a rich interplay along the numerical/algebraic/geometric/topological axes.
At the logical level, there are issues of data organization, interpretation, and associated
tools. These issues often arise in scientific and engineering computation where we need
experimental and case studies to validate or enrich the theory. MACIS is interested in
outstanding and emerging problems in all these areas. Previous MACIS conferences
have been held in Beijing (2006, 2011), Paris (2007), Fukuoka (2009), and Nanning
(2013). MACIS 2015 was held at the Zuse Institute Berlin (ZIB) located in the capital
of Germany, in the vicinity of the Freie Universität Berlin. Named after Konrad Zuse,
the inventor of the first programmable computer, ZIB is an interdisciplinary research
institute for applied mathematics and data-intensive high-performance computing. Its
research areas in modeling, simulation, and optimization in partnership with academia
and industry are exemplary of the goals of MACIS.

We are grateful to the session organizers (and their referees) for their critical role in
putting together the successful technical program. We also wish to extend our gratitude
to all MACIS 2015 conference participants—all of them contributed in making the
conference a success. The conference would not have been possible without the hard
work of the local organizers from ZIB, Winfried Neun, and Benedikt Bodendorf, and
the generous support of our sponsors, namely, Maplesoft and Zuse Institute Berlin
(ZIB).

This volume contains 55 refereed papers, i.e., seven invited papers and 48 submitted
papers, all of which were presented at MACIS. The papers are organized in sections
corresponding to 12 special sessions featured in the MACIS 2015 conference. The
topics of the MACIS 2015 sessions cover a wide array of research areas as follows:

SS1: Vikram Sharma: Curves and Surfaces
SS2: Jon Hauenstein: Applied Algebraic Geometry
SS3: Johannes Blömer: Implementations of Cryptography
SS4: Takeshi Ogita: Verified Numerical Computation
SS5: Johannes Blömer and Jan Camenisch: Cryptography and Privacy
SS6: Chengi Mou and Eric Schost: Polynomial System Solving
SS7: Maxime Crochemore and Costas Iliopoulos: Managing Massive Data
SS8: Viktor Levandovskyy, Alexey Ovchinnikov, Michael Wibmer: Computational
Theory of Differential and Difference Equations
SS9: Xiaoyu Chen and Jie Luo: Data and Knowledge Exploration
SS10: Rudolf Fleischer and Stefan Schirra: Algorithm Engineering in Geometric
Computing



SS11: Akitoshi Kawamura and Martin Ziegler: Real Complexity: Theory and
Practice
SS12: Jordan Ninin: Global Optimization

We wish to thank all the session organizers for their hard work in putting together
these sessions.

February 2016 Ilias S. Kotsireas
Siegfried M. Rump

Chee K. Yap

VI Preface



Organization

General Chair

Ilias S. Kotsireas Wilfrid Laurier University, Canada

Local Organization

Winfried Neun Zuse Institute Berlin, Germany
Benedikt Bodendorf Zuse Institute Berlin, Germany

Program Chairs

Siegfried Rump Hamburg University of Technology, Germany
Chee Yap Courant Institute, NYU, USA

Program Committee

Johannes Blömer University of Paderborn, Germany
Jan Camenisch IBM Zurich, Switzerland
Xiaoyu Chen Beihang University, Beijing, China
Maxime Crochemore Kings College London, UK
Rudolf Fleischer German University of Technology in Oman
Mark Giesbrecht University of Waterloo, Canada
Jonathan Hauenstein Notre Dame University, USA
Costas Iliopoulous Kings College London, UK
Akitoshi Kawamura University of Tokyo, Japan
R. Baker Kearfott University of Louisiana, Lafayette, USA
Viktor Levandovskyy RWTH Aachen University, Germany
Jie Luo Beihang University, Beijing, China
Chenqi Mou Beihang University, China
Jordan Ninin ENSTA Bretagne, France
Takeshi Ogita Tokyo Woman’s Christian University, Japan
Alexey Ovchinnikov CUNY Graduate Center, USA
Mohab Safey El-Din University of Pierre and Marie Curie, Paris, France
Michael Sagraloff Max Planck Institute, Saarbrücken, Germany
Stefan Schirra Otto von Guericke University Magdeburg, Germany
Éric Schost Western University, London, Ontario, Canada
Vikram Sharma Institute of Math Sciences, Chennai, India



Thomas Sturm Max Planck Institute, Saarbrücken, Germany
Michael Wibmer RWTH Aachen, Germany; University of Pennsylvania,

USA
Martin Ziegler Technical University Darmstadt, Germany

MACIS Steering Committee

Thomas Sturm (Chair) Universitat Autonoma de Barcelona, Spain
Ilias Kotsireas Wilfrid Laurier University, Canada
Stefan Ratschan Institute of Computer Science, Academy of Sciences

of the Czech Republic
Dongming Wang CNRS, Paris, France
Jinzhao Wu Guangxi University for Nationalities, China
Zhiming Zheng Peking University, China

VIII Organization



Abstracts of Invited Papers



Current Challenges in Developing Open
Source Computer Algebra Systems

Janko Böhm1(&), Wolfram Decker1, Simon Keicher2 and Yue Ren1

1 University of Kaiserslautern, 67663 Kaiserslautern, Germany
{boehm,decker,ren}@mathematik.uni-kl.de

2 Universidad de Concepción, Casilla 160-C, Concepción, Chile
simonkeicher@googlemail.com

Abstract. This note is based on the plenary talk given by the second author at
MACIS 2015, the Sixth International Conference on Mathematical Aspects of
Computer and Information Sciences. Motivated by some of the work done
within the Priority Programme SPP 1489 of the German Research Council DFG,
we discuss a number of current challenges in the development of Open Source
computer algebra systems. The main focus is on algebraic geometry and the
system SINGULAR.

The first author acknowledges support from the DFG projects DE 410/8-1 and -2, DE 410/9-1 and -2,
and from the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541). The
third author was supported partially by the DFG project HA 3094/8-1 and by proyecto FONDECYT
postdoctorado no 3160016.



Modeling Side-Channel Leakage

Stefan Dziembowski

University of Warsaw

Abstract. Physical side-channel attacks that exploit leakage emitted from devices
(see, e.g., [8]) are an important threat to cryptographic implementations. A recent
trend in cryptography [9, 10] is to construct cryptographic algorithms that are
secure in a given leakage model. Over the past 15 years several such models have
been proposed in the literature, starting with the probing model of [9], where the
computation is modeled as a Boolean circuit, and the adversary can learn a limited
number of them. Other models studied in the theory community include the
bounded-leakage paradigm [1, 5], the only computation leaks model [10], the
independent leakage model [7], the auxiliary input model [3], and many others.

Some of these models have been received with skepticism by the practitioners,
who often argued that it is much more realistic to model leakage as a noisy function
of the secret data. The first model for noisy leakage was proposed in [2], and fully
formalized in [11]. Recently in [4] it has been shown that in fact the noisy leakage
model of [11] can be reduced the probing model (i.e.: every noisy leakage function
can be simulated be a probing function), which, in particular, greatly simplifies
several proofs in the noisy leakage model, and can be viewed as establishing a
bridge between theory and practice in this area.

In this talk we give an overview of the leakage models used in the literature.
We then present the reduction from [4], and talk about some follow-up work [6].

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptogra-
phy against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–
495. Springer, Heidelberg (2009)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412.
Springer, Heidelberg (1999)

3. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-key encryp-
tion schemes with auxiliary inputs. In: Micciancio, D., (ed.) TCC 2010. LNCS, vol. 5978,
pp. 361–381. Springer, Heidelberg (2010)

4. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy
leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–
440. Springer, Heidelberg (2014)

Partly supported by the WELCOME/2010-4/2 grant founded within the framework of the EU
Innovative Economy (National Cohesion Strategy) Operational Programme.



Solving Structured Polynomial Systems
with Gröbner Bases

Jean-Charles Faugère

Inria, Equipe POLSYS, Centre Paris Rocquencourt, F-75005, Paris, France
Sorbonne Universits, UPMC Univ Paris 06, Equipe POLSYS,

LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract. In most cases, the number of solutions of a polynomial system is
exponential, and in finite fields, solving polynomial systems is NP-hard.
However, problems coming from applications usually have additional structures.
Consequently, a fundamental issue is to design a new generation of algorithms
exploiting the special structures that appear ubiquitously in the applications.

At first glance, multi-homogeneity, weighted homogeneity overdeter-
minedness, sparseness and symmetries seem to be unrelated structures. Indeed,
until recently we have obtained specific results for each type of structure: we
obtain dedicated algorithm and sharp complexity results too handle a particular
structure. For instance, we handle bilinear systems by reducing the problem to
determinantal ideals; we also propose ad-hoc techniques to handle symmetries.

All these results have been obtained separately by studying each structure
one by one. Recently we found a new unified way to analyze these problems
based on monomial sparsity. To this end, we introduce a new notion of sparse
Gröbner bases, an analog of classical Gröbner bases for semigroup algebras. We
propose sparse variants of the F4/F5 and FGLM algorithms to compute them
and we obtain new and sharp estimates on the complexity of solving them (for
zero-dimensional systems where all polynomials share the same Newton poly-
tope). As a by product, we can generalize to the multihomogeneous case the
already useful bounds obtained in the bilinear case. We can now handle in a
uniform way several type of structured systems (at least when the type of
structure is the same for every polynomial). From a practical point of view, all
these results lead to a striking improvement in the execution time.

We also investigate the non convex case when only a small subset of
monomials appear in the equations: the fewnomial case. We can relate the
complexity of solving the corresponding algebraic system with some combi-
natorial property of a graph associated with the support of the polynomials. We
show that, in some cases, the systems can be solved in polynomial time.

Joint work with Jules Svartz and Pierre-Jean Spaenlehauer.



Exploiting Structure in Floating-Point
Arithmetic

Claude-Pierre Jeannerod

Inria
Laboratoire LIP (CNRS, ENSL, Inria, UCBL), Université de Lyon

Abstract. The analysis of algorithms in IEEE floating-point arithmetic is most
often carried out via repeated applications of the so-called standard model,
which bounds the relative error of each basic operation by a common epsilon
depending only on the format. While this approach has been eminently useful
for establishing many accuracy and stability results, it fails to capture most
of the low-level features that make floating-point arithmetic so highly structured.
In this paper, we survey some of those properties and how to exploit them in
rounding error analysis. In particular, we review some recent improvements of
several classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties.

Keywords: Floating-point arithmetic ⋅ IEEE standard 754-2008 ⋅ Rounding
error analysis ⋅ High relative accuracy



Symbolic Geometric Reasoning with Advanced
Invariant Algebras

Hongbo Li(&)

Key Laboratory of Mathematics Mechanization, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

hli@mmrc.iss.ac.cn

Abstract. In symbolic geometric reasoning, the output of an algebraic method is
expected to be geometrically interpretable, and the size of the middle steps is
expected to be sufficiently small for computational efficiency. Invariant algebras
often perform well in meeting the two expectations for relatively simple geo-
metric problems. For example in classical geometry, symbolic manipulations
based on basic invariants such as squared distances, areas and volumes often
have great performance in generating readable proofs. For more complicated
geometric problems, the basic invariants are still insufficient and may not
generate geometrically meaningful results.

An advanced invariant is a monomial in an “advanced algebra”, and can be
expanded into a polynomial of basic invariants that are also included in the
algebra. In projective incidence geometry, Grassmann-Cayley algebra and
Cayley bracket algebra are an advanced algebra in which the basic invariants are
determinants of homogeneous coordinates of points, and the advanced invari-
ants are Cayley brackets. In Euclidean conformal geometry, Conformal Geo-
metric Algebra and null bracket algebra are an advanced algebra where the basic
invariants are squared distances between points and and signed volumes of
simplexes, and the advanced invariants are Clifford brackets.

This paper introduces the above advanced invariant algebras together with
their applications in automated geometric theorem proving. These algebras
are capable of generating extremely short and readable proofs. For projective
incidence theorems, the proofs generated are usually two-termed in that the
conclusion expression maintains two-termed during symbolic manipulations.
For Euclidean geometry, the proofs generated are mostly one-termed or two-
termed.

Keywords: Grassmann-Cayley algebra ⋅ Cayley bracket algebra ⋅ Conformal
Geometric Algebra ⋅ Null bracket algebra ⋅ Automated geometric theorem
proving



Decidability from a Numerical Point of View

Stefan Ratschan

Institute of Computer Science
Czech Academy of Sciences

Abstract. An important application of computation is the automatic analysis of
mathematical models of real-world systems, for example by simulation or for-
mal verification. Here, the systems to be automatically analyzed can be physical
systems (e.g., the wing of an airplane) or computational systems (e.g., computer
software). In the past, research in this direction has happened largely indepen-
dently for those two types of systems: Algorithms for automatically analyzing
models of physical systems have been developed mainly by engineers and
numerical mathematicians, resulting in notions such as “well-posed problem”,
and “condition number”, and algorithms for automatically analyzing models of
computational systems have been developed mainly by computer scientists
based on logic, and notions such as “decision procedure”, “decidability”, and
“computational complexity”.

Nowadays, the boundary between physical and computational systems is
vanishing, since computation is more and more intertwined with our everyday
physical world (cf. the notion of cyber-physical system). This makes it neces-
sary for the boundary between the two research strands mentioned above to be
overcome as well. In the talk, we discussed some examples of results obtained
by the speaker that point into this direction, especially results, where inspiration
from numerical analysis helps to solve problems that are considered undecidable
by computer scientists [1–3].

References

1. Franek, P., Ratschan, S., Zgliczynski, P.: Quasi-decidability of a fragment of the first-order
theory of real numbers. J. Autom. Reason. (2015). http://dx.doi.org/10.1007/s10817-015-
9351-3

2. Ratschan, S.: Continuous first-order constraint satisfaction. In: Calmet, J., Benhamou, B.,
Caprotti, O., Henocque, L., Sorge, V. (eds.) Artificial Intelligence, Automated Reasoning, and
Symbolic Computation. LNCS, vol. 2385, pp. 181–195. Springer, Berlin (2002)

3. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-decidable. Formal
Methods Syst. Des. 44(1), 71–90 (2014)

The research published in this paper was supported by GAČR grant 15-14484S and with institutional
support RVO:67985807.
ORCID: 0000-0003-1710-1513

http://dx.doi.org/10.1007/s10817-015-9351-3
http://dx.doi.org/10.1007/s10817-015-9351-3


Congruence Testing of Point Sets in Three
and Four Dimensions
Results and Techniques

Günter Rote(&)

Institut für Informatik, Freie Universität Berlin
rote@inf.fu-berlin.de

Abstract. I will survey algorithms for testing whether two point sets are con-
gruent, that is, equal up to an Euclidean isometry. I will introduce the important
techniques for congruence testing, namely dimension reduction and pruning, or
more generally, condensation. I will illustrate these techniques on the three-
dimensional version of the problem, and indicate how they lead for the first time
to an algorithm for four dimensions with near-linear running time (joint work
with Heuna Kim). On the way, we will encounter some beautiful and symmetric
mathematical structures, like the regular polytopes, and Hopf-fibrations of the
three-dimensional sphere in four dimensions.



Contents

Invited Papers

Current Challenges in Developing Open Source Computer Algebra Systems . . . 3
Janko Böhm, Wolfram Decker, Simon Keicher, and Yue Ren

Exploiting Structure in Floating-Point Arithmetic . . . . . . . . . . . . . . . . . . . . 25
Claude-Pierre Jeannerod

Symbolic Geometric Reasoning with Advanced Invariant Algebras . . . . . . . . 35
Hongbo Li

Congruence Testing of Point Sets in Three and Four Dimensions: Results
and Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Günter Rote

Curves and Surfaces

Mesh Reduction to Exterior Surface Parts via Random Convex-Edge Affine
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Andreas Beyer, Yu Liu, Hubert Mara, and Susanne Krömker

Numeric and Certified Isolation of the Singularities of the Projection
of a Smooth Space Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Rémi Imbach, Guillaume Moroz, and Marc Pouget

Linear k-Monotonicity Preserving Algorithms and Their
Approximation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

S.P. Sidorov

Applied Algebraic Geometry

Workspace Multiplicity and Fault Tolerance of Cooperating Robots . . . . . . . 109
Daniel A. Brake, Daniel J. Bates, Vakhtang Putkaradze,
and Anthony A. Maciejewski

Numerical Local Irreducible Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 124
Daniel A. Brake, Jonathan D. Hauenstein, and Andrew J. Sommese

Computing the Chow Variety of Quadratic Space Curves. . . . . . . . . . . . . . . 130
Peter Bürgisser, Kathlén Kohn, Pierre Lairez, and Bernd Sturmfels

http://dx.doi.org/10.1007/978-3-319-32859-1_1
http://dx.doi.org/10.1007/978-3-319-32859-1_2
http://dx.doi.org/10.1007/978-3-319-32859-1_3
http://dx.doi.org/10.1007/978-3-319-32859-1_4
http://dx.doi.org/10.1007/978-3-319-32859-1_4
http://dx.doi.org/10.1007/978-3-319-32859-1_5
http://dx.doi.org/10.1007/978-3-319-32859-1_5
http://dx.doi.org/10.1007/978-3-319-32859-1_6
http://dx.doi.org/10.1007/978-3-319-32859-1_6
http://dx.doi.org/10.1007/978-3-319-32859-1_7
http://dx.doi.org/10.1007/978-3-319-32859-1_7
http://dx.doi.org/10.1007/978-3-319-32859-1_8
http://dx.doi.org/10.1007/978-3-319-32859-1_9
http://dx.doi.org/10.1007/978-3-319-32859-1_10


Numerically Testing Generically Reduced Projective Schemes
for the Arithmetic Gorenstein Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Noah S. Daleo and Jonathan D. Hauenstein

Some Results Concerning the Explicit Isomorphism Problem
over Number Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Péter Kutas

Cryptography

Implementing Cryptographic Pairings on Accumulator Based Smart
Card Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Peter Günther and Volker Krummel

Short Group Signatures with Distributed Traceability. . . . . . . . . . . . . . . . . . 166
Johannes Blömer, Jakob Juhnke, and Nils Löken

On the Optimality of Differential Fault Analyses on CLEFIA . . . . . . . . . . . . 181
Ágnes Kiss, Juliane Krämer, and Anke Stüber

Verified Numerical Computation

H3 and H4 Regularities of the Poisson Equation on Polygonal Domains . . . . 199
Takehiko Kinoshita, Yoshitaka Watanabe, and Mitsuhiro T. Nakao

Explicit Error Bound for Modified Numerical Iterated Integration by Means
of Sinc Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Tomoaki Okayama

Verified Computations for Solutions to Semilinear Parabolic Equations
Using the Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Akitoshi Takayasu, Makoto Mizuguchi, Takayuki Kubo,
and Shin’ichi Oishi

Verified Error Bounds for the Real Gamma Function Using Double
Exponential Formula over Semi-infinite Interval . . . . . . . . . . . . . . . . . . . . . 224

Naoya Yamanaka, Tomoaki Okayama, and Shin’ichi Oishi

Polynomial System Solving

Improving a CGS-QE Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Ryoya Fukasaku, Hidenao Iwane, and Yosuke Sato

Efficient Subformula Orders for Real Quantifier Elimination
of Non-prenex Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Munehiro Kobayashi, Hidenao Iwane, Takuya Matsuzaki,
and Hirokazu Anai

XX Contents

http://dx.doi.org/10.1007/978-3-319-32859-1_11
http://dx.doi.org/10.1007/978-3-319-32859-1_11
http://dx.doi.org/10.1007/978-3-319-32859-1_12
http://dx.doi.org/10.1007/978-3-319-32859-1_12
http://dx.doi.org/10.1007/978-3-319-32859-1_13
http://dx.doi.org/10.1007/978-3-319-32859-1_13
http://dx.doi.org/10.1007/978-3-319-32859-1_14
http://dx.doi.org/10.1007/978-3-319-32859-1_15
http://dx.doi.org/10.1007/978-3-319-32859-1_16
http://dx.doi.org/10.1007/978-3-319-32859-1_16
http://dx.doi.org/10.1007/978-3-319-32859-1_17
http://dx.doi.org/10.1007/978-3-319-32859-1_17
http://dx.doi.org/10.1007/978-3-319-32859-1_18
http://dx.doi.org/10.1007/978-3-319-32859-1_18
http://dx.doi.org/10.1007/978-3-319-32859-1_19
http://dx.doi.org/10.1007/978-3-319-32859-1_19
http://dx.doi.org/10.1007/978-3-319-32859-1_20
http://dx.doi.org/10.1007/978-3-319-32859-1_21
http://dx.doi.org/10.1007/978-3-319-32859-1_21


Solving Extended Ideal Membership Problems in Rings of Convergent
Power Series via Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Katsusuke Nabeshima and Shinichi Tajima

Advanced Algebraic Attack on Trivium . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Frank-M. Quedenfeld and Christopher Wolf

Managing Massive Data

Compressing Big Data: When the Rate of Convergence to the Entropy
Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Salvatore Aronica, Alessio Langiu, Francesca Marzi,
Salvatore Mazzola, Filippo Mignosi, and Giulio Nazzicone

Trends in Temporal Reasoning: Constraints, Graphs and Posets . . . . . . . . . . 290
Jacqueline W. Daykin, Mirka Miller, and Joe Ryan

Reconstructing a Sparse Solution from a Compressed Support Vector
Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Joachim Giesen, Sören Laue, and Jens K. Mueller

Subquadratic-Time Algorithms for Abelian Stringology Problems . . . . . . . . . 320
Tomasz Kociumaka, Jakub Radoszewski, and Bartłomiej Wiśniewski

Using Statistical Search to Discover Semantic Relations of Political Lexica
– Evidences from Bulgarian-Slovak EUROPARL 7 Corpus . . . . . . . . . . . . . 335

Velislava Stoykova

Computational Theory of Differential and Difference Equations

Simple Differential Field Extensions and Effective Bounds. . . . . . . . . . . . . . 343
James Freitag and Wei Li

A New Bound for the Existence of Differential Field Extensions . . . . . . . . . 358
Richard Gustavson and Omar León Sánchez

Dimension Polynomials of Intermediate Fields of Inversive Difference
Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Alexander Levin

A “Polynomial Shifting” Trick in Differential Algebra . . . . . . . . . . . . . . . . . 377
Gleb Pogudin

Contents XXI

http://dx.doi.org/10.1007/978-3-319-32859-1_22
http://dx.doi.org/10.1007/978-3-319-32859-1_22
http://dx.doi.org/10.1007/978-3-319-32859-1_23
http://dx.doi.org/10.1007/978-3-319-32859-1_24
http://dx.doi.org/10.1007/978-3-319-32859-1_24
http://dx.doi.org/10.1007/978-3-319-32859-1_25
http://dx.doi.org/10.1007/978-3-319-32859-1_26
http://dx.doi.org/10.1007/978-3-319-32859-1_26
http://dx.doi.org/10.1007/978-3-319-32859-1_27
http://dx.doi.org/10.1007/978-3-319-32859-1_28
http://dx.doi.org/10.1007/978-3-319-32859-1_28
http://dx.doi.org/10.1007/978-3-319-32859-1_29
http://dx.doi.org/10.1007/978-3-319-32859-1_30
http://dx.doi.org/10.1007/978-3-319-32859-1_31
http://dx.doi.org/10.1007/978-3-319-32859-1_31
http://dx.doi.org/10.1007/978-3-319-32859-1_32


Data and Knowledge Exploration

Searching for Geometric Theorems Using Features Retrieved from
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Wenya An, Xiaoyu Chen, and Dongming Wang

New Method for Instance Feature Selection Using Redundant Features
for Biological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Waad Bouaguel, Emna Mouelhi, and Ghazi Bel Mufti

Faceted Search for Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Radu Hambasan and Michael Kohlhase

Evaluation of a Predictive Algorithm for Converting Linear Strings to
Mathematical Formulae for an Input Method . . . . . . . . . . . . . . . . . . . . . . . 421

Shizuka Shirai and Tetsuo Fukui

Algorithm Engineering in Geometric Computing

Linear Programs and Convex Hulls Over Fields of Puiseux Fractions . . . . . . 429
Michael Joswig, Georg Loho, Benjamin Lorenz, and Benjamin Schröter

Another Classroom Example of Robustness Problems in Planar Convex
Hull Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Marc Mörig

Precision-Driven Computation in the Evaluation of Expression-Dags
with Common Subexpressions: Problems and Solutions . . . . . . . . . . . . . . . . 451

Marc Mörig and Stefan Schirra

Real Complexity: Theory and Practice

Rigorous Numerical Computation of Polynomial Differential Equations
Over Unbounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Olivier Bournez, Daniel S. Graça, and Amaury Pouly

Using Taylor Models in Exact Real Arithmetic . . . . . . . . . . . . . . . . . . . . . . 474
Franz Brauße, Margarita Korovina, and Norbert Müller

On the Computational Complexity of Positive Linear Functionals on C½0; 1� . . . 489
Hugo Férée and Martin Ziegler

Average-Case Bit-Complexity Theory of Real Functions . . . . . . . . . . . . . . . 505
Matthias Schröder, Florian Steinberg, and Martin Ziegler

Certifying Trajectories of Dynamical Systems. . . . . . . . . . . . . . . . . . . . . . . 520
Joris van der Hoeven

XXII Contents

http://dx.doi.org/10.1007/978-3-319-32859-1_33
http://dx.doi.org/10.1007/978-3-319-32859-1_33
http://dx.doi.org/10.1007/978-3-319-32859-1_34
http://dx.doi.org/10.1007/978-3-319-32859-1_34
http://dx.doi.org/10.1007/978-3-319-32859-1_35
http://dx.doi.org/10.1007/978-3-319-32859-1_36
http://dx.doi.org/10.1007/978-3-319-32859-1_36
http://dx.doi.org/10.1007/978-3-319-32859-1_37
http://dx.doi.org/10.1007/978-3-319-32859-1_38
http://dx.doi.org/10.1007/978-3-319-32859-1_38
http://dx.doi.org/10.1007/978-3-319-32859-1_39
http://dx.doi.org/10.1007/978-3-319-32859-1_39
http://dx.doi.org/10.1007/978-3-319-32859-1_40
http://dx.doi.org/10.1007/978-3-319-32859-1_40
http://dx.doi.org/10.1007/978-3-319-32859-1_41
http://dx.doi.org/10.1007/978-3-319-32859-1_42
http://dx.doi.org/10.1007/978-3-319-32859-1_43
http://dx.doi.org/10.1007/978-3-319-32859-1_44


Global Optimization

A New Matrix Splitting Based Relaxation for the Quadratic
Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Marko Lange

Global Optimization of H1 Problems: Application to Robust Control
Synthesis Under Structural Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Dominique Monnet, Jordan Ninin, and Benoit Clement

Global Optimization Based on Contractor Programming:
An Overview of the IBEX Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Jordan Ninin

The Bernstein Branch-and-Prune Algorithm for Constrained Global
Optimization of Multivariate Polynomial MINLPs . . . . . . . . . . . . . . . . . . . . 560

Bhagyesh V. Patil

General Session

Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental . . . 579
Carlos Améndola, Mathias Drton, and Bernd Sturmfels

On the Quality of Some Root-Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Prashant Batra

Relative Hilbert-Post Completeness for Exceptions . . . . . . . . . . . . . . . . . . . 596
Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous,
and Jean-Claude Reynaud

Optimal Coverage in Automotive Configuration . . . . . . . . . . . . . . . . . . . . . 611
Rouven Walter, Thore Kübart, and Wolfgang Küchlin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-32859-1_45
http://dx.doi.org/10.1007/978-3-319-32859-1_45
http://dx.doi.org/10.1007/978-3-319-32859-1_46
http://dx.doi.org/10.1007/978-3-319-32859-1_46
http://dx.doi.org/10.1007/978-3-319-32859-1_46
http://dx.doi.org/10.1007/978-3-319-32859-1_47
http://dx.doi.org/10.1007/978-3-319-32859-1_47
http://dx.doi.org/10.1007/978-3-319-32859-1_48
http://dx.doi.org/10.1007/978-3-319-32859-1_48
http://dx.doi.org/10.1007/978-3-319-32859-1_49
http://dx.doi.org/10.1007/978-3-319-32859-1_50
http://dx.doi.org/10.1007/978-3-319-32859-1_51
http://dx.doi.org/10.1007/978-3-319-32859-1_52


Invited Papers



Current Challenges in Developing Open Source
Computer Algebra Systems

Janko Böhm1(B), Wolfram Decker1, Simon Keicher2, and Yue Ren1

1 University of Kaiserslautern, 67663 Kaiserslautern, Germany
{boehm,decker,ren}@mathematik.uni-kl.de

2 Universidad de Concepción, Casilla 160-C, Concepción, Chile
keicher@mail.mathematik.uni-tuebingen.de

Abstract. This note is based on the plenary talk given by the second
author at MACIS 2015, the Sixth International Conference on Mathe-
matical Aspects of Computer and Information Sciences. Motivated by
some of the work done within the Priority Programme SPP 1489 of the
German Research Council DFG, we discuss a number of current chal-
lenges in the development of Open Source computer algebra systems.
The main focus is on algebraic geometry and the system Singular.

1 Introduction

The goal of the nationwide Priority Programme SPP 1489 of the German
Research Council DFG is to considerably further the algorithmic and exper-
imental methods in algebraic geometry, number theory, and group theory, to
combine the different methods where needed, and to apply them to central ques-
tions in theory and practice. In particular, the programme is meant to support
the further development of Open Source computer algebra systems which are
(co-)based in Germany, and which in the framework of different projects may
require crosslinking on different levels. The cornerstones of the latter are the
well-established systems GAP [34] (group and representation theory), poly-
make [35] (polyhedral geometry), and Singular [25] (algebraic geometry, sin-
gularity theory, commutative and non-commutative algebra), together with the
newly evolving system ANTIC [41] (number theory), but there are many more
systems, libraries, and packages involved (see Sect. 2.4 for some examples).

In this note, having the main focus on Singular, we report on some of
the challenges which we see in this context. These range from reconsidering the
efficiency of the basic algorithms through parallelization and making abstract
concepts constructive to facilitating the access to Open Source computer algebra
systems. In illustrating the challenges, which are discussed in Sect. 2, we take
examples from algebraic geometry. In Sects. 3 and 4, two of the examples are

The second author acknowledges support from the DFG projects DE 410/8-1 and -2,
DE 410/9-1 and -2, and from the OpenDreamKit Horizon 2020 European Research
Infrastructures project (#676541). The third author was supported partially by the
DFG project HA 3094/8-1 and by proyecto FONDECYT postdoctorado no 3160016.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-32859-1 1



4 J. Böhm et al.

highlighted in more detail. These are the parallelization of the classical Grauert-
Remmert type algorithms for normalization and the computation of GIT-fans.
The latter is a show-case application of bringing Singular, polymake, and
GAP together.

2 Seven Challenges

2.1 Reconsidering the Efficiency of the Basic Algorithms

Motivated by an increasing number of success stories in applying algorithmic and
experimental methods to algebraic geometry (and other areas of mathematics),
research projects in this direction become more and more ambitious. This applies
both to the theoretical level of abstraction and to the practical complexity. On
the computer algebra side, this not only requires innovative ideas to design high-
level algorithms, but also to revise the basic algorithms on which the high-level
algorithms are built. The latter concerns efficiency and applicability.

Example 1 (The Nemo Project). Nemo is a new computer algebra package writ-
ten in the Julia1 programming language which, in particular, aims at highly
efficient implementations of basic arithmetic and algorithms for number theory
and is connected to the ANTIC project. See http://nemocas.org/index.html for
some benchmarks.

In computational algebraic geometry, aside from polynomial factorization,
the basic work horse is Buchberger’s algorithm for computing Gröbner bases
[22] and, as remarked by Schreyer [46] and others, syzygies. While Gröbner
bases are specific sets of generators for ideals and modules which are well-suited
for computational purposes, the name syzygies refers to the relations on a given
set of generators. Syzygies carry important geometric information (see [28]) and
are crucial ingredients in many basic and high-level algorithms. Taking syzygies
on the syzygies and so forth, we arrive at what is called a free resolution. Here
is a particular simple example.

Example 2 (The Koszul Complex of Three Variables). In the Singular session
below, we first construct the polynomial ring R = Q[x, y, z], endowed with the
degree reverse lexicographical order dp. Then we compute the successive syzygies
on the variables x, y, z.

> ring R = 0, (x,y,z), dp;

> ideal I = x,y,z;

> resolution FI = nres(I,0);

> print(FI[2]);

0,-y,-z,

-z, x, 0,

y, 0, x

1 See http://julialang.org.

http://nemocas.org/index.html
http://julialang.org


Current Challenges in Developing Open Source Computer Algebra Systems 5

> print(FI[3]);

x,

z,

-y

In the following example, we show how Gröbner basis and syzygy computa-
tions fit together to build a more advanced algorithm.

Example 3 (Parametrizing Rational Curves). We study a degree-5 curve C in
the projective plane which is visualized as the red curve in Figs. 1 and 2. To
begin with, after constructing the polynomial ring R = Q[x, y, z], we enter the
homogeneous degree-5 polynomial f ∈ Q[x, y, z] which defines C:

> ring R = 0, (x,y,z), dp;

> poly f = x5+10x4y+20x3y2+130x2y3-20xy4+20y5-2x4z-40x3yz-150x2y2z

-90xy3z-40y4z+x3z2+30x2yz2+110xy2z2+20y3z2;

Our goal is to check whether C is rational, and if so, to compute a rational
parametrization. For the first task, recall that an algebraic curve is rational if
and only if its geometric genus is zero. In the example here, this can be easily
read off from the genus formula for plane curves, taking into account that the
degree-5 curve has three ordinary double points and one ordinary triple point
(see the aforementioned visualization). An algorithm for computing the genus in
general, together with an algorithm for computing rational parametrizations, is
implemented in the Singular library paraplanecurves.lib [15]:

> LIB "paraplanecurves.lib";

> genus(f);

0

> paraPlaneCurve(f);

Rather than displaying the result, we will now show the key steps of the algo-
rithm at work. The first step is to compute the ideal generated by the adjoint
curves of C which, roughly speaking, are curves which pass with sufficiently
high multiplicity through the singular points of C. The algorithm for computing
the adjoint ideal (see [11]) builds on algorithms for computing normalization
(see Sect. 3) or, equivalently, integral bases (see [10]). In all these algorithms,
Gröbner bases are used as a fundamental tool.

> ideal AI = adjointIdeal(f);

> AI;

[1]=y3-y2z

[2]=xy2-xyz

[3]=x2y-xyz

[4]=x3-x2z

The resulting four cubic generators of the adjoint ideal define the curves depicted
in Fig. 1, where the thickening of a line indicates that the line comes with a double
structure. A general adjoint curve, that is, a curve defined by a general linear
combination of the four generators, is shown in Fig. 2.



6 J. Böhm et al.

Fig. 1. Cubic curves defined by the generators of the adjoint ideal of a degree-5 curve
with three ordinary double points and one ordinary triple point. The degree-5 curve is
shown in red (Color figure online).

Fig. 2. A general adjoint curve of C of degree 3 (Color figure online).

The four generators give a birational map from C to a curve ˜C in projective
3-space P3. We obtain ˜C via elimination, a typical application of Gröbner bases:

> def Rn = mapToRatNormCurve(f,AI);

> setring(Rn);

> RNC;

RNC[1]=y(2)*y(3)-y(1)*y(4)

RNC[2]=20*y(1)*y(2)-20*y(2)^2+130*y(1)*y(4)

+20*y(2)*y(4)+10*y(3)*y(4)+y(4)^2

RNC[3]=20*y(1)^2-20*y(1)*y(2)+130*y(1)*y(3)

+10*y(3)^2+20*y(1)*y(4)+y(3)*y(4)

Note that ˜C is a variant of the projective twisted cubic curve, the rational
normal curve in P3 (for a picture see Fig. 10). This non-singular curve is mapped
isomorphically onto the projective line P1 by the anticanonical linear system,
which can be computed using syzygies:



Current Challenges in Developing Open Source Computer Algebra Systems 7

> rncAntiCanonicalMap(RNC);

[1]=2*y(2)+13*y(4)

[2]=y(4)

Composing all maps in this construction, and inverting the resulting birational
map, we get the desired parametrization. In general, depending on the number
of generators of the adjoint ideal, the rational normal curve computed by the
algorithm is embedded into a projective space of odd or even dimension. In the
latter case, successive applications of the canonical linear system map the normal
curve onto a plane conic. Computing a rational parametrization of the conic is
equivalent to finding a point on the conic. It can be algorithmically decided
whether we can find such a point with rational coordinates or not. In the latter
case, we have to pass to a quadratic field extension of Q.

Remark 1. The need of passing to a field extension occurs in many geometric
constructions. Often, repeated field extensions are needed. The effective com-
putation of Gröbner bases over (towers of) number fields is therefore of utmost
importance. One general way of achieving higher speed is the parallelization of
algorithms. This will be addressed in the next section, where we will, in partic-
ular, discuss a parallel version of the Gröbner basis (syzygy) algorithm which
is specific to number fields [18]. New ideas for enhancing syzygy computations
in general are presented in [31]. Combining the two approaches in the case of
number fields is a topic of future research.

2.2 Parallelization

Parallelizing computer algebra systems allows for the efficient use of multicore
computers and high-performance clusters. To achieve parallelization is a tremen-
dous challenge both from a computer science and a mathematical point of view.

From a computer science point of view, there are two possible approaches:

– Distributed and multi-process systems work by using different processes that
do not share memory and communicate by message passing. These systems
only allow for coarse-grained parallelism, which limits their ability to work on
large shared data structures, but can in principle scale up indefinitely.

– Shared memory systems work by using multiple threads of control in a single
process operating on shared data. They allow for more fine-grained parallelism
and more sophisticated concurrency control, down to the level of individual
CPU instructions, but are limited in their scalability by how many processors
can share efficient access to the same memory on current hardware.

For best performance, typically hybrid models are used, which exploit the
strengths of both shared memory and distributed systems, while mitigating their
respective downsides.

From its version 3.1.4 on, Singular has been offering a framework for coarse-
grained parallelization, with a convenient user access provided by the library
parallel.lib [48]. The example below illustrates the use of this framework:



8 J. Böhm et al.

Example 4 (Coarse Grained Parallelization in Singular). We implement a Sin-
gular procedure which computes a Gröbner basis for a given ideal with respect
to a given monomial ordering. The procedure returns the size of the Gröbner
basis. We apply it in two parallel runs to a specific ideal in Q[x1, . . . , x4], choos-
ing for one run the lexicographical monomial ordering lp and for the other run
the degree reverse lexicographical ordering dp:

> LIB "parallel.lib"; LIB "random.lib";

> proc sizeGb(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(groebner(imap(R,I))));}
> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> list commands = "sizeGb","sizeGb";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

As expected, the computation with respect to dp is much faster and leads to a
Gröbner basis with less elements.

Using ideas from the successful parallelization of GAP within the HPC-
GAP project (see [4–6]), a multi-threaded prototype of Singular has been
implemented. Considerable further efforts are needed, however, to make this
accessible to users without a deep background in parallel programming.

From a mathematical point of view, there are algorithms whose basic strat-
egy is inherently parallel, whereas others are sequential in nature. A prominent
example of the former type is Villamayor’s constructive version of Hironaka’s
desingularization theorem, which will be briefly discussed in Sect. 2.3. A promi-
nent example of the latter type is the classical Grauert-Remmert type algorithm
for normalization, which will be addressed at some length in Sect. 3.

The systematic design of parallel algorithms for applications which so far
can only be handled by sequential algorithms is a major task for the years to
come. For normalization, this problem has recently been solved [14]. Over the
field of rational numbers, the new algorithm becomes particularly powerful by
combining it with modular methods, see again Sect. 3.

Modular methods are well-known for providing a way of parallelizing algo-
rithms over Q (more generally, over number fields). For the fundamental task of
computing Gröbner bases, a modular version of Buchberger’s algorithm is due
to Arnold [1]. More recently, Boku, Fieker, Steenpaß and the second author [18]
have designed a modular Gröbner bases algorithm which is specific to num-
ber fields. In addition to using the approach from Arnold’s paper, which is to



Current Challenges in Developing Open Source Computer Algebra Systems 9

compute Gröbner bases modulo several primes and then use Chinese remainder-
ing together with rational reconstruction, the new approach provides a second
level of parallelization as depicted in Fig. 3: If the number field is presented as
K = Q(α) = Q[t]/〈f〉, where f ∈ Q[t] is the minimal polynomial of α, and if gen-
erators g1(X,α), . . . , gs(X,α) for the ideal under consideration are given, repre-
sented by polynomials g1(X, t), . . . , gs(X, t) ∈ Q[X, t] = Q[x1, . . . , xn, t], we wish
to compute a Gröbner basis for the ideal ˜I = 〈g1(X, t), . . . , gs(X, t), f〉 ⊂ Q[X, t].
The idea then is to reduce ˜I modulo a suitable number of primes p1, . . . , pk

(level 1 of the algorithm), get the second level of parallelization by factoriz-
ing the reductions of f modulo the pi, and use, for each i, polynomial Chinese
remaindering to put the results modulo pi together (level 3 of the algorithm).

Fig. 3. Two-fold parallel modular approach to Gröbner bases over number fields.

2.3 Make More and More of the Abstract Concepts of Algebraic
Geometry Constructive

The following groundbreaking theorem proved by Hironaka in 1964 shows the
existence of resolutions of singularites in characteristic zero. It is worth mention-
ing that, on his way, Hironaka introduced the idea of standard bases, the power
series analogue of Gröbner bases.

Theorem 1 (Hironaka, 1964). For every algebraic variety over a field K of
characteristic zero, a desingularization can be obtained by a finite sequence of
blow-ups along smooth centers.

We illustrate the blow-up process by a simple example:

Example 5. As shown in Fig. 4, a node can be resolved by a single blow-up: we
replace the node by a line and separate, thus, the two branches of the curve
intersecting in the singularity.



10 J. Böhm et al.

Fig. 4. Blowing up a node.

In [9,20,30,32], the abstract concepts developed by Hironaka have been
translated into an algorithmic approach to desingularization. An effective vari-
ant of this, relying on a clever selection of the centers for the blow-ups, has
been implemented by Frühbis-Krüger and Pfister in the Singular library
resolve.lib [33].

The desingularization algorithm is parallel in nature: Working with blow-
ups means to work with different charts of projective spaces. In this way, the
resolution of singularities leads to a tree of charts. Figure 6 shows the graph for
resolving the singularities of the hypersurface z2 − x2y2 = 0 which, in turn, is
depicted in Fig. 5.

Making abstract concepts constructive allows for both a better under-
standing of deep mathematical results and a computational treatment of the
concepts. A further preeminent example for this is the constructive version
of the Bernstein-Gel’fand-Gel’fand correspondence (BGG-correspondence) by
Eisenbud, Fløystad, and Schreyer [29]. This allows one to express properties
of sheaves over projective spaces in terms of exterior algebras. More precisely, if
P(V ) is the projective space of lines in a vector space V , and E is the exterior
algebra E = ΛV , then the BGG-correspondence relates coherent sheaves over
P(V ) to free resolutions over E. Since E contains only finitely many monomials,
(non-commutative) Gröbner basis and syzygy computations over E are often
preferable to (commutative) Gröbner basis and syzygy computations over the
homogeneous coordinate ring of P(V ). One striking application of this, which is
implemented in Macaulay2 [37] and Singular, gives a fast way of comput-
ing sheaf cohomology. Providing computational access to cohomology in all its
disguises is a long-term goal of computational algebraic geometry.

The BGG-correspondence is an example of an equivalence of derived cate-
gories. As we can see from the above discussion, such equivalences are not only
interesting from a theoretical point of view, but may also allow for creating more
effective algorithms – provided they can be accessed computationally.



Current Challenges in Developing Open Source Computer Algebra Systems 11

Fig. 5. The surface z2 − x2y2 = 0.

Fig. 6. The tree of charts.

2.4 Interaction and Integration of Computer Algebra Systems
and Libraries from Different Areas of Research

On the theoretical side, mathematical breakthroughs are often obtained by com-
bining methods from different areas of mathematics. Making such connections
accessible to computational methods is another major challenge. Handling this
challenge requires, in particular, that computer algebra systems specializing in
different areas are connected in a suitable way. One goal of the Priority Pro-
gramme SPP 1489, which was already mentioned in the introduction, is to
interconnect GAP, polymake, Singular, and Antic. So far, this has lead
to directed interfaces as indicated in Fig. 7, with further directions and a much
tighter integration of the systems subject to future development.

In fact, the picture is much more complicated: The four systems rely on fur-
ther systems and libraries such as normaliz [21] (affine monoids) and Flint [42]
(number theory), and there are other packages which use at least one of the four
systems, for example homalg [49] (homological algebra) and a-tint [40] (tropical
intersection theory) (Fig. 8).



12 J. Böhm et al.

Fig. 7. Directed interfaces.

Fig. 8. The Tropicalization of Clebsch’s diagonal cubic.

With regard to mathematical applications, the value of connecting GAP
and Singular is nicely demonstrated by Barakat’s work on a several years old
question of Serre to find a prediction for the number of connected components
of unitary groups of group algebras in characteristic 2 [3,47].

A showcase application for combining Singular, polymake, and GAP is
the symmetric algorithm for computing GIT-fans [17] by the first, third and
fourth author [17]. This algorithm, which will be discussed in more detail in
Sect. 4, combines Gröbner basis and convex hull computations, and can make
use of actions of finite symmetry groups.

2.5 A Convenient Hierarchy of Languages

Most modern computer algebra systems consist of two major components, a
kernel which is typically written in C/C++ and a high level language for direct
user interaction, which in particular provides a convenient way for users to extend
the system. While the kernel code is precompiled and, thus, performant, the user
language is interpreted, which means that it operates at a significantly slower
speed. In addition to the differences in speed, the languages involved provide
different levels of abstraction with regard to modeling mathematical concepts.
In view of the integration of different systems, a number of languages has to
be considered, leading to an even more complicated situation. To achieve the
required level of performance and abstraction in this context, we need to set up
a convenient hierarchy of languages. Here, we propose in particular to examine
the use of just-in-time compiled languages such as Julia.



Current Challenges in Developing Open Source Computer Algebra Systems 13

2.6 Create and Integrate Electronic Libraries and Databases
Relevant to Research

Electronic libraries and databases of certain classes of mathematical objects
provide extremely useful tools for research in their respective fields. An example
from group theory is the SmallGroups library, which is distributed as a GAP
package. An example from algebraic geometry is the Graded Ring Database,2

written by Gavin Brown and Alexander Kasprzyk, with contributions by several
other authors. The creation of such databases often depends on several computer
algebra systems. On the other hand, a researcher using the data may wish to
access the database within a system with which he is already familiar. This
illustrates the benefits of a standardized approach to connect computer algebra
systems and mathematical databases.

2.7 Facilitating the Access to Computer Algebra Systems

Computational algebraic geometry (and computer algebra in general) has a
rapidly increasing amount of applications outside its original core areas, for
example to computational biology, algebraic vision, and physics. As more and
more non-specialists wish to use computer algebra systems, the question of how
to considerably ease the access to the systems arises also in the Open Source
community. Virtual research environments such as the one developed within
the OpenDreamKit project3 may provide an answer to this question. Creating
Jupyter notebooks4 for systems such as GAP and Singular is one of the many
goals of this project. A Singular prototype has been written by Sebastian
Gutsche, see Fig. 9.

3 A Parallel Approach to Normalization

In this section, focusing on the normalization of rings, we give an example of
how ideas from commutative algebra can be used to turn a sequential algorithm
into a parallel algorithm.

The normalization of rings is an important concept in commutative algebra,
with applications in algebraic geometry and singularity theory. Geometrically,
normalization removes singularities in codimension one and “improves” singu-
larities in higher codimension. In particular, for curves, normalization yields a
desingularization (see Examples 6 and 7 below). From a computer algebra point
of view, normalization is fundamental to quite a number of algorithms with appli-
cations in algebra, geometry, and number theory. In Example 3, for instance, we
have used normalization to compute adjoint curves and, thus, parametrizations
of rational curves.

2 See http://www.grdb.co.uk.
3 See http://opendreamkit.org.
4 See http://jupyter.org.

http://www.grdb.co.uk
http://opendreamkit.org
http://jupyter.org


14 J. Böhm et al.

Fig. 9. Jupyter notebook for Singular.

The by now classical Grauert-Remmert type approach [23,24,38] to com-
pute normalization proceeds by successively enlarging the given ring until the
Grauert-Remmert normality criterion [36] tells us that the normalization has
been reached. Obviously, this approach is completely sequential in nature. As
already pointed out, it is a major challenge to systematically design parallel
alternatives to basic and high-level algorithms which are sequential in nature.
For normalization, this problem has recently been solved in [14] by using the
technique of localization and proving a local version of the Grauert-Remmert
normality criterion.

To explain this in more detail, we suppose for simplicity that the ring under
consideration is an affine domain over a field K. That is, we consider a quotient
ring of type A = K[x1, . . . , xn]/I, where I is a prime ideal. We require that K
is a perfect field.

We begin by recalling some basic definitions and results.

Definition 1. The normalization of A is the integral closure A of A in its
quotient field Q(A),

A = {a ∈ Q(A) | there exists f ∈ A[t] monic with f(a) = 0}.

We call A normal if A = A.

By Emmy Noether’s finiteness theorem (see [43]), we may represent A as the
set of A-linear combinations of a finite set of elements of A. That is:

Theorem 2 (Emmy Noether). A is a finitely generated A-module.



Current Challenges in Developing Open Source Computer Algebra Systems 15

We also say that the ring extension A ⊂ A is finite. In particular, A is again
an affine domain over K.

Example 6. For the coordinate ring A = K[x, y]/I of the nodal plane curve
C = V (I) defined by the prime ideal I =

〈

x3 + x2 − y2
〉 ⊂ K[x, y], we have

A = K[x, y]/I ∼= K[t2 − 1, t3 − t] ⊂ K[t] ∼= A.

x �→ t2 − 1

y �→ t3 − t

In particular, A is generated as an A-module by 1 and y
x .

Geometrically, the inclusion map A ↪→ A corresponds to the parametrization

A1(K) → C ⊂ A2(K), t �→ (t2 − 1, t3 − t).

In other words, the parametrization is the normalization (desingularization) map
of the rational curve C.

Historically, the first Grauert-Remmert-type algorithm for normalization is
due to de Jong [23,24]. This algorithm has been implemented in Singular,
Macaulay2, and Magma [19]. The algorithm of Greuel, Laplagne, and Seel-
isch [38] is a more efficient version of de Jong’s algorithm. It is implemented in
the Singular library normal.lib [39].

The starting point of these algorithms is the following lemma:

Lemma 1 ([38]). If J ⊂ A is an ideal and 0 	= g ∈ J , then there are natural
inclusions of rings

A ↪→ HomA(J, J) ∼= 1

g
(gJ :A J) ⊆ A ⊂ Q(A), a �→ ϕa, ϕ �→ ϕ(g)

g
,

where ϕa is the multiplication by a.

Now, starting from A0 = A and J0 = J , and setting

Ai+1 =
1
g
(gJi :Ai

Ji) and Ji =
√

JAi,

we get a chain of finite extensions of affine domains which becomes eventually
stationary by Theorem 2:

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 ⊆ A.

The Grauert-Remmert-criterion for normality tells us that for an appropriate
choice of J , the process described above terminates with the normalization Am =
A. In formulating the criterion, we write N(A) for the non-normal locus of A,
that is, if

Spec(A) = {P ⊂ A | P prime ideal}
denotes the spectrum of A, and AP the localization of A at P , then

N(A) = {P ∈ Spec(A) | AP is not normal}.



16 J. Böhm et al.

Theorem 3 (Grauert-Remmert [36]). Let 〈0〉 	= J ⊂ A be an ideal with
J =

√
J and such that

N(A) ⊆ V (J) := {P ∈ Spec(A) | P ⊇ J}.

Then A is normal if and only if A ∼= HomA(J, J) via the map which sends a to
multiplication by a.

The problem now is that we do not know an algorithm for computing N(A),
except if the normalization is already known to us. To remedy this situation, we
consider the singular locus of A,

Sing(A) = {P ∈ Spec(A) | AP is not regular},

which contains the non-normal locus: N(A) ⊆ Sing(A). Since we work over a
perfect field K, the Jacobian criterion tells us that Sing(A) = V (Jac(I)), where
Jac(I) is the Jacobian ideal5 of A (see [27]). Hence, if we choose J =

√

Jac(I),
the above process terminates with Am = A by the following lemma.

Lemma 2 ([38]). With notation as above, N(Ai) ⊆ V (
√

JAi) for all i.

Example 7. For the coordinate ring A of the plane algebraic curve C from
Example 6, the normalization algorithm returns the coordinate ring of a variant
of the twisted cubic curve C in affine 3-space, where the inclusion A ⊂ A cor-
responds to the projection of C to C via (x, y, z) �→ (x, y) as shown in Fig. 10.
This result fits with the result in Example 6: The curve C is rational, with a
parametrization given by

A1(K) → C ⊂ A3(K), t �→ (t2 − 1, t3 − t, t).

Composing this with the projection, we get the normalization map from
Example 6.

Now, following [14], we describe how the normalization algorithm can be
redesigned so that it becomes parallel in nature. For simplicity of the presenta-
tion, we focus on the case where Sing(A) is a finite set. This includes the case
where A is the coordinate ring of an algebraic curve.

In the example above, the curve under consideration has just one singular-
ity. If there is a larger number of singularities, the normalization algorithm as
discussed so far is global in the sense that it “improves” all singularities at the
same time. Alternatively, we now aim at “improving” the individual singularities
separately, and then put the individual results together. In this local-to-global
approach, the local computations can be run in parallel. We make use of the
following result.

5 The Jacobian ideal of A is generated by the images of the c×c minors of the Jacobian
matrix ( ∂fi

∂xj
), where c is the codimension and f1, . . . , fr are polynomial generators

for I.



Current Challenges in Developing Open Source Computer Algebra Systems 17

Fig. 10. The normalization of the nodal plane curve C = V (x3 + x2 − y2) is a variant
of the twisted cubic curve C in 3-space.

Theorem 4 ([14]). Suppose that Sing(A) = {P1, . . . , Pr} is finite. Then:

1. For each i, let
A ⊆ Bi ⊆ A

be the intermediate ring obtained by applying the normalization algorithm
with Pi in place of J . Then

(Bi)Pi
= APi

, and
(Bi)Q = AQ for all Pi 	= Q ∈ Spec(A).

We call Bi the minimal local contribution to A at Pi.
2. We have

A = B1 + . . . + Br.

This theorem, together with the local version of the Grauert-Remmert crite-
rion, whose proof is given in [14], yields an algorithm for normalization which
is often considerably faster than the global algorithm presented earlier, even if
the local-to-global algorithm is not run in parallel. The reason for this is that
the cost for “improving” just one singularity is in many cases much less than
that for “improving” all singularities at the same time. The new algorithm is
implemented in the Singular library locnormal.lib [12]. Over the rationals,
the algorithm becomes even more powerful by combining it with a modular app-
roach. This version of the algorithm is implemented in the Singular library
modnormal.lib [13].



18 J. Böhm et al.

4 Computing GIT-Fans

In this section, we give an example of an algorithm that uses Gröbner bases,
polyhedral computations and algorithmic group theory. It is also suitable for
parallel computations.

Recall that one of the goals of Geometric Invariant Theory (GIT) is to assign
to a given algebraic variety X that comes with the action of an algebraic group G
in a sensible manner a quotient space X//G. This setting frequently occurs when
we face a variety X parameterizing a class of geometric objects, for example
algebraic curves, and an action of a group G on X emerging from isomorphisms
between the objects. There are two main problems. The first problem is that
the homogeneous space X/G is not a good candidate for X//G as it does not
necessarily carry the structure of an algebraic variety. One then defines for affine
X the quotient X//G as the spectrum of the (finitely generated) invariant ring
of the functions of X; for general X, one glues together the quotients of an affine
covering. Now a second problem arises: the full quotient X//G may not carry
much information: For instance, consider the action of C∗ := C \ {0} on X = C2

given by component-wise multiplication

C∗ × X → X, (t, (x, y)) �→ (tx, ty). (1)

Then the quotient X//C∗ is isomorphic to a point. However, considering the open
subset U := X \ {(0, 0)} gives us U//C∗ = P1, the projective line. For general X,
there are many choices for these open subsets U ⊆ X, where different choices
lead to different quotients U//G. To describe this behaviour, Dolgachev and Hu
[26] introduced the GIT-fan, a polyhedral fan describing this variation of GIT-
quotients. Recall that a polyhedral fan is a finite collection of strongly convex
rational polyhedral cones such that their faces are again elements of the fan and
the intersection of any two cones is a common face.

Fig. 11. A polyhedral fan in R2.

Of particular importance is the action of an algebraic torus G = (C∗)k, on an
affine variety X ⊆ Cr. In this case, Berchtold/Hausen and the third author [7,44]
have developed a method for computing the GIT-fan, see Algorithm 1. The input
of the algorithm consists of



Current Challenges in Developing Open Source Computer Algebra Systems 19

– an ideal a ⊆ C[T1, . . . , Tr] which defines X and
– a matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous with respect to

the multigrading defined by setting deg(Ti) := qi ∈ Zk.

Note that the matrix Q encodes the action of (C∗)k on X. For instance, the
action (1) is encoded in Q = (1, 1).

Algorithm 1 can be divided into three main steps. For the first step, we
decompose Cr into the 2r disjoint torus orbits

Cr =
⋃

γ⊆{1,...,r}
O(γ), O(γ) := {(z1, . . . , zr) ∈ Cr | zi 	= 0 ⇔ i ∈ γ}.

The algorithm then identifies in line 1 which of the torus orbits O(γ) have a
non-trivial intersection with X. The corresponding γ ⊆ {1, . . . , r} (interpreted
as faces of the positive orthant Qr

≥0) are referred to as a-faces. Using the equiv-
alence

X ∩ O(γ) 	= ∅ ⇐⇒ (

a|Ti=0 for i/∈γ

)

: 〈T1 · · · Tr〉∞ 	= 〈1〉,
the a-faces can be determined by computing the saturation through Gröbner
basis techniques available in Singular. In the second step (line 2 of the algo-
rithm), the a-faces are projected to cones in Qk. For each a-face γ, defining
inequalities and equations of the resulting orbit cones

Q(γ) := cone(qi | i ∈ γ) ⊆ Γ := cone(q1, . . . , qr) ⊆ Qk

are determined, where by cone(v1, . . . , vk) we mean the polyhedral cone obtained
by taking all non-negative linear combinations of the vi. Computationally, this
can be done via the double description method available in polymake. We
denote by Ω the set of all orbit cones. In the final step, the GIT-fan is obtained as

Λ(a, Q) := {λΩ(w) | w ∈ Γ} where λΩ(w) :=
⋂

w∈η∈Ω

η.

To compute Λ(a, Q), we perform a fan-traversal in the following way: Starting
with a random maximal GIT-cone λΩ(w0) ∈ Λ(a, Q), we compute its facets,
determine the GIT-cones λΩ(w) adjacent to it, and iterate until the support of
the fan equals cone(q1, . . . , qr). Figure 12 illustrates three steps in such a process.

In line 9 of Algorithm 1, we write � for the symmetric difference in the first
component. Again, computation of the facets of a given cone is available through
the convex hull algorithms in polymake.

Algorithm 1 is implemented in the Singular library gitfan.lib [16]. The
Singular to polymake interface polymake.so [45] provides key convex geom-
etry functionality in the Singular interpreter through a kernel level interface
written in C++. We illustrate the use of this interface by a simple example.

Example 8. We compute the normal fan F of the Newton polytope P of the
polynomial f = x3 + y3 + 1, see Fig. 11. Note that F is the Gröbner fan of the
ideal 〈f〉 and its codimension one skeleton is the tropical variety of 〈f〉.



20 J. Böhm et al.

Fig. 12. Fan traversal.

Algorithm 1. GIT-fan
Input: An ideal a ⊆ C[T1, . . . , Tr] and a matrix Q ∈ Zk×r of full rank such that a is

homogeneous with respect to the multigrading given by Q.
Output: The set of maximal cones of Λ(a, Q).
1: A := {γ ⊆ Qr

≥0 face | γ is an a-face}
2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(γ) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(τ, λΩ(w0)) | τ ⊆ λΩ(w0) facet with τ �⊆ ∂Γ}.
6: while there is (η, λ) ∈ F do
7: Find w ∈ Q(γ) such that w �∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F � {(τ, λΩ(w)) | τ ⊆ λΩ(w) facet with τ �⊆ ∂Γ}

10: return C

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;

RAYS:
-1 -1 #0
0 1 #1
1 0 #2

MAXIMAL CONES:
{0 1} #Dimension 2
{0 2}
{1 2}

For many relevant examples, the computation of GIT-fans is challenged not
only by the large amount of computations in lines 1 and 6 of Algorithm 1,
but also by the complexity of each single computation in some boundary cases.



Current Challenges in Developing Open Source Computer Algebra Systems 21

Making use of symmetries and parallel computations, we can open up the pos-
sibility to handle many interesting new cases by considerably simplifying and
speeding up the computations. For instance, the computations in line 1 of Algo-
rithm 1 can be executed independently in parallel. Parallel computation tech-
niques can also be applied in the computation of λΩ(w0) and the traversal of
the GIT-fan. This step, however, is not trivially parallel.

An example of the use of symmetries is [17]; here, the first, third and fourth
authors have applied and extended the technique described above to obtain
the cones of the Mori chamber decomposition (the GIT-fan of the action of
the characteristic torus on its total coordinate space) of the Deligne-Mumford
compactification M0,6 of the moduli space of 6-pointed stable curves of genus
zero that lie within the cone of movable divisor classes. A priori, this requires to
consider 240 torus orbits in line 1. Hence, a direct application of Algorithm 1 in its
stated form is not feasible. However, moduli spaces in algebraic geometry often
have large amounts of symmetry. For example, on M0,6 there is a natural group
action of the symmetric group S6 which Bernal [8] has extended to the input
data a and Q required for Algorithm 1. The GIT-fan Λ(a, Q), and all data that
arises in its computation reflect these symmetries. Hence, by computing an orbit
decomposition under the action of the group of symmetries of the set of all torus
orbits, we can restrict ourselves to a distinct set of representatives. Also the fan-
traversal can be done modulo symmetry. To compute the orbit decomposition,
we apply the algorithms for symmetric groups implemented in GAP.

Example 9. We apply this technique in the case of the affine cone X over the
Grassmannian G(2, 5) of 2-dimensional linear subspaces in a 5-dimensional vec-
tor space, see also [17]. By making use of the action of S5, the number of mono-
mial containment tests in line 1 can be reduced from 210 = 1024 to 34. A distinct
set of representatives of the orbits of the 172 a-faces consists of 14 elements. The

Fig. 13. The adjacency graph of the set of maximal cones of the GIT-fan of G(2, 5)
and the adjacency graph of the orbits of these cones under the S5-action.



22 J. Böhm et al.

GIT-fan has 76 maximal cones, which fall into 6 orbits. Figure 13 shows both the
adjacency graph of the maximal cones of the GIT-fan and that of their orbits
under the S5-action. This GIT-fan has also been discussed in [2,8,26]. Note that
by considering orbits of cones not only the computation of the fan is consider-
ably simplified, but also the theoretical understanding of the geometry becomes
easier.

To summarize, Algorithm 1 requires the following key computational tech-
niques from commutative algebra, convex geometry, and group theory:

– Gröbner basis computations,
– convex hull computations, and
– orbit decomposition.

These techniques are provided by Singular, polymake, and GAP. At the
current stage, polymake can be used from Singular in a convenient way
through polymake.so. An interface to use GAP functionality directly from Sin-
gular is subject to future development.

References

1. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symbolic Com-
put. 35(4), 403–419 (2003)

2. Arzhantsev, I.V., Hausen, J.: Geometric invariant theory via Cox rings. J. Pure
Appl. Algebra 213(1), 154–172 (2009)

3. Barakat, M.: Computations of unitary groups in characteristic 2 (2014). http://
www.mathematik.uni-kl.de/∼barakat/forJPSerre/UnitaryGroup.pdf

4. Behrends, R.: Shared memory concurrency for GAP. Comput. Algebra Rundbrief
55, 27–29 (2014)

5. Behrends, R., Hammond, K., Janjic, V., Konovalov, A., Linton, S., Loidl,
H.-W., Maier, P., Trinder, P.: HPC-GAP: engineering a 21st-century high-
performance computer algebra system. Concurrency Comput. Pract. Experience
(2016). cpe.3746

6. Behrends, R., Konovalov, A., Linton, S., Lübeck, F., Neunhöffer, M.: Parallelising
the computational algebra system GAP. In: Proceedings of the 4th International
Workshop on Parallel and Symbolic Computation, PASCO 2010, pp. 177–178.
ACM, New York (2010)

7. Berchtold, F., Hausen, J.: GIT equivalence beyond the ample cone. Michigan Math.
J. 54(3), 483–515 (2006)

8. Bernal Guillén, M.M.: Relations in the Cox Ring of M0,6. Ph.D. thesis, University
of Warwick (2012)

9. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by
blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302
(1997)

10. Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Computing integral bases via
localization and Hensel lifting (2015). http://arxiv.org/abs/1505.05054

11. Böhm, J., Decker, W., Laplagne, S., Pfister, G.: Local to global algorithms for the
Gorenstein adjoint ideal of a curve (2015). http://arxiv.org/abs/1505.05040

http://www.mathematik.uni-kl.de/~barakat/forJPSerre/UnitaryGroup.pdf
http://www.mathematik.uni-kl.de/~barakat/forJPSerre/UnitaryGroup.pdf
http://arxiv.org/abs/1505.05054
http://arxiv.org/abs/1505.05040


Current Challenges in Developing Open Source Computer Algebra Systems 23

12. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: locnor-
mal.lib - A Singular library for a local-to-global approach to normalization (2013).
Available in the Singular distribution, http://www.singular.uni-kl.de

13. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: mod-
normal.lib - A Singular library for a modular approach to normalization (2013).
Available in the Singular distribution, http://www.singular.uni-kl.de

14. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: Parallel
algorithms for normalization. J. Symbolic Comput. 51, 99–114 (2013)

15. Böhm, J., Decker, W., Laplagne, S., Seelisch, F.: paraplanecurves.lib - A Singular
library for the parametrization of rational curves (2013). Available in the Singular
distribution, http://www.singular.uni-kl.de

16. Böhm, J., Keicher, S., Ren, Y.: gitfan.lib - A Singular library for computing the
GIT fan (2015). Available in the Singular distribution, http://www.mathematik.
uni-kl.de/∼boehm/gitfan

17. Böhm, J., Keicher, S., Ren, Y.: Computing GIT-fans with symmetry and the Mori
chamber decomposition of M0,6 (2016)

18. Boku, D.K., Decker, W., Fieker, C., Steenpass, A.: Gröbner bases over algebraic
number fields. In: Proceedings of the International Workshop on Parallel Symbolic
Computation, PASCO 2015, pp. 16–24. ACM, New York (2015)

19. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

20. Bravo, A.M., Encinas, S., Villamayor U., O.: A simplified proof of desingularization
and applications. Rev. Mat. Iberoamericana 21(2), 349–458 (2005)

21. Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones.
J. Algebra 324(5), 1098–1113 (2010)

22. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-
klassenring nach einem nulldimensionalen Polynomideal. Dissertation, Universität
Innsbruck (1965)

23. de Jong, T.: An algorithm for computing the integral closure. J. Symbolic Comput.
26(3), 273–277 (1998)

24. Decker, W., de Jong, T., Greuel, G.-M., Pfister, G.: The normalization: a new
algorithm, implementation and comparisons. In: Dräxler, P., Ringel, C.M., Michler,
G.O. (eds.) Computational Methods for Representations of Groups and Algebras.
Progress in Mathematics, vol. 173, pp. 177–185. Birkhäuser, Basel (1999)

25. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 — A com-
puter algebra system for polynomial computations (2015). http://www.singular.
uni-kl.de

26. Dolgachev, I.V., Hu, Y.: Variation of geometric invariant theory quotients. (With
an appendix: “An example of a thick wall” by Nicolas Ressayre). Publ. Math. Inst.
Hautes Étud. Sci. 87, 5–56 (1998)

27. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry.
Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

28. Eisenbud, D.: The Geometry of Syzygies: A Second Course in Commutative Alge-
bra and Algebraic Geometry. Graduate Texts in Mathematics, vol. 229. Springer,
New York (2005)

29. Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions
over exterior algebras. Trans. Am. Math. Soc. 355(11), 4397–4426 (2003)

30. Encinas, S., Hauser, H.: Strong resolution of singularities in characteristic zero.
Comment. Math. Helv. 77(4), 821–845 (2002)

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.mathematik.uni-kl.de/~boehm/gitfan
http://www.mathematik.uni-kl.de/~boehm/gitfan
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de


24 J. Böhm et al.

31. Erocal, B., Motsak, O., Schreyer, F.-O., Steenpass, A.: Refined algorithms to com-
pute syzygies. J. Symb. Comput 74, 308–327 (2016)

32. Frühbis-Krüger, A.: Computational aspects of singularities. In: Singularities in
Geometry and Topology, pp. 253–327. World Sci. Publ., Hackensack (2007)

33. Frühbis-Krüger, A.: resolve.lib - A Singular library for the resolution of singularities
(2015). Available in the Singular distribution, http://www.singular.uni-kl.de

34. The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.7.9
(2015)

35. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes.
In: Kalai, G., Ziegler, G.M. (eds.) Polytopes – Combinatorics and Computation,
pp. 43–74. Birkhäuser, Basel (2000)

36. Grauert, H., Remmert, R., Stellenalgebren, A.: Analytische Stellenalgebren.
Springer, New York (1971). Unter Mitarbeit von O. Riemenschneider, Die
Grundlehren der

37. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

38. Greuel, G.-M., Laplagne, S., Seelisch, F.: Normalization of rings. J. Symbolic Com-
put. 45(9), 887–901 (2010)

39. Greuel, G.-M., Laplagne, S., Seelisch, F.: normal.lib - A Singular library for normal-
ization (2010). Available in the Singular distribution, http://www.singular.uni-kl.
de

40. Hampe, S.: a-tint: a polymake extension for algorithmic tropical intersection the-
ory. European J. Combin. 36, 579–607 (2014)

41. Hart, B.: ANTIC: Algebraic number theory in C. Comput. Algebra Rundbrief 56,
10–12 (2015)

42. Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory
(2013). Version 2.4.0, http://flintlib.org

43. Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London
Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press,
Cambridge (2006)

44. Keicher, S.: Computing the GIT-fan. Internat. J. Algebra Comput. 22(7), 11
(2012). Article ID 1250064

45. Ren, Y.: polymake.so - A Singular module for interfacing with polymake (2015).
Available in the Singular distribution, http://www.singular.uni-kl.de

46. Schreyer, F.-O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weier-
straßschen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay-
Stellenalgebren minimaler Multiplizität. Diploma thesis, Universität Hamburg
(1980)

47. Serre, J.-P.: Bases normales autoduales et groupes unitaires en caractéristique 2.
Transform. Groups 19(2), 643–698 (2014)

48. Steenpaß, A.: parallel.lib - A Singular library for parallel computations (2015).
Available in the Singular distribution, https://www.singular.uni-kl.de

49. The homalg project authors. The homalg project - Algorithmic Homological Alge-
bra (2003–2014). http://homalg.math.rwth-aachen.de/

http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://flintlib.org
http://www.singular.uni-kl.de
https://www.singular.uni-kl.de
http://homalg.math.rwth-aachen.de/


Exploiting Structure
in Floating-Point Arithmetic

Claude-Pierre Jeannerod(B)

Inria, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),
ENS de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France

claude-pierre.jeannerod@inria.fr

Abstract. The analysis of algorithms in IEEE floating-point arithmetic
is most often carried out via repeated applications of the so-called stan-
dard model, which bounds the relative error of each basic operation by
a common epsilon depending only on the format. While this approach
has been eminently useful for establishing many accuracy and stabil-
ity results, it fails to capture most of the low-level features that make
floating-point arithmetic so highly structured. In this paper, we survey
some of those properties and how to exploit them in rounding error
analysis. In particular, we review some recent improvements of several
classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties.

Keywords: Floating-point arithmetic · IEEE standard 754-2008 ·
Rounding error analysis · High relative accuracy

1 Introduction

When analyzing a priori the behaviour of a numerical algorithm in IEEE floating-
point arithmetic, one most often relies exclusively on the so-called standard
model: for base β, precision p, and rounding to nearest, this model says that
the result r̂ of each basic operation op ∈ {+,−,×, /} on two floating-point num-
bers x and y satisfies

r̂ = (x op y)(1 + δ), |δ| � u (1)

with u = 1
2β1−p the unit roundoff. (Similar relations are also assumed for the

square root and the fused multiply-add (FMA) operations.)
This model has been used long before the appearance of the first version of

IEEE standard 754 [17,18], and the fact that it gives backward error results
is already emphasized by Wilkinson [43]: considering for example floating-point
addition, it is easily deduced from (1) that r̂ is the exact sum of the slightly
perturbed data x(1 + δ) and y(1 + δ), and, applying this repeatedly, that the
computed approximation to the sum of n floating-point numbers xi has the
form

∑n
i=1 x̃i with |x̃i − xi|/|xi| � (1 + u)n−1 − 1 = (n − 1)u + O(u2) for all i.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 25–34, 2016.
DOI: 10.1007/978-3-319-32859-1 2



26 C.-P. Jeannerod

Backward error analysis based on the standard model (1) has developed far
beyond this basic example and turned out to be eminently useful for establishing
many accuracy and stability results, as Higham’s treatise [14] shows.

Although the standard model holds for IEEE 754 arithmetic as long as under-
flow and overflow do not occur, it fails, however, to capture most of the low-level
features that make this arithmetic so highly structured. For example, by ensur-
ing a relative error less than one, (1) implies that r̂ has the same sign as the
exact value x op y, but it does not say that δ should be zero when x op y is a
floating-point number.

Such low-level features are direct consequences of the two main ingredients
of IEEE standard arithmetic. The first ingredient is the set F of floating-point
numbers, which (up to ignoring underflow and overflow) can be viewed as

F = {0} ∪ {

Mβe : M, e ∈ Z, βp−1 � |M | < βp
}

. (2)

The second ingredient is a rounding function RN : R → F, which maps any real
number to a nearest element in F:

|RN(t) − t| = min
f∈F

|f − t| for all t ∈ R, (3)

with ties broken according to a given rule (say, round to nearest even). This
rounding function is then used by IEEE standard arithmetic to operate on
floating-point data as follows: in the absence of underflow and overflow, x op y
must be computed as

r̂ = RN(x op y).

This way of combining the structured data in (2) and the minimization prop-
erty (3) implies that r̂ enjoys many more mathematical properties than just (1).

The goal of this paper is to show the benefits of exploiting such lower level
features in the context of rounding error analysis. We begin by recalling some of
these features in Sect. 2. Although the list given there is by no means exhaustive
(cf. Rump, Ogita, and Oishi [37, Sect. 2]), it should already give a good idea of
what can be deduced from (2) and (3). We then review some recent improvements
of several classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties. Specifically, we will see in
Sect. 3 that various general algorithms (for summation, inner products, matrix
factorization, polynomial evaluation, . . . ) now have a priori error bounds which
are both simpler and sharper than the classical ones. In Sect. 4 we will focus
on more specific algorithms for core computations like 2 × 2 determinants or
complex products, and show that in such cases exploiting the low-level features
of IEEE standard arithmetic leads to proofs of high relative accuracy and tight
error bounds.

Throughout this paper we assume for simplicity that β is even, that RN
rounds to nearest even, and that underflow and overflow do not occur. (For sum-
mation, however, the results presented here still hold in the presence of under-
flow, since then floating-point addition is known to be exact; see Hauser [13].)



Exploiting Structure in Floating-Point Arithmetic 27

For more on floating-point arithmetic, we refer to the complementary texts
by Brent and Zimmermann [3, Sect. 3], Corless and Fillion [6, Appendix A],
Demmel [9, Sect. 1.5], Goldberg [10], Golub and Van Loan [11, Sect. 2.7],
Higham [14, Sect. 2], [15], Knuth [27, Sect. 4.2], Monniaux [29], Muller et al. [31],
Overton [33], Priest [34], Trefethen [41], and Trefethen and Bau [42, Sect. 13].

2 Low-Level Properties

Structure of the Floating-Point Number Set. By construction, the set
F contains zero, has the symmetry property F = −F, and is invariant under
scaling (that is, multiplication by an integer power of the base): xβk ∈ F for
all x ∈ F and k ∈ Z. More precisely, every element of F is a multiple (by some
±βk) of an element of the subset F∩ [1, β). The elements of this subset have the
form 1 + jβ1−p, where j is an integer such that 0 � j < (β − 1)βp−1 and, since
u = 1

2β1−p, this can be expressed concisely as follows:

F ∩ [1, β) = {1, 1 + 2u, 1 + 4u, 1 + 6u, . . .}.

The numbers lying exactly halfway between two consecutive elements of F, such
as for example 1 + u and 1 + 3u, are called midpoints for F.

Some First Consequences of Rounding to Nearest. Since by definition
|RN(t) − t| � |f − t| for all f in F, choosing t = x + ε with x ∈ F and ε ∈ R

gives |RN(x + ε) − (x + ε)| � |ε|. With ε = 0 we recover the obvious property
that rounding a floating-point number leaves it unchanged:

x ∈ F ⇒ RN(x) = x. (4)

Setting ε = y with y in F, we deduce further that for floating-point addition the
error bound implied by the standard model (1) can be refined slightly:

x, y ∈ F ⇒ |RN(x + y) − (x + y)| � min{u|x + y|, |x|, |y|}. (5)

(Similarly, a sharper bound can be deduced for the FMA operation by taking
ε = yz.) We will see in Sect. 3 how to exploit such a refinement in the context
of floating-point summation.

Besides (4), other basic features include the following ones:

t ∈ R ⇒ |RN(t)| = RN(|t|), (6)

t ∈ R, k ∈ Z ⇒ RN(tβk) = RN(t)βk, (7)
t, t′ ∈ R, t � t′ ⇒ RN(t) � RN(t′). (8)

Combining (4) with the monotonicity property (8), we see for example that
if x ∈ F satisfies x � t for some real t, then x � RN(t).

As another example, we note that (4), (7), and (8) already suffice to prove
that the classical approximation to the mean of two floating-point numbers
behaves as expected in base 2 (but not in base 10): using (7) and then (4) gives
r̂ := RN(RN(x+y)/2) = RN((x+y)/2); then, using f := min{x, y} � (x+y)/2 �
max{x, y} =: g together with (8), we deduce that RN(f) � r̂ � RN(g) and,
applying (4) again, we conclude that f � r̂ � g.



28 C.-P. Jeannerod

The Functions ufp and ulp. A very convenient tool to go beyond the standard
model is provided by the notion of unit in the first place (ufp), defined in [37] as

ufp(t) =

{

0 if t = 0,
β�logβ |t|� if t ∈ R\{0}.

Its relationship with the classical notion of unit in the last place (ulp) is via the
equality ulp(t) = 2u ufp(t), and its definition implies immediately that

t ∈ R\{0} ⇒ ufp(t) � |t| < βufp(t). (9)

From (4), (6), (8), it then follows that

t ∈ R ⇒ ufp(t) � |RN(t)| � βufp(t).

Thus, RN(t) belongs to a range for which the distance between two consecutive
floating-point numbers is exactly 2u ufp(t), and being nearest to t implies

|RN(t) − t| � u ufp(t).

In terms of ulp’s, this is just the usual half-an-ulp absolute error bound (attained
at every midpoint) and, dividing further by |t| > 0, we arrive at

t ∈ R\{0} ⇒ |RN(t) − t|
|t| � u

ufp(t)
|t| . (10)

This inequality is interesting for at least three reasons. First, recalling (9), it
allows us to recover the uniform bound u claimed by the standard model (1).
Second, it shows that the relative error can be bounded by about u/β instead
of u when |t| approaches its upper bound βufp(t); this is related to a phenomenon
called wobbling precision [14, p. 39] and indicates that when deriving sharp error
bounds the most difficult cases are likely to occur when |t| lies in the leftmost part
of its range [ufp(t), βufp(t)). Third, it makes it easy to check that the bound u
is in fact never attained, as noted in [14, p. 38], since either |t| = ufp(t) ∈ F or
ufp(t)/|t| < 1. Indeed, the following slightly stronger statement holds:

t ∈ R\{0} ⇒ |RN(t) − t|
|t| � u

1 + u
. (11)

If |t| � (1+u)ufp(t), the above inequality follows directly from the one in (10).
Else, rounding to nearest implies that |RN(t)| = ufp(t) � |t| < (1+u)ufp(t) and,
recalling that t has the same sign as its rounded value, we conclude that

|RN(t) − t|
|t| = 1 − ufp(t)

|t| < 1 − 1
1 + u

=
u

1 + u
.

The bound in (11) is given by Knuth in [27, p. 232] and, in the special case
where t = x + y or t = xy with x, y ∈ F, it was already noted by Dekker [8]
(in base 2) and then by Holm [16] (in any base). Furthermore, it turns out to
be attained if and only if t is the midpoint ±(1 + u)ufp(t); see [25]. This best
possible bound refines the standard model (1) only slightly, but we shall see in
the rest of this paper that it can be worth exploiting in various situations.



Exploiting Structure in Floating-Point Arithmetic 29

Exact Floating-Point Subtraction and EFTs. We now briefly review what
can be obtained exactly using floating-point and rounding to nearest. A first
classical result is Sterbenz’ theorem [40, p. 138], which ensures that floating-point
subtraction is exact when the two operands are close enough to each other:

x, y ∈ F, y/2 � x � 2y ⇒ x − y ∈ F.

Another exactness property is that the absolute error due to floating-point
addition or multiplication is itself a floating-point number:

x, y ∈ F, op ∈ {+,×} ⇒ x op y − RN(x op y) ∈ F.

Furthermore, various floating-point algorithms are available for computing simul-
taneously the rounded value r̂ = RN(x op y) and the exact value of the associated
rounding error e = x op y − r̂. For addition, these are the Fast2Sum algorithm of
Kahan [26] and Dekker [8], and the more general 2Sum algorithm of Knuth [27]
and Møller [28]. For multiplication, it suffices to use the FMA operation as
follows:

r̂ ← RN(xy), e ← RN(xy − r̂). (12)

(If no FMA is available, the pair (r̂, e) can be obtained using 7 multiplications
and 10 additions, as shown by Dekker in [8].) These algorithms define in each
case a so-called error-free transformation (EFT) [32], which maps (x, y) ∈ F2

to (r̂, e) ∈ F2 such that x op y = r̂ + e. In Sect. 4 we will see in particu-
lar how to exploit the transformation given by (12), possibly in combination
with Sterbenz’s theorem. For more examples of EFT-based, provably accurate
algorithms—especially in the context of summation and elementary function
evaluation—we refer to [35] and [31] and the references therein.

3 Revisiting Some Classical Wilkinson-Style Error
Bounds

3.1 Summation

Given x1, . . . , xn ∈ F, we consider first the evaluation of the sum
∑n

i=1 xi by
means of n − 1 floating-point additions, in any order. Following Wilkinson [43],
we may apply the standard model (1) repeatedly in order to obtain the backward
error result shown in Sect. 1, from which a forward error bound for the computed
value r̂ then follows directly:

∣

∣

∣r̂ −
n

∑

i=1

xi

∣

∣

∣ � α

n
∑

i=1

|xi|, α = (1 + u)n−1 − 1. (13)

Such a bound is easy to derive, valid for any order, and a priori essentially best
possible since there exist special values of the xi for which the ratio error/(error
bound) tends to 1 as u → 0. The expression giving α, however, is somehow
unwieldy and it is now common practice to have it replaced by the concise yet



30 C.-P. Jeannerod

rigorous upper bound γn−1, using Higham’s γk notation “γk = ku/(1 − ku) if
ku < 1” [14, p. 63]. Both bounds have the form (n−1)u+O(u2) and the second
one further assumes implicitly that the dimension n satisfies (n − 1)u < 1.

Recently, it was shown by Rump [36] that for recursive summation one can
in fact always replace α in (13) by the simpler and sharper expression

α = (n − 1)u.

In other words, the terms of order O(u2) can be removed, and this without
any restriction on n. The proof given in [36, p. 206] aims to bound the forward
error |r̂ − ∑n

i=1 xi| directly, focusing on the last addition and proceeding by
induction on n; in particular, one key ingredient is the refined model (5) of
floating-point addition, which is used here to handle the case |xn| � u

∑n−1
i=1 |xi|.

As noted in [24, Sect. 3], this proof technique is in fact not restricted to recursive
summation, so the constant (n − 1)u eventually holds for any summation order.

3.2 Other Examples of O(u2)-Free Error Bounds

Similar improvements have been obtained for the error bounds of several other
computational problems, which we summarize in Table 1. The algorithms for
which these new bounds hold are the classical ones (described for example
in [14]) and the role played by α depends on the problem as follows: for dot
products, α should be such that |r̂ − xT y| � α|x|T |y| with x, y ∈ Fn and r̂
denoting the computed value; for matrix multiplication, |Ĉ − AB| � α|A||B|
with A ∈ F∗×n and B ∈ Fn×∗; for Euclidean norms (in dimension n), powers,
and products, |r̂ − r| � α|r|; for triangular system solving and LU and Cholesky
matrix factorizations, we consider the usual backward error bounds |ΔT | � α|T |
for (T +ΔT )x̂ = b, |ΔA| � α|L̂||Û | for L̂Û = A+ΔA, and |ΔA| � α|R̂T ||R̂| for
R̂T R̂ = A + ΔA. (Here the matrices T , Û , R̂ have dimensions n × n, and L̂ has
dimensions m × n with m � n.) Finally, for the evaluation of a(x) =

∑n
i=0 aix

i

with Horner’s rule, α is such that |r̂ − a(x)| � α
∑n

i=0 |aix
i|.

The new values of α shown in Table 1 are free of any O(u2) term and thus
simpler and sharper than the classical ones. In the last three cases, the price to
be paid for those refined constants is some mild restriction on n; we refer to [38]
for a precise condition and an example showing that it is indeed necessary.

4 Provably Accurate Numerical Kernels

4.1 Computation of ab + cd

As a first example of such kernels, let us consider the evaluation of ab + cd for
a, b, c, d ∈ F. This operation occurs frequently in practice and is especially useful
for complex arithmetic, discriminants, and robust orientation predicates. Since it
is not part of the set of core IEEE 754-2008 functions for which correct rounding
is required or recommended (and despite the existence of hardware designs as
the one by Brunie [4, Sect. 3.3.2]), this operation will in general be implemented



Exploiting Structure in Floating-Point Arithmetic 31

Table 1. Some classical Wilkinson-style constants made simpler and sharper. Unless
otherwise stated these results hold for any ordering, and (�) means “if n � u−1/2”.

Problem Classical α New α Reference(s)

summation (n − 1)u + O(u2) (n − 1)u [24,36]

dot prod., mat. mul. nu + O(u2) nu [24]

Euclidean norm (n
2

+ 1)u + O(u2) (n
2

+ 1)u [25]

Tx = b, A = LU nu + O(u2) nu [39]

A = RTR (n + 1)u + O(u2) (n + 1)u [39]

xn (recursive, β = 2) (n − 1)u + O(u2) (n − 1)u (�) [12]

product x1x2 · · · xn (n − 1)u + O(u2) (n − 1)u (�) [38]

poly. eval. (Horner) 2nu + O(u2) 2nu (�) [38]

in software using basic floating-point arithmetic. When doing so, however, some
care is needed and a classical scheme like RN(RN(ab) + RN(cd)) or, if an FMA
is available, RN(ab + RN(cd)) can produce a highly inaccurate answer.

To avoid this, the following sequence of four operations was suggested by
Kahan (see [14, p. 60]):

ŵ := RN(cd); f̂ := RN(ab + ŵ); e := RN(cd − ŵ); r̂ := RN(f̂ + e).

Here the FMA operation is used to produce f̂ and also to implement an EFT
for the product cd, as in (12), thus giving e = cd − ŵ exactly. By applying to ŵ,
f̂ , and r̂ the refined standard model given by (11) it is then easy to prove that

|r̂ − r|
|r| � 2u(1 + ψ), r = ab + cd, ψ =

u|cd|
2|r| . (14)

This kind of analysis (already done by Higham in the 1996 edition of [14]) shows
that Kahan’s algorithm computes ab + cd with high relative accuracy as long
as ψ �	 1. The latter condition, however, does not always hold, as there exist
inputs for which ψ is of the order of u−1 and the relative error bound 2u(1 + ψ)
is larger than 1.

This classical analysis was refined in [21], where we show that Kahan’s algo-
rithm above is in fact always highly accurate: first, a careful analysis of the
absolute errors ε1 = f̂ − (ab + ŵ) and ε2 = r̂ − (f̂ + e) using the ufp (or ulp)
function gives |ε1|, |ε2| � βu ufp(r), so that |r̂ − r| = |ε1 + ε2| � 2βu|r|; then, by
studying ε1 and ε2 simultaneously via a case analysis comparing |ε2| to u ufp(r),
we deduce that the constant 2βu can be replaced by 2u (that is, the term ψ can
in fact be removed from the bound in (14)); third, we show that this bound is
asymptotically optimal (as u → 0) by defining

a = b = βp−1 + 1, c = βp−1 + β
2βp−2, d = 2βp−1 + β

2βp−2,

and checking (by hand or, since recently, using a dedicated Maple library [22])
that the error committed for such inputs has the form 2u − 4u2 + O(u3).



32 C.-P. Jeannerod

A similar scheme was proposed by Cornea, Harrison, and Tang [7, p. 273],
which ensures further that the value returned for ab+cd is the same as for cd+ab.
(Such a feature may be desirable when, say, implementing complex arithmetic.)
We refer to [19,30] for sharp error analyzes combining ufp-based arguments, the
refined bound u/(1 + u), and Sterbenz’ theorem.

4.2 Complex Multiplication

Another important numerical kernel is the evaluation of the real and imaginary
parts R = ac − bd and I = ad + bc of the complex product z = (a + ib)(c + id).
Consider first the conventional way, which produces R̂ = RN(RN(ac)−RN(bd))
and Î = RN(RN(ad) + RN(bc)). Although R̂ or Î can be completely inaccurate,
it is known that high relative accuracy holds in the normwise sense: Brent,
Percival, and Zimmermann [2] showed that ẑ = R̂ + iÎ satisfies

|ẑ − z|
|z| �

√
5u

and that this bound is asymptotically optimal (at least in base 2); in particular,
the constant

√
5 = 2.23 . . . improves upon classical and earlier ones like

√
8 =

2.82 . . . by Wilkinson [44, p. 447] and 1 +
√

2 = 2.41 . . . by Champagne [5].
Assume now that an FMA is available. In this case, R̂ can be obtained as

RN(ac − RN(bd)) or RN(RN(ac) − bd), and similarly for Î, so that z can be
evaluated using four different schemes. We showed in [20] that for each of these
schemes the bound

√
5u mentioned above can be reduced further to 2u and that

this new bound is asymptotically optimal. We also proved that this normwise
bound 2u remains sharp even if both R̂ and Î are computed with high relative
accuracy as in Sect. 4.1.

The bound
√

5u was obtained in [2] via a careful ulp-based case analysis.
For the bound 2u we have proceeded similarly in [20, Sect. 3] but, as we observe
in [25], in this case a much shorter proof follows from using just the refined
standard model given by (11).

A direct application of these error bounds is to complex division: as noted by
Baudin in [1], if αu bounds the normwise relative error of multiplication, then the
bound (α+3)u+O(u2) holds for division—assuming the classical formula x/y =
(xy)/(yy)—and thus we can take α + 3 = 5 or 5.23 . . . depending on whether
the FMA operation is available or not. However, despite this and some recent
progress made in the case of complex inversion [23], the best possible constants
for complex division (with or without an FMA) remain to be determined.

Acknowledgements. I am grateful to Ilias Kotsireas, Siegfried M. Rump, and Chee
Yap for giving me the opportunity to write this survey. This work was supported in part
by the French National Research Agency, under grant ANR-13-INSE-0007 (MetaLibm).



Exploiting Structure in Floating-Point Arithmetic 33

References

1. Baudin, M.: Error bounds of complex arithmetic, June 2011. http://forge.scilab.
org/upload/compdiv/files/complexerrorbounds v0.2.pdf

2. Brent, R.P., Percival, C., Zimmermann, P.: Error bounds on complex floating-point
multiplication. Math. Comput. 76, 1469–1481 (2007)

3. Brent, R.P., Zimmerman, P.: Modern Computer Arithmetic. Cambridge University
Press, Cambridge (2010)

4. Brunie, N.: Contributions to Computer Arithmetic and Applications to Embedded
Systems. Ph.D. thesis, École Normale Supérieure de Lyon, Lyon, France, May 2014.
https://tel.archives-ouvertes.fr/tel-01078204

5. Champagne, W.P.: On finding roots of polynomials by hook or by crook. Master’s
thesis, University of Texas, Austin, Texas (1964)

6. Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods, From
the Viewpoint of Backward Error Analysis. Springer, New York (2013)

7. Cornea, M., Harrison, J., Tang, P.T.P.: Scientific Computing on Itanium R©-based
Systems. Intel Press, Hillsboro (2002)

8. Dekker, T.J.: A floating-point technique for extending the available precision.
Numer. Math. 18, 224–242 (1971)

9. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
10. Goldberg, D.: What every computer scientist should know about floating-point

arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)
11. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins

University Press, Baltimore (2013)
12. Graillat, S., Lefèvre, V., Muller, J.M.: On the maximum relative error when

computing integer powers by iterated multiplications in floating-point arithmetic.
Numer. Algorithms 70, 653–667 (2015). http://link.springer.com/article/10.1007/
s11075-015-9967-8

13. Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst. 18(2), 139–174 (1996)

14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM,
Philadelphia (2002)

15. Higham, N.J.: Floating-point arithmetic. In: Higham, N.J., Dennis, M.R.,
Glendinning, P., Martin, P.A., Santosa, F., Tanner, J. (eds.) The Princeton
Companion to Applied Mathematics, pp. 96–97. Princeton University Press,
Princeton (2015)

16. Holm, J.E.: Floating-Point Arithmetic and Program Correctness Proofs. Ph.D.
thesis, Cornell University, Ithaca, NY, USA, August 1980

17. IEEE Computer Society: IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754–1985. IEEE Computer Society, New York (1985)

18. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE
Standard 754–2008. IEEE Computer Society, New York (2008)

19. Jeannerod, C.P.: A radix-independent error analysis of the Cornea-Harrison-Tang
method, to appear in ACM Trans. Math. Softw. https://hal.inria.fr/hal-01050021

20. Jeannerod, C.P., Kornerup, P., Louvet, N., Muller, J.M.: Error bounds on complex
floating-point multiplication with an FMA, to appear in Math. Comput. https://
hal.inria.fr/hal-00867040v4

21. Jeannerod, C.P., Louvet, N., Muller, J.M.: Further analysis of Kahan’s
algorithm for the accurate computation of 2 × 2 determinants. Math. Comput.
82(284), 2245–2264 (2013)

http://forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf
http://forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf
https://tel.archives-ouvertes.fr/tel-01078204
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11075-015-9967-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11075-015-9967-8
https://hal.inria.fr/hal-01050021
https://hal.inria.fr/hal-00867040v4
https://hal.inria.fr/hal-00867040v4


34 C.-P. Jeannerod

22. Jeannerod, C.P., Louvet, N., Muller, J.M., Plet, A.: A library for symbolic floating-
point arithmetic (2015). https://hal.inria.fr/hal-01232159

23. Jeannerod, C.-P., Louvet, N., Muller, J.-M., Plet, A.: Sharp error bounds
for complex floating-point inversion. Numer. Algorithms 1–26 (2016). https://
hal-ens-lyon.archives-ouvertes.fr/ensl-01195625

24. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-
point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

25. Jeannerod, C.P., Rump, S.M.: On relative errors of floating-point operations: opti-
mal bounds and applications (2014). https://hal.inria.fr/hal-00934443

26. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1),
40 (1965)

27. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2, 3rd edn. Addison-Wesley, Reading (1998)

28. Møller, O.: Quasi double-precision in floating point addition. BIT 5, 37–50 (1965)
29. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans.

Program. Lang. Syst. 30(3), 12:1–12:41 (2008)
30. Muller, J.M.: On the error of computing ab+cd using Cornea, Harrison and Tang’s

method. ACM Trans. Math. Softw. 41(2), 7:1–7:8 (2015)
31. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,

Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2010)

32. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26(6), 1955–1988 (2005)

33. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic:
Including One Theorem, One Rule of Thumb, and One Hundred and One Exer-
cises. Society for Industrial and Applied Mathematics, Philadelphia (2001)

34. Priest, D.M.: On Properties of Floating Point Arithmetics: Numerical Stability
and the Cost of Accurate Computations. Ph.D. thesis, Mathematics Department,
University of California, Berkeley, CA, USA, November 1992

35. Rump, S.M.: Ultimately fast accurate summation. SIAM J. Sci. Comput. 31(5),
3466–3502 (2009)

36. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT
52(1), 201–220 (2012)

37. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful
rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

38. Rump, S.M., Bünger, F., Jeannerod, C.P.: Improved error bounds for floating-point
products and Horner’s scheme. BIT (2015). http://link.springer.com/article/10.
1007/s10543-015-0555-z

39. Rump, S.M., Jeannerod, C.P.: Improved backward error bounds for LU and
Cholesky factorizations. SIAM J. Matrix Anal. Appl. 35(2), 684–698 (2014)

40. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall, Englewood Cliffs
(1974)

41. Trefethen, L.N.: Computing numerically with functions instead of numbers. Math.
Comput. Sci. 1(1), 9–19 (2007)

42. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
43. Wilkinson, J.H.: Error analysis of floating-point computation. Numer. Math. 2,

319–340 (1960)
44. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press,

Oxford (1965)

https://hal.inria.fr/hal-01232159
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01195625
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01195625
https://hal.inria.fr/hal-00934443
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10543-015-0555-z
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10543-015-0555-z


Symbolic Geometric Reasoning with Advanced
Invariant Algebras

Hongbo Li(B)

Key Laboratory of Mathematics Mechanization, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

hli@mmrc.iss.ac.cn

Abstract. In symbolic geometric reasoning, the output of an algebraic
method is expected to be geometrically interpretable, and the size of
the middle steps is expected to be sufficiently small for computational
efficiency. Invariant algebras often perform well in meeting the two expec-
tations for relatively simple geometric problems. For example in classi-
cal geometry, symbolic manipulations based on basic invariants such as
squared distances, areas and volumes often have great performance in
generating readable proofs. For more complicated geometric problems,
the basic invariants are still insufficient and may not generate geometri-
cally meaningful results.

An advanced invariant is a monomial in an “advanced algebra”, and
can be expanded into a polynomial of basic invariants that are also
included in the algebra. In projective incidence geometry, Grassmann-
Cayley algebra and Cayley bracket algebra are an advanced algebra in
which the basic invariants are determinants of homogeneous coordinates
of points, and the advanced invariants are Cayley brackets. In Euclid-
ean conformal geometry, Conformal Geometric Algebra and null bracket
algebra are an advanced algebra where the basic invariants are squared
distances between points and and signed volumes of simplexes, and the
advanced invariants are Clifford brackets.

This paper introduces the above advanced invariant algebras together
with their applications in automated geometric theorem proving. These
algebras are capable of generating extremely short and readable proofs.
For projective incidence theorems, the proofs generated are usually two-
termed in that the conclusion expression maintains two-termed during
symbolic manipulations. For Euclidean geometry, the proofs generated
are mostly one-termed or two-termed.

Keywords: Grassmann-Cayley algebra · Cayley bracket algebra ·
Conformal Geometric Algebra · Null bracket algebra · Automated
geometric theorem proving

1 Algebraic Approach to Geometric Reasoning

In classical geometry, besides the Euclidean approach to geometric reasoning,
the algebraic approach can be described by the following diagram:
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 35–49, 2016.
DOI: 10.1007/978-3-319-32859-1 3



36 H. Li

Geometric input
algebraization
− − − − − −→ algebraic expressions

| |
| |

Euclidean deduction | | algebraic manipulations
| |
↓ ↓

Geometric conclusion
interpretation?
←− − − − − − algebraic conclusion

The following are key aspects in evaluating the algebraic approach:

– Symbolic algebraic manipulations: how-to and efficiency.
– Geometric interpretation of an algebraic conclusion: how-to.
– Completeness: Is the diagram commutative for arbitrary input of a given class?

While efficiency is very important for algorithms, geometric interpretability is
vital for the algebraic approach to be geometrically successful, and completeness
measures the scope of applicability. We use the following example to illustrate the
problem of geometric interpretability by several algebraic methods for geometric
theorem proving.

Example 1 (33rd M. Putnam Math Competition, 1972). A quadrilateral in
space with equal opposite angles has equal opposite edges (Fig. 1).

A

C B

D

Fig. 1. Example 1.

In the planar case, the conclusion is obviously wrong. This example can
can be used to test algebraic methods for the ability of generating geometri-
cally meaningful non-degeneracy conditions, preferably the non-coplanarity of
the quadrilateral.

The canonical algebraization is by coordinatization:

A = (0, 0, 0), B = (x1, 0, 0),
C = (x1 + x2, x3, 0), D = (x1 + x2 + x4, x3 + x5, x6),
d1 = |AB|, d2 = |BC|, d3 = |CD|, d4 = |DA|.



Symbolic Geometric Reasoning with Advanced Invariant Algebras 37

Hypothesis:

– 6 equalities: 2 of angles, 4 of squared distances by coordinates. The equality
of two angles is represented by the equality of their cosines.

– 4 inequalities of distances being nonzero.

Conclusion:
g1 := d1 − d3 = 0,
g2 := d2 − d4 = 0.

Method 1. Characteristic Set [21]. When computing the characteristic set
of the 6 equalities under the order of variables di ≺ xj by the Maple package
wsolve of Dingkang Wang, Maple returns “Error, (in expand/bigprod) object
too large”.

When computing the characteristic set of the 6 equalities together with the
following 4 equalities obtained from the 4 inequalities by introducing variables
yk, k = 1..4 such that

hk := y2
kdk − 1 = 0,

then under yk ≺ di ≺ xj , 301 branches are generated in a flash with a laptop,
among which 243 (resp. 249) branches do not pseudo-reduce g1 (resp. g2) to zero.
Then non-degeneracy conditions are obtained by investigating the initials of the
remaining branches. They are complicated polynomials without clear geometric
meaning.

Method 2. Gröbner Basis [3]. Computing the Gröbner basis of the ideal I
of the 6 equalities under the same order of variables di ≺ xj in deglex ordering
of monomials is easy for Maple; the result does not reduce any of g1, g2 to zero.

To find a non-degeneracy condition, by the method of F. Winkler [20], we
compute a Gröbner basis of the saturation ideal (I : g∞

1 ), and obtain 20 elements,
5 of which are not in

√I. The simplest one is

p = d2{4(d1 + d3)x2
2 + 4(d1 + d3)x2x4 + 2(2d21 + 2d1d3 + d22 − d24)x2

+ 2(d21 + d22 + d1d3 + d2d4)x4 + d31 + d21d3 + d1d
2
2 + d1d

2
3 − d1d

2
4

− d22d3 − 2d2d3d4 + d33 − d3d
2
4}.

So a non-degeneracy condition of g1 = 0 is p �= 0. As d2 �= 0 by the hypothesis,
the second factor in the expression of p, denoted by p/d2, is a simpler non-
degeneracy condition.

Similarly, a Gröbner basis of the second saturation ideal (I : g∞
2 ) is com-

puted, which contains 19 elements, 5 of which are not in
√I. The second factor

of p is one of the 5 elements, so it is a non-degeneracy condition for g2 = 0.
By the Gröbner basis method, we get the result that the conclusion is true

if p/d2 �= 0. The geometric meaning of polynomial p/d2 is not clear.

Method 3. Vector Algebra [7]. Introduce 4 unit vectors e1, e2, e3, e4 to rep-
resent the directions of the 4 sides:

B − A = d1e1, C − B = d2e2, D − C = d3e3, A − D = d4e4.



38 H. Li

Hypothesis:
d1e1 + d2e2 + d3e3 + d4e4 = 0,
e1 · e2 = e3 · e4,
e1 · e4 = e2 · e3,
e21 = e22 = e23 = e24 = 1,
d1, d2, d3, d4 �= 0.

(1.1)

Conclusion:
d1 = d3, d2 = d4.

Triangulating (1.1) by vectorial equation solving [8]: under the order of vari-
ables di ≺ ej , the characteristic set in vectorial equation form contains only 1
branch of maximal dimension – an algebraic variety defined by 8 scalar-valued
polynomials, as following:

d4e4 + d3e3 + d2e2 + d1e1,
e23 − 1,
e22 − 1,
e21 − 1,
d4 − d2,
d3 − d1.

(1.2)

Both conclusions are already in it. All other branches each have scalar-valued
components of at least 9 polynomials, and the conclusions are false on them.
Furthermore, A,B,C,D are coplanar on all other branches.

So the theorem is generically true with non-degeneracy condition: the non-
coplanarity of the quadrilateral. The conclusion is automatically discovered dur-
ing triangulation.

What happened during vectorial equation solving? To uncover the myth, we
show the procedure of triangulating the equations led by vector variable e3 after
the elimination of e4, the latter being trivial by the first equation of (1.1). The
input equations led by e3 are

e23 = 1,
2(d2d3 − d1d4)e2 · e3 = d21 + d24 − d22 − d23,

2(d2d3 − d1d4)(d1d2 − d3d4)e1 · e3 = d42 − 2d22d
2
4 + d44 − d21d

2
2 − d21d

2
4

− d22d
2
3 − d23d

2
4 + 4d1d2d3d4.

Solving for e3 by the following identity in vector algebra:

(e1 ×e2)2e3 = −(e2 ·e3)e1 × (e1 ×e2)+ (e3 ·e1)e2 × (e1 ×e2)+λe1 ×e2, (1.3)

where local parameter/coordinate λ satisfies

λ2 = (e1 × e2)2e23 − (e2 · e3)2e21 − (e3 · e1)2e22 + 2(e1 · e2)(e2 · e3)(e3 · e1),
we get

(d1 + d2 + d3 + d4)
︷ ︸︸ ︷

(d1 + d2 − d3 − d4)(d1 + d3 − d2 − d4)
︷ ︸︸ ︷

(d1 + d4 − d2 − d3)
{(d1d4 − d2d3)e3 − (d1d2 − d3d4)e1 − (d22 − d24)e2} = 0.



Symbolic Geometric Reasoning with Advanced Invariant Algebras 39

The two overbraced factors each lead to the maximal branch (1.2), while the
other factors lead to lower dimensional configurations.

The vector algebra method leads to the beautiful triangulation result (1.2).
When recalling the coordinate approach, one gets the mixed feeling that on
one hand, by decomposing high dimensional geometry into a sequence of one
dimensional geometries, Descartes’ introduction of coordinates greatly facilitates
the representation and manipulation of geometric objects; on the other hand,
however, this factitious decomposition induces two big problems:

1. Results from algebraic computations are either difficult to interpret geomet-
rically, or geometrically meaningless. Their dependencies upon the specific
coordinate systems are either difficult or impossible to separate from the geo-
metric properties they represent.

2. Middle expression swell: Both the input expression and the output expression
are small in size, but the middle expressions are huge. Some computations
are possible only theoretically.

Vectors and invariants, or more accurately, the coordinate-free version of
covariants, have obvious representational advantage over coordinates, but do
not necessarily lead to any manipulational advantage. The reason is that invari-
ant indeterminates are not algebraically independent, and a generic algebraic
relation among invariants is called a syzygy. In invariant-theoretic method, peo-
ple do not get rid of algebraic dependencies, otherwise it becomes a traditional
coordinate method. Although a monomial of basic invariants is geometrically
meaningful, it is not so for a polynomial of basic invariants. With the presence
of syzygies, the classical approach to normalizing an invariant, Young’s straight-
ening algorithm [22], has no control of middle expression swell.

It remains a challenge how geometric reasoning with covariants can be done
more efficiently while preserving geometric meaning and controlling middle
expression size. To meet the challenge, advanced invariant algebras are called for.

In this paper, two advanced invariant algebras are introduced: Grassmann-
Cayley algebra and Cayley bracket algebra for projective incidence geometry, and
Conformal Geometric Algebra and null bracket algebra for Euclidean conformal
geometry. They are capable of generating extremely short and readable proofs
in automated theorem proving.

2 Geometric Reasoning by Basic and Advanced
Invariants

We start with a typical example in projective incidence geometry.

Example 2 (2D Desargues’ Theorem, valid for nD). If lines 11′,22′,33′ concur,
then points a = 12 ∩ 1′2′, b = 13 ∩ 1′3′, c = 23 ∩ 2′3′ are collinear (Fig. 2).

Method 4. Area Method [4]. A 3D vector represents the homogeneous coor-
dinates of a point in the projective plane. In the affine model of projective plane,



40 H. Li

3

2

1

2’

1’

3’

a

cb

d

Fig. 2. Desargues’ Theorem.

the determinant of the homogeneous coordinates of three affine points a,b, c,
denoted by [abc], is related to the signed area Sabc of triangle abc by

[abc] := det(a,b, c) = 2Sabc.

Chou, Gao and Zhang developed a readable proof generating method based
on basic geometric invariants such as areas, ratios, squared distances, etc., and a
set of elimination rules from geometric constructions. For Desargues’ Theorem,
the area method can generate an elegant rational monomial proof, i.e., in each
step of manipulating the conclusion expression, the expression remains a ratio-
nal function whose numerator and denominator are both monomials of basic
invariants. Details can be found in [4].

Method 5. Biquadratic Final Polynomials [2,5]. The method of Bokowski,
Sturmfels and Richter-Gebert is based on the theory of biquadratic final polyno-
mials. It searches for all kinds of geometric constraints that can be expressed by
biquadratic bracket equalities, and then finds a subset of such equalities whose
multiplication produces a biquadratic binomial representation of the conclusion
after canceling common bracket factors.

For Desargues’ Theorem, let d = 11′ ∩ 22′, then a binomial proof is given
by this method as following:

3′c,1′a,2d concur =⇒ [23′d][1′ac] = −[2cd][1′3′a]
1′d,2a,3b concur =⇒ [2ab][31′d] = [23a][1′bd]
3,3′,d collinear =⇒ [23d][1′3′d] = −[23′d][31′d]
1′,3′,b collinear =⇒ [1′bd][1′3′a] = −[1′ab][1′3′d]
2,3, c collinear =⇒ [23a][2cd] = −[23d][2ac]

× ×
⇓ ⇓

a,b, c collinear ⇐= [2ab][1′ac] = [2ac][1′ab].

Method 6. Cayley Bracket Algebra [10]. The method of Li and Wu is
based on Grassmann-Cayley algebra, Cayley expansion and factorization. A
Grassmann algebra is obtained by extending a base vector space with the outer



Symbolic Geometric Reasoning with Advanced Invariant Algebras 41

(exterior) product. While a projective point a is represented by a vector of homo-
geneous coordinates and denoted by the same symbol a, line ab is represented
by B := a ∧ b, so that point c is on the line if and only if c ∧ B = 0. Similarly,
plane abc is represented by C := a ∧ b ∧ c, and point d is on the plane if and
only if d ∧ C = 0.

The meet product “∨” is the dual of the outer product “∧”. Let “∼” be the
Hodge dual operator [12] of the Grassmann algebra, then

(B ∨ C)∼ := B∼ ∧ C∼.

Grassmann-Cayley algebra is Grassmann algebra equipped also with the meet
product and the dual operator. It is an algebra of span and intersection of linear
subspaces. For example, the intersection of lines 12,1′2′ is represented by (1 ∧
2) ∨ (1′ ∧ 2′). As a point on both line 1′2′ and line 12, the linear combination
representations of the intersection on the two lines respectively are given by the
following shuffle formula:

(1 ∧ 2) ∨ (1′ ∧ 2′) = [122′]1′ − [121′]2′ = [11′2′]2 − [21′2′]1. (2.1)

A Cayley bracket is a scalar-valued monomial in Grassmann-Cayley algebra.
Cayley bracket algebra is a commutative algebra generated by Cayley brackets.
It is an algebra of advanced projective invariants, and includes bracket algebra
as a subalgebra.

Cayley expansion [10] refers changing an expression of Cayley bracket algebra
into bracket algebra. The purpose is to make simplification by eliminating all
meet products. As Grassmann-Cayley algebra is neither associative nor commu-
tative, converting an expression from Cayley bracket algebra into bracket algebra
is a simplification from the algebraic viewpoint. The shuffle formula from left to
right is a typical example.

Cayley factorization [19] is the inverse of Cayley expansion. It converts a
bracket polynomial into a (rational) Cayley bracket, so that an incidence con-
struction interpretation of the bracket polynomial can be read from the resulting
Cayley bracket expression.

For Desargues’ Theorem, the hypothesis is the concurrence of lines 11′,22′,
33′, whose representation in Cayley bracket algebra is

(1 ∧ 1′) ∨ (2 ∧ 2′) ∨ (3 ∧ 3′) = 0.

The expression has 48 terms if expanded into homogeneous coordinate variables.
The conclusion that intersections 12∩ 1′2′, 13∩ 1′3′, 23∩ 2′3′ are collinear is
represented by

[{(1 ∧ 2) ∨ (1′ ∧ 2′)}{(1 ∧ 3) ∨ (1′ ∧ 3′)}{(2 ∧ 3) ∨ (2′ ∧ 3′)}] = 0.

It has 1290 terms if expanded into homogeneous coordinate variables.



42 H. Li

The following binomial proof is valid also for the nD case. It is by simplifying
the conclusion expression with Cayley expansion and factorization:

[{(1 ∧ 2) ∨ (1′ ∧ 2′)}{(1 ∧ 3) ∨ (1′ ∧ 3′)}{(2 ∧ 3) ∨ (2′ ∧ 3′)}]
binomial= {(1 ∧ 2) ∨ (1 ∧ 3) ∨ (1′ ∧ 3′)}{(1′ ∧ 2′) ∨ (2 ∧ 3) ∨ (2′ ∧ 3′)}

−{(1 ∧ 2) ∨ (2 ∧ 3) ∨ (2′ ∧ 3′)}{(1′ ∧ 2′) ∨ (1 ∧ 3) ∨ (1′ ∧ 3′)}
monomial= [123][1′2′3′](−[11′3′][232′] + [131′][22′3′])
factor

= −[123][1′2′3′](1 ∧ 1′) ∨ (2 ∧ 2′) ∨ (3 ∧ 3′).

(2.2)

Remark on monomial expansion: (1 ∧ 2) ∨ (1 ∧ 3) = [123]1, as according to
(2.1), the other term vanishes as a result of [121] = 0.

It turns out that with Cayley expansion and Cayley factorization, all projec-
tive incidence theorems tested so far have robust binomial proofs, in that when
there is more than one monomial/binomial Cayley expansion available, then any
such expansion leads to a binomial proof ultimately. The features of the Cayley
bracket algebra method includes:

– easy and robust steps, no peculiar choice necessary in manipulations;
– short terms;
– input and output geometrically meaningful;
– hypothesis and conclusion expressions interrelated quantitatively;
– geometric theorems expressed as algebraic identities: easy to apply.

For example, in the proof (2.2), the hypothesis is in fact not used, and we
get the following identity in Cayley bracket algebra:

[{(1 ∧ 2) ∨ (1′ ∧ 2′)}{(1 ∧ 3) ∨ (1′ ∧ 3′)}{(2 ∧ 3) ∨ (2′ ∧ 3′)}]
= −[123][1′2′3′](1 ∧ 1′) ∨ (2 ∧ 2′) ∨ (3 ∧ 3′).

It provides a quantitative description of the relation between the hypothesis
expression and the conclusion expression, and is a much more general result
than the original theorem. The identity from right to left is the converse of
Desargues’ Theorem, with the non-degeneracy conditions [123][1′2′3′] �= 0 (the
non-degeneracy of triangles 123 and 1′2′3′) occurring naturally. Desargues’ The-
orem and its converse represented in algebraic identity form can be applied
directly as term rewriting rules in symbolic manipulations.

A highlight of advanced invariant computing method is that advanced invari-
ants are manipulated by their own mechanism, without resorting to low-level
invariants or coordinates. The number of terms of the hypothesis expression and
the conclusion expression when expanded into coordinates clearly indicates huge
middle expression swell if manipulations are done in coordinates.

In history, Descartes’ introduction of coordinates is a key step from quali-
tative description to quantitative analysis of geometric configurations. However,
coordinates are sequences of numbers, they have no geometric meaning by them-
selves. Leibniz once dreamed of a geometric calculus dealing directly with geo-
metric objects rather than with sequences of numbers. He needed an algebra
that is so close to geometry that every expression has clear geometric meaning,



Symbolic Geometric Reasoning with Advanced Invariant Algebras 43

and every algebraic manipulation corresponds to geometric transformation. Such
an algebra, if exists, is rightly called geometric algebra, and its elements called
geometric numbers.

Leibniz’s dream in projective incidence geometry is realized by Grassmann-
Cayley algebra and Cayley bracket algebra. Despite the efficiency, there are still
limitations with this geometric algebra, for example the following:

– Inefficient representation of Euclidean metric structure.
In Grassmann-Cayley algebra, for a vector a representing a point, both a∧a =
0 and a ∨ a = 0. So this algebra cannot describe metric structure without
extending the base numbers field.

– Lack of associativity between the outer product and the meet product.
– Inefficiency in handling nonlinear geometric objects.

In the past few years, at least for 3D projective geometry, with the introduc-
tion of an associative algebra for modeling projective line geometry, the second
limitation is significantly alleviated [16]. The first limitation calls for advanced
invariant algebras of Euclidean geometry.

3 Euclidean Invariants: From Basic to Advanced Ones

All Euclidean invariants are functions of distances. For algebraic invariants, there
are two basic ones: the squared distances between two points (or equivalently, the
inner products of two difference vectors), and the signed volumes of simplexes.

In history, there has been an advanced Euclidean invariant algebra: Cayley-
Menger determinants (or bi-determinants) [1,18]. Besides invariant algebras,
there also have been advanced algebras of covariants. For 3D geometry, vec-
tor algebra and quaternionic-variable (non-commutative) polynomial algebra are
two advanced algebras of covariants. Their nD generalization is the Clifford alge-
bra over Rn.

In Euclidean geometry, a line segment ab has length dab. In vector form, for
points a,b represented by vectors,

d2ab = (a − b)2 = (a − b) · (a − b) = a2 + b2 − 2a · b, (3.1)

where the dot symbol denotes the inner product. What are these: a2, b2 and
a · b? They always depend on the reference point (the origin of all vectors),
and are geometrically meaningless. None of the above mentioned algebras of
invariants or covariants makes a2 geometrically meaningful for “point” a.

What do we expect from a · b? It should reflect some relation between the
two points. The only candidate is – the distance! Then a · a has to be zero, i.e.,
a must be a null vector. Then from (3.1) we get

a · b = − (a − b)2

2
= −d2ab

2
. (3.2)

In history, Wachter (a student of Gauss) proposed embedding R3 isometri-
cally into the 5D Minkowski space R4,1, so that all vectors of R3 are represented



44 H. Li

by null vectors of R4,1, and (3.2) is satisfied. Let e1, e2, e3, e, e0 be a basis of

R4,1, with metric

⎛

⎜

⎜

⎜

⎜

⎝

1
1

1
0 −1

−1 0

⎞

⎟

⎟

⎟

⎟

⎠

. Then Wachter’s isometric embedding is

(x, y, z) ∈ R3 �→
(

x, y, z, 1,−x2 + y2 + z2

2

)

∈ R4,1.

This model changes conformal transformations of R3 into orthogonal transfor-
mations of R4,1, hence inducing a pin group representation of 3D Euclidean
conformal transformations.

In [9], Li, Hestenes and Rockwood further studied the above model and pro-
posed a sequence of Grassmann-Cayley algebraic representations of Euclidean
conformal constructions. For example, the following list is on Minkowski repre-
sentations of planes/lines/circles/spheres in Rn:

– Conformal point at infinity: e, the unique extra point for one-point compact-
ification of Rn.

– Points: null vectors x, where x · e = −1 for “point” x.
– Line ab: e ∧ a ∧ b. Point d on line C: d ∧ C = 0.
– Plane abc: e ∧ a ∧ b ∧ c.
– Circle abc (circum-circle of triangle abc): a ∧ b ∧ c.
– Sphere abcd (circum-sphere): a ∧ b ∧ c ∧ d.

Besides the Minkowski representations, there are also the dual representa-
tions of conformal objects, affine representations and dual affine representations
of affine objects [12].

In [11], the Grassmann-Cayley algebraic representations of Euclidean con-
formal constructions are further extended to include the reduced meet product
for representing the second point of intersection of two circles/lines. For two cir-
cles/lines ab1c1 and ab2c2, “point” a is obviously a point of intersection (if both
are lines, then a = e is the conformal point at infinity). Besides this trivial point
of intersection, there is another point of intersection, denoted by b1c1 ∩a b2c2.
In particular when b1c1 ∩a b2c2 = a, the two circles/lines are tangent to each
other at “point” a (in the case of two lines, that they are “tangent” to each other
at the conformal point at infinity means they are parallel to each other).

The meet product of two circles/lines has the outer product factorization

(a ∧ b1 ∧ c1) ∨ (a ∧ b2 ∧ c2) = a ∧ {(b1 ∧ c1) ∨a (b2 ∧ c2)}. (3.3)

The second factor of the outer product is called the reduced meet product:

(b1 ∧ c1) ∨a (b2 ∧ c2) := [ab1c1c2]b2 − [ab1c1b2]c2 = [ab1b2c2]c1 − [ac1b2c2]b1. (3.4)



Symbolic Geometric Reasoning with Advanced Invariant Algebras 45

Vector (3.4) is not null, yet it must relate to the second point of intersection,
as the meet product (3.3) equals the outer product of a with the second point of
intersection. It turns out that the null vector representation of b1c1∩ab2c2 is the
reflection of null vector a with respect to invertible vector (b1 ∧ c1)∨a (b2 ∧ c2).

To manipulate reflection multiplicatively (or “monomially” to control expres-
sion size), Clifford algebra is resorted to. This is an algebra obtained by extending
a base inner-product space with the Clifford multiplication (or geometric prod-
uct), which is associative, multilinear, and satisfies aa = a2 := a · a. In fact,
ab = a · b + a ∧ b, where the juxtaposition denotes the Clifford multiplication.

In Hestenes’ viewpoint, Clifford algebra is best constructed from Grassmann-
Cayley algebra by also equipping it with the Clifford multiplication, just like
constructing Grassmann-Cayley algebra from Grassmann algebra. This version
of Clifford algebra is very suitable for describing and manipulating geometric
constructions, and is nowadays called Geometric Algebra [6].

In Clifford algebra, the reflection of vector b with respect to vector a is
represented by

b �→ Ada(b) := −aba−1.

In our setting of representing the second point of intersection, the following
homogeneous reflection is more convenient:

b �→ Nb(a) :=
1
2
aba.

So 23 ∩1 2′3′ is represented by N1((2 ∧ 3) ∨1 (2′ ∧ 3′)).
Conformal Geometric Algebra (CGA) refers to the Clifford algebra over the

Minkowski space Rn+1,1 for representing conformal transformations of Rn by
acting upon the Minkowski representation of conformal objects, together with
other alternatives of the Minkowski representation such as the dual represen-
tation, affine representation, dual affine representation, reduced meet product
representation, etc. Conformal Geometric Algebra and the null bracket algebra
to be introduced below realize Leibniz’s dream in Euclidean conformal geometry.

An nD Clifford bracket algebra is the commutative ring generated by the
“hyper-determinants” and “hyper-inner products”, which are obtained respec-
tively by prolonging nD brackets and inner products of vector pairs with the
Clifford multiplication, as following:

a1 · a2 = 〈a1a2〉 prolonged to 〈a1a2 . . . a2k〉 := 〈a1a2 . . .a2k〉0,
[a1 . . . an] = (a1 ∧ · · · ∧ an)∼ prolonged to [a1a2 . . . an+2l] := 〈a1a2 . . . an+2l〉∼

n ,

where “〈 〉i” denotes the i-grading operator: extracting the i-graded part (in
Grassmann algebra) of the argument.

Instead of anti-commutativity and commutativity, the two long brackets have
the following symmetries:

– Reversion:

〈a1a2 · · · a2k〉 = 〈a2ka2k−1 · · · a1〉,
[a1a2 · · · an+2l] = (−1)

n(n−1)
2 [an+2lan+2l−1 · · · a1].



46 H. Li

– Shift:
〈a1a2 · · · a2k〉 = 〈a2ka1a2 · · · a2k−1〉,
[a1a2 · · · an+2l] = (−1)n−1[an+2la1 · · · an+2l−1].

Null bracket algebra is a Clifford bracket algebra generated by null vector vari-
ables. The property aa = 0 for null vector a provides great benefits in expression
size control, in addition to adding more symmetries.

The following are geometric interpretations of the long brackets in terms of
2D trigonometry:

〈a1a2 · · · a2l+2〉 = −da1a2da2a3 · · · da2l+1a2l+2da2l+2a1

2
cos(∠(a1a2a3,a1a3a4)

+ ∠(a1a4a5,a1a5a6) + · · · + ∠(a1a2la2l+1,a1a2l+1a2l+2));

[a1a2 · · · a2l+2] = −da1a2da2a3 · · · da2l+1a2l+2da2l+2a1

2
sin(∠(a1a2a3,a1a3a4)

+ ∠(a1a4a5,a1a5a6) + · · · + ∠(a1a2la2l+1,a1a2l+1a2l+2)),
(3.5)

where ∠(123,134) denotes the angle of rotation from the tangent direction of
oriented circle 123 at point 1 to the tangent direction of oriented circle 134 at
the same point (Fig. 3(a)).

3

1

2

4

(a)

3

17

2

5

6

4 8

(b)

Fig. 3. ∠(123,134) (left); Miquel’s 4-Circle Theorem (right).

For example when l = 1 in (3.5), then 2[a1a2a3a4] = −da1a2da2a3da3a4da4a1

sin ∠(a1a2a3,a1a3a4). So [a1a2a3a4] = 0 if and only if the four points are cocir-
cular/collinear.

Example 3 (Miquel’s 4-Circle Theorem). Four circles intersect at eight points
cyclically. If 1,2,3,4 are cocircular, so are 5,6,7,8 (Fig. 3(b)).

Method 7. Conformal Geometric Algebra + Null Bracket Algebra.
Similar to Example 2, we remove the cocircularity of points 1,2,3,4 from the



Symbolic Geometric Reasoning with Advanced Invariant Algebras 47

hypothesis, and see how the conclusion expression varies, with the hope that the
removed constraint comes up automatically as a factor in the result.

New hypothesis:

– Free points: 1,2,3,4,5,7;
– Intersections: 6 = 15 ∩2 37, and 8 = 15 ∩4 37.

In Conformal Geometric Algebra, the two intersections are represented by

6 = 2−1{(1 ∧ 5) ∨2 (3 ∧ 7)}2{(1 ∧ 5) ∨2 (3 ∧ 7)};
8 = 2−1{(1 ∧ 5) ∨4 (3 ∧ 7)}4{(1 ∧ 5) ∨4 (3 ∧ 7)}.

Conclusion expression: [5678]. It equals zero if and only if 5,6,7,8 are cocircu-
lar/collinear.

The following is an elegant monomial proof:

[5678]
6,8
= 2−2[5{(1 ∧ 5) ∨2 (3 ∧ 7)}2{(1 ∧ 5) ∨2 (3 ∧ 7)}

7{(1 ∧ 5) ∨4 (3 ∧ 7)}4{(1 ∧ 5) ∨4 (3 ∧ 7)}]
expand

= −2−2[1257][1457][2357][3457][51237341]
monomial= (1 · 5)(3 · 7)[1234][1257][1457][2357][3457],

where the monomial factorization is: aba = 2(a · b)a.
As anticipated, bracket [1234] representing the missing constraint occurs

automatically in the result. Thus we get a quantitative (hence stronger) version
of Miquel’s 4-Circle Theorem: If 6 = 15 ∩2 37 and 8 = 15 ∩4 37, then

[5678]
(5 · 6)(7 · 8)

=
[1234]

(1 · 2)(3 · 4)
[1257][3457]
[1457][2357]

.

By now over one hundred theorems in Euclidean geometry have been
tested, and

– about 4/5 are given robust monomial or binomial proofs;
– more than 1/3 are given monomial proofs;
– by removing one or several equality constraints from the hypothesis, usually

the missing constraints can be recovered from the conclusion expression;
– the computing steps are short and easy;
– input and output are geometrically meaningful;
– quantitative description of the relationship between the conclusion and some

(in some cases, even all) equality constraints of the hypothesis, can be
obtained; the experiment is more or less like playing a game, exciting and fun.

4 Conclusion

Advanced invariants of projective incidence geometry and Euclidean conformal
geometry help to achieve tremendous simplifications in automated theorem prov-
ing, discovering, and extending.



48 H. Li

Why can the computing be so short? A partial explanation is that many
syzygies among basic invariants are integrated into symmetries within advanced
invariants, and handling the latter is much easier.

Then how to compute? The answer includes expansion, factorization, nor-
malization, and division of invariant polynomials and non-commutative covari-
ant polynomials. In this paper we have used examples to illustrate expansion and
factorization sufficiently. We do not have space left to talk about normalization
and division, but refer to [14,15] for some new advances.

Finally, to what extent is the proving method complete? This is a funda-
mental problem of coordinate-free geometric reasoning. The completeness issue
can be stated as follows: can every geometrically meaningful conclusion deduced
from algebraic manipulations of the coordinate polynomials representing given
geometric constraints be also deducible from symbolic manipulations of the (non-
commutative) polynomials of (advanced) invariants and covariants?

For example for 3D Euclidean geometry and vector algebra, the question is
raised as following: If in 3D geometric reasoning by coordinate variables xi, yj , zk
and basis vectors e1, e2, e3, both the input and the output are polynomial func-
tions of the vector variables vi = xie1 +yie2 +zie3, and the algebraic manipula-
tions include only polynomial addition, subtraction, multiplication and division,
can the output also be deducible in the vector algebra of the variables vi, without
further introducing any coordinate or parameter?

For invariant algebras, the answer to the completeness question is generally
affirmative, while for covariant algebras, although a lot of efforts have been
taken in recent years, even for Grassmann-Cayley algebra and vector algebra,
the answer is not clear. By now, we have only reached the following conclusion for
3D covariant algebras [13,17]: When compared with coordinate polynomials with
arithmetic operations, the following covariant associative algebras are complete:

1. non-commutative polynomial ring in quaternionic variables;
2. non-commutative polynomial ring in quaternionic vector variables;
3. non-degenerate Clifford polynomial ring in 3D vector variables.

References

1. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Cambridge
University Press, Cambridge (1953)

2. Bokowski, J., Sturmfels, B.: Computational Synthetic Geometry. LNM, vol. 1355.
Springer, Heidelberg (1989)

3. Buchberger, B.: Application of Gröbner basis in non-linear computational geome-
try. In: Rice, J. (ed.) Scientific Software. Springer, New York (1988)

4. Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific,
Singapore (1994)

5. Crapo, H., Richter-Gebert, J.: Automatic proving of geometric theorems. In:
White, N. (ed.) Invariant Methods in Discrete and Computational Geometry,
pp. 107–139. Kluwer, Dordrecht (1994)

6. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer,
Dordrecht (1984)



Symbolic Geometric Reasoning with Advanced Invariant Algebras 49

7. Li, H.: New Explorations of Automated Theorem Proving in Geometries. Ph.D.
Thesis, Peking University, Beijing (1994)

8. Li, H.: Vectorial equation-solving for mechanical geometry theorem proving. J.
Autom. Reasoning 25, 83–121 (2000)

9. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for com-
putational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford
Algebras, pp. 27–60. Springer, Heidelberg (2001)

10. Li, H., Wu, Y.: Automated short proof generation in projective geometry with
cayley and bracket algebras I. Incidence geometry. J. Symbolic Comput. 36(5),
717–762 (2003)

11. Li, H.: A recipe for symbolic geometric computing: long geometric product,
BREEFS and clifford factorization. In: Brown, C.W. (ed.) Proceedings of the
ISSAC 2007, pp. 261–268. ACM, New York (2007)

12. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore
(2008)

13. Li, H., Huang, L., Liu, Y.: Normalization of quaternionic polynomials.
arxiv: 1301.5338v1 [math.RA] (2013)

14. Li, H.: Normalization of Polynomials in Algebraic Invariants of Three-Dimensional
Orthogonal Geometry. arxiv: 1302.7194v1 [cs.SC] (2013)

15. Li, H., Shao, C., Huang, L., Liu, Y.: Reduction among bracket polynomials. In:
Proceedings of the ISSAC 2014, pp. 304–311. ACM Press (2014)

16. Li, H., Huang, L., Shao, C., Dong, L.: Three-Dimensional Projective Geometry
with Geometric Algebra. arxiv: 1507.06634v1 [math.MG] (2015)

17. Liu, Y.: Normalization of Quaternionic-Variable Polynomials, Ph.D. Dissertation,
AMSS, Chinese Academy of Sciences, May 2015

18. Mourrain, B., Stolfi, N.: Computational symbolic geometry. In: White, N.L. (ed.)
Invariant Methods in Discrete and Computational Geometry, pp. 107–139. D.
Reidel, Dordrecht (1995)

19. White, N.: Multilinear Cayley factorization. J. Symbolic Comput. 11, 421–438
(1991)

20. Winkler, F.: Gröbner bases in geometry theorem proving and simplest degeneracy
conditions. Math. Pannonica 1(1), 15–32 (1990)

21. Wu, W.T.: Basics Principles of Mechanical Theorem Proving in Geometries I: Part
of Elementary Geometries. Science Press, Beijing (1984). Springer, Wien (1994)

22. Young, A.: The Collected Papers of Alfred Young, 1873–1940. University of Toronto
Press, Toronto (1977)

http://arxiv.org/abs/1301.5338v1
http://arxiv.org/abs/1302.7194v1
http://arxiv.org/abs/1507.06634v1


Congruence Testing of Point Sets in Three
and Four Dimensions

Results and Techniques

Günter Rote(B)

Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
rote@inf.fu-berlin.de

Abstract. I will survey algorithms for testing whether two point sets are
congruent, that is, equal up to an Euclidean isometry. I will introduce the
important techniques for congruence testing, namely dimension reduc-
tion and pruning, or more generally, condensation. I will illustrate these
techniques on the three-dimensional version of the problem, and indicate
how they lead for the first time to an algorithm for four dimensions with
near-linear running time (joint work with Heuna Kim). On the way, we
will encounter some beautiful and symmetric mathematical structures,
like the regular polytopes, and Hopf-fibrations of the three-dimensional
sphere in four dimensions.

1 Problem Statement

Given two n-point sets A,B ⊂ Rd, we want to decide whether there is a transla-
tion vector t and an orthogonal matrix R such that RA + t := {Ra + t | a ∈ A }
equals B, that is, A and B are congruent. Congruence asks whether two objects
are the same up to Euclidean transformations, or in other words, whether they
are considered equal from a geometric viewpoint. Congruence is therefore one of
the fundamental basic notions.

The translation vector t can be easily eliminated from the problem by initially
translating the two sets A and B such that their centers of gravity lie at the
origin O.

If we do not restrict the dimension d, congruence becomes equivalent to
graph isomorphism: a given graph G = (V,E) with n vertices v1, . . . , vn can be
represented by n + |E| points in n dimensions. We simply take the n standard
unit vectors e1, . . . , en and add a point (ei + ej)/2 for each edge vivj ∈ E.
Then two graphs are isomorphic if and only if their corresponding point sets are
congruent.

We thus restrict our attention to small dimensions. In two and three dimen-
sions, algorithms with a running time of O(n log n) have been known. We review
some of these algorithms, because their techniques are also important for higher
dimensions.

The Computational Model: Exact Real Arithmetic. We use the Real Random-
Access Machine (Real-RAM) model, as is common in Computational Geometry.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 50–59, 2016.
DOI: 10.1007/978-3-319-32859-1 4



Congruence Testing of Point Sets in Three and Four Dimensions 51

We assume that we can compute arithmetic operations and square roots of real
numbers exactly in constant time. The reason for this choice is not so much
convenience, but the range of possible input instances. With rational inputs, for
example, one cannot even realize a regular pentagon. Thus, the difficult problem
instances, which are the symmetric ones, as we will see, would disappear.

It makes sense to ask for approximate congruence within some given toler-
ance ε. This problem is, however, NP-hard already in two dimensions (Iwanowski
1991). It becomes polynomial when the input points are sufficiently separated
in relation to ε, and thus there is hope to solve the approximate congruence
problem in higher dimensions, under suitable assumptions and at least in an
approximate sense. This is left for future work.

2 Two Dimensions

In the plane, congruence can be tested by string-matching techniques
(Manacher 1976). We sort the points clockwise around the origin, in O(n log n)
time, and represent the point set as a cyclic string alternating between n dis-
tances from the origin and n angular distances between successive points. Two
n-point sets A and B are then congruent if and only if their string representa-
tions α and β are cyclic shifts of each other. This is equivalent to asking whether
α is a substring of ββ, and it can be tested in linear time.

This idea can be extended to symmetry detection for a single set A: We
find the lexicographically smallest cyclic reordering of the string. The starting
point of this string, together with the cyclic shifts which yield the same string,
gives rise to a set of p equidistant rays starting from the origin, which we call
the canonical axes. Then the set A has a rotational symmetry group of order p,
consisting of all rotations that leave the set of canonical axes invariant.

3 Three Dimensions

For testing congruence in space, there are several algorithms, which use different
tools (Sugihara 1984; Atkinson 1987; Alt et al. 1988). We describe a variation
which is very simple and illustrates the principal techniques that are used in this
area: dimension reduction, pruning, and condensation.

Pruning and condensation tries to successively reduce A to a smaller and
smaller point set A′ while not losing any symmetries that A might have. Initially,
we set A′ := A. We compute the convex hull H(A′) of A′ in O(|A′| log |A′|) time.
Let Ā′ denote the set of vertices of the polytope H(A′). We classify the points
of Ā′ by degree in the graph of H(A′). In case there are at least two different
degrees in the graph, we replace A′ by the smallest degree class in Ā′ and repeat
the convex-hull computation. In each iteration, the size of A′ is reduced to half
or less. We simultaneously carry out all steps for the set B. If at any stage, we
notice an obvious difference between A′ and B′, for example, if |A′| �= |B′|, we
conclude that A and B are not congruent, and we terminate.



52 G. Rote

This pruning loop ends when all vertices in H(A′), and also in H(B′), have
the same degree. At first glance, this procedure looks dangerous because we have
thrown away points (including all points interior to the hulls of A and B) and
have thereby thrown away information: The sets A′ and B′ might be congruent,
whereas the original sets A and B are not. However, the prime goal of successive
pruning steps is to eventually reduce the points sets to some sets A′ and B′

which are so small that we can afford to try all possibilities of mapping a fixed
chosen point u0 ∈ A′ to some point v ∈ B′. This is done as follows:

Once we have picked the point v, we can reduce the dimension of the problem
by one: we choose some rotation R that brings u0 to v. We denote by P the
plane perpendicular to the axis through Ru0 = v, and we project the sets RA
and B onto P . (Here we must take the original sets A and B again.) To each
projected point, we attach the signed distance from P as a label. We then look
for two-dimensional congruences in P , but for labeled point sets. The labeling
information can be easily incorporated into the algorithm of Sect. 2.

Thus, when |A′| = |B′| is small, we can finish the problem by |A′| instances
of two-dimensional congruence in O(|A′|n log n) time.

Let us now see how we continue when our pruning process gets stuck. We
will describe the steps only for the set A′, but the reader has to keep in mind
that they are carried out for the set B′ in parallel. If the convex hull H(A′) is
one-dimensional or two-dimensional, then we have found an axis or a plane with
a corresponding axis or plane in H(B′). This allows us to reduce the question
to one or two-dimensional problems, as described above.

We are left with the case that H(A′) is a three-dimensional polytope. By
pruning, we can assume that all vertices of the graph of H(A′) have the same
degree d. By Euler’s formula, d can be 3, 4, or 5. Euler’s formula also yields
the number of faces F in terms of the number n′ of vertices of H(A′): |F | =
(d − 2)/2 · n′ + 2 ≤ 3

2n′ + 2. We now try to prune the faces by face degrees. If
there are at least two different face degrees, the smallest degree class F ′ of faces
has at most 3

4n′ + 1 elements. This number is smaller than n′ unless n′ = 4 and
H(A′) is a tetrahedron. We compute the centers of gravity of the faces in F ′, and
replace A′ by the set of these centers. We call this procedure a condensation. Like
pruning, it reduces A′ to a smaller set, but in contrast to pruning, the smaller
set is not necessarily a subset of A′.

With the new condensed set A′ we restart the whole procedure from scratch,
beginning with the convex hull computation. The only case where neither con-
densation, nor pruning, nor dimension reduction is possible is a convex polytope
H(A′) in which all vertices and all faces have the same degree. Such a polytope
must have the combinatorics of one of the five regular polytopes (Platonic solids):
the tetrahedron, the octahedron, the icosahedron, the cube, or the dodecahedron.
We know therefore that |A′| ≤ 20, and we can resort to dimension reduction,
which leads to at most 20 two-dimensional instances.

In all the above-mentioned pruning and reduction steps, we must avoid that
the reduced set A′ contains only the origin. When such a case would arise, we
artificially select a different class of vertices or faces.



Congruence Testing of Point Sets in Three and Four Dimensions 53

4 Pruning and Condensation

Pruning is very versatile: we can use any criterion of points that we can think
of, as long as it is not too expensive to compute. For example, in our algorithm
for four dimensions, we will build the closest-pair graph G, which connects all
pairs of points of A′ whose distance equals the smallest inter-point distance in
the set, and try to prune by degree in this graph. If, however, all vertices happen
to have degree 1 in G, thus forming a perfect matching of A′, we condense A′ to
the set of midpoints of the matching edges.

The power of the pruning technique is that we can concentrate on those cases
where pruning fails. These instances are highly symmetric and regular, and we
will capitalize on this regularity to extract structures from the point set that
allow us to proceed.

Formally, a condensation procedure is a mapping F that maps a set A to a
set A′ = F (A). This mapping must be equivariant under rotations:

R · F (A) = F (R · A), for all rotations R

A pruning procedure is the special case where F (A) ⊆ A. We say that condensa-
tion is successful if F (A) is smaller than A and F (A) is not the empty set or just
the origin. We will be able to ensure a reduction by a constant factor for success-
ful condensation steps, and thus we need not worry about the time for iterating
the condensation, because the size of A′ decreases at least geometrically.

5 The Three-Dimensional Point Groups

We have seen that congruence testing is closely connected to symmetry: “Ran-
dom” point sets have no symmetries and are easy to check for congruence. The
hard cases are the symmetric ones. It is therefore no surprise that congruence
testing algorithms can tell us something about the symmetry groups of point
sets.

In Sect. 3, we have stopped condensation as soon as we reached the combi-
natorial structure of a Platonic solid. By further condensation, based the edge
lengths, we can achieve that the only remaining cases must also have the geom-
etry of a Platonic solid, see Algorithm K in Kim and Rote (2016) for details.
From this we can conclude the following theorem.

Theorem 1. The symmetry group of a finite three-dimensional set of points is
either

1. the symmetry group of one of the five Platonic solids,
2. the symmetry group of a prism over a regular polygon,
3. or a subgroup of one of the above groups. �

These groups are the discrete subgroups of the orthogonal group O(3) of 3 × 3
orthogonal matrices, and they are called the three-dimensional point groups.
Case 2 covers the reducible groups (and their subgroups), those groups that are



54 G. Rote

direct products of lower-dimensional point groups. They come from the case
when our algorithm used dimension reduction. Theorem 1 is not very explicit,
and quite redundant: The octahedron and the cube are dual to each other and
have the same symmetries, and so do the dodecahedron and the icosahedron. The
tetrahedral group is contained both in the group of the cube and of the dodeca-
hedron. With some work, the explicit list of groups can be worked out from this
theorem. However, the resulting classification of three-dimensional point groups
was already known in the 19th century (Hessel’s Theorem). We will mention
potential extensions to four dimensions in Sect. 8.

6 General Dimensions

The best algorithms for general dimension d are a deterministic algorithm of
Brass and Knauer (2002) and a randomized algorithm of Akutsu (1998). They
reduce the dimensionality d of the problem by three, respectively four dimensions
at a time, and achieve running times of O(n�d/3� log n) and O(n�d/2�/2 log n),
respectively, for high enough dimensions.

7 Four Dimensions

We have recently managed to solve congruence testing in four dimensions in
optimal O(n log n) time.

Theorem 2. Given two sets A and B of n points in four dimensions, it can be
decided in O(n log n) time and O(n) space whether A and B are congruent.

The algorithm is based on condensation and dimension reduction, but the details
are quite involved, see Kim and Rote (2016). We can therefore give only rough
overview, referring to the following flowchart, and glossing over many details.

points A′

circles C

circles C

points A′

O: Orbit
Cycles

R: Mirror
Case

O: Orbit
Cycles

C: Iterative
Condensation

1+3 Dimension
Reduction

2+2 Dimension
Reduction

points A′

M: Mark and
Condense

Great Circles

7.1 Iterative Pruning and Condensation Using the Closest-Pair
Graph (Algorithm C)

After pruning by distance from the origin, we can assume that A lies on the
three-dimensional sphere S3 ⊂ R4. As in Atkinson (1987), we compute the closest



Congruence Testing of Point Sets in Three and Four Dimensions 55

distance δ = min{ ‖a − a′‖ : a, a′ ∈ A, a �= a′ } and the closest-pair graph G on
the vertex set A, which connects all pairs of points whose distance is δ. The
vertex degrees in H are bounded by the kissing number K3 = 12, the maximum
number of equal balls with disjoint interiors that can simultaneously touch a ball
of the same size on S3. The closest-pair graph can be computed by divide and
conquer in O(n log n) time in any fixed dimension (Bentley and Shamos 1976).

Now we start an iterative pruning and condensation process on G, first based
on vertex degrees, and working its way up to higher and higher orders of regu-
larity. In the end, we will have pruned G to such a degree that all directed edge
figures, consisting of some edge uv and all adjacent edges, are congruent. This
allows us to conclude that copies of a certain pattern can be found “everywhere”
in G. This pattern is a path t0u0v0w0 with the property that its three edges t0u0,
u0v0, and v0w0 have the same length δ and the two angles t0u0v0 and u0v0w0

are equal. In G, we can then define a nonempty set S of paths aa′a′′ with the
following property.

For every path a1a2a3 ∈ S, there is a (unique) edge a3a4 ∈ G such that
a2a3a4 ∈ S and a1a2a3a4 is congruent to t0u0v0w0.

7.2 Generating Orbit Cycles (Algorithm O)

By repeatedly applying this property, we can conclude:

For every triple a1a2a3 ∈ S, there is a unique cyclic sequence a1a2 . . . a�

such that aiai+1ai+2ai+3 is congruent to t0u0v0w0 for all i. (Indices are
taken modulo l.)
Moreover, there is a rotation matrix R such that ai+1 = Rai. In other
words, a1a2 . . . a� is the orbit of a1 under the rotation R.

We call such a cyclic sequence an orbit cycle. If the points A would live in R3,
the geometric situation is easy to imagine: If the points t0u0v0w0 lie in a plane,
then the orbit cycle lies on a circle. Otherwise, they form an infinite helix that
winds around an axis. This intuition is not misleading: on S3, the situation is
the same, except that the axis of the helix is a great circle instead of a line.

The last case it the most interesting case for us: If the points t0u0v0w0 do
not lie in a plane, we can extract the axis circle from each orbit cycle. We will
then work with the set C of these circles.

7.3 Marking and Condensation of Great Circles (Algorithm M)

We are given a set C of great circles in S3. We will treat these circles as objects
in their own right, independent of the point set A from which they came.

The Distance Between Circles. We start by computing the closest-pair graph
on C. To to this, we have to define a distance between great circles. We do this
by embedding them in the 5-sphere S5 ⊂ R6. Great circles in the 3-sphere can
be equivalently regarded as 2-dimensional planes through the origin in 4-space,



56 G. Rote

and we can use Plücker coordinates to represent them. (Planes in 4-space can
be equivalently regarded as lines in (projective) 3-space, and this is the most
familiar type of Plücker coordinates.) The Plücker coordinates are a 6-tuple of
numbers in projective 6-space. We normalize them and represent each circle
as a pair of antipodal points on S5, and define the Plücker distance between
two circles as the smallest distance between the four representative points. This
distance is a geometric invariant: In a different coordinate system, a plane will
have different Plücker coordinates, but Plücker distances are unchanged.

Other distances have been considered in the literature. Conway et al. (1996)
have tried to pack lines, planes, etc. in Grassmannian spaces, using the chordal
distance (which comes from representing a plane as a symmetric 4 × 4 projec-
tion matrix) and the geodesic distance on the Plücker surface. For our case,
the Plücker distance gives the embedding of lowest dimension and is therefore
preferable.

The closest-pair graph G(C) is thus computed in 6 dimensions. The number
of neighbors is bounded by the kissing number K5 in 5 dimensions, which is
known to be bounded by 44.

We now look at each pair C,D of adjacent circles in G(C). When projecting D
on the plane of C, the image will generically be an ellipse D′. We use the major
axis of D′ to mark two points on C. Similarly, we project C to the plane of D
and generate two markers on D. Repeating this for all edges of G(C) produces
at most 2K5 ≤ 88 markers on each circle of C. These markers form a new set of
points A′, and we start the whole algorithm from scratch with this set of points.

We argue that the new set A′ is smaller than the original set A from which
the orbit cycles are generated. We know that every point of A can belong only
to a bounded number of orbit cycles, by the degree constraint in G(A). If all
orbit cycles are long enough, meaning that they contain sufficiently many points,
we can therefore guarantee that the number of orbit cycles is small, say |C| ≤
|A|/200, and then |A′| ≤ 88 · |C| will be a successful condensation of A. If the
orbit cycles are short, it means that the closest distance δ must be longer than
some threshold δ0. Then, by a straightforward packing argument on S3, the size
of A is bounded by a constant, and we can “trivially” solve the problem by
dimension reduction.

Isoclinic Circles and Hopf Bundles. The above procedure fails to generate mark-
ers if all projected ellipses turn out to be circles. Such planes C,D are called
isoclinic. They come in two variations, left-isoclinic and right-isoclinic. It turns
out that being isoclinic imposes a strong structure on the involved circles. We
formulate their properties for right-isoclinic pairs; analogous statements hold for
left-isoclinic pairs.

Proposition 3. 1. The relation of being right-isoclinic is transitive (as well as
reflexive and symmetric). An equivalence class is called a right Hopf bundle.

2. For each right Hopf bundle, there is a right Hopf map h that maps the circles
of this bundle to points on S2.

3. By this map, two isoclinic circles with Plücker distance
√

2 sin α are mapped
to points at angular distance 2α on the “Hopf sphere” S2.



Congruence Testing of Point Sets in Three and Four Dimensions 57

4. A circle can have at most K2 = 5 closest neighbors on the Plücker sphere S5

that are right-isoclinic.

The right Hopf map in Property 2 is obtained as follows (Hopf 1931, Sect. 5):
Choose a positively oriented coordinate system x1, y1, x2, y2 for which some circle
C0 of the bundle lies in the x1y1-plane. Then the map h : S3 → S2 defined by

h(x1, y1, x2, y2) =
(

2(x1y2 − y1x2), 2(x1x2 + y1y2), 1 − 2(x2
2 + y2

2)
)

maps all points on a circle of the bundle to the same point on S2. A different
choice of C0 would lead to a different map, but by Property 3, the images are
related by an isometry of S2. The constant K2 = 5 in Property 4 is the kissing
number on the 2-sphere. Property 4 is a direct consequence of Properties 2 and 3.

We use Proposition 3 in the following way: If all pairs of circles in a component
of the closest-pair graph G(C) are right-isoclinic, we know that they must belong
to a common Hopf bundle. We then use a condensation procedure on the Hopf
sphere, similar to the one described in Sect. 3, to condense the set of circles, and
repeat the construction of the closest-pair graph.

If a circle C has both a left-isoclinic neighbor D and a right-isoclinic neigh-
bor D′, we conclude by Property 1 that D and D′ cannot be isoclinic. We can
therefore mark points on D and D′.

To summarize, we repeatedly condense the set C of circles until we can mark
some points A′ on them, or until the number of circles in C gets smaller than some
threshold. In the latter case, we apply 2+2 Dimension Reduction, as described
below in Sect. 7.5

7.4 The Mirror-Symmetric Case (Algorithm R)

The generation of orbit cycles requires that the points t0u0v0w0 don’t lie in a
plane. We can guarantee that such 4-tuples exist, unless the edge figures are
perfectly mirror-symmetric: The perpendicular bisector of every edge uv in G
acts as a mirror, reflecting the neighbors t of u to the neighbors w of v. Since
each edge tu and each edge vw has the same mirror-symmetry, the mirror images
of the mirrors are also mirrors. It follows that the component of G that contains
u is the orbit of u under the group generated by the mirror reflections for the
edges incident to u.

Such groups, groups that are generated by reflections, are called Coxeter
groups, and they have been classified in all dimensions, cf. Coxeter (1973),
Table 4 on p. 297. In four dimensions, there are eight such groups, which are
related to the regular polytopes of 4-space, plus an infinite class of reducible
groups, which are direct products two-dimensional Coxeter groups.

We deal with the Coxeter groups as follows. For each group Γ in the finite
list, we determine the smallest distance δ such that the neighbors of a point
u ∈ S3 at distance δ can generate the group Γ . The smallest value δmin of these
bound implies, by a packing argument, that |A| is bounded by a constant, and
thus we can resort to dimension reduction.



58 G. Rote

For the infinite family of reducible groups, we are able to identify the two
complementary 2-dimensional planes corresponding to the two factor groups, and
thus we can replace each component of G(A) by two circles. We process these
circles like the the circles that result from orbit cycles (Algorithm M, Sect. 7.3).

7.5 2+2 Dimension Reduction

The classical dimension reduction procedure applies when the image of a point
in A (or a line through the origin) is known. The image of the complementary
3-dimensional hyperplane is then also known, and we call this 1+3 dimension
reduction. By contrast, in 2+2 dimension reduction, we have identified a two-
dimensional plane P for the point set A and another two-dimensional plane Q
for B, and we are looking for congruences that map P to Q, besides mapping A
to B.

We first choose a joint coordinate system x1, y1, x2, y2 in which P and Q
coincide with the x1y1-plane. The allowable rotations are therefore restricted to
independent rotations in the x1y1-plane (by some angle ϕ) and in the comple-
mentary x2y2-plane (by some angle ψ). After introducing polar coordinates in
the two planes, the problem reduces to translational congruence between two
point sets Â and B̂ on the two-dimensional torus [0, 2π)2. The distance compo-
nents of the polar coordinates are attached as a label to each point on the torus,
and only points with equal label can be mapped to each other.

We now apply a sequence of condensation and relabeling steps, using Voronoi
diagrams on the torus, which eventually lead to canonical sets Â0 and B̂0. These
sets play the same role as the canonical axes of Sect. 2 for the problem of a single
rotation (or “translation on the one-dimensional torus”): If A and B are con-
gruent (under the constraint of mapping P to Q), then we can choose arbitrary
points a ∈ Â0 and b ∈ B̂0, and the unique rotation that maps a to b will map A
to B. We therefore have to test only a single candidate rotation.

8 The Four-Dimensional Point Groups

It is tempting to extend the high-level “characterization” of three-dimensional
point groups of Theorem 1 to four dimensions:

Conjecture 4. A four-dimensional point group is either

1. the symmetry group of one of the five four-dimensional regular solids,
2. a direct product of lower-dimensional point groups,
3. or a subgroup of one of the above groups.

The four-dimensional point groups have been enumerated, first by Threlfall and
Seifert (1931) for the case of direct congruences only (determinant +1), and
most lately by Conway and Smith (2003). The book of Conway and Smith gives
an explicit list of these groups (Tables 4.1–4.3, pp. 44–47). Thus, in principle,
it should be a trivial matter to settle Conjecture 4. However, these groups are
specified algebraically, and it is not easy to see geometrically what they are.



Congruence Testing of Point Sets in Three and Four Dimensions 59

When we started our work, we hoped that our techniques would shed light on
Conjecture 4, as was the case for three dimensions (Theorem 1), but so far, the
implications of our algorithm are not so strong. (On the other hand, the analysis
of our algorithm uses the classification of four-dimensional finite Coxeter groups,
i.e., those point groups that are generated by reflections.)

It would also be interesting to see to what extent Conjecture 4 generalizes to
higher dimensions. The regular polytopes are known in all dimensions. However,
in eight dimensions, the root lattice E8 has symmetries that don’t come from
regular polytopes, thus providing counterexamples to a straightforward gener-
alization of Conjecture 4 for eight dimensions, and most likely also for six and
seven dimensions.

References

Akutsu, T.: On determining the congruence of point sets in d dimensions. Comput.
Geom.: Theory Appl. 4(9), 247–256 (1998)

Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries
of geometric objects. Discrete Comput. Geom. 3(1), 237–256 (1988). http://dx.doi.
org/10.1007/BF02187910

Atkinson, M.D.: An optimal algorithm for geometrical congruence. J. Algorithms 8(2),
159–172 (1987). http://dx.doi.org/10.1016/0196-6774(87)90036-8

Brass, P., Knauer, C.: Testing the congruence of d-dimensional point sets. Int.
J. Comput. Geom. Appl. 12(1–2), 115–124 (2002). http://dx.doi.org/10.1142/
S0218195902000761

Bentley, J.L., Shamos, M.I.: Divide-and-conquer in multidimensional space. In: Pro-
ceedings of the Eighth Annual ACM Symposium on Theory of Computing,
STOC 1976, pp. 220–230. ACM, New York (1976). http://doi.acm.org/10.1145/
800113.803652

Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings
in grassmannian spaces. Exp. Math. 5, 139–159 (1996). https://projecteuclid.org/
euclid.em/1047565645

Conway, J.H., Smith, D.A.: On Quaternions and Octonions. A K Peters, Natick (2003)
Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications, New York (1973)
Hopf, H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche.

Math. Ann. 104, 637–665 (1931). http://www.digizeitschriften.de/dms/img/?PID=
GDZPPN002274760

Iwanowski, S.: Testing approximate symmetry in the plane is NP-hard. Theor. Comput.
Sci. 80(2), 227–262 (1991). http://dx.doi.org/10.1016/0304-3975(91)90389-J

Kim, H., Rote, G.: Congruence testing of point sets in 4-space. In: Proceedings of the
32st International Symposium on Computational Geometry (SoCG 2016), LIPIcs
(2016, to appear)

Manacher, G.: An application of pattern matching to a problem in geometri-
cal complexity. Inf. Process. Lett. 5(1), 6–7 (1976). http://dx.doi.org/10.1016/
0020-0190(76)90092-2

Sugihara, K.: An n log n algorithm for determining the congruity of polyhedra. J. Com-
put. Syst. Sci. 29(1), 36–47 (1984). http://dx.doi.org/10.1016/0022-0000(84)90011-4

Threlfall, W., Seifert, H.: Topologische Untersuchung der Diskontinuitätsbereiche
endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. Math.
Ann. 104(1), 1–70 (1931). http://dx.doi.org/10.1007/BF01457920

http://dx.doi.org/10.1007/BF02187910
http://dx.doi.org/10.1007/BF02187910
http://dx.doi.org/10.1016/0196-6774(87)90036-8
http://dx.doi.org/10.1142/S0218195902000761
http://dx.doi.org/10.1142/S0218195902000761
http://doi.acm.org/10.1145/800113.803652
http://doi.acm.org/10.1145/800113.803652
https://projecteuclid.org/euclid.em/1047565645
https://projecteuclid.org/euclid.em/1047565645
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002274760
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002274760
http://dx.doi.org/10.1016/0304-3975(91)90389-J
http://dx.doi.org/10.1016/0020-0190(76)90092-2
http://dx.doi.org/10.1016/0020-0190(76)90092-2
http://dx.doi.org/10.1016/0022-0000(84)90011-4
http://dx.doi.org/10.1007/BF01457920


Curves and Surfaces



Mesh Reduction to Exterior Surface Parts
via Random Convex-Edge Affine Features

Andreas Beyer1(B), Yu Liu2,3, Hubert Mara1, and Susanne Krömker1

1 Interdisciplinary Center for Scientific Computing, Heidelberg University,
Heidelberg, Germany

andreas.beyer@iwr.uni-heidelberg.de
2 Empa, Swiss Federal Laboratories for Materials Science and Technology,

Dübendorf, Switzerland
3 Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland

Abstract. Data fusion of inputs from fundamentally different imaging
techniques requires the identification of a common subset to allow for
registration and alignment. In this paper, we describe how to reduce the
isosurface of a volumetric object representation to its exterior surface,
as this is the equivalent amount of data an optical surface scan of the
very same specimen provides. Based on this, the alignment accuracy is
improved, since only the overlap of both inputs has to be considered.
Our approach allows for a rigorous reduction below 1% of the original
surface while preserving salient features and landmarks needed for fur-
ther processing. The presented algorithm utilizes neighborhood queries
from random points on an ellipsoid enclosing the specimen to identify
data points in the mesh. Results for a real world object show a signif-
icant increase in alignment accuracy after reduction, compared to the
alignment of the original representations via standard approaches.

1 Motivation

In the field of non-destructive testing, Computed Tomography (CT), as well as
optical scans, is widely used for quality inspection of industrial parts.

Figure 1 shows a typical example of a real-world industrial object, as acquired
via optical 3D imaging (a) and Computed Tomography, i.e., the extracted iso-
surface (b). Both imaging techniques have their own strengths and weaknesses.
Data fusion now requires to align those representations, shown in (c), which is in
principle feasible through standard approaches. Unfortunately, due to the char-
acteristics of the acquired data sets, alignment algorithms are prone to introduce
errors, which we address in the following. We introduce the notation MCT for
any isosurface mesh generated from CT data and the notation Mopt for a surface
acquired with an optical 3D scanner.

Optical Acquisition systems typically apply fringe pattern projection and stereo-
scopic scanning. The field of view in which data points are acquired, is restricted
to the focal area of the camera system. Depth information per data point is
computed by triangulation via disparity in camera views and displacement of
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 63–77, 2016.
DOI: 10.1007/978-3-319-32859-1 5



64 A. Beyer et al.

(a) Mesh of optical scan Mopt (b) Isosurface mesh MCT (c) Super-imposed Mopt (red)
and MCT (green)

Fig. 1. Industrial example of a cylinder cast in different representations. (Color figure
online)

the projected pattern. Thus, any data point acquired by optical systems must
be visible either from both cameras or the projector and a camera.

Limitations of optical scanning arise since optical surface scanners are unable
to acquire data points in narrow cavities or deep trenches. Also, Mopt cannot
reveal any interior structure or under cuttings. Therefore, Mopt may have defects
on the captured surface. They manifest as holes in the mesh. Other holes are
due to reflective, translucent or matt black surfaces which are very difficult to
acquire.

Any vertex v in Mopt satisfies

Mopt = {v | ∃�(v, d1, d2) with �(v) > φ ∧ object ∩ �(v, d1, d2) = ∅} . (1)

This implies the condition of an unblocked view from cameras d1 and d2 to any
point on the object. The opening angle φ of the triangle �(v, d1, d2) depends on
the specific setup of the optical scanning system and describes the disparity angle
of one camera and the projector or both cameras. Therefore, the minimal opening
angle of any cavity of the object defines which data points can be acquired.

Cone Beam X-ray Computed Tomography (CBCT) is a cross sectional imaging
technique derived from conventional X-ray imaging. X-rays emit from a point
source, forming a cone shape, and interact with the object under investigation.
The interaction follows the Beer-Lambert law according to which the transmis-
sion of the X-ray is related to the line integral of the attenuation coefficients of
the object along a ray. A planar detector placed behind the specimen, perpen-
dicular to the central ray, measures the intensity of each ray. The resulting 2D
image corresponds to a conventional X-ray image and is referred to as a projec-
tion. In CBCT, a series of such projections are acquired while the source and
detector pair is moving along a predefined trajectory with respect to the object.
In a legacy CT, the trajectory is a full circle around the object while the center
of the circle lies in the object.



RanCEAF - Mesh Reduction to Exterior Surface Parts 65

(a) Schematic of the CT geometry. (b) Cone beam artifacts in red areas.

Fig. 2. CT system arrangement and visualization of common defect. (Color figure
online)

With the projection images and a full circular trajectory, the attenuation
coefficients in the illuminated area which contains the whole object can be com-
puted using reconstruction algorithms such as the Feldkamp-Davis-Kress (FDK)
method [FDK84]. Since the attenuation coefficients in the area are not homo-
geneous, the result is often represented as a 3D grid of voxels, which leads to a
problem when trying to fuse data from optical scanning represented as polygons.
Either a Marching Cubes algorithm [LC87] or in our case Volume Enclosing Sur-
face Extraction Algorithm (VESTA) [Sch12] is applied to generate a watertight
surface mesh MCT from the scalar data on the dense voxel grid as reconstructed
from the CT scans.

Limitations and artifacts of CT are related to Tuy’s sufficiency condition
[Tuy81], which suggests that only the attenuation coefficients in the circular
trajectory plane can be exactly reconstructed. In the rest of the volume, cone
beam artifacts arise due to the uncertainty of the attenuation coefficients.

The surfaces that are parallel to the trajectory plane are blurred by this
effect. This leads to a reduced spatial resolution in y-direction which further
causes segmentation problems. As shown in Fig. 2b, the boundary of the object
(blue) is not properly reconstructed within red areas. A limited-angle CT scan
uses a trajectory that is less than a full circle which violates Tuy’s condition. The
reconstruction from limited-angle scans is an underdetermined problem which
has non-unique solutions [Ram91]. To mitigate the artifacts and to narrow down
the solution set, a regularization term is used during reconstruction [LSFS14].
As prior information, we include the optical scan result to improve the output
of the reconstruction algorithm.

The Key Problem in aligning object representations of fundamentally disparate
imaging techniques is caused by the imbalance of represented information and
difference in spatial resolution. For full-angle CT data and accompanying optical
scan data of the very same object, inaccuracies in alignment do occur [BMK14].
Due to the corresponding artifacts, limited-angle data presents an even greater
challenge. The data fusion task requires a very accurate alignment, which in
turn is not feasible as long as internal structures contribute to the alignment



66 A. Beyer et al.

error. A higher degree of accuracy can be achieved if only essential data points
contribute to the alignment error. Consequently, aiming at the for preservation of
relevant parts and the omission of incomparable regions, we need an efficient data
reduction. In our setup, a mesh Mopt has a very high resolution up to ∼10µm,
but lacks all data from internal structures. Isosurfaces MCT from volumetric
data sets contain, in contrast, all interior and exterior structures, but generally
have a lower accuracy of only ∼ 75µm. So, for each data point on the exterior
surface from CT, we have several data points describing the very same surface
in the optical scan. However, the interior surface contained in CT data is not
represented in optical data at all.

The exterior surface of an object, in our context, includes all surface parts
visible from the outside. According to our definition in Eq. (1), Mopt is only a
fraction of the complete exterior surface, which in turn is a fraction of all the
data included in MCT. Mopt and MCT provide different representations of the
identical object, and to extract suitable subsets for alignment, the very same
reduction can be applied to both. The key contributions of our approach are:

– identification of vertices, guaranteed to be on the exterior surface,
– reduction of MCT and Mopt to corresponding subsets, and
– improvement of alignment, by omitting vertices which only contribute to error.

2 Alignment Algorithms

The alignment of mesh-based object representations usually follows one of two
principles, either continuously evaluating randomly generated transformations
or iteratively converging to a solution. Whereas the former is implemented in
our project, the latter is applied via Meshlab1.

RANdom Sample And Consensus (RANSAC) is an alignment scheme generating
various hypotheses and verifying or falsifying those hypotheses based on random
sample surveys. Our implementation follows Winckelbach et al. [WMW06] and
selects a vertex pair v1 and v2 in each iteration. A 4D-vector c characterizing
those vertices is computed from the vector −−→v1v2, the normal vector n1 of vertex
v1, and n2 of vertex v2. The four components of c are:

1. the length of −−→v1v2,
2. the rotation angle between n1 and n2 around −−→v1v2,
3. the inclination angle between −−→v1v2 and n1 around −−→v1v2 × n1,
4. the inclination angle between −−→v1v2 and n2 around −−→v1v2 × n2.

For each iteration the vertex pair is selected alternatingly from Mopt and MCT.
The computed c vector is stored along with the selected point pair in a database
for this mesh, e.g., a hash table. In addition the database of the other mesh
is searched for a similar c vector. If a similar vector is already stored in the

1 Software provided by: Visual Computing Lab, CNR-ISTI, Pisa, Italy: http://
meshlab.sourceforge.net/

http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/


RanCEAF - Mesh Reduction to Exterior Surface Parts 67

(a) Cross section of MCT (b) Cross sections of aligned meshes (c) Zoom to blue box in (b)

Fig. 3. ICP offset of cross sections from MCT (green) and from Mopt (red). (Color
figure online)

database of the other mesh, the characteristics of the corresponding vertex pairs
are alike. In this case a hypothesis is formulated, i.e., a transformation matrix
mapping one vertex pair on the other is computed. The hypothesis is tested by
applying the transformation matrix to a random sample of vertices of one mesh
and measuring the distance of the transformed vertices to the surface of the
other mesh. If the root mean square error (RMSE) of the transformed vertices
is below a given threshold the hypothesis is accepted as a global solution for the
alignment task, if not the hypothesis is rejected and a new iteration starts.

This approach is very reliable and converges quickly to a suitable solution
if both meshes are from the same imaging technique or at least have similar
spatial resolution. For Mopt and MCT this is generally not the case as shown
by Beyer et al., which either causes the absence of hypotheses at all due to
the lack of sufficiently similar c vectors and therefore no convergence. In case
the similarity condition and the verification threshold are relaxed, the approach
converges to alignments which are not accurate enough for our scenario. Thus,
the presented implementation of RANSAC is preferred to, e.g., align partial mesh
representations, as an optical scanner provides them, to construct the complete
scan result, but is not suited for aligning Mopt and MCT.

Iterative Closest Point (ICP) algorithms successively minimize the error in rota-
tion and translation between two meshes, i.e. between the two sets of vertices,
to find an alignment [BM92]. The approach works fine for data points generated
from the same imaging technique and, contrarily to RANSAC, does not seem
to suffer from the difference in spatial resolution for Mopt and MCT. On the
downside, due to the imbalance of information as described above, ICP tends to
introduce a drift in the resulting transformation. This is caused by the internal
structures only represented in MCT and the attempt to minimize the distance
per vertex between the meshes. Since those vertices do not have a suitable coun-
terpart in Mopt the introduced drift can be seen as over-compensation. Figure 3
presents the offset as cross sections of both meshes.



68 A. Beyer et al.

3 Strategies for Estimating the Outer Dimensions
of an Object

Many approaches are known to estimate the outer dimensions of the mesh rep-
resentation of an object; we present them according to the level of detail they
provide. All of them have been implemented and the relevant ones are investi-
gated in Sect. 5.

The Minimal Volume Enclosing Ellipsoid (MVEE) is an oriented ellipsoid
with nine degrees of freedom, i.e., xyz-position of the center, orientation of the
three perpendicular axes and the three radii along these axes. The implementa-
tion based on Todd et al. [TY07] computes a parametric form of an enclosing
primitive around the object. If the object is not already known to be roughly
cuboid, this presents a better estimation of the dimensions in the general case
(Fig. 4a).

The Convex Hull (CH) is the smallest convex set of vertices of an object which
contains the object itself. It is an even better estimation of the object’s dimen-
sions than MVEE and usually is the basis of calculating MVEE, since it reduces
the problem size drastically. However, it lacks a parametric form (Fig. 4b).

Alpha Shapes (AS) define a shape around the object, but this shape does not
need to be convex. So far, it is the best approximation of the object’s dimensions
and commonly compared to shrink-wrapping or gift-wrapping an object. The
Delaunay triangulation of all object vertices [Joe91] provides a basis to compute
the α-complex [EM94] and in turn the α-shape as shown in Fig. 4c. Depending
on the chosen α-value, the surface varies, i.e., the value defines how tight MAS

approximates the input mesh. We choose α such that the tightest hull is com-
puted which still produces one connected component. Any deviation results in
MAS either loosely fitting the input mesh, or containing several unconnected
surface parts.

The evaluation is shown in Sect. 5 after the presentation of our method in
the following section.

(a) MVEE (b) Convex Hull (c) Alpha Shape

Fig. 4. Different hulls around Mopt.



RanCEAF - Mesh Reduction to Exterior Surface Parts 69

4 Random Convex-Edge Affine Feature (RanCEAF)
Selection

In our approach, the selection of surface points is performed via nearest neighbor
search. The seeds of those queries are randomly distributed on an enclosing
ellipsoid around the mesh M. Thus, the seeds are guaranteed to be above the
mesh itself and unrelated to the resolution of the underlying mesh.

Nearest neighbor searches (NNS) can be efficiently carried out by a suitable
data structure, e.g., a k-d tree storing all vertices of the mesh under investigation.
The seed vertex s of our query is above the exterior surface and the nearest
neighbor v is chosen as:

v ∈ M s.t. ‖v − s‖2 = min
p∈M

(‖p − s‖2) . (2)

Thus, v is the one vertex from the mesh, which is closest to the seed vertex s,
and it is also ensured that v is not below the exterior surface.

A randomized distribution for seeds s is generated via spherical coordinates
θ and φ. A Mersenne Twister pseudo-random generator of 32-bit numbers with
a state size of 19937 bits is employed to provide a uniform distribution of u, v ∈
[0, 1], with

θ = 2πu and φ = cos−1 (2v − 1) . (3)

In combination with a given radius r, the relation of spherical coordinates and
Cartesian coordinates is established. In case of r = 1, the distribution contains
points on a unit sphere such that any small area on the sphere is expected to
hold the same number of points.2 Let MVEE be described by its center cMVEE,
perpendicular axes a1, a2, a3, and the respective radii r1, r2, r3, which are derived
from an eigenvalue decomposition to get a parametric form [TY07]. The xyz-
coordinates of a point q′ = (q′

x, q′
y, q

′
z) are based on θ and φ as follows:

q′
x = r1 sin (θ) cos (φ) , q′

y = r2 sin (θ) sin (φ) , q′
z = r3 cos (θ) . (4)

This formulation respects the radii of the ellipsoid but not its orientation and
location, all points q′ in (4) are located on an axis-aligned ellipsoid centered at the
origin of the Cartesian coordinate system. A transformation t given by a 4 × 4
matrix At is computed from a rotation to axes a1, a2, a3 and the translation
to the center cMVEE of the MVEE. Thus, after applying (4), any point q′ is
transformed by At to its final position q on the surface of the MVEE around M.

Locally convex regions in the underlying mesh serve as attractors for NNS if
they represent a protruding structure on the exterior surface. To expand their
scope in answering NNS queries, each generated point q on the MVEE is shifted
for simplicity by a factor e = 2, such that its distance to cMVEE is doubled.
This finally represents the seed location s as shown in Fig. 5b. The last step
is necessary to prevent local maxima of the mesh, contributing to the CH and

2 Eric W. Weisstein, Sphere Point Picking: http://mathworld.wolfram.com/
SpherePointPicking.html.

http://mathworld.wolfram.com/SpherePointPicking.html
http://mathworld.wolfram.com/SpherePointPicking.html


70 A. Beyer et al.

(a) Elevation of q to s (b) NNS from seeds s (red) (c) NNS from seed s′ (green)

Fig. 5. NNS without and with shifted seed vertices (2D example). (Color figure online)

defining the size of the MVEE, from only being selected by an NNS query in
case the randomized seed vertex s is identical to this extreme point of M. Any
factor e > 1 is sufficient, since the chosen value only effects the initial query, and
is already compensated after the first seed-shift operation.

Seed-shift operations allow for the extraction of larger surface parts, gradually
relaxing the constraints on proximity to the MVEE and therefore the original
seed vertex s. As shown in Fig. 5c, subsequent NNS with shifted seed vertices
s′ allow for bypassing the most prominent and most protruding structures and
expanding the selected exterior surface parts. In this case any seed vertex s is
shifted towards the center cMVEE by the distance ‖v − s‖2, which equals the
distance to its nearest neighbor as it was returned from the initial query. It
is still not possible to penetrate the exterior surface since the only vertex p ∈
M which can be reached from s by shifting it to position s′ is v itself—and
therefore a vertex on the exterior surface. The benefit of this operation is, that
less prominent but still salient, locally convex regions on the exterior surface can
be added to the extracted subset.

The attributes of the extracted data are that both reduced meshes

– only contain those parts visible from the outside, i.e., the exterior surface,
– exclude narrow cavities and covered regions behind obstacles,
– include samples distributed over the whole object, preferably from salient

regions,
– only contain measurement results, and no kind of smoothing, collapsing or

averaging.

With this Random Convex-Edge Affine Feature (RanCEAF) selection, we
present an approach to extract almost the same meaningful subset from each
of the meshes Mopt and MCT as a pre-processing step to allow for efficient and
robust alignment.

5 Evaluation

Approaches like AABB and MVBB identify six vertices each which is not suf-
ficient for providing an alignment. Likewise, the MVEE is calculated from the



RanCEAF - Mesh Reduction to Exterior Surface Parts 71

(a) MSII for Mopt (b) Histogram for Mopt (c) MSII for MCT (d) Histogram for MCT

Fig. 6. Curvature visualized via Euclidean distance of MSII feature vectors.

set of vertices in the CH, but defined by eight points. Thus, they only allow for
an estimation of object dimensions, but there is no identification of the exterior
surface is performed.

Exterior surface identification is expected to include salient regions visible
from the outside, i.e., from the perspective of an optical scanner. Internal struc-
tures and parts of the mesh covered by obstacles shall not be included. We
measure curvature as salience via Multi-scale Integral Invariants [MKJB10],
determine the fraction of the total surface included in the extracted surface
and the salience of all vertices within this subset.

Multi-scale Integral Invariants (MSII) are computed from the intersection of
the surface M and a set of n isocentric spheres with different radii, i.e., scales.
The analysis is performed for each vertex v of the mesh, i.e., while each v defines
the center of the nested spheres. The largest sphere S0 has the radius r0 depend-
ing on the size of the desired features. For the nested spheres S1...Sn−1 the radii
are equidistantly chosen such that radius rx of each sphere equals rx = r0 −x r0

n .
In our case, n = 16 spheres are computed, which is heuristically a good trade-
off between accuracy and performance. Two variants are implemented for the
analysis, computing either (a) the fraction of the volume of Sx and the enclosed
volume as intersection of Sx and the volume below the intersected surface area
of the mesh, or (b) the fraction of the surface of a disc with the radius rx and
the surface area of the intersection of mesh and sphere.

A 16D feature vector holding the results per sphere is computed per vertex
v ∈ M. The output of these computations are in the range

]

0, 4
3πr3

[

for analysis
based on enclosed volume and ]0,+∞[ for analysis based on enclosed surface.
After normalization for each of the radii, the feature vector contains entries in the
range ]0,+∞[ for enclosed surface and ]0, 1[ for enclosed volume. MSII provides
invariant curvature information on various scales, i.e., it is prone to translation
and rotation of the mesh and provides robust results for different resolution
levels of the mesh. Therefore, it is highly suitable for analyzing the very same
object represented as MCT in lower resolution and Mopt in higher resolution
while computing comparable feature vectors as shown in Fig. 6a and c.

The following evaluation of surface extraction methods considers the MSII
analysis based on intersected volume since it is closer related to Gaussian



72 A. Beyer et al.

curvature and conveniently provides results in the range ]0, 1[. The intersected
surface parts estimate mean curvature and provide results in a range not suitable
for our analysis.

Convex Hull identifies the convex set of any M including the extreme points
as described in Sect. 3, and allows for generating MCH as shown in Fig. 4b. For
MCT 1785 of 1.30 million vertices contribute to the CH, for Mopt these are 2903
of 4.81 million vertices. Since the CH is not influenced by any parameter except
the vertices of the mesh itself and each mesh contains exactly one convex set,
no alternative subset can be identified. With the highest mean MSII value of all
subsets and the absence of vertices with a MSII value close to zero, the result
as shown in Fig. 7c is a sufficient feature extraction. The CH never contains
internal structures but contains only the most prominent protruding structures.
It is therefore not suitable to provide the basis of an accurate alignment in
general. Intuitively, it seems sufficient in the presented case, but the applied
ICP algorithm cannot compute a valid transformation.

Alpha Shape generates a surface MAS for MCT. As shown in Fig. 8, AS does
not identify the exterior surface, since interior structures are covered by MAS

and therefore included in the resulting subset. The same holds for MAS of Mopt

shown in Fig. 4c. The mean MSII values in the subsets are in the region of
the corresponding original meshes (see Table 1) and the histogram in Fig. 8c is
dominated by MSII values close to zero which makes AS unsuitable for feature
extraction. Experiments with lower α-values did not improve the result.

RanCEAF subset of Mopt (Fig. 9a) for 50 k seeds contains 7474 vertices of all 4.81
million vertices. The RanCEAF subset of MCT (Fig. 9b) contains 5023 vertices
of all 1.30 million vertices. As the extracted surface parts in both cases represent
less than 0.05 % of the vertices p ∈ M, only the most prominent structures have
been selected. The number of (removed) duplicates within the selection indicates
that a small fraction of the exterior surface dominates the result by answering
multiple NNS queries each. Thus, for sample sizes larger that 50 k seeds no dras-
tic change in the extracted subset is expected since we already over-sampled this

(a) MCH of MCT (b) Identified subset (c) MSII distribution

Fig. 7. Convex Hull algorithm applied to MCT.



RanCEAF - Mesh Reduction to Exterior Surface Parts 73

(a) MAS of MCT (b) Identified subset (c) MSII distribution

Fig. 8. Alpha Shape algorithm applied to MCT.

subset by one order of magnitude. To allow for scalable mesh reduction, shift-seed
operations (Fig. 5) provide sufficient data for alignment. The mean MSII values
provided in both subsets are second highest after CH, which makes RanCEAF a
suitable method for feature extraction. None of the presented RanCEAF results
include interior structures and only after the third seed-shift operation MSII
values close to zero dominate the histogram (Figs. 10f and 11f). For illustration
purposes, Figs. 9, 10, and 11 show the extracted set of vertices and their con-
nected faces. Via region growth in each vertex of the subset, more faces can be
included to extract a larger portion of the exterior surface.

Seed-shift operations, as applied to Mopt in Fig. 10, and to MCT in Fig. 11
expand the regions from which exterior surface points are selected and still pro-
vide a higher mean MSII value than the original meshes in Fig. 6. As the per-
centage of vertices with an MSII value ≥1.0 in Table 1 indicates, expanding the
subset does not over-represent regions with low MSII values. In our experiments,
the best increase in alignment accuracy was based on the output of the second
seed-shift operation for Mopt and MCT.

6 Results

We have shown that our proposed method RanCEAF efficiently identifies the
exterior surface of a given mesh. Furthermore, it allows to over-represent convex
areas since they serve as attractors for regional queries from seeds on the enclos-
ing ellipsoid. The protruding areas include the local maxima of the object under
investigation and the resulting subset of all data points is suitable for alignment.
The presented approach does not—in contrast to AS—introduce additional faces
or require any further post-processing. The proposed method provides a reliable
surface reduction, which can be iteratively expanded by applying multiple seed-
shift operations. In general, the RanCEAF algorithm only relies on the vertices
of the mesh M and therefore can be applied to point clouds. Only for the analysis
based on MSII, faces are required in a pre-processing step and only for the sake



74 A. Beyer et al.

(a) Result for Mopt (7.5k vertices) (b) Result for MCT (5k vertices)

(c) MSII of vertices in 9a (d) MSII of vertices in 9b

Fig. 9. RanCEAF result for 50 k seeds.

of evaluating our approach. The comparison of size and salience of extracted sub-
sets, as shown in Table 1, indicates that the subsets extracted by our method are
sufficiently large to serve as input for computing an alignment, and yet salient
enough to grasp the essential structures of the presented geometry. The inherent
parallelism of our approach is easily exploited (in our evaluation on an Intel
Xeon E7-4870 ) and therefore not corrected for comparison to single-threaded
algorithms in Table 1. For the presented object, the alignment of the complete
meshes Mopt and MCT via the ICP algorithm in Meshlab resulted in an RMSE
of 2.736 mm. Computing the transformation matrix based on the extracted sur-
faces of both meshes and applying the obtained transformation to Mopt and
MCT, provided a RMSE of 2.722 mm. The increase in accuracy reads as 0.5 %
or an RMSE reduction of 14 µm, which potentially affects the selection of cells
on the dense voxel grid as reconstructed from CT scans. Notice that there is no
perfect alignment for both meshes. Therefore, the RMSE cannot be zero and the
real increase in accuracy is higher than 0.5 %.



RanCEAF - Mesh Reduction to Exterior Surface Parts 75

(a) Mopt subset: 1st seed-shift (b) Mopt subset: 2nd seed-shift (c) Mopt subset: 3rd seed-shift

(d) MSII of vertices in 10a (e) MSII of vertices in 10b (f) MSII of vertices in 10c

Fig. 10. RanCEAF with seed-shifts applied to Mopt.

(a) MCT subset: 1st seed-shift (b) MCT subset: 2nd seed-shift (c) MCT subset: 3rd seed-shift

(d) MSII of vertices in 11a (e) MSII of vertices in 11b (f) MSII of vertices in 11c

Fig. 11. RanCEAF with seed-shifts applied to MCT.



76 A. Beyer et al.

Table 1. Objects shown in Fig. 1 after applying evaluated approaches.

Vertices Surface Surface Salient vertices Mean salience CPU time

(total) area coverage (in % with (in subset (in sec)

(in cm2) (in %) MSII ≥ 1.0) via MSII)

Mesh from optical scan Mopt 4813688 1042.9 69.19 12.47 0.444 –

Mesh from CT isosurface MCT 1303299 1507.3 100.00 4.94 0.349 –

Convex Hull MCH of Mopt 2903 0.5 0.04 67.30 1.343 35.8

Convex Hull MCH of MCT 1785 4.4 0.29 57.45 1.114 8.7

Alpha Shape MAS of Mopt 449773 16.6 1.10 13.41 0.464 551.9

Alpha Shape MAS of MCT 607004 593.7 39.39 1.17 0.326 135.5

RanCEAF subset of Mopt 7474 1.9 0.13 64.78 1.229 37.4

RanCEAF subset of MCT 5023 13.1 0.87 55.15 1.119 7.1

RanCEAF 1st seed-shift of Mopt 38527 25.6 1.70 29.66 0.714 76.8

RanCEAF 1st seed-shift of MCT 29802 90.7 6.02 23.87 0.643 14.1

RanCEAF 2nd seed-shift of Mopt 45954 40.2 2.67 17.42 0.497 116.3

RanCEAF 2nd seed-shift of MCT 39958 129.0 8.56 17.80 0.488 21.3

RanCEAF 3rd seed-shift of Mopt 47499 47.1 3.12 11.45 0.392 156.6

RanCEAF 3rd seed-shift of MCT 43671 144.9 9.61 16.29 0.410 28.1

7 Outlook

Although the described imbalance in information, contained in Mopt and MCT,
could be mitigated by the presented approach, the mismatch in resolution of
both imaging techniques still presents a challenge to alignment algorithms. In
the further pursuit of our work, our focus will be to investigate alignment schemes
which do not rely on point to point comparison for registration. Instead of per-
forming seed-shift operations for all seed vertices alike, adaptive application to
selected seeds, based on the local geometry, would reduce runtime and preserve
more features. The fact that both representations are known to describe the
very same object and that they also both contain the object as a whole, matches
with the challenges within our joint project ILATO3. Especially for dealing with
artifacts from Limited-Angle CT, any data point irrelevant for alignment has
to be neglected since the registration based on the remaining exterior surface
points is already very difficult. For metrology applications and industrial qual-
ity inspections, technical drawings of the specimen are available as CAD files.
Registration of an optical scan surface and CAD, which contains interior struc-
tures, can benefit from the presented approach. Likewise, coordinate-measuring
machines (CMM) provide highly accurate tactile measurements of an object’s
surface. Registering the CMM output with MCT of this object can be enhanced
by neglecting the interior structures of MCT. We will pursue further investi-
gations to estimate the minimal RMSE for the given alignment depending on
resolution and fidelity of the acquisition systems and to determine the actual
increase in accuracy our approach provides.

3 http://www.iwr.uni-heidelberg.de/groups/ngg/ILATO/.

http://www.iwr.uni-heidelberg.de/groups/ngg/ILATO/


RanCEAF - Mesh Reduction to Exterior Surface Parts 77

Acknowledgements. This joint project is funded by the Deutsche Forschungsge-
meinschaft (DFG), grant number BO 864/17-1, and by the Swiss National Science
Foundation (SNF), grant number 200021L 141311. The Heidelberg Graduate School
of Mathematical and Computational Methods for the Sciences (HGS MathComp) pro-
vides the optical scanning system as well as assistants to operate it. We thank our
colleague Filip Sadlo for great help in improving the presentation of our work and
implementing the reviewers comments. We also want to thank our project partners
at the Swiss Federal Laboratories for Materials Science and Technology (Empa) for
providing their expertise in metrology, the acquisition of numerous CT scans, and for
having many fruitful discussions in frequent virtual or physical meetings. Above all, we
thank Philipp Schütz, Urs Sennhauser, Jürgen Hofmann and Alexander Flisch.

References

[BM92] Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE
Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

[BMK14] Beyer, A., Mara, H., Krömker, S.: ILATO project: fusion of optical surface
models and volumetric CT data (2014). CoRR abs/1404.6583

[EM94] Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM
Trans. Graphics (TOG) 13(1), 43–72 (1994)

[FDK84] Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical Cone-Beam algorithm.
J. Opt. Soc. America A 1(6), 612–619 (1984)

[Joe91] Joe, B.: Construction of three-dimensional delaunay triangulations using
local transformations. Comput. Aided Geom. Des. 8(2), 123–142 (1991)

[LC87] Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D sur-
face construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169
(1987)

[LSFS14] Liu, Y., Schuetz, P., Flisch, A., Sennhauser, U.: Exploring the limits of
limited-angle computed tomography complemented with surface data. In:
Proc. of the 11th Eur. Conf. on Non-Destructive Testing (ECNDT) (2014)

[MKJB10] Mara, H., Krömker, S., Jakob, S., Breuckmann, B.: GigaMesh and Gil-
gamesh - 3D multiscale integral invariant cuneiform character extraction.
In: Proc. of the 11th Intl. Conf. on Virtual Reality, Archaeology and Cul-
tural Heritage, pp. 131–138. Eurographics Association (2010)

[Ram91] Ramm, A.G.: Inversion of limited-angle tomographic data. Comput. Math.
Appl. 22(4–5), 101–111 (1991)

[Sch12] Schlei, B.: Extraction, volume-enclosing surface. Comput. Graph. 36(2),
111–130 (2012)

[Tuy81] Tuy, H.: Reconstruction of a three-dimensional object from a limited range
of views. J. Math. Anal. Appl. 80(2), 598–616 (1981)

[TY07] Todd, M.J., Yıldırım, E.A.: On Khachiyan’s algorithm for the computation
of minimum-volume enclosing ellipsoids. Discrete Appl. Math. 155(13),
1731–1744 (2007)

[WMW06] Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-cost laser range scan-
ner and fast surface registration approach. In: Franke, K., Müller, K.-R.,
Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 718–728.
Springer, Heidelberg (2006)



Numeric and Certified Isolation
of the Singularities of the Projection

of a Smooth Space Curve

Rémi Imbach(B), Guillaume Moroz, and Marc Pouget

LORIA Laboratory, INRIA Nancy Grand Est, Nancy, France
{remi.imbach,guillaume.moroz,marc.pouget}@inria.fr

Abstract. Let CP∩Q be a smooth real analytic curve embedded in
R3, defined as the solutions of real analytic equations of the form
P (x, y, z) = Q(x, y, z) = 0 or P (x, y, z) = ∂P

∂z
= 0. Our main objec-

tive is to describe its projection C onto the (x, y)-plane. In general, the
curve C is not a regular submanifold of R2 and describing it requires to
isolate the points of its singularity locus Σ. After describing the types
of singularities that can arise under some assumptions on P and Q, we
present a new method to isolate the points of Σ. We experimented our
method on pairs of independent random polynomials (P, Q) and on pairs
of random polynomials of the form (P, ∂P

∂z
) and got promising results.

Keywords: Topology of analytic real curve · Apparent contour ·
Singularities isolation · Numeric certified methods

1 Introduction

Consider a smooth analytic curve CP∩Q ⊂ R3 defined by P (x, y, z) = Q(x, y, z) =
0 with P,Q analytic functions, and its projection C ⊂ R2 on the (x, y)-plane.
Computing the topology of C, or computing a graph topologically equivalent to
C, requires computing the set Σ of its singularities (see Sect. 1.2 for a rigorous
definition). In a second step, the study of the complement of Σ allows one to
recover the topology of the curve. This fundamental problem arises in fields such
as mechanical design, robotics and biology. A specific case of interest is when
Q = Pz (where Pz is the partial derivative ∂P

∂z ). In this case, the curve C is the
apparent contour of the surface P (x, y, z) = 0. This case has been intensively
studied and extended in the framework of the catastrophe theory (see [10] and
references therein). Moreover, determining the topology of a projection of a space
curve is an important step to compute its topology [7,11]. Similarly determining
the topology of the apparent contour of a surface is an important step to compute
its topology [1,5].

The goal of this paper is to take advantage of the specific structure of the
singularities Σ and to propose a characterization allowing to isolate them effi-
ciently. Since we do not restrict our work to the case P = Pz = 0, we also give

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 78–92, 2016.
DOI: 10.1007/978-3-319-32859-1 6



Numeric and Certified Isolation of the Singularities 79

a mathematical description of the types of singularities arising in the projection
of curves defined by P = Q = 0 under some generic assumptions.

Our approach to isolating the singularities Σ is to construct a new system
so-called ball system, the roots of which are in a one-to-one correspondence
with the points of Σ. As shown with experimental results, this system suits
numerical certified solvers such as subdivision methods or homotopy solvers in
the polynomial case.

The rest of the paper is organized as follows. Section 2 classifies the singu-
larities of C and relates them to the points where the projection Πxy is not a
diffeomorphism. The construction of the ball system and a proof of regularity of
its solutions are exhibited in Sect. 3. Section 4 is dedicated to experiments. The
rest of this section presents previous and related works, and gives explicitly the
assumptions on P and Q for our method.

1.1 Previous Works

State-of-the-art symbolic methods that compute topology of real plane curves
defined by polynomials are closely related to bivariate system solving.

Symbolic methods mainly rely on resultant and sub-resultant theory to iso-
late critical points, see for instance the book chapter [23] and references within.
There are some alternatives, using for instance Gröbner bases and rational uni-
variate representations [6,27].

Numerical methods can be used together with interval arithmetic to compute
and certify the topology of a non-singular curve when the interest area is a
compact subset of the plane [15,19,26]. However they fail near any singular
point of the curve. Isolating singularities of a plane curve f(x, y) = 0 with a
numerical method is a challenge since it is described by the non-square system
f = fx = fy = 0, and singularities are not necessarily regular solutions of this
system.

Non-regular solutions can be handled through deflation systems (see for
instance [3,12,13,17,18,25]), but the resulting systems are usually still overdeter-
mined or contain spurious solutions. Overdetermined systems can be translated
into square systems using combinations of their equations with first derivatives
[8]. Another deflation adapted to the singularities of the projection of a generic
algebraic space curve using sub-resultant theory was proposed in [14]. In this
paper we present a new deflation square system that can handle analytic curves.

Square systems with regular solutions can be solved by numerical approaches.
Classical homotopy solvers [21] find all complex solutions of latter systems when
their equations are polynomials. Subdivision methods [20,22,24,28] are numeric
certified approaches to find all real solutions lying in an initial bounded domain of
a system of analytic equations. When the latter are polynomial, these approaches
can be extended to unbounded initial domains [24,28].

Starting with the work of Whitney [29], the catastrophe theory was developed
to classify the singularities arising while deforming generic mappings (see [2,10]
for example). From an algorithmic point of view, the authors of [9] use elements



80 R. Imbach et al.

of the catastrophe theory to derive an algorithm isolating the singularities arising
in mappings from R2 to R2.

1.2 Notations and Assumptions

In the following, CP∩Q denotes the curve defined as the zero set of the real
analytic functions P (x, y, z) and Q(x, y, z) and B0 is an open subset of R2. We
will denote by Πxy the projection from CP∩Q to the (x, y)-plane, and by C the
projection Πxy(CP∩Q).

Regular Points and A±
k Singularities. A point p of the curve C is regular if

there is a small neighborhood U of p in R2 such that C∩U is a regular submanifold
of R2. Otherwise it is singular. A singular point p of a curve C is of type A±

k if and
only if C is equal to the solutions of the equation x2±yk+1 = 0 on a neighborhood
U of p, up to a diffeomorphism from U ⊂ R2 to V ⊂ R2 [2, Sect. 9.8]. Remark
that those are not the only type of singularities that can appear on a plane
curve. Notice that the types A+

2k and A−
2k are equivalent and simply denoted

by A2k. We will call node a singularity of type A−
1 or equivalently a transverse

intersection of two real curve branches. We also call cusp a singularity of type
A2k and ordinary cusp the singularity A2. With this notation, a point p of C is
regular if and only if it is of type A0.

In Sect. 2, we will describe the types of singularities of C assuming that :

(A1). The curve CP∩Q is smooth above B0.
(A2). For any (α, β) in B0, the system P (α, β, z) = Q(α, β, z) = 0 has at most 2

real roots counted with multiplicities.
(A3). There is at most a discrete set of points (α, β) in B0 such that P (α, β, z) =

Q(α, β, z) = 0 has 2 real roots counted with multiplicities.
(A4). Πxy is a proper map from CP∩Q ∩ (B0 ×R) to its image, that is the inverse

image of a compact subset is compact.

Then in Sect. 3, we will introduce the system of analytic equations that we
will use to compute the singularities of C. The solutions of this system will be
regular under the following additional assumption:

(A5). The singularities of the curve C are either nodes or ordinary cusps.

Notice that Thom Transversality Theorem implies that (A1), (A2), (A3) and
(A5) hold for generic analytic maps P,Q defining CP∩Q (see [10, Theorem 3.9.7
and Sect. 4.7]), and (A4) holds at least for generic polynomial maps. If we assume
only that the curve is smooth (assumption (A1)), it would be interesting to prove
that all the other assumptions hold after a generic linear change of coordinates.

If P,Q are polynomials, a semi-algorithm checking these conditions is given
in [14, Semi-Algorithm 1]. Otherwise when P,Q are analytic maps, the latter
semi-algorithm can be adapted only when B0 is bounded.



Numeric and Certified Isolation of the Singularities 81

2 Description of the Singularity Locus Σ

The different types of singularities of a plane curve have been classified in [2] for
example. We describe in this section the types of singularities that can arise on
the curve C under the Assumptions (A1) − (A4), and we relate those singulari-
ties with the projection mapping Πxy. More precisely, using Arnold’s notation
recalled below, we show that under the Assumptions (A1) − (A4), the singulari-
ties of C are of type A±

k (Lemma 2 and Corollary 1). Moreover, we show that a
singular point of C is either a critical value of Πxy, or the image of two distinct
points of CP∩Q by Πxy.

Singularities of C and Critical Points of Πxy. The critical points of Πxy

are the points of CP∩Q where the tangent to the curve is vertical, i.e. aligned
with the z-axis. Assuming that the conditions (A1) − (A4) are satisfied by the
curve CP∩Q, we show that for p a point on the curve Πxy(CP∩Q):

1. if p is a critical point of Πxy, then it is a cusp point of C (singularity of type
A2(k+1));

2. if p is the image of two distinct points of CP∩Q, then it is a singularity of type
A−

2k+1;
3. otherwise, it is a regular point.

In particular, this implies that a point p is singular if and only if it is a critical
value of Πxy or it has two antecedents by Πxy.

Lemma 1. Let p be a point of C. If p is not a critical value of Πxy and Π−1
xy (p)

has only one antecedent, then p is a regular point of C.

Proof. For U an open set of R2, we will denote by ΠU
xy the restriction of Πxy to

CP∩Q∩Π−1
xy (U). Since p is not a critical value of Πxy, there exists a neighborhood

U of p such that U does not contain any critical value of Πxy, such that ΠU
xy is

an immersion. Then, since p has a unique antecedent, (A3) ensures that there is
a neighborhood V of p such that ΠV

xy is a homeomorphism. Thus ΠU∩V
xy is an

embedding and p is a regular point. ��
Lemma 2. Let p be a point of C. If p has two antecedents by Πxy, then p is a
singularity of C of type A−

2k+1 with k ≥ 0.

Proof. If Π−1
xy (p) contains more than one antecedent of p, then (A2) implies that

p has exactly two antecedents qu and qv. Since Πxy is proper by Assumption
(A4) and CP∩Q is smooth by Assumption (A1), for a small enough neighborhood
U of p, Π−1

xy (U) is bounded and is the union of two smooth connected branches
of CP∩Q. And (A3) implies that in a small enough neighborhood of p, p is the
only point with two antecedents. Let u = (ux, uy, uz) and v = (vx, vy, vz) be the
two vectors tangent to CP∩Q at the antecedents qu and qv of p. Assumption (A2)
implies that neither u nor v are vertical, hence ũ = (ux, uy) and ṽ = (vx, vy) are
non-zero vectors of R2. We now distinguish two cases.



82 R. Imbach et al.

First, ũ and ṽ are independent vectors. In this case, the mapping ( X
Y ) =

( ux uy
vx vy

)−1 · ( x
y ) is a diffeomorphic change of coordinates. Moreover

(

PX(qu)
QX(qu)

)

=

( 0
0 ) and

(

PY (qu)
QY (qu)

)

�= ( 0
0 ). Thus by the analytic implicit function theorem, there

exists an analytic function f : R �→ R such that Y = f(X) and f(0) = f ′(0) = 0
such that the projection of the branch at qu has an equation of the form Y =
X2f̃(X). Symmetrically, the projection of the branch at qv has an equation of
the form X = Y 2g̃(Y ). Thus, up to a diffeomorphism of R2, the curve C around
p has an equation of the form (Y − X2f̃(X))(X − Y 2g̃(Y )) = 0, or equivalently
(X + Y − X2f̃(X) − Y 2g̃(Y ))2 − (X − Y − X2f̃(X) + Y 2G̃(Y ))2 = 0. That is,
p is a singularity of type A−

1 , also called a node.
In the case where ũ and ṽ are co-linear, we follow the same approach, using

this time the diffeomorphic change of coordinate ( X
Y ) =

( ux uy

−uy ux

)−1 · ( x
y ). More-

over
(

PX(qu)
QX(qu)

)

= ( 0
0 ). As in the previous case, we use the analytic implicit

function theorem at qu and qv, and we conclude that there exist two analytic
functions f and g such that on a neighborhood of p, the curve C is given
by the equation (Y − X2f(X)(Y − X2g(X)) = 0. That can be rewritten as
(2Y − X2(f(X) + g(X)))2 − X4(g(X) − f(X))2 = 0. Assumption (A3) ensures
that the projections of the 2 branches have only one common point, such that
g(X) − f(X) does not vanish identically. Then, denoting by k the valuation of
f(X) − g(X), p is a singularity of type A−

2k+3. ��
Finally, if p is a critical value of Πxy we use Arnold’s classification of singu-

larities and prove that p is a singular point of type A2(k+1) with k ≥ 0.

Lemma 3. Assume that the curve CP∩Q satisfies (A1)−(A3). Let q be a critical
point of Πxy. Then, there exists a neighborhood U of q and an invertible 2 × 2
matrix M of real analytic functions such that:

(

P
Q

)

= M ·
(

X−Z3+2k

Y −Z2

)

◦ Φ(x, y, z) (1)

where Φ : (x, y, z) �→ (φ(x, y), ψ(z)) is a diffeomorphism and k is a natural
integer.

Corollary 1. Let p be a point of C. If p is a critical value of Πxy, then p is a
cusp of C of type A2(k+1) with k ≥ 0.

Proof ( of the corollary). Let q be the critical point associated to p and denote
πxy the projection from R3 to R2. First we show that it is sufficient to study the
behavior of CP∩Q in a neighborhood of q to describe the curve C in a neighbor-
hood of p. Indeed, Assumptions (A2) and (A4) imply that above a small enough
neighborhood of p, the curve CP∩Q has a unique connected branch. In particu-
lar for any neighborhood U of the critical point q there exists a neighborhood
V ⊂ U such that πxy(V ) ∩ C ⊂ Πxy(U ∩ CP∩Q).

Then, Lemma 3 shows that there exists a neighborhood U of q and a diffeo-
morphism φ from πxy(U) ⊂ R2 to V ⊂ R2 a neighborhood of (0, 0) such that



Numeric and Certified Isolation of the Singularities 83

φ(Πxy(CP∩Q ∩U)) = {(X,Y ) ∈ V | X2−Y 3+2k}. In particular, p is a singularity
of type A2(k+1) with k ≥ 0, that is a cusp. ��
Proof (of Lemma 3). This lemma is essentially a consequence of the analytic
implicit function theorem, combined with our assumptions. First, q is a crit-
ical point thus CP∩Q has a vertical tangent at q, up to a translation, we
assume q = (0, 0, 0). Since CP∩Q is non-singular (Assumption (A1)), the matrix
(

Px(q) Py(q)
Qx(q) Qy(q)

)

is invertible. Using the analytic implicit function theorem ([16]
or [10, Corollary 2.7.3]), there exist two real analytic functions f, g from R to
R such that P (f(z), g(z), z) = Q(f(z), g(z), z) = 0 on a small enough neigh-
borhood of 0. In particular, letting x̃ := x − f(z) and ỹ = y − g(z) we have
P = P (x̃+f(z), ỹ +g(z), z) and Q = Q(x̃+f(z), ỹ +g(z), z). Using Hadamard’s
lemma ([10, Proposition 4.2.3]), there exist real analytic functions a, b, c, d such
that P = a · x̃+ b · ỹ and Q = c · x̃+d · ỹ. Moreover, since

(

Px(q) Py(q)
Qx(q) Qy(q)

)

is invert-

ible, the matrix
(

a(q) b(q)
c(q) d(q)

)

is also invertible. Let M1 be the inverse of
(

a b
c d

)

on
a small enough neighborhood of q. Then we have:

(

P̃
Q̃

)

:=
(

x−f(z)
y−g(z)

)

= M1 · (

P
Q

)

. (2)

Moreover, since the curve has a vertical tangent at q, we have fz(0) = gz(0) = 0.
And according to Assumption (A2), either fzz(0) or gzz(0) is not zero. Without
restriction of generality, assume μ := gzz(0) �= 0. Up to a scale of the variable
z, we can assume that μ = 2. Thus, there exist analytic functions u, v such
that f and g are of the form f(z) = z2u(z) and g(z) = z2(1 + zv(z)). Let-
ting ψ : z �→ Z := z

√

1 + zv(z), we have Q̃(x, y, ψ−1(Z)) = y − Z2 = 0. In
particular, the function P̃ = x − z2u(z) can be rewritten as P̃ (x, y, ψ−1(Z)) =
x − Z2(s(Z2) + Zt(Z2)) with s and t two real analytic functions. Note that t
cannot have all its derivatives vanishing at 0 since otherwise there would be a
strictly positive dimensional set of points with two or more antecedents, con-
tradicting Assumption (A3). Let k ∈ N be the valuation of t, i.e. its first non
vanishing derivative at 0. Then, there exists t′ an analytic function such that
t(Z2) is of the form Z2k(η + Z2t′(Z2)). The function P̃ (x, y, ψ−1(Z)) is of the
form x − Z2(s(Z2) + Z1+2k(η + Z2t′(Z2))). Using Q̃ to substitute ψ(z)2 by y in
P̃ , there exists a matrix M2 := ( 1 e

0 1 ) where e is an analytic function, such that:
(

x− s(y)
y −ψ(z)3+2k(η+yt(y))

y−ψ(z)2

)

= M2 · M1 · (

P
Q

)

. (3)

Finally we recover (1) with:

φ(x, y) =

⎛
⎝ x − s(y)

y

η + yt(y)
, y

⎞
⎠ , ψ(z) = z

√
1 + zv(z), M = M−1

1 · M−1
2 ·

( 1
η+yt(y) 0

0 1

)
. ��

3 Modeling System

Following the result of Sect. 2, a naive approach to represent the singularities Σ
of C is to use the two following systems.



84 R. Imbach et al.

1. For (x, y, z1, z2) ∈ B0 × R2:

P (x, y, z1) = P (x, y, z2) = Q(x, y, z1) = Q(x, y, z2) = 0 and z1 �= z2.

2. For (x, y, z) ∈ B0 × R:

P (x, y, z) = Q(x, y, z) = Pz(x, y, z) = Qz(x, y, z) = 0.

However, the first system is numerically unstable near the set z1 = z2 and the
second one is over-determined. Instead, we will introduce an unified system. First
we define the operators that will be used to construct our system.

3.1 Ball System

Definition 1. Let A(x, y, z) be a real analytic function. We denote by S.A and
D.A the functions:

S.A(x, y, c, r2) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2
(A(x, y, c +

√
r2) + A(x, y, c − √

r2)) if r2 > 0

A(x, y, c) if r2 = 0
1
2
(A(x, y, c + i

√−r2) + A(x, y, c − i
√−r2)) if r2 < 0

(4)

D.A(x, y, c, r2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2
√

r2
(A(x, y, c +

√
r2) − A(x, y, c − √

r2)) if r2 > 0

Az(x, y, c) if r2 = 0
1

2
√−r2

(A(x, y, c + i
√−r2) − A(x, y, c − i

√−r2)) if r2 < 0

. (5)

By abuse of notation, if M is a matrix of real analytic functions, S.M and D.M
denote the matrices with the operator applied on each entry.

If A is a real analytic function, then S.A and D.A are also real analytic
functions (see Lemma 6). This allows us to introduce the so-called ball system
that we will use to compute Σ. In this system we map two solutions (x, y, z1)
and (x, y, z2) of P = Q = 0 (or P = Pz = 0) to their center (x, y, c) and the
square of their radius r2 = r2, with r = |z1−c| = |z2−c|. Figure 1 illustrates this
mapping for singularities of the apparent contour of a torus. Its left part shows
the surface P = 0, its set of z-critical points CP∩Pz

and the apparent contour
C = Πxy(CP∩Pz

). Its right part shows, for nodes and ordinary cusp singularities,
their respective antecedents by Πxy, centers c and radii r.

Lemma 4. Let S be the set of solutions of the so-called ball system:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S.P (x, y, c, r2) = 0
S.Q(x, y, c, r2) = 0
D.P (x, y, c, r2) = 0
D.Q(x, y, c, r2) = 0

(6)

in B0 ×R×R+. Then Π ′
xy(S) = Σ, where Π ′

xy is the projection from R4 to the
(x, y)-plane.



Numeric and Certified Isolation of the Singularities 85

Fig. 1. Left: a torus, in bold line its set of z-critical points, its apparent contour, and
the zoom zone corresponding to the right figure. Right: a detail, with antecedents,
centers and radius corresponding to singularities.

Proof. According to Sect. 2, the singularity locus of C is exactly the union of
the critical values of Πxy and of the points that have several antecedents.
They correspond respectively to the solutions of S such that r = 0 and such
that r > 0. ��

One of the main advantage of this system is that its solutions are regular when
the condition (A5) is satisfied, and thus can be solved using certified numerical
algorithms such as homotopy or subdivision methods (see Sect. 4).

Lemma 5. Under the Assumptions (A1) − (A4), all the solutions of the system
S.P = S.Q = D.P = D.Q = 0 in B0 ×R×R+ are regular if and only if (A5) is
satisfied.

The next subsection is dedicated to the proof of this lemma.

3.2 Regularity Condition

Lemma 6. If A is a real analytic function, then S.A and D.A are real analytic
functions. Moreover, the derivatives of S.A with respect to x, y, c, r2 are respec-
tively S.Ax, S.Ay, S.Az,

1
2D.Az. The derivative of D.A with respect to x, y, c, r2

are respectively D.Ax,D.Ay,D.Az and S.Az−D.A
2r2

if r2 > 0 and 1
6Azzz if r2 = 0.

Proof. First, on a neighborhood of r2 > 0, S.A and D.A are compositions of
analytic functions, and thus are analytic. Likewise, for r2 < 0, S.A and D.A are
analytic functions, and all the coefficients of their series expansions are real, thus
they are real valued analytic functions. Finally, on a neighborhood of (x, y, c, 0),
if A(x, y, c + r) =

∑∞
n=0 an(x, y, c)rn, the series expansions of S.A and D.A for

r2 < 0, r2 = 0 and r2 > 0 coincide as:

S.A(x, y, c, r2) =
∞
∑

n=0

a2n(x, y, c)rn
2 , D.A(x, y, c, r2) =

∞
∑

n=0

a2n+1(x, y, c)rn
2 .



86 R. Imbach et al.

Thus S.A and D.A are analytic functions. The expressions of their derivatives
follow from the formulas. ��
Lemma 7. If ψ : U ⊂ R3 �→ V ⊂ R3 is an analytic diffeomorphism of the
form ψ(x, y, z) = (ψ1(x, y), ψ2(x, y), ψ3(x, y, z)), so-called triangular, then the
mapping:

SD.ψ : (x, y, c, r2) �→ (ψ1(x, y), ψ2(x, y), S.ψ3(x, y, c, r2), r2(D.ψ3(x, y, c, r2))2)

is a real analytic diffeomorphism from {(x, y, c, r2) ∈ R3 ×R+ | (x, y, c +
√

r2) ∈
U} to {(X,Y,C,R2) ∈ R3 × R+ | (X,Y,C +

√
R2) ∈ V }.

Moreover, if A : R3 → R is an analytic map, we have:

S.(A ◦ ψ) = (S.A) ◦ (SD.ψ)
D.(A ◦ ψ) = (D.A) ◦ (SD.ψ) × D.ψ3.

Proof. According to the previous lemma, SD.ψ is analytic. Moreover, since ψ−1

is analytic, SD.(ψ−1) is also analytic. Assuming that the inequalities at the end
of the lemma are correct, we can use them to check that SD.(ψ−1) ◦ SD.ψ is
the identity by developing the formula. Such that SD.ψ is a diffeomorphism.

To prove the final identities of the lemma, let (X,Y,C,R2) =
SD.ψ(x, y, c, r2). We can observe that ψ3(x, y, c +

√
r2) = C +

√
R2 and

ψ3(x, y, c − √
r2) = C − √

R2 by expanding S.ψ3 +
√

r2(D.ψ3)2 and S.ψ3 −
√

r2(D.ψ3)2. Using these formula, we can deduce the identities by expanding
the right and left hand side of the equalities. ��
Lemma 8. Let P,Q be two analytic functions from U ⊂ R3 to R and assume
that there exist two analytic functions P̃ , Q̃, a 2× 2 invertible matrix of analytic
functions and a triangular diffeomorphism φ : U → V ⊂ R3 such that

(

P
Q

)

=

M ·
(

P̃
Q̃

)

◦ φ. Then we have:

⎛

⎜

⎜

⎝

S.P
S.Q
D.P
D.Q

⎞

⎟

⎟

⎠

=

⎛

⎝

S.M r2D.φ3D.M

D.M D.φ3S.M

⎞

⎠

︸ ︷︷ ︸

T

⎛

⎜

⎜

⎝

S.P̃

S.Q̃

D.P̃

D.Q̃

⎞

⎟

⎟

⎠

◦ SD.φ

where the matrix T is invertible, of inverse T̃ :=
(

S.M−1 r2D.M−1

D.M−1/D.φ3 S.M−1/D.φ3

)

.

Proof. First, using the identity ab + cd = 1
2 (a + c)(b + d) + 1

2 (a − c)(b − d), we
can deduce:

(

S.P
S.Q
D.P
D.Q

)

=
(

S.M r2D.M

D.M S.M

)

(

S.(P̃ ◦ φ)
S.(Q̃ ◦ φ)
D.(P̃ ◦ φ)
D.(Q̃ ◦ φ)

)

Finally, expanding the operators in the right hand side vector using the for-
mula in Lemma 7, we prove the desired identity. Finally, since φ is a triangular
diffeomorphism, we can use the formula of Lemma 7 with A = (φ−1)3 to get



Numeric and Certified Isolation of the Singularities 87

1 = D((φ−1)3 ◦ φ) = D.(φ−1)3 ◦ SD.φ × D.φ3. In particular, D.φ3 is never 0
and T̃ is well defined. Expanding T̃ · T , we get the identity, such that T̃ is the
inverse of T . ��
Corollary 2. A point p solution of the system S.P = S.Q = D.P = D.Q = 0
is regular if and only if the point SD.φ(p) is regular in the system S.P̃ = S.Q̃ =
D.P̃ = D.Q̃ = 0.

Proof. The claim of the lemma can be verified by developing the product vector.
For the corollary, it is sufficient to observe that on a point p solution of the
system, the Jacobian matrices satisfy the relation:

Jacp

(

S.P
S.Q
D.P
D.Q

)

(p) = T · JacSD.φ(p)

(

S.P̃

S.Q̃

D.P̃

D.Q̃

)

· Jacp(SD.φ). ��
We have now all the tools necessary to prove Lemma 5.

Proof (of Lemma 5). First, let q be a solution of our system with r2 = 0. Then,
according to Lemma 3, there exists an invertible matrix M and a triangular
diffeomorphism φ such that on a neighborhood of q we have:

(

P
Q

)

= M ·
(

X−Z3+2k

Y −Z2

)

◦ Φ(x, y, z).

Thus, the point q is regular in the ball system if and only if (0, 0, 0) is regular
in the ball system generated by X −Z3+2k and Y −Z2 (Corollary 2). Computing
the associated Jacobian matrix, we can check that q is regular if and only if k = 0,
that is, if and only if its projection p is an ordinary cusp.

Now, let q = (x, y, c, r2) be a solution of the ball system with r2 > 0. In this
case q represents two points q1 = (x, y, c+

√
r2) and q2 = (x, y, c−√

r2) of CP∩Q

with the same projection.
According to Lemma 6 the equation detJac(x,y,c,r2)(S.P, S.Q,D.P,D.Q) = 0

can be written
∣

∣

∣

∣

∣

∣

∣

∣

S.Px S.Py S.Pz
D.Pz

2

S.Qx S.Qy S.Qz
D.Qz

2

D.Px D.Py D.Pz
S.Pz−D.P

2r2

D.Qx D.Qy D.Qz
S.Qz−D.Q

2r2

∣

∣

∣

∣

∣

∣

∣

∣

= 0

This determinant simplifies using the facts that (a) D.P = D.Q = 0 at the
solutions, (b) one can multiply lines 3 and 4 by

√
r2 and column 4 by 2

√
r2, c)

one can replace lines �1, �3 by �1 + �3, �1 − �3 and �2, �4 by �2 + �4, �2 − �4. The
equation is then equivalent to

∣

∣

∣

∣

∣

∣

∣

∣

Px(q1) Py(q1) Pz(q1) Pz(q1)
Qx(q1) Qy(q1) Qz(q1) Qz(q1)
Px(q2) Py(q2) Pz(q2) −Pz(q2)
Qx(q2) Qy(q2) Qz(q2) −Qz(q2)

∣

∣

∣

∣

∣

∣

∣

∣

= 0



88 R. Imbach et al.

Expending this expression, one can check that it is equivalent to
∣

∣

∣

∣

Py(q1)Qz(q1) − Pz(q1)Qy(q1) Py(q2)Qz(q2) − Pz(q2)Qy(q2)
Pz(q1)Qx(q1) − Px(q1)Qz(q1) Pz(q2)Qx(q2) − Px(q2)Qz(q2)

∣

∣

∣

∣

= 0

The later expression is equivalent to the condition that projection on the (x, y)
plane of the tangent vectors of the 3D curve CP∩Q at the points q1 and q2 are
collinear. Thus in the case where r2 > 0, a solution of the ball system is regular
iff it projects to a node. ��

4 Experiments

We propose some quantitative results on the isolation of the singularities of the
projection C of a space real curve CP∩Q (or CP∩Pz

in the case of an apparent
contour) by solving the ball system proposed in this paper. We consider here that
P and Q are polynomials, hence the equations of the ball system are polynomials
and C admits at most finitely many singularities in R2. Under our assumptions,
the curve C′ defined as the resultant of P and Q with respect to z (Q = Pz in the
case of an apparent contour) is the union of C and a finite set of isolated points. Its
singularities can be characterized as real solutions of a bivariate system based on
the sub-resultant chain of P and Q (or Pz) (see [14]). We compare the resolution
with three state-of-the-art methods of the sub-resultant system, denoted by S2

in what follows, and the ball system S.P = S.Q = D.P = D.Q = 0 defined in
Subsect. 3.1, denoted by S4.

Experimental Data are random dense polynomials P,Q generated with degree
d and integer coefficients chosen uniformly in [[−28, 28]].

Unless explicitly stated, the given running times are averages over five
instances for a given degree d.

Testing Environment is a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine
with Linux.

4.1 Resolution Methods

Gröbner Basis and Rational Univariate Representations allow one to find all
real roots of a system of polynomials. The routine Isolate of the mathematical
software Maple implements this approach.

Homotopy Continuation provides all the complex solutions of a system of
polynomials and relies on a numerical path-tracking step. Among available open-
source software implementing homotopy, we chose Bertini1 notably because it
handles both double precision (DP) and an Adaptive Multi-Precision (AMP)
arithmetics [4]. This is necessary to prevent the loss of solutions in system S2

which coefficients are quotients of big integers (see Table 2).
Subdivision uses interval arithmetic (see [20,24,28] for an introduction) to

compute for a given system all its regular solutions lying in an initial open
1 https://bertini.nd.edu/.

https://bertini.nd.edu/


Numeric and Certified Isolation of the Singularities 89

box B0 ⊂ Rn. Here n = 2 for system S2 and n = 4 for system S4. When
P,Q are polynomials, the initial box can be Rn (see [24, p. 210] or [28, p. 233]).
Otherwise, B0 is bounded, and the number of singularities is finite. Since we focus
on singularities induced by projection of real parts of the curve CP∩Q or CP∩Pz

,
we did only research solutions of the ball system having r2 ≥ 0. We implemented
a subdivision solver in c++, using the boost or mpfi interval arithmetic library.
The implementation is described with more details in [14].

4.2 Singularities Isolation: Comments on Tables 1, 2 and 3

Tables 1, 2 and 3 report the sequential running times (columns t) in seconds
to compute the singularities of projection and apparent contour curves, using
system S2 or system S4 to represent their singularities.

Table 1 shows that for Isolate running times are better when solving system
S2, due to its lower number of variables.

Table 2 refers to resolution with Bertini, using DP and AMP arithmetics. In
addition to running times, it reports the number of missed solutions (columns
Mis. Sols.) when using DP arithmetic. The resolution by homotopy in DP of
system S2 is not satisfactory due to the high number of missed solutions. The use
of AMP arithmetic resolves this problem: for all systems we tested, all solutions
were found. But it induces an important additional cost. System S4 seems better
suited to homotopy resolution. In DP arithmetic, fewer solutions are missed and
the cost of AMP arithmetic is more acceptable. Notice however that for three
examples, a solution was missed both with DP and AMP arithmetic due to the
truncation of a path considered as converging to a solution at infinity.

Table 3 reports results obtained with our implementation of subdivision. For
a given degree, resolution times are subject to an important variance. For low
degrees it is more efficient to solve system S2 than system S4 due to the higher
dimension (i.e. 4 instead of 2) of the research space in the latter case. The
difference of running times decreases when d increases, due to the size (in terms
of degree, number of monomials and bit-size of coefficients) of the resultant and
sub-resultant polynomials that have to be evaluated to solve system S2.

Table 1. Isolating singularities of projection and apparent contour curves with the
routine Isolate of Maple. Input polynomials have degree d. The running times are in
seconds. (a) Fails with error.

Projection Apparent contour

system S2 system S4 system S2 system S4

d t t t t

4 1.321 4.293 0.206 0.1874

5 26.92 100.4 5.439 6.501

6 (a) (a) 98.59 155.8

7 (a) (a) (a) (a)



90 R. Imbach et al.

Table 2. Isolating singularities of projection and apparent contour curves with Bertini
using DP and AMP arithmetic. Input polynomials have degree d. The running times
are in seconds. (b) Has been run on a unique example. (c) Solution(s) is (are) missing
due to infinite path(s) truncation.

Bertini with DP arithmetic

Projection Apparent contour
system S2 system S4 system S2 system S4

d t Mis. Sols. t Mis. Sols. t Mis. Sols. t Mis. Sols.

4 0.864 0 1.376 1 (c) 0.174 0 0.46 1
5 16.03 3 8.326 0 3.638 0 3.818 2 (c)
6 177.6 2 40.21 0 54.49 1 20.80 1
7 1458 193 152.1 1 (c) 617.9 6 88.50 0
8 ≥ 3000 599 (b) 508.5 3 2799 885 319.3 0
9 ≥ 3000 1389 (b) 1429 7 ≥ 3000 1178 (b) 935.6 2

Bertini with AMP arithmetic

Projection Apparent contour
system S2 system S4 system S2 system S4

d t t t t

4 2.332 1.804 (c) 2.332 1.434
5 147.8 13.888 147.852 15.01 (c)
6 ≥ 3000 123.41 1005 165.7
7 ≥ 3000 1089 (c) ≥ 3000 1147
8 ≥ 3000 ≥ 3000 ≥ 3000 ≥ 3000

Table 3. Isolating singularities of projection and apparent contour curves with sub-
division. Input polynomials have degree d. The average running times t are given in
seconds together with the standard deviation σ.

Projection Apparent contour

system S2 system S4 system S2 system S4

d t ± σ t ± σ t ± σ t ± σ

4 0.078 ± 0.03 0.759 ± 0.02 0.040 ± 0.02 1.509 ± 1.97

5 0.351 ± 0.13 1.973 ± 0.72 0.251 ± 0.23 25.34 ± 47.5

6 1.918 ± 0.55 6.442 ± 3.07 1.353 ± 0.57 11.38 ± 6.98

7 9.528 ± 3.92 22.43 ± 8.36 124.1 ± 142 54.21 ± 50.3

8 42.69 ± 16.8 57.00 ± 16.4 57.72 ± 63.7 99.22 ± 89.3

9 163.3 ± 111 137.5 ± 93 54.74 ± 33.3 95.11 ± 44.5



Numeric and Certified Isolation of the Singularities 91

5 Conclusion

Given an analytic curve CP∩Q satisfying some specific generic assumptions, we
have described the different possible types of singularities Σ of its projection C =
Πxy(CP∩Q). Moreover we have shown that these singularities can be computed
as the regular solutions of a new so-called ball system.

Even if our characterization increases the number of variables of the system
to solve in order to compute Σ, we have shown with experimental results that
the ball system can be solved with numerical methods. With homotopy it is
more often complete and faster to solve the latter system than the sub-resultant
system. A certified resolution is provided by a subdivision solver. In term of
computational cost, such solvers are known to suffer from the increase of the
dimension of the research space. However for high degrees of input polynomials,
the price to pay for solving the sub-resultant system seems higher than the one
induced by the increasing of number of variables.

References

1. Alberti, L., Mourrain, B., Técourt, J.P.: Isotopic triangulation of a real algebraic
surface. J. Symb. Comput. 44(9), 1291–1310 (2009)

2. Arnold, V.I., Varchenko, A., Gusein-Zade, S.: Singularities of Differentiable Maps:
Volume I: The Classification of Critical Points Caustics and Wave Fronts. Springer,
Heidelberg (1988)

3. Bank, B., Giusti, M., Heintz, J., Lecerf, G., Matera, G., Solernó, P.: Degeneracy loci
and polynomial equation solving. Found. Comput. Math. 15(1), 159–184 (2015).
http://dx.doi.org/0.1007/s10208-014-9214-z

4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multi-
precision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

5. Berberich, E., Kerber, M., Sagraloff, M.: An efficient algorithm for the stratification
and triangulation of an algebraic surface. Comput. Geom. Theory Appl. 43(3),
257–278 (2010)

6. Cheng, J., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On
the topology of real algebraic plane curves. Math. Comput. Sci. 4, 113–137 (2010)

7. Daouda, D.N., Mourrain, B., Ruatta, O.: On the computation of the topology of a
non-reduced implicit space curve. In: Proceedings of the Twenty-First International
Symposium on Symbolic and Algebraic Computation, ISSAC 2008, pp. 47–54.
ACM, New York (2008)

8. Dedieu, J.: Points fixes, zéros et la méthode de Newton. Mathématiques et Appli-
cations. Springer, Heidelberg (2006)

9. Delanoue, N., Lagrange, S.: A numerical approach to compute the topology of the
apparent contour of a smooth mapping from R2 to R2. J. Comput. Appl. Math.
271, 267–284 (2014)

10. Demazure, M.: Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear
Problems. Universitext. Springer, Heidelberg (2000). École Polytechnique

11. El Kahoui, M.: Topology of real algebraic space curves. J. Symb. Comput. 43(4),
235–258 (2008)

12. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros: Case of embedding dimension one. Found. Comput. Math. 7(1),
1–58 (2007). http://dx.doi.org/10.1007/s10208-004-0159-5

http://dx.doi.org/0.1007/s10208-014-9214-z
http://dx.doi.org/10.1007/s10208-004-0159-5


92 R. Imbach et al.

13. Hauenstein, J.D., Mourrain, B., Szanto, A.: Certifying isolated singular points and
their multiplicity structure. In: Proceedings of the 2015 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2015, pp. 213–220.
ACM, New York (2015).http://doi.acm.org/10.1145/2755996.2756645

14. Imbach, R., Moroz, G., Pouget, M.: Numeric certified algorithm for the topology
of resultant and discriminant curves. Research Report RR-8653. Inria, April 2015

15. Kearfott, R., Xing, Z.: An interval step control for continuation methods. SIAM
J. Numer. Anal. 31(3), 892–914 (1994)

16. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Basler Lehrbücher,
vol. 4. Birkhäuser Basel, Boston (1992)

17. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated
singularities of polynomial systems. Theoret. Comput. Sci. 359(13), 111–122 (2006)

18. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros
of polynomial systems. In: Proceedings of the 36th International Symposium on
Symbolic and Algebraic Computation, ISSAC 2011, pp. 249–256. ACM, New York
(2011). http://doi.acm.org/10.1145/1993886.1993925

19. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Certified parallelotope
continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013)

20. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2009)

21. Morgan, A.: Solving Polynominal Systems Using Continuation for Engineering and
Scientific Problems. Society for Industrial and Applied Mathematics, Philadelphia
(2009)

22. Mourrain, B., Pavone, J.: Subdivision methods for solving polynomial equations. J.
Symbolic Comput. 44(3), 292–306 (2009). http://www.sciencedirect.com/science/
article/pii/S0747717108001168

23. Mourrain, B., Pion, S., Schmitt, S., Técourt, J.P., Tsigaridas, E.P., Wolpert, N.:
Algebraic issues in computational geometry. In: Boissonnat, J.D., Teillaud, M.
(eds.) Effective Computational Geometry for Curves and Surfaces, chap. 3. Math-
ematics and Visualization, pp. 117–155. Springer, Heidelberg (2006)

24. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

25. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of
a system of nonlinear equations. J. Math. Anal. Appl. 96(2), 463–479 (1983)

26. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces.
In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP
2004, pp. 245–254 (2004)

27. Rouillier, F.: Solving zero-dimensional systems through the rational univariate rep-
resentation. J. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999)

28. Stahl, V.: Interval Methods for Bounding the Range of Polynomials and Solving
Systems of Nonlinear Equations. Ph.D. thesis, Johannes Kepler University, Linz
(1995)

29. Whitney, H.: On singularities of mappings of euclidean spaces. I. mappings of the
plane into the plane. Ann. Math. 62(3), 374–410 (1955)

http://doi.acm.org/10.1145/2755996.2756645
http://doi.acm.org/10.1145/1993886.1993925
http://www.sciencedirect.com/science/article/pii/S0747717108001168
http://www.sciencedirect.com/science/article/pii/S0747717108001168


Linear k-Monotonicity Preserving Algorithms
and Their Approximation Properties

S.P. Sidorov(B)

Department of Mechanics and Mathematics, Saratov State University, Saratov,
Russian Federation

SidorovSP@info.sgu.ru

Abstract. This paper examines the problem of finding the linear algo-
rithm (operator) of finite rank n (i.e. with a n-dimensional range)
which gives the minimal error of approximation of identity operator
on some set over all finite rank n linear operators preserving the cone
of k-monotonicity functions. We introduce the notion of linear relative
(shape-preserving) n-width and find asymptotic estimates of linear rela-
tive n-widths for linear operators preserving k-monotonicity in the space
Ck[0, 1]. The estimates show that if linear operator with finite rank n
preserves k-monotonicity, the degree of simultaneous approximation of
derivative of order 0 ≤ i ≤ k of continuous functions by derivatives of
this operator cannot be better than n−2 even on the set of algebraic
polynomials of degree k + 2 (as well as on bounded subsets of Sobolev

space W
(k+2)
∞ [0, 1]).

1 Introduction

Different applications of computer-aided geometric design require to approxi-
mate functions with preservation of such properties as monotonicity, convexity,
concavity and the like. The part of approximation theory that deals with this
type of problem is known as the theory of shape preserving approximation. Over
the past 30 years extensive study in the theory of shape-preserving approxima-
tion has brought about new results, the most substantial of which were outlined
in [8,14,16].

The interest to the theory of shape-preserving approximation is caused pri-
marily by the fact that its results have a number of applications, most of which
relate to the use in computer-aided graphical design (CAGD) for which the
preservation of shape of graphics is essential. CAGD often considers the task of
creating a complex shape of the body surface (e.g., the fuselage of the aircraft,
engine parts, architectural structures) as a discrete set of points. To represent
the body, it is necessary to arrange these points on a curve or surface. A change
in the derivative sign or any discontinuities of the first and even second deriva-
tive are visible to the human eye. For this reason, not without interest is smooth

The results were obtained within the framework of the state task of Russian Ministry
of Education and Science (project 1.1520.2014K).

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 93–106, 2016.
DOI: 10.1007/978-3-319-32859-1 7



94 S.P. Sidorov

approximation which retains the shape of the data. Spline methods of approx-
imation inheriting such geometric properties were considered, in particular, in
the works [17,24,31–33]. The review can be found in the book [23].

If function f from X has a shape property, it usually means that element f
belongs to a certain cone in X. For example, if we would like to approximate a
curve f from C[0, 1] with the preservation of monotonicity, then we should find
an approximating function from the cone of all non-decreasing functions defined
on [0,1], i.e. from the cone Δ1 = {f ∈ C[0, 1] : f(x1) ≤ f(x2) for any 0 ≤ x1 <
x2 ≤ 1}.

Let X be a normed linear space, V be a cone in X (a convex set, closed
under nonnegative scalar multiplication). We will say that f ∈ X has a shape
in the sense of V whenever f ∈ V . Let Xn be a n-dimensional subset of X
and A ⊂ X be a set, A ∩ V �= ∅. Classical problems of approximation theory
are of interest in the theory of shape-preserving approximation; they include
estimation of (nonlinear) relative n-widths of A ∩ V with the constraint V in X

dn(A ∩ V, V )X = inf
Xn

sup
f∈A∩V

inf
g∈Xn∩V

‖f − g‖X , (1)

the left-most infimum is taken over all affine subsets Xn of dimension ≤ n, such
that Xn ∩ V �= ∅.

The notion of relative n-width (1) was introduced by Konovalov in 1984 [13]
and some estimates of relative shape-preserving n-widths have been obtained in
papers [9,11,12]. A good introduction of n-widths can be found in [20].

In CAGD it is often necessary to find shape-preserving representations of
curves (functions from a linear normed space X) with small errors of approxi-
mation in X, which can be easily treated on a computer. These representations
could be taken from a parametric family of simple functions with a set of para-
meters which can be varied by computers to make changes in the curve. It can be
achieved by using linear combinations of functions from a given n-dimensional
subspace Xn of X with coefficients as the set of parameters. In applications Xn

is often chosen to be either the set of all algebraic polynomials of degree n−1 or
the n-dimensional subspace of algebraic splines. The main task is to construct
algorithms that calculate these parameters automatically. Moreover, one is often
interested in linear approximation algorithms which may be more practical and
easier to calculate than best approximations which are typically non-linear.

The input of such linear approximation algorithms is usually the vector of
the values of the approximated function at a certain finite number of points,
while the resulting functions are from a given finite dimensional linear subspace
of X. One of the most well-known algorithms of such type is the Bernstein

operator Bnf(x) :=
n
∑

i=0

(

n
i

)

xi(1−x)n−if( i
n ) for which the values of the function

f at n + 1 equidistant points in [0,1] determine the result Bnf of operating
on that function, which is from the n + 1-dimensional subspace of all algebraic
polynomials of degree ≤ n.



Linear k-Monotonicity Preserving Algorithms 95

Recall that a linear operator mapping X into a linear space of finite dimension
n is called an operator of finite rank n. Bernstein operator Bn is the operator of
rank n + 1.

Let A be a subset of X and L : X → X be a linear operator. The value

e(A,L) := sup
f∈A

‖f − Lf‖X = sup
f∈A

‖(I − L)f‖X

is the error of approximation of the identity operator I by the operator L on the
set A.

Let L : X → X be a linear operator and V be a cone in X, V �= ∅. We
will say that the operator L preserves the shape in the sense of V , if L(V ) ⊂ V .
One might consider the problem of finding (if it exists) a linear operator of finite
rank n which gives the minimal error of approximation of the identity operator
on some set over all finite rank n linear operators preserving the shape in the
sense of V . This leads us naturally to the notion of linear relative n-width. We
introduce the definition of linear relative width based on Konovalov’s ideas. A
different definition of linear relative width based on the ideas of Korovkin was
given in [27].

Let V ⊂ X be a cone and A ⊂ X be a set, A∩V �= ∅. Let us define Konovalov
linear relative n–width of the set A ∩ V in X with the constraint V by

δn(A ∩ V, V )X := inf
Ln(V )⊂V

sup
f∈A∩V

‖f − Lnf‖X ,

where infimum is taken over all linear continuous operators Ln : X → X of finite
rank n preserving the shape in the sense V , i.e. satisfying Ln(V ) ⊂ V .

Estimation of linear relative n-widths is of interest in the theory of shape-
preserving approximation as, knowing the value of relative linear n-width, we
can judge the quality of approximation (in terms of optimality) this or that
finite-dimensional method with shape-preserving property Ln(V ) ⊂ V is. The
importance of relative linear widths is connected with the following property: if
Ln : X → X is a linear continuous operator of finite rank at most n, such that
Ln(V ) ⊂ V , then

sup
f∈A∩V

‖f − Lnf‖X ≥ δn(A ∩ V, V )X .

In the other words, linear relative n-width δn(A, V )X provides a lower bound on
the degree of approximation of any linear operator L of finite rank n preserving
the shape in the sense of cone V . Thus, the value of δn(A ∩ V, V )X tells us how
well a given linear operator L approximates functions from A∩V relative to the
theoretical lower bound.

A continuous function f : [0, 1] → IR is said to be k-monotone, k ≥ 1, on
[0, 1] if and only if for all choices of k+1 distinct t0, . . . , tk in [0, 1] the inequality
[t0, . . . , tk]f ≥ 0 holds, where [t0, . . . , tk]f denotes the k-th divided difference of f
at 0 ≤ t0 < t1 < . . . < tk ≤ 1. Let Δk denote the set of all k-monotone functions
defined on [0,1]. Note that 2-monotone functions are just convex functions and
1-monotone functions are non-decreasing functions.



96 S.P. Sidorov

Despite the successful and active development of the shape-preserving
approximation theory as well as a large amount of publications on the topic,
the subject of the linear shape-preserving approximation is still insufficiently
studied. In particular, the problems of the quantitative estimation of the con-
vergence rate for linear approximation methods with shape preservation are not
fully covered in the literature. In this paper we will try to fill this gap.

It is well-known [21] that Bernstein operator Bn preserves k-monotonicity
for any k ≥ 0 and has the convergence rate n−1 on the set of all twice differ-
entiable functions [7]. In this paper we will find asymptotic estimates of linear
relative n-widths of subsets of Sobolev-type spaces in the space Ck[0, 1] with
the constraint Δk. It enables us to investigate how “bad” Bernstein operator is
(in terms of the rate of convergence), compared with the best possible rate of
convergence determined by the value of the Konovalov linear relative n–width
with the constraint Δk.

2 The Example of Preservation k-Monotonocity

Denote by Ck[0, 1], k ≥ 0, the space of all real-valued and k-times continuously
differentiable functions defined on [0, 1], equipped with the norm

‖f‖Ck[0,1] =
∑

0≤i≤k

1
i!

sup
x∈[0,1]

|Dif(x)|, (2)

where Di denotes the i-th differential operator, Dif(x) = dif(x)/dxi, and D0 =
I is the identity operator, and the derivatives are taken from the right at 0 and
from the left at 1. If f ∈ Ck[0, 1], then f ∈ Δk iff f (k)(t) ≥ 0, t ∈ [0, 1].

It is said that a linear operator L of C[0, 1] into C[0, 1] preserves
k-monotonicity, if L(Δk) ⊂ Δk, i.e. a linear operator (algorithm) L preserves
k-monotonicity if for each k-monotone function f the resulting function Lf is
also k-monotone.

Denote by Bk[0, 1], k ≥ 0, the space of all real-valued functions, whose k-th
derivative is bounded on [0, 1] endowed with the sup-norm (2).

Let W
(k+2)
∞ [0, 1] be the Sobolev space of all real-valued, (k + 1)-times dif-

ferentiable functions whose derivative of order (k + 1) is absolutely continuous
and whose derivative of order k + 2 is in L∞[0, 1], ‖f‖∞ := ess supx∈[0,1]|f(x)|.
Denote B

(k+2)
∞ := {f ∈ W

(k+2)
∞ [0, 1] : ‖Dk+2f‖∞ ≤ 1}.

One of the main example of shape-preserving operator is Bernstein opera-
tor. T. Popoviciu [21] proved that if f is k-monotone on [0,1], then Bernstein

polynomial Bnf(x) :=
n
∑

i=0

(

n
i

)

xi(1 − x)n−if( i
n ) also is monotone of order k on

[0,1]. The papers [1,4–6,22] investigate the shape preserving and convergence
properties of sequences of linear Bernstein-type operators. On the other hand, it
is well-known that one of the shortcomings for Bernstein-type approximation is
the low order of approximation [7]. In this section we present an operator with
the higher order of approximation n−2.



Linear k-Monotonicity Preserving Algorithms 97

Let k, n ∈ IN, n ≥ k + 2, zj = j/n, j = 0, 1, . . . , n, and let Λk,n : Ck[0, 1] →
Ck[0, 1] be the linear operator defined in steps from left to right by (see also
[25])

Λk,nf(x) =
k

∑

l=0

Dlf(0)
l!

xl +
nxk+1

(k + 1)!
[

Dkf(z1) − Dkf(0)
]

, x ∈ [0, z1], (3)

Λk,nf(x) =
k

∑

l=0

DlΛk,nf (zj)
l!

(x − zj)
l

+
n (x − zj)

k+1

(k + 1)!
[Dkf(zj+1) − Dkf(zj ],

x ∈ (zj , zj+1], j = 1, . . . , n − 1. (4)

In the simplest case k = 0, the cone Δ0 is the cone of all non-negative
functions defined on [0,1] and Λ0,n is defined by

Λ0,nf(x) = f(0) + nx

(

f

(

1
n

)

− f(0)
)

, x ∈ [0, 1/n],

Λ0,nf(x) = Λ0,nf

(

j

n

)(

x − j

n

)

+ n

(

x − j

n

)(

f

(

j + 1
n

)

− f

(

j

n

))

, x ∈
(

j

n
,
j + 1

n

]

, j = 1, . . . , n − 1.

The resulting function Λ0,nf is a piecewise linear function on [0,1] with break-
points (j/n, f (j/n)), j = 0, . . . , n, and linear operator Λ0,n preserves positivity
of approximated functions (see Fig. 1), i.e. Λ0,n is a linear positive operator.

Lemma 1. Λk,n : Ck[0, 1] → Ck[0, 1] is a continuous linear operator of finite
rank n + k + 1, such that

1. Λk,n(Δk) ⊂ Δk;
2. there exists a constant 0 < c ≤ 2k−3/k! not depending on n such that

sup
f∈B

(k+2)
∞ ∩Δk

‖Λk,nf − f‖Ck[0,1] ≤ cn−2. (5)

Proof. Since Dk(Λk,nf) is a piecewise linear function on [0,1] with the set of
breakpoints {(zj ,D

kf(zj))}j=0,...,n, then for every f ∈ Ck[0, 1] such that Dkf ≥
0 the inequality Dk(Λk,nf) ≥ 0 holds, i.e. Λk,n(Δk) ⊂ Δk.

Denote ei(x) = xi, i = 0, 1, . . .. It can be easily verified that Λk,nep = ep for
all p = 0, 1, . . . , k + 1 and if x ∈ [zj , zj+1) for some 0 ≤ j ≤ n − 1, then

(Dk(Λk,nek+2) − Dkek+2)(x) = (k + 2)! (zj+1 − x) (x − zj) /2.



98 S.P. Sidorov

0.25 0.5 0.75 1

0.5

1

1.5

Λ0,4f

f(x)

Fig. 1. Function f(x) = 0.2 + sin(4πx) + sin(πx) + 0.3x (solid line) and the resulting
function Λk,nf , n = 4, k = 0, (dotted line) defined on [0,1]

Let f be a function from B
(k+2)
∞ ∩ Δk. Let x ∈ [zj , zj+1]. Then Dkf ∈

W
(2)
∞ [0, 1] can be represented as

Dkf(x) = Dkf (zj) +
Dk+1f (zj)

1!
(x − zj) +

∫ 1

zj

(x − t)+Dk+2f(t) dt. (6)

where y+ := max{y, 0}. Similarly, if x ∈ [zj , zj+1] then

Dk(Λk,nf)(x) = Dk(Λk,nf) (zj) +
Dk+1

+ Λk,nf (zj)
1!

(x − zj)

+
∫ 1

zj

(x − t)+Dk+2Λk,nf(t) dt, (7)

where Dk+1
+ Λk,nf(zj) is the right-hand side derivative of DkΛk,nf at point zj .

It follows from (6) and (7) that if x ∈ [zj , zj+1] then

(
Dk(Λk,nf) − Dkf

)
(x) = (x − zj)

[
n
(
Dkf (zj+1) − Dkf (zj)

)
− Dk+1f (zj)

]

−
∫ 1

zj

(x − t)+ Dk+2f(t) dt =

∫ 1

zj

(
n (x − zj) (zj+1 − t)+ − (x − t)+

)
Dk+2f(t) dt.

Since ‖Dk+2f‖∞ ≤ 1, we have

sup
x∈[zj ,zj ]

∣

∣Dk(Λk,nf)(x) − Dkf(x)
∣

∣

≤ sup
x∈[0, 1

n ]

∫ 1
n

0

∣

∣

∣

∣

∣

nx

(

1
n

− t

)

+

− (x − t)+

∣

∣

∣

∣

∣

dt ≤ sup
x∈[0, 1

n ]

1
2
x

(

1
n

− x

)

=
1

8n2
. (8)



Linear k-Monotonicity Preserving Algorithms 99

It follows from (8) that

∣

∣Dk(Λk,nf)(x) − Dkf(x)
∣

∣ ≤ 1
8n2

for every x ∈ [0, 1].

Since Di(Λk,nf − f)(0) = 0 for all i = 0, . . . , k, we have by induction for i =
k − 1, . . . , 0 and x ∈ [0, 1]

|Di(Λk,nf − f)(x)| =
∣

∣

∣

∣

Di(Λk,nf − f)(0) +
∫ x

0

Di+1(Λk,nf − f)(t) dt

∣

∣

∣

∣

≤ 1
8n2

xk−i

(k − i)!
. (9)

We have used the fact that if g ∈ C[0, 1] and there exists a constant a ∈ IR such
that |g| ≤ a on [0,1], then

0 ≤
∫ x

0

∫ tp−1

0

. . .

∫ t1

0

|g(t1)| dt1 . . . dtp ≤ a
xp

p!

for every p ∈ IN.
Then (9) implies ‖Di(Λk,nf) − Dif‖C[0,1] ≤ 1

8n2
1

(k−i)! and Lemma is proved

with c ≤ 1
8

∑k
i=0

1
i!(k−i)! = 2k−3/k!. 
�

Note that linear operator Λk,n defined in (3) and (4) is the minimal shape-
preserving projection [18] on the first interval [0, 1

n ], and then it is smoothly
extended to the next intervals. The paper [2] presents the example of linear finite-
dimensional approximation method that preserves k-monotonicity of approxi-
mated functions and uses the values of function at equidistant points on [0,1]
(rather than values of derivatives as it is in the definition of Λk,n).

Figure 2 plots the comparison for errors of approximation of exponential func-
tion f(x) = ex on interval [0,1] by Bernstein operator Bn and operator Λk,n for
different n and k = 1. Line (1) of the plot is B10f − f , line (2) of Fig. 2 is the
error B20f − f , lines (3) and (4) plot the differences Λ1,10f − f and Λ1,20f − f
respectively.

3 The Main Result

We need the preliminary lemma (see [26]).

Lemma 2. Let Φ : Ck[0, 1] → R be a linear functional that has the following
property: Φ(f) ≥ 0 for every f ∈ Ck[0, 1] such that f ∈ Δk. Let 〈·, ·〉 : Ck[0, 1] ×
Ck[0, 1] → R be the bi-functional generated by a functional Φ in the following
way: for every f, g ∈ Ck[0, 1] we suppose 〈f, g〉 = Φ(h) with h ∈ Ck[0, 1] so that
Dkh = DkfDkg and Dih(0) = 0, i = 0, 1, . . . , k − 1. Then

|〈f, g〉| ≤ [〈f, f〉] 1
2 [〈g, g〉] 1

2 , f, g ∈ Ck[0, 1]. (10)



100 S.P. Sidorov

0.5 1
0

0.5

1

1.5

2

·10−2

(1)

(2)

(3)

(4)

Fig. 2. Errors of approximation of function f(x) = exp(x) on [0,1] by (1) Bernstein
operator Bn, n = 10; (2) Bernstein operator Bn, n = 20; (3) operator Λk,n, n = 10,
k = 1; (4) operator Λk,n, n = 20, k = 1

Using ideas of [29] let us prove the analogue of the main theorem in [25] with
the omitted requirement DkLnek = Dkek, ek(x) := xk.

Lemma 3. Let Ln : Ck[0, 1] → Bk[0, 1] be a linear operator of finite rank n,
n > k + 2, such that

Ln(Δk) ⊂ Δk. (11)

Then

sup
x∈[0,1]

(

2
(k + 2)!

∣

∣DkLnek+2(x) − Dkek+2(x)
∣

∣

+
2

(k + 1)!

∣

∣DkLnek+1(x) − Dkek+1(x)
∣

∣

+
1
k!

∣

∣DkLnek(x) − Dkek(x)
∣

∣

)

≥ 1
4n2

(

1 − 1
n2

)

. (12)

Proof. Let {v1, . . . , vn} be the system of functions generating the linear space
{DkLnf : f ∈ Ck[0, 1]}, i.e. span{v1, . . . , vn} = {DkLnf : f ∈ Ck[0, 1]}.
Consider the matrix A = (vj(zi))

i=0,...,n
j=1,...,n, where zi = i/n, i = 0, . . . , n.. We

will assume that the rank of matrix A does not equal to 0, rankA �= 0. Indeed,

if rankA = 0, then DkLnf(zi) =
n
∑

j=1

aj(f)vj(zi) = 0, i = 0, . . . , n, for every

f ∈ Ck[0, 1], and consequently ‖DkLnek − Dkek‖B[0,1] ≥ 1. Therefore we will
exclude the case rank A = 0 from our analysis.



Linear k-Monotonicity Preserving Algorithms 101

Take a non-trivial vector δ = (δ0, . . . , δn) ∈ Rn+1, such that

n
∑

i=0

|δi| = 1,
n

∑

i=0

δivj(zi) = 0, j = 1, . . . , n.

Let h ∈ Ck[0, 1] be such that

1. Dkh(zi) = sgn δi, i = 0, . . . , n;
2. Dkh is linear on each [z0, z1], . . . , [zn−1, zn];
3. Dih(0) = 0, i = 0, 1, . . . , k − 1.

It follows from DkLnh ∈ span {v1, . . . , vn} that

n
∑

i=0

δiD
kLnh(zi) = 0.

Then

1 =
n

∑

i=0

|δi| =
n

∑

i=0

δiD
kh(zi) =

n
∑

i=0

δi(Dkh(zi) − DkLnh(zi))

≤
n

∑

i=0

|δi||DkLnh(zi) − Dkh(zi)| ≤ ‖DkLnh − Dkh‖B[0,1]. (13)

For x ∈ [0, 1] we have

|DkLnh(x) − Dkh(x)| =
∣

∣

∣

∣

DkLnh(x) − Dkh(x)
1
k!

DkLnek(x)

+ Dkh(x)
1
k!

DkLnek(x) − Dkh(x)
1
k!

Dkek(x)
∣

∣

∣

∣

≤
∣

∣

∣

∣

DkLn

(

h − Dkh(x)
1
k!

ek

)

(x)
∣

∣

∣

∣

+
1
k!

|Dkh(x)||DkLnek(x) − Dkek(x)|. (14)

Let px ∈ Ck[0, 1] be such that

Dkpx =
∣

∣

∣

∣

Dk

(

h − Dkh(x)
1
k!

ek

)∣

∣

∣

∣

, Dipx(0) = 0, i = 0, 1, . . . , k − 1.

We get Dk(h − Dkh(x) 1
k!ek) ≤ Dkpx and Dk(−(h − Dkh(x) 1

k!ek)) ≤ Dkpx. It
follows from Ln(Δk) ⊂ Δk that

DkLn(h − Dkh(x)
1
k!

ek)(x) ≤ DkLnpx(x) (15)

and
− DkLn(h − Dkh(x)

1
k!

ek)(x) ≤ DkLnpx(x) (16)



102 S.P. Sidorov

It follows from (15) and (16) that
∣

∣

∣

∣

DkLn

(

h − Dkh(x)
1
k!

ek

)

(x)
∣

∣

∣

∣

≤ DkLnpx(x). (17)

Let qx ∈ Ck[0, 1] be such that

Dkqx(t) = |t − x| and Diqx(0) = 0, i = 0, 1, . . . , k − 1.

We have

Dkpx(t) =
∣

∣

∣

∣

Dk

(

h(t) − Dkh(x)
1
k!

tk
)∣

∣

∣

∣

= |Dkh(t) − Dkh(x)|

≤ 2n|t − x| = 2nDkqx(t).

We get Dk(2nqx − px) ≥ 0, then it follows from the shape-preserving property
Ln(Δk) ⊂ Δk that DkLn(2nqx − px)(x) ≥ 0, i.e.

DkLnpx(x) ≤ 2nDkLnqx(x). (18)

It follows from Lemma 2 that

DkLnqx(x) ≤ [DkLngx(x)]
1
2

[

1
k!

DkLnek(x)
]

1
2

≤ [DkLngx(x)]
1
2

[

1 +
1
k!

∣

∣DkLnek(x) − Dkek(x)
∣

∣

]
1
2

, (19)

where
gx =

2
(k + 2)!

ek+2 − 2
(k + 1)!

xek+1 +
1
k!

x2ek.

We have

DkLngx(x) =
2

(k + 2)!
(DkLnek+2 − Dkek+2)(x)

− 2

(k + 1)!
x(DkLnek+1 − Dkek+1)(x) +

1

k!
x2(DkLnek − Dkek)(x)

+
2

(k + 2)!
Dkek+2(x) − 2

(k + 1)!
xDkek+1(x) +

1

k!
x2Dkek(x)

≤ 2

(k + 2)!

∣∣∣DkLnek+2(x) − Dkek+2(x)
∣∣∣

+
2

(k + 1)!

∣∣∣DkLnek+1(x) − Dkek+1(x)
∣∣∣

+
1

k!

∣∣∣DkLnek(x) − Dkek(x)
∣∣∣ . (20)



Linear k-Monotonicity Preserving Algorithms 103

If
1
k!

‖DkLnek − Dkek‖B[0,1] ≤ 1
4n2

. (21)

then it follows from (13), (14), (17), (18), (19) that

1 − 1
k!

∥

∥DkLnek − Dkek

∥

∥

C[0,1]
≤ 2n

(

sup
x∈[0,1]

DkLngx(x)

)
1
2 (

1 +
1

4n2

)
1
2

, (22)

Both sides of the inequality are positive, therefore we get

4n2 sup
x∈[0,1]

DkLngx(x) ≥ (1 − 1
4n2 )2

1 + 1
4n2

≥ 1 − 1
n2

, n ≥ k + 2,

and then (12) follows from (20). If (21) does not hold, then (12) holds a
fortiori. 
�

The positive preserving approximation (k = 0) has the same order of approx-
imation n−2 [30]. It is should be noted that k-monotonicity preserving results
can not be obtained from positive preserving results since ‖Dk(Lnf) − Dkf‖ =
‖Ln(Dkf) − Dkf‖ is not hold in general.

Denote Πm := span{e0, e1, . . . , em}, i.e. Πm is the set of all algebraic poly-
nomials of degree ≤ m. Denote Pm := {f ∈ Πm : ‖f‖Cm[0,1] ≤ 1}, i.e. Pm is
the set of all algebraic polynomials of degree ≤ m whose norm in Cm[0, 1] is
bounded by 1.

Theorem 1. Let n ≥ k + 2. Then there exists 0 < c1 ≤ 2k−3/k! not depending
on n such that

δn(B(k+2)
∞ ∩ Δk,Δk)Ck[0,1] < c1n

−2. (23)

The estimate (23) can not be improved even on the set of algebraic polynomials
Pk+2 bounded in Ck+2[0, 1], i.e. there exists c2 > 0 not depending on n such that

c2n
−2 < δn(Pk+2 ∩ Δk,Δk)Ck[0,1]. (24)

Proof. The inequality (23) follows from Lemma 1. The estimate (24) follows from
Lemma 3. 
�

The proof of Lemma 1 shows that the finite rank n linear operator Λk,n

satisfies Λk,n(Δk) ⊂ Δk and

sup
f∈Pm

‖Di(Λk,nf) − Dif‖B[0,1] = 0, 0 ≤ m ≤ k + 1,

for all 0 ≤ i ≤ k. Therefore

δn(Pm ∩ Δk,Δk)Ck[0,1] = 0

for all 0 ≤ m ≤ k + 1.



104 S.P. Sidorov

Konovalov linear relative n-width δn(B(k+2)
∞ ∩Δk,Δk)Ck[0,1] provides a lower

bound on the degree of approximation of any linear operator of finite rank n
preserving the shape in the sense of cone Δk on the subset of (k + 2)-times
differentiable functions. The theorem states that the theoretical lower bound is
n−2. Thus, the degree of approximation by Bernstein polynomials Bn (which is
equal to n−1) is not optimal relative to the best possible for linear operators
of finite rank n preserving k-monotonicity. We can remark that algorithm Λk,n

defined by (3)–(4) has the optimal order of approximation n−2.

4 Conclusion

Software developers and designers often need mathematical and computational
methods for the representation of geometric objects with preserving the shape of
the data as they arise in areas ranging from industrial design, scientific visualiza-
tion, CAD/CAM to robotics. Another application of shape-preserving algorithms
is in the optimization theory and the theory of dynamic optimization. In par-
ticular, the paper [3] presents algorithms for solving the dynamic programming
problems based on shape-preserving methods of approximation and shows the
applicability of the cone-preserving algorithms for the optimal growth problem.

The paper shows that if linear operator with finite rank n preserves k-
monotonicity, the degree of simultaneous approximation of derivative of order
0 ≤ i ≤ k of continuous functions by derivatives of this operator cannot be bet-
ter than n−2 even on the set Pk+2 (as well as on the ball B

(k+2)
∞ ). Results show

that the shape-preserving property of operators is negative in the sense that the
error of approximation of such operators does not decrease with the increase of
smoothness of approximated functions. In other words, there is saturation effect
for linear finite-rank operators preserving k-monotonicity (see also [28]). It is
worth noting that non-linear approximation preserving k-monotonicity does not
have this shortcoming [15]. On the other hand, for sequences of linear operators
preserving k-monotonicity (as well as intersections of cones) there are [10,19]
simple convergence conditions (Korovkin type results).

References

1. Barnabas, B., Coroianu, L., Gal, S.G.: Approximation and shape preserving prop-
erties of the Bernstein operator of max-product kind. Int. J. Math. Math. Sci.
2009, 26 (2009). Article ID 590589

2. Boytsov, D.I., Sidorov, S.P.: Linear approximation method preserving
k-monotonicity. Siberian Electron. Math. Rep. 12, 21–27 (2015)

3. Cai, Y., Judd, K.L.: Shape-preserving dynamic programming. Math. Meth. Oper.
Res. 77, 407–421 (2013)

4. Cárdenas-Morales, D., Garrancho, P., Raşa, I.: Bernstein-type operators which
preserve polynomials. Comput. Math. Appl. 62, 158–163 (2011)

5. Cárdenas-Morales, D., Muñoz-Delgado, F.J.: Improving certain Bernstein-type
approximation processes. Math. Comput. Simul. 77, 170–178 (2008)



Linear k-Monotonicity Preserving Algorithms 105

6. Cárdenas-Morales, D., Muñoz-Delgado, F.J., Garrancho, P.: Shape preserving
approximation by Bernstein-type operators which fix polynomials. Appl. Math.
Comput. 182, 1615–1622 (2006)

7. Floater, M.S.: On the convergence of derivatives of Bernstein approximation. J.
Approximation Theor. 134(1), 130–135 (2005)

8. Gal, S.G.: Shape-Preserving Approximation by Real and Complex Polynomials.
Springer, Boston (2008)

9. Gilewicz, J., Konovalov, V.N., Leviatan, D.: Widths and shape-preserving widths
of sobolev-type classes of s-monotone functions. J. Approx. Theor. 140(2), 101–126
(2006)

10. Gonska, H.H.: Quantitative Korovkin type theorems on simultaneous approxima-
tion. Math. Z. 186(3), 419–433 (1984)

11. Konovalov, V., Leviatan, D.: Shape preserving widths of Sobolev-type classes of
k-monotone functions on a finite interval. Isr. J. Math. 133, 239–268 (2003)

12. Konovalov, V., Leviatan, D.: Shape-preserving widths of weighted Sobolev-type
classes of positive, monotone, and convex functions on a finite interval. Construc-
tive Approximation 19, 23–58 (2008)

13. Konovalov, V.N.: Estimates of diameters of Kolmogorov type for classes of differ-
entiable periodic functions. Mat. Zametki 35(3), 369–380 (1984)

14. Kopotun, K.A., Leviatan, D., Prymak, A., Shevchuk, I.A.: Uniform and pointwise
shape preserving approximation by algebraic polynomials. Surv. Approximation
Theor. 6, 24–74 (2011)

15. Kopotun, K., Shadrin, A.: On k-monotone approximation by free knot splines.
SIAM J. Math. Anal. 34, 901–924 (2003)

16. Kvasov, B.I.: Methods of Shape Preserving Spline Approximation. World Scientific
Publ. Co., Pte. Ltd., Singapore (2000)

17. Kvasov, B.: Monotone and convex interpolation by weighted cubic splines. Comput.
Math. Math. Phys. 53(10), 1428–1439 (2013)

18. Lewicki, G., Prophet, M.P.: Minimal shape-preserving projections onto πn: gener-
alizations and extensions. Numer. Funct. Anal. Optim. 27(7–8), 847–873 (2006)

19. Muñoz-Delgado, F.J., Ramı́rez-González, V., Cárdenas-Morales, D.: Qualitative
Korovkin-type results on conservative approximation. J. Approx. Theor. 94, 144–
159 (1998)

20. Pinkus, A.: nWidths in Approximation Theory. Springer, Heidelberg (1985)
21. Popoviciu, T.: About the Best Polynomial Approximation of Continuous Func-

tions. Mathematical Monography. Sect. Mat. Univ. Cluj, (In Romanian), fasc. III
(1937)

22. Pǎltǎnea, R.: A generalization of Kantorovich operators and a shape-preserving
property of Bernstein operators. Bull. Transilvania Univ. of Braşov, Ser. III: Math.
Inf. Phys. 5(54), 65–68 (2012)

23. Shevaldin, V.T.: Local Approximation by Splines. UrO RAN, Ekaterinburg (2014)
24. Shevaldin, V., Strelkova, E., Volkov, Y.: Local approximation by splines with dis-

placement of nodes. Siberian Adv. Math. 23(1), 69–75 (2013)
25. Sidorov, S.P.: On the order of approximation by linear shape-preserving operators

of finite rank. East J. Approximations 7(1), 1–8 (2001)
26. Sidorov, S.P.: Basic properties of linear shape-preserving operators. Int. J. Math.

Anal. 5(37–40), 1841–1849 (2011)
27. Sidorov, S.P.: Linear relative n-widths for linear operators preserving an intersec-

tion of cones. Int. J. Math. Math. Sci. 2014, 7 (2014). Article ID 409219
28. Sidorov, S.: On the saturation effect for linear shape-preserving approximation in

Sobolev spaces. Miskolc Mathematical Notes 16 (2015)



106 S.P. Sidorov

29. Vasiliev, R.K., Guendouz, F.: On the order of approximation of continuous func-
tions by positive linear operators of finite rank. J. Approx. Theor. 69(2), 133–140
(1992)

30. Vidensky, V.S.: On the exact inequality for linear positive operators of finite rank.
Dokl. Akad. Nauk Tadzhik. SSR 24, 715–717 (1981)

31. Volkov, Y.S., Shevaldin, V.T.: Shape preserving conditions for quadratic spline
interpolation in the sense of subbotin and marsden. Trudy Inst. Mat. i Mekh. UrO
RAN 18(4), 145–152 (2012)

32. Volkov, Y., Bogdanov, V., Miroshnichenko, V., Shevaldin, V.: Shape-preserving
interpolation by cubic splines. Math. Notes 88(5–6), 798–805 (2010)

33. Volkov, Y., Galkin, V.: On the choice of approximations in direct problems of
nozzle design. Comput. Math. Math. Phys. 47(5), 882–894 (2007)



Applied Algebraic Geometry



Workspace Multiplicity and Fault
Tolerance of Cooperating Robots

Daniel A. Brake1, Daniel J. Bates2(B), Vakhtang Putkaradze3,
and Anthony A. Maciejewski4

1 Department of Applied and Computational Mathematics and Statistics,
University of Notre Dame, Notre Dame, USA

2 Department of Mathematics, Colorado State University, Fort Collins, USA
bates@math.colostate.edu

3 Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, Canada

4 Department of Electrical and Computer Engineering, Colorado State University,
Fort Collins, USA

Abstract. Cooperating robotic systems, especially in the context of
fault-tolerance of complex robotic mechanisms, is an important ques-
tion for theoretical and applied studies. In this paper, we focus on one
measure of fault tolerance in robots, namely, the multiplicity of the con-
figurations for reaching a particular point in the workspace, which is
difficult to measure using traditional methods. As a particular example,
we consider the case of a free-swinging failure of a robotic arm that is
handled by having a cooperating functional robot grasp the link adja-
cent to the failed joint. We present an efficient method to compute the
multiplicity measure of the workspace, based on the tools from numerical
algebraic geometry, applied to the inverse kinematics problem re-cast in
the form of a polynomial system. To emphasize the difference between
our methods and more traditional approaches, we compute the measure
of workspace based on the multiplicity of configurations, and optimize
placement of synergistic robot arms and the optimal grasp point on each
link of the broken robot based on this measure.

Keywords: Workspace mapping · Joint failure · Homotopy
continuation · Monte Carlo methods

1 Introduction

Fault-tolerance and robustness play important roles in the design of autonomous
systems, including robotic arms. Often times, this has been achieved with either

D.A. Brake—Partially supported by grants NSF-DMS-09087551 and NSF-IIS-
0812437.
D.J. Bates—Partially supported by grants NSF DMS–0914674 and NSF DMS–
1115668.
V. Putkaradze—Partially supported by grant NSF-DMS-09087551.
A.A. Maciejewski—Partially supported by grant NSF-IIS-0812437.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 109–123, 2016.
DOI: 10.1007/978-3-319-32859-1 8



110 D.A. Brake et al.

redundancy in drive systems, or cooperating robotic arms. Consideration of fault-
tolerance is essential in dangerous locations, and continues to be studied exten-
sively. Determining the reliability of a robot via fault-tree analysis appeared in
[1], which permits quantification of weaknesses in design. The detection and iso-
lation of faults, in various components of a robot, such as sensors, controllers,
and actuators, as well as collision with environmental elements, was treated in
[2–5]. Failure-tolerant regions of a workspace were defined in [6], which also gave
a method for computing a fail-tolerance measure which allows a robot to oper-
ate in real-time within this fail-tolerant region. Other measures of fail-tolerance
include analysis of the singular values of the Jacobian matrix for a robot [7] and
a ‘manipulability index’ as defined in [8].

Anticipation of failures has also been explored considerably; decomposing
a task into primary and secondary goals is one method of dealing with these
problems. Robots can be designed and operated with fail-tolerance in mind, such
as dual actuators at joints [9], kinematic redundancy [9–13], and reconfigurability
[14]. Prioritization of tasks subject to other constraints (e.g., environmental)
was treated in [15], restriction of operation to a fault-tolerant region in [16], and
anticipation of free-swinging joint failures in [17]. The overarching theme in this
field is graceful degradation of performance.

In this paper, we consider autonomously operated robotic systems that are
deployed into a hazardous or remote location, such that the repair of a failed joint
is impractical or impossible. If the system has to operate for an extended period
of time, we want the system to operate to the best of its remaining physical
capability after a joint failure. Certainly, there are many ways for a robotic
system to fail. Sensors give false or no readings; electronic components break;
controllers fault; actuators seize or give way. We aim to supplement present
methods regarding graceful joint failure, by informing designers and operators
of possibilities for assistance to a broken robot by a functional one, should one be
available. In the event of a free-swinging failure, our method provides information
about optimal placement of a predetermined socket or other suitable apparatus
on an articulated arm to allow assistance from a functional robot. Even with an
actuator with non-free-swinging failure, such as unexpected resistance or friction,
our method could contribute to mission success. The failure-proof of systems has
been particularly important for applications such as space-faring vehicles [11].

To make our consideration more realistic, suppose a system operating in a
remote environment possesses several robotic arms for various tasks. Should one
joint in one arm fail, the presence of a second arm may open the way to preserve
some of the workspace of the failed arm. In particular, if the second arm can
grasp the first, perhaps some of the lost workspace can be restored. In this work,
we shall assume that the relative position of the bases for robotic arms cannot
change, and only one joint fails at a time.

As far as fault-tolerance consideration of a single robot goes, the multiplicity
of configurations may not be a relevant quantity. For the purpose of restoring
workspace using cooperating robotic arms the multiplicity of configurations is of
crucial importance. As we shall see below, the workspaces of cooperating robots
tend to consist of several isolated sets.



Workspace Multiplicity and Fault Tolerance 111

The main goal of this paper is to outline a method that is alternative to
the traditional ways of workspace computation. The main difference is that we
use sampling directly in the workspace, and therefore are not subject to failures
of a Jacobian method due to possible singularities of the forward kinematics
mapping. Our method, which is based on the applications of ideas in algebraic
geometry (homotopy continuation) to the solution of polynomial problems, can
provide the exact number of solutions for each particular point of the workspace.
In particular, the inverse kinematics problem can be cast as a polynomial system,
and homotopy continuation provides a means for efficiently producing numerical
approximations of all isolated complex and real-valued solutions of the polyno-
mial system. Methods of algebraic geometry have been applied in the kinematic
description of robots, see for example [18–23]. However, analysis of the cooper-
ation of multiple arms via the tools of numerical algebraic geometry has never
been explored.

We shall outline a particular application of the method: computation of
workspace and optimization of the grasping point for two cooperating robots,
in case of joint failure of the first robot. This example was chosen as a realistic
demonstration, leading to interesting shapes of workspaces with several sets of
multiple solutions. For the optimization, we ask two questions: (a) What is the
best placement of the two robots in relation to each other? (b) Is there a best
place for the second arm to grasp the first? Clearly, the answer to both questions
depends on the choice of measure for the post-failure workspace, which is prob-
lem dependent. In this paper, we introduce a multiplicity-weighted workspace
measure, depending on both the number of robot configurations and the geomet-
ric size of the workspace. Combining this on the pre- and post-failure workspaces
gives a single measure, parameterized by a user-determined weighting factor, and
the distance between robot bases and grasp point.

The key feature of this manuscript is the application of methods of algebraic
geometry to the description of fault tolerance of two cooperating robots. These
techniques are guaranteed to give all isolated solutions to algebraic equations
describing the positions of robotic arms, and thus robustly find solutions in
arbitrarily complex settings, such as multiple joint values in isolated regions of
joint-space.

In Sect. 2, we provide a formal statement of the general problem we are
considering. Details about our method are described in Sect. 3, and background
regarding the numerical solution of polynomial systems may be found in Sect. 4.
Sections 5.1 and 5.2 respectively contain two and three dimensional examples.

2 Formal Problem Statement

Given two articulated arms, we optimize the placement of grasping sockets to
maximize post-failure workspace (we assume a socket attachment mechanism of
the two arms as considered in [14]). That is, if one robot has a free swinging joint
failure as in [24,25], we would like to ensure that when the functional robot joins
at the socket to assist in completion of tasks, the resulting cooperative workspace
is as large as possible. A simplified example of this problem is in Fig. 1.



112 D.A. Brake et al.

Fig. 1. Two robots in grasping configuration, with functional robot contacting the
disabled unit at point P . This is a simplified 2D model of the general 6D position and
orientation scenario. Parameter δ is the distance between the robot bases.

Each robot has its own pre-failure workspace, W1,W2 ⊂ Rn ×SO(N), where
n and N depend on the particular mechanism type. When the two robots are
placed near enough, there is an intersection workspace W∩ = W1 ∩ W2. In a
grasping configuration, there is a post-failure workspace Wf , which contains all
remaining workspace locations Robot 1 can reach, if Robot 2 attaches to a socket
location on Robot 1. The measures |W∩| and |Wf | developed below in Eq. (2)
depend on the separation between the robots, as well as their orientation. Note
that the intersection workspace does not depend on the grasping point, as it
reflects the workspace prior to failure for each robot. In both pre- and post-
failure workspaces, we take into account joint limits, which are an important
consideration for practical applications. Indeed, robots typically have limited
range of movement for each joint, which reduces the size of all workspaces.
These limits introduce a dependence on the relative rotations of the robots to
each other, and to the measures of the various workspaces.

The parameters describing an optimal configuration of two cooperating
robots include: separation between cooperating arms, relative orientation of the
bases, and location of grasping point. In this paper, we do not optimize with
respect to base position of each robot, as we consider that the position of the
bases must be given from design limitations, e.g. the placement of power cords
and motors on the apparatus. Nevertheless, our method is capable of optimizing
socket placement for different base separations, and this is demonstrated in the
examples.

In order to quantify post-failure workspace size and find an optimal configu-
ration, we introduce a maximizing objective function Ω. There are many possible
objective functions one can imagine, and the right choice depends on the appli-
cation. In this paper, we define a multiplicity-weighted measure of workspace W
and objective function Ωλ through the multiplicity of configurations (i.e., the
number of inverse kinematic solutions placing the robot in the specified config-
uration) at a given point x, denoted m(x):



Workspace Multiplicity and Fault Tolerance 113

|W | =
∫

W

m(x)dx, (1)

Ωλ = (1 − λ)|Wf | + λ(|W1| − |W∩|), (2)

where λ is a weighting factor to be chosen by the user. We have chosen Eq. (2) for
an example objective function in order to balance between the benefit of having
a second robot, and the maximization of the post-failure workspace. A configura-
tion which imparts entirely distinct workspaces would maximize λ(|W1|− |W∩|),
but Wf would be an empty set. Contrarily, we might find a configuration which
results in full restoration of Wf upon entering grasping stance, but which makes
the pre-failure workspaces overlap greatly, so λ(|W1|−|W∩|) would be small. We
prefer to balance between pre- and post-failure benefits of having two robots,
and Eq. (2) is one way of doing this.

It seems that one obvious way to maximize |Wf | could be to set δ = 0 so the
two robots have exactly the same base point, and make the two robots identical.
However, this may be an impractical situation. First of all, there may be much
greater benefit by compromising and having smaller intersection workspaces by
placing the robots further apart; second, depending on robot geometry, it could
be awkward or impossible for two identical robots to operate from the same base
point.

In fact, the number of configurations could be infinite at some points in the
workspace. However, this is an algebraic condition so this set of all points in
the workspace for which this is true has measure zero. Such points are kinematic
singularities and should be excluded in Eq. (2) above. More practically, the Monte
Carlo methods used later in the paper miss such points with probability one.

3 Workspace Computation

In this section, we describe our solution to the problem outlined in Sect. 2.
We start with notation. Let the separation between bases be δ and without
loss of generality let this translation between coplanar bases be entirely along
the x-axis; we sort out-of-limit solutions in a post-processing procedure. We con-
sider 0 < δ < δmax, the largest value of δ corresponding to the sum of the lengths
of each robot fully extended. The normalized distance to the grabbing point or
socket, measured from the failed joint, is denoted by a, with 0 < a < 1; the point
at which a socket is attached to the left robot, hereafter Robot 1, is P ; a test
point in space is Q; and the origin at the base of Robot 1. Finally, let the fully
functional machine be known as Robot 2. A simplified version of this notation is
found in Fig. 1.

There is some probability that each joint could fail, so it is important to take
into consideration the placement of a socket on each link (of non-zero length).
We use the Denavit-Hartenberg (DH) convention to describe the configurations
of the two robots, and describe the contact point P in terms of the DH parame-
ters for Robot 1, as P is some distance a from the origin of the previous frame.
A spatial sample Q can be said to be in the post-failure workspace of Robot



114 D.A. Brake et al.

1 for a parameter pair (δ, a), if there exists a set of joint angles such that end
effector of Robot 1 is at Q, and the end effector of Robot 2 is at P .

The equations for the inverse kinematics problem for each step of the method
are first solved via a standard homotopy run at p̄∗, a random point in complex
parameter space. Then all subsequent runs at points in the workspace are treated
as parameter homotopies, beginning at p̄∗. For Wi, the parameters are the x, y,
z coordinates of Q; for W∩, we add parameter δ; and for Wf , we add a. The
software package Bertini [28] can be used to compute numerical approximations
of the solutions of polynomial systems. Bertini works over C, so we find solutions
for each point regardless of whether it lies inside the workspace. However, the
points that have solutions for which all variables are numerically real-valued are
those lying within the workspace, while those with nonzero imaginary component
lie outside.

We note that the inverse kinematics equations for a robot with rotary joints
are trigonometric in nature. In order to use polynomial homotopy continuation,
we write the equations in polynomial form by treating each sine-cosine pair as a
separate variable, mapping cos(θj) = cj and sin(θj) = sj and coupling with the
algebraic condition c2j + s2j − 1 = 0.

We compute the initial pre-failure workspaces for each robot via a random
sampling method on an ambient set S of the workspace guaranteed to contain
the workspace, and estimate the measure of the workspaces as in Eq. (2) using
the number of samples in the workspace pointwise multiplied by multiplicity
factor for each point,

|W | = lim
r→∞ |S|1

r

r
∑

j=1

m(xj), (3)

where |S| is the typical Euclidean measure of the sampling space.
The method for computing optimal δmax and amax is described in Algo-

rithm 1. Starting from S, we compute each of the necessary workspaces. After
computing W1 we no longer need S, because W∩,Wf ⊂ W1. Instead, all further
computations are over W1. Once we have the data for the multiplicities of the
workspaces, we simply compute Ωλ, and return its maximizing parameter values.

For the case of N ≥ 3 joints working in 3 dimensions without orientation,
there are 3 algebraic inverse kinematic equations in 2N variables, coupled with
N Pythagorean identities, when computing Wi. As long as the number of joints
equals the number of degrees of freedom in the ambient workspace, Bertini will
find all solutions, and we will be able to measure |Wi|. For kinematically redun-
dant robots, the joint space consists of a set of higher N − 3 dimensional mani-
folds, which could be described by defining a mesh of the same dimensionality as
coordinates on the joints. Our method readily applies to this higher dimensional
problem. However, the issues we are facing are related to the curse of dimension-
ality, and hence in the computation of the data as a whole, not in computing the
solutions at a particular point in space, which is fast. For example, with N = 5
joints, and a 3 dimension workspace, each point in the workspace corresponds
to a two dimensional manifold in joint space. To cut down the manifold to be
0-dimensional for solving via Bertini, we could discretely sample each pair of



Workspace Multiplicity and Fault Tolerance 115

joints possible, and solve for the remaining three. However, combinatorial growth
issues arise, e.g. if we wanted to solve each spatial sample for each possible com-
bination of joints.

4 Homotopy Continuation

In general, given an arbitrary (not necessarily robotic) set of polynomials
f̄ = {f1, . . . , fN} in N variables for which we seek the solutions, homotopy
methods begin by choosing and solving some other related polynomial system
ḡ = {g1, . . . , gN} for which the solutions are easily found. By varying the coef-
ficients in ḡ to those of f̄ , statements in algebraic geometry guarantee that,
with probability one, the solutions will vary continuously, thus forming solution
curves or paths from the solutions of ḡ to those of f̄ . These solution curves may
then be tracked numerically with standard predictor/corrector methods, such as
a combination of Runge-Kutta and Newton’s method. Further details may be
found in [19,26,27].

There is a setting in which homotopy methods are particularly effective,
and of which we make use in this paper. If instead of solving one polynomial
system f̄ we aim to solve a large number of polynomial systems that differ only in
coefficients (i.e., we aim to solve f̄(p̄), where p̄ is some set of parameters), there is
an especially efficient homotopy method known as a parameter homotopy. In this
setting, we first solve f̄(p̄) at a single instance of p̄∗ (typically chosen as random
complex numbers, for theoretical reasons, as described in Sect. 7.1 of [19]). This
stage may require the tracking of a number of superfluous, divergent paths.
However, all other instances of f̄(p̄) may then be solved by simply following the
handful of finite solutions at p̄∗ to any other choice of p̄. For example, the system
used to solve Wf , grasping on the third link, for an initial random complex
parameter choice, requires following 20,736 paths to find the sixteen solutions of
interest. Then, for all other points in the parameter space, it suffices to follow
just sixteen paths.

Again, there is much theory and detail underlying these methods, most of
which may be found in [19,27]. During the process of homotopy continuation,
a certain number of paths will fail as they near a singularity in parameter
space. In the context of robotic workspaces, these failed paths indicate prox-
imity to workspace boundary or kinematic singularity. Right now, we are not

Input : DH parameters for each robot, λ, samplings of δ, a, S
Output: Optimal δmax, amax, Ωλ(δmax, amax)

Compute W1 = {x ∈ S | m(x) > 0}
Compute W∩(δ) using W1

Compute Wf (δ, a) using W1

Evaluate Ωλ(δ, a) using Equations (2) and (3)
Find δmax, amax maximizing Ωλ

return Maximizers δmax, amax and value Ωλ(δmax, amax);
Algorithm 1. Optimization of Ωλ



116 D.A. Brake et al.

using this information, and simply ignore failed paths; however, this property
could ultimately be used for more accurate and efficient prediction of, for exam-
ple, workspace boundaries.

In this paper, it is adequate to accept homotopy continuation as a numerical
method that will quickly provide accurate approximations to all isolated solu-
tions of a polynomial system. Several software packages are available for these
sorts of computations. We use a software package named Bertini [28], which
has been under development for the past decade by D. Bates, J. Hauenstein,
A. Sommese, and C. Wampler. The repeated calls to Bertini were parallelized
for efficiency using the method described in [29].

5 Two Examples

5.1 2D Case: Two Link Planar Robots

We start with the illustration of the method for the two dimensional example
that is shown in Fig. 1. This was first considered this [30]; the previous work has
been expanded to include more general method and examples, as in Sect. 5.2,
where the more challenging three-dimensional problem is considered.

The robots are identical, both having two joints, all link lengths having length
one; the DH parameters are summarized in Table 1.

Table 1. Denavit-Hartenberg Parameters for two-link planar robot.

θj αj aj dj θj,min θj,max

θ1 0 1 0 −120◦ 120◦

θ2 0 1 0 −120◦ 120◦

Here, we define cj and sj to be the cosine and sine of the joint θj values,
respectively, with j = 1, 2 corresponding to the failed robot and j = 3, 4 corre-
sponding to the assisting robot. Let joint index j ∈ {1, 2, 3, 4}, so that we have
a sine-cosine pair for each of the two joints in the two robots. In this notation,
our equations for this step are,

0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c1c2 − s1s2 + c1 − x = 0
s1c2 + c1s2 + s1 − y = 0
ac1c2 − as1s2 + c1 − (c3c4 − s3s4 + c3 + δ) = 0
as1c2 + ac1s2 + s1 − (s3c4 + c3s4 + s3) = 0
s2j + c2j − 1 = 0 ∀j

(4)

To demonstrate the method, we show results for an initial sampling of r = 104

points, taken from the two dimensional rectangle Q ∈ [−2, 2] × [−2, 2]. Of these
points, 7836 had at least one real solution; the estimated Euclidean size of the



Workspace Multiplicity and Fault Tolerance 117

Table 2. Estimates of 2D workspaces and Ω1/3, grasping on the second link.

δ a |W1| |W∩| |Wf | Ω1/3

0.276 0.076 12.79 7.5810 4.424 4.687

0.276 0.406 12.79 7.5810 7.946 7.035

0.276 0.736 12.79 7.5810 9.927 8.356

1.606 0.076 12.79 1.8904 6.241 7.795

1.606 0.406 12.79 1.8904 5.622 7.383

1.606 0.736 12.79 1.8904 4.718 6.780

2.936 0.076 12.79 0.2031 2.119 5.610

2.936 0.406 12.79 0.2031 2.829 6.083

2.936 0.736 12.79 0.2031 3.635 6.621

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(a) W1

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(b) W∩

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(c) Wf

Fig. 2. Examples of joint-limited workspaces, for δ = 1.87, a = 1, and grasping on the
first link, rotated relative to one another. Red indicates a point having one solution,
blue indicates two, and cyan indicates four (Color figure online).

workspace would be 42 × 7836/10000 ≈ 12.5 ≈ 4π. The multiplicity measure of
the joint-limited robot, sieved during post-processing, is ≈ 12.79.

The first step in the computation is to estimate the pre-failure workspaces
for each robot, as described in Algorithm 1. Secondly, we intersect and obtain
W∩ = W1 ∩ W2, for a specified set of δ values. Finally, for each pair of values
(δ, a) for which we estimate the post-failure workspace, we solve Eq. (4).

As the separation increases so that the workspaces barely overlap, Robot 2
may only grasp Robot 1 near the end effector, and the resulting Wf is small. See
Fig. 2, and column four of Table 2. In these plots, cyan area is fully accessible
from 4 configurations, blue corresponds to 2, and red is reachable from only one
configuration. The inaccessible area generally increases when δ is increasing, and
larger δ lead to smaller post-failure workspaces for fixed a. The converse is not
true: |Wf | is not a monotonic function of a for a fixed δ. It is interesting to note
that our method computes explicitly the number of configurations reaching the
desired point in a post-failure workspace, even in the case when the configura-
tions belong to isolated domains in the workspace. Such problems are usually
challenging for traditional methods of workspace computation.



118 D.A. Brake et al.

(a) Ω0. (b) Ω1/3. (c) Ω2/3. (d) Ω1.

Fig. 3. Objective function contours for a grid of (δ, a) pairs for 2D cooperating robots,
with the broken robot being grasped on the second link.

Finally, in Fig. 3 we show Ωλ from Eq. (2) to determine the optimal ball joint
placement. For weighting factor λ = 0, Ω0 is simply the value of |Wf |, and
the maximizer is δ ≈ 0, and a has a range of maximizing possibilities. With
λ = 1/3, the landscape is relatively flat. Increasing λ further makes the size of
the intersection workspace overpower the post-failure workspace, and by λ = 1
the maximum of Ω1 is invariant with respect to a. Therefore, the weighting factor
λ plays a critical role in the determination of the optimal grabbing point.

5.2 3D Case: Three Joint Manipulators

Equations determining the kinematics of spatial robots are more complicated
than those of planar manipulators. This concerns both the higher number of
relevant equations, due to the higher number of links in a typical 3D robots, and
the structure of equations describing the motions. Yet, the method for optimizing
cooperative workspaces remains fundamentally the same, as those equations can
be brought to an algebraic form and then solved using the methods outlined in
Sect. 3. Thus, in this section we only write a sketch of the method in 3D.

Consider two cooperating PUMA 6-degree-of-freedom robots, ignoring ori-
entation of the end effector. In this paper, we use DH parameters defined as in
Table 3. Treating the first three links of the PUMA as our robot, we ignore the
wrist; we do this to reduce the dimension and to reduce the number of points
to analyze. Instead, we use a tool frame to translate from the arm to the end
effector. The frame we used retains the orientation of the arm, and translates
along the final z-axis.

Each of the workspaces W1, W2, W∩ will have six equations in six variables,
which are solved via Bertini after bringing the trigonometric part of these equa-
tions into algebraic form. Correspondingly, there will be 12 equations defining
the post-failure workspaces with 12 variables. In order to find W1,2 we sam-
ple randomly an oversized rectangular box surrounding the robot. In order to
determine good bounds for the workspaces, we first do forward kinematics by
randomly sampling the three joint variables θj ∈ [0, 2π]. The result of this esti-
mate is that the cubic box [−0.9, 0.9]× [−0.9, 0.9]× [−0.9, 0.9] contains Wi, and
is thus a good starting point for finding the cooperative workspaces in which we
are interested.



Workspace Multiplicity and Fault Tolerance 119

Table 3. Denavit-Hartenberg Parameters for PUMA robot.

θi αi ai (m) di (m) θi,min θi,max

θ1 0 0 0 −160◦ 160◦

θ2 −π/2 0.4318 0.2435 −225◦ 45◦

θ3 0 −0.0203 −0.0934 −45◦ 225◦

θ4 π/2 0 0.4331 −110◦ 170◦

θ5 −π/2 0 0 −100◦ 100◦

θ6 π/2 0 0.5625 −266◦ 266◦

Fig. 4. Top: Slices of the pre-failure PUMA workspace W1 by the planes x = 0 (b) and
z = 0 (c). (a): Combined picture of workspace with three slices x = 0, y = 0, z = 0.
Yellow color: areas accessible the angles satisfying joint limits given in Table 3. Red
color: real solutions violating joint limits. Dark blue region: inaccessible (Color figure
online).

The PUMA has joint limits that reduce its workspaces significantly. The
limits we use for this example appear in Table 3. Because joint limits are written
as inequalities θj,min ≤ θj ≤ θj,max, they are not algebraic equations. We simply
use these joint limits in post-processing, only selecting the suitable joint angles
among all real solutions.

Results for various workspace computations are shown in Fig. 4. These data
are based on 104 points in (x, y, z) space. Of particular interest is the presence of
voids inside of workspaces, plotted by gridding the Monte Carlo data. Unreach-
able area is represented by the dark blue color. The red and yellow colors show
the accessible work space, with the yellow areas being accessible only if the joint
limits are satisfied. The resulting workspace is essentially a torus, although the
realization we have chosen makes it hard to visualize as a volume in the 3D
space, because of the relative narrowness of the “hole”. Instead, we have chosen
to represent the workspace through the slices. Two slices by the planes x = 0
and z = 0 are shown in the top of the figure, and the combined figure presenting
the slices is shown in the bottom. The voids in Wi come from the offsets of the
arm, and they expand for cooperating robots. Our results show that great care



120 D.A. Brake et al.

(a) Ω0. (b) Ω1/3. (c) Ω2/3. (d) Ω1.

Fig. 5. Considering grasping on the second link to restore workspace after failure of
joint 2 of a PUMA robot. (a) Measurement of the intersection workspace |W∩|, as a
function of δ. (b)–(c) Contours of the objective function Ω versus (δ, a) for 3D coop-
erating robots. Note that for the case (a), λ = 0 and the objective function Ω is equal
to the measure of post-failure workspace |Wf |.

needs to be taken in designing and arranging robotic arms for cooperation, as it
may lead to large inaccessible regions of workspace.

We also present the plot of objective function versus parameters δ and a in
Fig. 5. To calculate Ωλ, we compute each of the workspaces W1, W∩ and Wf .
For the purposes of generating this figure, W∩ is computed over a discretization
of 0 ≤ δ ≤ 1.8 into 16 values. Finally, we compute Wf , for a particular value
of δ and a. The results are repeated over a 16 × 16 regular grid of 0 ≤ δ ≤ 1.8,
and 0 ≤ a ≤ 1, and considering grasping the failed robot on each of the three
possible links. Thus, the total number of parameter combinations we considered
for Wf is 7.68 · 106.

The Ωλ landscapes presented in Fig. 5 for the PUMA robot are similar to
those for the 2D planar robot above in Fig. 3. Because each joint could fail
independently of the others, we consider a grasping location for each link of the
robot; hence, we have an objective function landscape for each of the three links
of the PUMA. However, the landscapes for each joint are similar, so only those
for the second link are presented here.

As with the 2D example above, the weighting factor λ plays a crucial role in
optimizing. The limiting cases of λ = 1 and λ = 0 return simply (W1 − |W∩|)
or |Wf | respectively. The maximum values of Ω occur with δ ≈ 0.9 m between
the robots. Around λ = 1/3, we put more emphasis on increasing the remainder
of workspace accessible in grasping configuration; Ω clearly indicates to grasp
near the end of the second link. In any case, the optimal distance and grasping
location depends on the link and on λ, making user preference crucial in the
optimization procedure.

6 Conclusion

We used homotopy continuation, as implemented in Bertini, to estimate the
size of workspaces, the intersection of workspaces, and post-failure grasping
workspaces in the case of having two serial robots placed near one another,



Workspace Multiplicity and Fault Tolerance 121

in two and three dimensions. We also solve the problem of the optimal config-
uration for these robots for one example of a user-defined objective function.
A general algorithm for solving the problem of finding optimal placement and
configuration of two such robots was also presented.

By using algebraic geometric methods, we avoid issues such as isolated
domains and multiple solutions to inverse kinematics equations. Knowing mul-
tiple solutions may be important, especially for obstacle avoidance, where one
or more solutions may not be collision free. The homotopy continuation algo-
rithms will not encounter any difficulty in that case, whereas the Jacobian control
method will need to be augmented with the specific knowledge from the problem
and yet may fail to find all isolated solutions. Our algorithm can be extended to
more general cases. For example, it will be relatively straightforward to account
for different designs for the two robots (including unequal link lengths) in the
objective function. Also, methodological choices in the algorithm, such as the
use of homotopy continuation, have been made to make the generalization to
higher-dimensional workspaces possible.

The method we present could be complemented by the software in [31];
while their focus is not on failure tolerance, their interactive CAD workspace
mapper uses a Jacobian method to find singularities and determine workspace
boundaries of parallel manipulators, which could be supplemented by homotopy
continuation.

It should be noted that the methods of numerical algebraic geometry may
be used to compute complex positive-dimensional components of the solutions
sets of polynomial systems. Until recently, it was nearly impossible to detect
positive-dimensional real solutions. However, recent advances such as the soft-
ware Bertini real [32,33] which implements numerical real algebraic curve and
surface decompositions, have made it possible to compute algebraic objects
including singularities. Above dimension two, the curse of dimensionality con-
tinues to constrain techniques.

References

1. Carreras, C., Walker, I.D.: Interval methods for fault-tree analysis in robotics.
IEEE Trans. Robot. Autom. 50(1), 3–11 (2001)

2. Anand, M., Selvaraj, T., Kumanan, S., Janarthanan, J.: A hybrid fuzzy logic arti-
ficial neural network algorithm-based fault detection and isolation for industrial
robot manipulators. Int. J. Manuf. Res. 2(3), 279–302 (2007)

3. Ji, M., Sarkar, N.: Supervisory fault adaptive control of a mobile robot and its
application in sensor-fault accommodation. IEEE Trans. Robot. 23(1), 174–178
(2007)

4. De Luca, A., Ferrajoli, L.: A modified Newton-Euler method for dynamic compu-
tations in robot fault detection and control. In: IEEE International Conference on
Robotics and Automation, pp. 3359–3364, May 2009

5. Brambilla, D., Capisani, L., Ferrara, A., Pisu, P.: Fault detection for robot manip-
ulators via second-order sliding modes. IEEE Trans. Ind. Electron. 55(11), 3954–
3963 (2008)



122 D.A. Brake et al.

6. Groom, K.N., Maciejewski, A.A., Balakrishnan, V.: Real-time failure-tolerant con-
trol of kinematically redundant manipulators. IEEE Trans. Robot. Autom. 15(6),
1109–1116 (1999)

7. Maciejewski, A.A.: Fault tolerant properties of kinematically redundant manipula-
tors. In Proceedings IEEE International Conference on Robotics and Automation,
Cincinatti, OH, USA, pp. 638–642 (1990)

8. Roberts, R.G., Maciejewski, A.A.: A local measure of fault tolerance for kinemati-
cally redundant manipulators. IEEE Trans. Robot. Autom. 12(4), 543–552 (1996)

9. Hassan, M., Notash, L.: Optimizing fault tolerance to joint jam in the design of
parallel robot manipulators. Mech. Mach. Theory 42, 1401–1407 (2007)

10. McInroy, J.E., O’Brien, J.F., Neat, G.W.: Precise, fault-tolerant pointing using a
Stewart platform. IEEE/ASME Trans. Mechatronics 4(1), 91–95 (1999)

11. Wu, E.C., Hwang, J.C., Chladek, J.T.: Fault-tolerant joint development for the
space shuttle remote manipulator system: analysis and experiment. IEEE Trans.
Robot. Autom. 9(5), 675–684 (1993)

12. Yi, Y., McInroy, J.E., Chen, Y.: Fault tolerance of parallel manipulators using task
space and kinematic redundancy. IEEE Trans. Robot. 22(5), 1017–1021 (2006)

13. Paredis, C.J.J., Khosla, P.K.: Designing fault-tolerant manipulators: how many
degrees of freedom? Int. J. Robot. Res. 15(6), 611–628 (1996)

14. Aghili, F., Parsa, K.: A reconfigurable robot with lockable cylindrical joints. IEEE
Trans. Robot. 25(4), 785–797 (2009)

15. Chen, Y., McInroy, J.E., Yi, Y.: Optimal, fault-tolerant mappings to achieve sec-
ondary goals without compromising primary performance. IEEE Trans. Robot.
19(4), 680–691 (2003)

16. Lewis, C.L., Maciejewski, A.A.: Fault tolerant operation of kinematically redun-
dant manipulators for locked joint failures. IEEE Trans. Robot. Autom. 13(4),
622–629 (1997)

17. English, J.D., Maciejewski, A.A.: Fault tolerance for kinematically redundant
manipulators: anticipating free-swinging joint failures. IEEE Trans. Robot. Autom.
14(4), 566–575 (1998)

18. Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry and algebraic kine-
matics. Acta Numerica 20, 469–567 (2011)

19. Sommese, A.J., Wampler, C.W.: The Numerical Solution to Systems of Polynomi-
als Arising in Engineering and Science. World Scientific, Singapore (2005)

20. Sommese, A., Verschelde, J., Wampler, C.W.: Advances in polynomial continuation
for solving problems in kinematics. J. Mech. Des. 126(2), 262–268 (2004)

21. Wampler, C.W., Morgan, A.P.: Solving the kinematics of general 6R manipulators
using polynomial continuation. In: Warwick, K. (ed.) Robotics: Applied Mathe-
matics and Computational Aspects, pp. 57–69. Clarendon Press, Oxford (1993)

22. Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the nine-point
path synthesis problem for four-bar linkages. J. Mech. Des. 114, 153–159 (1992)

23. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local
dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)

24. English, J.D., Maciejewski, A.A.: Measuring and reducing the Euclidean-space
measures of robotic joint failures. IEEE Trans. Robot. Autom. 16(1), 20–28 (2000)

25. English, J.D., Maciejewski, A.A.: Failure tolerance through active braking: a kine-
matic approach. Int. J. Rob. Res. 20(4), 287–299 (2001)

26. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction.
Springer, Berlin (1990)

27. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solv-
ing Polynomial Systems with Bertini. SIAM, Philadelphia (2013)



Workspace Multiplicity and Fault Tolerance 123

28. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software
for Numerical Algebaic Geometry (2015). http://bertini.nd.edu

29. Bates, D.J., Brake, D.A., Niemerg, M.: Paramatopy: Parallel parameter homotopy
via Bertini (2015). http://www.paramotopy.com

30. Brake, D.A., Bates, D.J., Putkaradze, V., Maciejewski, A.A.: Illustration of numer-
ical algebraic methods for workspace estimation of cooperating robots after joint
failure. In: IASTED Technology Conferences, Pittsburg, PN, USA, November 2010

31. Macho, E., Pinto, C., Amezua, E., Hernndez, A.: Software tool to compute, analyze
and visualize workspaces of parallel kinematics robots. Adv. Robot. 25, 675–698
(2011)

32. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A., Wampler, C.W.:
Bertini real: Software for real algebraic sets (2015). http://www.bertinireal.com

33. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler,
C.W.: Bertini real: software for one- and two-dimensional real algebraic sets. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer,
Heidelberg (2014)

http://bertini.nd.edu
http://www.paramotopy.com
http://www.bertinireal.com


Numerical Local Irreducible Decomposition

Daniel A. Brake(B), Jonathan D. Hauenstein, and Andrew J. Sommese

Department of Applied and Computational Mathematics and Statistics,
University of Notre Dame, Notre Dame, IN 46556, USA

{dbrake,hauenstein,sommese}@nd.edu
http://www.nd.edu/~jhauenst
http://www.nd.edu/~sommese

Abstract. Globally, the solution set of a system of polynomial equations
with complex coefficients can be decomposed into irreducible compo-
nents. Using numerical algebraic geometry, each irreducible component
is represented using a witness set thereby yielding a numerical irreducible
decomposition of the solution set. Locally, the irreducible decomposition
can be refined to produce a local irreducible decomposition. We define
local witness sets and describe a numerical algebraic geometric approach
for computing a numerical local irreducible decomposition for polynomial
systems. Several examples are presented.

Keywords: Numerical algebraic geometry · Numerical irreducible
decomposition · Local irreducible decomposition · Numerical local irre-
ducible decomposition

1 Introduction

For a polynomial system f : C
N → C

n, the algebraic set defined by f is the
set V(f) =

{

x ∈ C
N | f(x) = 0

}

. An algebraic set V is reducible if there exist
nonempty algebraic sets V1, V2 � V such that V = V1 ∪ V2 and for i �= j,
Vi �⊂ Vj . If V is not reducible, it is irreducible. For V(f), there exist irreducible
algebraic sets V1, . . . , Vk, called irreducible components, such that V(f) =

⋃k
i=1 Vi

and Vj �⊂ ⋃

i�=j Vi. The irreducible components V1, . . . , Vk are said to form the
irreducible decomposition of V(f).

A fundamental computation in numerical algebraic geometry is the numerical
irreducible decomposition (NID), that is, computing a witness set for each of the
irreducible components; e.g., see [2, Chap. 10]. For an irreducible component
V ⊂ V(f) ⊂ C

N of dimension d and degree r, a witness set for V is the triple
{f,L,W} where L ⊂ C

N , called a witness slice, is a general linear space of
codimension d and W = V ∩ L, called a witness point set, is a set of r points.

D.A. Brake—Supported in part by supported in part by NSF ACI-1460032.
J.D. Hauenstein—Supported in part by Army Young Investigator Program (YIP),
a Sloan Research Fellowship, and NSF ACI-1460032.
A.J. Sommese—Supported in part by the Vincent J. and Annamarie Micus Duncan
Chair of Mathematics and NSF ACI-1440607.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 124–129, 2016.
DOI: 10.1007/978-3-319-32859-1 9



Numerical Local Irreducible Decomposition 125

One can naturally extend the global notions of reducibility, irreducible com-
ponents, and irreducible decomposition to the local case (e.g., see [5, Chap. B]).
Moreover, one can locally extend to the case that f is holomorphic in an open
neighborhood. Our main contribution is to extend the numerical algebraic geo-
metric notions to the local case via local witness sets and a numerical local irre-
ducible decomposition, defined in Sect. 2, the computation of which is described
in Sect. 3, and demonstrated on several examples in Sect. 4 using Bertini [1].

2 Local Witness Sets

Let f : C
N → C

n be a polynomial system, V1, . . . , Vk be the irreducible com-
ponents of V(f), and x∗ ∈ V(f). If x∗ ∈ Vi, then Vi localized at x∗ can be
decomposed uniquely, up to reordering, into a finite union of locally irreducible
components Ti,1, . . . , Ti,mi

, e.g., see Theorem 7 of [5, Chap. B]. If x∗ �∈ Vi, then Vi

localized at x∗ is empty, i.e., mi = 0. Hence, the local irreducible decomposition
of V(f) at x∗ is

⋃k
i=1

⋃mi

j=1 Ti,j .

Example 1. Consider the irreducible polynomial f(x) = x2
1 −x2

2 +x4
2. Hence, for

a general x∗ ∈ V(f) ⊂ C
2, the irreducible curve V(f) is locally irreducible at x∗.

The origin arises as a self-crossing of the curve V(f) and hence decomposes into
two locally irreducible components at the origin, say

T1,1, T1,2 =

{(
x1, ±

√
1 −
√

1 − 4x2
1

/√
2

) ∣∣∣∣∣ x1 near 0

}
.

As with the global case, where witness sets form the key data structure in
formulating a NID, local witness sets will be used to formulate a numerical local
irreducible decomposition (NLID). The two key differences between a witness set
and a local witness set, which we formally define below, are:

1. a local witness set is only well-defined on a neighborhood of x∗; and
2. all points in the local witness point set converge to x∗ as the witness slice

deforms to slice through x∗.

The key to understanding the local structure of an analytic set is the
local parameterization theorem (see [5, Chap. C,D,E] and [6]). For a pure d-
dimensional reduced analytic set V ⊂ C

N containing x∗, the local parameteri-
zation theorem implies (among other things) that there is an open ball U ⊂ C

N

centered at x∗ such that given a general linear projection π : C
N → C

d and any
open ball Bε(π(x∗)) with ε > 0 small enough, the map πV̂ is a proper branched
covering from ̂V := V ∩π−1(Bε(π(x∗)))∩U onto Bε(π(x∗)). Moreover, the sheet
number is the multiplicity of the point x∗ on V , denoted μx∗ .

Remark 1. Since πV̂ is proper, the Remmert proper mapping theorem implies
that there is an analytic set R ⊂ Bε(π(x∗)) with dimR < d such that πV̂ \π−1(R)

is an unbranched μx∗ -sheeted cover from ̂V \π−1(R) onto Bε(π(x∗))\R. Hence, if
V is locally irreducible at x∗, then ̂V \π−1(R) is connected and the monodromy
action on any fiber of πV̂ \π−1(R) is transitive.



126 D.A. Brake et al.

The local parameterization theorem is a local version of the Noether Normal-
ization Theorem. For a pure d-dimensional algebraic set V ⊂ C

N , the Noether
Normalization Theorem states that the restriction πV to V of a general linear
projection π : C

N → C
d is a proper deg V -to-one map of V onto C

d. Given a
general codimension d linear space L containing x∗, it follows that L∩V consists
of x∗ and deg V − μx∗ smooth points. Given a preassigned open set O around
L∩V , the intersection of any d codimensional linear space L′ sufficiently near L
will have L′∩V ⊂ O. By choosing O as the intersection of V with deg V −μx∗ +1
disjoint small open balls, we see that the L′ ∩V has precisely μx∗ points near x∗.

Definition 1. Let f : C
N → C

n be a system of functions which are holomorphic
in a neighborhood of x∗ ∈ C

N with f(x∗) = 0. Let V ⊂ C
N be a locally irreducible

component of V(f) at x∗ of dimension d and �1, . . . , �d : C
N → C be general

linear polynomials such that �i(x∗) = 0. For u ∈ C
d, let Lu ⊂ C

N be the linear
space defined by �i(x) = ui for i = 1, . . . , d. A local witness set for V is the triple
{f,Lu∗ ,W} defined in a neighborhood U ⊂ C

d of the origin for general u∗ ∈ U
and W is the finite subset of points in V ∩ Lu∗ which are the start points of the
paths defined by V ∩ Lu(t) where u : [0, 1] → U is any path with u(0) = 0 and
u(1) = u∗ which converge to x∗ as t → 0.

Remark 2. The choice of points W inside of V ∩ Lu∗ is well-defined and equal
to the multiplicity μx∗ of V at x∗. We call μx∗ the local degree of V at x∗.

Remark 3. When V is a curve, the neighborhood U is often referred to as the
endgame operating zone, e.g., see [2, Sect. 3.3.1]. For all cases, we will call U the
generalized endgame operating zone.

As Remark 1 suggests, one can perform monodromy loops using local witness
sets similarly to classical witness sets. Local witness sets can also be used to
sample components and to perform local membership testing.

In particular, a numerical local irreducible decomposition consists of a formal
union of local witness sets, one for each local irreducible component.

Example 2. Reconsider f from Example 1 with x∗ = (0, 0). For simplicity, we
take �1(x) = x1 which then defines the neighborhood U = {u ∈ C | |u| < 1/2}.
We arbitrarily select u∗ = 1/6 which implies that

V(f) ∩ Lu∗ =

{(
1
6 , ±

√
1
2 −

√
2

3

)
,

(
1
6 , ±

√
1
2 +

√
2

3

)}
.

As u (and hence x1) deforms to 0, the first two points in V(f) ∩ Lu∗ converge
to x∗ while the last two converge to (0,±1), respectively. For local irreducible
components T1,1 and T1,2 of V(f) at x∗, local witness sets are

W1 =

{
f, Lu∗ ,

{(
1
6 ,

√
1
2 −

√
2

3

)}}
and W2 =

{
f, Lu∗ ,

{(
1
6 , −

√
1
2 −

√
2

3

)}}
,

with each T1,i having local degree 1. Since T1,1 ∪ T1,2 form a local irreducible
decomposition of V(f) at x∗, the formal union W1 ∪ W2 is a NLID.



Numerical Local Irreducible Decomposition 127

3 Computing Numerical Local Irreducible
Decompositions

When decomposing a pure-dimensional set into its irreducible components, one
simplification is to reduce down to the curve case. That is, if V ⊂ C

N is pure
d-dimensional and M ⊂ C

N is a general linear space of codimension d − 1, then
the irreducible components of V correspond with the irreducible components
of V ∩ M. Unfortunately, this need not hold for the local case.

Example 3. Consider V = V(x2
1 + x2

2 + x2
3) ⊂ C

3 which is irreducible at the
origin. For a general complex plane L = V(a1x1 +a2x2 −x3) through the origin,
it is easy to check that V ∩ L consists of two lines through the origin.

The following outlines a procedure for computing a NID that follows from
Sect. 2. We assume that we are given a polynomial system f : C

N → C
n and a

point x∗ ∈ V(f). Since we can loop over the irreducible components of V(f), the
key computation is to compute the NLID for an irreducible component V ⊂ V(f)
given a witness set {f,L,W} for V with d = dim V .
1. Select random linear polynomials �i : C

N → C with �i(x∗) = 0.
2. Pick random u∗ ∈ C

d in the generalized endgame operating zone. Construct
the linear spaces Lu∗ and L0 defined by �i = u∗

i and �i = 0, respectively.
Compute W ′ = V ∩Lu∗ via the homotopy defined by V ∩ (t ·L+(1− t) ·Lu∗).

3. Compute Wx∗ consisting of points w ∈ W ′ such that the path defined by the
homotopy V ∩ Lt·u∗ starting at w at t = 1 limit to x∗ as t → 0.

4. Use monodromy loops inside the generalized endgame operating zone to com-
pute the local monodromy group which partitions Wx∗ = W1 � · · · � Ws. The
NLID for V at x∗ is defined by the formal union

⋃s
i=1{f,Lu∗ ,Wi}.

Remark 4. The key to performing the same computation in the holomorphic case
is to compute the finite set Wx∗ in Item 3. The number of such points in Wx∗ can
be computed via a local multiplicity computation using Macaulay dual spaces
[3,9] in certain cases. For example, if x∗ ∈ C

N and f : C
N → C

N−d is a system
of holomorphic functions at x∗ such that the local dimension of V(f) at x∗ is d,
it follows from [4, pg. 158] that the multiplicity of {f, �1, . . . , �d} at x∗ is equal
to the number of points in Wx∗ .

4 Examples

4.1 Illustrative Example

Consider the irreducible curve V = V(x5
1 + 2x5

2 − 3x1x2(x1 − x2)(x2 − x2
1)) ⊂ C

2

with Fig. 1(a) plotting the real points of V and x∗ = (0, 0). For simplicity, we
take �1(x) = 2x1 + 3x2, u∗ = 1/8, and Lu defined by �1(x) = u. Hence, V ∩ Lu∗

consists of five points, with four of the paths defined by the homotopy V ∩Lt·u∗

limiting to x∗ as t → 0. Therefore, Wx∗ in Item 3 consists of 4 points.
We now perform monodromy loops which, in the curve case, means looping

around 0. We observe that this loop breaks into 3 distinct cycles, two remain on
their own branch and two interchange. Therefore, there are 3 local irreducible
components as shown in Fig. 1(b), two of local degree 1 and one of local degree 2.



128 D.A. Brake et al.

(a) (b)

Fig. 1. Plot of (a) the real points of an irreducible quintic curve and (b) the real points
near the origin, which locally decomposes into three components.

4.2 Local Irreducibility and Real Solutions

If the polynomial system f has real coefficients, the complex conjugate, conj(V ),
of an irreducible component V ⊂ V(f) is also an irreducible component. If
V �= conj(V ), then all real points on V must be contained in V ∩ conj(V ) where
dim V > dim(V ∩ conj(V )). For example, the “home” position of a cubic-center
12-bar mechanism [11], as presented in [10, Fig. 3], can be shown to be rigid,
i.e., isolated over the real numbers, by observing that the only two irreducible
components containing the “home” position are two sextic curves which are
conjugates of each other [7].

The NID is not always sufficient to reveal structure at singularities. Consider
the Whitney umbrella V = V(x2

1 − x2
2x3) ⊂ C

3, which is an irreducible surface.
For a random point on the “handle,” i.e., x∗ = (0, 0, α) for random α ∈ C, the
NLID reveals that V at x∗ has two local irreducible components, each of local
degree 1. At the origin, the NLID reveals that it is irreducible of local degree 2.
When α < 0, say x∗ = (0, 0,−1), global information is not enough to observe that
the real local dimension is smaller than the complex local dimension. However,
the local viewpoint does indeed reveal that the two local irreducible components
are complex conjugates of each other showing a smaller real local dimension.

4.3 Foldable Griffis-Duffy Platform

In our last example, we consider the “folded” pose, as shown in [8, Fig. 3], of
a foldable Griffis-Duffy platform with the polynomial system available at [1]
(see also [2, Chap. 8]). Our local approach verifies that the local irreducible
decomposition of the “folded” pose consists of three double lines and a self-
crossing of a quartic curve as mentioned in [8,10].

References

1. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software
for numerical algebraic geometry. http://bertini.nd.edu

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solv-
ing Polynomial Systems with Bertini. Software, Environments, and Tools, vol. 25.
Society for Industrial and Applied Mathematics, Philadelphia (2013)

http://bertini.nd.edu


Numerical Local Irreducible Decomposition 129

3. Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Proceedings of ISSAC, pp. 166–123. ACM, New York (2005)

4. Fischer, G.: Complex Analytic Geometry. Lecture Notes in Mathematics, vol. 538.
Springer, Berlin-New York (1976)

5. Gunning, R.C.: Introduction to Holomorphic Functions of Several Variables.
Vol. II: Local Theory. Wadsworth & Brooks/Cole Advanced Books & Software,
Monterey, CA (1990)

6. Gunning, R.C.: Lectures on Complex Analytic Varieties: The Local Parametriza-
tion Theorem. Mathematical Notes Princeton University Press, Princeton; Univer-
sity of Tokyo Press, Tokyo (1970)

7. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl.
Math. 125(1), 105–119 (2013)

8. Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a
complex curve. Contemp. Math. 448, 183–205 (2007)

9. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University
Press, Cambridge (1916)

10. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local
dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)

11. Wampler, C., Larson, B., Edrman, A.: A new mobility formula for spatial mecha-
nisms. In: Proceedings of DETC/Mechanisms and Robotics Conference, Las Vegas,
NV (CDROM), 4–7 September 2007



Computing the Chow Variety of Quadratic
Space Curves

Peter Bürgisser1, Kathlén Kohn1(B), Pierre Lairez1, and Bernd Sturmfels1,2

1 Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
kohn@math.tu-berlin.de

2 Department of Mathematics, University of California, Berkeley, USA

Abstract. Quadrics in the Grassmannian of lines in 3-space form a
19-dimensional projective space. We study the subvariety of coisotropic
hypersurfaces. Following Gel’fand, Kapranov and Zelevinsky, it decom-
poses into Chow forms of plane conics, Chow forms of pairs of lines, and
Hurwitz forms of quadric surfaces. We compute the ideals of these loci.

Keywords: Chow variety · Coisotropic hypersurface · Grassmannian ·
Space curve · Computation

1 Introduction

The Chow variety, introduced in 1937 by Chow and van der Waerden [4], parame-
terizes algebraic cycles of any fixed dimension and degree in a projective space,
each given by its Chow form. The case of curves in IP3 goes back to an 1848
paper by Cayley [3]. A fundamental problem, addressed by Green and Morri-
son [8] as well as Gel’fand, Kapranov and Zelevinsky [6, Sect. 4.3], is to describe
the equations defining Chow varieties. We present a definitive computational
solution for the smallest non-trivial case, namely for cycles of dimension 1 and
degree 2 in IP3.

The Chow form of a cycle of degree 2 is a quadratic form in the Plücker
coordinates of the Grassmannian G(2, 4) of lines in IP3. Such a quadric in G(2, 4)
represents the set of all lines that intersect the given cycle. Quadratic forms
in Plücker coordinates form a projective space IP19. The Chow variety we are
interested in, denoted G(2, 2, 4), is the set of all Chow forms in that IP19. The
aim of this note is to make the concepts in [3,4,8] and [6, Sect. 4.3] completely
explicit.

We start with the 9-dimensional subvariety of IP19 whose points are the
coisotropic quadrics in G(2, 4). By [6, Sect. 4.3, Theorem 3.14], this decomposes
as the Chow variety and the variety of Hurwitz forms [9], representing lines

P. Bürgisser and P. Lairez were partially supported by DFG grant BU 1371/2-2.
K. Kohn was supported by a Fellowship from the Einstein Foundation Berlin.
B. Sturmfels was supported by the US National Science Foundation and the Einstein
Foundation Berlin.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 130–136, 2016.
DOI: 10.1007/978-3-319-32859-1 10



Computing the Chow Variety of Quadratic Space Curves 131

that are tangent to a quadric surface in IP3. Section 2 studies the ideal gener-
ated by the coisotropy conditions. We work in a polynomial ring in 20 variables,
one for each quadratic Plücker monomial on G(2, 4) minus one for the Plücker
relation. We derive the coisotropic ideal from the differential characterization
of coisotropy. Proposition 1 exhibits the decomposition of this ideal into three
minimal primes. In particular, this shows that the coisotropic ideal is radical,
and it hence resolves the degree 2 case of a problem posed in 1986 by Green and
Morrison [8]. They wrote: ‘We do not know whether [the differential characteri-
zation of coisotropy] generates the full ideal of these Chow variables.’

Section 3 derives the radical ideal of the Chow variety G(2, 2, 4) in IP19.
Its two minimal primes represent Chow forms of plane conics and Chow forms
of pairs of lines. We also study the characterization of Chow forms among all
coisotropic quadrics by the vanishing of certain differential forms. These repre-
sent the integrability of the α-distribution in [6, Sect. 4.3, Theorem 3.22]. After
saturation by the irrelevant ideal, the integrability ideal is found to be radical.

2 Coisotropic Quadrics

The Grassmannian G(2, 4) is a quadric in IP5. Its points are lines in IP3. We rep-
resent these lines using dual Plücker coordinates p = (p01, p02, p03, p12, p13, p23)
subject to the Plücker relation p01p23 −p02p13 +p03p12. Following [9, Sect. 2], by
dual coordinates we mean that pij is the ij-minor of a 2 × 4-matrix whose rows
span the line. The generic quadric in G(2, 4) is written as a generic quadratic
form

Q(p) = p ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c0 c1 c2 c3 c4 c5
c1 c6 c7 c8 c9 c10
c2 c7 c11 c12 c13 c14
c3 c8 c12 c15 c16 c17
c4 c9 c13 c16 c18 c19
c5 c10 c14 c17 c19 c20

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

· pT . (1)

The quadric Q(p) is an element in V := C[p]2/C{p01p23−p02p13+p03p12} �
C21/C. Hence, c = (c0, c1, . . . , c20) serves as homogeneous coordinates on IP19 =
IP(V ), which – due to the Plücker relation – need to be understood modulo

c5 �→ c5 + λ, c9 �→ c9 − λ, c12 �→ c12 + λ . (2)

The coordinate ring Q[V ] is a subring of Q[c0, c1, . . . , c20], namely it is the invari-
ant ring of the additive group action (2). Hence Q[V ] is the polynomial ring in
20 variables c0, c1, c2, c3, c4, c5 − c12, c6, c7, c8, c9 + c12, c10, c11, c13, . . . , c20.

We are interested in the c’s that lead to coisotropic hypersurfaces of G(2, 4).
For these, the tangent space at any point �, considered as a subspace of T�G(2, 4)
= Hom(�,C4/�), has the form {ϕ | ϕ(a) = 0} + {ϕ | im(ϕ) ⊂ M}, for some a ∈
�\{0} and some plane M in C4/�. By [6, Sect. 4.3, (3.24)], the quadric hypersur-
face {Q(p) = 0} in G(2, 4) is coisotropic if and only if there exist s, t ∈ C such
that



132 P. Bürgisser et al.

∂Q

∂p01
· ∂Q

∂p23
− ∂Q

∂p02
· ∂Q

∂p13
+

∂Q

∂p03
· ∂Q

∂p12
= s·Q+t·(p01p23 − p02p13 + p03p12) . (3)

Equivalently, the vector (t, s,−1)T is in the kernel of the 21×3 matrix in Fig. 1.
The 3×3 minors of this matrix are all in the subring Q[V ]. The coisotropic ideal I
is the ideal of Q[V ] generated by these minors. The subscheme V (I) of IP19 =
IP(V ) represents all coisotropic hypersurfaces {Q = 0} of degree two in G(2, 4).
Using computations with Maple and Macaulay2 [7], we found that I has codi-
mension 10, degree 92 and is minimally generated by 175 cubics. Besides, V (I)
is the reduced union of three components, of dimensions nine, eight and five.

Proposition 1. The coisotropic ideal is the intersection of three prime ideals:

I = PHurwitz ∩ PChowLines ∩ PSquares. (4)

So, I is radical. The prime PHurwitz has codimension 10 and degree 92, it is min-
imally generated by 20 quadrics, and its variety V (PHurwitz) consists of Hurwitz
forms of quadric surfaces in IP3. The prime PChowLines has codimension 11 and
degree 140, it is minimally generated by 265 cubics, and V (PChowLines) consists
of Chow forms of pairs of lines in IP3. The prime PSquares has codimension 14
and degree 32, it is minimally generated by 84 quadrics, and V (PSquares) consists
of all quadrics Q(p) that are squares modulo the Plücker relation.

0 c0 2c0c5 − 2c1c4 + 2c2c3
0 c1 c0c10 − c1c9 + c2c8 + c3c7 − c4c6 + c1c5
0 c2 c0c14 − c1c13 + c2c12 + c3c11 − c4c7 + c2c5
0 c3 c0c17 − c1c16 + c2c15 + c3c12 − c4c8 + c3c5
0 c4 c0c19 − c1c18 + c2c16 + c3c13 − c4c9 + c4c5
1 c5 c0c20 − c1c19 + c2c17 + c3c14 − c4c10 + c25
0 c6 2c1c10 − 2c6c9 + 2c7c8
0 c7 c1c14 − c6c13 + c7c12 + c8c11 + c2c10 − c7c9
0 c8 c1c17 − c6c16 + c7c15 + c8c12 + c3c10 − c8c9

−1 c9 c1c19 − c6c18 + c7c16 + c8c13 + c4c10 − c29
0 c10 c1c20 − c6c19 + c7c17 + c8c14 − c9c10 + c5c10
0 c11 2c2c14 − 2c7c13 + 2c11c12
1 c12 c2c17 − c7c16 + c11c15 + c3c14 − c8c13 + c212
0 c13 c2c19 − c7c18 + c11c16 + c4c14 + c12c13 − c9c13
0 c14 c2c20 − c7c19 + c11c17 + c12c14 + c5c14 − c10c13
0 c15 2c3c17 − 2c8c16 + 2c12c15
0 c16 c3c19 − c8c18 + c4c17 + c12c16 − c9c16 + c13c15
0 c17 c3c20 − c8c19 + c12c17 + c5c17 − c10c16 + c14c15
0 c18 2c4c19 − 2c9c18 + 2c13c16
0 c19 c4c20 − c9c19 + c5c19 − c10c18 + c13c17 + c14c16
0 c20 2c5c20 − 2c10c19 + 2c14c17

Fig. 1. This matrix has rank ≤ 2 if and only if the quadric given by c is coisotropic.



Computing the Chow Variety of Quadratic Space Curves 133

This proposition answers a question due to Green and Morrison, who had
asked in [8] whether I is radical. To derive the prime decomposition (4), we com-
puted the three prime ideals as kernels of homomorphisms of polynomial rings,
each expressing the relevant geometric condition. This construction ensures that
the ideals are prime. We then verified that their intersection equals I. For details,
check our computations, using the link given at the end of this article.

From the geometric perspective of [6], the third prime PSquares is extraneous,
because nonreduced hypersurfaces in G(2, 4) are excluded by Gel’fand, Kapranov
and Zelevinsky. Theorem 3.14 in [6, Sect. 4.3] concerns irreducible hypersurfaces,
and the identification of Chow forms within the coisotropic hypersurfaces [6,
Sect. 4.3, Theorem 3.22] assumes the corresponding polynomial to be squarefree.
With this, the following would be the correct ideal for the coisotropic variety
in IP19:

PHurwitz ∩ PChowLines = (I : PSquares) . (5)

This means that the reduced coisotropic quadrics in G(2, 4) are either Chow
forms of curves or Hurwitz forms of surfaces. The ideal in (5) has codimension 10,
degree 92, and is minimally generated by 175 cubics and 20 quartics in Q[V ].

A slightly different point of view on the coisotropic ideal is presented in
a recent paper of Catanese [2]. He derives a variety in P20 = P(C[p]2) which
projects isomorphically onto our variety V (I) ⊂ P19. The center of projection
is the Plücker quadric. To be precise, Proposition 4.1 in [2] states the following:
For every Q ∈ C[p]2\C (p01p23 − p02p13 + p03p12) satisfying (3) there is a unique
λ ∈ C such that the quadric Qλ := Q + λ · (p01p23 − p02p13 + p03p12) satisfies

∂Qλ

∂p01
· ∂Qλ

∂p23
− ∂Qλ

∂p02
· ∂Qλ

∂p13
+

∂Qλ

∂p03
· ∂Qλ

∂p12
= t · (p01p23 − p02p13 + p03p12) (6)

for some t ∈ C. This implies that V (I) is isomorphic to the variety of all Q ∈
IP(C[p]2)\{p01p23−p02p13+p03p12} satisfying (6). Let I2 be generated by the 2×2
minors of the 21×2 matrix that is obtained by deleting the middle column of the
matrix in Fig. 1. Then V (I2) contains exactly those Q ∈ IP(C[p]2) satisfying (6),
and V (I) is the projection of V (I2) from the center (p01p23 − p02p13 + p03p12).
The ideal I2 has codimension 11, degree 92, and is minimally generated by 20
quadrics. Interestingly, Catanese shows furthermore in [2, Theorem 3.3] that a
hypersurface in G(2, 4) is coisotropic if and only if it is selfdual in P5 with respect
to the inner product given by the Plücker quadric.

3 The Chow Variety

In this section we study the Chow variety G(2, 2, 4) of one-dimensional algebraic
cycles of degree two in IP3. By [6, Sect. 4.1, Example 1.3], the Chow variety
G(2, 2, 4) is the union of two irreducible components of dimension eight in IP19,
one corresponding to planar quadrics and the other to pairs of lines. Formally,
this means that G(2, 2, 4) = V (PChowConic)∪V (PChowLines), where PChowConic is
the homogeneous prime ideal in Q[V ] whose variety comprises the Chow forms of



134 P. Bürgisser et al.

irreducible curves of degree two in IP3. The ideal PChowConic has codimension 11
and degree 92, and it is minimally generated by 21 quadrics and 35 cubics. The
radical ideal PChowConic ∩PChowLines has codimension 11, degree 232 = 92+140,
and it is minimally generated by 230 cubics.

Since G(2, 2, 4) should be contained in the coisotropic variety V (I), it seems
that PChowConic is missing from the decomposition (4). Here is the explanation:

Proposition 2. Every Chow form of a plane conic in IP3 is also a Hurwitz form.
In symbols, PHurwitz ⊂ PChowConic and thus V (PChowConic) ⊂ V (PHurwitz).

Our first proof is by computer: just check the inclusion of ideals in Macaulay2.
For a conceptual proof, we consider a 4 × 4-symmetric matrix M = M0 + εM1,
where rank(M0) = 1. By [9, Equation (1)], the Hurwitz form of the corresponding
quadric surface in IP3 is Q(p) = p(∧2M)pT . Divide by ε and let ε → 0. The limit
is the Chow form of the plane conic defined by restricting M1 to ker(M0) � IP2.
This type of degeneration is familiar from the study of complete quadrics [5].
Proposition 2 explains why the locus of irreducible curves is not visible in (4).

Gel’fand, Kapranov and Zelevinsky [6, Sect. 4.3] introduce a class of dif-
ferential forms in order to discriminate Chow forms among all coisotropic
hypersurfaces. In their setup, these forms represent the integrability of the
α-distribution Eα,Z . We shall apply the tools of computational commutative
algebra to shed some light on the characterization of Chow forms via integrabil-
ity of α-distributions.

For this, we use local affine coordinates instead of Plücker coordinates.
A point in the Grassmannian G(2, 4) is represented as the row space of the
matrix

(

1 0 a2 a3

0 1 b2 b3

)

. (7)

We express the quadrics Q in (1) in terms of the local coordinates a2, a3, b2, b3,
by substituting the Plücker coordinates with the minors of the matrix (7), i.e.,

p01 = 1, p02 = b2, p03 = b3, p12 = −a2, p13 = −a3, p23 = a2b3 − b2a3. (8)

We consider the following differential 1-forms on affine 4-space:

α1
1 :=

∂Q

∂a2
da2 +

∂Q

∂a3
da3, α1

2 :=
∂Q

∂a2
db2 +

∂Q

∂a3
db3,

α2
1 :=

∂Q

∂b2
da2 +

∂Q

∂b3
da3, α2

2 :=
∂Q

∂b2
db2 +

∂Q

∂b3
db3.

By taking wedge products, we derive the 16 differential 4-forms

dQ ∧ dαi
j ∧ αk

l = qijkl · da2 ∧ da3 ∧ db2 ∧ db3 for i, j, k, l ∈ {1, 2}. (9)

Here the expressions qijkl are certain polynomials in Q[V ][a2, a3, b2, b3].
Theorems 3.19 and 3.22 in [6, Sect. 4.3] state that a squarefree coisotropic

quadric Q is a Chow form if and only if all 16 coefficients qijkl are multiples



Computing the Chow Variety of Quadratic Space Curves 135

of Q. By taking normal forms of the polynomials qijkl modulo the principal
ideal 〈Q〉, we obtain a collection of 720 homogeneous polynomials in c. Among
these, 58 have degree three, 340 have degree four, and 322 have degree five. The
aforementioned result implies that these 720 polynomials cut out G(2, 2, 4) as a
subset of IP19.

The integrability ideal J ⊂ Q[V ] is generated by these 720 polynomials and
their analogues from other affine charts of the Grassmannian, obtained by per-
muting columns in (7). We know that V (J) equals the union of G(2, 2, 4) with
all double hyperplanes in G(2, 4) (corresponding to PSquares) set-theoretically.
Maple, Macaulay2 and Magma verified for us that it holds scheme-theoretically:

Proposition 3. The integrability ideal J is minimally generated by 210 cubics.
Writing m for the irrelevant ideal 〈c0, c1, . . . , c20〉 of Q[V ], we have

√
J = (J : m) = PChowConic ∩ PChowLines ∩ PSquares. (10)

4 Conclusion

We reported on computational experiments with hypersurfaces in the Grass-
mannian G(2, 4) that are associated to curves and surfaces in IP3. For degree
2, all relevant parameter spaces were described by explicit polynomials in 20
variables. All ideals and computations discussed in this note can be obtained at

www3.math.tu-berlin.de/algebra/static/pluecker/

Many possibilities exist for future work. Obvious next milestones are the
ideals for the Chow varieties of degree 3 cycles in IP3, and degree 2 cycles in IP4.
Methods from representation theory promise a compact encoding of their gener-
ators, in terms of irreducible GL(4)-modules. Another question we aim to pursue
is motivated by the geometry of condition numbers [1]: express the volume of a
tubular neighborhood of a coisotropic quadric in G(2, 4) as a function of c.

References

1. Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms.
Springer, Heidelberg (2013)

2. Catanese, F.: Cayley forms and self-dual varieties. Proc. Edinb. Math. Soc. 57,
89–109 (2014)

3. Cayley, A.: On the theory of elimination. Camb. Dublin Math. J. 3, 116–120 (1848)
4. Chow, W.-L., van der Waerden, B.L.: Zur algebraischen Geometrie. IX. Über zuge-

ordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten.
Math. Ann. 113, 696–708 (1937)

5. DeConcini, C., Goresky, M., MacPherson, R., Procesi, C.: On the geometry of
quadrics and their degenerations. Comment. Math. Helvetici 63, 337–413 (1988)

6. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and
Multidimensional Determinants. Birkhäuser, Boston (1994)

www3.math.tu-berlin.de/algebra/static/pluecker/


136 P. Bürgisser et al.

7. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic
geometry. www.math.uiuc.edu/Macaulay2/

8. Green, M., Morrison, I.: The equations defining Chow varieties. Duke Math. J. 53,
733–747 (1986)

9. Sturmfels, B.: The Hurwitz form of a projective variety. arXiv:1410.6703

www.math.uiuc.edu/Macaulay2/
http://arxiv.org/abs/1410.6703


Numerically Testing Generically Reduced
Projective Schemes for the Arithmetic

Gorenstein Property

Noah S. Daleo1(B) and Jonathan D. Hauenstein2

1 Department of Mathematics, Worcester State University,
Worcester, MA 01602, USA
ndaleo@worcester.edu

2 Department of Applied and Computational Mathematics and Statistics,
University of Notre Dame, Notre Dame, IN 46556, USA

hauenstein@nd.edu
http://www.worcester.edu/noah-daleo

http://www.nd.edu/~jhauenst

Abstract. Let X ⊂ Pn be a generically reduced projective scheme. A
fundamental goal in computational algebraic geometry is to compute
information about X even when defining equations for X are not known.
We use numerical algebraic geometry to develop a test for deciding if X
is arithmetically Gorenstein and apply it to three secant varieties.

1 Introduction

When the defining ideal of a generically reduced projective scheme X ⊂ Pn is
unknown, numerical methods based on sample points may be used to deter-
mine properties of X. In [4], numerical algebraic geometry was used to decide
if X is arithmetically Cohen-Macaulay based on the Hilbert functions of sub-
schemes of X. In our present work, we expand this to decide if X is arithmetically
Gorenstein. Our method relies on numerically interpolating points approximately
lying on a general curve section of X as well as a witness point set for X, which is
defined in Sect. 2.4. This test does not assume that one has access to polynomials
vanishing on X, e.g., X may be the image of an algebraic set under a polynomial
map. In such cases, our method is an example of numerical elimination theory
(see [2, Chap. 16] and [3]).

Much of the literature regarding arithmetically Gorenstein schemes focuses
on the case in which the codimension is at most 3 (see, e.g., [6,8,10]), but
less is known for larger codimensions. Our test is applicable to schemes of any
codimension. For example, Sects. 4.2 and 4.3 consider schemes of codimension 6.

The rest of this article is organized as follows. In Sect. 2, we provide prereq-
uisite background material. In Sect. 3, we describe a numerical test for whether
or not a scheme is arithmetically Gorenstein. In Sect. 4, we demonstrate this test
on three examples.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 137–142, 2016.
DOI: 10.1007/978-3-319-32859-1 11



138 N.S. Daleo and J.D. Hauenstein

2 Background

2.1 Arithmetically Cohen-Macaulay and Arithmetically Gorenstein

If X ⊂ Pn is a projective scheme with ideal sheaf IX , then X is said to be
arithmetically Cohen-Macaulay (aCM) if

Hi
∗(IX) = 0 for 1 ≤ i ≤ dim X

where Hi
∗(IX) is the ith cohomology module of IX . In particular, all zero-

dimensional schemes are aCM and every aCM scheme is pure-dimensional. If
X is aCM, then its Cohen-Macaulay type is the rank of the last free module in
a minimal free resolution of IX . An aCM scheme X is said to be arithmetically
Gorenstein (aG) if X has Cohen-Macaulay type 1.

We will make use of the following fact about Cohen-Macaulay type [11, Corol-
lary 1.3.8].

Theorem 1. Let X ⊂ Pn be an aCM scheme with dim X ≥ 1 and H ⊂ Pn be
a general hypersurface of degree d ≥ 1. Then X ∩ H is aCM and has the same
Cohen-Macaulay type as X.

2.2 Hilbert Functions

Suppose that X ⊂ Pn is a nonempty scheme and consider the corresponding
homogeneous ideal I ⊂ C[x0, . . . , xn]. Let C[x0, . . . , xn]t denote the vector space
of homogeneous polynomials of degree t, which has dimension

(

n+t
t

)

, and let It =
I ∩C[x0, . . . , xn]t. Then, the Hilbert function of X is the function HFX : Z → Z

defined by

HFX(t) =
{

0 if t < 0
(

n+t
t

) − dim It otherwise.

The Hilbert series of X, denoted HSX , is the generating function of HFX ,
namely,

HSX(t) =
∞
∑

j=0

HFX(j) · tj .

There is a polynomial P (t) = c0 + c1t+ c2t
2 + · · ·+ crt

r with deg X = P (1) such
that

HSX(t) =
P (t)

(1 − t)dimX+1
.

The vector of coefficients [c0 c1 c2 · · · cr] is called the h-vector of X. If X is
aG, i.e., aCM of Cohen-Macaulay type 1, then the h-vector of X is symmetric:
ci = cr−i [13, Theorem 4.1]. Therefore, two necessary conditions on X to be aG
are pure-dimensionality and a symmetric h-vector. These conditions can be used
to identify schemes which are not aG, e.g., see Sect. 4.2.



Numerically Testing for the Arithmetic Gorenstein Property 139

2.3 Cayley-Bacharach Property

Let Z ⊂ Pn be a nonempty reduced zero-dimensional scheme with h-vector
[c0 c1 c2 · · · cr]. The scheme Z is said to have the Cayley-Bacharach (C-B)
property if, for every subset Y ⊂ Z with |Y | = |Z|−1, HFY (r−1) = HFZ(r−1).
The following, which is [5, Theorem 5], relates the C-B property to aG schemes.

Theorem 2. If Z ⊂ Pn is a nonempty reduced zero-dimensional scheme, Z is
arithmetically Gorenstein if and only if Z has the Cayley-Bacharach property
and its h-vector is symmetric.

2.4 Witness Point Sets

For a pure-dimensional generically reduced scheme X ⊂ Pn, let L ⊂ Pn be a
general linear space with dimL = codim X. The set W = X ∩ L is called a
witness point set for X.

3 Method

For a pure-dimensional generically reduced scheme X ⊂ Pn, one can determine
that X is arithmetically Gorenstein by combining Theorems 1 and 2. We describe
the zero-dimensional and positive-dimensional cases below. A generalization of
this approach, using Macaulay dual spaces, for pure-dimensional schemes that
are not generically reduced is currently being written by the authors and will be
presented elsewhere.

3.1 Reduced Zero-Dimensional Schemes

If dimX = 0, we can simply apply Theorem 2 to determine if X is aG. That
is, given a numerical approximation of each point in X, we use the numerical
interpolation approach described in [7] to compute the Hilbert function of X. In
particular, there is an integer ρX ≥ 0, which is called the index of regularity of
X, such that

0 = HFX(−1) < 1 = HFX(0) < · · · < HFX(ρX − 1) < HFX(ρX) = HFX(ρX + 1) = · · · = |X|.

The h-vector for X is [c0 c1 · · · cρX
] where ct = HFX(t) − HFX(t − 1). Thus,

we can now test for symmetry of the h-vector, i.e., ci = cρX−i.
If the h-vector is symmetric, we then test for the Cayley-Bacharach property.

That is, for each Y ⊂ X with |Y | = |X|−1, we use [7] to compute HFY (ρX −1).
If HFY (ρX − 1) = HFX(ρX − 1) for every such subset Y , then X has the C-B
property. Hence, if the h-vector is symmetric and X has the C-B property, then
X is aG.

Example 1. Consider X = {[0, 1, 1], [0, 1, 2], [0, 1, 3], [1, 1,−1]} ⊂ P2. It is easy
to verify that ρX = 2 and the h-vector for X is [1 2 1], which is symmetric.
However, X does not have the Cayley-Bacharach property and thus is not aG,
since HFY (1) = 2 �= 3 = HFX(1) for Y = {[0, 1, 1], [0, 1, 2], [0, 1, 3]}.



140 N.S. Daleo and J.D. Hauenstein

3.2 Generically Reduced Positive-Dimensional Schemes

If dim X ≥ 1, Theorems 1 and 2 show that X is aG if and only if X is aCM and
a witness point set for X is aG, i.e., has a symmetric h-vector and has the C-B
property. We start with the witness point set condition and then summarize the
aCM test presented in [4].

Let W = X ∩ L be a witness point set for X defined by the general linear
slice L. We apply the strategy of Sect. 3.1 to W with one simplification for
deciding that W has the C-B property. This simplification arises from the fact
that witness point sets for an irreducible scheme have the so-called uniform
position property. That is, if X is irreducible, then W has the C-B property if
and only if HFY (ρW − 1) = HFW (ρW − 1) for any Y ⊂ W with |Y | = |W | − 1.
In general, if X has k irreducible components, say X1, . . . , Xk with Wi = Xi ∩L,
then the witness point set W has the C-B property if and only if, for i = 1, . . . , k,
HFZi

(ρW − 1) = HFW (ρW − 1) where Zi =
⋃

j �=i Wj ∪ Yi for any Yi ⊂ Wi with
|Yi| = |Wi| − 1.

If W is aG, then X is aG if and only if X is aCM. The arithmetically
Cohen-Macaulayness of X is decided using the approach of [4] by comparing the
Hilbert function of W and the Hilbert function of a general curve section of X
as follows. Let M ⊂ Pn be a general linear space with dim M = codim X + 1
and C = X ∩M, i.e., dimC = 1. By numerically sampling points approximately
lying on C, we compute HFC(t) via [7] for t = 1, . . . , ρW + 1. The following is a
version of [4, Corollary 3.3] that decides the arithmetically Cohen-Macaulayness
of X via HFW and HFC .

Theorem 3. With the setup given above, X is arithmetically Cohen-Macaulay
if and only if HFW (t) = HFC(t) − HFC(t − 1) for t = 1, . . . , ρW + 1.

4 Examples

It has been speculated that the homogeneous coordinate ring of any secant vari-
ety of any Segre product of projective spaces is Cohen-Macaulay [12], but some
examples of such secant varieties are known to not be arithmetically Gorenstein
[9]. We demonstrate our test on two such secant varieties in Sects. 4.1 and 4.2.
Section 4.3 considers a secant variety of a Veronese variety.

4.1 σ3(P1 × P1 × P1 × P1)

Let X = σ3(P1 × P1 × P1 × P1) ⊂ P15, which is the third secant variety to the
Segre product of P1 × P1 × P1 × P1 with dimX = 13. We computed a witness
point set W for X using Bertini [1] and found that deg X = 16. Using [7], we
compute

ρW = 6, HFW = 1, 3, 6, 10, 13, 15, 16, 16, and h = [1 2 3 4 3 2 1].



Numerically Testing for the Arithmetic Gorenstein Property 141

Clearly, the h-vector for W is symmetric. Since X is irreducible, we selected one
subset Y ⊂ W consisting of 15 points. The witness point set W has the Cayley-
Bacharach property since HFY (5) = 15 = HFW (5) and thus we conclude W is
arithmetically Gorenstein by Theorem 2.

Next, we consider the arithmetically Cohen-Macaulayness of X. Let M ⊂ P15

be a general linear space with dimM = 3 and C = X ∩ M. Via sampling C, we
find that

HFC = 1, 4, 10, 20, 33, 48, 64, 80.

Therefore, by Theorem 3, X is arithmetically Cohen-Macaulay and, hence, we
can conclude it is arithmetically Gorenstein by Theorem 1. In fact, since X is
aCM, we can observe from HFW that two polynomials of degree 4 must vanish
on X. We found that these two polynomials generate the ideal of X meaning
that X is actually a complete intersection.

4.2 σ3(P1 × P1 × P1 × P2)

Let X = σ3(P1 × P1 × P1 × P2) ⊂ P23, where dim X = 17. We computed a
witness point set W for X using Bertini and found that deg X = 316. Using
[7], we compute

ρW = 6, HFW = 1, 7, 28, 84, 171, 261, 316, 316, and h = [1 6 21 56 87 90 55].

Since h is not symmetric, we conclude that W and, hence, X are not arithmeti-
cally Gorenstein.

Remark 1. Although the lack of symmetry in h is sufficient to show that W is
not aG, we note that W satisfies the Cayley-Bacharach property and X is aCM.
Since X is aCM, we can observe from HFW that 39 polynomials of degree 4
must vanish on X which generate the ideal of X.

4.3 σ3(ν4(P2))

Let ν4 be the degree 4 Veronese embedding of P2 into P14 and consider the
scheme X = σ3(ν4(P2)) ⊂ P14, where dim X = 8. We computed a witness point
set W for X using Bertini and found that deg X = 112. Using [7], we compute

ρW = 6, HFW = 1, 7, 28, 84, 105, 111, 112, 112, and h = [1 6 21 56 21 6 1].

Clearly, the h-vector for W is symmetric. Since X is irreducible, we selected one
subset Y ⊂ W consisting of 111 points. The witness point set W has the Cayley-
Bacharach property since HFY (5) = 111 = HFW (5) and thus we conclude W is
arithmetically Gorenstein by Theorem 2.

Next, we consider the arithmetically Cohen-Macaulayness of X. Let M ⊂ P14

be a general linear space with dimM = 7 and C = X ∩ M. Via sampling C, we
find that

HFC = 1, 8, 36, 120, 225, 336, 448, 560.



142 N.S. Daleo and J.D. Hauenstein

Therefore, by Theorem 3, X is arithmetically Cohen-Macaulay and, hence, we
can conclude it is arithmetically Gorenstein by Theorem 1. In fact, since X is
aCM, we can observe from HFW that 105 polynomials of degree 4 must vanish
on X and they generate the ideal of X.

Acknowledgments. The authors would like to thank Luke Oeding for helpful discus-
sions. Both authors were supported in part by DARPA Young Faculty Award (YFA)
and NSF grant DMS-1262428. JDH was also supported by Sloan Research Fellowship
and NSF ACI-1460032.

References

1. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software
for numerical algebraic geometry. http://bertini.nd.edu

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically solv-
ing polynomial systems with Bertini. Software, Environments, and Tools, vol. 25.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)

3. Daleo, N.S.: Algorithms and applications in numerical elimination theory. Ph.D.
Dissertation. North Carolina State University (2015)

4. Daleo, N.S., Hauenstein, J.D.: Numerically deciding the arithmetically Cohen-
Macaulayness of a projective scheme. J. Symb. Comp. 72, 128–146 (2016)

5. Davis, E.D., Geramita, A.V., Orecchia, F.: Gorenstein algebras and the Cayley-
Bacharach theorem. Proc. Am. Math. Soc. 93(4), 593–597 (1985)

6. Geramita, A., Migliore, J.: Reduced Gorenstein codimension three subschemes of
projective space. Proc. Am. Math. Soc. 125(4), 943–950 (1997)

7. Griffin, Z.A., Hauenstein, J.D., Peterson, C., Sommese, A.J.: Numerical compu-
tation of the Hilbert function and regularity of a zero dimensional scheme. In:
Springer Proceedings in Mathematics and Statistics, vol. 76, pp. 235–250. Springer,
New York (2014)

8. Hartshorne, R., Sabadini, I., Schlesinger, E.: Codimension 3 arithmetically Goren-
stein subschemes of projective n-space. Annales de l’institut Fourier 58, 2037–2073
(2008)

9. Michalek, M., Oeding, L., Zwiernik, P.: Secant cumulants and toric geometry. Int.
Math. Res. Notices 2015(12), 4019–4063 (2015)

10. Migliore, J., Peterson, C.: A construction of codimension three arithmetically
Gorenstein subschemes of projective space. Trans. Am. Math. Soc. 349(9),
3803–3821 (1997)

11. Migliore, J.: Introduction to Liaison Theory and Deficiency Modules. Birkhäuser,
Boston (1998)

12. Oeding, L., Sam, S.V.: Equations for the fifth secant variety of Segre products of
projective spaces (2015). arxiv:1502.00203

13. Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)

http://bertini.nd.edu
http://arxiv.org/abs/1502.00203


Some Results Concerning
the Explicit Isomorphism Problem

over Number Fields

Péter Kutas(B)

Department of Mathematics and its Applications,
Central European University, Budapest, Hungary

kutas peter@phd.ceu.edu

Abstract. We consider two problems. First let u be an element of
a quaternion algebra B over Q(

√
d) such that u is non-central and

u2 ∈ Q. We relate the complexity of finding an element v′ such that
uv′ = −v′u and v′2 ∈ Q to a fundamental problem studied earlier. For
the second problem assume that A ∼= M2(Q(

√
d)). We propose a poly-

nomial (randomized) algorithm which finds a non-central element l ∈ A
such that l2 ∈ Q. Our results rely on the connection between solving
quadratic forms over Q and splitting quaternion algebras over Q [4], and
Castel’s algorithm [1] which finds a rational solution to a non-degenerate
quadratic form over Q in 6 dimensions in randomized polynomial time.
We use these two results to construct a four dimensional subalgebra over
Q of A which is a quaternion algebra. We also apply our results to analyze
the complexity of constructing involutions.

1 Introduction

We consider the following algorithmic problem, which we call explicit isomor-
phism problem: let K be a field, A an associative algebra over K, given by
structure constants over K. Suppose that A is isomorphic to the full matrix
algebra Mn(K). Construct explicitly an isomorphism A → Mn(K). Or, equiva-
lently, give an irreducible A-module.

Recall, that for an algebra A over a field K and for a K-basis a1, . . . , am of
A over Kthe products aiaj can be expressed as linear combinations of the ai:

aiaj = γij1a1 + γij2a2 + · · · + γijmam.

The elements γijk ∈ K are called structure constants. In this paper an algebra
is considered to be given by a collection of structure constants.

Let K be an algebraic number field. In [4] Rónyai proved that the task of
factoring square-free integers can be reduced in randomized polynomial time
to the explicit isomorphism problem for quaternion algebras over K. Let us
recall the notion of an ff-algorithm. This is an algorithm which is allowed to
call oracles for factoring integers and polynomials over finite fields. The cost of
the call is the size of the input. In [2] Ivanyos, Rónyai and Schicho proposed an
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 143–148, 2016.
DOI: 10.1007/978-3-319-32859-1 12



144 P. Kutas

ff-algorithm which solves the explicit isomorphism problem in polynomial time if
the dimension of the matrix algebra, the degree of K over Q and the discriminant
of K are bounded. The running time of the algorithm depends exponentially on
the first two parameters and polynomially on the third (note that in order for
the algorithm to be polynomial, it has to be polynomial in the logarithm of the
discriminant). An important research problem would be to create an algorithm
which would also run in polynomial time when the degree of the number field is
not assumed to be bounded or at least its running time depends polynomially on
the logarithm of the discriminant. We assume that A ∼= Mn(K). An interesting
approach to the explicit isomorphism problem would be to find a polynomial
algorithm which finds a subalgebra B of A which is isomorphic to Mn(Q). This
would immediately result in an algorithm which depends only polynomially on
the degree of the number field.

Let A ∼= M2(Q(
√

d)). In this short paper we give some results towards show-
ing that finding a subalgebra B of A which is isomorphic to M2(Q) is at least
as hard as factoring integers. On the other hand we can construct a four dimen-
sional subalgebra of A over Q which is a quaternion algebra. Our algorithm is
randomized and runs in polynomial time if one is allowed to call oracles for fac-
toring integers. Note that this does not follow from the algorithm of [2] since the
algorithm there is not polynomial in the logarithm of the discriminant.

We also give an application of our results. We construct a unitary involution
in a quaternion algebra over Q(

√
d). Our algorithm is randomized and runs in

polynomial time assuming we can call oracles for integer factorisation. Note that
finding an involution of the first kind can be achieved in polynomial time [4].

2 Quadratic Forms

We denote by HK(α, β) the quaternion algebra over the field K (char(K) �= 2)
with parameters α, β (i.e. it has a quaternion basis 1, u, v, uv such that u2 =
α, v2 = β and uv = −vu). In this section we consider two problems. The first
question is the following. Let us assume that B is H

Q(
√
d)(a, b + c

√
d) where

a, b, c ∈ Q. The quaternion basis is 1, u, v, uv. This means that u2 is not just in
Q(

√
d) but also in Q. What is the complexity of finding an element v′ such that

v′2 ∈ Q and v′u+uv′ = 0? One can assume that c �= 0 otherwise v would suffice.

Theorem 1. Let B = H
Q(

√
d)(a, b+ c

√
d) given by: u2 = a, v2 = b+ c

√
d, where

a, b, c ∈ Q, c �= 0. Then finding an element v′ such that uv′ +v′u = 0 and v′2 is a
rational multiple of the identity is equivalent to the explicit isomorphism problem
for the quaternion algebra HQ(d − ( bc )

2, a).

Proof. Since v′ anticommutes with u (i.e. uv′ + v′u = 0) it must be a Q(
√

d)-
linear combination of v and uv. This means we have to search for s1, s2, s3, s4 ∈ Q

such that:
((s1 + s2

√
d)v + (s3 + s4

√
d)uv)2 ∈ Q



Some Results Concerning the Explicit Isomorphism Problem 145

Expanding this expression we obtain the following:

((s1 + s2
√

d)v + (s3 + s4
√

d)uv)2 = (s21 + s22d + 2s1s2
√

d)(b + c
√

d)

− (s23 + s24d + 2s3s4
√

d)a(b + c
√

d)

In order for this to be rational, the coefficient of
√

d has to be zero. So we
obtain the following equation:

c(s21 + s22d) + 2bs1s2 − ac(s23 + s24d) − 2abs3s4 = 0

First we divide by c. Note that c is nonzero. Let f = b/c.

s21 + s22d + 2fs1s2 − a(s23 + s24d) − 2afs3s4 = 0

Now consider the following change of variables: x := s1 + fs2, y := s2,z :=
s3 + s4f , w := s4. Note that the transition matrix of this change is an upper
triangular matrix with 1-s in the diagonal so it has determinant 1 (this means
that these two equations are “equivalent”). In terms of these new variables the
equation takes the following form:

x2 + (d − f2)y2 − az2 − a(d − f2)w2 = 0.

Finding a solution of this is equivalent to finding a zero divisor in the quater-
nion algebra H(d − f2, a) (see [4] or [1, Chap. 1]). ��

Now we turn to the following problem. Let us assume that A ∼= M2(Q(
√

d))
is given by structure constants. Can one find a non-central element in A whose
square is in Q in (randomized) polynomial time?

Proposition 1. Let A ∼= M2(Q
√

d) be given by structure constants. Then there
exists a randomized polynomial algorithm which finds a non-central element l,
such that l2 ∈ Q.

Proof. First we construct a quaternion basis w and w′ of A. We have the following:

w2 = r1 + t1
√

d, w′2 = r2 + t2
√

d

If t1 or t2 is 0 then w or w′ will be a suitable element. If r1t2 + r2t1 = 0
then ww′ satisfies the conditions above. From now on we assume that all three
quantities are non-zero. First observe that if t1 or t2 is zero then we are done
(w and w′ are not in the center since ww′ = −w′w). So from now on we assume
that neither of them is zero. In order to ensure that the square of l is in Q(

√
d)

it has to be in the Q(
√

d)-subspace generated by w, w′ and ww′. The condition
l2 ∈ Q gives the following equation (s1, . . . , s6 ∈ Q):

((s1 + s2
√

d)w + (s3 + s4
√

d)w′ + (s5 + s6
√

d)ww′)2 ∈ Q



146 P. Kutas

If we expand this we obtain:

((s1 + s2
√

d)w + (s3 + s4
√

d)w′ + (s5 + s6
√

d)ww′)2 = (s21 + ds22 + 2s1s2
√

d)

(r1 + t1
√

d) + (s23 + ds24 + 2s3s4
√

d)(r2 + t2
√

d) − (s25 + ds26 + 2s5s6
√

d)

(r1 + t1
√

d)(r2 + t2
√

d)

In order for this to be in Q the coefficient of
√

d has to be zero:

t1s
2
1 + t1ds22 + 2r1s1s2 + t2s

2
3 + t2ds24 + 2r2s3s4 − (r1t2 + t1r2)s25

−(r1t2 + t1r2)ds26 − 2(r1r2 + t1t2d)s5s6 = 0

The left hand side of this equation is a quadratic form in 6 variables. First
we calculate its determinant. Its matrix is block diagonal with three 2×2 blocks.
So the determinant is the product of these determinants. The first determinant
is t21d− r21 which is nonzero since d is not a square (note that t1 is nonzero). The
second is t22d − r22 which is nonzero also (note that t2 is nonzero). The third is
(r1t2+t1r2)2d−(r1r2+t1t2d)2 which is nonzero due to the same reason (note that
the coefficient of d is nonzero due to discussion at the beginning of the proof).
This is a non-degenerate quadratic form in dimension 6, so it can be solved by
Castel’s algorithm [1]. This algorithm runs in randomized polynomial time. Note
that it must have a solution since A is a full matrix algebra over Q(

√
d). ��

There is a nice consequence of this result.

Corollary 1. Let A ∼= M2(Q(
√

d)) be given by structure constants. Then one
can find a four dimensional subalgebra over Q which is a quaternion algebra by
a randomized algorithm which runs in polynomial time if we are allowed to call
oracles for factoring integers.

Proof. First we find an element l such that l2 ∈ Q. Then one finds an element
l′ such that ll′ + l′l = 0 and l′2 ∈ Q. These can be done using the method
of Theorem 1 and Proposition 1 combined with the algorithm from [2]. The
only thing we need to show is that for any l such that l2 ∈ Q there exists a
four dimensional subalgebra over Q which is a quaternion algebra and contains
l. Indeed, since splitting a quaternion algebra over Q can be achieved by an
ff-algorithm which runs is polynomial time [2].

There exists a subalgebra A0 in A which is isomorphic to M2(Q). In this
subalgebra there is an element l′ for which l and l′ have the same minimal
polynomial over Q(

√
d). This means there exists an m ∈ A such that l = m−1l′m.

Hence m−1A0m will contain l. ��

3 Constructing Involutions

In this section we consider the complexity of constructing involutions in a central
simple algebra. For definitions and basic facts from the theory of involutions the
reader is referred to [3].

Let A be a central simple algebra over K. Recall that an involution σ is a
map σ : A → A with the following properties:



Some Results Concerning the Explicit Isomorphism Problem 147

1. σ(x + y) = σ(x) + σ(y) for all x, y ∈ A.
2. σ(xy) = σ(y)σ(x) for all x, y ∈ A.
3. σ(σ(x)) = x for all x ∈ A.

The restriction of an involution to the center of the algebra is an automor-
phism of K of order at most two. If it is the trivial automorphism then the
involution is called an involution of the first kind otherwise it is called uni-
tary or an involution of the second kind.

Let H be a quaternion algebra over a field of characteristic different from
2 given by structure constants. Then one can construct an involution of the
first kind easily. We compute a quaternion representation of the algebra. An
algorithm for this task is described in [4]. Let 1, i, j, k be a quaternion basis.
Then the following map is an involution of the first kind:

a + bi + cj + dk 	→ a − bi − cj − dk

Let A ∼= M2(Q(
√

d)) be given by structure constants. How hard is it to
construct a unitary involution on A? Theorem 1 would suggest that it is hard
to do in polynomial time. The reason for this is that if we compose a unitary
involution with an involution of the first kind, and look at the fixed elements, we
obtain a four dimensional subalgebra over Q which is a quaternion algebra [3,
Proposition 2.22]Unfortunately it is not known whether finding such quaternion
subalgebra over Q is hard or not.

However using Corollary 1 one can construct a unitary involution in ran-
domized polynomial time if one is allowed to call oracles for factoring integers.

Corollary 2. Let A ∼= M2(Q(
√

d)) be given by structure constants. One can
construct a unitary involution in randomized polynomial time with oracle calls
for factoring integers.

Proof. Let A′ be a quaternion subalgebra of A over Q given by a quaternion
basis 1, u, v, uv (u2 = a, v2 = b, a, b ∈ Q). Note that every element in A is a
Q(

√
d)-linear combination of 1, u, v, uv. Then consider the following map:

σ : α + β · u + γ · v + δ · uv 	→ α − β · u − γ · v − δ · uv

One can easily check that this is a unitary involution. ��
One can also show that if A ∼= M3(Q) is given by structure constants then

constructing an involution of the first kind in A is as hard as finding an explicit
version of this isomorphism. One may use that fact that every skew-symmetric
element (i.e. an element x such that σ(x) = −x) is a zero divisor.



148 P. Kutas

References

1. Castel, P.: Un algorithme de résolution des équations quadratiques en dimension 5
sans factorisation, Ph.D. thesis, October 2011

2. Ivanyos, G., Rónyai, L., Schicho, J.: Splitting full matrix algebras over algebraic
number fields. J. Algebra 354, 211–223 (2012)

3. Knus, M.-A., Merkurjev, A., Rost, M., Tignol, J.-P.: The book of involutions. AMS
Colloquium Publications, vol. 44, p. 593 (1998)

4. Rónyai, L.: Simple algebras are difficult. In: Proceedings of the 19th Annual ACM
Symposium on the Theory of Computing, New York, pp. 398–408 (1987)



Cryptography



Implementing Cryptographic Pairings on
Accumulator Based Smart Card Architectures

Peter Günther1(B) and Volker Krummel2

1 University of Paderborn, Paderborn, Germany
peter.guenther@uni-paderborn.de

2 Wincor Nixdorf International GmbH, Paderborn, Germany
volker.krummel@wincor-nixdorf.de

Abstract. In this paper, we show how bilinear pairings can be imple-
mented on modern smart card architectures. We do this by providing
a memory-efficient implementation of the eta pairing on accumulator
based cryptographic coprocessors. We provide timing results for differ-
ent key-sizes on a state of the art smart card, the Infineon SLE 78. On
one hand, our results show that pairings can efficiently be computed on
smart cards. On the other hand, our results identify bottlenecks that
have to be considered for future smart card designs.

1 Introduction

Since the invention of the first fully functional identity based encryption (IBE)
scheme [5], that was based on bilinear pairings, pairings have become an
important tool in cryptography. Today numerous schemes such as hierarchi-
cal identity-based encryption, attribute based encryption (ABE), and identity
based signatures use pairings as their main building blocks. Many pairing based
schemes are very well suited to embedded applications. For example with IBE,
the expensive public key infrastructure of large scale systems like the internet
of things can be significantly simplified [9]. Hence, efficient implementations of
pairings on embedded and resource constrained devices will become important in
the future. In many pairing based schemes the secret key is one argument of the
pairing. To protect this secret in an adversarial environment, implementations
on smart cards are the standard solution. This raises the question if such con-
strained platforms are able to compute pairings with acceptable performance.
Furthermore, bottlenecks of current architectures have to be identified.

Our Contribution

Towards answering this question, we provide an implementation of the eta pair-
ing for fields of characteristic 2. As hardware platform, we use the Infineon
SLE 78 controller [8] that has a dedicated coprocessor for finite field arithmetic.

This work was partially supported by the German Ministry of Education and
Research, grant 16KIS0062.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 151–165, 2016.
DOI: 10.1007/978-3-319-32859-1 13



152 P. Günther and V. Krummel

Because memory is a bottleneck for efficient pairing implementations on state
of the art coprocessors we base our implementation on fields of characteristic 2
that provide especially memory efficient arithmetic. This allows us to remove the
memory bottleneck and evaluate the performance of the coprocessor for fields of
size up to 2000 bits, although recent results question the applicability of small
characteristic fields for cryptography [1]. At 33 MHz, we are able to compute the
eta pairing in 60 ms for fields of size 1000 bits, in 100 ms for fields of size 1500
bits, and in 160 ms for fields of size 2000 bits.

Because of the insecurity of characteristic 2 fields, we regard our results as
proof of concept to show that pairings can be computed efficiently on smart
cards, but only if the pairing is carefully selected according to the available
resources. Furthermore, efficient implementations for fields of large prime char-
acteristic will become very important. Our analysis also indicates how size and
organization of memory have to be adapted for future cryptographic coprocessors
in order to support those implementations.

Previous Work

Previous results already show that it is indeed possible to compute pairings
on existing smart card controllers [3,11,12]. We need to distinguish between
standard controllers and controllers with dedicated hardware support of finite
field arithmetic. Regarding the former, [11] shows that the eta pairing for fields
of size approximately 1000 bits can be computed on an Atmel AVR controller in
less than 2 s at a CPU clock of less than 8 MHz. In [3] it is shown that the Tate
pairing over fields of size 1000 bits can be computed on an STMicroelectronics
ST22 controller at 33 MHz in 750 ms.

Because arithmetic in finite fields is one of the major ingredients of a pairing
computation, better results on controllers with hardware support of finite field
arithmetic can be expected. In [12], different pairings are implemented on the
Philips HiPerSmart that offers special instruction set enhancements for crypto-
graphic applications. And indeed, it is shown that the Tate pairing for fields of
size 1000 bits can be computed in less than 500 ms at 20.57 MHz. Furthermore,
the eta pairing for fields characteristic 2 and of size 1500 bits can be computed
in 220 ms at 20.57 MHz. Partially, this efficient implementation is achieved by
assuming that the secret argument of the pairing is constant. Hence, intermedi-
ate values solely depending on the secret are precomputed and stored in mem-
ory. We remark that our implementation is not subject to this severe and often
impractical restriction.

Organization of this Work

The paper is organized as follows. We start with some background on pairings in
Sect. 2. In Sect. 3 we define a generic accumulator based architecture of a crypto-
graphic coprocessor to abstract from the concrete hardware. Then, in Sect. 4 we
outline our implementation of the eta pairing on this architecture. We analyze
the implementation in terms of memory requirements and required base field



Implementing Cryptographic Pairings 153

multiplications. In Sect. 5 we give timing results of our implementation for a
concrete instantiation and for various key-sizes on the SLE 78 smart card con-
troller. Then we will point to bottlenecks of current cryptographic coprocessors
for the computation of pairings. Finally, we will conclude in Sect. 6.

2 Background

In this section we first give a short introduction into elliptic curves and pairings.
Then, we motivate the eta pairing for our implementation. Finally, we will give
the necessary background on the eta pairing.

2.1 Definition of Pairings and the Embedding Degree

This section is only a very brief introduction. For more details on elliptic curves
and pairings we refer, for example, to [9].

Let E denote an elliptic curve that is defined over a finite field Fq, where
q = pm for some prime p and m ≥ 1. Based on the chord and tangent law, we
define an additive group (E,+). For a point U ∈ E we write U = (xU , yU ) to
reference its x and y coordinate. With aU we denote scalar multiplication of U
with a ∈ Z. Let Fqk be an extension field of Fq. With E(Fqk)[r] we denote the
Fqk -rational r-torsion points of E, i.e., the points defined over Fqk and of order
dividing r.

For U, V ∈ E, let lU,V denote the equation of the line through U and V .
With gU we denote the equation of the tangent line through U at E. Hence, lU,V

and gU are the lines that occur while computing U + V and 2U , respectively.
For n ∈ N and P ∈ E, we recursively define the function fn,P as follows:

f1,P = 1 fn+1,P = fn,P
lP,nP

l−(n+1)P,(n+1)P
. (1)

Miller presented an algorithm to evaluate fn,P efficiently at points on E [10].
If k is the smallest integer such that r divides qk − 1, then we call k the

embedding degree of q with respect to r. Let G1,G2, and GT be groups of order
r with G1,G2 ⊆ E(Fqk)[r] and GT ⊆ F∗

qk . Then a pairing is an efficiently
computable, non-degenerate bilinear map e : G1 ×G2 → GT . For cryptographic
applications the embedding degree has to be chosen such that the complexity of
computing discrete logarithms in G1 and G2 and the complexity of computing
discrete logarithms in GT are balanced. Note that the complexity in the former
groups is conjectured to be exponential while the complexity in the latter group
is sub-exponential. Table 1 shows some current state of the art choices of k for
large prime characteristic q.

2.2 Motivation for the Eta Pairing

Memory is a central concern when implementing cryptographic pairings on smart
cards. The basic building block of pairing calculations is the Miller algorithm [10].



154 P. Günther and V. Krummel

Table 1. Relation of subgroup size r, base field size q, extension field size qk, and
embedding degree k to match the complexity of computing discrete logarithms in E(Fq)
and in F∗

qk for a large prime q. Source: Table 1.1 of [6].

Security level log r log q k log q k

80 bits 160 160 960–1280 4–6

80 bits 160 320 960–1280 2–4

112 bits 224 224 2200–3600 10–16

112 bits 224 448 2200–3600 5–8

128 bits 256 256 3000–5000 12–20

128 bits 256 512 3000–5000 6–10

We can think of it as an interleaved computation of a double-and-add algorithm
for scalar multiplication on E(Fq) and a square-and-multiply algorithm for expo-
nentiation in Fqk . Hence, to compute the pairing, we need to store elements in Fq

and in Fqk simultaneously. This results in an overall higher memory consump-
tion compared to standard elliptic curve cryptography (ECC) or RSA. Hence,
in order to implement pairing based cryptography (PBC) on a smart card that
has been designed for standard ECC or RSA, the memory consumption has to
be reduced as far as possible.

Here, we achieve this by two means. First, we choose the eta pairing over
fields of characteristic p = 2 that allows very memory efficient implementations.
Secondly, we optimize our implementation for memory efficiency, if necessary at
the expense of extra field additions. By reducing the memory consumption, we
are able to remove the memory bottleneck of current smart card controllers.

2.3 The Eta Pairing for Fields of Characteristic 2

We now define the eta pairing according to [2, Sect. 6.1]. We stick to the notation
of [2] as far as possible. Let F2m be a finite field of characteristic 2 and size 2m.
Define the extension field Fqk = F24m = F2m(s, t) with s2 = s+1 and t2 = t+ s.
Furthermore, define the elliptic curve E : y2 + y = x3 + x + b, where b ∈ F2

and #E(Fq) = 2m + 1 + εa. Here, a = 2(m+1)/2 and ε = (−1)b when m = 1, 7
mod 8, and ε = −(−1)b when m = 3, 5 mod 8.

Define the distortion map by

ψ : E(F2m) → E(F24m) (2)

(x, y) �→ (x + s2, y + sx + t). (3)

Now, we are able to define the eta pairing:

Definition 1. Define T = −ε2(m+1)/2 − 1 and

M = (24m − 1)/(2m + 1 + εa) = (22m − 1)(2m − ε2(m+1)/2 + 1). (4)



Implementing Cryptographic Pairings 155

Then the eta pairing with parameter T is defined as

ηT : E(F2m) × E(F2m) → F∗
24m (5)

(P,Q) �→ fT,P (ψ(Q))M . (6)

Here, the exponentiation with M is also called final exponentiation.
The following theorem will allow us to simplify the computation of

fT,P (ψ(Q)).

Theorem 1. Let P ′ = −εP . The map ηT is a non-degenerate, bilinear map that
can be computed as

ηT (P,Q) = (fa,P ′(ψ(Q))laP ′,εP ′(ψ(Q)))M
.

Proof. See [2, Sect. 6.1]

With the Miller algorithm (cf. [10]) the function fa,P ′ can be efficiently evaluated
at ψ(Q). Because a is a power of 2, for the eta pairing, this computation reduces
mainly to point doubling and the evaluation of gR at ψ(Q) where R is of the
form 2iP ′. The simplification is shown in Algorithm 1.

Algorithm 1. Miller algorithm for computing fT,P (ψ(Q)).
Require: Elliptic curve E : y2 + y = x3 + x + b with b ∈ F2, P, Q ∈ E(F2m) and

T = −ε2(m+1)/2 − 1.
Ensure: fT,P (ψ(Q)) ∈ F24m

1: (f, P ′, R) ← (1, −εP, −εP )
2: for i ← (m − 1)/2 . . . 0 do
3: f ← f2

4: (f, R) ← (f · gR(ψ(Q)), 2R)
5: end for
6: f ← f · laP ′,εP ′(ψ(Q))
7: return f

3 The Architecture

In this section, we define a model for the underlying computer architecture of our
implementation. It acts as an abstraction from the concrete architecture used
for execution of the implementation.

Our implementation is based on a platform that consists of a CPU, the main
memory (also denoted as RAM), program memory, and a big integer unit (BIU).
We assume that the CPU and the BIU are connected to the RAM via a data bus
of width wb. The BIU is an accumulator based cryptographic coprocessor that
supports operations in Fp and F2m and consists of the following components:

1. An accumulator register ACC of width wr

2. The BIU internal memory organized as operand registers R0, . . . , Rn−1, each
of width wr.



156 P. Günther and V. Krummel

Table 2. Instruction set of the BIU

Instruction Operand Op Result

AddRed Ri, RMOD, RMUL ACC ← ACC + Op mod RMOD

SubRed Ri, RMOD, RMUL ACC ← ACC − Op mod RMOD

MultRed Ri ACC ← Op · RMUL mod RMOD

Load Ri, RMOD, RMUL ACC ← Op

Store Ri, RMOD, RMUL Op ← ACC

Exch Ri, RMOD, RMUL (ACC, Op) ← (Op, ACC)

3. A multiplier register RMUL of width wr.
4. A modulus register RMOD of width wr.
5. An algorithmic arithmetic unit (ALU) for performing arithmetic in Fp or in

F2m with instructions defined in Table 2.

The instruction set of the BIU is given in Table 2. Arithmetic in finite fields
is supported. In the case of Fp, the register RMOD stores the modulus p. In the
case of F2m , the register RMOD stores the irreducible polynomial f(X) of degree
m defining F2m = F2/(f(X)).

Because wb is assumed to be much smaller than wr, loading a register from
RAM or saving a register to RAM is much slower than the corresponding instruc-
tions Load, Store, and Exch for transferring data between internal registers. We
also assume that the internal memory of the BIU has better hardware-protection
against side channel attacks when compared to the RAM. Altogether, RAM
access is an expensive operation. This motivates our requirement to allocate
all intermediate variables within the internal memory of the BIU during the
execution of the pairing.

4 Implementation on the Generic Architecture

In this section, we provide the details of our implementation of the eta pairing
from Definition 1 on the architecture described in Sect. 3. The following theo-
rem describes our implementation of Algorithm 1 with respect to the required
resources:

Theorem 2. Algorithm 1 can be computed on the BIU defined in Sect. 3 with
n = 12 general purpose operand registers of width wr = m and requires 15 · (m−
1)/2 + 20 multiplications in F2m . Furthermore, no access of the BIU to RAM is
required.

The second theorem is about the implementation of the final exponentiation
from (6).

Theorem 3. Let α ∈ F24m and M as defined in (4). Then on the BIU from
Sect. 3, exponentiation αM can be computed with n = 12 general purpose operand
registers of width wr = m and requires 4m + 40 multiplications in F2m . Further-
more, no access of the BIU to RAM is required.



Implementing Cryptographic Pairings 157

The remainder of this section is structured as follows. In Sect. 4.1 we out-
line how squaring of the Miller variable f in Line 3 of Algorithm 1 is imple-
mented. Then in Sect. 4.2 we give details on the computation of gR(ψ(Q)) and
laP ′,εP ′(ψ(Q)) in Line 4 and Line 6, respectively. In Sect. 4.3 we show how the
multiplication of gR(ψ(Q)) and laP ′,εP ′(ψ(Q)) with f is implemented. Section 4.4
combines the previous results to obtain an analysis of the complete Miller algo-
rithm. Finally, in Sect. 4.5 we explain how we compute the final exponentiation
with M .

4.1 Squaring the Miller Variable

In Line 3 of Algorithm 1 we need to square the Miller variable f . Squaring is a
linear operation in fields of characteristic 2. This results in the following lemma
that summarizes the costs for the squaring in Line 3 of Algorithm 1:

Lemma 1. On the BIU from Sect. 3, the squaring of the Miller variable f in
Algorithm 1, Line 3 requires k = 4 multiplications in F2m . Furthermore, not more
than k = 4 operand registers are required to store the arguments, the output, and
all intermediate results.

Remark 1. Note the major difference to fields of characteristic p, where p is a
large prime. For squaring elements in Fpk , we cannot compute the coefficients in-
place. Instead k registers for storing the input and k registers for accumulating
the result are required. This results in a doubling of the required number of
registers to 2k.

We further remark that we propose another implementation than in [4].
There, an optimization is applied that requires the computation of square roots
of xR and yR [2]. In theory, the computation of square roots in characteristic 2
is efficient. In practice, square root algorithms in F2m require bit manipulations
that are inefficient without dedicated hardware [4]. This bit-fiddling would not
support our strategy of high throughput at the BIU. In [12] this problem does not
arise since P is assumed to be constant. Hence, the value of

√
xR and

√
yR can be

precomputed for each iteration of Algorithm 1. To support variable arguments
P we avoid square root computations and do not apply this optimization.

4.2 Point Doubling and Line Functions

In this section we show how doubling of R and the value of gR(ψ(Q)) from
Line 4 of Algorithm 1 can be computed in a combined way. It will become clear
from Lemmas 2 and 4 that the computation of the tangent gR(ψ(Q)) and the
computation of the line laP ′,εP ′(ψ(Q)) from Line 6 have a lot of code in common.
Consequently, with Algorithm 2 we provide an implementation that is able to
handle both functions. This helps to decrease code size that is also critical for
smart cards.



158 P. Günther and V. Krummel

Computing the Tangent gR(ψ(Q)): The following lemma basically adapts [2,
Lemma 8] to our notation.

Lemma 2. Let P ′, Q ∈ E(F2m). Define xi = x22i

P ′ ∈ F2m , yi = y22i

P ′ ∈ F2m ,
δ0, δ1 ∈ {0, 1} such that δ0 = 1 if and only if i = 0, 3 mod 4, and δ1 = 1 + i
mod 2. Define a0, a1 ∈ F2m as a1 = x2

i + xQ and a0 := x2
i (xi + xQ) + xi + yi +

yQ + δ1a1. Then the tangent line through R = 2iP ′ at ψ(Q) is given as

gR(ψ(xQ, yQ)) = a0 + δ0 + (a1 + δ1) s + t. (7)

We call elements in F24m of the form (7) sparse as only 2 instead of 4 elements in
F2m are required for their representation. We show in Sect. 4.3 that multiplication
with these elements is also more memory efficient than with arbitrary elements
of F24m .

Lemma 3. Let xi, yi, xQ, yQ, a0, and a1 be defined as in Lemma 2. Then the
simultaneous computation of a0, a1, xi+1, and yi+1 requires 5 multiplications
in F2m on the BIU defined in Sect. 3. Furthermore, not more than 4 operand
registers are required to store all arguments, the result, and all intermediate
values.

Proof. By setting δ2 = 1, Algorithm 2 shows how a0, a1, x2
i , and y2

i are com-
puted with 3 multiplications in F2m and the 4 registers R0, . . . , R3 on the BIU.
Furthermore, the computation of xi+1 = x4

i and yi+1 = y4
i requires two addi-

tional multiplications.

Computing the Line laP ′,εP ′(ψ(Q)): We now show that Algorithm 2 can also
be used to compute laP ′,εP ′(ψ(Q)) (cf. [2, Lemma 7]):

Lemma 4. Let P ′, Q ∈ E(F2m). Define δ0, δ1 ∈ F2 such that δ0 = (m − ε)/2
mod 2 and δ1 = (m − 1)/2 mod 2. Define a0, a1 ∈ F2m as a1 := xP ′ + xQ and
a0 := xP ′(xP ′ + xQ) + xP ′ + yP ′ + yQ + δ1a1. Then the tangent line through
aP ′ = 2(m+1)/2P ′ and εP ′ at ψ(Q) is given as

laP ′,εP ′(ψ(Q)) = a0 + δ0 + (a1 + δ1) s + t. (8)

With respect to the required resources we obtain:

Lemma 5. Let xP ′ , yP ′ , xQ, yQ, a0, and a1 be defined as in Lemma 4. Then
the simultaneous computation of a0 and a1 requires 1 multiplication in F2m on
the BIU defined in Sect. 3. Furthermore, not more than 4 operand registers are
required to store all arguments, the result, and intermediate values.

Proof. The lemma directly follows by setting xi = xP ′ , yi = yP ′ , and δ2 = 0 in
Algorithm 2.

Remark 2. Because of the special form of a in the case of the eta pairing the
input P ′ does not need to be saved beyond Line 1 of Algorithm 1. This is because
xP ′ = x0 = (x(m−1)/2)2 and yP ′ = y0 = (y(m−1)/2)2. Hence, xP ′ and yP ′ equal
the output of Algorithm 2 in the last round of Algorithm 1. We cannot use this
trick for general pairings and hence two additional registers for storing xP ′ and
yP ′ are required in the general case.



Implementing Cryptographic Pairings 159

Algorithm 2. LineFunction: simultaneous computation of a1 = x1+δ2
i + xQ,

a0 = x1+δ2
i (xi + xQ) + xi + yi + yQ + δ1a1, x1+δ2

i , and y1+δ2
i

Require: δ1, δ2 ∈ {0, 1}, R0 ← xi, R1 ← yi, R2 ← yQ, R3 ← xQ

Ensure: R0 ← x1+δ2
i , R1 ← y1+δ2

i , R2 ← a0 = x1+δ2
i (xi + xQ) + xi + yi + yQ + δ1a1,

R3 ← a1 = x1+δ2
i + xQ

1: procedure LineFunction(δ1, δ2)
2: Load R0 � ACC ← xi

3: Store RMUL � RMUL ← xi

4: if δ2 = 1 then
5: MultRed R0 � ACC ← x2

i

6: end if
7: Store RMUL � RMUL ← x1+δ2

i

8: Load R0 � ACC ← xi

9: AddRed R1 � ACC ← xi + yi

10: AddRed R2 � ACC ← xi + yi + yQ

11: Store R2 � R2 ← xi + yi + yQ

12: Load R0 � ACC ← xi

13: AddRed R3 � ACC ← xi + xQ

14: Store R0 � R0 ← xi + xQ

15: MultRed R0 � ACC ← x1+δ2
i (xi + xQ)

16: AddRed R2 � ACC ← x1+δ2
i (xi + xQ) + xi + yi + yQ

17: Store R2 � R2 ← x1+δ2
i (xi + xQ) + xi + yi + yQ

18: Load RMUL � ACC ← x1+δ2
i

19: Store R0 � R0 ← x1+δ2
i

20: AddRed R3 � ACC ← x1+δ2
i + xQ = a1

21: Store R3 � R3 ← a1

22: if δ1 = 1 then
23: AddRed R2 � ACC ← x1+δ2

i (xi + xQ) + xi + yi + yQ + δ1a1 = a0

24: Store R2 � R2 ← x1+δ2
i (xi + xQ) + xi + yi + yQ + δ1a1 = a0

25: end if
26: if δ2 = 1 then
27: Load R1 � ACC ← yi

28: Store RMUL � RMUL ← yi

29: MultRed R1 � ACC ← y2
i

30: Store R1 � R1 ← y2
i

31: end if
32: end procedure

4.3 Sparse Multiplication with the Line Function

In this section, we show how we compute the products in Line 4 and Line 6
of Algorithm 1. In Sect. 4.2, we showed in Lemmas 2 and 5 that one operand
occurring in these multiplications has the sparse form a0 +a1s+(δ0 + δ1s)+ t ∈
F2m(s, t). This motivates the following lemma:

Lemma 6. Define A0 = (a0 + a1s) with ai, bi ∈ F2m and δ0, δ1 ∈ F2. Let
B ∈ F2m(s, t). On the BIU from Sect. 3, the computation of

(A0 + δ0 + δ1s + t) · B (9)



160 P. Günther and V. Krummel

requires 6 multiplications in F2m . Furthermore, not more than 8 operand registers
are required to store the arguments, the output, and all intermediate results.

One may wonder why we do not absorb δ0 + δ1s into A0. The reason is that this
requires two additions with constants in F2. This is very in-efficient on the BIU
because the BIU has to be stopped to load δ0 and δ1 into the operand registers.
We now show that we can do better by spending a few additional additions in F2m .

With B = B0 + B1t where Bi = b2i + b2i+1s we obtain for the sparse multi-
plication in (9):

A0B0 + δ0B0 + δ1B0s + B1s + (A0B1 + B0 + (δ0 + 1)B1 + δ1B1s) t. (10)

To perform multiplications in F2m(s) we use Karatsuba’s trick for extensions
of degree 2. This allows us to perform a multiplication in F2m(s) at the cost of
only three multiplications in F2m :

A0Bi = a0b2i + ((a0 + a1)(b2i + b2i+1) − a0b2i − a1b2i+1)s + a1b2i+1s
2 (11)

= a0b2i + a1b2i+1 + ((a0 + a1)(b2i + b2i+1) − a0b2i)s. (12)

Our implementation of (12) on the BIU requires only four operand registers
R2i, R2i+1, R2j, and R2j+1 and the special registers RMUL and ACC. Since δ0, δ1 ∈ F2

multiplication with δi in (10) is just a conditional execution of the correspond-
ing addition. In total, our implementation requires 8 registers to compute (10).
Furthermore, (12) has to be evaluated for i ∈ {0, 1} to compute A0B0 and
A0B1. This sums up to 6 multiplications in F2m for the computation of (10) and
completes the proof of Lemma 6.

Remark 3. For the eta pairing, the sparseness of laP ′,εP ′(ψ(Q)) and gR(ψ(Q))
resulted in a multiplication that requires only 2k = 8 registers. In the general case
the image of gR(x, y) is a full Fqk element. Hence, in general, the multiplication in
Line 4 of Algorithm 1 requires at least 3k registers for storing the two arguments,
all intermediate values, and the result.

4.4 The Complete Miller Algorithm

In the previous sections we defined the individual components that are required
to compute Algorithm 1 on the BIU architecture. Table 3 gives an overview of the
required multiplications and the required number of registers of the individual
steps. If we combine all components into an implementation of Algorithm 1 this
sums up to (m − 1)/2 · 15 + 20 multiplications in F2m . Furthermore, we see that
not more than the n = 12 general purpose registers R0, . . . , R11 are required for
the complete computation. This proves Theorem 2.

Remark 4. Remarks 1 and 2 show that implementations of a pairing in large
prime characteristic requires at least 2 + k additional registers compared to the
implementation of the eta pairing. Here, 2 additional registers are required to
store the input P (see Remark 2) and k additional registers are required to
perform a squaring in fields of large prime characteristic (see Remark 1).



Implementing Cryptographic Pairings 161

Table 3. Overview of the computational costs of Algorithm 1.

Line Computation Multiplications in F2m Registers Reference

Line 3 f2 4 4 Lemma 1

Line 4 gR(ψ(Q)) 3 4 Lemma 3

Line 4 2R 2 1 Lemma 3

Line 4 f · gR(ψ(Q)) 6 8 Lemma 6

Line 6 laP ′,εP ′(ψ(Q)) 1 4 Lemma 5

Line 6 f · laP ′,εP ′(ψ(Q) 6 8 Lemma 6

4.5 The Final Exponentiation

In this section, we give an intuition how we obtain the result of Theorem 3 for
computing the final exponentiation with M from (4). As, for example, in [4], we
perform the exponentiation in two steps. In the first step, we compute the expo-
nentiation with 22m − 1 and in the second step, we compute exponentiation with
2m − ε2(m+1)/2 + 1. The exponentiation with 22m − 1 requires an application of
the 22m-th power Frobenius automorphism and an inversion. With the norm map
from F24m to F2m we can reduce the inversion in F24m to an inversion in F2m plus
a constant number of multiplication ins F24m . Then we perform inversion in F2m

with Fermat’s little theorem that requires 2(m − 2) + 1 multiplications in F2m .
The exponentiation with 2m − ε2(m+1)/2 + 1 reduces to an application of the

2m-th power Frobenius automorphism, an exponentiation with 2(m+1)/2, and a
constant number of multiplications. Because squaring is linear, we can perform
exponentiation with 2(m+1)/2 in F24m with 2(m − 1) multiplications in F2m . A
detailed analysis shows that 4m + 40 multiplications in F2m are required for
exponentiation with M .

The required number of n = 12 registers results from the multiplications in
F24m because for one multiplication, we need to store 3 elements in F24m : the
two factors and the product.

5 Performance on Real Hardware

To evaluate the performance of our implementation from the previous section, we
instantiated the implementation on the Infineon SLE 78 smart card controller.
In this section, we present timing results of the complete pairing computation
for different key sizes of practical relevance. Furthermore, we outline limitations
of current hardware for supporting fields with large characteristic.

5.1 The SLE 78 Smart Card

The CPU of the SLE 78 controller [8] is an improvement of the well-known 80251
controller and supports frequencies up to 33 MHz. It implements a 16 bit reduced
instruction set architecture. The RAM is connected via a 32 bit memory bus to



162 P. Günther and V. Krummel

the system. Peripherals like the cryptographic coprocessor are controlled via a
wb = 16 bit wide peripheral bus to the system that is used for configuration and
data transfer.

The SLE 78 is equipped with a coprocessor for big integer arithmetic called
Crypto@2304T that supports 4096 bit RSA and 521 bit ECC. It is possible to
instantiate our implementation on the coprocessor as long as the size of the base
field does not exceed these 521 bit significantly.

5.2 Measurement Setup and Results

Our measurements are based on ISO7816-4 command/response pairs exchanged
between a card reader and the SLE 78. The reader sends a command to the
SLE 78 that initiates the pairing computation. The SLE 78 computes the pair-
ing and responds with the result. We measure the time between command and
response. Hence, our measurements include the timing of the pairing and a small
offset that is introduced by the communication.

We performed our experiments for base fields of size 271, 379, and 523 bits,
i.e. extension fields of size 1084, 1516, and 2092 bits, respectively. Our curves
are defined as E : y2 + y = x3 + x + b with b = 0 for m = 271 and b = 1 for
m ∈ {379, 523}. From the timing results in Table 4 we see that the SLE 78 is able
to compute the eta pairing in 61 ms for fields of size 1084 bit at 33 MHz. In [11]
the same field and the same pairing is analyzed. There, a pairing computation
takes 1.9 s at 7.3 MHz CPU frequency. This corresponds to a computation time
of more than 420 ms at 33 MHz. Hence, we conclude that the hardware support
of the Crypto@2304T enables a significant improvement.

Table 4. Measurement and simulation results of the pairing computation on the SLE 78
for different base fields F2m at a CPU clock of 33 MHz.

Measurement Simulation

m k.m Complete pairing Miller Alg. Final exp. Complete pairing

271 1084 61 ms 36 ms (72 %) 14 ms (28 %) 50 ms (100 %)

379 1516 98 ms 58 ms (70 %) 25 ms (30 %) 83 ms (100 %)

523 2092 163 ms 99 ms (70 %) 43 ms (30 %) 142 ms (100 %)

For fields of size 1500 bits, we are able to compute the eta pairing in 100 ms.
In [12], the same pairing for the same field but with one fixed argument is
computed in 220 ms at 20.57 MHz. This corresponds to a computation time of
more than 137 ms at 33 MHz. Note, that our implementation can handle two
variable arguments without any precomputations in less time.

For fields of size 2000 bits, we are able to compute the eta pairing in 163 ms.
We see that if we double the field size from 1084 to 2092 bits, the execution
time increases only by a factor of 2.7. This is remarkable since the asymptotic



Implementing Cryptographic Pairings 163

running time of the pairing computation is cubic in m. To explain this effect,
note that according to Theorems 2 and 3 the number of F2m multiplications is
linear in m. We conclude that the asymptotic quadratic complexity of the F2m

multiplications is partially compensated by the cryptographic coprocessor.
We are also interested in the individual execution times of the Miller loop and

the final exponentiation. Our implementation does not support measurements
of the two separate steps. Therefore, we use a simulator of the SLE 78 that is
provided by the manufacturer for debugging. During a simulation it is possible to
set break-points at arbitrary instructions and to obtain timing simulations for the
code execution. The results also listed in Table 4. We see that in the simulation,
the ratio of the computation time of the Miller algorithm is fixed at roughly
70%. This is supported by Theorems 2 and 3 that show that the ratio of required
multiplications in F2m of the Miller algorithm is at approximately 7.5/(7.5+4) =
65%. We see that even though our theoretical analysis in Sect. 4 neglects F2m

additions and any control overhead it predicts the simulations results correctly.

5.3 Limitations of Today’s Cryptographic Coprocessors

From the timing results of the previous section we conclude that currently, the
processing power of available cryptographic coprocessors is not the major bot-
tleneck. But our case study also shows that the internal memory of coprocessors
that were designed for RSA and standard ECC is a limitation for PBC. Fur-
thermore, in large prime characteristic fields, implementations of Algorithm 1
are less memory efficient. To give a rough idea how much memory is necessary
to compute pairings for those fields, we estimate the minimum memory require-
ments for computing pairings over fields of large prime characteristic q with
m = �log(q)	. For efficiency reasons, we assume that P ∈ E(Fq) and Q ∈ E(Fqk)
[9, Remark II.19]. We argue that roughly (4+5k)m bits of memory are required
to compute the pairing:

– 4m bits to store the coordinates of P and R
– 2km bits to store the coordinates of Q
– km bits to store f
– km bits to store lR,P (Q) or gR(Q)
– km bits to store intermediate results during the computation of f ← f2,

f ← f · lR,P (Q), or f ← f · gR(Q)

For the case of so-called type 3 pairings [7], we can reduce the size of Q, lR,P (Q),
and gR(Q) by a factor of gcd(k, 6) by using sextic twists [9]. This results in a
lower estimation of (4 + 3k/6 + 2k)m required bits of memory.

Next we consider some examples from Table 1. As explained in Sect. 2.1, the
embedding degree k is used to match the difficulty of the discrete logarithm
problem in E(Fq) and in F∗

qk . Hence, for a fixed security level, we will be given
m and k such that computing discrete logarithms has approximately the same
complexity in both groups. To balance the hardness at the 80 bit security level
with m = 160 we need extension fields of degree 4 ≤ k ≤ 6. Our estimation



164 P. Günther and V. Krummel

from above shows that for k = 4 at least (4 + 5 · 4) · 160 = 3840 bits are
required to compute the pairing. If we can use type 3 pairings, this reduces to
at least (4 + 3 + 2 · 4) · 160 = 2400 bits of memory. This amount of memory is
already available on current cryptographic coprocessors. To balance the hardness
at the 112 bit security level with m = 224, we require extension fields of degree
10 ≤ k ≤ 16. Hence, for k = 10 at least (4 + 50) · 224 = 12096 bits are required
in the general case and with k = 12 we require (4 + 6 + 24) · 224 = 7616 bits
for type 3 pairings. At the 128 bit security level with m = 256 and k = 12,
16384 bits in the general case or 8704 bits in the case of type 3 pairings are
required. We remark that these estimates are very optimistic. They assume a
perfect memory organization and no specific optimizations. For example, the
use of projective coordinates or Karatsuba multiplication in Fqk would require
additional memory.

6 Conclusion

In this work, we analyzed an implementation of the eta pairing that we optimized
for memory constrained devices. We demonstrated its efficiency by giving timing
results for the execution on the Infineon SLE 78 smart card controller. Our
results show that this controller allows the implementation of pairings in less
than 100 ms.

But based on our analysis, we also argue that the memory of the crypto-
graphic coprocessors is critical for performing PBC beyond the 80 bit security
level. Designed for ECC and RSA, there is a gap between the performance of
the coprocessor and the size of its memory when used for the computation of
pairings. Especially in the smart card setting, memory efficient implementations
are an important topic of further research.

References

1. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

2. Barreto, P.S.L.M., Galbraith, S.D., O’Eigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular Abelian varieties. Des. Codes Crypt. 42(3), 239–271
(2007)

3. Bertoni, G., Breveglieri, L., Chen, L., Fragneto, P., Harrison, K.A., Pelosi, G.:
A pairing SW implementation for Smart-Cards. J. Syst. Softw. 81(7), 1240–1247
(2008)

4. Beuchat, J.L., Brisebarre, N., Detrey, J., Okamoto, E., Rodŕıguez-Henŕıquez, F.:
A Comparison between hardware accelerators for the modified tate pairing over
F2m and F3m. IACR Cryptology ePrint Archive 2008, 115 (2008). http://eprint.
iacr.org/

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

http://eprint.iacr.org/
http://eprint.iacr.org/


Implementing Cryptographic Pairings 165

6. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23, 224–280 (2010)

7. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

8. Infineon Technologies AG: Product Brief SLE 78 (PB SLE78CXxxxP.pdf), Janu-
ary 2014

9. Joye, M., Neven, G. (eds.): Identity-Based Cryptography, Cryptology and Infor-
mation Security, vol. 2. IOS Press, Amsterdam (2009)

10. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17(4),
235–261 (2004)

11. Oliveira, L.B., Aranha, D.F., Gouvêa, C.P.L., Scott, M., Câmara, D.F., López, J.,
Dahab, R.: TinyPBC: pairings for authenticated identity-based non-interactive key
distribution in sensor networks. Comput. Commun. 34(3), 485–493 (2011)

12. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings
on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 134–147. Springer, Heidelberg (2006)



Short Group Signatures
with Distributed Traceability

Johannes Blömer(B), Jakob Juhnke, and Nils Löken

Department of Computer Science, Paderborn University, Paderborn, Germany
{bloemer,juhnke,nilo}@mail.uni-paderborn.de

1 Introduction

Group signatures, introduced by Chaum and van Heyst [15], are an important
primitive in cryptography. In group signature schemes every group member can
anonymously sign messages on behalf of the group. In case of disputes a dedicated
opening manager is able to trace signatures - he can extract the identity of the
producer of a given signature. A formal model for static group signatures schemes
and their security is defined by Bellare, Micciancio, and Warinschi [4], the case of
dynamic groups is considered by Bellare, Shi, and Zhang [5]. Both models define
group signature schemes with a single opening manager. The main difference
between these models is that the number of group members in static schemes is
fixed, while in dynamic schemes group members can join the group over time.

Important techniques to design group signature schemes were first described
by Ateniese et al. [1]. In [4,5] generic constructions of group signature schemes
are presented. The main building blocks of those constructions are generic dig-
ital signature schemes, encryption schemes, and non-interactive zero-knowledge
proof systems. Concrete realizations, for example [10] as a static and [17] as a
dynamic scheme, use efficient instantiations of these techniques to obtain efficient
and short group signature schemes. Beside efficient constructions different exten-
sions of group signatures have been considered. Schemes supporting verifier-local
revocation [11,28] or linkability [21,23,27] demonstrate the flexibility of group
signatures and inspired cryptographers to use group signatures as a tool for more
complex primitives, for example e-cash systems [2,13], credential systems [12,29]
or reputation systems [7].

Related Work. Having a single opening manager that can identify signers
requires a lot of trust in this manager. Several techniques have been consid-
ered to deal with this problem. Manulis [26] defines a variant of dynamic group
signatures, called democratic group signatures, which completely get rid of the
opening manager and where every user can trace signatures on his own. In this

J. Blömer and N. Löken—Partially supported by the German Research Foundation
(DFG) within the Collaborative Research Centre On-The-Fly Computing (SFB 901).
J. Juhnke—Supported by the Ministry of Education and Research, grant 16SV7055,
project “KogniHome”.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 166–180, 2016.
DOI: 10.1007/978-3-319-32859-1 14



Short Group Signatures with Distributed Traceability 167

model anonymity is only guaranteed against outsiders, not against other group
members. Zheng et al. [32] extend the model of Manulis such that not every
group member can trace signatures, but a set of cooperating group members
is able to reveal a signers identity. This is achieved using threshold public key
encryption (TPKE).

Another variant of distributed tracing, but also using TPKE, is considered
by Benjumea, Choi, Lopez, and Yung [6]. They define dynamic multi-group
signatures with fair tracing. In such systems every user is a member of different
groups and only cooperating opening managers can reveal a signers identity.
These systems are strongly related to credential systems.

A model for dynamic group signatures supporting distributed tracing is
defined by Ghadafi [22]. Ghadafi also gives a generic construction for schemes
with distributed tracing.

Our Contribution. In this paper we construct a simple variant of static group
signatures with distributed traceability. Our construction is more efficient than
the generic construction by Ghadafi [22]. We use threshold public key encryp-
tion to distribute the opener’s secret key and prove the security of our scheme,
including anonymity, in the random oracle model. Our scheme is an extension
of the scheme by Boneh, Boyen, and Shacham [10]. However, our technique can
be applied to other group signature schemes to obtain distributed traceability.
Our basic construction of a group signature scheme with distributed traceabil-
ity guarantees CPA-full-anonymity, as defined in [10] and suitably extended for
distributed traceability. In the last section of this paper we briefly present three
extensions of our basic result. First, we describe how to combine our technique
with a construction due to Fischlin [20] to obtain a group signature scheme with
distributed traceability that achieves the stronger and most desirable security
notion of CCA-full-anonymity. Second, in our scheme, as well as in Ghadafi’s
scheme, there is a so called threshold t such that in order to identify a signer
at least t opening managers have to cooperate. We show how to generalize our
construction such that it supports monotone access structures for traceability,
i.e. any authorized set of opening managers in the access structure can identify
signers. Last, we show how to generalize our scheme to dynamic group signatures
with distributed traceability.

2 Preliminaries

In this section we introduce the building blocks for our group signature scheme.
Similar to [8], we define bilinear groups as follows.

Definition 1 (Bilinear Group Pair). Let G1,G2,GT be groups of prime order
p with efficiently computable group operations, let ψ : G2 → G1 be an efficiently
computable isomorphism, and let e : G1 ×G2 → GT be an efficiently computable
mapping with the following properties:



168 J. Blömer et al.

– Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp: e(ua, vb) = e(u, v)ab

– Non-degeneracy: e(g1, g2) �= 1GT
.

Then we call (G1,G2) a bilinear group pair.

Definition 2 (Bilinear Group Generator). A bilinear group generator G is
a probabilistic polynomial time algorithm that, on input 1λ, outputs a descrip-
tion of a bilinear group pair (G1,G2). We denote the output of G by GD =
(G1,G2,GT , g1, g2, p, ψ, e).

Throughout this paper we will assume that g1 = ψ(g2).
Since we will use bilinear group pairs in our construction of group signature

schemes, we define the used computational assumptions with respect to bilinear
group generators G.

Definition 3 (Decision Linear Problem – D-Linear2). Let (G1,G2) be a

bilinear group pair. Given g2, g
α
2 , gβ

2 , gαγ
1 , gβδ

1 , gε
1 ∈ G3

2 × G3
1, where α, β, γ, δ

$←
Zp, the Decision Linear Problem is to decide whether ε = γ + δ.

Definition 4. We say the Decision Linear assumption holds for bilinear group
generator G if for all probabilistic polynomial time algorithms A there exists a
negligible function negl such that

∣

∣

∣ Pr
[

A(GD, g2, g
α
2 , gβ

2 , gαγ
1 , gβδ

1 , gε
1) = 1

]

− Pr
[

A(GD, g2, g
α
2 , gβ

2 , gαγ
1 , gβδ

1 , gγ+δ
1 ) = 1

] ∣

∣

∣ ≤ negl(λ),

where the probabilities are taken over random bits used by G, A, and the random
choices of α, β, γ, δ, ε

$← Zp.

Definition 5 (q-Strong Diffie-Hellman Problem – q-SDH). Let (G1,G2)
be a bilinear group pair. Given a tuple

(

gγ
2 , g

(γ2)
2 , . . . , g

(γq)
2

)

, the q-Strong Diffie-

Hellman Problem is to output a pair
(

g
1

x+γ

1 , x

)

, where x ∈ Zp.

Definition 6. We say the SDH assumption holds for bilinear group generator
G if for all probabilistic polynomial time algorithms A and for every polynomial
bounded function q : Z → Z there exists a negligible function negl such that

Pr
[

A
(

GD, gγ
2 , g

(γ2)
2 , . . . , g

(γq(λ))
2

)

=
(

g
1

x+γ

1 , x

)]

≤ negl(λ),

where the probability is taken over the random bits used by G, A, and the random
choice of γ

$← Zp.

For our construction we will use a variant of q-SDH called extended q-SDH :
given

(

h, gγ
2 , . . . , g

(γq(λ))
2

)

, for h
$← G1, output

(

(g1 · hy)
1

x+γ , x, y
)

∈ G1 × Zp
2.

It is not hard to see that the following lemma holds.

Lemma 1. Let A be an algorithm that solves extended q-SDH in polynomial
time with non-negligible probability ε. Then there exists an algorithm B that
solves q-SDH in polynomial time with non-negligible probability ε.



Short Group Signatures with Distributed Traceability 169

3 Group Signature Schemes and Distributed Traceability

Group signature schemes [4] are signature schemes that provide signer anonymity
by forming a group of signers that share a common public key. In case of mis-
behaving users, signer anonymity can be revoked by an opening manager. With
distributed traceability, the task of anonymity revocation is distributed among
several opening servers who need to cooperate to identify signers.

Definition 7 (DOMS(t,m, n)). A group signature scheme with t-out-of-m-dis-
tributed traceability (with t ≤ m) for n users consists of six probabilistic poly-
nomial time algorithms Setup, Sign, SignatureVerify, ShareOpen, ShareVerify and
ShareCombine, and a protocol Join.

– Setup(1λ,m, t) → (PK,VK,SK, IK): on input 1λ (where λ is the security para-
meter), a number m of opening management servers, and a threshold t, it
outputs a public key PK, a verification key VK, a vector SK of opening man-
agement server private keys, and a key issuer private key IK.

– Join(PK, IK; PK) → ukid: This protocol is executed by the key issuer and a
user id ∈ {1, . . . , n}. The key issuer takes as input PK and IK, the user takes
as input PK. It outputs a membership certificate of user id to the key issuer
and a user private key ukid to the user. The key issuer adds the membership
certificate to a registration list RegList.

– Sign(PK,ukid,M) → σ: on input PK, ukid and a message M , it outputs a
signature σ.

– SignatureVerify(PK,M, σ) → vs ∈ {0, 1}: on input PK, M and σ it outputs a
bit vs.

– ShareOpen(PK, ski,M, σ) → θi/ ⊥: on input PK, an opening management
server private key ski, M and σ, it outputs an open share θi or an error
symbol ⊥.

– ShareVerify(PK,VK,M, σ, θi) → vo ∈ {0, 1}: on input PK, VK, M , σ and θi,
it outputs a bit vo.

– ShareCombine(PK,VK,M, σ,Θ,RegList) → id/ ⊥: on input PK, VK, M , σ,
a set Θ of t open shares, and the registration list RegList, it outputs a user
identifier id or an error symbol ⊥.

For consistency we require that, for keys PK,VK,SK = (sk1, . . . , skm), IK
generated during Setup and for every user private key ukid generated by executing
Join for user identifier id with respect to IK, the following properties hold for
every message M :

– SignatureVerify(PK,M,Sign(PK,ukid,M)) = 1.
– For every valid signature σ on M and every open share θi that is output by

ShareOpen(PK, ski,M, σ) it holds: ShareVerify(PK,VK,M, σ, θi) = 1.
– For every σ that is output by Sign(PK,ukid,M) and every set Θ of t valid

open shares it holds: ShareCombine(PK,VK,M, σ,Θ,RegList) = id.



170 J. Blömer et al.

The security notions for group signature schemes without distributed
traceability, as defined in [4], include full-anonymity and full-traceability. Full-
anonymity means that nobody except the opening manager can tell who gener-
ated a given signature. Full-traceability means that nobody is able to generate
signatures (1) on behalf of honest users and (2) which can not be traced back
to an existing user. As a drawback, the key issuer must be honest. In DOMS
we introduce a Join protocol to achieve strong-exculpability. This splits the def-
inition of full-traceability into two different security properties: traceability and
strong-exculpability. Here, traceability means that, even when the key issuer is
corrupted, it is not possible to generate signatures that can not be traced back
to an existing user, while strong-exculpability means that nobody can generate
signatures on behalf of honest users. These properties have already been consid-
ered in the context of group signatures without distributed traceability [1,24].
For DOMS the definitions of traceability and strong-exculpability can be left
unchanged. However, due to the distributed opening of signatures we have to
give an adapted definition for anonymity. In this section we give a definition of
anonymity that is an extension of the CPA-full-anonymity defined in [10]. We
discuss the stronger notion of CCA-full-anonymity in Sect. 5. By incorporating
our technique into Fischlin’s CCA-fully-anonymous variant of the Boneh, Boyen,
and Shacham group signature [20], in Sect. 5 we also show how to strengthen our
basic construction to achieve CCA-full-anonymity.

Definition 8 (Anonymity - Expanon−b
A,DOMS(λ, t,m, n)). Given a threshold group

signature scheme with t-out-of-m-distributed traceability for n users, consider the
following t-out-of-m-threshold chosen-plaintext anonymity game:

1. The adversary A chooses t − 1 different indices s1, . . . , st−1 ⊂ {1, . . . , m}.
2. C executes Algorithm Setup to compute the key material. The public key

PK, the verification key VK, the corrupted management servers’ private keys
sks1 , . . . , skst−1 , and the key issuer’s private key IK are given to A. Then,
C and A engage in n executions of protocol Join with A playing the user’s
role, C playing the key issuers’ role. After this step, A holds user private keys
uk1, . . . ,ukn.

3. Eventually, A outputs two user indices id0, id1 and a message M upon which
it wants to be challenged.

4. The challenger computes σ ← Sign(PK,ukidb
,M) and returns σ to A.

5. When A outputs a bit b′, the output of the experiment is also b′.

Definition 9. A group signature scheme with t-out-of-m-distributed traceability
DOMS(t,m, n) is anonymous, if for all probabilistic polynomial time algorithms
A there exists a negligible function negl such that
∣

∣

∣Pr
[

Expanon−1
A,DOMS(λ, t,m, n) = 1

]

− Pr
[

Expanon−0
A,DOMS(λ, t,m, n) = 1

]∣

∣

∣ ≤ negl(λ).

The probability is over the random bits of A, as well as the random bits used in
the experiment.



Short Group Signatures with Distributed Traceability 171

Our definition of anonymity only ensures selective security: the adversary has
to decide which management servers he wants to corrupt before he has access to
the public keys. This simplifies our construction and the proof of security.

On Achieving Distributed Traceability. Many group signature schemes
achieve signer anonymity and signer identification by including a cipher on the
signer’s identity in the signature. So, to identify the signer the cipher needs to
be decrypted. Our approach to distribute traceability works on all group signa-
ture schemes of this kind for which the used encryption scheme has a threshold
variant. Threshold encryption schemes differ from other public key encryption
schemes as they require multiple servers to cooperate during decryption. We
apply our technique to a specific group signature scheme by Boneh, Boyen, and
Shacham [10], but it is straightforward to adapt the technique to other group
signature schemes.

4 A Group Signature Scheme with Distributed
Traceability

Our technique to achieve distributed traceability requires a group signature
scheme that includes ciphers on signer identities in signatures and uses an encryp-
tion scheme to which a threshold variant can be constructed. We illustrate our
technique using the group signature scheme given by Boneh, Boyen and Shacham
[10], but it can be used for other schemes as well. First, we present the encryp-
tion scheme and its threshold variant, then we present protocols to add users to
the group and to prove group membership. Finally, we present DOMS, a group
signature scheme with t-out-of-m-distributed traceability.

Threshold Public Key Encryption. We will use Threshold Public Key
Encryption (TPKE) [9,14,16,18,25] to achieve distributed traceability of our
group signature scheme. This idea was already proposed by [6,22].

Definition 10 (Threshold Public Key Encryption). A Threshold Public
Key Encryption Scheme TPKE consists of five probabilistic polynomial time
algorithms (KeyGen, Encrypt, ShareDec, ShareVerify, Combine), where

– KeyGen(1λ,m, t) → (PK,VK,SK): on input 1λ (where λ is the security para-
meter), the number of decryption servers m and a threshold parameter t
(t ≤ m), it outputs a tuple (PK,VK,SK), where PK is a public key, VK
is a verification key and SK = (sk1, . . . , skm) is a vector of m private key
shares.

– Encrypt(PK,M) → c: on input PK and message M , it outputs ciphertext c.
– ShareDec(PK, c, ski) → θi/ ⊥: on input PK, c and the i’th private key share

ski, it outputs a decryption share θi or a special error symbol ⊥.
– ShareVerify(PK,VK, c, θi) → v ∈ {0, 1}: on input PK, VK, c, and θi, it outputs

a bit v ∈ {0, 1}.
– Combine(PK,VK, c, Θ) → M/ ⊥: on input PK, VK, c and a set Θ of t decryp-

tion shares θi, it outputs a message M or a special error symbol ⊥.



172 J. Blömer et al.

As consistency requirements, for all (PK,VK,SK) output by KeyGen(1λ, t,m)
the following two properties must hold:

1. For every c as output of Encrypt(PK,M) and all i ∈ {1, . . . , m} it holds: if θi

is the output of ShareDec(PK, c, ski), then ShareVerify(PK,VK, c, θi) = 1.
2. For every c as output of Encrypt(PK,M) and every set Θ of t valid decryption

shares it holds: Combine(PK,VK, c, Θ) = M .

Definition 11 (Threshold CPA - Exptcpa−b
A,TPKE(λ, t,m)). The Threshold Cho-

sen Plaintext Attack is defined using the following game between a challenger
and an adversary A both with input (λ, t,m):

1. A outputs a set S ⊂ {1, . . . , m} of size |S| = t − 1.
2. (PK,VK,SK) ← KeyGen(1λ, t,m) is run by the challenger. Then PK,VK and

all ski for i ∈ S are given to A.
3. A outputs two messages M0,M1 of equal length, and receives a ciphertext

c ← Encrypt(PK,Mb) from its challenger.
4. When A outputs a bit b′ ∈ {0, 1}, return b′.

Definition 12. A Threshold Public Key Encryption Scheme is semantically
secure against chosen plaintext attacks, if for all probabilistic polynomial time
algorithms A there exists a negligible function negl such that

∣

∣

∣Pr[Exptcpa−1
A,TPKE(λ, t,m) = 1] − Pr[Exptcpa−0

A,TPKE(λ, t,m) = 1]
∣

∣

∣ ≤ negl(λ),

where the probabilities are taken over the random bits used by A and in the
experiments.

Analogously to the definition of anonymity we define selective security for the
threshold encryption. Using the techniques of [25] adaptively secure threshold
encryption schemes can be constructed.

Linear Encryption and its Threshold Variant. Linear Encryption is a pub-
lic key encryption scheme that was introduced by Boneh, Boyen, and Shacham
in [10]. It is defined as follows:

– (PK,SK) ← KeyGen(1λ), where PK:=(GD, û, v̂, ĥ) is the public key con-
sisting of a bilinear group pair (G1,G2) and generators (û, v̂, ĥ) ∈ G3

2, and
SK:=(ξ1, ξ2) ∈ Zp

2 is the secret key such that ûξ1 = v̂ξ2 = ĥ.

– Encrypt(PK,M) : choose α, β
$← Zp and set c:=(ψ(û)α, ψ(v̂)β ,M · ψ(ĥ)α+β).

– Decrypt(PK,SK, c) : parse c as (T1, T2, T3) and compute M :=T3/(T ξ1
1 · T ξ2

2 ).

It is not hard to see that Linear Encryption is correct and secure under the
Decision Linear assumption. We could also define the encryption scheme in G1,
without G2, the isomorphism ψ, and the pairing e. However, we need ψ and e for
the reduction of the Threshold Linear Encryption defined below. Furthermore,
we need the following lemma to prove security of our system.



Short Group Signatures with Distributed Traceability 173

Lemma 2. Let G = 〈g〉 be a group of prime order p and f(x) an arbitrary
polynomial over Zp of degree t − 1. Define F : Zp → G as F (x):=gf(x). Suppose
X ⊂ Zp such that |X| = t. Then, given {(xi, F (xi)}xi∈X , one can evaluate F at
any x ∈ Zp using Lagrange interpolation (LI).

Proof.

F (x) = gf(x) LI= g

∑
xi∈X

Δxi,X(x)f(xi)

=
∏

xi∈X

(

gf(xi)
)Δxi,X(x)

=
∏

xi∈X

F (xi)Δxi,X(x)

Hence, using the last expression one can evaluate F (x). ��
Using Shamir’s secret sharing technique [31] we obtain a t-out-of-m Threshold

Public Key Encryption scheme, called Threshold Linear Encryption (TLE):

– (PK,SK,VK) ← KeyGen(1λ, t,m), where PK:=(GD, û, v̂, ĥ) is the public key
consisting of a bilinear group pair (G1,G2) and generators (û, v̂, ĥ) ∈ G3

2,
SK:=((ξ1(1), ξ2(1)), . . ., (ξ1(m), ξ2(m))) for uniformly at random chosen poly-
nomials ξ1, ξ2 of degree t−1 over Zp such that ûξ1(0) = v̂ξ2(0) = ĥ are the secret
key shares, and VK:=((ûξ1(1), v̂ξ2(1)), . . ., (ûξ1(m), v̂ξ2(m))) is the verification
key.

– Encrypt(PK,M) : choose α, β
$← Zp and set c:=(ψ(û)α, ψ(v̂)β ,M · ψ(ĥ)α+β).

– ShareDec(PK, ski, c) : set θi,1:=T
ξ1(i)
1 , θi,2:=T

ξ2(i)
2 , and θi:=(θi,1, θi,2).

– ShareVerify(PK,VK, c, θi) : output 1, if and only if e(θi,1, û) = e(T1, vki,1) and
e(θi,2, v̂) = e(T2, vki,2).

– Combine(PK,VK, c, Θ) : If all decryption shares θi ∈ Θ are valid, for i ∈ S ⊆
{1, . . . , m}, |S| ≥ t, then use the Lagrange polynomial interpolation to decrypt
and output the message M . This can be done by computing M :=T3/

∏

i∈S

(θi,1 ·
θi,2)Δi,S(0). Otherwise, output ⊥.

Correctness of Threshold Linear Encryption:

1. For every ciphertext c = (T1, T2, T3) = (ψ(û)α, ψ(v̂)β ,M · ψ(ĥ)α+β) as out-
put of Encrypt(PK,M) and all i ∈ {1, . . . , m} it holds: let θi be the out-
put of ShareDec(PK, ski, c), then e(θi,1, û) = e(T ξ1(i)

1 , û) = e(T1, û
ξ1(i)) =

e(T1, vki,1) and e(θi,2, v̂) = e(T ξ2(i)
2 , v̂) = e(T2, v̂

ξ2(i)) = e(T2, vki,2).
2. For every c = (T1, T2, T3) as output of Encrypt(PK,M) and every set Θ of t

valid decryption shares it holds: Combine(PK,VK, c, Θ) = M , which follows
from Lemma 2.

Lemma 3. If the Linear Encryption scheme is semantically secure against cho-
sen plaintext attacks, then the Threshold Linear Encryption scheme TLE(t,m)
is secure against threshold chosen-plaintext attacks.

The proof will be given in the full version of this paper.



174 J. Blömer et al.

4.1 Construction of Our Group Signature Scheme

Our Group Signature Scheme is based on the construction given in [10]. We define
a zero-knowledge protocol which will be transformed into a group signature
scheme using the Fiat-Shamir heuristic [19].

The Basic Zero-Knowledge Protocol. Given (GD, h1, w = gγ
2 ), where GD ←

G(1λ) is the output of a bilinear group generator (such that the SDH assumption

holds), h1 ∈ G1 and γ
$← Zp is some unknown value, the secret of a prover is

the tuple (A, x, y) =
(

(g1 · hy
1)

1
x+γ , x, y

)

, where x, y ∈ Zp. To prove possession
of such a tuple, the prover can use the bilinear map e which is contained in GD:
e(A, g2)x · e(A, gγ

2 ) · e(h1, g2)−y = e(g1, g2).

Protocol 1. Compute a Threshold Linear Encryption (T1, T2, T3) of A and
helper values:

α, β
$← Zp, T1:=uα, T2:=vβ , T3:=A · hα+β , δ1:=xα, δ2:=xβ.

Choose blinding values rα, rβ , rx, ry, rδ1 , rδ2
$← Zp and compute

R1:=urα , R2:=vrβ ,

R3:=e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1−rδ2 · e(h1, g2)−ry ,

R4:=T rx
1 · urδ1 , R5:=T rx

2 · vrδ2 .

Given T1, T2, T3, R1, R2, R3, R4, R5, the verifier responds with a challenge c
$←

Zp. The prover computes

sα:=rα + cα, sβ :=rβ + cβ, sx:=rx + cx,

sy:=ry + cy, sδ1 :=rδ1 + cδ1, sδ2 :=rδ2 + cδ2

and sends them to the verifier who then checks the following five equations

usα
?= T c

1 · R1 vsβ
?= T c

2 · R2

e(T3, g2)sx ·e(h,w)−sα−sβ ·e(h, g2)−sδ1−sδ2 ·e(h1, g2)−sy
?= (e(g1, g2)/e(T3, w))c·R3

T sx
1 · u−sδ1

?= R4 T sx
2 · v−sδ2

?= R5

and accepts, if all five equations hold.

Lemma 4. The above protocol is complete (a verifier accepts all interactions
with an honest prover), zero-knowledge (there is simulator for transcripts of
protocol executions) and a proof of knowledge (there is an extractor) under the
Decision Linear assumption.

The proof is similar to that in [10] and is given in the full version of this
paper.



Short Group Signatures with Distributed Traceability 175

Construction 2. The DOMS(t,m, n) group signature scheme with distributed
traceability works as follows:

– Setup(1λ, t,m, n): run G(1λ) to obtain GD, compute TLE keys PKTLE =
(û, v̂, ĥ) ∈ G3

1, VKTLE and SKTLE = ((ξ1(1), ξ2(1)), . . . , (ξ1(m), ξ2(m))), and

choose element γ
$← Zp and generator h1

$← G1. Furthermore, fix some hash
function H : {0, 1}∗ → Zp. Set PKDOMS:= (GD, û, v̂, ĥ, g1, h1, g2, w = gγ

2 ,H),
VKDOMS:=VKTLE, SKDOMS:=SKTLE and IKDOMS:=γ. Publish PKDOMS and
VKDOMS, give IKDOMS to the key issuer and distribute SKDOMS amongst the
opening management servers.

– Join(PKDOMS, IKDOMS): the user id picks an element yid
$← Zp and sends hyid

1

to the key issuer. The key issuer chooses xid
$← Zp and computes Aid:=(g1 ·

hyid
1 )1/(γ+xid). The membership certificate (id, Aid, xid) is permanently linked

to the user id and sent to her. Additionally, the key issuer stores (id, Aid, xid)
in RegList. The user sets the private key to ukid:=(Aid, xid, yid).

– Sign(PKDOMS,uki,M): apply the Fiat-Shamir heuristic to Protocol 1 and com-
pute T1, T2, T3, R1, R2, R3, R4, R5 as defined in the protocol, use the hash
function H to compute the challenge value c:=H(M , T1, T2, T3, R1, R2, R3,
R4, R5) and compute response-values as in the protocol to obtain signature
σ:=(T1, T2, T3, c, sα, sβ , sx, sy, sδ1 , sδ2).

– SignatureVerify(PKDOMS,M, σ): compute the R-values using the verification
equations from Protocol 1 and output 1, if c

?= H(M , T1, T2, T3, R1, R2, R3,
R4, R5). Otherwise, output 0.

– ShareOpen(PKDOMS, ski ∈ SKDOMS,M, σ): verify that σ is a valid signature on
M . If so, output a TLE decryption share for (T1, T2, T3). Otherwise, output ⊥.

– ShareVerify(PKDOMS,VKDOMS, θ,M, σ): if σ is a valid signature on M and θ is
a valid TLE decryption share, output valid. Otherwise, output invalid.

– ShareCombine(PKDOMS,VKDOMS, θ1, . . . , θt,M, σ,RegList): if σ is not a valid
signature on M and any θi is not a valid open share, output ⊥. Otherwise, com-
bine the open shares/TLE decryption shares to obtain value Ã. Use RegList
to identify the user linked to Ã.

It is not hard to see that DOMS satisfies the requirements imposed on group
signature schemes with t-out-of-m-distributed traceability.

4.2 Proof of Anonymity

Lemma 5. If the Threshold Linear Encryption TLE(t,m) is semantically secure
against threshold chosen-plaintext attacks, then DOMS(t,m, n) is anonymous in
the random oracle model.

Proof. Assume A is an algorithm that breaks the anonymity of DOMS(t,m, n).
Then we can construct an algorithm B that breaks the threshold chosen-plaintext
security of TLE(t,m).



176 J. Blömer et al.

In the first step algorithm A outputs a set S of management server indices,
where |S| = t − 1. This set is forwarded by B to its threshold chosen-
plaintext challenger. Then B is given (PK,SK,VK), where PK = (GD, û, v̂, ĥ),
SK = {(ξ1(i), ξ2(i))}i∈S , and VK = ((ûξ1(1), v̂ξ2(1)), . . . , (ûξ1(m), v̂ξ2(m))). The
key issuer private key IK and elements h1, w for the public key are generated
by setting IK:=γ for γ

$← Zp and h1
$← G1. Furthermore, B sets w:=gγ

2 and
gives PK,VK,SK, IK to A. Then, n simulations of the Join protocol are executed
between A and B, so A gets user private keys uk1, . . . ,ukn with uki:=(Ai, xi, yi).

During the interaction A is allowed to query the random oracle H. B
responses to those queries by returning some r

$← Zp, ensuring to respond to
identical queries with the same value.

When A outputs user indices id0 and id1 and a message M upon which
it wants to be challenged, B requests a challenge from the TLE chosen-
plaintext challenger on messages Aid0 and Aid1 . Based on the challenge
ciphertext (T1, T2, T3) B generates a transcript (T1, T2, T3, R1, R2, R3, R4,
R5, c, sα, sβ , sx, sy, sδ1 , sδ2) of Protocol 1 using the zero-knowledge simulator
(Lemma 4). Then B patches the random oracle H(M,T1, T2, T3, R1, R2,
R3, R4, R5):=c. If the patch fails, B outputs ⊥ and exits, but this only hap-
pens with negligible probability. Otherwise, B generates the challenge signature
σ:=(T1, T2, T3, c, sα, sβ , sx, sy, sδ1 , sδ2) for A based on the transcript.

When A outputs a bit b′ as its guess on the identity used to generate the
challenge signature B outputs b′ as its guess on the message encrypted in its
challenge ciphertext.

Since B generates a valid challenge signature for user idb with the same distrib-
ution as in the real group signature scheme, B’s guess on b is correct, whenever A’s
guess is correct. Hence, B breaks the threshold chosen-plaintext security of TLE
with the same probability as A breaks the anonymity of DOMS. ��

4.3 Further Properties

Our DOMS scheme also provides traceability and strong-exculpability. Traceabil-
ity can be shown assuming the SDH assumption holds. The proof informally
works as follows: given an instance of q-SDH we use the technique from [8] to
generate up to q different group membership certificates in the Join protocol. If
an adversary against traceability outputs a signature that can not be opened to
an existing user, we use the Forking Lemma [30] to extract a complete member-
ship certificate (A, x, y). This certificate can then be transformed into a solution
to the original q-SDH instance using the technique of [8].

To prove strong-exculpability we have to assume that computing discrete
logarithms (DLog) is hard. This assumption is implied by D-Linear2 and SDH.
The given DLog instance is used within the Join protocol when an honest user id
sends hyid

1 to the key issuer. If an adversary against strong-exculpability outputs
a signature that can be traced back to user id, we use the Forking Lemma [30]
to extract the complete membership certificate (Aid, xid, yid), which includes the
discrete logarithm yid as the solution to the original DLog instance.



Short Group Signatures with Distributed Traceability 177

5 Extensions and Modifications

In this section we briefly discuss further adaptions of our group signature scheme.
More detailed descriptions are given in the full version of this paper.

Achieving CCA-Full-Anonymity. So far, we have restricted ourselves to
CPA-full-anonymous group signatures. Here we show how to modify our scheme
to achieve CCA-full-anonymity. CCA-full-anonymity is defined analogously to
CPA-full-anonymity, except that in the anonymity experiment (Definition 8)
the adversary is also given oracle access to Open (used to open the identity of
signers in case of centralized traceability) or ShareOpen(·),ShareVerify(·), and
ShareCombine(·) (in case of distributed traceability). Among other things, the
construction of Boneh, Boyen, and Shacham, as well as ours, crucially depends
on the structure of Linear Encryption. Hence, turning our CPA-fully-anonymous
group signature into CCA-fully-anonymous group signature cannot be achieved
by simply using a CCA-secure variant of Linear Encryption. Instead, Linear
Encryption must be replaced by a CCA-secure variant while at the same time
preserving its basic structure.

Fischlin [20] shows how to transformanyΣ-protocol into a non-interactive zero-
knowledge proof of knowledge (NIZK) with an online extractor. As an application
of this technique, Fischlin obtains aCCA-fully-anonymous group signature scheme
based on the Boneh-Boyen-Shacham scheme. The only modification to the origi-
nal scheme is that signatures σ are extended to include a NIZK proof of knowl-
edge π for the values α, β used to compute the ciphertext (T1, T2, T3), i.e. the first
three elements of a signature. Intuitively, this leads to CCA-full-anonymity, since
an adversary that submits a valid signature to the Open oracle must already know
the values α, β used to hide the identity of the group member. Hence, the Open
oracle is useless to an adversary. More precisely, in a simulation of an adversary
the simulator can use the online extractor for the NIZK proof of knowledge π to
compute the values α, β, use these to recover the identity of the group member, and
answer Open queries correctly. By the same reasoning, combined with Lemma 2,
one sees that by incorporatingFischlin’s extension inConstruction 2 we get aCCA-
fully-anonymous group signature scheme with distributed traceability.

The proofs in Fischlin’s NIZK proofs of knowledge are not of constant size
(in term of the number of group elements). Therefore, unlike the original scheme
the CCA-full-anonymous variant of the Boneh, Boyen, Shacham group signature
scheme no longer has signatures of constant size. However, as Fischlin points out,
the signatures are still moderately large, and for reasonable parameters shorter
than signatures in RSA-based schemes. The same remarks apply to our CPA-fully-
anonymous and CCA-fully-anonymous schemes with distributed traceability.

Considering Dynamic Groups. Bellare, Shi, and Zhang define in [5] a model
for dynamic group signatures. In this model the number of group members is not
fixed in advance - group members join the group over time. Hence, the Join pro-
tocol must ensure that no adversary obtains information about the membership
certificates, even under concurrent executions of the protocol. To achieve these



178 J. Blömer et al.

properties, Join can be implemented as a concurrent zero-knowledge protocol.
In [17] such a protocol is defined, which can also be used in our system.

Additionally to the flexible group joining mechanism in dynamic groups, the
Join protocol has to ensure another security property - the non-frameability.
During the Join protocol a user commits to a personal public key upkid. Using
this user public key the opener of signatures has to prove that the claimed user
really generated the signature in question. Non-frameability then guarantees that
the opener is not able to forge such proofs.

To achieve non-frameability in our construction, we add a new algorithm
Judge and modify the algorithm ShareCombine. As user public key upkid we use
hyid
1 , and we let ShareCombine include the proof string τ :=xid. Recall that this

value is known to the share combiner since it is part of the membership certificate
list RegList created by the key issuer during Join. Algorithm Judge then checks
the outcome of the combining procedure by verifying the equation e(g1, g2)

?=
e(Aid, wgxid

2 ) · e(upk−1
id , g2). If the equation does not hold, the algorithm rejects,

which means that the combiner tried to blame the user id.

Other Variants of Distributed Traceability. In the group signature with
distributed traceability, any set of management servers large enough can identify
signers. This implies that any management server has the same rights and pow-
ers. However, it may be useful to have management servers with different rights.
This can be modeled with monotone access structures and realized similarly to
the construction given above by replacing Shamir’s secret sharing schemes with
secret sharing schemes based on monotone span programs (MSP) [3]. We briefly
discuss this generalization. Informally, a monotone access structure A over a
universe U = {1, . . . , m} is a subset of the power set of U . Elements in A are
called authorized sets. An access structure is called monotone if and only if every
superset of an authorized set is authorized. In group signatures with monotone
group management we are given a monotone access structure A over the set
of management servers and we require that every authorized set of servers in A
must be able to identify signers. This allows us to express different levels of power
of the opening managers. Group signatures with monotone group management
can be realized with secret sharing schemes for monotone access structures (see
again [3]), i.e. the secret opening key is shared such that every authorized set
of opening managers can reveal the signers identity. Secret sharing schemes for
monotone access structures can be realized with monotone span programs. To
construct group signatures with monotone group management, given an access
structure A we construct an MSP-based variant of Linear Encryption such that
decryption of ciphertexts is possible if and only if decryption shares from an
authorized set in A are available. The security of the resulting scheme can be
proved using a reduction to the Linear Encryption. Replacing in our construction
Threshold Linear Encryption with a MSP-based Linear Encryption for access
structure A yields a group signature scheme with monotone group management
for access structure A. In particular, as long as an adversary does not corrupt
an authorized set of management servers he does not obtain any information
about encrypted identities, i.e. signers. Replacing Threshold Linear Encryption



Short Group Signatures with Distributed Traceability 179

with MSP-based Linear Encryption for the MSP-variant in our group signature
scheme increases flexibility of our constructions. This generalization only influ-
ences the decryption and combine algorithms. Protocol 1 must not be modified
and signatures remain unchanged.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
which greatly improved the paper.

References

1. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

2. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transfer-
able e-cash. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer,
Heidelberg (2015)

3. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

6. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group sig-
natures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer,
Heidelberg (2008)

7. Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly linkable reputation
systems. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 478–
488. Springer, Heidelberg (2015)

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

9. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold
encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

11. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS
2004, pp. 168–177. ACM (2004)

12. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

13. Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible e-cash made practi-
cal. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 77–100. Springer, Heidelberg
(2015)

14. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)



180 J. Blömer et al.

15. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

16. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Com-
puting, STOC 1994, pp. 522–533. ACM (1994)

17. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

18. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

20. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

21. Franklin, M., Zhang, H.: Unique group signatures. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 643–660. Springer,
Heidelberg (2012)

22. Ghadafi, E.: Efficient distributed tag-based encryption and its application to group
signatures with efficient distributed traceability. In: Aranha, D.F., Menezes, A.
(eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 327–347. Springer, Heidelberg
(2015)

23. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

24. Kiayias, A., Yung, M.: Group signatures: provable security, efficient constructions
and anonymity from trapdoor-holders. IACR Cryptology ePrint Archive 2004, 76
(2004). http://eprint.iacr.org/2004/076

25. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012)

26. Manulis, M.: Democratic group signatures: on an example of joint ventures. In:
ASIACCS 2006, p. 365. ACM (2006)

27. Manulis, M., Sadeghi, A.-R., Schwenk, J.: Linkable democratic group signatures.
In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp.
187–201. Springer, Heidelberg (2006)

28. Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature
scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–
32. Springer, Heidelberg (2006)

29. Persiano, G., Visconti, I.: An Efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196–211. Springer, Heidelberg (2004)

30. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13, 361–396 (2000)

31. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
32. Zheng, D., Li, X., Ma, C., Chen, K., Li, J.: Democratic group signatures with

threshold traceability. IACR Cryptology ePrint Archive 2008, 112 (2008). http://
eprint.iacr.org/2008/112

http://eprint.iacr.org/2004/076
http://eprint.iacr.org/2008/112
http://eprint.iacr.org/2008/112


On the Optimality of Differential
Fault Analyses on CLEFIA

Ágnes Kiss1(B), Juliane Krämer1,2, and Anke Stüber2

1 TU Darmstadt, Darmstadt, Germany
agnes.kiss@ec-spride.de, jkraemer@cdc.informatik.tu-darmstadt.de

2 TU Berlin, Berlin, Germany
anke@sec.t-labs.tu-berlin.de

Abstract. In 2012, several Differential Fault Analyses on the AES
cipher were analyzed from an information-theoretic perspective. This
analysis exposed whether or not the leaked information was fully
exploited. We apply the same approach to all existing Differential Fault
Analyses on the CLEFIA cipher. We show that only some of these attacks
are already optimal. We improve those analyses which did not exploit
all information. With one exception, all attacks against CLEFIA-128
reach the theoretical limit after our improvement. Our improvement of
an attack against CLEFIA-192 and CLEFIA-256 reduces the number of
fault injections to the lowest possible number reached so far.

Keywords: CLEFIA · Differential fault analysis · Fault attack

1 Introduction

An attack which actively alters the computation of a cryptographic algorithm
by inducing software or hardware faults is called fault attack. A Differential
Fault Analysis (DFA) is a specific form of a fault attack. After inducing a fault
into one or several computations of a cryptographic algorithm, the secret key of
this algorithm is revealed by analyzing the difference between correct and faulty
results of the computation. For symmetric algorithms, Differential Fault Analy-
ses were first described in 1997 [3]. Since then, they were successfully applied to
various symmetric ciphers and their key schedule, e.g., DES [3], AES [9], and
CLEFIA. They were also applied to other cryptographic algorithms, such as
stream ciphers [7] and hash functions [6].

In 2012, Sakiyama et al. analyzed the information-theoretic optimality
of seven Differential Fault Analyses on the Advanced Encryption Standard

This work has been co-funded by the DFG as part of projects P1 and E3 within
the CRC 1119 CROSSING and by the European Union’s Seventh Framework Pro-
gram (FP7/2007-2013) under grant agreement n. 609611 (PRACTICE). The authors
would like to thank TU Berlin, especially the Chair for Security in Telecommunica-
tions and Jean-Pierre Seifert, for valuable support.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 181–196, 2016.
DOI: 10.1007/978-3-319-32859-1 15



182 Á. Kiss et al.

(AES) [11]. They developed a model which quantifies the amount of information
a certain fault can deliver. Information-theoretic optimality does not imply that
an attack is also optimal from other points of view, e.g., a non-optimal method
might be easier to conduct in practice. However, an attack which is not optimal
can still be improved in the given framework, i.e., the key space can be further
reduced or a key space with the same size can be determined with less fault
injections.

We apply the approach from Sakiyama et al. to analyze the information-
theoretic optimality of Differential Fault Analyses on CLEFIA. The CLEFIA
cipher is a 128-bit block cipher proposed by Sony Corporation in 2007 [13].
Since then, several attacks against it have been published, including side channel
attacks which exploit cache accesses [10], Impossible Differential Attacks [17],
and novel methods such as the Improbable Differential Attack [16]. In this paper,
we analyze six published Differential Fault Analyses on CLEFIA [1,2,4,14,15,
18]. To the best of our knowledge, these are all DFAs on CLEFIA until today.

Contribution: We analyze all published Differential Fault Analyses on CLEFIA
from an information-theoretic perspective with the techniques introduced in [11].
These DFAs are described in Sect. 3. The methodology and the results of our
analysis are described in Sect. 4. Our results show that some of the attacks
are optimal, while others do not exploit all available information. With one
exception, we optimized all attacks against CLEFIA-128 which proved not to be
optimal. The optimized attacks reach the theoretical limits and thus exploit all
available information. For longer keys, all DFAs were shown not to be optimal
in our analysis. We considerably improved one of them. The improved attack
is concretely the best known attack against CLEFIA-192 and CLEFIA-256. In
Sect. 5, we explain how we optimized the non-optimal attacks against CLEFIA-
128 and describe our improved attack against CLEFIA-192/256.

2 Background

We first explain Differential Fault Analysis. Then, we present the CLEFIA cipher
and provide background knowledge on information theory.

2.1 Differential Fault Analysis

For a Differential Fault Analysis (DFA), an attacker needs at least one correct
ciphertext and one faulty ciphertext. Thus, she has to have the ability to induce
faults on the cryptographic primitive level. These faults can be described in
detailed fault models, which include the location and the timing of the fault,
and the number of bits and bytes which are affected by the fault. A fault can,
for example, affect one byte in the register storing the first four bytes of the state
(location) in the penultimate round (timing). The assumed fault model gives the
attacker partial information about the difference between certain states of the
correct and the faulty computations, although she will not know the concrete
value of the fault in most scenarios. Since the attacker also knows the correct



On the Optimality of Differential Fault Analyses on CLEFIA 183

Fig. 1. CLEFIA encryption algorithm

Fig. 2. F-function F0 (F1 with reversed
S-boxes and M1 diffusion matrix)

Fig. 3. DoubleSwap function Σ

and faulty ciphertext, and thereby their difference, she can deduce information
about the secret key. Small differences in the fault models might crucially affect
the capabilities and the complexity of the attacks [3]. For the attacks analyzed
in this work, the attacker is assumed to have full control on the timing and the
location of the fault, and is able to induce not permanent, but transient faults.

2.2 CLEFIA

The 128-bit block cipher CLEFIA was developed by Sony Corporation and pre-
sented in 2007 [13]1. To be compatible with AES, CLEFIA supports key lengths
of 128, 192, and 256 bits. CLEFIA is a Feistel cipher with four 32-bit data
lines which are used during r rounds throughout the encryption and decryption
processes. Corresponding to the increasing key lengths, the number of rounds
are 18, 22, and 26. According to the four data lines, Pi ∈ {0, 1}32, i ∈ {0, . . . , 3}
denote the four 32-bit parts of the plaintext P , so that P = P0|P1|P2|P3.
Similarly, the state is denoted by T = T0|T1|T2|T3 and the ciphertext by
C = C0|C1|C2|C3.

As shown in Fig. 1, CLEFIA uses 2r round keys during encryption. In the
kth round, RK2k and RK2k+1 are used for k ∈ {0, . . . , r − 1}. Moreover, four
whitening keys are used, from which WK0 and WK1 are XORed with P1 and
1 All figures in this section are taken from [13].



184 Á. Kiss et al.

P3 at the beginning of the encryption, while WK2 and WK3 are XORed to the
final T1 and T3. The encryption algorithm uses the 4-branch, r-round generalized
Feistel structure, GFN4,r, between the initial and the final key whitening phases.

In every round, two 32-bit F-functions F0 and F1 are used, shown in Fig. 2.
Both F-functions first XOR the input with the round key and then make use of
the 8-bit S-boxes S0 and S1. Afterwards, F0 and F1 contain a diffusion layer pro-
vided by the corresponding diffusion matrices M0 and M1. Here, the transpose
of the state T is split into 8-bit vectors which are multiplied with the respective
matrix in GF (28).

The four whitening keys WKi, i ∈ {0, . . . , 3} and the 2r round keys RKi, i ∈
{0, . . . , 2r−1} are calculated from the initial secret key K during a key schedule
procedure. The key scheduling for CLEFIA-128 [13] utilizes sixty 32-bit constant
values, the so-called DoubleSwap function Σ : {0, 1}128 → {0, 1}128 shown in
Fig. 3, and the 4-branch Feistel structure through 12 rounds, GFN4,12. For longer
keys, altogether 84 constant values are used along with the DoubleSwap function
and the 8-branch Feistel structure with 10 rounds, GFN8,10.

2.3 Information Theory

The foundations of information theory have been laid down by Claude E.
Shannon in 1948 [12]. The Shannon entropy for a discrete random variable X
with p(X = xi) = pi, i = 1, . . . , n and {x1, . . . , xn} � {0, 1}∗, is

H(X) := −
n

∑

i=1

pi log2(pi). (1)

It quantifies the uncertainty when the value of X is to be predicted. For two
discrete random variables X and Y , their joint entropy can be defined as well
as the respective conditional entropies. The joint entropy of X and Y , H(XY )
or H(X,Y ), is

H(XY ) := −
n

∑

i=1

m
∑

j=1

p(X = xi, Y = yj) log2(p(X = xi, Y = yj)). (2)

We have H(XY ) ≤ H(X)+H(Y ), while for stochastically independent X and Y ,
equality holds. Following the definition by Shannon, the conditional entropy of X
is the average of the entropy of X for each value of Y , weighted according to the
probability of getting that particular Y [12]. Thus, the entropy of X conditioned
on Y , i.e., the conditional entropy H(X | Y ), is defined as

H(X | Y ) :=
m

∑

j=1

p(Y = yj)H(X | Y = yj),with (3)

H(X | Y = yj) := −
n

∑

i=1

p(X = xi|Y = yj) log2(p(X = xi|Y = yj)). (4)

Using the definition of the conditional probability [5], Eq. 3 becomes

H(X | Y ) = H(XY ) − H(Y ). (5)



On the Optimality of Differential Fault Analyses on CLEFIA 185

3 Differential Fault Analyses on CLEFIA

We analyzed six DFAs on CLEFIA which are, to the best of our knowledge, all
published DFAs on CLEFIA. They were published between 2007 and 2013.

The first DFA was presented already in 2007 [4]. The attack against CLEFIA-
128 uses independent random byte faults at six different positions of the algo-
rithm. These are induced in T0 and T2 in rounds 15, 16 and 17 and help to reveal
RK30, RK31, RK32 ⊕ WK3, RK33 ⊕ WK2, RK34 and RK35. Thus, the attack
needs at least 6 faulty encryptions. However, the authors state that the fault
inductions have to be repeated until all bytes are recovered. They had to induce
at least 18 faults in their simulations. Based on the recovered round keys, the
original secret key can be revealed by analyzing the key scheduling algorithm. If
the key size is 192 or 256, the same procedure has to be applied in rounds r − 9
to r − 1. Here, the simulated attacks need 54 faults to be successful.

One year later, these results were improved [14]. Takahashi and Fukunaga
encrypt a random plaintext, which does not have to be known, with the same
secret key three times with CLEFIA-128. They insert four-byte faults in the 16th

round in two of these encryptions, one into F0 and one into F1. The authors use
the fact that “a fault corrupts the intermediate values of the fault-injection round
and the subsequent rounds”. Thus, they obtain more information out of a single
fault, since they also analyze how the differences propagate through the next
two rounds. After analyzing rounds 16 to 18, 219 candidates for the round keys
are left. By applying the inverse of the DoubleSwap function and GFN−1

4,12 to all
round key candidates, the 128-bit secret key can be uniquely identified. In 2010,
the authors adapted the same attack to keys with 192 and 256 bits, where 10.78
faults are needed on average [15].

Still in 2010, multiple-byte Differential Fault Analyses were described for
CLEFIA-128 [18]. The authors propose three attack models, including the first
attack which exploits fault injections in the final round. This attack exploits
faults in the inputs of F0 and F1 in rounds 18, 17, and 16. The authors consider
multiple-byte faults, so that each single fault can affect up to four bytes. The
second attack builds on [4] and induces faults into the inputs of F0 and F1 in
both the 15th and 17th round, but extends their fault model to multiple bytes.
For the third attack, which targets the 16th round, however, the strict four-byte
fault model of [14] has been loosened to a one-to-four-byte model, so that the
attack presented in [14] can be seen as a special case of this more general attack
description. According to the authors, the minimum amount of faulty ciphertexts
for these three attacks to be successful is 5 to 6, 6 to 8, and 2. For the first two
attacks, these faults help to reveal the secret key completely. In the third attack,
219 candidates for the secret key remain. Unfortunately, the description of these
three attacks is not always easy to follow, and several statements in [18] are
inconsistent with one another. The description of these attacks in the work at
hand is to the best of our knowledge.

In 2012 it was analyzed if protecting the last four rounds of CLEFIA-128
would counter DFAs [1]. The authors show that it is sufficient to induce two
random byte-faults in the computation of F0 and F1 in round 14. It is assumed



186 Á. Kiss et al.

that the faults are induced before the diffusion operation of the F-functions, cf.
Fig. 3 in [1]. These two faults are enough to uniquely reveal the secret key by
exploiting the propagation of the faults in the final four rounds. Thus, it is not
sufficient to protect the last four rounds of CLEFIA against such attacks. One
year later, the same authors extended their attack to CLEFIA-192 and CLEFIA-
256 [2]. Here, they also start to scrutinize how much information a certain fault
can provide. They induce two random faults each in the computation of F0

and F1, in rounds r − 4 and r − 8. Thus, they induce eight faults altogether.
They can reveal the whole secret key of both CLEFIA-192 and CLEFIA-256.

4 Information-Theoretic Analysis of DFAs on CLEFIA

We adapt the information-theoretic methodology described in [11] (and recapit-
ulated in the full version of this paper [8, Sect. 4.1]) to the CLEFIA block cipher.
Then, we evaluate the optimality of all published DFAs against CLEFIA.

4.1 General Methodology Adapted to CLEFIA

We refine the general model of [11] for the 8-bit model of CLEFIA with S0 and
S1 S-boxes. The refined model is shown in Fig. 4. It shows the XORing of the
round key and the application of the S-boxes S0 and S1 within the F-functions
F0 and F1 of the cipher CLEFIA. x and y denote the 8-bit input and the 8-bit
output of the S-box. z is the 8-bit value for which x = z ⊕ k with the key k.
Given a correct and a faulty execution of the encryption algorithm, the 8-bit
differences are Δx = x1 ⊕ x2, Δy = y1 ⊕ y2, and Δz = z1 ⊕ z2. The attacker can
gain the values x1, x2,Δx, y1, y2,Δy, and Δz. K,X1,X2, Y1, Y2,ΔX, and ΔY
are discrete random variables with possible 8-bit values of k, x1, x2, y1, y2,Δx,
and Δy.

To analyze the values of H (X1 | ΔXΔY ) and H (ΔX | ΔY ), we take a look
at the number of possible solutions for x1 that satisfy

Δy = Si (x1) ⊕ Si (x1 ⊕ Δx) (6)

for Si ∈ {S0, S1}. The number of possible solutions to Eq. 6 for x1 when Δx
and Δy are given can be derived from the values of Table 1 in [14]: we divide
the values by 256 since we do not regard the values for the 8-bit part k of the
round key but solve the equation for x1 instead. Furthermore, we discard the
values for Δx,Δy = 0 since we assume them to be nonzero. Hence, we discard

z �8

k

�8

x
S0 (S1) y�8

Fig. 4. Simple cipher model using an 8-bit CLEFIA S-box S0 (S1).



On the Optimality of Differential Fault Analyses on CLEFIA 187

Table 1. Solutions to Eq. 6 for S0 and x1 with fixed Δx and Δy.

Solutions for x1 0 2 4 6 8 10 Total

Occurrences 39511 19501 5037 848 119 9 65025 (= 2552)

510 occurrences of 0 and one occurrence of 256 possible values for x1. For the
S-box S0, the amount of occurrences of 0 to 10 possible solutions can be found
in Table 1. For the S-box S1, for every Δy we obtain 0 for 128 values of Δx, 2
for 126 values of Δx, and 4 for one value of Δx.

Now we calculate H (K | Y1Y2) for the case that we have no information on
the fault model, i.e., X1,ΔX, and K are independent and identically distributed.
Then, we calculate H (K | Y1Y2) with additional information on the fault model.

Applying the information from Table 1, we yield for S0

HS0 (ΔX | ΔY ) =
255
∑

i=1

P (ΔY = Δyi) HS0 (ΔX | ΔY = Δyi) ≈ 6.535, (7)

HS0 (X1 | ΔXΔY ) =
255
∑

i=1

P (ΔY = Δyi) HS0 (X1|ΔXΔY = Δyi) ≈ 1.465, (8)

HS0 (K | Y1Y2)
([8])
= 6.535 + 1.465 = 8 = H (K). (9)

For S1, since its differential property is equal to the one of the AES S-box, the
calculations are analogous to calculations 5 and 6 from [11] and are thus omitted
in the present work. We have HS1 (ΔX | ΔY ) = 447

64 , HS1 (X1 | ΔXΔY ) = 65
64 ,

and HS1 (K | Y1Y2) = 447
64 + 65

64 = 8 = H (K).
Since HS0 (K | Y1Y2) = HS1 (K | Y1Y2) = H (K), no information on K can

be obtained without information on the fault model. We repeat the calculation
using some assumptions on the fault model. Let X ⊆ {0, 1}n be the set of values
that ΔX can take in the employed fault model.

As a coarse estimate for HS0 (ΔXΔY ), we consider only the values for Δx
and Δy that allow at least one possible solution for x1, i.e., 19501+5037+848+
119 + 9 = 25514 of 2552 = 65025 values. Let X1 and ΔX be independent and
identically distributed over {0, 1}n and X , and ΔY identically distributed over
{0, 1}n. We have HS0 (ΔY ) ≈ n and

HS0 (ΔXΔY ) ≈ log2

(

25514 · |X | · 2n

65025

)

and therefore (10)

HS0 (ΔX | ΔY ) ≈ log2 (|X |) − 1.349. (11)

We have HS0 (X1 | ΔXΔY ) ≈ 1.465 and HS0 (K | Y1Y2)
([8])≈ log2 (|X |) + 0.115.

Without information on the fault model we have X = {0, 1}n, so maxi-
mally HS0 (ΔX | ΔY ) ≈ n − 1.349. Hence, we define mS0 := (n − 1.349) −
HS0 (ΔX | ΔY )

([11])≈ n − log2 (|X |) as the amount of information leaked from



188 Á. Kiss et al.

Table 2. Information-theoretic optimality of DFAs against CLEFIA-128. The location
and the timing of the faults describe the fault model. The number of key bits that can
be learned from a single fault is denoted with m, and t denotes the number of faults
the authors use to reduce the key space to |K| candidates.

Differential fault
attack

Location Timing m t |K| Optimality

Chen et al. [4] 1 random byte 15, 16, 17 118.006 18 1 2 faults suffice

Takahashi,
Fukunaga [14,15]

4 known bytes 16 96.023 2 1 optimal

Zhao et al. [18] 4 known bytes 16, 17, 18 96.023 12 1 2 faults suffice

4 known bytes 15, 17 96.023 8 1 2 faults suffice

4 known bytes 16 96.023 2 219 |K| can be 1

Ali,
Mukhopadhyay [1,2]

1 known byte 14 120.006 2 1 optimal

Improvement on [4] 1 random byte 15 118.006 2 1 optimal

Improvement on [18] 4 known bytes 16 96.023 2 1 optimal

a fault injected before the application of the S-box S0. Thus, the amount of
information a certain fault can yield from an information-theoretic perspec-
tive depends on the amount of values the fault can attain. For S1, as before,
the calculation is analogous to the one from [11] and we use the definition
mS1 := (n − 1) − HS1 (ΔX | ΔY ) ≈ n − log2 (|X |) for the amount of infor-
mation leaked from a fault injected before the application of the S-box S1. Since
the estimations for both S0 and S1 lead to the same definition for the amount
of leaked information, we define

m ≈ n − log2 (|X |). (12)

4.2 Results of the Information-Theoretic Analysis

We will now present the results of our information-theoretic analysis regarding
the optimality of all existing Differential Fault Attacks against CLEFIA. We
calculate the amount of leaked information m by means of Eq. 12. The results
of our analysis are summarized in Table 2 for CLEFIA-128 and in Table 3 for
CLEFIA-192 and CLEFIA-256.

Attacks Against CLEFIA-128. The first Differential Fault Attack against
CLEFIA-128 [4] uses 18 faults that are injected in one random byte of a four-
byte register, so we have 28 − 1 possible faults in four possible locations and
the size of the set of possible values for ΔX is |X | =

(

28 − 1
) · 4. We get

m ≈ 128 − log2
((

28 − 1
) · 4

) ≈ 118.006. Thus, in theory one fault is suffi-
cient to reduce the key space to 210 and two faults leak enough information
to uniquely identify the key. Since the attack in [4] needs 18 faults, it is not
information-theoretically optimal.



On the Optimality of Differential Fault Analyses on CLEFIA 189

Table 3. Information-theoretic optimality of DFAs against CLEFIA-192/256. The
location and the timing of the faults describe the fault model. The number of key bits
that can be learned from a single fault is denoted with m, and t denotes the number
of faults the authors use to reduce the key space to |K| candidates. According to our
analysis, 2 or 3 faults suffice for achieving optimality.

Differential fault attack Location Timing m t |K|
Chen et al. [4] 1 random byte r − 9, . . . , r − 1 118.006 54 1

Takahashi, Fukunaga [15] 4 known bytes r − 8, r − 5, r − 2 96.023 10.78 1

Ali, Mukhopadhyay [2] 1 known byte r − 8, r − 4 120.006 8 1

Improvement on [4] 1 random byte r− 7, r− 4 118.006 8 1

The second attack against CLEFIA-128 uses two faults which are injected in
four bytes with known position [14]. In the first step, they reduce the key space
to 219.02. Then, they recover the key through an exhaustive search utilizing
the key schedule, but no plaintexts. For this fault model |X | =

(

28 − 1
)4, so

m ≈ 128 − log2
(

(

28 − 1
)4

)

≈ 96.023 for a single fault. Therefore, two faults
are needed to uniquely identify the key. As the attack uses only two faults we
consider it optimal.

The next three DFAs by Zhao et al. [18] from 2010 are described for multiple-
byte faults that affect one to four known bytes in the calculation. For these fault
models, we have |X | =

(

28 − 1
)i

, i ∈ {1, . . . , 4}, and we get

m ≈ 128 − log2
(

(

28 − 1
)i

)

, (13)

which implies for i = 1, 2, 3, 4, the amount of leaked information m ≈ 120.006,
112.011, 104.017, 96.023, respectively.

The authors give results only for the case of four-byte faults. Hence, we
included only this case in Table 2. The authors state that their first attack uses
six faults that affect eight bytes, but since the faults are injected in four-byte
registers and their description of the attack also mentions one-to-four-byte faults,
we assume four-byte faults. In case they really simulated eight-byte faults, these
would have been two independent four-byte faults during one computation. Thus,
their six faults count as twelve faults in our model, cf. Table 2. However, from
Eq. 13 we find that only two faults are needed to recover the secret key. As
the attack needs more faults, it is not optimal from an information-theoretic
perspective. The second attack from [18] uses eight faults. From Eq. 13 we know
that two faults leak enough information to uniquely identify the key, so this
attack is not optimal either. The third proposed attack equates to the attack
from Takahashi and Fukunaga in the case of four-byte faults. Zhao et al. state
that with two faults the attack reduces the key space to 219. Since in theory two
faults are enough to uniquely identify the key, this attack is not optimal.

Another DFA against CLEFIA-128 was described by Ali and Mukhopad-
hyay [1,2]. It uses faults that affect one known byte, so we have |X | = 28 − 1.



190 Á. Kiss et al.

Since we have m ≈ 128 − log2
(

28 − 1
) ≈ 120.006, two faults are needed to leak

enough information to uniquely identify the key. As their attack succeeds with
only two faults, it optimally exploits the information leaked from these faults.

Attacks Against CLEFIA-192 and CLEFIA-256. We observed that all pre-
viously presented DFAs against CLEFIA-192 and CLEFIA-256 are not optimal
from an information-theoretic perspective.

The first Differential Fault Attack against CLEFIA-192 and CLEFIA-256
was published by Chen et al. in 2007 [4]. As in their attack against CLEFIA-
128, the faults are injected in one random byte in a four-byte register. For 28 −1
possible faults in four possible locations and thereby |X | =

(

28 − 1
) · 4, we get

m ≈ 128 − log2
((

28 − 1
) · 4

) ≈ 118.006. Thus, in theory two and three faults
are sufficient to uniquely identify the 192-bit and 256-bit key, respectively. As
the attack needs 54 faults, it is not optimal.

In 2010 Takahashi and Fukunaga adapted their Differential Fault Attack
against CLEFIA-128 to longer keys [15]. Their faults affect four known bytes, so
the fault model gives |X | =

(

28 − 1
)4 and we have m ≈ 128− log2

(

(

28 − 1
)4

)

≈
96.023, so in theory two and three faults are enough to recover the 192-bit and
256-bit key, respectively. However, since 2 · 96 = 192, an attack with only two
faults will most probably not succeed in revealing a 192-bit key. Nevertheless,
since the attack needs 10.78 faults on average, it is not optimal.

The most recent Differential Fault Attack against CLEFIA-192 and CLEFIA-
256 was published in 2013 by Ali and Mukhopadhyay [2]. Analogously to their
attack against CLEFIA-128, it works with faults that affect one known byte, so
we have |X | = 28 − 1. The attack needs eight faults to recover the key. We have
m ≈ 128 − log2

(

28 − 1
) ≈ 120.006. Again, two and three faults leak enough

information to uniquely identify the 192- and 256-bit key, respectively. Thus,
this attack is not optimal, but information-theoretically the best known DFA
against CLEFIA-192 and CLEFIA-256.

5 Improvement of the Non-Optimal DFAs

For the non-optimal attacks, we seek for an improved DFA in the same fault
model, i.e., we use a subset of the faults injected in the original attack in
order to reveal the secret key. We show that with one exception, all previously
non-optimal attacks against CLEFIA-128 can be improved to be optimal from
an information-theoretic perspective. For CLEFIA-192 and CLEFIA-256, we
achieve a considerable improvement in one of the algorithms. The improved ver-
sion requires significantly less fault injections than before and achieves the best
success rate with this low fault number. Our experimental results are presented
in Tables 4 and 5 and for our methodology used for the validation, the reader is
referred to the full version of the paper [8, Sect. 5.3].



On the Optimality of Differential Fault Analyses on CLEFIA 191

We first describe the basic idea of DFA methods on CLEFIA that is used to
reveal the round keys and thereafter the secret key K. Analyzing the jth round,
the attacker calculates the input Zj

k of the F-function Fk, where k ∈ {0, 1}. It
can be calculated by means of the correct ciphertext and some of the round keys
of later rounds. The difference ΔZj

k of the inputs of the F-function is calculated
with a correct and a faulty ciphertext. ΔZj

k,i with i ∈ {0, . . . , 3} denotes the
input difference of one of the four S-boxes used in Fk. In order to obtain the
output differences ΔY j

k,i of the S-boxes, the inverse of the corresponding diffusion
matrix Mk is applied to the 32-bit output difference of Fk. The input-output
differences for the S-boxes are retrieved, using which differential equations for
all 8-bit states are deduced:

ΔY j
k,i = S(Zj

k,i ⊕ RK2j−2+k,i ⊕ ΔZj
k,i) ⊕ S(Zj

k,i ⊕ RK2j−2+k,i). (14)

Here, we have i ∈ {0, . . . , 3} and S denotes the S-box used in the state,
as shown in Fig. 2. The difference distribution table of an S-box stores all the
values of Zj

k,i ⊕ RK2j−2+k,i corresponding to a choice (ΔZj
k,i,ΔY j

k,i). Table 1
shows the possible numbers of solutions for Zj

k,i ⊕RK2j−2+k,i in case of S0, and
we described the case of S1 in Sect. 4. If j is odd, a whitening key is also XORed
to this value. Therefore, after using the difference distribution tables, a limited
number of candidates remains for each of the four 8-bit parts of the round key in
case the input-output differences are nonzero values, because the fault affected
the round. After recovering the necessary round keys, the original secret key K
can be deduced by analyzing the key scheduling of CLEFIA.

5.1 Improvements on CLEFIA-128

For the deduction of the 128-bit secret key K, the most efficient algorithm uses
the values of RK30, RK31, RK32⊕WK3, RK33⊕WK2, RK34 and RK35. Thus,
we need to recover these by examining the input-output differences in the last
three rounds. Two of the analyzed six attacks against CLEFIA-128 are already
optimal, and we improved three of the remaining four. In Table 2 we see the
attacks already existing along with our proposed improvements.

Optimization of the Attack by Chen et al.: The fault model used by Chen
et al. in [4] is the byte-oriented model of random faults. A one-byte fault is
induced into the register composed of four bytes in an intermediate step. The
attacker knows the register into which the fault is injected, but does not have
any knowledge of the concrete location or the value of the fault. Each fault is
injected before a diffusion matrix in a certain round, so that a single random
byte fault causes four-byte faults in the next round. In their original attack, they
inject three faults into each of six locations in the 15th, 16th, and 17th round.

To make this attack optimal, we show that only two of the six faults induced
in the 15th round are enough to uniquely reveal the secret key. In this fault
model, the analysis presented by Takahashi and Fukunaga in Sect. 6 of their
paper [14] can be borrowed. Takahashi and Fukunaga claim that in their attack,



192 Á. Kiss et al.

15th

16th

Fig. 5. Fault injection areas in the attack against CLEFIA-128 from [14,15]. (Figure
taken from [14].)

the fault injection area can be chosen from two areas. One is the area in the 15th

round within the dashed rectangle in Fig. 5, where any bit in any byte can be
corrupted. The other area is a total of four bytes in the region after the diffusion
matrix of round 15, denoted by a bold line in the same figure. Afterwards, on
the bold line all four bytes are corrupted due to the fault propagation. Since
the first injection area is the same as the one used by Chen et al. in [4], which
means that if we use the two random byte faults injected into the 15th round,
we can borrow the key retrieval technique of Takahashi and Fukunaga from [14].
Their method exploits the property of the CLEFIA key schedule procedure that
two of the whitening keys (WK2, WK3) store the last two words of the original
secret key (K2, K3), and thus, it uniquely verifies the original secret key. An
attacker can recover a limited number of round key candidates and from each
combination of these, a possible secret key can be calculated. Then, among 219.02

candidates, the original secret key is verified uniquely.

Optimization of the Attacks by Zhao et al.: Zhao et al. use a different fault
model in [18], exploiting one to four random byte-faults. The attacker does not
have any knowledge of the concrete location or the value of the faults. With these
looser conditions the authors claim their attacks to be more practical. Despite
this, they analyze their attack only with four-byte faults and thus we also include
these results in Table 2. When injecting faults according to their original fault
model, much more faults are necessary, since at each step less bytes of the input
difference are nonzero. The authors present three attacks: the first uses 12 faults
in the last three rounds, the second uses 8 faults in the penultimate round and
two rounds above, and the third attack only 2 faults in the round before the
penultimate round.

Their third attack uses only two faults if four bytes are disturbed in the 16th

round. After identifying candidates for the round keys, they deduce the secret
key candidates and verify one of them as the original key. Since this verification
process is not described, we assume that they do a brute-force search on a known
plaintext-ciphertext pair. This type of exhaustive search is not necessary, since



On the Optimality of Differential Fault Analyses on CLEFIA 193

Table 4. Experimental results on existing and proposed Differential Fault Analyses
on CLEFIA-128. With t faults, we obtained the reduced key space K in 100 or 2000
simulation experiments with the given success rate.

Differential fault attack Timing t |K| Experiments Success

Chen et al. [4] 15, 16, 17 18 1 2000 99.1 %

Takahashi, Fukunaga [14,15] 16 2 1 100 97%

Zhao et al. [18] 16, 17, 18 12 1 2000 81.3 %

15, 17 8 1 2000 68.7 %

16 2 219 100 97%

Ali, Mukhopadhyay [1,2] 14 2 1 2000 91.45 %

Improvement on [4] 15 2 1 100 97%

Improvement on [18] 16 2 1 100 97%

the verification process from other attacks can be applied [1,4,14]. With this
technique, the attack is information-theoretically optimal.

In case of their first attack, Zhao et al. inject 12 four-byte faults into the
18th, 17th and 16th rounds, and by means of these faults, they identify the secret
key uniquely. If we use the analysis from the above described and improved third
attack, we use only two of these faults, the ones injected into the 16th round.
Therefore, we reduced the number of faults injected to two, which is claimed in
Table 2 in order to achieve optimality for this attack.

Their second attack uses faults in two rounds. First, they induce four four-
byte faults into two locations in the 17th round, by means of which they deduce
the last four round keys. After this, they inject faults into the 15th round and
compute the remaining two round keys necessary to reveal the secret key. By
examining these injection points, no algorithm can reveal the secret key using
only two of the faults. The faults injected in the 17th round can only recover
the last two round keys, since they do not affect the 16th round input-output
differences. An analysis with two four-byte faults injected in the 15th round is
not possible with the existing techniques, lacking the knowledge on the value
of the fault. If the value of the fault was known or a 32-bit brute-force search
was allowed, the method by Ali and Mukhopadhyay [1] could be used with the
fault value instead of the fault pattern. Here, we consider it impractical, since
the complexity of the attack would be 232 · 225.507 = 257.507.

5.2 Improvements on CLEFIA-192 and CLEFIA-256

Table 3 shows that there is no existing attack against CLEFIA-192/256 which is
information-theoretically optimal. In order to deduce the secret key, the most effi-
cient algorithm needs to recover RK30, RK31, RK32⊕WK3, RK33⊕WK2, RK34,
RK35, RK36 ⊕WK2, RK37 ⊕WK3, RK38, RK39, RK40 ⊕WK3, RK41 ⊕WK2,
RK42, and RK43. Thus, a successful attack needs to calculate the input-output
differences of at least the last seven rounds. All proposed attacks identify the



194 Á. Kiss et al.

Table 5. Experimental results on existing and proposed Differential Fault Analyses on
CLEFIA-192/256. With t faults, we obtained the reduced key space K in 100 or 2000
simulation experiments with the given success rate.

Differential fault attack Timing t |K| Experiments Success

Chen et al. [4] r − 9, . . . , r − 1 54 1 2000 98.3 %

Takahashi, Fukunaga [15] r − 8, r − 5, r − 2 10 1 100 51 %

Ali, Mukhopadhyay [2] r − 8, r − 4 8 1 2000 43.4 %

Improvement on [4] r − 7, r − 4 8 1 2000 51.2 %

secret key uniquely, yet the best attack from an information-theoretic perspec-
tive is the last proposed method by Ali and Mukhopadhyay [2]. Their technique
uses the value of the faults they inject strictly into the first byte of a given regis-
ter. This register is found before the diffusion matrix of round r−4 and r−8, so
the fault propagates with a given fault pattern shown in [2, Fig. 5]. The attack
uses this fault pattern during the calculations of eight round keys. By means of
this method, we improve the analysis described by Chen et al. in [4].

Improvement of the Attack by Chen et al.: Chen et al. inject the faults
in the same area of a round as Ali and Mukhopadhyay [2], though not strictly
in the first, but randomly into one of the four bytes of the register. They induce
altogether 54 faults into rounds r−9 to r−1, i.e., 6 faults per round. Half of the
faults are induced in T0, and half of the faults are induced in T2. We, instead, mix
the analyses of Ali and Mukhopadhyay [2] and Takahashi and Fukunaga [15],
and apply this mixed technique to the fault model of Chen et al.

We first use four faults injected only into round r−4 (two into T0, two into T2).
An injected fault f implies one of four fault patterns in case of both diffusion
matrices M0 and M1, depending on which byte the fault was induced into. After
calculating the fault patterns, the algorithm from [2] can be borrowed. When we
use the fault pattern for the input-output differences, two times 16 checks are
necessary, since there are four possible patterns for both the fault injections.

After determining the first eight necessary round keys, we use another four
faults. We do not inject them four, but three rounds earlier, into round r − 7.
Here, we use the analysis technique from [15] to recover the rest of the necessary
round keys. In Sect. 5.1, it is explained why this attack can be directly applied
to the fault model of Chen et al.

Originally, Chen et al. injected 6 faults in 9 rounds each, altogether 54 faults.
After using only 8 of these faults injected into rounds r − 4 and r − 7, we have
all the necessary information to calculate the secret key. This way we reduced
the number of fault injections to the lowest possible number reached to date for
CLEFIA-192 and CLEFIA-256. Our attack cannot be prevented by protecting
only the last four rounds of the algorithm. Moreover, as shown in Table 5, it
shows a better success rate than the DFA from [2].



On the Optimality of Differential Fault Analyses on CLEFIA 195

6 Conclusion

Our analysis of CLEFIA shows that an attacker needs at least two faults to
fully reveal the secret 128-bit key. Based on these findings, we improved all but
one attack against CLEFIA-128. From an information-theoretic perspective, the
improved Differential Fault Analyses all reach the theoretical limit.

For longer keys, we considerably improved one of the existing attacks. Our
proposed attack reaches the lowest number of faults reached so far.

References

1. Ali, S., Mukhopadhyay, D.: Protecting last four rounds of CLEFIA is not enough
against differential fault analysis. IACR Cryptology ePrint Archive, p. 286 (2012)

2. Ali, S., Mukhopadhyay, D.: Improved differential fault analysis of CLEFIA. In:
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2013), pp.
60–70. IEEE (2013)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Chen, H., Wu, W., Feng, D.: Differential fault analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007)

5. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1.
Wiley, New York (1968)

6. Fischer, W., Reuter, C.A.: Differential fault analysis on Grøstl. In: Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC 2012), pp. 44–54. IEEE
(2012)

7. Karmakar, S., Chowdhury, D.R.: Differential fault analysis of MICKEY-128 2.0.
In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2013),
pp. 52–59. IEEE (2013)

8. Krämer, J., Stüber, A., Kiss, Á.: On the optimality of differential fault analyses
on CLEFIA. IACR Cryptology ePrint Archive 2014, p. 572 (2014)

9. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

10. Rebeiro, C., Poddar, R., Datta, A., Mukhopadhyay, D.: An enhanced differential
cache attack on CLEFIA for large cache Lines. In: Bernstein, D.J., Chatterjee,
S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 58–75. Springer, Heidelberg
(2011)

11. Sakiyama, K., Li, Y., Iwamoto, M., Ohta, K.: Information-theoretic approach to
optimal differential fault analysis. IEEE Trans. Inf. Forensics Secur. 7, 109–120
(2012)

12. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–
423), 623–656 (1948)

13. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)



196 Á. Kiss et al.

14. Takahashi, J., Fukunaga, T.: Improved differential fault analysis on CLEFIA. In:
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2008), pp.
25–34. IEEE (2008)

15. Takahashi, J., Fukunaga, T.: Differential fault analysis on CLEFIA with 128, 192,
and 256-bit keys. IEICE Trans. 93–A, 136–143 (2010)

16. Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

17. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible
differential cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 398–411. Springer, Heidelberg (2008)

18. Zhao, X., Wang, T., Gao, J.: Multiple bytes differential fault analysis on CLEFIA.
IACR Cryptology ePrint Archive, p. 78 (2010)



Verified Numerical Computation



H3 and H4 Regularities of the Poisson Equation
on Polygonal Domains

Takehiko Kinoshita1,2, Yoshitaka Watanabe3,4(B), and Mitsuhiro T. Nakao5

1 Center for the Promotion of Interdisciplinary Education and Research,
Kyoto University, Kyoto 606-8501, Japan

2 Research Institute for Mathematical Sciences, Kyoto University,
Kyoto 606-8502, Japan

3 Research Institute for Information Technology, Kyushu University,
Fukuoka 812-8581, Japan

watanabe@cc.kyushu-u.ac.jp
4 CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
5 National Institute of Technology, Sasebo College, Nagasaki 857-1193, Japan

Abstract. This paper presents two equalities of H3 and H4 semi-norms
for the solutions of the Poisson equation in a two-dimensional polygonal
domain. These equalities enable us to obtain higher order constructive
a priori error estimates for finite element approximation of the Poisson
equation with validated computing.

Keywords: Poisson equation · A priori estimates

1 Introduction

Consider the Poisson equation

{−�u = f in Ω,

u = 0 on ∂Ω

(1a)
(1b)

with a multiply-connected polygonal domain Ω ⊂ R2. The regularities of solu-
tions of the equation (1a)–(1b) depend on the shape of Ω and f . For example,
when Ω is convex and f ∈ L2(Ω), it is well-known (e.g. Grisvard [1]) that there
exists a unique solution u ∈ H1

0 (Ω) ∩ H2(Ω) of (1a)–(1b).
Recently, Hell, Ostermann and Sandbichler [2, Lemma 2.4], and Hell and

Ostermann [3, Proposition 3] showed the following results.

Lemma 1. Let Ω = (0, 1)2. Then all solutions to (1a)–(1b) lie in H3(Ω) for
f ∈ H1

0 (Ω). Moreover, for f ∈ H1
0 (Ω) ∩ H2(Ω) the solution of (1a)–(1b) lies in

H4(Ω).

Remark 1. The assumption f ∈ H1
0 (Ω) is essential at Lemma 1. For example,

Hell and Ostermann [3] pointed out that, in the case of f = 1, the solution is
not in H3(Ω) even though f ∈ C∞(Ω).
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 199–201, 2016.
DOI: 10.1007/978-3-319-32859-1 16



200 T. Kinoshita et al.

2 A Priori Error Estimations

Higher regularities of the solutions for the Poisson equation such as Lemma 1 will
lead us to higher order error estimations for finite element approximate solutions
of (1a)–(1b). For example, a result by Nakao, Yamamoto and Kimura [4] strongly
suggests that when f ∈ H1

0 (Ω) and a solution u of (1a)–(1b) lies in H3(Ω),
for P2 (or Q2) finite element approximation uh of u, there exists numerically
determined C2 > 0 satisfying

‖u − uh‖H1
0 (Ω) ≤ C2h

2 |u|H3(Ω). (2)

Here, h shows the mesh size, ‖u‖H1
0 (Ω) and |u|H3(Ω) are H1

0 norm and H3 semi-
norm of u defined by

‖u‖H1
0 (Ω) := |u|H1(Ω) = ‖∇u‖L2(Ω)2 =

√

‖ux1‖2L2(Ω) + ‖ux2‖2L2(Ω),

|u|H3(Ω) :=
√

‖ux1x1x1‖2L2 + 3 ‖ux1x1x2‖2L2 + 3 ‖ux1x2x2‖2L2 + ‖ux2x2x2‖2L2 ,

respectively. Moreover, if u has sufficient regularities and uh is a P3 (or Q3)
finite element approximation, there also exists C3 > 0 such that

‖u − uh‖H1
0 (Ω) ≤ C3h

3 |u|H4(Ω), (3)

where |u|H4(Ω) is H4 semi-norm of u defined by

|u|H4(Ω) :=
(

‖ux1x1x1x1‖2L2(Ω) + 4 ‖ux1x1x1x2‖2L2(Ω)

+ 6 ‖ux1x1x2x2‖2L2(Ω) + 4 ‖ux1x2x2x2‖2L2(Ω) + ‖ux2x2x2x2‖2L2(Ω)

)
1
2

.

3 Main Theorem

We present a priori estimates replaced by f in the right-hand side of (2) and (3)
instead of H3 and H4 semi-norms of u, respectively.

Let D1(−�) and D2(−�) ⊂ H1
0 (Ω) be the Banach spaces defined by

D1(−�) :=
{

u ∈ H1
0 (Ω) ; −�u ∈ H1

0 (Ω)
}

,

D2(−�) :=
{

u ∈ H1
0 (Ω) ; −�u ∈ H1

0 (Ω) ∩ H2(Ω)
}

,

respectively. Note that Dn(−�) (n ∈ {1, 2}) is the set of solutions of the Poisson
equation (1a)–(1b). We assume that Dk(−�) ∩ C∞(Ω) is dense in Dk(−�) ∩
Hk+2(Ω) for k = 1, 2.

Theorem 1. It is true that

|u|H3(Ω) = ‖∇(�u)‖L2(Ω)2 , ∀u ∈ D1(−�) ∩ H3(Ω). (4)



H3 and H4 Regularities of the Poisson Equation on Polygonal Domains 201

Remark 2. Using (2) and (4) we obtain an a priori error estimate with O(h2):

‖u − uh‖H1
0 (Ω) ≤ C2h

2 ‖f‖H1
0 (Ω).

Theorem 2. It is true that

|u|H4(Ω) =
∥

∥�2u
∥

∥

L2(Ω)
, ∀u ∈ D2(−�) ∩ H4(Ω). (5)

Remark 3. Using (3) and (5) we obtain an a priori error estimate with O(h3):

‖u − uh‖H1
0 (Ω) ≤ C3h

3 ‖�f‖L2(Ω).

Acknowledgments. This work was supported by the Grant-in-Aid from the Min-
istry of Education, Culture, Sports, Science and Technology of Japan (Nos. 15H03637,
15K05012) and supported by Program for Leading Graduate Schools “Training Pro-
gram of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society.”

References

1. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)
2. Hell, T., Ostermann, A., Sandbichler, M.: Modification of dimension-splitting meth-

ods - overcoming the order reduction due to corner singularities. IMA J. Numer.
Anal. 35, 1078–1091 (2015)

3. Hell, T., Ostermann, A.: Compatibility conditions for dirichlet and neumann prob-
lems of poisson’s equation on a rectangle. J. Math. Anal. Appl. 420, 1005–1023
(2014)

4. Nakao, M.T., Yamamoto, N., Kimura, S.: On best constant in the optimal error
stimates for the H1

0 -projection into piecewise polynomial spaces. J. Approx. Theor.
93, 491–500 (1998)



Explicit Error Bound for Modified Numerical
Iterated Integration by Means of Sinc Methods

Tomoaki Okayama(B)

Hiroshima City University, 3-4-1, Ozuka-higashi, Asaminami-ku, Hiroshima, Japan
okayama@hiroshima-cu.ac.jp

Abstract. This paper reinforces numerical iterated integration devel-
oped by Muhammad–Mori in the following two points: (1) the approxi-
mation formula is modified so that it can achieve a better convergence
rate in more general cases, and (2) an explicit error bound is given in
a computable form for the modified formula. The formula works quite
efficiently, especially if the integrand is of a product type. Numerical
examples that confirm it are also presented.

Keywords: Sinc quadrature · Sinc indefinite integration ·
Repeated integral · Verified numerical integration · Double-exponential
transformation

1 Introduction

The concern of this paper is efficient approximation of a two-dimensional iterated
integral

I =
∫ b

a

(

∫ q(x)

A

f(x, y) dy

)

dx, (1)

with an a priori rigorous error bound. Here, q(x) is a monotone function that may
have derivative singularity at the endpoints of [a, b], and the integrand f(x, y)
also may have singularity on the boundary of the square region [a, b] × [A, B]
(see also Figs. 1 and 2). In this case, a Cartesian product rule of a well known
one-dimensional quadrature formula (such as the Gaussian formula and the
Clenshaw–Curtis formula) does not work properly, or at least its mathematically-
rigorous error bound is quite difficult to obtain, because such formulas require
analyticity of the integrand in a neighbourhood of the boundary [1].

Promising quadrature formulas that do not require analyticity at the
endpoints may include the tanh formula [15], the IMT formula [3,4], and the
double-exponential formula [20], which enjoy exponential convergence whether
the integrand has such singularity or not. Actually, based on the IMT formula,
an automatic integration algorithm for (1) was developed [12]. Further improved
version was developed as d2lri [2] and r2d2lri [13], where the lattice rule is
employed with the IMT transformation [3,4] or the Sidi transformation [16,17].

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 202–217, 2016.
DOI: 10.1007/978-3-319-32859-1 17



Explicit Error Bound for Modified Numerical Iterated Integration 203

x

y

a b
A

B
y=q(x)

Fig. 1. The domain of integration (1)
when q′(x) ≥ 0.

x

y

a b
A

B
y=q(x)

Fig. 2. The domain of integration (1)
when q′(x) ≤ 0.

As a related study, based on the double-exponential formula, an automatic inte-
gration algorithm over a sphere was developed [14], which also intended to deal
with such integrand singularities. The efficiency of those algorithms is also sug-
gested by their numerical experiments.

From a mathematical viewpoint, however, those algorithms do not guaran-
tee the accuracy of the approximation in reality. In order to estimate the error
(for giving a stopping criterion), Robinson and de Doncker [12] considered the
sequence of the number of function evaluation points {Nm}m and that of approx-
imation values {INm

}, and made the important assumption:

DNm
:= |INm

− INm−1 | � |I − INm−1 |, (2)

which enables the error estimation |I − INm
| � D2

Nm
/DNm−1 . A similar app-

roach was taken in the studies described above [2,13,14]. The problem here is
that it is quite difficult to guarantee the validity of (2), although it had been
widely accepted as a realistic practical assumption for constructing automatic
quadrature routines in that period. The recent trend is that the approximation
error is bounded by a strict inequality (instead of estimation ‘�’) as

|I − IN | ≤ EN ,

where EN is given in a computable form (see, for example, Petras [11]). Such an
explicit error bound is desired for constructing a more reliable, verified numeri-
cal integration routine. In addition to mathematical rigor, such a bound gives us
another advantage: the sufficient number N for the required precision, say N0,
can be known without generating the sequence {IN}. This means low computa-
tional cost, since we do not have to compute for any N with N < N0.

The objective of this study is to give such an explicit error bound for the
numerical integration method developed by Muhammad–Mori [7]. Their method
is based on Sinc methods [18,19] combined with the double-exponential trans-
formation [5,20], and it has the following two features:

1. it has beautiful exponential accuracy even if f(x, y) or q(x) has boundary
singularity, and

2. it employs an indefinite integration formula instead of a quadrature formula
for the inner integral.



204 T. Okayama

The first feature is the same as the studies above [12,14], but the second one is
unique. If a quadrature rule is employed to approximate the inner integral, the
weight wj and quadrature node yj should be adjusted depending on x as

∫ q(x)

A

f(x, y) dy ≈
∑

j

wj(x)f(x, yj(x)),

whereas in the case of an indefinite integration formula, yj is fixed (independent
of x) as

∫ q(x)

A

f(x, y) dy ≈
∑

j

wj(x)f(x, yj).

This independence of x is quite useful to check mathematical assumptions on the
integrand f(x, y) for the exponential accuracy. Furthermore, as a special case,
when the integrand is of a product type: f(x, y) = X(x)Y (y), the number of
function evaluations to approximate (1) is drastically dropped from O(n × n) to
O(n + n), where n denotes the number of the terms of

∑

(it is also emphasized
in the original paper [7]).

However, rigorous error analysis is not given for the formula, and there is
room for improvement in the convergence rate. Moreover, it cannot handle the
case q′(x) ≤ 0 (only the case q′(x) ≥ 0 is considered). In order to reinforce their
formula, this study contributes in the following points:

3. their formula is modified so that it can achieve a better convergence rate in
both cases (i.e., the case q′(x) ≥ 0 and q′(x) ≤ 0), and

4. a rigorous, explicit error bound is given for the modified formula.

The error bound shows that the convergence rate of the formula is gen-
erally O(exp(−c

√
n/ log(

√
n))), and if f(x, y) = X(x)Y (y), it becomes

O(exp(−c′n/ log n)).
The remainder of this paper is organized as follows. In Sect. 2, after the review

of basic formulas of Sinc methods, Muhammad–Mori’s original formula [7] is
described. Then, the formula is modified in Sect. 3, and its explicit error bound
is also presented. Its proof is given in Sect. 5. Numerical examples are shown in
Sect. 4. Section 6 is devoted to conclusion.

2 Review of Muhammad–Mori’s Approximation Formula

2.1 Sinc Quadrature and Sinc Indefinite Integration Combined
with the DE Transformation

The Sinc quadrature and Sinc indefinite integration are approximation formulas
for definite and indefinite integration on R, respectively, expressed as

∫ ∞

−∞
G(ξ) dξ ≈ h̃

M+
∑

i=−M−

G(ih̃), (3)

∫ ξ

−∞
G(η) dη ≈

N+
∑

j=−N−

G(jh)J(j, h)(ξ), (4)



Explicit Error Bound for Modified Numerical Iterated Integration 205

where J(j, h) is defined by using the sine integral Si(x) =
∫ x

0
{(sin σ)/σ}dσ as

J(j, h)(ξ) = h

{

1
2

+
1
π

Si[π(ξ/h − j)]
}

.

Although the formulas (3) and (4) are approximations on R, they can be used on
the finite interval (a, b) by using the Double-Exponential (DE) transformation

x = ψ(ξ) =
b − a

2
tanh

(π

2
sinh ξ

)

+
b + a

2
.

Since ψ : R → (a, b), we can apply the formulas (3) and (4) in the case of finite
intervals combining the DE transformation as
∫ b

a

g(x) dx =
∫ ∞

−∞
g(ψ(ξ))ψ′(ξ) dξ ≈ h̃

M+
∑

i=−M−

g(ψ(ih̃))ψ′(ih̃), (5)

∫ x

a

g(y) dy =
∫ ψ−1(x)

−∞
g(ψ(η))ψ′(η) dη ≈

N+
∑

j=−N−

g(ψ(jh))ψ′(jh)J(j, h)(ψ−1(x)),

(6)

which are called the “DE-Sinc quadrature” and the “DE-Sinc indefinite integra-
tion,” proposed by Takahasi–Mori [20] and Muhammad–Mori [6], respectively.

2.2 Muhammad–Mori’s Approximation Formula

Let the domain of integration (1) be as in Fig. 1, i.e., q(a) = A, q(b) = B, and
q′(x) ≥ 0. Using the monotonicity of q(x), Muhammad–Mori [7] rewrote the
given integral I by applying y = q(s) as

I =
∫ b

a

(

∫ q(x)

A

f(x, y) dy

)

dx =
∫ b

a

(∫ x

a

f(x, q(s))q′(s) ds

)

dx. (7)

Note that s ∈ (a, b) (i.e., not (A, B)). Then, they applied (5) and (6), taking
h̃ = h, M− = M+ = m, and N− = N+ = n for simplicity, as follows:

I ≈ h

m
∑

i=−m

ψ′(ih)

(

∫ ψ(ih)

a

f(ψ(ih), q(s))q′(s) ds

)

≈ h

m
∑

i=−m

ψ′(ih)

⎧

⎨

⎩

n
∑

j=−n

f(ψ(ih), q(ψ(jh)))q′(ψ(jh))ψ′(jh)J(j, h)(ih)

⎫

⎬

⎭

.

If we introduce xi = ψ(ih), wj = π cosh(jh) sech2(π sinh(jh)/2)/4, and σk =
Si[π k]/π, which can be calculated and stored prior to computation (see also a
value table for σk [18, Table 1.10.1]), the formula is rewritten as

I ≈ (b − a)2h2
m

∑

i=−m

wi

⎧

⎨

⎩

n
∑

j=−n

f(xi, q(xj))q′(xj)wj

(

1
2

+ σi−j

)

⎫

⎬

⎭

. (8)



206 T. Okayama

The total number of function evaluations, say Ntotal, of this formula is Ntotal =
(2m + 1) × (2n + 1). As a special case, if the integrand is of a product type:
f(x, y) = X(x)Y (y), the formula is rewritten as

I ≈ (b − a)2h2
m

∑

i=−m

U(i)

⎧

⎨

⎩

n
∑

j=−n

V (j)
(

1
2

+ σi−j

)

⎫

⎬

⎭

, (9)

where U(i) = X(xi)wi and V (j) = Y (q(xj))q′(xj)wj . In this case, Ntotal =
(2m + 1) + (2n + 1), which is significantly smaller than (2m + 1) × (2n + 1).

They [7] also roughly discussed the error rate of the formula (8) as follows. Let
Dd be a strip domain defined by Dd = {ζ ∈ C : | Im ζ| < d} for d > 0. Assume
that the integrand g in (5) and (6) is analytic on ψ(Dd) (which means g(ψ(·)) is
analytic on Dd), and further assume that g(x) behaves O(((x − a)(b − x))ν−1)
(ν > 0) as x → a and x → b. Under those assumptions with some additional mild
conditions, it is known that the approximation (5) converges with O(e−2π d/h),
and the approximation (6) converges with O(h e− π d/h), by taking h = h̃ and

M+ = M− = m =
⌈

1
h

log
(

4d

(ν − ε)h

)⌉

, N+ = N− = n =
⌈

1
h

log
(

2d

(ν − ε)h

)⌉

,

where ε is an arbitrary small positive number. Therefore, if the same assump-
tions are satisfied for both approximations in (8), it enjoys exponential accu-
racy: O(h e− π d/h). Since m � n � √

Ntotal/4 and h � log(cn)/n (where
c = 2d/(ν − ε)), this can be interpreted in terms of Ntotal as

O

(

log(c
√

Ntotal/4)
√

Ntotal/4
exp

[

−π d
√

Ntotal/4
log(c

√

Ntotal/4)

])

. (10)

If the integrand is of a product type, since m � n � Ntotal/4, it becomes

O
(

log(cNtotal/4)
Ntotal/4

exp
[−π d(Ntotal/4)

log(cNtotal/4)

])

. (11)

Although the convergence rate was roughly discussed as above, the quantity
of the approximation error cannot be obtained because a rigorous error bound
was not given. Moreover, the case q′(x) ≤ 0 (cf. Fig. 2) is not considered. This
situation will be improved in the next section.

3 Main Results: Modified Approximation Formula
and Its Explicit Error Bound

This section is devoted to a description of a new approximation formula and its
error bound. The proof of the error bound is given in Sect. 5.



Explicit Error Bound for Modified Numerical Iterated Integration 207

3.1 Modified Approximation Formula

In the approximations (5) and (6), Muhammad–Mori [7] set the mesh size as
h̃ = h for simplicity, but here, h̃ is selected as h̃ = 2h. Furthermore, both
M− = M+ and N− = N+ are not assumed. Then, after applying y = q(s) as
in (7), the modified formula is derived as

I ≈ 2h

M+∑
i=−M−

ψ′(2ih)

(∫ ψ(2ih)

a

f(ψ(2ih), q(s))q′(s) ds

)

≈ 2h

M+∑
i=−M−

ψ′(2ih)

⎧⎨
⎩

N+∑
j=−N−

f(ψ(2ih), q(ψ(jh)))q′(ψ(jh))ψ′(jh)J(j, h)(2ih)

⎫⎬
⎭ ,

which can be rewritten as

I ≈ I inc
DE(h) := 2(b − a)2h2

M+∑
i=−M−

w2i

⎧
⎨
⎩

N+∑
i=−N−

f(x2i, q(xj))q
′(xj)wj

(
1

2
+ σ2i−j

)⎫⎬
⎭ .

(12)

The positive integers M± and N± are also selected depending on h, which is
explained in the subsequent theorem that states the error bound.

The formula (12) is derived in the case q′(x) ≥ 0 (cf. Fig. 1), but in the case
q′(x) ≤ 0 (cf. Fig. 2) as well, we can derive the similar formula as follows. First,
applying y = q(s), we have

I =

∫ b

a

(∫ q(x)

A

f(x, y) dy

)
dx =

∫ b

a

(∫ b

x

f(x, q(s)){−q′(s)} ds

)
dx

=

∫ b

a

(∫ b

a

f(x, q(s)){−q′(s)} ds −
∫ x

a

f(x, q(s)){−q′(s)} ds

)
dx.

Then, apply (5) and (6) to obtain

I ≈ 2h

M+∑
i=−M−

ψ′(2ih)

⎧
⎨
⎩

N+∑
j=−N−

f(x2i, q(xj)){−q′(xj)}ψ′(jh) (h − J(j, h)(2ih))

⎫
⎬
⎭ .

Here, limξ→∞ J(j, h)(ξ) = h is used. The right-hand side can be rewritten as

Idec
DE (h) := 2(b − a)2h2

M+∑
i=−M−

w2i

⎧⎨
⎩

N+∑
i=−N−

f(x2i, q(xj)){−q′(xj)}wj

(
1

2
− σ2i−j

)⎫⎬
⎭ .

(13)



208 T. Okayama

The formulas (12) and (13) inherit the advantage of Muhammad–Mori’s one in
the sense that Ntotal = (M− + M+ + 1) × (N− + N+ + 1) in general, but if
the integrand is of a product type: f(x, y) = X(x)Y (y), it becomes Ntotal =
(M− +M+ +1)+(N− +N+ +1), which is easily confirmed by rewriting it in the
same way as (9). Furthermore, it also inherits (or even enhances) the exponential
accuracy, which is described next.

3.2 Explicit Error Bound of the Modified Formula

For positive constants κ, λ and d with 0 < d < π /2, let us define cκ,λ,d as

cκ,λ,d =
1

cosκ+λ(π
2 sin d) cos d

,

and define ρκ as

ρκ =

⎧

⎪

⎨

⎪

⎩

arcsinh

(√
1+

√
1−(2π κ)2

2π κ

)

(0 < κ < 1/(2π)),

arcsinh(1) (1/(2π) ≤ κ).

Then, the errors of I incDE(h) and IdecDE (h) are estimated as stated below.

Theorem 1. Let α, β, γ, δ, and K be positive constants, and d be a constant
with 0 < d < π /2. Assume the following conditions:

1. q is analytic and bounded in ψ(Dd),
2. f(·, q(w)) and f(z, q(·)) are analytic in ψ(Dd) for all z, w ∈ ψ(Dd),
3. it holds for all z, w ∈ ψ(Dd) that

|f(z, q(w))q′(w)| ≤ K|z − a|α−1|b − z|β−1|w − a|γ−1|b − w|δ−1. (14)

Let μ = min{α, β}, μ = max{α, β}, ν = min{γ, δ}, ν = max{γ, δ}, let h̃ = 2h,
let n and m be positive integers defined by

n =
⌈

1
h

log
(

2d

νh

)⌉

, m =
⌈

1
2

{

n +
1
h

log
(μ

ν

)

}⌉

, (15)

and let M− and M+ be positive integers defined by
{

M− = m, M+ = m − 	log(β/α)/h̃
 (if μ = α),
M+ = m, M− = m − 	log(α/β)/h̃
 (if μ = β),

(16)

and let N− and N+ be positive integers defined by
{

N− = n, N+ = n − 	log(δ/γ)/h
 (if ν = γ),
N+ = n, N− = n − 	log(γ/δ)/h
 (if ν = δ),

(17)



Explicit Error Bound for Modified Numerical Iterated Integration 209

and let h (> 0) be taken sufficiently small so that

M−h̃ ≥ ρα, M+h̃ ≥ ρβ , N−h ≥ ργ , N+h ≥ ρδ

are all satisfied. Then, if q′(x) ≥ 0, it holds that

|I − I incDE(h)|

≤ 2K(b − a)α+β+γ+δ−2

[

B(γ, δ)cγ,δ,d

μ

{

e
π
2μ +

2cα,β,d

1 − e− π d/h

}

+
1
ν

{

B(α, β) +
4cα,β,d e− π d/h

μ(1 − e− π d/h)

} {

1.1 e
π
2ν +

hcγ,δ,d

d(1 − e−2π d/h)

}]

e− π d/h,

(18)

where B(κ, λ) is the beta function. If q′(x) ≤ 0, |I − IdecDE(h)| is bounded by the
same term on the right hand side of (18).

The convergence rate of (18) is O(e− π d/h), which can be interpreted in terms
of Ntotal as follows. Since n � N− � N+ and m � M− � M+ � (n/2), we can
see Ntotal � ((n/2) + (n/2) + 1)(n + n + 1) � 2n2. From this and h � log(c′n)/n
(where c′ = 2d/ν), the convergence rate of the modified formula is

O

(

exp

[

−π d
√

Ntotal/2
log(c′√Ntotal/2)

])

.

This rate is better than Muhammad–Mori’s one (10). If the integrand is of a
product type: f(x, y) = X(x)Y (y), it becomes

O
(

exp
[−π d(Ntotal/3)

log(cNtotal/3)

])

,

since Ntotal � ((n/2) + (n/2) + 1) + (n + n + 1) � 3n in this case. This rate is
also better than Muhammad–Mori’s one (11).

Remark 1. The inequality (18) states the bound of the absolute error, say
Eabs(h). If necessary, the bound of the relative error Erel(h) is also obtained
as follows:

Erel(h) =
|I − I incDE(h)|

|I| ≤ Eabs(h)
|I| ≤ Eabs(h)

||I incDE(h)| − Eabs(h)| .

4 Numerical Examples

In this section, numerical results of Muhammad–Mori’s original formula [7] and
modified formula are presented. The results of an existing library r2d2lri [13] are
also shown. The computation was done on a Mac Pro with two 2.93 GHz 6-Core
Xeon processors and 32 GB of DDR3 ECC SDRAM, running Mac OS X 10.6.
The computation programs were implemented in C/C++ with double-precision
floating-point arithmetic, and compiled by GCC 4.0.1 with no optimization. The
following three examples were conducted.



210 T. Okayama

Example 1. (The integrand and boundary function are smooth [7, Example 2]).

∫

√
2

0

(

∫ x2/2

0

dy

x + y + (1/2)

)

dx = 2 log(1+
√

2)1+
√
2− log(1 + 2

√
2)1+2

√
2

2
−

√
2.

Example 2. (Derivative singularity exists in the integrand and boundary func-
tion [7, Example 1]).

∫ 1

0

(

∫

√
1−(1−x)2

0

√

1 − y2 dy

)

dx =
2
3
.

Example 3. (The integrand is weakly singular at the origin [2, Example 27]).
∫ 1

0

(∫ 1−x

0

dy√
xy

)

dx = π .

In the case of Example 1, the assumptions in Theorem 1 are satisfied with
α = β = δ = 1, γ = 2, d = log(2), and K = 16.6. The results are shown in
Figs. 3 and 4. In both figures, error bound (say Ẽrel(h)) given by Theorem 1
surely includes the observed relative error Erel(h) in the form Erel(h) ≤ Ẽrel(h),
which is also true in all the subsequent examples (note that such error bound is
not given for Muhammad–Mori’s original formula). In view of the performance,
r2d2lri is better than the original/modified formulas, but its error estimate just
claims Erel(h) ≈ Ẽrel(h), and does not guarantee Erel(h) ≤ Ẽrel(h).

In the case of Example 2, the assumptions in Theorem 1 are satisfied with
α = β = 1, γ = 1/2, δ = 3, d = 1, and K = 1.63. The results are shown in
Figs. 5 and 6. In this case, the convergence of the original/modified formulas is
incredibly fast compared to r2d2lri. This is because the integrand is of a product
type: f(x, y) = X(x)Y (y).

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  500  1000  1500  2000  2500  3000

re
la

tiv
e 

er
ro

r

Ntotal

Muhammad--Mori formula
Modified formula

Error bound of modified formula
r2d2lri

Error estimate of r2d2lri

Fig. 3. Relative error with respect to
Ntotal in Example 1.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  0.0001  0.0002  0.0003  0.0004  0.0005

re
la

tiv
e 

er
ro

r

Computation time [s]

Muhammad--Mori formula
Modified formula

Error bound of modified formula
r2d2lri

Error estimate of r2d2lri

Fig. 4. Relative error with respect
to computation time in Example 1
(“Error bound of modified formula”
and “Error estimate of r2d2lri” show
each computation time needed to
obtain both the approximation value
and its error bound/estimate).



Explicit Error Bound for Modified Numerical Iterated Integration 211

The integrand of Example 3 is also of a product type. In this example, the
assumptions in Theorem 1 are satisfied with α = δ = 1/2, β = γ = 1, d = 4/3,
and K = 1. The results are shown in Figs. 7 and 8. In this case, the performance
of r2d2lri is much worse than that in Example 2, which seems to be due to the
singularity of the integrand. In contrast, the modified formula attains a simi-
lar convergence rate to that in Example 2. Muhammad–Mori’s original formula
cannot be used in this case since q(x) = 1 − x does not satisfy q′(x) ≥ 0.

5 Proofs

In this section, only the inequality (18) (for |I − I incDE(h)|) is proved, since |I −
IdecDE (h)| is bounded in exactly the same way. Let us have a look at the sketch of
the proof first.

5.1 Sketch of the Proof

The error |I − I incDE(h)| can be bounded by a sum of two terms as follows:

|I − I incDE(h)| ≤
∣

∣

∣

∣

∣

∣

∫ b

a

F (x) dx − h̃

M+
∑

i=−M−

F (ψ(ih̃))ψ′(ih̃)

∣

∣

∣

∣

∣

∣

+ h̃

M+
∑

i=−M−

ψ′(ih̃)

∣

∣

∣

∣

∣

∣

∫ ψ(ih̃)

a

fi(s) ds −
N+
∑

j=−N−

fi(ψ(jh))ψ′(jh)J(j, h)(ih̃)

∣

∣

∣

∣

∣

∣

,

where F (x) =
∫ x

a
f(x, q(s))q′(s) ds, fi(s) = f(ψ(ih̃), q(s))q′(s), and h̃ = 2h. The

first term (say E1) and the second term (say E2) are bounded as follows:

E1 ≤ B(γ, δ)cγ,δ,d

μ

{

e
π
2μ +

2cα,β,d

1 − e−2π d/h̃

}

2K(b − a)α+β+γ+δ−2 e−2π d/h̃, (19)

E2 ≤ 1
ν

{

B(α, β) +
4cα,β,d

μ

e−2π d/h̃

1 − e−2π d/h̃

}

{

1.1 e
π
2ν +

hcγ,δ,d

d(1 − e−2π d/h)

}

× 2K(b − a)α+β+γ+δ−2 e− π d/h . (20)

Then, taking h̃ = 2h, we get the desired inequality (18). In what follows, the
inequalities (19) and (20) are shown in Sects. 5.2 and 5.3, respectively.

5.2 Bound of E1 (Error of the DE-Sinc Quadrature)

The following two lemmas are important results for this project.

Lemma 1 (Okayama et al. [10, Lemma 4.16]). Let L̃, α, and β be posi-
tive constants, and let μ = min{α, β}. Let F be analytic on ψ(Dd) for d with



212 T. Okayama

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  500  1000  1500  2000  2500  3000

re
la

tiv
e 

er
ro

r

Ntotal

Muhammad--Mori formula
Modified formula

Error bound of modified formula
r2d2lri

Error estimate of r2d2lri

Fig. 5. Relative error with respect to
Ntotal in Example 2.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  0.0001  0.0002  0.0003  0.0004  0.0005

re
la

tiv
e 

er
ro

r

Computation time [s]

Muhammad--Mori formula
Modified formula

Error bound of modified formula
r2d2lri

Error estimate of r2d2lri

Fig. 6. Relative error with respect to
computation time in Example 2.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  500  1000  1500  2000  2500  3000

re
la

tiv
e 

er
ro

r

Ntotal

Modified formula
Error bound of modified formula

r2d2lri
Error estimate of r2d2lri

Fig. 7. Relative error with respect to
Ntotal in Example 3.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  0.0001  0.0002  0.0003  0.0004  0.0005

re
la

tiv
e 

er
ro

r

Computation time [s]

Modified formula
Error bound of modified formula

r2d2lri
Error estimate of r2d2lri

Fig. 8. Relative error with respect to
computation time in Example 3.

0 < d < π /2, and satisfy |F (z)| ≤ L̃|z −a|α−1|b−z|β−1 for all z ∈ ψ(Dd). Then
it holds that

∣

∣

∣

∣

∣

∫ b

a

F (x) dx − h̃

∞
∑

i=−∞
F (ψ(ih̃))ψ′(ih̃)

∣

∣

∣

∣

∣

≤ C̃1C̃2
e−2π d/h̃

1 − e−2π d/h̃
,

where the constants C̃1 and C̃2 are defined by

C̃1 =
2L̃(b − a)α+β−1

μ
, C̃2 = 2cα,β,d. (21)

Lemma 2 (Okayama et al. [10, Lemma 4.18]). Let the assumptions in
Lemma 1 be fulfilled. Furthermore, let μ = max{α, β}, let m be a positive inte-
ger, let M− and M+ be positive integers defined by (16), and let m be taken
sufficiently large so that M−h̃ ≥ ρα and M+h̃ ≥ ρβ hold. Then it holds that
∣

∣

∣

∣

∣

∣

h̃

−(M−+1)
∑

i=−∞
F (ψ(ih̃))ψ′(ih̃) + h̃

∞
∑

i=M++1

F (ψ(ih̃))ψ′(ih̃)

∣

∣

∣

∣

∣

∣

≤ e
π
2μ C̃1 e− π

2μ exp(mh̃),

where C̃1 is a constant defined in (21).



Explicit Error Bound for Modified Numerical Iterated Integration 213

What should be checked here is whether the conditions of those two lemmas
are satisfied under the assumptions in Theorem 1. The next lemma answers to
this question.

Lemma 3. Let the assumptions in Theorem 1 be fulfilled, and let F be defined
as F (z) =

∫ z

a
f(z, q(w))q′(w) dw. Then, the assumptions of Lemmas 1 and 2 are

satisfied with L̃ = K(b − a)γ+δ−1 B(γ, δ)cγ,δ,d.

If this lemma is proved, combining Lemmas 1 and 2, and using the rela-
tions (15)–(17), we get the desired inequality (19). For the proof of Lemma 3,
we need the following inequalities.

Lemma 4 (Okayama et al. [10, Lemma 4.22]). Let x and y be real numbers
with |y| < π /2. Then we have

∣

∣

∣

∣

1
1 + eπ sinh(x+i y)

∣

∣

∣

∣

≤ 1
(1 + eπ sinh(x) cos y) cos(π

2 sin y)
,

∣

∣

∣

∣

1
1 + e− π sinh(x+i y)

∣

∣

∣

∣

≤ 1
(1 + e− π sinh(x) cos y) cos(π

2 sin y)
.

Lemma 5. Let x, ξ, y ∈ R with |y| < π /2, let γ and δ be positive constants,
and let us define a function ψ(0,1)(x, y) as

ψ(0,1)(x, y) =
1
2

tanh
(π cos y

2
sinhx

)

+
1
2
.

Then it holds that
∫ ξ

−∞

π | cosh(x + i y)|dx

|1 + e− π sinh(x+i y) |γ |1 + eπ sinh(x+i y) |δ ≤ B(ψ(0,1)(ξ, y); γ, δ)
cosγ+δ(π

2 sin y) cos y
,

where B(t;κ, λ) is the incomplete beta function.

Proof. From Lemma 4 and | cosh(x + i y)| ≤ cosh(x), we obtain

∫ ξ

−∞

π | cosh(x + i y)|dx

|1 + e− π sinh(x+i y) |γ |1 + eπ sinh(x+i y) |δ

≤ 1
cosγ+δ(π

2 sin y) cos y

∫ ξ

−∞

π cosh(x) cos(y) dx

(1 + e− π sinh(x) cos y)γ(1 + eπ sinh(x) cos y)δ

=
B(ψ(0,1)(ξ, y); γ, δ)
cosγ+δ(π

2 sin y) cos y
. ��

By using the estimates, Lemma 3 is proved as follows.

Proof. The estimate of the constant L̃ is essential. Let ξ = Re[ψ−1(z)] and
y = Im[ψ−1(z)], i.e., z = ψ(ξ + i y). By applying w = ψ(x + i y), we have



214 T. Okayama

|F (z)|

=

∣∣∣∣
∫ ξ

−∞
f(z, q(ψ(x + i y)))q′(ψ(x + i y))ψ′(x + i y) dx

∣∣∣∣

≤ K|z − a|α−1|b − z|β−1

∫ ξ

−∞
|ψ(x + i y) − a|γ−1|b − ψ(x + i y)|δ−1|ψ′(x + i y)| dx

= K|z − a|α−1|b − z|β−1(b − a)γ+δ−1

∫ ξ

−∞

π | cosh(x + i y)| dx

|1 + e− π sinh(x+i y) |γ |1 + eπ sinh(x+i y) |δ .

Then, the desired bound of L̃ is obtained by using Lemma 5 and
B(ψ(0,1)(ξ, y); γ, δ) ≤ B(γ, δ). ��

5.3 Bound of E2 (Error of the DE-Sinc Indefinite Integration)

The following two lemmas are important results for this project.

Lemma 6 (Okayama et al. [10, Lemma 4.19]). Let L, γ, and δ be positive
constants, and let ν = min{γ, δ}. Let f be analytic on ψ(Dd) for d with 0 <
d < π /2, and satisfy |f(w)| ≤ L|w − a|γ−1|b − w|δ−1 for all w ∈ ψ(Dd). Then it
holds that

sup
x∈(a, b)

∣∣∣∣∣
∫ x

a

f(s) ds −
∞∑

j=−∞
f(ψ(jh))ψ′(jh)J(j, h)(ψ−1(x))

∣∣∣∣∣ ≤
C1C2

2d

h e− π d/h

1 − e−2 π d/h
,

where the constants C1 and C2 are defined by

C1 =
2L(b − a)γ+δ−1

ν
, C2 = 2cγ,δ,d. (22)

Lemma 7 (Okayama et al. [10, Lemma 4.20]). Let the assumptions in
Lemma 6 be fulfilled. Furthermore, let ν = max{γ, δ}, let n be a positive integer,
let N− and N+ be positive integers defined by (17), and let n be taken sufficiently
large so that N−h ≥ ργ and N+h ≥ ρβ hold. Then it holds that

sup
x∈(a, b)

∣

∣

∣

∣

∣

∣

−(N−+1)
∑

j=−∞
G(jh)J(j, h)(ψ−1(x)) +

∞
∑

j=N++1

G(jh)J(j, h)(ψ−1(x))

∣

∣

∣

∣

∣

∣

≤ 1.1 e
π
2ν C1 e− π

2ν exp(nh),

where G(x) = f(ψ(x))ψ′(x), and C1 is a constant defined in (22).

What should be checked here is whether the conditions of those two lemmas
are satisfied under the assumptions in Theorem 1. The next lemma answers this
question.



Explicit Error Bound for Modified Numerical Iterated Integration 215

Lemma 8. Let the assumptions in Theorem 1 be fulfilled, and let fi(z) be defined
as fi(z) = f(ψ(ih̃), q(z))q′(z). Then, the assumptions of Lemmas 6 and 7 are
satisfied with f = fi and L = K(ψ(ih̃) − a)α−1(b − ψ(ih̃))β−1.

The proof is omitted since it is obvious from (14). Combining Lemmas 6
and 7, and using the relations (15)–(17), we have

E2 ≤ C3 × 2K(b − a)γ+δ−1

ν

{

1.1 e
π
2ν +

hcγ,δ,d

d(1 − e−2π d/h)

}

e− π d/h,

where

C3 = h̃

M+
∑

i=−M−

ψ′(ih̃)(ψ(ih̃) − a)α−1(b − ψ(ih̃))β−1.

What is left is to bound the term C3, which is done by the next lemma.

Lemma 9. Let α and β be positive constants, and let μ = min{α, β}. Then C3

is bounded as

C3 ≤ (b − a)α+β−1

{

B(α, β) +
4cα,β,d

μ

e−2π d/h̃

1 − e−2π d/h̃

}

.

Proof. Let us define F as F (x) = (x − a)α−1(b − x)β−1. We readily see

h̃

M+∑
i=−M−

F (ψ(ih̃))ψ′(ih̃) ≤ h̃

∞∑
i=−∞

F (ψ(ih̃))ψ′(ih̃)

≤
∫ b

a

F (x) dx +

∣∣∣∣∣
∫ b

a

F (x) dx − h̃
∞∑

i=−∞
F (ψ(ih̃))ψ′(ih̃)

∣∣∣∣∣ ,

and we further see
∫ b

a
F (x) dx = (b − a)α+β−1 B(α, β). For the second term, use

Lemma 1 to obtain
∣

∣

∣

∣

∣

∫ b

a

F (x) dx − h̃
∞
∑

i=−∞
F (ψ(ih̃))ψ′(ih̃)

∣

∣

∣

∣

∣

≤ 4(b − a)α+β−1cα,β,d

μ

e−2π d/h̃

1 − e−2π d/h̃
,

which completes the proof. ��

6 Concluding Remarks

Muhammad–Mori [7] proposed an approximation formula for (1), which can
converge exponentially with respect to Ntotal even if f(x, y) or q(x) has boundary
singularity. It is particularly worth noting that their formula is quite efficient if
f is of a product type: f(x, y) = X(x)Y (y). However, its convergence was not



216 T. Okayama

proved in a precise sense, and it cannot be used in the case q′(x) ≤ 0 (only the
case q′(x) ≥ 0 was considered). This paper improved the formula in the sense
that both cases (q′(x) ≥ 0 and q′(x) ≤ 0) are taken into account, and it can
achieve a better convergence rate. Furthermore, a rigorous error bound that is
computable is given, enabling us to mathematically guarantee the accuracy of
the approximation. Numerical results in Sect. 4 confirm the error bound and the
exponential rate of convergence, and also suggest that the modified formula is
incredibly accurate if f is of a product type, similar to the original formula.
This is because, instead of a definite integration formula (quadrature rule), an
indefinite integration formula is employed for the approximation of the inner
integral.

However, as said in the original paper [7], the use of the indefinite integration
formula has a drawback: it cannot be used when f(x, y) has a singularity along
y = q(x), e.g.,

∫ b

a

(

∫ q(x)

A

dy
√

q(x) − y

)

,

∫ b

a

(

∫ q(x)

A

√

(q(x) − y)(q(x) + y) dy

)

,

and so on (f can have singularity at the endpoints y = A and y = B, though).
This is because the assumption of Theorem 1 (more precisely, Lemmas 6 and 7) is
not satisfied in this case. In such a case, a definite integration formula should be
employed for the approximation of the inner integral. Actually, such an approach
was already successfully taken in some one-dimensional cases [8,9]. It also may
work for (1), which will be considered in a future report.

References

1. Eiermann, M.C.: Automatic, guaranteed integration of analytic functions. BIT 29,
270–282 (1989)

2. Hill, M., Robinson, I.: d2lri: a nonadaptive algorithm for two-dimensional cubature.
J. Comput. Appl. Math. 112, 121–145 (1999)

3. Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula. RIMS
Kōkyūroku, Kyoto Univ. 91, 82–118 (1970). (in Japanese)

4. Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula. J. Comput.
Appl. Math. 17, 3–20 (1987)

5. Mori, M., Sugihara, M.: The double-exponential transformation in numerical analy-
sis. J. Comput. Appl. Math. 127, 287–296 (2001)

6. Muhammad, M., Mori, M.: Double exponential formulas for numerical indefinite
integration. J. Comput. Appl. Math. 161, 431–448 (2003)

7. Muhammad, M., Mori, M.: Numerical iterated integration based on the double
exponential transformation. Jpn. J. Indust. Appl. Math. 22, 77–86 (2005)

8. Okayama, T., Matsuo, T., Sugihara, M.: Approximate formulae for fractional deriv-
atives by means of Sinc methods. J. Concr. Appl. Math. 8, 470–488 (2010)

9. Okayama, T., Matsuo, T., Sugihara, M.: Sinc-collocation methods for weakly sin-
gular Fredholm integral equations of the second kind. J. Comput. Appl. Math.
234, 1211–1227 (2010)



Explicit Error Bound for Modified Numerical Iterated Integration 217

10. Okayama, T., Matsuo, T., Sugihara, M.: Error estimates with explicit constants
for Sinc approximation, Sinc quadrature and Sinc indefinite integration. Numer.
Math. 124, 361–394 (2013)

11. Petras, K.: Principles of verified numerical integration. J. Comput. Appl. Math.
199, 317–328 (2007)

12. Robinson, I., de Doncker, E.: Algorithm 45. Automatic computation of improper
integrals over a bounded or unbounded planar region. Computing 27, 253–284
(1981)

13. Robinson, I., Hill, M.: Algorithm 816: r2d2lri: an algorithm for automatic two-
dimensional cubature. ACM Trans. Math. Softw. 28, 75–100 (2002)

14. Roose, D., de Doncker, E.: Automatic integration over a sphere. J. Comput. Appl.
Math. 7, 203–224 (1981)

15. Schwartz, C.: Numerical integration of analytic functions. J. Comput. Phys. 4,
19–29 (1969)

16. Sidi, A.: A new variable transformation for numerical integration. In: Brass, H.,
Hämmerlin, G. (eds.) Numerical Integration IV. International Series of Numerical
Mathematics, vol. 112, pp. 359–373. Birkhäuser Verlag, Basel (1993)

17. Sidi, A.: Extension of a class of periodizing variable transformations for numerical
integration. Math. Comput. 75, 327–343 (2006)

18. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer,
New York (1993)

19. Stenger, F.: Summary of Sinc numerical methods. J. Comput. Appl. Math. 121,
379–420 (2000)

20. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration.
Publ. RIMS, Kyoto Univ. 9, 721–741 (1974)



Verified Computations for Solutions to
Semilinear Parabolic Equations Using the

Evolution Operator

Akitoshi Takayasu1(B), Makoto Mizuguchi2,
Takayuki Kubo3, and Shin’ichi Oishi4

1 Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
takitoshi@aoni.waseda.jp

2 Graduate School of Fundamental Science and Engineering,
Waseda University, Tokyo, Japan

3 Institute of Mathematics, University of Tsukuba, Ibaraki, Japan
4 Department of Applied Mathematics,

Waseda University and CREST, JST, Tokyo, Japan

Abstract. This article presents a theorem for guaranteeing existence of
a solution for an initial-boundary value problem of semilinear parabolic
equations. The sufficient condition of our main theorem is derived by a
fixed-point formulation using the evolution operator. We note that the
sufficient condition can be checked by verified numerical computations.

1 Introduction

Let J := (t0, t1] (0 ≤ t0 < t1 < ∞) be a time interval and Ω a convex polygonal
domain in IR2. In this article we consider the following initial-boundary value
problems of semilinear parabolic equations:

⎧

⎨

⎩

∂tu − Δu = f(u) in J × Ω,
u(t, x) = 0 on J × ∂Ω,
u(t0, x) = u0(x) in Ω.

(1)

Here, ∂tu = ∂u
∂t , Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

denotes the Laplacian, the domain of the
Laplacian is D(Δ) = H2(Ω) ∩ H1

0 (Ω), f(u) is a real-valued function in J × Ω
such that f : H1

0 (Ω) → L2(Ω) is a twice Fréchet differentiable nonlinear mapping
for ∀t ∈ J , and u0 ∈ H1

0 (Ω) is an initial function. Let τ := t1 − t0.
The main aim of this article is to present Theorem 1 for proving existence

and local uniqueness of a solution to (1) in a neighborhood of an approximate
solution. This approximate solution consists of two numerical solutions. Let Vh be
a finite dimensional subspace of D(A). For two numerical solutions û0, û1 ∈ Vh,
we define the approximate solution ω(t) as

ω(t) = û0φ0(t) + û1φ1(t), t ∈ J, (2)

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 218–223, 2016.
DOI: 10.1007/978-3-319-32859-1 18



Verified Computations for Solutions to Semilinear Parabolic Equations 219

where φi(t) (i = 0, 1) is a linear Lagrange basis such that φi(tj) = δij (δij is a
Kronecker’s delta for j = 0, 1).

The evolution operator is introduced by Tanabe and Sobolevskii [1,2]. Using
the evolution operator, studies of parabolic equation have been developed in the
field of mathematical analysis (cf. [3,4]).

In this article, we present a fixed-point form by using the evolution operator.
Existence of its fixed-point is equivalent to that of the mild solution to (1). We
then derive a sufficient condition for verifying existence of the fixed-point. By
numerically checking whether the sufficient condition holds, existence and local
uniqueness of the mild solution to (1) are proved.

2 Fixed-Point Formulation

Let us start from the following fact: the mild solution u of (1) exists if and only
if the function z = u − ω is the mild solution of

⎧

⎨

⎩

∂tz − Δz = f(z + ω) − ∂tω + Δω in J × Ω,
z(t, x) = 0 on J × ∂Ω,
z(t0, x) = u0(x) − û0(x) in Ω.

Suppose that z = eσ(t−t0)v holds for a certain σ > 0. Then v is a solution of the
following equation:

⎧

⎨

⎩

∂tv + A(t)v = g(v) in J × Ω,
v(t, x) = 0 on J × ∂Ω,
v(t0, x) = u0(x) − û0(x) in Ω,

(3)

where

A(t) = −Δ +
(
σ − f ′[ω(t)]

)
,

g(v) = e−σ(t−t0)

{
f
(
ω + eσ(t−t0)v

)
− f(ω) − f ′[ω(t)]eσ(t−t0)v + f(ω) − ∂tω − Δω

}

holds. The operator f ′[ω(t)] : H1
0 (Ω) → L2(Ω) denotes a Fréchet derivative of f

at ω(t) for t ∈ J . We furthermore assume that f ′[ω(t)] is a symmetric operator
for t ∈ J .

From the definition of ω in (2), the domain of A(t) becomes D (A(t)) = D(Δ)
for each t ∈ J (D(A(t)) is independent of t ∈ J). Let us fix μ > 0. We define a
norm of V = H1

0 (Ω) as

‖φ‖V =
(‖∇φ‖2L2 + μ‖φ‖2L2

)1/2
for φ ∈ V.

We determine the σ > 0 such that σ − f ′[ω(t)] ≥ μ a.e. Ω for ∀t ∈ J . It then
follows

|(A(t)u, v)L2 | = |(∇u,∇v)L2 + ((σ − f ′[ω(t)])u, v)L2 |
= |(∇u,∇v)L2 + μ(u, v)L2 + ((σ − f ′[ω(t)] − μ)u, v)L2 |
≤ (

1 + CσC2
μ

) ‖u‖V ‖v‖V



220 A. Takayasu et al.

and

(A(t)u, u)L2 = |(∇u,∇u)L2 + ((σ − f ′[ω(t)])u, u)L2 |
≥ ‖u‖2V ,

where Cσ = supx∈Ω |σ − f ′[ω(t)] − μ|, Cμ > 0 such that ‖φ‖L2 ≤ Cμ‖φ‖V . This
yields D(A(t)1/2) = V , i.e., the following holds for φ ∈ V :

‖φ‖V ≤ ‖A(t)1/2φ‖L2 ≤ M‖φ‖V , M =
(

1 + CσC2
μ

)1/2
.

For each t ∈ J , −A(t) thus becomes the sectorial operator and generates a
holomorphic semigroup

{

e−sA(t)
}

s≥0
over L2(Ω). The eigenvalue of −A(t) for

t ∈ J is bounded below by λA = λmin +μ > 0, where λmin denotes the minimum
eigenvalue of −Δ. Therefore, the operator A(t) becomes a symmetric positive
operator. Additionally, for t, s ∈ J there exists C > 0 and α > 0 such that

‖A(t)A(s)−1 − I‖L2,L2 = ‖(A(t) − A(s))A(s)−1‖L2,L2 ≤ C|t − s|α,

where ‖ · ‖L2,L2 denotes the operator norm over L2(Ω).
From the above facts it is well-known [1–4] that the operator −A(t) generates

an evolution operator {U(t, s)}t0≤s≤t≤t1
on L2(Ω). The evolution operator is

described by

U(t, s) = e−(t−s)A(s) +
∫ t

s

e−(t−r)A(r)R(r, s)dr (t0 ≤ s ≤ r ≤ t ≤ t1),

where R(t, s) is the solution of the following integral equation:
⎧

⎨

⎩

R(t, s) = R1(t, s) +
∫ t

s

R1(t, r)R(r, s)dr,

R1(t, s) = −(A(t) − A(s))e−(t−s)A(s).

(4)

By using the evolution operator {U(t, s)}t0≤s≤t≤t1
, we define a nonlinear

operator T : C(J ;V ) → C(J ;V ) as

T (v) := U(t, t0)v(t0) +
∫ t

t0

U(t, s)g(v(s))ds (t0 ≤ s ≤ t ≤ t1). (5)

If v satisfies the fixed-point form v = T (v) in C(J ;V ), then there exists a solution
of (3) that is described by the evolution operator. In the following we derive a
sufficient condition for verifying existence of the solution to (3). If this sufficient
condition holds, existence of the mild solution to (1) is also proved.

3 Main Theorem

Let us define a function space

Xσ :=
{

v ∈ C (J ;V ) : sup
t∈J

eσ(t−t0)‖v(t)‖V < ∞
}



Verified Computations for Solutions to Semilinear Parabolic Equations 221

with the norm ‖v‖Xσ
:= supt∈J eσ(t−t0)‖v(t)‖V . The following theorem gives

a sufficient condition for guaranteeing existence and local uniqueness of a mild
solution to (1) in

BJ(ω, ρ) :=
{

u ∈ C (J ;V ) : ‖u − ω‖C(J;V ) ≤ ρ
}

.

Theorem 1. Assume that û0 ∈ Vh satisfies ‖u0 − û0‖H1
0

≤ ε0 and 0 ≤ σ < λA

2
holds. Assume that ω satisfies the following estimate:

‖∂tω − Δω − f(ω)‖C(J;L2(Ω)) ≤ δ.

Assume also that there exists a monotonically non-decreasing function Lω :
[0,∞) → [0,∞) corresponding to the first Fréchet derivative of f : H1

0 (Ω) →
L2(Ω) such that

‖(f ′[ω + h] − f ′[ω])φ‖C(J;L2(Ω)) ≤ Lω (ρ) ‖φ‖C(J;V ), ∀φ ∈ C (J ;V ) ,

where h ∈ Xσ satisfying ‖h‖Xσ
≤ ρ for a certain ρ > 0. If

(M + O1 (τ)) ε0 +

√
2π

e(λA − 2σ)
erf

(√
(λA − 2σ)τ

2

)
(1 + O2 (τ))

(
Lω(ρ)ρ

2 + δ
)

< ρ (6)

holds, then the mild solution u(t) := u(t, ·), t ∈ J , of (1) uniquely exists in the
ball BJ(ω, ρ). Here, O1 (τ) and O2 (τ) in (6) are given by

O1 (τ) = 2Cμ

√

Cω

e
τ

1
2 sinh

(

√

Cωτ
)

and O2 (τ) = 2
√

Cωτ sinh
(

√

Cωτ
)

,

respectively, if R1(t, s) in (4) satisfies ‖R1(t, s)‖L2,L2 ≤ Cω(t − s)e−(t−s)λA .

Before we sketch a proof of the main theorem, some lemmas are necessary.

Lemma 1. If R1(t, s) in (4) satisfies ‖R1(t, s)‖L2,L2 ≤ Cω(t − s)e−(t−s)λA , it
follows

‖R(t, s)‖L2,L2 ≤
√

Cω sinh
(

√

Cω(t − s)
)

e−(t−s)λA .

Lemma 2. For the evolution operator {U(t, s)}t0≤s≤t≤t1
generated by −A(t)

and v(t0) = u0 − û0, the following estimate holds:

‖U(t, t0)v(t0)‖V ≤
(

Me−(t−t0)λA + O1 (τ) e− 1
2 (t−t0)λA

)

ε0.

Lemma 3. For the evolution operator {U(t, s)}t0≤s≤t≤t1
generated by −A(t)

and g(v) in (3), the following estimate holds:

‖U(t, s)g(v(s))‖V ≤ e− 1
2 (t − s)− 1

2 e− 1
2 (t−s)λA‖g(v(s))‖L2 (1 + O2 (τ)) .



222 A. Takayasu et al.

Proofs of these lemmas are omitted for lack of space.

Sketch of the Proof. For ρ > 0 let Z = {v ∈ Xσ : ‖v‖Xσ
≤ ρ}. Let us consider

the fixed-point form (5). On the basis of Banach’s fixed-point theorem, we give
a sufficient condition of T having a fixed-point in Z. First, we derive a condition
guaranteeing T (Z) ⊂ Z. For v ∈ Z, Lemmas1 and 2 gives

‖T (v(t))‖V ≤
(

Me−(t−t0)λA + O1 (τ) e− 1
2 (t−t0)λA

)

ε0

+
∫ t

t0

e− 1
2 (t − s)− 1

2 e− 1
2 (t−s)λA‖g(v(s))‖L2 (1 + O2 (τ)) ds.

It follows

eσ(t−t0) ‖T (v(t))‖V ≤
(

Me−(t−t0)(λA−σ) + O1 (τ) e− 1
2 (t−t0)(λA−2σ)

)

ε0

+
∫ t

t0

e− 1
2 (t − s)− 1

2 e− 1
2 (t−s)(λA−2σ)eσ(s−t0)‖g(v(s))‖L2 (1 + O2 (τ)) ds. (7)

From (3) and the assumptions of the theorem, we have

eσ(s−t0)‖g(v(s))‖L2 ≤
∥∥∥f
(
ω(s) + eσ(s−t0)v(s)

)
− f(ω(s)) − f ′[ω(s)]eσ(s−t0)v(s)

∥∥∥
L2

+ ‖f(ω(s)) − ∂sω(s) − Δω(s)‖L2

≤ Lω(ρ)ρ2 + δ.

The upper bound of (7) with respect to t ∈ J is given by

‖T (v)‖Xσ
≤ (M + O1 (τ)) ε0

+

√

2π

e(λA − 2σ)
erf

(
√

(λA − 2σ)τ
2

)

(1 + O2 (τ))
(

Lω(ρ)ρ2 + δ
)

.

From (6) ‖T (v)‖Xσ
< ρ holds. Namely, we obtain T (v) ∈ Z.

Next, under the assumptions of the theorem, we show that T is a contraction
mapping on Z. For v1, v2 ∈ Z, we have

‖T (v1) − T (v2)‖Xσ
≤

√

2π

e(λA − 2σ)
erf

(
√

(λA − 2σ)τ
2

)

(1 + O2 (τ)) Lω(ρ)ρ‖v1 − v2‖Xσ
.

The assumption (6) also implies
√

2π

e(λA − 2σ)
erf

(
√

(λA − 2σ)τ
2

)

(1 + O2 (τ)) Lω(ρ)ρ < 1.

Therefore, T becomes a contraction mapping on Z. Banach’s fixed-point theorem
asserts that there uniquely exists a fixed-point v = T (v) in Z. It yields that the
mild solution of (1) uniquely exists in the ball BJ(ω, ρ). �




Verified Computations for Solutions to Semilinear Parabolic Equations 223

References

1. Tanabe, H.: On the equations of evolution in a Banach space. Osaka Math. J. 12(2),
363–376 (1960)

2. Sobolevskii, P.E.: On equations of parabolic type in Banach space with unbounded
variable operator having a constant domain. Akad. Nauk Azerbaidzan. SSR Doki,
17:6 (1961). (in Russian)

3. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential
Equations. Springer, New York (1983)

4. Fujita, H., Saito, N., Suzuki, T.: Operator Theory and Numerical Methods. North
Holland, Amsterdam (2001)



Verified Error Bounds for the Real Gamma
Function Using Double Exponential Formula

over Semi-infinite Interval

Naoya Yamanaka1,4(B), Tomoaki Okayama2, and Shin’ichi Oishi3,4

1 Faculty of Modern Life, Teikyo Heisei University,
4-21-2, Nakano, Nakano, Tokyo 164-8530, Japan

n.yamanaka@thu.ac.jp
2 Graduate School of Information Sciences, Hiroshima City University,

3-4-1, Ozuka-higashi, Asaminami, Hiroshima 731-3194, Japan
okayama@hiroshima-cu.ac.jp

3 Faculty of Science and Engineering, Waseda University,
3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan

oishi@waseda.jp
4 CREST, Japan Science and Technology Agency,

4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan

Abstract. An algorithm is presented for computing verified error
bounds for the value of the real gamma function. It has been shown that
the double exponential formula is one of the most efficient methods for
calculating integrals of the form. Recently, an useful evaluation based on
the double exponential formula over the semi-infinite interval has been
proposed. However, the evaluation would be overflow when applied to
the real gamma function directly. In this paper, we present a theorem
so as to overcome the problem in such a case. Numerical results are pre-
sented for illustrating effectiveness of the proposed theorem in terms of
the accuracy of the calculation.

Keywords: Gamma function · Verified bound · Double exponential
formula

1 Introduction

This paper is concerned with a verified numerical computation of the real gamma
function. The real gamma function is defined by

Γ(x) :=
∫ ∞

0

ux−1 exp(−u)du, (1)

for all real x.
Several verified numerical algorithms have been proposed for the real gamma

function [1,2]. Basically, these algorithms use the following properties of the
gamma function,
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 224–228, 2016.
DOI: 10.1007/978-3-319-32859-1 19



Verified Error Bounds for the Real Gamma Function 225

Γ (x + 1) = xΓ (x) , (2)

−xΓ (−x) Γ (x) =
π

sin πx
. (3)

Thanks to the properties, it suffices to consider the following range of x:

1 � x � 2. (4)

To calculate the integral of the range, Rump used the polynomial approximation
for the range of the real gamma function [1], and Kashiwagi used the power series
arithmetic after dividing the integral Eq. (1) into a part of a finite integral and
an infinite integral [2].

The purpose of this paper is to present an efficient theorem based on verified
numerical integration algorithm over semi-infinite interval. It has been shown
that the double exponential formula proposed by Takahasi and Mori [3] is one of
the most efficient methods for calculating an approximate value of such integrals.
The idea of the double exponential formula is to transform a given integral into
an integral over (−∞,∞) via a change of variable u = ϕ(t) as

∫ ∞

0

f(u)du =
∫ ∞

−∞
f (ϕ(t)) ϕ′(t)dt. (5)

Then, the integral on the right hand side of Eq. (5) is evaluated by the trapezoidal
formula. In the present case, as the function ϕ(t),

ϕ(t) = log (1 + exp (π sinh(t))) (6)

is appropriate [4]. Thus, the double exponential formula is explicitly written as
∫ ∞

0

f(u)du ≈ h

N
∑

k=−M

f (ϕ(kh)) ϕ′(kh). (7)

Recently, Okayama [4] has given an error formula in which all constants are
explicitly given in the case where f satisfied on a complex domain that

|f(z)| � K

∣

∣

∣

∣

z

1 + z

∣

∣

∣

∣

α−1

|exp(−βz)| , (8)

where K > 0, 0 < α � 1 and β > 0 . This result is very useful in such a case,
but it cannot be applied directly to the type of the real gamma function. In this
paper, we present a theorem so as to overcome the problem in the present case.
By numerical experiments it is shown that the proposed approach is efficient in
terms of the accuracy of the results.

2 Error Bounds of the Double Exponential Formula

2.1 Preliminary

In this paper, we are concerned with a problem of calculating an inclusion of
the real gamma function defined by Eq. (1). Here, we briefly review Okayama’s
result.



226 N. Yamanaka et al.

Let d be a positive constant. We define a domain Dd by

Dd = {z ∈ C : |Im z| < d} . (9)

Theorem 1 (Okayama [4, Theorem 2.9, α = 1]). Let d be a constant with
0 < d < π/2. Assume that f is analytic in ϕ (Dd), and there exist positive
constants K and β (β � 1) such that

|f(z)| � K |exp(−βz)| (10)

for all z ∈ ϕ (Dd). Let h be defined as

h =
log (4dn/β)

n
, (11)

and let M and N be defined as

N = n, M = n − �log(1/β)/h�, (12)

and xγ be defined for γ > 0 by

xγ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

arcsinh

(√
1+

√
1−(2πγ)2

2πγ

)

(

if 0 < γ <
1
2π

)

,

arcsinh (1)
(

if
1
2π

� γ

)

.

(13)

Furthermore, let n be taken sufficiently large so that

n � e

4d
, Mh � x1, and Nh � xβ , (14)

hold. Then it holds that
∣

∣

∣

∣

∣

∫ ∞

0

f (u) du − h
N

∑

k=−M

f (ϕ(kh)) ϕ′(kh)

∣

∣

∣

∣

∣

� C exp
( −2πdn

log(4dn/β)

)

, (15)

where the constant C is defined by

C =
2K

β

{

2

(1 − exp(−πβe/2))
{

cos(π
2 sin(d))

}1+β cos(d)
+ exp

(π

2

)

}

. (16)

This theorem is very useful if f is bounded as Eq. (10). However, the upper
bound K in the theorem would be overflow when applied with β = 1 to the
following type of f :

f(u) = ux−1 exp(−u). (17)



Verified Error Bounds for the Real Gamma Function 227

2.2 Main Theorem

To overcome the problem, we present the following lemma.

Lemma 1 Let x be a real number with 1 � x � 2, let d be a constant with
0 < d < π/2, and let β, γ be defined by

β = 1 −
(

x − 1
2π

)

, γ = − log
(

cos
(π

2
sin d

))

. (18)

Then it follows that

sup
z∈ϕ(Dd)

∣

∣zx−1 exp(−(1 − β)z)
∣

∣ �
[(

γ2 + π2
)

exp(γ/π)
]

x−1
2 . (=: C ′) (19)

By using the lemma, we will obtain the following theorem.

Theorem 2 Let x be a real number with 1 � x � 2, let d be a constant with
0 < d < π/2, and let β, γ be defined by Eq. (18). Assume that f is analytic in
ϕ (Dd) and there exists a positive constant K such that

|f(z)| � K |z|x−1 |exp(−z)| (20)

for all z ∈ ϕ (Dd). Let h be defined as Eq. (11), and let M and N be defined as
Eq. (12). Furthermore, let n be taken sufficiently large so that the conditions in
Eq. (14) are met. Then it holds that

∣

∣

∣

∣

∣

∫ ∞

0

f (u) du − h

N
∑

k=−M

f (ϕ(kh)) ϕ′(kh)

∣

∣

∣

∣

∣

� CC ′ exp
( −2πdn

log(4dn/β)

)

, (21)

where the constants C and C ′ are defined by Eqs. (16) and (19), respectively.

The theorem can be obtained by using the following inequality:
∣

∣zx−1 exp(−z)
∣

∣ =
∣

∣zx−1 exp(−(1 − β)z) exp(−βz)
∣

∣

� sup
z∈ϕ(Dd)

{∣

∣zx−1 exp(−(1 − β)z)
∣

∣

} |exp(−βz)| ≤ C ′| exp(−βz)|. (22)

3 Numerical Result

In this section, we present the numerical experiments. These experiments were
done under the following computer environment: Mac OS X Yosemite (10.10),
Memory 32 GB, Intel Core i7 4.0 GHz, Apple LLVM version 6.0 (clang-600.0.54)
with kv library version 0.4.22 for the interval arithmetic [5] and MPFR library
for high precision arithmetic [6].

In Fig. 1, the maximum of the error bound (the right-hand side of Eq. (21))
on the following points

x = 1, 1 +
1
32

, . . . , 1 +
31
32

, 2 (23)



228 N. Yamanaka et al.

is shown with respect to the number n, in range of [1, 150]. Furthermore, we show
the maximum errors of the double exponential formula on x in Eq. (23), using
the floating points system having 53 bits, 106 bits and 212 bits mantissa. We
chose d = 1.5 in the experiments. From the graph, we can observe that the error
bound of the proposed theorem sharply includes the actual errors in the range
of given mantissa. We can also see that the results by the double exponential
formula are very stable, and only a few digits are lost throughout the calculation
of the integral.

10-90

10-80

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

1010

 0  20  40  60  80  100  120  140

Ab
so

lu
te

 E
rro

r

The number n of the proposed theorem

Error bound of the proposed theorem
Calculated by 53 bits mantissa

Calculated by 106 bits mantissa
Calculated by 212 bits mantissa

Fig. 1. The maximum error bound of Γ(x) on the points in Eq. (23), and the maximum
errors of the double exponential formula using the floating points system having 53 bits,
106 bits and 212 bits mantissa.

References

1. Rump, S.M.: Verified sharp bounds for the real gamma function over the entire
floating-point range. Nonlinear Theor. Appl. IEICE 5, 339–348 (2014)

2. Kashiwagi, M.: Verified algorithm for special functions (in Japanese). http://
verifiedby.me/kv/special/

3. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration.
Publ. RIMS Kyoto Univ. 9, 721–741 (1974)

4. Okayama, T.: Error estimates with explicit constants for Sinc quadrature and Sinc
indefinite integration over infinite intervals. Reliable Comput. 19, 45–65 (2013)

5. kv Library. http://verifiedby.me/kv/
6. The GNU MPFR Library: http://www.mpfr.org/

http://verifiedby.me/kv/special/
http://verifiedby.me/kv/special/
http://verifiedby.me/kv/
http://www.mpfr.org/


Polynomial System Solving



Improving a CGS-QE Algorithm

Ryoya Fukasaku1, Hidenao Iwane2, and Yosuke Sato1(B)

1 Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo, Japan
1414704@ed.tus.ac.jp, ysato@rs.kagu.tus.ac.jp

2 Fujitsu Laboratories Ltd, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

iwane@jp.fujitsu.com

Abstract. A real quantifier elimination algorithm based on computa-
tion of comprehensive Gröbner systems introduced by Weispfenning and
recently improved by us has a weak point that it cannot handle a formula
with many inequalities. In this paper, we further improve the algorithm
so that we can handle more inequalities.

Keywords: QE · Comprehensive Gröbner system · Descartes’ rule

1 Introduction

In the recent paper [2] we have introduced an improved version of Weispfenning’s
real quantifier elimination algorithm [5]. The algorithm, called a CGS-QE algo-
rithm in this paper, is implemented in Maple and shown to be satisfactorily prac-
tical for a given quantified formula with many equations. When a given formula
contains many inequalities, however, our algorithm produces huge polynomials
on the way of its prosecution, which causes the computation not to terminate in
feasible period of time. The size of such polynomials increases at a rate propor-
tional to 2l where l is the number of inequalities contained in the given formula.
The main reason is that we directly apply Descartes’ rule of signs for computing a
signature of the characteristic polynomial χJ

1 (X). Its total degree is proportional
to 2l. In this short paper, we introduce a finer method to compute its signature
using the factorization structure χJ

1 (2lX) = cΠ(e1,e2,...,el)∈{0,1}lχI
h
e1
1 h

e2
2 ···hel

l

(X).
(Their definitions and detailed descriptions are given in Sect. 2.)

The paper is organized as follows. In Sect. 2, we give a minimal background
concerning the CGS-QE algorithm to understand our work of this paper. Our
new method is introduced in Sect. 3. Since our work is still on going, we have
not completely implemented the new method yet. Nevertheless, we can see its
effectiveness through the examples given in Sect. 4.

2 Preliminary

In the rest of the paper, Q and R denote the field of rational numbers and the
field of real numbers respectively. X̄ denotes some variables X1, . . . , Xn. T (X̄)
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 231–235, 2016.
DOI: 10.1007/978-3-319-32859-1 20



232 R. Fukasaku et al.

denotes a set of terms in X̄. For an ideal I ⊂ Q[X̄], VR(I) denotes the varieties
of I in R, i.e., VR(I) = {c̄ ∈ R

n|∀f ∈ I f(c̄) = 0}. Let I be a zero dimensional
ideal in a polynomial ring Q[X̄]. Considering the residue class ring Q[X̄]/I as
a vector space over Q, let t1, . . . , td be its basis. For an arbitrary h ∈ Q[X̄]/I
and each i, j (1 ≤ i, j ≤ d) we define a linear map θh,i,j from Q[X̄]/I to Q[X̄]/I
by θh,i,j(f) = htitjf for f ∈ Q[X̄]/I. Let qh,i,j be the trace of θh,i,j and M I

h

be a symmetric matrix such that the (i, j)-th component is given by qh,i,j . The
characteristic polynomial of M I

h is denoted by χI
h(X). We abuse the notation

σ(f(X)) to denote the number of positive real roots of f(X) = 0 minus the
number of negative real roots of f(X) = 0 for a polynomial f(X) ∈ Q[X], and
call it the signature of f(X). The signature of M I

h denoted σ(M I
h) is defined as

the signature σ(χI
h(X)) of its characteristic polynomial. The real root counting

theorem found independently in [1,4] is the following assertion.

Theorem 1. σ(M I
h) = #({c̄ ∈ VR(I)|h(c̄) > 0}) − #({c̄ ∈ VR(I)|h(c̄) < 0}).

We have the following corollary.

Corrollary 2. σ(M I
1 ) = #(VR(I)).

Using an obvious relation h � 0 ⇔ ∃z z2 = h, we have the following fact.

Lemma 3. Let h1, . . . , hl be polynomials in Q[X̄] and Z̄ = Z1, . . . , Zl be new
variables. Using the same notations as above, let J be an ideal in Q[X̄, Z̄] defined
by J = I + 〈Z2

1 − h1, . . . , Z
2
l − hl〉. Then the following equation holds.

#(VR(J)) = 2l#({c̄ ∈ VR(I)|h1(c̄) � 0, . . . , hl(c̄) � 0}).

The next theorem plays an important role in our CGS-QE algorithm of [2].

Theorem 4. Let I be a zero dimensional ideal of Q[X̄] and J = I + 〈Z2
1 −

h1, . . . , Z
2
l − hl〉 be an ideal of Q[X̄, Z̄] with polynomials h1, . . . , hl ∈ Q[X̄]. Let

k be a dimension of Q[X̄]/I and {t1, . . . , tk} ⊂ T (X̄) be a basis of the vector space
Q[X̄]/I, then {t1Z

e1
1 Ze2

2 · · · Zel
l , . . . , tkZ

e1
1 Ze2

2 · · · Zel
l |(e1, e2, . . . , el) ∈ {0, 1}l}

forms a basis of the vector space Q[X̄, Z̄]/J . Let MJ
g denote a symmetric matrix

and χJ
g denote its characteristic polynomial for a polynomial g ∈ Q[X̄] induced

by the above basis of Q[X̄, Z̄]/J . Let M I
g denote a symmetric matrix and χI

g

denote its characteristic polynomial for a polynomial g ∈ Q[X̄] induced by the
above basis of Q[X̄]/I. Then we have the following equation for some non-zero
constant c.

χJ
g (2lX) = cΠ(e1,e2,...,el)∈{0,1}lχI

gh
e1
1 h

e2
2 ···hel

l
(X).

As an easy consequence of these results, we have the following fact.

Theorem 5. {c̄ ∈ VR(I)|h1(c̄) � 0, . . . , hl(c̄) � 0} 
= ∅ ⇔ σ(χJ
1 (X)) 
= 0 ⇔

σ(Π(e1,e2,...,el)∈{0,1}lχI
h
e1
1 h

e2
2 ···hel

l

(X)) 
= 0.



Improving a CGS-QE Algorithm 233

3 Computation of Signatures

In order to apply Theorem 5 to CGS-QE, we need to express σ(χJ
1 (X)) 
= 0 as

a first order formula in terms of the coefficients of the parametric polynomial
χJ
1 (X). In [2], we compute a simplified form of the formula Id(a0, . . . , ad−1)

defined by Id(a0, . . . , ad−1) ⇔ σ(f(X)) 
= 0 for a polynomial f(X) = Xd +
ad−1X

d−1 + · · · + a0 which has only real roots, up to d = 12 using Descartes’
rule of signs. By Theorem 5, the degree of the characteristic polynomial χJ

1 (X)
is k2l. Even when k = 2, it exceeds 12 for l = 3. Furthermore, the size of
its coefficients increases exponentially with l. Hence, we need some heuristic
devise for handling more than 3 inequalities as long as we use the characteristic
polynomial χJ

1 (X).
Using Theorems 4 and 5, we also have the following equation:

σ(χJ
1 (X)) =

∑

(e1,e2,...,el)∈{0,1}l

σ(χI
h
e1
1 h

e2
2 ···hel

l
(X)).

By the equation we can re-describe σ(χJ
1 (X)) 
= 0 in terms of σ(χI

h
e1
1 h

e2
2 ···hel

l

(X)).

When l = 2 and k(the dimension of I)= 2 for example, since σ(χI
1(X)) � 0

by Corollary 2 and 2 � σ(χI
1(X)), σ(χI

h1
(X)), σ(χI

h2
(X)), σ(χI

h1h2
(X)) � −2

because all of them are quadratic polynomials, the following relation holds:

σ(χJ
1 (X)) 
= 0 ⇔
σ(χI

h1
(X)) + σ(χI

h2
(X)) + σ(χI

h1h2
(X)) > 0∨

σ(χI
h1

(X)) + σ(χI
h2

(X)) + σ(χI
h1h2

(X)) = 0 ∧ σ(χI
1(X)) 
= 0∨

σ(χI
h1

(X)) + σ(χI
h2

(X)) + σ(χI
h1h2

(X)) = −1 ∧ σ(χI
1(X)) = 2.

At a glance, the second formula looks more complicated. Remember that χJ
1 (X)

is the product of 2l polynomials χI
h
e1
1 h

e2
2 ···hel

l

(X) for (e1, e2, . . . , el) ∈ {0, 1}l.
Hence, each coefficient of χJ

1 (X) is a polynomial of coefficients of χI
h
e1
1 h

e2
2 ···hel

l

(X),

some of which has total degree 2l. On the other hand, if we use the second
formula we get a formula which contains only linear polynomials of coefficients
contained in some polynomial χI

h
e1
1 h

e2
2 ···hel

l

(X). In the next section, we explicitly
give polynomial representations of the above two formulas.

4 Examples

Let k = 2, l = 2 and χI
1(X) = X2 + a0X + b0, χ

I
h1

(X) = X2 + a1X +
b1, χ

I
h2

(X) = X2 +a2X + b2, χ
I
h1h2

(X) = X2 +a3X + b3. Example 6 is a polyno-
mial representation of the formula σ(χJ

1 (X)) 
= 0 obtained by I8(c0, c1, . . . , c7)
where ci i = 1 . . . , 7 are the coefficient of Xi for the expanded polynomial of
(X2 + a0X + b0)(X2 + a1X + b1)(X2 + a1X + b1)(X2 + a2X + b2). Example 7
is a polynomial representation of the second formula in the previous section.



234 R. Fukasaku et al.

Example 6. (a2a3b0b1 +a1a3b0b2 +a0a3b1b2 +b0b1b2 +a1a2b0b3 +a0a2b1b3 +b0b1b3 +a0a1b2b3 +b0b2b3 +
b1b2b3 ≤ 0∧a3b0b1b2 +a2b0b1b3 +a1b0b2b3 +a0b1b2b3 �= 0)∨ (0 ≤ a1a2a3b0 +a0a2a3b1 +a2b0b1 +a3b0b1 +
a0a1a3b2 + a1b0b2 + a3b0b2 + a0b1b2 + a3b1b2 + a0a1a2b3 + a1b0b3 + a2b0b3 + a0b1b3 + a2b1b3 + a0b2b3 +
a1b2b3 ∧ 0 ≤ a0a1a2a3 + a1a2b0 + a1a3b0 + a2a3b0 + a0a2b1 + a0a3b1 + a2a3b1 + b0b1 + a0a1b2 + a0a3b2 +
a1a3b2+b0b2+b1b2+a0a1b3+a0a2b3+a1a2b3+b0b3+b1b3+b2b3∧0 ≤ a0a1a2+a0a1a3+a0a2a3+a1a2a3+
a1b0+a2b0+a3b0+a0b1+a2b1+a3b1+a0b2+a1b2+a3b2+a0b3+a1b3+a2b3∧0 ≤ a0a1+a0a2+a1a2+a0a3+
a1a3 +a2a3 +b0 +b1 +b2 +b3 ∧0 < a0 +a1 +a2 +a3)∨ (a1a2a3b0 +a0a2a3b1 +a2b0b1 +a3b0b1 +a0a1a3b2 +
a1b0b2 +a3b0b2 +a0b1b2 +a3b1b2 +a0a1a2b3 +a1b0b3 +a2b0b3 +a0b1b3 +a2b1b3 +a0b2b3 +a1b2b3 ≤ 0∧0 ≤
a0a1a2a3 +a1a2b0 +a1a3b0 +a2a3b0 +a0a2b1 +a0a3b1 +a2a3b1 + b0b1 +a0a1b2 +a0a3b2 +a1a3b2 + b0b2 +
b1b2 + a0a1b3 + a0a2b3 + a1a2b3 + b0b3 + b1b3 + b2b3 ∧ a0a1a2 + a0a1a3 + a0a2a3 + a1a2a3 + a1b0 + a2b0 +
a3b0 + a0b1 + a2b1 + a3b1 + a0b2 + a1b2 + a3b2 + a0b3 + a1b3 + a2b3 ≤ 0 ∧ 0 ≤ a0a1 + a0a2 + a1a2 + a0a3 +
a1a3 +a2a3 +b0 +b1 +b2 +b3 ∧a0 +a1 +a2 +a3 < 0)∨(a2a3b0b1 +a1a3b0b2 +a0a3b1b2 +b0b1b2 +a1a2b0b3 +
a0a2b1b3+b0b1b3+a0a1b2b3+b0b2b3+b1b2b3 ≤ 0∧0 ≤ a1a2a3b0+a0a2a3b1+a2b0b1+a3b0b1+a0a1a3b2+
a1b0b2+a3b0b2+a0b1b2+a3b1b2+a0a1a2b3+a1b0b3+a2b0b3+a0b1b3+a2b1b3+a0b2b3+a1b2b3 ∧a0a1a2+
a0a1a3+a0a2a3+a1a2a3+a1b0+a2b0+a3b0+a0b1+a2b1+a3b1+a0b2+a1b2+a3b2+a0b3+a1b3+a2b3 ≤
0 ∧ 0 ≤ a0a1 + a0a2 + a1a2 + a0a3 + a1a3 + a2a3 + b0 + b1 + b2 + b3 ∧ a0 + a1 + a2 + a3 < 0) ∨ (a2a3b0b1+

.

.

. (66 lines)

0) ∨ (a3b0b1b2 + a2b0b1b3 + a1b0b2b3 + a0b1b2b3 ≤ 0 ∧ 0 ≤ a2a3b0b1 + a1a3b0b2 + a0a3b1b2 + b0b1b2 +
a1a2b0b3 + a0a2b1b3 + b0b1b3 + a0a1b2b3 + b0b2b3 + b1b2b3 ∧ a1a2a3b0 + a0a2a3b1 + a2b0b1 + a3b0b1 +
a0a1a3b2+a1b0b2+a3b0b2+a0b1b2+a3b1b2+a0a1a2b3+a1b0b3+a2b0b3+a0b1b3+a2b1b3+a0b2b3+a1b2b3 <
0 ∧ 0 ≤ a0a1a2 + a0a1a3 + a0a2a3 + a1a2a3 + a1b0 + a2b0 + a3b0 + a0b1 + a2b1 + a3b1 + a0b2 + a1b2 + a3b2 +
a0b3 +a1b3 +a2b3 ∧a0 +a1 +a2 +a3 ≤ 0)∨ (a3b0b1b2 +a2b0b1b3 +a1b0b2b3 +a0b1b2b3 ≤ 0∧0 ≤ a2a3b0b1 +
a1a3b0b2 + a0a3b1b2 + b0b1b2 + a1a2b0b3 + a0a2b1b3 + b0b1b3 + a0a1b2b3 + b0b2b3 + b1b2b3 ∧ a1a2a3b0 +
a0a2a3b1 +a2b0b1 +a3b0b1 +a0a1a3b2 +a1b0b2 +a3b0b2 +a0b1b2 +a3b1b2 +a0a1a2b3 +a1b0b3 +a2b0b3 +
a0b1b3 +a2b1b3 +a0b2b3 +a1b2b3 < 0∧0 ≤ a0a1a2 +a0a1a3 +a0a2a3 +a1a2a3 +a1b0 +a2b0 +a3b0 +a0b1 +
a2b1+a3b1+a0b2+a1b2+a3b2+a0b3+a1b3+a2b3∧a0a1+a0a2+a1a2+a0a3+a1a3+a2a3+b0+b1+b2+b3 ≤
0)∨(a3b0b1b2+a2b0b1b3+a1b0b2b3+a0b1b2b3 ≤ 0∧0 ≤ a2a3b0b1+a1a3b0b2+a0a3b1b2+b0b1b2+a1a2b0b3+
a0a2b1b3 + b0b1b3 + a0a1b2b3 + b0b2b3 + b1b2b3 ∧ a1a2a3b0 + a0a2a3b1 + a2b0b1 + a3b0b1 + a0a1a3b2 +
a1b0b2 + a3b0b2 + a0b1b2 + a3b1b2 + a0a1a2b3 + a1b0b3 + a2b0b3 + a0b1b3 + a2b1b3 + a0b2b3 + a1b2b3 <
0∧0 < a0a1a2a3 +a1a2b0 +a1a3b0 +a2a3b0 +a0a2b1 +a0a3b1 +a2a3b1 +b0b1 +a0a1b2 +a0a3b2 +a1a3b2 +
b0b2 + b1b2 + a0a1b3 + a0a2b3 + a1a2b3 + b0b3 + b1b3 + b2b3 ∧ a0a1a2 + a0a1a3 + a0a2a3 + a1a2a3 + a1b0 +
a2b0 + a3b0 + a0b1 + a2b1 + a3b1 + a0b2 + a1b2 + a3b2 + a0b3 + a1b3 + a2b3 ≤ 0)

Example 7. (b1 > 0∧a1 < 0∧((b2 � 0∧a2 < 0)∨(b3 � 0∧a3 < 0)))∨(b2 > 0∧a2 < 0∧((b1 � 0∧a1 < 0)∨(b3 �
0∧a3 < 0)))∨(b3 > 0∧a3 < 0∧((b2 � 0∧a2 < 0)∨(b1 � 0∧a1 < 0)))∨(b1 = 0∧a1 < 0∧b2 = 0∧a2 < 0∧¬(b3 >
0∧a3 > 0))∨ (b3 = 0∧a3 < 0∧ b2 = 0∧a2 < 0∧ ¬(b1 > 0∧a1 > 0))∨ (b1 = 0∧a1 < 0∧ b3 = 0∧a3 < 0∧ ¬(b2 >
0∧a2 > 0))∨(b1 = 0∧a1 < 0∧((a2 = 0∧b2 = 0)∨b2 < 0)∧((a3 = 0∧b3 = 0)∨b3 < 0))∨(b3 = 0∧a3 < 0∧((a2 =
0∧b2 = 0)∨b2 < 0)∧ ((a1 = 0∧b1 = 0)∨b1 < 0))∨ (b2 = 0∧a2 < 0∧ ((a1 = 0∧b1 = 0)∨b1 < 0)∧ ((a3 = 0∧b3 =
0) ∨ b3 < 0)) ∨ (¬((a0 = 0 ∧ b0 = 0) ∨ b0 < 0) ∧ ((b1 > 0 ∧ a1 < 0 ∧ ((a2 = 0 ∧ b2 = 0) ∨ b2 < 0) ∧ b3 > 0 ∧ a3 >
0) ∨ (b1 > 0 ∧ a1 < 0 ∧ b2 > 0 ∧ a2 > 0 ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 < 0)) ∨ (b2 > 0 ∧ a2 < 0 ∧ ((a1 = 0 ∧ b1 = 0) ∨ b1 <
0) ∧ b3 > 0 ∧ a3 > 0) ∨ (b2 > 0 ∧ a2 < 0 ∧ b1 > 0 ∧ a1 > 0 ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 < 0)) ∨ (b3 > 0 ∧ a3 < 0 ∧ ((a2 =
0 ∧ b2 = 0) ∨ b2 < 0) ∧ b1 > 0 ∧ a1 > 0) ∨ (b3 > 0 ∧ a3 < 0 ∧ b2 > 0 ∧ a2 > 0 ∧ ((a1 = 0 ∧ b1 = 0) ∨ b1 < 0)) ∨ (b1 >
0∧a1 < 0∧b2 = 0∧a2 > 0∧b3 = 0∧a3 > 0)∨(b2 > 0∧a2 < 0∧b1 = 0∧a1 > 0∧b3 = 0∧a3 > 0)∨(b3 > 0∧a3 <
0∧b2 = 0∧a2 > 0∧b1 = 0∧a1 > 0)∨ (b1 = 0∧a1 < 0∧b2 = 0∧a2 < 0∧b3 > 0∧a3 > 0)∨ (b2 = 0∧a2 < 0∧b1 =
0∧a1 < 0∧b3 > 0∧a3 > 0)∨(b3 = 0∧a3 < 0∧b2 = 0∧a2 < 0∧b1 > 0∧a1 > 0)∨(b1 = 0∧a1 < 0∧b2 = 0∧a2 >
0∧ ((a3 = 0∧ b3 = 0)∨ b3 < 0))∨ (b1 = 0∧a1 < 0∧ b3 = 0∧a3 > 0∧ ((a2 = 0∧ b2 = 0)∨ b2 < 0))∨ (b2 = 0∧a2 <
0 ∧ b1 = 0 ∧ a1 > 0 ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 < 0)) ∨ (b2 = 0 ∧ a2 < 0 ∧ b3 = 0 ∧ a3 > 0 ∧ ((a1 = 0 ∧ b1 = 0) ∨ b1 <
0)) ∨ (b3 = 0 ∧ a3 < 0 ∧ b2 = 0 ∧ a2 > 0 ∧ ((a1 = 0 ∧ b1 = 0) ∨ b1 < 0)) ∨ (b3 = 0 ∧ a3 < 0 ∧ b1 = 0 ∧ a1 > 0 ∧ ((a2 =
0 ∧ b2 = 0) ∨ b2 < 0)) ∨ (((a1 = 0 ∧ b1 = 0) ∨ b1 < 0) ∧ ((a2 = 0 ∧ b2 = 0) ∨ b2 < 0) ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 <
0)))) ∨ (b0 > 0 ∧ a0 < 0 ∧ ((b1 > 0 ∧ a1 < 0 ∧ b2 > 0 ∧ a2 > 0 ∧ b3 = 0 ∧ a3 > 0) ∨ (b1 > 0 ∧ a1 < 0 ∧ b3 > 0 ∧ a3 >
0∧b2 = 0∧a2 > 0)∨(b2 > 0∧a2 < 0∧b3 > 0∧a3 > 0∧b1 = 0∧a1 > 0)∨(b2 > 0∧a2 < 0∧b1 > 0∧a1 > 0∧b3 =
0∧a3 > 0)∨(b3 > 0∧a3 < 0∧b2 > 0∧a2 > 0∧b1 = 0∧a1 > 0)∨(b3 > 0∧a3 < 0∧b1 > 0∧a1 > 0∧b2 = 0∧a2 >
0) ∨ (b1 = 0 ∧ a1 < 0 ∧ ((a2 = 0 ∧ b2 = 0) ∨ b2 < 0) ∧ b3 > 0 ∧ a3 > 0) ∨ (b1 = 0 ∧ a1 < 0 ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 <
0) ∧ b2 > 0 ∧ a2 > 0) ∨ (b2 = 0 ∧ a2 < 0 ∧ ((a1 = 0 ∧ b1 = 0) ∨ b1 < 0) ∧ b3 > 0 ∧ a3 > 0) ∨ (b2 = 0 ∧ a2 < 0 ∧ ((a3 =
0 ∧ b3 = 0) ∨ b3 < 0) ∧ b1 > 0 ∧ a1 > 0) ∨ (b3 = 0 ∧ a3 < 0 ∧ ((a1 = 0 ∧ b1 = 0) ∨ b1 < 0) ∧ b2 > 0 ∧ a2 > 0) ∨ (b3 =
0∧a3 < 0∧((a2 = 0∧b2 = 0)∨b2 < 0)∧b1 > 0∧a1 > 0)∨(b1 = 0∧a1 < 0∧b2 = 0∧a2 > 0∧b3 = 0∧a3 > 0)∨(b2 =
0 ∧ a2 < 0 ∧ b1 = 0 ∧ a1 > 0 ∧ b3 = 0 ∧ a3 > 0) ∨ (b3 = 0 ∧ a3 < 0 ∧ b2 = 0 ∧ a2 > 0 ∧ b1 = 0 ∧ a1 > 0) ∨ (((a1 =
0 ∧ b1 = 0) ∨ b1 < 0) ∧ b2 = 0 ∧ a2 > 0 ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 < 0)) ∨ (((a2 = 0 ∧ b2 = 0) ∨ b2 < 0) ∧ b1 = 0 ∧ a1 >
0 ∧ ((a3 = 0 ∧ b3 = 0) ∨ b3 < 0)) ∨ (((a1 = 0 ∧ b1 = 0) ∨ b1 < 0) ∧ b3 = 0 ∧ a3 > 0 ∧ ((a2 = 0 ∧ b2 = 0) ∨ b2 < 0))))

5 Conclusion and Remarks

When we apply our CGS-QE algorithm to a basic quantified formula:

∃X̄(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fm(Ȳ , X̄) = 0 ∧ h1(Ȳ , X̄) � 0 ∧ · · · ∧ hl(Ȳ , X̄) � 0),

we first compute a comprehensive Gröbner system (CGS) of the parametric ideal
〈f1, . . . , fm〉 of Q[X̄] with parameters Ȳ . For a segment of Ȳ such that the associ-
ated Gröbner basis is zero-dimensional we do not need any further CGS computa-
tions. We can compute an equivalent quantifier free formula in this segment even
when l is not small. On the other hand, for a segment of Ȳ such that the associ-
ated Gröbner basis is not zero-dimensional, we further proceed a recursive step



Improving a CGS-QE Algorithm 235

of the CGS-QE algorithm. For such a computation the input basic quantified for-
mula is constructed from a formula Id(a0, . . . , ad−1) for some d and a0, . . . , ad−1.
As long as we use the formula Id, the size of input polynomials can be very big
even for a small l. As we see in the previous section, the polynomial representa-
tion obtained from I8 contains big polynomials of a0, b0, a1, b1, a2, b2, a3, b3 with
total degree 4. For a polynomial ideal consisting of big and high degree polyno-
mials it is usually impossible to compute its Gröbner basis. It is the main reason
that our CGS-QE algorithm cannot deal with many inequalities. If we use the
new polynomial representation introduced in the paper, we are not bothered by
this phenomena anymore. We do not have explosion of the polynomial size.

For applying our method to a CGS-QE algorithm, we have to prepare a
simplified algebraic representation of the formula

∑

(e1,e2,...,el)∈{0,1}l

σ(χI
h
e1
1 h

e2
2 ···hel

l
(X)) 
= 0

(χI
h
e1
1 h

e2
2 ···hel

l
(X) = Xk + c

(e1,e2,...,el)
k−1 Xk−1 + · · · + c

(e1,e2,...,el)
1 X + c

(e1,e2,...,el)
0 )

in terms c
(e1,e2,...,el)
k−1 , . . . , c

(e1,e2,...,el)
1 , c

(e1,e2,...,el)
0 (e1, e2, . . . , el) ∈ {0, 1}l for

each k and l. As we have obtained a simplified formula for Id up to d = 12,
we can also obtain them using a simplification method by Boolean function
manipulation introduced in [3].

References

1. Becker, E., Wörmann, T.: On the trace formula for quadratic forms. Recent advances
in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San
Francisco, CA, 1991), pp. 271–291, Contemp. Math., 155, Amer. Math. Soc., Prov-
idence, RI (1994)

2. Fukasaku, R., Iwane, H., Sato, Y.: Real quantifier elimination by computation of
comprehensive gröbner systems. In: Proceedings of International Symposium on
Symbolic and Algebraic Computation, pp. 173–180. ACM (2015)

3. Iwane, H., Higuchi, H., Anai, H.: An effective implementation of a special quantifier
elimination for a sign definite condition by logical formula simplification. In: Gerdt,
V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136,
pp. 194–208. Springer, Heidelberg (2013)

4. Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeroes in the multivariate
case. In: Proceedings of the Effective Methods in Algebraic Geometry, pp. 203–224.
Springer (1993)

5. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Alge-
braic Decomposition, pp. 376–392. Springer, Vienna (1998)



Efficient Subformula Orders for Real Quantifier
Elimination of Non-prenex Formulas

Munehiro Kobayashi1(B), Hidenao Iwane2,3, Takuya Matsuzaki3,4,
and Hirokazu Anai2,3,5

1 University of Tsukuba, Tsukuba, Japan
munehiro-k@math.tsukuba.ac.jp

2 Fujitsu Laboratories Ltd., Kawasaki, Japan
3 National Institute of Informatics, Chiyoda, Japan

4 Nagoya University, Nagoya, Japan
5 Kyushu University, Fukuoka, Japan

Abstract. In this paper we study speeding up real quantifier elimina-
tion (QE) methods for non-prenex formulas. Our basic strategy is to
solve non-prenex first-order formulas by performing QE for subformu-
las constituting the input non-prenex formula. We propose two types of
methods (heuristic methods/machine learning based methods) to deter-
mine an appropriate ordering of QE computation for the subformulas.
Then we empirically examine their effectiveness through experimental
results over more than 2,000 non-trivial example problems. Our exper-
iment results suggest machine learning can save much effort spent to
design effective heuristics by trials and errors without losing efficiency of
QE computation.

Keywords: Real quantifier elimination · Support vector machine ·
Non-prenex formulas

1 Introduction

In this paper we aim at speeding up quantifier elimination (QE) methods for
non-prenex formulas over the reals by automatizing a heuristic procedure in QE
computation using a machine learning method.

When we discuss real QE algorithms, we usually assume that input first-order
formulas are in prenex form. We say a formula is in prenex form if it has the form
of a string of quantifiers followed by a quantifier-free part. However, given for-
mulas are not always prenex ones in practice. Transforming non-prenex formulas
to prenex form causes to miss the algebraic independency between variables and
then the QE computation tends to be hard. Hence, in view of practical com-
putation, the following strategy is considered to be effective: dividing a given
non-prenex formula into subformulas, applying QE to each subformulas, and
then logically integrating the results. Furthermore, we can obtain further effi-
ciency by utilizing intermediate QE results to simplify remaining formulas before
applying QE to them.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 236–251, 2016.
DOI: 10.1007/978-3-319-32859-1 21



Efficient Subformula Orders for Real Quantifier Elimination 237

Here we face the problem to determine the order of performing QE for the sub-
formulas. Total time required for achieving QE for the input non-prenex formula
depends heavily on the order. Ordinarily, some heuristic methods to choose an
appropriate order for subformulas are implemented (e.g., “easy to solve” subfor-
mula is first). For example, this strategy is successfully employed in [8].

In spite of its practical efficacy, studies on QE for non-prenex formulas are
few [11]. Actually, the existing computer algebra systems that accept non-prenex
formulas as inputs for QE execution are only Mathematica and SyNRAC [9] on
Maple. We focus on QE for non-prenex formulas to improve efficiency of QE
algorithm in practical use.

Our target problem is to determine an appropriate order for improving the
efficiency of QE computation for non-prenex formulas. In this paper we design
some heuristics methods and others based on machine learning, and examine
their effectiveness through detailed analysis of the experimental results over 2,306
nontrivial QE problems.

The 2,306 nontrivial QE problems are provided from the activity in “Todai
robot project – Can a Robot Get Into the University of Tokyo?” [1,10], which
is a project to develop an artificial intelligence system to automatically solve
natural language math problems of university entrance examinations. As 2,306
samples are sufficient to apply machine learning, the binary classification prob-
lem of if a formula is easy to perform QE for was learned with support vector
machines (SVMs).

So far there are some attempts to propose heuristic methods for determining
variable orders aiming at speeding up elimination methods in computer algebra.
Dolzmann et al. gave heuristics that estimates the optimal projection order for
cylindrical algebraic decomposition (CAD) [4]. Their study is based on a statis-
tical analysis. Later, Huang et al. applied machine learning to choose heuristics
for selecting projection order for CAD [6]. They showed SVMs, which are based
on statistical learning theory, achieved a good switching of heuristics and the
obtained mixture of heuristics performed better than any single heuristics.

While Huang et al. mainly measured the numbers of cells produced by
CAD, we made our study more practical by dealing with time performance.
We arranged this study in hope with a possible contribution to Todai robot
project. Thus, among time performances, one of which is simple execution time,
we most value the property that a QE computation finishes in a fixed time.

Our experimental results on more than 2,000 QE problems also indicate that
machine learning based methods are promising for heuristic processes if we have
sufficient amount of data (input problems and computational results). This fact
is beneficial in efficiently designing an effective method for such heuristics parts
since usually developing effective heuristic methods takes a lot of trials and errors.

The rest of this paper is organized as follows. Section 2 shows the problem
we discuss. Section 3 provides some methods to determine an appropriate order
of QE computation for subformulas from an input non-prenex formula. Section 4
is devoted to explain the computational results of the proposed methods and
detailed analysis. The concluding remarks are made in Sect. 5.



238 M. Kobayashi et al.

2 Problem

In this paper, we study efficient QE for non-prenex formulas over the reals. The
following formula ϕ gives an example of a non-prenex formula:

ϕ ≡ ϕ1 ∨ ϕ2 ∨ ϕ3, (1)

where

ϕ1 ≡ ∃x0(−x0 ≤ −1),
ϕ2 ≡ ∃x1(x1 ≤ 0), and

ϕ3 ≡ ∃x2∃x3∃x4

(

∃x5

(

(x3
2x4x5 − x2

2x4 − x2
2x5 + x2 + 1 = 0 ∨

x3
2x4x5x6 − x2

2x4x5 − x2
2x4x6 − x2

2x5x6 + x2x4 + x2x5 + x2x6 − x6 = 0) ∧
(x3

2x4x6 − x2
2x4 − x2

2x6 + x2 + 1 = 0 ∨
x3
2x4x5x6 − x2

2x4x5 − x2
2x4x6 − x2

2x5x6 + x2x4 + x2x5 + x2x6 − x5 = 0)
) ∧

(

x3
2x3 − x2

2x3 − x2
2 + x2 + 1 = 0 ∨

x3
2x3x4 − x2

2x3x4 − x2
2x3 − x2

2x4 + x2x3 + x2x4 + x2 − x4 = 0
) ∧

(

x3
2x4 − x2

2x4 − x2
2 + x2 + 1 = 0 ∨

x3
2x3x4 − x2

2x3x4 − x2
2x3 − x2

2x4 + x2x3 + x2x4 + x2 − x3 = 0
)

)

.

Our approach is to modify the order of processing subformulas by varying
ordering functions on formulas.

The paper [8] of Iwane et al. states that sort orderings on formulas affect the
efficiency of QE computation. The paper treats the problem of constructing for-
mulas equivalent to university entrance examination problems using the natural
language processing, and the problem of solving them by performing QE for the
constructed formulas. According to [8], construction of formulas by the current
natural language processing results in large and complicated QE problems, and
solving such problems simply by a general QE algorithm is not realistic. The fol-
lowing approaches are proposed by them to be effective in QE computation if the
input QE problem is much redundant: use of special QE algorithms, simplifica-
tion of intermediate formulas, and decomposition of the formula into separately
solvable parts. Algorithm 1 (adapted from [8]) shows their procedure to perform
QE for a non-prenex formula. Qeprenex in Algorithm 1 executes QE using tradi-
tional algorithms such as CAD, virtual term substitution, and QE by real root
counting [7] in the form ∀x(f(x) > 0) and ∀x(x ≥ 0 → f(x) > 0). Their pro-
posed QE algorithm rearranges an input formula into non-prenex form, makes
sorting over the subformulas, and in that order performs QE recursively for each
subformula. The conditions obtained from solved (i.e., quantifier-free) subfor-
mulas are immediately utilized to simplify the remaining subformulas. Hence
subformulas should be sorted in the order from easiest to hardest. Our study
investigated the effect of changing ‘Sort’ in Algorithm 1.



Efficient Subformula Orders for Real Quantifier Elimination 239

Algorithm 1. Qemain(ϕ,ψnec, ψsuf)
Input: a first-order formula ϕ, quantifier-free formulas ψnec and ψsuf

Output: a quantifier-free formula ϕ′ s.t. ϕ∧ψnec∨ψsuf is equivalent to ϕ′ ∧ψnec∨ψsuf

1: if ϕ is quantifier-free then
2: return Simplify(ϕ, ψnec, ψsuf)
3: else if ϕ is a prenex formula then
4: return Qeprenex(ϕ, ψnec, ψsuf)
5: else if ϕ ≡ Q1x1 · · ·Qmxm ξ where Qj ∈ {∃, ∀} then
6: /* ξ is not quantifier-free */
7: return Qeprenex(Q1x1 · · ·QmxmQemain(ξ, ψnec, ψsuf), ψnec, ψsuf)
8: else if ϕ ≡ ∨ξi then
9: return ¬Qemain(¬ϕ, ¬ψsuf , ¬ψnec)

10: /* ϕ ≡ ∧ξi */
11: if ξi ≡ (fi = 0) and fi is reducible (fi =

∏
gi,j) then

12: return Qemain(∨j(gi,j = 0 ∧ (∧k �=iξk)), ψnec, ψsuf)
13: {ϕi}n

i=1 ← Sort({ξi}n
i=1)

14: for all i such that 1 ≤ i ≤ n do
15: ϕi ← Qemain(ϕi, ψnec, ψsuf)
16: ψnec ← ψnec ∧ ϕi

17: return ∧iϕi

3 Methodology

In this section, we introduce the ordering functions. Our aim is to find an order-
ing function that makes QE computation efficient, and to develop a method to
obtain such an ordering function systematically by using machine learning. Our
ordering functions can be divided into three types – heuristics, random, and
machine learning. The way SVMs are utilized to define ordering functions is also
described.

3.1 Ordering Functions

We experimented with the sorting determined by the following ordering functions
on formulas:

Heuristics. The measure described below is calculated from the formula, and
the order of QE computation for subformulas was determined by comparing
the measure. We identified 10 measures for heuristics:
ADG [8]. The measure is a weighted sum of 1, 2, 3, 19, 27, 45 in Table 1.
nvar, npoly, sotd, msotd, mtdeg, mdeg, and mterm. The measures

are 1, 2, 3, 7, 8, 9, and 10 in Table 1 respectively.
nvar rev and npoly rev. The measures are 1 and 2 in Table 1 respectively.

These ordering functions give the reversed orders of ‘nvar’ and ‘npoly’
respectively, and were designed to investigate the worst cases.

Random. Each subformula is assigned random priority.



240 M. Kobayashi et al.

Machine Learning. We use an SVM to calculate the decision value, which is
described in Subsect. 3.2, of a formula using the model obtained by training
in advance. The formula which has the greater decision value is the smaller
formula.

As the above configuration suggests, the ordering functions by heuristics and
machine learning are similar in the way that both search for the best combination
of features shown in Table 1 to obtain efficient sorting in QE computation.

3.2 Features and Labeling for Machine Learning

Features. In order to perform machine learning over formulas with SVM, we
need to characterize a formula by a fixed length feature vector of numerical values.
Each value of the vector is supposed to capture some feature of the formula. We
chose 58 features shown in Table 1 to construct such a vector for a given formula.
The features are taken from other studies [2,4,6] and derived from the conditions
of special QE algorithms. While there are apparently overlapped features that are
expressed with other features such as feature 4 expressed with feature 3 divided
by feature 2, these dependent features are selected in the aim of emphasizing
the nonlinear relation among the defining features. Although machine learning
technique basically evaluates all features and their relations rather flatly, one
way to make SVMs sensitive to a particular relation among features is adding
a new dependent feature that perceive the target relation well. Another way to
modify SVMs in focused features and their relations is designing an appropriate
kernel function, but we decided to stick to the traditional radial basis function
(RBF) kernel for the simplicity of implementation required for experiment. We
also prepared diminished features of size 43 by omitting the rows 4, 14, 15, 16,
and 18 in Table 1.

Labeling. We also need training samples labeled with either +1 or −1 to train
an SVM. In our experiment, a feature vector in training samples was labeled +1
if the corresponding QE problem was solved in N seconds, and −1 otherwise.
We experimented with N varying 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30 and 55.
Among these thresholds, 55 s is the time that separates the least 90 % from the
top 10 % of the execution times.

Use of SVMs for Ordering Function. We used SVMs to learn binary clas-
sification problems, which is the most elementary function of SVMs. There are
two steps to make binary classification using SVMs. First, we train a model with
a set of training samples which were vectors labeled either +1 (positive) or −1
(negative). Second, we request an SVM to predict if a subformula is likely to
belong to the positive class or the negative class.

In the first step, an SVM calculates a hyperplane that divides positive and
negative training samples in some vector space. In the second step, we can obtain
a decision value, which is a kind of distance from a new sample to the divid-
ing hyperplane. Decision values can be considered as a measure of the confidence



Efficient Subformula Orders for Real Quantifier Elimination 241

Fig. 1. Flow of sorting by using SVMs

in a correct prediction, and so the formula with the largest decision value was
solved first. Figure 1 illustrates the procedure to make sorting with an ordering
function determined using an SVM.

In order to configure ordering functions, we trained 17 models in total by
changing labels on training data with varying threshold time, parameter selection
of SVMs, and feature selection.

4 Computational Experiments

In this section, computational experiments performed are described. QE com-
putations were made using the Maple-package SyNRAC [9]. For the machine
learning experiment, we used LIBSVM [3], which is an implementation of an
SVM written in C++. We ran all the computational experiments on a computer
with an Intel(R) Xeon(R) CPU E7-4870 2.40 GHz and 1007 GB of memory.

4.1 Datasets

We have extracted 2,306 first-order formulas that were generated when the
automated natural language math problem solving system (developed by the
Todai robot project) solved the problems, which were also collected by the
project. The problems were originally taken from three sources: “Chart-shiki”,
Japanese university entrance exams, and International Mathematical Olympiads.
“Chart-shiki” is a popular problem book series for preparing university entrance
examinations. The math problem solving system accepts problems in algebra, lin-
ear algebra, geometry, pre-calculus, calculus, combinatorics, Peano arithmetic,
and higher order formula as its inputs. Among these problems, the problems
which can be expressed in the language of real closed field were utilized to gen-
erate our dataset, where such kind of problems are mainly in algebra, linear
algebra, and geometry.



242 M. Kobayashi et al.

Table 1. Identified features of a formula for SVM learning. The features other than
55–58 are calculated for three types of variables: all, quantified, and free in order. We
use the following notations to define features of a formula ϕ: Var(ϕ) is the set of all
variables, quantified variables, or free variables appearing in ϕ, Poly(ϕ) is the set of all
polynomials p appearing in ϕ such that degv(p) > 0 for some v ∈ Var(ϕ), and Term(p)
is the set of all terms appearing in a polynomial p.

Feature number Label Description

1, 19, 37 nvar Number of variables

2, 20, 38 npoly Number of polynomials

3, 21, 39 sotd Sum of total degrees
(
∑

p∈Poly(ϕ)

∑
t∈Term(p)

∑
v∈Var(ϕ) degv(t))

4, 22, 40 asotd Average sum of total degrees w.r.t. npoly (sotd/npoly)

5, 23, 41 atdeg Average total degree w.r.t. npoly
(
∑

p∈Poly(ϕ) maxt∈Term(p)(
∑

v∈Var(ϕ) degv(t))/npoly)

6, 24, 42 aterm Average number of terms w.r.t. npoly
(
∑

p∈Poly(ϕ)

∑
t∈Term(p) 1/npoly)

7, 25, 43 msotd Maximum sum of total degrees
(maxp∈Poly(ϕ)

∑
t∈Term(p)

∑
v∈Var(ϕ) degv(t))

8, 26, 44 mtdeg Maximum total degree
(maxp∈Poly(ϕ) maxt∈Term(p)

∑
v∈Var(ϕ) degv(t))

9, 27, 45 mdeg Maximum degree (maxp∈Poly(ϕ) maxv∈Var(ϕ) degv(p))

10, 28, 46 mterm Maximum number of terms (maxp∈Poly(ϕ)

∑
t∈Term(p) 1)

11, 29, 47 ndeg1 Number of polynomials with degree 1
(
∑

p∈Poly(ϕ),maxt∈Term(p)
∑

v∈Var(ϕ) degv(t)=1 1)

12, 30, 48 ndeg2 Number of polynomials with degree 2

13, 31, 49 ndeg3 Number of polynomials with degree 3

14, 32, 50 rdeg1 Ratio of ndeg1 and npoly (ndeg1/npoly)

15, 33, 51 rdeg2 Ratio of ndeg2 and npoly (ndeg2/npoly)

16, 34, 52 rdeg3 Ratio of ndeg3 and npoly (ndeg3/npoly)

17, 35, 53 mcoef Maximum absolute value of coefficients
(maxp∈Poly(ϕ) maxc∈Coeff(p) |c|)

18, 36, 54 acoef Average absolute value of coefficients w.r.t. npoly
(mcoef/npoly)

55 Ratio of the number of the symbol ‘=’ and npoly

56 Ratio of the number of the symbol ‘ 
=’ and npoly

57 Ratio of the number of the symbol ‘<’ and npoly

58 Ratio of the number of the symbol ‘≤’ and npoly

For each formula, we executed QE computation with SyNRAC and recorded
the execution time, where we set the limit of timeout to 600 s. Table 2 shows the
distribution of execution times for the 2,116 formulas for which QE computation



Efficient Subformula Orders for Real Quantifier Elimination 243

Table 2. Number of formulas for which QE computation took less than N seconds.
These execution times were measured using the ‘ADG’ ordering function.

N 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# 433 846 1055 1261 1379 1476 1627 1694 1725

N 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

# 1752 1884 1937 1958 1977 1990 1999 2005 2013

N 10 20 30 100 150 200 300 500 600

# 2015 2040 2057 2096 2100 2102 2109 2113 2116

stopped in less than 600 s. There are 187 formulas which took more than 600 s to
finish QE computation. The other 4 problems caused error while computing QE
with SyNRAC, which were omitted from the training set for machine learning.
The size 2,302 of the training set is large enough for the application of machine
learning with SVMs. For example, three cases of application of SVMs are intro-
duced in [5], and the sizes of the training data are 3,089, 391, 1,243 while the
numbers of features are 4, 20, 21 respectively.

4.2 Parameter Optimization of SVMs

We selected the RBF kernel for our machine learning, which is a popular choice
when the number of features is smaller than the number of training set. In our
case, the number of features was 58 and the number of training set was 2,302.

We used a python script “grid.py,” which is distributed with LIBSVM, for
grid search over parameters (C, γ) where C is the cost parameter and γ is the
parameter of the RBF kernel. The script “grid.py” performs cross validation to
estimate the accuracy of each parameter combination in the specified range, and
outputs the parameter combination that recorded the highest accuracy. Here,
accuracy is defined as the number of correct predictions divided by the total
number of predictions. The script “grid.py” was executed twice to obtain the
optimal parameters. We specified the options of “grid.py” -log2c, -log2g, -w1
and -w-1. The options -log2c and -log2g specify the range and the incremental
width of C and γ respectively. The values of the options -log2c and -log2g were
set to −5, 15, 2 and 3, −15, −2 respectively in the first execution, which are
default, and in the second time the values were set to C0 − 1, C0 + 1, 0.2 and
γ0−1, γ0+1, 0.2 respectively, where (C0, γ0) is the output of the first execution.
The option -w1 and -w-1 are for handling unbalance in training data, and were
set to the ratio of the number of training vector labeled +1 and −1.

4.3 An Illustrative Example

We again consider the non-prenex formula (1) in Sect. 2. What we do here is to
perform QE for ϕ using an ordering function configured with an SVM. QE for ϕ
can be divided into 3 QE subproblems for ϕ1, for ϕ2, and for ϕ3. In this case, ϕ1



244 M. Kobayashi et al.

Table 3. An example of QE execution times and feature vectors of formulas. Features
with an asterisk are omitted in machine learning for ‘<9 dim’.

Feature no. Time(sec) 1 2 3 4∗ 5 6 7 8 9 10 11 12 13

ϕ1 0.078 1 1 1 1 1 2 1 1 1 2 1 0 0

ϕ2 0.037 1 1 1 1 1 1 1 1 1 1 1 0 0

ϕ3 1551.989 5 8 136 17 5 6.5 25 6 3 8 0 0 0

Feature no. 14∗ 15∗ 16∗ 17 18∗ 19 20 21 22∗ 23 24 25 26 27 28

ϕ1 1 0 0 1 1 1 1 1 1 1 2 1 1 1 2

ϕ2 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

ϕ3 0 0 0 1 1 4 8 125 15.6 4.6 6.5 21 5 3 8

Feature no. 29 30 31 32∗ 33∗ 34∗ 35 36∗ 37 38 39 40∗ 41 42 43

ϕ1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0

ϕ2 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0

ϕ3 0 0 0 0 0 0 1 1 1 3 11 3.7 1 7 5

Feature no. 44 45 46 47 48 49 50∗ 51∗ 52∗ 53 54∗ 55 56 57 58

ϕ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ϕ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ϕ3 1 1 8 3 0 0 1 0 0 1 1 1 0 0 0

and ϕ2 are trivially true, and so ϕ is true. The order of processing subproblems
are determined by decision values calculated with LIBSVM. Table 3 shows the
QE computation time and the features of ϕ1, ϕ2, and ϕ3. Table 4 shows the
decision value and the order of QE subproblems. The QE computation for ϕ
with ordering functions ‘<2’, ‘<3’, and ‘<7’ solved the subproblem ϕ3 first, and
did not finish in 600 s. On the other hand, the QE computation with the other
ordering functions started to solve the subproblems for ϕ1 or ϕ2, and finished
computation in less than 1 s.

4.4 Experimental Results

We made two types of experiments. Experiment 1 investigated the efficiency of
QE computation when the prepared ordering functions were used. Experiment
2 justifies Experiment 1 in the point that the apparently common training and
test set did not cause to overestimate the result of ordering functions based on
machine learning. The amount of computation is large as it took more than 40 h
to make a series of QE computation with a single ordering function.

Experiment 1. We prepared 28 ordering functions in total. Among those,
10 functions were heuristics and 1 function was random, which are described in
Subsect. 3.1. The rest 17 functions which were configured using machine learning



Efficient Subformula Orders for Real Quantifier Elimination 245

Table 4. Example of decision values

ϕ1 ϕ2 ϕ3 Order

<1 −4.143236 −4.126463 −7.026860 ϕ2 → ϕ1 → ϕ3

<2 4.924164 4.659644 6.950127 ϕ3 → ϕ1 → ϕ2

<3 2.092471 2.145601 4.441247 ϕ3 → ϕ2 → ϕ1

<4 1.428065 1.430775 −0.009359 ϕ2 → ϕ1 → ϕ3

<4 opt 1.891265 1.887521 −2.485134 ϕ1 → ϕ2 → ϕ3

<5 1.981705 2.103514 0.978644 ϕ2 → ϕ1 → ϕ3

<6 2.063262 2.127833 −2.001929 ϕ2 → ϕ1 → ϕ3

<7 1.462456 1.469122 3.834284 ϕ3 → ϕ2 → ϕ1

<8 4.010731 4.015434 0.297530 ϕ2 → ϕ1 → ϕ3

<8 opt 23.705870 23.860115 −0.525661 ϕ2 → ϕ1 → ϕ3

<9 25.655055 25.840633 −1.913830 ϕ2 → ϕ1 → ϕ3

<9 dim 1.761298 1.933184 −0.091157 ϕ2 → ϕ1 → ϕ3

<10 36.241697 36.340194 −3.770675 ϕ2 → ϕ1 → ϕ3

<20 38.722068 38.077265 6.001291 ϕ1 → ϕ2 → ϕ3

<30 6.523585 6.529640 0.220255 ϕ2 → ϕ1 → ϕ3

<30 opt 21.553545 21.639367 1.056053 ϕ2 → ϕ1 → ϕ3

<55 21.408608 21.551922 −1.358177 ϕ2 → ϕ1 → ϕ3

consist of 13 functions named ‘<1’, . . . , ‘<55’ that were designed by simply fol-
lowing the setting given in Subsects. 3.2 and 4.2, three functions named ‘<4 opt’,
‘<8 opt’, and ‘<30 opt’ of which parameters were chosen by assuming the out-
put of the first step (C0, γ0) in Subsect. 4.2 are (10,−1), and 1 function named
‘<9 dim’ where machine learning was performed on the diminished features
described in Subsect. 3.2. After extracting feature vectors from 2,302 training
samples, each feature was scaled to be between 0 and 1.

As baseline, we ran the experiment with randomized order of the subformulas.
We repeated it with fourteen different seeds of the random number generator.
We will show the average computation time over the fourteen runs as well as the
best and the worst cases in the fourteen runs chosen for each problem.

We performed QE for the 2,306 formulas with the 28 prepared ordering func-
tions. Table 5 shows the statistics on the results. The columns “solved”, “error”,
and “timeout” give the number of formulas for which QE computation finished
in less than 600 s, for which QE caused error, and for which computation took
more than 600 s respectively. The errors occurred in the experiments were due to
bugs in Maple and SyNRAC, or computer memory shortage. The columns “aver-
age”, “average(log)”, and “median” state respectively the average execution time
of solved QE problems, the average logarithm of execution times of solved QE
problems, and the median of execution times where timed out problems assumed
to take infinite seconds to stop. The values of “average” and “median” are given



246 M. Kobayashi et al.

in units of seconds. The row ‘rand aver’ shows the results averaged over the four-
teen runs with random subformula order. ‘rand best’ (resp. ‘rand worst’) shows
the sum of the best (resp. worst) result in the fourteen runs for each problem.

An Overall Argument on Table 5. Here, we especially value the number of solved
problems in less than 600 s, because the property if QE computation for a formula
finishes in a fixed time or not is critical in practical use rather than whether a
computation takes 0.1 or 1 s to finish. From this point of view, the results of
‘nvar rev’, ‘npoly rev’, ‘random’, ‘<1’, and ‘<2’ are considerably bad compared
to the results of the other orderings. The reason ‘<1’ and ‘<2’ behaved poorly
is presumed that the learning algorithm failed to set large weight on the hardest
problems in the negative class since there were relatively easy problems mixed
in the negative class.

An Effect of Parameter Selection. We also observe that the result ‘<4’ and ‘<8’
are relatively inferior to the orderings of close condition. Table 6 shows the para-
meters used to train models. The rows “log2 C” and “log2 γ” list the logarithm to
the base 2 of cost and gamma parameters used respectively, and the row “nSV”
lists the number of support vectors. The parameters of ‘<4’ and ‘<8’ lie apart
from those of ‘<3’, ‘<5’, ‘<6’, ‘<7’, ‘<9’, ‘<10’, and ‘<55’. Besides, the numbers
of support vectors of ‘<4’ and ‘<8’ are larger than expected from other values.
This note suggests that parameter selection affects the performance, and actu-
ally ‘<4 opt’ and ‘<8 opt’, of which parameters were similar to ‘<9’ etc., solves
more problems in time. We used accuracy as the target of the hyperparameter
optimization in this experiment, but it would be effective to replace accuracy
with other known measures such as the Matthews correlation coefficient, which
is reported to have performed well in the application of SVMs to the problem of
the optimal projection order for CAD [6].

Minor Contribution of Omitted Features. Moreover, we see ‘<9’ is just slightly
better when compared with ‘<9 dim’. This means the omitted 15 features did not
contribute much. The analysis what feature contributes much is left to further
study.

Significance of the Achieved Result. Table 7 illustrates the contrast in QE compu-
tation time among 4 heuristics ‘ADG’, ‘nvar’, ‘npoly’, and ‘sotd’, and 5 ordering
functions using machine learning ‘<1’, ‘<3’, ‘<5’, ‘<7’, and ‘<9’. The column
“id” shows the identification numbers of formulas, and each row shows the time
consumed to make QE for the corresponding formula. The row “total” lists the
number of the formulas for which QE computation finished in 600 s shown in
Table 7. The example in Subsect. 4.3 corresponds to the problem with “id” 2,051
in Table 7. The problems which are not shown in Table 7 were either solved in
600 s or timed out regardless of the choice of ordering functions.

Notice it was only less than 40 problems out of 2,306 that the results of
“solved” and “timeout” changed by ordering functions. If we consider the results
of only a small number of problems changed, it is valuable to have achieved the



Efficient Subformula Orders for Real Quantifier Elimination 247

ordering functions that solved more problems by machine learning such as ‘<9’
compared with the ordering functions by heuristics such as ‘ADG’ despite the
modest difference between them. From another view point of the computation
time, ‘<9’ can be evaluated to perform better than ‘ADG’ again. We can observe
in Table 7 that it took relatively long time to perform QE for the problems of
which results altered by ordering functions. Hence, solving more problems tends
to cause larger average computation time since the averages are taken over solved
problems. ‘<9’ compared to ‘ADG’ recorded the average computation time of
the same level, less average of logarithm of the computation time, and smaller
median of the computation time. Thus ‘<9’ can be stated to have achieved
better performance in overall speed than ‘ADG’. The fact that effective ordering
functions were obtained by machine learning implies machine learning can save
a lot of time because searching for the best application of features by trials and
errors consumes long time, where it takes about 40 h to make QE computation
for 2,306 problems in a single experiment. On the other hand, we also found that
no single ordering function can be regarded as the best. This shows that there
is still room for study in sort ordering for efficient QE for non-prenex formulas.

Experiment 2. In order to justify the result of Experiment 1, it is necessary to
estimate the effect of the overlap of the training set and the test set. We achieved
this by taking another experiment of cross validation. The 2,302 training samples
were shuffled and divided into 6 groups, and 6 models were trained using 5 of
the 6 groups as training data. For the machine learning, we set the threshold for
labeling to be 9 s and parameters (log2 C, log2 γ) to be (10,−1) which were the
same parameters for the case ‘<9’. QE computation with the ordering function
using the model obtained was executed for each formula in the remaining group.

Table 8 shows the statistics on the results of the cross validation experiment.
The row ‘<9’ is already shown in Table 5, and is printed again for reference.

First, all the 4 problems which were excluded from cross validation because
of the error also caused error or timed out with the ordering function ‘<9’.
Therefore, the number of solved problems with ‘cross validation’ was smaller
by 3 than that of ‘<9’ with the erroneous input excluded. From these results,
the effect of ill generalization caused by the common training and test set is
estimated to be quite minor in this study.

The purpose of machine learning is to obtain a model that estimates the gen-
eral characteristics by analyzing given training data. In order to attain this goal,
the characteristics that only appear in the training set need to be abstracted. We
usually verify that the abstraction is properly made by examining if the model
obtained from the training set is also valid on a validation set which contains
different data from the training set.

The problem in the overlap of the training set and the test set in this study
lies in the possibility that the results in Table 5 was obtained by making use of
the characteristics special only to the 2,302 training data in solving the 2,306
QE problems, and the same method is not valid on new QE problems any more.



248 M. Kobayashi et al.

Table 5. Statistics on computation time for QE with varying ordering functions

Solved Error Timeout Average (sec) Average (log) Median (sec)

ADG 2116 3 187 4.770 −1.038 0.337

nvar 2115 4 187 4.741 −0.993 0.358

npoly 2114 4 188 4.594 −1.134 0.267

sotd 2114 4 188 4.269 −1.217 0.234

msotd 2114 4 188 4.240 −1.212 0.233

mtdeg 2114 4 188 4.172 −1.189 0.262

mdeg 2115 3 188 4.005 −1.230 0.222

mterm 2114 4 188 4.982 −1.150 0.256

nvar rev 2097 2 207 4.857 −1.129 0.260

npoly rev 2098 2 206 4.560 −1.119 0.268

rand aver 2104.93 3.64 197.43 4.764 −1.182 0.241

rand best 2121 2 183 4.569 −1.389 0.190

rand worst 2087 2 217 4.531 −0.890 0.356

<1 2099 4 203 5.141 −0.934 0.300

<2 2102 3 201 5.320 −0.995 0.332

<3 2115 3 188 4.673 −0.928 0.360

<4 2112 4 190 4.732 −0.959 0.384

<4 opt 2118 2 186 5.020 −1.085 0.279

<5 2117 3 186 5.153 −0.928 0.392

<6 2115 2 189 4.540 −1.155 0.261

<7 2115 2 189 4.508 −1.178 0.244

<8 2113 3 190 4.806 −1.105 0.267

<8 opt 2117 2 187 4.714 −1.142 0.245

<9 2118 2 186 4.750 −1.165 0.239

<9 dim 2116 4 186 4.718 −0.984 0.363

<10 2117 2 187 4.578 −0.956 0.362

<20 2116 3 187 4.451 −1.200 0.235

<30 2114 2 190 4.886 −1.173 0.245

<30 opt 2115 3 188 4.628 −1.199 0.234

<55 2114 3 189 4.808 −0.993 0.351

If this case happened, the result of ‘cross validation’ would be considerably
bad, because characteristics special only to 5 groups of the training set should
not be valid on the remaining group.

On the other hand, the difference between the number of solved problems
with ‘<9’ and ‘cross validation’ were 3, and is possible to arise from parameter
selection. This is because we can conclude that the performance of the ordering



Efficient Subformula Orders for Real Quantifier Elimination 249

Table 6. Employed parameters of machine learning and the number of support vectors

<1 <2 <3 <4 <5 <6 <7 <8 <9 <10 <20 <30 <55

log2 C 12 15.4 9.0 5.4 9.6 11.6 10.8 3.4 10.0 10.8 15.2 7.2 11.8
log2 γ −3.6 −4.8 −3.0 0.8 −1.8 −2.2 −3.0 1.0 −1.0 −0.8 −2.2 0.8 −1.4
nSV 538 427 428 462 374 354 390 492 324 297 276 350 274

<4 opt <8 opt <30 opt <9 dim

log2 C 10.4 9.2 10.6 13.4
log2 γ −1.2 −0.8 −0.6 0
nSV 359 325 285 292

Table 7. Timing data (in seconds) for order functions. TO expresses the computation
time was greater than 600 s, and ERR expresses the computation caused error.

id ADG nvar npoly sotd <1 <3 <5 <7 <9

2051 0.12 0.13 0.12 0.12 0.19 TO 0.16 TO 0.15
1142 0.57 0.61 0.64 0.60 TO 0.63 0.64 0.65 0.63
1944 TO TO 10.69 16.75 TO 6.92 8.24 17.40 4.61
889 5.01 5.74 5.52 5.56 TO 5.64 5.62 6.00 5.98
272 2.98 3.55 3.26 3.26 ERR 5.32 5.74 6.21 6.76

1024 8.15 11.87 10.20 10.22 TO 10.31 10.28 10.54 10.88
993 TO 9.74 TO TO TO 10.44 10.05 10.92 13.45
999 TO TO TO TO 12.54 13.33 13.35 13.30 13.57

1528 22.28 25.46 24.57 23.90 TO 25.06 23.27 23.60 23.24
2167 28.49 114.20 21.46 21.31 TO 48.71 27.14 24.27 27.32
2294 37.91 TO 31.60 31.80 TO 48.95 28.88 27.41 31.93
1088 58.49 TO TO TO TO 74.81 32.61 TO 32.43
1039 31.24 32.11 32.38 31.65 32.27 32.46 32.44 33.46 32.69
1112 40.31 39.73 39.03 40.14 120.55 40.05 39.67 TO 39.40
1234 45.87 49.48 41.81 42.72 14.92 39.83 39.78 15.17 44.14

32 42.21 43.80 292.48 44.66 TO 41.92 44.04 43.76 44.25
1239 39.87 48.73 43.35 44.19 13.44 44.93 40.2 13.79 44.94
2045 67.18 60.06 61.08 60.17 TO 71.15 TO 60.30 TO
1101 61.42 61.16 63.67 61.85 TO 62.39 61.29 60.74 62.39
2168 62.42 62.72 64.16 61.87 TO 60.44 153.39 62.74 74.04

33 69.83 75.44 76.99 76.54 TO 69.87 68.68 76.28 75.79
1040 80.14 87.35 107.34 87.68 TO TO 89.18 89.93 87.61

28 199.02 208.30 TO TO TO TO 202.83 210.17 209.45
151 239.64 218.08 244.91 246.53 TO 243.18 236.42 243.94 248.93

1125 TO TO TO TO TO 252.36 252.79 296.94 250.25
1092 266.09 153.79 TO 149.94 323.97 TO TO TO 275.69

5 279.42 285.78 295.58 289.15 TO 283.14 277.4 291.48 292.78
17 341.99 293.81 230.59 345.67 272.41 352.92 307.32 242.58 339.28

112 TO TO TO TO 409.60 TO TO TO TO
610 437.12 455.59 456.30 TO 393.91 TO TO TO TO

1091 523.86 528.97 476.57 466.62 TO 475.28 521.76 363.77 472.13
2216 525.31 482.94 485.39 481.33 TO 573.73 566.82 482.50 487.02
150 513.11 592.43 589.52 596.24 586.34 571.58 548.01 586.74 586.56

total 28 27 26 26 11 27 29 27 30

function using machine learning is not expected to be local to the 2,306 QE
problems used. The above argument justifies that in Experiment 1, the result of
the ordering functions with machine learning are not overestimated and valid.



250 M. Kobayashi et al.

Table 8. Results of Experiment 2

Solved Error Timeout Average (sec) Average (log) Median (sec)

<9 2118 2 186 4.750 −1.165 0.239

cross validation 2115 0 187 4.378 −1.109 0.273

group 1 356 0 28 5.509 −1.189 0.217

group 2 356 0 28 5.454 −1.067 0.281

group 3 346 0 38 5.487 −0.937 0.321

group 4 351 0 33 2.637 −1.364 0.214

group 5 350 0 33 4.868 −0.729 0.406

group 6 356 0 27 2.329 −1.318 0.188

5 Conclusion

We showed that ordering of subformulas affects the performance of QE computa-
tion for non-prenex formulas. The ordering determined by heuristics performed
well compared to random baseline, but the ordering by machine learning per-
formed still better when the training vectors were appropriately labeled. These
results suggest that machine learning can save a lot of effort to design heuristics
by trials and errors. Meanwhile, we also observed that improper labeling and
parameter selection can cause poor performance.

Since our study focused on only one particular dataset of math problems,
additional validation on other datasets is necessary for our method to be more
convincing. Also, further study should be made to make full use of machine
learning extracting valuable patterns in formulas. Our experiment is suggestive
to proceed application of machine learning to heuristic portions in computer
algebra algorithms.

Acknowledgments. We thank for the funding from Todai robot project.

References

1. Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In:
Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, pp. 1–8. ACM (2014)

2. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and
cylindrical algebraic decomposition. In: Proceedings of the 2007 International
Symposium on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60.
ACM, New York (2007)

3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

4. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In:
Proceedings of the 2004 International Symposium on Symbolic and Algebraic
Computation, pp. 111–118. ACM (2004)



Efficient Subformula Orders for Real Quantifier Elimination 251

5. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003)

6. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select
the variable ordering for cylindrical algebraic decomposition. In: Watt, S.M.,
Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS,
vol. 8543, pp. 92–107. Springer, Heidelberg (2014)

7. Iwane, H., Higuchi, H., Anai, H.: An effective implementation of a special quantifier
elimination for a sign definite condition by logical formula simplification. In: Gerdt,
V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol.
8136, pp. 194–208. Springer, Heidelberg (2013)

8. Iwane, H., Matsuzaki, T., Arai, N., Anai, H.: Automated natural language geom-
etry math problem solving by real quantifier elimination. In: Proceedings of the
10th International Workshop on Automated Deduction in Geometry, pp. 75–84
(2014)

9. Iwane, H., Yanami, H., Anai, H.: SyNRAC: a toolbox for solving real
algebraic constraints. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592,
pp. 518–522. Springer, Heidelberg (2014)

10. Matsuzaki, T., Iwane, H., Anai, H., Arai, N.H.: The most uncreative examinee: a
first step toward wide coverage natural language math problem solving. In: Twenty-
Eighth AAAI Conference on Artificial Intelligence, pp. 1098–1104 (2014)

11. Strzeboński, A.W.: Real quantifier elimination for non-prenex formulas (2011).
unpublished manuscript



Solving Extended Ideal Membership Problems
in Rings of Convergent Power Series

via Gröbner Bases

Katsusuke Nabeshima1(B) and Shinichi Tajima2

1 Institute of Socio-Arts and Sciences, Tokushima University, 1-1 Minamijosanjima,
Tokushima, Japan

nabeshima@tokushima-u.ac.jp
2 Graduate School of Pure and Applied Sciences, University of Tsukuba,

1-1-1 Tennoudai, Tsukuba, Japan
tajima@math.tsukuba.ac.jp

Abstract. An extended ideal membership algorithm is considered in the
ring of convergent power series. It is shown that the problem for zero-
dimensional ideals in a local ring can be solved in a polynomial ring. The
key of the proposed method is the use of ideal quotients in polynomial
rings. A new algorithm is given to solve the extended ideal membership
problems in local rings. A generalization of the resulting algorithm to
ideals with parameters is also described.

Keywords: Gröbner bases · Extended ideal membership problems ·
Comprehensive Gröbner systems · Parametric syzygy systems

1 Introduction

Ideal membership problem is ubiquitous in many fields of mathematics. Several
methods for solving the problems have been introduced, which lay a cornerstone
of the foundation of computer algebra. The problem in local rings is also of
considerable importance and algorithms for solving the problems that utilize
Mora’s tangent cone algorithm, standard bases or the normal form algorithm
have been introduced [4,7,15,16]. In [19,20,27,29], the authors of the present
paper proposed an alternative method to solve the ideal membership problems
in local rings, which can be extended to handle parametric cases. However, the
study of singularity, for instance, computation of Gauss-Manin connections [12,
22,23], b-functions [2,31], or computation of integral dependence relations [25],
often requires solving extended ideal membership problems in local rings.

In this paper we consider, for zero-dimensional ideals, the extended ideal
membership problem in the rings of convergent power series and we give a new
method for solving them. The key of the proposed methods is the use of ideal
quotients in polynomial rings. We show that the use of ideal quotients reduces
the problem in local rings to computations in polynomial rings.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 252–267, 2016.
DOI: 10.1007/978-3-319-32859-1 22



Solving Extended Ideal Membership Problems 253

In order to precisely state the problems and the results, let F be a set
of s polynomials f1, f2, . . . , fs in C[x1, x2, . . . , xn] and let 〈F 〉 be the ideal in
C[x1, x2, . . . , xn] generated by F . Let V(F ) denote the variety in Cn defined
by F :

V(F ) = {x ∈ Cn|f1(x) = f2(x) = · · · = fs(x) = 0}.

Assume that the given set F has the origin O ∈ Cn as an isolated zero of V(F ):
there exists a neighborhood X of the origin O ∈ Cn s.t. V(F ) ∩ X = {O}. Now
let 〈F 〉{O} denote the ideal in the ring of convergent power series generated by F
and let h be a polynomial in C[x1, x2, . . . , xn]. Assume, we know in advance, that
the polynomial h as an convergent power series is in the ideal 〈F 〉{O} . Then, our
extended ideal membership problem is to find q1, q2, . . . , qs ∈ C{x1, x2, . . . , xn}
such that

h = q1f1 + q2f2 + · · · + qsfs.

Let us consider an example for illustration. Let f1 = 3x2 +2y8, f2 = 16xy7 +
10y9, and let 〈f1, f2〉{O} be an ideal generated by f1, f2 in C{x, y}. Then, it is
easy to see, by using for instance a standard basis of 〈f1, f2〉{O} , or by using
algebraic local cohomology classes w.r.t. 〈f1, f2〉{O} that h = xy9 belongs to the
ideal 〈f1, f2〉{O} . (Incidentally, xy9 /∈ 〈f1, f2〉 where 〈f1, f2〉 is the ideal generated
by f1, f2 in C[x, y]). Indeed, xy9 can be written as

xy
9
=

−8y7

15

(
1 − 128

75
y
4
+

16384

5625
y
8 − · · ·

)
f1 +

15x + 16y6

150

(
1 − 128

75
y
4
+

16384

5625
y
8 − · · ·

)
f2

=
−8y7

15

(∑∞
k=0

(
− 128

75
y
4
)k
)

f1 +
15x + 16y6

150

(∑∞
k=0

(
− 128

75
y
4
)k
)

f2.

As
∑∞

k=0

(− 128
75 y4

)k = 1
1+ 128

75 y4 , h = xy9 is rewritten as

xy9 = q1f1 + q2f2, where q1 = −40y7

75+128y4 and q2 = 15x+16y6

2(75+128y4) .

Algorithms which will be derived in the present paper compute the denominator
75 + 128y4 and the numerators.

The proposed method is simple and effective because the problems are easily
solved in polynomial rings. This means in particular that, unlike tangent cone
algorithms, the resulting algorithm does not invoke Mora’s reduction [15,16].
Moreover, the resulting algorithm can be easily generalized, as will be shown in
Sect. 3, to treat parametric cases according to its simplicity.

Throughout this paper, we use the notation x as the abbreviation of n vari-
ables x1, . . . , xn. C[x] is a polynomial ring and C{x} is a convergent power series
ring. The set of natural numbers N includes zero.

2 Solving Extended Ideal Membership Problems

Let F be a set of s polynomials f1, f2, . . . , fs in C[x] s.t. {x ∈ X|f1(x) = f2(x) =
· · · = fs(x) = 0} = {O} where X is a neighborhood of the origin O of Cn.



254 K. Nabeshima and S. Tajima

Let IO = 〈f1, . . . , fs〉{O} be an ideal generated by f1, f2, . . . , fs in C{x} and
I = 〈f1, . . . , fs〉 be an ideal generated by f1, f2, . . . , fs in C[x]. Note that the ideal
membership problem of IO in C{x} can be solved by a standard basis of IO or
a basis of algebraic local cohomology classes w.r.t. F . Assume that a polynomial
h ∈ C[x] is a member of IO in C{x}. Then, there exist q1, q2, . . . , qs ∈ C{x}
such that

h = q1f1 + q2f2 + · · · + qsfs.

Here, we introduce a new algorithm for computing convergent power series
q1, q2, . . . , qs. The idea of the new algorithm is based on the following lemma.

Lemma 1. Let h be a polynomial in C[x], s.t. h ∈ IO = 〈f1, f2, . . . , fs〉{O} ⊂
C{x}. Then, there exists a polynomial g ∈ I : 〈h〉 s.t. g /∈ m, where I : 〈h〉 =
{g ∈ C[x] | gh ∈ I} is the ideal quotient and m = 〈x1, x2, . . . , xn〉 is the maximal
ideal in C{x}.
Proof. As I has a minimal primary decomposition and {x ∈ X|f1(x) = · · · =
fs(x) = 0} = {O}, I can be written as I = I0∩I1∩I2∩· · ·∩Ir where I0, I1, . . . , Ir

are primary ideals and V(I0) = {O}, O /∈ V(Ii) for each i ∈ {1, . . . , r}. Notice
that IO = C{x}⊗I0 where ⊗ is a tensor product. Recall that for any polynomial
h, we have V(I : 〈h〉) =

⋃

i∈S V(Ii), where S = {i | h /∈ Ii}. Since, h ∈ I0, we
have V(I : 〈h〉) ⊆ ⋃

1≤i≤r V(Ii), which immediately implies that there exists a
polynomial g ∈ C[x] s.t. gh ∈ I and g(O) 	= 0. 
�

Using the same notation as in the proof above, suppose that a polynomial h
in C[x] s.t. h ∈ IO is given. Then there exists g ∈ I : 〈h〉 with g(O) 	= 0. Since
gh ∈ I, gh can be written as

gh = p1f1 + p2f2 + · · · + psfs

where p1, p2, . . . , pr ∈ C[x]. The condition g(O) 	= 0 implies that qi = pi

g , is
well-defined as an element of C{x} for each i = 1, 2, . . . , s. That is, if we have
polynomials g, p1, p2, . . . , ps, then we are able to solve the extended ideal mem-
bership problem of h as follows

h =
p1
g

f1 +
p2
g

f2 + · · · +
ps

g
fs.

In fact, the denominator g can be obtained by using an algorithm for com-
puting ideal quotients and polynomials p1, p2, . . . , ps can also be obtained in
C[x] by utilizing a Gröbner basis of I and the extended Gröbner basis algorithm
(Chap. 5 [1]). The consideration above yields the following simple algorithm for
solving the extended ideal membership problems in rings of convergent power
series. In the algorithm, a monomial order is fix.

Algorithms for computing bases of ideal quotients (Chap. 4 of [3]) and
extended Gröbner bases (Chap. 5 [1]) use Gröbner bases computation in C[x].
Hence, the algorithm ExtIMP clearly terminates. The correctness of the algo-
rithm follows from the discussion given after Lemma 1.



Solving Extended Ideal Membership Problems 255

We illustrate the algorithm with the following example.

Algorithm 1. ExtIMP

Input: f1, f2, . . . , fs: polynomials in C[x] satisfying {x ∈ X|f1(x) = f2(x) = · · ·
= fs(x) = 0} = {O}.
h: a polynomial in C[x] satisfying h ∈ 〈f1, . . . , fs〉{O} ⊂ C{x}.

Output: q1, . . . , qs: convergent power series satisfying h = q1f1 + · · · + qsfs.
BEGIN

1. Q ← Compute a basis of the ideal quotient 〈f1, . . . , fs〉 : 〈h〉 in C[x].
2. g ← Take a polynomial g from Q satisfying g(O) �= 0.
3. p1, . . . , ps ←Compute p1, . . . , ps ∈ C[x] satisfying gh = p1f1 + p2f2 + · · · + psfs,

by a Gröbner basis of 〈f1, f2, . . . , fs〉 and the extended Gröbner basis algorithm
(Chap. 5 [1]) in C[x].

4. For each i ∈ {1, . . . , s}, set qi =
pi

g
.

END

Example 1. Let us consider a polynomial f = x3
1 + 2x1x

8
2 + x10

2 that defines
an isolated singularity at the origin O. Then, x1x

9
2 is a member of the ideal

IO = 〈 ∂f
∂x1

, ∂f
∂x2

〉{O} in C{x1, x2}. Incidentally, x1x
9
2 /∈ I = 〈 ∂f

∂x1
, ∂f

∂x2
〉 in C[x1, x2].

Let us execute the algorithm.

1. The algorithm for computing bases of ideal quotients gives {75+128x4
2, 8x1+

5x2
2} as a basis of the ideal quotient 〈 ∂f

∂x1
, ∂f

∂x2
〉 : 〈x1x

9
2〉.

2. Take 75 + 128x4
2 from the basis and set g = 75 + 128x4

2 because g(O) 	= 0.
Note that (75 + 128x4

2)x1x
9
2 ∈ I in C[x1, x2].

3. The extended Gröbner basis algorithm shows that the polynomial (75 +
128x4

2)(x1x
9
2) can be written as

(75 + 128x4
2)(x1x

9
2) = 40x7

2

∂f

∂x1
− 1

2
(15x1 + 16x6

2)
∂f

∂x2
.

4. Therefore,

x1x
9
2 =

−40x7
2

75 + 128x4
2

· ∂f

∂x1
+

(15x1 + 16x6
2)

2(75 + 128x4
2)

· ∂f

∂x2

in C{x1, x2}. 
�
If one is familiar with computing syzygies, the third step of the algorithm

can be carried out by computing syzygies.



256 K. Nabeshima and S. Tajima

Lemma 2. The third step of the algorithm ExtIMP can be changed as follow.

3-1. Syz ← Compute a Gröbner basis of a syzygy module of 〈gh, f1, . . . , fs〉
w.r.t a POT monomial order in (C[x])s+1.

3-2. (c0, c1, . . . , cs) ← Take an element (c0, c1, . . . , cs) from Syz whose first com-
ponent is a nonzero constant where c0gh + c1f1 + · · · + csfs = 0.

3-3. For each i ∈ {1, . . . , s}, set pi = − ci

c0
.

The definition of POT(position-over-term) monomial orders are from [4,7].

Proof. Since gh ∈ 〈f1, f2, . . . , fs〉 ⊂ C[x], there exist p1, p2, . . . , ps ∈ C[x] s.t.
gh = p1f1 + p2f2 + · · · + psfs. Let (d1, d2, . . . , ds) be a syzygy of f1, f2, . . . , fs,
i.e., d1f1 + d2f2 + · · · + dsfs = 0. Then,

(gh − (p1f1 + p2f2 + · · · + psfs)) + (d1f1 + d2f2 + · · · + dsfs) = 0,
i.e., gh + (d1 − p1)f1 + (d2 − p2)f2 + · · · + (ds − ps)fs = 0.

Hence, (1, d1−p1, d2−p2, . . . , ds −ps) is a syzygy of gh, f1, f2, . . . , fs. As Syz is a
Gröbner basis of a syzygy module of 〈gh, f1, . . . , fs〉 w.r.t a POT monomial order
in (C[x])s+1 and (1, d1 −p1, d2 −p2, . . . , ds −ps) ∈ 〈Syz〉, there exists an element
(c0, c1, . . . , cs) ∈ Syz such that the first component is a nonzero constant. 
�
Example 2. Let us consider N25 singularity defined by f = x4

1x2 + x8
2 + x2

1x
5
2.

Then, h = x7
1 is a member of the ideal IO = 〈 ∂f

∂x1
, ∂f

∂x2
〉{O} in C{x1, x2}. Let


lex be the lexicographic monomial order such that x1 
lex x2 in C[x1, x2] and

POT be a POT monomial order with 
lex in (C[x1, x2])3.

By the algorithm for computing bases of ideal quotients, one has {524288 +
6561x2

1, 32−9x2} as a basis of the ideal quotient 〈 ∂f
∂x1

, ∂f
∂x2

〉 : 〈x7
1〉. Set g = 32−9x2

and compute a Gröbner basis of the syzygy module of 〈(32 − 9x2)x7
1,

∂f
∂x1

, ∂f
∂x2

〉
w.r.t. 
POT in (C[x])3. Then, the Gröbner basis is
{(

2, 128x6
2 + 88x2

1x
3
2 + 5x4

1,−32x1x
4
2 − 64x3

1 − 2x3
1x2

)

,
(

2, 128x6
2 − 40x7

2 + 88x2
1x

3
2 − 25x2

1x
4
2,−32x1x

4
2 + 10x1x

5
2 − 64x3

1 + 18x3
1x2

)}

.

If we select the first element of the Gröbner basis, then x7
1 can be written as

x7
1 =

128x6
2 + 88x2

1x
3
2 + 5x4

1

−2(32 − 9x2)
· ∂f

∂x1
+

−32x1x
4
2 − 64x3

1 − 2x3
1x2

−2(32 − 9x2)
· ∂f

∂x2

in C{x1, x2}. 
�
The Fig. 1 represents an outline of the algorithm ExtIMP.
Assume that h ∈ IO = 〈f1, . . . , fs〉{O} and {g1, . . . , gk} is a standard basis of

IO. Then, there exist g ∈ C[x] ∩ C{x}, p1, . . . , pk ∈ C[x] such that

gh = p1g1 + p2g2 + · · · + pkgk.



Solving Extended Ideal Membership Problems 257

C{x}
h ∈ IO

C[x]

∃g ∈ I : h

i.e., gh ∈ I

gh = p1f1 + · · · + psfsh = p1
g
f1 + · · · + ps

g
fs

Fig. 1. Outline of ExtIMP

In principle, the Mora’s tangent cone algorithms [15,16] provide g and p1, . . . , pk.
Moreover, it is also possible to express gi as a linear combination of given genera-
tors f1, . . . , fs [7]. Thus, the extended ideal membership problems can be solved
in the local ring by a standard basis and the Mora’s tangent cone algorithms.
However, the algorithm ExtIMP which is completely different from existing
algorithms does not invoke the Mora’s tangent cone algorithms. This means
that the problems of rings of convergent power series can be solved in polyno-
mial rings by the resulting algorithm. In this regard, the proposed method is
easy to understand and implement. The algorithm ExtIMP is the main result
of this paper.

The algorithm ExtIMP has been implemented in the computer algebra sys-
tem Singular [5]. Here we give the results of benchmark tests. Table 1 shows
a comparison of the implementation of ExtIMP1 with Singular’s command
syz2,3 in computation time (CPU time). x, y, z are variables. We used a PC [OS:
Windows 7 (64bit), CPU: Intel(R) Core i-7-2600 CPU @ 3.40 GHz 3.40 GHz,
RAM: 8 GB] and Singular version 3-1-4. The time is given in second. In Table 1,
>20 m means it takes more than 20 min.

We use the following polynomials define an isolated singularity.

f1 = (y4 + xz3 + x3)2 + y8 + z9 + 8xy7,

f2 = (y13 + x3)2 + 3y14 − 2x3y20,

f3 = (x3 + xz2 + xy3 + zy3)3 + xz8 + 4xy12,

f4 = (x5 + y7)2 + 3y14 + 3x10y5 − 2xy14,

1 The degree reverse lex. monomial order with the coordinate (x, y) or (x, y, z), is used
in the implementation of ExtIMP.

2 syz(g1, g2, . . . , gr) outputs a standard basis of the module of syzygies w.r.t. the gen-
erators g1, g2, . . . , gr where g1, g2, . . . , gr ∈ Q[x]. Thus, the command syz outputs the
similar results. For each i ∈ {1, . . . , 8}, syz(h, ∂fi

∂x
, ∂fi

∂y
, ∂fi

∂z
) (or syz(h, ∂fi

∂x
, ∂fi

∂y
)) has

been executed in Table 1.
3 The negative degree reverse lex. monomial order with the coordinate (x, y) or

(x, y, z), is used in Singular’s command syz.



258 K. Nabeshima and S. Tajima

f5 = (x2z + yz2 + y5 + y3z)2 + z5 + x6y + x3y2z2,

f6 = (x2y + z4 + y5)2 + x5 + y5z4 + x2y3z3,

f7 = (y4 + xz3 + x3)2 + x5 + y5z4,

f8 = (y4 + xz3 + x3)2 + x5 + y5z4 + x2y3z3.

In each problem of Table 1, a polynomial h is a member of the ideal 〈F 〉 in
C{x, y} or C{x, y, z}.

As is evident from the Table 1, the new algorithm ExtIMP results in better
performance in contrast to Singular’s command syz. The essential point of
the new algorithm is computing Gröbner bases instead of computing standard
bases. In general, the computational complexity of Gröbner bases is smaller than
the computational complexity of standard bases. That’s why the new algorithm
results in better performance.

3 Parametric Cases

Here, we generalize the algorithm ExtIMP to parametric cases, namely, we
consider parametric polynomial ideals.

First, we briefly review the notion of algebraic local cohomology and the
method to solve parametric ideal membership problems that exploits algebraic
local cohomology classes. Second, by using comprehensive Gröbner systems, we
present an algorithm for computing bases of parametric ideal quotients. Last,
we generalize ExtIMP to handle parametric cases.

We use in this section the following notation for systems of parametric ideals.
For g1, . . . , gr ∈ C[t], V(g1, . . . , gr) ⊆ Cm denotes the affine variety of g1, . . . , gr,
i.e., V(g1, . . . , gr) := {t ∈ Cm| g1(t) = · · · = gr(t) = 0} and V(0) := Cm

where t = (t1, t2, · · · , tm) is the abbreviation of m variables which represents

Table 1. Comparison of ExtIMP with syz

F h syz ExtIMP

1 ∂f1
∂x

, ∂f1
∂y

, ∂f1
∂z

z20 0.040 0.040

2 ∂f2
∂x

, ∂f2
∂y

x16 0.460 0.030

3 ∂f3
∂x

, ∂f3
∂y

, ∂f3
∂z

x100 + y100 0.220 0.180

4 ∂f1
∂x

, ∂f1
∂y

, ∂f1
∂z

5x10y30 + x3z20 88.510 1.090

5 ∂f2
∂x

, ∂f2
∂y

x15 + y30 >20 m 0.060

6 ∂f4
∂x

, ∂f4
∂y

2x15 − xy20 >20 m 1.420

7 ∂f5
∂x

, ∂f5
∂y

, ∂f5
∂z

x15 + x16 + xy10z14 >20 m 12.390

8 ∂f6
∂x

, ∂f6
∂y

, ∂f6
∂z

2x12y16z2 − 3z20 >20 m 19.090

9 ∂f7
∂x

, ∂f7
∂y

, ∂f7
∂z

x30y20 >20 m 124.175

10 ∂f8
∂x

, ∂f8
∂y

, ∂f8
∂z

x20 + y20 >20 m 398.990



Solving Extended Ideal Membership Problems 259

parameters. We call an algebraically constructible set of the form V(g1, . . . , gr)\
V(g′

1, . . . , g
′
r′) ⊆ Cm with g1, . . . , gr, g′

1, . . . , g′
r′ ∈ C[t], a stratum. For a stratum

A ⊆ Cm, we define C[t]A = { c
b | c, b ∈ C[t], b(t) 	= 0 for t ∈ A}. Then for every

a ∈ A, the specialization homomorphism σa : C[t]A[x] → C[x] (or σa : C[t]A[ξ] →
C[ξ]) is defined as a map that substitutes a into m variables t [10]. When we say
that σa(h) makes sense for h ∈ C(t)[x], it has to be understood that h ∈ C[t]A[x]
for some A with a ∈ A and for F ⊂ C[t]A[x], σa(F ) = {σa(h)|h ∈ F}.

3.1 Algebraic Local Cohomology and Membership Problems

Here, we briefly review algebraic local cohomology classes and how to solve ideal
membership problems by utilizing the algebraic local cohomology classes. The
details are in [8,9,19,26–29].

Let Hn
[O](C[x]) denote the set of algebraic local cohomology classes supported

at the origin O with coefficients in C, defined by

Hn
[O](C[x]) := lim

k→∞
Extn

C[x](C[x]/〈x1, x2, . . . , xn〉k,C[x]).

We represent an algebraic local cohomology class, given by finite sum of
the form

∑

cλ

[

1
xλ+1

]

, as a polynomial in n variables
∑

cλξλ, which is called
“polynomial representation”, where cλ ∈ C, λ ∈ Nn and ξ = (ξ1, . . . , ξn). The
multiplication by xα for polynomial representation is defined as

xα ∗ ξλ :=

⎧

⎨

⎩

ξλ−α, λi ≥ αi, i = 1, . . . , n,

0, otherwise,

where α = (α1, . . . , αn) ∈ Nn, λ = (λ1, . . . , λn) ∈ Nn, and λ − α = (λ1 −
α1, . . . , λn − αn). We use “∗” as the multiplication.

Let fix a monomial order 
 on C[ξ]. For a given algebraic local cohomology
class of the form

ψ = cλξλ +
∑

ξλ�ξλ′
cλ′ξλ′

, cλ 	= 0,

we call ξλ the head term, cλ the head coefficient, cλξλ the head monomial and
ξλ′

the lower terms. We denote the head term by ht(ψ), head coefficient by
hc(ψ), head monomial by hm(ψ). Furthermore, we also denote the set of terms
of ψ as Term(ψ) := {ξκ|ψ =

∑

κ∈Nn cκξκ, cκ 	= 0, cκ ∈ C} and the set of lower
terms of ψ as LL(ψ) := {ξκ ∈ Term(ψ)|ξκ 	= ht(ψ)}. Let Ψ be a finite subset of
Hn

[O](C[x]). We denote the set of head terms of Ψ as ht(Ψ) := {ht(ψ)|ψ ∈ Ψ},
the set of terms of Ψ as Term(Ψ) :=

⋃

ψ∈Ψ Term(ψ) and the set of lower terms
of Ψ as LL(Ψ) :=

⋃

ψ∈Ψ LL(ψ).
Let F be a set of s polynomials f1, f2, . . . , fs in C[x] s.t. {x ∈ X|f1(x) =

f2(x) = · · · = fs(x) = 0} = {O}. We define a set HF to be the set of algebraic
local cohomology classes in Hn

[O](C[x]) that are annihilated by the ideal generated
by F :

HF = {ψ ∈ Hn
[O](C[x]) | f1 ∗ ψ = f2 ∗ ψ = · · · = fs ∗ ψ = 0}.



260 K. Nabeshima and S. Tajima

In our works [20,27–29], algorithms for computing a basis of the vector space
HF , have been introduced. Bases of the finite-dimensional vector spaces HF

can be computed by the algorithms implemented in a computer algebra system
Risa/Asir [21].

For a given monomial in C[x], the next theorem tells us the normal form of
the monomial modulo IO w.r.t. a monomial order 
 in C{x}.

Theorem 1 ([27]). Let 
 be a global monomial order and Ψ be a basis of the
vector space HF . Suppose that an element of linear combination in Ψ is repre-
sented

ξτ +
∑

ξτ �ξκ

c(τ,κ)ξ
κ, c(τ,κ) ∈ C.

Then, the following properties hold.

1. If ξλ ∈ LL(Ψ)xλ ≡
∑

ξκ∈ht(Ψ)

c(κ,λ)x
κ mod IO in C{x}

2. If ξλ ∈ ht(Ψ)xλ ≡ xλ mod IO in C{x}
3. If ξλ /∈ LL(Ψ) and ξλ /∈ ht(Ψ)xλ ≡ 0 mod IO

As any polynomial h is a linear combination of finite number of monomials,
the normal form of h modulo IO w.r.t. a monomial order is computed by the
theorem. If h ≡ 0 mod IO, then h is a member of the ideal IO in C{x}.

We turn to the parametric cases. Let us assume that a set F of s polynomials
f1, f2, . . . , fs in (C[t])[x] satisfying generically {x ∈ X|f1(x) = · · · = fs(x) =
0} = {O} are given. Here, t = (t1, t2, . . . , tm) are regarded as parameters and
x, ξ are the main variables.

We define a set HF = ∪a∈CmHσa(F ) to be the set of algebraic local cohomol-
ogy classes in Hn

[O](C[x]) that are annihilated by 〈F 〉, where

Hσa(F ) = {ψ ∈ Hn
[O](C[x]) | σa(f1) ∗ ψ = σa(f2) ∗ ψ = · · · = σa(fs) ∗ ψ = 0}.

The ideal 〈F 〉 at a ∈ Cm is a zero-dimensional ideal if and only if Hσa(F ) is a
finite-dimensional vector space.

Definition 1. Let Ai, Bj be strata in Cm and Si a subset of (C[t]Ai
)[ξ] where

1 ≤ i ≤ 	 and 1 ≤ j ≤ k. Set S = {(A1, S1), . . . , (A�, S�)} and D = {B1, . . . ,Bk}.
Then, a pair (S,D) is called a parametric local cohomology system of HF

on A1 ∪ · · · ∪ A� ∪ B1 ∪ · · · ∪ Bk, if for all i ∈ {1, . . . , 	} and a ∈ Ai, σa(Si)
is a basis of the vector space Hσa(F ), and for all j ∈ {1, . . . , k} and b ∈ Bj,
{x ∈ X|σb(f1)(x) = σb(f2)(x) = · · · = σb(fs)(x) = 0} is not zero-dimensional
for any sufficiently small neighborhood X of O.

In our works [19,20], algorithms for computing a parametric local cohomol-
ogy system of HF , have been introduced and implemented in the computer alge-
bra system Risa/Asir [21]. Hence, parametric ideal membership problems can be
solved by a parametric local cohomology system of HF and Theorem 1.



Solving Extended Ideal Membership Problems 261

Example 3. Let f = x3
1 + t1x

2
1x

2
2 + x1x2 and F = { ∂f

∂x1
, ∂f

∂x2
} where x1, x2 are

variables and t1 is a parameter. Let 
 be the total degree lexicographic monomial
order s.t x 
 y. Then, our implementation outputs the following as a paramet-
ric local cohomology system of HF . The variables ξ1 and ξ2 correspond to the
variables x1 and x2, respectively.

– If a parameter t1 belongs to V(t1), then S1 = {1, ξ1, ξ2, ξ1ξ2, ξ
2
2 , ξ

3
2 ,

ξ1ξ
2
2 , ξ

4
2 , ξ1ξ

3
2 , ξ

5
2 − 1

3ξ21 , ξ
6
2 − 1

3ξ21ξ2, ξ
7 − 1

3ξ21ξ
2
2 , ξ

8
2 − 1

3ξ21ξ
3
2} is a basis of HF .

– If a parameter t1 belongs to C\V(t1), then S2 = {1, ξ1, ξ2, ξ1ξ2, ξ
2
2 , ξ

3
2 , ξ

4
2 , ξ1ξ

2
2−

2
3 t1ξ

2
1 , ξ

5
2 − 1

3ξ21 , ξ
6
2 − 1

2t1
ξ1ξ

3
2 , ξ

7
2 − 1

2t1
ξ1ξ

4
2 − 15

8t31
ξ1ξ

3
2 + 5

4t21
ξ21ξ2, ξ

8
2 − 1

2t1
ξ1ξ

5
2 −

15
8t31

ξ1ξ
3
2

5
4t21

ξ21ξ
2
2 − 225

32t51
ξ1ξ

3
2 − 2

3t1
ξ31 + 75

16t41
ξ21ξ2} is a basis of HF .

Let us consider the ideal membership problems of h = x2
1x

3
2. If t1 = 0,

then it follows from ξ21ξ
3
2 ∈ LL(S1) and x2

1x
3
2 ≡ − 1

3ξ81 mod IO that x2
1x

3
2 /∈ IO

holds. In contrast, if t1 	= 0, then since ξ21ξ
3
2 /∈ LL(S2) and ξ21ξ

3
2 /∈ ht(S2),

x2
1x

3
2 ≡ 0 mod IO, i.e. x2

1x
3
2 ∈ IO holds.

Let us consider the ideal membership problem of h = x3
1x2. Then, since

ξ31ξ2 /∈ LL(S1), ξ31ξ2 /∈ ht(S1), ξ31ξ2 /∈ LL(S2) and ξ31ξ2 /∈ ht(S2), x3
1x2 ∈ IO

on C.

3.2 Comprehensive Gröbner Systems (CGS)

It is known that the notion of comprehensive Gröbner system is useful and
indispensable for studying parametric ideals. Here, first, we quickly review a
comprehensive Gröbner system of a parametric ideal. Second, we introduce an
algorithm for computing bases of ideal quotients with parameters. Last, we give
a notion of parametric syzygy systems.

Comprehensive Gröbner systems for parametric ideals were introduced, con-
structed, and studied by Weispfenning [30] in 1992. Since then, the algorithm
for computing comprehensive Gröbner systems has been improved by several
authors [11,13,14,18,24]. Now, there exist several implementations [6,11,14,18]
for computing comprehensive Gröbner systems.

Definition 2 (CGS). Let fix a monomial order. Let F be a subset of (C[t])[x],
A1, . . . ,A� strata in Cm and G1, . . . , G� subsets of (C[t])[x]. A finite set G =
{(A1, G1), . . . , (A�, G�)} of pairs is called a comprehensive Gröbner system
(CGS) on A1 ∪ · · · ∪A� for F if σa(Gi), a ∈ Ai, is a Gröbner basis of the ideal
〈σa(F )〉 in C[x] for each i = 1, . . . , 	. Each (Ai, Gi) is called a segment of G.
We simply say G is a comprehensive Gröbner system for F if A1∪· · ·∪A� = Cm.

The algorithm (Chap. 4 [3]) for computing bases of ideal quotients can be
generalized to parametric cases. In the algorithm, a monomial order is fix.



262 K. Nabeshima and S. Tajima

Algorithm 2. ParaQuotient

Input: F = {f1, . . . , fs} ⊂ (C[t])[x], g ∈ (C[t])[x]. A ⊂ Cm.
Output: G: a CGS of the ideal quotient 〈F 〉 : 〈g〉 on A.
BEGIN
G ← ∅;
H ← Compute a CGS of 〈F 〉 ∩ 〈g〉 on A;
while H �= ∅ do

Select a segment (A′, H ′) from H; H ← H\{(A′, H ′)};
G′ ← {h/g |h ∈ H ′}; D ← D ∪ {(A′, G′)};

end-while
return G;
END

Algorithms [11,13,14,18,24] for computing comprehensive Gröbner bases ter-
minate. Thus, this algorithm terminates, too. As this is the natural extension to
parametric cases by using CGSs, the correctness is clear.

Example 4. Let f = x3
1 + t1x

2
1x

2
2 + x1x2 and F = { ∂f

∂x1
, ∂f

∂x2
} where x1, x2 are

variables and t1 is a parameter. Let 
 be the lexicographic monomial order s.t.
z 
 x1 
 x2 where z is an auxiliary variable. From Example 3, x3

1x2 is a member
of 〈F 〉{O} on the parameter space C.

In order to compute a CGS of 〈F 〉 : 〈x3
1x2〉, first we need to compute a basis

of 〈F 〉 ∩ 〈gi〉 on C. Since our implementation outputs the following

{(V(t1), {x3
1x2, x

9
2z, x1x

4
2z, 3x2

1z + x5
2z}), (C\V(t1), {(75x2

2

− 16t21x2)x3
1,−84375x4

1x2 − 2048t51x
3
1x2,−3t1x

3
1x2 − 10x9

2z, 10125x3
1x2

− 256t61x1x
3
2z − 1800t1x

8
2z − 480t31x

7
2z − 128t51x

6
2z, 3x2

1z + 2t1x1x
2
2z + x5

2z})}

as the CGS of 〈z ∂f
∂x1

, z ∂
∂x2

, (1 − z)x3
1x2〉 w.r.t. 
, a CGS of 〈F 〉 ∩ 〈x3

1x2〉 w.r.t.

 is constructed by discarding polynomials that contains the auxiliary variable
z from the output, as follows
{

(V(t1), {x3
1x2}), (C\V(t1), {(75x2

2 − 16t21x2)x3
1,−84375x4

1x2 − 2048t51x
3
1x2})

}

.

Nextly, by dividing all elements of the sets of polynomials by x3
1x2, the set

{

(V(t1), {1}), (C\V(t1), {75x2 − 16t21, 84375x1 + 2048t51})
}

.

is obtained as the CGS of 〈F 〉 : 〈x3
1x2〉 w.r.t. 
. 
�

In order to construct an algorithm for solving extended ideal membership
problems, we need an extended Gröbner bases algorithm or an algorithm for
computing parametric syzygies. Both the algorithms have been published in
[17]. Now we give the notion of parametric syzygy system.

Definition 3 (PSS). Let fix a monomial order. Let f1, . . . , fs be polynomials in
C[t][x], A1, . . . ,A� strata in Cm and G1, . . . , G� subsets of (C[t][x])s. A finite set
G = {(A1, G1), . . . , (A�, G�)} of pairs is called a parametric syzygy system



Solving Extended Ideal Membership Problems 263

(PSS) on A1 ∪ · · · ∪ A� for f1, . . . , fs if σa(Gi), a ∈ Ai, is a Gröbner basis of
the syzygy module of 〈σa(f1), . . . , σa(fs)〉 in (C[x])s for each i = 1, . . . , 	. Each
(Ai, Gi) is called a segment of G. We simply say G is a parametric syzygy
system for f1, . . . , fs if A1 ∪ · · · ∪ A� = Cm.

An algorithm for computing parametric syzygy systems [17], implemented
in the computer algebra system Risa/Asir [21], is utilized in the Subsect. 3.3 to
construct the algorithm for solving the extended ideal membership problems of
parametric ideals.

3.3 Solving Extended Ideal Membership Problems

Here, we extend the algorithm ExtIMP to parametric cases by using the algo-
rithms for computing parametric ideal quotients ParaQuotient and parametric
syzygy systems. In the algorithm, a monomial order is fix.

Algorithm 3. ParaExtIMP

Input: f1, f2, . . . , fs: polynomials in (C[t])[x] satisfying {x ∈ X|f1(x) = f2(x) = · · ·
= fs(x) = 0} = {O} on A ⊂ Cm.
h: a polynomial satisfying h ∈ 〈f1, . . . , fs〉{O} ⊂ C{x} on A.

Output: {(A1, (q11, . . . , q1s)), . . . , (A�, (q�1, . . . , q�s))}: h = qj1f1 + · · · + qjsfs on Aj

for each j ∈ {1, . . . , �} and A =
⋃�

i=1 Ai.
BEGIN
G ← ∅;
Q ← Compute a CGS of 〈F 〉 : 〈h〉 on A by ParaQuotient;
while Q �= ∅ do

Select a segment (A′, G′) from Q; Q ← Q\{(A′, G′)};
g ← Take a polynomial g s.t. g �= 0 and g(O) �= 0 from G′;
S ← Compute a PSS for gh, f1, . . . , fs on A′;
while S �= ∅ do

Select a segment (A′′, G′′) from S; S ← S\{(A′′, G′′)};
(c0, c1, . . . , cs) ← Take (c0, c1, . . . , cs) s.t. c0 is a nonzero constant from G′′;
G ← G ∪ {(A′′, (− c1

c0g
, . . . , − cs

c0g
)};

end-while
end-while
return G;
END

The termination and the correctness can be readily verified because this algo-
rithm consists of an appropriate combination of ExtIMP and ParaQuotient.

Example 5. Let us consider Example 4, again. A set {(V(t1), {1}), (C\V(t1),
{75x2 − 16t21, 84375x1 + 2048t51})

}

is a CGS of 〈F 〉 : 〈x3
1x2〉 w.r.t. 
.

Let us compute on V(t1) a PSS for x2
1x2, ∂f

∂x1
, ∂f

∂x2
w.r.t. 
. Then, our imple-

mentation for computing PSSs outputs

{(V(t1), {(−1, 0, x2
1x2), (0,−x1, 3x2

1 + x2)})}.



264 K. Nabeshima and S. Tajima

Take the first vector (−1, 0, x2
1x2) because the first component is a nonzero con-

stant. Thus, if the parameter t1 belongs to V(t1), then x3
1x2 can be written as

x3
1x2 = 0 · ∂f

∂x1
+ x4

1x
2
2 · ∂f

∂x2
.

Let us compute on C\V(t1) a PSS for x3
1x2(75x2 − 16t21),

∂f
∂x1

, ∂f
∂x2

w.r.t. 
.
Then, our implementation outputs

{(C\V(t1), {(−3,(75x2
2 − 16t21x2)x1,−75x3

2 + 16t21x
2
2),

(0, 2t1x
2
1x1 + x1,−3x2

1 − 2t1x1x
2
2 − x2)})}.

Take the first vector (−3, (75x2
2 − 16t21x2)x1,−75x3

2 + 16t21x
2
2) because the first

component is a nonzero constant. Thus, if the parameter t1 belongs to C\V(t1),
then x3

1x2 can be written as

x3
1x2 =

75x1x
2
2 − 16t21x1x2

3(−16t21 + 75x2)
· ∂f

∂x1
+

−75x3
2 + 16t21x

2
2

3(−16t21 + 75x2)
· ∂f

∂x2
. 
�

The algorithm ParaExtIMP has been implemented in the computer algebra
system Risa/Asir [21].

Example 6. Let f = x3
1 + x1x

8
2 + t1x1x

7
2 + t2x

10
2 and F = { ∂f

∂x1
, ∂f

∂x2
} where

x1, x2 are variables and t1, t2 are parameters. Then, x3
1x

2
2 ∈ 〈F 〉{O} ⊂ C{x1, x2}

can be checked by computing a parametric local cohomology system of F . Our
implementation give us a solution of the extended ideal membership problem
w.r.t. 
 as follows.

– If the parameters t1 and t2 belong to C2\V(t1t2), then x3
1x

2
2 can be written as

x
3
1x

2
2 =

(64x6
2 + 176t1x5

2 + 161t21x4
2 + 49t31x3

2 + 300t22x2
2)x1 + 80t2x8

2 + 150t1t2x7
2 + 70t21t2x6

2
3(300t22 + 49t31x2 + 161t21x2

2 + 176t1x3
2 + 64x4

2)
·

∂f

∂x1

+
(−30t2x2 − 30t1t2)x1 − 8x7

2 − 23t1x6
2 − 22t21x5

2 − 7t31x4
2

3(300t22 + 49t31x2 + 161t21x2
2 + 176t1x3

2 + 64x4
2)

·
∂f

∂x2
.

– If the parameters t1 and t2 belong to V(t1)\V(t1, t2), then x3
1x

2
2 can be writ-

ten as

x3
1x

2
2 =

(32x6
2 + 150t22x

2
2)x1 + 40t2x

8
2

6(75t22 + 16x4
2)

· ∂f

∂x1
+

−15t1x1x2 − 4x7
2

6(75t22 + 16x4
2)

· ∂f

∂x2
.

– If the parameters t1 and t2 belong to V(t2)\V(t1, t2), then x3
1x

2
2 can be writ-

ten as

x3
1x

2
2 =

−50331648x2
2x

3
1 + (−1404928t41x

6
2 + 823543t81x

2
2)x1

3(823543t81 − 50331648x2
1)

· ∂f

∂x1

+
(♦)

3(823543t81 − 50331648x2
1)

· ∂f

∂x2
,

where (♦) = (6291456x3
2 + 786432t1x

2
2 − 688128t21x2 + 602112t31)x

2
1 + 175616t41x

7
2 +

21952t51x
6
2 − 19208t61x

5
2 + 16807t71x

4
2 − 117649t81x

3
2.



Solving Extended Ideal Membership Problems 265

– If the parameters t1 and t2 belong to V(t1, t2), then x3
1x

2
2 can be written as

x3
1x

2
2 =

x1x
2
2

3
· ∂f

∂x1
+

−x3
2

24
· ∂f

∂x2
.

It takes 0.047 s to get this result by our implementation. ([OS: Windows 7
(64bit), CPU: Intel(R) Core i-7-2600 CPU @ 3.40 GHz 3.40 GHz]) 
�

4 Concluding Remarks

We have introduced an algorithm for solving extended ideal membership prob-
lems for zero-dimensional ideals in the rings of convergent power series. The key
idea is to use ideal quotients in polynomial rings, which reduces the problem
from local rings to polynomial rings. The proposed algorithm does not invoke
the Mora’s tangent cone algorithm, and it can be easily implemented. Further-
more, the new algorithm works well under the additional assumption that the
origin is an isolated zero.

The anonymous referees have given a useful question about the generalization
of the algorithm ExtIMP. If a set of polynomials has an isolated common root
at a point of Cn, then Lemma 1 can be extended to the following.

Let f1, f2, . . . , fs be polynomial in C[x] s.t. {x ∈ X|f1(x) = f2(x) = · · · =
fs(x) = 0} = {A} where X is a neighborhood of a point A = (a1, . . . , an) of Cn.
Let IA be an ideal generated by f1, f2, . . . , fs in C{x−a} := C{x1−a1, . . . , xn −
an} and I = 〈f1, . . . , fs〉 be an ideal generated by f1, f2, . . . , fs in C[x]. Then,
the following lemma holds.

Lemma 3. Let h be a polynomial in C[x], s.t. h ∈ IA ⊂ C{x − a}. Then, there
exists a polynomial g ∈ I : 〈h〉 s.t. g /∈ mA, where mA = 〈x1−a1, x2−a2, . . . , xn−
an〉 in C{x − a}.

The proof of Lemma 3 is completely same as that of Lemma 1. By this exten-
sion, the algorithm ExtIMP and ParaExtIMP can be generalized to the case
of IA. However, Theorem 1 cannot be applied directly to test an ideal member-
ship to such a case.

Note that the extension of ExtIMP has not been implemented in a computer
algebra system and compared with other existing algorithm, yet. We will report
on the performance elsewhere.

Acknowledgments. We thank referees for careful reading our manuscript and for
giving useful comments. This work has been partly supported by JSPS Grant-in-
Aid for Young Scientists (B) (No.15K17513) and Grant-in-Aid for Scientific Research
(C) (No.15K04891).



266 K. Nabeshima and S. Tajima

References

1. Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1992)
2. Briançon, J., Granger, M., Maisonobe, P., Miniconi, M.: Algorithme de calcul du

polunôme du Bernstein : cas non dégénéré. Ann. Inst. Fourier 39, 553–610 (1989)
3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 3rd edn. Springer,

New York (2007)
4. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York

(1998)
5. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 - A com-

puter algebra system for polynomial computations (2012). http://www.singular.
uni-kl.de

6. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM
SIGSAM Bull. 31, 2–9 (1997)

7. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd
edn. Springer, Heidelberg (2008)

8. Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents.
Séminaire Bourbaki 149 (1957)

9. Hartshorne, R., Grothendieck, A.: Local Cohomology; a Seminar. Lecture Notes in
Mathematics, 41. Springer, New York (1967)

10. Kalkbrener, M.: On the stability of Gröbner bases under specializations. J. Sym-
bolic Comput. 24, 51–58 (1997)

11. Kapur, D., Sun, D., Wang, D.: A new algorithm for computing comprehensive
Gröbner systems. In: Proceedings of the ISSAC 2010, pp. 29–36. ACM (2010)

12. Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge University
Press, New York (1998)

13. Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant
ideal. J. Symbolic Comput. 41, 1245–1263 (2006)

14. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters.
J. Symbolic Comput. 45, 1391–1425 (2010)

15. Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet,
Jacques (ed.) ISSAC 1982 and EUROCAM 1982. LNCS, vol. 144, pp. 158–165.
Springer, Heidelberg (1982)

16. Mora, T., Pfister, G., Traverso, T.: An introduction to the tangent cone algorithm.
Adv. Comput. Res. 6, 199–270 (1992). Issued in robotics and nonlinear geometry

17. Nabeshima, K.: On the computation of parametric Gröbner bases for modules and
syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)

18. Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner
systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012)

19. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local
cohomology classes associated with semi-quasihomogeneous singularities and stan-
dard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)

20. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and para-
metric standard bases for zero-dimensional ideals (2015). arXiv:1508.06724

21. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings
of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/
Asir/asir.html

22. Schulze, M.: Algorithms for the gauss-manin connections. J. Symbolic Comput.
32, 549–564 (2001)

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://arxiv.org/abs/1508.06724
http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.math.kobe-u.ac.jp/Asir/asir.html


Solving Extended Ideal Membership Problems 267

23. Schulze, M.: Algorithmic gauss-manin connection - algorithms to compute hodge-
theoretic invariants of isolated hypersurface singularities. vom Fachbereich Math-
ematik der Universität Kaiserslautern zum Verleihyng des akademischen Grades
Doktor der Naturwissenschaften (2002)

24. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases
using Gröbner bases. In: Proceedings of the ISSAC 2006, pp. 326–331. ACM (2006)

25. Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings and Modules. Cambridge
University Press, Cambridge (2006)

26. Tajima, S., Nakamura, Y.: Algebraic local cohomology class attached to quasi-
homogeneous isolated hypersurface singularities. Publ. Res. Inst. Math. Sci. 41,
1–10 (2005)

27. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology
class. J. Symbolic Comput. 44, 435–448 (2009)

28. Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to unimodal
singularities. Publ. Res. Inst. Math. Sci. 48, 21–43 (2012)

29. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local
cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

30. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Comput. 36, 669–
683 (1992)

31. Yano, T.: On the theory of b-functions. Publ. Res. Inst. Math. Sci. 14, 111–202
(1978)



Advanced Algebraic Attack on Trivium

Frank-M. Quedenfeld1(B) and Christopher Wolf2

1 University of Technology Braunschweig, Braunschweig, Germany
frank.quedenfeld@googlemail.com

2 Research Center Jülich, Jülich, Germany

Abstract. This paper presents an algebraic attack against Trivium that
breaks 625 rounds using only 4096 bits of output in an overall time com-
plexity of 242.2 Trivium computations. While other attacks can do better
in terms of rounds (799), this is a practical attack with a very low data
usage (down from 240 output bits) and low computation time (down
from 262).

From another angle, our attack can be seen as a proof of concept: how
far can algebraic attacks can be pushed when several known techniques
are combined into one implementation? All attacks have been fully imple-
mented and tested; our figures are therefore not the result of any poten-
tially error-prone extrapolation, but results of practical experiments.

Keywords: Trivium · Algebraic modelling · Similar variables ·
ElimLin · Sparse multivariate algebra · Equation solving over F2

1 Introduction

Algebraic attacks against symmetric ciphers are more than a decade old. In fact,
they can be traced back to Claude Shannon [26].

Recently, the Elimination of linear variables or ElimLin algorithm was used
to attack several ciphers, in particular CTC2, LBlock and MIBS. According to
[12] from FSE 2012, only 6 rounds can be broken for CTC2. This attack requires
up to 180 h on a standard PC and requires 210 guessed bits and 64 chosen
cipher texts (CC). Guessing 220 bits and 16 CP brings the attack down to 3 h.
For LBlock, the paper reports 8 rounds (out of 32) for 32 guessed bits (out of
80) for 6 known plain texts (KP). For MIBS (32 rounds), the paper reports
a break for 3 to 5 rounds with 0/16/20 guessed bits, respectively. An initial
implementation of the ElimLin algorithm was employed on DES in [8]. Here,
plain ElimLin could break 5 rounds of DES with 3 KP and 23 guessed bits;
using a SAT solver, this number can be increased to 6 rounds for an unspecified
number of KP (most likely 1) and 20 key bits fixed. In Sect. 1.2 we discuss this
with more details and references.

In this article, we show that ElimLin can be greatly improved when employed
together with other techniques from solving systems of equations like a proper

A full version of this paper can be found at [22].

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 268–282, 2016.
DOI: 10.1007/978-3-319-32859-1 23



Advanced Algebraic Attack on Trivium 269

monomial ordering or a new variant of eXtended Linearization. In particular, we
use the Trivium stream cipher as a testbed for algebraic attacks, mainly due to its
simple algebraic structure and its good scalability: full Trivium has 1152 rounds,
so we can see the effect of adding some component to our equation solver well,
cf. Sect. 3 for all building blocks. In addition, we restricted ourselves to attacks
that can be fully implemented on a current computer. Our implementation was
able to break round-reduced Trivium with 625 rounds. In particular, our data
complexity is far better than for non-algebraic attacks. Non-algebraic attacks
need at least 240 to 245 output bits of Trivium with 767 − 799 rounds as we
present in Sect. 1.2. We are able to bring this down to 211 or 212. Further non-
algebraic attacks can use up to 260 to 272 Trivium computations, which is not
feasible on modern computers. This is because they are guessing a huge number
of variables.

In particular, we show that algebraic attacks become specifically efficient
against Trivium if we do not use a lot of output for one instance, but few output
bits for many instances. However, this new type of attack only works if we have
access to a sparse equation solver over F2 that can deal with many variables and
also many equations (≈ 106 in both cases). This sparse polynomial system solver
is the second major contribution of this paper. To the best of our knowledge,
such a solver does not yet exist in the open literature.

1.1 Organization

We start with a review of existing work in the area of algebraic cryptanalysis and
specifically cryptanalysis of Trivium in Sect. 1.2. In addition, we discuss several
ways to solve systems over F2. This is followed by a discussion of Trivium and
the idea of “similar variables” in Sect. 2. The overall solver and the tweaks we
need to deal with a full representation of Trivium are given in Sect. 3. This
is followed by practical experiments on round reduced Trivium in Sect. 4. The
paper concludes with some remarks, open questions and directions for further
research in Sect. 5.

1.2 Related Work

Before going into details about our attack, we review related work in algebraic
cryptanalysis, cryptanalysis of Trivium and solving systems of equations over F2.

Algebraic Cryptanalysis. Algebraic cryptanalysis works on a simple assumption:
We are able to express any cryptographic primitive in simple non-linear equations
over a finite field (e.g. F2 or F256), cf. [5] for an overview on some ciphers.
This part of the attack is called “modelling”. If we now use this description
and solve the overall system for a given output (stream ciphers) or a given
plaintext/ciphertext pair (block cipher) we obtain the secret key.

For stream ciphers, algebraic attacks [3,10] seem to work fine, as for some
public key systems [18,19] and other primitives [28]. We want to note that even
round reduced variants of Trivium has escaped all efforts to be broken by purely
algebraic methods.



270 F.-M. Quedenfeld and C. Wolf

Attacks on Trivium. We briefly sketch some of the most important attacks
against Trivium. We want to stress that Trivium is still secure—despite its simple
and elegant design; and the combined effort of the cryptanalytic community.

The attacks from [14,20] are both cube attacks. Cube attacks use the chosen
IV scenario. In this scenario we can generate multiple output bits of a stream
cipher using the same key but different initialization vectors (IVs). In a nutshell,
cube attacks simplify the encryption function by generating the sum over this
function for all 0/1-combinations of some IV variables as described in [14,23].
They recover the full key of a 799 round-reduced variant of Trivium in 262

computations guessing 62 variables.
Other key recovery attacks in the chosen IV scenario are not that successful.

For instance, [21] describes a linear attack on Trivium breaking a 288 round-
reduced variant with a likelihood of 2−72.

Previous algebraic attacks [24,25,27,29] use output bits generated by one
unknown IV and one key. They are all based on the model described in [24] and
fail even for round-reduced variants of Trivium because they attack the internal
state of the cipher rather than the key. In these attacks the adversary is not able
to use output bits generated by different IVs.

Solving Systems Over F2. As pointed out above, any algebraic cryptanalysis
has two steps: The first is the algebraic modelling, the second is solving the
corresponding system of equations. For simplicity, we assume that all equations
are at most quadratic over F2. When we have an equation of total degree greater
or equal 3 we can introduce intermediate variables to reduce the degree of the
equation. Furthermore all our algorithms work on systems of equations with
higher degree.

Basically, the most promising algorithms come from the F-family of Gröbner
basis algorithms [15,16], see [2] for an overview. They have been successfully
applied in the case of public key schemes [18,19], but also stream ciphers [17].
The main disadvantage is the high memory consumption. Although there are
some counter examples for special cases, the running time of Gröbner basis
algorithms is inherently exponential in the number of variables. Even worse, the
memory consumption increases with O(nr) for n the number of variables and r
the degree of regularity. In particular the latter makes Gröbner bases unusable
for our purpose as we have r ≥ 2 and n ≈ 220.

Another line of algorithms comes from the so called “XL—eXtended Lin-
earization” [9]. Here, the main operation is multiplying all known equations
with all monomials up to a certain degree. While these new equations are triv-
ially true, some of them are linearly independent and can hence be used in a
so-called Macaulay matrix to reduce the overall problem to linear algebra over
F2. In a Macaulay matrix, the rows represent polynomials while the columns
represent monomials, cf. [2] for an overview of the idea. Although it has been
shown that techniques from the XL-family are strictly less efficient than from
the F-family [4,13,30,31], XL does have its merits as it is easier to adapt to
different settings. Hence we have used a specialized version of XL in our solver
to improve its efficiency, cf. Sect. 3.



Advanced Algebraic Attack on Trivium 271

Last but not least, there is the ElimLin algorithm [8,12] where linear equa-
tions are used to eliminate variables. After that, the system is simplified with
linear algebra techniques, cf. Sect. 3.1. It can handle large sparse polynomial
systems with 3056 variables and 4331 monomials in 2900 equations and it is so
simple that it can easily be tweaked for specific purposes. However, we want to
stress that plain ElimLin without further modifications is not efficient enough
to deal with systems that arise from the modelling of Trivium.

1.3 Our Contributions

Our first contribution are techniques to model many instances of Trivium as
a quadratic equation system. We also introduce strategies to handle the large
number of variables within this model. The modelling techniques and strategies
can be applied to any symmetric cipher since the upcoming system of equation
is structured according to the update function of the cipher.

The second contribution of this paper is a solver which is able to solve
structured, sparse, quadratic equation systems. Based on ElimLin and eXtended
Linearization we introduce a monomial order to have more control in the
ElimLin-Step and change XL so that it preserves the monomial structure of
the system.

With the above mentioned techniques we settle an attack on a round reduced
variant of Trivium with R = 625 rounds in 242.2 time and 212 data complexity
on an average computer.

2 Trivium

The main point of our attack is to get a suited algebraic system of equations over
F2 for a considered cipher. As soon as the modelling part is done, we will solve
the system of equations with a special purpose solver, cf. Sect. 3. We present our
modelling techniques with the stream cipher Trivium from [7] as a testbed.

Trivium generates up to 264 keystream bits from an 80 bit IV and an 80
bit key. The cipher consists of an initialization or “clocking” phase of R rounds
and a keystream generation phase. For R = 1152 we obtain the full version as
stated in [7], otherwise a round-reduced variant of Trivium, denoted by Trivium-
R. There are several ways to describe Trivium—below we use the most compact
one with three quadratic, recursive equations for the state bits and one linear
equation to generate the output in the keystream generation phase.

2.1 Definition and Direct Considerations

Consider three shift registers A := (ai, . . . , ai−92), B := (bi, . . . , bi−83) and C :=
(ci, . . . , ci−110) of length 93, 84 and 111 respectively. They are called the state of
Trivium.

First the state of Trivium is initialized with

A = (k0, . . . , k79, 0, . . . , 0)
B = (v0, . . . , v79, 0, . . . , 0) and
C = (0, . . . , 0, 1, 1, 1).



272 F.-M. Quedenfeld and C. Wolf

Here (k0, . . . , k79) is the secret key and (v0, . . . , v79) is the public initialization
vector (IV) of Trivium.

Before output is generated Trivium is updated R rounds according to the
following three state update functions:

bi := ai−65 + ai−92 + ai−90ai−91 + bi−77,
ci := bi−68 + bi−83 + bi−81bi−82 + ci−86,
ai := ci−65 + ci−110 + ci−108ci−109 + ai−68.

For R = 1152 we obtain the original variant from [7]. Since this variant have not
been broken, round-reduced variants are used to evaluate the security margin of
Trivium.

After this initialization phase Trivium generates one output bit zi per round
by the function

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83.

We produce no bits of output zi for i = (R + 1) . . . (R + no).
Recovering the initial vector A is the prime aim of a key recovery attack. Note

that the vectors B,C are actually known to an attacker at the beginning of the
initialization phase since the IV is public. Therefore we make the additional
assumption that an attacker has control over the IV used within the cipher and
obtain a stream of output bits for a fixed key and any choice of IV. This is called
chosen IV scenario and is in line, e.g.with cube attacks.

To launch our attack, we use several output streams (Trivium instances) that
share the same key but different values for the IV. We see in Sect. 4 that this
will lead to successful attacks at Trivium-R.

Obviously, we need approx. 3RT + noT intermediate variables, respectively,
if we want to represent T instances of Trivium-R with no output bits each.
Before discussing strategies for solving such rather large systems, we start with
an observation on Trivium.

2.2 Similar Variables

Previous algebraic attacks such as [25,27,29] are based on the algebraic represen-
tation of Trivium given in Sect. 2.1. Therefore, we would expect similar results.
However, we do not consider only one instance of Trivium but several (thou-
sand). Consequently, the relation between these instances becomes important
for the overall success of our attack.

Let I ⊂ V be a subset of all IV variables V . We call I the master cube of the
attack. In addition, we consider the first no output bits of Trivium initialized
with the same key and all 0/1-combinations for variables in the master cube I.
All other IV variables are set to zero.

We set up all Trivium instances with symbolic key variables k0, . . . , k79.
Denote the current Trivium instance by t ∈ N. We initialize these instances for a
given number of rounds R and introduce three new variables for very round i for



Advanced Algebraic Attack on Trivium 273

the entries at,i, bt,i and ct,i in the three registers At, Bt and Ct. This produces a
quadratic system with a large number of variables and monomials.

Now we take a more general point of view and introduce similar variables
for generalized systems of equations. In particular, we denote all intermediate
variables by y0, y1, . . .

Definition 1. Let P = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y ] be the Boolean
polynomial ring in the key variables K and all intermediate variables Y .

We call the two intermediate variables yi and yj similar iff
yi + yj = p(K,Y \{yi, yj}), where p(K,Y \{yi, yj}) is a polynomial of degree
deg (p) ≤ 1.

Following the definition, we check for similar variables whenever we should intro-
duce a new intermediate variable. If the new variable is similar to one or a linear
combination of many existing variables we continue computations without a new
variable. Instead of using a new intermediate variable for quadratic monomials
already introduced, we use a linear combination of existing variables.

In generic systems, similar variables could be not of much use. However, if
all equations stem from one algebraic model for one given cipher, we are likely
to find many similarities. The following example illustrates how we work with
similar variables in the case of Trivium.

Example 1. Consider the polynomials

f0 = y0 + k78k79 + k53
f1 = y1 + k77k78 + k79 + k52

in P . These polynomials define intermediate variables y0, y1 and form the system
of equation F .

Assume we want to introduce the intermediate variable y2 with

f2 = y2 + k79k78 + k78k77 + k5 + k61.

It holds that y2 = y1 + y0 + k53 + k79 + k52 + k5 + k61. Therefore, we do not
need to introduce y2 and can continue computation with y0 and y1. This does
not only save us one variable, but we also have replaced a quadratic equation by
a (potentially more useful) linear one. ��
Note that there are different ways of considering similar variables. In any case,
we need a solver that can first identify them and second make use of them by
replacing all linear relations within a given system.

While the above definition captures any behavior for any system of equations,
we see that it applies very well to Trivium, see Fig. 1 for some experimental
results on Trivium-R. Here, we have generated T = 32 instances of Trivium
with no = 66 output bits. On the x−axis we see the number of initialization
rounds; on the y−axis we have the total number of variables in use. As we can
see the number of intermediate variables has greatly decreased; even for only
32 instances of Trivium. For R = 600 rounds we also produce 66 · 32 = 2112



274 F.-M. Quedenfeld and C. Wolf

R

ν

400 500 600 700 800

10000

30000

50000

with

w/o

Fig. 1. Number of variables for T = 32 instances of Trivium and no = 66 output bits;
Number of Rounds R against number of variables ν with and without similar variables

output equations. The model in [24] can just handle one instance of Trivium. So
it would need 288 + 3 · 2112 = 6624 variables to produce that amount of output
equations. When using more instances of Trivium we get even more efficient.

To produce the smallest number of monomials possible in our system we
change the algorithm to generate the system. Instead of going forward and gen-
erating the Trivium instance we start with the output and go backwards and
just generate the variables we need. This way, we just generate the variables
and monomials that are needed. Note that this is contrary to earlier algebraic
modellings of Trivium such as [24,25].

To evaluate our representation of Trivium, we made several experiments with
the fast Gröbner basis PolyBoRi [6]. PolyBoRi is specialized on Gröbner basis
for Boolean polynomial rings and uses a variant of Faugère’s F4 algorithm (see
[15]).

Overall, we could solve a system of Trivium-420 with a suited monomial
ordering. The system of equations has 1300 variables and 3900 monomials in 1500
equations. For more details see [22]. Thus solving polynomial systems arising
for large R is still out of reach for current Gröbner basis implementations like
PolyBoRi. The memory consumption is simply too high.

We have hence designed a solver which can handle such large numbers of
equations and variables and will describe it in the following section.

3 Solving the System

Before going into details for the experiments, we describe our strategy to solve
rather sparse systems over F2 arising from the above representation of Trivium.
We have based our solver on multivariate quadratic polynomials over F2 as this is
generally enough to capture full Trivium. Specifically, our goal was to develop a
working implementation than can handle around 106 variables and 106 equations,
respectively, over F2. To the best of our knowledge, software with such special
properties is not available at the moment. Our solver is organized around a
specialized C++-core that natively handles quadratic polynomials over F2 and
the ElimLin and SL algorithm. In addition, we have used several other building



Advanced Algebraic Attack on Trivium 275

blocks which we describe in the remainder of the section. We report experimental
results in Sect. 4.

3.1 Main Core

ElimLin or Elimination of Linear variables has been investigated in [8,12]. We
generalize it with a monomial ordering, so the algorithm becomes

1. First we generate the Macaulay matrix for the system according to some
monomial ordering τ .

2. Echelonize the matrix according to τ . This naturally splits up the system into
linear equations L and quadratic equations Q.

3. For each element p ∈ L, use the leading term LT(p). If there is at least one
equation in Q that also contains the variable LT(p), eliminate LT(p) in Q.

4. If we substitute at least one variable in Q, go back to step 2.

We want to stress that ElimLin preserves the overall degree of our system Q. In
addition, it automatically detects all similar variables (see Definition 1). More-
over ElimLin is able to deal with rather large but sparse systems of equations.

The original ElimLin algorithm did not have any ordering but used heuristics
to determine which variable to eliminate in the non-linear part of the overall
system. We found this approach fine for small systems but difficult to use for
larger ones: The likelihood to fall into local optima was simply too high—even
with advanced heuristics. Determining the correct order proved to be challenging
and required careful experiments as can be seen in Sect. 2.2. Hence, we used the
degree reverse lexical (degrevlex) ordering. Note that this also works well in case
of Gröbner basis algorithms. In the case of Trivium, we take the key variables first
and sort the intermediate variables ascending according to rounds and instances
of Trivium. We want to stress that the ordering is crucial in our analysis. Like
in Gröbner techniques the results differ significantly depending on the ordering.

Sparse Linearization. ElimLin cannot conclude that a · b + a = 1 ⇒ a = 1, b = 0
for some variables a, b ∈ F2 and therefore cannot solve arbitrary systems of
equations. Hence we use a new variant of Extended Linearization that we call
Sparse Linearization.

In the XL-algorithm we multiply all quadratic polynomials with any mono-
mial up to a degree D − 2 that can be generated by the used variables. While
these new equations are algebraically dependent, they can produce linearly inde-
pendent rows in the Macaulay matrix. There is a variant for sparse systems called
XSL in which systems of equations get multiplied by already used monomials.
It has been used in the past to attack different cryptographic systems in [11].

Even XSL produces new monomials and increases the overall total degree of
polynomial systems. Hence we may not use it for huge, structured systems of
equations. The Sparse Linearization (SL) preserves the total degree and struc-
ture of the system by doing as follows:

We multiply each polynomial f in the polynomial system F with any variable
ν contained in quadratic monomials of f . If the total degree of νf increases, we



276 F.-M. Quedenfeld and C. Wolf

do not insert the new polynomial into F . Further we check if all monomials of
νf are already used in F . If so, we insert νf into the system.

After SL is done we need to check for linear dependence of the new polyno-
mials. We do this by the echelonization step of ElimLin.

Sparse Polynomial Core. The core of our algorithm is substitution of variables
from linear equations and echelonization. While the first requires polynomials,
the second needs linear matrices. In particular Gröbner basis algorithms would
construct a so-called Macaulay matrix and go back and forth between a matrix
and a polynomial representation, see [2] for an overview. In our implementation,
we used the polynomials over F2 directly but also implemented matrix-like oper-
ations (e.g.row addition) directly for polynomials. To this aim, each polynomial
is stored as a (sorted) list of monomials rather than sparse vectors over F2. To
make computations fast, we also keep a dictionary of lead terms, monomials in
use by each polynomial and also a list of variables in use per polynomial. This
way, addition of two polynomials with the same lead term and elimination of
variables does not depend on the overall number of polynomials anymore. For
speed, this part of the code is written in C++ (approx. 2500 lines).

M4RI. While the sparse strategy from above turned out to be efficient for sparse
matrices, it fails if the matrices become increasingly dense. Note that this is
inevitable when solving such a system: In all experiments, we had a degenera-
tion from sparse to dense shortly before solving the overall system. To remedy
this, we incorporated the fastest known, open source linear algebra package for
matrices over F2, namely the Method of the 4 Russians Implementation (M4RI)
[1]. Experimentally, we have found that matrices with less than ≈ 1/1000 non-
zero coefficients in the corresponding matrix over F2 should be handled by our
sparse strategy described above and by M4RI otherwise.

Further building blocks and how this parts are used can be found in [22].
They are avoided because of space constraints.

4 Experiments

This section consists of three parts. First we consider the model and we see
a saturation of variables and monomials when adding Trivium instances. Sec-
ond we present on some parameter studies to further strengthen our system of
equations. Finally, we use our insights to actually attack Trivium using the tech-
niques described in the previous sections. We stress that the overall system of
equations can be generated before we get the actual data for the output. This
way our attack splits into an online and offline phase. All experiments were done
on an AMD-Opteron-6276@2.3 GHz with 256 nodes and 1 TB of RAM. Each
node had access to at most 256 GB of RAM at a time. As we do not use any par-
allelizing techniques we are only using one core. Furthermore we want to stress
that the online phase only requires a standard computer with 16 GB of RAM.



Advanced Algebraic Attack on Trivium 277

Saturation. When adding different Trivium instances with identical key variables
but different IV constants that lie in the same master cube, the overall number
of variables and monomials in the quadratic monomials of the overall system
tends towards a saturation point (cf. Fig. 2a–b). More specifically; we fix 80 − i
IV bits to zero and set the remaining i bits to all possible values from Fi

2. The
first i bits proven to be optimal for our purposes.

HW

ν

01 2 3 4

1k

2k

3k

4k

5k

R = 500

R = 520
R = 540
R = 560

R = 580

(a) Hamming Weight against number
of variables ν for R rounds of Trivium
in a master cube of dimension 5

HW

μ

01 2 3 4

10k

20k

30k

40k

50k

60k

R = 510
R = 530

R = 550

R = 570

R = 590

(b) Hamming Weight against number
of quadratic monomials μ for R rounds
for Trivium in a master cube of dimen-
sion 5

Fig. 2. Saturation in the model of Trivium

We have plotted saturation for 32 instances in Fig. 2a–b, counting both the
number of variables and the number of quadratic monomials needed for the
system consisting of all instances of Trivium. In these figures, we have first added
the IV with Hamming weight 0, then all IV with Hamming weight 1 and so forth.
Note that instances with the same Hamming weight yield the same number of
variables. As we can see in these graphs, the amount of variables needed to
generate an instance becomes significantly lower if we generate instances with
higher Hamming weight.

The saturation of monomials needs a lower Hamming weight of the IV, so the
saturation of monomials is much flatter than the saturation of variables. Note
that variables that are not in the quadratic (saturated) part of the system are
only found in the linear terms. Furthermore, we stress that Fig. 2a–b are chosen
only as an example. This effect also exists if the number of rounds increases
(up to R = 1152). However, if the number of rounds grows we need to generate
more instances to see this effect; it seems that we need to generate exponentially
more instances to see the saturation. All in all, this points to a kind of “basis”:
Trivium instances for IV with small Hamming weight serve as a kind of basis for
Trivium instances of higher Hamming weight. While this seems obvious when
looking at the generating equations, it is still interesting to see how strong this
effect is in practice. Unfortunately, we were unable to derive a closed formula
depending on the number of instances and rounds but have to leave this as an
open question.



278 F.-M. Quedenfeld and C. Wolf

In conclusion, saturation means that we can obtain more defining equations
from many instances than we would expect from one instance alone. In a sense,
this is the key observation to launch our attack.

Saturation should occur in other ciphers as well since the system of equation
is generated by a repeatedly execution of an update function.

Output and Parameters. While output equations clearly help us to linearize the
system, the very structure of Trivium in our model yields a lot of additional
monomials. Therefore, we do not add additional values for output equations
or the output equations at all until the full (structural) system is completely
simplified. Consider the output function:

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83.

It uses 6 state bits from different rounds. If we insert for either of these state bits
it produces 5 more monomials for each occurrence of the corresponding state bit
in a quadratic monomial. Hence using more output bits per instance leads to far
more monomials than we can afford.

R

μ

525 700 900 1150

10000

20000

30000

40000

50000

60000

000100

011000

111111

(a) Initialization rounds R against
number of quadratic monomials μ for
no = 1

R

μ

525 700 900 1150

10000

20000

30000

40000

50000

60000

000100

011000

111111

(b) Initialization rounds against num-
ber of quadratic monomials μ for no =
66

Fig. 3. Comparing monomials with no = 1 and no = 66; Initialization rounds R against
number of quadratic monomials μ; The numbers next to the lines are the significant
parts of the IV (binary). The rest of the IV is zero. Consider the Hamming weight of
these numbers.

Figure 3 compares systems with T = 64 instances and increasing number of
rounds R. In the first experiment we used no = 1 and in the second no = 66.
We see that many output bits do not necessarily lead to a more useful system
because we get much more monomials. Even if we use two output equations
we get a system with nearly double the number of monomials which we cannot
solve easier. Note that Fig. 3 reflects the monomials needed for one instance
while Fig. 2b shows the number of monomials needed for the whole system of
equations. Therefore the saturation can also be seen in Fig. 3.



Advanced Algebraic Attack on Trivium 279

When we use no = 66 output bits the number of monomials at R = 700
rounds is negligibly smaller than the number of monomials for full Trivium
(R = 1152). We choose no = 66 because for no > 66 we need to introduce
new intermediate variables even for the output and that destroys the purpose of
(over)defining the system for the linearization step. For no = 1 output bits, the
same effect occurs for R = 925 rounds. Since we want to linearize our system to
derive a solution we get the following conjecture.

Conjecture 1. The complexity of our attack on Trivium does not grow after
R = 925 rounds using no = 1 output bit and after R = 700 rounds using
no = 66 output bits. That means if we are able to break R = 925 rounds with
one output bit we are able to break full Trivium with one output bit.

In a nutshell: Since the number of monomials does not increase, neither does
the difficulty of the attack. Unfortunately, both settings are out of reach for a
practical test at the moment.

Attacks. In this paragraph we describe the attacks and their complexities.
In Fig. 3 we have illustrated the number of monomials depending on the

number of output bits. With this in mind we have specialized our attack to the
case no = 1. Based on this, we generate a system with Trivium-625 instances.

The following table shows the number of monomials and variables needed
for the full system. This also includes “dummy” variables for the output. When
we add concrete data for the output bits to our system these numbers decrease
rapidly. Furthermore we can see that there is a time-data trade-off when guess-
ing variables. When we guess fewer variables we need more data to launch the
attack. When we guess more variables we need less data but the time complexity
increases (Table 1).

Table 1. Experimental results from the Online-phase on Trivium-625 with number of
variables ν and number of monomials μ. Time is measured in Trivium computations.

R μ ν #guessed variables Data complexity Time complexity

625 499,741 15,869 23 211 259.7

625 1, 135, 858 32, 518 0 2 · 211 242.2

Information of how we guess variables and how we convert the used time in
seconds in trivium computation, can be found in the full version of this paper
[22]. We tested 101 keys each both for correct and incorrect guesses.

When we do not guess variables, we need more data and though more
instances in our symbolic system. Generating the full symbolic system becomes
a challenge due to the size of the system and RAM usage in the offline-phase.
Thus we generate two systems consisting of 211 instances each. The two systems
do not profit from each other through similar variables in the offline-phase so
the number of variables and the number of monomials is more than doubled.



280 F.-M. Quedenfeld and C. Wolf

In the online-phase of the attack each system is reduced due to the linear output
equations and similar variables. In our example in the table above we solved the
system in 217.1 seconds which leads to 242.2 Trivium computations on average.
Again, this experiment was conducted 101 times.

Unfortunately, we are unable to find a closed formula to predict the number
of instances we would need to solve a system for a given number of rounds, as
the behaviour of Trivium and the solver is quite erratic in this respect.

The real bottleneck of our attack is the generation of a symbolic system for
a useful number of instances in the offline-phase. We can overcome this prob-
lem with a better implementation of the linear algebra or the ElimLin algo-
rithm. However, we still cannot really resolve the exponential growth starting
at R = 700 (Fig. 3) which works as a kind of barrier for our techniques used to
attack Trivium. We want to encourage others to further improve or enhance the
techniques used in this paper.

5 Conclusions

In this paper we have shown that algebraic attacks can be significantly improved.
We achieve this by enhancing the ElimLin algorithm with a variant of eXtended
Linearization and using a proper monomial ordering; in particular the last proved
crucial in our experiments. Overall, we built a solver for sparse polynomial sys-
tems that can handle up to 106 monomials in 106 equations. In particular, we
solved the system of equations arising from Trivium-625 with 1, 135, 858 mono-
mials and 32, 518 variables. Before our work, plain ElimLin was able to solve
systems of equations with 3056 variables and 4331 monomials. While this is not
quite comparable, because the systems solved are not the same, this improve-
ment by a factor of ≈ 262 demonstrates considerable progress.

In addition, we have seen that using many instances of Trivium rather than
only one with a long key stream significantly improves the attack. All in all,
we were able to break a 625 round reduced version of Trivium in practical time
(242.2 Trivium computations) and a data complexity of 212. Other key recovery
attacks on Trivium can do better in terms of rounds with R = 799 but they
requires a large amount of data (240 bits) and time 262 while guessing 62 bits. It
is doubtful if this rate can be achieved in practice. An advantage of our approach
is that we actually computed the full attack and did not make extrapolations
from our results, as we do not want to make promises which are hard to keep.

Another line of research is the integration of more toolboxes into our solver,
most notably SAT-solvers and more efficient sparse linear algebra packages.

While our experiments were conducted only on Trivium, we are confident
that the ideas and lessons learned are also useful for the algebraic cryptanalysis
of other symmetric primitives, such as block ciphers or hash functions. We want
to stress that the potential of algebraic cryptanalysis can only be unleashed if
equal stress is put on modelling techniques and the corresponding solver.



Advanced Algebraic Attack on Trivium 281

Acknowledgements. The first author wants to thank Wolfram Koepf (University of
Kassel) for fruitful discussions and guidance. Both authors gratefully acknowledges an
Emmy Noether Grant of the Deutsche Forschungsgemeinschaft (DFG).

References

1. Abbott, T., Albrecht, M., Bard, G., Bodrato, M., Brickenstein, M., Dreyer, A.,
Dumas, J.G., Hart, W., Harvey, D., James, J., Kirkby, D., Pernet, C., Said, W.,
Wood, C.: M4RI(e)–Linear Algebra over F2 (and F e

2 ). http://m4ri.sagemath.org/
2. Albrecht, M.: Algorithmic Algebraic Techniques and their Application to Block

Cipher Cryptanalysis. Ph.D. thesis, Royal Holloway, University of London (2010)
3. Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory.

In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer,
Heidelberg (2003)

4. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner basis algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

5. Biryukov, A., De Cannière, C.: Block ciphers and systems of quadratic equa-
tions. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 274–289. Springer,
Heidelberg (2003)

6. Brickenstein, M., Dreyer, A.: PolyBoRi: a framework for Groebner-basis computa-
tions with Boolean polynomials. J. Symbol. Comput. 44(9), 1326–1345 (2009).
http://dx.doi.org/10.1016/j.jsc.2008.02.017. Effective Methods in Algebraic
Geometry

7. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

8. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

9. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

10. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

11. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

12. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin algorithm revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012)

13. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg
(2004)

14. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

http://m4ri.sagemath.org/
http://dx.doi.org/10.1016/j.jsc.2008.02.017


282 F.-M. Quedenfeld and C. Wolf

15. Faugère, J.C.: A new efficient algorithm for computing gröbner bases (F4). In: Pro-
ceedings of the 2002 International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC 2002, pp. 75–83. Springer (2002)

16. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation, ISSAC 2002, pp. 75–83. ACM Press, July 2002

17. Faugère, J.C., Ars, G.: An algebraic cryptanalysis of nonlinear filter generators
using Gröbner bases. Rapport de recherche 4739. www.inria.fr/rrrt/rr-4739.html

18. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

19. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
Mceliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

20. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
502–517. Springer, Heidelberg (2014)

21. Khazaei, S., Hasanzadeh, M.M., Kiaei, M.S.: Linear Sequential Circuit Approxi-
mation of Grain and Trivium Stream Ciphers. Cryptology ePrint Archive, Report
2006/141 (2006). http://eprint.iacr.org/2006/141/

22. Quedenfeld, F., Wolf, C.: Advanced Algebraic Attack on Trivium. Cryptology
ePrint Archive, Report 2014/893 (2014). http://eprint.iacr.org/

23. Quedenfeld, F., Wolf, C.: Algebraic Properties of the Cube Attack. Cryptology
ePrint Archive, Report 2014/800 (2014). http://eprint.iacr.org/2014/800/

24. Raddum, H.: Cryptanalytic results on Trivium (2006). http://www.ecrypt.eu.org/
stream/triviump3.html

25. Schilling, T.E., Raddum, H.: Analysis of trivium using compressed right hand side
equations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 18–32. Springer,
Heidelberg (2012)

26. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Techn. J. 28,
656–715 (1949)

27. Simonetti, I., Faugère, J.C., Perret, L.: Algebraic attack against trivium. In: First
International Conference on Symbolic Computation and Cryptography, SCC 2008,
pp. 95–102. LMIB, Beijing (2008). http://www-polsys.lip6.fr/jcf/Papers/SCC08c.
pdf

28. Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic cryptanalysis of 58-Round
SHA-1. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 349–365. Springer,
Heidelberg (2007)

29. Teo, S., et al.: Algebraic analysis of Trivium-like ciphers (2013). http://www.eprint.
iacr.org/2013/240.pdf

30. Yang, B.-Y., Chen, J.-M.: All in the XL family: theory and practice. In: Park,
C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

31. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–
288. Springer, Heidelberg (2004)

www.inria.fr/rrrt/rr-4739.html
http://eprint.iacr.org/2006/141/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/800/
http://www.ecrypt.eu.org/stream/triviump3.html
http://www.ecrypt.eu.org/stream/triviump3.html
http://www-polsys.lip6.fr/jcf/Papers/SCC08c.pdf
http://www-polsys.lip6.fr/jcf/Papers/SCC08c.pdf
http://www.eprint.iacr.org/2013/240.pdf
http://www.eprint.iacr.org/2013/240.pdf


Managing Massive Data



Compressing Big Data: When the Rate
of Convergence to the Entropy Matters

Salvatore Aronica1(B), Alessio Langiu1,2, Francesca Marzi3,
Salvatore Mazzola1, Filippo Mignosi3, and Giulio Nazzicone3

1 IAMC-CNR Unit of Capo Granitola, National Research Council, Trapani, Italy
{Salvatore.Aronica,Alessio.Langiu,Salvatore.Mazzola}@cnr.it

2 King’s College London, London, UK
3 DISIM Department, University of L’Aquila, L’Aquila, Italy
{Francesca.Marzi,GiulioNazzicone}@graduate.univaq.it,

Filippo.Mignosi@univaq.it

Abstract. It is well known from a theoretical point of view that LZ78
have an asymptotic convergence to the entropy faster than LZ77. A faster
rate of convergence to the theoretical compression limit should lead to
a better compression ratio. In effect, early LZ78-like and LZ77-like com-
pressors behave accordingly to the theory. On the contrary, it seems that
most of the recent commercial LZ77-like compressors perform better than
the other ones. Probably this is due to a strategy of optimal parsing,
which is used to factorize the text and can be applied to both LZ77 and
LZ78 cases, as recent results suggest. To our best knowledge there are
no theoretical results concerning the rate of convergence to the entropy
of both LZ77-like and LZ78-like case when a strategy of optimal parsing
is used. In this paper we investigate how an optimal parsing affect the
rate of convergence to the entropy of LZ78-like compressors. We discuss
some experimental results on LZ78-like compressors and we consider the
ratio between the speed of convergence to the entropy of a compressor
with optimal parsing and the speed of convergence to the entropy of a
classical LZ78-like compressor. This ratio presents a kind of wave effect
that become bigger and bigger as the entropy of the memoryless source
decreases but it seems always to slowly converge to one. These results
suggest that for non-zero entropy sources the optimal parsing does not
improve the speed of convergence to the entropy in the case of LZ78-like
compressors.

Keywords: Lempel-Ziv compression algorithms · Text compression ·
Text entropy · String algorithms

1 Introduction

The most studied and used in practice dictionary compressors are the LZ77-
like and the LZ78-like compressors (see for instance [19,20]). It is known that
theoretically LZ78-like compressors have a faster convergence than LZ77-like
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 285–289, 2016.
DOI: 10.1007/978-3-319-32859-1 24



286 S. Aronica et al.

compressors, when the texts to be compressed are generated by a memoryless
source. In practice, on the contrary, it seems that the most advanced LZ77-like
compressors perform better. This discrepancy between theory and practice is,
for us, the main open problem in this field that clearly affects all chances of
giving concrete optimization results on dictionary-based compressors.

Recent results (see [4]) show that probably the discrepancy between theory
and practice between LZ78-like and LZ77-like compressors is due to the effect of
using an optimal parsing strategy, which can be applied in both LZ77 and LZ78
cases, rather than to the fitting of the data to the source model or to the hidden
constants in the “transient” phase.

While it is empirically shown that applying an optimal parsing to LZ77-like
compressors improves the compression ratio, it is not known how an optimal
parsing affect LZ78-like compression ratio.

2 Preliminaries

In [2] it is possible to find a survey on Dictionary methods and of Symbolwise
methods and a description of the deep relationship among them (see also [1,6,
15,16]).

A dictionary compression algorithm, as noticed in [2], can be fully described
by: 1. The dictionary description, i.e. a static collection of phrases or a complete
algorithmic description on how the dynamic dictionary is built and updated.
2. The encoding of dictionary pointers in the compressed data. 3. The pars-
ing method, i.e. the algorithm that splits the uncompressed data in dictionary
phrases.

Compression speed and compression ratio strongly depend on the parsing
method. Since we can associate a directed weighted graph GA,T = (V,E,L)
to any dictionary compression algorithm A, any text T and any cost function
C : E → R+, there is a relation between parsing methods and path on such
graph (see [3–5,11]). An optimal parsing is then a path of minimal weight.

The speed of convergence to the entropy of LZ77-like and LZ78-like compres-
sors is a still active field of researches. Many research papers appeared improving
previous results or considering different settings. The interested reader can see
for instance the following references [7–9,12,14,17,18].

To our best knowledge anyhow, all above researches considered only greedy
parsing in both cases of LZ77-like and LZ78-like compressors and they did not
considered optimal parsing strategies, whilst, as discussed at the end of [4],
optimal parsing seems to be the first choice in all practical dictionary compressor.

3 Experimental Results

Early implementations of LZ78 algorithm, like compress, have a better com-
pression ratio than early LZ77 implementations which use the greedy pars-
ing. According to the experimental results reported in [4], the compression
ratio of LZ77-like compressors improve when an optimal parsing is used.



Compressing Big Data 287

Table 1. Standard deviation of the compression ratio, over 100 files generated by an
i.i.d. source, achieved by an LZ78-like compressor with optimal parsing. First column
reports file size. First row reports the 1’s probability of the source.

Practical performance of commercial compressors shows that LZ77-like com-
pressors with optimal parsing achieve a better compression ratio of any known
LZ78-like compressors. Therefore we can state the following conjecture which is
supported by following experimental results.

Conjecture 1. The speed of convergence to the entropy of the compression ratio
of LZ77-like compressors with an optimal parsing is faster than or equal to
the speed of convergence to the entropy of the compression ratio of LZ78-like
compressors with (and without) an optimal parsing.

We have run a series of experiments considering the compression ratio
achieved by a LZW-based compressor, which is one of the LZ78-like compres-
sors, and the compression ratio of a compressors based on LZW with an optimal
parsing strategy (see [10]).

We consider LZ78-like and LZ77-like compression schemes with unbounded
dictionary and non uniform cost of dictionary pointers, witch are common
assumptions among commercial compressors. Under these assumptions, the
greedy parsing, the one proposed in the LZ77 and LZ78 original papers [19,20],
and the flexible parsing [13] are not optimal.

In our experimental settings, we consider binary files of different size drowned
from memoryless sources with different 1’s probability. In Table 1 we report the
standard deviation of the compression ratio of an LZW with optimal parsing
(over 100 runs). The considered sources are i.i.d. (independent and identically
distributed) with 1’s probability of 1/2, 1/4, ... 1/1024. Considered file sizes are
between 27 and 224.

Figure 1 shows the trend of the ratio of the speed of convergence of two com-
pressors. Considering the sources having 1’s probability of 1/2, 1/4, 1/8, 1/16,
... 1/1024, we have compared (i.e., computed the ratio) the speed of convergence
to the entropy (i.e., the difference between compression ratio and the source
entropy) of two compressors: LZW with optimal parsing and LZW without opti-
mal parsing.



288 S. Aronica et al.

Fig. 1. Trend of the compression ratio of LZW over LZW with optimal parsing com-
puted on file of increasing size of exponential steps stating from 29 up to 224.

Such ratio of LZW convergence speed over LZW with optimal parsing con-
vergence speed has been computed on file of increasing size, by exponential
steps, starting from 29 up to 224. This ratio has been averaged over 100 runs.
Since Table 1 shows a decreasing behavior and the same happens for LZW with-
out optimal parsing, the averaged values represented in Fig. 1 have a decreasing
standard deviation, too. The curves show three phenomenons (dominant trends):
1. increasing values in the first part, 2. an oscillating trend in the middle part,
and a decreasing third part. The first part is explained considering that the com-
pression ratio achieved on such small files is affected by an overweight due to the
presence of an non-optimized header in the compressed output of our compressor
implementations. The middle part oscillating trend is what we have called the
transient phase, and, last but not least, the third decreasing part is what suggest
that the speed of the convergence to the entropy of each of the two compressors
converges to one. This is our main argument supporting our conjecture.

This ratio presents a kind of wave effect that become bigger and bigger as
the entropy of the memoryless source decreases but it seems always to slowly
converge to one. According to the theory, this wave can be a tsunami for some
families of highly compressible strings, because it has been proved that optimal
parsing can improve the rate of convergence to the entropy in such cases.

Our experimental results therefore suggest that for non-zero entropy sources,
an optimal parsing strategy does not improve the speed of convergence to the
entropy in the case of LZ78-like compressors. At the moment this is a theoretical
open problem.

It remains also open the problem of giving a proof of the fact that an optimal
parsing strategy improves the speed of convergence to the entropy in the case of
LZ77-like compressors.



Compressing Big Data 289

References

1. Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice Hall, Upper
Saddle River (1990)

2. Bell, T.C., Witten, I.H.: The relationship between greedy parsing and symbolwise
text compression. J. ACM 41(4), 708–724 (1994)

3. Crochemore, M., Giambruno, L., Langiu, A., Mignosi, F., Restivo, A.: Dictionary-
symbolwise flexible parsing. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010.
LNCS, vol. 6460, pp. 390–403. Springer, Heidelberg (2011)

4. Crochemore, M., Giambruno, L., Langiu, A., Mignosi, F., Restivo, A.: Dictionary-
symbolwise flexible parsing. J. Discrete Algorithms 14, 74–90 (2012)

5. Crochemore, M., Langiu, A., Mignosi, F.: The rightmost equal-cost position prob-
lem. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) DCC,
pp. 421–430. IEEE, Los Alamitos (2013)

6. Crochemore, M., Lecroq, T.: Pattern-matching and text-compression algorithms.
ACM Comput. Surv. 28(1), 39–41 (1996)

7. Jacob, T., Bansal, R.K.: Almost sure optimality of sliding window Lempel-Ziv
algorithm and variants revisited. IEEE Trans. Inf.Theor. 59(8), 4977–4984 (2013)

8. Jacquet, P., Szpankowski, W.: Asymptotic behavior of the Lempel-Ziv parsing
scheme and digital search trees. Theor. Comput. Sci. 144(1&2), 161–197 (1995)

9. Jacquet, P., Szpankowski, W.: Analytic Pattern Matching. From DNA to Twitter.
Cambridge University Press, Cambridge (2015)

10. Langiu, A.: Optimal Parsing for dictionary text compression. Ph.D thesis, Univer-
sité Paris-Est, (2012). https://tel.archives-ouvertes.fr/tel-00804215/document

11. Langiu, A.: On parsing optimality for dictionary-based text compression - the zip
case. J. Discrete Algorithms 20, 65–70 (2013)

12. Lastras-Montano, L.A.: On certain pathwise properties of the sliding-window
Lempel-Ziv algorithm. IEEE Trans. Inf. Theor. 52(12), 5267–5283 (2006)

13. Matias, Y., Sahinalp, S.C.: On the optimality of parsing in dynamic dictionary
based data compression. In: SODA, pp. 943–944 (1999)

14. Ornstein, D., Weiss, B.: Entropy and data compression schemes. IEEE Trans. Inf.
Theor. 39(1), 78–83 (1993)

15. Salomon, D.: Data compression - The Complete Reference, 4th edn. Springer,
New York (2007)

16. Salomon, D.: Variable-length Codes for Data Compression. Springer-Verlag,
London (2007)

17. Savari, S.A.: Redundancy of the Lempel-Ziv string matching code. IEEE Trans.
Inf. Theor. 44(2), 787–791 (1998)

18. Wyner, A.D., Wyner, A.J.: Improved redundancy of a version of the Lempel-Ziv
algorithm. IEEE Trans. Inf. Theor. 41(3), 723–731 (1995)

19. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977)

20. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

https://tel.archives-ouvertes.fr/tel-00804215/document


Trends in Temporal Reasoning: Constraints,
Graphs and Posets

Jacqueline W. Daykin1,2(B), Mirka Miller3,4, and Joe Ryan3

1 Department of Computer Science, Royal Holloway,
University of London, Egham, UK

2 Department of Informatics, King’s College London, London, UK
jackie.daykin@rhul.ac.uk, jackie.daykin@kcl.ac.uk
3 School of Electrical Engineering and Computer Science,

University of Newcastle, New South Wales, Australia
joe.ryan@newcastle.edu.au

4 Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic
mirka.miller@newcastle.edu.au

Abstract. Temporal reasoning finds many applications in numerous
fields of artificial intelligence – frameworks for representing and analyz-
ing temporal information are therefore important. Allen’s interval alge-
bra is a calculus for temporal reasoning that was introduced in 1983.
Reasoning with qualitative time in Allen’s full interval algebra is NP-
complete. Research since 1995 identified maximal tractable subclasses
of this algebra via exhaustive computer search and also other ad-hoc
methods. In 2003, the full classification of complexity for satisfiability
problems over constraints in Allen’s interval algebra was established alge-
braically. We review temporal reasoning concepts including a method for
deciding tractability of temporal constraint satisfaction problems based
on the theory of algebraic closure operators for constraints. Graph-based
temporal representations such as interval and sequence graphs are dis-
cussed. We also propose novel research for scheduling algorithms based
on the Fishburn-Shepp inequality for posets.

Keywords: Algebraic closure · Allen’s interval algebra · Artificial intel-
ligence · Constraint satisfaction problem · Fishburn-Shepp inequality ·
Graph · Poset · Qualitative temporal reasoning · Tractable satisfiability

1 Introduction

Temporal reasoning is a mature research endeavor and arises naturally in numer-
ous diverse applications of artificial intelligence such as: planning and scheduling
[A-91], natural language processing [SC-88], diagnostic expert systems [N-91],
behavioural psychology [CS-73], circuit design [WH-90], software tools for com-
prehending the state of patients in intensive care units from their temporal
information [JCMPM-10], business intelligence [KKD-08], and timegraphs, that
is graphs partitioned into a set of chains supporting search which originated in
the context of story comprehension [GSS-93].
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 290–304, 2016.
DOI: 10.1007/978-3-319-32859-1 25



Trends in Temporal Reasoning: Constraints, Graphs and Posets 291

Allen [A-83] introduced an algebra of binary relations on intervals (of time),
for representing and reasoning about time. These binary relations, for example
before, during, meets, describe qualitative temporal information which we will be
concerned with here. The problem of satisfiability for a set of interval variables
with specified relations between them is that of deciding whether there exists an
assignment of intervals on the real line for the interval variables, such that all
of the specified relations between the intervals are satisfied. When the temporal
constraints are chosen from the full Allen’s algebra, this form of satisfiability
problem is known to be NP-complete. However, reasoning restricted to certain
fragments of Allen’s algebra is generally equivalent to related well-known prob-
lems such as the interval graph and interval order recognition problems [PS-97],
which in turn find application in molecular biology [GKS-94,K-93,MZ-08].

Alternative frameworks for formalizing qualitative temporal problems include
the point algebra of van Beek and Cohen [VBC-90] for expressing qualitative
relations between time points, the point-interval algebra of Vilain [V-82] for
describing qualitative relations between time points and time intervals, as well as
combinations of these. A comprehensive introduction to the concept of reasoning
with qualitative temporal information is given by van Beek [VB-92].

Frameworks for handling quantitative temporal information have been pro-
posed by Meiri [M-91], Kautz and Ladkin [KL-91], Gerevini et al. [GSS-93],
Dechter et al. [DMP-91], Jonsson and Bäckström [JB-96], and Drakengren and
Jonsson [DJ-97] who also introduced the notion of sequentiality between inter-
vals which is relevant to reasoning about action. Many of the ideas discussed in
this paper can be extended to these quantitative frameworks, however the focus
here is the tractability of qualitative temporal reasoning and associated graph
theory techniques. The unification of interval algebras in artificial intelligence
with those of interval orders and interval graphs in combinatorics was consid-
ered by Golumbic and Shamir [GS-93], where complexity analysis led them to
efficient algorithms for restrictions of the satisfiability problem.

Reasoning in these formalisms is hard, in particular for Allen’s interval alge-
bra it is NP-complete [VK-86]. Such reasoning tasks include: determining satis-
fiability for a set of temporal relations; finding all feasible relationships between
two intervals; and deducing new relations from those that are known. Hence these
important computational problems motivated the search for tractable subprob-
lems, where reasoning can be guaranteed to be reasonably efficient.

This venture produced a number of tractable subclasses of Allen’s alge-
bra, including the continuous endpoint subclass of Vilain, Kautz and van Beek
[VKVB-89], the pointisable subclass of Ladkin and Maddux [LM-88] and the
point algebra of Vilain and Kautz [VK-86,VKVB-89] considered algorithmi-
cally by van Beek and Cohen [VBC-90], the ORD-Horn subclass of Nebel and
Bürckert [NB-95], and the starting (ending) point algebras of Drakengren and
Jonsson [DJ-97] along with further tractable classes that can express the notion
of sequentiality between intervals, which is not possible in the ORD-Horn algebra
[DJ-97ii].



292 J.W. Daykin et al.

However, in view of the large number of possible subclasses of Allen’s alge-
bra – there are in fact 28192 such subclasses as explained in Sect. 2 – research
focused on identifying maximal tractable subclasses.

Nebel and Bürckert [NB-95] identified the first maximal subclass, namely
the ORD-Horn subclass, which is a strict superset of the pointisable subclass.
Subsequent ones were established by Drakengren and Jonsson [DJ-97,DJ-97ii],
resulting in eighteen maximal subclasses, subsuming all subclasses previously
known to be tractable. This initiated the classification of the complexity of arbi-
trary subclasses of Allen’s interval algebra.

The sheer magnitude of the problem meant that the subclasses could not even
be enumerated on a computer, suggesting the need for theoretical along with
brute-force computer methods. Towards the classification, Drakengren and Jon-
sson, for instance, gave a complete characterization of tractable inference using
the notion of sequentiality in [DJ-98]; they also showed that no undiscovered
tractable subalgebra could contain more than three basic relations, namely ≡,
ρ and ρ′, where ρ ∈ {d, o, s, f} – see Table 1. Hence, in order to represent com-
plete knowledge about temporal information, the most expressive algebras were
already known.

Finally, over a decade later, Krokhin, Jeavons and Jonsson [KJJ-03] com-
pleted the classification of complexity for satisfiability type problems over con-
straints expressed in Allen’s interval algebra using only analytical techniques.
They showed that this algebra contains exactly eighteen maximal tractable sub-
algebras (precisely those that had previously been identified), and reasoning in
any fragment not entirely contained in one of these subalgebras is NP-complete;
in other words these eighteen subalgebras include all possible tractable subsets of
Allen’s algebra. To obtain this powerful dichotomous result, they combined two
novel elements: firstly a new uniform description of the known maximal tractable
subalgebras, and secondly systematically applying a general algebraic technique
for identifying maximal subalgebras with a given property, thus exploiting the
existing algebraic properties of Allen’s algebra.

This survey focuses on a theoretical approach to the analysis of complexity for
temporal reasoning problems by considering them as a special case of the stan-
dard constraint satisfaction problem, and applying known links to the algebraic
closure properties of the constraints they contain – we will show that tractable
subclasses of Allen’s interval algebra are characterized by algebraic closure prop-
erties. Graph-related techniques for temporal reasoning are also considered; we
conclude with proposing research into applying the Fishburn-Shepp inequality
for posets to determine heuristics for scheduling algorithms.1

2 Preliminaries and Definitions

2.1 The Constraint Satisfaction Problem

The fundamental mathematical structure required to describe the constraint
satisfaction problem is the relation.
1 Throughout we assume P �= NP .



Trends in Temporal Reasoning: Constraints, Graphs and Posets 293

Definition 1. For any set D, and any natural number n, we denote the set of
all n-tuples of elements of D by Dn. A subset of Dn is called an n-ary relation
over D. For any tuple t ∈ Dn, and any i in the range 1 to n, we denote the value
in the ith coordinate position of t by t[i], and the tuple t by 〈t[1], t[2], . . . , t[n]〉.
We now define the general constraint satisfaction problem (CSP) which has been
widely studied in the artificial intelligence community.

Definition 2. An instance of a constraint satisfaction problem consists of:

– a finite set of variables, V ;
– a domain of values, D;
– a finite set of constraints C1, C2, . . . , Cq; each constraint Ci is a pair (si, Ri),

where:
• si is a tuple of variables of length mi, called the constraint scope;
• Ri is an mi-ary relation over D, called the constraint relation.

For each constraint, (si, Ri), the tuples in Ri indicate the allowed combinations
of simultaneous values for the variables in si. The length of si, and of the tuples
in Ri, is called the arity of the constraint. In particular, unary constraints specify
the allowed values for a single variable, and binary constraints specify the allowed
combinations of values for a pair of variables – of interest here for temporal
problems; moreover, any arbitrary CSP can be converted to a binary CSP.

A graph is an ordered pair G = (V,E) comprising a set V of vertices together
with a set E of edges which are 2-element subsets of V ; if these subsets comprise
ordered pairs of vertices then the graph is said to be directed. A binary CSP can
be depicted by a constraint graph: each vertex represents a variable, and each
directed edge represents a constraint between variables connected by an edge –
see Example 1.

A solution to a CSP instance is a function from the variables to the domain
such that the image of each constraint scope is an element of the corresponding
constraint relation.

Not only is the constraint satisfaction problem known to be NP-complete
in general [M-77], but this is the case even when the constraints are restricted
to binary constraints. Furthermore, restricting the allowed constraint relations
to some fixed subset of all the possible relations affects the complexity of this
decision problem. Consider the following definition of a restricted problem class.

Definition 3. For any set of relations, Γ , CSP(Γ ) is defined to be the class of
decision problems with:

Instance: A constraint satisfaction problem instance, Π, in which all con-
straint relations are elements of Γ or binary equality relations.

Question: Does Π have a solution?

If there is an algorithm which solves every problem instance in CSP(Γ ) in
polynomial time, then Γ is said to be a tractable set of relations.

By choosing the set of relations Γ appropriately yields specialized versions of
the constraint satisfaction problem corresponding to particular computational



294 J.W. Daykin et al.

problems. For example, when Γ is the set containing only binary disequality
relations, then CSP(Γ ) corresponds to the well-known class of graph colouring
problems, for instance the four colour theorem, which provides useful tools in
modelling a wide variety of scheduling and assignment tasks.

In the following sections we shall show that by choosing an appropriate set of
relations Γ we can arrange for CSP(Γ ) to correspond to various forms of tempo-
ral reasoning problems expressed in Allen’s interval algebra and its subclasses.

2.2 Allen’s Interval Algebra

Allen’s [A-83] calculus for reasoning about time is based on the concept of time
intervals together with binary relations on them. In this approach, time is con-
sidered to be an infinite dense ordered set, such as the rationals R, and a time
interval X is an ordered pair of time points (X−,X+) such that X− < X+.

Given two time intervals, their relative positions can be described by exactly
one of the members of the set B of 13 basic interval relations, which are depicted
in Table 1. For instance, the relation meets could represent the display intervals
of two traffic lights, and a main course is eaten during a three-course meal.
These basic relations describe relations between definite intervals of time. On
the other hand, indefinite intervals, whose exact relation may be uncertain, are
described by a set of all the basic relations that may apply. For example, if
a registration session is a prerequisite of a lecture, then these events must be
scheduled according to the interval relation {p,m}.

The universe of Allen’s interval algebra consists of all the binary relations
on time intervals which can be expressed as disjunctions of the basic interval
relations. These disjunctions are written as sets of basic relations, leading to a
total of 213 = 8192 binary relations, including the null relation ∅ (also denoted
by ⊥) and the universal relation B (also denoted by �). The set of all binary
relations 2B is denoted by A; every temporal relation in A can be defined by a
conjunction of disjunctions of endpoint relations of the form X < Y,X = Y and
their negations.

The operations on the relations defined in Allen’s algebra are: unary converse
(denoted by �), binary intersection (denoted by ∩) and binary composition
(denoted by ◦), which are defined as follows:

∀ X,Y : Xr�Y ↔ Y rX
∀ X,Y : X(r

⋂

s)Y ↔ XrY
∧

XsY
∀ X,Y : X(r ◦ s)Y ↔ ∃Z : (XrZ

∧

ZsY ),

where X,Y,Z are intervals, and r, s are interval relations. Allen [A-83] gives a
composition table for the basic relations.

Fundamental reasoning problems in Allen’s framework have been studied by
a number of authors, including Golumbic and Shamir [GS-92,GS-93], Ladkin
and Maddux [LM-88], van Beek [VB-90,VB-92] and Vilain and Kautz [VK-86].

One such fundamental problem is the satisfiability problem for temporal rela-
tions on intervals, (ISAT), defined as follows: given a collection of temporal
relations between a set of variables, decide whether there is an assignment of



Trends in Temporal Reasoning: Constraints, Graphs and Posets 295

Table 1. [NB-95] The set B of the thirteen basic qualitative relations defined by Allen.
The relations X− < X+ and Y − < Y + are always valid, hence omitted.

Basic interval relation Symbol Example Endpoint relations, X

X precedes (before) Y p (≺) xxx X+ < Y −

Y preceded-by (after) X p � (�) yyy

X meets Y m xxxx X+ = Y −

Y met-by X m � yyyy

X overlaps Y o xxxx X− < Y − < X+ < Y +

Y overlapped-by X o � yyyy

X during Y d xxx X− > Y −, X+ < Y +

Y includes X d � yyyyyyy

X starts Y s xxx X− = Y −, X+ < Y +

Y started-by X s � yyyyyyy

X finishes Y f xxx X− > Y −, X+ = Y +

Y finished-by X f � yyyyyyy

X equals Y ≡ xxxx X− = Y −, X+ = Y +

yyyy

time intervals to the variables which satisfies all of the relations. Notice that
any instance of ISAT corresponds to an instance of the constraint satisfaction
problem in which all of the constraint relations are temporal relations. In other
words, ISAT is equivalent to CSP(A), and hence techniques for the analysis of
the general constraint satisfaction problem can be applied to the ISAT problem.

Another important temporal reasoning problem is the problem of determin-
ing the strongest implied relation between every pair of variables, (ISI). This
problem is studied as a deductive closure problem in [VK-86], and known as
the minimal labeling problem in [VB-89]. Note that ISAT and ISI are equivalent
with respect to polynomial Turing reductions [VK-86].

A CSP is path consistent, if for every instantiation of two variables vi, vj ∈ V
that satisfies viRijvj ∈ C there exists an instantiation of every third variable vk ∈
V such that viRikvk ∈ C and vkRkjvj ∈ C are also satisfied. Path-consistency
is hence computing the transitive closure of a set of relations between intervals.
Classic algorithms proposed in temporal reasoning were based on the constraint
reasoning algorithms PC-1 and PC-2 [M-77].

The following example illustrates a constraint graph expressing indefinite
qualitative temporal information, along with reasoning problems.

Example 1. Consider the following CSP where the constraints are the relations
of Allen’s interval algebra, each Ji, say job to be scheduled, is a time interval
of the form (X−,X+), and B indicates that there is no direct knowledge of the
relationship between J1 and J3.



296 J.W. Daykin et al.

J2

J1 J3 J4

{m} {p, o}

B {≡}

Solutions to this temporal constraint satisfaction problem are as follows:
J1 J2 J1 J2

| | || | |

J3 J3
| || |

J4 J4
| || |

The minimal label between J1 and J3 is {p}, the precedes relation; all other
labels are already minimal.

An undirected graph G = (V,E) is called an interval graph if its vertices
can be represented by intervals on the real line, such that, two vertices are
adjacent if and only if the corresponding intervals intersect. Interestingly, interval
graphs were originally motivated from molecular biology, however they were later
applied to establish NP-completeness of ISAT for subsets of relations, which in
turn introduced the interval graph sandwich problem which arises in physical
mapping of DNA material [GS-93].

A sequence graph [D-92] is an incomplete type of interval graph consisting
of sequence chains, namely subgraphs where all constraints are sequence con-
straints. Sequence chains are used to reduce the number of edges in the graph
while preserving the expressiveness of Allen’s calculus. Sequence graphs model
artificial intelligence applications where many events may occur sequentially.

2.3 Subclasses of Allen’s Interval Algebra

In this section we consider restricted temporal reasoning problems in which the
relations are chosen from specified subsets of the set of all temporal relations on
intervals, A. Note that there are 2|A| such subsets, that is 28192, or approximately
102466 – clearly a massive combinatorial issue.

For every subset Γ ⊆ A of temporal relations, the corresponding restricted
satisfiability problem ISAT(Γ ) is equivalent to CSP(Γ ) - hence the complexity
of ISAT(Γ ) can be obtained via the complexity of CSP(Γ ).

We now consider some well-known tractable subclasses of Allen’s algebra.



Trends in Temporal Reasoning: Constraints, Graphs and Posets 297

Example 2 (The continuous endpoint class, C). This class includes all temporal
relations which may be defined using conjunctions of clauses of endpoint relations
of the form x = y, x ≤ y and x �= y, such that (1) there are only unit clauses,
and (2) for each unit clause x �= y, the clause form also contains a unit clause of
the form x ≤ y or y ≤ x.

It contains 83 relations, including {d, o, s}, {s�, o�, ≡, f}, and
{d�, f�, o, m, p}, (as well as the null relation, ⊥). For example, the rela-
tion {d, o, s} is defined by the following conjunction of endpoint relations (see
Table 1):

{(X− ≤ X+), (X− �= X+), (Y − ≤ Y +), (Y − �= Y +), (X− ≤ Y +),

(X− �= Y +), (Y − ≤ X+), (X+ �= Y −), (X+ ≤ Y +), (X+ �= Y +)}.

The continuous endpoint class was first described and shown to be tractable by
Vilain, Kautz and van Beek [VKVB-89], and subsequently described by Ligozat
in terms of “convex relations” with respect to a lattice representation [L-97]. This
subclass has the computational advantage that the path-consistency method
solves ISI(C) [VB-89,VBC-90,VKVB-89].

Example 3 (The pointisable class, P). This slight generalization of class C is
defined in the same way as C, but without the condition (2). It contains 188
relations, including all relations in C together with (non-convex) relations such
as {d, o}, {d�, o�, f�, f}, and {d�, f�, o, p}.

This class of temporal relations was first described and shown to be tractable
by Ladkin and Maddux [LM-88] and studied by van Beek and Cohen [VBC-90].
Although path-consistency is not sufficient for solving ISI(P) [VB-89], it is for
deciding ISAT(P) [LM-88,VK-86]. Van Beek [VB-89,VB-90] and van Beek and
Cohen [VBC-90] give algorithms for solving ISI(P) in O(n4) time; van Beek
specifies an algorithm for deciding ISAT(P) in O(n2) time [VB-90].

Example 4 (The ORD-Horn class, H). This class is a strict superset of P, defined
using conjunctions of disjunctions of the endpoint relations in P, and where each
disjunction contains at most one relation which is not of the form x �= y. That is,
the relations permit an ORD-clause form containing only clauses with at most
one positive literal. It contains 868 relations, including all those in P together
with relations such as {f�, s, o}, whose endpoint relations are given by the set:

{(X− ≤ X+), (X− �= X+), (Y − ≤ Y +), (Y − �= Y +), (X− ≤ Y −), (X− ≤ Y +),

(X− �= Y +), (Y − ≤ X+), (X+ �= Y −), (X+ ≤ Y +), (X− �= Y − ∨ X+ �= Y +)}.

Nebel and Bürckert [NB-95] identified this, via machine enumeration, to be
the first known maximal tractable subclass, and, the unique greatest tractable
subclass amongst those that contain all 13 basic relations – comprising over 10 %
of the full algebra. Further, they established that the path-consistency method
is sufficient for deciding ISAT(H), implying its wider applicability [NB-95].

Ligozat [L-98] showed that any subalgebra which contains all basic relations,
and a relation which is not ORD-Horn, will contain at least two of four “corner”
relations: {d�, s�, o�, f, d}, {o�, s�, d�, f�, o} and their converses.



298 J.W. Daykin et al.

Example 5 (Starting point and ending point algebras). Drakengren and Jonsson
[DJ-97] discovered a large family of maximal tractable subclasses, “starting
point” and “ending point” algebras, denoted S(b), S∗, E(b), E∗ - the parameter
b is chosen from specified basic relations. The six algebras S(b) & E(b) contain
2312 elements each, and S� & E� contain 1445 elements each. For brevity we
only define S(b); for E(b), S� and E� see [DJ-97].

Let rs = {�, d, o�, m�, f}, and let re = {≺, d, o, m, s}. Then, for
b ∈ {�, d, o�}, define S(b) to be the set of relations r such that:

{b, b�} ⊆ r

{b} ⊆ r ⊆ rs ∪ {≡, s, s�}
{b�} ⊆ r ⊆ r�

s ∪ {≡, s, s�}
r ⊆ {≡, s, s�}.

The algebras allow for metric constraints on interval starting or ending points.

We proceed to show that tractable subclasses may be characterised as sets
of relations with a particular form of algebraic invariance property.

3 Algebraic Closure Properties of Constraints

Jeavons et al. [JCG-97] developed a theory of algebraic closure properties of
constraint relations to distinguish between tractable and NP-complete CSPs –
we will apply this to the complexity of a subclass of Allen’s interval algebra.

Definition 4 [JCG-97]. Let R be an n-ary relation over a domain D, and let
ϕ : Dk → D be a k-ary operation on D. The relation R is said to be closed under
ϕ if, for all t1, t2, . . . , tk ∈ R, ϕ(t1, t2, . . . , tk) ∈ R, where ϕ(t1, t2, . . . , tk) =
〈ϕ(t1[1], t2[1], . . . , tk[1]), ϕ(t1[2], t2[2], . . . , tk[2]), . . . , ϕ(t1[n], t2[n], . . . , tk[n])〉.

The algebraic approach to tractability refers to special properties of opera-
tions including: idempotent, constant, unary, projection, semiprojection, major-
ity, affine, or ACI (associative, commutative & idempotent) - details in [JCG-97].

Example 6. Let the binary operator Min : R2 → R be defined as:

Min(a, b) = a if a ≤ b; Min(a, b) = b if a > b.

Then Min is ACI but not essentially unary. Similarly, let Max : R2 → R be
defined analogously to Min using ≥; Max is ACI and not essentially unary. How-
ever, ternary Median is a majority operation – see further examples in [JCG-97].

We will apply the Min operator to illustrate closure for a temporal relation.

Example 7. The basic relation finishes, f , is equivalently the infinite set of four-
tuples of rationals ((X−,X+), (Y −, Y +)) which satisfy Y − < X− < X+ = Y +.
To show that f is closed under Min: given two relations f , ((X−

1 ,X+
1 ), (Y −

1 , Y +
1 ))

and ((X−
2 ,X+

2 ), (Y −
2 , Y +

2 )), it follows that Min(Y −
1 , Y −

2 ) < Min(X−
1 ,X−

2 )<
Min(X+

1 ,X+
2 ) = Min(Y +

1 , Y +
2 ), which is a four-tuple belonging to f . Similarly,

all 13 basic relations are closed under Min. By symmetry, all 13 basic relations
are closed under Max.



Trends in Temporal Reasoning: Constraints, Graphs and Posets 299

The following results, which link the complexity of CSPs to their algebraic
closure properties, will be applied to derive complexity in the class C.

Theorem 1 ([JCG-97]). Any tractable set of relations Γ over a finite domain
D must be closed under some not essentially unary operation (i.e. either a semi-
projection, or a constant, or a majority, or an affine, or an idempotent binary
operation).

Theorem 2 ([JCG-97]). For any set of relations Γ over a finite domain D, if
Γ is closed under a constant, or a majority, or an affine, or some ACI operation,
then CSP(Γ ) is tractable.

Furthermore, a set Γ , as defined in Theorem 2, is a maximal set of tractable
relations [JCG-97]: the addition of any other relation which is not closed under
the same operation changes CSP(Γ ) from a tractable into an NP-complete prob-
lem. Applying these theorems to the complexity of Allen’s algebra yields:

Lemma 1. The continuous endpoint class C is closed under the binary ACI
operator Min for finite domains.

Proof. Suppose that R is a temporal relation in C, where R consists of a set
of r basic relations. Further, let ti, tj ∈ R, where ti = {ti1 , ti2 , . . . , tir} and
tj = {tj1 , tj2 , . . . , tjr}.

Then Min(ti, tj) is given by Min(tik , tjk), for 1 ≤ k ≤ r. Each operation
on a pair of the same basic relations, Min(tik , tjk), is given by applying Min to
the four-tuples defining end-points. As shown in Example 7, any basic relation
specified by the pair (tik , tjk) is closed under Min. Hence Min(ti, tj) ∈ R. ��

By symmetry, the class C is closed under the ACI operation Max; and further,
it is closed under the majority operator Median (median of interval endpoints):

Lemma 2. The continuous endpoint class C is closed under the ternary operator
Median for finite domains.

Proof. By expressing Median as Median = Max(Min(a, b),Min(Max(a, b), c))
the result follows from Lemma 1 for Min and by symmetry for Max. ��
Corollary 1. For finite domains, the satisfiability problem for the continuous
endpoint class, ISAT (C), is tractable.

Hence closure is an important algebraic property for tractability. Meanwhile,
various computer-assisted exhaustive searches led to a classification of complex-
ity within a large part of Allen’s algebra [DJ-97,DJ-97ii,DJ-98]. For further
progress, theoretical studies would be necessary, since using these methods would
require dealing with more than 1050 individual cases. Thus with promising alge-
braic indications, the way was paved for further advancement theoretically.

In 2003, Krokhin et al. [KJJ-03] completed the analysis of complexity for
satisfiability problems expressed in Allen’s algebra by showing that the known



300 J.W. Daykin et al.

maximal subclasses are the only forms of tractability within this interval alge-
bra: Allen’s algebra contains exactly eighteen maximal tractable subalgebras and
that reasoning within any subset not included in one of these is NP-complete.
First they introduced a new uniform description for all of the existing maximal
tractable subalgebras by systematically “loosening” the relations in a subalgebra
e.g. replacing {m} by {p,m}. The second novel element was to exploit the alge-
braic properties of Allen’s algebra by importing a technique from general algebra
to obtain a description of maximal subalgebras with a given property. A similar
algebraic approach was used for one fragment of Allen’s algebra [L-98], while
Krokhin et al. systematically applied this technique to obtain a classification for
all possible fragments of Allen’s algebra. Their purely analytical method breaks
the proof down into a collection of six simple cases, and makes extensive use of
the operations defined in the algebra (converse, intersection and composition),
while exploiting the fact that tractability of a subalgebra is a pertinent hered-
itary property in Allen’s algebra. In order to show that any fragment that is
not entirely contained in one of the eighteen known maximal tractable algebras
is NP-complete, they applied generic techniques: Betweenness, Derivation, and
Duality. Importantly, both the result and the algebraic method can be used to
classify the complexity in other temporal and spatial formalisms.

4 Posets and the Fishburn-Shepp Inequality

Following the survey of temporal reasoning and our results linking algebraic
techniques with complexity of Allen’s algebra, we propose here novel research
directions: to specify heuristics for scheduling based on representing a collection
of intervals of time with constraints as a poset, and applying the Fishburn-Shepp
inequality to guide a scheduling algorithm.

Let Q be a finite poset (partially ordered set) with n elements and C be a
chain 1 < 2 < · · · < c. For (Q,C), a map ω : Q → C is strict order-preserving if,
for all x, y ∈ Q, x < y implies ω(x) < ω(y). Let λ : Q → {1 < 2 < · · · < n} be a
linear extension of Q, that is, an order-preserving injection.

A poset Q is equivalently a directed acyclic graph (DAG), G = (V,E); for
temporal reasoning, the vertices represent time intervals, and edges between
vertices are labeled with relations in Allen’s algebra which satisfy the partial
ordering. For scheduling problems, a linear extension λ of Q (or G) can be used
to schedule tasks: λ must respect interval constraints, that is relations between
comparable elements.

Algorithmically, a linear extension of a DAG, G, can be determined in linear
time by performing a depth-first search of G [T-76]. The set of all linear exten-
sions, Λ, can be generated in constant amortized time, that is O(|Λ|), while the
corresponding counting problem is #P-complete; and P (x < y) can be computed
in time O(n2 + |Λ|) [PR-94].

The Fishburn-Shepp inequality [F-84,S-82] is an inequality for the number of
extensions of partial orders to linear orders, expressed as follows. Suppose that
x, y and z are incomparable elements of a finite poset, then



Trends in Temporal Reasoning: Constraints, Graphs and Posets 301

P (x < y)P (x < z) < P ((x < y) ∧ (x < z))

where P(*) is the probability that a linear extension has the property *. By
re-expressing this in terms of conditional probability, P (x < z) < P ((x < z) |
(x < y)), we see that P (x < z) strictly increases by adding the condition x < y.
The proposed problem is to apply the Fishburn-Shepp inequality to efficiently
find a favourable schedule under specified criteria.

The poset can be represented by an adjacency matrix, while recording the
number of adjacencies for each element – likely candidates for applying the
Fishburn-Shepp inequality have the least adjacencies. Furthermore, this inequal-
ity can be applied to reduce the total number of linear extensions, by substituting
chains for the 3-element antichains, x < y < z or x < z < y, according to which
is considered more favourable. A naive scheduling algorithm is then:

– Construct incidence matrix of the poset - record number of adjacencies
– Choose incomparable triples x, y, z; select x
– For each triple ti replace ti by x < y < z or x < z < y
– Find the set Li of linear extensions with the induced chain ti
– Select schedule from the intersection of Li’s
– If the intersection is empty then choose the schedule from the largest set Li.

We will illustrate this idea with an example:

Example 8. Consider a set of time intervals of jobs, J = {J1, J2, J3, J4, J5, J6}
with a partial order ≤ defined by (X− < Y −) ∧ (X+ ≤ Y +), which requires
scheduling. Suppose that J is the poset / DAG shown below, where the edges
have been labeled with satisfying temporal relations, and there are two triples
of incomparable elements: {J2, J3, J5} and {J2, J3, J6}. Then

P (J2 < J3) ∧ (J2 < J5)) = 6/30, P ((J3 < J2) ∧ (J3 < J5)) = 6/30, and
P ((J5 < J2) ∧ (J5 < J3)) = 18/30;

P ((J2 < J3) ∧ (J2 < J6)) = 12/30, P ((J3 < J2) ∧ (J3 < J6)) = 12/30, and
P ((J6 < J2) ∧ (J6 < J3)) = 6/30.

The largest set of linear extensions corresponding to the first triple is when
(J5 < J2)∧(J5 < J3) and for the second triple is (w.l.o.g.) when (J2 < J3)∧(J2 <
J6). Their intersection has 6 linear extensions and we arbitrarily choose J1 ≤
J5 ≤ J2 ≤ J6 ≤ J3 ≤ J4 as a schedule – so, although any linear extension would
suffice we are selecting one which appears more “suitable” to satisfy. A parallel
solution to this temporal constraint satisfaction problem is: J1 = (10, 20), J5 =
(5, 10), J2 = (12, 23), J6 = (20, 22), J3 = (15, 20) and J4 = (18, 23). However,
had we induced the chain J5 ≤ J2 ≤ J3 or the chain J2 ≤ J3 ≤ J6 in the poset,
then there would only be 9 linear extensions to compute; and only 4 extensions
if we induce both chains.

Note that the partial order (X− < Y −) ∧ (X+ ≤ Y +) does not include
the basic interval relation during, and so it is not equivalent to the ORD-Horn
class H.



302 J.W. Daykin et al.

J4

J2 J3

J1

J6

J5

f � o

o f �

p

We believe this approach is worthy of fuller investigation. Questions and
directions to consider: Define suitable partial orders; how/many to choose 3-
element antichains and selection of the x element; iterate reducing 3-element
antichains to chains; specify the scheduling criteria or heuristic; relate the partial
orders to tractable and other classes of Allen’s algebra; determine applications
related to the posets; specify the number of relations captured by a partial order;
determine limits of parallelism; and complexity issues.

5 Conclusion

We reviewed the temporal constraint satisfaction problem for reasoning in Allen’s
interval algebra. Jeavons et al. [JCG-97] established that any tractable set of rela-
tions must be closed under certain algebraic operations. Krokhin et al. showed
that there are exactly eighteen maximal tractable subclasses [KJJ-03]. These the-
oretical methods improved on computer-assisted search for establishing tractabil-
ity. We illustrated the algebraic method for tractability within the class C.

Graph-based representations for temporal reasoning have been discussed:
interval and sequence graphs, and DAGs. We concluded by proposing future
research into representing a collection of intervals of time with constraints as a
poset and applying the Fishburn-Shepp inequality to select a favourable sched-
ule: the idea is clarified with a naive algorithm.

References

[A-83] Allen, J.F.: Maintaining knowledge about temporal intervals. Commun.
ACM 26(11), 832–843 (1983)

[A-91] Allen, J.F.: Temporal reasoning and planning. In: Allen, J.F., Kautz,
H.A., Pelavin, R.N., Tenenberg, J.D. (eds.) Reasoning About Plans,
Chapter 1, pp. 1–67. Morgan Kaufmann, San Mateo (1991)

[CS-73] Coombs, C.H., Smith, J.E.K.: On the detection of structures in attitudes
and developmental processses. Psych. Rev. 80, 337–351 (1973)

[DMP-91] Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif.
Intell. 49(1–3), 61–95 (1991)

[D-92] Dorn, J.: Temporal reasoning in sequence graphs. In: AAAI 1992, pp.
735–740 (1992)



Trends in Temporal Reasoning: Constraints, Graphs and Posets 303

[DJ-97] Drakengren, T., Jonsson, P.: Eight maximal tractable subclasses of
Allen’s algebra with metric time. J. Artif. Intell. Res. 7, 25–45 (1997)

[DJ-97ii] Drakengren, T., Jonsson, P.: Twenty-one large tractable subclasses of
Allen’s algebra. Artif. Intell. 93(1–2), 297–319 (1997)

[DJ-98] Drakengren, T., Jonsson, P.: A complete classification of tractability in
Allen’s algebra relative to subsets of basic relations. Artif. Intell. 106(2),
205–219 (1998)

[F-84] Fishburn, P.C.: A correlational inequality for linear extensions of a poset.
Order 1(2), 127–137 (1984)

[GSS-93] Gerevini, A., Schubert, L.K., Schaeffer, S.: Temporal reasoning in Time-
graph I-II. SIGART Bull. 4(3), 21–25 (1993)

[GKS-94] Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA
physical mapping. Adv. Appl. Math. 15, 251–261 (1994)

[GS-92] Golumbic, M.C., Shamir, R.: Algorithms and complexity for reasoning
about time. In: AAAI 1992, pp. 741–747 (1992)

[GS-93] Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning
about time: a graph theoretic approach. J. ACM 40(5), 1108–1133 (1993)

[JCG-97] Jeavons, P., Cohen, D.A., Gyssens, M.: Closure properties of constraints.
J. ACM 44(4), 527–548 (1997)

[JB-96] Jonsson, P., Bäckström, C.: A linear-programming approach to temporal
reasoning. In: AAAI 1996, pp. 1235–1240 (1996)

[JCMPM-10] Juarez, J.M., Campos, M., Morales, A., Palma, J., Marin, R.: Applica-
tions of temporal reasoning to intensive care units. J. Healthc. Eng. 1(4),
615–636 (2010)

[K-93] Karp, R.M.: Mapping the genome: some combinatorial problems arising
in molecular biology. In: STOC 1993, pp. 278–285 (1993)

[KL-91] Kautz, H.A., Ladkin, P.B.: Integrating metric and qualitative temporal
reasoning. In: AAAI 1991, pp. 241–246 (1991)

[KKD-08] Krieger, H.-U., Kiefer, B., Declerck, T.: A framework for temporal rep-
resentation and reasoning in business intelligence applications. In: AAAI
Spring Symposium: AI Meets Business Rules and Process Management,
pp. 59–70 (2008)

[KJJ-03] Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal rela-
tions: the tractable subalgebras of Allen’s interval algebra. J. ACM
50(5), 591–640 (2003)

[LM-88] Ladkin, P.B., Maddux, R.D.: On binary constraint networks, Technical
report KES. U.88.8, Kestrel Institute, Palo Alto, CA (1988)

[L-97] Ligozat, G.: Figures for thought: temporal reasoning with pictures, AAAI
Technical report WS-97-11, pp. 31–36 (1997)

[L-98] Ligozat, G.: “Corner” relations in Allen’s algebra. Constraints 3(2–3),
165–177 (1998)

[M-77] Mackworth, A.K.: Consistency in networks of relations. Artif. Intell.
8(1), 99–118 (1977)

[MZ-08] Mandoiu, I., Zelikovsky, A. (eds.): Bioinformatics Algorithms: Tech-
niques and Applications. Wiley Series in Bioinformatics. Wiley Inter-
science, Hoboken (2008)

[M-91] Meiri, I.: Combining qualitative and quantitative constraints in temporal
reasoning. In: AAAI 1991, pp. 260–267 (1991)

[NB-95] Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: a maxi-
mal tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66
(1995)



304 J.W. Daykin et al.

[N-91] Nökel, K. (ed.): Temporally Distributed Symptoms in Technical Diagno-
sis. LNCS (LNAI), vol. 517. Springer, Heidelberg (1991)

[PS-97] Pe’er, I., Shamir, R.: Satisfiability problems on intervals and unit inter-
vals. Theoret. Comput. Sci. 175(2), 349–372 (1997)

[PR-94] Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Com-
put. 23(2), 373–386 (1994)

[S-82] Shepp, L.A.: The XYZ conjecture and the FKG inequality. Ann. Probab.
10(3), 824–827 (1982)

[SC-88] Song, F., Cohen, R.: The interpretation of temporal relations in narra-
tive. In: AAAI 1988, pp. 745–750 (1988)

[T-76] Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta
Inform. 6(2), 171–185 (1976)

[VB-89] van Beek, P.: Approximation algorithms for temporal reasoning. In:
IJCAI 1989, pp. 1291–1296 (1989)

[VB-90] van Beek, P.: Reasoning about qualitative temporal information. In:
AAAI 1990, pp. 728–734 (1990)

[VB-92] van Beek, P.: Reasoning about qualitative temporal information. Artif.
Intell. 58(1–3), 297–326 (1992)

[VBC-90] van Beek, P., Cohen, R.: Exact and approximate reasoning about tem-
poral relations. Comput. Intell. 6(3), 132–144 (1990)

[V-82] Vilain, M.B.: A system for reasoning about time. In: AAAI 1982, pp.
197–201 (1982)

[VK-86] Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal
reasoning. In: AAAI 1986, pp. 377–382 (1986)

[VKVB-89] Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms
for temporal reasoning: a revised report. In: Weld, D.S., de Kleer, J.
(eds.) Readings in Qualitative Reasoning about Physical Systems, pp.
373–381. Morgan Kaufmann, California (1989)

[WH-90] Ward, S.A., Halstead, R.H.: Computation Structures. MIT Press,
Cambridge, Mass (1990)



Reconstructing a Sparse Solution
from a Compressed Support Vector Machine

Joachim Giesen(B), Sören Laue, and Jens K. Mueller

Friedrich-Schiller-Universität Jena, Jena, Germany
joachim.giesen@uni-jena.de

Abstract. A support vector machine is a means for computing a binary
classifier from a set of observations. Here we assume that the observations
are n feature vectors each of length m together with n binary labels, one
at each observed feature vector. The feature vectors can be combined
into a n × m feature matrix. The classifier is computed via an optimiza-
tion problem that depends on the feature matrix. The solution of this
optimization problem is a vector of dimension m from which a classifier
with good generalization properties can be computed directly. Here we
show that the feature matrix can be replaced by a compressed feature
matrix that comprises n feature vectors of length � < m. The solution
of the optimization problem for the compressed feature matrix has only
dimension � and can computed faster since the optimization problem is
smaller. Still, the solution to the compressed problem needs to be related
to the original solution. We present a simple scheme that reconstructs
the original solution from a solution of the compressed problem up to a
small error. For the reconstruction guarantees we assume that the solu-
tion of the original problem is sparse. We show that sparse solutions can
be promoted by a feature selection approach.

1 Introduction

In a binary classification problem we are given observations

(x1, y1), . . . , (xn, yn)

of labels yi ∈ {−1, 1} at data points xi in some space Ω. The goal is to learn
a classifier (predictor) from the observations, i.e., a mapping Ω → {−1, 1} that
maps the points in Ω to the label space {−1, 1} and can be used to predict the
label at any point in Ω. Typically, the points in Ω are described by features,
e.g., by numerical feature functions ej : Ω → R. If m is the number of feature
functions, then we can combine the features at x ∈ Ω into a feature vector

Φ(x) :=
(

e1(x), . . . , em(x)
) ∈ Rm.

The features of the observations can thus be encoded in a feature matrix Φ ∈
Rn×m whose i-th row Φi is given as Φi = Φ(xi), i.e., the feature vector of the
i-th data point.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 305–319, 2016.
DOI: 10.1007/978-3-319-32859-1 26



306 J. Giesen et al.

A particularly simple yet powerful class of classifiers are linear classifiers (i.e.,
linear in the possibly non-linear feature functions)

Ω � x �→ sign (〈Φ(x), w〉) ∈ R,

with w ∈ Rm. Hence, for linear classification the learning problem reduces to
determining w from the feature matrix Φ of the observations. In the by now
classical support vector machine approach, see [3], this is accomplished through
the following Euclidean regularized optimization/learning problem,

min
w∈Rm

(

L(Φw, y) + c‖w‖22
)

where

L(Φw, y) =
1
n

n
∑

i=1

max{0, 1 − yi〈Φi, w〉}

is the hinge loss function, and c > 0 is a regularization parameter that controls
the trade-off between the loss term and the regularization term. See also [15] for
a textbook introduction into support vector machines and related topics.

The dimension of a support vector machine (optimization problem), i.e., the
number of optimization variables, is the number of feature functions m. In the
case that Ω = Rm, the feature functions are often chosen to be the coordinate
functions (aka linear support vector machines)

ej : x =
(

x(1), . . . , x(m)
) �→ x(j),

but m can be as large as n, as it is a common choice to have one feature function
for every data point, or it can be even larger than n, for instance in the case of
images, where m can be the number of pixels in an image while n is the number
of images. In the following we assume that the problem is high-dimensional, i.e.,
the number of features m is in ω(log n), where n is the number of data points.

The goal of compressing a support vector machine is to replace the original
optimization problem by a problem with fewer optimization variables that can
be solved faster. In (random projection) support vector compression the original
feature vectors Φi are projected down to feature vectors Φ̄i using a random
projection matrix Λ ∈ R�×m. Hence, the compressed feature matrix Φ̄ whose
rows are Φ̄i = ΦiΛ

T has only � · n entries, whereas the original feature matrix
has n ·m entries. The support vector machine for the compressed feature vectors,
i.e., the compressed support vector machine,

min
w̄∈R�

(

L(Φ̄w̄, y) + c‖w̄‖22
)

.

has only dimension �. The compressed support vector machine like the original
support vector machine can be solved efficiently, namely in time linear in the
size of the (compressed) feature matrix (i.e., the number of non-zero entries),
using for example trust region Newton methods, see [11], or cutting plane meth-
ods, see [7]. Hence, compressing the original support vector machine only results



Reconstructing a Sparse Solution 307

in an asymptotically better running time if computing the compressed feature
matrix takes at most linear time in the number of the non-zeros of the original
feature matrix. Still, turning to a compressed support vector machine can result
in a speed-up even if computing the compressed feature matrix takes super-linear
time in the size of the original feature matrix, namely in the case that the feature
vectors do not fit into primary memory, e.g., cache or main memory. The support
vector machine problem is well known to be memory bound and not compute
bound since fast support vector machine solvers need to touch each input datum
only a few times. Fast support vector machine solvers [7,11] work in iterations. If
the feature vectors do not fit into the primary memory, then they need to be read
again from secondary memory in every iteration. Hence, compressing the feature
vectors in streaming fashion from secondary into primary memory helps to avoid
accessing the slower secondary memory repeatedly. Important for the choice of
the projection matrix is not only the possible speed-up, but also the ability of
the resulting classifier to generalize to new data points, i.e., its statistical per-
formance that for example can be measured in terms of a cross-validation error
should not deteriorate when turning to a compressed support vector machine.
The ideal case is that the optimal solution of the original support vector machine
can be (approximately) reconstructed from a solution of the compressed support
vector machine. In this case not only the statistical properties are well preserved,
but also the resulting classifier operates on the original feature space, where the
features often have a well defined meaning.

Contributions. Weanalyze support vector compression using standardGaussian
projection matrices Λ, and show that if �, i.e., the length of the compressed
feature vectors, is chosen in Ω(log max{n,m}), then with high probability, the
solution of the original support vector machine can be approximated arbitrarily
well by ΛT w̄, where w̄ is a solution of the compressed support vector machine.
The constant that is hidden in the big-O notation for the target dimension
depends on the approximation guarantee and on the sparsity of the optimal
solution, which is a weaker assumption than what has been used before in the
literature (see the paragraph on related work). We also show how to augment
support vector machines by a feature selection approach that promotes sparse
solutions.

The original feature matrix needs space in the order of O(nm), whereas the
compressed feature matrix only needs space of the order O(n log max{n,m})
if � ∈ Θ(log max{n,m}). For compression and reconstruction we also need to
store the projection matrix Λ whose size is of the order O(m log max{n,m}).
Hence, by compression we can reduce the required space from O(nm) to O((m+
n) log max{n,m}). The compressed feature matrix can be computed in time in
O(mn log max{n,m}).

The compression scheme can be utilized as follows: the feature vectors Φi

are streamed from slow secondary memory to fast primary memory, e.g., from
tape or hard drive to main memory or from main memory into a faster cache,
and get compressed on the fly into the new feature vectors Φ̄i that have only
O(log max{n,m}) entries each. The support vector machine can then be solved



308 J. Giesen et al.

Algorithm 1. CompressAndReconstruct
Input: feature vectors Φ1, . . . , Φn ∈ Rm

Output: approximate solution w of the support vector machine problem

min
w∈Rm

(
L(Φw, y) + c‖w‖2

2

)

compute a random projection matrix Λ ∈ R�×m

for i = 1 to n do
read Φi from secondary memory and compute Φ̄i = ΦiΛ

T

end for
compute a solution w̄ of the compressed support vector machine problem

min
w̄∈R�

(
L(Φ̄w̄, y) + c‖w̄‖2

2

)

return w = ΛT w̄

for the compressed feature matrix while accessing only the fast primary mem-
ory. Finally, the solution w̄ of the compressed support vector machine can be
expanded and the expansion is an approximate solution to the original problem
with approximation guarantees. This pipeline is summarized in Algorithm1.

Related Work. Since support vector machines are among the most intensively
studied and best understood machine learning techniques, there has been also
quite some work on dimension reduction and/or compression for support vector
machines. Here we mention only the most relevant for our work.

To the best of our knowledge, the only work on compressed support vector
machines, where computing the compressed feature matrix can be accomplished
in time linear in the number of non-zeros of the original feature matrix, is by Paul
et al. [14] who provide generalization (margin) bounds for compressed linear sup-
port vector machines. Their work builds on results by Clarkson and Woodruff [2]
and extensions by Meng and Mahoney [12] and Nelson and Nguyen [13], respec-
tively. Clarkson and Woodruff have improved the running time for computing
a low-dimensional embedding of a sparse feature matrix to a time linear in the
number of non-zeros in the feature matrix. The target dimension � in the scheme
of Paul et al. [14] depends on the rank of the original feature matrix, whereas
our target dimension depends on the sparsity of the optimal solution of the orig-
inal support vector machine. Note that the low rank assumption implies that
the solution is sparse in some basis which is enough for our guarantees to hold.
Another difference is that we are aiming at approximating the original support
vector solution with strong guarantees.

The only result that we are aware of that approximates the optimal solution of
the original support vector machine from its compressed counterpart is by Zhang
et al. [19] who also use Gaussian projection matrices. Their reconstruction result
is again based on the assumption that the feature matrix is of low rank or can
be well approximated by a low rank matrix, whereas we only need the weaker



Reconstructing a Sparse Solution 309

assumption that the solution of the original support vector machine is sparse.
We show that sparsity of the solution can always be promoted by combining the
support vector machine with some feature selection method (see Sect. 4). Feature
selection is of independent interest since sparse solutions are often favored in
practice because they provide predictors that are easier to interpret and faster
to evaluate.

On the practical side, Yu et al. [18] address the support vector machine
problem for large data that do not fit into main memory in a block minimization
framework. In their framework the data are divided into blocks that fit into
main memory, and at each step one block is loaded into main memory and
handled by either a primal or dual support vector machine solver. The framework
has been tested on data sets that are 20 times larger than the available main
memory. Vedaldi and Zisserman [16] construct high-dimensional sparse feature
vectors from arbitrary kernels using among others a technique called product
quantization. One motivation for their work is to compress the given data—
in their case large image descriptors, such that it fits into main memory. Paul
et al. [14] also report on experiments for a data set (HapMap-HGDP) whose
feature matrix is too large to fit into main memory. Compression turned out to
be practically beneficial although the feature matrix is dense, i.e., the number
of non-zeros is large.

2 Compression

In our standard compression scheme we are working with random combinations
of the given feature functions. To simplify the exposition of our arguments we
assume without loss of generality that the feature functions have been scaled such
that all the feature vectors are contained in the m-dimensional Euclidean unit
ball Bm, e.g., by scaling the feature functions such that ej : Ω →

(

−1√
m

, 1√
m

)

.
From the scaled feature functions e1, . . . , em we compute a smaller set of feature
functions ē1, . . . , ē� with � < m as follows

ēi =
m

∑

j=1

λijej , i = 1, . . . , �

where the λij are independent, identically distributed Gaussian random variables
with expectation 0 and variance 1/m, i.e., λij ∼ N (

0, 1
m

)

. Using the new feature
functions we replace the feature vectors

Φi =
(

e1(xi), . . . , em(xi)
)

by the compressed feature vectors

Φ̄i =
(

ē1(xi), . . . , ē�(xi)
)

, i = 1, . . . , n.

The support vector machine for the compressed feature vectors reads as

min
w̄∈R�

(

L(Φ̄w̄, y) + c ‖w̄‖22
)

,



310 J. Giesen et al.

where Φ̄ ∈ Rn×� is the matrix whose rows are the �-dimensional feature vectors
Φ̄i, i = 1, . . . , n. Thus, Φ̄ = ΦΛT , where Λ =

(

λij

) ∈ R�×m is the random
Gaussian projection matrix.

3 Reconstruction

In this section we prove our main reconstruction result that is summarized in the
following theorem. The theorem states that the optimal solution of the original
support vector machine problem can be reconstructed by ΛT w̄ for an optimal or
approximate solution w̄ of the compressed problem up to a small error.

Theorem 1. Assume that the optimal solution w of the original support vector
machine is l-sparse, i.e., only some constant l of the m entries of w are non-zero
in some fixed (that is data independent) basis. Then, for a given δ ∈ (0, 1/2),
the solution w and the reconstruction ΛT w̄ from the optimal solution w̄ of the
compressed machine can be related as follows,

(1 + (1 + 1/c)δ)−2
(

L(ΦΛT w̄, y) + c ‖ΛT w̄‖22
) − δ ≤ L(Φw, y) + c ‖w‖22

≤ L(ΦΛT w̄, y) + c ‖ΛT w̄‖22
with probability at least 1− 3

min{m,n} for sufficiently large � ∈ Ω
(

l logmax{n,m}
δ2

)

.

We have subdivided the proof of Theorem1 into several lemmas that exploit
the structure of the projection matrix Λ and the assumption that the solution of
the original support vector machine is l-sparse. The proofs combine ideas from
low distortion embeddings and compressive sensing.

The first property that we want to exploit is that the projection matrix Λ is a
“Johnson-Lindenstrauss”-transform, see [8], i.e., we have the following properties
(see for example [17] (Page 2, Lemma 1.3) for a proof).

Lemma 1. Let P be a finite subset of Rm with n + 1 elements, let δ ∈ (0, 1/2)
and � ≥ 20

δ2 log(n + 1). Then,

1. for all p ∈ P it holds with probability at least 1 − 2(n + 1) exp(−(δ2 − δ3)�/4)
that

(1 − δ)‖p‖22 ≤ ‖Λp‖22 ≤ (1 + δ)‖p‖22,
2. for any fixed p ∈ P and all q ∈ P − {p} it holds with probability at least

1 − 4n exp(−(δ2 − δ3)�/4) that

|〈p, q〉 − 〈Λp,Λq〉| < δ‖p‖‖q‖. �

If we apply Lemma 1 to the feature vectors Φi ∈ Bm and some fixed w ∈ Rm

we get the following lemma.

Lemma 2. For any fixed w ∈ Rm, δ ∈ (0, 1) and � ≥ 8
δ2−δ3 log(6(n+1)) it holds

with probability at least 1 − 1
n+1 that

|L(Φ̄Λw, y) − L(Φw, y)| < δ‖w‖2.



Reconstructing a Sparse Solution 311

Proof. Let P = {Φ1, . . . , Φn, w}. By Lemma 1 and taking a union bound (over
the two events in Lemma 1), if we choose

� ≥ 8
δ2 − δ3

log(6(n + 1)),

then with probability at least 1 − 1
n+1 , the norms of all the points in P are

preserved up to a factor (1 ± δ) and the n scalar products |〈Φi, w〉| are simul-
taneously preserved up to an additive error of δ‖w‖2, since by assumption the
feature vectors Φi are contained in the m-dimensional Euclidean unit ball Bm.
Hence, we have

|〈Φ̄i, Λw〉 − 〈Φi, w〉| < δ‖w‖2
which implies

|1 − yi〈Φ̄i, Λw〉 − (1 − yi〈Φi, w〉)| < δ‖w‖2,

and thus

|max
{

0, 1 − yi〈Φ̄i, Λw〉} − max {0, 1 − yi〈Φi, w〉} | < δ‖w‖2
from which we derive

|L(Φ̄Λw, y) − L(Φw, y)| < δ‖w‖2
with probability at least 1 − 1

n+1 by using the definition

L (Φw, y) =
1
n

n
∑

i=1

max{0, 1 − yi〈Φi, w〉}. �

Next we want to exploit that the optimal solution w of the original problem is

l-sparse in some fixed basis (that means, a basis independent of the data points
x1, . . . , xn), i.e., only l < m of the optimal coefficients are non-zero in this basis.
To exploit sparsity we use that Λ satisfies the restricted isometry property, see
for example [1,5,6], with high probability. A matrix Λ ∈ R�×m satisfies the
restricted isometry property (RIP) with constant δl ∈ (0, 1) if

(1 − δl)‖p‖22 ≤ ‖Λp‖22 ≤ (1 + δl)‖p‖22
for all l-sparse vectors p ∈ Rm, and δl is minimal with this property. In fact, we
have the following lemma for the projection matrix Λ (see for example [6] (Page 18,
Theorem 3.6) for more details).

Lemma 3. There exists a constant C > 0 such that the restricted isometry
constant δl of Λ is upper bounded by δ > 0 with probability at least 1−ε provided
that

� ≥ C

δ2
(l log(m/�) − log(1/ε)) . �




312 J. Giesen et al.

Note that even if w is not l-sparse in the orthonormal basis that corresponds
to the feature functions {ei}, it is by our assumption l-sparse with respect to
some fixed orthonormal basis, i.e., a basis that is independent of the specific
problem instance and its optimal solution w. The fixed basis can be derived
from {ei} by applying an orthonormal transform U , i.e., Uw is l-sparse. Note
that

‖w‖22 = ‖Uw‖22 and ‖Λw‖22 = ‖ΛUT Uw‖22,
and the matrix ΛUT still satisfies the restricted isometry property. Hence, we
can use the following lemma for the optimal solution of the original problem.

Lemma 4. Let w ∈ Rm be l-sparse. For the projection matrix Λ it holds that

‖Λw‖22 ≤ (1 + δ)‖w‖22
with probability at least 1 − 1/m, provided � ≥ (C · l log m)/δ2 for some constant
C > 0.

Proof. The proof follows immediately from the RIP for the projection matrix Λ
if we set ε = 1/m. �


Next we give an upper bound on the optimal value of the original problem.

Lemma 5. Let w ∈ Rm be the optimal solution of the original support vector
machine. For the projection matrix Λ it holds for any w̄ ∈ R� that

L(Φw, y) + c ‖w‖22 ≤ L(ΦΛT w̄, y) + c ‖ΛT w̄‖22 = L(Φ̄w̄, y) + c ‖ΛT w̄‖22.
Proof. Note that ΛT w̄ is feasible for the original problem. Hence, the optimality
of w for the original problem implies that

L(Φw, y) + c ‖w‖22 ≤ L(ΦΛT w̄, y) + c ‖ΛT w̄‖22 = L(Φ̄w̄, y) + c ‖ΛT w̄‖22,
where the last equality follows from Φ̄ = ΦΛT . �


The next lemma gives an upper bound for the norm of the reconstruction ΛT w̄.

Lemma 6. For the projection matrix Λ it holds for any w̄ ∈ R� that

‖ΛT w̄‖22 ≤ (1 + δ)‖w̄‖22
with probability at least 1 − �2 exp

(

−mδ2

40�2

)

for large enough �.

Proof. We need to bound ‖ΛT w̄‖22 = 〈ΛT w̄, ΛT w̄〉. The following holds,

〈ΛT w̄, ΛT w̄〉 =
m

∑

i=1

⎛

⎝

�
∑

j=1

λijw̄j

⎞

⎠

2

=
m

∑

i=1

⎛

⎝

�
∑

j=1

λ2
ijw̄

2
j + 2

�−1
∑

j=1

�
∑

k=j+1

λijλikw̄jw̄k

⎞

⎠

=
�

∑

j=1

w̄2
j

(

m
∑

i=1

λ2
ij

)

+ 2
�−1
∑

j=1

�
∑

k=j+1

w̄jw̄k

(

m
∑

i=1

λijλik

)

.



Reconstructing a Sparse Solution 313

The sums
∑m

i=1(mλ2
ij), j = 1, . . . , � are χ2 distributed with m degrees of freedom.

From well known concentration bounds for χ2 distributions, see for example [17],
it follows that

P

[

m
∑

i=1

λ2
ij ≥ 1 +

δ

2

]

= P

[

m
∑

i=1

mλ2
ij ≥

(

1 +
δ

2

)

m

]

≤ exp
(

−m δ2

16

(

1 − δ

2

))

.

Next we bound the sums
∑m

i=1 λijλik, i.e., sums over products of indepen-
dent identically normally distributed random variables. Its moment generating
function is

M(t) = (1 − t2/m2)−m/2.

Applying Chernoff’s bounding method for a random variable X and s > 0, i.e.,

P [X ≥ s] = P [exp(tX) ≥ exp(st)] ≤ E [exp(tX)]
exp(st)

=
M(t)

exp(st)

for all t > 0, to
∑m

i=1 λijλik gives

P

[

m
∑

i=1

λijλik ≥ δ

4�

]

≤ (1 − t2/m2)−m/2 exp
(

− tδ

4�

)

.

Setting t = m
√

1 − τ gives

P

[

m
∑

i=1

λijλik ≥ δ

4�

]

≤ τ−m/2 exp
(

−δm
√

1 − τ

4�

)

= exp
(

−m

2
log τ

)

exp
(

−δm
√

1 − τ

4�

)

= exp
(

−m

4�

(

2� log τ + δ
√

1 − τ
)

)

.

A simple calculation shows that f(τ) = 2� log τ + δ
√

1 − τ is maximized at

τ =
8�2

δ2

(
√

1 +
δ2

4�2
− 1

)

= 1 − δ2

16�2
+ Θ

(

1
�4

)

.

Setting τ = 1− (δ/4�)2 gives by using log(1−x) = −x− x2

2 − x3

3 − . . . for x < 1,

f(τ) = 2� log

(

1 −
(

δ

4�

)2
)

+
δ2

4�
= −δ2

8�
− Θ

(

1
�3

)

+
δ2

4�
=

δ2

8�
− Θ

(

1
�3

)

,

which is lower bounded by δ2

10� > 0 for large enough �. Hence,

P

[

m
∑

i=1

λijλik ≥ δ

4�

]

≤ exp
(

−mδ2

40�2

)

.



314 J. Giesen et al.

Finally, observing that
∑�

j=1 w̄2
j = ‖w̄‖22, and

�−1
∑

j=1

�
∑

k=j+1

w̄jw̄k ≤ ‖w̄‖21 ≤ �‖w̄‖22

gives

‖ΛT w̄‖22 = 〈ΛT w̄, ΛT w̄〉 ≤
(

1 +
δ

2

)

‖w̄‖22 + 2�
δ

4�
‖w̄‖22 = (1 + δ)‖w̄‖22

with probability at least 1 − �2 exp
(

−mδ2

40�2

)

using a union bound. �


Now we are finally prepared to prove the reconstruction theorem.

Proof [of Theorem 1]. The second inequality in the statement of the theorem
has been shown in Lemma 5, and the first inequality follows from

L(ΦΛT w̄, y) + c ‖ΛT w̄‖22 = L(Φ̄w̄, y) + c ‖ΛT w̄‖22
≤ L(Φ̄w̄, y) + c(1 + δ) ‖w̄‖22
≤ (1 + δ)

(

L(Φ̄w̄, y) + c ‖w̄‖22
)

≤ (1 + δ)
(

L(Φ̄Λw, y) + c ‖Λw‖22
)

≤ (1 + δ)
(

L(Φw, y) + δ‖w‖2 + c ‖Λw‖22
)

≤ (1 + δ)
(

L(Φw, y) + δ‖w‖2 + c(1 + δ) ‖w‖22
)

≤ (1 + δ)
(

L(Φw, y) + (δ + δ‖w‖22) + c(1 + δ) ‖w‖22
)

= (1 + δ)
(

L(Φw, y) + c(1 + (1 + 1/c)δ) ‖w‖22 + δ
)

≤ (1 + (1 + 1/c)δ)(1 + δ)
(

L(Φw, y) + c ‖w‖22 + δ
)

≤ (1 + (1 + 1/c)δ)2
(

L(Φw, y) + c ‖w‖22 + δ
)

where the first inequality has been shown in Lemma 6, the second inequality fol-
lows from δ > 0 and the non-negativity of the loss function, the third inequality
follows from the optimality of w̄ and the feasibility of Λw for the compressed
problem, the fourth inequality has been shown in Lemma2, the fifth inequality
has been shown in Lemma 4, the sixth inequality is implied by δ‖w‖2 ≤ δ if
‖w‖2 ≤ 1 and δ‖w‖2 ≤ δ‖w‖22 if ‖w‖2 ≥ 1, and the last two inequalities are
again implied by the positivity of δ and c and the non-negativity of the loss
function.

Since Lemma 2 holds with probability at least 1 − 1
n+1 > 1 − 1

min{n,m} ,
Lemma 4 holds with probability at least 1 − 1

m ≥ 1 − 1
min{n,m} , and Lemma 6

holds with probability at least 1−�2 exp
(

−mδ2

40�2

)

> 1− 1
min{n,m} (for sufficiently

large m), a simple union bound gives that the theorem holds with probability
at least 1 − 3

min{n,m} . �




Reconstructing a Sparse Solution 315

In practice support vector machines are often not solved optimally, but only
a δ′-approximation for some δ′ > 0 is computed. Let ŵ ∈ R� be a δ′-approximate
solution of the compressed support vector machine, i.e.,

(

L(Φ̄ŵ, y) + c ‖ŵ‖22
) − (

L(Φ̄w̄, y) + c ‖w̄‖22
) ≤ δ′,

then it follows immediately from Theorem1 that also the reconstruction ΛT ŵ
provides an approximation of the optimal solution w for the original support
vector machine whose approximation guarantee depends only on δ and δ′, i.e.
with high probability we have

(1 + (1 + 1/c)δ)−2
(

L(ΦΛT ŵ, y) + c ‖ΛT ŵ‖22
) − δ − δ′

≤ L(Φw, y) + c ‖w‖22 ≤ L(ΦΛT ŵ, y) + c ‖ΛT ŵ‖22.

4 Feature Selection

Our compression schemes works well when we can assume that the optimal solu-
tion of the original support vector machine is sparse. It is common
practice to promote sparse solutions by L1-regularization, i.e., by adding an
L1-regularization term c1‖w‖1 with regularization parameter c1 to the original
support vector machine problem. Unfortunately, Theorem1 is no longer valid for
the modified support vector machine since Lemmas 4 and 6 do not hold for the
L1-norm. This problem can be circumvented by the feature selection approach
that we describe in the following, see also [10] for the idea. The feature selection
approach is best motivated by using the adjoint problem formulation for support
vector machines which is a consequence of the Representer Theorem, see [9]. The
standard L2-regularization parameter c is referred to as c2 in the following.

Theorem 2 [Representer Theorem]. For any loss function L(·, ·) if

w = argminw′∈Rm

(

L(Φw′, y) + c2‖w′‖22
)

exists, then w = ΦT a for some a ∈ Rn.

It follows that we can optimize over a ∈ Rn instead of w ∈ Rm, namely by
substituting w = ΦT a in the original support vector machine problem, which
results in the equivalent adjoint formulation

min
a∈Rn

(

L(ΦΦT a, y) + c2
(

aT ΦΦT a
))

.

The matrix ΦΦT ∈ Rn×n can also be written as

ΦΦT =
m

∑

j=1

ΨjΨ
T
j ,

where Ψj is the j-th column of the matrix Φ. That is, ΦΦT has been written
as a sum of m rank-1 matrices ΨjΨ

T
j that correspond to the feature functions



316 J. Giesen et al.

ej , j = 1, . . . , m. Weighting the j-th feature function by 0 ≤ μj ≤ 1 results in
new feature functions e

(μ)
j = μjej and

m
∑

j=1

Ψ
(μ)
j

(

Ψ
(μ)
j

)T

:=
m

∑

j=1

μ2
jΨjΨ

T
j = Φ(μ)

(

Φ(μ)
)T

,

with Φ(μ) := ΦD, where D = D(μ1, . . . , μm) ∈ Rm×m is the diagonal matrix
whose diagonal is the weight vector μ = (μ1, . . . , μm) ∈ [0, 1]m. Sparse solutions
can now be promoted by adding an L1-regularization term for the weight vector
μ which results in the following feature selective support vector machine

min
μ∈[0,1]m

min
w∈Rm

(

L(Φ(μ)w, y) + c2 ‖w‖22 + c1 ‖μ‖1
)

that can be compressed as follows

min
μ̄∈[0,1]m

min
w̄∈R�

(

L(Φ̄(μ̄)w̄, y) + c2 ‖w̄‖22 + c1 ‖μ̄‖1
)

,

where Φ̄(μ̄) ∈ Rn×� is the matrix whose rows are the �-dimensional feature vectors

Φ̄
(μ̄)
i =

( m
∑

j=1

λ1je
(μ̄)
j (xi) , . . . ,

m
∑

j=1

λ�je
(μ̄)
j (xi)

)

=
( m

∑

j=1

λ1jμ̄jej(xi) , . . . ,

m
∑

j=1

λ�jμ̄jej(xi)
)

for i = 1, . . . , n. That is, Φ̄(μ̄) = Φ(μ̄)ΛT .

In the spirit of Theorem1 we can prove an analogous theorem for the rela-
tionship between the feature selective support vector machine and its compressed
counterpart.

Theorem 3. For a given δ ∈ (0, 1/2), the optimal solution (w, μ) of the original
feature selective support vector machine, where w is assumed to be l-sparse, and
the reconstruction (ΛT w̄, μ̄) from the optimal solution (w̄, μ̄) of the compressed
feature selective support vector machine can be related as follows,

(1 + (1 + 1/c2)δ)−2
(

L(Φ(μ̄)ΛT w̄, y) + c2 ‖ΛT w̄‖22 + c1 ‖μ̄‖1
)

− δ

≤ L(Φ(μ)w, y) + c2 ‖w‖22 + c1 ‖μ‖1
≤ L(Φ(μ̄)ΛT w̄, y) + c2 ‖ΛT w̄‖22 + c1 ‖μ̄‖1.

with probability at least 1− 3
min{m,n} for sufficiently large � ∈ Ω

(

l logmax{n,m}
δ2

)

.



Reconstructing a Sparse Solution 317

Proof. The first inequality follows from

L(Φ(μ̄)ΛT w̄, y) + c2 ‖ΛT w̄‖22 + c1 ‖μ̄‖1
= L(Φ̄(μ̄)w̄, y) + c2 ‖ΛT w̄‖22 + c1 ‖μ̄‖1
≤ L(Φ̄(μ̄)w̄, y) + c2(1 + δ) ‖w̄‖22 + c1 ‖μ̄‖1
≤ (1 + δ)

(

L(Φ̄(μ̄)w̄, y) + c2 ‖w̄‖22 + c1 ‖μ̄‖1
)

≤ (1 + δ)
(

L(Φ̄(μ)Λw, y) + c2 ‖Λw‖22 + c1 ‖μ‖1
)

≤ (1 + δ)
(

L(Φ(μ)w, y) + δ‖w‖2 + c2 ‖Λw‖22 + c1 ‖μ‖1
)

≤ (1 + δ)
(

L(Φ(μ)w, y) + δ‖w‖2 + c2 (1 + δ)‖w‖22 + c1 ‖μ‖1
)

≤ (1 + δ)
(

L(Φ(μ)w, y) + (δ + δ‖w‖22) + c2 (1 + δ)‖w‖22 + c1 ‖μ‖1
)

= (1 + δ)
(

L(Φ(μ)w, y) + c2 (1 + (1 + 1/c2)δ)‖w‖22 + c1 ‖μ‖1 + δ
)

≤ (1 + (1 + 1/c2)δ)(1 + δ)
(

L(Φ(μ)w, y) + c2 ‖w‖22 + c1 ‖μ‖1 + δ
)

≤ (1 + (1 + 1/c2)δ)2
(

L(Φ(μ)w, y) + c2 ‖w‖22 + c1 ‖μ‖1 + δ
)

where the first inequality has been shown in Lemma6, the second inequality
follows from δ > 0 and the non-negativity of both the loss function and c1 ‖μ̄‖1,
the third inequality is implied by the optimality of (w̄, μ̄) and the feasibility of
(Λw, μ) for the compressed problem, the fourth inequality has been shown in
Lemma 2, the fifth inequality has been shown in Lemma4, the sixth inequality
is implied by δ‖w‖2 ≤ δ if ‖w‖2 ≤ 1 and δ‖w‖2 ≤ δ‖w‖22 if ‖w‖2 ≥ 1, and
the last two inequalities are again implied by the positivity of δ and c2 and the
non-negativity of both the loss function and c1 ‖μ̄‖1.

The second inequality follows from the optimality of (w, μ) and the feasibility
of (ΛT w̄, μ̄) for the original feature selective support vector machine, i.e.,

L(Φ(μ)w, y) + c2 ‖w‖22 + c1 ‖μ‖1 ≤ L(Φ(μ̄)ΛT w̄, y) + c2 ‖ΛT w̄‖22 + c1‖μ̄‖1.

As in the proof of Theorem1, since Lemma 2 holds with probability at least
1 − 1

n+1 > 1 − 1
min{n,m} , Lemma 4 holds with probability at least 1 − 1

m ≥
1 − 1

min{n,m} , and Lemma 6 holds with probability at least 1− �2 exp
(

−mδ2

40�2

)

>

1 − 1
min{n,m} (for sufficiently large m), a simple union bound gives that the

theorem holds with probability at least 1 − 3
min{n,m} . �


As for Theorem 1, if (ŵ, μ̂) is only a δ′-approximate solution of the compressed
feature selective support vector machine, then the reconstruction (ΛT ŵ, μ̂) is an
approximation of the optimal solution (w, μ) for the original feature selective
support vector machine, whose strong approximation guarantee depends only
on δ and δ′.



318 J. Giesen et al.

The original and the compressed feature selective support vector machine
can both be reformulated as convex-concave optimization problems that have a
unique solution and can be solved efficiently.

5 Conclusions

We have shown that the optimal solution of a support vector machine can be
reconstructed up to a small error from an optimal or approximate solution of
a corresponding compressed support vector machine, where the compression is
achieved through a standard Gaussian projection matrix. The approximation
error depends on the required compression rate that can be controlled. The
approximation guarantee depends only on the rather weak assumption that the
solution to the original problem is sparse in some basis. This assumption is for
example satisfied when the feature matrix is of low rank, an assumption that
has been used before. We have also shown that our compression technique works
well together with a feature selection approach that promotes sparse solutions.

Our approach is not restricted to standard support vector machines. Only
Lemma 2 needs to be adapted for handling other loss functions, e.g., a logis-
tic loss function or the Crammer Singer loss function, see [4], for multi-class
classification. In future work it would be interesting to generalize the results to
projection matrices that allow a faster computation of the compressed feature
matrix.

Acknowledgments. This work has been carried out within the project CG Learn-
ing. The project CG Learning acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Programme
for Research of the European Commission, under FET-Open grant number: 255827.

References

1. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: uni-
versal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

2. Clarkson, K.L., Woodruff, D.P.: Low rank approximation and regression in input
sparsity time. In: Symposium on Theory of Computing Conference (STOC), pp.
81–90 (2013)

3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

4. Crammer, K., Singer, Y.: On the learnability and design of output codes for mul-
ticlass problems. In: Computational Learning Theory (COLT), pp. 35–46 (2000)

5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

6. Fornasier, M., Rauhut, H.: Compressive Sensing, Chap. 2. Springer, New York
(2011)

7. Joachims, T.: Training linear SVMs in linear time. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 217–226 (2006)



Reconstructing a Sparse Solution 319

8. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contem. Math. 26, 189–206 (1984)

9. Kimeldorf, G.S., Wahba, G.: A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. Ann. Math. Stat. 41, 495–502 (1970)

10. Lanckriet, G.R.G., Cristianini, N., Bartlett, P.L., El Ghaoui, L., Jordan, M.I.:
Learning the kernel matrix with semi-definite programming. In: Proceedings of
the Nineteenth International Conference (ICML), pp. 323–330 (2002)

11. Lin, C.-J., Weng, R.C., Keerthi, S.S.: Trust region newton method for logistic
regression. J. Mach. Learn. Res. 9, 627–650 (2008)

12. Meng, X., Mahoney, M.W.: Low-distortion subspace embeddings in input-sparsity
time and applications to robust linear regression. In: Symposium on Theory of
Computing Conference (STOC), pp. 91–100 (2013)

13. Nelson, J., Nguyen, H.L.: OSNAP: faster numerical linear algebra algorithms via
sparser subspace embeddings. In: Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 117–126 (2013)

14. Paul, S., Boutsidis, C., Magdon-Ismail, M., Drineas, P.: Random projections for
support vector machines. In: International Conference on Artificial Intelligence
(AISTATS) (2013)

15. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

16. Vedaldi, A., Zisserman, A.: Sparse kernel approximations for efficient classification
and detection. In: IEEE Conference on Computer Vision and Pattern Recognition
(ICCV) (2012)

17. Vempala, S.: The Random Projection Method. DIMACS: Series in Discrete Mathe-
matics and Theoretical Computer Science Series. American Mathematical Society,
Providence (2004)

18. Yu, H.-F., Hsieh, C.-J., Chang, K.-W., Lin, C.-J.: Large linear classification when
data cannot fit in memory. In: ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 833–842 (2010)

19. Zhang, L., Mahdavi, M., Jin, R., Yang, T.: Recovering optimal solution by dual
random projection. In: Conference on Learning Theory (COLT) (2013)



Subquadratic-Time Algorithms for Abelian
Stringology Problems

Tomasz Kociumaka, Jakub Radoszewski(B), and Bart�lomiej Wísniewski

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Warsaw, Poland

{kociumaka,jrad}@mimuw.edu.pl, b.wisniewski@students.mimuw.edu.pl

Abstract. We propose the first subquadratic-time algorithms to a num-
ber of natural problems in abelian pattern matching (also called jumbled
pattern matching) for strings over a constant-sized alphabet. Two strings
are considered equivalent in this model if the numbers of occurrences of
respective symbols in both of them, specified by their so-called Parikh
vectors, are the same. We propose the following algorithms for a string
of length n:
– Counting and finding longest/shortest abelian squares in

O(n2/ log2 n) time. Abelian squares were first considered by Erdös
(1961); Cummings and Smyth (1997) proposed an O(n2)-time algo-
rithm for computing them.

– Computing all shortest (general) abelian periods in O(n2/
√

log n)
time. Abelian periods were introduced by Constantinescu and Ilie
(2006) and the previous, quadratic-time algorithms for their compu-
tation were given by Fici et al. (2011) for a constant-sized alphabet
and by Crochemore et al. (2012) for a general alphabet.

– Finding all abelian covers in O(n2/ log n) time. Abelian covers were
defined by Matsuda et al. (2014).

– Computing abelian border array in O(n2/ log2 n) time.
This work can be viewed as a continuation of a recent very active line
of research on subquadratic space and time jumbled indexing for binary
and constant-sized alphabets (e.g., Moosa and Rahman, 2012). All our
algorithms work in linear space.

Keywords: Jumbled pattern matching · Jumbled indexing · Abelian
period · Abelian square

1 Introduction

Algorithmic abelian stringology has been extensively studied in the recent years.
Abelian pattern matching (also called jumbled pattern matching) can be viewed

T. Kociumaka—Supported by Polish budget funds for science in 2013–2017 as a
research project under the ‘Diamond Grant’ program.
J. Radoszewski—Supported by the Polish Ministry of Science and Higher Education
under the ‘Iuventus Plus’ program in 2015–2016 grant no 0392/IP3/2015/73.
J. Radoszewski—Newton International Fellow at King’s College London.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 320–334, 2016.
DOI: 10.1007/978-3-319-32859-1 27



Subquadratic-Time Algorithms 321

as an approximate variant of regular pattern matching. The problem that has
received most attention in this area is jumbled indexing; see [2–4,11,12,15,16].
In the binary case, initially it was known that there exists a jumbled index of
linear size that can answer in constant time queries asking if there is a substring
of the text that is commutatively equivalent to a pattern specified by the number
of zeroes and ones (see [4]). However, the straightforward construction time of
such an index was quadratic. Due to a number of works [2,15,16] O(n2/ log2 n)-
time construction algorithm of such an index was obtained. This line of research
eventually lead to a very recent breakthrough O(n1.859)-time algorithm by Chan
and Lewenstein [3].

In this work we present the first subquadratic-time algorithms computing
several basic notions of abelian stringology in the case of binary and constant-
sized alphabet. This includes:

– Abelian squares, that were first considered from a combinatorial perspective
by Erdös [8] and from the algorithmic perspective by Cummings and Smyth [7]
(in the latter case, under the name of weak repetitions),

– Abelian periods, defined by Constantinescu and Ilie [5],
– Abelian covers, introduced by Matsuda et al. [14],
– Natural notions of abelian borders and abelian border array.

Cummings and Smyth [7] presented an O(n2)-time algorithm for computing all
abelian squares in a string of length n. Fici et al. [9] showed an O(n2)-time
algorithm computing abelian periods in a string over a constant-sized alphabet
and Crochemore et al. [6] solved this problem in O(n2) time for any alphabet.
Other types of abelian periods are known, including regular and full abelian
periods (see [10]), for which linear-time or almost linear-time algorithms are
known [13].

Matsuda et al. [14] used a slightly different definition of abelian covers than
the one that we use here (that is, they considered two abelian covers different
if and only if the set of starting positions of the occurrences of the covers are
different) and obtained an O(n2)-time algorithm for computing a representation
of all such (possibly exponentially many) abelian covers.

Our Results:

– Computing the longest, the shortest and the number of all abelian squares in
O(n2/ log2 n) time and computing the distribution of all abelian squares over
their center positions in O(n2/ log n) time;

– Computing the shortest (general) abelian period and all its occurrences, and
an O(n2/ log n)-representation of all abelian periods in O(n2/

√
log n) time;

– Computing the shortest abelian cover in O(n2/ log n) time;
– Computing the abelian border array in O(n2/ log2 n) time and a representa-

tion of all abelian borders of prefixes of the string in O(n2/ log n) time (show-
ing a similarity between computing abelian borders and abelian squares).

We assume constant-sized alphabet and the word-RAM model of computation.
In all algorithms we apply in a fancy way the technique called four-Russian



322 T. Kociumaka et al.

trick, which was first involved in abelian pattern matching by Moosa and
Rahman [16] in the problem of jumbled indexing. All our algorithms work in
linear space, excluding the size of the result.

Structure of the Paper: The following section includes definitions of the terms
used in abelian stringology, as well as the basic notation. In Sects. 3, 4 and 5
we show our results for a binary alphabet. In Sect. 6 we show that all presented
algorithms can be applied to the case of any constant-sized alphabet, preserv-
ing both time and space complexity. The Conclusions Section contains a brief
discussion of possible future work.

2 Preliminaries

Let s be a string of length n = |s| over an alphabet Σ of size σ = |Σ|. By s[i],
where 1 ≤ i ≤ n, we denote the i-th symbol of s, and by s[i, j] we denote a
substring of s consisting of all symbols of s on positions from i to j inclusive.
Substrings of the form s[1, i] are called prefixes of s and substrings of the form
s[i, n] are called suffixes of s.

A Parikh vector of a string s, P(s), is a vector of size σ, where the element
P(s)[l] stores the number of occurrences of symbol l in string s, i.e. P(s)[l] = x
if and only if |{i : s[i] = l}| = x. The norm r of a Parikh vector R is the sum of
its elements, r = Σl∈ΣR[l]. One can add or subtract Parikh vectors component-
wise.

We say that two strings s and t are abelian equivalent (or commutatively
equivalent), if s is a permutation (an anagram) of t, or equivalently P(s) =
P(t), and write s ≈ t. We say that t is an abelian factor of s if and only if
P(t)[l] ≤ P(s)[l] for every symbol l of the alphabet Σ. We say that a position i
in a string t is an abelian occurrence of a string s if s ≈ t[i, i + |s| − 1].

We now proceed with the definitions of the main notions of abelian periodicity
that we consider in the paper.

Definition 1. An abelian square is a string t of length 2k such that t[1, k] ≈
t[k + 1, 2k].

Definition 2. A pair (i, k) is a (general) abelian period of s if and only if
there exists an index j such that s[i, i + k − 1] ≈ s[i + k, i + 2k − 1] ≈ . . . ≈
s[i + (j − 1)k, i + jk − 1] and s[1, i − 1] and s[i + jk, n] are abelian factors of
s[i, i + k − 1]. A regular abelian period k of s is a general abelian period of s
that starts at the first position of s, i.e. the general abelian period (1, k) of s is
a regular abelian period k of s.

Definition 3. An abelian border t of s is a prefix of s that is abelian equivalent
to some suffix of s. A proper abelian border t of s is an abelian border t such
that |t| < n. An abelian border array of s is a table π of length n such that π[i]
is the length of the longest proper abelian border of s[1, i].



Subquadratic-Time Algorithms 323

Definition 4. An abelian border t is an abelian cover of s if and only if the
abelian occurrences of t in s cover the whole string s. That is, if I is a sorted
sequence of positions i in s such that s[i, i+ |t| − 1] ≈ t, then the first element of
I is 1, the last element of I is n − |t| + 1 and the differences between every two
consecutive elements of I are no greater than |t|.

In Sects. 3, 4 and 5 we consider strings over a binary alphabet Σ = {0, 1}.
In this case, to check if two strings s and t of the same length are abelian
equivalent it suffices to know only the number of 1 s in each of them. We denote
ones(s) = |{i : s[i] = 1}|. Let us note that ones(s[i, j]) can be computed in
constant time using an array pre-computed in linear time that stores values of
ones(s[1, i]) for every 1 ≤ i ≤ n. We assume that ones(s[i, j]) = 0 for i > j.

In the binary case we assume that s[i, i + m − 1] for m = O(log n) can be
stored using a constant number of integers (bit masks). An array that stores the
representations of all such substrings for a given m can be computed in linear
time.

3 Abelian Squares

In this section we focus on finding the longest abelian squares which have their
centers in every possible index i of string s. That is, for each 1 ≤ i ≤ n we want
to find the largest k such that s[i − k, i − 1] ≈ s[i, i + k − 1].

This problem was solved in O(n2) time by Cummings and Smyth [7]. Let us
briefly restate their solution in the case of a binary alphabet. For every i we take
k = min(i − 1, n − i + 1) and store in a variable r the difference ones(s[i − k, i −
1]) − ones(s[i, i + k − 1]). If r = 0 then s[i − k, i + k − 1] is an abelian square.
If not, then we decrease k by one, update r, and check again. We continue this
way, until we find such k, for which the condition holds. One can see that this
solution works in O(n2) time and O(n) space. Our algorithm reduces the time
complexity of this scheme by employing two optimizations.

3.1 First Optimization

For the first optimization we will use a pre-computed 3-dimensional auxiliary
array A of size (2m + 1) × 2m × 2m; the particular value of m will be chosen
later. If there exists a string w of length 2k ≥ 2m with a m-letter prefix p,
m-letter suffix q and ones(w[1, k]) − ones(w[k + 1, 2k]) = Δ, and the longest
abelian square centered in the middle of w has length k − l for 0 ≤ l ≤ m,
then A[Δ][p][q] = l. Otherwise (if such an abelian square does not exist or it is
shorter) A[Δ][p][q] = −1.

One can see that when |Δ| > m, then A[Δ][p][q] = −1 for every p and q, so
there is no need to store this information explicitly. Each field of array A can be
computed in O(m) time, so the whole array A can be constructed in O(m24m)
time. To compute each field of the array A we obviously do not need to generate
the string w.



324 T. Kociumaka et al.

p q

1 0 0 0 1 1

s[i − k, i − 1] s[i, i + k − 1]

Δ = ones(s[i − k, i − 1]) − ones(s[i, i + k − 1])

Fig. 1. How to choose p, q and Δ for given i, k and m = 3. If Δ = 1, A[Δ][p][q] = 2.

When analyzing a specific index i of string s and a specific length k we set a
m-letter prefix of s[i− k, i+ k − 1] as p, and a m-letter suffix of s[i− k, i+ k − 1]
as q, i.e. p = s[i−k, i−k+m−1] and q = s[i+k−m, i+k−1]. Additionally let
Δ be the difference in the number of 1 s between the first and the second half of
s[i − k, i + k − 1], i.e. Δ = ones(s[i − k, i − 1]) − ones(s[i, i + k − 1]); see Fig. 1.

If A[Δ][p][q] �= −1 and k is the largest possible (that is, k = min(i−1, n− i+
1)), we have found the longest abelian square with a center in i. If A[Δ][p][q] =
−1, we know that the length of the longest abelian square is no greater than
k − m. We can now decrement k by m and check the array A again. We finish
either when the first abelian square is found or when k drops below m; in the
latter case we find the longest abelian square in O(m) time. This way we can
compute the length of the longest abelian square with a center in i in O(n/m+m)
time and lengths of longest abelian squares for every center index i of s in
O(n2/m + nm) time.

Lemma 5. The longest abelian squares for every center index i of s can be
computed in O(n2/ log n) time using O(n) space.

Proof. By choosing m =
⌊

log n
4

⌋

the running time becomes:

O(n2/m + nm + m24m) = O(n2/ log n + n log n + 4
log n

4 log2 n)
= O(n2/ log n +

√
n log2 n)

= O(n2/ log n).

The space complexity becomes:

O(n + m4m) = O(n + 4
log n

4 log n)
= O(n +

√
n log n)

= O(n). ��

3.2 Second Optimization

We will now use a second optimization, which will allow us to further decrease
the time complexity. For this purpose we will pre-compute an auxiliary array B
of size (2m − 1) × 22m−1 × 22m−1 × 2m × 2m.

If there is a string w of length 2k + m − 1 (k ≥ m) that satisfies all the
conditions:



Subquadratic-Time Algorithms 325

– ones(w[1, k]) − ones(w[k + 1, 2k]) = Δ,
– its (2m − 1)-letter prefix is p,
– its (2m − 1)-letter suffix is q,
– c = w[k + 1, k + m − 1],
– b is a bit mask of length m,

then B[Δ][p][q][c][b] stores all pairs (j, l) such that j ≤ m, l ≤ m, b[j] = 0 and
k − l is the length of the longest abelian square with a center in k + j.

Every field of array B can be computed in O(m2) time with a modified
algorithm for finding abelian squares by Cummings and Smyth [7] that we have
already recalled at the beginning of this section. We check m center indices
and m lengths of potential abelian squares. The variable r can be initialized in
constant time, using Δ.

In our algorithm, instead of analyzing a specific index i, we will analyze
m indices i, i + 1, . . ., i + m − 1 at a time. When considering i we look at
k = min(i − 1, n − i − m + 2), set the (2m − 1)-letter prefix of s[i − k, i +
k + m − 2] as p and the (2m − 1)-letter suffix of the same as q. We also take
Δ = ones(s[i − k, i − 1]) − ones(s[i, i + k − 1]) and c = s[i, i + m − 1].

Additionally, we maintain a bit mask b telling us for which of these m indices
we have already found the longest abelian square (we initialize all bits of b to 0).
Now we check the array B with proper values for each dimension (see Fig. 2),
save all pairs stored in the corresponding field of B, replace b with the updated
mask and decrease k by m. We continue this way until all bits of b are 1 or until
k < m, in which case we search for the abelian squares at positions i, . . . , i+m−1
in O(m2) time. Then we start considering i + m.

This solution can be implemented in two nested loops, where both the inner
and the outer loop execute O(n/m) runs. This way the whole algorithm works
in O(n2/m2 + nm2) time, after constructing array B in O(m364m) time. Since
the array can possibly store more than one value in each field, it uses O(m264m)
space.

This algorithm computes the lengths of the longest abelian squares with
their centers in every index i. It can be easily modified to compute the lengths
of the shortest abelian squares. Instead of starting with the largest possible k
and decreasing it by m in every run of the inner loop, we may start with k = 1

p c q

0 1 0 0 1 1 0 1 0 1 1 1 1

s[i − k, i − 1] s[i, i + k − 1]

Δ = ones(s[i − k, i − 1]) − ones(s[i, i + k − 1])

Fig. 2. How to choose p, q, c and Δ for given i, k and m = 3. If Δ = 1 and b = (0, 0, 1),
then B[Δ][p][q][c][b] = ((1, 1), (2, 3)).



326 T. Kociumaka et al.

and increase it by m in every run. The array B also needs to be modified to
store information about the shortest abelian squares.

Theorem 6. The longest (shortest) abelian squares for every center index i of
s can be computed in O(n2/ log2 n) time using O(n) space.

Proof. By choosing m =
⌊

log n
12

⌋

the running time becomes:

O(n2/m2 + nm2 + m364m) = O(n2/ log2 n + n log2 n + 64
log n
12 log3 n)

= O(n2/ log2 n +
√

n log3 n)
= O(n2/ log2 n).

The space complexity becomes:

O(n + m264m) = O(n + 64
log n
12 log2 n)

= O(n +
√

n log2 n)
= O(n). ��

3.3 Counting All Abelian Squares

We can modify the values stored in array B so that we can use them to count
the number of all abelian squares in string s. In each field of B we may store the
number of all abelian squares, when the values Δ, p, q and w are specified. This
can be calculated in O(m2) time, which does not affect the time complexity (nor
the space complexity).

If we are interested only in computing the number of all abelian squares, we
may omit maintaining the bit mask b and cut one of the dimensions of array B.
This has no effect on the time and space complexity.

One can also count the number of all abelian squares, which have their center
in index i for every i. To make this possible, the array B can also store a list of
length m, where the j-th element of the list tells us how many abelian squares we
have found for the center i+j −1. Since we must process m operations, the time
complexity increases to O(n2/ log n). We may also say that the time complexity
is O(n2/ log2 n + d), where d is the number of all abelian squares in string s, if
we omit those indices, for which we have not found any abelian square.

Using the same approach we may also compute a list of all abelian squares
in string s (i.e. pairs of centers and lengths for every abelian square). The time
complexity remains O(n2/ log2 n+d) and the space complexity becomes O(n+d).

3.4 Abelian Borders

It is known that a string s has an abelian border of length i if and only if it has
an abelian border of length n − i (see Lemma 4 in Matsuda et al. [14]). This
way the longest and the shortest abelian borders are determined by each other.



Subquadratic-Time Algorithms 327

We will modify the algorithm for computing abelian squares of s so that it will
compute the abelian border array of s.

We still will be analyzing m indices i, i + 1, . . ., i + m − 1 at once, but
this time they stand for m ends of consecutive prefixes s[1, i], s[1, i + 1], . . .,
s[1, i + m − 1]. We will focus on finding the shortest abelian borders for these
prefixes. For given i we start with k = 1. We set Δ to the difference of numbers
of 1 s in s[1, k − 1] and s[i + m − k + 1, i + m − 1]. We denote (2m − 1)-letter
prefix of s[k, i + m − k], p = s[k, k + 2m − 2] and (2m − 1)-letter suffix of the
same, q = s[i − m − k + 2, i + m − k]. We fix c = s[i, i + m − 1] and maintain
a bit mask b, where the j-th bit of b tells if we have already found the shortest
abelian border of s[1, i + j − 1].

We will use a pre-computed auxiliary array C with the same number of
dimensions and the same size of respective dimensions as array B. Given Δ, p,
q, c and b the array C stores pairs (j, l) of shortest abelian borders that were
found. Every field of this array can be computed in O(m2) time.

The algorithm executes two nested loops. The outer loop starts with i = 1
and increases i by m after every run. The inner loop starts with k = 1 and
increases k by m after every run. This leads us to the following corollary.

Corollary 7. The abelian border array of string s can be computed in
O(n2/ log2 n) time using O(n) space.

Similarly as in the case of computing a distribution of abelian squares by
their centers, we can compute a representation of all abelian borders of prefixes
of s in O(n2/ log n) time and O(n) additional space.

4 Abelian Periods

The problem of finding all abelian periods was solved in O(n2) time for any
alphabet by Crochemore et al. [6]. Let us briefly recall their solution adapted to
our binary alphabet case.

One can see that k is a regular abelian period of s[i, n] if and only if all the
conditions below hold:

– k is a regular abelian period of s[i + k, n],
– if n ≥ i + 2k − 1 then s[i + k, i + 2k − 1] ≈ s[i, i + k − 1],
– if n < i + 2k − 1 then s[i + k, n] is an abelian factor of s[i, i + k − 1].

Thereby (i, k) is a (general) abelian period of s if and only if k is a regular
abelian period of s[i, n] and s[1, i − 1] is an abelian factor of s[i, i + k − 1].

All general abelian periods of s are of the form (i, k), where 1 ≤ i, k ≤ n, thus
information about all of them can be represented as an array GP of size n × n,
where GP [i][k] = 1 if (i, k) is an abelian period of s and GP [i][k] = 0 otherwise.
We can compute this array using dynamic programming. For this purpose we
use an array RP of size n×n, where RP [i][k] = 1 if k is a regular abelian period
of s[i, n] and RP [i][k] = 0 otherwise.



328 T. Kociumaka et al.

We will first show how to compute RP . We set RP [i][k] = 1 for every i and
k such that n ≤ i + k − 1. To compute RP [i][k] we need to know RP [i + k][k],
so we will consider all remaining pairs (i, k) in a descending order of i. Checking
if two strings are abelian equivalent or if one string is an abelian factor of the
other can be done in constant time, so the whole array RP can be computed in
O(n2) time and space.

To compute the array GP we look at each RP [i][k] = 1 such that i ≤ k and
set GP [i][k] = 1 if and only if s[1, i − 1] is an abelian factor of s[i, i + k − 1].

The length of the shortest abelian period of s, the number of all of them and
the number of all abelian periods of s can be easily extracted from the GP array.

4.1 Computing RP Faster

For a better picture, let us assume that i numbers columns and k numbers rows
of all arrays. Let us take m < n and without loss of generality assume that m is
a divisor of n (otherwise we increase n by at most m− 1). We can code O(log n)
fields of each of the arrays GP , RP into one machine word. In our case we will
pack all fields on indices {i, i+1, . . . , i+m−1}×{k, k+1, . . . , k+m−1} (there
are exactly m2 of them), where m|(i − 1) and m|(k − 1), into unit square arrays
of size m × m. If m is small enough, we can code such a unit array into one
machine word, row by row. This way both GP and RP are divided regularly
into n2/m2 unit square arrays and stored in O(n2/m2) space.

From now on we will still reference to a single field of GP and RP on indices
(i, k) or a subarray of any of them, but we are assuming that the physical rep-
resentation of arrays is as described. To improve time complexity of computing
RP and GP we will fill out m fields of RP at a time and m fields of GP at a
time.

To compute RP we will use three auxiliary arrays: A of size (2m+1)×2m2 ×
2m−1 × 22m−2, E of size 2m2 × 2m2 × m and F of size 2m2 × 2m × m.

E is an array which for given two unit arrays X and Y and a shift i, stores
a unit array Z such that the first n − i + 1 columns of Z are the last n − i + 1
columns of X and the last i − 1 columns of Z are the first i − 1 columns of Y .

F is an array which for given unit array X, a column (that is, a 1-d array)
C and a shift i, stores a unit array Y which is X with the i-th column replaced
by C.

Finally A[Δ][X][p][q] = C if and only if there exists a string w of length at
least 2k + 2m − 2 such that all of the conditions below hold:

– p = w[k + 1, k + m − 1],
– q = w[2k + 1, 2k + 2m − 2],
– Δ = ones(w[1, k]) − ones(w[k + 1, 2k]),
– k = lm + 1 for some integer l,
– X is a unit array containing information about regular periods on suffixes of

w starting on indices from {k + 1, k + 2, . . . , k + m} and having lengths from
{k, k + 1, . . . , k + m − 1},



Subquadratic-Time Algorithms 329

– C is a column containing information about regular periods of w with lengths
from {k, k + 1, . . . , k + m − 1}.

We will use this array, to instead of calculating one value RP [i][k] at a time,
calculate RP [i][k, k+m−1] at once. For every Δ, X, p and q, there exists exactly
one C. If |Δ| > m, then C = (0, 0, . . . , 0) and we do not store this explicitly,
otherwise we can simply pre-compute each field of A in O(m) time.

To compute RP we will first set all RP [i][k] = 1, where n ≤ k + i − 1, as
previously. Noticing that there are only O(n) unit arrays which we will fill with
1s only partially allows us to initialize RP in O(n2/m2) time, instead of O(n2)
time.

Now for the remaining pairs (i, k), we iterate first by k, starting with k =
n − m + 1 and decreasing it by m. For a given k we iterate by i from n to 1,
decreasing it by 1.

In each operation we take w = s[i, n], X = RP [i+k, i+k+m−1][k, k+m−1]
and p, q and Δ respectively; see Fig. 3. X can be extracted from two particular
unit arrays from the n2/m2 unit arrays that RP consist of, by using array E.
After getting a new column C from array A, that corresponds to RP [i][k, k +
m − 1], we can update array RP , using array F .

All the operations above are constant-time, thus the whole RP array can be
computed in O(n2/m) time.

p q

1 0 1 1 0 1

s[i, i + k − 1] s[i + k, i + 2k − 1]

Δ = ones(s[i, i + k − 1]) − ones(s[i + k, i + 2k − 1])

Fig. 3. How to choose p, q and Δ for given i, k and m = 3. If Δ = 0 and X =
(

1 0 0
0 0 0
0 0 1

)
,

then A[Δ][X][p][q] =
(

1
0
0

)
.

4.2 Computing GP Faster

Notice that if RP [i][k] = 0, then GP [i][k] = 0. Thus the array GP is the array
RP with some fields set to 0.

To compute the array GP we will first copy the array RP into it. Then we
will update GP [i][k] = 0 for all i > k. As already mentioned, that can be done
in O(n2/m2) time.

The remaining fields that have to be set to 0 are determined by all i and
k for which s[1, i − 1] is not an abelian factor of s[i, i + k − 1]. To detect all
such i and k, for each i we compute the minimal ki, such that s[1, i − 1] is an



330 T. Kociumaka et al.

abelian factor of s[i, i + ki − 1]. This can be done in linear time, since obviously
(i + 1) + ki+1 ≥ i + ki; see [6].

Having i and ki we set GP [i][k] = 0 for all k < ki. Since all such k form an
interval, it can be done in O(n/m) time for specific i and ki using the array F
and in O(n2/m) time for the whole array GP .

For now the arrays RP and GP use O(n2/m2) space. If we are interested
only in counting periods of every size and storing all shortest periods, it suffices
to store only m consecutive rows of both arrays, i.e. rows k, . . . , k+m−1 (and all
ki’s). For this only O(n/m) unit arrays and O(n) additional space is necessary.

In conclusion, computing arrays A, E and F costs us O(m22m2
8m +m34m2

)
time and O(m2m2

8m +m4m2
) space. Counting all abelian periods costs us addi-

tionally O(n2/m) time and O(n) space.

Theorem 8. All shortest abelian periods of string s can be computed in
O(n2/

√
log n) time using O(n) space.

Proof. By choosing m =
⌊

√

log n
4

⌋

the running time becomes:

O(n2/m + m22m2
8m + m34m2

) = O(n2/
√

log n + 2
log n

4 8
√

(log n)/4 log n

+4
log n

4 log
3
2 n)

= O(n2/
√

log n + n0.26 log n +
√

n log
3
2 n)

= O(n2/
√

log n).

The space complexity becomes:

O(n + m2m2
8m + m4m2

) = O(n + 2
log n

4 8
√

(log n)/4
√

log n + 4
log n

4
√

log n)

= O(n + n0.26
√

log n +
√

n log n)
= O(n).

��

5 Abelian Covers

For given i ≤ n we can check if the prefix of length i of string s is an abelian
cover of s. This is actually the abelian pattern matching problem, which for a
constant-sized alphabet can obviously be solved in linear time.

Let us assume that we have found all occurrences of s[1, i] in s and stored
their (sorted) positions in a sequence I. Then s[1, i] is an abelian cover of s if
and only if the first element of I is 1, the last element of I is n − i + 1 and the
differences between all pairs of consecutive elements of I are no greater than i.

Checking all 1 ≤ i ≤ n, the shortest abelian cover of string s can be found
in O(n2) time.



Subquadratic-Time Algorithms 331

5.1 Optimizing Running Time

Assume without loss of generality that m is a divisor of n. Instead of finding one
occurrence of s[1, i] in s at a time, we will only find the smallest and the largest
positions from each of intervals [1,m], [m + 1, 2m], . . ., [n − m + 1, n] such that
s[1, i] is an abelian match on s at these positions.

For this purpose we will use a pre-computed auxiliary array A of size 2m−1 ×
(2m + 1) × 2m−1. A[p][Δ][q] = (l1, l2) if and only if there are strings w of length
i+m−1 (text) and c of length i (potential cover) such that all of the conditions
below hold:

– p is a (m − 1)-letter prefix of w,
– q is a (m − 1)-letter suffix of w,
– Δ = ones(w[1, i]) − ones(c),
– 1 ≤ l1 ≤ l2 ≤ m,
– −ones(p[1, l1 − 1]) + ones(q[1, l1 − 1]) = Δ, i.e. c ≈ w[l1, l1 + i − 1],
– −ones(p[1, l2 − 1]) + ones(p[1, l2 − 1]) = Δ, i.e. c ≈ w[l2, l2 + i − 1],
– l1 is the smallest possible,
– l2 is the largest possible.

If no such pair exists then A[p][Δ][q] = (−1,−1). Each element of array A can
be pre-computed in O(m) time. We consider only −m ≤ Δ ≤ m, so the whole
array can be then pre-computed in O(m24m) time and uses O(m4m) space.

Our algorithm for finding the shortest abelian cover works as follows. First
we check if any prefix of s of length less than 2m is a cover of s. This can be
done by the straightforward solution in O(nm) time. Now we assume that the
shortest cover has length at least 2m.

We iterate with i from 2m to n to check if s[1, i] is an abelian cover of s. For
every i we start with I = (). Now we iterate with j from j = 1 to n − i + 1,
increasing j by m each time. We are checking if there is an abelian match on
positions [j, j+m−1], so we are implicitly considering substring s[j, j+i+m−2].

For every i and j we denote three values:

– the (m − 1)-letter prefix of s[j, j + i + m − 2], p = s[j, j + m − 2],
– the (m − 1)-letter suffix of s[j, j + i + m − 2], q = s[j + i, j + i + m − 2] and
– the difference of 1s, Δ = ones(s[j, j + i − 1]) − ones(s[1, i]).

If |Δ| > m then s[1, i] does not abelian match any substring in s[j, j + i +
m−2]. Otherwise we can find the first and the last occurrence (in the considered
interval) by referencing to the array A and, if they exist, add them to I.

After iterating with j, I contains O(n/m) elements. We can then check if
s[1, i] is an abelian cover of s the same way, as we did it in the straightforward
solution. This way the whole algorithm works in O(nm + n2/m) time.

Theorem 9. The shortest abelian cover for string s can be computed in
O(n2/ log n) time using O(n) space.



332 T. Kociumaka et al.

Proof. By choosing m =
⌊

log n
4

⌋

the running time becomes:

O(nm + n2/m + m24m) = O(n log n + n2/ log n + 4
log n

4 log2 n)
= O(n2/ log n +

√
n log2 n)

= O(n2/ log n).

The space complexity becomes:

O(n + m4m) = O(n + 4
log n

4 log n)
= O(n +

√
n log n)

= O(n).
��

It is clear that we can use the same algorithm to compute lengths of all
abelian covers of s. If we are interested in detecting all occurrences of all abelian
covers of s, then the array A needs to store not only the pair of the smallest l1
and the largest l2 that hold all mentioned conditions, but all such l. This has no
effect on space complexity, but the time complexity becomes O(n2/ log n + d),
where d is the number of all occurrences of all abelian covers in s.

The shortest abelian cover is probably of most interest. We can use our
algorithm to find it and then we can find all its occurrences in s in O(n) time,
using abelian pattern matching in linear time.

6 The Case of a Larger Alphabet

We have presented subquadratic-time algorithms for computing abelian squares,
general abelian periods, abelian covers and abelian border array for a string over
a binary alphabet. In the fundamental problem of abelian stringology—jumbled
indexing—switching from binary to a larger constant-sized alphabet increases
the hardness of the problem considerably [1,12]. However, all our algorithms
can be applied to the case of any constant-sized alphabet, preserving both time
and space complexity.

For this, in each of the presented auxiliary arrays, instead of considering
Δ, that is, the difference in the number of 1 s between two substrings, we may
consider a difference of Parikh vectors of the corresponding substrings. The num-
ber of possible differences we should consider now is obviously no greater than
(2m + 1)σ, where σ is the size of the alphabet. This increases the size of the
auxiliary arrays and the computation time by at most a factor of O(logσ n).
These sizes and construction times were always o(n1−ε) for some ε > 0. Hence,
they will remain sublinear for a constant σ.

Instead of using the function ones, we may use an analogous constant-time
function that returns a Parikh vector for a substring. In all of the algorithms
we assume that a substring of length m can be stored using one machine word.
For this to be still true for σ > 2, we need to divide the proposed values of m in
Theorems 6 and 9 by a factor of log σ and in Theorem 8 by a factor of

√
log σ.



Subquadratic-Time Algorithms 333

7 Conclusions

We have presented the first subquadratic-time algorithms for computing abelian
squares, general abelian periods, abelian covers and abelian border array for
a string over a constant-sized alphabet. An open question is if there exist
O(n2/ logc n)-time algorithms for the problems considered in this paper with
a larger constant c. A further question, for all of the problems, is if there exists
an O(n2−ε)-time algorithm or, possibly, if there is a lower bound on the time
complexity of an algorithm solving this problem. In comparison, for the seminal
problem in this area, the jumbled indexing, on one hand, O(n2−ε)-time algo-
rithms are known for any constant-sized alphabet [3], but on the other hand, for
sufficiently large alphabets σ > 2 conditional lower bounds are known for the
query vs construction time trade-off [1] based on hardness of the 3SUM problem.

References

1. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled
indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014)

2. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On table arrangements, scrabble freaks,
and jumbled pattern matching. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS,
vol. 6099, pp. 89–101. Springer, Heidelberg (2010)

3. Chan, T.M., Lewenstein, M.: Clustered integer 3SUM via additive combinatorics.
In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
14–17 June 2015, pp. 31–40. ACM (2015)

4. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference
2009, Prague, Czech Republic, 31 August - 2 September 2009, pp. 105–117. Prague
Stringology Club, Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague (2009)

5. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull.
EATCS 89, 167–170 (2006)

6. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Pachocki, J.,
Radoszewski, J., Rytter, W., Tyczyński, W., Waleń, T.: A note on efficient com-
putation of all abelian periods in a string. Inf. Process. Lett. 113(3), 74–77 (2013)

7. Cummings, L.J., Smyth, W.F.: Weak repetitions in strings. J. Comb. Math. Comb.
Comput. 24, 33–48 (1997)

8. Erdös, P.: Some unsolved problems. Hung. Acad. Sci. Mat. Kutató Intézet Közl 6,
221–254 (1961)

9. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, É.: Computing abelian periods in
words. In: Holub, J., Žd’árek, J. (eds.) Proceedings of the Prague Stringology Con-
ference 2011, pp. 184–196. Czech Technical University in Prague, Czech Republic
(2011)

10. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, É., Smyth, W.: Quasi-linear
time computation of the abelian periods of a word. In: Holub, J., Žd’árek, J.
(eds.) Proceedings of the Prague Stringology Conference 2012, pp. 103–110. Czech
Technical University in Prague, Czech Republic (2012)



334 T. Kociumaka et al.

11. Hermelin, D., Landau, G.M., Rabinovich, Y., Weimann, O.: Binary jumbled pat-
tern matching via all-pairs shortest paths. CoRR, abs/1401.2065 (2014)

12. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern
matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)

13. Kociumaka, T., Radoszewski, J., Rytter, W.: Fast algorithms for abelian periods in
words and greatest common divisor queries. In: Portier, N., Wilke, T. (eds.) 30th
International Symposium on Theoretical Aspects of Computer Science, STACS
2013, 27 February - 2 March 2013, Kiel, Germany, vol. 20 of LIPIcs, pp. 245–256.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

14. Matsuda, S., Inenaga, S., Bannai, H., Takeda, M.: Computing abelian covers and
abelian runs. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringol-
ogy Conference 2014. Prague, Czech Republic, 1–3 September 2014, pp. 43–51.
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague (2014)

15. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Inf.
Process. Lett. 110(18–19), 795–798 (2010)

16. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures
for permutation matching in binary strings. J. Discrete Algorithms 10, 5–9 (2012)



Using Statistical Search to Discover Semantic
Relations of Political Lexica – Evidences

from Bulgarian-Slovak EUROPARL 7 Corpus

Velislava Stoykova(B)

Institute for Bulgarian Language - BAS,
52, Shipchensky Proh. Str., Bl. 17, 1113 Sofia, Bulgaria

vstoykova@yahoo.com

Abstract. The paper presents statistical approach to discover semantic
relations of political lexica using parallel Bulgarian-Slovak EUROPARL
7 Corpus. It employs statistical properties incorporated in the Sketch
Engine software to generate concordances, co-occurrences and colloca-
tions. A comparative analysis of semantic structure of political lexica
investigating synonymic, attributive and reciprocal semantic relations of
most frequent key words from two parallel corpora – for both Bulgarian
and Slovak languages is offered. The paper address some issue related
to correct terms discovery, their translations and use in political speech.
Finally, more general conclusions about semantic properties of political
lexica are presented.

Keywords: Data mining · Combinatorics on words · Machine
translation

1 Introduction

The Europarl parallel corpus contains proceedings of European Parliament ses-
sions. It includes texts in 21 European languages belonging to different fami-
lies of related and non-related languages. From its early beginning the corpus
was created to process pairs of sentence aligned bilingual sub-corpora for sta-
tistical machine translation [5]. The preprocessing includes identifying sentence
boundaries and alignment of bilingual pairs of parallel corpora using Church
and Gale algorithm [1]. In its last version EUROPARL 7 Corpus uses small
number of mark-up annotations like: <CHAPTER id>, <SPEAKER id name and
language> and paragraph <p>. The existing parallel corpora relate most Euro-
pean languages to English including the Bulgarian-English parallel EUROPARL
7 Corpus. Further, we are going to present a research on analysis of seman-
tic properties of political lexica using Bulgarian-Slovak parallel EUROPARL 7
Corpus generated on the base of EUROPARL 7.

2 Bulgarian-Slovak EUROPARL 7 Corpus

The Bulgarian-Slovak parallel EUROPARL 7 Corpus includes texts from both
Bulgarian and Slovak part of EUROPARL 7 Corpus and uses the Sketch Engine
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 335–339, 2016.
DOI: 10.1007/978-3-319-32859-1 28



336 V. Stoykova

software for processing parallel corpora, hence corpus texts are incorporated into
the Sketch Engine statistical software. The corpus is not annotated for part-of-
speech, not lemmatized and does not use any formal grammar. It uses annotation
scheme of EUROPARL 7 Corpus and includes at about 9 215 000 words of
Bulgarian language sub-corpus and 13 000 000 words of Slovak language sub-
corpus allowing different types of statistical search and Corpus Query Language
(CQL) regular expressions search.

3 The Sketch Engine

The Sketch Engine (SE) software [3,4] allows the use of various approaches to
extract lexical semantic properties of words and most of them are with multi-
lingual application [2]. Extracting keywords is a most common and widely used
technique to define basic terms of a particular domain. The SE’s software stan-
dard options for keywords extraction are based on the use of word frequency lists.
However, semantic relations can be extracted by generation of related word con-
texts through word concordances. Concordances define context in quantitative
terms and a further work is needed to be done to define semantic relations by
searching for co-occurrences and collocations of related keyword.

The co-occurrences and collocations are words which are most probably to
be found with a related keyword. They assign the semantic relations between the
keyword and its particular collocated word which might be of similarity or of a
distance. The SE approaches to evaluate corpus co-occurrences and collocations
are based on defining the probability for which different criteria are evaluated.
We have used techniques of T−score, MI−score and MI3−score incorporated
in the Sketch Engine for corpus processing and searching.

Basically for all, the following terms are used: N – corpus size, fA – number
of occurrences of the keyword in the whole corpus (the size of the concordance),
fB – number of occurrences of the collocated keyword in the whole corpus,
fAB – number of occurrences of the collocate in the concordance (number of
co-occurrences). The related formulas for defining T − score, MI − score and
MI3 − score are as follows:

2log AB

A B

f N

f f

A B
AB

AB

f f
f

N
f

−

3

2log AB

A B

f N

f f

MI-Score

T-Score

MI3-Score

The T − score, MI − score and MI3 − score are applicable for processing
parallel corpora as well.



Using Statistical Search to Discover Semantic Relations of Political Lexica 337

Fig. 1. The first fourteen most frequent words from both Bulgarian ans Slovak sub-
corpora.

3.1 Parallel Corpora Processing in SE

Recently, the SE has been improved with options to process parallel corpora [6].
Additionally to sentence alignment it is possible to perform various types of
parallel statistical search according to common search criteria and to generate
parallel aligned concordances, co-occurrences, etc.

4 Semantic Analysis

For our research we follow strategy already applied for conceptual semantic rela-
tions extraction [9] and term extraction described in [8]. We first generate parallel
word frequency lists as well as keywords for both sub-corpora. We obtained sim-
ilar results for which first fourteen hits are given at Fig. 1. For a more detailed
semantic analysis of word contexts we generate parallel bilingual word concor-
dances as follows:



338 V. Stoykova

Fig. 2. The collocation candidates for the word politics from both Bulgarian and Slovak
sub-corpora.

The most frequent content word is the adjective European (BG –
, SK – Európskej), followed by commission, president, member-state,

politics, etc. (BG – ; SK –
komisia, predsedajúci, štáty, politiky). Also, the frequency of word politics in
Bulgarian and Slovak sub-corpora (BG – (11399), SK – politiky
(12906)) are very similar.

Further, we will analyze semantic properties for that keyword by generating
its related parallel bilingual collocations from both sub-corpora.

4.1 Lexical Relations

Lexical relations analysis and generation of parallel bilingual collocations of the
word politics for both sub-corpora can give possible multiword expressions for
that word. The results obtained are given at Fig. 2. They present frequency
lists of words which are most probable to be found with related keyword
politics. Both lists are similar - the first word is the word agricultural (BG -

, SK – pol‘nohospodárska), the third word is foreign (BG -
, SK – zahraničná).

However, the second and fourth place is occupied by the word common
(BG - , SK – spoločná) which does not assign a term (common poli-
tics). In fact, the collocations express a reciprocal semantics which is ambiguous.
The interesting fact is that collocations of word politics with words like social
(BG - , SK – sociálna) and even defence (BG - ,
SK – obranná) are less frequent.

The sociolinguistic analysis of Slovak political lexica with respect to glob-
alization is presented in [7]. Also, the statistic search shows that among most
frequent content words from both parallel bilingual sub-corpora are also words



Using Statistical Search to Discover Semantic Relations of Political Lexica 339

with reciprocal semantics like regional in sense of national, incorrect term trans-
lation, unknown words like cohesion (which is not available in the official acad-
emic multivolume dictionaries of both Bulgarian and Slovak languages) and lots
of misinterpreted terms. As for the attributive collocations, we have found very
frequent rate of nouns modified by more than three adjectives which also leads
to ambiguity and misinterpretation.

5 Conclusion

The results of our research for analyzing semantic properties of political lex-
ica obtained with parallel context statistical search for keywords, concordances
and collocations from Bulgarian-Slovak EUROPARL 7 Corpus show surprisingly
high rate frequency of keywords that express reciprocal or ambiguous semantics,
incorrect translation and usage of unknown words which can be misinterpreted.
Taking into account that both bilingual sub-corpora have same semantic con-
tent, and the processing methodology for both corpora was parallel, we can
conclude that received results underlay specific semantic features of political
lexica. Further, it will be interesting to process and compare similar results for
more European languages.

References

1. Gale, W., Church, K.: A program for aligning sentences in bilingual corpora. Com-
put. Linguist. 19(1), 5–102 (1993)

2. Kilgarriff, A., Reddy, S., Pomikalek, J., Avinesh, P.: A corpus factory for many
languages. In: Proceedings of the LREC 2010, pp. 904–910 (2010)

3. Kilgarriff, A., Rundell, M.: Lexical profiling software and its lexicographic appli-
cations: a case study. In: Proceedings from EURALEX 2002, pp. 807–811 (2002)

4. Kilgarriff, A., Rychly, P., Smrz, P., Tugwell, D.: The sketch engine. In: Proceedings
from EURALEX 2004, pp. 105–116 (2004)

5. Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Pro-
ceedings from MT Summit, pp. 79–86 (2005)

6. Michelfeit, J.: Parallel corpora in sketch engine. In: Sketch Engine Workshop IV,
Tallinn (2013) (presentation)

7. Ondrejovic, S.: Between purism and glocalism. In: Sociolinguistica Slovaca, vol. 8,
pp. 25–32. VEDA (2014)

8. Stoykova, V., Petkova, E.: Automatic extraction of mathematical terms for precal-
culus. In: Proceedia Technology, vol. 1, pp. 464–468. Elsevier (2012)

9. Stoykova, V., Simkova, M., Majchrakova, D., Gajdosova, K.: Detecting time expres-
sions for bulgarian and slovak language from electronic text corpora. Proc. Soc.
Behav. Sci. 186, 257–260 (2015). Elsevier



Computational Theory of Differential
and Difference Equations



Simple Differential Field Extensions
and Effective Bounds

James Freitag1(B) and Wei Li2

1 UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA
freitagj@gmail.com

2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
No. 55 Zhongguancun East Road, Beijing 100190, China

liwei@mmrc.iss.ac.cn

Abstract. We establish several variations on Kolchin’s differential
primitive element theorem, and conjecture a generalization of Pogudin’s
primitive element theorem. These results are then applied to improve the
bounds for the effective Differential Lüroth theorem.

Keywords: Differential chow forms · Primitive element theorem ·
Model theory · Differential Lüroth theorem

1 Notation

Throughout this paper, U will be a fixed sufficiently large saturated differentially
closed field of characteristic zero with a derivation operator δ. An element c ∈ U

such that δ(c) = 0 is called a constant. In this paper, all the differential fields
under discussion are subfields of U and subscripts denote differentiation.

Let F be a differential subfield ofU and S ⊂ U. We denote respectively by F [S],
F (S), F{S}, and F 〈S〉 the smallest subring, the smallest subfield, the smallest
differential subring, and the smallest differential subfield of U containing F and S.

The set S is said to be differentially dependent over F if the set (δka)a∈S,k≥0

is algebraically dependent over F , and otherwise, S is said to be differentially
independent over F . In the case S = {a}, we also say that a is differentially
algebraic or differentially transcendental over F respectively. A maximal subset
Ω of S which is differentially independent over F is said to be a differential
transcendence basis of F 〈S〉 over F . We use d.tr.deg F 〈S〉/F to denote the dif-
ferential transcendence degree of F 〈S〉 over F , which is the cardinality of Ω.

J. Freitag—Thanks Dave Marker, Omar León Sanchez, and Gabriela Jeronimo for
useful conversations related to this work. JF was partially supported by NSF MSPRF
1204510.
W. Li—Partially supported by a National Key Basic Research Project of China
(2011CB302400) and by grants from NSFC (60821002, 11301519) and thanks the
University of California, Berkeley for providing a good research environment during
her appointment as a Visiting Scholar.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 343–357, 2016.
DOI: 10.1007/978-3-319-32859-1 29



344 J. Freitag and W. Li

Considering F and F 〈S〉 as algebraic fields, we denote the algebraic transcen-
dence degree of F 〈S〉 over F by tr.deg F 〈S〉/F .

We use F{y1, . . . , yn} to denote the differential polynomial ring over F . Given
a differential polynomial f ∈ F{y1, . . . , yn}, the order of f w.r.t. yi is the greatest
number k such that y

(k)
i appears effectively in f , which is denoted by ord(f, yi).

And if yi does not appear in f , then we set ord(f, yi) = −∞. The order of f
is defined to be maxi ord(f, yi). A (resp. radical, prime) differential ideal is a
(resp. radical, prime) algebraic ideal I of F{y1, . . . , yn} satisfying δ(I) ⊂ I.

By affine space, we mean An = Un. An element η = (η1, . . . , ηn) ∈ An

is called a differential zero of f ∈ F{y1, . . . , yn} if f(η) = 0. The set of all
differential zeros of Σ ⊂ F{y1, . . . , yn}, is called a differential variety defined
over F , denoted by V(Σ). All the differential varieties in this paper are assumed
to be subsets of An. For a differential variety V which is defined over F , we
denote I(V ) to be the set of all differential polynomials in F{y1, . . . , yn} that
vanish at every point of V .

A differential ideal I ⊂ F{y1, . . . , yn} is prime if and only if it has a generic
point, that is, a point η ∈ V(I) such that for any f ∈ F{y1, . . . , yn}, f(η) = 0 ⇔
f ∈ I. Let I be a prime differential ideal with a generic point (η1, . . . , ηn). Then
there exist d and h such that for sufficiently large t,

tr.deg F (η(k)
i : 1 ≤ i ≤ n; k ≤ t)/F = d(t + 1) + h.

The polynomial ωI(t) = d(t+1)+h is called the Kolchin polynomial of I and the
corresponding d, h are called the differential dimension and order of I. When ā
is a tuple in a differential field extension of a differential field K, then we write
ωā/K(t) for ωI(ā/K)(t) where I(ā/K) is the differential ideal of all differential
polynomials over K which vanish at ā.

2 Introduction

In this note, we discuss various primitive element theorems for ordinary differ-
ential field extensions. The oldest such result we consider goes back to Kolchin
[7, p. 728], where in fact he proved the primitive element theorem in the more
general partial differential settings. Here, we restrict to consider the ordinary dif-
ferential field extensions, so for convenience, we state Kolchin’s primitive element
theorem in the ordinary differential case as follows:

Theorem 2.1. Let F be a differential field containing at least one nonconstant.
Let E = F 〈a1, . . . , an〉 and suppose that d.tr.deg E/F = 0. Then there is some
b ∈ E such that E = F 〈b〉.

Pogudin [12] generalized Kolchin’s theorem to the case that F is a constant
field, under the assumption that E contains a nonconstant. In this note, we give
a mild generalization of Kolchin’s theorem, and conjecture a generalization of
Pogudin’s theorem. We also illustrate how these generalizations are useful for
improving the bounds on a problem of effective differential algebra.



Simple Differential Field Extensions and Effective Bounds 345

Let F 〈u〉 denote the fraction field of the differential polynomial ring F{u} in
one variable. Ritt [14] proved the analog of Lüroth’s theorem:

Theorem 2.2. Let K be a differential field such that F ⊂ K ⊂ F 〈u〉. Then
there is some element g ∈ K such that K = F 〈g〉.

Ritt’s original formulation is for fields of meromorphic functions, but the
general theorem follows from this case via Seidenberg’s embedding theorem
[18] (Kolchin first proved the general theorem in [8,9]). More recent work
has focused on computational aspects of the Lüroth’s theorem in the case
that K is finitely generated over F . To be more precise, suppose K =
F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉, then computing a Lüroth generator of K/F
and giving order and degree bounds for a Lüroth generator are problems of effec-
tive differential algebra. Following Kolchin’s idea, if A(y) ∈ K{y} is the minimal
differential polynomial of x over K w.r.t. the canonical ranking, then for any pair
(a, b) ∈ K2 of coefficients of the polynomial A satisfying that a/b /∈ F , this a/b
can serve as a Lüroth generator [9]. Thus, using the language of modern differen-
tial characteristic sets, a Lüroth generator can be computed in the following way:
Given a characteristic set Q1(u)y1−P1(u), . . . , Qn(u)yn−Pn(u) of a prime differ-
ential ideal I ⊂ F{u, y1, . . . , yn} w.r.t. the elimination ranking u < y1 < · · · < yn,
compute a characteristic set B1(y1, y2), . . . , Bn−1(y1, . . . , yn), B0(y1, . . . , yn, u) of
I w.r.t. the elimination ranking y1 < · · · < yn < u. Rewrite B0(y1, . . . , yn, u) =
∑

i fi(y1, . . . , yn)θi(u), if ζ = fi1 (P1(u)/Q1(u),...,Pn(u)/Qn(u))

fi2 (P1(u)/Q1(u),...,Pn(u)/Qn(u))
/∈ F , then K = F 〈ζ〉.

Based on this idea, Gao and Xu [6] gave an algorithmic proof of the differen-
tial Lüroth theorem, but did not consider bounds for the degrees or order of
the generator. D’Alfonso et al. [3] proved the following effective version of the
theorem:

Theorem 2.3. Let F be an ordinary differential field of characteristic 0, u dif-
ferentially transcendental over F and K = F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉,
where Pj , Qj ∈ F{u} are relatively prime differential polynomials of order at
most e ≥ 1 (i.e. at least one derivative of u occurs in Pj or Qj for some j) and
degree bounded by d such that each Pj/Qj /∈ F . Then, any Lüroth generator v of
K/F can be written as the quotient of two relatively prime differential polyno-
mials P (u), Q(u) ∈ F{u} with order bounded by min{ord(Pj/Qj) : 1 ≤ j ≤ n}
and total degree bounded by min{(d + 1)(e+1)n, (nd(e + 1) + 1)2e+1}.

The connection between the differential Lüroth theorem and the primitive
element theorem is related to improving the degree bounds. We should note that
our manipulations are not designed to attack the problem of bounding the order,
but note that as Kolchin proved in [8], any two Lüroth generators ω1 and ω2 are
related by the formula ω2 = (aω1 + b)/(cω1 + d) for some a, b, c, d ∈ F , so any
two Lüroth generators should have the same order [3, see the remarks at the
end of Subsect. 3.1]. Our technique is most easily employed in the case that the
field F posseses a nonconstant element. In this case, the ideas of our techniques
essentially derive from a mild generalization of Theorem 2.1. In the case that
F is a constant differential field, our ongoing work is related to an attempt to
generalize Pogudin’s recent primitive element theorem [12].



346 J. Freitag and W. Li

In the case that F contains a nonconstant element, we improve the degree
bounds as follows:

Theorem 2.4. Let F be an ordinary differential field of characteristic 0 con-
taining a nonconstant element. Let u be differentially transcendental over F
and K = F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉, where Pj , Qj ∈ F{u} are rela-
tively prime differential polynomials of order at most e ≥ 1 (i.e. at least one
derivative of u occurs in Pj or Qj for some j) and degree bounded by d such
that each Pj/Qj /∈ F In Theorem2.3. Then, any Lüroth generator v of K
over F can be written as the quotient of two coprime differential polynomials
P (u), Q(u) ∈ F{u} with degree bounded by

min{(
n/2� · d + 1)2(e+1), (d + 1)n(e+1), (nd(e + 1) + 1)2e+1}.

In the case that the base field consists of constants, we improve the bound
as follows:

Theorem 2.5. Suppose F is a field of constants, u be differentially transcenden-
tal over F and K = F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉 with Pi, Qi satisfying the
same conditions as in Theorem2.4. Then the total degree of a Lüroth generator
of K over F is bounded by

min{(d(n + e − 1) + 1)2(e+1), (nd(e + 1) + 1)2e+1}.

The paper is organized as follows. In Sect. 3, we will prove various primitive
element theorems for differential fields. In Sect. 4, we will utilize our embedding
results to establish the improved bounds for the differential Lüroth’s Theorem.

3 Variations of the Primitive Element Theorem
for Differential Field Extensions

Throughout this section, all differential fields which appear will be assumed to
be subfields of U, the fixed sufficiently large saturated differentially closed field
of characteristic zero given in Sect. 1.

Lemma 3.1 [15, p. 35]. Suppose F contains at least one nonconstant element.
If f ∈ F{u} is a nonzero differential polynomial with order r, then for any
nonconstant η ∈ F , there exists an element c0 + c1η + c2η

2 + · · · + crη
r which

does not annul f , where c0, . . . , cr are constants in F .

Remark 3.2. Note that in Lemma 3.1, we can always select the ci from the ratio-
nal number field Q. Indeed, let x0, . . . , xr be arbitrary constants, i.e., the xi

are algebraically independent over F and x′
i = 0. Since f(

∑r
i=0 ciη

r) �= 0,
g(x0, . . . , xn) = f(x0 + x1η + x2η

2 + · · · + xrη
r) is a nonzero polynomial in

F 〈η〉[x0, . . . , xr]. Since Q is an infinite field, by induction on r, it is easy to show
that there exists (d0, . . . , dr) ∈ Qr+1 such that f(d0+d1η+d2η

2+· · ·+drη
r) �= 0.



Simple Differential Field Extensions and Effective Bounds 347

Also, if f ∈ F{u1, . . . , un} is a nonzero differential polynomial with order
bounded by r, then for any nonconstant η ∈ F , there exist cij ∈ Q (1 ≤ i ≤
n; 0 ≤ j ≤ r) such that f(

∑r
i=0 c0iη

i, . . . ,
∑r

i=0 cniη
i) �= 0. We justify this by

induction on n. The above paragraph shows that it is valid for n = 1. Sup-
pose it holds for n − 1. Regard f(u1, . . . , un) as a polynomial in u1, . . . , un−1

with coefficients in F{un}, then by the induction hypothesis, there exist cij ∈
Q (1 ≤ i ≤ n − 1) such that g(un) = f(

∑r
j=0 c1jη

j , . . . ,
∑r

j=0 cn−1,jη
j , un) �= 0.

Thus, from the case n = 1, there exist cnj ∈ Q such that g(
∑r

j=0 cnjη
j) =

f(
∑r

j=0 c1jη
j , . . . ,

∑r
j=0 cnjη

j) �= 0.

Lemma 3.3. Let F1 ⊂ F be differential fields. Suppose that F1 is not a field of
constants. Then the Kolchin closure of Fn

1 over F is An.

Proof. It suffices to show that I(Fn
1 ), the set of all differential polynomials over

F which vanish at Fn
1 , is the zero differential ideal. Since F contains at least

a nonconstant, say η, for any nonzero f ∈ F{y1, . . . , yn}, by Remark 3.2, there
exist cij ∈ Q (0 ≤ j ≤ ord(f)) such that f(

∑

j c1jη
j , . . . ,

∑

j cnjη
j) �= 0. Note

that for each i,
∑

j cijη
j ∈ F1. Thus, I(Fn

1 ) = [0]. Hence, the Kolchin closure of
Fn
1 is V(0) = An. 
�

Note that Kolchin’s proof [7, p. 728] for Theorem 2.1 as well as Seidenberg’s
proof for [17, Theorem 1] implies the following result:

Proposition 3.4. Let L = F 〈α1, . . . , αn〉 and d.tr.deg L/F = 0. Let F be a
subfield of F such that F contains a nonconstant. Then, there exist c1, . . . , cn ∈ F
such that L = F 〈c1α1 + · · · + cnαn〉.

The following result is a straightforward implication of Proposition 3.4 and
here we will give a new proof from the geometric point of view.

Proposition 3.5. Let K = F 〈α1, . . . , αn〉 with F containing at least one non-
constant and d.tr.deg K/F = d > 0. Assume without loss of generality that
α1, . . . , αd is a differential transcendence basis of K over F . Then for any non-
constant subfield F1 of F , there exist cd+1, . . . , cn ∈ F1 such that K = F 〈α1, . . . ,
αd,

∑n
i=d+1 ciαi〉.

Proof. Consider the affine differential variety V ⊂ An−d given by the locus
of αd+1, . . . , αn over F 〈α1, . . . , αd〉. The variety V is F 〈α1, . . . , αd〉-definable
each of whose points are differentially algebraic over F 〈α1, . . . , αd〉. Let ū =
(ud+1, . . . , un) be a tuple which are differentially independent over F 〈α1, . . . , αd〉.
Then we claim that the map φū : V → A1 given by x̄ = (xd+1, . . . , xn) →
∑n

i=d+1 uixi is injective. For if not, then there are two points ā = (ad+1, . . . , an)
and b̄ = (bd+1, . . . , bn) such that

∑n
i=d+1 uiai =

∑n
i=d+1 uibi. But ā and b̄ are

differentially algebraic over F 〈α1, . . . , αd〉, and so ū is δ-transcendental over
F 〈α1, . . . , αd, ā, b̄〉. But now we have a contradiction, because

∑n
i=d+1 ui(ai −

bi) = 0, and not all of the ai − bi can be zero, since ā �= b̄.
The injectivity of the map φū on the F 〈α1, . . . , αd〉-definable set V is a

first order property (over F 〈α1, . . . , αd〉) of the tuple ū. Since ū is generic



348 J. Freitag and W. Li

over F 〈α1, . . . , αd〉, it follows by quantifier elimination that for all v̄ in an
F 〈α1, . . . , αd〉-open subset U ⊂ An−d, the map φv̄ is injective. There is a
point γ̄ = (γd+1, . . . , γn) of Fn−d in U by Lemma 3.3 applied to F relative
to F 〈α1, . . . , αd〉.

Now let W ⊂ An be the locus of α1, . . . , αn over F . Then the map πγ : An →
Ad+1 given by (x1, . . . , xn) �→ (x1, . . . , xd,

∑n
i=d+1 γixi) is injective on the fiber

above α1, . . . , αd in W (the proper subvariety of W with x1 = α1, . . . , xd = αd).
By the genericity of ᾱ ∈ W over F , it follows that πγ is injective on a Kolchin
open subset of An. So F 〈ᾱ〉 ∼= F 〈W 〉 ∼= F 〈πγ(W )〉 ∼= F 〈α1, . . . , αd,

∑n
i=d+1 γiαi〉

completing the proof. 
�
Next, we will establish Proposition 3.5 through the use of differential Chow

forms, which enables us to compute βi effectively. Without assuming a transcen-
dence basis beforehand, we restate the proposition as follows:

Proposition 3.6. Assume F is a differential field with at least one nonconstant.
Suppose that K = F 〈α1, . . . , αn〉 is a finitely generated differential field extension
of F such that the differential transcendence degree of K over F is d. Then for
any subfield F ⊂ F containing a nonconstant, there are β0, . . . , βd ∈ K which
are F -linear combinations of α1, . . . , αn such that

K = F 〈β0, . . . , βd〉.

Proof. Let I = I((α1, . . . , αn)) ⊂ F{y1, . . . , yn}. Then I is of differential dimen-
sion d. Let

Li = ui0 + ui1y1 + · · · + uinyn (i = 0, 1, . . . , d)

be a system of d + 1 generic differential hyperplanes where all the uij are differ-
entially independent over F . Denote

ui = (ui0, ui1, . . . , uin) (i = 0, . . . , d) and u = {uij : i = 0, . . . , d; j �= 0}.

Let P = [I, L0, . . . , Ld] ⊂ F{y1, . . . , yn, u0, . . . , ud}. Assume G(u0, . . . , ud) is the
differential Chow form of I and ord(G) = h. Then by the property of the differ-
ential Chow form [5, Lemma 4.10],

∂G

∂u
(h)
00

yj − ∂G

∂u
(h)
0j

∈ P (j = 1, . . . , n).

Since ξ = (α1, . . . , αn;−
n
∑

j=1

u0jαj , u01, . . . , u0n; . . . ;−
n
∑

j=1

udjαj , ud1, . . . , udn) is

a generic point of P and ∂G

∂u
(h)
00

/∈ P, ∂G

∂u
(h)
00

(ξ) �= 0. Now regard ∂G

∂u
(h)
00

(ξ) as a differ-

ential polynomial in u with coefficients in K, which is nonzero. By Lemma 3.1,
there exists aij ∈ F (for any uij ∈ u) such that

∂G

∂u
(h)
00

(α1, . . . , αn;−
n

∑

j=1

a0jαj , a01, . . . , a0n; . . . ;−
n

∑

j=1

adjαj , ad1, . . . , adn) �= 0.



Simple Differential Field Extensions and Effective Bounds 349

For each k = 0, 1, . . . , d, let gk be the differential polynomial in F{u00, . . . , ud0}
obtained from ∂G

∂u
(h)
0k

by replacing uij ∈ u by aij . Then g0 is a nonzero differential

polynomial which satisfies g0(−
∑n

j=1 a0jαj , . . . ,−
∑n

j=1 adjαj) �= 0.
Let βi = −∑n

j=1 aijαj for i = 0, . . . , d. We claim that K = F 〈β0, . . . , βd〉.
Let L̄i = ui0 + ai1y1 + · · · + ainyn (i = 0, . . . , d) and

P1 = [I, L̄0, . . . , L̄d] ⊂ F{y1, . . . , yn, u00, . . . , ud0}.

Clearly, P1 is a prime differential ideal with a generic point (α1, . . . , αn,
β0, . . . , βd). Since ∂G

∂u
(h)
00

yj − ∂G

∂u
(h)
0j

∈ P, it is clear that g0yj − gj ∈ P1 for each

j = 1, . . . , n. Thus, g0yj − gj vanishes at (α1, . . . , αn, β0, . . . , βd), which implies

αj = gj(β0, . . . , βd)/g0(β0, . . . , βd).

Hence, K = F 〈β0, . . . , βd〉. 
�
We use the following two examples to illustrate the method given in the

proof of Proposition 3.6 to compute the generators of the required forms. In
the both examples, differential Chow forms can be computed using either the
characteristic set method as described in [5, Remark 4.4] or the algorithms for
computing differential Chow forms given in [10].

Example 3.7. Let F = Q(x) with derivation δ = d
dx . Let K = Q(x)〈α1, α2〉

where α1, α2 are the generic solutions of y′+1, z′ respectively. Let I = I((α1, α2))
⊂ F{y, z}. Then I is of differential dimension 0. Take L0 = u0 +u1y+u2z. Then
the differential Chow form of I is

G = (u1u
′
2−u2u

′
1)u

′′
0−2u′

1(u1u
′
2−u′

1u2)−u′′
1(u0u

′
2−u2u

′
0)+u′′

2(u0u
′
1−u′

0u1+u2
1).

So the separant of G is SG = u1u
′
2 − u2u

′
1. We can take u1 = −1 and u2 = −x

which does not annul SG. Hence, α1 + xα2 is a primitive element of K/F , that
is, K = F 〈α1 + xα2〉.
Example 3.8. Let F = Q(x) with δ = d

dx . Let K = Q(x)〈u+x, u′ +x, u′′〉 where
u is differentially transcendental over F . Clearly, the differential transcendence
degree of K over F is 1. Let ui = (ui0, ui1, ui2, ui3) (i = 0, 1). Then we can com-
pute the differential Chow form G(u0, u1) of I((u+x, u′+x, u′′)) ⊂ F{y1, y2, y3},
which is a differential polynomial of order 2 and differential degree 6. The sepa-
rant of G is

SG = u13(u11u12u
2
03 − u11u13u02u03 − u12u11u

2
03 + u′

12u13u01u03 − u′
03u11u13u02

+ u′
03u12u13u01 + u′

13u11u02u03 − u′
13u12u01u03 + u′

02u11u13u03 − u′
02u

2
13u01

− u′
01u12u13u03 + u′

01u
2
13u02 − u2

11u
2
03 + u11u12u02u03 + 2u11u13u01u03

− u11u13u
2
02 − u2

12u01u03 + u12u13u01u02 − u2
13u

2
01).

We can take u01 = 1, u02 = 0, u03 = x, u11 = x, u12 = 1, u13 = 1 which does not
annul SG. Hence, β1 = (u + x) + tu′′, β2 = x(u + x) + (u′ + x) + u′′ is a set of
generators of K/F , that is, K = F 〈β1, β2〉.



350 J. Freitag and W. Li

The proofs of Lemma 3.3 and Proposition 3.5 can be generalized to the case of
a differential field with finitely many commuting derivations δ1, . . . , δm, under the
assumption that F contains m elements β1, . . . , βn whose Jacobian, det(δi(βj)),
is nonzero [7], but the proof of Proposition 3.6 is not suited for the partial case.

Proposition 3.5 does not hold in the case that the field F is the constant field:

Example 3.9. Let F be the rational number field with the trivial derivation. Let
x, y be two constants in a differential extension field of F , which are algebraically
independent over F . Consider K = F 〈x, y〉 = F (x, y). Then K is of differential
transcendence degree 0, but the transcendence degree of K over F is 2. Clearly,
there is no a, b ∈ F such that K = F (ax + by).

When F is a constant differential field, although Proposition 3.5 is not valid,
we have the following similar result, which can be regarded as a consequence of
Seidenberg’s proof [17].

Proposition 3.10. Assume F is a differential field of constants. Suppose that
K = F 〈α1, . . . , αn〉 is a finitely generated differential field extension of F such
that the differential transcendence degree of K over F is d > 0. Suppose α1 is
differentially transcendental over F . Then there exist β1, . . . , βd ∈ K such that
K = F 〈α1, β1, . . . , βd〉 and each βi is an F -linear combination of α2, . . . , αn

and powers of α1 bounded by h where h is the order of the differential Chow
form of α2, . . . , αn over F 〈α1〉. In particular, there exist cijk ∈ Q such that
βi =

∑n
j=2(

∑h
k=0 cijkαk

1)αj , i = 1, . . . , d and K = F 〈α1, β1, . . . , βd〉.
Proof. Let K1 = F 〈α1〉. Then the differential transcendence degree of K over
K1 is d− 1. Consider the differential ideal I = I((α2, . . . , αn)) ⊂ K1{y2, . . . , yn}.
Suppose the order of I is equal to h. Suppose G(u0, . . . , ud−1) is the differential
Chow form of I, then ord(G) = h. Applying the similar method as in the proof
of Proposition 3.6 to K/K1, by Remark 3.2, we can find cijk ∈ Q such that for
βi =

∑n
j=2(

∑h
k=0 cijkαk

1)αj , K = F 〈α1, β1, . . . , βd〉. 
�
Also, in the case that F is a constant differential field, one can estab-

lish Proposition 3.5 when making an additional assumption on the elements
α1, . . . , αn. The additional assumption uses terminology from model theory,
which we will now introduce. Our conventions are designed to deliver the model
theoretic notions in the differential algebraic setting, where some of the notions
can be given significantly simpler definitions than in the general setting.

We remind the reader that U is a universal differential field. Let XAn be
a constructible set in the Kolchin topology over F ; that is, X is a boolean
combination of affine differential varieties over F . Then we say X is orthogonal
to the constants if for any differential field extension K of F , any element c of
the constant field C of U, and any ā ∈ X, we have the equality of the Kolchin
polynomials:

ωā/K〈c〉(t) = ωā/K(t).

This implies that if c is transcendental over K, then c is transcendental over K〈a〉.
The notion defined in the previous paragraph is a special case of the general

notion defined in [1, see Ziegler’s article, page 40 for additional details].



Simple Differential Field Extensions and Effective Bounds 351

Proposition 3.11. Suppose that K = F 〈α1, . . . , αn〉 is a finitely generated dif-
ferential field extension of F such that the differential transcendence degree of K
over F is d. Assume without loss of generality that α1, . . . , αd are differentially
independent over F . Suppose that loc((αd+1, . . . , αn)/F 〈α1, . . . , αd〉) is orthogo-
nal to the constants. Then there is βd+1 ∈ K such that K = F 〈α1, . . . , αd, βd+1〉
and βd+1 is an Q-linear combination of αd+1, . . . , αn.

Proof. First, we claim that the general result follows from the case in which
n = d+2. This follows inductively, noting that Q-linear combinations of Q-linear
combinations of αd+1, . . . , αn are again Q-linear combinations of αd+1, . . . , αn

and Q-linear combinations preserve orthogonality to the constants. So, without
loss of generality, assume that n = d + 2.

Let X = locF 〈α1,...,αd〉(a, b), the Kolchin closure of (a, b) over the ground
field F 〈α1, . . . , αd〉. Let c1, c2 ∈ C be independent transcendental constants over
F 〈α1, . . . , αd〉. We claim the map

φc̄ : X → A1

given by (x, y) �→ c1x + c2y is injective on a Kolchin open subset of X. If this is
not the case, there are (x1, y1), (x2, y2) ∈ X such that (xi, yi) is generic on X over
F 〈α1, . . . , αd, c1, c2〉 (which implies that c1, c2 are independent transcendentals
over F 〈α1, . . . , αd, xi, yi〉 for i = 1, 2) such that

c1x1 + c2y1 = c1x2 + c2y2.

But now taking K = F 〈α1, . . . , αd, c1, x1, y1〉, we can see that c2 is not tran-
scendental over K〈x2, y2〉 as c2 = c1 · x2−x1

y1−y2
is in K〈x2, y2〉. But this implies:

ω(x2,y2)/K〈c2〉(t) �= ω(x2,y2)/K(t),

and this contradicts the assumption that X is orthogonal to the constants.
So, there is a Kolchin open subset U ⊂ X such that the map φc̄|U is an

injective map. Injectivity is a definable property of the map φc̄|U , and it holds
for the generic point in C2, so for some Zariski open (the Kolchin open subsets
of C are Zariski open) subset U1 ⊂ C, for all c̄′ ∈ U1, the map φc̄′ |U is injective.
By the density of Q2 in C2, there are q̄ = q1, q2 for which φq̄|U is injective and
thus gives an isomorphism between the differential function field of X and its
image, completing the proof. 
�

Remark 3.12. The assumption that tp(αd+1, . . . , αn/F 〈α1, . . . , αd〉) is orthogo-
nal to the constants is rather difficult to verify in practice. On the other hand, it
is folklore of the model theory of differential fields that most differential equation
of some order ≥1 and degree ≥2 should be strongly minimal and trivial (which
implies orthogonality to the constants). For specific instances of results of this
nature, see [2,13].

There is a considerable literature devoted to verifying this condition for vari-
ous specific differential equations [2,4,13]; proving that a given strongly minimal
differential equation has trivial forking geometry (and is thus orthogonal to the



352 J. Freitag and W. Li

constants) is also the key to proving that differential closure is not minimal [16].
As far as we can tell, only the results of [4] provide examples which are defined
over a differential transcendental, which is the only case pertinent to the differ-
ential Lüroth theorem. To give the reader an idea of the hypothesis, we will give
a specific example, in the case of two variables in order to keep the technicalities
minimal.

So, let
P1/Q1 := S(u′ + u) + R(u′ + u) · ((u′ + u)′)2,

where

R(y) =
y2 − 1968y + 2 654 208

2y2(y − 1728)2
,

and

S(x) =
(

x′′

x′

)′
− 1

2

(

x′′

x′

)2

is the Schwarzian derivative. Let

P2/Q2 = u′ + u.

Then the type tp(P2/Q2/F 〈P1/Q1〉) is the generic solution to the differential
equation

S(x) + R(x) · ((x)′)2 = P1/Q1.

By the results of [4], this type is strongly minimal. It follows that the type is
nonorthogonal to the constants, since the equivalence relation of nonorthogonal-
ity refines transcedence degree on strongly minimal sets (the authors of [4] also
prove that this set has trivial forking geometry).

Propositions 3.5 and 3.10 are effective in the sense that the degree of the
elements which generate the differential field extension are bounded. We fur-
ther conjecture the following mild strengthening of Pogudin’s primitive element
theorem:

Conjecture 3.13. Assume F is a constant differential field. Suppose that K =
F 〈α1, . . . , αn〉 is a finitely generated differential field extension of F such that
the differential transcendence degree of K over F is d > 0. Assume without loss
of generality that α1, . . . , αd are a differential transcendence basis for K over
F . Assume that at least one of αd+1, . . . , αn is a nonconstant. Then there is a
polynomial P ∈ Q[xd+1, . . . , xn] such that

K = F 〈α1, . . . , αd, P (αd+1, . . . , αn)〉.
The above conjecture is a direct consequence of the following stronger

conjecture.

Conjecture 3.14. Assume F is a differential field which contains at least one
nonconstant. Suppose that K = F 〈α1, . . . , αn〉 is a finitely generated differential
field extension of F such that each αi is differentially algebraic over F and at



Simple Differential Field Extensions and Effective Bounds 353

least one αi is a nonconstant. Then there is a polynomial P ∈ Q[x1, . . . , xn]
such that

K = F 〈P (α1, . . . , αn)〉.
The above conjecture is not true if all αi are constants. Similar to

Example 3.9, if x, y are constants which are independent algebraic indetermi-
nates, Q(t)〈x, y〉 �= Q(t)〈P (x, y)〉 for any P ∈ Q[x, y].

In the current work in progress we hope to establish the conjecture in an
effective form (bounding the degree of P ); bounding the degree of P might then
be used to improve the bounds for the degree of a Lüroth generator while working
over a constant differential field.

4 Improving the Bounds in the Differential Lüroth
Theorem

In this section, we explain how the results of the previous section can be applied
to improve the degree bound for the differential Lüroth theorem.

4.1 The Nonconstant Case

We will work first in the case where F contains some nonconstant element, prov-
ing Theorem 2.4. The analysis is simpler in this case and the primitive element
style analysis of the previous section yields improved bounds.

Suppose that

K = F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉

where Pj , Qj ∈ F{u} are relatively prime differential polynomials with order
satisfying e = max{ord(Pi), ord(Qj)} ≥ 1 and total degree bounded by d such
that Pj/Qj /∈ F for every 1 ≤ j ≤ n.

When x ∈ N, let �x�, 
x� denote the standard floor and ceiling functions,
respectively. Let

K1 = F 〈P1(u)/Q1(u), . . . , P�n/2	(u)/Q�n/2	(u)〉

and consider the differential field extension

K = K1〈P�n/2	+1(u)/Q�n/2	+1(u), . . . , Pn(u)/Qn(u)〉.

Since each Pi(u)/Qi(u) /∈ F and d.tr.deg K/F = 1, d.tr.deg K/K1 = 0.
Apply Proposition 3.4 to the extension K over K1 with K1 playing the
role of F in Proposition 3.4, then we obtain a generator β for K over K1

which is an F -linear combination of P�n/2	+1(u)/Q�n/2	+1(u), . . . , Pn(u)/Qn(u).
Note that this β has order at most e and degree at most 
n/2� · d. Specif-
ically, the total degree of β is bounded by the sum of the degrees of
P�n/2	+1(u)/Q�n/2	+1(u), . . . , Pn(u)/Qn(u). Here, It may happen that K = K1



354 J. Freitag and W. Li

and in this case, the obtained β may be contained in F . If this happens, we reset
β = Pn(u)/Qn(u).

Now we have K = K1〈β〉 = F 〈P1(u)/Q1(u), . . . , P�n/2	(u)/Q�n/2	(u), β〉.
Clearly, d.tr.deg K/F 〈β〉 = 0. Applying Proposition 3.4 to the differential field
extension

K = F 〈P1(u)/Q1(u), . . . , P�n/2	(u)/Q�n/2	(u), β〉
over F 〈β〉, then there is an F -linear combination of

P1(u)/Q1(u), . . . , P�n/2	(u)/Q�n/2	(u)

which generates K over F 〈β〉. Call this element α and note that α has order at
most e and degree at most �n/2�·d. Specifically, the total degree of α is bounded
by the sum of the total degrees of P1(u)/Q1(u), . . . , P�n/2	(u)/Q�n/2	(u).

Now, we have obtained K = F 〈α, β〉 with max{ord(α), ord(β)} = e1 ≤ e and
deg(α),deg(β) ≤ 
n/2� ·d. Note it may happen that e1 = 0. In the following, we
show that applying Theorem2.3 to the differential field extension F 〈α, β〉 over
F , the degree of a Lüroth generator is bounded by (
n/2� · d + 1)(e+1)2.

Lemma 4.1. The degree of a Lüroth generator of F 〈α, β〉 over F is bounded by
(
n/2� · d + 1)(e+1)2.

Proof. If e1 ≥ 1, applying Theorem 2.3 directly to the differential field extension
F 〈α, β〉 over F , the bound can be obtained.

Now suppose e1 = 0 and α = R1(u)/S1(u), β = R2(u)/S2(u) ∈ F (u). Let
u = z′, the first derivative of a new element z. Since u is differentially tran-
scendental over F , z is differentially transcendental over F too. Thus, K =
F 〈R1(u)/S1(u), R2(u)/S2(u)〉 = F 〈R1(z′)/S1(z′), R2(z′)/S2(z′)〉 ⊂ F 〈z〉. With
respect to the new differential indeterminate z, max{ord(Ri, z), ord(Si, z)} = 1
which satisfying the conditions in Theorem2.3. Thus, there exists coprime paris
(P (z), Q(z)) ∈ F{z}2 with ord(P, z), ord(Q, z) ≤ 1 and deg(P ),deg(Q) ≤
(
n/2� · d + 1)(1+1)2 ≤ (
n/2� · d + 1)(e+1)2 such that K = F 〈P (z)/Q(z)〉.
Since K = F 〈R1(u)/S1(u), R2(u)/S2(u)〉 has a Lüroth generator T1(u)/T2(u)
and by [8, p. 359], the two Lüroth generators P (z)/Q(z) and T1(u)/T2(u) are
related by the formula P (z)/Q(z) = (aT1(u)/T2(u) + b)/(cT1(u)/T2(u) + d) for
some a, b, c, d ∈ F , Thus, P (z), Q(z) ∈ F [z′]. Replacing z′ by u in P and Q,
we get a Lüroth generator P0(u), Q0(u) satisfying ord(P0, u), ord(Q0, u) = 0 and
deg(P0),deg(Q0) ≤ (
n/2� · d + 1)(e+1)2. 
�

Combining the degree bound given in Theorem2.3 with Lemma 4.1, we obtain
the degree of a Lüroth generator of K = F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉 over
F is bounded by

min{(
n/2� · d + 1)(e+1)2, (d + 1)(e+1)n, (nd(e + 1) + 1)2e+1}.

This establishes Theorem 2.4.



Simple Differential Field Extensions and Effective Bounds 355

Remark 4.2. The first quantity of the minimum taken above is (
n/2� · d +
1)(e+1)2. This is almost always smaller than the second quantity (d + 1)(e+1)n,
the only pertinent exceptional case being n = 3, e = 1, and d = 1. When any
of the inputs is larger, (
n/2� · d + 1)(e+1)2 is less than (d + 1)(e+1)n. It is also
true that (
n/2� · d + 1)(e+1)2 is very often smaller than (nd(e + 1) + 1)2e+1,
though there are infinitely many exceptional cases (essentially by picking n or d
to be sufficiently large compared to e). From a practical standpoint, examples
with low order, degree, and number of variables are of particular interest; when
n ≤ 10 and d ≤ 10, (
n/2� · d + 1)(e+1)2 is the smallest of the above bounds
(excluding the exceptional case n = 3, e = 1, and d = 1).

4.2 The Constant Case

In this subsection, we assume F is a field of constants. Let

K = F 〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉
where each Pi(u)/Qi(u) /∈ F .

If tp(P2(u)/Q2(u), . . . , Pn(u)/Qn(u)/F 〈P1(u)/Q1(u)〉) is orthogonal to the
constants, then the analysis from the previous subsection works completely
analogously with Proposition 3.11 in place of Proposition 3.5. The criterion
also applies with Pi(u)/Qi(u) exchanging roles with P1(u)/Q1(u), for any
i = 2, . . . , n. In the following, we do not assume such conditions on the gen-
erators Pi/Qi.

To give the main theorem in this section, we first need several lemmas.

Lemma 4.3 [10, Theorem 18]. Let I be a prime differential ideal of differential
dimension d in F{y1, . . . , yn}, and A = {A1, . . . , An−d} a characteristic set of I
under an arbitrary ranking. Then ord(I) is bounded by the Jacobi number of A.
That is,

ord(I) ≤ max
σ

n−d
∑

i=1

ord(Ai, yσ(i)),

where σ runs among all injective maps from {1, . . . , n − d} to {1, . . . , n}.
Lemma 4.4 [5, Theorem 2.11]. Let I be a prime differential ideal in
F{y1, . . . , yn}. Then ord(I) is the maximum of all the relative orders of I, that is,

ord(I) = max
U

ordU(I),

where U is any parametric set of I, that is, U is a maximal subset of variables
{y1, . . . , yn} such that I ∩ F{U} = {0}.

With the above preparations, we now prove Theorem2.5. That is, to show
when F is a field of constants, then the total degree of a Lüroth generator is
bounded by

min{(d(n + e − 1) + 1)2(e+1), (nd(e + 1)(n + e − 1) + 1)2e+1}.



356 J. Freitag and W. Li

Proof of Theorem 2.5. Let αi = Pi(u)/Qi(u) (i = 1, . . . , n) and K =
F 〈α1, . . . , αn〉. Clearly, the differential transcendence degree of K over F is
1. Also, by the hypothesis, each αi ∈ F 〈u〉\F . Suppose h is the order of the
prime differential ideal I((α2, . . . , αn)) over F 〈α1〉. By Proposition 3.10, there
exist cjk ∈ Q such that for η =

∑n
j=2(

∑h
k=0 cjkαk

1)αj , K = F 〈α1, η〉. The prob-
lem is reduced to the case n = 2. The order of η is still bounded by e. The degree
of η is bounded by d(n + h − 1).

It suffices to give a bound for h. Consider the prime differential ideal

I = I((u, α1, α2, . . . , αn)) ⊂ F{y1, . . . , yn, z}.

It is easy to show that

A := Q1(z)y1 − P1(z), . . . , Qn(z)yn − Pn(z)

is a characteristic set of I w.r.t. the elimination ranking z < y1 < . . . < yn.
Since the orders of Pi, Qi is bounded by e, the order matrix (sij)n×(n+1) of A
satisfies sii = ord(Ai, yi) = 0, sij = −∞ (i �= j ≤ n) and si,n+1 = ord(Ai, z) ≤ e.
So the Jacobi number of A, maxσ{∑n

i=1 siσ(i)} for σ running through injective
maps from {1, . . . , n} to {1, . . . , n + 1}, is bounded by e. Thus, by Lemma 4.3,
ord(I) ≤e. Let I1 = I((α1, α2, . . . , αn)) = I ∩ F{y1, . . . , yn}. The Kolchin poly-
nomials of I and I1 have the following relations: for sufficiently large t,

ωI(t) = tr.deg F
(

u(k), α
(k)
i : k ≤ t, i = 1, . . . , n

)

/F

= (t + 1) + ord(I)
= (t + 1) + ord(I1)

+ tr.deg F
(

u(k), α
(k)
i : k ≤ t, i = 1, . . . , n

)

/F
(

α
(k)
i : k ≤ t, i = 1, . . . , n

)

Thus, ord(I1) ≤ ord(I)≤ e. Note that h = tr.deg F 〈α1, α2, . . . , αn〉/F 〈α1〉 is also
equal to the relative order of I w.r.t. the parametric set {y1}, by Lemma 4.4,
h ≤ ord(I) ≤e.

So the degree of η is bounded by d(n + e − 1). Hence, by Theorem 2.3, the
degree of a Lüroth generator is bounded by

min{(d(n + e − 1) + 1)2(e+1), (2d(e + 1)(n + e − 1) + 1)2e+1}.


�
Remark 4.5. In most of the cases, especially when either n or e is large, we have

(d(n + e − 1) + 1)2(e+1) < (2d(e + 1)(n + e − 1) + 1)2e+1

and
(d(n + e − 1) + 1)2(e+1) < (nd(e + 1) + 1)2e+1.

Hence, the degree bound given in Theorem2.5 is smaller than that in
Theorem 2.3.

As an experiment to compare the two bounds, we have computed more than
10,000 randomly generated tuples (n, d, e) simulating the pertinent cases of the
bounds when each of the variables is less than 30, and our bound gives the better
result approximately 94.3 % of the time.



Simple Differential Field Extensions and Effective Bounds 357

In future work, we hope to prove Conjecture 3.13 in an effective manner and
use the result to improve the bounds for the degree in the effective differential
Lüroth theorem for the case that the base field is constant.

References

1. Bouscaren, E.: Proof of the Geometric Mordell-Lang Conjecture. In: Hrushovski’s,
E. (ed.) Model Theory and Algebraic Geometry. Lecture Notes in Mathematics,
vol. 1696, pp. 177–196. Springer, Heidelberg (1998)

2. Brestovski, M.: Algebraic independence of solutions of differential equations of the
second order. Pac. J. Math. 140(1), 1–19 (1989)

3. D’Alfonso, L., Jeronimo, G., Solernó, P.: Effective differential lüroth’s theorem. J.
Algebra 406, 1–19 (2014)

4. Freitag, J., Scanlon, T.: Strong minimality and the j-function. J. Eur. Math. Soc.
(2015). Accepted

5. Gao, X.-S., Li, W., Yuan, C.-M.: Intersection theory in differential algebraic geom-
etry: generic intersections and the differential chow form. Trans. Am. Math. Soc.
365(9), 4575–4632 (2013)

6. Gao, X.-S., Tao, X.: Lüroth theorem in differential fields. J. Syst. Sci. Complex.
15(4), 376–383 (2002)

7. Kolchin, E.R.: Extensions of differential fields, I. Ann. Math. 43, 724–729 (1942)
8. Kolchin, E.R.: Extensions of differential fields, II. Ann. Math. 45(2), 358–361

(1944)
9. Kolchin, E.R.: Extensions of differential fields, III. Bull. Am. Math. Soc. 53(4),

397–401 (1947)
10. Li, W., Li, Y.: Computation of differential chow forms for ordinary prime differen-

tial ideals. Adv. Appl. Math. 72, 77–112 (2015). doi:10.1016/j.aam.2015.09.004
11. Marker, D., Messmer, M., Pillay, A.: Model Theory of Fields. A.K. Peters/CRC

Press (2005)
12. Gleb, A.: The primitive element theorem for differential fields with zero derivation

on the ground field. J. Pure Appl. Algebra 219(9), 4035–4041 (2015)
13. Pong, W.Y.: On a result of rosenlicht. Commun. Algebra 30(12), 5933–5939 (2002)
14. Ritt, J.F.: Differential Equations from the Algebraic Standpoint, vol. 14. American

Mathematical Soc., New York (1932)
15. Ritt, J.F.: Differential Algebra. Dover Publications, New York (1950)
16. Rosenlicht, M.: The nonminimality of the differential closure. Pac. J. Math. 52,

529–537 (1974)
17. Seidenberg, A.: Some basic theorems in differential algebra (characteristic p,

arbitrary). Trans. Amer. Math. Soc. 73, 174–190 (1952)
18. Seidenberg, A.: Abstract differential algebra and the analytic case. Proc. Am.

Math. Soc. 9(1), 159–164 (1958)

http://dx.doi.org/10.1016/j.aam.2015.09.004


A New Bound for the Existence
of Differential Field Extensions

Richard Gustavson1(B) and Omar León Sánchez2

1 Department of Mathematics, CUNY Graduate Center,
365 Fifth Avenue, New York, NY 10016, USA

rgustavson@gradcenter.cuny.edu
2 Department of Mathematics and Statistics, McMaster University,

Hamilton Hall, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
oleonsan@math.mcmaster.ca

Abstract. We prove a new upper bound for the existence of a differen-
tial field extension of a differential field (K, Δ) that is compatible with
a given field extension of K. In 2014, Pierce provided an upper bound
in terms of lengths of certain antichain sequences of INm equipped with
the product order. This result has had several applications to effective
methods in differential algebra such as the effective differential Nullstel-
lensatz problem. Using a new approach involving Macaulay’s theorem on
the Hilbert function, we produce an improved upper bound.

Keywords: Algebraic theory of differential equations · Fields with
several commuting derivations · Differential field extensions

1 Preliminaries

Let (K,Δ) be a differential field of characteristic zero with m commuting deriva-
tions Δ = {∂1, . . . , ∂m}. We place two orders on INm, the product order ≤ and the
degree-lexicographic order �. Given ξ = (u1, . . . , um) ∈ INm, we let the degree of
ξ be deg ξ = u1 + · · · + um. For any r ∈ IN, we set Γ (r) = {ξ ∈ INm : deg ξ ≤ r}.

We will consider field extensions of K whose generators over K are indexed
by elements of INm; more precisely, we consider extensions of the form K(aξ :
ξ ∈ Γ (r)) for some r ∈ IN. A generator aξ is said to be a leader if it is algebraic
over K(aτ : τ � ξ), and a leader aξ is said to be minimal if there is no leader aτ

with τ < ξ.
A differential field extension (M,Δ′) of (K,Δ), with Δ′ = {D1, . . . , Dm} and

Di|K = ∂i, is said to be compatible with the field extension L := K(aξ : ξ ∈ Γ (r))
if L ⊆ M and whenever ξ ∈ Γ (r − 1), then Dia

ξ = aξ+i, where i is the tuple
with a one in the i-th entry and zeros elsewhere. On the other hand, the field
L = K(aξ : ξ ∈ Γ (r)) is said to satisfy the differential condition if there exist
derivations Di : K(aξ : ξ ∈ Γ (r−1)) → L extending ∂i such that Dia

ξ = aξ+i for
all ξ ∈ Γ (r − 1). Note that the existence of a differential field extension (M,Δ′)
of (K,Δ) compatible with L implies that L satisfies the differential condition;
however, the converse is of course not generally true.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 358–361, 2016.
DOI: 10.1007/978-3-319-32859-1 30



A New Bound for the Existence of Differential Field Extensions 359

In [7], Pierce showed that there is an integer s ≥ r depending only on m and
r (generally much larger than r) such that if there exists a field extension of
L of the form K(aξ : ξ ∈ Γ (s)) satisfying the differential condition, then there
exists a differential field extension of (K,Δ) compatible with L. However, he
does not deal with the issue of determining the minimal value of s for which
this property holds. In this note we denote this minimal value by T . Let us note
that Pierce finds an upper bound for T in terms of maximal lengths of certain
antichain sequences of (INm,≤), and in [4] this upper bound is shown to be
bounded above by 2A(m + 3, 4r − 1) where A denotes the Ackermann function.
In this note we present an improvement of this upper bound.

These types of results have been proven to be very fruitful. There have been
several applications, including determining the consistency of a collection of sys-
tem of polynomial (partial) differential equations [2] and bounding the number
of solutions to such equations [1].

2 Results

In [7, Theorem 4.3], Pierce shows that if there is a field extension L = K(aξ : ξ ∈
Γ (2r)) of the differential field (K,Δ) such that any minimal leader aξ satisfies
ξ ∈ Γ (r), then there is a differential field extension of (K,Δ) that is compatible
with L. As a corollary one gets that T ≤ 2Lm,f+1r, where f : IN → IN is
the function f(i) = 2ir and Lm,f denotes the maximal length of an antichain
sequence of (INm,≤) of degree growth bounded by f .

Now, given an antichain ξ̄ ⊆ INm, we let

γ
(

ξ̄
)

=
{

LCM(η, ζ) : η �= ζ with η, ζ ∈ ξ̄
}

, (1)

where LCM(η, ζ) denotes the least upper bound (or least common multiple) of
η and ζ. For a field extension L = K(aξ : ξ ∈ Γ (r)) of K, we let γ(L) denote
γ

(

ξ̄
)

, where ξ̄ = (ξ1, . . . , ξk) and aξ1 , . . . , aξk are the minimal leaders of L. Note
that γ(L) ⊆ Γ (2r).

We have the following improvement of [7, Theorem 4.3]:

Theorem 1. Let L = K(aξ : ξ ∈ Γ (r)) be a field extension of K satisfying the
differential condition for some integer r ≥ 0. Suppose further that

(
) For every τ ∈ γ(L) \ Γ (r) and 1 ≤ i < j ≤ m such that aτ−i and aτ−j

are leaders, there exists a sequence of minimal leaders aη1 , . . . , aηs such that
η� ≤ τ − k�, with k1 = i, ks = j and some k2, . . . , ks−1, and

deg LCM(η�, η�+1) ≤ r for � = 1, . . . , s − 1. (2)

Then, there is a differential field extension of (K,Δ) compatible with L.

Given r ≥ 0, let g : IN → IN be the function g(1) = r, g(2 + i) = r + i for
i ≥ 0. Recall that Lm,g denotes the maximal length of an antichain sequence
of (INm,≤) with degree growth bounded by g. Using the above theorem, and
several arguments like Macaulay’s theorem on the Hilbert function [5], we can
prove:



360 R. Gustavson and O.L. Sánchez

Theorem 2. With the above notation, if K(aξ : ξ ∈ Γ (g(Lm,g) + 1)) is a field
extension of K satisfying the differential condition, then there is a differential
field extension of (K,Δ) compatible with K(aξ : ξ ∈ Γ (r)). In particular,

T ≤ g(Lm,g) + 1. (3)

This result is similar in nature to [7, Theorem 4.10], but the proof is very
different and it yields an explicit upper bound. Moreover, the value g(Lm,g) is
much smaller than the upper bound 2Lm,f+1r of T computed in [4]. For instance,
when m = 1 we have g(Lm,g) + 1 = r (which is expected) while 2Lm,f+1r = 4r.
Also, note that when m = 2 our new bound yields T ≤ 2r which appears to be
a new result.

Remark 1. When m = 1, extensions of (K, ∂) of the form K(aξ : ξ ∈ Γ (r))
satisfying the differential condition have previously been studied using the lan-
guage of differential kernels [3, §3]. In this language, having T ≤ r when m = 1
corresponds to the fact that every differential kernel has a realization (see [3,
Proposition 3]).

As we mentioned above, an upper bound for T is given in [4] to be T <
2A(m + 3, 4r − 1). Since the Ackermann function grows incredibly quickly in its
first variable, even having m = 1 produces very large bounds. However, due to
our construction, a result of Moreno Soćıas [6] yields the following:

Corollary 1. For each r ≥ 1, we have

T ≤ A(m, r). (4)

While this upper bound is still in terms of the Ackermann function, the first
input now depends only on m instead of m + 3, which means that it produces
much better results for small values of m. For example, in [4] it is shown that
when m = 3 and r = 1, then T ≤ 271, and when m = 3 and r = 2, then

T ≤ 22
2520+520+2520+521. However, when m = 3, our results yield that when

r = 1 then T ≤ 4, and when r = 2 then T ≤ 12.
So far we have only dealt with the case of differential field extensions (M,Δ′)

of (K,Δ) that are differentially generated by a single element, namely a0, where
0 denotes the zero tuple. Our arguments can be extended to admit n-many
differential generators (the minimal value T is defined in the natural way). To
do this, we consider n-copies of INm, that is INm × n, with the following order:
(ξ, i) ≤ (η, j) if and only if i = j and ξ ≤ η. For an element (ξ, i) ∈ INm × n we
let deg(ξ, i) = deg ξ, and Γ (r) = {(ξ, i) ∈ INm × n : deg ξ ≤ r}.

Fix r ≥ 0 and let g be the function defined above. For arbitrary n ∈ IN we let
Ln

m,g be the maximal length of an antichain sequence of (INm ×n,≤) with degree
growth bounded by g. One can prove the following extension of Theorem 2 and
Corollary 1:



A New Bound for the Existence of Differential Field Extensions 361

Theorem 3. If K(aξ
i : (ξ, i) ∈ Γ (g(Ln

m,g)+1)) is a field extension of K satisfy-
ing the differential condition, then there is a differential field extension of (K,Δ)
compatible with K(aξ

i : (ξ, i) ∈ Γ (r)). Consequently,

T ≤ An(m, r), (5)

where A1(x, y) = A(x, y) and Ai+1(x, y) = A(x,Ai(x, y)) for i > 0.

In particular, when m = 2, the above theorem yields T ≤ 2nr.

References

1. Freitag, J., León Sánchez, O.: Effective uniform bounding in partial differential
fields. Adv. Math. 288, 308–336 (2016)

2. Gustavson, R., Kondratieva, M., Ovchinnikov, A.: New effective differential Null-
stellensatz. Adv. Math. 290, 1138–1158 (2016)

3. Lando, B.A.: Jacobi’s bound for the order of systems of first order differential equa-
tions. Trans. Am. Math. Soc. 152(1), 119–135 (1970)

4. León Sánchez, O., Ovchinnikov, A.: On bounds for the effective differential Null-
stellensatz. J. Algebra 449, 1–21 (2016)

5. Macaulay, F.S.: Some properties of enumeration in the theory of modular systems.
Proc. Lond. Math. Soc. 26(2), 531–555 (1927)

6. Moreno Soćıas, G.: An ackermannian polynomial ideal. In: Mattson, H.F., Mora,
T., Rao, T.R.N. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes. LNCS, vol. 539, pp. 269–280. Springer, Heidelberg (1991)

7. Pierce, D.: Fields with several commuting derivations. J. Symb. Logic 79(01), 1–19
(2014)



Dimension Polynomials of Intermediate Fields
of Inversive Difference Field Extensions

Alexander Levin(B)

The Catholic University of America, Washington, DC 20064, USA
levin@cua.edu

http://faculty.cua.edu/levin

Abstract. Let K be an inversive difference field, L a finitely generated
inversive difference field extension of K, and F an intermediate inversive
difference field of this extension. We prove the existence and establish
properties and invariants of a numerical polynomial that describes the
filtration of F induced by the natural filtration of the extension L/K
associated with its generators. Then we introduce concepts of type and
dimension of the extension L/K considering chains of its intermediate
fields. Using properties of dimension polynomials of intermediate fields
we obtain relationships between the type and dimension of L/K and
difference birational invariants of this extension carried by its dimension
polynomials. Finally, we present a generalization of the obtained results
to the case of multivariate dimension polynomials associated with a given
inversive difference field extension and a partition of the basic set of
translations.

Keywords: Inversive difference field · Inversive difference module ·
Filtration · Dimension polynomial

1 Introduction

Dimension polynomials of inversive difference modules and inversive difference
field extensions, first introduced in [9], play the same role in difference algebra,
as Hilbert polynomials play in commutative algebra and algebraic geometry. (A
similar role in differential algebra is played by differential dimension polynomials
introduced by E. Kolchin in [6]; see also [7, Chap. 2].) Several applications of
dimension polynomials to the study of inversive difference algebraic structures
are based on the fact that if P is a prime reflexive difference ideal in a ring of
inversive difference polynomials R = K{y1, . . . , ys}∗ over an inversive difference
field K, then the quotient field of R/P is an inversive difference field extension
of K generated by the images of yi in R/P. The dimension polynomial of this
extension, therefore, characterizes the ideal P ; assigning such polynomials to
prime reflexive difference ideals has led to a number of new results on the Krull-
type dimension of inversive difference algebras (see, for example, [16] and [13,
Sect. 4.6]). Another important application of difference dimension polynomials

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 362–376, 2016.
DOI: 10.1007/978-3-319-32859-1 31



Dimension Polynomials of Intermediate Fields 363

is based on the fact that the univariate difference dimension polynomial of a
system of algebraic difference equations (defined as the dimension polynomial
of the inversive difference field extension associated with the system) expresses
the A. Einstein’s strength of this system (see [12] and [13, Chap. 7]). In this
connection, the study of difference dimension polynomials and methods of their
computation is of primary importance for the qualitative theory of difference
equations.

In this paper we prove the existence and describe some properties of a uni-
variate dimension polynomial associated with an intermediate inversive differ-
ence field of a finitely generated inversive difference field extension. (Note that
this result implies the existence of a dimension polynomial that describes the
strength of a system of difference equations with a group action in the sense of A.
Einstein.) We also present a more general theorem on a multivariate dimension
polynomial associated with such an intermediate field. Furthermore, using chains
of intermediate fields, we introduce concepts of type and dimension of an inver-
sive difference field extension and find relationships between these characteristics
and difference birational invariants of the extension.

2 Preliminaries

Throughout the paper Z, N, Q, and R denote the sets of all integers, all non-
negative integers, all rational numbers, and all real numbers, respectively. As
usual, Q[t] will denote the ring of polynomials in one variable t with rational
coefficients. By a ring we always mean an associative ring with a unity. Every
ring homomorphism is unitary (maps unit onto unit), every subring of a ring
contains the unity of the ring. Unless otherwise indicated, by the module over a
ring A we mean a left A-module. Every module over a ring is unitary and every
algebra over a commutative ring is unitary as well.

By a difference ring we mean a commutative ring R together with a finite set
σ = {α1, . . . , αn} of mutually commuting injective endomorphisms of R. The set
σ is called a basic set of R and the endomorphisms αi are called translations. We
also say that R is a σ-ring. A subring (ideal) S of R is called a difference (or σ-)
subring (respectively, ideal) of R if α(S) ⊆ S for every α ∈ σ. If all translations
of R are automorphisms, we set σ∗ = {α1, . . . , αn, α−1

1 , . . . , α−1
n } and say that R

is an inversive difference ring or a σ∗-ring. If a difference (respectively, inversive
difference) ring R is a field, it is called a difference (or σ-) field (respectively, an
inversive difference (or σ∗-) field).

If R is an inversive difference ring with a basic set σ = {α1, . . . , αn}, then
Γ will denote the free commutative group of all power products of the form
γ = αk1

1 . . . αkn
n where ki ∈ Z (1 ≤ i ≤ n). The order of such an element

γ is defined as ord γ =
∑n

i=1 |ki|; furthermore, for every r ∈ N, we set Γ (r)
= {γ ∈ Γ | ord γ ≤ r}.

A subring (ideal) R0 of a σ∗-ring R is said to be a σ∗-subring (respectively,
σ∗-ideal) of R if R0 is closed with respect to the action of any translation α ∈ σ∗.
If R is an inversive difference ring and a prime σ-ideal is reflexive, it is referred
to as a prime σ∗-ideal of R.



364 A. Levin

If R is a σ∗-ring R and S ⊆ R, then the intersection of all σ∗-ideals of
R containing S is denoted by [S]∗. Clearly, [S]∗ is the smallest σ∗-ideal of R
containing S; as an ideal, it is generated by the set ΓS = {γ(a)|γ ∈ Γ, a ∈ S}.
If J = [S]∗, the elements of the set S are called σ∗-generators of J ; if S =
{a1, . . . , ar}, we write J = [a1, . . . , ar]∗ and say that the σ∗-ideal J is finitely
generated.

Let R and S be two difference (in particular, inversive difference) rings with
the same basic set σ, that is, elements of the set σ act on each of the rings as
mutually commuting endomorphisms. A ring homomorphism φ : R → S is called
a difference (or σ-) homomorphism if φ(αa) = αφ(a) for any α ∈ σ, a ∈ R. It is
easy to see that the kernel of such a mapping is a reflexive difference ideal of R.

Let R be an inversive difference ring with a basic set σ, R0 a σ∗-subring of
R and B ⊆ R. The intersection of all σ∗-subrings of R containing R0 and B
is called the σ∗-subring of R generated by the set B over R0, it is denoted by
R0{B}∗. (As a ring, R0{B} coincides with the ring R0[{γ(b)|b ∈ B, γ ∈ Γ}]
obtained by adjoining the set {γ(b)|b ∈ B, γ ∈ Γ} to the ring R0.) The set B
is said to be the set of σ∗-generators of the σ∗-ring R0{B}∗ over R0. If this
set is finite, B = {b1, . . . , bk}, we say that R′ = R0{B}∗ is a finitely generated
inversive difference (or σ∗-) ring extension (or overring) of R0 and write R′ =
R0{b1, . . . , bk}∗.

If R is a difference (σ-) field and R0 a subfield of R such that α(a) ∈ R0

for any a ∈ R0, α ∈ σ, then R0 is said to be a difference (or σ-) subfield of R;
R, in turn, is called a difference (or σ-) field extension or a difference (or σ-)
overfield of R0. In this case we also say that we have a σ-field extension R/R0.
If R is inversive and its subfield R0 is a σ∗-subring of R, then R0 is said to
be an inversive difference (or σ∗-) subfield of R while R is called an inversive
difference (or σ∗-) field extension or an inversive difference (or σ∗-) overfield of
R0. (We also say that we have a σ∗-field extension R/R0.) If R0 ⊆ R1 ⊆ R
is a chain of σ- (σ∗-) field extensions, we say that R1/R0 is a difference or σ-
(respectively, inversive difference or σ∗-) field subextension of R/R0 or that R1

is an intermediate difference (σ-) or, respectively, inversive difference (σ∗-) field
of R/R0.

If R is a σ∗-field, R0 a σ∗-subfield of R and B ⊆ R, then the intersection of all
σ∗-subfields of R containing R0 and B is denoted by R0〈B〉∗ (or R0〈b1, . . . , bk〉∗

if B = {b1, . . . , bk} is a finite set). This is the smallest σ∗-subfield of R containing
R0 and B; it coincides with the field R0({γ(b)|b ∈ B, γ ∈ Γ}). The set B is called
the set of σ∗-generators of the σ∗-field R0〈B〉∗ over R0.

The following theorem, whose proof can be found in [8, Sect. 6.4], introduces
the (univariate) dimension polynomial of a finitely generated inversive difference
field extension.

Theorem 1. Let L = K〈η1, . . . , ηs〉∗ be an inversive difference field extension
of an inversive difference field K generated by a finite set η = {η1, . . . , ηs}. With
the above notation, there exists a polynomial φη|K(t) ∈ Q[t] such that

(i) φη|K(r) = trdegK K({γηj |γ ∈ Γ (r), 1 ≤ j ≤ s}) for all sufficiently large
r ∈ Z;



Dimension Polynomials of Intermediate Fields 365

(ii) deg φη|K ≤ n = Card σ and the polynomial φη|K(t) can be written as

φη|K(t) =
n

∑

i=0

ai

(

t + i

i

)

where a0, . . . , an ∈ Z and 2n|an.

(iii) d = deg φη|K , an and ad do not depend on the set of σ∗-generators η of

L/K (ad �= an if and only if d < n). Moreover,
an

2n
is equal to the difference

(or σ-) transcendence degree of L over K (denoted by σ-trdegK L), that
is, to the maximal number of elements ξ1, . . . , ξk ∈ L such that the family
{γξi | γ ∈ Γ, 1 ≤ i ≤ k} is algebraically independent over K.

(iv) If the elements η1, . . . , ηs are σ-algebraically independent over K (that is,
the set {γηi | γ ∈ Γ, 1 ≤ i ≤ s} is algebraically independent over K), then

φη|K(t) = s
n

∑

k=0

(−1)n−k2k

(

n

k

)(

t + k

k

)

.

The polynomial φη|K(t) is called the σ∗-dimension polynomial of the σ∗-field
extension L of K associated with the system of σ∗-generators η. The numbers
d = deg φη|K and ad are called σ-type and typical σ-transcendence degree of L/K ;
they are denoted by σ-typeK L and σ-t. trdegK L, respectively.

Methods and examples of computation of σ∗-dimension polynomials can be
found in [8, Chaps. 5 and 9], [17], and [13, Sect. 7.7].

Let R be an inversive difference ring with a basic set σ = {α1, . . . , αn}, Γ the
free commutative group generated by σ, and Y = {y1, . . . , ys} a set of symbols.
Then the polynomial ring R = K[{γyj |γ ∈ Γ, 1 ≤ j ≤ s}] in a denumerable set
of indeterminates γyj can be treated as an inversive difference ring extension of
R where α(γyj) = (αγ)yj for any α ∈ σ∗, γ ∈ Γ , 1 ≤ j ≤ s. The ring R is
called a ring of inversive difference (or σ∗-) polynomials over R; it is denoted by
R{y1, . . . , ys}∗.

A system of the form

fi(y1, . . . , ys) = 0 (i ∈ I),

where fi(y1, . . . , ys) ∈ K{y1, . . . , ys}∗, is said to be a system of algebraic dif-
ference (or σ∗-) equations over K. By a solution of this system we mean an
s-tuple (a1, . . . , as) with coordinates in some inversive difference overring of K
that annuls all fi. In other words, fi(y1, . . . , ys) becomes zero if one replaces
every entry γyj in fi by γaj , (γ ∈ Γ, 1 ≤ j ≤ s).

Let K be an inversive difference (σ∗-) field and P the reflexive differ-
ence ideal generated by a set of σ∗-polynomials {fi|i ∈ I} in K{y1, . . . , ys}∗.
If this ideal is prime (then the system is referred to as a prime system of
algebraic σ∗-equations), one can consider the corresponding field of quotients
Q(K{y1, . . . , ys}∗/P) = K〈η1, . . . , ηs〉∗ where ηj is the canonical image of yj in
K{y1, . . . , ys}∗/P (1 ≤ j ≤ s). The corresponding polynomial φη|K(t), whose
existence is established by Theorem 1, is called the σ∗-dimension polynomial of
the system of difference equations fi(y1, . . . , ys) = 0 (i ∈ I). This polynomial has
the following interpretation as the difference version of the strength of a system
of differential equations defined by A. Einstein in [1].



366 A. Levin

Let
Ai(f1, . . . , fs) = 0 (i = 1, . . . , p) (1)

be a system of equations in finite differences with respect to s unknown grid
functions f1, . . . , fs in n real variables x1, . . . , xn with coefficients in some func-
tional field K. Suppose that the difference grid, whose nodes form the domain of
considered functions, has equal cells of dimension h1 × · · · × hn (h1, . . . , hn ∈ R)
and fills the whole space Rn. (As an example, one can consider a field K con-
sisting of a zero function and fractions of the form u/v where u and v are grid
functions defined almost everywhere and vanishing at a finite number of nodes.)

Let us fix some node P and say that a node Q has order i (with respect to
P) if the shortest path from P to Q along the edges of the grid consists of i steps
(by a step we mean a path from a node of the grid to a neighbor node along
the edge between these two nodes). Let us consider the values of the unknown
grid functions f1, . . . , fs at the nodes whose order does not exceed r (r ∈ N). If
f1, . . . , fs should not satisfy any system of equations (or any other condition),
their values at nodes of any order can be chosen arbitrarily. Because of the system
in finite differences (and equations obtained from the equations of the system by
transformations of the form fj(x1, . . . , xs) 	→ fj(x1 + k1h1, . . . , xs + knhn) with
k1, . . . , kn ∈ Z, 1 ≤ j ≤ s), the number of independent values of the functions
f1, . . . , fs at the nodes of order ≤ r decreases. This number, which is a function
of r, is considered as a “measure of strength” of the system in finite differences
(in the sense of A. Einstein). We denote it by Sr.

If the transformations αj of the field of coefficients K defined by

αjf(x1, . . . , xn) = f(x1, . . . , xj−1, xj + hj , . . . , xn)

(1 ≤ j ≤ n) are automorphisms of this field, then K can be considered as
an inversive difference field with the basic set σ = {α1, . . . , αn}. Furthermore,
assume that the replacement of the unknown functions fi by σ∗-indeterminates
yi (i = 1, . . . , s) in the ring K{y1, . . . , yn}∗ leads to a prime system of algebraic
σ∗-equations. Then the σ∗-dimension polynomial of this system is said to be
the σ∗-dimension polynomial of the given system in finite differences. Clearly,
φη|K(r) = Sr for any r ∈ N, so the σ∗-dimension polynomial is the measure of
strength of such a system. One can find methods and examples of computation
of σ∗-dimension polynomials of some systems of equations in finite differences
in [13, Sects. 7.7, 7.8].

3 The Main Theorem

The following result is an essential generalization of Theorem 1.

Theorem 2. Let K be an inversive difference (σ∗-) field with σ = {α1, . . . , αn}
and let L = K〈η1, . . . , ηs〉∗ be an inversive difference (σ∗-) field extension of K
generated by a finite set η = {η1, . . . , ηs}. Let F be an intermediate σ∗-field of the
extension L/K and for any r ∈ N, let Fr = F

⋂

K({γηj |γ ∈ Γ (r), 1 ≤ j ≤ s}).
Then there exists a polynomial φK,F,η(t) ∈ Q[t] such that



Dimension Polynomials of Intermediate Fields 367

(i) φK,F,η(r) = trdegK Fr for all sufficiently large r ∈ Z;

(ii) deg φK,F,η ≤ n and φK,F,η(t) can be written as φK,F,η(t) =
n

∑

i=0

bi

(

t + i

i

)

where b0, . . . , bn ∈ Z.
(iii) d = deg φK,F,η(t), bn and bd do not depend on the set of σ∗-generators η of

the extension L/K. Furthermore, 2n|bn and
bn

2n
= σ-trdegK F .

The polynomial φK,F,η(t) is called a σ∗-dimension polynomial of the inter-
mediate field F associated with the set of σ∗-generators η of L/i. The numbers
d = deg φK,F,η(t) and bd are called the relative σ-type and relative typical σ-
transcendence degree of the intermediate field F of L/K. These characteristics,
denoted by σ-typeL/K(F ) and σ-t. trdegL/K(F ), respectively, depend only on
the σ∗-fields K, L, and F .

The proof of Theorem2 is based on properties of inversive difference modules
introduced in [9] and the fact that the module of Kähler differentials associated
with a σ∗-field extension L/K can be equipped with a structure of an inversive dif-
ference L-module. (The idea of using modules of Kähler differentials for the study
of inversive difference field extensions has come from a similar approach explored
by J. Johnson in the study of differential field extensions, see [3,5]. This approach
was also used by the author in the study of dimension polynomials of interme-
diate differential fields, see [14].) In what follows we give a brief account of this
approach; more results on inversive difference (σ∗-) modules and, in particular, on
σ∗-modules of Kähler differentials can be found in [13, Sects. 3.5 and 4.2].

Let K be an inversive difference field with a basic set σ = {α1, . . . , αn} and
let Γ be the commutative group generated by σ. Let E (or EK if one needs to
indicate the field K) denote the set of all finite sums of the form

∑

γ∈Γ aγγ
where aγ ∈ K (such a sum is called a σ∗-operator over K; two σ∗-operators are
equal if and only if their corresponding coefficients are equal).

The set E can be treated as a ring with respect to its natural structure
of a left K-module and the relationships αa = α(a)α (a ∈ K, α ∈ σ∗ =
{α1, . . . , αn, α−1

1 , . . . , α−1
n })) extended by distributivity. It is said to be a ring of

σ∗-operators over K.
If w =

∑

γ∈Γ aγγ ∈ E , then the number ordw = max{ord γ | aγ �= 0} is
called the order of the σ∗-operator w. In what follows, we treat E as a filtered
ring with the ascending filtration (Er)r∈Z where (E)r = 0 if r < 0 and (E)r =
{w ∈ E | ordw ≤ r} if r ≥ 0.

An inversive difference module over K (also called a σ∗-K-module) is defined
as a left E-module M , that is, a vector K-space where elements of σ∗ act as
additive mutually commuting operators such that α(ax) = α(a)αx for any α ∈
σ∗, x ∈ M,a ∈ K.

We say that M is a finitely generated σ∗-K-module if M is finitely generated
as a left E-module.

By a filtration of a σ∗-K-module M we mean an exhaustive and separated
filtration of M as a E-module, that is, an ascending chain (Mr)r∈Z of vector
K-subspaces of M such that ErMs ⊆ Mr+s for all r, s ∈ Z, Mr = 0 for all



368 A. Levin

sufficiently small r ∈ Z, and
⋃

r∈Z
Mr = M . Such a filtration is called excellent

if every Mr (r ∈ Z) is finitely generated over K and there exists r0 ∈ Z such
that Mr = Er−r0Mr0 for any r ≥ r0.

The proofs of the following two results can be found in [8, Sects. 6.3 and 6.7].

Theorem 3. With the above notation, let M be a σ∗-K-module with an excellent
filtration (Mr)r∈Z. Then there is a polynomial ψ(t) ∈ Q[t] such that:

(i) ψ(r) = dimK Mr for all sufficiently large r ∈ Z.
(ii) deg ψ ≤ n and ψ(t) is of the form

ψ(t) =
n

∑

i=0

ai

(

t + i

i

)

where a0, . . . , an ∈ Z and 2n|an.
(iii) d = deg ψ(t), an and ad do not depend on the excellent filtration (Mr)r∈Z of

M . Furthermore,
an

2n
is equal to the σ∗-dimension of M over K (denoted by

σ∗-dimK M), that is, to the maximal number of elements x1, . . . , xk ∈ M
such that the family {γxi | γ ∈ Γ, 1 ≤ i ≤ k} is linearly independent over K.

Theorem 4. Let μ : N → M be an injective homomorphism of filtered σ∗-K-
modules M and N with filtrations (Mr)r∈Z and (Nr)r∈Z, respectively. (It means
that μ is a homomorphism of E-modules and μ(Nr) ⊆ Mr for any r ∈ Z.) If the
filtration of M is excellent, then the filtration of N is also excellent.

Proof of Theorem2. As before, let L = K〈η1, . . . , ηs〉∗ and let ΩL|K denote the
module of Kähler differentials associated with the extension L/K. Then ΩL|K
can be treated as a σ∗-L-module where the action of the elements of σ∗ is defined
in such a way that α(dζ) = dα(ζ) for any ζ ∈ L, α ∈ σ∗ (see [13, Lemma 4.2.8]).

Let M = ΩL|K and for any r ∈ N, let Mr denote the vector L-space generated

by all elements dζ where ζ ∈ K(
s

⋃

i=1

Γ (r)ηi). It is easy to check that (Mr)r∈Z

(Mr = 0 if r < 0) is an excellent filtration of the σ∗-L-module M .
Let F be any intermediate σ∗-field of L/K and let Fr = F

⋂

K({γηj | γ ∈
Γ (r), 1 ≤ j ≤ s}) (r ∈ N). Let EL denote the ring of σ∗-operators over L and let
N be the EL-submodule of M generated by all elements of the form dζ where
ζ ∈ F . Furthermore, for any r ∈ N, let Nr be the vector L-space generated by
all elements dζ where ζ ∈ Fr.

It is easy to see that if one sets Nr = 0 for r < 0, then the family (Nr)r∈Z

becomes a filtration of the σ∗-L-module N , and the embedding N → M becomes
a homomorphism of filtered σ∗-L-modules. Since the filtration (Mr)r∈Z is excel-
lent, one can apply Theorem4 and obtain that the filtration (Nr)r∈Z is also
excellent. Therefore, by Theorem 3, there exists a polynomial φK,F,η(t) ∈ Q[t]
such that φK,F,η(t)(r) = dimK Nr for all sufficiently large r ∈ Z.

Since a family (ζi)i∈I of elements of Fr (r ∈ Z) is algebraically indepen-
dent over K if and only if the family (dζi)i∈I is linearly independent over L,



Dimension Polynomials of Intermediate Fields 369

dimK Nr = trdegK Fr for all r ∈ N. Applying Theorem3 we obtain the state-
ment of Theorem 2.

Note that if F = L, then Theorem2 implies the result of Theorem 1. Fur-
thermore, Theorem 2 shows that the Einstein’s strength of a prime system of
algebraic σ∗-equations, whose solution should be invariant with respect to the
action of any group G commuting with basic operators αi, is expressed by a
polynomial function. (We mean that αiG = Gαi for i = 1, . . . , n and g(a) = a
for any g ∈ G, a ∈ K.) Indeed, in this case the fixed field F of the group G
is an intermediate σ∗-field of the corresponding σ∗-field extension L/K, so the
polynomial φK,F,η(t) (where η = {η1, . . . , ηs} is a system of σ∗-generators of
L/K ) expresses the A. Einstein’s strength of the system with the group action.

4 Type and Dimension of an Inversive Difference Field
Extension

Let K be an inversive difference field with a basic set σ = {α1, . . . , αn} and
L = K〈η1, . . . , ηn〉∗ a σ∗-field extension of K generated by a finite set η =
{η1, . . . , ηs}. (We keep the notation introduced in Sect. 2). Let U denote the set
of all intermediate σ∗-fields of the extension L/K and let

BU = {(F,E) ∈ U × U |F ⊇ E}.

Furthermore, let Z denote the ordered set Z
⋃{∞} (where the natural order on

Z is extended by the condition a < ∞ for any a ∈ Z).

Proposition 1. With the above notation, there exists a unique mapping μU :
BU → Z such that

(i) μU(F,E) ≥ −1 for any pair (F,E) ∈ BU.
(ii) If d ∈ N, then μU(F,E) ≥ d if and only if trdegE F > 0 and there exists an

infinite descending chain of intermediate σ∗-fields

F = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ · · · ⊇ E (2)

such that
μU(Fi, Fi+1) ≥ d − 1 (i = 0, 1, . . . ). (3)

Proof. In order to show the existence and uniqueness of the desired mapping
μU, one just needs to mimic the proof of the corresponding statement for chains
of prime differential ideals presented in [4]. Namely, let us set μU(F,E) = −1 if
F = E or the field extension F/E is algebraic. If (F,E) ∈ BU, trdegEF > 0 and
for every d ∈ N, there exists a chain of intermediate σ∗-fields (2) with condition
(3), we set μU(F,E) = ∞. Otherwise, we define μU(F,E) as the maximal integer
d for which condition (ii) holds (that is, μU(F,E) ≥ d). It is clear that the
mapping μU defined in this way is unique.



370 A. Levin

With the notation of the last proposition, we define the type of the inversive
difference (σ∗-) field extension L/K as the integer

typeσ(L/K) = sup{μU(F,E) | (F,E) ∈ BU}. (4)

Furthermore, we define the dimension of the σ∗-extension L/K as the number
dimσ(L/K) = sup{q ∈ N | there exists a chain F0 ⊇ F1 ⊇ · · · ⊇ Fq such that
Fi ∈ U and

μU(Fi−1, Fi) = typeσ(L/K) (i = 1, . . . , q). (5)

It is easy to see that for any pair of intermediate σ∗-fields (F,E) ∈ BU,
μU(F,E) = −1 if and only if the field extension E/F is algebraic. It is also clear
that if typeσ(L/K) < ∞, then dimσ(L/K) > 0.

The following result provides a relationship between the introduced char-
acteristics of a finitely generated field σ∗-extension and the invariants of its
σ∗-dimension polynomials established in Theorem 1.

Theorem 5. Let K be an inversive difference (σ∗-) field with σ = {α1, . . . , αn}
and let L be a finitely generated σ∗-field extension of K. Then

(i) typeσ(L/K) ≤ σ-typeK L ≤ n.
(ii) If σ-trdegK L > 0, then typeσ(L/K) = n and dimσ(L/K) = σ-trdegK L.
(iii) If σ-trdegK L = 0, then typeσ(L/K) < n.

Proof. Let η = {η1, . . . , ηs} be a system of σ∗-generators of L over K, let
Γ denote the free commutative group generated by σ, and for every r ∈ N,
let Γ (r) = {γ ∈ Γ | ord γ ≤ r}. Furthermore, for every r ∈ N, we set
Lr = K({γηi | γ ∈ Γ (r), 1 ≤ i ≤ s}), and if F is any intermediate σ∗-field
of the extension L/K, then Fr will denote the field F

⋂

Lr.

By Theorem 2, there is a polynomial φK,F,η(t) ∈ Q[t] such that φK,F,η(r) =
trdegKFr for all sufficiently large r ∈ N, deg φK,F,η ≤ n, and φK,F,η(t) can

be written as φK,F,η(t) =
∑n

i=0 bi

(

t+i
i

)

where b0, . . . , bn ∈ Z, 2n|bn and
bn

2n
=

σ-trdegK F . Since the field K and the system of σ∗-generators of L/K are fixed
in the following considerations, we will denote the polynomial φK,F,η(t) by φF (t).

It is easy to see that if E and F are two intermediate σ∗-fields of L/K and
F ⊇ E, then φF (t) ≥ φE(t). It means that φF (s) ≥ φE(s) for all sufficiently large
s ∈ N. (Note that, as it is shown in [18], the set W of all differential dimension
polynomials of finitely generated differential field extensions is well ordered with
respect to this ordering. At the same time, as it is proved in [8, Chap. 2], W is also
a set of all difference dimension polynomials). Also, if F ⊇ E and φF (t) = φE(t),
then the field extension F/E is algebraic. Indeed, if some element x ∈ F is
transcendental over E, then there exists r0 ∈ N such that x ∈ Fr for all r ≥ r0.
Therefore, trdegK Fr = trdegK Er +trdegEr

Fr > trdegK Er for all r ≥ r0 hence
φF (t) > φE(t) contrary to our assumption.

Let U and BU be the sets introduced at the beginning of this section. The
following statement is the main step of the proof of Theorem5.



Dimension Polynomials of Intermediate Fields 371

Lemma 1. For any d ∈ Z, d ≥ −1, and for any pair (F,E) ∈ BU, the inequality

μU(F,E) ≥ d

implies the inequality
deg(φF (t) − φE(t)) ≥ d.

Proof. We proceed by induction on d. Since deg(φF (t) − φE(t)) ≥ −1 for any
pair (F,E) ∈ BU and deg(φF (t) − φE(t)) ≥ 0 if trdegE F > 0, our statement
is true for d = −1 and d = 0. (As usual we assume that the degree of the zero
polynomial is −1.)

Let d > 0 and let the statement be true for all nonnegative integers less than
d. Let μU(F,E) ≥ d for some pair (F,E) ∈ BU, so that there exists a chain
of intermediate σ∗-fields (2) such that μU(Fi, Fi+1) ≥ d − 1 (i = 0, 1, . . . ). If
deg(φFi

(t)−φFi+1(t)) ≥ d for some i ∈ N, then deg(φF (t)−φE(t)) ≥ deg(φFi
(t)−

φFi+1(t)) ≥ d, so the statement of the lemma is true.
Suppose that for every i ≥ 0, one has deg(φFi

(t) − φFi+1(t)) = d − 1, that is,

φFi
(t) − φFi+1(t) =

d−1
∑

j=0

b
(i)
j

(

t + j

j

)

where b
(i)
0 , . . . , b

(i)
d−1 ∈ Z, b

(i)
d−1 > 0. Then

φF (t) − φFi+1(t) =
i

∑

k=0

(φFk
(t) − φFk+1(t)) =

d−1
∑

j=0

c
(i)
j

(

t + j

j

)

where c
(i)
0 , . . . , c

(i)
d−1 ∈ Z and c

(i)
d−1 =

∑i
k=0 b

(k)
d−1. Therefore, c

(0)
d−1 < c

(1)
d−1 < . . .

and limi→∞ c
(i)
d−1 = ∞. On the other hand,

φF (t) − φFi+1(t) ≤ φF (t) − φE(t) =
d−1
∑

j=0

a
(i)
j

(

t + j

j

)

for some a
(i)
0 , . . . , a

(i)
d−1 ∈ Z. If deg(φF (t) − φE(t)) = d − 1, then we would have

c
(i)
d−1 < ad−1 for all i ∈ N contrary to the fact that limi→∞ c

(i)
d−1 = ∞. Thus,

deg(φF (t) − φE(t)) ≥ d, so our lemma is proved.

Completion of the Proof of Theorem5. Since deg(φF (t)−φE(t)) ≤ σ-typeK L ≤
n for any pair (F,E) ∈ BU, the last lemma implies that typeσ(L/K) ≤ σ-
typeK L ≤ n. If σ-trdegK L = 0, then σ-typeK L < n hence typeσ(L/K) ≤ σ-
typeK L < n. Thus, it remains to prove statement (ii) of the theorem.

Let σ-trdegK L = k > 0, let x1, . . . , xk be a difference transcendence basis of
L over K, and let F = K〈x1〉∗. Clearly, in order to prove that typeσ(L/K) = n
it is sufficient to show that μU(F,K) ≥ n. This inequality, in turn, immediately



372 A. Levin

follows from the consideration of the following n descending chains of σ∗-fields
where for any positive integers i1, i2, . . . , in,

L(i1) = K〈(α1 − 1)i1x1〉∗, L(i1,i2) = L(i1+1)〈(α1 − 1)i1(α2 − 1)i2x1〉∗, . . . ,

L(i1,...,in) = L(i1,...in−2,in−1+1)〈(α1 − 1)i1 . . . (αn−1 − 1)in−1(αn − 1)inx1〉∗ :

F = K〈x1〉∗ ⊃ L(1) ⊃ · · · ⊃ L(i1) ⊃ L(i1+1) ⊃ · · · ⊃ K,

L(i1) ⊃ L(i1,1) ⊃ · · · ⊃ L(i1,i2) ⊃ L(i1,i2+1) ⊃ · · · ⊃ L(i1+1), . . . ,

L(i1,...,in−1) ⊃ L(i1,...,in−1,1) ⊃ L(i1,...,in) ⊃ · · · ⊃ L(i1,...,in−1+1).

These chains show that μU(L(i1,...,in), L(i1,...,in−1,in+1)) ≥ 0, μU(L
(i1,...,in−1), L(i1,...,in−1,in−1+1)) ≥ 1, . . . , μU(F,K) ≥ n. As we have seen, the last
inequality implies that typeσ(L/K) = n.

Replacing K by K〈x1, . . . , xj〉 and x1 by xj+1 (0 ≤ j ≤ k − 1) in the above
chains, we obtain that μU(K〈x1, . . . , xj+1〉∗,K〈x1, . . . , xj〉∗) = n = typeσ(L/K).
Therefore, dimσ(L/K) ≥ k = σ-trdegK L.

On the other hand, dimσ(L/K) ≤ k. Indeed, let F0 ⊇ F1 ⊇ · · · ⊇ Fq be a
chain of intermediate σ∗-fields of L/K such that μU(Fi, Fi+1) = typeσ(L/K) = n
for i = 0, . . . , q − 1. Clearly, in order to prove our inequality, it is sufficient to
show that q ≤ k.

For every i = 0, . . . , q, the corresponding dimension polynomial φi(t) =
φK,Fi,η(t), whose existence is established by Theorem 2, can be written as
φi(t) =

∑n
j=0 a

(i)
j

(

t+j
j

)

where a
(i)
j ∈ Z (0 ≤ i ≤ q − 1, 0 ≤ j ≤ n) and

b
(i)
n = a(i)

n

2n ∈ Z. Then

φ0(t) − φq(t) =
q

∑

i=1

(φi−1(t) − φi(t)) =
q

∑

i=1

n
∑

j=0

(a(i−1)
j − a

(i)
j )

(

t + j

j

)

= (a(0)
n − a(q)

n )
(

t + n

n

)

+ o(tn)

where o(tn) denote a polynomial of degree at most n−1. Since μU(Fi, Fi+1) = n,
one has deg(φi(t) − φi+1(t)) = n (see Lemma 1). Therefore, b

(0)
n > b

(1)
n > · · · >

b
(q)
n , hence

b(0)n − b(q)n =
q

∑

i=1

(b(i−1)
n − b(i)n ) ≥ q.

On the other hand,

φ0(t) − φq(t) ≤ φK,L,η(t) − φK,Fq,η(t) ≤ φK,L,η(t) = φη|K(t) =
n

∑

i=0

ai

(

t + i

i

)

where a0 = 2nσ-trdegK L (we use the notation of Theorem1). Therefore, q ≤
b
(0)
n − b

(q)
n ≤ k = σ-trdegK L. This completes the proof of Theorem 5.



Dimension Polynomials of Intermediate Fields 373

5 Multivariate Dimension Polynomials of Intermediate
σ∗-field Extensions

In this section we present a result that generalizes both Theorem 3.1 and the
theorem on multivariate dimension polynomial of a finitely generated inversive
difference field extension proved in [15], see Theorem 6 below.

Let K be an inversive difference field with basic set of automorphisms σ =
{α1, . . . , αn}. Let us fix a representation of σ as the union of p disjoint subsets
(p ≥ 1):

σ = σ1 ∪ · · · ∪ σp (6)

where
σ1 = {α1, . . . , αn1}, σ2 = {αn1+1, . . . , αn1+n2}, . . . ,

σp = {σn1+···+np−1+1, . . . , αn} (n1 + · · · + np = n).

If γ = αk1
1 . . . αkn

n ∈ Γ (ki ∈ Z) then the order of γ with respect to σi (1 ≤ i ≤ p)
is defined as

∑n1+···+ni

ν=n1+···+ni−1+1 |kν |; it is denoted by ordi γ. (If i = 1, the last
sum is replaced by

∑n1
ν=1 |kν |.) Clearly,

∑p
i=1 ordi γ = ord γ.

In what follows, for any r1, . . . , rp ∈ N, we set

Γ (r1, . . . , rp) = {γ ∈ Γ | ordi γ ≤ ri (i = 1, . . . , p)}.

Furthermore, if (j1, . . . , jp) is any permutation of the set {1, . . . , p}, let <j1,...,jp

denote the lexicographic order on Np such that (r1, . . . , rp) <j1,...,jp
(s1, . . . , sp)

if and only if either rj1 < sj1 or there exists k ∈ N, 1 ≤ k ≤ p − 1, such that
rjν

= sjν
for ν = 1, . . . , k and rjk+1 < sjk+1 .

If Σ ⊆ Np, then Σ′ will denote the set {e ∈ Σ|e is a maximal element
of Σ with respect to one of the p! lexicographic orders <j1,...,jp

}. Say, if Σ =
{(1, 1, 1), (2, 3, 0), (0, 2, 3), (2, 0, 5), (3, 3, 1), (4, 1, 1), (2, 3, 3)} ⊆ N3, then Σ′ =
{(2, 0, 5), (3, 3, 1), (4, 1, 1), (2, 3, 3)}.

The following result, which generalizes Theorem 1, was proved in [15].

Theorem 6. Let L = K〈η1, . . . , ηs〉∗ be a σ∗-field extension generated by a set
η = {η1, . . . , ηs}. Then there exists a polynomial Φη(t1, . . . , tp) in p variables
t1, . . . , tp with rational coefficients such that

(i) Φη(r1, . . . , rp) = trdegK K(
s

⋃

j=1

Γ (r1, . . . , rp)ηj) for all sufficiently large

(r1, . . . , rp) ∈ Np (it means that there exist nonnegative integers s1, . . . , sp

such that the last equality holds for all (r1, . . . , rp) ∈ Np with r1 ≥
s1, . . . , rp ≥ sp);

(ii) degti
Φη ≤ ni for i = 1, . . . , p (hence deg Φη ≤ n) and Φη(t1, . . . , tp) can be

represented as

Φη(t1, . . . , tp) =
n1
∑

i1=0

. . .

np
∑

ip=0

ai1...ip

(

t1 + i1
i1

)

. . .

(

tp + ip
ip

)

where ai1...ip
∈ Z and 2n | an1...np

.



374 A. Levin

(iii) Let Eη = {(i1, . . . , ip) ∈ Np | 0 ≤ ik ≤ nk (k = 1, . . . , p) and ai1...ip
�= 0}.

Then d = deg Φη, an1...np
, elements (k1, . . . , kp) ∈ E′

η, the corresponding
coefficients ak1...kp

and the coefficients of the terms of total degree d do not
depend on the choice of the system of σ∗-generators η.

The polynomial Φη(t1, . . . , tp) is called the inversive difference (or σ∗-)
dimension polynomial of the σ∗-field extension L/K associated with the set of
σ∗-generators η and partition (6) of the basic set of automorphisms.

The proof of Theorem6 presented in [15] is based on the method of charac-
teristic sets with respect to several term orderings for inversive difference poly-
nomials. The idea of this method comes from [10–12] where a similar approach is
used for the study of bivariate difference-differential dimension polynomials and
multivariate dimension polynomials of modules over rings of Ore polynomials.
An alternative way for obtaining results on dimension polynomials of differential,
difference and inversive difference field extension is to prove the existence and
describe properties of dimension polynomials associated with filtered modules
over the corresponding rings of (differential, difference or inversive difference)
operators and then explore the relationship between the transcendence degree of
a field extension and the dimension of the corresponding module of Kähler dif-
ferentials. (This approach is used in [3,5,8, Chaps. 5, 6] and some other works.)
In what follows, we use properties of modules of Kähler differentials to prove the
central result of this section:

Theorem 7. With the notation of Theorem6, let F be an intermediate σ∗-field
of the σ∗-field extension L/K and for any r1, . . . , rp ∈ Np, let

Fr1,...,rp
= F

⋂

K(
s

⋃

j=1

Γ (r1, . . . , rp)ηj).

Then there is a polynomial ΦK,F,η(t1, . . . , tp) ∈ Q[t1, . . . , tp] in p variables
t1, . . . , tp such that

(i) ΦK,F,η(r1, . . . , rp) = trdegK Fr1,...,rp
for all sufficiently large (r1, . . . , rp) ∈

Np;
(ii) degti

ΦK,F,η ≤ ni for i = 1, . . . , p (hence deg ΦK,F,η ≤ n = Card σ) and
ΦK,F,η(t1, . . . , tp) can be written as

ΦK,F,η(t1, . . . , tp) =
n1
∑

i1=0

. . .

np
∑

ip=0

bi1...ip

(

t1 + i1
i1

)

. . .

(

tp + ip
ip

)

where bi1...ip
∈ Z and 2n | bn1...np

.
(iii) Let EK,F,η = {(i1, . . . , ip) ∈ Np | 0 ≤ ik ≤ nk (k = 1, . . . , p) and bi1...ip

�= 0}.
Then d = deg ΦK,F,η, bn1...np

, elements (k1, . . . , kp) ∈ E′
K,F,η, the corre-

sponding coefficients bk1...kp
and the coefficients of the terms of total degree

d do not depend on the choice of the system of σ∗-generators η of L/K.



Dimension Polynomials of Intermediate Fields 375

Proof. We will mimic the method of the proof of Theorem 2 using the results on
multivariate dimension polynomials of inversive difference (σ∗-) modules over L.
Let E be the ring of σ∗-operators over L considered as a filtered ring with p-
dimensional filtration {Er1,...,rp

| (r1, . . . , rp) ∈ Zp} where for any r1, . . . , rp ∈ Np,
Er1,...,rp

is the vector L-subspace of E generated by the set Γ (r1, . . . , rp), and
Er1,...,rp

= 0 if at least one ri is negative. If M is a σ∗-L-module (that is, a left
E-module), then a family {Mr1,...,rp

|(r1, . . . , rp) ∈ Zp} of vector K-subspaces of
M is said to be a p-dimensional filtration of M if

(i) Mr1,...,rp
⊆ Ms1,...,sp

for any (r1, . . . , rp), (s1, . . . , sp) ∈ Zp such that ri ≤ si

for i = 1, . . . , p.
(ii)

⋃

(r1,...,rp)∈Zp

Mr1,...,rp
= M .

(iii) There exists a p-tuple (r(0)1 , . . . , r
(0)
p ) ∈ Zp such that Mr1,...,rp

= 0 if ri < r
(0)
i

for at least one index i (1 ≤ i ≤ p).
(iv) Er1,...,rp

Ms1,...,sp
⊆ Mr1+s1,...,rp+sp

for any (r1, . . . , rp), (s1, . . . , sp) ∈ Zp.

If every vector L-space Mr1,...,rp
is finite-dimensional and there exists an

element (h1, . . . , hp) ∈ Zp such that Er1,...,rp
Mh1,...,hp

= Mr1+h1,...,rp+hp
for any

(r1, . . . , rp) ∈ Np, the p-dimensional filtration {Mr1,...,rp
|(r1, . . . , rp) ∈ Zp} is

called excellent.
It is easy to see that if z1, . . . , zk is a finite system of generators of a vec-

tor σ∗-L-module M , then {
k

∑

i=1

Er1,...,rp
zi|(r1, . . . , rp) ∈ Zp} is an excellent p-

dimensional filtration of M .

As we have seen, the module of Kähler differentials ΩL|K can be treated
as a σ∗-L-module such that α(dζ) = dα(ζ) for any ζ ∈ L, α ∈ σ∗. Further-
more, ΩL|K =

∑s
i=1 Edηi, and if (ΩL|K)r1...rp

(r1, . . . , rp ∈ N) is the vector
L-subspace of ΩL|K generated by the set {dη|η ∈ K({γηj | γ ∈ Γ (r1, . . . , rp), 1 ≤
j ≤ s})} and (ΩL|K)r1...rp

= 0 whenever at least one ri is negative, then
{(ΩL|K)r1...rp

| (r1, . . . , rp) ∈ Zp} is an excellent p-dimensional filtration of ΩL|K .
Let N be the E-submodule of ΩL|K generated by all elements of the form

dζ where ζ ∈ F . Furthermore, for any r1, . . . , rp ∈ N, let Nr1,...,rp
be the vector

L-space generated by all elements dζ where ζ ∈ Fr1,...,rp
. Setting Nr1,...,rp

= 0 if
(r1, . . . , rp) ∈ Zp \ Np, we obtain a p-dimensional filtration of the σ∗-L-module
N , and the embedding N → ΩL|K becomes a homomorphism of p-filtered σ∗-
L-modules. Using this fact, one can mimic the proof of Theorem 3.2.8 of [13]
to show that the filtration {Nr1,...,rp

|(r1, . . . , rp) ∈ Zp} is excellent. Now the
result of Theorem 7 immediately follows from the fact that dimL Nr1,...,rp

=
trdegK Fr1,...,rp

for all (r1, . . . , rp) ∈ Np (as we have mentioned in the proof
of Theorem 2, a family (ζi)i∈I of elements of L (in particular, of Fr1,...,rp

) is
algebraically independent over K if and only if the family (dζi)i∈I is linearly
independent over L) and [13, Theorem 3.5.8]. (The last theorem states that under
the above conditions, there exists a polynomial ΦK,F,η(t1, . . . , tp) ∈ Q[t1, . . . , tp]
such that Φη(r1, . . . , rp) = dimL Nr1,...,rp

for all sufficiently large (r1, . . . , rp) ∈



376 A. Levin

Zp and ΦK,F,η(t1, . . . , tp) satisfies conditions (ii) of Theorem7. Statement (iii)
of Theorem 7 can be obtained in the same way as statement (iii) of Theorem 2
of [15].)

References

1. Einstein, A.: The Meaning of Relativity. Appendix II (Generalization of gravitation
theory), 4th edn., pp. 133–165. Princeton (1953)

2. Kolchin, E.R.: The notion of dimension in the theory of algebraic differential equa-
tions. Bull. Am. Math. Soc. 70, 570–573 (1964)

3. Johnson, J.L.: Kähler differentials and differential algebra. Ann. Math. 89(2),
92–98 (1969)

4. Johnson, J.L.: A notion on Krull dimension for differential rings. Comment. Math.
Helv. 44, 207–216 (1969)

5. Johnson, J.L.: Kähler differentials and differential algebra in arbitrary character-
istic. Trans. Am. Math. Soc. 192, 201–208 (1974)

6. Kolchin, E.R.: Some problems in differential algebra. In: Proceedings of the Interna-
tional Congress of Mathematicians (Moscow - 1966), Moscow, pp. 269–276 (1968)

7. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New
York (1973)

8. Kondrateva, M.V., Levin, A.B., Mikhalev, A.V., Pankratev, E.V.: Differential and
Difference Dimension Polynomials. Kluwer Academic Publishers, Dordrecht (1999)

9. Levin, A.B.: Characteristic polynomials of inversive difference modules and some
properties of inversive difference dimension. Russ. Math. Surv. 35(1), 217–218
(1980)

10. Levin, A.B.: Reduced Groebner bases, free difference-differential modules and
difference-differential dimension polynomials. J. Symb. Comput. 30, 357–382
(2000)

11. Levin, A.B.: Gröbner bases with respect to several orderings and multivariable
dimension polynomials. J. Symb. Comput. 42(5), 561–578 (2007)

12. Levin, A.B.: Computation of the strength of systems of difference equations via
generalized Gröbner bases. In: Grobner Bases in Symbolic Analysis, pp. 43–73.
Walter de Gruyter (2007)

13. Levin, A.B.: Difference Algebra. Springer, New York (2008)
14. Levin, A.B.: Dimension polynomials of intermediate fields and Krull-type dimen-

sion of finitely generated differential field extensions. Math. Comput. Sci. 4(2–3),
143–150 (2010)

15. Levin, A.B.: Multivariate dimension polynomials of inversive difference field exten-
sions. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.)
AADIOS 2012. LNCS, vol. 8372, pp. 146–163. Springer, Heidelberg (2014)

16. Levin, A.B., Mikhalev, A.V.: Type and dimension of finitely generated G-algebras.
Contemp. Math. 184, 275–280 (1995)

17. Mikhalev, A.V., Pankratev, E.V.: Computer Algebra. Calculations in Differential
and Difference Algebra. Moscow State Univ. Press, Moscow (1989)

18. Sit, W.: Well-ordering of certain numerical polynomials. Trans. Am. Math. Soc.
212, 37–45 (1975)



A “Polynomial Shifting” Trick in Differential
Algebra

Gleb Pogudin(B)

Moscow State University, Moscow, Russia
pogudin.gleb@gmail.com

Throughout the paper all fields are assumed to be of characteristic zero and
“differential” means “ordinary differential”.

Standard proofs of the primitive element theorem [1, V, Theorem 4.6] and
the Noether normalization lemma [1, VIII, Theorem 2.1] are based on a consid-
eration of “generic combinations” of initial generators. We propose a differential
counterpart of this argument which we call a “polynomial shifting” trick. It is
an important part of recent proofs of a strengthened version of Kolchin’s primi-
tive element theorem (see [3, Theorems 1 and 2]) and a differential analog of the
Noether normalization lemma (see [4, Theorem 1]). This trick turned out to be
quite flexible and constructive. We hope that this method will be useful dealing
with problems of the same flavour.

In what follows A{x} is an algebra of differential polynomials in x over A
and A〈x〉 is its field of fractions. Let F ⊂ E be an extension of differential fields.
Then, for a ∈ E by F 〈a〉 we denote the differential subfield of E generated by
a and F . Let A ⊂ B be an extension of differential k-algebras. Then, for b ∈ B
by A{b} we denote the differential subalgebra of B generated by b and A. Let
k, K, E and F be differential fields.

The trick is based on the following simple lemma (see [2, p. 35] for a bit weaker
version).

Lemma 1. Let P (x) ∈ K{x} be a nonzero differential polynomial and ord P �
n. Assume that there exists t ∈ K such that t′ = 1. Then, there exists a polyno-
mial s(t) ∈ Q[t] such that degt s � n and P (s(t)) �= 0.

We will illustrate the method by applying it to the following lemma:

Lemma 2. Let P (x, y) ∈ k{x, y}\k{x}. Then, there exists a polynomial q(t) ∈
Q[t] such that ∂

∂y P (x + q(y), y) �= 0.

Proof. Let VΛ = {Λ0, Λ1, . . .} be a set of variables. We extend the derivation
from k{x, y} to k{x, y}[VΛ] by (Λi)

′ = y′Λi+1. A variable Λi should be thought
of as a placeholder for the expression q(i)(y). Hence, the formula (Λi)

′ = y′Λi+1

is a rewritten chain rule for the derivative. More formally, let us fix an arbitrary
polynomial q(t) ∈ Q[t]. Then, the k{x, y}-linear map ϕq : k{x, y}[VΛ] → k{x, y}
defined by ϕq(Λi) = q(i)(y) is a homomorphism of differential k-algebras.

We see that ∂
∂y ϕq(Λi) = ϕq(Λi+1). Thus, we can compute ∂

∂y ϕq (P (x + Λ0, y))
in terms of Λi’s. By n denote ordx P and by S denote the separant of P with respect

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 377–379, 2016.
DOI: 10.1007/978-3-319-32859-1 32



378 G. Pogudin

to x. Then

∂

∂y
ϕq (P (x + Λ0, y)) = ϕq (Λn+1S(x + Λ0, y) + T ) ,

where T ∈ k{x, y} [Λ0, . . . , Λn]. Since T does not depend on Λn+1, R =
Λn+1S(x + Λ0, y) + T is a nonzero polynomial in Λ0, . . . , Λn+1 over k〈x, y〉. Let
us define a derivation on k〈x, y〉 [VΛ] by D(z) = z′

y′ . By the definition, D(y) = 1
and D(Λi) = Λi+1. Thus, R can be considered as a differential polynomial in Λ0

over k〈x, y〉. Due to Lemma 1, there exists a polynomial q(t) ∈ Q[t] such that
ϕq(R) �= 0. Hence, ∂

∂y P (x + q(y), y) �= 0.

To sum up, the trick is a way to treat a “generic polynomial” in some dif-
ferential variable y. The formula (Λi)

′ = y′Λi+1 carries the information that Λi

is a polynomial in y, so we need no longer keep this in mind. Moreover, Λi is a
“homogeneous” object, i.e. depends solely on y. This allows us to compute partial
derivative of an expression involving Λi’s with respect to y and its derivations.

The proof of the following theorem is based on a more sophisticated version
of the same argument.

Theorem 1 ([3], Theorem1). Let E = F 〈a, b〉, trdegF E < ∞, and b′ �= 0.
Then, there exists p(x) ∈ Q[x] such that trdegF F 〈a + p(b)〉 = trdegF F 〈a, b〉.
Proof (Sketch of the proof). Again, let VΛ = {Λ0, Λ1, . . .} be a set of variables.
We extend the derivation from E to E[VΛ] by (Λi)

′ = b′Λi+1. For p(t) ∈ Q[t] by
ϕp we denote the homomorphism of differential E-algebras E[VΛ] → E defined
by ϕp(Λi) = p(i)(b).

Let c = a + Λ0 and n = trdegF E. Then, trdegF (VΛ) E(VΛ) = n.
Hence, c, . . . , c(n) are algebraically dependent over F (VΛ). Let R(x0, . . . , xn) ∈
F [VΛ][c, . . . , c(n)] be a “minimal dependence” between c, . . . , c(n) over F [VΛ].
Then, ϕp(R) is an algebraic dependence between b, ϕp(c), . . . , ϕp(c(n)) over F .
All we need is a polynomial p(t) ∈ Q[t] such that ϕp(R) is a nonzero polynomial
with respect to b. Or, equivalently, we need p(t) ∈ Q[t] such that ∂

∂bϕp(R) �= 0.
This can be done in the same way as in Lemma 2.

The above theorem is a first step of the proof of the following strengthened
version of Kolchin’s primitive element theorem.

Theorem 2 ([3], Theorem2). Let E = F 〈a1, . . . , am〉, trdegF E < ∞, and E
contains a nonconstant. Then, there exists a ∈ E such that E = F 〈a〉.

In [4] the following analog of the Noether normalization lemma was proved
using two-stage “polynomial shifting”.

Theorem 3 ([4], Theorem1). Let B be a differentially finitely generated inte-
gral differential k-algebra of differential transcendence degree d. Then, there exist
differentially independent elements b1, . . . , bd ∈ B such that for every prime dif-
ferential ideal p ⊂ A = k{b1, . . . , bd} there exists a prime differential ideal q ⊂ B
such that q ∩ A = p.



A “Polynomial Shifting” Trick in Differential Algebra 379

We leave the proof of the following lemma as an exercise to an interested
reader.

Lemma 3 Let E = F 〈c〉, trdegF E < ∞ and c′ �= 0. Let P (x) ∈ F{x} be a
nonconstant differential polynomial. Then, there exists a polynomial s(t) ∈ Q[t]
such that trdegF F 〈P (s(c))〉 = trdegF E.

References

1. Lang, S.: Algebra. Graduate Texts in Mathematics. Springer, New York (2002)
2. Ritt, J.F.: Differential Algebra, vol. 33. Colloquium publications of AMS, New York

(1948)
3. Pogudin, G.A.: The primitive element theorem for differential fields with zero deriva-

tion on the base field. J. Pure Appl. Algebra 219(9), 4035–4041 (2015)
4. Pogudin G.A., A differential analog of the Noether normalization lemma, preprint,

submitted to ArXiv



Data and Knowledge Exploration



Searching for Geometric Theorems Using
Features Retrieved from Diagrams

Wenya An, Xiaoyu Chen(B), and Dongming Wang

LMIB – SKLSDE – School of Mathematics and Systems Science,
Beihang University, Beijing 100191, China

chenxiaoyu@buaa.edu.cn

Abstract. Searching for knowledge objects from knowledge bases is a
basic problem that need be investigated in the context of knowledge
management. For geometric knowledge objects such as theorems, nat-
ural language representations may not exactly reveal the features and
structures of geometric entities, and that is why keyword-based search-
ing is often unsatisfactory. To obtain high-quality results of searching
for theorems in plane Euclidean geometry with images of diagrams as
input, we propose a method using geometric features retrieved from the
images. The method consists of four main steps: (1) retrieve geometric
features, with formal representations, from an input image of a diagram
D using pattern recognition and numerical verification; (2) construct a
graph G corresponding to D from the retrieved features and weaken G
to match graphs produced from formal representations of theorems in
OpenGeo, an open geometric knowledge base; (3) calculate the degree of
relevance between G and the graph for each theorem found from Open-
Geo; (4) rank the resulting theorems according to their degrees of rel-
evance. This method, based on graph matching, takes into account the
structures of diagrams and works effectively. It is capable of finding out
theorems of higher degree of relevance and may have potential applica-
tions in geometric knowledge management and education.

Keywords: Theorem searching · Graph matching · Degree of
relevance · Knowledge management

1 Introduction

Searching for information, a fundamental activity of human beings in all eras,
has never become so complex, so challenging, and so demanding as nowadays
when the world is flooded with data and information. There are many sophisti-
cated information retrieval (IR) systems which have been developed to retrieve
desired and valuable information from diverse sources of data in efficient ways.
In order to speak about information being desired or valuable, one has to intro-
duce suitable mechanisms to specify desired information and to use quantitative
estimates to measure the value or usefulness of each piece of information. For
example, some of the IR systems choose to rank documents according to their
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 383–397, 2016.
DOI: 10.1007/978-3-319-32859-1 33



384 W. An et al.

numerical scores labeled on the basis of the vector-space model and the proba-
bilistic model [16].

We are concerned with searching for information (more concretely, for geo-
metric knowledge objects) from knowledge bases for which pattern matching is
essential (see, e.g., [20]). For knowledge base queries, there are mainly two kinds:
factual and conceptual [19]. The former identifies pieces of information relevant
to the input through expansion of the query terms and expansion of themes,
while the latter identifies potential existence of information in particular areas
by specifying terminologies. In addition, ontology-based retrieval models or algo-
rithms (e.g., the one described in [14]) may be used to support semantic search
and knowledge-base exploitation.

Mathematics is constituted by multi-layer knowledge with various kinds of
representations. Most of mathematical objects may be represented using func-
tions and relations in which complex structures may be not obvious. It is rather
difficult to retrieve mathematical objects merely based on keywords. Mathe-
matical information retrieval is accomplished in general with query construc-
tion, normalization, indexing, and matching [21]. Currently available systems
for searching mathematical expressions are based mostly on tree indexing (see,
for instance, [6,10–13]). The retrieval of mathematical information from nat-
ural language text is another challenging issue, involving the use of techniques
and tools from computational linguistics and artificial intelligence. The reader
is referred to [8] for the system mArachna, which is capable of retrieving certain
mathematical information from scientific books in German.

Figures are widely used to represent or illustrate mathematical knowledge in
general, and geometric knowledge in particular. How to retrieve geometric infor-
mation and how to discover geometric knowledge from figures are both interest-
ing questions that may be asked. For existing work related to these questions,
we may mention [9], in which declarative, procedural, and analytic approaches
are used to describe geometric figures and a search mechanism based on a graph
database is developed, and [2,17], in which it is shown how geometric theorems
can be discovered automatically from images of diagrams.

In this paper, we present an inexact query method for searching geomet-
ric theorems stored in the open geometric knowledge base OpenGeo [18]. Our
method is different from the query method presented in [9]. We construct undi-
rected graphs, which are easier to be built, instead of directed graphs for queries
and theorems stored in the database. We use types to describe nodes and edges.
It is not necessary to consider directed edges when types of nodes and edges are
fixed. For example, if two nodes’ types are point and line respectively and the
type of the edge between these two nodes is incident, then there is only one pos-
sibility that the point is incident to the line. On the other hand, weights are used
to measure importance of nodes in an undirected graph. Considering an inexact
query, we will weaken the query graph according to the weights of nodes to find
out theorems. So it is possible to emphasize different parts of the query graph in
the weakening process. If one wants to keep the nodes that have perpendicular
relations, higher weights can be given to these nodes than to others. Differ-
ent allocations of weights lead to different searching results, satisfying various



Searching for Geometric Theorems Using Features 385

application requests. Our method allows users to allocate weights by their will-
ingness. In addition, to reduce searching space to save time, irrelevant theorems
which have no possibilities to satisfy the query are filtered out before hand.

In detail, for a given image of a diagram, the method works by first retriev-
ing geometric features (including geometric objects and their relations) implied
in the image using pattern-recognition methods and numerical verification tech-
niques [2,17] and then constructing a graph G corresponding to the diagram in
the input image from the retrieved features. The graph G is simplified and weak-
ened to match graphs produced from theorems in OpenGeo and the degree of rele-
vance between G and the graph of each theorem found from OpenGeo is calculated
and used to rank the resulting theorems. This inexact query method is capable of
figuring out theorems of high degree of relevance with the diagram in the input
image and may be used to explore properties of similar diagrams, to find relevant
theorems for illustration, and to seek for analogous techniques of theorem prov-
ing. After a short review of formal representation of geometric theorems and the
structure and implementation of OpenGeo in Sect. 2, we will outline the process
of searching for theorems from OpenGeo using features retrieved from images of
diagrams in Sect. 3 and define the degree of relevance for ranking searching results
in Sect. 4. Experimental results with a preliminary implementation of our search-
ing method will be reported in Sect. 5. Conclusions drawn from this work will be
discussed briefly and together with future work in Sect. 6.

2 OpenGeo: A Formalized Geometric Knowledge Base

OpenGeo [18] is an open online geometric knowledge base, containing typical
geometric knowledge objects (such as definitions, theorems, and proofs) and
web-based interfaces and tools to support users to manage the knowledge objects
stored in OpenGeo.

2.1 Representation of Geometric Knowledge Objects in OpenGeo

Geometric knowledge objects in OpenGeo are categorized into specific
classes, including definition, axiom, theorem, proof, problem, and algorithm
(which are interconnected according to the structure of geometric knowl-
edge objects [3]). Each class may contain several data items. For example,
the class of theorem contains knowledgeName (identifiers for the theorem),
formalRepresentation (processable by other tools for automated reason-
ing, computation, transformation, etc.), naturalRepresentation (for human
users to read), algebraicRepresentation (algebraic expressions for the theo-
rem), diagramInstruction (instructions for drawing diagrams of the theorem),
nondegeneracyCondition (constraints to make the theorem rigorous and unam-
biguous), figure (images or diagrams constructed by using dynamic geometry
software for the theorem), and keyWords.

The data stored in the formalRepresentation item is represented in GDL,
a formal Geometry Description Language [1] which is readable and processable,



386 W. An et al.

and can be easily transformed into or from natural languages. For example,
the theorem named after Robert Simson, illustrated by the figure in Fig. 1 and
stated in English as “the feet of the perpendiculars from a point to the sides
of a triangle are collinear if and only if the point lies on the circumcircle of the
triangle,” may be represented in GDL as

Fig. 1. The figure of Simson’s theorem

Theorem(Simson, Theorem,
assume({A,B,C,D} := {point(), point(), point(), point()},

incident(D, circumcircle(triangle(A,B,C))),
show(collinear(foot(D, line(A,B)), foot(D, line(A,C)), foot(D,

line(B,C))))).
This formal representation of the theorem can be used for automated proving of
the theorem and automated generation of diagrams illustrating the theorem [1].
We will use the data stored in the formalRepresentation item of theorem class
to construct graphs of theorems for searching in Sect. 3.

2.2 OpenGeo Extension

To search for theorems in OpenGeo with an image of diagram as query input, it is
effective to firstly retrieve geometric features from both the input image and the
theorems in OpenGeo and then contrast the retrieved features to determine the
degrees of relevance between the diagram in the input image and the theorems.
By geometric features of a diagram or a theorem, we mean geometric entities
and their relations which are involved in the diagram or the theorem. They can
be represented as a graph in the way that an entity is mapped into a node, while
a relation is mapped into an undirected edge. Formally, a pair (ID, Type) is used
to represent a node, where ID is an integer automatically assigned to the node
and Type indicates the type of the entity (see Table 1); a triple (FirstNodeID,
SecondNodeID, Type) is used to represent an edge, where FirstNodeID and
SecondNodeID are the ID’s of the two nodes that the edge connects and Type
indicates the type of the relation (see Table 2). Different types of nodes are
related to different types of edges. For example, D (in Table 1) means the distance



Searching for Geometric Theorems Using Features 387

Table 1. Types of nodes

Type Entity

P a point

L a line, a segment, or a halfline

C a circle

TRI a triangle

QUAD a quadrilateral

D a distance

Table 2. Types of edges

Type Relation

inc a point is incident to a line or a circle

ind endpoints of a segment

perp two lines are perpendicular

para two lines are parallel

equ equivalence

tri vertices of a triangle

quad vertices of a quadrilateral

between two points, no matter whether the line segment between the two points
exists or not in the diagram. But if L (in Table 1) appears, there must be a
line appearing in the diagram. Relations between entities of type L could be
perpendicular relation (of type perp in Table 2), parallel relation (of type para
in Table 2) while quantities of type D have the equivalence relation (of type equ
in Table 2).

For instance, the graph for the geometric features of Simson theorem may be
represented as follows.

– Nodes:
(0, L), (1, L), (2, L), (3, C), (4, P), (5, L),

(6, P), (7, L), (8, P), (9, L), (10, L), (11, TRI),

(12, P), (13, P), (14, P), (15, P).

– Edges:

(0, 5, perp), (1, 7, perp), (2, 9, perp), (12, 11, tri), (13, 11, tri), (14, 11, tri),

(12, 0, inc), (13, 0, inc), (12, 1, inc), (14, 1, inc), (13, 2, inc), (14, 2, inc),

(4, 5, inc), (4, 0, inc), (15, 5, inc), (6, 7, inc), (6, 1, inc), (15, 7, inc),

(8, 9, inc), (8, 2, inc), (15, 9, inc), (4, 10, inc), (6, 10, inc), (8, 10, inc),

(15, 3, inc), (12, 3, inc), (13, 3, inc), (14, 3, inc).

To facilitate the fetching of geometric features of theorems, OpenGeo has
been extended by adding a data item, named feature, to store graphs generated
automatically from formal representations of theorems.

3 Searching for Geometric Theorems in OpenGeo

The process of searching for geometric theorems in OpenGeo consists of three
main steps: (1) retrieving geometric features from an input image of diagram;
(2) filtering out irrelevant theorems using the retrieved features; (3) matching
the features of each remaining theorem with the features of the diagram in the
input image to obtain theorems of high relevance. We detail these steps in the
following three subsections.



388 W. An et al.

3.1 Retrieving Geometric Features from Diagrams

Chen, Song, and Wang [2,17] proposed a method to detect basic geometric enti-
ties (such as points, lines, and circles), to recognize labels of basic geometric
entities, and to mine basic geometric relations (such as incidence, parallelism,
perpendicularity, and equivalence) from images of diagrams by using techniques
and tools of pattern recognition and numerical verification. The retrieved geo-
metric features, represented in GDL, can be transformed into graph representa-
tions. For example, the following graph representation may be produced for the
diagram shown in Fig. 2.

Fig. 2. An image of diagram as query input

– Nodes:
(0, P), (1, L), (2, D), (3, D), (4, P), (5, L), (6, L),

(7, L), (8, C), (9, L), (10, L), (11, L), (12, P), (13, D),

(14, D), (15, D), (16, TRI), (17, L), (18, L), (19, L), (20, P),

(21, P), (22, P).

– Edges:

(0, 2, ind), (21, 2, ind), (0, 3, ind), (22, 3, ind), (4, 13, ind), (20, 13, ind),

(4, 14, ind), (21, 14, ind), (4, 15, ind), (22, 15, ind), (1, 9, perp), (5, 10, perp),

(6, 11, perp), (0, 1, inc), (21, 1, inc), (22, 1, inc), (22, 5, inc), (20, 5, inc),

(20, 6, inc), (21, 6, inc), (4, 7, inc), (0, 7, inc), (20, 9, inc), (21, 10, inc),

(22, 11, inc), (9, 12, inc), (10, 12, inc), (11, 12, inc), (4, 17, inc), (20, 17, inc),

(4, 18, inc), (21, 18, inc), (4, 19, inc), (22, 19, inc), (20, 8, inc), (21, 8, inc),

(22, 8, inc), (20, 16, tri), (21, 16, tri), (22, 16, tri), (2, 3, equ), (13, 15, equ),

(14, 15, equ).

Geometric information retrieved from images of diagrams may contain enti-
ties and relations irrelevant to the geometric features that the diagrams are
expected to illustrate. To obtain geometric features for the purpose of searching,
the following simple rules may be applied to remove redundant points, lines, and
circles.



Searching for Geometric Theorems Using Features 389

– If a point is involved in no more than two relations and types of these relations
are inc, then remove this point and the corresponding relations. For example,
if a point in a diagram is just the intersection of two lines, then it does not
show any important geometric features of the diagram. Therefore, this point
and the two relations of inc can be removed.

– If a line or a circle is not involved in any relations, then remove it. In other
words, a line or a circle without relations in a diagram does not show any
important geometric features of the diagram, so it can be removed.

3.2 Filtering Out Irrelevant Theorems Using Features

For efficient searching in OpenGeo, it is necessary to filter out irrelevant theorems
before starting the process of feature matching. In view of the importance of
geometric relations in the construction of diagrams, we adopt the following rules
to filter out some irrelevant theorems.

For any graph s produced for a theorem in OpenGeo and a graph q produced
for the diagram in the input image, let the types of edges of s and q be collected
in sets Cs and Cq and the numbers of edges of the same types of s and q be
collected in sets Ns and Nq, respectively.

1. If Cq \ Cs �= ∅, then the theorem with graph s is considered as irrelevant.
2. If Cq ⊂ Cs and there exists a c in Cq such that the number of edges of type c

in Nq is greater than that in Ns, then the theorem with graph s is considered
as irrelevant.

If either of the two conditions is satisfied, it is impossible that q is a subgraph
of s. So the theorem with graph s is irrelevant to the query.

3.3 Matching Geometric Objects and Relations

By means of representing geometric features using graphs (see Sect. 2.2), the
problem of feature matching can be converted to that of graph matching. For
the latter there is a universal method, called GraphGrep and introduced by
Giugno and Shasha [7]. This method proceeds by first creating a database, then
parsing the query graph and filtering the database, and finally finding subgraphs
matching the query graph. The resulting graphs produced by GraphGrep contain
the query graph as a subgraph. Using such exact matching, it is hardly possible
to find out theorems which are relevant with the query diagram only to some
degree.

What we actually want is inexact matching. To achieve this, we add a weaken-
ing process before using GraphGrep, that is, first weakening the query graph by
eliminating certain nodes and edges and then using GraphGrep to find graphs
for theorems in OpenGeo that match the weakened query graph exactly. The
following steps can be used to weaken the query graph.

1. Compute weights of nodes. Let R be the set {inc, ind, perp, para, equ,
tri, quad} of types of edges, where the weight for each T ∈ R is pre-given



390 W. An et al.

and denoted by wT. Let WR = [winc, wind, wperp, wpara, wequ, wtri, wquad],
V = {v1, v2, . . . , vp} be the set of nodes, and E = {e1, e2, . . . , eq} be the set of
edges of the query graph. The weight of an edge ei, denoted by we

i , is defined
to be wTi , where Ti is the type of ei, and the weight of a node vi connected by
ei1 , ei2 , . . . , ein (1 ≤ i1, i2, . . . , in ≤ q) is defined to be wTi1

+wTi2
+· · ·+wTin

.
Let the weight of vi be denoted by wv

i and WV = [wv
1 , w

v
2 , . . . , w

v
p ].1

2. Sort nodes with respect to a specific order. Let the types of nodes be ordered
as D � P � L � C � TRI � QUAD. Sort the nodes in V with respect to the
order ≺, introduced according to the following rules:
(a) if wv

i < wv
j , then vi ≺ vj ; if wv

i = wv
j , then go to (b);

(b) if the number of edges connected to vi is greater than that of edges con-
nected to vj , then vi ≺ vj ; if the two numbers are equal, then go to (c);

(c) if the type of vi � the type of vj , then vi ≺ vj ; if the types are identical,
then go to (d);

(d) if the ID of vi is less than that of vj , then vi ≺ vj .
3. Remove a node and the edges connected to the node. Let the nodes of the query

graph be ordered as vs1 ≺ vs2 ≺ · · · ≺ vsp and denote by Evsi
(1 ≤ i ≤ p)

the set of edges that are connected to vsi . Then V \ {vsi} and E \ Evsi
are

respectively the set of nodes and the set of edges of the weakened graph,
obtained from the query graph by removing the node vsi from V and all the
edges connected to vsi from E.

4 Processing Results of Searching

Using the method of inexact matching presented in the preceding section, one
can find a set of theorems in OpenGeo whose graphs match the query graph of
the diagram in the given image. It remains to rank the found theorems, so that
those which are most relevant to what the diagram may illustrate are placed on
the top.

4.1 Computing Degrees of Relevance

Given the image of a diagram D as query input, we want to define, for each
theorem T whose graph matches the graph of D, a quantity relDT, ranging from
0% to 100% and called the degree of relevance between D and T, to measure
how relevant T is to D. For two theorems T1 and T2, if relDT1

< relDT2
, then

theorem T2 is said to be more relevant with D than theorem T1. The degree of
relevance should meet the following three requirements.

– Complete. Let (V,E) and (VT, ET) be the graph representations for D and
T, respectively. If V = VT and E = ET, then relDT = 100%; if V ∩VT = ∅ and
E ∩ ET = ∅, then relDT = 0%.

1 For example, let V = {(0, P), (1, L), (2, L)} and E = {(0, 1, inc), (0, 2, inc),
(1, 2, perp)}. If WR = [1, 1, 2, 2, 1, 1, 1], then WV = [2, 3, 3].



Searching for Geometric Theorems Using Features 391

– Intuitive. Let (V,E), (VT1 , ET1), and (VT2 , ET2) be the graph representa-
tions for diagram D and theorems T1 and T2, respectively, and let mk =
|V ∩VTk

|+|E∩ETk
|

|VTk
|+|ETk

| for k = 1, 2.2 If mk1 < mk2 , then relDTk1
< relDTk2

(k1, k2 ∈
{1, 2}).

– Orderly. Let Dn be the diagram for which the graph is obtained by weakening
the query graph n times (n = 1, 2, . . . , |V |). Suppose that theorems Ta and
Tb match Da and Db, respectively. If a < b, then relDTa

> relDTb
.

The degree of relevance may be defined in different ways to meet the above
requirements. In what follows, we provide one definition and show its sound-
ness. Similarity of graphs has been studied in the past. Maximum common edge
subgraphs are used for calculation of graph similarity in [15] and Dehmer and
others [5] use generalized trees which are directed and hierarchical graphs to
measure structural similarity of graphs. Most of the methods focus on general
graphs. Our method is based on weighted and undirected graphs and takes into
account geometric characteristics.

Let
GDg

= ({vrg,1 , vrg,2 , . . . , vrg,mg
}, {erg,1 , erg,2 , . . . , erg,ng

})

be the representation of the graph resulting from GD after being weakened g
times (g = 0, 1, . . . ,m0 − 1),3 and

GTg
= ({vtg,1 , vtg,2 , . . . , vtg,lg }, {etg,1 , etg,2 , . . . , etg,hg

})

be the graph representation for a theorem Tg whose graph matches the query
graph of Dg exactly. Let the set WR of weights be given, the set of weights
of edges in the graph of D be {we

r0,1 , w
e
r0,2 , . . . , w

e
r0,n0

}, and the set of weights
of edges in the graph of Dg be {we

rg,1 , w
e
rg,2 , . . . , w

e
rg,ng

}. Then the degree of
relevance between Tg and D is defined as

relDTg
= matg · (mtrg − mtrg+1) + mtrg+1, (1)

where

matg =
1
2

·
(

mg

lg
+

ng

hg

)

, (2)

mtrk =
1
2

·
(

mk

m0
+

∑nk

j=1 w
e
rk,j

∑n0
j=1 w

e
r0,j

)

, k = g, g + 1, (3)

and g = 0, 1, . . . ,m0 − 1. In the above definition, matg and mtrg measure the
degree of matching between GDg

and GTg
and the degree of matching between

GDg
and GD, respectively.

Assertion. The degree of relevance defined above is complete, intuitive, and
orderly.

The correctness of this assertion can be seen from the following arguments.
2 |S| denotes the number of elements in set S.
3 When g = 0, GD0 = GD is the graph representation for the query diagram D.



392 W. An et al.

1. Complete. If GD and GT0 are equivalent, then GD, GD0 , and GT0 are all the
same. Therefore, mtr0 = 1, mat0 = 1, and thus relDT0

= 1, which means that
the degree of relevance is 100 %. If for any theorem T0, there is neither node
nor edge of GD which matches the nodes or edges of GT0 , then mat0 = 0,
mtr1 = 0, and thus relDT0

= 0, which means that the degree of relevance is 0 %.
2. Intuitive. According to the definition, when mtrg and mtrg+1 are fixed, mtrg−

mtrg+1 > 0 holds. Therefore, the larger matg is, the higher relDTg
is.

3. Orderly. From the formulae in the definition, it is easy to deduce that relDTg
>

mtrg+1 and relDTg+1
< mtrg+1. Therefore, relDTg

> relDTg+1
.

4.2 Ranking the Results

Retrieved theorems can be ranked according to the degrees of their relevance with
the query diagram. For example, five theorems T1, . . . ,T5 found of degrees 85 %,
90 %, 45 %, 92 %, and 79 % of relevance, respectively, with the query diagram
may be ranked top-down in the order of T4,T2,T1,T5,T3. From the ranking, it
is easy to see which theorems are most relevant to the query input.

5 Implementation and Experimental Results

Now we explain how the searching method presented in the previous sections
has been implemented using Python and provide some experimental results to
show the performance of the method with our preliminary implementation.

5.1 Implementation Issues

The searching procedure contains five modules: parsing, filtering, exact matching
(GraphGrep), similarity measuring, and reducing. Through the parsing module,
both the input image of a query diagram and the formal representations of theo-
rems in OpenGeo are parsed to yield graph representations of geometric features.
By comparing the numbers of entities and relations in the query graph with those
in the graph of each theorem in OpenGeo, the filtering module serves to reduce
search space and produce a set of candidate graphs. Then GraphGrep is used
to determine which candidate graphs match the query graph exactly. For each
resulting graph after exact matching, the degree of relevance between this graph
and the query graph is calculated in the module of similarity measuring. While
the degrees of relevance are higher than a pre-specified percentage (threshold)
and the given number of weakening operations is not reached, the query graph
is (further) weakened in the reducing module and the procedure repeats with
the weakened query graph instead of the query graph.

5.2 Examples and Experiments

To see how well the searching procedure performs, let us take the image of
the diagram shown in Fig. 2 as an example. With this image as query input, the



Searching for Geometric Theorems Using Features 393

(a) (b) (c) (d)

Fig. 3. (a) Searching result of exact matching; (b)–(c) Searching results after weakening
the query graph once; (d) Searching result after weakening the query graph twice.

procedure can find one theorem in OpenGeo, which is illustrated by the diagram
shown in Fig. 3(a). The degree of relevance between this found theorem and the

Table 3. Selected experimental results

Input image OpenGeo
capacity

Number of found theorems Time (s)

(80%, 100%] (60%, 80%] (50%, 60%]

189 2 0 1 0.146

189 3 1 0 0.153

189 1 3 11 0.206

189 8 17 4 0.177

189 1 0 0 0.079

189 0 3 4 0.265

189 0 3 16 0.267

(Continued)



394 W. An et al.

Table 3. (Continued)

Input image OpenGeo
capacity

Number of found theorems Time (s)

(80%, 100%] (60%, 80%] (50%, 60%]

189 3 4 2 0.126

189 0 1 1 0.269

189 1 2 9 0.189

189 1 4 0 0.195

189 2 3 1 0.149

189 2 0 1 0.161

189 3 1 0 0.172

189 1 3 11 0.163

189 0 0 0 –

189 0 0 0 –



Searching for Geometric Theorems Using Features 395

query diagram is 99.61 %. If the query graph is weakened once, then two other
theorems from OpenGeo, illustrated by the diagrams shown in Fig. 3(b) and (c),
can be found and the degrees of relevance between these two theorems and
the query diagram are 81.97 % and 81.04 %, respectively. If the query graph is
weakened twice, then another theorem, illustrated by the diagram shown in
Fig. 3(d), can be found and the degree of relevance between this theorem and
the query diagram is 71.95 %. These searching results indicate that the procedure
we have implemented is capable of finding geometric theorems with images of
diagrams as query input and the measure we have introduced for the degrees of
relevance between found theorems and query diagrams is sound.

We have made experiments on more than 40 images of diagrams (scanned
from the book [4]) to test our searching procedure. Selected experimental results
are given in Table 3. The first column shows the input query images and the sec-
ond column presents the number of theorems stored in OpenGeo for searching.
With each input query image, the procedure may find some theorems, the num-
ber of which is recoded in the three sub-columns of the third column: the first
sub-column counts the number of found theorems whose degrees of relevance
with the query diagram belong to the interval (80%, 100%] and the second and
the third sub-column count the numbers of found theorems whose degrees of
relevance belong to the intervals (60%, 80%] and (50%, 60%], respectively. The
last column of Table 3 shows the running time of the searching procedure. The
experimental results demonstrate that our searching procedure works effectively
for most input images as query. For the input images in the last two rows of
Table 3, the procedure can only find theorems whose degrees of relevance are
less than 50 %.

6 Conclusion and Future Work

We have proposed a method to tackle the problem of searching for geometric
theorems with images of diagrams as query input. The method uses geometric
features retrieved from the images of diagrams and is based on graph matching.
This method also treats weakened query graphs as a bridge to find out relevant
theorems from the query graph. It is capable not only of finding theorems which
the query diagrams likely illustrate, but also of ranking the found theorems
according to their degrees of relevance with query diagrams. Preliminary exper-
iments show that our method as well as its implementation works effectively
for theorem searching in OpenGeo. We will improve and generalize the method,
e.g., by including more types of geometric entities and relations, will extend our
implementation for searching theorems in other geometric knowledge bases, e.g.,
graph databases, will try various methods to calculate degrees of relevance, and
will develop a user-friendly interface for geometric theorem processing.

Acknowledgements. This work has been supported by the project SKLSDE-
2015ZX-18 and the NSFC project 11371047.



396 W. An et al.

References

1. Chen, X.: Representation and automated transformation of geometric statements.
J. Syst. Sci. Complexity 27(2), 382–412 (2014)

2. Chen, X., Song, D., Wang, D.: Automated generation of geometric theorems from
images of diagrams. Ann. Math. Artif. Intell. 74(3–4), 333–358 (2015)

3. Chen, X., Wang, D.: Formalization and specification of geometric knowledge
objects. Math. Comput. Sci. 7(4), 439–454 (2013)

4. Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel, Dordrecht (1988)
5. Dehmer, M., Emmert-Streib, F., Kilian, J.: A similarity measure for graphs with

low computational complexity. Appl. Math. Comput. 182, 447–459 (2006)
6. Einwohner, T.H., Fateman, R.J.: Searching techniques for integral tables. In: 1995

International Symposium on Symbolic and Algebraic Computation, pp. 133–139.
ACM (1995)

7. Giugno, R., Shasha, D.: GraphGrep: a fast and universal method for querying
graphs. In: 16th International Conference in Pattern Recognition, pp. 112–115.
IEEE (2002)

8. Grottke, S., Jeschke, S., Natho, N., Seiler, R.: mArachna: a classification scheme
for semantic retrieval in elearning environments in mathematics. Recent Research
Developments in Learning Technologies (2005)

9. Haralambous, Y., Quaresma, P.: Querying geometric figures using a controlled
language, ontological graphs and dependency lattices. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) Intelligent Computer Mathematics
(CICM 2014). LNAI, vol. 8543, pp. 298–311. Springer, Heidelberg (2014)

10. Hashimoto, H., Hijikata, Y., Nishida, S.: Incorporating breadth first search for
indexing MathML objects. In: The International Conference on Systems, Man and
Cybernetics, pp. 3519–3523. IEEE (2008)

11. Kamali, S., Tompa, F.W.: Improving mathematics retrieval. In: Towards a Digital
Mathematics Library, pp. 37–48 (2009)

12. Kamali, S., Tompa, F.W.: A new mathematics retrieval system. In: 19th
ACM International Conference on Information and Knowledge Management,
pp. 1413–1416. ACM (2010)

13. Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet, J.,
Ida, T., Wang, D. (eds.) Artificial Intelligence and Symbolic Computation (AISC
2006). LNAI, vol. 4120, pp. 241–253. Springer, Heidelberg (2006)

14. Kumar, S., Manjeet, S., Avik, D.: OWL-based ontology indexing and retrieving
algorithms for Semantic Search Engine. In: The 7th International Conference of
Computing and Convergence Technology, pp. 1135–1140. IEEE (2012)

15. Raymond, J.W., Gardiner, E.J., Willett, P.: RASCAL: calculation of graph simi-
larity using maximum common edge subgraphs. Comput. J. 45, 631–644 (2002)

16. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull.
24, 35–43 (2001)

17. Song, D., Wang, D., Chen, X.: Discovering geometric theorems from scanned
and photographed images of diagrams. In: Botana, F., Quaresma, P. (eds.) Auto-
mated Deduction in Geometry (ADG 2014). LNAI, vol. 9201, pp. 149–165.
Springer, Heidelberg (2015)

18. Wang, D., Chen, X., An, W., et al.: OpenGeo: an open geometric knowledge base.
In: Hong, H., Yap, C. (eds.) Mathematical Software (ICMS 2014). LNCS, vol. 8592,
pp. 240–245. Springer, Heidelberg (2014)



Searching for Geometric Theorems Using Features 397

19. Wical, K.: Concept knowledge base search and retrieval system. Patent 6,038,560.
U.S (2000)

20. Woods, W.A.: Knowledge base retrieval. In: Brodie, M.L., Mylopoulos, J. (eds.) On
Knowledge Base Management Systems, pp. 179–195. Springer, New York (1986)

21. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions.
Int. J. Doc. Anal. Recogn. 15, 331–357 (2012)



New Method for Instance Feature Selection
Using Redundant Features for Biological Data

Waad Bouaguel1(B), Emna Mouelhi2, and Ghazi Bel Mufti3

1 LARODEC, ISG, University of Tunis, Tunis, Tunisia
bouaguelwaad@mailpost.tn

2 ISG, University of Tunis, Tunis, Tunisia
Mouelhi.emmna@yahoo.fr

3 LARIME, ESSEC, University of Tunis, Tunis, Tunisia
belmufti@yahoo.com

Abstract. Biological data bases are characterized by a very large num-
ber of features and a few instances which make classification more dif-
ficult and time consuming. This problem can be solved using feature
selection approach. The Filter feature selection method ranks features
according to their significance level. Then it selects the most significant
features and discards the rest. The discarded features may provide some
useful information and could be useful to further consideration. Hence,
we propose a new feature selection method that uses these eliminated
features in order to increase the classification performance and avoid
the curse of dimensionality. The new approach is based on the idea of
transforming the value of the similar features into new instances for the
retained features. We aim to reduce the feature space by performing fea-
tures selection and increasing the learning space in creating new instances
using the redundant features.

Keywords: Curse of dimensionality · Relief · Feature selection · Filter

1 Introduction

The rapid progress and growth of biological data require a deep analysis of
massive data collected by the pharmaceutical studies and cancer therapy at the
genomic and proteomic level. Different kinds of information are stored in biologi-
cal databases such as the data about sequences of macromolecules, chromosomes
description, protein structures, etc. This huge quantity of data becomes the main
focus of information systems that represent store and return them appropriately
to the user. These data give information about the new sequences of the gene
or the protein discovered, their location in the cell and the description on these
data [6].

The incredible number of genes makes the treatments of biological data more
challenging. As there are thousands of gene expressions and only few dozens of
observations in a typical gene expression of a data set, the number of genes d
is usually of 1000 to 10000 order, while the number of biological observations
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 398–405, 2016.
DOI: 10.1007/978-3-319-32859-1 34



New Method for Instance Feature Selection Using Redundant Features 399

n is somewhere between 10 and 100. This phenomenon is called the curse of
dimensionality [2,13].

The curse of dimensionality is a term introduced by [1] to describe the prob-
lem caused by the exponential increase in volume, associated with adding extra
dimensions to Euclidean space, such a condition makes the application of many
classification or clustering methods a hard task to achieve [5]. In fact, if the num-
ber of features increases, the classifiers performance increases until the optimal
number of features is reached. Further increase of this number, without increas-
ing the number of training samples results in a decrease in classifier performance.

This problem can be solved using the dimensionality reduction process.
Dimensionality reduction is the process of converting data of very high dimen-
sionality into data of much lower dimensionality such that, each of the lower
dimensions conveys more information for efficient data processing. The field
of dimensionality reduction is divided into two categories of methods: feature
extraction and feature selection. According to [8,10], the first method consists of
finding a transformation to a lower dimensional space by creating a new smaller
feature set combining the original features. while feature extraction tends to
change the features, the second method tends to maintain the meaning of the
features. The feature selection process meaning reduces the size of the feature
space to a manageable size in order to consider a future work [8,12]. Usually,
feature selection is used more than feature extraction before classification, since
it preserves all information on the importance of each feature, whereas in the
extraction function the obtained features are generally not interpretable [4].

According to [13], there are two categories of feature selection algorithms:
filter and wrapper feature selection methods. Filter methods select the best fea-
tures by evaluating the fundamental properties of data, making them fast and
simple to implement. Wrapper methods consider the selection of a set of fea-
tures as a search problem, where the aim is to find the best features according
to the classifiers accuracy, making results well-matched to the predetermined
classification algorithm. Although effective wrapper methods are time consum-
ing as they are turned to the specific interaction with the classifier, which make
filter methods more adopted to big data [3]. Filter methods are characterized
by several benefits, in fact they select features without implying any learning
algorithm and they are generally faster and tend to be computationally less
expensive than wrapper methods. Filter methods, rank in terms of effectiveness.
This means that it select feature 1, then feature 2, and so on. Assume that we
have selected up to d = 5 features, so we use features {1, 2, 3, 4, 5} and discard
the rest. Among the selected features some may be redundant and should be
discarded. The discarded features provide some useful information. For example
features 1 and 2 are correlated, so feature 1 may be retained and feature 2 is
eliminated. Although feature 1 is kept as the most pertinent, feature 2 might
not be much worse than feature 1, and so could be useful to consider. Hence, the
disadvantage of filter methods is that some features that may seem less impor-
tant and redundant, and are thus discarded, may bear valuable information.
It seems a bit of a waste to throw away such information, that could possibly



400 W. Bouaguel et al.

in some way contribute to improving model performance. Hence the idea is to
find a way to reduce the dimensionality of the features and in the same use the
additional information. A possible solution is to perform a feature selection in
order to reduce the feature space and then use the eliminated features in order
to create new instances and increase the learning space and avoid the curse of
dimensionality. This paper is organized as follows: Sect. 2 presents a new method
for instance feature selection based on two stages. Then, Sect. 3 describes the
used datasets and the performance metrics and summarize the obtained results
and conclusions are drawn in Sect. 4.

2 New Method for Instance Feature Selection

As discussed before in the previous section our new approach aim to reduce the
number of feature and in the same time create new instances using the redun-
dant features. We start by a simple feature selection in which we choose the
relevant features and eliminate the rest. The relevant features are then divided
into two subsets: the most relevant features and relevant and redundant features.
Then, the feature with high similarity to the target feature are retained and the
redundant one are transformed into new instances before the classification. More
precisely, this approach entails two principals steps: the first step is feature rank-
ing and pertinence study and the second step is similarity study and instances
creation. Figure 1 summarizes this two steps of our approach.

Fig. 1. Flowchart of transformation process.



New Method for Instance Feature Selection Using Redundant Features 401

2.1 Feature Ranking and Pertinence Study

As a first step, we start by performing a feature selection using Relief algorithm
in order to rank the features according to their pertinence level to the target
feature. Relief is one of the most famous feature selection method based on
distance measures [9]. The fundamental idea of Relief is to estimate the relevance
of features according to how well their values separate the instances of the same
and different classes that are near each other [14]. For a dataset with n instances
and d features the complexity of relief is in order of O(nd), which makes it
very practical to data sets with large number of instances and features, such
as biological datasets. Relief returns a list of sorted features from the most
important feature to the least one.

The obtained list is divided into two groups: the first one represents the most
relevant features the second one represents the irrelevant features. Irrelevant
features are those that can never contribute to improve the predictive accuracy
of classification model. Removing such features reduces the dimension of the
search space and speeds up the learning algorithm. Hence, the second one is
eliminated and the first one is retained.

2.2 Similarity Study and Instance Creation

Although simple Relief doesn’t remove redundant features. If the feature weights
are superior to a particular threshold, these features will be selected even though
many of them are highly correlated to each other [9]. Therefore, the first set of
features may contain redundant features. They basically bring similar informa-
tion as other features. For example, a dataset may include two features which
provide similar information as date of birth and age.

Keeping these redundant features may confuse the learning algorithm. How-
ever, these kinds of features may bear valuable information, that could possibly
in some way contribute to improve model performance. Lets take an illustrative
example, consider we have ten features X = (x1;x6;x5;x4;x3;x2;x8;x7;x9;x10),
we apply Relief to rank features in terms of effectiveness. We obtain this list
X = (x2;x4;x6;x3;x5;x1;x8;x7;x9;x10). Assume that we have selected up to
six features (pertinent features) and discard the rest (irrelevant features). There-
fore, we obtain this list X = (x2;x4;x6;x3;x5;x6). In the second step, we apply
the correlation function in order to detect the redundant features. Therefore, the
correlation results give x1 redundant and similar to x2, x3 redundant and similar
to x4. The redundant features x1 and x3 could be eliminated and transformed
into new instance for x2 and x4. Thus, we propose to create new instances based
on the value of the redundant features. So, x1 will add four new instances to x2

and x3 will add four new instances to x4. More details are given in Fig. 2.
Hence, the most significant features are retained and the redundant ones are

used to create new instance. In this way, we increase the size of the learning
sample, which will improve the classification performance and no information is
discarded. All the important steps of our proposed approach are given in Fig. 1.



402 W. Bouaguel et al.

Fig. 2. Illustrative example of transforming features into new instances.

3 Experimental Investigations

The experiments were conducted on Central Nervous System (CNS), a large
data set concerned with the prediction of central nervous system embryonal
tumor outcome based on gene expression. This data set includes 60 samples
containing 39 medulloblastoma survivors and 21 treatment failures. These sam-
ples are described by 7129 genes [11]. We consider also the Leukemia microarry
gene expression dataset that consists of 72 samples which are all acute leukemia
patients, either acute lymphoblastic leukemia (47 ALL) or acute myelogenous
leukemia (25 AML). The total number of genes to be tested is 7129 [7].

In the literature, when we have a huge number of features (superior to 1000
features) we can select only 20 % of the datasets in order to facilitate the handling
of data. Consequently, we have randomly chosen about 1426 features from CNS
and Leukemia datasets. Then, in order to obtain a reliable model, we split the
dataset into training and testing samples using a 10-cross-validation. The result
of the proposed approach may contain missing values which should be handled
before beginning the classification process. We apply the mean substitution for
missing data, is to replace missing values with mean or median values over all
instances.

Feature ranking and pertinence study step, is based on relief algorithm in
order to rank features according to rates of pertinence, and to select the most rel-
evant one. If the relevance weight of features is greater than a particular thresh-
old, then these features are considered as pertinent. In this step of experimental
setting, we have used the empirical studies to define the correctly threshold for



New Method for Instance Feature Selection Using Redundant Features 403

Relief algorithm. In fact, we tested four thresholds {0.2; 0.4; 0.6; 0.8} for each
datasets in order to choose the best results. Table 1 gives an example of the
empirical study of the similarity and correlation thresholds for CNS dataset
with DT.

Table 1. Thresholds related to CNS dataset (DT)

In similarity study and instance creation step we use correlation function in
order to distinguish the relevant and redundant features from the set of perti-
nent feature. In the literature, the similarity study can be more efficient when
the threshold interval varies between [0.4; 0.8]. Hence, we tested five thresholds
{0.4; 0.5; 0.6; 0.7; 0.8} in order to choose the best results.

The performance of our proposed method is evaluated using the standard
information retrieval performance measures: precision and recall metrics on sup-
port vector machine (SVM) with a polynomial basis function kernel and J48
decision tree (DT) classifiers. The experiments were repeated 10 times.

Table 2. Performances for CNS dataset.

Number of attributes Precision (%) Recall (%)

DT

Instance based feature selection 702 83(%) 91(%)

Relief algorithm 1620 73(%) 80(%)

With all features 7129 48(%) 51(%)

SVM

Instance based feature selection 702 87(%) 87(%)

Relief algorithm 1620 74(%) 77(%)

With all features 7129 52(%) 47(%)

Table 2 compares the performance of DT and SVM for the CNS dataset,
when the algorithms are trained over all the features or on the set obtained
by the new approach and Relief algorithm. While comparing Relief algorithm



404 W. Bouaguel et al.

Table 3. Performances for Leukemia dataset.

Number of attributes Precision (%) Recall (%)

DT

Instance based feature selection 659 76(%) 80(%)

Reliefalgorithm 1502 63(%) 68(%)

With all features 7129 47(%) 53(%)

SVM

Instance based feature selection 659 81(%) 83(%)

Relief algorithm 1502 67(%) 70(%)

With all features 7129 42(%) 48(%)

with the new instance feature selection approach based on the simple SVM and
DT classification rule, it is evident that the later performs significantly much
better. It can be further verified from Table 3 that the new algorithm performs
significantly much better than the Relief. This performance is due to the fact
that redundant features are eliminated and in the same time we have more data
to train our algorithm. Over all the obtained results show that using feature
selection before classification improves the classification performance. However
feature a reduced set of features is more useful in presence of a suitable learning
sample size.

The computed values or scores of recall, precision, and the F-measures are
used to measure the performance of the feature selection methods. The differ-
ences between any two features selection methods may be due to chance or there
is a significant difference between them. To rule out the possibility that the dif-
ference is due to chance and to confirm our conclusions, statistical hypothesis
testing is used.

Here, we are interested in determining whether the mean values of a given per-
formance measure significantly differ accordingly with the used feature selection
method and classification method. A two-way Analysis of variance (ANOVA) is
performed to test the difference between different features selection methods and
classification methods. The first factor represent the different feature selection
methods and the second represent the different classification methods. Using the
ANOVA results we find that there are statistically significant differences between
the different feature selection methods (p-value = 0.007).

4 Conclusion

In this paper, we studied the effect of feature selection on biological data sets
and the links between the feature space and the size of the learning space. We
proposed a new feature selection algorithm that performs a dimensionality reduc-
tion using Relief algorithm, which allows to rank the features in ascending order.
After we apply the correlation function to extract redundant features and use
this latest to increase the size of the learning space. Therefore, classification
becomes easy and efficient.



New Method for Instance Feature Selection Using Redundant Features 405

References

1. Bellman, R.: Processus Adaptive Control: A Guided Tour. Princeton University
Press, Princeton (1961)

2. Brahim, A.B., Bouaguel, W., Limam, M.: Combining feature selection and data
classification using ensemble approaches: application to cancer diagnosis and credit
scoring, ch. 24, pp. 517–532. Taylor and Francis (2014)

3. Bouaguel, W.: On Feature Selection Methods for Credit Scoring. Ph.D. thesis,
Institut Superieur de Gestion de Tunis (2015)

4. Bouaguel, W., Mufti, G.B.: An improvement direction for filter selection techniques
using information theory measures and quadratic optimization. Int. J. Adv. Res.
Artif. Intell. 1(5), 7–11 (2012)

5. For Biotechnology Information, N. C.: Genbank growth (2008)
6. Froidevaux, C., Boulakia, S.C.: Intégration de sources de données génomiques du

web
7. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,

Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.: Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286, 531–537 (1999)

8. Guerif, S.: Rduction de dimension en apprentissage numrique non supervise. Ph.D.
thesis, Universit Paris 13 (2006)

9. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings
of the Ninth International Workshop on Machine Learning, pp. 249–256. Morgan
Kaufmann Publishers Inc., San Francisco (1992)

10. Kurzynski, M.W., Rewak, A.: The GA-based bayes-optimal feature extraction
procedure applied to the supervised pattern recognition. In: Rutkowski, L.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI),
vol. 5097, pp. 620–631. Springer, Heidelberg (2008)

11. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin,
M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag,
D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S.,
Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S.,
Golub, T.R.: Prediction of central nervous system embryonal tumour outcome
based on gene expression. Nature 415(6870), 436–442 (2002)

12. Richard, J., Qiang, S.: Computational Intelligence and Feature Selection: Rough
and Fuzzy Approaches. John Wiley and Sons, Canada (2008)

13. Salvador, G., Julin, L., Francisco, H.: Data preprocessing in Data Mining. Janusz
Kacprzyk, Polish Academy of Sciences, Warsaw, Poland. Springer (2015)

14. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-
based filter solution. In: Proceedings of the International Conference on Machine
Learning (ICML), pp. 856–863 (2003)



Faceted Search for Mathematics

Radu Hambasan(B) and Michael Kohlhase

Computer Science, Jacobs University Bremen, Bremen, Germany
radu.hambasan@gmail.com

Abstract. Faceted search is one of the most practical ways to browse
a large corpus of information. Information is categorized automatically
for a given query and the user is given the opportunity to further refine
his/her query. Many search engines offer a powerful faceted search engine,
but only on the textual level. Faceted Search in the context of Math
Search is still unexplored territory.

In this paper, we describe one way of solving the faceted search prob-
lem in mathematics: by extracting recognizable formula schemata from
a given set of formulae and using these schemata to divide the initial set
into formula classes. Also, we provide a direct application by integrating
this solution with existing services.

1 Introduction

Search engines have become the prevalent tool for exploring the ever growing
trove of digital data on the Internet. Although text search engines (e.g. Google
or DuckDuckGo) are sufficient for most uses, they are limited when it comes to
finding scientific content. STEM documents (Science, Technology, Engineering
and Mathematics) contain mathematical formulae which cannot be properly
indexed by a text search engine as they are structured expressions of operators
(fractions, square-roots, subscripts and superscripts) and tokens.

A good math search engine is needed by several user groups. One user group
would be an airline manufacturer, searching for formulae in their engineering
whitepapers. In the case of research centers, like CERN, valuable time would be
saved if scientists would have a fast, reliable and powerful math search engine to
analyse previous related work. Still another user group is represented by univer-
sity students who would be empowered by search engines, when their textbooks
are not limited to text, but also include formulae. For all these applications,
we first need a strong math search engine and second, a large corpus of math
to index. Correspondingly, Math Information Retrieval is a small but vibrant
research topic, we refer the reader to the recent Math-2 Task [1] at the NTCIR-
11 IR Evaluation Campaign for an overview.

The Cornell e-Print Archive arXiv [3], is an example of such a corpus, con-
taining over a million STEM documents from various scientific fields (Physics,
Mathematics, Computer Science, Quantitative Biology, Quantitative Finance
and Statistics). Zentralblatt Math (ZBMath) [17] has abstracts/reviews of all
published papers (currently 3 .5 million) since 1859. A search engine for these

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 406–420, 2016.
DOI: 10.1007/978-3-319-32859-1 35



Faceted Search for Mathematics 407

Fig. 1. Faceted search in ZBMath

must provide an expressive query language and query-refining options to be able
to retrieve useful information.

Zentralblatt Math also provides a powerful search engine called “structured
search”. This engine is also capable of faceted search1. Figure 1 shows a typical
situation: a user searched for a keyword (here an author name) and the faceted
search generated links for search refinements (the facets) on the right. Currently,
facets for the primary search dimensions are generated – authors, journals, MSC
(Mathematics Subject Classification) [13]. This allows the user to further explore
the result space, even without knowing in advance the specifics of what he/she is
looking for. Unfortunately these facets are all metadata-driven and not specific
to mathematics – the MSC facet is an exception, but it is rather vague because it
will only provide information about the field of mathematics to which an article
belongs. If the authors use formulae from another field in their paper, the results
will suffer a drop in relevance.

1 Faceted search originates from image search [16] and the results showed that users
prefer a category-based approach to searching, even if the interface is initially unfa-
miliar.



408 R. Hambasan and M. Kohlhase

∫

?M
?Φ(dp?f)dvol

λ?X.h(H1?X) · · · Hn?X
?Γ�?A�?α

?D

Fig. 2. Formula facets

With the work reported in this paper we try to
lift this limitation by computing “formula facets”
consisting of a set of formula schemata generated
to further disambiguate the query by refining it in a
new dimension. For instance, for the query in Fig. 1,
we could have the facets in Fig. 2, which allows the
user to drill in on (i) variation theory and minimal
surfaces, (ii) higher-order unification, and (iii) type
theory. The red identifiers (prefixed with a question mark), stand for query
variables, their presence making the results formula schemata.

The formula schemata in Fig. 2 were manually created to judge the feasibility
of using schemata as recognizable user interface entities, but for an application
we need to generate them automatically from the query. Moreover, each schema
should further expand to show the formula class it represents. Formula classes
would consist of all formulae sharing the same schema. This is the algorithmic
problem we explore in this paper.

After reviewing the preliminaries in Sect. 2, we present the schematization
algorithm in Sect. 3 and discuss its implementation in Sect. 4. Section 5 addresses
first results in finding cutoff heuristics, the main cognitively relevant parameter in
the schematization algorithm. Section 6 discusses applications beyond the faceted
math search problem addressed in this paper and sketches future work. Section 7
concludes the paper.

2 Preliminaries

We will now present the systems on which our work is based:

– MathWebSearch provides the necessary index structure for schema search.
– Elasticsearch provides hits in response to text queries, as well as run aggre-

gations on the hits. These hits represent formulae to be schematized.
– arXiv provides a large corpus of mathematical documents that we can index

and run our system on.
– LATEXML converts LATEX expressions to MathML.

As discussed in Sect. 1, the goal of this project is to develop a scalable for-
mula schematization engine, capable of dividing a set of query hits into classes,
according to the generated formula schemata.

We have set the following end-user requirements for our system:

R1. it should be able to generate formula schemata from a given set of formulae
and the resulting schemata should be easily recognizable by the user.

R2. it should be able to classify the given set of formulae according to the
generated schemata.

R3. the system should be massively scalable, i.e. capable of answering queries
with hundreds of thousands of formulae in a matter of seconds.



Faceted Search for Mathematics 409

At its core, the MathWebSearch [8] system (MWS) is a content-based search
engine for mathematical formulae. It indexes MathML [12] formulae, using a
technique derived from automated theorem proving: Substitution Tree Index-
ing [7]. Recently, it was augmented with full-text search capabilities, combining
keyword queries with unification-based formula search. The engine serving text
queries is Elasticsearch (below). From now on, in order to avoid confusion, we
will refer to the core system (providing just formula query capability) as MWS
and to the complete service (MWS + Elasticsearch) as TeMaSearch (Text + Math
Search).

Internal to MWS, each mathematical expression is encoded as a set of substi-
tutions based on a depth-first traversal of its Content MathML tree. Furthermore,
each tag from the Content MathML tree is encoded as a TokenID, to lower the
size of the resulting index. The (bijective) mapping is also stored together with
the index and is needed to reconstruct the original formula. The index itself is
an in-memory trie of substitution paths.

To facilitate fast retrieval, MWS stores FormulaIDs in the leaves of the sub-
stitution tree. These are integers uniquely associated with formulae, and they
are used to store the context in which the respective expressions occurred. These
identifiers are stored in a separate LevelDB [11] database.

MathWebSearch exposes a RESTful HTTP API which accepts XML queries.
A valid query must obey the Content MathML format, potentially augmented
with qvar variables which match any subterms. A qvar is a wildcard in a query,
with the restriction that if two qvars have the same name, they must be substi-
tuted in the same way.

Elasticsearch [5] is a powerful and efficient full text search and analytics
engine, built on top of Lucene [2]. It can scale massively, because it partitions
data in shards and is also fault tolerant, because it replicates data. It indexes
schema-free JSON documents and the search engine exposes a RESTful web
interface. The query is also structured as JSON and supports a multitude of
features via its domain specific language: nested queries, filters, ranking, scoring,
searching using wildcards/ranges and faceted search.

arXiv is a repository of over one million publicly accessible scientific papers
in STEM fields. For the NTCIR-11 challenge [8], MWS indexed over 8.3 million
paragraphs (totaling 176 GB) from arXiv. We will base our queries on this large
index, because it provides a rich database of highly relevant formulae. Moreover,
Elasticsearch will have more formulae on which it can run aggregations, also
leading to more relevant results.

An overwhelming majority of the digital scientific content is written using
LATEX or TEX [10], due to its usability and popularity among STEM researchers.
However, formulae in these formats are not good candidates for searching because
they do not display the mathematical structure of the underlying idea. For this
purpose, conversion engines have been developed to convert LATEX expressions
to more organized formats such as MathML.

An open source example of such a conversion engine is LATEXML [14]. The
MathWebSearch project relies heavily on it, to convert arXiv documents from
LATEX to XHTML which is later indexed by MWS. It exposes a powerful API,



410 R. Hambasan and M. Kohlhase

Fig. 3. The CMML/PMML parallel markup

accepting custom definition files which relate TEX elements to corresponding
XML fragments that should be generated. For the scope of this project, we are
more interested in another feature of LATEXML: cross-referencing between Presen-
tation MathML and Content MathML. While converting TEX entities to Presen-
tation MathML trees, LATEXML assigns each PMML element a unique identifier
which is later referenced from the corresponding Content MathML element. In
this manner, we can modify the Content MathML tree and reflect the changes in
the Presentation MathML tree which can be displayed to the user.

Figure 3 illustrates the parallel markup for 2
x+3 . On the left side we have Pre-

sentation MathML and on the right side, Content MathML. As we can see, every
Content element has a Presentation correspondent, except the divide operator,
whose meaning is reflected in the structure of the displayed formula.

3 Schematization of Formula Sets

In this section, we provide a theoretical approach to the problem of generat-
ing formula schemata, by formalizing the problem and describing an efficient
algorithm to solve it. First we formulate the problem at hand more carefully.

Definition 1. Given a set D of documents (fragments) – e.g. generated by a
search query, a coverage 0 < r ≤ 1, and a width n, the Formula Schemata
Generation (FSG) problem requires generating a set F of at most n formula
schemata (content MathML expressions with qvar elements for query variables),
such that F covers D with coverage r.

Definition 2. We say that a set F of formula schemata covers a set D of
document fragments, with coverage r, iff at least r · |D| formulae from D are
an instance σ(f) of some f ∈ F for a substitution σ.

The algorithm that we present requires a MWS index of a corpus. Given such
an index, and a set D of formulae (as CMML expressions), we can find the set
F in the following way:



Faceted Search for Mathematics 411

1. Parse the given CMML expressions similarly to MWS queries, to obtain their
encoded DFS representations.

2. Choose a reasonable cutoff heuristic, see below.
3. Unify each expression with the index, up to a given threshold (given by the

above heuristic).
4. Keep a counter for every index path associated with the unifications. Since

we only match up to a threshold, some formulae will be associated with the
same path (excluding the leaves). We increase the counter each time we find
a path already associated with a counter.

5. Sort these path-counter pairs by counter in descending order and take the
first n (n being the width required by the FSG).

6. If the threshold depth was smaller than a formula’s expression depth, the
path associated with it will have missing components. We replace the missing
components with qvars to generate the schema and return the result set.

Figure 4a shows a MWS index with encoded expressions which were simplified
at depth 1. This means that the Content MathML representation of the formulae
was truncated at depth 1 and then encoded in the index, resulting in a “simplified
index”.

The formulae’s paths represent their depth-first traversal. Every formula can
be reconstructed given its path in the index. The circles represent index nodes
and the number inside represents the token’s ID. When we reach a leaf node, we
completely described a formula. This is encoded in the leaf node by an ID, which
can be used to retrieve the formula from the database. The length of the arrows
symbolizes the depth of the omitted subterms (for higher depths, we have longer

(a) Index simplified at depth 1 (b) FS Engine Architecture

Fig. 4. Aspects of the formula search system



412 R. Hambasan and M. Kohlhase

arrows). Notice how both formula with ID 1 and formula with ID 3 show the
same “path” when ignoring subterms below a cutoff depth (the simplification
depth), which in this case is 1.

4 Implementation

In this section, we explain the key details of the formula classifier’s implemen-
tation, the overall system architecture, as well as the challenges and trade-offs
associated with the taken design decisions.

Design Overview. The full faceted search system comprises of the following com-
ponents: the Formula Schematizer 4, Elasticsearch, a proxy to mediate commu-
nication between the Schematizer and Elasticsearch and a Web front-end. The
architecture of the system is shown in Fig. 4b.

Once the user enters a query (which consists of keywords and a depth), the
front-end forwards the request to a back-end proxy. The proxy sends the text
component of the query to Elasticsearch and receives back math contained in
matching documents. Afterwards, it sends the retrieved math and the depth
parameter (from the original query) to the Schematizer. The Schematizer will
respond with a classification of the math in formula classes, as well as the cor-
responding schema for each class. Finally, the proxy forwards the result to the
front-end which displays it to the user.

In the following sections, we will explain the core components of the system
in detail and describe the challenges faced during implementation.

The Formula Schematizer. The Schematizer is the central part of our system.
It receives a set of formulae in their Content MathML representation, generates
corresponding formula schemata and classifies the formulae according to the gen-
erated schemata. It provides an HTTP endpoint and is therefore self-contained,
i.e. it can be queried independently, not only as part of the faceted search sys-
tem. As a consequence, the Schematizer displays a high degree of versatility, and
can be integrated seamlessly with other applications.

Although our algorithm works well in theory, we needed to adapt it consid-
ering various MathWebSearch implementation details, e.g. the index is read-only
(therefore we cannot store extra data into the index nodes). Therefore, the over-
all idea/theory is the same, but now we take the following shortcut: instead of
unifying every formula with the index, we just pretend we do and instead gener-
ate a “signature” for each formula. This signature is the path shown in Fig. 4a.
We use the MathWebSearch encoding for MathML nodes, where each node is
assigned an integer ID based on its tag and text content. If the node is not a
leaf, then only the tag is considered. The signature will be a vector of integer
IDs, corresponding to the pre-order traversal of the Content MathML tree.

Naturally, the signature depends on the depth chosen for the cutoff heuristic.
At depth 0, the signature consists only of the root token of the Content MathML
expression. At full depth (the maximum depth of the expression), the signature
is the same as the depth-first traversal of the Content MathML tree.



Faceted Search for Mathematics 413

Based on these computed signatures, we divide the input set of formulae into
formula classes, i.e. all formulae with the same signature belong to the same class.
For this operation we keep an in-memory hash table, where the keys are given
by the signatures and the values are sets of formulae which have the signature
key. After filling the hash table, we sort it according to the number of formulae
in a given class, since the signatures which cover the most formulae should come
at the beginning of the reported result.

The Schematizer caller can place an optional limit on the maximum number
of schemata to be returned. If such a limit was specified, we apply it to our
sorted list of signatures and take only the top ones.

As a last step, we need to construct Content MathML trees from the signa-
tures, to be able to show the schemata as formulae to the user. We are able to do
this because we know the arity of each token and the depth used for cutoff. The
tree obtained after the reconstruction might be incomplete, so we insert query
variables in place of missing subtrees. We finally return these Content MathML
trees with query variables (the formula schemata), together with the formulae
which they cover.

Presentation by Replacement. After obtaining the schemata and formula classes,
we need to be able to display the result to the user. One possibility would be to
have the Schematizer return Content MathML expressions for the schemata and
use an XSL stylesheet [15] to convert them to Presentation MathML. This app-
roach would unfortunately generate unrecognizable schemata due to the inherent
ambiguity of CMML. For instance, a csymbol element can be represented in sev-
eral different ways depending on the notation being used. Additionally, we cannot
reliably foresee all possible rules that should be implemented in the stylesheet
and as a consequence some formulae will be wrongly converted.

Since the XSL conversion is unreliable, we will make use of the cross-reference
system provided by LATEXML, as discussed before. Instead of returning Content
MathML expressions, the Schematizer will use the first formula in each class as
a template and “punch holes into it”, effectively returning the ID of the nodes
that are to be substituted with query variables. We will use this IDs to replace
the referenced PMML nodes with <mi> nodes representing the qvars.

Fig. 5. Presentation by replacement

Figure 5 shows the presen-
tation by replacement tech-
nique for a given schema. The
Schematizer returned a schema
which was checked against the
first formula in its class ( 2

x+3 )
to generate two substitutions,
marked with red on the left side.
Due to the cross-reference sys-
tem provided by LATEXML, we
are able to find the correspond-
ing PMML elements and substi-

tute them with <mi> tokens. The result will be displayed to the user as ?x
?y .



414 R. Hambasan and M. Kohlhase

Performance. We designed the Schematizer to be a very lightweight daemon,
both as memory requirements and as CPU usage. To test if we achieved this
goal, we benchmarked it on a server running Linux 3.2.0, with 10 cores (Intel
Xeon CPU E5-2650 2.00 GHz) and 80 GB of RAM.

We obtained the 1123 expressions to be schematized by querying Elastic-
search with the keyword “Fermat”. While the overall time taken by the faceted
search engine was around 5 s, less than a second was spent in the Schematizer.
Also, the CPU utilized by the Schematizer never rose higher than 15 % (as indi-
cated by the top utility). Asymptotically, the algorithm would run in O(N) time,
where N is the number of input formulae. We are able to reach linear time per-
formance, because each formula is processed exactly once and the signature is
stored in a hash table, as discussed in Sect. 4.

Due to its design principles, the Schematizer is almost indefinitely scalable,
because it does not require shared state between formulae and can therefore be
implemented as a MapReduce [4] job, where mappers compute the signature of
assigned formulae and reducers assemble the signature hash table. However, the
unification algorithm currently used by MathWebSearch is linear is in the number

Fig. 6. TeMa v2 query results



Faceted Search for Mathematics 415

of nodes of the Content MathML expression that is being unified. Therefore,
the current search engine implementation would pose challenges for scalability,
although the Schematizer itself will be able to extend easily.

The Front-End. We have integrated the Schematizer into a Math Search Engine
which is capable of mathematical faceted search.

The TemaV2 front-end extends TeMaSearch to be able to perform mathemat-
ical faceted search. It is intended for users who want to filter query results based
on a given facet (formula schema in this case). The look and feel is similar to the
previous version of TeMaSearch, as shown in Fig. 6, where the first input field
is used to specify keywords and the second one is used to specify LATEX-style
formulae for the query. When returning results, a “Math Facets” menu will be
presented to the user. Figure 6 shows the results of a query for “Fermat” and
?a?n + ?b?n = ?c?n. Besides the regular TeMaSearch results, the user is also
presented with a “Math Facets” section.

When the “Math Facets” section is expanded the user can see the top 10
schemata (ranked with respect to their coverage), as shown in Fig. 7. We have
also implemented a “search-on-click” functionality that allows the user to do a
fresh search using the clicked schema and the initial keyword, which effectively
filters the current results.

5 Finding a Cutoff Heuristic

To generate formula schemata, we must define a “cutoff heuristic”, which tells
the program when two formulae belong to the same schema class. If there is
no heuristic, two formulae would belong to the same class, only if they were
identical. However, we want formulae that have something in common to be
grouped together, even if they are not perfectly identical. The cutoff heuristic is
the parameter in the schematization algorithm that determines the suitability of
schemata for the various information access tasks at hand. As this is essentially
a user-driven, cognitive task it is not a priori clear what cutoff heuristics will
perform best.

To explore the space of heuristics, we have implemented a special front-end
and used that to evaluate heuristics for the math search task discussed above.
As a proper user-level evaluation was beyond the scope of this paper, we have
implemented various heuristics and discussed them with the ZBMath group in
the context of the ZBMath corpus, this led to the development of the dynamic
cutoff heuristic presented at the end of this section.

A Schema Evaluation Front-End. The SchemaSearch front-end provides just a
textual search input field. It is intended for users who want an overview of
the formulae contained in a corpus. As shown in Fig. 8a, the user can enter a
set of keywords for the query, as well as a schema depth, which defaults to 3.
The maximum result size is not accessible to the user, to prevent abuses and
reduce server load. There is also an “R” checkbox which specifies if the cutoff



416 R. Hambasan and M. Kohlhase

Fig. 7. Math facets in TeMa v2

depth should be absolute or relative. If relative, the depth should be given in
percentages.

Figure 8a shows the formula schemata at depth 3, over the arXiv corpus, for a
query containing the keyword “Kohlhase”. By default, the top 40 schemata are
shown, but the results are truncated for brevity. The bold number on the left
side of each result item indicates how many formulae are present in each formula
class. For instance, the third schema represents a formula class containing 10
formulae. The entities marked in blue are query variables (qvars).

Figure 8b shows the expansion of a formula class. There are 22 formulae in
the class given by this particular math schema, as indicated by the count on the
left upper side, out of which only ten are shown. We can see 2 unnamed query
variables marked with blue as ?a and ?b. By seeing the schema, the user can
form an impression about the general structure of the formulae from that class.
After expanding the class, the listing of concrete formulae appears. If the user
clicks on one of them, he is redirected to the source document from which that
expression was extracted.

Another class expansion which showcases the schematization can be seen in
Fig. 8c. By seeing this schema, the user can abstract away the complexity of the
formulae and obtain a “summary” of the meaning behind it. Also, by expanding
the class he can explore several related formulae easily, because they are grouped
together.

Dynamic Cutoff. We have experimented with several possibilities for the heuris-
tic and found out that a dynamic cutoff which preserves the operators leads to
more intuitive results. We can identify the operators by looking at the first child
of the apply token in the CMML tree. The user is given the option to have an
absolute (fixed) or relative (depending on the depth of the CMML tree) cutoff
for the operands.



Faceted Search for Mathematics 417

(a) Faceted Results at depth 3 (b) Expansion of a Formula Class
1

(c) Expansion of a Formula Class 2

Fig. 8. Generated schemata (Color figure online)

Fig. 9. Dynamic cutoff

Figure 9 illustrates this heuristic at depth 1. The divide element was kept,
because it was the first child of apply, while the other children were removed.
If we were to use a depth of 2, the plus element would also be included in the
schema.

This heuristic is not simply keeping another tree node uncut. If the current
node is an operator, it can also have multiple levels of children and therefore
we need to keep that entire subtree from being cut. What this means, is that



418 R. Hambasan and M. Kohlhase

the cutoff depth can vary significantly, depending on how deep the operator’s
subtree is.

6 Applications and Future Work

One improvement angle that can be worked on is the ranking of the schemata. We
have used a simple method, ranking them in decreasing order of coverage, thus
having the schema with most formulae in its class on the first place. However,
this is not always a good approach. When users look at the facets, it is usually
because they were not able to find what they were looking for (because the
result set is too large). The first schemata cover most of the formulae users
have already looked at, so they are not of interest. However, the last schemata
are not of interest either, because they typically only cover very rare formulae
(1-2 occurrences). An alternative ranking approach might place the medium-
coverage schemata first, then the top-coverage and then the low-coverage. In
order to define precisely what is the range for medium-coverage, further research
is required.

One other application of the faceted search engine can be providing math-
ematical definitions with the help of NNexus [6]. NNexus is an auto-linker for
mathematical concepts from several encyclopedias, e.g. PlanetMath, Wikipedia.
Assuming we are able to generate relevant schemata in response to keyword
queries, we can target the faceted search engine with all the concepts stored
by NNexus and store a schema for each such concept. Afterwards, for a given
query, we can obtain the schema and check it against our stored set of schemata.
If we find it, we can link the given expression to its mathematical definition.
Given a large number of stored concepts and a high schemata relevance, the
user should be able to see the definition of any encountered formulae on the
Web. For example, hovering over a2 + b2 = c2 will show the definition of the
Pythagorean theorem.

Another, more direct, application of the Schematizer would be Similarity
Search. One could create a MathWebSearch based search engine, which accepts
an input formula and a similarity degree (between 0 % and 100 %). The engine
would then create a formula schema at a relative depth corresponding to the
similarity degree and use this schema to search the corpus. This approach defines
the similarity between two formulae as the percentage of the CMML tree depth
that they share.

Last, but not least, we will need to invest in a full user-level evaluation of the
utility of formula facets, and the influence of various cutoff heuristics on that.

7 Conclusion

We have presented the design and implementation of a system capable of math-
ematical faceted search. Moreover, we have described a general-purpose scalable
Schematizer which can generate intuitive and recognizable formula schemata and



Faceted Search for Mathematics 419

divide expressions into formula classes according to said schemata. Consequently,
we have successfully addressed all challenges outlined in Sect. 2.

Although the Schematizer provides recognizable formulae, some queries to
SchemaSearch (e.g. using an author as keyword) provide hits with a very low
relevance. This is because we cannot distinguish between the work of the author
and work where the author is cited at the textual level. As a consequence, search-
ing for “Fermat” would also show formulae from papers where Fermat was cited
and if these papers are numerous, as it happens with known authors, would
provide the user with misleading results. This suggests that a better source of
mathematical expressions might be required for the SchemaSearch demo.

The implementation of the Schematizer presented here is licensed under GPL
v3.0 and code is available at http://github.com/KWARC/mws/.

Acknowledgements. This work has been supported by the Leibniz Association under
grant SAW-2012-FIZ KA-2 (Project MathSearch). The authors gratefully acknowl-
edge fruitful discussions with Fabian Müller, Wolfram Sperber, and Olaf Teschke in
the MathSearch Project, which led to this research (the ZBMath information service
uses faceted search on the non-formula dimensions very successfully) and clarified the
requirements from an application point of view.

References

1. Aizawa, A., et al.: NTCIR-11 Math-2 task overview. In: Kando, N., Joho, H.,
Kishida, K. (eds.) NTCIR Workshop 11 Meeting, pp. 88–98. NII, Tokyo (2014).
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OV-
ERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf

2. Apache Lucene. https://lucene.apache.org/. Accessed 4 Oct 2015
3. arxiv.org e-Print archive. http://www.arxiv.org. Accessed 12 June 2012
4. Dean, J., Ghemawat, S.: MapReduce: simplified dataprocessing on large clusters

(2004)
5. Elastic Search. http://www.elasticsearch.org/. Accessed 7 Dec 2014
6. Ginev, D., Corneli, J.: NNexus reloaded. In: Watt, S.M., Davenport, J.H.,

Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 423–426.
Springer, Heidelberg (2014)

7. Graf, P.: Substitution tree indexing. In: Hsiang, J. (ed.) Rewriting Techniques and
Applications. LNCS, pp. 117–131. Springer, Heidelberg (1994)

8. Hambasan, R., Kohlhase, M., Prodescu, C.: MathWeb-search at NTCIR-11.
In: Kando, N., Joho, H., Kishida, K. (eds.) NTCIR Workshop 11 Meet-
ing, pp. 114–119. NII, Tokyo (2014). http://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf

9. Kando, N., Joho, H., Kishida, K. (eds.) NTCIR Workshop 11 Meeting. NII, Tokyo,
Japan (2014)

10. LaTeX - A document preparation system. https://www.latex-project.org/.
Accessed 4 Oct 2015

11. LevelDB. http://leveldb.org/. Accessed 21 Dec 2014
12. Mathematical Markup Language. http://www.w3.org/TR/MathML3/
13. Mathematics Subject Classification (MSC) SKOS (2012). http://msc2010.org/

resources/MSC/2010/info/. Accessed 31 Aug 2012

http://github.com/KWARC/mws/
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
https://lucene.apache.org/
http://www.arxiv.org
http://www.elasticsearch.org/
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
https://www.latex-project.org/
http://leveldb.org/
http://www.w3.org/TR/MathML3/
http://msc2010.org/resources/MSC/2010/info/
http://msc2010.org/resources/MSC/2010/info/


420 R. Hambasan and M. Kohlhase

14. Miller, B.: LaTeXML: A LATEX to XML Converter. http://dlmf.nist.gov/
LaTeXML/. Accessed 12 Mar 2013

15. XSLT for Presentation MathML in a Browser. 20 December 2000. http://
dpcarlisle.blogspot.de/2009/12/xslt-for-presentation-mathml-in-browser.html#
uds-search-results. Accessed 4 Apr 2015

16. Yee, K.-P., et al.: Faceted metadata for image search, browsing. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM Press,
pp. 401–408 (2003). http://dl.acm.org/citation.cfm?id=642681

17. Zentralblatt Math Website. http://zbmath.org/. Accessed 7 Dec 2014

http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://dpcarlisle.blogspot.de/2009/12/xslt-for-presentation-mathml-in-browser.html#uds-search-results
http://dpcarlisle.blogspot.de/2009/12/xslt-for-presentation-mathml-in-browser.html#uds-search-results
http://dpcarlisle.blogspot.de/2009/12/xslt-for-presentation-mathml-in-browser.html#uds-search-results
http://dl.acm.org/citation.cfm?id=642681
http://zbmath.org/


Evaluation of a Predictive Algorithm
for Converting Linear Strings to Mathematical

Formulae for an Input Method

Shizuka Shirai(B) and Tetsuo Fukui

Mukogawa Women’s University, Nishinomiya, Japan
shirai@mukogawa-u.ac.jp, fukui@mukogawa-u.ac.jp

Abstract. Recently, some computer-aided assessment (CAA) systems
are able to assess learner’s answers using mathematical expressions. How-
ever, the standard input method for mathematics is cumbersome for
novice learners. In 2011, the last author Fukui proposed a new math-
ematical input method similar to the ones used for inputting Japanese
characters in many systems. This method allows users to input mathe-
matical expressions using colloquial-style mathematical string. However,
users must convert each element contained in the colloquial-style math-
ematical string. In this study, we propose a predictive algorithm for con-
verting the whole mathematical formulae.

Keywords: Math input method · Predictive conversion · Machine
learning

1 Introduction

Recently, computer-aided assessment (CAA) systems have been utilized in math-
ematics education, with some CAA systems able to assess learner’s answers using
mathematical expressions. However, the standard input method for mathematics
is cumbersome for novice learners [1].

In 2011, Professor Tetsuo Fukui of Mukogawa Women’s University proposed
a new mathematical input method [2,3] that allows users to input mathematical
expressions using colloquial-style linear strings. This is converted to the desired
two-dimensional mathematical expression in a similar way to how Japanese char-
acters are created in many operating systems. This method enables users to
input almost any mathematical expression without learning new command syn-
tax. However, users must convert each element contained in the colloquial-style
mathematical string in order, from left to right.

To improve this situation, we have proposed a predictive algorithm that uses a
structured perceptron mainly for natural language processing [4]. We have exam-
ined the prediction accuracy using two parameter sets on an evaluation dataset
containing 800 mathematical formulae from a mathematics textbook [5]. Our
algorithm achieved an accuracy of up to 95.0 % in terms of the top ten ranking.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 421–425, 2016.
DOI: 10.1007/978-3-319-32859-1 36



422 S. Shirai and T. Fukui

However, we also found that the score parameter continues to rise linearly during
the learning process.

The present study addresses this shortcoming by improving the efficiency of
mathematical input. Our proposed system uses an intelligent system to convert
from linear strings to mathematical formulae with a predictive algorithm that
has stable score parameters.

2 Predictive Conversion [4]

2.1 Linear String Rules

The linear string rule for a mathematical expression can be described as follows:
Set the key letters (or words) corresponding to the elements of a mathematical
expression linearly in the order of colloquial (or reading) style, without consid-
ering two-dimensional placement and delimiters.

In other words, a key letter (or word) consists of the ASCII code(s) corre-
sponding to the initial or clipped form (such as the LATEX-form) of the objective
mathematical symbol. Therefore, one key often supports many mathematical
symbols. For example, when a user wants to input β2, the linear string is denoted
by “b2”. Here, “b” denotes the “beta” symbol, and there is no need to include a
power sign (such as the caret symbol (ˆ)). In the case of 1

β2+4 , the linear string
is denoted by “1/b2+4”, where it is not necessary to surround the denominator
(which is generally the operand of an operator) by parentheses, because they are
never printed.

2.2 Design of Intelligently Predictive Conversion

We have proposed a predictive algorithm that converts a linear string s into the
most suitable mathematical expression yp. For prediction purposes, we devised a
method by which each candidate for selection was ranked in terms of its suitabil-
ity. Our method uses a function Score(y) to allocate a score that is proportional
to the probability of a mathematical expression y occurring. This enables us to
predict the candidate yp using Eq. (1) as being the most suitable expression with
the maximum score. Here, Y (s) in Eq. (1) is the totality of all possible mathe-
matical expressions converted from s, which is calculated by three procedures:
key separation, structure analysis, and applying all the possible mathematical
elements.

yp s.t. Score(yp) = max{Score(y)|y ∈ Y (s)} (1)

A mathematical expression consists of mathematical symbols, namely num-
bers, variables, or operators1, together with the operating relations between a
specific operator and part of the expression. Therefore, we represent a math-
ematical expression by a tree structure consisting of nodes and edges, which
1 In this article, “operator” is used in the sense of operating on, i.e., performing actions
on elements in terms of their arrangements for two-dimensional mathematical nota-
tion.



Evaluation of a Predictive Algorithm for Converting Linear Strings 423

correspond to the symbols and operating relations, respectively. In other words,
any math expression y is characterized by all the nodes and edges included in y.
We identify each node or edge as a mathematical element in a formula.

2.3 Predictive Algorithm

Let us assume that the probability of a certain math element occurring is propor-
tional to its frequency of use. Then, the probability of occurrence of a mathemat-
ical expression y, which is possibly converted from a given string s, is estimated
from the total score of all the math elements included in y. Given the numbering
of each element from 1 to Ftotal, which is the total number of all elements, let θf

be the score of the f(= 1, · · · , Ftotal)-th element, and let xf (y) be the number of
times the f -th element is included in y. Then, Score(y) in Eq. (1) is estimated by
Eq. (2), where the score vector θT = (θ1, · · · , θFtotal

) and the Ftotal-dimensional
vector X = (xf (y)), f = 1, · · · , Ftotal.

hθ (X (y)) = θT · X (y) =
Ftotal
∑

f=1

θfxf (y) (2)

Equation (2) is in agreement with the hypothesis function of linear regression,
and X (y) is referred to as the characteristic vector of y. To solve our linear
regression problem and predict the probability of a mathematical expression
occurring, we conduct supervised machine learning on m elements of a training
dataset {(s1, y1), (s2, y2), · · · , (sm, ym)}. Our learning algorithm for the opti-
mized score vector is performed by the following four-step procedure:

Step 1. Initialization: θ = 0, i = 1
Step 2. Decision of a candidate: yp s.t. hθ (X (yp)) = max{hθ (X (y)) |y ∈ Y (si)}
Step 3. Training parameter: if(yp �= yi) {

θf := θf + 1 for {f ≤ Ftotal|xf (yi) > 0}
θf̄ := θf̄ − 1 for {f̄ ≤ Ftotal|xf̄ (yp) > 0} (3)

}
Step 4. if(i < m){ i=i+1; go to Step 2 for repetition.}

else {Output θ and end.}
This learning algorithm is very simple, and is similar to machine learning

using a structured perceptron for natural language processing.

3 Main Algorithm

We have examined the prediction accuracy using two score learning parame-
ter sets on an evaluation dataset containing 800 mathematical formulae from a
mathematics textbook [5]. The two parameter sets of θ for scoring were trained
by the following two algorithms, which were programed in Java on a desktop
computer (MacOS 10.9, 3.2 GHz Intel core i3, 8 GB memory):



424 S. Shirai and T. Fukui

Algorithm 1. Step 1–Step 4, using Eq. (3).
Algorithm 2. Step 1–Step 4, with Step 3 using

θf := θf + 2 for {f ≤ Ftotal|xf (yi) > 0}
θf̄ := θf̄ − 1 for {f̄ ≤ Ftotal|xf̄ (yp) > 0} (4)

in place of Eq. (3).
In the experimental evaluation, we measured the ratio of correct predictions

from among 100 test datasets after learning the parameters with Algorithms 1
and 2 using a training dataset consisting of another 700 formulae.

The results show that the prediction accuracy of “Best 10”, namely the top
ten ranking, was about 89.2 % with Algorithm 1. However, Algorithm 2 achieved
an average prediction accuracy of approximately 95.0 % for the top ten ranking.
This accuracy is sufficient for a mathematical input interface. However, the score
parameter continues to rise while Algorithm 2 is undergoing learning [4].

In this study, we propose the following Algorithm 2’ to overcome the problem
suffered by Algorithm 2.

Algorithm 2’. Step 1–Step 4, where Step 3 uses Eq. (5).

if(θf < Smax){θf := θf + 2 for {f ≤ Ftotal|xf (yi) > 0}}
θf̄ := θf̄ − 1 for {f̄ ≤ Ftotal|xf̄ (yp) > 0} (5)

Here, Smax in Eq. (5) is a suitable upper bound for any mathematical element
score.

The machine learning results with Algorithm 2 and Algorithm 2’ in the case
that Smax = 20 are given in Table 1 for various sizes of the training dataset. It can
be seen that the accuracy of the “Best 1” with Algorithm 2’ was approximately
68.3 % after being trained 700 times. This algorithm achieved 90.5 % accuracy for
the top three ranking, and 96.2 % for the top ten ranking. With a training set of
size 700, there is no statistically significant difference (at the 5 % level) between
the results for Algorithm 2 and those for Algorithm 2’ in the “Best 1”, “Best
3”, or “Best 10” cases. Additionally, the learning curves for both algorithms

Table 1. Prediction accuracy using Algorithms 2 and 2’

Training

number

Best 1 (%) Best 3 (%) Best 10 (%) Correct Score

Algo. 2 Algo. 2’ Algo. 2 Algo. 2’ Algo. 2 Algo. 2’ Algo. 2 Algo. 2’

0 25.9(3.8) 25.9(3.8) 41.3(4.4) 41.3(4.4) 52.3(4.3) 52.3(4.3) 2.8(0.1) 2.8(0.1)

100 53.3(14.6) 54.2(13.8) 82.5(6.4) 82.6(6.4) 88.5(4.3) 88.7(4.3) 307.0(58.1) 283.0(74.0)

200 60.3(5.0) 65.7(6.8) 86.1(4.2) 87.7(3.4) 91.7(3.2) 93.0(2.7) 568.9(99.4) 428.6(110.6)

300 64.1(5.1) 69.5(6.1) 89.1(3.2) 88.3(3.1) 93.8(2.9) 94.0(3.0) 964.3(186.8) 494.1(134.7)

400 67.7(5.7) 67.9(6.3) 90.1(3.1) 88.8(2.4) 94.1(3.1) 94.3(2.8) 1103.4(75.2) 536.7(148.8)

500 67.6(5.7) 69.2(5.6) 90.6(2.9) 89.8(3.0) 94.5(2.8) 95.2(2.7) 1290.6(99.8) 566.2(162.7)

600 69.1(4.6) 70.6(5.2) 90.8(2.7) 90.9(2.7) 94.3(2.5) 95.9(2.5) 1492.2(106.5) 590.0(169.4)

700 68.5(6.0) 68.3(6.1) 91.1(2.5) 90.5(2.8) 95.0(2.5) 96.2(2.3) 1692.9(114.7) 608.0(180.0)

Numbers in parentheses denote SD.



Evaluation of a Predictive Algorithm for Converting Linear Strings 425

Fig. 1. Change in score parameter given by Algorithms 2 and 2’

change at the same skill rate for each of these cases. The mean scores among
the correct expressions (“correct score” for short) in the test dataset for each
training number are presented in the fifth column of Table 1 and illustrated in
Fig. 1. Whereas the correct score with Algorithm 2 increases in proportion to
the training number n (decision coefficient: R2 = 0.98), the correct score with
Algorithm 2’ only increases at a rate of log n (R2 = 0.96).

4 Conclusion and Future Work

We have proposed a predictive algorithm with a prediction accuracy of 96.2 %
for the top ten ranking by improving a previous algorithm in terms of a struc-
tured perceptron for stable score parameter learning. The mean CPU time for
predicting each mathematical expression was 0.44 s (SD = 6.75).

Finally, the most important avenues for future research are to shorten the
time for prediction and develop an intelligent mathematical input interface by
implementing our proposed predictive algorithm.

This work was supported by JSPS KAKENHI Grant Number 26330413.

References

1. Sangwin, C.J.: Computer Aided Assessment of Mathematics Using STACK. In:
Proceedings of ICME, vol.12 (2012)

2. Fukui, T.: An intelligent method of interactive user interface for digitalized math-
ematical expressions (in Japanese). In: RIMS Kokyuroku, vol. 1780, pp. 160–171
(2012)

3. Shirai, S., Fukui, T.: Development and evaluation of a web-based drill system to
master basic math formulae using a new interactive math input method. In: Hong,
H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 621–628. Springer, Heidelberg
(2014)

4. Fukui, T., Shirai, S.: Predictive algorithm from linear string to mathematical for-
mulae for math input method. In: Proceedings of 21st Conference on Applications
of Computer Algebra 2015 in Kalamata, Greece, pp. 17–22 (2015)

5. Iidaka, S., Matsumoto, Y., et al.: Mathematics I, 001, TOKYO SHOSEKI (2012)



Algorithm Engineering
in Geometric Computing



Linear Programs and Convex Hulls Over Fields
of Puiseux Fractions

Michael Joswig(B), Georg Loho(B), Benjamin Lorenz(B),
and Benjamin Schröter(B)

Institut für Mathematik, TU Berlin, MA 6-2, Str. des 17. Juni 136,
10623 Berlin, Germany

{joswig,loho,lorenz,schroeter}@math.tu-berlin.de

Abstract. We describe the implementation of a subfield of the field of
formal Puiseux series in polymake. This is employed for solving linear
programs and computing convex hulls depending on a real parameter.
Moreover, this approach is also useful for computations in tropical geom-
etry.

Keywords: Linear programming over ordered fields · Convex hull
computation over ordered fields · Rational functions · Puiseux series ·
Tropical convex hull computation

1 Introduction

It is well known and not difficult to see that the standard concepts from linear
programming (LP), e.g., the Farkas Lemma and LP duality, carry over to an
arbitrary ordered field; e.g., see [7, Sect. 2] or [16, Sect. 2.1]. Traces of this can
already be found in Dantzig’s monograph [8, Chapter 22]. This entails that any
algorithm whose correctness rests on these LP corner stones is valid over any
ordered field. In particular, this holds for the simplex method and usual convex
hull algorithms. A classical construction, due to Hilbert, turns a field of rational
functions, e.g., with real coefficients, into an ordered field; see [30, Sect. 147]. In
[16] Jeroslow discussed these fields in the context of linear programming in order
to provide a rigorous foundation of the so-called “big M method”. The purpose
of this note is to describe the implementation of the simplex method and of a
convex hull algorithm over fields of this kind in the open source software system
polymake [14].

Hilbert’s ordered field of rational functions is a subfield of the field of formal
Puiseux series R{{t}} with real coefficients. The latter field is real-closed by the
Artin–Schreier Theorem [27, Theorem 12.10]; by Tarski’s Principle (cf. [28]) this
implies that R{{t}} has the same first order properties as the reals. The study of

M. Joswig—Partially supported by Einstein Foundation Berlin and Deutsche
Forschungsgemeinschaft (DFG) within the Priority Program 1489 “Experimental
Methods in Algebra, Geometry and Number Theory”.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 429–445, 2016.
DOI: 10.1007/978-3-319-32859-1 37



430 M. Joswig et al.

polyhedra over R{{t}} is motivated by tropical geometry [9], especially tropical
linear programming [2]. The connection of the latter with classical linear pro-
gramming has recently lead to a counter-example [1] to a “continuous analogue
of the Hirsch conjecture” by Deza, Terlaky and Zinchenko [10]. In terms of para-
meterized linear optimization (and similarly for the convex hull computations)
our approach amounts to computing with sufficiently large (or, dually, suffi-
ciently small) positive real numbers. Here we do not consider the more general
algorithmic problem of stratifying the parameter space to describe all optimal
solutions of a linear program for all choices of parameters; see, e.g., [17] for work
into that direction.

This paper is organized as follows. We start out with summarizing known
facts on ordered fields. Then we describe a specific field, Q{t}, which is the field
of rational functions with rational coefficients and rational exponents. This is a
subfield of Q{{t}}, which we call the field of Puiseux fractions. It is our opinion
that this is a subfield of the formal Puiseux series which is particularly well suited
for exact computations with (some) Puiseux series; see [22] for an entirely dif-
ferent approach. In the context of tropical geometry Markwig [23] constructed a
much larger field, which contains the classical Puiseux series as a proper subfield.
For our applications it is relevant to study the evaluation of Puiseux fractions
at sufficiently large rational numbers. In Sect. 3 we develop what this yields for
comparing convex polyhedra over R{{t}} with ordinary convex polyhedra over the
reals. The tropical geometry point of view enters the picture in Sect. 4. We give
an algorithm for solving the dual tropical convex hull problem, i.e., the compu-
tation of generators of a tropical cone from an exterior description. Allamigeon,
Gaubert and Goubault gave a combinatorial algorithm for this in [4], while we
use a classical (dual) convex hull algorithm and apply the valuation map. The
benefit of our approach is more geometric than in terms of computational com-
plexity: in this way we will be able to study the fibers of the tropicalization map
for classical versus tropical cones for specific examples. Section 5 sketches the
polymake implementation of the Puiseux fraction arithmetic and the LP and
convex hull algorithms. The LP solver is a dual simplex algorithm with steepest
edge pivoting, and the convex hull algorithm is the classical beneath-and-beyond
method [11,18]. An overview with computational results is given in Sect. 6.

2 Ordered Fields and Rational Functions

A field F is ordered if there is a total ordering ≤ on the set F such that for all
a, b, c ∈ F the following conditions hold:

(i) if a ≤ b then a + c ≤ b + c,
(ii) if 0 ≤ a and 0 ≤ b then 0 ≤ a · b.

Any ordered field necessarily has characteristic zero. Examples include the ratio-
nal numbers Q, the reals R and any subfield in between.

Given an ordered field F we can look at the ring of univariate polynomials
F[t] and its quotient field F(t), the field of rational functions in the indeterminate



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 431

t with coefficients in F. On the ring F[t] we obtain a total ordering by declaring
p < q whenever the leading coefficient of q−p is a positive element in F. Extend-
ing this ordering to the quotient field by letting

u

v
<

p

q
: ⇐⇒ uq < vp,

where the denominators v and q are assumed positive, turns F(t) into an ordered
field; see, e.g., [30, Sect. 147]. This ordered field is called the “Hilbert field” by
Jeroslow [16].

By definition, the exponents of the polynomials in F[t] are natural numbers.
However, conceptually, there is no harm in also taking negative integers or even
arbitrary rational numbers as exponents into account, as this can be reduced to
the former by clearing denominators and subsequent substitution. For example,

2t3/2 − t−1

1 + 3t−1/3
=

2t5/2 − 1
t + 3t2/3

=
2s15 − 1
s6 + 3s4

, (1)

where s = t1/6. In this way that fraction is written as an element in the field
Q(t1/6) of rational functions in the indeterminate s = t1/6 with rational coef-
ficients. Further, if p ∈ F(t1/α) and q ∈ F(t1/β), for natural numbers α and β,
then the sum p + q and the product p · q are contained in F(t1/ gcd(α,β)). This
shows that the union

F{t} =
⋃

ν≥1

F(t1/ν) (2)

is again an ordered field. We call its elements Puiseux fractions. The field F{t} is
a subfield of the field F{{t}} of formal Puiseux series, i.e., the formal power series
with rational exponents of common denominator. For an algorithmic approach
to general Puiseux series see [22].

The map val which sends the rational function p/q, where p, q ∈ F[t1/ν ], to
the number degt p − degt q defines a non-Archimedean valuation on F(t). Here
we let val(0) = ∞. As usual the degree is the largest occurring exponent. The
valuation map extends to Puiseux series. More precisely, for f, g ∈ F{t} we have
the following:

(i) val(f · g) = val(f) + val(g),
(ii) val(f + g) ≤ max(val(f), val(g)).

If F = R is the field of real numbers we can evaluate a Puiseux fraction
f ∈ R{t} at a real number τ to obtain the real number f(τ). This map is defined
for all τ > 0 except for the finitely many poles, i.e., zeros of the denominator.
Restricting the evaluation to positive numbers is necessary since we are allowing
rational exponents. The valuation map satisfies the equation

lim
τ→∞ logτ |f(τ)| = val(f). (3)

That is, seen on a logarithmic scale, taking the valuation of f corresponds to
interpreting t like an infinitesimally large number. Reading the valuation map
in terms of the limit (3) is known as Maslov dequantization, see [24].



432 M. Joswig et al.

Occasionally, it is also useful to be able to interpret t as a small infinitesimal.
To this end, one can define the dual degree deg∗, which is the smallest occurring
exponent. This gives rise to the dual valuation map val∗(p/q) = deg∗

t p − deg∗
t q

which yields

val∗(f + g) ≥ min(val∗(f), val∗(g)) and lim
τ→0

logτ |f(τ)| = val∗(f).

Changing from the primal to the dual valuation is tantamount to substituting t
by t−1.

Remark 1. The valuation theory literature often employs the dual definition of
a valuation. The Eq. (3) is the reason why we usually prefer to work with the
primal.

Up to isomorphism of valuated fields the valuation on the field F(t) of rational
functions is unique, e.g., see [30, Sect. 147]. As a consequence the valuation on
the slightly larger field of Puiseux fractions is unique, too.

To close this section let us look at the algorithmically most relevant case
F = Q. Then, in general, the evaluation map sends positive rationals to not
necessarily rational numbers, again due to fractional exponents. By clearing
denominators in the exponents one can see that evaluating at σ > 0 ends up in
the totally real number field Q( ν

√
σ) for some positive integer ν. For instance,

evaluating the Puiseux fraction from Eq. (1) would give an element of Q( 6
√

σ).

3 Parameterized Polyhedra

Consider a matrix A ∈ F{t}m×(d+1). Then the set

C :=
{

x ∈ F{t}d+1
∣

∣ A · x ≥ 0
}

is a polyhedral cone in the vector space F{t}d+1. Equivalently, C is the set of
feasible solutions of a linear program with d + 1 variables over the ordered field
F{t} with m homogeneous constraints, the rows of A. The Farkas–Minkowski–
Weyl Theorem establishes that each polyhedral cone is finitely generated.
A proof for this result on polyhedral cones over the reals can be found in [31,
Sects. 1.3 and 1.4] under the name “Main theorem for cones”. It is immediate
to verify that the arguments given hold over any ordered field. Therefore, there
is a matrix B ∈ F{t}(d+1)×n, for some n ∈ N, such that

C = {B · a | a ∈ F{t}n, a ≥ 0} . (4)

The columns of B are points and the cone C is the non-negative linear span of
those.

Let L be the lineality space of C, i.e., L is the unique maximal linear subspace
of F{t}d+1 which is contained in C. If dimL = 0 the cone C is pointed. Other-
wise, the set C/L is a pointed polyhedral cone in the quotient space F{t}d+1/L.
A face of C is the intersection of C with a supporting hyperplane. The faces are



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 433

partially ordered by inclusion. Each face contains the lineality space. Adding the
entire cone C as an additional top element we obtain a lattice, the face lattice of
C. The maximal proper faces are the facets which form the co-atoms in the face
lattice. The combinatorial type of C is the isomorphism class of the face lattice
(e.g., as a partially ordered set). Notice that our definition says that each cone
is combinatorially equivalent to its quotient modulo its lineality space.

Picking a positive element τ yields matrices A(τ) ∈ Fm×(d+1) and B(τ) ∈
F(d+1)×n as well as a polyhedral cone C(τ) = {x ∈ Fd+1 |A(τ) · x ≥ 0} by eval-
uating the Puiseux fractions at the parameter τ . Here and below we will assume
that τ avoids the at most finitely many poles of the (m + n) · (d + 1) coefficients
of A and B.

Theorem 1. There is a positive element τ0 ∈ F so that for every τ > τ0 we
have

C(τ) = {B(τ) · α | α ∈ Fn, α ≥ 0} ,

and evaluating at τ maps the lineality space of C to the lineality space of C(τ).
Moreover, the polyhedral cones C and C(τ) over F{t} and F, respectively, share
the same combinatorial type.

Proof. First we show that an orthogonal basis of the lineality space L evaluates
to an orthogonal basis of the lineality space of C(τ). For this, consider two
vectors x, y ∈ F{t}d+1 and pick τ large enough to avoid their poles and zeros.
Then, the scalar product of x and y vanishes if and only if the scalar product of
x(τ) and y(τ) does. Hence, the claim follows.

Now we can assume that the polyhedral cone C is pointed, i.e., it does not
contain any linear subspace of positive dimension. If this is not the case the
subsequent argument applies to the quotient C/L.

Employing orthogonal bases, as for the lineality spaces above, shows that
the evaluation maps the linear hull of C to the linear hull of C(τ), preserving
the dimension. So we may assume that C is full-dimensional, as otherwise the
arguments below hold in the linear hull of C.

Let � ≤ (

m
d

)

be the number of d-element sets of linearly independent rows
of the matrix A. For each such set of rows the set of solutions to the corre-
sponding homogeneous system of linear equations is a one-dimensional subspace
of F{t}(d+1). For each such system of homogeneous linear equations pick two
non-zero solutions, which are negatives of each other. We arrive at 2� vectors in
F{t}(d+1) which we use to form the columns of the matrix Z ∈ F{t}(d+1)×2�.

By the Farkas–Minkowski–Weyl theorem, we may assume that the columns
of B from (4) only consist of the rays of C and that the rays of C form a subset
of the columns of Z. In particular, the columns of B occur in Z. Since the cone
C is pointed, the matrix B contains at most one vector from each opposite pair
of the columns of Z. This entails that B has at most � columns.

Further, the real matrix Z(τ) contains all rays of C(τ) for each τ that avoids
the poles of A and Z. In the following, we want to show that those columns of
Z(τ) which form the rays of C(τ) are exactly the columns of B(τ).



434 M. Joswig et al.

We define s(j, k) ∈ F{t} to be the scalar product of the jth row of A and
the kth column of Z. The m · 2� signs of the scalar products s(j, k), for j ∈ [m]
and k ∈ [2�], form the chirotope of the linear hyperplane arrangement defined by
the rows of A (in fact, due to taking two solutions for each homogenous system
of linear equations, we duplicate the information of the chirotope). For almost
all τ ∈ F evaluating the Puiseux fractions s(j, k) at τ yields an element of F.
For sufficiently large τ the sign of s(j, k) agrees with its evaluation. This follows
from the definition of the ordering on F{t}, cf. [16, Proposition, Sect. 1.3].

Let τ0 ∈ F be larger than all the at most finitely many poles of A and Z.
Further, let τ0 be large enough such that the chirotope of A(τ) agrees with the
chirotope of A for all τ > τ0.

By construction the rays of C correspond to the non-negative columns of
the chirotope whose support, given by the 0 entries, is maximal with respect
to inclusion; these are exactly the columns of B. The corresponding columns of
the chirotope of A(τ), for τ > τ0, yield the rays of C(τ), which, hence, are the
columns of B(τ).

The same holds for the facets of C and C(τ). The facets of C correspond to
the non-negative rows of the chirotope whose support, given by the 0 entries, is
maximal with respect to inclusion.

Now the claim follows since the face lattice of a polyhedral cone is determined
by the incidences between the facets and the rays. 	


A statement related to Theorem 1 occurs in Benchimol’s PhD thesis [5]. The
Proposition 5.12 in [5] discusses the combinatorial structure of tropical polyhedra
(arising as the feasible regions of tropical linear programs). Yet here we consider
the relationship between the combinatorial structure of Puiseux polyhedra and
their evaluations over the reals. As in the proof of [5, Proposition 5.12] we could
derive an explicit upper bound on the optimal τ0. To this end one can estimate
the coefficients of the Puiseux fractions in Z, which are given by determinantal
expressions arising from submatrices of A. Their poles and zeros are bounded by
Cauchy bounds (e.g., see [26, Theorem 8.1.3]) depending on those coefficients.
We leave the details to the reader.

A convex polyhedron is the intersection of finitely many affine halfspaces.
It is a called a polytope if it is bounded. Restricting to cones allows a simple
description in terms of homogeneous linear inequalities. Yet this encompasses
arbitrary polytopes and polyhedra, as they can equivalently be studied through
their homogenizations. In fact, all implementations in polymake are based on this
principle. For further reading we refer to [31, Sect. 1.5]. We visualize Theorem 1
with a very simple example.

Example 1. Consider the polytope P in R{t}2 for large t defined by the four
inequalities

x1, x2 ≥ 0, x1 + x2 ≤ 3, x1 − x2 ≤ t.

The evaluations at τ ∈ {0, 1, 3} are depicted in Fig. 1. For τ = 0 we obtain a
triangle, for τ = 1 a quadrangle and for τ ≥ 3 a triangle again. The latter is



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 435

x1

x2

x1

x2

x1

x2

Fig. 1. Polygon depending on a real parameter as defined in Example 1

the combinatorial type of the polytope P over the field of Puiseux fractions with
real coefficients.

Corollary 1. The set of combinatorial types of polyhedral cones which can be
realized over F{t} is the same as over F.

Proof. One inclusion is trivial since F is a subfield of F{t}. The other inclusion
follows from the preceding result. 	


For A ∈ F{t}m×d, b ∈ F{t}m and c ∈ F{t}d we consider the linear program
LP(A, b, c) over F{t} which reads as

maximize c� · x
subject to A · x = b , x ≥ 0.

(5)

For each positive τ ∈ F (which avoids the poles of the Puiseux fractions which
arise as coefficients) we obtain a linear program LP(A(τ), b(τ), c(τ)) over F. The-
orem 1 now has the following consequence for parametric linear programming.

Corollary 2. Let x∗ ∈ F{t}d be an optimal solution to the LP (5) with optimal
value v ∈ F{t}. Then there is a positive element τ0 ∈ F so that for every τ >
τ0 the vector x∗(τ) is an optimal solution for LP(A(τ), b(τ), c(τ)) with optimal
value v(τ).

The above corollary was proved by Jeroslow [16, Sect. 2.3]. His argument,
based on controlling signs of determinants, is essentially a local version of our
Theorem 1. Moreover, determining all the rays of a polyhedral cone can be
reduced to solving sufficiently many LPs. This could also be exploited to derive
another proof of Theorem1 from Corollary 2.

Remark 2. It is worth to mention the special case of a linear program over the
field F{t}, where the coordinates of the linear constraints, in fact, are elements
of the field F of coefficients, but the coordinates of the linear objective function



436 M. Joswig et al.

Fig. 2. The 3-dimensional Goldfarb–Sit cube.

are arbitrary elements in F{t}. That is, the feasible domain is a polyhedron, P ,
over F. Evaluating the objective function at some τ ∈ F makes one of the vertices
of P optimal. Solving for all values of τ , in general, amounts to computing
the entire normal fan of the polyhedron P . This is equivalent to solving the
dual convex hull problem over F for the given inequality description of P ; see
also [17]. Here we restrict our attention to solving parametric linear programs
via Corollary 2.

The next example is a slight variation of a construction of Goldfarb and
Sit [15]. This is a class of linear optimization problems on which certain versions
of the simplex method perform poorly.

Example 2. We fix d > 1 and pick a positive δ ≤ 1
2 as well as a positive ε < δ

2 .
Consider the linear program

maximize
∑d

i=1 δd−ixi

subject to 0 ≤ x1 ≤ εd−1

xj−1 ≤ δxj ≤ εd−jδ − xj−1 for 2 ≤ j ≤ d.

The feasible region is combinatorially equivalent to the d-dimensional cube.
Applying the simplex method with the “steepest edge” pivoting strategy to
this linear program with the origin as the start vertex visits all the 2d vertices.
Moreover, the vertex-edge graph with the orientation induced by the objective
function is isomorphic to (the oriented vertex-edge graph of) the Klee–Minty
cube [20]. See Fig. 2 for a visualization of the 3-dimensional case.

We may interpret this linear program over the reals or over (R{δ}){ε}, the
field of Puiseux fractions in the indeterminate ε with coefficients in the field
R{δ}. This depends on whether we want to view δ and ε as indeterminates or as
real numbers. Here we consider the ordering induced by the dual valuation val∗,
i.e., δ and ε are small infinitesimals, where ε � δ. Two more choices arise from
considering ε a constant in R{δ} or, conversely, δ a constant in R{ε}. Note that
our constraints on δ and ε are feasible in all four cases.

Our third and last example is a class of linear programs occurring in [1]. For
these the central path of the interior point method with a logarithmic barrier
function has a total curvature which is exponential as a function of the dimension.



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 437

Example 3. Given a positive integer r, we define a linear program over the field
Q{t} (with the primal valuation) in the 2r + 2 variables u0, v0, u1, v1, . . . , ur, vr

as follows:

minimize v0
subject to u0 ≤ t , v0 ≤ t2

ui ≤ tui−1 , ui ≤ tvi−1

vi ≤ t1− 1
2i (ui−1 + vi−1)

}

for 1 ≤ i ≤ r

ur ≥ 0 , vr ≥ 0 .

Here it would be interesting to know the exact value for the optimal τ0 in
Theorem 1, as a function of r. Experimentally, based on the method described
below, we found τ0 = 1 for r = 1 and τ0 = 22

r−1
for r at most 5. We conjecture

the latter to be the true bound in general.

To find the optimal bound for a given constraint matrix A we can use the
following method. One can solve the dual convex hull problem for the cone C,
which is the feasible region in homogenized form, to obtain a matrix B whose
columns are the rays of C. This also yields a submatrix of A corresponding to
the rows which define facets of C. Without loss of generality we may assume that
submatrix is A itself. Let τ0 be the largest zero or pole of any (Puiseux fraction)
entry of the matrix A · B. Then for every value τ > τ0 the sign patterns of
(A · B)(τ) and A · B coincide, and so do the combinatorial types of C and C(τ).
Determining the zeros and poles of a Puiseux fraction amounts to factorizing
univariate polynomials.

4 Tropical Dual Convex Hulls

Tropical geometry is the study of the piecewise linear images of algebraic vari-
eties, defined over a field with a non-Archimedean valuation, under the valuation
map; see [21] for an overview. The motivation for research in this area comes
from at least two different directions. First, tropical varieties still retain a lot of
interesting information about their classical counterparts. Therefore, passing to
the tropical limit opens up a path for combinatorial algorithms to be applied to
topics in algebraic geometry. Second, the algebraic geometry perspective offers
opportunities for optimization and computational geometry. Here we will dis-
cuss how classical convex hull algorithms over fields of Puiseux fractions can be
applied to compute tropical convex hulls; see [19] for a survey on the subject; a
standard algorithm is the tropical double description method of [3].

The tropical semiring T consists of the set R∪ {−∞} together with u ⊕ v =
max(u, v) as the addition and u � v = u + v as the multiplication. Extending
these operations to vectors turns Td+1 into a semimodule. A tropical cone is the
sub-semimodule

tcone(G) = {λ1 � g1 ⊕ · · · ⊕ λn � gn | λ1, . . . , λn ∈ T}



438 M. Joswig et al.

generated from the columns g1, . . . , gn of the matrix G ∈ T(d+1)×n. Similar to
classical cones, tropical cones admit an exterior description [13]. It is known
that every tropical cone is the image of a classical cone under the valuation
map val : R{{t}} → T; see [9]. Based on this idea, we present an algorithm for
computing generators of a tropical cone from a description in terms of tropical
linear inequalities; see Algorithm1 below.

Before we can start to describe that algorithm we first need to discuss matters
of general position in the tropical setting. The tropical determinant of a square
matrix U ∈ T�×� is given by

tdet(U) =
⊕

σ∈S�

u1π(1) � · · · � u�π(�). (6)

Here S� is the symmetric group of degree �; computing the tropical determinant
is the same as solving a linear assignment optimization problem. Consider a pair
of matrices H+,H− ∈ Tm×(d+1) which serve as an exterior description of the
tropical cone

Q =
{

z ∈ T(d+1)
∣

∣

∣ H+ � z ≥ H− � z
}

. (7)

In contrast to the classical situation we have to take two matrices into account.
This is due to the lack of an additive inverse operation. We will assume that
min(H+

ij ,H
−
ij ) = −∞ for any pair (i, j) ∈ [m] × [d + 1], i.e., for each coordinate

position at most one of the corresponding entries in the two matrices is finite.
Then we can define

χ(i, j) :=

⎧

⎪

⎨

⎪

⎩

1 if H+
ij �= −∞

−1 if H−
ij �= −∞

0 otherwise.

For each term u1π(1) � · · · � u�π(�) in (6) we define its sign as

sgn(π) · χ(1, π(1)) · · · χ(�, π(�)),

where sgn(π) is the sign of the permutation π. Now the exterior description (7)
of the tropical cone Q is tropically sign-generic if for each square submatrix
U of H+ ⊕ H− we have tdet(U) �= −∞ and, moreover, the signs of all terms
u1π(1) � · · · � u�π(�) which attain the maximum in (6) agree. By looking at 1×1-
submatrices U we see that in this case all coefficients of the matrix H+ ⊕ H−

are finite and thus χ(i, j) is never 0.

Proof (Correctness of Algorithm 1). The main lemma of tropical linear program-
ming [2, Theorem 16] says the following. In the tropically sign-generic case, an
exterior description of a tropical cone can be obtained from an exterior descrip-
tion of a classical cone over Puiseux series by applying the valuation map to
the constraint matrix coefficient-wise. This statement assumes that the classical
cone is contained in the non-negative orthant. We infer that



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 439

Algorithm 1. A dual tropical convex hull algorithm
Input: pair of matrices H+, H− ∈ Tm×(d+1) which provide a tropically

sign-generic exterior description of the tropical cone Q from (7)
Output: generators for Q
pick two matrices A+, A− ∈ R{{t}}m×(d+1) with strictly positive entries such
that val(A+) = H+ and val(A−) = H− ;
apply a classical dual convex hull algorithm to determine a matrix
B ∈ R{{t}}(d+1)×n such that

{B · a | a ∈ R{{t}}n, a ≥ 0} =
{

x ∈ R{{t}}(d+1)
∣∣∣ (A+ − A−) · x ≥ 0, x ≥ 0

}
;

return val(B) ;

Q =
{

z ∈ Tm×(d+1)
∣

∣

∣ H+ � z ≥ H− � z
}

= val
({

x ∈ R{{t}}m×(d+1)
∣

∣

∣ A+ · x ≥ A− · x, x ≥ 0
})

= val ({B · a | a ∈ R{{t}}n, a ≥ 0}) .

Now [9, Proposition 2.1] yields Q = val({B · a | a ∈ R{{t}}n, a ≥ 0}) =
tcone(val(B)). This ends the proof. 	


The correctness of our algorithm is not guaranteed if the genericity condition
is not satisfied. The crucial properties of the lifted matrices A+, A− are not
necessarily fulfilled. It is an open question of how an exterior description over
T is related to an exterior description over R{{t}} in the general setting. We are
even lacking a convincing concept for the “facets” of a general tropical cone.

5 Implementation

As a key feature the polymake system for discrete geometry is designed as a
Perl/C++ hybrid, that is, both programming languages are used in the imple-
mentation and also both programming languages can be employed by the user
to write further code. One main advantage of Perl is the fact that it is inter-
preted; this makes it suitable as the main front end for the user. Further, Perl
has its strengths in the manipulation of strings and file processing. C++ on the
other hand is a compiled language with a powerful template mechanism which
allows to write very abstract code which, nonetheless, is executed very fast. Our
implementation, in C++, makes extensive use of these features. The implementa-
tion of the dual steepest edge simplex method, contributed by Thomas Opfer,
and the beneath-beyond method for computing convex hulls (see [11] and [18])
are templated. Therefore polymake can handle both computations for arbitrary
number field types which encode elements in an ordered field.

Based on this mechanism we implemented the type RationalFunction which
depends on two generic template types for coefficients and exponents. Note that
the field of coefficients here does not have to be ordered. Our proof-of-concept



440 M. Joswig et al.

implementation employs the classical Euclidean GCD algorithm for normaliza-
tion. Currently the numerator and the denominator are chosen coprime such
that the denominator is normalized with leading coefficient one. For the most
interesting case F = Q it is known that the coefficients of the intermediate poly-
nomials can grow quite badly, e.g., see [12, Example 1]. Therefore, as expected,
this is the bottleneck of our implementation. In a number field or in a field with
a non-Archimedean valuation the most natural choice for a normalization is to
pick the elements of the ring of integers as coefficients. The reason for our choice
is that this more generic design does not make any assumption on the field of
coefficients. This makes it very versatile, and it fits the overall programming
style in polymake. A fast specialization to the rational coefficient case could be
based on [12, Algorithm 11.4]. This is left for a future version.

The polymake implementation of Puiseux fractions F{t} closely follows
the construction described in Sect. 2. The new number type is derived from
RationalFunction with overloaded comparison operators and new features such
as evaluating and converting into TropicalNumber. An extra template parame-
ter MinMax allows to choose whether the indeterminate t is a small or a large
infinitesimal.

There are other implementations of Puiseux series arithmetic, e.g., in Magma
[6] or MATLAB [29]. However, they seem to work with finite truncations of Puiseux
series and floating-point coefficients. This does not allow for exact computations
of the kind we are interested in.

6 Computations

We briefly show how our polymake implementation can be used. Further, we
report on timings for our LP solver, tested on the Goldfarb–Sit cubes from
Example 2, and for our (dual) convex hull code, tested on the polytopes with a
“long and winded” central path from Example 3.

6.1 Using polymake

The following code defines a 3-dimensional Goldfarb–Sit cube over the field Q{t},
see Example 2. We use the parameters ε = t and δ = 1

2 . The template parameter
Min indicates that the ordering is induced by the dual valuation val∗, and hence
the indeterminate t plays the role of a small infinitesimal.

polytope > $monomial=new UniMonomial<Rational,Rational>(1);
polytope > $t=new PuiseuxFraction<Min>($monomial);
polytope > $p=goldfarb_sit(3,2*$t,1/2);

The polytope object, stored in the variable $p, is generated with a facet
description from which further properties will be derived below. It is already
equipped with a LinearProgram subobject encoding the objective function from
Example 2. The following lines show the maximal value and corresponding vertex
of this linear program as well as the vertices derived from the outer description.
Below, we present timings for such calculations.



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 441

polytope > print $p->LP->MAXIMAL_VALUE;
(1)
polytope > print $p->LP->MAXIMAL_VERTEX;
(1) (0) (0) (1)
polytope > print $p->VERTICES;
(1) (0) (0) (0)
(1) (t^2) (2*t^2) (4*t^2)
(1) (0) (t) (2*t)
(1) (t^2) (t -2*t^2) (2*t -4*t^2)
(1) (0) (0) (1)
(1) (t^2) (2*t^2) (1 -4*t^2)
(1) (0) (t) (1 -2*t)
(1) (t^2) (t -2*t^2) (1 -2*t + 4*t^2)

As an additional benefit of our implementation we get numerous other prop-
erties for free. For instance, we can compute the parameterized volume, which
is a polynomial in t.

polytope > print $p->VOLUME;
(t^3 -4*t^4 + 4*t^5)

That polynomial, as an element of the field of Puiseux fractions, has a valu-
ation, and we can evaluate it at the rational number 1

12 .

polytope > print $p->VOLUME->val;
3
polytope > print $p->VOLUME->evaluate(1/12);
25/62208

6.2 Linear Programs

We have tested our implementation by computing the linear program of
Example 2 with polyhedra defined over Puiseux fractions.

The simplex method in polymake is an implementation of a (dual) sim-
plex with a (dual) steepest edge pricing. We set up the experiment to make
sure our Goldfarb–Sit cube LPs behave as badly as possible. That is, we force
our implementation to visit all n = 2d vertices, when d is the dimension of
the input. Table 1 illustrates the expected exponential growth of the execution
time of the linear program. In three of our four experiments we choose δ as 1

2 .
The computation over Q{ε} costs a factor of about 80 in time, compared with
the rational cubes for a modest ε = 1

6 . However, taking a small ε whose binary
encoding takes more than 18,000 bits is substantially more expensive than the
computations over the field Q{ε} of Puiseux fractions. Taking δ as a second
small infinitesimal is possible but prohibitively expensive for dimensions larger
than twelve.

6.3 Convex Hulls

We have also tested our implementation by computing the vertices of the poly-
tope from Example 3. For this we used the client long and winding which



442 M. Joswig et al.

Table 1. Timings (in s) for the Goldfarb–Sit cubes of dimension d with δ = 1
2
. For ε

we tried a small infinitesimal as well as two rational numbers, one with a short binary
encoding and another one whose encoding is fairly large. For comparison we also tried
both parameters as indeterminates.

d m n Q{ε} Q Q (Q{δ}){ε}
ε ε = 1

6
ε = 2

174500
ε � δ

3 6 8 0.010 0.003 0.005 0.101

4 8 16 0.026 0.001 0.017 0.353

5 10 32 0.064 0.002 0.065 1.034

6 12 64 0.157 0.007 0.253 2.877

7 14 128 0.368 0.006 0.829 7.588

8 16 256 0.843 0.016 2.643 19.226

9 18 512 1.906 0.039 7.703 47.806

10 20 1024 4.258 0.090 21.908 118.106

11 22 2048 9.383 0.191 59.981 287.249

12 24 4096 20.583 0.418 160.894 687.052

creates the d = (2r+2)-dimensional polytope given by m = 3r+4 facet-defining
inequalities. Over the rationals we evaluated the inequalities at 22

r

which prob-
ably gives the correct combinatorics; see the discussion at the end of Example 3.
This very choice forces the coordinates of the defining inequalities to be integral,
such that the polytope is rational. The number of vertices n is derived from that
rational polytope. The running times grow quite dramatically for the parametric
input (Table 2). This overhead could be reduced via a better implementation of
the Puiseux fraction arithmetic.

6.4 Experimental Setup

Everything was calculated on the same Linux machine with polymake perpetual
beta version 2.15-beta3 which includes the new number type, the templated
simplex algorithm and the templated beneath-and-beyond convex hull algorithm.
All timings were measured in CPU seconds and averaged over ten iterations. The
simplex algorithm was set to use only one thread.

All tests were done on openSUSE 13.1 (x86 64), with Linux kernel 3.11.10-
25, clang 3.3 and perl 5.18.1. The rational numbers use a C++-wrapper
around the GMP library version 5.1.2. As memory allocator polymake uses the
pool allocator from libstdc++, which was version 4.8.1 for the experiments.

The hardware for all tests was:

Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz
bogomips: 6400.21
MemTotal: 32928276 kB



Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 443

Table 2. Timings (in s) for convex hull computation of the feasibility set from
Example 3. All timings represent an average over ten iterations. If any test exceeded a
one hour time limit this and all larger instances of the experiment were skipped and
marked −.

r d m n Q{t} Q

1 4 7 11 0.018 0.000

2 6 10 28 0.111 0.000

3 8 13 71 0.754 0.010

4 10 16 182 15.445 0.036

5 12 19 471 1603.051 0.150

6 14 22 1226 - 0.737

7 16 25 3201 - 4.001

8 18 28 8370 - 25.093

9 20 31 21901 - 223.240

10 22 34 57324 - 1891.133

Acknowledgments. We thank Thomas Opfer for contributing to and maintaining
within the polymake project his implementation of the dual simplex method, originally
written for his Master’s Thesis [25].

References

1. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Long and winding central
paths, preprint (2014). arXiv:1405.4161

2. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Tropicalizing the simplex
algorithm. SIAM J. Discrete Math. 29(2), 751–795 (2015). http://dx.doi.org/10.
1137/130936464

3. Allamigeon, X., Gaubert, S., Goubault, É.: The tropical double description method.
In: STACS 2010: 27th International Symposium on Theoretical Aspects of Com-
puter Science, LIPIcs. Leibniz International Proceedings in Informatics, vol. 5, pp.
47–58. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2010)

4. Allamigeon, X., Gaubert, S., Goubault, É.: Computing the vertices of tropical
polyhedra using directed hypergraphs. Discrete Comput. Geom. 49(2), 247–279
(2013). http://dx.doi.org/10.1007/s00454-012-9469-6

5. Benchimol, P.: Tropical aspects of linear programming. Theses, École Polytechnique,
December 2014. https://hal-polytechnique.archives-ouvertes.fr/tel-01198482

6. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). http://dx.doi.org/10.
1006/jsco.1996.0125

7. Charnes, A., Kortanek, K.O.: On classes of convex and preemptive nuclei for n-
person games. In: Proceedings of the Princeton Symposium on Mathematical Pro-
gramming (Princeton University, 1967). pp. 377–390. Princeton University Press,
Princeton (1970)

8. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton, N.J. (1963)

http://arXiv.org/abs/1405.4161
http://arXiv.org/abs/1405.4161
http://dx.doi.org/10.1137/130936464
http://dx.doi.org/10.1137/130936464
http://dx.doi.org/10.1007/s00454-012-9469-6
https://hal-polytechnique.archives-ouvertes.fr/tel-01198482
https://hal-polytechnique.archives-ouvertes.fr/tel-01198482
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125


444 M. Joswig et al.

9. Develin, M., Yu, J.: Tropical polytopes and cellular resolutions. Experiment. Math.
16(3), 277–291 (2007). http://projecteuclid.org/euclid.em/1204928529

10. Deza, A., Terlaky, T., Zinchenko, Y.: Central path curvature and iteration-
complexity for redundant Klee-Minty cubes. In: Gao, D.Y., Sherali, H.D. (eds.)
Advances in Applied Mathematics and Global Optimization. Adv. Mech. Math.,
vol. 17, pp. 223–256. Springer, New York (2009). http://dx.doi.org/10.1007/
978-0-387-75714-8 7

11. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs
on Theoretical Computer Science, vol. 10. Springer-Verlag, Berlin (1987).
http://dx.doi.org/10.1007/978-3-642-61568-9

12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

13. Gaubert, S., Katz, R.D.: Minimal half-spaces and external representation of trop-
ical polyhedra. J. Algebraic Combin. 33(3), 325–348 (2011). http://dx.doi.org/10.
1007/s10801-010-0246-4

14. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex poly-
topes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes–combinatorics and computation
(Oberwolfach, 1997). DMV Sem., pp. 43–73. Birkhäuser, Basel (2000)

15. Goldfarb, D., Sit, W.Y.: Worst case behavior of the steepest edge simplex
method. Discrete Appl. Math. 1(4), 277–285 (1979). http://dx.doi.org/10.1016/
0166-218X(79)90004-0

16. Jeroslow, R.G.: Asymptotic linear programming. Oper. Res. 21(5), 1128–1141
(1973). http://dx.doi.org/10.1287/opre.21.5.1128

17. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: On polyhedral projection and
parametric programming. J. Optim. Theor. Appl. 138(2), 207–220 (2008).
http://dx.doi.org/10.1007/s10957-008-9384-4

18. Joswig, M.: Beneath-and-beyond revisited. In: Joswig, M., Takayama, N. (eds.)
Algebra, Geometry, and Software Systems, pp. 1–21. Springer, Berlin (2003)

19. Joswig, M.: Tropical convex hull computations. In: Litvinov, G.L., Sergeev, S.N.
(eds.) Tropical and Idempotent Mathematics, Contemporary Mathematics, vol.
495, pp. 193–212. American Mathematical Society, Providence (2009)

20. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities, III (Pro-
ceedings of Third Symposium, University of California, Los Angeles, California,
1969; dedicated to the memory of Theodore S. Motzkin), pp. 159–175. Academic
Press, New York (1972)

21. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies
in Mathematics, vol. 161. American Mathematical Society, Providence, RI (2015)

22. Mannaa, B., Coquand, T.: Dynamic Newton-Puiseux theorem. J. Log. Anal. 5, 22
(2013). Paper 5

23. Markwig, T.: A field of generalised Puiseux series for tropical geometry. Rend.
Semin. Mat. Univ. Politec. Torino 68(1), 79–92 (2010)

24. Maslov, V.P.: On a new superposition principle for optimization problem. In:
Séminaire sur les équations aux dérivées partielles, pp. 1985–1986, Exp. No. XXIV,
14. École Polytech., Palaiseau (1986)

25. Opfer, T.: Entwicklung eines exakten rationalen dualen Simplex-Lösers. Master’s
thesis, TU Darmstadt (2011)

26. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials, London Mathe-
matical Society Monographs. New Series, vol. 26. The University Press, Clarendon
Press, Oxford (2002)

http://projecteuclid.org/euclid.em/1204928529
http://dx.doi.org/10.1007/978-0-387-75714-8_7
http://dx.doi.org/10.1007/978-0-387-75714-8_7
http://dx.doi.org/10.1007/978-3-642-61568-9
http://dx.doi.org/10.1007/978-3-642-61568-9
http://dx.doi.org/10.1007/s10801-010-0246-4
http://dx.doi.org/10.1007/s10801-010-0246-4
http://dx.doi.org/10.1016/0166-218X(79)90004-0
http://dx.doi.org/10.1016/0166-218X(79)90004-0
http://dx.doi.org/10.1287/opre.21.5.1128
http://dx.doi.org/10.1007/s10957-008-9384-4
http://dx.doi.org/10.1007/s10957-008-9384-4


Linear Programs and Convex Hulls Over Fields of Puiseux Fractions 445

27. Salzmann, H., Grundhöfer, T., Hähl, H., Löwen, R.: The classical fields, Encyclo-
pedia of Mathematics and its Applications, vol. 112. Cambridge University Press,
Cambridge (2007). http://dx.doi.org/10.1017/CBO9780511721502

28. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. RAND
Corporation, Santa Monica, California (1948)

29. The MathWorks Inc.: MATLAB, version 8.4.0.150421 (R2014b). Natick, Massa-
chusetts (2014)

30. van der Waerden, B.L.: Algebra II. Unter Benutzung von Vorlesungen von E. Artin
und E. Noether, 6th edn. Springer, Berlin (1993). Mit einem Geleitwort von Jürgen
Neukirch

31. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer-Verlag, New York (1995)

http://dx.org/10.1017/CBO9780511721502


Another Classroom Example of Robustness
Problems in Planar Convex Hull Computation

Marc Mörig(B)

Faculty of Computer Science, Department of Simulation and Graphics,
Otto-von-Guericke University of Magdeburg, Universitätsplatz 2,

39106 Magdeburg, Germany
moerig@isg.cs.unimagdeburg.de

Abstract. Algorithms in computational geometry are designed under
the assumption of exact real arithmetic. Indiscriminately replacing exact
real arithmetic by hardware floating-point arithmetic almost inevitably
leads to robustness problems. Kettner et al. provide examples where
rounding errors let such straightforward implementations of incremen-
tal convex hull computation crash, loop forever, or silently compute
garbage. We complement their work by providing problematic examples
for another planar convex hull algorithm.

Keywords: Implementation · Numerical robustness problems ·
Floating-point geometry

1 Introduction

Algorithms in computational geometry are designed under the assumption of
exact real arithmetic at unit cost [6]. Simply using hardware floating-point arith-
metic as an indiscriminate substitute in implementations almost inevitably leads
to robustness problems [7,9]. However, there are only few examples documented
in the literature: The leda book [4] gives some instructive examples in Sect. 9.6
and reports on experiments that fail for floating-point based implementations
in Sects. 10.7 and 10.8. Shewchuk [8] discusses an example where the computa-
tion of a 2D Delaunay triangulation by divide and conquer fails. Moreover, it
is folklore that straightforward implementations of Jarvis’ march for computing
planar convex hulls can loop forever for certain nearly degenerate input data.
Computing the convex hull of a set of points in the plane is one of the best
studied problems in computational geometry. Kettner et al. [3] show how to cre-
ate input data that lets an implementation of incremental planar convex hull
computation fail in various ways. After fixing an implementation, they examine
the decisions the implementation will make for input points in a certain critical
range of space. This allows them to select input points where these decisions
are incorrect and lead to failures. Failures generated include not only comput-
ing output that is not valid, but also infinite looping, or the program crashing.
However, the planar convex hull algorithm they study does not have worst-case
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 446–450, 2016.
DOI: 10.1007/978-3-319-32859-1 38



Another Classroom Example of Robustness Problems 447

Fig. 1. Basic steps in a 2D convex hull computation.

optimal running time. The same holds for Jarvis’ march. Both have quadratic
worst-case complexity.

We complement the work by Kettner et al. by providing examples for the
plane sweep variant of Graham’s scan [1], a convex hull algorithm with worst-case
optimal running time O(n log n). At our companion website [5] we provide an
implementation of the algorithm and further material illustrating our examples.

2 Short Description of Algorithm and Predicates

Let p, q, and r be three points in the plane, and let �(p, q) be the oriented
line passing first through p and then through q. The 2D orientation predicate
determines the position of r relative to �(p, q). If p = (px, py), q = (qx, qy), and
r = (rx, ry), then the predicate is tantamount to computing the sign of the
determinant

DO2 =

∣

∣

∣

∣

∣

∣

px py 1
qx qy 1
rx ry 1

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

qx − px qy − py
rx − px ry − py

∣

∣

∣

∣

. (1)

The three points p, q and r are collinear if and only if DO2 is zero. Otherwise,
r is to the left of �(p, q), if DO2 is greater than zero and r is to the right of
�(p, q), if DO2 is smaller than zero. Besides coordinate comparison this is the
only predicate used in the algorithm.

The algorithm itself is a variant of Graham’s scan [1] and proceeds as follows.
We process the points one by one, in xy-lexicographical order. We maintain the
convex hull P of already processed points as the circular sequence of vertices
in counterclockwise order along its boundary. Thus, when we arrive at a new
point u, we have to update P . Since we process points from left to right, u
is not contained in P . Consider the two tangents from u onto P , see Fig. 1a.
Each tangent touches exactly one or two vertices of P . Let t′ be the vertex of
P furthest from u that the upper tangent touches, and let t be the vertex of
P furthest from u that the lower tangent touches. Note that t = t′ is possible
in case P is a segment. In the sequence of vertices of P , we replace all vertices
between t and t′ with u.



448 M. Mörig

u

p

q

r

P

(a) Impossible: u is inside P .

u

p

q

r

(b) Resulting convex hull.

Fig. 2. A single incorrect orientation result can lead to catastrophic failure.

How do we find t and t′? Let q be the point that was processed in the previous
update step. Then q is the rightmost vertex of P . We start with t = q and check
the position of u relative to �(pred(t), t) with the 2D orientation predicate, see
Fig. 1b. As long as u is not on the left side, we advance t to pred(t) and check
the position of u again. The vertex t′ can be found analogously. There is one
exceptional case: if P is a segment we have to stop the search for t and t′ after
at most one step.

As for the 2D orientation predicate we use the straightforward implementa-
tion. We compute an approximation D′

O2 of DO2 as

D′
O2 = (qx � px) ⊗ (ry � py) � (rx � px) ⊗ (qy � py), (2)

where ⊗ and � are floating-point multiplication and subtraction. The point p
is distinguished in the computation of D′

O2 and is called the pivot point. Many
familiar mathematical properties like associativity or distributivity do not hold
for floating-point operations. Therefore, while permuting p, q, and r will lead to
sign changes only in DO2, this is in general not the case for D′

O2. Our results
can be reproduced using floating point arithmetic compliant to the IEEE 754
standard [2].

3 How It Fails

What can go wrong with this algorithm when a floating-point based orientation
predicate is used? The search for t and t′ may stop to soon, in which case the
resulting polygon is not convex anymore. This may lead to incorrect output or
more problems in later steps, since the correctness of the search for t and t′

depends on P being convex! The search may also stop too late, in that case
vertices of P are cut away and may not be contained in the end result.

Carrying the first case to the extreme, the search for both t′ and t may stop
at q. This can never occur geometrically, since for full dimensional P the upper
and lower tangent touch P in different vertices. But it can occur due to a single
incorrect result from the 2D orientation predicate, as illustrated in Fig. 2a. Here
the current hull polygon P has vertices p, q and r and is about to be updated



Another Classroom Example of Robustness Problems 449

Let

p = (−10.04094770362331879, −7.506293383338360492 )
q = ( 1.056089924324703055, −0.9655180522057801307)
r = ( −5.5608992432470305545, −2.255180522057801307 )
u = ( 1.0560899243247048318, −0.9655180522057800196)
u′ = ( 1.0560899243247043877, −0.9655180522057800196)

In the drawings below, we classify each point with floating-point coordinates near
q if it is to the right ( ) , to the left ( ) , or on ( ) line � drawn solid. Correctly
classified points are drawn in grey, while misclassified points are colored ( , , )..

Fig. 3. Zoom in on points q and u in Fig. 2.



450 M. Mörig

with point u. Figure 3 shows the lattice of points with floating-point coordinates
close to q, among them u, and how the 2D orientation predicate classifies their
position relative to �(p, q) and �(r, q). Point u is correctly classified to be right
of �(r, q), but incorrectly classified to be left of �(p, q). Since we process points
in sorted order, u must be outside P , but the incorrect classification moves u
inside P , at least from the view of the algorithm. We have t = t′ = q and all
vertices between t and t′ are to be replaced by u. The implementation may now
traverse the sequence of hull vertices, starting at t, and remove vertices until t′

is reached. This will remove all vertices except q. Then u is inserted, resulting
in the hull polygon shown in Fig. 2b.

For another example, suppose we are updating the current hull P with the
point u′, two positions to the left from u in the lattice of floating-point points
in Fig. 3. The point u′ is incorrectly classified to be on �(r, q), and incorrectly
classified to be left of �(p, q). Hence, u′ will be inserted into the sequence of
vertices between q and r, resulting in a non-simple hull polygon.

4 Conclusions

Computing the convex hull of a set of points in the plane is a problem studied
in almost all introductory courses in computational geometry and hence a prime
candidate for illustrating robustness problems. We provide examples of failure
for worst-case optimal planar convex hull computation, complementing the work
of Kettner et al.

References

1. de Berg, M., Cheong, O., van Krefeld, M., Overmars, M.: Computational Geometry:
Algorithms and Applications, 3rd revised edn. Springer, Heidelberg (2008)

2. ANSI, IEEE Standard 754–1985 : IEEE Standard for Binary Floating-Point Arith-
metic (1985). Reprinted in SIGPLAN Notices 22(2), 9–25 (1987)

3. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom examples
of robustness problems in geometric computation. Comput. Geom. Theor. Appl.
40(1), 61–78 (2008)

4. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, Cambridge (1999)

5. Mörig, M.: Companion Pages to Another Classroom Example of Robustness Prob-
lems in Planar Convex Hull Computation. http://wwwisg.cs.uni-magdeburg.de/ag/
ClassroomExample/

6. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 1st edn.
Springer, Heidelberg (1985)

7. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack,
J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, chap. 14, pp. 597–
632. Elsevier, Amsterdam, January 2000

8. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete Comput. Geom. 18(3), 305–363 (1997)

9. Yap, C.K.: Robust geometric computation. In: Handbook of Discrete and Compu-
tational Geometry, chap. 41, pp. 927–952, 2nd edn. CRC (2004)

http://wwwisg.cs.uni-magdeburg.de/ag/ClassroomExample/
http://wwwisg.cs.uni-magdeburg.de/ag/ClassroomExample/


Precision-Driven Computation in the Evaluation
of Expression-Dags with Common

Subexpressions: Problems and Solutions

Marc Mörig(B) and Stefan Schirra(B)

Department of Simulation and Graphics, Faculty of Computer Science,
Otto-von-Guericke University of Magdeburg, Universitätsplatz 2,

39106 Magdeburg, Germany
stschirr@ovgu.de

Abstract. Precision-driven computation is a recursive scheme for the
approximate evaluation of arithmetic expression-dags that allows for
specifying the accuracy of evaluation results in advance. We illustrate and
explain how current implementations of precision driven arithmetic may
negate advantages from sharing common subexpressions by re-evaluating
these subexpressions many times. Since the number of re-evaluations
depends on seemingly minor details of expression structure and evalua-
tion strategy, significant performance differences may arise between oth-
erwise competitive implementations of precision driven arithmetic for the
same user code and then again between otherwise equivalent user codes
for the same evaluation strategy as well. We present a new evaluation
strategy that separates precision propagation from expression evalua-
tion and thereby avoids multiple evaluations of common subexpressions
completely.

Keywords: Precision-driven computation · Exact geometric computa-
tion · Expression-dag-based number types · Verified numerical computing

1 Introduction

Algorithms in computational geometry are designed under the assumption of
exact real arithmetic at unit cost [13]. Simply using hardware floating-point
arithmetic as an indiscriminate substitute in implementations almost inevitably
leads to robustness problems: implementations may crash, loop forever, or
silently compute garbage [5], due to inconsistent decisions caused by rounding
errors [14,19].

An effective approach to overcome these robustness issues is the exact geo-
metric computation paradigm [17] which calls for correct decisions by geo-
metric predicates. Correctly computing the signs of arithmetic expressions in
geometric predicates trivially ensures correct decisions and hence consistency.
Regarding control flow, an implementation behaves as its theoretical counterpart.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 451–465, 2016.
DOI: 10.1007/978-3-319-32859-1 39



452 M. Mörig and S. Schirra

Fig. 1. An expression, a corresponding dag and code leading to this dag.

Thus, the exact geometric computation paradigm ensures topological and com-
binatorial correctness. However, since we now detect degeneracies correctly, an
implementation has to handle them appropriately. Note that the exact geometric
computation paradigm does not ask for exact numerical values. All we need are
sufficiently accurate approximations that allow us to determine the requested
signs correctly.

Recording the computation history of numerical values in expression-dags,
i.e., expression-“trees” that may share common subexpressions, allows one to
(re)compute an approximation of the value of the expression at any time at any
accuracy. Figure 1 shows an expression-dag for a simple expression with square
root operations. Using the expression-dag we can adaptively compute better
and better bigfloat approximations and defer high precision computations until
we really need them. We use constructive zero separation bounds [3,6,9,12,
15] to resolve the cases where the actual value of an expression is zero. This
way, we can adaptively compute the sign of an expression correctly. Since all
sign computations and hence all decisions in geometric predicates are exact,
inconsistencies caused by numerical imprecision are abandoned.

Precision-driven computation [20] is a key technique for the efficient evalua-
tion of expression-dags. In order to improve accuracy, we could simply re-evaluate
the dag with higher precision starting from the leaves and determine the result-
ing accuracies along the way. Precision-driven computation, however, starts at
the root and recursively specifies accuracy of evaluation results in advance. We
present more details of precision-driven computation in Sect. 3.

2 Expression-Dag-Based Number Types

Number types CORE::Expr [4,21] and leda::real [2,7] encapsulate precision-
driven adaptive evaluation of expression-dags in C++ classes. Thanks to the



Precision-Driven Computation in the Evaluation of Expression-Dags 453

wrapping a user need not know anything about the details of the imple-
mentation in order to get correct decisions. More recently, RealAlgebraic,
another expression-dag-based number type has been designed and implemented
[10,11]. Like the most recent version of CORE::Expr this number type is a
C++ class template. This makes RealAlgebraic fairly adjustable. For instance,
RealAlgebraic allows one to exchange the bigfloat arithmetic used to compute
approximations, to select a floating-point filter, to use different strategies for
deferring dag-construction, e.g., by using error-free floating-point transforma-
tions or adding tests that check whether the result of a floating-point computa-
tion is exact. RealAlgebraic provides a default variant. Like CORE::Expr and
leda::real it supports a subset of the real algebraic numbers that includes the
rational numbers and is closed under the basic arithmetic operations ±, −, ·, /
and d

√
. For a discussion of the use of such number types in geometric computing

we refer the reader to [8,16].

3 Precision-Driven Computation

The purpose of expression-dag-based number-types is computing the sign of
expressions correctly. To compute the sign of the expression represented by a
dag node v, current expression-dag-based number types compute increasingly
accurate bigfloat approximations and maintain error bounds. For example, in
RealAlgebraic each node v stores an approximation v̂ and an error ev such that

|v̂ − v| ≤ ev.

Here and in the sequel we use v to denote both a node and the exact value of the
associated expression. The sign of the node is known, once |v̂| > ev or |v̂|+ ev is
smaller than the computed zero separation bound for the expression represented
by v. In the latter case, we have v = 0.

To compute or improve the approximation of a dag node, straightforward
interval arithmetic may be used: for example, let z = x · y be a multiplication
node. Then

|ẑ − z| ≤ |ẑ − x̂ŷ| + |x̂(ŷ − y)| + |y(x̂ − x)|
≤ |ẑ − x̂ŷ| + |x̂|ey + (|ŷ| + ey)ex. (1)

Thus, if we compute ẑ ← x̂�p ŷ using bigfloat arithmetic with a relative error of
2−p, we can set ez ← 2−p|ẑ| + |x̂|ey + (|ŷ| + ey)ex, where the right hand side is
computed using low precision bigfloat arithmetic with rounding away from zero.
Similar error estimates exist for the remaining operations ±, /, d

√
. We may

therefore improve the approximation of all dag nodes by increasing the precision
p and recomputing all dag nodes, reporting the resulting error from bottom to
top. There is a clear disadvantage to this method: the accuracy of the final result
becomes known only after the computation of the final approximation.

Precision-driven computation on the other hand specifies the accuracy before
recomputing an approximation. Current implementations work in a recursive



454 M. Mörig and S. Schirra

fashion: to compute an approximation of a node they first compute approxi-
mations for its children. We illustrate this by describing how multiplication is
handled by RealAlgebraic. The starting point is an error estimate quite similar
to Eq. (1):

|ẑ − z| ≤ |ẑ − x̂ŷ| + |x̂(ŷ − y)| + |y(x̂ − x)|
≤ 2−p|x̂ŷ| + (|x| + ex)ey + |y|ex (2)

≤ 2−p|x̂ŷ| + |x|ey + |y|ex + exey.

Assume we want to compute ẑ,ez such that ez < ẽz. First we select ẽx, and ẽy
such that

ẽx ≤ ẽz
4|y| , ẽy ≤ ẽz

4|x| , ẽxẽy ≤ ẽz
4

,

and recursively recompute x̂ and ŷ, requesting ex ≤ ẽx and ey ≤ ẽy. Then we
select a precision p such that

2−p ≤ ẽz
4|x̂ŷ|

and recompute ẑ ← x̂ �p ŷ with a relative error of 2−p. Finally, by Eq. (2), we
can set ez ← ẽz. In order to perform precision-driven computation, we need
error estimates like Eq. (2) for all involved operations. Yap [18] provides such
estimates for ±, ·, /, d

√
, and a few elementary functions, both for relative and

absolute error.
Other expression-dag-based number types perform precision-driven compu-

tation in a slightly different way. leda::real uses the error estimate

|ẑ − z| ≤ 2−p|x̂ŷ| + |x̂|ey + |y|ex
instead of Eq. (2), see [1]. It has only three terms and allows to select a slightly
smaller precision (i.e., 2−p ≤ ẽz/(2|x̂ŷ|)). However, the estimate forces us to
recompute x̂ before we can select ẽy, since no upper bound on the future value
of x̂ can be determined easily. The same holds for division operations: one child
node is recomputed before the accuracy requirement for the other child is deter-
mined.

CORE::Expr [18] ignores the second order error term exey in Eq. (2). This is
accounted for by recomputing the complete approximation using interval arith-
metic once the precision p has been determined. Prior to version 2, CORE::Expr
performs ring operations ± and · exactly by adjusting the bigfloat precision,
which allows one to omit the error term 2−p|x̂ŷ| in Eq. (2).

Since accuracies are chosen recursively, the name precision-driven is a bit
deceptive. Accuracy-driven might have been more self-explanatory.

4 Common Problems with Common Subexpressions

A strength of adaptive exact decisions number types based on expression-dags
is their user-friendliness. Ideally, you can use these number-types like any other



Precision-Driven Computation in the Evaluation of Expression-Dags 455

number type without knowing anything about the internals. However, as a user
you probably expect these number types to show roughly the same performance
when exchanging operands in addition, multiplication, or equality testing, since
these operations are commutative. Unfortunately, with current implementations
of precision-driven computation number types leda::real, CORE::Expr, and
RealAlgebraic do not necessarily behave like this in the presence of common
subexpressions. In principle, having common subexpressions instead of several
copies of the same expression is advantageous. In particular, it allows us to
compute better separation bounds. The main advantage, however, is the poten-
tial reduction of evaluation cost. However, current precision-driven evaluation
strategies may void this advantage.

In order to illustrate the problem we pick an example from the test suite of
RealAlgebraic: verification of the formula

n−1
∑

i=0

ri =
1 − rn

1 − r
for r �= 1, (3)

for geometric series. Figure 2 shows a generic implementation parameterized by
a number type which verifies Eq. (3) for any r and n. Note how the code reuses
ri−1 for the computation of ri.

template <class NumberType>
bool geom_series(const NumberType r, const int n)
{ NumberType s=0, p=1;

for(int i=0;i<n;i++)
{ s = s + p;

p = p * r;
}
NumberType t = ( 1 - p )/( 1 - r );
return (t==s);

}

Fig. 2. Verification code for Eq. (3).

When running the code in Fig. 2 for the default variant of RealAlgebra-
ic with r =

√
13 and n = 2048 on our test platform this takes 0.12 seconds.

However, if we replace (t==s) in the last line of Fig. 2 by (s==t) and repeat
the experiment, suddenly this takes 61.49 seconds. The running time explodes.
A small code change leads to a huge difference in running times. This is not
user-friendly at all.

Let us have a closer look. Bigfloat arithmetic is the main cost factor in
expression-dag evaluation, so we repeat both experiments for n = 128 and check
the amount of bigfloat arithmetic used. It turns out that there is a large differ-
ence in the usage of multiplication, while the difference for ±, /,

√
is negligible.



456 M. Mörig and S. Schirra

Figure 3 shows how often a bigfloat multiplication of a certain precision is per-
formed when running the code in Fig. 2 and its modification. Actually, we con-
flate precisions corresponding to the same number of limbs, i.e., the number of
computer words used in bigfloat arithmetic. It is clearly visible that the problem
is not due to higher precision in bigfloat operations. However, many more oper-
ations of roughly the same precision are performed by the (s==t) variant. The
y-axis is logarithmic, so the number of bigfloat multiplications roughly squares.

5 10 15 20

20

23

26

29

212

precision in limbs

#
m

u
lt
ip

li
ca

ti
o
n
s

(t==s)
(s==t)

s = s + p
p = p * r

Fig. 3. Number of bigfloat multiplications for n = 128 for RealAlgebraic.

With (t==s) we get an expression-dag like that shown in Fig. 4a while we
get an expression-dag like that shown in Fig. 4b if we replace (t==s) by (s==t).
Since in both cases the sign of the root node is zero, the value at the root node
has to be approximated repeatedly until we reach the separation bound. Using
r =

√
13, we also make sure that no node becomes known exactly at some

point. Let us consider a single step of precision-driven computation at the root
node. For binary operations, the precision driven computation of RealAlgebra-
ic first recursively improves the first operand, then the second operand and
finally recomputes the value at the node itself.

Due to the order of traversal, in the case of (t==s), we visit each multipli-
cation node coming from the right side first, where left and right corresponds
to the drawings in Fig. 4. Later we arrive at this node again, coming from the
left side. Upon the second arrival, we again request an approximation of certain
accuracy from this node. If we are lucky, we need not recompute the approxima-
tion. This is what happens in case (t==s). In case (s==t) we arrive from the
left side first. Later we arrive at a node again, coming from the right side. This
time the present accuracy is insufficient and we must recompute the approxima-
tion of this node and much worse, all nodes below. Thus, we have to perform
quadratically many bigfloat multiplications, while in case (t==s) the value at
each node is recomputed only once.

In case (s==t), we approximate each multiplication node several times, with
increasing accuracy, until finally reaching the necessary maximal accuracy. This
increase in precision is not visible in the coarse statistics in Fig. 3 which conflates



Precision-Driven Computation in the Evaluation of Expression-Dags 457

0 1
√r

13

+ ·

+ ·

+ ·

+s ·p 1

−

/ t

−

1

−

(a) (t==s)

0 1
√r

13

+ ·

+ ·

+ ·

+s ·p 1

−

/ t

−

1

−

(b) (s==t)

Fig. 4. Expression-dags generated for r =
√

13 and n = 4.

precisions corresponding to the same number of limbs. We only see that more
operations with the same number of limbs are performed. Thus the already
available approximation can be slightly insufficient only, making the difference
invisible.

We can reproduce such behavior with more or less significant impact on
running time for all existent expression-dag-based C++ number types, not just
RealAlgebraic. All our experiments were run on an Intel Core i5-660 processor
with 3.33 GHz running Ubuntu. The code is compiled using g++ 4.6.3 with
optimization flags -O3. We use the precompiled leda::real coming with leda
6.4 and CORE::Expr version 1.8 as shipped with CGAL 4.6. Furthermore, we
use CORE::Expr version 2.1.1 in addition because of the redesign of CORE::Expr
starting with version 2.0 [21].

Besides the equality test in the last line, there are two more commutative
operations, s = s + p and p = p * r, in the code in Fig. 2. We study swapping
operands in these operations in our experiments as well. Figure 5 shows running
times for n = 2048, r =

√
13, and all combinations of swaps for RealAlgebra-

ic, leda::real, CORE::Expr 1, and CORE::Expr 2. Since leda::real uses an
evaluation strategy very similar to RealAlgebraic, it shows the same behavior
on exactly the same examples. CORE::Expr 2 slows down significantly if we swap
the operands in the addition operation from s = s + p to s = p + s. Again, a
small code change leads to a big change in running time.

Regarding, CORE::Expr 1, the impact of operand swapping is much less
severe. CORE::Expr 1 slows down if we use (s==t) and swap the operands in
the multiplication operation from p = p * r to p = r * p. Expression-dags
illustrating the bad cases for CORE::Expr are shown in Fig. 6. The precision-
driven computation in CORE::Expr 1 performs ring operations ±, · exactly and



458 M. Mörig and S. Schirra

s = s + p s = s + p s = p + s s = p + s
n = 2048 p = p * r p = p * r p = p * r p = p * r

(t==s) (s==t) (t==s) (s==t)
RealAlgebraic 0.12 61.49 0.12 0.22
leda::real 0.52 291.45 0.50 0.96
CORE::Expr 2 0.44 0.31 37.27 0.32
CORE::Expr 1 0.09 0.08 0.06 0.08

s = s + p s = s + p s = p + s s = p + s
p = r * p p = r * p p = r * p p = r * p

(t==s) (s==t) (t==s) (s==t)
RealAlgebraic 0.26 61.78 0.26 0.37
leda::real 1.42 297.13 1.39 1.84
CORE::Expr 2 0.28 0.18 37.18 0.16
CORE::Expr 1 0.12 0.17 0.06 0.16

Fig. 5. Running times for n = 2048 for the code from Fig. 2 and its variations.

0 1
√r

13

+ ·

+ ·

+ ·

+s ·p 1

−

/ t

−

1

−

(a)

0 1
√r

13

+ ·

+ ·

+ ·

+s ·p 1

−

/ t

−

1

−

(b)

Fig. 6. Bad expression-dags for CORE::Expr 2 and CORE::Expr 1.

actually computes the error bound for a node, instead of setting it to the
requested value. Therefore, the actual error stored in a node may be smaller
than originally requested, which helps to reduce the number of re-evaluations
in this particular scenario. However, this does not always help, as the accuracy
requirements in repeated visits may differ much more than can be bridged by a
slightly better error bound computation. With CORE::Expr 1, the slow-down is
largely due to repeated evaluations of

√
13. If we start the experiments such that

a sufficiently accurate approximation at the
√

13 node is already available, the
measured running times for CORE::Expr 1 are the same for all code variations.



Precision-Driven Computation in the Evaluation of Expression-Dags 459

In very bad cases, the evaluation strategy totally negates the advantage of
sharing common subexpressions. The dag is evaluated as if it were an expression-
tree, storing copies of an identical subexpression for each reference to it. Any
dag sharing common subexpressions is prone to such problems. If a node is
referenced several times, there is a good chance that all parents have different
accuracy requirements on this node. If we arrive from a parent with low require-
ments first, we must recompute the node upon a later arrival. Since the accuracy
requirements propagated by precision-driven computation are usually tight, this
will almost always trigger a recomputation of all descendent nodes. Even if the
problem does not appear in cascaded form, we might easily loose a factor of
two by going wrong just once near the root node. This happens for example for
RealAlgebraic when we use s = p + s, p = p * r, and swap the operands in
the equality test, see columns 3 and 4 in the top table in Fig. 5, as well as the
top part of Fig. 8.

5 Improved Evaluation Strategies

How can we avoid such unexpected dependence on the order of operands in
commutative operations? The error estimates used in leda::real require to
recompute the approximation of one child node before the accuracy requirement
for the other child can be computed. CORE::Expr and RealAlgebraic do not
have such a requirement. Their error estimates allow us to recur to any child first.
It is however by no means clear how to choose an order to avoid recomputation
for all nodes in the dag globally. However, we can choose at random. If we do
this for RealAlgebraic, we get the running times shown in Fig. 7 in rows labeled
randomized. The corresponding usage of bigfloat arithmetic for n = 128 is shown
in the middle part of Fig. 8, labeled randomized.

s = s + p s = s + p s = p + s s = p + s
n = 2048 p = p * r p = p * r p = p * r p = p * r

(t==s) (s==t) (t==s) (s==t)
RealAlgebraic 0.12 61.49 0.12 0.22
randomized 0.31 0.35 0.22 0.38
topsorted 0.12 0.12 0.12 0.12

s = s + p s = s + p s = p + s s = p + s
p = r * p p = r * p p = r * p p = r * p

(t==s) (s==t) (t==s) (s==t)
RealAlgebraic 0.26 61.78 0.26 0.37
randomized 0.23 0.26 0.27 0.24
topsorted 0.12 0.12 0.12 0.12

Fig. 7. Running times for n = 2048 for the code from Fig. 2 and its variations.



460 M. Mörig and S. Schirra

5 10 15 20

20

23

26

29

212
#

m
u
lt
ip

li
ca

ti
o
n
s

s = s + p, (t==s)
s = s + p, (s==t)
s = p + s, (t==s)
s = p + s, (s==t)

p = p * r

5 10 15 20

20

23

26

29

212

#
m

u
lt
ip

li
ca

ti
o
n
s

5 10 15 20

20

23

26

29

212

precision in limbs

#
m

u
lt
ip

li
ca

ti
o
n
s

R
e
a
l
A
l
g
e
b
r
a
i
c

ra
n
d
o
m

iz
ed

to
p
so

rt
ed

Fig. 8. Number of bigfloat multiplications for n = 128 for RealAlgebraic, the ran-
domized variant, and the topologically sorting variant for some variations of the code
in Fig. 2.

With the randomized strategy, both running time and number of bigfloat mul-
tiplications are significantly lower in the (s==t) case compared to the default
version of RealAlgebraic, but somewhat higher in the (t==s) case. By random-
izing dag traversal, the expected number of node re-evaluations in our example
becomes linear: It suffices to consider the dag rooted at s for the analysis. Let
M(i) be the number of bigfloat multiplications triggered by the addition node
with distance i to node s. Then

M(i) =

{

i − 1 if we traverse to the right first,
i − 1 + M(i − 1) otherwise.



Precision-Driven Computation in the Evaluation of Expression-Dags 461

Thus the expected number of multiplications is bounded by 2(i−1). On average,
we perform at most twice the optimal number of bigfloat multiplications, which
our experiments nicely confirm. Randomization helps, but the average number
of bigfloat operations in a randomized evaluation strategy is still larger than the
number of bigfloat multiplications of the default version of RealAlgebraic in a
favorable case. Furthermore, randomization makes the behavior less predictable.
There still might be significant performance differences even without making any
changes in the code.

The key observation for improvement is that the error estimate in Eq. (2) and
like estimates for other operations do not require to recompute approximations
of child nodes at all. A node can wait until all its parents have registered their
accuracy requirements and all its children have recomputed their approximation.
Only then we have to compute a new approximation. To this end, we store the
requested error ẽv in each dag node v. This allows us to improve the approxi-
mation of a node using the following algorithm after sorting nodes topologically.

Algorithm 1. (Topological Precision Driven Arithmetic).
Let u be a dag node and e > 0. Then TopSortedPrecisionDriven computes
an approximation û such that

|u − û| ≤ e.

1: procedure TopSortedPrecisionDriven (u, e)
2: ẽu ← min{e, ẽu}
3: let D be the dag rooted at u
4: for all nodes v ∈ D in topological order do
5: if ẽv < ev then
6: for all children w of v do
7: compute error bound r to be requested from w
8: ẽw ← min{r, ẽw}
9: for all nodes v ∈ D in reverse topological order do

10: if ẽv < ev then
11: compute necessary precision p and recompute v̂
12: ev ← ẽv

We need to initialize ẽv only once when v is created, since it never becomes
larger than ev. By processing nodes in topological order in the first stage, we
ensure that upon arriving at a node v, all its parents have registered their accu-
racy requirements. At this point we have all the data necessary to compute the
requirements from v to its children. In the second stage, processing nodes in
reverse topological order ensures that the children of a node have already been
re-evaluated with the necessary accuracy.

With the new strategy, we get the running times shown in Fig. 7 in rows
labeled topsorted. The corresponding usage of bigfloat arithmetic for n = 128 is
shown in the bottom part of Fig. 8, labeled topsorted. Sorting the nodes of a dag
topologically takes linear time in the size of the dag, so there is no asymptotic



462 M. Mörig and S. Schirra

disadvantage compared to other traversal methods. In our experiments, there is
no running time overhead for topological sorting observable.

While the geometric series example magnifies the effect, problems with the
evaluation of common subexpressions are also present in other scenarios, but
often much less noticeable. We use computation of the convex hull of intersection
points of line segments to illustrate this in the context of cascaded geometric
computation. The segments we generate have random positive integer endpoints
less than 280. We then compute all intersection points of these segments by
brute-force. The coordinates of the input points for the convex hull algorithm
are rational numbers. We use intersection points as input for the convex hull
computation in order to make the problem arithmetically more demanding. Due
to the construction there are many collinearities among the points, see Fig. 9,
so some degenerate orientation tests might arise in the subsequent convex hull
computation. We measure the time only for the convex hull computation, after
all segment intersection points have been computed and the expression-dags for
their coordinates have been constructed.

Fig. 9. Intersection points for convex hull computation.

Figure 10 plots running times for the default version of RealAlgebraic and
the new variant that uses topological sorting. It shows that the new variant
roughly achieves the same running time, sometimes it is even faster. Orienta-
tion tests in the convex hull computation involve rational coordinates of three
points each. In the implementation of the orientation test, the coordinates of
the point chosen as pivot element appear twice. Hence, common subexpres-
sions arise. Furthermore, for each point, its rational coordinates have a com-
mon denominator, so there are common subexpressions in the expression-dags



Precision-Driven Computation in the Evaluation of Expression-Dags 463

0 100 000 200 000

0

0.1

0.2

0.3

# intersection points

ti
m

e
in

s
RealAlgebraic
topsorted

Fig. 10. Running times for convex hull of intersection points.

of the input data already. Apparently, in many cases, the new evaluation strategy
saves re-evaluation time for common subexpression thereby compensating for the
additional cost of topological sorting.

6 Conclusions

As illustrated by our experiments, the performance of the currently available
expression-dag-based number types leda::real and CORE::Expr can depend
on the order of operands in commutative operations. The same holds for the
default version of RealAlgebraic. Clearly it is undesirable that the running
time is sensitive to such small code changes. A user may rewrite a part of
her code and end up with significantly worse performance. Furthermore, the
fact that different number types may favor different operand orders makes their
experimental comparison quite difficult. One of them might seem inefficient only
because expressions are created in a way favoring the other number type(s).

We present a new evaluation strategy which uses topological sorting to deter-
mine an evaluation order prior to precision-driven evaluation. Our new precision-
driven evaluation strategy nicely eliminates the user-unfriendly dependence on
operand order at marginal additional cost, if any. Another advantage of the algo-
rithm is that it may be parallelized to the amount allowed by the expression-dag.
Any two nodes not connected by a directed path can be processed in parallel in
both stages. This is especially interesting for the second stage, where expensive
bigfloat operations are performed.



464 M. Mörig and S. Schirra

References

1. Burnikel, C., Fleischer, R., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: The
LEDA class real number - extended version. Technical report, ECG-TR-363110-01,
Max-Planck-Institut für Informatik, Saarbrücken, Germany (2005)

2. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric
computation made easy. In: Proceedings of the 15th Symposium on Computational
Geometry (SoCG 1999), pp. 341–350. ACM (1999)

3. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound
for real algebraic expressions. Algorithmica 55(1), 14–28 (2009)

4. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.K.: A core library for robust
numeric and geometric computation. In: Proceedings of the 15th Symposium on
Computational Geometry (SoCG 1999), pp. 351–359. ACM (1999)

5. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom examples
of robustness problems in geometric computation. Comput. Geom.: Theory Appl.
40(1), 61–78 (2008)

6. Li, C., Yap, C.K.: A new constructive root bound for algebraic expressions. In:
Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA
2001), pp. 496–505. SIAM (2001)

7. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (1999)

8. Mehlhorn, K., Schirra, S.: Exact computation with leda real - theory and geometric
applications. In: Alefeld, G., Rohn, J., Rump, S.M., Yamamoto, T. (eds.) Symbolic
Algebraic Methods and Verification Methods. Springer Mathematics, pp. 163–172.
Springer, Wien, Austria (2001)

9. Mignotte, M.: Identification of algebraic numbers. J. Algorithms 3, 197–204 (1982)
10. Mörig, M.: Algorithm Engineering for Expression Dag Based Number Types. Ph.D.

thesis, Otto-von-Guericke-Universität Magdeburg (2015)
11. Mörig, M., Rössling, I., Schirra, S.: On the design and implementation of a generic

number type for real algebraic number computations based on expression dags.
Math. Comput. Sci. 4(4), 539–556 (2010)

12. Pion, S., Yap, C.K.: Constructive root bound for k-ary rational input numbers.
Theor. Comput. Sci. 369(1–3), 361–376 (2006)

13. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Mono-
graphs in Computer Science, 1st edn. Springer, New York (1985)

14. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack,
J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, chap. 14, pp. 597–
632. Elsevier, Amsterdam, The Netherlands (2000)

15. Schirra, S.: Much ado about zero. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient
Algorithms. LNCS, vol. 5760, pp. 408–421. Springer, Heidelberg (2009)

16. Schirra, S.: On the use of adaptive, exact decisions number types based on
expression-dags in geometric computing. In: 26th Canadian Conference on Com-
putational Geometry (CCCG 2014) (2014)

17. Yap, C.K.: Towards exact geometric computation. Comput. Geom.: Theory Appl.
7(1–2), 3–23 (1997)

18. Yap, C.K.: On guaranteed accuracy computation. In: Geometric Computation, pp.
322–373. World Scientific (2004)

19. Yap, C.K.: Robust geometric computation. In: Handbook of Discrete and Compu-
tational Geometry, 2nd edn., chap. 41, pp. 927–952. CRC (2004)



Precision-Driven Computation in the Evaluation of Expression-Dags 465

20. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Computing in Euclid-
ean Geometry, 2nd edn., pp. 452–486. World Scientific (1995)

21. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141.
Springer, Heidelberg (2010)



Real Complexity: Theory and Practice



Rigorous Numerical Computation of Polynomial
Differential Equations Over Unbounded Domains

Olivier Bournez1, Daniel S. Graça2,3(B), and Amaury Pouly1,2

1 LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
2 CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal

dgraca@ualg.pt
3 SQIG/Instituto de Telecomunicações, Lisbon, Portugal

Abstract. In this abstract we present a rigorous numerical algorithm
which solves initial-value problems (IVPs) defined with polynomial dif-
ferential equations (i.e. IVPs of the type y′ = p(t, y), y(t0) = y0, where p
is a vector of polynomials) for any value of t. The inputs of the algorithm
are the data defining the initial-value problem, the time T at which we
want to compute the solution of the IVP, and the maximum allowable
error ε > 0. Using these inputs, the algorithm will output a value ỹT such
that ‖ỹT − y(T )‖ ≤ ε in time polynomial in T , − log ε, and in several
quantities related to the polynomial IVP.

1 Introduction

With the appearance of fast and cheap digital computing devices in the last
decades, digital computers have become increasingly important as a simulation
tool in many fields, ranging from weather forecast to finance. The idea under-
lying such simulations is simple: pick some system which we want to study and
simulate it on a computer using some numerical method. Quite often we can
obtain in this manner information about the system which we could not collect
otherwise. Think, for example, about the case of weather forecast.

However, this poses a fundamental question: how reliable are these simu-
lations? The truth is that, although historically such simulations have already
given fundamental insights (like suggesting that dynamical systems can have
strange attractors [6]), due to phenomena like sensitive dependence on initial
conditions, in general not much is known about the overall error committed in
such simulations.

It therefore seems to make sense to develop numerical methods with the
property that we can rigorously tell which is the error done when we apply
such methods. This is in contrast to what happens usually in numerical analysis
where, at best, only estimates of the error are presented. On the other side, to
obtain rigorous bounds on the error, we need to use more complicated methods,
which are more amenable for analysis, and which are usually slower or might
even be unfeasible for practical implementation. In general, it is not trivial to
devise numerical methods which are practical to use and for which the error can
be rigorously determined.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 469–473, 2016.
DOI: 10.1007/978-3-319-32859-1 40



470 O. Bournez et al.

To achieve a balance between these contradicting requirements, it makes
sense to consider restricted classes of problems, which are nonetheless general
enough to be of practical importance.

In this paper, we consider initial-value problems (IVPs) defined with poly-
nomial ordinary differential equations (ODEs)

{

y′(t) = p(y)
y(t0) = y0

(1)

where p is a vector of polynomials. We consider, without loss of generality that
the system is autonomous since the independent variable t can always be writ-
ten as an extra variable yn+1 satisfying y′

n+1 = 1. We note that almost any
IVP written with the “usual” functions of Analysis (trigonometric functions,
exponentials, their inverses and compositions, etc.) can always be rewritten as
a polynomial ODE (see e.g. [3,9]).

Therefore IVPs with the format (1) are sufficiently broad to include a wide
range of IVPs of practical interest. Moreover, since the right-hand side consists
of relatively simple functions (polynomials), we are able to rigorously analyze
the error committed when we solve numerically (1) by using properties of poly-
nomials.

2 Solving IVPs Over Unbounded Domains

It is standard practice to analyze numerical methods which solve IVPs only
over a compact time interval [0, T ]. This is both true in the Numerical Analysis
literature (see e.g. [1]) as it is in the Theoretical Computer Science literature
(see e.g. [5]).

However, in practice, people seldom set a valid time interval [0, T ] before
implementing a numerical procedure, be it for the simple reason that they some-
times do not even know which might be the relevant value for T before doing
some numerical simulations.

Therefore, it seems desirable to devise numerical methods which make no
prior assumptions on the values which T might take. Of course, the time needed
to execute the algorithm (the computational complexity) depends on T : in gen-
eral, the higher T , the more time the algorithm will take to execute, but it seems
to be a non-trivial task to determine which is the dependence of the execution
time of the algorithm with respect to T .

There is a “conventional wisdom” that the unbounded time domain case can
be reduced to the bounded time one, for which many results exist (see e.g. [4,5]).
However, this is not true, since in the bounded case many parameters which are
important for the (unbounded) complexity are hidden in the constant of the
“big-O” notation. A very simple example illustrates this problem. Assume that
y : I → Rd is the solution of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y1(0) = 1
y2(0) = 1

. . .
yn(0) = 1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y′
1(t) = y1(t)

y2(t) = y1(t)y2(t)
. . .

y′
d(t) = y1(t) · · · yn(t)



Rigorous Numerical Computation of Polynomial Differential Equations 471

It follows from [7] that for any fixed, compact I, y is polynomial time computable.
On the other hand, this system can be solved explicitly and yields:

y1(t) = et yn+1(t) = eyn(t)−1 yd(t) = ee
. .

.
ee

t−1

−1

One immediately sees that, since y is a tower of exponentials, y cannot be poly-
nomial time computable over R.

Note that this discrepancy arises because, in the bounded time case, the size
of compact I is not taken as a parameter of the problem (because it is fixed).
Also note that the dimension d of the system is hardly ever taken into account,
although it has a huge influence on the resulting complexity. More precisely, if I
is bounded then the complexity of computing y(t) can be seen to be polynomial
in t, but more than exponential in the length of the interval I and on d: this
part is usually hidden in the “big-O” part of the constants.

3 Contributions

The main contribution of this abstract is to show that there is a numerical
method, which we denote as SolvePIVPEx (see Sect. 4 for more details), which
can rigorously solve IVPs (1) over unbounded domains.

Theorem 1 (Complexity and Correctness of SolvePIVPEx). Let t ∈ R,
ε > 0, and assume that y satisfies (1) over [t0, t]. Let

x = SolvePIVPEx(t0, y0, p, t, ε)

where SolvePIVPEx is a numerical method described in Sect. 4. Then

– ‖ x − y(t) ‖� ε
– the arithmetic complexity of the algorithm is bounded by

poly(kd,Len(t0, t), log ‖ y0 ‖,− log ε)

– the bit complexity of the algorithm is bounded by

poly(k,Len(t0, t), log ‖ y0 ‖, log Σp,− log ε)d

where k is the maximum degree of the components of p, d is the number of
components of p, Σp is the sum of the absolute values of the coefficients of p,
and Len(t0, t) is a bound on the length of the curve y(·) from the point (t0, y(t0))
to the point (t, y(t)).



472 O. Bournez et al.

4 The Numerical Method SolvePIVPEx and Sketch
of the Proof of Theorem 1

For reasons of space, we will not present the algorithm defining the numer-
ical method SolvePIVPEx nor the detailed proof of Theorem 1 (see [8] for
more details). However, in this section, we briefly sketch the ideas underlying
SolvePIVPEx and the proof of Theorem 1.

The numerical method SolvePIVPEx is based on a generic adaptive Taylor
meta-algorithm which numerically solves (1). This is a meta-algorithm in the
sense that, in a first approach, we leave open the question of how we choose
some of the parameters of the algorithm. The goal of this meta-algorithm is,
given as input t ∈ Q and 0 < ε < 1 and the initial condition of (1), to compute
x ∈ Qd such that ‖ x − y(t) ‖ < ε.

We assume that the meta-algorithm uses the following values:

– n ∈ N is the number of steps of the algorithm
– t0 < t1 < . . . < tn = t are the intermediate times
– δti = ti+1 − ti ∈ Q are the time steps
– for i ∈ {0, . . . , n−1}, ωi ∈ N is the order at time ti and μi > 0 is the rounding

error at time ti
– ỹi ∈ Qd is the approximation of y at time ti.

This meta-algorithm works by solving the ODE (1) with initial condition
y(ti) = ỹi over a small time interval [ti, ti+1], yielding as a result the approxima-
tion ỹi+1 of y(ti+1). This approximation over this small time interval is obtained
using a Taylor approximation of order ωi (we also do not fix, in a first approach,
the value ωi to analyze its influence on the error and on the time complexity of
the algorithm. After this analysis is done, we can choose appropriate values for
ωi) using the polynomial algorithm given in [2]. This procedure is repeated recur-
sively over [t0, t1], [t1, t2], . . . , [ti, ti+1], . . . until we reach the desire time tn = t.
This introduces three potential sources of errors: (i) a global error due to the
fact that, on the interval [ti, ti+1] we do not solve y′ = p(y) with the initial value
y(ti) but instead with the initial value ỹi; (ii) a truncation error over [ti, ti+1]
because we only compute a truncated Taylor series of the solution instead of
the full Taylor series; (iii) a rounding error because we might only have a finite
number of bits to store partial results.

Using the crucial fact that the right-hand side of (1) consists of polynomials,
at each time step ti, one can present an argument based on Cauchy majorants
to establish a lower bound on the local radius of convergence. We can choose
the step length ti+1 − ti to be a constant fraction of the estimated radius of
convergence, and the majorants can also be used to select a suitable truncation
order ωi. One can also show, using Gronwalls Lemma, that the propagation of
errors from one step to the next can be controlled, and depends on a bound
on the length of the curve y(·) over the domain under consideration. This last
parameter needs to be fed to the algorithm, but we can automatically determine
a suitable value for it, since we can decide if a (rational) value is large enough



Rigorous Numerical Computation of Polynomial Differential Equations 473

to be fed as a bound to the length of the curve. By using some (arbitrary, say
the value 1) initial guess and by restarting the method with a larger guess if
needed, we can continue this procedure until we decide that we have obtained a
high enough value which can be used as a bound for the length of the curve.

Proceeding in this manner we end up fixing the parameters of the meta-
algorithm (length of time steps, order of the Taylor approximation of each step,
etc.) and we end up with an algorithm SolvePIVPEx which satisfies the condi-
tions of Theorem 1.

Acknowledgments. D. Graça was partially supported by Fundação para a Ciência e
a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto de Telecomunicações
through the FCT project UID/EEA/50008/2013.

References

1. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York
(1989)

2. Bostan, A., Chyzak, F., Ollivier, F., Salvy, B., Schost, É., Sedoglavic, A.: Fast
computation of power series solutions of systems of differential equations. In: SODA
2007, pp. 1012–1021, January 2007

3. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differ-
ential equations. Adv. Appl. Math. 40(3), 330–349 (2008)

4. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-
space complete. Comput. Complex. 19(2), 305–332 (2010)

5. Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser, Basel (1991)
6. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)
7. Müller, N., Moiske, B.: Solving initial value problems in polynomial time. In: Pro-

ceedings of 22 JAIIO - PANEL 1993, Part 2, pp. 283–293 (1993)
8. Pouly, A.: Continuous Models of Computation: From Computability to Complexity.

Ph.D. thesis, Ecole Polytechnique/Universidade do Algarve (2015)
9. Warne, P.G., Warne, D.P., Sochacki, J.S., Parker, G.E., Carothers, D.C.: Explicit

a-priori error bounds and adaptive error control for approximation of nonlinear
initial value differential systems. Comput. Math. Appl. 52(12), 1695–1710 (2006).
http://dx.doi.org/10.1016/j.camwa.2005.12.004

http://dx.doi.org/10.1016/j.camwa.2005.12.004


Using Taylor Models in Exact Real Arithmetic

Franz Brauße1, Margarita Korovina2, and Norbert Müller1(B)

1 Abteilung Informatikwissenschaften, Universität Trier, Trier, Germany
mueller@uni-trier.de, brausse@informatik.uni-trier.de

2 A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia
rita.korovina@gmail.com

Abstract. Software libraries for Exact Real Arithmetic implement the
theory of computability on non-denumerable sets. Usually they are based
on interval arithmetic. We discuss enhancements where the interval arith-
metic is augmented by versions of Taylor models. Although this has no
effect on the abstract notion of computability, the efficiency of imple-
mentations can be improved dramatically.

1 Introduction

This paper deals with the theoretical background for recent improvements on
the iRRAM software [12] for exact real arithmetic (ERA). ERA can be viewed
as an implemented version of the theory of computability on non-denumerable
sets, often called Type-2-Theory of Effectivity (TTE, [3,16]). The techniques
discussed could also easily be applicable to other software for exact real compu-
tations like [1,6], as those software packages also are based on interval arithmetic.

A serious problem common to all interval algorithms is that they suffer from
wrapping effects, i.e. unnecessary growth of approximation intervals during a
computation. Reducing such wrapping effects is an important issue in interval
arithmetic [13, p. 15ff]. The Taylor models proposed by Makino/Berz [11] are
the most prominent way to deal with such effects. They are widely applied in
software for interval arithmetic based on double precision numbers. Basically,
Taylor models are higher-dimensional polynomials with real (or rather double
precision) coefficients enhanced with an error interval. A further approach is
affine arithmetic [5] which can be interpreted as a version of the Taylor models
restricted to polynomials of degree 1. One of the oldest approaches is ‘generalized
interval arithmetic’ [8,15] which is similar to affine arithmetic, but now with
interval coefficients.

Although interval methods are also the basis for the representations most
commonly used in TTE, Taylor models have not yet been considered in this
area. There are only few papers like [2,6,9,14] pointing in this direction.

The research leading to these results has received funding from the People Pro-
gramme (Marie Curie Actions) of the European Union’s Seventh Framework
Programme FP7/2007-2013/ under REA grant agreement no. PIRSES-GA-2011-
294962-COMPUTAL and from the DFG/RFBR grant CAVER BE 1267/14-1 and
14-01-91334.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 474–488, 2016.
DOI: 10.1007/978-3-319-32859-1 41



Using Taylor Models in Exact Real Arithmetic 475

We assume that the reader has some basic knowledge about computability
with Turing machines and relativized computations via numberings, which can
be found e.g. in [7,16]. As special notation we will use f : ⊆A → B to indicate
that f is a partial function from A to B. With [A → B] we denote the set of all
partial functions from A to B. In the following boldface symbols denote vectors.
For any vector A let Ai be the i-th component of A. For a set A of real vectors
let diam(A) = supx,y∈A ‖x − y‖ be the diameter of A and let int(A) be the
interior of A.

2 Computability Using Wrapping Families

When dealing with non-denumerable sets, computability is usually defined with
one of the following extensions of the well-known Turing machines: oracle Turing
machines (with function oracles) for functions from [([Σ∗ → Σ∗] × Σ∗) → Σ∗]
or Type-2-Turing machines (with infinite input and output streams) for func-
tions from [Σ∞ → Σ∞], where in both cases Σ is some finite alphabet. In [10]
the author uses oracle Turing machines, while in [16] the author prefers Type-
2-Turing machines. Both approaches are equivalent with respect to questions of
computability and both use representations to transfer the resulting computabil-
ity notion to a notion of computability that is valid for real numbers (or related
structures).

To simplify notations, we do not use these basic definitions of computabil-
ity on [Σ∗ → Σ∗] or Σ∞ directly but use a derived computability notion for
sequences [N → S] instead, for suitable countable sets S. To this end, we assume
that these sets S are equipped with numberings νS : ⊆N → S. A canonical way
to translate the basic computability definitions into computability on [N → S]
can be found in [16].

In the following we will consider representations of Rd, where for simplicity d
is an arbitrary fixed dimension. Using sequences [N → S] instead of [Σ∗ → Σ∗] or
Σ∞ as the set of names, a representation of these real vectors is just a mapping
of the form [[N → S] → Rd]. Most often S is chosen as a suitable countable
basis for a topology on Rd. One example is the representation �d of real vectors
in [16], where S is a countable set of open d-dimensional boxes. More precisely
S = Id where I is the set of open intervals with dyadic endpoints:

I :=
{(m1

2n
,
m2

2n

)

| m1,m2 ∈ Z, n ∈ N,m1 < m2

}

In that setting, a sequence p : N → Id represents a real vector x = �d(p) iff
limn∈N diam(p(n)) = 0 and

⋂

n∈N
p(n) = {x}.

Computability of a function f : ⊆Rd → Rd is defined via a transformation
process of boxes O ∈ Id into new boxes O′ ∈ Id with f(O) ⊆ O′. However, the
image f(O) of O ∈ Id is usually not a box. So O′ has to be an overestimation of
f(O). Using O′ implies that f(O) is ‘wrapped ’ in ∂O′ at the expense of a bigger
volume of O′ compared to f(O). As the definition of �d demands convergence
to a point, this overestimation is not a critical issue in theoretical approaches.

In this paper we consider modifications of the set Id to improve ERA.



476 F. Brauße et al.

Definition 1. A countable family A = {An | n ∈ N} of sets An ⊆ Rd is called
wrapping, if

∀x ∈ Rd ∀ε ∈ R>0 ∃A ∈ A : diam(A) ≤ ε ∧ x ∈ int(A)

The corresponding representation τA : ⊆[N → A] → Rd is defined as follows:

τA(p) := x iff the sequence p : N → A satisfies
limn∈N diam(p(n)) = 0 ∧

⋂

n∈N
p(n) = {x}

Such a sequence p is then called a τA-name of x.

Obviously, Id is an example of a wrapping family, and the representation �d

is identical to τId . However, there are many different ways to define a wrapping
family: A could be based on closed intervals instead of the open intervals I,
we could additionally allow point intervals consisting of a single number, or
half-open intervals, or the union of finitely/infinitely many intervals etc. Also
computation diagrams or symbolic notations could be used to define wrapping
families. In the next section, we will elaborate in more detail how Taylor models
fit into this approach.

All these wrapping families give rise to possible representations of real vec-
tors. In order to compare those, we use the notion of reducibility in TTE [16],
which is similar to the one used in the theory of numberings [7]. Suppose δ1,
δ2 are representations. If the identity function id is (δ1, δ2)-computable, then δ1
is called computably reducible to δ2 (δ1 ≤c δ2). For representations a weaker
and topologically motivated reducibility is also important [16]: If id is (δ1, δ2)-
continuous, then δ1 is called topologically reducible to δ2 (δ1 ≤t δ2). Reducibility
in both directions (δ1 ≤c δ2 ≤c δ1 or δ1 ≤t δ2 ≤t δ1) is called ‘equivalence’ and
denoted by ‘≡c’ and ‘≡t’, respectively.

Lemma 1. If A and B are wrapping, then τA and τB are topologically equivalent.

Proof. We will only show τA ≤t τB. Because of symmetry, we also get the inverse,
so τA ≡t τB.

W.l.o.g. we first assume that Rd ∈ B. (Later we will remove this assumption).
In consequence, for any A ∈ A the set {B ∈ B | A ⊆ B} is non-empty and
inf{diam(B) | B ∈ B ∧ A ⊆ B} is well defined.

So there exists a function wB
A : A×N → B connecting the wrapping families

with following properties for any A ∈ A and any n ∈ N

A ⊆ wB
A(A,n)

diam(wB
A(A,n)) ≤ 2−n + inf{diam(B) | B ∈ B ∧ A ⊆ B}

The function wB
A results in a ‘good’ wrapping of the first parameter A in a

member of family B with additional overestimation of not more than 2−n. Please
note that we do not require wB

A to be computable.
Now we extend wB

A to an operator WB
A : [N → A] → [N → B] as follows: For

any p : N → A we let
WB

A(p) :=
(

wB
A(p(n), n)

)

n∈N



Using Taylor Models in Exact Real Arithmetic 477

As WB
A is defined just using initial sequences of its argument p, WB

A is continuous.
To prove τA ≤t τB consider p ∈ dom(τA) and let x := τA(p), q := WB

A(p).
We have to show q ∈ dom(τB) and τA(p) = τB(q).

For any m ∈ N there exists Bm ∈ B with diam(Bm) ≤ 2−m and x ∈
int(Bm). So there is a k ∈ N, k ≥ m, with {y ∈ Rd : ‖y − x‖ < 2−k−1} ⊆
Bm. Now for every n ≥ k with diam(p(n)) ≤ 2−k−2 we have p(n) ⊆ Bm and
hence diam(q(n)) ≤ 2−n + diam(Bm) ≤ 2−n + 2−m ≤ 21−m. This proves that
limn∈N diam(q(n)) = 0. By construction we also have x ∈ p(n) ⊆ q(n), so
additionally

⋂

n∈N
q(n) = {x}.

In case Rd �∈ B we proceed as follows: We use B′ = B ∪ {Rd} and construct
WB′

A as above. Now for p ∈ dom(τA), q′ := WB′
A (p) contains only a finite number

of occurrences of Rd. Then we apply a second continuous operator T : [N →
B′] → [N → B] that simply eliminates all occurrences of Rd from its argument.
Thus T (q′) is an infinite subsequence of q′ as p ∈ dom(τA). Therefore WB

A :=
T ◦ WB′

A is a continuous operator with the desired property. ��
Computational equivalence ≡c, however, depends on additional computa-

tional properties of A and B. Recall that both families must be countable, so
implicitly there are numberings νA and νB giving rise to a notion of computabil-
ity between A and B. These numberings might stem from an implementation of
corresponding data structures in programming languages. A sufficient condition
for computational equivalence using these underlying numberings is as follows:

Lemma 2. Suppose A and B are wrapping families and there is a ((νA, νN), νB)-
computable multivalued function wB

A : A×N ⇒ B such that for all A ∈ A, n ∈ N,

A ⊆ wB
A(A,n) ∧ diam(wB

A(A,n)) ≤ 2−n + inf{diam(B) | B ∈ B ∧ A ⊆ B}.

Then τA ≤c τB, i.e. τA is computably reducible to τB.

Proof. We can reuse almost all of the previous proof: Now wB
A is given as a

computable multivalued function, and we again are able to define:

WB
A(p) :=

(

wB
A(p(n), n)

)

n∈N

Then WB
A is a computable (multivalued) realizer for the reduction τA ≤c τB. ��

Please note that multivaluedness of wB
A is of advantage here as it allows

different names u, v to deliver different results in B although they denote the
same set A = νA(u) = νA(v). In an implementation this means that we are not
forced to ‘normalize’ names prior to applying the transformation wB

A.
In Lemma 2 the overestimation for the diameter is bounded by 2−n. Instead

of this we could as well have used any function g : N → R>0 with lim
n→∞ g(n) = 0.

3 Computability Using Taylor Models

Taylor models can be viewed as a special way to define wrapping families. To
see this, we first introduce the usual definition of these Taylor models and then
generalize it in a way to allow a classification in TTE.



478 F. Brauße et al.

In [11] a Taylor model is given as a pair T = (g, I), where g(λ) =
∑

n cnλn

is a polynomial in a vector λ = (λ1, . . . , λk) of variables called ‘error symbols’,
for arbitrary arity k ∈ N, and I is an interval enclosing any approximation errors
(called interval remainder of the Taylor model). The error symbols λi denote
unknown values within the interval U := [−1, 1] and allow to express functional
dependencies between different Taylor models that share those error symbols,
i.e. within a vector of Taylor models.

As a first generalization we prefer to use closed intervals c′
n = [c̃n ± εn] ⊆ R

(with center c̃n and radius εn) as coefficients instead of the point coefficients cn

used in [11]. However, we may use point intervals c′
n = [c̃n ± 0] to implement

points. Additionally we combine the point c0 and the interval remainder I into
an interval coefficient c′

0, hence we do not need to specify I any longer and are
able to join g and I into a single polynomial. So a Taylor model T is just a
polynomial in k variables, where the coefficients c′

n are closed intervals.
Most implementations restrict the coefficients (points as well as intervals) to

be based on double precision numbers. As this is just a finite set of numbers, it is
close at hand that for ERA infinite data types like dyadic (or rational) numbers
should be used instead. But also arbitrary computable numbers might be used
to define the coefficients.

In the following let us fix K to be some countable set of interval coefficients.
We will not explicitly define K but just assume that K is a wrapping family itself
(for R). Additionally we assume that νK is a numbering of K such that there are
computable multivalued reductions wI

K
and wK

I
as in Lemma 2 which prove that

the representation τK is computationally equivalent to �.
In order to derive wrapping families for Rd from Taylor models, we consider

d-dimensional vectors of models. As the error symbols λ are used to express
functional dependencies, we need a careful specification of the joint image of
such a vector of Taylor models.

Definition 2. For vectors T of Taylor models define image(T ) ⊆ Rd as follows:

– For each single Taylor model T in k variables with interval coefficients c′
n

and each value λ = (λ1, . . . , λk) ∈ Uk the polynomial T (λ) =
∑

n c′
n · λn is

evaluated in the following way:
• For an index n = (n1, . . . , nk) let λn := λn1

1 · . . . ·λnk

k . This corresponds to
the usual multi-index notation. Each λn thus is a scalar value in U.

• Each c′
n · λn denotes the usual product of an interval with a scalar value.

• Finally
∑

n c′
n · λn is evaluated as a sum of (independent) intervals.

– For vectors T = (T1, . . . , Td) of Taylor models and λ ∈ Uk let T (λ) be the
d-dimensional Cartesian product T (λ) :=

Śd
i=1Ti(λ) of the intervals Ti(λ).

– Finally let image(T ) :=
⋃

λ∈Uk T (λ) be the set denoted by T .

A simple example of Taylor models of order 1 in k = 2 variables and for d = 2
is given in Fig. 1.

Using that K is a wrapping family, we are able to construct vectors T such
that image(T ) has arbitrary small diameter. Thus we may use image(T ) as basis
for a definition of wrapping families.



Using Taylor Models in Exact Real Arithmetic 479

T (λ1, λ2) =

(
[0, 0] + [2, 4] · λ1 + [10, 10] · λ2

[0, 0] + [0, 4] · λ1 + [−1, 2] · λ2

)

Fig. 1. Example of a vector T of Taylor models and the denoted set image(T ) ⊆ R
2.

Definition 3. For k ∈ N let TMk be the set of d-dimensional vectors of poly-
nomials of arbitrary degrees in k variables and with coefficients from K. Addi-
tionally let TM :=

⋃

k∈N
TMk.

The Taylor model wrapping families Tk and T are defined as follows:

Tk := {image(T ) | T ∈ TMk}
T :=

⋃

k∈N
Tk

For a sequence s : N → TM of Taylor model vectors let image(s) be the
sequence image(s) : j �→ image(s(j)) of the denoted sets.

Using further restrictions on the Taylor models, we are able to identify at least
the following slightly different subfamilies that have been used in literature.
(Remember that we allow coefficients from K and not just intervals with double
precision endpoints.)

1. Affine arithmetic [5]: Polynomials of order ≤ 1, only coefficients c′
0 are

non-point intervals.
2. Generalized interval arithmetic [8]: Polynomials of order ≤ 1, all coeffi-

cients c′
n are arbitrary intervals.

3. Classical Taylor models [11]: Polynomials of arbitrary order, only coeffi-
cients c′

0 are non-point intervals.

The example in Fig. 1 actually fits to generalized interval arithmetic. Please
note that due to the interval coefficients of λ1 and λ2, the denoted set is not
convex, in contrast to the linear models in affine arithmetic.

As we restrict K to be a (countable) wrapping family, all possible k-ary
Taylor models build a countable set. Additionally already the Taylor models of
order 0 induce wrapping families. By Lemma1 the deduced representations for
all (sub-)families of Taylor models are topologically equivalent as soon as they
contain arbitrary polynomials of order 0.



480 F. Brauße et al.

To examine computational equivalence, we need to have a closer look at
the numbering of the Taylor models. Although they are defined via polynomials,
this does not immediately imply that their numbering admits access to the single
coefficients. The following quite obvious lemma contains a sufficient condition
for equivalence to �d. Its main purpose is to list functions we found useful for
the implementation in Sect. 5:

Lemma 3. Let νTM : ⊆N → TM be a numbering of the polynomials in the
Taylor model family T . Suppose the following functions are computable w.r.t.
the numberings νTM and νK:

1. degree : TM → N, where degree(T ) is the maximal degree (or order) of T .
2. arity : TM → N, where arity(T ) is the maximal index of a variable in T .
3. coeff : TM×[1, . . . , d]×N∗ → (K∪{⊥}), where coeff(T , i,m) is the coefficient

cm of λm in Ti(λ) =
∑

n cnλn, if it exists (⊥ otherwise), for i = 1, . . . , d.
4. init : Kd → TM, where init(c) is the vector T = (Ti)i of constant polynomials

Ti ≡ ci, for i = 1, . . . , d.

Then the representations �d, τT and τTk
are computationally equivalent, for arbi-

trary k ∈ N.

Proof. Using the first 3 functions, all coefficients can be extracted from T . Using
Lemma 2 for K and I and the mapping wI

K
, these coefficients can be transformed

to enclosing open intervals. Then the polynomials Ti, i = 1, . . . , d, can be eval-
uated on these intervals. This already proves τT ≤c �d.

For the inverse direction, we only need to transform a vector of open intervals
to Kd using wK

I
and then apply the fourth function, thus proving �d ≤c τT0 .

Finally, τT0 ≤c τTk
≤c τT is trivial. ��

As long as reasonable implementations are used (in the sense of the previous
lemma and with computable wI

K
, wK

I
), Taylor models offer no new aspects con-

cerning questions of computability. For efficient implementations however, the
situation is far more complex and all variants of Taylor models are very helpful.

4 Arithmetic on Taylor Models in ERA

In ERA, a computation on real numbers is performed quite similar to ordinary
computations on double precision numbers, just using a different data type. So
as long as any input is already represented in the initial state of the computation,
we have to deal with a (usually finite) sequence x0 � x1 � x2 � . . . � xn of
real vectors during the computation, where each vector xi ∈ Rd represents the
complete data space after i computational steps. Each such step itself consists
of the application of a (computable) function fi : ⊆Rd → Rd on xi, so xi+1 =
fi(xi). At the very end some property P (xn) of xn is produced as output. An
example for P could be printing a component of xn with a certain number of
significant decimal digits.



Using Taylor Models in Exact Real Arithmetic 481

Each vector xi itself corresponds to a sequence of sets Oi,j in the underlying
representation. These sets might be open boxes (for �d), or elements of a wrap-
ping family, like d-dimensional Taylor models. Essentially we deal with double
sequences as follows:

x0
f0�−→ x1

f1�−→ x2
f2�−→ . . .

fn−1�−→ xn

↑ ↑ ↑ ↑
...

O0,2

O0,1

O0,0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

�−→

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

...
O1,2

O1,1

O1,0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

�−→

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

...
O2,2

O2,1

O2,0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

�−→ · · · �−→

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

...
On,2

On,1

On,0

The initial sequence (O0,j)j∈N identifying x0 should be computable, further-
more any Oi+1,j should depend computably on (only finitely many) values Oi,k.
The task of ERA implementations now is to find some On,j that allows to deduce
P (xn). This can be achieved in different ways.

The iRRAM library uses an approach where each horizontal line is treated
independently. So it generates O0,j �→ O1,j �→ O2,j �→ . . . �→ On,j , each with
the inclusion property fi(Oi,j) ⊆ Oi+1,j and starting with j = 0 as a ‘control
parameter’. As long as the resulting On,j is not precise enough to deduce P (xn),
the index j is increased to some larger value j′ of the control parameter and a new
computation O0,j′ �→ O1,j′ �→ . . . starts. Details on how the control parameter
influences precisions can be found in [12].

An advantage of this approach is that the memory footprint is quite small.
Additionally it is quite easy to enhance the underlying data structures for real
numbers (previously only using closed intervals) by Taylor models, as the process
of incrementing j is independent from the single computations Oi,j �→ Oi+1,j .

To enhance iRRAM by Taylor models, in parallel to the already implemented
interval operations we only have to implement Taylor model versions of these
operations. As the Taylor models are based on polynomials with interval coeffi-
cients, this turns out to be quite simple. Basic arithmetic operations like addition,
subtraction and multiplication lead from polynomials again to polynomials. For
other holomorphic operations, the image of a polynomial is not necessarily a
polynomial any longer. In that case truncated Taylor series can be used. The
truncation error is simply added to the basic coefficient c′

0 in the image. Here
we will not go into details but refer to the original paper [11].

In the rest of this section we would like to address two aspects where the
ERA implementation is different from ordinary Taylor model implementations:
sweeping and polishing. Both are important to keep the data structures small
and efficient.

Apart from addition and subtraction, operations on Taylor models tend to
increase the order of the used polynomials significantly. This might easily lead to
exponentially growing data structures. So it is very important to apply sweeping:
whenever appropriate, any monomial c′

n · λn may be replaced by the monomial
c′
n · U · λk for arbitrary k < n. This way, the order may be decreased at will.



482 F. Brauße et al.

As each error symbol λi is a variable over U, this sweeping retains the inclusion
property mentioned above, as it usually enlarges the denoted set. Thus sweep-
ing does not violate the correctness of computations. The disadvantage is that
sweeping removes information about functional dependencies to some extent and
thus adds overestimation to the Taylor model, but it also helps to control the
size of the Taylor model.

Please note that for ordinary Taylor models, only the basic coefficient c′
0 is

allowed to be a non-point interval. Therefore, for this family, sweeping can only
use k = 0 and must replace c′

n ·λn by c′
n ·U. For ERA we propose to use k �= 0

when sweeping to retain at least linear functional dependencies.
Sweeping reduces degrees and usually keeps the set of error variables

unchanged. Please note that we can use sweeping to eliminate all occurrences of
some error variable.

During longer computations, the radii εn of all coefficient intervals c′
n =

[c̃n±εn] slowly grow, due to sweeping or just due to overestimations necessitated
by applying operations. Without counteraction, a Taylor model computation
would eventually degenerate and suffer from wrapping effects as ordinary interval
computations.

In order to keep the radii reasonably small, at any time any monomial [c̃n ±
εn] ·λn may be split into two monomials [c̃n ±0] ·λn +[εn ±0] ·λnew ·λn, where
λnew is an error symbol that is not being used elsewhere.

This splitting increases the number of error symbols as well as the order of
monomials. However it keeps the denoted set unchanged, therefore the inclusion
property still holds.

We combine sweeping and splitting in a single operation called polishing as
follows: First sweeping is used to reduce the degree of monomials with big radii
and to reduce the set of error variables. Afterwards the big radii are reduced by
splitting. Please note that there exist many possible variants and combinations
of sweeping and splitting. In our implementation we use a heuristic described in
more detail in Sect. 5.

The implementation of the polishing operation in the iRRAM is influenced
by the control parameter mentioned before: The result of a polishing may change
with increased precision. We only need that asymptotically the images of pol-
ished Taylor models converge to the same points as the unpolished versions.
Thus the necessary properties of polishing can formally be defined as follows.

Definition 4. A polishing is a multivalued function π : TM × N ⇒ TM satis-
fying the following properties:

1. Inclusion: ∀T ∈ TM ∀j ∈ N : image(T ) ⊆ image(π(T , j))
2. Consistency: For a sequence s : N → TM of Taylor model vectors let π(s) :

j �→ π(s(j), j) be the sequence of the polished vectors. Whenever τT (image(s))
is defined, then also τT (image(π(s))) must be defined with τT (image(s)) =
τT (image(π(s))).

Based on Lemma 3, a polishing operator for a vector T of Taylor models
could be implemented by overestimating image(T ) through bounding boxes, thus



Using Taylor Models in Exact Real Arithmetic 483

reducing the number of error symbols in the resulting Taylor model to zero. This
would still be good enough for both the inclusion and the consistency property.
However, the notion of polishing also enables us to keep an arbitrary number
of error symbols and thus retain some functional dependencies leading to better
enclosures; an example is provided by Algorithm1. The number of remaining
error variables after applying polishing greatly influences the efficiency of single
arithmetic operations.

5 Taylor Models in iRRAM

The iRRAM [12] is a software library implemented in C++. It is licensed under
LGPL and it is freely available at https://github.com/norbert-mueller/iRRAM.
The central structure is a class REAL, whose objects behave like real numbers in
TTE [16]. Internally, simplified interval arithmetic based on multiple-precision
floating-point numbers is used. Intervals take the form [c±ε] where the center c is
implemented as an arbitrarily long multiple-precision number using the MPFR
library [17]. Two 32-bit integers m, e are used to represent the mantissa and
the exponent of the radius ε = m · 2e. In consequence, computations with these
intervals are only slightly more expensive than with isolated multiple-precision
numbers. This interval type can also be used easily as the coefficient type K for
Taylor models. (Of course, here we have to ignore that center c and exponent e
still are finite structures.)

In the iRRAM implementation we currently have two data types for reals:
REAL is based on �, the other one (named TM) uses generalized interval arithmetic
similar to [8]. Although this implemented version is just linear at the moment,
the use of non-point intervals for the first order coefficients gives a much better
behaviour than linear Taylor models with points (or point intervals), see e.g. [4].

So the user may choose from two different data types for R. By Lemma 3
these are computationally equivalent and there are conversion methods within
the constructors for the data types. Please note that, according to the previous
section and the horizontal working principle of the iRRAM, internally algorithms
only have to be applied to intervals or to Taylor models, but not to the sequences
defining the representations.

In ERA details about the internal structure of the implementation must
be concealed from the user and it is not possible to get access to any details
about the actual data representing a real number. In an implementation based
on Taylor models information required to be hidden would be the order of the
polynomials, the number of error symbols, or the diameter of interval coefficients,
for example.

In consequence, the user can not check whether operations like sweeping or
polishing should be done, but she only is allowed to call methods that test for
the necessity of these housekeeping routines and, if appropriate, perform the
internal cleaning of the data structures. An example is given in Algorithm2.

In the following we present a short overview on the main methods applica-
ble to these data types on the user level and their internal implementation in
iRRAM.

https://github.com/norbert-mueller/iRRAM


484 F. Brauße et al.

1. Mutual conversions between the data types REAL and TM are implemented by
two constructors REAL(TM) and TM(REAL). Both constructors are applied to
single real numbers. On the user level they both realize reductions between
the representations, i.e. they are appear to be just the identity function on R.
– Using X = REAL(T) constructs a name for a real number given in repre-

sentation �d from a name for the same number given in representation τT .
– Vice versa, T = TM(X) constructs a name in representation τT from a name

in representation �d.
Due to the ‘horizontal’ mode of operation of the iRRAM described in Sect. 4.
the constructor X = REAL(T) only has to compute a single interval I (for X)
from a single Taylor model T (for T). This can be implemented as an eval-
uation of I = image(T ) as in Definition 2 for the one-dimensional case. The
control parameter j is only used implicitly influencing the precision of the
single interval operations.

The constructor T = TM(X) simply takes the current interval for X and
converts it to a Taylor model of arity zero.

2. Arithmetic operations ‘◦’ on real numbers are available for variables of type
TM using operator overloading. On the user level, these overloaded operators
behave exactly like the denoted operations ‘◦’.

Internally, an operation T3=T1◦T2 takes the current Taylor models T1 for
T1 and T2 for T2 and constructs a new Taylor model T3 as result, which then
is stored in T3. During the construction of T3, any arising monomials of degree
≥2 are immediately reduced to linear with sweeping.

3. The sweeping operations are included in the arithmetic operations and in the
polishing below. Therefore there is no direct access to sweeping operations on
the user level.

4. Polishing must be triggered manually. This is done via a call polish(TM&T)
for a single TM variable or as polish(vector<TM>&T) for vectors. In both
cases, the arguments of the calls are replaced by ‘polished’ versions thereof.
According to Lemma 3, this does not change the represented values. Thus on
the user level polishing has no visuable effects.

A simplified implementation of such a polishing is given inAlgorithm 1,where
it is applied to a vector of d variables of type TM. Part (b) of the algorithm simpli-
fies each single involved Taylor model by sweeping away all of its error symbols
with exception of the largest, which is determined in Part (a). The results of
(b)ii. and (b)iv. in this algorithm implicitly depend on the control parameter,
which is omitted here for simplicity. Parts (c) and (d) split the resulting basic
coefficient into two monomials using one new error symbol.

5. Currently, error symbols can only created by polishing.

Note that applying Algorithm1 for polishing increases the number of error
symbols by d. The algorithm does ensure on the other side that each component
of the result T ′ uses at most 2 of these error symbols: one old error symbol (with
the biggest coefficient) and one new error symbol. Two of the three coefficients
even are point intervals.

Although the polishing operation can be applied on individual variables, it
should rather be applied to many (or all) existing variables of type TM at the



Using Taylor Models in Exact Real Arithmetic 485

Algorithm 1. Simplified version of polishing implemented in iRRAM.
Input: Linear T ∈ TMk: for each Ti index set Si &coefficients cn = [c̃n ±εn], n ∈ Si.
Output: Linear T ′ ∈ TMk+d of input’s structure s.t. image(T ) ⊆ image(T ′).

1. for all i ∈ {1, . . . , d} do
(a) n̂ ← arg maxn∈Si\{0} |c̃n| (if Si \ {0} = ∅, skip polishing this component: T ′

i ← Ti)

(b) if |c̃n̂| > 230 · εn̂ then (error of the monomial with highest effect is small enough)

i. c′
n̂ ← cn̂ (retain these dependencies on the computation’s input)

ii. [s̃ ± ε] ← ∑

n∈Si\{n̂} cn · U (merge remaining coefficients into one interval)

else (otherwise cn̂ already accumulated too much wrapping)

iii. c′
n̂ ← 0 (and is not retained)

iv. [s̃ ± ε] ← ∑

n∈Si
cn · U (merge all coefficients and keep no dependencies)

(c) c′
0 ← [s̃ ± 0] (represent center and radius as point-interval coefficients, each)

(d) c′
ek+i

← [ε ± 0], where ek+i is the (k + i)-th unit vector (new error symbol λk+i)

(e) T ′
i (λ) ← c′

0 + c′
n̂λn̂ + c′

ek+i
λk+i (polished TM has 2 to 3 monomials)

2. return T ′ = (T ′
1, . . . , T

′
d)

same time. In this case, the number of error symbols in use is restricted to at
most 2 · d. Thus the computational overhead per arithmetic operation with data
type TM compared to data type REAL is kept at a constant level (but depending
on d). It is however just one way to handle an ever-growing number of error
variables which are necessary to keep the interval coefficients themselves from
suffering from wrapping effects.

6 Experimental Results

As an application example we consider the well known logistic map. This map
is a discrete dynamical system which exhibits chaotic behaviour for many para-
meters. It has been used many times in computable analysis, e.g. in [2,14], and
can be regarded as a reference problem and benchmark. It is defined as follows
for initial values x0 ∈ [0, 1]:

xi+1 := c · xi · (1 − xi)

The parameter c is usually taken from the closed interval [3, 4]. In consequence
the function c · x · (1 − x) is non-negative on x ∈ [0, 1] and takes its maximal
value c/4 ≤ 1 at x = 0.5. So all values of the sequence (xi)i∈N will be in the
interval [0, 1].

Two implementations of this sequence in the iRRAM package for the initial
values x = 0.125 are given in Algorithm 2. One version is based on the new
Taylor model data type, the second one uses REAL, but only lines 3, 10 and 12
differ. The parameter c as well as the index n of the value xn to be computed are
given as inputs. The output of the program is a list of the decimal representation
of all the values xi with 12 significant decimals, for 0 ≤ i ≤ n.

The following table gives a few results for specific values of c and n. The given
timings were computed on an Intel CPU (i5-460M @ 2.53GHz). The value for



486 F. Brauße et al.

Algorithm 2. Logistic map using Taylor models in iRRAM

1 // Version f o r Taylor models
2 #include ”iRRAM. h”
3 #include ”TaylorModel . h”
4 using namespace iRRAM;
5 void compute ( ) {
6 REAL c ;
7 int n ;
8 c in >> c ;
9 c in >> n ;

10 TM x = REAL( 0 . 1 2 5 ) ;
11 for ( int i =0; i<=n ; i++) {
12 TM: : p o l i s h (x ) ;
13 cout << REAL(x ) << ”\n” ;
14 x = x∗c ∗(REAL(1)−x ) ;
15 }
16 }

1 // Version f o r REAL data type
2 #include ”iRRAM. h”
3

4 using namespace iRRAM;
5 void compute ( ) {
6 REAL c ;
7 int n ;
8 c in >> c ;
9 c in >> n ;

10 REAL x = REAL( 0 . 1 2 5 ) ;
11 for ( int i =0; i<=n ; i++) {
12

13 cout << REAL(x ) << ”\n” ;
14 x = x∗c ∗(REAL(1)−x ) ;
15 }
16 }

‘precision’ is the highest number of bits the underlying multiple precision soft-
ware MPFR [17] had to be called with. This ‘precision’ essentially corresponds
to the control parameter j in the double sequence Oi,j from the beginning of
Sect. 4. For some of the values, already the parameter j = 0 was sufficient, where
the iRRAM uses double precision numbers.

Data type TM Data type REAL

c n=10000 n=100000 n=10000 n= 100000

time precision time precision time precision time precision

[s] [bits] [s] [bits] [s] [bits] [s] [bits]

3.125 0.09 double 0.90 double 1.08 18581 266 175466

3.56982421875 0.09 double 0.94 double 0.85 18581 363 219405

3.75 0.64 5894 115 57301 1.60 23299 400 219405

3.82 0.75 7440 148 71699 1.38 23299 340 219405

3.830078125 0.09 double 0.92 double 1.40 23299 337 219405

3.84 0.09 136 0.89 136 1.46 23299 354 219405

The number of bits necessary for the computations with type TM closely
match the average bit loss reported in [2] for these values of c. The value
c = 3.56982421875 = 7311 · 2−11 has also been recommended there (leading
to an orbit of length 64), as well as c = 3.830078125 = 1961 · 2−9 (having an
orbit of length 3 in an area of chaotic behaviour).

From these experimental results it is obvious that the Taylor models may
lead to significant improvements in an ERA implementation.



Using Taylor Models in Exact Real Arithmetic 487

7 Conclusions and Future Work

In this paper we presented a view on the theoretical background for enhancing
ERA by Taylor models. The approach using wrapping families opens up the way
to many generalizations.

In typical implementations using double precision numbers, Taylor models
allow verified computations that could not be performed at all with ordinary
interval arithmetic. The theoretical point of view taken in this paper shows that
for the notion of computability on real numbers Taylor models do not increase
the set of computable functions.

Although Taylor models increase the complexity of single operations signifi-
cantly, their excellent behaviour concerning error propagation can result in great
improvements in efficiency.

We expect that a rigorous investigation of this improved efficiency will also
lead to refinements of complexity theoretical results in areas where the use of
Taylor series is close at hand, for example in analytic continuation and for ODE
solving.

Further work is necessary to finalize the integration of operations on Taylor
models into the iRRAM library, also optimizations of the internal data structures
and the used algorithms are planned in order to improve the efficiency for higher-
dimensional systems. Higher-order Taylor models have to be implemented in the
library. We also need closer investigations to optimize the heuristics for polishing.

References

1. Bauer, A., Kavkler, I.: Implementing real numbers with RZ. Electr. Notes Theor.
Comput. Sci. 202, 365–384 (2008)

2. Blanck, J.: Efficient exact computation of iterated maps. J. Log. Algebr. Program.
64(1), 41–59 (2005)

3. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. New
Computational Paradigms: Changing Conceptions of What is Computable, pp.
425–491. Springer, New York (2008)

4. Brauße, F., Korovina, M., Müller, N.T.: Towards using exact real arithmetic for ini-
tial value problems. In: PSI: 10th Ershov Informatics Conference, 25–27, Innopolis,
Kazan, Russia, to appear in Lecture Notes in Computer Science (2015)

5. De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer-
ical Algorithms 37(1–4), 147–158 (2004)

6. Duracz, J., Farjudian, A., Konečný, M., Taha, W.: Function Interval Arithmetic.
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 677–684. Springer,
Heidelberg (2014)

7. Ershov, Y.: Handbook of Computability Theory, chapter Theory of numberings,
pp. 473–503. North-Holland, Amsterdam (1999)

8. Hansen, E.R.: A generalized interval arithmetic. In: Interval Mathemantics: Pro-
ceedings of the International Symposium, Karlsruhe, West Germany, May 20–24,
pp. 7–18 (1975)

9. Khanh, T.V., Ogawa, M.: rasat: SMT for polynomial inequality. Technical Report
Research Report IS-RR–003, JAIST (2013)



488 F. Brauße et al.

10. Ko, K.-I.: Complexity theory of real functions. Birkhauser Boston Inc., Cambridge,
MA, USA (1991)

11. Makino, K., Berz, M.: Higher order verified inclusions of multidimensional systems
by taylor models. Nonlinear Analysis: Theory, Methods & Applications, 47(5),
3503–3514, Proceedings of the Third World Congress of Nonlinear Analysts (2001)

12. Müller, N.T.: The iRRAM: Exact arithmetic in C++. Lecture notes in computer
science, 2991:222–252 (2001)

13. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

14. Spandl, C.: Computational complexity of iterated maps on the interval (extended
abstract). In: Proceedings Seventh International Conference on Computability and
Complexity in Analysis, CCA 2010, Zhenjiang, China, 21–25th , pp. 139–150, 2010
June 2010

15. Tupper, J.A.: Graphing equations with generalized interval arithmetic. Master’s
thesis, University of Toronto (1996)

16. Weihrauch, K.: Computable analysis: an introduction. Springer-Verlag New York
Inc, Secaucus, NJ, USA (2000)

17. Zimmermann, P.: Reliable Computing with GNU MPFR. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 42–45.
Springer, Heidelberg (2010)



On the Computational Complexity of Positive
Linear Functionals on C[0; 1]

Hugo Férée1,2,3,4 and Martin Ziegler1,5(B)

1 Department of Mathematics, TU Darmstadt, Schlossgartenstr. 7,
64289 Darmstadt, Germany

2 Université de Lorraine, LORIA, UMR 7503, 54506 Vandœuvre-lès-Nancy, France
3 Inria, 54600 Villers-lès-Nancy, France

4 CNRS, LORIA, UMR 7503, 54506 Vandœuvre-lès-Nancy, France
5 KAIST, School of Computing, 291 Daehak-ro, 34141 Daejeon, Republic of Korea

ziegler@cs.kaist.ac.kr

Abstract. The Lebesgue integration has been related to polynomial
counting complexity in several ways, even when restricted to smooth
functions. We prove analogue results for the integration operator asso-
ciated with the Cantor measure as well as a more general second-order
#P-hardness criterion for such operators. We also give a simple crite-
rion for relative polynomial time complexity and obtain a better under-
standing of the complexity of integration operators using the Lebesgue
decomposition theorem.

1 Motivation and Introduction

Devising a complexity theory of higher-type computation is an ongoing endeav-
our since at least 25 years [Cook91,KaCo96,IBR01,KaCo10,FGH13,FeHo13,
KSZ15]. Perhaps more modestly, we are interested in classifying the continu-
ous linear functionals Ψ on the space C[0; 1] of continuous functions on the real
unit interval: first non-uniformly, that is, investigate the computational complex-
ity of the real number Ψ(f) for arbitrary but fixed polynomial-time computable
f ∈ C[0; 1]; and then uniformly with (approximations, in some sense, to) f ‘given’
by means of oracle access, yet still for fixed Ψ .

According to the Riesz–Markov–Kakutani Representation Theorem precisely
every positive (i.e. monotone) linear functional Ψ : C[0; 1] → R is of the form
Ψ(f) =

∫ 1

0
f(t) dν(t) for some regular Borel measure ν on [0; 1]. Lebesgue’s

Decomposition Theorem in turn asserts each such ν to admit a (unique) decom-
position ν = νd + νc + νs, where

(i) νd is discrete,
(ii) νc is absolutely continuous w.r.t. the canonical (i.e. Lebesgue) measure λ,

Supported in part by the Marie Curie International Research Staff Exchange Scheme
Fellowship 294962 within the 7th European Community Framework Programme and
by the German Research Foundation (DFG) with project Zi 1009/4-1. A SHORT
version of this work was presented at CCA 2015.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 489–504, 2016.
DOI: 10.1007/978-3-319-32859-1 42



490 H. Férée and M. Ziegler

(iii) and νs is singular continuous.

This theorem can be useful in the study of the computational complexity of an
integration operator, by determining the complexity of each component.

Remark 1.

(i) The prototype of a discrete measure is Dirac’s family δz with δz([a; b]) = 1 if
z ∈ [a; b] and δz([a; b]) = 0 otherwise. The induced positive linear functional
is simply evaluation at z — and polynomial-time computable uniformly in
z, essentially by definition.
More generally every discrete measure on [0; 1] has the form νd =

∑

j∈N
δzj

·
wj for two sequences (zj) ⊆ [0; 1] and (wj) ⊆ [0;∞) with

∑

j wj < ∞.
(ii) The prototype of an absolutely continuous measure on [0; 1] is thus λ

defined by λ([a; b]) = b − a; and the complexity of its induced positive lin-
ear functional on C[0; 1], namely of definite Riemann integration, has been
characterized as #P1 (Fact 3a+b); and indefinite Riemann integration as
#P (Fact 3c+d); cmp. [Frie84]. Moreover restricting to continuously differ-
entiable argument does not reduce the worst-case complexity.
In general, according to the classical Radon–Nikodym Theorem, to every
absolutely continuous measure νc on [0; 1] there exists some measurable
ϕ : [0; 1] → [0;∞) such that

∫ x

0
f(t) dνc(t) =

∫ x

0
f(t)ϕ(t) dt holds for all

f ∈ C[0; 1] and 0 ≤ x ≤ 1.
(iii) The prototype of a singular continuous measure is Cantor’s, that is, given

by the Devil’s Staircase or Cantor–Lebesgue–Vitali function S : [0; 1] →
[0; 1] as cumulative distribution and inducing as functional the parametric
Riemann-Stieltjes integral (f, x) �→ ∫ x

0
f(t) dS(t).

1.1 Recap of Discrete, Real, and Second-Order Complexity Theory

We presume familiarity with discrete complexity theory and only briefly recall
the classes

• P of decision problems L ⊆ Σ∗ to which membership “�u ∈ L?” is decidable
within a number of steps polynomial in the input length |�u|;

• EXP of decision problems decidable in time bounded by some exponential
polynomial in the input length;

• PSPACE of decision problems to which membership is decidable using an at
most polynomial amount of memory;

• FP of total function problems f : Σ∗ → N computable in a number of steps
polynomial in the input length with output encoded in binary;

• NP of decision problems L ⊆ Σ∗ of the following form for some V ∈ P and
some integer polynomial p: L =

{

�u
∣

∣ ∃�v : |�v| ≤ p(|�u|), 〈�u,�v〉 ∈ V
}

.
• #P of counting (i.e. function) problems of the form

ψ : Σ∗ � �u �→ #
({

�v
∣

∣ |�v| ≤ p(|�u|), 〈�u,�v〉 ∈ V
}) ∈ N

• #P1 of unary counting problems of the form



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 491

ψ1 : N � n �→ #
({

�v
∣

∣ |�v| ≤ p(n), 〈1n, �v〉 ∈ V
}) ∈ N

with hierarchy P ⊆ P#P1

NP
⊆ P#P ⊆ PSPACE ⊆ EXP.

In particular recall that #P may not be closed even under simple functions
[HeOg02, Sect. 5.2]. Here Σ denotes some fixed finite alphabet containing at
least symbols 0 and 1; and

Σ∗ × Σ∗ � (�v, �w) �→ 〈�v, �w〉 ∈ Σ∗

an injective polynomial-time computable string pairing function having
polynomial-time decidable image and polynomial-time computable partial
inverse.

Concerning the complexity of real functions we refer to [Weih00, Example
7.2.14] and [Ko91, Corollary 2.21]: Computing f : [0; 1] → [0; 1] within
time t(n) means (or rather is equivalent) to compute in the discrete sense of
complexity t(n) some function f̃ : {0, 1}∗ → {0, 1}∗ such that it holds for
μ(n) := t(n + 1) + 1, for all n ∈ N, and for all �u ∈ {0, 1}n:

∀x ∈ [0; 1] :
∣∣x − bin(�u)/2μ(n)

∣∣ ≤ 2−μ(n) ⇒ ∣∣f(x) − bin
(
f̃(�u)
)
/2n
∣∣ ≤ 2−n. (1)

Here, for �v ∈ {0, 1}n, bin(�v)/2|�v| :=
∑n−1

j=0 vj2j−n ∈ [0; 1) is a dyadic rational.
Again {0, 1} can be replaced by any other at least binary alphabets without
affecting the complexity more than polynomially. In the sequel for the Cantor
distribution ternary rational approximations tri(�u)/3|�u| =

∑m−1
j=0 uj3j−m for �u ∈

{0, 1, 2}m will often turn out as convenient.
Recall that μ : N → N satisfying d(x, x′) ≤ 2−μ(n) ⇒ e

(

f(x), f(x′)
) ≤

2−n is called a modulus of continuity of f : X → Y with metric spaces (X, d)
and (Y, e). Concerning a uniform complexity of operators in analysis, we follow
[KaCo10, Sect. 3] in letting Pred := {0, 1}({0,1}∗) denote the set of all predicates
on finite binary strings; Reg ⊆ {0, 1}∗∗ := ({0, 1}∗)({0,1}

∗) the family of all
(total) mapping ϕ : {0, 1}∗ → {0, 1}∗ that are length-monotonous in the sense
of satisfying |ϕ(�u)| ≤ |ϕ(�v)| whenever |�u| ≤ |�v|. In this case, the size function
|ϕ| : N � |�v| �→ |ϕ(�v)| ∈ N of ϕ is well-defined. A second-order polynomial P is
a term over +,×,N and first-order variable n as well as second-order variable

. An oracle Turing machine M? computes a partial function F :⊆ Reg → Reg
when producing F

(

ϕ
)

(�v), given �v ∈ {0, 1}∗ and oracle access to ϕ ∈ dom(F ).
M? runs in second-order polynomial time if it makes a number steps bounded
by P (|ϕ|, |�v|) for some second-order polynomial P . The following notions and
bold-face complexity classes are from [Kawa11, Definitions 2.10–2.13]:

Definition 2.

(a) P is the class of total F : Reg → Pred computable in second-order polynomial
time.

(b) FP is the class of total F : Reg → Reg computable in second-order polynomial
time.



492 H. Férée and M. Ziegler

(c) NP is the class of total G : Reg → Pred of the form

G
(

ϕ
)

(�v) = 1 ⇔ ∃�w ∈ {0, 1}P (|ϕ|,|�v|) : F
(

ϕ
)

(�v, �w) = 1

for some F ∈ P and some second-order polynomial P .
(d) #P is the class of total G : Reg → Reg of the form

G
(

ϕ
)

(�v) = bin
(

#
{

�w ∈ {0, 1}P (|ϕ|,|�v|) : F
(

ϕ
)

(�v, �w) = 1
})

for some F ∈ P and some second-order polynomial P .
(e) For F,G :⊆ Reg → Reg, a second-order polynomial-time (Weihrauch-)

reduction from F to G is a triple (U, V,W ) with U, V,W ∈ FP such that
U(ϕ) ∈ dom(G) for every ϕ ∈ dom(F ) and

∀�v ∈ {0, 1}∗ : F
(

ϕ
)

(�v) = W
(

ϕ
)〈

G
(

U
(

ϕ
)

)

((

V (ϕ)
)

(�v)
)

, �v
〉

(f) Some ϕ ∈ Reg encodes f ∈ C([0; 1], [0; 1]) if it is of the form

ϕ : {0, 1}∗ � �u �→ 1μ(n) 0 bin
(

f̃(�u)
)

for some modulus of continuity μ of f and f̃ according to Eq. (1).
(g) F :⊆ Reg → Reg represents some operator Λ :⊆ C([0; 1], [0; 1]) →

C([0; 1], [0; 1]) if it maps every encoding ϕ ∈ Reg of some f ∈ dom(Λ) to
some encoding F (ϕ) of Λ(f).

(h) We may identify such an operator with the functional

Λ :⊆ C([0; 1], [0; 1]) × [0; 1] � (f, x) �→ Λ
(

f
)

(x) ∈ [0; 1] .

(j) Λ :⊆ C([0; 1], [0; 1]) → C([0; 1], [0; 1]) is computable in second-order
polynomial-time if it admits a representative F :⊆ Reg → Reg computable
in second-order polynomial-time.

Compare [BrGh11,HiPa13] for a computable version of Item (e). We record
that closure under composition of second-order polynomial-time computability
yields transitivity of second-order polynomial-time reducibility. As opposed to
the first-order complexity classes with the P/NP Millennium Prize and related
open problems, the second-order versions are generally known distinct.

Fact 3.

(a) If f : [0; 1] → [0; 1] is polynomial-time computable and #P1 ⊆ FP1, then
∫ 1

0
f(t) dt is again polynomial-time computable.

(b) There exists a polynomial-time computable smooth (i.e. C∞) f : [0; 1] → [0; 1]
such that polynomial-time computability of

∫ 1

0
f(t) dt implies #P1 ⊆ FP1.

(c) If f : [0; 1] → [0; 1] is polynomial-time computable and #P ⊆ FP, then
[0; 1] � x �→ ∫ x

0
f(t) dt is again polynomial-time computable.

(d) There exists a polynomial-time computable smooth f : [0; 1] → [0; 1] such that
polynomial-time computability of [0; 1] � x �→ ∫ x

0
f(t) dt implies #P ⊆ FP.



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 493

(e) For any G :⊆ Reg → Reg representing (in the sense of Definition 2g) indefi-
nite integration
∫

: C([0; 1], [0; 1]) � f �→ (
[0; 1]2 � (x, y) �→

∫ y

x

f(t) dt
) ∈ C1([0; 1]; [0; 1]) (2)

there exists a F ∈ #P and a second-order polynomial-time reduction from
G to F .

(f) For every F ∈ #P and every G :⊆ Reg → Reg representing the restriction
∫ ∣

∣

C∞([0;1],[0;1])
there exists a second-order polynomial-time reduction from

F to G.

For the first four items see [Ko91, Theorems 5.32+5.33]. They are non-uniform
in that f is considered fixed and not as input. In other words, they only consider
the image of a complexity class by the operator. This contrasts with the uniform
Items (e) and (f), essentially [Kawa11, Theorem 4.21], where the complexity
of the operator itself is considered.

1.2 Overview, Techniques, and Related Work

The present work investigates the non-uniform and uniform computational com-
plexity of other (types of) positive linear functionals on C[0; 1] and C∞[0; 1].
Similarly to Fact 3, Sects. (2) and (3) relate Cantor integration non-uniformly
and uniformly equivalent to #P1, #P, and #P. Perhaps surprisingly, it is thus
as hard as ordinary/absolutely continuous Riemann integration. (Along the way
we prove the Devil’s Staircase S to be computable in polynomial time.)

On the other hand, Example 16 constructs singular continuous measures that
does render integration polynomial-time computable — after Subsect. 4.1 iden-
tifying classes of measures for which integration is #P-hard. Conversely, Exam-
ple 14 constructs a discrete measure rendering integration #P-hard — based on
Subsect. 4.2 devising classes of measures for which integration is polynomial-time
computable.

Proof techniques are essentially refinements and variations of those employed
in [Ko91, Sect. 5.4] and [Kawa11]: On the one hand encoding a polynomial-time
decidable verifier V ⊆ {0, 1}∗ ×{0, 1}∗ as polynomial-time computable (smooth)
real function fV consisting of infinitely many ‘steps’ such that the hard discrete
counting problem #{�y : (�x, �y) ∈ V } can be recovered from approximations of the
continuous integral over fV w.r.t. the measure under consideration; and on the
other hand expressing approximations to said integral as discrete counting prob-
lem with polynomial-time decidable verifier; and uniformly analyzing the ‘reduc-
tion’ V �→ fV as well as its converse in terms of second-order polynomial-time
complexity theory. In fact jointly scaling the steps in x-direction and y-direction
is a delicate trade-off: such as to (i) recover discrete arguments �x ∈ {0, 1}∗ from
approximations to real arguments x ∈ [0; 1] as well as (ii) recover discrete results
#{�y : (�x, �y) ∈ V } from approximations to the real values

∫

fV (t) dS(t) while
(iii) maintaining continuity, smoothness, and polynomial-time computability of
fV ; cmp. Remark 18(b).



494 H. Férée and M. Ziegler

Regarding more general but qualitative computability investigations of mea-
sures the reader may refer for instance to [Schr07,HRW12,MTY14,Coll14].

2 Smooth Cantor Integration Is at Least as Hard
as Continuous Riemann Integration

Proposition 4.

(a) Cantor’s Function S : [0; 1] → [0; 1] is Hölder-continuous with exponent
α = ln(2)/ ln(3) and computable within polynomial time.

(b) For every interval I = [a; b] ⊆ R and every non-decreasing continuous g :
I → R it holds

∫ g(b)

g(a)
f(t) dt =

∫

I
f
(

g(s)
)

dg(s).

Proof.

(a) Recall that S is the uniform limit of a sequence of piecewise linear func-
tions defined inductively by S0 := id : [0; 1] → [0; 1] and Sn+1(t) :=
⎧

⎪

⎨

⎪

⎩

Sn(3t)/2 if t ≤ 1
3

1/2 if 1
3 ≤ t ≤ 2

3

Sn(3t − 2)/2 + 1/2 if 2
3 ≤ t

More precisely ‖Sn+1 − Sn‖∞ ≤ ‖Sn − Sn−1‖∞/2, hence ‖Sn − S‖∞ ≤
2−n. Note that Sn has

∑n
j=1 2j = 2n+1 − 2 breakpoints at certain triadic

rational points t ∈ Tn := Z/3n. Moreover the restriction Sn

∣

∣

Tn
→ Dn :=

Z/2n is well-defined and uniformly computable in time polynomial in n.
According to (a minor adaptation of) [Ko91, Theorem 2.22], S is therefore
computable in polynomial time.

(b) Consider the generalized Darboux sums

U
(

(sj), f ◦ g, g
)

=
∑

j
sups∈[sj ,sj+1] f

(

g(s)
) · (

g(sj+1) − g(sj)
)

,

L
(

(sj), f ◦ g, g
)

=
∑

j
infs∈[sj ,sj+1] f

(

g(s)
) · (

g(sj+1) − g(sj)
)

by hypothesis both converging (from above and below, respectively) to
∫

I
f
(

g(s)
)

dg(s), where (sj) denotes a partition of I. Substituting tj := g(sj)
thus yields a partition of g(I) with classical Darboux sums U

(

(tj), f, id
)

=
U

(

(sj), f ◦ g, g
)

and L
(

(tj), f, id
)

= L
(

(sj), f ◦ g, g
)

converging to
∫

g(I)
f(t) dt; and vice versa. ��

It follows that C[0; 1] � f �→ f ◦ S ∈ C[0; 1] and C1[0; 1] � f �→ f ◦ S ∈ C0,α[0; 1]
are well-defined reductions from Riemann to Cantor integration computable
within second-order polynomial time. Applied to Friedman and Ko’s polynomial-
time computable f ∈ C∞([0; 1], [0; 1]) with #P1-‘complete’ integral, one obtains
a polynomial-time computable Hölder-continuous h : [0; 1] → [0; 1] such that
∫ 1

0
h(t) dS(t) is not computable in polynomial time unless #P1 ⊆ FP.



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 495

Note that f ◦S is not differentiable in general. Moreover the reduction seems
restricted to definite integration (and thus only achieves #P1-hardness rather
than #P) since the Cantor integration bounds a and b cannot computably be
recovered from the Riemann ones S(a) and S(b) even in the multivalued sense.

Cantor integration is as hard as Riemann integration in the non-uniform and
the uniform senses.

Theorem 5.

(a) There exists a polynomial-time computable smooth (i.e. infinitely often dif-
ferentiable) h : [0; 1] → [0; 1] such that

∫ 1

0
h(t) dS(t) is not computable in

polynomial time unless #P1 ⊆ FP.
(b) There exists a polynomial-time computable smooth h : [0; 1] → [0; 1] such

that [0; 1]2 � (a, b) �→ ∫ max{a,b}
min{a,b} h(t) dS(t) is not computable in polynomial

time unless #P ⊆ FP.
(c) For every F ∈ #P and every G :⊆ Reg → Reg representing the indefinite

Cantor integration operator on smooth arguments, that is, the mapping

C([0; 1], [0; 1]) � f �→
(
[0; 1]2 � (x, y) �→

max{x,y}∫

min{x,y}
f(t) dS(t) ∈ [0; 1]

)
∈ C0,α([0; 1]2, [0; 1])

there exists a second-order polynomial-time reduction from F to G.

Proof. The proofs are inspired from the proof of the hardness of the Riemann
integration in [Kawa11] and omitted due to page constraints.

3 Continuous Cantor Integration is at Most as Hard
as Smooth Riemann Integration

Reducing the problem of approximating
∫ s

0
f(t) dS(t) up to error 2−n to that

of approximating
∫ s

0
gn(t) dt for some smooth gn is easy: Since the Cantor mea-

sure concentrates all weight to 2n subintervals In,k of [0; 1] while neglecting the
complementing ones, define fn to be zero on the latter and otherwise equal to
f cut and ‘squeezed’ into the In,k. This fn is only piecewise continuous but can
be approximated up to L1-error 2−n by a smooth one — depending on n. Based
on the following result, Corollary 17 will yield some g independent of n — at the
expense of certain ‘post-processing’ the integral’s value.

Theorem 6.

(a) Let f : [0; 1] → [0; 1] be computable in polynomial time and suppose
#P1 ⊆ FP. Then the definite Cantor integral over f , that is the real number
∫ 1

0
f(t) dS(t), is again computable in polynomial time.

(b) Let f : [0; 1] → [0; 1] be computable in polynomial time and suppose #P ⊆
FP. Then the indefinite Cantor integral over f , that is the mapping [0; 1]2 �
(x, y) �→ ∫ max{x,y}

min{x,y} f(t) dS(t), is again computable in polynomial time.



496 H. Férée and M. Ziegler

(c) For every G :⊆ Reg → Reg representing the mapping from Theorem5(c)
there is a second-order polynomial-time reduction from G to some F ∈ #P.

In-/definite Cantor integration is thus at most as hard as Riemann integration
(and, equivalently, #P).

Proof.

(a) Let μ : N → N be a polynomial modulus of continuity of f and, modifying
Eq. (1) as indicated, f̃ : {0, 1, 2}∗ → {0, 1}∗ computable in polynomial time
such that

x ∈ [0; 1] ∧ ∣

∣x − tri(�u)/3μ(n)
∣

∣ ≤ 3−μ(n) ⇒ ∣

∣f(x) − bin(�v)/2n
∣

∣ ≤ 2−n .

Then the following function ψ1 : {1}∗ → N belongs to #P1:

ψ1(1n) := #
{

(�w,�v) ∈ {0, 2}μ(n) × {0, 1}n : bin
(

f̃(�w)
) ≥ bin(�v)

}

The Cantor distribution assigns weight 1/2m to each interval
[ tri(�w)

3m ; tri(�w)+1
3m

]
,

�w ∈ {0, 2}m. Moreover f varies by at most 2−n on each such interval for
m := μ(n). Therefore ψ1(1n)/2n+μ(n) is a Darboux sum approximating
∫ 1

0
f(t) dS(t) up to error 21−n.

(b) Similarly to (a), but now take into account triadic approximations
tri(�a)/3μ(n) to min{x, y} and tri(�b)/3μ(n) to max{x, y} in the #P-function
ψ(1n,�a,�b) := #

{

(�w,�v) ∈ {0, 2}μ(n) × {0, 1}n : tri(�a) ≤ tri(�w) ≤
tri(�b), bin

(

f̃(�w)
) ≥ bin(�v)

}

(c) Consider H : Reg → Reg, defined by H
(

ϕ
)

(〈1n,�a,�b〉, 〈�w,�v〉) := 1 if

�v ∈ {0, 1}n, �a,�b ∈{0, 1, 2}μ(n), �w ∈ {0, 2}μ(n),

tri(�a) ≤ tri(�w) ≤ tri(�b), bin
(

f̃(�w)
) ≥ bin(�v)

for 1μ(n) 0 bin
(

f̃(�w)
)

:= ϕ(�w), and H
(

ϕ
)

(〈1n,�a,�b〉, 〈�w,�v〉) := 0 otherwise.
Then obviously H ∈ P holds, and hence F ∈ #P for

F
(

ϕ
)

(〈1n,�a,�b〉) = bin
(

#
{

(�w,�v) ∈ {0, 2}μ(n) × {0, 1}n :

tri(�a) ≤ tri(�w) ≤ tri(�b), bin
(

f̃(�w)
) ≥ bin(�v), 1μ(n) 0 bin

(

f̃(�w)
)

:= ϕ(�w)
})

satisfying
∣

∣

∣

∣

F
(

ϕ
)

(〈1n,�a,�b〉)/2n+μ(n) −
tri(�b)/3|�b|

∫

tri(�a)/3|�a|

f(t) dS(t)
∣

∣

∣

∣

≤ 2−n by (b). ��

4 Generalized Hardness and Tractability Conditions

4.1 Hardness

The analysis of the similarities between the proofs of uniform #P-hardness of
Lebesgue and Cantor integrations gives a list of simple criteria, which can be
applied to more cases.



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 497

Theorem 7. Let μ be a measure over [0; 1] such that there for every second-order
polynomial P , there are rational nonempty open intervals If

w and If
w,w′ computable

in uniform second-order polynomial time, where f ∈ N → N, w,w′ ∈ Σ∗, and
|w′| ≤ P (|w|), such that:

(a) w1 �= w2 =⇒ If
w1

∩ If
w2

= ∅
(b) w′

1 �= w′
2 =⇒ If

w,w′
1
∩ If

w,w′
2

= ∅
(c) If

w,w′ ⊆ If
w

(d) The function (N → N) × D � f, d �→
{

〈w,w′〉 if d ∈ If
w,w′

ε otherwise
is second-order polynomial time computable.

(e) There exists mf
w polynomial time computable with respect to |f | and |w| s.t.

1 ≤ mf
w ·

∫

If

w,w′
sIf

w,w′
dμ ≤ 1 + 2−P (f,|w|)

where s ∈ C[0; 1] is any polynomial time computable function s.t. s(0) =
s(1) = 0.

Then for every #P function F , there exists a second-order polynomial time
reduction from F to some G :⊆ Reg → Reg representing the definite μ inte-
gration. In addition, if s is smooth and vanishes at 0 and 1, then this can be
restricted to integration of smooth functions.

Proof. Let F ∈ #P and F0 be the second-order counting function associated
with the second-order polynomial P0. Given an input oracle ϕ, we define a con-
tinuous function U(ϕ) this way:

U(ϕ)(x) =

{|If
w,w′ ||w|sIf

w,w′
(x) if x ∈ If

w,w′ and F0(ϕ,w,w′) = 1

0 otherwise.

where s(a;b)(x) =
s( x−a

b−a )

b−a and f = P0(|ϕ|) + 1.
First, U is well-defined, since the intervals If

w,w′ are pairewise disjoint. It
also has a polynomial time computable rational approximation function: given a
rational q and a precision n, decide in polynomial time (using d) in which interval
q is (and output 0 if it is in none). Then, |If

w,w′ ||w|sIf

w,w′
(x) can be computed

in polynomial time, since s and the endpoints of If
w,w′ are. It is also easy to

see that the modulus of continuity of the function x �→ |If
w,w′ ||w|sIf

w,w′
(x) is the

same as the one of s, and thus U(ϕ) has a polynomial modulus of continuity
(even independent from ϕ). Altogether, this proves that U is polynomial time
computable.

Secondly, if s is smooth, then so is U(ϕ). Indeed, the kth derivative of U(ϕ)
at x ∈ If

w,w′ is equal to |If
w,w′ ||w|−(k+1) · s(k)(x−a

b−a ) where If
w,w′ = (a; b). Now, if

(xn) converges to x ∈ [0; 1], then either



498 H. Férée and M. Ziegler

– xn is infinitely many times in a given interval If
w,w′ . Since it is open, it is

eventually in this interval, in which case U(ϕ)(k)(xn) converges to U(ϕ)(k)(xn)
by continuity of U(ϕ)(k) on If

w,w′ (by smoothness of s);
– otherwise xn can not be infinitely many times in more that two such intervals

since they do not intersect. In this case, x is one of the endpoints of such
intervals and U(ϕ)(xn) converges to 0 = U(ϕ)(x) (since s(0) = s(1) = 0);

– otherwise, xn is eventually outside the union of the intervals (i.e. in a closed
set, so where x also belongs) and U(ϕ)(xn) = 0 = U(ϕ)(x);

– finally, xn can be decomposed into a sequence outside any interval (whose
image by U(ϕ)(k) converges to 0), or in an interval If

wn,w′n occurring only
finitely many times. This implies that the sequence wn diverges to +∞ (since
there are only a finite number of w′ for a given w) and thus U(ϕ)(k) also
converges to 0 on this subsequence (since s(k) is bounded, and |If

w,w′ ||w|−(k+1)

converges to 0). This is indeed equal to U(ϕ)(k)(x), otherwise we would be in
the first case.

Finally, F (ϕ,w) can be indeed computed in polynomial time from the μ-
integral of U . Indeed, according to hypothesis e), F (ϕ,w) =

∑
|w′|≤P0(|ϕ|,|w|)

1 ≤
∑

|w′|≤P0(|ϕ|,|w|)
m|ϕ|

w ·
∫

I
P0(|ϕ|,|w|)
w,w′

s
I

P0(|ϕ|,|w|)
w,w′

dμ ≤ F (ϕ, w) · (1 + 2−(P0(|ϕ|,|w|)+1)),

and since F (ϕ,w) ≤ 2P0(|ϕ|,|w|), and that the sum of the integrals is equal to the
integral over If

w, we obtain:

F (ϕ,w) ≤ m|ϕ|
w ·

∫

I
P0(|ϕ|,|w|)
w

U(ϕ)dμ ≤ F (ϕ,w) +
1
2
.

In other words we can define a second-order polynomial time computable
function W (ϕ, g, w) which computes a 1

2 -approximation of m
|ϕ|
w multiplied by

the real number represented by g and outputs the closest integer. In this case,
we obtain:

F (ϕ,w) = W (ϕ)(G(U(ϕ))(IP0(|ϕ|,|w|)
w ), w),

if G represents the definite μ-integration. ��

4.2 Tractability

Conversely, there is some simple sufficient condition for a positive linear operator
to be polynomial time computable with respect to an oracle. For this, we will use
the main result of [FGH13], where the authors define the sets of relevant points
(Rn)n∈N of a real norm on C[0; 1]. Roughly speaking, Rn is the set of points
of [0; 1] where it is sufficient to know an input 1-Lipschitz function f ∈ C[0; 1]
in order to determine its norm with precision 2−n (see the original article for
a precise definition). The theorem states that polynomial time (relatively to an
oracle) computable real norms are exactly those which depend on a ’small’ set
of points in this sense:



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 499

Definition 8. A set A can be polynomially covered, if there exists a polynomial
P such that for all n ∈ N, A can be covered by P (n) balls of radius 2−n. In other
words, A has metric entropy log ◦P .

Fact 9 ([FGH13]). A real norm can be computed in polynomial time relatively
to an oracle if and only if its sets of relevant points (Rn)n∈N can be polynomially
covered uniformly in n.

Even if an integration operator is not a norm, it can be completed into one,
so that we can apply a weak form of the previous theorem.

Theorem 10. If the support of a measure ν can be polynomially covered, then
the corresponding indefinite integration operator (x, y, g) �→ ∫ y

x
gdν is computable

in polynomial time with respect to an oracle.

Proof. Let ν be such a measure, with support S. There exists a polynomial time
computable norm F over C[0; 1]. For x ≤ y in [0; 1], the operators G+

x,y(f) =
F (f) +

∫ y

x
f+dν and G−

x,y(f) = F (f) +
∫ y

x
f−dν (where f+ and f− are the

positive and negative parts of f) are norms. We need to separate the positive
and negative parts in order to make these operators always positive.

The set of relevant points Rn of ν-integration is included in the closure of
S. Indeed, the integral of any 1-Lipschitz function defined on a neighborhood
of x �∈ S̄ is equal to zero as soon as this neighborhood does not intersect S, by
definition of the support of a measure.

Thus, for all n, the set of relevant points of G+
x,y and G−

x,y are included in
S̄ ∪ RF

n , where (RF
n )n are the relevant sets of F . By application of Fact 9 to F ,

(RF
n )n can be polynomially covered uniformly in n, and since it is also the case

for S, and thus for its closure, it is true for the union.
By application of the other implication of Fact 9, these norms are polynomial

time computable with respect to an oracle. In fact, this is also true for the
corresponding operators G+ and G−, uniformly in x and y. Since the indefinite
ν-integration operator is equal to G+−G−, it is also polynomial time computable
with respect to an oracle, and allows us to conclude. ��

Even though allowing an arbitrary oracle may seem powerful, such operators
are still weaker than Lebesgue or Cantor integrals.

Corollary 11. The indefinite integration operator associated with such a mea-
sure is not #P-hard.

Indeed, such an operator would allow to compute Lebesgue or Cantor inte-
gration operator in relative polynomial time, which is impossible (in particular
by an application of Fact 9); cmp. also [KaPa14].

4.3 Applications and Examples

First, let us focus on the absolutely continuous case, i.e. where the integral of
a function f is equal to the Lebesgue integral of f · g, where g is a measurable
function.



500 H. Férée and M. Ziegler

The simplest non-trivial example is the Lebesgue integration (with g = 1) is
already #P-hard, which makes us believe that this is the case in general. It is
already the case if g is polynomial time computable.

Proposition 12. Let g ∈ C[0; 1] be polynomial time computable and not identi-
cally zero. Then (x, y, f) �→ ∫ y

x
f(t) · g(t)dt is #P-hard.

Proof. Omitted due to page limitations.

However, we don’t know if this still holds for functions g with higher com-
plexity. Intuitively, it seems that we need g to be polynomial time computable
in order to retrieve some information about f from its integral (see Hypothesis e
of Theorem 7).

Now we can have a look at the case of discrete measures, i.e. corresponding to
posive linear operators F of the form: F (f) =

∑

n∈N
αn ·f(βn), where αn > 0 and

βn ∈ [0; 1]. It is not surprising that when this sum is finite, then the integration
operator F is polynomial time computable with respect to an oracle (where an
appropriate oracle encodes the αi’s and βi’s). But Theorem 10 even gives a more
general result.

Proposition 13. If F is a discrete integration operator of the form F (f) =
∑

n∈N
αn ·f(βn), such that the set B = {βi | i ∈ N} can be polynomially covered,

then F is computable in relative polynomial time.

Proof. In this case, the support of F is contained in the closure of B, which is
thus can also be polynomially covered, and Theorem 10 applies. ��

Conversely, there are discrete measures defining #P-hard integration
operators.

Example 14. Let F (f) =
∑

w∈{0,1}∗ 2−2|w|f(0.w.12), where w̄2 is the real num-
ber with binary expansion w. Its sequence of scaling factors decreases exponen-
tially slowly, whereas its set of evaluation points covers all the dyadic rational
numbers of the open interval (0, 1). This discrete positive linear operator is not
computable in (relative) polynomial time. Moreover, we can apply Theorem7
and deduce that it is #P-hard.

The conditions of the two theorems are not always necessary and there are
cases where none of them apply. But it seems that most of the time, a result can
still be obtained using the general shape of discrete measures.

Example 15. Let F (f) =
∑

n f(dn), where (dn) is the standard enumeration
of the dyadic rational numbers of [0; 1]. It is an integration operator relative to a
discrete measure whose support is [0; 1]. Since an interval can’t be polynomially
covered, we can not apply Theorem 10. However, a direct application of [FGH13]
or straightforward analysis allows us to prove that it is polynomial time com-
putable. Indeed, to compute F (f), it is sufficient to compute f(d0), . . . , f(dμ(n)),
if f has modulus of continuity μ.



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 501

Finally, the last case is the one of singular continuous measures. It is the
hardest one, since there is no simple characterization of such measures.

We have already seen with the Cantor measure that an integration oper-
ator for such a measure can be #P-hard. But a similar measure can also be
polynomial time computable.

Example 16. The Cantor set is defined by the intersection of sets (Cn)n∈N,
where Cn is the union of 2n disjoint intervals of size 3−n. If we define a Cantor-
like set C ′ =

⋂

n∈N
C ′

n, where C ′
n is the intersection of 2−n intervals of size 32

−n

(i.e. exponentially smaller), then the corresponding measure has support C ′,
which can be polynomially covered. By a direct application of Theorem10, the
associated positive linear operator is polynomial time computable with respect
to an oracle. If in addition the endpoints of these intervals are polynomial time
computable uniformly in n, then it is even simply polynomial time computable.

5 Conclusion and Perspectives

We have completed the complexity-theoretic classification of the three ‘proto-
types’ of positive linear functionals on C[0; 1]: evaluation (discrete) is polynomial-
time computable whereas both Riemann (absolutely continuous) and Cantor
(singular continuous) integration both correspond to the discrete complexity
class #P1. More precisely they are uniformly second-order polynomial-time
equivalent in the following sense:

Corollary 17.

(a) There exists a second-order polynomial-time computable operator U :
C([0; 1], [0; 1]) → C∞∞∞([0; 1]; [0; 1]), and second-order polynomial-time com-
putable functionals V1, V2,W : C([0; 1], [0; 1]) × [−1; 1] → [0; 1] such that the
following holds:

∀f ∈ C([0; 1], [0; 1]) ∀0 ≤ a ≤ b ≤ 1 :

b
∫

a

f(t) dS(t) = W

(

f,

V2(f,b)
∫

V1(f,a)

U
(

f
)

(t) dt

)

(b) There exists a second-order polynomial-time computable operator U :
C([0; 1], [0; 1]) → C∞∞∞([0; 1]; [0; 1]) and second-order polynomial-time com-
putable functionals V1, V2,W : C([0; 1], [0; 1]) × [0; 1] → [0; 1] such that the
following holds:

∀f ∈ C([0; 1], [0; 1]) ∀0 ≤ a ≤ b ≤ 1 :

b
∫

a

f(t) dt = W

(

f,

V2(f,b)
∫

V1(f,a)

U
(

f
)

(t) dS(t)
)

Proof. Combine the second-order polynomial-time reductions of (smooth) Can-
tor integration to and from #P according to Theorems 5(c) and 6(c) with the
known second-order polynomial-time reductions of (smooth) Riemann integra-
tion to and from #P. ��



502 H. Férée and M. Ziegler

Remark 18.

(a) [Kawa11, Theorems 4.18+4.21] originally have asserted maximization and
integration of bivariate functions

C([0; 1]2) � f �→ (

[0; 1] � s �→ max{f(s, t) : 0 ≤ t ≤ 1}) ∈ C[0; 1] (3)

C([0; 1]2) � g �→ (

[0; 1] � s �→
∫ 1

0

g(s, t) dt
) ∈ C[0; 1] (4)

to be NP-complete and #P-complete, respectively. Since NP triv-
ially reduces to #P, transitivity yields the existence of a second-order
polynomial-time reduction from maximization (3) to integration (4): which
seems quite surprising.

(b) Fact 3(e+f) refers to a univariate variant of Eq. (4) with varying lower and
upper integration bounds. In fact maximization in Eq. (3) even remains
NP-complete when only varying the upper bound, that is, the operator
C([0; 1]) � f �→ (

[0; 1] � s �→ max{f(t) : 0 ≤ t ≤ s}) ∈ C[0; 1].
Since such a reduction according to Definition 2(e) is permitted only one
invocation of the integration operator, we wonder whether also integration
remains #P-complete with only upper bound varying: C([0; 1]) � g �→
(

[0; 1] � y �→
∫ y

0

f(t) dt
) ∈ C([0; 1]).

5.1 Prototype Vs. the General Case

Our investigation of the complexity of positive linear functionals Ψ on C[0; 1] has
focused on prototypical examples of each of the three basic types according to
Riesz–Markov–Kakutani. For instance the d-dimensional Poisson problem has
been shown [KSZ14] to boil down to absolutely continuous integration (ii). It
is, however, easy to find Ψ that are harder than these prototypes: for example
evaluation (i) at some EXP-complete point z ∈ [0; 1]. This leads to

Question 19. Is there an integrable g : [0; 1] → (0;∞) such that
∫ 1

0
f(t) ·g(t) dt

is polynomial-time computable for every polynomial-time computable f ∈ C[0; 1]
even in case P �= NP �= P#P �= PSPACE?

Restricted to continuous g the answer is negative: Each such admits distinct
rational (and in particular polynomial-time computable) a, b ∈ [0; 1] and k ∈ N

with 1/k ≤ |g| ≤ k on [a; b]; w.l.o.g. g = |g| there. Record that the polynomial-
time computable smooth h : [0; 1] → [0; 1] with #P1-‘complete’

∫ 1

0
h(t) dt can

be achieved to vanish (with all derivatives) on (−∞; 0] ∪ [1;∞); cmp. [Ko91,
Theorem 5.32d]. Scaling f(t) := h

(

t−a
b−a

)

thus is still smooth on [0; 1] and
polynomial-time computable; yet approximating

(b − a) · k ·
∫ 1

0

f(t) · g(t) dt ∈
[

∫ 1

0

h(t) dt ; k2 ·
∫ 1

0

h(t) dt
]



On the Computational Complexity of Positive Linear Functionals on C[0; 1] 503

up to error 2−n/k2 recovers
∫ 1

0
h(t) dt up to error 2−n. This leaves it to look

for integrable, nowhere essentially bounded g; cmp. http://math.stackexchange.
com/questions/620959.

Conjecture 20 (Added in proof). The computational complexity of integration
C[0; 1] � f �→ ∫ 1

0
f(t) dν is related to the joint Kolmogorov-Shannon Entropy of

ν, defined http://math.stackexchange.com/questions/111260 as mapping

N � n �→ inf

{ J∑
j=1

μ(Sj) · log 1/μ(Sj) : [0; 1] ⊆
J⋃

j=1

Sj , diam(Sj) < 2−n

}
∈ N.

References

[BrGh11] Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and
weak computability. J. Symb. Log. 76(1), 143–176 (2011)

[Coll14] Collins, P.: Computable Stochastic Processes (2014). arXiv:1409.4667
[Cook91] Cook, S.A.: Computability and complexity of higher type functions. In:

Moschovakis, Y.N. (ed.) Logic from Computer Science. Mathematical Sci-
ences Research Institute Publications, pp. 51–72. Springer, Heidelberg
(1991)

[FeHo13] Férée, H., Hoyrup, M.: Higher-order complexity in analysis. In: Proceedings
10th International Conference on Computability and Complexity in Analysis
(CCA 2013)

[FGH13] Férée, H., Gomaa, W., Hoyrup, M.: Analytical properties of resource-
bounded real functionals. J. Complex. 30(5), 647–671 (2014)

[Frie84] Friedman, H.: The computational complexity of maximization and integra-
tion. Adv. Math. 53, 80–98 (1984)

[HeOg02] Hemaspaandra, L.A., Ogihara, M.: The Complexity Theory Companion.
Springer, Heidelberg (2002)

[HiPa13] Higuchi, K., Pauly, A.: The degree structure of Weihrauch-reducibility. Log.
Methods Comput. Sci. 9(2), 1–17 (2013)

[HRW12] Hoyrup, M., Rojas, C., Weihrauch, K.: Computability of the Radon-
Nikodym derivative. Computability 1, 1–11 (2012)

[IBR01] Irwin, R., Kapron, B., Royer, J.: On characterizations of the basic feasible
functionals part I. J. Funct. Program. 11, 117–153 (2001)

[KaCo96] Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility.
SIAM J. Comput. 25(1), 117–132 (1996)

[KaCo10] Kawamura, A., Cook, S.A.: ”Complexity theory for operators in analysis.
In: Proceedings of 42nd Annual ACM Symposium on Theory of Computing
(STOC 2010), pp. 495–502 (2012). (full version in ACM Transactions in
Computation Theory, vol. 4:2 , article 5.)

[KaPa14] Kawamura, A., Pauly, A.: Function spaces for second-order polynomial time.
In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol.
8493, pp. 245–254. Springer, Heidelberg (2014)

[Kawa11] Kawamura, A.: Computational complexity in analysis and geometry, Dis-
sertation, University of Toronto (2011)

[Ko91] Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Boston
(1991)

http://math.stackexchange.com/questions/620959
http://math.stackexchange.com/questions/620959
http://math.stackexchange.com/questions/111260
http://arxiv.org/abs/1409.4667


504 H. Férée and M. Ziegler

[KSZ14] Kawamura, A., Steinberg, F., Ziegler, M.: Complexity of Laplace’s and Pois-
son’s Equation, abstract. Bull. Symb. Log. 20(2), 231 (2014). Full version
to appear in Logical Methods in Computer Science

[KSZ15] Kawamura, A., Steinberg, F., Ziegler, M.: Computational Complexity The-
ory for classes of integrable functions. In: JAIST Logic Workshop Series
(2015)

[MTY14] Mori, T., Tsujii, Y., Yasugi, M.: Computability of probability distributions
and characteristic functions. Log. Methods Comput. Sci. 9, 3 (2013)

[Schr07] Schröder, M.: Admissible representations of probability measures. Electron.
Notes Theoret. Comput. Sci. 167, 61–78 (2007)

[Weih00] Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)



Average-Case Bit-Complexity
Theory of Real Functions

Matthias Schröder1, Florian Steinberg1, and Martin Ziegler1,2(B)

1 TU Darmstadt, Darmstadt, Germany
m@zie.de

2 KAIST, Daejeon, South Korea

Abstract. We introduce, and initiate the study of, average-case bit-
complexity theory over the reals: Like in the discrete case a first, näıve
notion of polynomial average runtime turns out to lack robustness and
is thus refined. Standard examples of explicit continuous functions with
increasingly high worst-case complexity are shown to be in fact easy
in the mean; while a further example is constructed with both worst
and average complexity exponential: for topological/metric reasons, i.e.,
oracles do not help. The notions are then generalized from the reals to
represented spaces; and, in the real case, related to randomized compu-
tation.

1 Introduction and Motivation

In worst-case analyses of algorithms, rare instances may dominate the cost of a
typically easy problem. For example Hoare’s (original) QuickSort in some cases
takes time quadratic in the number N of items but, on average over all possible
input permutations π : [N ] → [N ], only O(N log N) steps — in agreement
with practical experience of usually being a highly efficient method! Moreover
this quasi-linear average-time easily translates into a randomized algorithm with
similar expected worst-case runtime: simply apply a random permutation first.

In general the asymptotic average-case cost of an algorithm is defined with
respect to a fixed probability distribution Pn on all inputs of length n → ∞. The
choice of Pn of course matters and is generally subject to discussion, though.
For instance regarding floating-point calculations, which distribution would you
consider natural on the rational unit cube [0; 1)n∩Q

n, already in case n = 1? The
real cube/torus [0; 1)n on the other hand — and more generally every compact
topological group — does come with a canonical probability measure.

Now Ko and Friedman [KoFr82] have applied discrete complexity theory to
real functions computed by approximation up to absolute output error 1/2n,

Supported in part by the Marie Curie International Research Staff Exchange Scheme
Fellowship 294962 within the 7th European Community Framework Programme,
by the German Research Foundation (DFG) with project Zi 1009/4-1, and by the
International Research Training Group 1529.A preliminary version of this work was
presented at CCA 2015. Note added in proof: Theorem 9 is conditional to the asser-
tion of Lemma 11(c).

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 505–519, 2016.
DOI: 10.1007/978-3-319-32859-1 43



506 M. Schröder et al.

roughly corresponding to n correct binary output digits after the radix point.
This worst-case setting renders purportedly easy numerical operators unusually
hard [Ko91,KORZ14]. We thus suggest applying average-case complexity the-
ory to computation over the reals in the bit model and its generalization over
represented spaces [Weih03,Schr04]. The present work introduces the formal
notions. Section 2 reveals the ‘standard’ examples of explicit (but admittedly
artificial) f : [0; 1] → R with worst-case complexity an exponential tower to
be in fact polynomial-time computable on average; and constructs a function
whose complexity is exponential both on average and in the worst-case. This
complements investigations in the unit-cost model of real computation [Ritt00].
Section 3 then generalizes the relevant concepts from [0; 1] to represented space
in the sense of Weihrauch’s Type-2 Theory of Effectivity (TTE); and establishes
a connection between average-case and randomized expected time complexity.
Our hope, expressed in Sect. 4, is for a rigorous explanation why theoretically
proven hard numerical problems are regularly solved efficiently in practice.

1.1 Real Worst-Case and Average-Case Complexity

In the approximate/analytic model of computing, both real arguments x and
results f(x) cannot be input/output exactly but are approximated by sequences
of floating point numbers with increasing absolute precision. In the following
definition, Item (a) carefully refines [Ko91, Definition 2.1A], [Weih00, Exam-
ple 7.2.14.3], and [KMRZ15, Definition 2.1a].

Definition 1.

(a) A (ρ–) name of a real number x is any integer sequence (am)
m

with am−1
2m ≤

x < am+1
2m . Abbreviate with ρ−1[x] :=

∏

m{�x ·2m�, �1+x ·2m�} the collection
of all such names, considered as subset of the Baire space Z

ω.
(b) A Type-2 Machine MO (i.e. a Turing machine with read-only input and one-

way output tape and access to the — usually empty — oracle O ⊆ {0, 1}∗)
is said to compute the partial function f :⊆ R → R if it, upon input of any
name ā = (am)m (encoded in binary using delimiters while quelling leading
zeros) of some x ∈ dom(f), produces a (similarly encoded) name b̄ = (bn)

n

of f(x).
(c) Refining (b), let TMO (ā, n) ∈ N := {0, 1, 2, . . .} denote the number of steps

MO makes on input ā before producing bn according to (a). Define, for fixed
x ∈ dom(f), the local worst-case running time over all names of x by

TMO (x, n) := sup
{

TMO (ā, n)
∣

∣ ā ∈ ρ−1[x]
} ∈ N̄ := N ∪ {∞}.

(d) The (global) worst-case running time of MO computing f is TMO,f (n) :=
sup{TMO (x, n) : x ∈ dom(f)}. It is (worst-case) polynomial if ∀n :
TMO,f (n) ≤ P (n) holds for some polynomial P ∈ N[N ]; equivalently:
iff N � n 
→ 1

n · supx∈dom(f)

(

TMO (x, n)
)ε is bounded for some ε > 0.



Average-Case Bit-Complexity Theory of Real Functions 507

(e) Let (X,Σ, λ) denote a probability measure space and T : X × N → [0,∞] a
measurable function. Abbreviate with T̄ (n) :=

∫

X
T (x, n) dλ(x) ∈ [0;∞] the

associated average; and call T näıvely polynomial on average if T̄ (n) ≤ P (n)
for some P ∈ N[N ]. On the other hand we say that T is (non-näıvely)
polynomial on average if there exists some ε > 0 such that N � n 
→
1
n

∫

dom(f)

(

T (x, n)
)ε

dx is bounded.
(f) For metric spaces (X, d) and (Y, e), a local modulus of continuity of f :

X → Y is a mapping μ : X × Z → Z̄ := Z ∪ {−∞} satisfying

∀x, x′ ∈ X : d(x, x′) < 2−μ(x,n) ⇒ e
(

f(x), f(x′)
)

< 2−n.

A (global) modulus of (uniform) continuity does not dependent on x.
(g) If (X,Σ, λ) is also a probability measure space, call f Lipschitz on average

if it admits a measurable local modulus of continuity μ such that, for some
constant C and all n, it holds

∫

X
μ(x, n) dλ(x) ≤ n + C.

Note how näıvely and non-näıvely polynomial average running times in (e)
arise from the equivalent notions of polynomial worst-case bounds in (d). How-
ever näıve polynomial averages are not robust under polynomial slowdown; see
[Gold97, Sect. A] or Remark 2(c). Hence we focus in the sequel on the non-näıve
notion — which also underlies Leonid Levin’s structural average-case complexity
theory [BoTr06, Sect. 2.2.1]. Definition 1(g) is motivated by Remark 2(d) below.

Remark 2.

(a) For every compact K ⊆ R, and in particular for the singleton K := {x}, the
set ρ−1[K] :=

⋃

x∈K ρ−1[x] is compact in Z
ω. The mapping ρ−1[K] � ā 
→

TMO (ā, n) ∈ N is locally constant, i.e., continuous. For compact dom(f) the
supremum in Definition 1(d) is thus a maximum and in particular finite.

(b) The mapping x 
→ TMO (x, n) is in general discontinuous: component �x·2m�
of ρ−1[x] ‘jumps’ at dyadic arguments x ∈ Dm := {a/2m : a ∈ Z}. On
the other hand x 
→ TMO (x, n) is locally constant on non-dyadic x �∈ D :=
⋃

m Dm: For m ∈ N and δ := min{|x−x′| : x′ ∈ Dm}, the first m components
of ρ−1[x] and ρ−1[x′] agree whenever |x − x′| < δ; and by continuity of ā 
→
TO

M(ā, n) so do TMO (x, n) and TMO (x′, n) for appropriate m = m(n). The
preimage {x : TO

M(x, n) = N} is thus an open subset of dom(f)∩D plus some
subset of countable D and in particular Σ2–measurable, so Definition 1(e)
indeed applies to TMO .

(c) Let (X,Σ, λ) be a probability measure space, f : X → [0,∞] a measurable

map, and ε > 0. Then
(

∫

X
f(x)ε dλ(x)

)1/ε

≤ ∫

X
f(x) dλ(x) holds according

to the Reverse Hölder Inequality ‖f ·1‖1 ≥ ‖f‖ε ·‖1‖−1/(1/ε−1). In particular
näıve polynomial on average implies polynomial on average — but not vice
versa:

T (x, n) := exp(n) for 0 ≤ x ≤ 1/2n, T (x, n) := 0 for 1/2n < x ≤ 1

has
∫ 1

0
T (x, n) dx = (e/2)n exceeding polynomial growth, but for ε := 1/2 it

holds 1
n

∫ 1

0

√

T (x, n) dx = 1
n (

√
e/2)n → 0.



508 M. Schröder et al.

According to [BoTr06, Proposition 5], T : X × N → [0;∞] is polynomial
on average iff

∃δ > 0 ∃P ∈ N[N ] ∀n ∈ N ∀t > 0 : λ
({x : T (x, n) ≥ t}) ≤ P (n)/tδ.

(d) Continuous f : X → Y is bounded iff it admits a local modulus of continu-
ity attaining the value −∞; it is Lipschitz-continuous iff it admits a global
modulus of continuity of the form n 
→ n + C for some C ∈ N.

If X is convex, n 
→ μ(n + 1) − 1 is again a modulus of continuity: When-
ever d(x, y) < 21−μ(n+1), there exists z ∈ X with d(x, z), d(z, y) < 2−μ(n+1);
hence e

(

f(x), f(y)
) ≤ e

(

f(x), f(z)
)

= e
(

f(z), f(y)
)

< 2−(n+1) + 2−(n+1).
So w.l.o.g. μ(n) ≤ μ(n + 1) − 1, and it suffices to consider the restriction
μ : N → Z̄.

Suppose machine MO computes f :⊆ R → R. Then μ(x, n) :=
TMO (x, n + 1) + 1 is a local modulus of continuity of f ; cmp. [KMRZ15,
Fact 3e].

(e) Suppose f : (0; 1) → R is continuously differentiable with |f ′| decreasing.
Then it has μ(x, n) := �max{n + lb |f ′(x/2)|, ln(2/x)}� as local modulus of
continuity, where lb(x) := ln(x)/ ln(2) denotes the binary logarithm:

By the Mean Value Theorem, to 0 < x < 1 and 0 < h < x, there exists
some ξ ∈ (x−h, x) such that |f(x−h)−f(x)| = |f ′(ξ)| ·h ≤ |f ′(x−h)| ·h <
1/2n and similarly |f(x) − f(x + h)| ≤ |f ′(x − h)| · h < 1/2n: provided
h < min{x/2, 2−n/|f ′(x/2)|} ≥ 2−μ(x,n).

Average-case complexity gauges the expected cost (mostly runtime, but also
memory etc.) of deterministic computations on random inputs — as opposed to
probabilistic/randomized computations; cmp. Definition 7(c,d) below.

2 Average Versus Worst-Case Complexity

Due to its topological/metric aspect, real (as opposed to discrete) complexity
theory permits explicit constructions of provably ‘hard’ functions [KMRZ15,
Fact 3g]. However, these turn out as ‘easy’ on average. In fact, iterating them
yields an arbitrarily large gap between worst-case and average-case complexity;
see Items (a) and (b) in the following

Theorem 3.

(a) The function

f : [0; 1] → [0; 1] with f(0) = 0 and f(x) = 1/ ln(e/x) = 1
1−ln x else

is computable (without oracle) in exponential time but, admitting no subex-
ponential modulus of uniform continuity, not faster, even relative to any
oracle — in the worst case: Its (both näıve and non-näıve) average time
complexity is polynomial. Moreover, f is Lipschitz on average.



Average-Case Bit-Complexity Theory of Real Functions 509

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 1. Graph of the function analyzed in Theorem 3(c)

(b) More generally the d-fold iterate f (d) = f (d−1) ◦ f : [0; 1] → [0; 1] is com-
putable without oracle in time an exponential tower of height d but not faster
in the worst case, even relative to any oracle — while still having (both näıve
and non-näıve) polynomial average time complexity and being Lipschitz on
average.

(c) The function g : [0; 1] → [−1; 1] depicted in Fig. 1 and defined by

0 
→ 0, (2−j ; 2−j+1] � t 
→ sin
(

π · 22
j·j · (t · 2j − 1)

)

/2j , j = 1, 2, . . .

is computable (without oracle) in exponential worst-case time but not in time
polynomial on average (regardless of oracle access).

(d) The function F : (0; 1] × (1;∞) → (1;∞) defined by F (x, n) := x−1+1/n is
polynomial on average, but the composition (x, n) 
→ F

(

x, F (x, n)
)

is not.

Item (c) thus complements (a) and (b) with an instance that is equally hard
in the worst and average case. It can be regarded as an explicit, real, and rela-
tivizing variant of [LiVi97, Theorem 4.6.1]. The proofs are essentially worst-case
and average-case analyses of moduli of continuity, based on Remark 2(d) and
collected in the following subsection.

2.1 Proof of Theorem3

(a) First let us record

f(x) = |f(0) − f(x)| < 1/2n ⇔ x < exp(1 − 2n) = 2(1−2n)/ ln 2 =: xn (1)



510 M. Schröder et al.

So μ is a modulus of uniform continuity of f iff μ(n) ≥ (1 − 2n)/ ln 2 holds
for n ∈ N, requiring exponential worst-case time according to Remark 2(d).
On the other hand, according to Remark 2(e), μ(x, n) = n + lb |f ′(x/2)| ≤
n + lb(2/x) = n − ln(x) is a local modulus of continuity of the restriction
f |(0;1/e] since 0 < f ′(x) = 1

x·(1−ln x)2 = f2(x)/x ≤ 1/x is decreasing on
(0; 1/e]: Observe f ′′(x) =

(

2f(x) − 1
) · f2(x)/x2 < 0 for 0 < x < 1/e. And

μ(x, n) = n is a modulus of uniform continuity of f |[1/e;1] since f ′(x) ≤ 1
there: Together

∫ 1

0
μ(x, n) dx ≤ n + C for some constant C.

Algorithmically, given the desired output precision n and (a sequence of
dyadic approximations am/2m to) x ∈ [0; 1],

(i) Search for one of the overlapping intervals [xk+1;xk−1] to contain x
where k = 1, . . . , n

(ii) If not found, x ≤ xn justifies printing 0 as output approximation accord-
ing to (1).

(iii) Otherwise calculate 1/ ln(e/x) = 1
1+lb(1/x)·ln 2 .

Phase (i) requires comparing approximations up to error 2−2O(k)
and takes

time 2O(k) to do so; k indicating the index of the interval found to contain x.
The reciprocal y := 1/x ≤ 1/xk+1 in Phase (iii) has 2O(k) digits before the
radix point (integer part); hence approximating it up to absolute error 2−n

takes time polynomial in 2O(k)+n. Now lb(y) is the length of the integer part
plus the binary logarithm of the remainder; it thus reduces the magnitude of
the intermediate result, allowing the remaining calculations to be performed
in time polynomial in k+n. Arguments x in the interval [xk;xk−1) of length
xk−1−xk ≤ xk−1 thus suffice with a number of steps polynomial in 2O(k)+n
to process, leading to an average running time of

T̄ (n) ≤
∑

k
poly

(

2O(k) + n
) · xk

bounded by a polynomial in n since the xk decay superexponentially fast.
(b) Consider first the case d = 2 and record that

f
(

f(x)
) ≤ 2−n ⇔ x ≤ exp

(

1 − exp(2n − 1)
)

=: x(2)
n ,

so any modulus μ(2) of uniform continuity of f (2) must be an exponential
tower of height two as lower bound to the worst-case running time.

Conversely (f ◦ f)′(x) = f ′(f(x)
) · f ′(x) =

(

f(f(x))
)2 · f(x)/x ∈ (0; 1/x)

has (f ◦ f)′′(x) =
(

f(f(x))
)2 · f(x) · (f(x) − 1 + 2f(x) · f(f(x))

)

/x2 < 0 for
all x ∈ (0; δ2) where δ2 := 0.32083. Remark 2(e) thus asserts μ(2)(x, n) =
n + lb f ′(x/2) ≤ n − ln(x) to be an integrable local modulus of continu-
ity of f (2)|(0;δ2]; and f (2)|[δ2;1] is even continuously differentiable: together
∫ 1

0
μ(x, n) = n + C for some constant C.



Average-Case Bit-Complexity Theory of Real Functions 511

Replacing in (a) the xk with x
(2)
k yields an algorithm with running time

an exponential tower of height two. More precisely Phase (iii) then takes a
number of steps polynomial in 22

O(k)
+n, leading to an average running time

T̄ (2)(n) ≤
∑

k
poly

(

22
O(k)

+ n
) · x

(2)
k again bounded by polynomial in n.

For general d observe that
(

f (d)
)′(x) = f ′(f (d)(x)

) · (

f (d−1)
)′(x)

=

(

f (d−1)(x)
)2

f (d−1)(x)
· (

f (d−1)(x)
)2 · f (d−2)(x) · · · f (2)(x) · f(x)/x

by induction hypothesis takes values in (0, 1/x] and is strictly decreasing
on (0; δd) for some δd > 0. So similarly define x

(d)
n as exponential tower of

height d + 1 in order to extend the above considerations.
(c) Let us first record that, for a, b ∈ Z and f :⊆ R → R and z ∈ dom(f), μ :

dom(f)×Z → Z is a local modulus of continuity of f iff ν : (y, n) 
→ μ(y·2a+
z, n+b)+a is a local modulus of continuity of f̃(y) := f(y·2a+z)·2b. Moreover
its fractional moments satisfy

∫

ν(y, n)ε dy =
∫ (

μ(x, n + b) + a
)ε

dx/2a.
Now consider an optimal local modulus of continuity of s 
→ sin(πs)/2;
in particular μ(·, n) is 1-periodic and satisfies ∀n < 0 : μ(·, n) ≡ −∞ as
well as ∀n > 1 : μ(·, n) ≥ 1. Then gj := g

∣

∣

(2−j ;2−j+1]
has optimal modulus

μj : (t, n) 
→ μ
(

sj(t), n−j
)

+j+2j2
for sj(t) := 22

j·j ·(t·2j−1) ∈ (0; 22
j·j

]; and
any oracle machine MO computing gj satisfies TMO (t, n) ≥ μj(t, n − 1) − 1
according to Remark 2(d). We can therefore bound the fractional moments
of its running time as follows:

∫ 1

0

(

TMO (t, n)
)ε

dt =

=
∞
∑

j=1

∫ 2−j+1

2−j

(

TMO (t, n)
)ε

dt ≥
∫ 2−j+1

2−j

(

μj(t, n − 1) − 1
)ε

dt
∣

∣

j=n−3

=
∫ 22

j·j

0

(

μ(s, n − 1 − j) − 1 + j + 2j2 − 1
)ε

/2j+2j·j
ds

∣

∣

∣

j=n−3

=
∫ 1

0

(

μ(s, n − 1 − j) − 1 + j + 2j2)ε
ds/2j

∣

∣

∣

j=n−3
≥ (2j2

)ε/2j
∣

∣

∣

j=n−3

since μ(s, n−1−j)−1 ≥ 0. On the other hand g(t) is trivially approximated
by 0 up to error 1/2n for t < 1/2n; and suffices with time polynomial in 2n2

to compute gj(t) in case n ≥ j similarly to a).
(d) Note 1

n

∫

F (x, n) dx = x1/n
∣

∣

1

0
= 1 for all n ≥ 1. On the other hand, abbre-

viating y := 1 − 1/n ∈ (0; 1), F
(

x, F (x, n)
)

= 1
x · xxy ≥ exp(−1/ey)/x is

not even integrable. Indeed, 0 = d
dxxxy

= xy−1 · (y · ln x − 1) · xxy

shows the
minimum of xxy

to be attained at x = exp(−1/y) of value exp(−1/ey). ��



512 M. Schröder et al.

3 Average-Case and Randomized Expected
Polynomial-Time Type-2 Computation

We have so-far focused on average-case complexity of mappings on the certainly
most intuitive domain [0; 1]. Recall that algorithms in the bit-cost model operate
not on real numbers as entities but on sequences of approximations formalized as
ρ–names (Definition 1(a)); and each x ∈ [0; 1] has infinitely many of them: neces-
sarily so, cmp. the proof of [Weih00, Theorem 4.1.15]. Now the above algorithms
and arguments about moduli of continuity did not depend on which of its many
ρ–names a real argument x is given by but it is easy to construct algorithms
that do so, at least artificially. According to Definition 1(c) their average-case
complexity is the mean over all x ∈ [0; 1] in the worst-case over all ρ–names of
x. However a full Average-Complexity Theory should weigh in all names of all
arguments, preferably also for spaces other than [0; 1].

The Type-2 Theory of Effectivity [Weih00, Sect. 3] considers computability
on topological spaces X whose elements are ‘encoded’ by means of infinite binary
sequences according to a fixed partial surjection α :⊆ {0, 1}ω → X called a rep-
resentation. Definition 7 in Subsect. 3.2 thus considers average-case complexity
on X w.r.t. a given probability distribution on dom(α).

3.1 Probability Distributions on the Represented Space [0; 1]

Let X denote some space with representation α :⊆ {0, 1}ω → X. Often a dis-
tribution on X is specified or otherwise canonical; which raises the problem of
suitably refining that to a ‘natural’ one on dom(α), that is, assign sub-weights
to each σ̄ ∈ α−1(x). This may in general be difficult, regarding that already
dom(α) usually has measure zero w.r.t. fair coinflipping on {0, 1}ω; compare the
Borel-Kolmogorov Paradox. On X = [0; 1] we now present two such distributions.

The first one is based on [ScSi06, Definitions 3+5 and Theorems 8+14],
describing probability distributions on dom(α) by means of certain stochastic
processes on {0, 1}∗ in the spirit of [Weih00, Theorem 2.3.7.2]:

Definition 4. Let Σ denote a finite alphabet.

(a) A probabilistic process on Σω is a function π : Σω → [0; 1] mapping the
empty string () to 1 and satisfying π(�w) =

∑

b∈Σ π(�w b) for all �w ∈ Σ∗.
(b) A probabilistic name for a continuous representation α :⊆ Σω → X of a

topological space X is a probabilistic process π on Σω satisfying, for all open
subsets U ⊆ X and all open V1, V2 ⊆ Σω with V1 ∩ dom(α) = α−1[U ] =
V2 ∩ dom(α), π̂(V1) = π̂(V2).

(c) Here π̂ denotes the outer regular Borel measure on Cantor space Σω defined
by π̂(W Σω) :=

∑

�w∈W π(�w) for all prefix-free W ⊆ Σω.

We illustrate this approach for the signed digit representation ρsd on [0; 1], known
[Weih00, Example 7.2.14] uniformly quadratic-time equivalent to the represen-
tation ρ from Definition 1.



Average-Case Bit-Complexity Theory of Real Functions 513

Example 5. Consider alphabets Σ := {0, 1, 1̄} and Σ̄ := {0, 1, 1̄, .} as well as
the mapping

ρsd : 0.0∗1Σω + 1.0∗1̄Σω � b0.b1b2 . . . 
→
∑

n∈N

bn2−n.

Moreover consider the surjective mapping π : Σ̄∗ → [0; 1] with () 
→ 1,

0 
→ 1
2 , 0. 
→ 1

2 , 0.0n 
→ 2−n−1, 0.0n1 
→ 2−n−2, 0.0n1Σm 
→ 2−n−2 · 3−m

1 
→ 1
2 , 1. 
→ 1

2 , 1.0n 
→ 2−n−1, 1.0n1̄ 
→ 2−n−2, 1.0n1̄Σm 
→ 2−n−2 · 3−m

and 0 otherwise. Then π is non-zero precisely on initial segments of dom(ρsd):
π−1(0; 1] = {�w ∈ Σ̄∗ : �wΣω ∩ dom(ρsd) �= ∅}. And π(�w) =

∑

b∈Σ π(�w b) holds,
hence π is a probabilistic name for ρsd : dom(ρsd) → [0; 1] in the sense of
[ScSi06, Definition 5]. Moreover the Borel measure it induces on [0; 1] according
to [ScSi06, Theorem 8] coincides with the canonical one. ��

Also note that π−1(0; 1] is a regular language; while, for the representation ρ
from Definition 1(a), ρ−1[0; 1) seems more complicated. However, since ρ−1[x] is
essentially a complete infinite binary tree for every x, we still can translate the
canonical probability distribution on [0; 1) to a ‘uniform’ one on ρ−1[0; 1) ⊆ N

ω,
implicitly identified by some suitable encoding with a subset of {0, 1}ω.

Example 6. Let ρ :⊆ Z
ω : (am)

m

→ limm am/2m and consider the mapping

[0; 1) × {0, 1}ω � (x, (sm)m

) �→ (�sm + x · 2m�)
m

∈ ρ−1[0; 1) �

∏
m

{0, 1, . . . 2m}

with inverse

(

ρ ⊗ ρ̃
)

: ρ−1[0; 1) � (am)
m


→
(

ρ
(

(am)
m

)

,
(0 : ρ

(

(am)m

) ≥ an/2n

1 : ρ
(

(am)
m

)

< an/2n

)

n

)

,

thus constituting a bijection which is Σ2–measurable: recall Remark 2(b) and
its proof. So we can well-define a Borel probability measure λ̂ on ρ−1[0; 1) as
the pushforward λ̂(A) := (λ ⊗ λ̃)

(

(ρ ⊗ ρ̃)[A]
)

, where λ ⊗ λ̃ denotes the product
measure on the Borel subsets of [0; 1) × {0, 1}ω induced jointly by Lebesgues’
λ on [0; 1) and by the canonical/uniform/fair-coin-flip measure λ̃ on {0, 1}ω,
defined by �s◦{0, 1}ω 
→ 2−|�s|; equivalently: λ⊗ λ̃ is the Haar measure on [0; 1)×
{0, 1}ω considered as compact topological group w.r.t.

(

x, (sm)m , y, (rm)m

) 
→
(

x + y mod 1, (sm + rm mod 2)m

)

. ��

3.2 Local Deterministic Average Versus Randomized Expected
Worst-Case

We are now ready to formalize average-case complexity theory on represented
spaces — and randomized type-2 computation:



514 M. Schröder et al.

Definition 7.

(a) Fix a finite alphabet Σ and a Type-2 Machine MO computing some function
F :⊆ Σω → Σω. Let TMO (s̄, n) denote the number of steps MO makes on
input s̄ before producing the n-th symbol of F (s̄), and fix a Borel probabil-
ity measure λ on dom(F ). MO computes F in λ–average polynomial time
iff there exists some ε > 0 such that N � n 
→ 1

n

∫

dom(F )

(

TMO (s̄, n)
)ε

dλ(s̄)
is bounded.

(b) Let X be a compact topological space with continuous representation α :⊆
Σω → X and compact dom(α) ⊆ Σω equipped with Borel probability measure
λ. Let β :⊆ Σω → Y denote another represented space and consider a partial
multivalued mapping f :⊆ X ⇒ Y . It is (α, β)–computable in λ–average
polynomial time (relative to oracle O) iff there exists a Type-2 machine
MO computing in λ–average polynomial time according to a) some (α, β)–
realizer F : α−1[dom(f)] → dom(β) of f in the sense that β

(

F (s̄)
) ∈ f

(

α(s̄)
)

for every s̄ ∈ dom(α) with f
(

α(s̄)
) �= ∅.

(c) We say that F :⊆ Σω → Σω is computed by a randomized Type-2 Machine
M if M is an ordinary Type-2 machine computing the mapping dom(F ) ×
{0, 1}ω � (s̄, r̄) 
→ F (s̄). Its expected local runtime is Er̄

[

TM(s̄, r̄, n)
]

, where
Er̄[T (r̄)] :=

∫

{0,1}ω T (r̄) dλ(r̄) denotes the expected value of measurable T :
{0, 1}ω → [0;∞].

(d) Similarly, f :⊆ X ⇒ Y is (α, β)–computable in (worst-case) expected poly-
nomial time iff there exists ε > 0 and a randomized Type-2 machine M
computing some (α, β)–realizer F : α−1[dom(f)] → dom(β) of f such that
α−1[dom(f)] × N � (s̄, n) 
→ 1

n

(

T̄M(s̄, n)
)ε is bounded.

Randomized computation is ubiquitous in the discrete realm [HMRR98]. In the
type-2 setting it has been considered for instance in [Boss08,BHG13]; see also
[Ko91, Definition 5.27]. Our conception here corresponds in the discrete realm to
the complexity class ZPP, namely total and always correct Las Vegas algorithms
with expected polynomial runtime almost surely in the worst-case w.r.t. input
s̄ on average w.r.t. the additional input r̄ that does not affect correctness. Bets
are generally inclined towards ZPP = P.

Recall that Definition 1(d) considered the maximum runtime over all possible
names of every fixed real argument x, on average w.r.t. x ∈ dom(f); whereas
Definition 7(b) takes the average runtime over all names of elements in dom(f).
And as already indicated an algorithm may well be fast on some names of an
argument x yet slow on other names of the same x. This raises the question of
whether such a dependence can always be removed. We show that in the real case
it probably (pun) can: Similarly to QuickSort mentioned initially — although
by more involved methods and analyses — randomization turns average into
expected worst-case behaviour in the sense of the following tailored

Definition 8. Suppose M computes f :⊆ R → R. Let, for fixed x ∈ dom(f),
denote by

T̄M(x, n) :=
∫

s̄∈{0,1}ω

TM
(

(ρ ⊗ ρ̃)−1(x, s̄), n
)

dλ̃(s̄)



Average-Case Bit-Complexity Theory of Real Functions 515

its local average running time over all (ρ-) names ā of x, where λ̃ denotes the
canonical measure on {0, 1}ω. W.l.o.g. T̄M(x, n) ≥ 1 for all x, n.

Theorem 9. Suppose M computes f : [0; 1) → R in polynomial average local
average time in the sense that there exists ε > 0 rendering N � n 
→ 1

n ·
∫ 1

0

(

T̄M(x, n)
)ε

dx bounded.
Then f is also computable by a randomized Type-2 Machine in polynomial

average expected worst-case time in the following sense: There exists some δ > 0
and a Type-2 Machine M′ producing, given any ρ-name ā ∈ N

ω of some x ∈
[0; 1) and any infinite binary string r̄ ∈ {0, 1}ω, a ρ-name b̄ ∈ Z

ω of f(x) such
that the following map is well-defined and bounded:

N � n 
→ 1
n

∫

[0;1)

Er̄

[

TM′(x, r̄, n)
]δ

dx,

recalling the local worst-case runtime TM′(x, r̄, n) = sup
{

TM′(ā, r̄, n)
∣

∣ ā ∈
ρ−1[x]

}

.

Note that both hypothesis and conclusion are concerned with double integrals
1
∫

0

∫

{0,1}ω

· · · dλ̃ dx. However the bijection ρ ⊗ ρ̃ between ρ−1[0; 1) and [0; 1) ×
{0, 1}ω employed in Definition 8 is far from effective, not to mention efficient!

3.3 Proof of Theorem9

Intuitively, a machine M computing f : [0; 1) → R in polynomial average local
average time will be efficient in evaluating x 
→ f(x) for ‘most’ of the ρ–names
ā′ = (a′

m)
m

∈ N
ω of ‘most’ x; but could take very long time for ‘few bad’ names

ā that is, have large T (x, n) but small T̄ (x, n) for some (and possibly not so few)
x. So the idea is to have an algorithm first replace every bad input ā with with a
good name ā′ of the same x — but of course we merely know such ā′ to exist and
be abundant; so let us exploit randomization to guess, given ā, an equivalent but
good ā′ with sufficiently high probability. Now according to Example 6 the set
ρ−1[x] of names ā′ of x is an infinite binary tree; so it seems promising to create
a random name by traversing this tree and branching according to the random
coin flip sequence r̄. Unfortunately the above bijection between ρ−1[0; 1) � ā
and [0; 1) × {0, 1}ω is non-effective, not to mention efficient.

Observation 10. Consider 0 < m ∈ N, a ∈ Z, and the interval Ia,m :=
[

a−1
2m ; a+1

2m

)

according to Definition 1(a). Let k = k(a) ∈ N be maximal such
that 2k divides a, written 2k

∣

∣ a. Then there exist precisely 2m−k pairs (m′, a′)
with N � m′ < m and a′ ∈ Z and Ia′,m′ ⊇ Ia,m.

Proof. Suppose a is odd (i.e. k = 0). Then I�a/2�,m−1, I	a/2
,m−1 are two
subintervals of the claimed form containing Ia,m. If a is even, however, then
Ib,m−1 ⊆ Ia,m iff b = a/2: only one. Inductively, I�b/2�,m−1 and I	b/2
,m−1 are
the unique subintervals containing Ib,m or Ib+1,ms for even b. ��



516 M. Schröder et al.

So consider the machine M′ which, given a ρ–name ā of x, behaves at
phase m ∈ N as follows: Read am and produce, for km = k(am) ∈ N, one of
the 2m−km finite sequences (a′

0, a
′
1, . . . , a

′
m−1) satisfying Ia′

0,1, . . . , Ia′
m−1,m−1 ⊇

Iam,m according to Observation 10 uniformly at random; then simulate M on
this modified input — until the latter requests to read the (m + 1)-st data: in
which case M′ restarts and enters phase m + 1 (this time of course quelling any
output bn of M already printed during phase m).

Note that, since Ia′
j ,j ⊆ Iam,m for all j < m, the partial name

(a′
0, a

′
1, . . . a

′
m−1) extends to a total one ā′ of the same x; hence M′ indeed

produces a name b̄ of f(x). In fact, according to Observation 10, the name ā′ of
x that phase m simulates M on is chosen uniformly at random among 2m−k(am)

of the 2m possible ones according to Definition 1(a). And by Markov’s Inequal-
ity this reduced sample Am(ā) still yields an expected local runtime that does
not exceed the average T̄M(x, n) by too much — at least for sufficiently many
x ∈ [0; 1), based on the following

Lemma 11.

(a) For x ∈ [0; 1) and m ∈ N abbreviate k(x,m) := max
(

k(�x · 2m�), k(�1 + x ·
2m�)). Then

∫ 1

0
ck(x,m) dx < 4−c

2−c whenever 0 ≤ c < 2.
(b) For ā ∈ ρ−1[0; 1) and r̄ ∈ {0, 1}ω let M = M(ā, r̄, n) ∈ N denote the index

of the phase in which M′ simulating M first achieves guaranteed output
precision 1/2n. Then it holds

Er̄

[

TM′(ā, r̄, n)
∣

∣ M = m
] ≤ poly

(

2k(ρ(ā),m) · T̄M
(

ρ(ā), n
)

)

,

where E[ X | C ] generically denotes the expected value of random variable
X : Ω → R conditional to measurable C ⊆ Ω and “Y = y” is short for
{ω : Y (ω) = y}.

(c) To every q ≥ 1 there exists a Cq ∈ N such that every wm ≥ 0 and integrable
gm : [0; 1] → [0;∞] (m ∈ N) satisfies

∫ 1

0

(
∑

m
wm · gq

m(x)
)1/q

dx ≤ Cq · (
∑

m
wm

)1/q · sup
m

∫ 1

0

gm(x) dx.

Making M′ double, instead of incrementing, m in each phase can improve the
polynomial bound in (b) to a linear one but is beyond our present purpose.

Proof.

(a) First consider k′(x,m) := max{k ≤ m : 2k
∣

∣ �x · 2m�}. Then k′(x,m) =
min{k(a),m} for all a ∈ Am := {0, 1, . . . , 2m − 1} and a

2m ≤ x < a+1
2m .

Moreover precisely half of the (i.e. 2m−1 many) a ∈ Am are odd, that is,
have k(a) = 0; 2m−2 of a ∈ Am have k(a) = 1, 2m−3 with k = 2, and so on
until 2m−(m−1) = 2 with k = m−2 (namely a = 2m−2 and a = 3 ·2m−2), one
(namely a = 2m−1) with k = m − 1, and one (namely a = 0) with k = m).
Hence

∫ 1

0
ck′(x,m) dx =

∑2m−1
a=0 cmin{k(a),m}/2m =

c0/2 + c1/4 + c2/8 + · · · + cm−2/2m−1 + cm−1/2m + (cm/2m+1

︸ ︷︷ ︸

+cm/2m+1)



Average-Case Bit-Complexity Theory of Real Functions 517

is a geometric sum bounded by 1
2 · 1

1−c/2 + 1
2 = 4−c

4−2c . Similarly,
1+1/2m

∫

1/2m

ck′(x,m) dx < 4−c
4−2c . Finally observe k(x,m) = max{k′(x,m), k′(x +

1/2m,m)}.
(b) Let Am(ā) ⊆ ρ−1[ρ(ā)] denote the set of ρ–names ā′ which M′ on input

ā samples from in phase m according to Observation 10, that is, with
λ̃
(

ρ̃[Am(ā)]
)

= 2−k(am). By Markov’s Inequality for non-negative TM, the
expected runtime of M restricted to Am is not too much larger than the
average runtime over entire ρ−1[ρ(ā)]: By abuse of names,

Eā′
[

TM(ā′, n)
∣

∣ Am

] · λ̃(Am) ≤ Eā′
[

TM(ā′, n)
∣

∣ ρ−1[x]
]

= T̄M(x, n).

Moreover, M can in each step read at most one data item; hence the number
m of phases performed by M′, each taking time polynomial in TM, satisfies
m ≤ TM. The claim thus follows from stochastic independence of the coin
flips during distinct phases. ��

We can conclude the average expected runtime analysis: According to
Lemma 11(b) there exists some d ∈ N with Er̄

[

TM′(x, r̄, n)
∣

∣ M = m
] ≤

d · 2d·k(x,m) · T̄ d
M(x, n) since the right-hand side only depends on ρ(ā) and not

on ā itself. Let δ := min(ε/2, 1/4)/d. Then, by virtue of the Cauchy-Schwarz
inequality in (*),

∫ 1

0

Er̄

[

TM′(x, r̄, n)
]δ

dx/n =

= 1
n

∫ 1

0

(
∑

m
P[M = m] · E

[

TM′(x, r̄, n)
∣

∣ M = m
])δ

dx

≤ 1
n

∫ 1

0

dδ · T̄ d·δ
M (x, n) · (

∑

m
P[M = m] · 2d·k(x,m)

)δ
dx

(∗)
≤ dδ

n

√

√

√

√

√

∫ 1

0

T̄ 2d·δ
M

︸ ︷︷ ︸

≤T̄ ε
M

(x, n) dx ·
√

√

√

√

∫ 1

0

(
∑

m
P[M = m]
︸ ︷︷ ︸

=:wm

· 2d·k(x,m)
︸ ︷︷ ︸

≤gq
m(x)

)2δ
dx

≤ dδ

n ·
√

O(n) ·
√

√

√

√

(

∑

m

P[M = m]
)1/q

· sup
m

∫ 1

0

gm(x) dx ≤ O(1)

by hypothesis and Lemma 11(a,c) for gm(x) :=
√

2
k(x,m)

and 1/q := 2δ. ��

4 Conclusion and Perspectives

We have transferred average-case complexity from the discrete realm to func-
tions on the reals with its natural probability distribution; and we have demon-
strated (the ‘standard’ and generalized) examples of high worst-case complexity



518 M. Schröder et al.

to have in fact polynomial average-case complexity; while a more involved one
has both average and worst-case complexity exponential in the output precision:
for topological/metric reasons, i.e., oracles do not help. We have generalized
these notions to represented spaces equipped with a probability distribution;
and described and analyzed a randomized algorithm replacing worst-case inputs
with equivalent, ‘typical’ ones, thus turning average into expected runtime.

In fact average-case complexity theory explains for, and bridges, the apparent
gap between many problems being hard in theory while admitting apparently
efficient solutions in practice — in the discrete case: cmp., e.g., [COKJ10].

A similar effect has been observed, but lacks explanation, in real complex-
ity theory: [Ko91, Theorems 3.7 + 5.33] construct polynomial-time computable
smooth functions f : [0; 1] → [0; 1] whose running maximum or Riemann integral
are again polynomial-time computable iff P = NP or FP = #P, respectively;
however on ‘typical/practical’ instances f standard numerical methods seem to
work very well, hinting that the hard ones may in some sense be rare — and
maximization/integration perhaps in fact easy ‘on average’ w.r.t. to an appro-
priate probability distribution on a suitable space of continuous real functions,
such as the Wiener measure.

References

[BHG13] Brattka, V., Hölzl, R., Gherardi, G.: Probabilistic computability and
choice. Inf. Comput. 242(C), 249–286 (2015)

[Boss08] Bosserhoff, V.: Notions of probabilistic computability on represented
spaces. J. Univ. Comput. Sci. 146(6), 956–995 (2008)

[BoTr06] Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends
Theor. Comput. Sci. 2(1), 1–106 (2006). arXiv:cs/0606037

[COKJ10] Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all k-
colorable graphs are easy to color. Theor. Comput. Syst. 46(3), 523–565
(2010)

[Gold97] Goldreich, O.: Notes on Levin’s theory of average-case complexity. In:
Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol.
6650, pp. 233–247. Springer, Heidelberg (2011)

[HMRR98] Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilis-
tic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg
(1998)

[KMRZ15] Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational ben-
efit of smoothness: parameterized bit-complexity of numerical operators
on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714
(2015)

[KoFr82] Ko, K.-I., Friedman, H.: Computational complexity of real functions.
Theor. Comput. Sci. 20, 323–352 (1982)

[Ko91] Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser,
Boston (1991)

[KORZ14] Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational com-
plexity of smooth differential equations. Log. Methods Comput. Sci. 10,
1 (2014)

http://arxiv.org/abs/cs/0606037


Average-Case Bit-Complexity Theory of Real Functions 519

[LiVi97] Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its
Applications. Springer, Heidelberg (1997)

[Ritt00] Ritter, K. (ed.): Average-Case Analysis of Numerical Problems. Lecture
Notes in Mathematics, vol. 1733. Springer, Heidelberg (2000)

[Schr04] Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math.
Log. Q. 50, 443–459 (2004)

[ScSi06] Schröder, M., Simpson, A.: Representing probability measures using
probabilistic processes. J. Complex. 22, 768–782 (2006)

[Weih00] Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
[Weih03] Weihrauch, K.: Computational complexity on computable metric spaces.

Math. Log. Q. 49(1), 3–21 (2003)



Certifying Trajectories of Dynamical Systems

Joris van der Hoeven(B)

Laboratoire d’informatique, UMR 7161 CNRS,
Campus de l’École polytechnique, 1, rue Honoré d’Estienne d’Orves,

Bâtiment Alan Turing, CS35003, 91120 Palaiseau, France
vdhoeven@texmacs.org

Abstract. This paper concerns the reliable integration of dynamical
systems with a focus on the computation of one specific trajectory for
a given initial condition at high precision. We describe several algorith-
mic tricks which allow for faster parallel computations and better error
estimates. We also introduce “Lagrange models”. These serve a similar
purpose as the more classical Taylor models, but we will show that they
allow for larger step sizes, especially when the truncation orders get large.

Keywords: Reliable computation · Dynamical systems · Certified
integration · Ball arithmetic · Taylor models · Multiple precision
computations

A.M.S. subject classification: 65G20, 37-04

1 Introduction

Description of the problem and background. Let Φ ∈ C[F1, . . . , Fd]d be a poly-
nomial vector field and consider the dynamical system

f ′ = Φ(f). (1)

Given an initial condition f(u) = I ∈ Cd at u ∈ R, a target point z > u such
that f is analytic on [u, z], the topic of this paper is to compute f(z).

On actual computers, this problem can only be solved at finite precisions,
although the user might request the precision to be as large as needed. One
high level way to formalize this is to assume that numbers in the input (i.e. the
coefficients of Φ and I, as well as u and z) are computable [26,27] and to request
f(z) again to be a vector of computable complex numbers.

From a practical point of view, it is customary to perform the computations
using interval arithmetic [1,9,11,17–19,24]. In our complex setting, we prefer to
use a variant, called ball arithmetic or midpoint-radius arithmetic. In our main
problem, this means that we replace our input coefficients by complex balls, and
that the output again to be a vector of balls. Throughout this paper, we assume
that the reader is familiar with interval and ball arithmetic. We refer to [5,7] for
basic details on ball arithmetic.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 520–532, 2016.
DOI: 10.1007/978-3-319-32859-1 44



Certifying Trajectories of Dynamical Systems 521

It will be convenient to denote balls using a bold font, e.g. f(z) ∈ CCCd. The
explicit compact ball with center c and radius r will be denoted by B(c, r). Vector
notation will also be used systematically. For instance, if c ∈ Cd and r ∈ (R>)d

with R> = {x ∈ R : x > 0}, then B(c, r) = (B(c1, r1), . . . ,B(cd, rd)).
Sometimes, it is useful to obtain further information about the dependence of

the value f(z) on the initial conditions; this means that we are interested in the
flow f(z, I), which satisfies the same differential Eq. (1) and the initial condition
f(u, I) = I. In particular, the first variation V = ∂f/∂I is an important quantity,
since it measures the sensitivity of the output on the initial conditions. If κ denotes
the condition number of V , then it will typically be necessary to compute with a
precision of at least log2 κ bits in order to obtain any useful output.

There is a vast literature on the reliable integration of dynamical systems
[3,10,12–17,20–22]. Until recently, most work focused on low precision, allowing
for efficient implementations using machine arithmetic. For practical purposes, it
is also useful to have higher order information about the flow. Taylor models are
currently themost efficient device for performing this kind of computations [14,15].

Main strategy for certification of high precision trajectories. In this paper, we are
interested in the time complexity of reliable integration of dynamical systems.
We take a more theoretical perspective in which the working precision might
become high. We are interested in certifying one particular trajectory, so we do
not request any information about the flow beyond the first variation.

From this complexity point of view it is important to stress that there is
a tradeoff between efficiency and quality: faster algorithms can be designed if
we allow for larger radii in the output. Whenever one of these radii becomes
infinite, then we say that the integration method breaks down: a ball with infinite
radius no longer provides any useful information. Now some “radius swell” occurs
structurally, as soon as the condition number of V becomes large. But high
quality integration methods should limit all other sources of precision loss.

The outline of this paper is as follows:

1. For problems from reliable analysis it is usually best to perform certifications
at the outermost level. In our case, this means that we first compute the
entire numeric trajectory with a sufficient precision, and only perform the
certification at a second stage. We will see that this numeric computation is
the only part of the method which is essentially sequential.

2. The problem of certifying a complete trajectory contains a global and a local
part. From the global point of view, we need to cut the trajectory in smaller
pieces that can be certified by local means, and then devise a method to
recombine the local certificates into a global one.

3. For the local certification, we will introduce Lagrange models. As in the case
of Taylor models, this approach is based on Taylor series expansions, but the
more precise error estimates allow for larger time steps.

The first idea has been applied to many problems from reliable computation
(it is for instance known as Hansen’s method in the case of matrix inversion).



522 J. van der Hoeven

Nevertheless, we think that progress is often possible by applying this simple
idea even more systematically.

Outline of the paper. In Sect. 2, we start with a quick survey of the most signifi-
cant facts about numerical integration schemes for the Eq. (1). We also present a
new parallel and dichotomic algorithm for increasing the precision of an already
computed trajectory. In Sect. 3, we will see that a similar strategy can be used
for certifying trajectories.

In Sect. 3 we present a method for reducing the problem of certifying a global
trajectory to the local problem of certifying sufficiently short trajectories. It is
interesting to compare this approach with the more classical stepwise certifi-
cation scheme, along with the numerical integration itself. The problem with
stepwise schemes is that they are essentially sequential and thereby give rise to
a linear precision loss in the number of steps. The global approach reduces this
to a logarithmic precision loss only. The global strategy already pays off in the
linear case [3] and it is possible to reorganize the computations in such a way
that they can be re-incorporated into an iterative scheme. The global approach
was first generalized to the non linear case in [5]. Our current presentation has
the merit of conceptual simplicity and ease of implementation.

The main contribution of this paper concerns the introduction of “Lagrange
models” and the way that such models allow for larger time steps. This mate-
rial is presented in Sect. 4; an earlier (non refereed) version appeared in the
lecture notes [7]. Classical Taylor models approximate analytic functions f on
the compact unit disk (say) by a polynomial P ∈ C[z] of degree < n and an
error ε � 0 with the property that |f(z) − P (z)| � ε for all |z| � 1. The idea
behind Lagrange models is to give a more precise meaning to the “big Oh” in
f(z) = f0 + · · · + fn−1z

n−1 + O(zn). More precisely, it consists of a polyno-
mial P ∈ CCC[z] of degree < n with ball coefficients and an ε � 0 such that
f(z) ∈ P (z) + B(0, ε)zn for all |z| � 1. The advantage comes from the fact
that the integration operator has norm 1 for general analytic functions on the
unit disk but only norm 1/(n + 1) for analytic functions that are divisible by
zn. Although Lagrange model arithmetic can be a constant times more expen-
sive than Taylor model arithmetic, the more precise error estimates allow us to
increase the time step.

2 Fast Numerical Integration

2.1 Classical Algorithms

From a high level perspective, the integration problem between two times u < z
can be decomposed into two parts: finding suitable intermediate points u = z0 <
z1 < · · · < zs−1 < zs = z and the actual computation of f(zk) as a function
of f(zk−1) for k = 1, . . . , s (or as a function of f(zk−1), . . . , f(zk−i) for some
schemes).

The optimal choice of intermediate points is determined by the distance to
the closest singularities in the complex plane as well as the efficiency of the



Certifying Trajectories of Dynamical Systems 523

scheme that computes f(zk) as a function of f(zk−1). For t ∈ [u, z], let �(t) be
the convergence radius of the function f at t. High order integration schemes will
enable us to take |zk − zk−1| � c�(zk−1) for some fixed constant c > 0. Lower
order schemes may force us to take smaller steps, but perform individual steps
more efficiently. In some cases (e.g. when f admits many singularities just above
the real axis, but none below), it may also be interesting to allow for intermediate
points z1, . . . , zs−1 in C that keep a larger distance with the singularities of f .

For small working precisions, Runge-Kutta methods [23] provide the most
efficient schemes for numerical integration. For instance, the best Runge-Kutta
method of order 8 requires 11 evaluations of f for each step. For somewhat
larger working precisions (e.g. quadruple precision), higher order methods may
be required in order to produce accurate results. One first alternative is to use
relaxed power series computations [4,8] which involve an overhead n2 for small
orders n and n log2 n for large orders. For very large orders, a power series
analogue of Newton’s method provides the most efficient numerical integration
method [2,6,25]. This method actually computes the first variation of the solu-
tion along with the solution itself, which is very useful for the purpose of this
paper.

2.2 Parallelism

Another interesting question concerns the amount of computations that can be
done in parallel. In principle, the integration process is essentially sequential
(apart from some parallelism which may be possible at each individual step).
Nevertheless, given a full numeric solution at a sufficiently large precision p, we
claim that a solution at a roughly doubled precision can be computed in parallel.

More precisely, for each z, u and I, let f(z, u, I) be the solution of (1) with
f(u, u, I) = I, and denote V (z, u, I) = (∂f/∂I)(z, u, I). We regard f(z, u, I) as
the “transitional flow” between u and z, assuming the initial condition I at u.
Notice that V (u, u, I) = Id and, for u < v < z,

f(z, u, I) = f(z, v, f(v, u, I))
V (z, u, I) = V (z, v, f(v, u, I))V (v, u, I).

Now assume that we are given fk,0;p ≈ f(zk) for k = 1, . . . , s and at precision p.
Then we may compute Vk,k−1;p ≈ V (zk, zk−1, f(zk−1)) in parallel at precision p.
Using a dichotomic procedure of depth �log2 s�, we will compute fk,0;2p ≈ f(zk)
at precision 2p in parallel for k = 1, . . . , s, together with Vk,0;p ≈ V (zk, z0, f(z0))
at precision p.

More precisely, assume that s � 2 and let m = �s/2�. We start with the
recursive computation of fk,0;2p ≈ f(zk) and fm+k,m;2p ≈ f(zm+k, zm, fm;p) at
precision 2p for k = 1, . . . , m (resp. k = 1, . . . , s − m), together with Vk,0;p ≈
V (zk, z0, f(z0)) and Vm+k,m;p ≈ V (zm+k, zm, f(zm)) at precision p. Setting δ =
fm,0;2p − fm,0;p, we take

fm+k,0;2p := fm+k,m;2p + Vm+k,m;pδ

Vm+k,0;p := Vm+k,m;pVm,0;p



524 J. van der Hoeven

for k = 1, . . . , s − m. These formulas are justified by the facts that

f(zm+k) ≈ f(zm+k, zm, fm,0;p + δ)
≈ fm+k,m;2p + Vm+k,m;pδ

at precision 2p and V (zm+k, z0, f(z0)) ≈ Vm+k,m;pVm,0;p at precision p.
The above algorithm suggests an interesting practical strategy for the inte-

gration of dynamical systems on massively parallel computers: the fastest proces-
sor(s) in the system plays the rôle of a “spearhead” and performs a low precision
integration at top speed. The remaining processors are used for enhancing the
precision as soon as a rough initial guess of the trajectory is known. The spear-
head occasionally may have to redo some computations whenever the initial guess
drifts too far away from the actual solution. The remaining processors might also
compute other types of “enhancements”, such as the first and higher order vari-
ations, or certifications of the trajectory. Nevertheless, the main bottleneck on
a massively parallel computer seems to be the spearhead.

3 Global Certification

3.1 From Local to Global Certification

A certified integrator of the dynamical system (1) can be defined to be a ball
function

f : (z, u, I) �→ f(z, u, I)

with the property that f(z, u, I) ∈ f(z, u, I) for any u < z and I ∈ I. An
extended certified integrator additionally requires a ball function

V : (z, u, I) �→ V (z, u, I)

with the property that V (z, u, I) ∈ V (z, u, I) for any u < z and I ∈ I.
A local certified integrator of (1) is a special kind of certified integrator which

only produces meaningful results if z and u are sufficiently close (and in particu-
lar |z−u| < �(u)). In other words, we allow the radii of the entries of f(z, u, I) to
become infinite whenever this is not the case. Extended local certified integrators
are defined similarly.

One interesting problem is how to produce global (extended) certified inte-
grators out of local ones. The most naive strategy for doing this goes as fol-
lows. Assume that we are given a local certified integrator f loc, as well as
u < z and I. If the radii of the entries of f loc(z, u, I) are “sufficiently small”
(finite, for instance, but we might require more precise answers), then we define
fglob(z, u, I) := f loc(z, u, I). Otherwise, we take v = (z + u)/2 and define
fglob(z, u, I) := fglob(z, v,fglob(v, u, I)). One may refine the strategy by includ-
ing additional exception handling for breakdown situations. It is well known
that, unfortunately, this naive strategy produces error estimates of extremely
poor quality (due to the wrapping effect, and for several other reasons).



Certifying Trajectories of Dynamical Systems 525

3.2 Certifying a Numerical Trajectory

A better strategy is to first compute a numerical solution to (1) together with
its first variation and to certify this “extended solution” at a second stage. So
assume that we are given a subdivision u = z0 < · · · < zs = z and approximate
values f0 ≈ f(z0), . . . , fs ≈ f(zs), as well as V0 ≈ V (z0), . . . , Vs ≈ V (zs). We
proceed as follows:

Stage 1. We first produce reasonable candidate enclosures f1 = f(z1, z0, I), . . . ,
fs = f(zs, z0, I) with f(zk, z0, I) ∈ fk for all k = 1, . . . , s and I ∈ I. Let f0
denote the center of f0 = I, ρ its radius, and let p be the current working
precision. For some large constant K � 1, a good typical ansatz would be to
take

fk = fk + 2Vkδ,

where

δ = B(0, ρ + K2−p|f0|).
At the very end, we will have to prove the correctness of the ansatz, thereby
producing a certificate for the numerical trajectory.

Stage 2. We compute V k,k−1 = V loc(zk, zk−1,fk−1) for k = 1, . . . , s using an
extended local integrator. Given 0 � j < k � s, and assuming correctness of the
ansatz enclosures f j , . . . ,fk−1, this provides us with a certified enclosure

V k,j = V k,k−1 · · · V j+1,j (2)

for V (zk, zj ,f j).

Stage 3. We compute ϕk,k−1 = f loc(zk, zk−1,B(fk−1, 0)) for k = 1, . . . , s using
a local integrator. Given 0 � j < k � s, and assuming correctness of the ansatz
enclosures f j , . . . ,fk−1, this provides us with certified enclosures

ϕk,j = fk +
k

∑

i=j+1

V k,i(f i,i−1 − fi) (3)

fk,j = ϕk,j + V k,j(f j − fj) (4)

for f(zk, zj ,B(fj , 0)) and f(zk, zj ,f j).

Stage 4. We finally check whether fk,0 ⊆ fk for k = 1, . . . , s. If this is the case,
then the correctness of the ansatz fk follows by induction over k. Otherwise, for
each index k with fk,0 � fk we replace our ansatz fk by a new one f̃k as follows:
we consider δk,0 := fk,0 −fk, δk := fk −fk, and take f̃k := fk +2 sup(δk,0, δk).
We next return to Stage 2 with this new ansatz. We return an error if no cer-
tificate is obtained after a suitable and fixed number of such iterations.



526 J. van der Hoeven

Remark 1. If we want to certify our trajectory with a high precision p, then
we clearly have to compute the enclosures fk with precision p. On the other
hand, the enclosures V k,j are only needed during the auxiliary computations (3)
and (4) and it actually suffices to compute them with a much lower precision
(which remains bounded if we let p → ∞). For the initial ansatz, we essentially
need this precision to be sufficiently large such that V kδ ⊆ 2Vkδ for k = 1, . . . , s.
In general, we rather must have fk + V kδ ⊆ fk.

3.3 Algorithmic Considerations and Parallelism

The next issue concerns the efficient and high quality evaluation of the formu-
las (2) and (3). The main potential problem already occurs in the case when Φ is
constant, and (2) essentially reduces to the computation of the k-th power V k of
a ball matrix V . Assuming standard ball matrix arithmetic, the naive iterative
method

V k = V V k−1

may lead to an exponential growth of the relative error as a function of k. Here
we understand the relative error of a ball matrix to be the norm of the matrix of
radii divided by the norm of the matrix of centers. The bad exponential growth
occurs for instance for the matrix

V =
(

1 1
−1 1

)

,

which corresponds to the complex number 1+i. The growth remains polynomial
in k in the case of triangular matrices V . When using binary powering

V 2k = V kV k

V 2k+1 = V V kV k,

the growth of the relative error is systematically kept down to a polynomial in k.
For this reason, it is recommended to evaluate (2) and (3) using a similar

dichotomic algorithm as in Sect. 2.2. More precisely, we will compute ϕk,0 and
V k,0 using a parallel dichotomic algorithm for k = 1, . . . , s. Assuming that s � 2,
let m = �s/2�. We start with the recursive computation of ϕk,0 and V k,0 for
k = 1, . . . , m, as well as ϕm+k,m and V m+k,m for k = 1, . . . , s − m. Then we
compute

V m+k,0 := V m+k,mV m,0

ϕm+k,0 := ϕm+k,m + V m+k,m(ϕm,0 − fm)

for k = 1, . . . , s − m.
The depth of this dichotomic method is O(log s). Given the initial numerical

trajectory, it follows that the cost of the certification grows only with log s on
sufficiently parallel computers. It is also interesting to notice that the parallel



Certifying Trajectories of Dynamical Systems 527

dichotomic technique that we used to double the precision uses very similar ingre-
dients as the above way to certify trajectories. We found this analogy to apply
on several other occasions, such as the computation of eigenvalues of matrices.
This is probably due to the similarity between ball arithmetic and arithmetic in
jet spaces of order one.

4 Lagrange Models

4.1 Taylor Models

Let D = B(0, r) be the compact disk of center zero and radius r. A Taylor model
of order n ∈ N on D consists of a polynomial P ∈ C[z] of degree < n together
with an error ε ∈ R>. We will denote such a Taylor model by P + BD(ε)
and consider it as a ball of functions: given an analytic function f on D and
f = P + BD(ε), we write f ∈ f if ‖f − P‖D = supz∈D |f(z) − P (z)| � ε.

Basic arithmetic on Taylor models works in a similar way as ball arithmetic.
The ring operations are defined as follows:

(P + BD(δ)) ± (Q + BD(ε)) = (P ± Q) + BD(δ + ε)
(P + BD(δ)) · (Q + BD(ε)) = (P · Q)<n +

BD (��P ��Dε + ��Q��Dδ + εδ + ��(P · Q)�n��D) .

Given a polynomial A ∈ C[z] (or an analytic function A), the product formula
uses the notations

A<n = A0 + · · · + An−1z
n−1

A�n = Anzn + An+1z
n+1 + · · · ,

and ��A��D denotes any upper bound for ‖A‖D that is easy to compute. One may
for instance take

��A��D = |A0| + · · · + |AdegA|.

Now consider the operation
∫

of integration from zero
(∫

f
)

(z) =
∫ z

0
f(u)du.

The integral of a Taylor model may computed using
∫

(P + BD(δ)) =
∫

P<n−1 + BD(r|Pn−1|/n + rδ).

This formula is justified by the mean value theorem.
In practice, the numerical computations at a given working precision involve

additional rounding errors. Bounds for these rounding errors have to be added
to the errors in the above formulas. It is also easy to define Taylor models on
disks B(c, r) with general centers as being given by a Taylor model on D in the
variable z′ = z − c. For more details, we refer to [14,15].



528 J. van der Hoeven

4.2 Lagrange Models

A Lagrange model of order n ∈ N on D is a functional “ball” of the form
P +BD(ε)zn, where P ∈ CCC[z] is a ball polynomial of degree < n and ε ∈ R> the
so called tail bound . Given an analytic function f on D and f = P + BD(ε)zn,
we write f ∈ f if fk ∈ P k for all k < n and ‖f�nz−n‖D � ε. The name
“Lagrange model” is motivated by Taylor–Lagrange’s formula, which provides a
careful estimate for the truncation error of a Taylor series expansion. We may
also regard Lagrange models as a way to substantiate the “big Oh” term in the
expansion f = f0 + · · · + fn−1z

n−1 + O(zn).
Basic arithmetic on Lagrange models works in a similar way as in the case

of Taylor models:

(P + BD(δ)zn) ± (Q + BD(ε)zn) = (P ± Q) + BD(δ + ε)zn

(P + BD(δ)zn) · (Q + BD(ε)zn) = (P · Q)<n +

BD (��P ��Dε + ��Q��Dδ + εδ + ��(P · Q)�n��D) zn.

This time, we may take

��A��D = �A0� + · · · + �AdegA�.
�B(c, ρ)� = |c| + ρ

as the “easy to compute” upper bound of a ball polynomial A ∈ CCC[z]. The main
advantage of Lagrange models with respect to Taylor models is that they allow
for more precise tail bounds for integrals:

∫

(P + BD(δ)zn) =
∫

P<n−1 + BD(r�P n−1�/n + rδ/(n + 1))zn.

Indeed, for any function f on D, integration on a straight line segment from 0
to any z ∈ D yields

∣

∣

∣

∣

∫ z

0

f(u)undu

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ zn+1

0

f ( n+1
√

v)
n + 1

dv

∣

∣

∣

∣

∣

� r‖f‖D
n + 1

,

whence
∥

∥

∫

(fzn)
∥

∥

D � r‖f‖D/(n + 1).
The main disadvantage of Lagrange models with respect to Taylor models

is that they require more data (individual error bounds for the coefficients of
the polynomial) and that basic arithmetic is slightly more expensive. Indeed,
arithmetic on ball polynomials is a constant time more expensive than ordinary
polynomial arithmetic. Nevertheless, this constant tends to one if either n or the
working precision p gets large. This makes Lagrange models particularly well
suited for high precision computations, where they cause negligible overhead,
while improving the quality of tail bounds for integrals. For efficient implemen-
tations of basic arithmetic on ball polynomials, we refer to [5].



Certifying Trajectories of Dynamical Systems 529

4.3 Reliable Integration of Dynamical Systems

Let us now return to the dynamical system (1). We already mentioned relaxed
power series computations and Newton’s method as two efficient techniques for
the numerical computation of power series solutions to differential equations.
These methods can still be used for ball coefficients, modulo some precondi-
tioning or suitable tweaking of the basic arithmetic on ball polynomials; see [5]
for more details. In order to obtain a local certified integrator in the sense of
Sect. 3.1, it remains to be shown how to compute tail bounds for truncated power
solutions at order n.

From now on, we will be interested in finding local certified solutions of (1)
at the origin. We may rewrite the system (1) together with the initial condition
f(0) = I as a fixed point equation

f = I +
∫

Φ(f). (5)

Now assume that a Lagrange model f satisfies

I +
∫

Φ(f) ⊆ f . (6)

Then we claim that for any I ∈ I, there is an analytic function f ∈ f that
satisfies (5). Indeed, the analytic functions f with f ∈ f form a compact set,
so the operator f ∈ f �→ I +

∫

Φ(f) ∈ f admits a fixed point for any I ∈ I.
This fixed point is unique, since its coefficients can be computed uniquely by
induction.

Using ball power series computations we already know how to compute a ball
polynomial P of degree < n such that

I +
∫

Φ(P ) ⊆ P + O(zn).

Taking f = P + BD(ε)zn, it remains to be shown how to compute ε ∈ (R>)d in
such a way that (6) is satisfied. Now denoting by J the Jacobian matrix of Φ,
and putting ε = BD(ε)zn, we have

Φ(f) ⊆ Φ(P ) + J(f)ε.

Writing Q + BD(δ)zn for I +
∫

Φ(P ) and δ = BD(δ)zn, we thus have Q ⊆ P
and it suffices to find ε such that

δ +
∫

J(f)ε ⊆ ε. (7)

Assuming that all eigenvalues of J(f) are strictly bounded by (n+1)/r, it suffices
to “take”

ε =
⌈⌈

(

1 − r
n+1J(f)

)−1
⌉⌉

D
δ. (8)



530 J. van der Hoeven

We have to be a little bit careful here, since J(f) depends on ε. Nevertheless,
the formula (8) provides a good ansatz: starting with ε[0] = 0, we may define

ε[i+1] :=
⌈⌈

(

1 − r
n+1J(P + BD(ε[i])zn)

)−1
⌉⌉

D
δ (9)

for all i. If r was chosen small enough, then this sequence quickly stabilizes.
Assuming that ε[l+1] ≈ ε[l], we set ε = ε[l]+2(ε[l+1]−ε[l]), and check whether (7)
holds. If so, then we have obtained the required Lagrange model solution of (6).
Otherwise, we will need to decrease r, or increase n and the working precision.

4.4 Discussion

Several remarks are in place about the method from the previous subsection.
Let us first consider the important case when I = B(I, 0) is given exactly, and
let R denote the convergence radius of the unique solution f of (5). For large
working precisions p and expansion orders n, we can make δ arbitrarily small.
Assuming that the eigenvalues of J(f) are strictly bounded by (n+1)/r, this also
implies that ε[1], ε[2], . . . become arbitrarily small, and that ε = ε[1]+2(ε[2]−ε[1])
satisfies (7). In other words, for any r < R, there exists a sufficiently large n
(and working precision p) for which the method succeeds.

Let us now investigate what happens if we apply the same method with
Taylor models instead of Lagrange models. In that case, the Eq. (8) becomes

ε = ��(1 − rJ(f))−1��Dδ.

On the one hand this implies that the method will break down as soon as 1/r
reaches the largest eigenvalue of J(f), which may happen for r 
 R. Even if
J is constant (i.e. f ′ = Φ(f) reduces to the differential equation f ′ = Jf for
a constant matrix J), the step size cannot exceed the inverse of the maximal
eigenvalue of J . On the other hand, and still in the case when J is constant, we
see that Lagrange models allow us to take a step size which is n+1 times as large.
In general, the gain will be smaller since J usually admits larger eigenvalues on
larger disks. Nevertheless, Lagrange models will systematically allow for larger
step sizes.

Notice that the matrices that we need to invert in (8) and (9) admit Lagrange
model entries, which should really be regarded as functions. Ideally speaking, we
would like to compute a uniform bound for the inverses of the evaluations of these
matrices at all points in D. However, this may be computationally expensive.
Usually, it is preferable to replace each Taylor model entry g + BD(η)zn of the
matrix to be inverted by a ball enclosure g0 + · · · + gn−1B(0, rn−1) + B(0, ηrn).
The resulting ball matrix can be inverted much faster, although the resulting
error bounds may be of inferior quality.

We finally stress (once more) that bound computations usually require a
far smaller accuracy than the working precision. This makes it interesting to
consider the problem of computing tail bounds for Lagrange (and Taylor) models
independently from the problem of evaluating them: for accurate evaluations,



Certifying Trajectories of Dynamical Systems 531

we need the working precision p and the expansion order n to be approximately
proportional. But the tail bound computations could be done at a much smaller
precision p′ 
 n. In particular, certifying the convergence of a solution to (1) on
a compact disk can often be done using low precision computations only.

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Analysis. Academic Press,
New York (1983)

2. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J.
ACM 25, 581–595 (1978)

3. Gambill, T.N., Skeel, R.D.: Logarithmic reduction of the wrapping effect with
application to ordinary differential equations. SIAM J. Numer. Anal. 25(1),
153–162 (1988)

4. van der Hoeven, J.: Relax, but don’t be too lazy. JSC 34, 479–542 (2002)
5. van der Hoeven, J.: Ball arithmetic. In: Beckmann, A., Gaßner, C., Löwe, B. (eds.)

International Workshop on Logical approaches to Barriers in Computing and Com-
plexity, no. 6 in Preprint-Reihe Mathematik, pp. 179–208. Ernst-Moritz-Arndt-
Universität Greifswald, February 2010

6. van der Hoeven, J.: Newton’s method and FFT trading. JSC 45(8), 857–878 (2010)
7. van der Hoeven, J.: Calcul analytique. In: Journées Nationales de Calcul Formel

(2011), vol. 2. Les cours du CIRM. CEDRAM 2011. Exp. No. 4, p. 85 (2011).
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM 2011 2 1 A4 0

8. van der Hoeven, J.: Faster relaxed multiplication. In: Proceedings of the ISSAC
2014, pp. 405–412, Kobe, Japan, July 2014

9. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
London (2001)

10. Kühn, W.: Rigourously computed orbits of dynamical systems without the wrap-
ping effect. Computing 61, 47–67 (1998)

11. Kulisch, U.W.: Computer Arithmetic and Validity. Theory, Implementation, and
Applications. Studies in Mathematics, vol. 33. de Gruyter, Berlin (2008)

12. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertauf-
gaben und Anwendugen. Ph.D. thesis, Universität Karlsruhe (1988)

13. Lohner, R.: On the ubiquity of the wrapping effect in the computation of error
bounds. In: Kulisch, U., Lohner, R., Facius, A. (eds.) Perspectives on Enclosure
Methods, pp. 201–217. Springer, New York (2001)

14. Makino, K., Berz, M.: Remainder differential algebras and their applications. In:
Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.) Computational Differentia-
tion: Techniques, Applications and Tools, pp. 63–74. SIAM, Philadelphia (1996)

15. Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based
validated integrators. Technical report MSU report MSUHEP 40910, Michigan
State University (2004)

16. Moore, R.E.: Automatic local coordinate transformations to reduce the growth of
error bounds in interval computation of solutions to ordinary differential equa-
tion. In: Rall, L.B. (ed.) Error in Digital Computation, vol. 2, pp. 103–140. Wiley,
Hoboken (1965)

17. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
18. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM

Press, Philadelphia (2009)

http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0


532 J. van der Hoeven

19. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

20. Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confedence
regions. In: Albrecht, R., Alefeld, G., Stetter, H.J. (eds.) Validation Numerics.
Computing Supplementum, vol. 9, pp. 175–190. Springer, Heidelberg (1993)

21. Neumaier, A.: Taylor forms - use and limits. Reliable Comput. 9, 43–79 (2002)
22. Nickel, K.: How to fight the wrapping effect. In: Nickel, K. (ed.) Interval Mathe-

matics 1985. LNCS, vol. 212, pp. 121–132. Springer, Heidelberg (1985)
23. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes,

the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge
(2007)

24. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic.
Acta Numerica 19, 287–449 (2010)

25. Sedoglavic, A.: Méthodes seminumériques en algèbre différentielle; applications à
l’étude des propriétés structurelles de systèmes différentiels algébriques en automa-
tique. Ph.D. thesis, École polytechnique (2001)

26. Turing, A.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. London Maths. Soc. 2(42), 230–265 (1936)

27. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)



Global Optimization



A New Matrix Splitting Based Relaxation
for the Quadratic Assignment Problem

Marko Lange(B)

Institute for Reliable Computing, Hamburg University of Technology,
Hamburg, Germany

marko.lange@tuhh.de

Abstract. Nowadays, the quadratic assignment problem (QAP) is
widely considered as one of the hardest of the NP-hard problems. One
of the main reasons for this consideration can be found in the enormous
difficulty of computing good quality bounds for branch-and-bound algo-
rithms. The practice shows that even with the power of modern comput-
ers QAPs of size n > 30 are typically recognized as huge computational
problems. In this work, we are concerned with the design of a new low-
dimensional semidefinite programming relaxation for the computation of
lower bounds of the QAP. We discuss ways to improve the bounding pro-
gram upon its semidefinite relaxation base and give numerical examples
to demonstrate its applicability.

Keywords: Quadratic assignment problem · Semidefinite
programming · Relaxation

1 Introduction

The quadratic assignment problem (QAP) was introduced by Koopmans and
Beckmann [11] in 1957 as a mathematical model for problems in the allocation of
indivisible resources. The class of QAPs entails a great number of applications
from different scenarios in the topic of combinatorial optimization. This includes
problems arising in location theory, facility layout, VLSI design, communications
and various other fields. For extensive lists of applications of QAPs, we refer to
the survey works by Pardalos et al. [17], Burkard et al. [4], Çela [5], Loiola et al.
[13] and most recently Burkard et al. [3].

In this work, we are concerned with the computation of lower bounds for
QAPs which can be formulated in Koopmans-Beckmann trace formulation [8]:

inf
X∈Πn

tr(AXBXT + CXT ), (KBQAP)

where A,B,C ∈ Rn×n are the parameter matrices of the QAP, Πn denotes the
set of n × n permutation matrices, and tr() terms the trace function. More pre-
cisely, our concern is a new technique for the construction of a low-dimensional
semidefinite programming (SDP) relaxation for (KBQAP).
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 535–549, 2016.
DOI: 10.1007/978-3-319-32859-1 45



536 M. Lange

Our main contribution is the introduction of a new relaxation approach based
on interrelated matrix splitting. The derivation of the corresponding framework
can be found in Subsect. 2.2. Subsequently, we discuss additional cuts which are
based on techniques introduced by Mittelmann and Peng in [15]. In Subsect. 3.1,
we propose a way to tighten the respective constraints by exploiting a degree of
freedom that is present in the original versions of these cuts.

1.1 Notation and Preliminaries

Unless otherwise stated, we assume that both matrices A and B are symmetric.
Furthermore, without loss of generality, it is assumed that the diagonal elements
of A and B are equal to zero. If this is not the case, the corresponding costs can
be shifted to the linear term by setting Cnew := C + diag(A) diag(B)T , where
diag(A) denotes a column vector formed of the diagonal elements of A. Through-
out this paper, B =

∑n
i=1 λiqiq

T
i shall denote the eigenvalue decomposition of B.

If not stated otherwise, ‖ · ‖ is used for the spectral norm. The trace inner
product of two real matrices G,H is denoted by 〈G,H〉 := tr(GT H). Further-
more, we write H† for the Moore-Penrose pseudoinverse of H [16,20]. If H is an
operator, R(H) denotes its range in the sense of its image. In the case that H
is a matrix, we use the same notation referring to its column space.

The cone of symmetric positive semidefinite matrices is of major importance
for every discussion about SDP problems. We denote the space of n × n sym-
metric matrices by Sn and its positive semidefinite subset by Sn

+. In this context,
we also utilize the relation sign ‘�’ to denote a Loewner’s partial ordering, i.e.
H � G is used to note the positive semidefiniteness of H −G. In addition to the
already mentioned sets, we consider the space of m × n matrices Mm,n and the
set of n × n double stochastic matrices Dn. By e we denote the n dimensional
column vector of all ones and I := [e1, . . . , en] is used for the n × n identity
matrix. Generally, we spare redundant informations on matrix dimensions. For
instance, we write Mm instead of Mm,m. Moreover, in cases where the dimen-
sion is evident from the context, the accompanying indicators may be discarded
completely.

Complementary to the diag-operator, off(H) denotes a column vector that
contains all off-diagonal elements of the matrix H. This vector is obtained by
vertical concatenation of the columns of H, but without its diagonal elements.
Another considered linear transformation is the triangular vectorization of a
matrix; tri(H) denotes the vector obtained from the vertical concatenation of the
columns of H taking solely its lower triangular elements (without matrix diag-
onal) into account. These operators may also be used in combination with rela-
tions, for instance {=off ,�off ,�off . . .}. In case of the subscript off , the respective
relations apply only to the off-diagonal elements of the corresponding matrices,
hence A �off B is the short form for off(A) � off(B).



A New Matrix Splitting Based Relaxation 537

2 QAP Relaxations Based on Matrix Splitting

Relaxation is a fundamental approach for the computation of lower or upper
bounds of intractable programming problems. It can be used directly as an
approximation of the original problem, for bound computations in branch-&-
bound and branch-&-cut approaches, or as a tool to measure the quality of other
bounding algorithms. In regard to the form of the given optimization problem
the first step of a relaxation process requires the reformulation of the original
problem. The second step comprises the removal or replacement of constraints
that are the cause for intractability.

One of the most popular relaxation approaches for quadratic programming
problems is based on vector lifting. A good source for relaxations of this kind is
given by Zhao et al. in [24]. Compared to newer low-dimensional SDP relaxations
for the QAP, relaxation frameworks based on vector lifting have their strength in
the computation of tighter bounds. Their major drawbacks are the large number
of O(n4) variables and the accompanying computational costs.

There are some efforts to reduce the computational costs of these high dimen-
sional SDP relaxations, see for instance [2,9,21,23]. Nevertheless, regarding
QAP instances of size n > 30 and with little symmetry, the computational
costs for solving SDP relaxation frameworks based on vector lifting remain too
high for practical usage.

2.1 Non-redundant Positive Semidefinite Matrix Splitting

For a special class of QAPs - instances which are associated with Hamming and
Manhatten distances - Mittelmann and Peng [15] pursued the idea of another
low-dimensional SDP relaxation framework. The presented bounds not only
involve a less expensive computational process, they are also provably tighter
than the ones proposed in [6] by Ding and Wolkowicz. In [18] and [19], Peng
et al. generalized the matrix splitting approach for other classes of the QAP.

If the parameter matrix B is positive semidefinite, the equality Y = XBXT

can be relaxed to the convex semidefinite relation Y � XBXT . The implemen-
tation of the latter is usually realized by utilization of the Schur complement
inequality [1], here

[

B BXT

XB Y

]

=
[

B
1
2

XB
1
2

]

[

B
1
2 B

1
2 XT

] ∈ S2n
+ . (1)

In general, however, B does not satisfy any definiteness property. Peng et al.
[18,19] dealt with this case by applying a non-redundant positive semidefinite
matrix splitting scheme.

Definition 1. For a given matrix B a matrix pair (B1, B2) is called a positive
semidefinite matrix splitting of B if it satisfies

B = B1 − B2, B1, B2 ∈ S+. (2)



538 M. Lange

The splitting is said to be redundant if there exists a nonzero positive semidefinite
matrix R, such that

B1 − R ∈ S+, B2 − R ∈ S+. (3)

If R ≡ 0 is the only feasible matrix that is positive semidefinite and satisfies (3),
we say that the splitting is non-redundant.

For the relaxation framework F-SVD introduced in [18], the authors used
the following non-redundant splitting:

B+ =
∑

i:λi>0

λiqiq
T
i and B− =

∑

i : λi<0

−λiqiq
T
i . (4)

Together with (1) and the observations that

∀X ∈ Πn, B ∈ Mn : diag(XBXT ) = X diag(B), XBXT e = XBe, (5)

we derive the SDP basis of their framework, here referred to as B-SVD :

inf
X∈Dn, Y+,Y−∈Sn

〈A,Y+ − Y−〉 + 〈C,X〉 (6a)

s. t.
[

B+ B+X
T

XB+ Y+

]

∈ S+,

[

B− B−XT

XB− Y−

]

∈ S+, (6b)

diag(Y+) = X diag(B+), diag(Y−) = X diag(B−), (6c)
Y+e = XB+e, Y−e = XB−e, (6d)

where the variables Y+ and Y− are used to relax the quadratic terms XB+XT

and XB−XT , respectively.
In regard to a matrix splitting based SDP relaxation such as (6), Peng

et al. demonstrated the general advantage of non-redundant matrix splittings
over redundant ones, see [19, Theorem 1]. Roughly speaking the theorem states
that for any redundant positive semidefinite matrix splitting there exists a non-
redundant splitting which leads to a tighter relaxation. Even though additional
constraints on the respective variables may change this circumstance, the absence
of redundancies in the positive semidefinite matrix splitting is a good indicator
for a beneficial splitting scheme.

2.2 Interrelated Matrix Splitting

A particularly beautiful property of the positive semidefinite matrix splitting
defined in (4) is that the ranges of the matrices B+, B− are orthogonal to
each other, such that R(B+) ∩ R(B−) = {0} and B+B− = B−B+ ≡ 0. As
an immediate consequence of this circumstance, B+ and B− are simultaneously
diagonalizable. It would be a great advantage if we could make use of these inter-
relations in the actual relaxation. Unfortunately, it is quite difficult to exploit the
corresponding properties in form of beneficial SDP constraints. For the design



A New Matrix Splitting Based Relaxation 539

of new relaxation strategies, we need a different kind of interrelation. In this
subsection, we say goodbye to the idea of redundancy-free positive semidefinite
matrix splitting pairs (B+, B−) and present a new splitting scheme:

B = B� − B� with additional conditions on (B�, B�). (7)

By the introduction of specific redundancies, we induce the presence of artificial
correlations between the respective splitting parts. These interrelations shall be
used to construct new types of constraints which are applicable in the corre-
sponding QAP relaxations.

A beneficial interrelation property for the relaxation of QAP is the semidef-
inite inverse relation

B� � B−1
� � 0. (8)

The existence of the inverse B−1
� implies the regularity of B� and thereby also

the regularity of B�. By the matrix equality

B� − B−1
� = B−1

� (B� − B−1
�

︸ ︷︷ ︸

�0

)B−1
� + (I − B−1

� B−1
� )T B�

︸︷︷︸

�0

(I − B−1
� B−1

� ),

it is furthermore apparent that (8) implies the validity of

B� � B−1
� � 0 (9)

Indeed, it is straightforward to show that the conditions (8) and (9) are equiva-
lent.

The discussed interrelation property can be exploited by transferring the
same to the relaxation variables for the quadratic terms Y� = XB�XT and
Y� = XB�XT . The orthogonality of permutation matrices X ∈ Π gives

XB−1
� XT = (XB�XT )−1.

Relation (8) therefore requires XB�XT � (XB�XT )−1 � 0 providing the basis
for the constraint Y� � Y−1

� � 0. The latter condition can be realized by
utilization of the Schur complement inequality [1]:

[

Y� I
I Y�

]

∈ S2n
+ . (10)

For the attainment of tight SDP conditions, we are looking for matrices B�
and B� with minimal traces. This is the case for the splitting that satisfies the
identity B� = B−1

� .

Theorem 1. Let B ∈ Sn be given and consider the minimization problem

inf
B�,B�∈Sn

tr(B�) + tr(B�)

s.t. B� � B−1
� � 0,

B� − B� = B.

(11)



540 M. Lange

A solution to this program is given by the matrix pair (B�, B�) defined as

B� :=
1
2

(

B +
√

B2 + 4I
)

, B� := B� − B. (12)

This pair satisfies the identity B� = B−1
� .

Proof. The multiplication of the matrices defined in (12) gives

B�B� =
1
2

(

B +
√

B2 + 4I
) 1

2

(
√

B2 + 4I − B
)

=
1
4

(

B2 + 4I − B2
)

= I

and proves B� = B−1
� . It is also straightforward to check that (B�, B�) satisfies

the constraints of problem (11), hence states a feasible point. For now, let us
assume that there is some solution (B̂�, B̂�) that accompanies a smaller objective
value than the matrix pair from (12), thus tr(B̂�) < tr(B�). By definition,
the matrices B, B� and B� are all three simultaneously diagonalizable. Let
{q1, . . . , qn} denote the set of the corresponding orthonormal eigenvectors, then

n
∑

i=1

qT
i B̂�qi = tr(B̂�) < tr(B�) =

n
∑

i=1

qT
i B�qi

and therefore
∃k ∈ {1, . . . , n} : qT

k B̂�qk < qT
k B�qk.

Since B� − B̂� = B� − B̂�, this also means that qT
k B̂�qk < qT

k B�qk, such that

qT
k B̂�qk < qT

k B�qk = λk(B�) = λk(B�)−1 = (qT
k B�qk)−1 < (qT

k B̂�qk)−1.

Moreover, the positive semidefinitenes of

[

qT
k B̂−1

� qk 1
1 qT

k B̂�qk

]

=

[

qT
k B̂

− 1
2�

qT
k B̂

1
2�

][

qT
k B̂

− 1
2�

qT
k B̂

1
2�

]T

∈ S2
+

implies a nonnegative determinant of this matrix, which in turn requires that
(qT

k B̂−1
� qk)(qT

k B̂�qk) � 1. Taken together, we obtain the inequality

qT
k B̂�qk < (qT

k B̂�qk)−1 � qT
k B̂

−1

� qk,

which violates the positive semidefinite condition B̂� � B̂
−1

� , thereby contradicts
our assumption and finishes the proof.

The efficiency of constraint (10) depends to a significant amount on the
scaling of B. For QAP instances where ‖B‖ is much greater than 1, the formulas
in (4) and (12) give

B� =
1
2
(B +

√

B2 + 4I) ≈ 1
2
(B +

√
B2) = B+, B� ≈ B−.



A New Matrix Splitting Based Relaxation 541

Hence, the splitting differs only slightly from the PSD splitting based on the
spectral value decomposition, and the effect of the inverse interrelation on the
corresponding feasible set is hardly noticeable. On the other hand, if ‖B‖ 
 1,
the validity of (8) is purchased by introducing a relatively large redundancy:

B̂� =
1
2
(B +

√

B2 + 4I) ≈ I, B̂� ≈ I.

To counteract this behavior, we utilize a linear homogeneous function
τ : Mn → R and replace (8) with

B� � τ(B)2B−1
� � 0. (13)

For any positive real scaling factor α, the condition

αB� � τ(αB)2(αB�)−1 � 0

is equivalent to (13). This circumstance is easily apparent from the linearity
of τ and demonstrates scaling invariance of this relation. By numerical tests,
we discovered that the trace norm of a projection of the respective matrix is a
suitable base for τ . In the actual implementation, we use the renormalization
function τ defined as

τ(B) :=
1
4n

n
∑

i=1

σi(PBP ), (14)

where the orthogonal projection matrix P is defined as P := I − 1
neeT , and σi(·)

denotes the i-th singular value of the corresponding matrix. Among the tested
matrix norms and various scalings of these, the choice given in (14) worked best
for a large range of problems.

For QAP instances with low-rank parameter matrices B, it is possible to
strengthen the semidefinite constraint by replacing the inverse property in (8)
with the pseudoinverse relations

B� � B†
� � 0 and B� � B†

� � 0. (15)

Any matrix pair (B�, B�) that complies with these two conditions necessarily
satisfies

R(B�) ⊇ R(B†
�) = R(B�) ⊇ R(B†

�) = R(B�),

such that R(B�) = R(B�). This in turn demonstrates the equivalence of (15)
and the semidefinite condition

[

B� G

G B�

]

∈ S2n
+ ,

where G is the orthogonal projection matrix for the space R(B�) ∪ R(B�).
In the actual implementation, we take the approach one step further by

incorporating the renormalization function τ and weighting the utilization of



542 M. Lange

the inverse interrelation property against the introduced redundancy. In order
to achieve these objectives, we apply the following program:

inf
B�,B�,G∈Sn

tr(B�) + tr(B�) − ξ tr(G)

s. t.
[

B� G

G B�

]

∈ S2n
+ ,

B� − B� = B,

‖G‖ � τ(B),

(16)

where ξ is a nonnegative real value that serves as a threshold for the introduced
redundancy.

The choice of ξ influences the effectiveness of the generalized inverse interre-
lation. For the extreme ξ = 0 the result is equivalent to the pure non-redundant
matrix splitting utilized in relaxation (6), hence (B�, B�, G) = (B+, B−, 0(n,n)).
On the other hand, for ξ > 2 the attained splitting corresponds to the normal-
ized version of the original inverse property given in (13). By no means, however,
ξ is used as a trade-off between speed and quality of the respective relaxations.
The best bounding results are obtained for values in between these extremes.
For the numerical examples in the last section, we use ξ = 3

2 as this value works
well for a large range of problems.

The last piece in the puzzle of designing a new matrix splitting based SDP
relaxation for the QAP is the construction of the corresponding quadratic semi-
definite constraints. For the optimal matrix triple (B�, B�, G) to problem (16),

we have G = B
1
2�B

1
2� = B

1
2�B

1
2� . In the following relaxation framework, we

implement the relation
[

XB�X
T XGXT

XGXT XB�X
T

]

�
[

XB
1
2�

XB
1
2�

]

[

B
1
2�X

T B
1
2�X

T
]

via utilization of the respective Schur complement inequality. Finally, we are in
the position to present the SDP basis of the inverse interrelated matrix splitting
relaxation, here referred to as B-IIMS :

inf
X∈Dn, G,Y�,Y�∈Sn

〈A,Y� − Y�〉 + 〈C,X〉 (17a)

s. t. ⎡

⎢

⎢

⎣

I B
1
2�X

T B
1
2�X

T

XB
1
2� Y� G

XB
1
2� G Y�

⎤

⎥

⎥

⎦

∈ S3n
+ , (17b)

[
(

τ(B)I − B
1
2�B

1
2�
)†

UXT

XU τ(B)I − G

]

∈ S2n
+ , (17c)

diag(Y�) = X diag(B�), diag(Y�) = Xdiag(B�),

diag(G) = X diag(B
1
2�B

1
2� ),

(17d)

Y�e = XB�e, Y�e = XB�e, (17e)



A New Matrix Splitting Based Relaxation 543

where U denotes the orthogonal projection matrix to the column space of
τ(B)I − B

1
2�B

1
2� , that is

U :=
(

τ(B)I − B
1
2�B

1
2�
)† (

τ(B)I − B
1
2�B

1
2�
)

.

3 Additional Cuts Based on Symmetric Functions

For many QAPs, it is possible to attain a significant improvement of the respec-
tive SDP relaxations by applying additional bounds to its optimization variables.
In [15] and [18], Mittelmann, Peng and Li introduced new inequality constraints
based on symmetric functions [14].

Definition 2. A function f(v) : Rn → R is said to be symmetric if for any
permutation matrix X ∈ Πn, the relation f(v) = f(Xv) holds.

One of these functions, namely the additive function f(v) = 〈e, v〉, has already
been used for the constraints (6d) and (17e). Other symmetric functions, that
are useful for the construction of valid constraints, are the minimum and the
maximum function as well as p-norms:

∀v ∈ Rn : min(v) = min
1�i�n

vi, max(v) = max
1�i�n

vi, Lp(v) =

(

n
∑

i=1

|vi|p
)

1
p

.

If applied to a matrix M ∈ Mm,n, these operators act along the rows of the
matrix, i.e.

min(M) = [min(eT
1 M), . . . , min(eT

mM) ]T .

In [15,18,19] and also [10], the minimum and maximum functions are used to
obtain linear bounds for several optimization variables.

eT
i Xmin(B) � (Y+ − Y−)ij � eT

i Xmax(B) for 1 � i, j � n. (18)

The same authors used constraints based on p-norm conditions for a further
tightening of their relaxation frameworks:

Lp(Y+ − Y−) � XLp(B+ − B−). (19)

In [18], Peng et al. extended this approach by applying the same kind of con-
straint to each matrix variable Y+ and Y− as well as their sum.

3.1 Further Improvements

The linear inequalities given in (18) can be presented in the form of so-called
sum-matrix inequalities. In accordance to [19], a sum-matrix is defined as:



544 M. Lange

Definition 3. A matrix M ∈ Mn is called a sum-matrix if M is representable as

M = veT + ewT (20)

for some v, w ∈ Rn. In the symmetric case it is v = w.

Let vmin := min(B) and vmax := max(B) denote the vectors consisting of the
minimal and maximal row elements of B, respectively. Condition (18) may then
be rewritten as

XvmineT � Y+ − Y− � Xvmaxe
T .

Indeed, by the nonnegativity of X, it is straightforward to show that vmineT �
B � vmaxe

T implies

XvmineT = XvmineTXT � XBXT � Xvmaxe
TXT = Xvmaxe

T

and thus yields (18). The last observation motivates a further exploitation of
sum-matrix inequalities for the attainment of tighter constraints. Define for
instance

wmin := min(B − evT
min) and wmax := max(B − evT

max).

It obviously is vmineT + ewT
min � B � vmaxe

T + ewT
max, which in turn gives the

inequality constraints

XvmineT + ewT
minX

T � Y+ − Y− � Xvmaxe
T + ewT

maxX
T .

By wmin � 0 and wmax � 0, it is apparent that these bounds are at least as good
as the ones in (18).

For the linear inequalities based on the minimum respectively maximum func-
tion, Mittelmann and Peng [15] pointed out that - since the diagonal elements
of Y+ and Y− are already described by the corresponding equality constraints -
it is sufficient to account solely the off-diagonal variables. We further observe
that, due to symmetry of B, the symmetric parts of the respective sum-matrices
satisfy the same bounding conditions, i.e.

veT + ewT �off B =⇒ 1
2 (v + w)eT + 1

2e(v + w)T �off B. (21)

Let the gap between a sum-matrix veT + ewT = (vi + wj) and an arbitrary
real matrix B = (bij) of the same dimension be defined as

δgap(B, v,w) :=
∑

i,j
i�=j

|bij − vi − wj |. (22)

A suitable approach for the attainment of tight sum-matrix inequalities is the
minimization of the respective gaps.

By δgap(B, v,w) = δgap(B, 1
2 (v +w), 1

2 (v +w)) and the implication in (21), it
is apparently sufficient to concentrate on the lower respectively upper triangular
elements of symmetric sum-matrices. The following linear programming problem



A New Matrix Splitting Based Relaxation 545

can be used to compute lower and upper symmetric sum-matrix bounds for B
that accompany minimal gaps:

inf
vl,vu∈Rn

〈e, vu − vl〉

s.t. vle
T + evT

l �tri B �tri vueT + evT
u .

(23)

The solution vectors to this problem are used to implement the following linear
inequality conditions

Xvle
T + evT

l X
T �tri Y+ − Y− �tri XvueT + evT

u X
T . (24)

Suitable approaches for a further tightening of these bounds are the appli-
cation of multiple varying sum-matrix inequalities and the construction of the
same type of bounds for linear combinations of the respective matrix variables.

In a very similar way, it is possible to apply the sum-matrix reformulation
technique from above for a tightening of the respective p-norm based constraints.
However, numerical tests have shown that the effect of these extensions is rela-
tively small. For this reason, we avoid the necessity of further computations for
the determination of suitable sum-matrix updates.

4 Numerical Results

In the last section of this paper, we want to discuss the practical applicability
of the presented relaxation strategy on the basis of numerical tests. For this
purpose, we compare our own frameworks with one of the best performing low-
dimensional SDP relaxations for the QAP, namely F-SVD which was introduced
in [18].

The actual implementation of the SDP problems is realized via Yalmip [12] in
Octave [7]. The used solver is SDPT3 [22]. For the presentation of the respective
bounds, we follow the style in [18] and use the relative gap defined as

Rgap = 1 − Lower bound from relaxation
Optimal or best known feasible objective value

.

The corresponding computation times are listed in seconds under the ‘CPU’
columns. Since the discussed relaxation frameworks are not designed for a specific
class of QAPs, we chose the instances for our numerical tests arbitrarily from
the quadratic assignment problem library [4]. The names in the column ‘prob.’
consists of three or four letters which indicate the names of their authors or
contributors, and a number that gives their dimension. If the authors provided
multiple problem instances for the same dimension, the respective instance is
indicated by another letter at the end of the name. For more information on the
naming scheme and the individual applications, see [4].

Prior to the comparison of the full frameworks with all additional constraints
being applied, in Table 1, we compare the pure SDP relaxation bases presented
in Sect. 2.



546 M. Lange

Table 1. Selected bounds for comparison of base relaxations

Prob. B-SVD B-IIMS

Rgap(%) CPU Rgap(%) CPU

Esc16b 17.34 2 17.09 3

Had20 5.34 4 3.61 6

Kra32 42.64 13 32.27 36

LiPa40a 4.88 28 3.31 63

Nug30 12.39 11 9.93 22

Scr20 60.02 5 45.35 7

Ste36a 57.54 25 44.97 64

Tai30b 15.82 17 15.34 41

Tai50a 39.03 103 28.37 244

Tho40 14.94 40 13.06 91

The results presented in Table 1 reveal the significant differences between
the considered relaxation approaches. As expected, the new relaxation program
B-IIMS is more expensive than B-SVD . On the other hand, for many problem
instances the additional computational costs pay off by resulting in significantly
improved lower bounds.

For the attainment of the full relaxation frameworks, we extend the problems
(6) and (17) by adding the constraints (24) together with the 2-norm conditions
of the form (19) which are also present in F-SVD . We denote the full version
of problem (6) by F-SVD2 , since the only difference two the framework F-SVD
from [18] is the utilization of different inequality constraints. Instead of the
8n2 − 8n minimum and maximum bound inequalities applied in F-SVD , here
we solely use the n2 − n constraints from (24). The full version of problem (17)
applies the respective adaptations of the same constraints. The integration is
realized simply by replacing the term Y+ − Y− with Y� − Y�. We follow the
general naming scheme and denote this program by F-IIMS .

The results in Table 2 demonstrate the efficiency of the constraints in (24)
compared to the significantly greater number of linear inequalities used in F-
SVD . The difference between the bounds computed with F-SVD and F-SVD2
is generally really small whereas the computation times of F-SVD2 are noticeable
shorter. Nevertheless, the results in Table 2 also reveal that the combined effect of
the additional linear bounds applied in F-SVD is superior to the improvement
of a single sum-matrix bound. The sheer number of additional constraints is
difficult to beat.

The second observation from the results given in Table 2 is that the presence
of the additional cuts diminishes the effect of the incorporation of the artificial
inverse interrelation property. Among the tested QAP instances there is even
an instance for which the application of the inverse interrelated matrix splitting
approach is disadvantageous. Overall, the computational costs as well as the



A New Matrix Splitting Based Relaxation 547

Table 2. Selected bounds for comparison of full QAP relaxations

Prob. F-SVD F-SVD2 F-IIMS

Rgap(%) CPU Rgap(%) CPU Rgap(%) CPU

Esc16b 5.82 3 6.73 3 6.56 4

Had20 2.53 8 2.67 6 2.32 8

Kra32 18.77 34 18.93 24 18.67 36

LiPa40a 0.11 74 0.24 42 0.23 74

Nug30 8.05 26 8.12 18 7.88 33

Scr20 16.18 10 16.24 7 16.01 8

Ste36a 19.06 55 19.35 40 18.55 55

Tai30b 12.69 32 12.88 24 13.50 48

Tai50a 21.43 250 21.58 197 21.49 240

Tho40 12.61 76 12.76 54 12.13 102

bounding quality of the frameworks F-SVD and F-IIMS are very similar. The
latter relaxation, however, has a greater potential for even stronger bounds, for
instance via the utilization of so-called QAP reformulations or the incorpora-
tion of a similar number of linear inequalities as used in F-SVD . An elaborate
investigation of these possibilities is left for subsequent studies.

Acknowledgments. The author thanks the anonymous referees for their helpful
remarks that lead to a better structure of the paper.

References

1. Albert, A.: Conditions for positive and nonnegative definiteness in terms of
pseudoinverses. SIAM J. Appl. Math. 17(2), 434–440 (1969). http://dx.doi.org/
10.1137/0117041

2. Burer, S., Monteiro, R.D.: Local minima and convergence in low-rank semidefi-
nite programming. Math. Program. 103(3), 427–444 (2004). http://dx.doi.org/10.
1007/s10107-004-0564-1

3. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM Philadel-
phia (2012). http://dx.doi.org/10.1137/1.9781611972238

4. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment prob-
lem library. J. Global Optim. 10(4), 391–403 (1997). http://dx.doi.org/10.1023/
A:1008293323270

5. Çela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Combina-
torial Optimization, vol. 1. Springer, New York (1998). http://dx.doi.org/10.1007/
978-1-4757-2787-6

6. Ding, Y., Wolkowicz, H.: A low-dimensional semidefinite relaxation for the
quadratic assignment problem. Math. Oper. Res. 34(4), 1008–1022 (2009). http://
dx.doi.org/10.1287/moor.1090.0419

http://dx.doi.org/10.1137/0117041
http://dx.doi.org/10.1137/0117041
http://dx.doi.org/10.1007/s10107-004-0564-1
http://dx.doi.org/10.1007/s10107-004-0564-1
http://dx.doi.org/10.1137/1.9781611972238
http://dx.doi.org/10.1023/A:1008293323270
http://dx.doi.org/10.1023/A:1008293323270
http://dx.doi.org/10.1007/978-1-4757-2787-6
http://dx.doi.org/10.1007/978-1-4757-2787-6
http://dx.doi.org/10.1287/moor.1090.0419
http://dx.doi.org/10.1287/moor.1090.0419


548 M. Lange

7. Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave version 3.0.1 manual: a high-
level interactive language for numerical computations. CreateSpace Independent
Publishing Platform (2009). http://www.gnu.org/software/octave/doc/interpreter

8. Edwards, C.S.: A branch and bound algorithm for the Koopmans-Beckmann
quadratic assignment problem. Combinatorial Optimization II. Mathematical Pro-
gramming, vol. 13, pp. 35–52. Springer, New York (1980). http://dx.doi.org/10.
1007/BFb0120905

9. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming
relaxations of the quadratic assignment problem. Math. Program. 122(2), 225–246
(2010). http://dx.doi.org/10.1007/s10107-008-0246-5

10. de Klerk, E., Sotirov, R., Truetsch, U.: A new semidefinite programming relax-
ation for the quadratic assignment problem and its computational perspectives.
INFORMS J. Comput. 27(2), 378–391 (2015). http://dx.doi.org/10.1287/ijoc.
2014.0634

11. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica 25(1), 53–76 (1957). http://dx.doi.org/10.2307/
1907742

12. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB.
In: Proceedings of the CACSD Conference (2004). http://users.isy.liu.se/johanl/
yalmip

13. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A
survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690
(2007). http://dx.doi.org/10.1016/j.ejor.2005.09.032

14. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. The Claren-
don Press, Oxford University Press, New York (1995)

15. Mittelmann, H., Peng, J.: Estimating bounds for quadratic assignment problems
associated with Hamming and Manhattan distance matrices based on semidefi-
nite programming. SIAM J. Optim. 20(6), 3408–3426 (2010). http://dx.doi.org/
10.1137/090748834

16. Moore, E.H.: On the reciprocal of the general matrix. Bull. Am. Math. Soc. 26,
394–395 (1920)

17. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: a
survey and recent developments. In: Quadratic Assignment and Related Problems.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
16, pp. 1–42. American Mathematical Society (AMS) (1994)

18. Peng, J., Mittelmann, H., Li, X.: A new relaxation framework for quadratic assign-
ment problems based on matrix splitting. Math. Program. Comput. 2(1), 59–77
(2010). http://dx.doi.org/10.1007/s12532-010-0012-6

19. Peng, J., Zhu, T., Luo, H., Toh, K.C.: Semi-definite programming relaxation of
quadratic assignment problems based on nonredundant matrix splitting. Comput.
Optim. Appl. (2014). http://dx.doi.org/10.1007/s10589-014-9663-y

20. Penrose, R., Todd, J.A.: A generalized inverse for matrices. Math. Proc. Camb.
Phil. Soc. 51(03), 406–413 (1955). http://dx.doi.org/10.1017/S0305004100030401

21. Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using the
bundle method. Math. Program. 109(2–3), 505–524 (2007). http://dx.doi.org/10.
1007/s10107-006-0038-8

22. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear pro-
grams using SDPT3. Math. Program. 95(2), 189–217 (2003). http://dx.doi.org/
10.1007/s10107-002-0347-5

http://www.gnu.org/software/octave/doc/interpreter
http://dx.doi.org/10.1007/BFb0120905
http://dx.doi.org/10.1007/BFb0120905
http://dx.doi.org/10.1007/s10107-008-0246-5
http://dx.doi.org/10.1287/ijoc.2014.0634
http://dx.doi.org/10.1287/ijoc.2014.0634
http://dx.doi.org/10.2307/1907742
http://dx.doi.org/10.2307/1907742
http://users.isy.liu.se/johanl/yalmip
http://users.isy.liu.se/johanl/yalmip
http://dx.doi.org/10.1016/j.ejor.2005.09.032
http://dx.doi.org/10.1137/090748834
http://dx.doi.org/10.1137/090748834
http://dx.doi.org/10.1007/s12532-010-0012-6
http://dx.doi.org/10.1007/s10589-014-9663-y
http://dx.doi.org/10.1017/S0305004100030401
http://dx.doi.org/10.1007/s10107-006-0038-8
http://dx.doi.org/10.1007/s10107-006-0038-8
http://dx.doi.org/10.1007/s10107-002-0347-5
http://dx.doi.org/10.1007/s10107-002-0347-5


A New Matrix Splitting Based Relaxation 549

23. Yang, L., Sun, D., Toh, K.C.: SDPnal+: a majorized semismooth Newton-
CG augmented Lagrangian method for semidefinite programming with nonneg-
ative constraints. Math. Program. Comput. (2015). http://dx.doi.org/10.1007/
s12532-015-0082-6

24. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relax-
ations for the quadratic assignment problem. J. Comb. Optim. 2(1), 71–109 (1998).
http://dx.doi.org/10.1023/A:1009795911987

http://dx.doi.org/10.1007/s12532-015-0082-6
http://dx.doi.org/10.1007/s12532-015-0082-6
http://dx.doi.org/10.1023/A:1009795911987


Global Optimization of H∞ Problems:
Application to Robust Control Synthesis Under

Structural Constraints

Dominique Monnet(B), Jordan Ninin, and Benoit Clement

Lab-STICC, IHSEV Team, ENSTA-Bretagne,
2 rue Francois Verny, 29806 Brest, France
dominique.monnet@ensta-bretagne.org,

{jordan.ninin,benoit.clement}@ensta-bretagne.fr

Abstract. In this paper, a new technique to compute a synthesis struc-
tured Robust Control Law is developed. This technique is based on global
optimization methods using a Branch-and-Bound algorithm. The orig-
inal problem is reformulated as a min/max problem with non-convex
constraint. Our approach uses interval arithmetic to compute bounds
and accelerate the convergence.

1 Context

Controlling an autonomous vehicle or a robot requires the synthesis of control
laws for steering and guiding. To generate efficient control laws, a lot of specifica-
tions, constraints and requirements have been translated into norm constraints
and then into a constraint feasibility problem. This problem has been solved,
sometimes with relaxations, using numerical methods based on LMI (Linear
Matrix Inequalities) or SDP (Semi Definite Program) [2,3]. The main limitation
of these approaches is the complexity of the controller for implementation in an
embedded system. However, if a physical structure is imposed on the control law
in order to make the implementation easier, the synthesis of this robust control
law is much more complex. And this complexity has been identified as a key
issue for several years. An efficient first approach based on local non-smooth
optimization was given by Apkarian and Noll [1].

In this talk, we will present a new approach based on global optimization
in order to generate robust control laws.

2 H∞ Control Synthesis Under Structural Constraints

We illustrate our approach with an example of the control of a periodic second
order system G with a PID controller K subjected to two frequency constraints
on the error e and on the command u of the closed-loop system, see Fig. 1.
The objective is to find k = (kp, ki, kd) to stabilize the closed-loop system while
minimizing the H∞ norm of the controlled system to ensure robustness.
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 550–554, 2016.
DOI: 10.1007/978-3-319-32859-1 46



Global Optimization of H∞ Problems 551

W1 W2

K G
-

+

constraint1 constraint2

Controler Dynamic System
? ?

w

z1 z2

y

Fig. 1. 2-blocks H∞ problem

The H∞ norm of a dynamic system P is defined as follows:

||P ||∞ = sup
ω

(σmax(P (jω))),

with σmax the greatest singular value of the transfer function P and j the imag-
inary unit.

In our particular case, the closed-loop system can be interpreted as two SISO
systems (Single In Single Out). The H∞ norm of a SISO system is the maximum
of the absolute value of the transfer function. Indeed, to minimize the H∞ norm
of our example, we need to solve the following min/max problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
k

max
(

sup
ω

∣

∣

∣

∣

W1(jω)
1 + G(jω)K(jω)

∣

∣

∣

∣

, sup
ω

∣

∣

∣

∣

W2(jω)K(jω)
1 + G(jω)K(jω)

∣

∣

∣

∣

)

,

s.t. The closed-loop system must be stable.

(1)

The stability constraint of a closed-loop is well-known: the roots of denomi-
nator part of the transfer function 1

1+G(s)K(s) must have a non-positive real part
[4]. Using Routh-Hurwitz stability criterion [5], this constraint can be reformu-
lated as a set of non-convex constraints.

Proposition 1. Let us consider a polynomial Q(s) = ansn + an−1s
n−1 + · · · +

a1s+a0. The real parts of its roots are negative if the entries in the first column
of the following table are positive:

v1,1 = an v1,2 = an−2 v1,3 = an−4 v1,4 = an−6 . . .

v2,1 = an−1 v2,2 = an−3 v2,3 = an−5 v2,4 = an−7 . . .

v3,1 = −1
v2,1

∣∣∣∣∣v1,1 v1,2

v2,1 v2,2

∣∣∣∣∣ v3,2 = −1
v2,1

∣∣∣∣∣v1,1 v1,3

v2,1 v2,3

∣∣∣∣∣ v3,3 = −1
v2,1

∣∣∣∣∣v1,1 v1,4

v2,1 v2,4

∣∣∣∣∣ . . . . . .

v4,1 = −1
v3,1

∣∣∣∣∣v2,1 v2,2

v3,1 v3,2

∣∣∣∣∣ v4,2 = −1
v3,1

∣∣∣∣∣v2,1 v2,3

v3,1 v3,3

∣∣∣∣∣ . . . . . . . . .

v5,1 = −1
v4,1

∣∣∣∣∣v3,1 v3,2

v4,1 v4,2

∣∣∣∣∣ . . . . . . . . . . . .

.

.

.
. . .

. . .
. . .

. . .

Indeed, applying Proposition 1 with Q(s) = 1 + G(s)K(s), the H∞ control
synthesis under structural constraint is reformulated as a min/max problem with
non-convex constraints.



552 D. Monnet et al.

3 Global Optimization of min/max Problems

In order to solve Problem (1), our approach is based on a Branch-and-Bound
technique [7]. At each iteration, the domain under study is bisected to improve
the computation of bounds. Boxes are eliminated if and only if it is certified that
no point in the box can produce a better solution than the current best one, or
that at least one constraint cannot be satisfied by any point in such a box.

The non-convex constraint can be handled with constraint programming
techniques. In our approach, we use the ACID algorithm [8] which reduces the
width of the boxes and so accelerates the convergence of the branch-and-bound.

The key point of our approach concerns the computation of the bounds of the
objective function. In our example, the objective function can be reformulated
as the following expression, with x = (kp, ki, kd):

f(x) = sup
ω∈[ωmin,ωmax]

g(x, ω). (2)

At each iteration, Algorithm 1 is used to compute a lower bound of this
function over a box [x]. This algorithm is also a branch-and-bound algorithm
based on Interval Arithmetic. But, for not wasting time, we limit the maximum
number of iterations for computing faster lower bounds. Each element ([ω], ubω)
stored in L is composed of: (i) [ω] a sub-interval of [ωmin,ωmax] and (ii) ubω an
upper bound of g over [x] × [ω].

Algorithm 1. Computation of bounds of f over a box [x]
Require: g: the function under study (see Equation 2); x: an initial box; L: the list

of boxes; nbIter: the maximal number of iterations.
1: Initialization: (lbout, ubout) = (−∞,∞).
2: for nb := 1 to nbIter do
3: Extract an element (ω, ubω ) from L.
4: Bisect ω into two sub-boxes ω1 and ω2.
5: for i:=1 to 2 do
6: Compute lbωi and ubωi a lower and an upper bound of g(x,ω) over [x]× [ωi]

using Interval Arithmetic techniques [6].
7: if lbωi > lbout then
8: lbout := lbωi , {Update the best lower bound}
9: Remove from L all the elements j such as ubωj < lbout,

10: end if
11: if ubωi > lbout then
12: Add (ωi, ubωi) in L,
13: end if
14: end for
15: end for
16: ubout := max

(ωi,ubωi
)∈L

ubωi

17: return (lbout, ubout): a lower and an upper bound of f over x.



Global Optimization of H∞ Problems 553

10 -2 10 -1 10 0 10 1 10 2
-120

-100

-80

-60

-40

-20

0

20

40

S = 1/(1+GK)
1/W1
T=GK/(1+GK)
G/W2

Singular Values

Frequency (rad/s)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Fig. 2. Weighting functions and singular values of the solution (Color figure online)

Thanks to Interval Analysis, at the end of Algorithm 1, we can ensure that
the value of the maximum of f over [x] is included in [lbout, ubout].

4 Application

In our example, we consider a second-order system and weighting functions W1

and W2 penalizing the error signal and control signal respectively:

G(s) =
1

s2 + 1.4s + 1
, K(s) = kp +

ki

s
+

kds

1 + s
.

W1(s) =
s + 100
100s + 1

, W2(s) =
10s + 1
s + 10

.

We want to find kp, ki and kd the coefficients of the structured controller K such
that the closed-loop system respects the constraints:

max
(

|| W1(jω)
1 + G(jω)K(jω)

||∞, || W2(jω)K(jω)
1 + G(jω)K(jω)

||∞
)

≤ 1

The control is bounded by [−2, 2], and we limit the interval of ω to [10−2, 102].



554 D. Monnet et al.

Our algorithm gives the following result:

max
(

sup
ω

∣

∣

∣

∣

W1(jω)
1 + G(jω)K(jω)

∣

∣

∣

∣

, sup
ω

∣

∣

∣

∣

W2(jω)K(jω)
1 + G(jω)K(jω)

∣

∣

∣

∣

)

= 2.1414

with kp = −0.0425, ki = 0.4619, kd = 0.2566.

Unfortunately, the value of the solution of the min/max problem is greater
than 1. So, the constraints are not respected as shown in Fig. 2 (solid lines are
above dotted lines of the same color at some frequencies).

In this example, the main advantage of our global optimization approach is
that unlike classical method based on non-smooth optimization, we can certify
that no robust solution of our problem exists.

References

1. Apkarian, P., Noll, D.: Nonsmooth H∞ synthesis. IEEE Trans. Autom. Control
51(1), 71–86 (2006)

2. Arzelier, D., Clement, B., Peaucelle, D.: Multi-objective H2/H∞/impulse-to-peak
control of a space launch vehicle. Eur. J. Control 12(1), 57–70 (2006)

3. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
System and Control Theory. SIAM, vol. 15. SIAM, Philadelphia (1994)

4. Petersen, I.R., Tempo, R.: Robust control of uncertain systems: classical results and
recent developments. Automatica 50(5), 1315–1335 (2014)

5. Hurwitz, A.: Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit
negativen reellen Theilen besitzt. Math. Ann. 46(2), 273–284 (1895)

6. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Exam-
ples in Parameter and State Estimation Robust Control and Robotics. Springer,
London (2001)

7. Ninin, J.: Optimisation Globale basée sur l’Analyse d’Intervalles: Relaxation Affine
et Limitation de la Mémoire. PhD thesis, Institut National Polytechnique de
Toulouse, Toulouse (2010)

8. Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Principles and
Practice of Constraint Programming–CP 2007, pp. 635–650. Springer (2007)



Global Optimization Based on Contractor
Programming: An Overview

of the IBEX Library

Jordan Ninin(B)

Lab-STICC, IHSEV Team, ENSTA-Bretagne,
2 rue Francois Verny, 29806 Brest, France

jordan.ninin@ensta-bretagne.fr

Abstract. IBEX is an open-source C++ library for constraint process-
ing over real numbers. It provides reliable algorithms for handling non-
linear constraints. In particular, roundoff errors are also taken into
account. It is based on interval arithmetic and affine arithmetic. The
main feature of IBEX is its ability to build strategies declaratively
through the contractor programming paradigm. It can also be used as a
black-box solver or with an AMPL interface. Two emblematic problems
that can be addressed are: (i) System solving: A guaranteed enclosure
for each solution of a system of (nonlinear) equations is calculated; (ii)
Global optimization: A global minimizer of some function under non-
linear constraints is calculated with guaranteed and reliable bounds on
the objective minimum.

1 Kernel of IBEX

Considering sets in place of single points is not a common point of view in the
Mathematical Programming communities. Unlike classical optimization tools,
IBEX library relies on set-membership approach [1]. These methods and algo-
rithms do not consider single numerical values, or floating-point numbers, but
manipulate sets. The interval arithmetic offers a solid theoretical basis to repre-
sent and to calculate with subsets of Rn.

1.1 Interval Arithmetic

An interval is a closed connected subset of R. A non-empty interval [x ] can be
represented by its endpoints: [x ] = [x, x] = {x : x ≤ x ≤ x} where x ∈ R∪{−∞},
x ∈ R ∪ {+∞} and x ≤ x. The set of intervals is denoted by IR.

In IBEX, three external implementations of the Interval Arithmetic can be
linked: Filib++ [12], Profil-Bias [10], Gaol [9]. To improve the portability and
the compatibility of IBEX, a homemade interval arithmetic is available without
using low-level functionality which can be dependent on the architecture of the
CPU. All the arithmetic has been patched to comply with the new IEEE 1788-
2015 Standard for Interval Arithmetic [2].
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 555–559, 2016.
DOI: 10.1007/978-3-319-32859-1 47



556 J. Ninin

1.2 Affine Arithmetic

The affine arithmetic is a technique to compute lower and upper bounds of
functions over an interval. It is based on the same principle as interval arithmetic
excepted that the quantities are represented by an affine form, see [17].

As in interval arithmetic, the usual operations and functions are extended
to deal with affine forms. For the non-affine operations and some transcendental
functions, such as the square root, the logarithm, the inverse and the exponential,
several algorithms exist depending on the use: if you focus on the computation of
the bounds, or on performance, or on linear approximation, or on the reliability,
etc. Indeed, seven different versions are available to satisfy all the needs of the
user [16].

1.3 Contractor Programming

The concept of contractor is directly inspired by the ubiquitous concept of filter-
ing algorithms in constraint programming [7]. The strength of IBEX lies mainly
in this concept. Every algorithm in IBEX is included as a Contractor.

Definition 1. Let X ⊆ Rn be a feasible region.
The operator CX : IRn → IRn is a contractor for X if:

∀[x] ∈ IRn,

{CX([x]) ⊆ [x], (contraction)
CX([x]) ∩ X ⊇ [x] ∩ X. (completeness)

This definition means that: (i) Filtering gives a subdomain of the input
domain [x ]; (ii) the resulting subdomain CX([x ]) contains all feasible points. No
solution is lost. A contractor is defined by a feasible region X, and its purpose is
to eliminate a part of a domain which is not in X.

All set operators can be extended to contractors. For example, the inter-
section of two contractors creates a contractor for the intersection of these two
sets. In the same way, the hull of two contractors creates a contractor for the
disjunction of these constraints.

Definition 2. Let X and Y ⊆ Rn be two feasible regions.

CtcCompo: (CX ∩ CY)([x]) = CX([x]) ∩ CY([x])
CtcUnion: (CX ∪ CY)([x]) = CX([x]) ∪ CY([x])

CtcFixPoint: C∞ = C ◦ C ◦ C ◦ . . .

Using these properties, interacting, combining and merging heterogeneous
techniques becomes simple.

2 Lists of Contractors

In this section, a small part of all contractors available in IBEX is described:

CtcFwdBwd and CtcHC4 : the atomic contractors



Global Optimization Based on Contractor Programming 557

Forward-backward is a classical algorithm in constraint programming for con-
tracting quickly with respect to one equality or inequality constraint. See,
e.g., [4,8]. However, the more occurrences of variables in the expression of the
(in)equality, the less accurate the contraction. Hence, this contractor is often
used as an “atomic” contractor embedded in a higher-level operator like Propa-
gation or Shaving.

HC4 is another classical algorithm of constraint programming. It allows to
contract according to a system of constraints. The basic idea is to calculate the
fix point of a set of n contractors C1, . . . , Cn, i.e. (C ◦ · · · ◦ C)∞, without calling
a contractor when it is unnecessary.

Ctc3BCid and CtcAcid: the shaving contractors

Ctc3BCID is a shaving operator. It is an implementation of the 3BCID algorithm
defined in [18]. The shaving operator applies a contractor C on sub-parts (slices)
of the input box. If a slice is entirely eliminated by C, the input box can be
contracted by removing the slice from the box. This operator can be viewed as a
generalization of the SAC algorithm in discrete domains [5]. This concept with
continuous constraint was first introduced in [11] with the “3B” algorithm. In
[11], the sub-contractor C was CtcHC4. In IBEX, the idea was extended and
Ctc3BCID can be combined with every contractor.

CtcAcid is an adaptive version of the 3BCID contractor. The handled number
of variables for which a shaving will be performed is adaptively tuned. The ACID
algorithm alternates: (i) small tuning phases (during e.g. 50 nodes) where the
shaving is called on a number of variables double of the last tuned value (all
variables in the first tuning phase); statistics are computed in order to determine
an average number of interesting calls, The number of variables to be handled
in the next running phase is computed at the end of the tuning phase; (ii) and
large running phases (during e.g. 950 nodes) where 3BCID is called with the
number of variables determined during the last tuning phase.

CtcPolytopeHull:Contractors based on Linear relaxation

Considering a system of linear inequalities, CtcPolytopeHull gives the possibil-
ity to contract a box to the hull of the polytope (the set of feasible points). This
contractor calls a linear solver linked with IBEX (CPLEX, Soplex or CLP) to cal-
culate for each variable xi, the following bounds: min

Ax≤b∧x∈[x ]
xi and max

Ax≤b∧x∈[x ]
xi,

where [x ] is the box to be contracted.
If some constraints are nonlinear, Linearization procedures can automatically

linearize the non-linear constraints. There exists some built-in linearization tech-
niques in IBEX :

(i) LinearRelaxXTaylor: a corner-based Taylor relaxation [3];
(ii) LinearRelaxAffine2: a relaxation based on affine arithmetic [15];
(iii) LinearRelaxCombo: a combination of the two previous techniques (the poly-

tope is basically the intersection of the polytopes calculated by each tech-
nique).



558 J. Ninin

CtcQInter: the q-relaxed intersection

If a set of constraints is based on physical data, it is not uncommon that some
of this data is wrong. In this situation, the q-relaxed intersection of contractors
can be applied to this problem.

The q-relaxed intersection of m subsets X1, . . . ,Xm of Rn is the set of all
x ∈ Rn which belong to at least (m − q) Xi. We denote it by X{q} =

⋂{q}
Xi.

Since the q-relaxed intersection is a set operator, we have extended this notion
to contractors:

(

⋂{q} CXi

)

([x ]) =
⋂{q} (CXi

([x ])). This contractor allows mod-
eling the possibility of invalid constraints: it can also be used for robust opti-
mization.

In [6], Carbonnel et al. found an algorithm with a complexity θ(nm2) to
compute a box which contains the q-relaxed intersection of m boxes of Rn.

CtcExist and CtcForAll: the contractors with quantifiers

Another possibility is to project a subset of Rn over one or more dimensions.
For example, if a constraint needs to be satisfied for all values of a parameter in a
given set, such as {x ∈ Rn : ∀t ∈ X ⊆ Rm, g(x, t) ≤ 0}, few solvers are available
to deal with it. Another example is when a constraint needs to be satisfied for at
least one value of the parameter, such as {x ∈ Rn : ∃t ∈ X ⊆ Rm, g(x, t) ≤ 0}.

Two operators are defined as contractors. The first one is CtcForAll and
the second one is CtcExist. CtcForAll contracts each part of [x ] which is con-
tracted by C([x ] × {y}) for any y ∈ Y. Indeed, each part [a ] of [x ], such as
∃y ∈ Y, ([a ], y) /∈ Z, can be removed. Thus, each part [b] of [x ], such as
∀y ∈ Y, ([b], y) ∈ Z, is kept. A similar algorithm is used in CtcExist.

3 Optimization Strategies

To find the global optimum of a problem in a reliable way, IBEX included several
global optimization strategies. The principle of these algorithms is based on a
branch-and-bound technique [13]. At each iteration, the domain under study is
bisected to improve the computation of bounds. Boxes are eliminated if and only
if it is certified that no point in the box can produce a better solution than the
current best one, or that at least one constraint cannot be satisfied by any point
in such a box. To accelerate convergence, contractors are used at each iteration
to prune the width of boxes.

The default optimization strategy is based on a mathematical model
of the optimization problem that needs to be solved. This model can
be constructed directly using the symbolic kernel of IBEX or using the
AMPL interface. The default contractor inside is the following: CtcAcid ∩
(CtcPolytopeHull ∩ CtcHC4)∞.

The performance of the default optimizer is comparable to the global opti-
mizer BARON. However, our approach is completely reliable, and can deal with
more general problems (with trigonometric function).



Global Optimization Based on Contractor Programming 559

Moreover, a general pattern is also available [14]. This pattern only requires
a contractor defined on the feasible set X of the problem and another contrac-
tor on the unfeasible set X. Indeed, IBEX can address more complex real-life
problems with disjunction constraint, quantifiers, outliers, non-linearity, trigono-
metric functions, etc.

References

1. IBEX: a C++ numerical library based on interval arithmetic and constraint pro-
gramming. http://www.ibex-lib.org

2. IEEE SA - 1788–2015 - IEEE Standard for Interval Arithmetic
3. Araya, I., Trombettoni, G., Neveu, B.: A contractor based on convex interval Tay-

lor. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol.
7298, pp. 1–16. Springer, Heidelberg (2012)

4. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. Handb. Con-
straint Program. 2, 571–603 (2006)

5. Bessiere, C., Debruyne, R.: Theoretical analysis of singleton arc consistency. In:
Proceedings of ECAI-04 workshop on Modeling and Solving Problems with Con-
straints (2004)

6. Carbonnel, C., Trombettoni, G., Vismara, P., Chabert, G.: Q-intersection algo-
rithms for constraint-based robust parameter estimation. In AAAI’14-Twenty-
Eighth Conference on Artificial Intelligence, pp. 26–30 (2014)

7. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173(11), 1079–1100
(2009)

8. Collavizza, H., Delobel, F., Rueher, M.: A note on partial consistencies over con-
tinuous domains. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 147–161. Springer, Heidelberg (1998)

9. Goualard, F.: Gaol: NOT Just Another Interval Library. University of Nantes,
France (2005)

10. Knuppel, O.: PROFIL/BIAS-a fast interval library. Computing 53(3–4), 277–287
(1994)

11. Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI, vol. 93,
pp. 232–238. Citeseer (1993)

12. Nehmeier, M., von Gudenberg, J.W.: FILIB++, expression templates, the coming
interval standard. Reliable Comput. 15(4), 312–320 (2011)

13. Ninin, J.: Optimisation Globale basée sur l’Analyse d’Intervalles: Relaxation Affine
et Limitation de la Mémoire. Ph.D. thesis, Institut National Polytechnique de
Toulouse, Toulouse (2010)

14. Ninin, J., Chabert, G.: Global optimization based on contractor programming. In:
XII GLOBAL OPTIMIZATION WORKSHOP, pp. 77–80 (2014)

15. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global
optimization. 4OR 13(3), 247–277 (2014)

16. Stolfi, J., de Figueiredo, L.: Self-validated numerical methods and applications. In:
Monograph for 21st Brazilian Mathematics Colloquium (1997)

17. Stolfi, J., de Figueiredo, L.H.: Self-validated numerical methods and applications.
In: Monograph for 21st Brazilian Mathematics Colloquium. IMPA/CNPq, Rio de
Janeiro, Brazil (1997)

18. Trombettoni, G., Chabert, G.: Constructive interval disjunction. In: Bessière,
Christian (ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)

http://www.ibex-lib.org


The Bernstein Branch-and-Prune Algorithm
for Constrained Global Optimization
of Multivariate Polynomial MINLPs

Bhagyesh V. Patil(B)

Cambridge Centre for Advanced Research in Energy Efficiency in Singapore,
50 Nanyang Avenue, Singapore 639798, Singapore

bhagyesh.patil@gmail.com

Abstract. This paper address the global optimization problem of
polynomial mixed-integer nonlinear programs (MINLPs). A improved
branch-and-prune algorithm based on the Bernstein form is proposed to
solve such MINLPs. The algorithm use a new pruning feature based on
the Bernstein form, called the Bernstein box and Bernstein hull consis-
tency. The proposed algorithm is tested on a set of 16 MINLPs chosen
from the literature. The efficacy of the proposed algorithm is brought out
via numerical studies with the previously reported Bernstein algorithms
and several state-of-the-art MINLP solvers.

1 Introduction

Optimizing a MINLP is a challenging task and has been a point of attraction to
many researchers from academia as well as industry. This work present a new
solution procedure for such MINLPs. Typically, this work addresses MINLPs of
the following form:

min
x

f(x)

subject to
gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , n (1)
xk ∈ x ⊆ R, k = 1, 2, . . . , ld

xk ∈ {0, 1, . . . , q} ⊂ Z, k = ld + 1, . . . , l

where f : Rl �→ R is the (possibly nonlinear polynomial) objective function,
gi : Rl �→ R(i = 1, 2, . . . ,m), and hj : Rl �→ R(j = 1, 2, . . . , n) are the (possibly
nonlinear polynomial) inequality and equality constraint functions. Further, x :=
[x, x] is an interval in R, xk(k = 1, 2, . . . , ld) are continuous decision variables,
and the rest of xk(k = ld + 1, . . . , l) are integer decision variables with values 0
to q, q ∈ Z.

Several techniques exist in literature to solve MINLP problems. Most of these
techniques either decompose and reformulate the original problem (1) into a
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 560–575, 2016.
DOI: 10.1007/978-3-319-32859-1 48



The Bernstein Branch-and-Prune Algorithm 561

series of mixed-integer linear programs (MILPs) and nonlinear programs (NLPs),
or they attempt to solve a NLP relaxation in a branch-and-bound framework.
The interested reader can refer [2] and references therein for more specific details
about these techniques.

Recently, global optimization algorithms based on the Bernstein polynomial
approach has been proposed (see [11,12]), and found to be very effective in
solving small to medium dimensional polynomial MINLPs of the form (1). The
current scope of the work involve systematic extension of the above proposed
Bernstein global optimization algorithms to form a new improved algorithm. The
improved algorithm is of a branch-and-prune type and use consistency techniques
(constraint propagation) based on the Bernstein form. The consistency tech-
niques prune regions from a solution search space that surely do not contain the
global minimizer(s) [5,6], hence this improved algorithm is defined as the Bern-
stein branch-and-prune algorithm for the MINLPs (that is, BBPMINLP). The
algorithm BBPMINLP has some new features: (a) the consistency techniques are
framed in a context of the Bernstein form, namely Bernstein box consistency and
Bernstein hull consistency. (b) a new form of domain contraction step based on
the application of Bernstein box and Bernstein hull consistency to a constraint
f(x) ≤ f̃ is introduced. The main feature of the algorithm BBPMINLP is, all
operations (branching and pruning) are done using the Bernstein coefficients.

The performance of the algorithm BBPMINLP is compared with the earlier
reported Bernstein algorithms BMIO [12] and IBBBC [11], as well as with several
state-of-the-art MINLP solvers on a collection of 16 test problems chosen from
the literature. The performance comparison is made on the basis of the number
of boxes processed (between the algorithms BMIO, IBBBC, and BBPMINLP),
and ability to locate a correct global minimum (between state-of-the-art MINLP
solvers and the algorithm BBPMINLP). The findings are reported at the end of
the paper.

The rest of the paper is organized as follows. In Sect. 2, the reader is intro-
duced to some background of the Bernstein form. In Sect. 3, the consistency
techniques are introduced. In sequel, Bernstein box and Bernstein hull consis-
tency techniques are also presented. In Sect. 4, the main global optimization
algorithm BBPMINLP to solve the MINLP problems is presented. Finally, some
conclusions based on the present work are presented in the Sect. 5.

2 Background

This section briefly presents some notions about the Bernstein form. Due to the
space limitation, a simple univariate Bernstein form is introduced. A compre-
hensive background and mathematical treatment for a multivariate case can be
found in [12].

We can write a univariate l-degree polynomial p over an interval x in the
form

p(x) =
l

∑

i=0

aix
i, ai ∈ R. (2)



562 B.V. Patil

Now the polynomial p can be expanded into the Bernstein polynomials of the
same degree as below

p (x) =
l

∑

i=0

bi (x) Bl
i (x) . (3)

where Bl
i are the Bernstein basis polynomials and bi(x) are the Bernstein coef-

ficients give as below

Bl
i =

(

l
i

)

xi(1 − x)1−i. (4)

bi (x) =
i

∑

j=0

(

i
j

)

(

l
j

)aj , i = 0, . . . , l. (5)

Equation (3) is referred as the Bernstein form of a polynomial.

Theorem 1 (Range enclosure property). Let p be a polynomial of degree l, and
let p(x) denote the range of p on a given interval x. Then,

p(x) ⊆ B(x) := [min (bi(x)) ,max (bi(x))] . (6)

Proof: See [4].

Remark 1. The above theorem says that the minimum and maximum coefficients
of the array (bi(x)) provide lower and upper bounds for the range. This forms
the Bernstein range enclosure, defined by B(x) in Eq. (6). The Bernstein range
enclosure can successively be sharpened by the continuous domain subdivision
procedure [4].

3 Consistency Techniques

The consistency techniques are used for pruning (deleting) unwanted regions that
surely do not contain the global minimizer(s) from the solution search space. This
pruning is achieved by assessing consistency of the algebraic equations (in our
case inequality and equality constraints) over a given box x.

This section now describe algorithms based on the consistency ideas bor-
rowed from [5], and expanded in context of the Bernstein form. Henceforth,
these algorithms are called as Bernstein box consistency (BBC) and Bernstein
hull consistency (BHC). These algorithms work as a pruning operator in the
main global optimization algorithm BBPMINLP (reported in the Sect. 4).

3.1 Bernstein Box Consistency

A Bernstein box consistency (BBC) technique is used to contract the bounds on
a variable domain. The implementation of a BBC involve the application of a
one-dimensional Bernstein Newton contractor [9] to solve a single equation for
a single variable.



The Bernstein Branch-and-Prune Algorithm 563

Consider an equality constraint polynomial g(x) = 0, and let (b(x)) be the
Bernstein coefficients array of g(x). Consider any component direction, say the
first, with x1 = [a, b]. In the BBC technique, typically an attempt is made to
increase the value of a and decrease the value of b, thus effectively reducing the
width of x1.

To increase the value of a, first find all those Bernstein coefficients of (b(x))
corresponding to x1 = a. The minimum to maximum of these coefficients gives
an interval denoted by g(a). If 0 /∈ g(a), then the constraint is infeasible at this
endpoint a, and we search starting from a, along x1 = [a, b] for the first point
at which constraint becomes just feasible, that is, we try to find a zero of g(x).
Let us denote this zero as a′. Clearly, g(x) is infeasible over [a, a′), and so it
can discarded to get a contracted interval [a′, b] . On the other hand, if 0 ∈ g(a)
then we abandon the process to increase a and instead switch over to the other
endpoint b and make an attempt to decrease it in the same way as we did to
increase a.

To find a zero of g in [a, b], one iteration of the univariate version of the
Bernstein Newton contractor given in [9] is used. It is as follows

N (x1) = a − (g(a)/g′
x1

),
x′
1 = x1 ∩ N (x1) ,

where, g(a) is the minimum to maximum of the Bernstein coefficients array
(b(x)) at x1 = a, g′

x1
denotes an interval enclosure for the derivative of g on

x1, and x′
1 gives a new contracted interval. A similar process is carried out from

the other endpoint b, and if desired, the whole process can be repeated over all
other component directions to a get contracted box x′

The algorithm for the BBC which can be applied to both equality and
inequality constraints is as follows.

Algorithm Bernstein Box Consistency: x′ = BBC ((bg(x)),x, r, xstatus,r,
eq type) .

Inputs: The Bernstein coefficient array (bg(x)) of a given constraint polynomial
g (x), the l-dimensional box x, the direction r (decision variable) for which the
bounds are to be contracted, flag xstatus,r to indicate whether rth direction
(decision variable) is continuous (xstatus,r = 0) or integer (xstatus,r = 1), and
flag eq type to indicate whether g (x) is equality constraint (eq type = 0) or
inequality constraint (eq type = 1).

Outputs: A box x′ that is contracted using Bernstein box consistency technique
for a given constraint polynomial g (x).

BEGIN Algorithm

1. Set a = inf xr, b = supxr.
2. From the Bernstein coefficient array (bg(x)), compute the derivative enclo-

sure g
′
xr

in the direction xr.



564 B.V. Patil

3. (Consider left endpoint of xr). Obtain the Bernstein range enclosure g(a)
as the minimum to maximum from the Bernstein coefficient array of (bg(x))
for xr = a.

4. If eq type = 1, then modify g(a) as g(a) = [min g(a), inf].
5. If 0 ∈ g(a), then we cannot increase a. Go to step 8 and try from the right

endpoint b of the interval xr.
6. Do one iteration of the univariate Bernstein Newton contractor

N (xr) = a − (g(a)/g′
xr

).
x′
ra = xr ∩ N (xr) .

7. If x′
ra = ∅, then there is no zero of g on entire interval xr and hence the

constraint g is infeasible over box x. EXIT the algorithm in this case with
x′ = ∅.

8. (Consider right endpoint of xr). Obtain the Bernstein range enclosure g(b)
as the minimum to maximum from the Bernstein coefficient array of (b(x))
for xr = b.

9. If eq type = 1, then modify g(b) as g(b) = [min g(b), inf].
10. If 0 ∈ g(b), then we cannot decrease b. Go to step 13
11. Do one iteration of the univariate Bernstein Newton contractor

N (xr) = b − (g(b)/g′
xr

).
x′
rb

= xr ∩ N (xr) .

12. If x′
rb

= ∅, EXIT the algorithm with x′ = ∅.
13. Compute x′

r as follows:
(a) x′

r = x′
ra∩ x′

rb
, if both x′

ra and x′
rb

are computed.
(b) x′

r = x′
ra or x′

rb
, which ever is computed.

(c) x′
r = xr (both x′

ra and x′
rb

are not computed).
14. for k = 1, 2 if xstatus,r = 1 then

(a) if x(r, k) and x′
r(r, k) are equal then go to substep (e).

(b) Set ta = x(r, k), and tb = x′
r(r, k).

(c) if ta > tb then set x′
r(r, k) = 
x′

r(r, k)�.
(d) if ta < tb then set x′

r(r, k) = �x′
r(r, k)
.

(e) end (of k-loop).
15. Return x′ = x′

r.

END Algorithm

3.2 Algorithm Bernstein Box Consistency for a Set of Constraints

A single application of the proposed algorithm BBC in the Sect. 3.1 can contract
only one variable domain. For a multivariate constraint, in turn, we can apply
BBC to each variable separately. Below algorithm, called as BBC2SET applies
BBC to all the variables present in a constraint, and if there are multiple con-
straints, BBC2SET applies BBC to all of them simultaneously.



The Bernstein Branch-and-Prune Algorithm 565

AlgorithmBBCfor aSet ofConstraints:x′ = BBC2SET(B, k,C,x, xstatus) .

Inputs: A cell structure B containing Bernstein coefficient arrays of all the
constraint polynomials with first k Bernstein coefficient arrays are for the equal-
ity constraints, the total number of constraints C, the l–dimensional box x, and
a column vector xstatus describing the status (continuous or integer) of the each
variable xi (i = 1, 2, . . . , l).

Outputs: A contracted box x′.

BEGIN Algorithm

1. Set r = 0.
2. (a) for i = 1, 2, . . . , l

(b) for j = 1, 2, . . . , C

(i) Set r = r + 1, and xstatus,r = xstatus(r). if r > l then r = 1.
(ii) if j < k then x1=BBC(B{j},x, r, xstatus,r, 0).
(iii) if j > k then x1=BBC(B{j},x, r, xstatus,r, 1).
(iv) Update x = x ∩ x1.
(v) if x = ∅, then set x′ = ∅ and EXIT the algorithm.

(c) end (of i–loop).
(d) end (of j–loop).

3. Return x′ = x.

END Algorithm

3.3 Bernstein Hull Consistency

Similar to a BBC, a Bernstein hull consistency (BHC) technique contract bounds
on a variable domain. The typical BHC procedure is as below.

Consider a multivariate equality constraint h(x) = 0. To apply BHC to a
selected term of h(x) = 0, we need to keep the selected term on the left hand
side and remaining all other terms need to be taken on the right hand side, that
is, we write the constraint in the form aIx

I = h1(x) where, x = (x1, x2, . . . , xl)
and I = (i1, i2, . . . , il). The new contracted interval for the variable xr (in rth

direction) can be obtained as

x′
r =

(

h′

aI

∏

xik
k

)1/ir
⋂

xr, r = 1, 2, . . . , l. (7)

Here to compute h′ we compute the Bernstein coefficients of the monomial term
aIx

I and from them subtract the Bernstein coefficients of the constraint polyno-
mial h(x). The minimum to maximum of this subtracted Bernstein coefficients
will give h′. For a given constraint all the terms can be solved or only selected
terms can be solved.



566 B.V. Patil

The algorithm for the BHC that can be applied for both equality and inequal-
ity constraints is as follows.

Algorithm Bernstein Hull Consistency: x′ = BHC((bg(x)), aI , I,x,
xstatus, eq type) .

Inputs: The Bernstein coefficient array (bg(x)) of a given constraint polyno-
mial g (x), coefficient aI of the selected term t, power I of the each variable in
term t, the l–dimensional box x, a column vector xstatus,r describing the sta-
tus (if continuous, then xstatus,r = 0; if integer, then xstatus,r = 1) of the each
variable xr (r = 1, 2, . . . , l), and flag eq type to indicate whether g(x) is equality
constraint (eq type = 0) or inequality constraint(eq type = 1).

Outputs: A box x′ that is contracted using Bernstein hull consistency tech-
nique applied to a given constraint polynomial g (x) and selected term t.

BEGIN Algorithm

1. Compute the Bernstein coefficient array of the selected term t as (bt (x)).
2. Obtain the Bernstein coefficients of the constraint inverse polynomial by sub-

tracting (bg(x)) from (bt (x)), and then obtain its Bernstein range enclosure
as the minimum to maximum of these Bernstein coefficients. Denote it as h′.

3. if eq type = 1 then
(a) Compute an interval y as y = [−∞, 0] ∩ [min(bg(x)),max(bg(x))].
(b) if y = ∅ then set x′ = ∅, and EXIT the algorithm. Else modify h′ as

h′ = h′ + y.
4. (a) for r = 1, 2, . . . , l

(b) Compute x′
r =

(

h′

aI

∏
x
ik
k

)1/ir
⋂

xr

(c) for k = 1, 2 if xstatus(r) = 1 then
(i) if x(r, k) and x′

r(r, k) are equal then go to substep (v).
(ii) Set ta = x(r, k) and tb = x′

r(r, k).
(iii) if ta > tb then set x′

r(r, k) = 
x′
r(r, k)�.

(iv) if ta < tb then set x′
r(r, k) = �x′

r(r, k)
.
(v) end (of k–loop).

(d) end (of r–loop).
5. Return x′.

END Algorithm

3.4 Algorithm Bernstein Hull Consistency for a Set of Constraints

A single application of BHC algorithm can be made only to a single term of the
selected constraint. However, in practice, we may want to apply BHC to more
terms, or if there is more than one constraint, we may want to call BHC several
times.



The Bernstein Branch-and-Prune Algorithm 567

Below algorithm BHC2SET applies BHC to the multiple terms and to the
multiple constraints. This algorithm will call BHC several times. Our criteria for
term selection is as follows. In a given constraint, if a term contains maximum
power for any of the variable, then it is selected. If the term contains maximum
power for two variables, then it is solved two times and so on. This criteria is
inspired from the ideas about interval hull consistency reported in [5].

Algorithm BHC for a Set of Constraints: x′ = BHC2SET(A,B, k,
C,x, xstatus) .

Inputs: The cell structure A containing the coefficient arrays of all constraint
polynomials with first k coefficient arrays are for the equality constraints, a cell
structure B containing Bernstein coefficient arrays of all the constraint polyno-
mials, where first k Bernstein coefficient arrays are for the equality constraints,
the total number of constraints C, the l–dimensional box x, and a column vector
xstatus,r describing the status (if continuous, then xstatus,r = 0; if integer, then
xstatus,r = 1) of the each variable xr (r = 1, 2, . . . , l).

Outputs: A contracted box x′.

BEGIN Algorithm

1. Set r = 0.
2. (a) for i = 1, 2, . . . , l

(b) for j = 1, 2, . . . , C

(i) Set r = r + 1. if r > l then r = 1
(ii) Select the term having the maximum power for r in the constraint

j, and obtain the coefficient aI of the selected term and I containing
the power of each variable in the selected term (this shall be obtained
from A).

(iii) if j < k then x1=BHC(B{j}, aI , I,x, xstatus, 0).
(iv) if j > k then x1=BHC(B{j}, aI , I,x, xstatus, 1).
(v) Update x = x ∩ x1.
(vi) if x = ∅ then set x′ = ∅, and EXIT the algorithm.

(c) end (of j–loop).
(d) end (of i–loop).

3. Return x′ = x.

END Algorithm

4 Main Algorithm BBPMINLP

This section presents the main algorithm for constrained global optimization of
the MINLPs of a form (1). The working of the algorithm is similar to a interval
branch-and-bound procedure, but with following enhancements.



568 B.V. Patil

– This algorithm use the Bernstein form as a inclusion function for the global
optimization.

– Unlike classical subdivision procedure, the algorithm use a modified subdivi-
sion procedure from [11].

– Similarly, this algorithm use a efficient cut-off test, called as a vectorized
Bernstein cut-off test (VBCT) from [11].

– Further, this algorithm use the efficient Bernstein box and Bernstein hull
consistency techniques. These techniques serve as a pruning operator in the
algorithm, thereby speeding up the convergence of the algorithm.

Algorithm Bernstein Branch-and-Prune Constrained Optimization:
[ỹ, p̃, U ] = BBPMINLP(N, aI ,x, xstatus, εp, εx, εzero).

Inputs: Degree N of the variables occurring in the objective and constraint
polynomials, the coefficients aI of the objective and constraint polynomials in
the power form, the initial search domain x, a column vector xstatus,r describing
the status (if continuous, then xstatus,r = 0; if integer, then xstatus,r = 1) of
a each variable xr (r = 1, 2, . . . , l), the tolerance parameters εp and εx on the
global minimum and global minimizer(s), and the tolerance parameter εzero to
which the equality constraints are to be satisfied.

Outputs: A lower bound ỹ and an upper bound p̃ on the global minimum
f∗, along with a set U containing all the global minimizer(s) x(i).

BEGIN Algorithm

1. Set y := x and ystatus,r := xstatus,r.
2. From aI , compute the Bernstein coefficient arrays of the objective and con-

straint polynomials on the box y respectively as (bo(y)) , (bgi(y)) , (bhj(y)),
i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

3. Set p̃ := ∞ and y := min (bo(y)).
4. Set R = (R1, . . . , Rm, Rm+1, . . . , Rm+n) := (0, . . . , 0).
5. Initialize list L := {(y, y, R, (bo(y)) , (bgi(y)) , (bhj(y)))}, Lsol := {}.
6. If L is empty then go to step 22. Otherwise, pick the first item

(y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))) from L, and delete its entry from L.
7. Apply the Bernstein hull consistency algorithm to the relation f(y) ≤ p̃. If

the result is empty, then delete item (y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))) and
go to step 6.

y′ = BHC((bo(y)) , aI , I,y, ystatus,r, 1)
8. Set y := y′ and compute the Bernstein coefficient arrays of the

objective and constraint polynomials on the box y, respectively as
(bo(y)) , (bgi(y)) , (bhj(y)), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Also set y :=
min (bo(y)).

9. Apply the Bernstein box consistency algorithm to the f(y) ≤ p̃. If the
result is empty, then delete item (y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))) and go
to step 6.

y′ = BBC((bo(y)) ,y, r, ystatus,r, 1)

where bound contraction will be applied in the rth direction.



The Bernstein Branch-and-Prune Algorithm 569

10. Set y := y′ and compute the Bernstein coefficient arrays of the
objective and constraint polynomials on the box y, respectively as
(bo(y)) , (bgi(y)) , (bhj(y)), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Also set y :=
min (bo(y)).

11. {Contract domain box by applying Bernstein hull consistency to all the
constraints} Apply the algorithm BHC2SET to all the constraints

y′ = BHC2SET(Ac, Bc, k, C,y, ystatus,r)

Here Ac is a cell structure containing the coefficient arrays of the all con-
straints, where the first k coefficient arrays are for the equality constraints,
Bc is a cell structure containing the Bernstein coefficient arrays of the all
constraints, where the first k Bernstein coefficient arrays are for the equality
constraints, C is the total number of constraints, y is a domain box, and y′

is the new contracted box.
12. Set y := y′ and compute the Bernstein coefficient arrays of the

objective and constraint polynomials on the box y, respectively as
(bo(y)) , (bgi(y)) , (bhj(y)), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Also set y :=
min (bo(y)).

13. {Contract domain box by applying Bernstein box consistency to all the con-
straints} Apply the algorithm BBC2SET to all the constraints

y′ = BBC2SET(Bc, k, C,y, ystatus,r)

Here Bc is a cell structure containing the Bernstein coefficient arrays of all
the constraints, where the first k Bernstein coefficient arrays are for the
equality constraints, C is the total number of constraints, y is a domain
box, and y′ is a new contracted box.

14. Set y := y′ and compute the Bernstein coefficient arrays of the
objective and constraint polynomials on the box y, respectively as
(bo(y)) , (bgi(y)) , (bhj(y)), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Also set y :=
min (bo(y)).

15. {Branching}
(a) If w(yi) = 0 for all i = ld + 1, . . . , l (that is, all the integer variables has

been fixed to some integer values from there respective domains) then
go to substep (c).

(b) Choose a coordinate direction λ parallel to which yld+1 ×· · ·×yl has an
edge of maximum length, that is λ ∈ {i : w(y) := w(yi), i = ld+1, . . . , l}.
Go to step 16.

(c) Choose a coordinate direction λ parallel to which y1 × · · · × yld has an
edge of maximum length, that is λ ∈ {i : w(y) := w(yi), i = 1, . . . , ld}.

16. Bisect y normal to direction λ, getting boxes v1, v2 such that y = v1 ∪ v2.
The modified subdivision procedure from [11] is used.

17. for k = 1, 2
(a) Set Rk = (Rk

1 , . . . , R
k
m, Rk

m+1, . . . , R
k
m+n) := R.

(b) Find the Bernstein coefficient array and the corresponding Bernstein
range enclosure of the objective function (f) over vk as (b0(vk)) and
B0(vk), respectively.



570 B.V. Patil

(c) Set dk := min Bo(vk).
(d) If p̃ < dk then go to substep (j).
(e) for i = 1, 2, . . . , m if Ri = 0 then

(i) Find the Bernstein coefficient array and the corresponding Bernstein
range enclosure of the inequality constraint polynomial (gi) over vk

as (bgi(vk)) and Bgi(vk), respectively.
(ii) If Bgi(vk) > 0 then go to substep (j).
(iii) If Bgi(vk) ≤ 0 then set Rk

i := 1.
(f) for j = 1, 2, . . . , n if Rm+j = 0 then

(i) Find the Bernstein coefficient array and the corresponding Bernstein
range enclosure of the equality constraint polynomial (hj) over vk

as (bhj(vk)) and Bhj(vk), respectively.
(ii) If 0 /∈ Bhj(vk) then go to substep (j).
(iii) If Bhj(vk) ⊆ [−εzero, εzero] then set Rk

m+j := 1.
(g) If Rk = (1, . . . , 1) then set p̃ := min(p̃,max Bo(vk)).
(h) Enter (vk, dk, R

k) into the list L such that the second members of all
items of the list do not decrease.

(j) end (of k–loop).
18. {Cut-off test} Discard all items (z, z, R, (bo(z)) , (bgi(z)) , (bhj(z))) in the list

L that satisfy p̃ < z. For the remaining items in the list L apply the vec-
torized Bernstein cut-off test from [11], and update the current minimum
estimate p̃.

19. Denote the first item of the list L by (y, y, R, (bo(y)) , (bgi(y)) , (bhj(y))).
20. If (w(y) < εx)&(max Bo(y) − min Bo(y)) < εp then remove the item from

the list L and enter it into the solution list Lsol.
21. Go to step 6.
22. {Compute the global minimum} Set the global minimum ỹ to the minimum

of the second entries over all the items in Lsol.
23. {Compute the global minimizers} Find all those items in Lsol for which the

second entries are equal to ỹ. The first entries of these items contain the
global minimizer(s) x(i).

24. Return the lower bound ỹ and upper bound p̃ on the global minimum f∗,
along with the set U containing all the global minimizer(s) x(i).

END Algorithm

5 Numerical Studies

This section reports a numerical experimentation with the algorithm BBP-
MINLP on a set of 16 test problems. These test problems were chosen from
[3,8,13]. At the outset, the performance of the algorithm BBPMINLP was com-
pared with the Bernstein algorithms BMIO in [12] and IBBBC in [11]. Further,
the algorithm BBPMINLP was compared with the four state-of-the-art MINLP
solvers, namely AlphaECP, BARON, Bonmin, DICOPT, whose GAMS interface
is available through the NEOS server [10], and one MATLAB based open-source
solver BNB20 [7].



The Bernstein Branch-and-Prune Algorithm 571

Table 1. Description of symbols for Table 3.

Symbol Description

l Total number of the decision variables (binary, integer and continuous)

f* Bold values in this row indicates local minimum obtained

* Indicates that the solver failed giving the message “relaxed NLP is
unbounded”

** Indicates that the solver searched one hour for the solution, still could
not find the solution and therefore was terminated

*** Indicates that the solver returned the message “terminated by the solver”

**** Indicates that the solver failed giving the message “infeasible row with
only small Jacobian elements”

For all computations, a desktop PC with Pentium IV 2.40 GHz processor
with 2 GB RAM was used. The algorithm BBPMINLP was implemented in the
MATLAB [1] with an accuracy ε = 10−6 for computing the global minimum
and global minimizer(s), and a maximum limit on the number of subdivisions
to be 500.

Table 1 describes the list of symbols for Table 3. Table 2 reports for the 16
test problems, the total number of boxes processed and the computational time
taken in seconds to locate a correct global minimum by the Bernstein algorithms
BMIO, IBBBC, and the algorithm BBPMINLP reported in this work. The algo-
rithm BBPMINLP was compared using three different flags described as below:

– A: Application of the Bernstein hull consistency to the inequality and equality
constraints, that is algorithm BHC2SET (see Sect. 3.4) is applied to these
constraints.

– B: Application of the Bernstein box consistency to the inequality and equality
constraints, that is algorithm BBC2SET (see Sect. 3.2) is applied to these
constraints.

– C: Application of the Bernstein hull and box consistencies to the constraint
f(x) ≤ ˜f ( ˜f is the current global minimum estimate). This serves to delete a
subbox that bounds a nonoptimal point of f(x).

The findings are as below. It was observed that the algorithm BMIO failed
to solve for the four test problems (wester, hmittelman, sep1, tln5) and the algo-
rithm IBBBC is unable to solve one test problem sep1. Similarly, the algorithm
BBPMINLP with flags A and C is unable to solve one test problem (sep1). This is
perhaps the Bernstein hull consistency in this problem was unable to sufficiently
prune the search region, and hence may take more time to find the solution. How-
ever, for one test problem (tln5) we found the algorithm BBPMINLP with flag
A to be more efficient than the others. In contrast, the algorithm BBPMINLP
with flag B was able to successfully solve all the test problems. Moreover, it
was observed for two test problems (wester, hmittelman) algorithm with flag B
performed exceptionally well than the others. Overall, the performance of the



572 B.V. Patil

Table 2. Comparison of the number of boxes processed and computational time (in
seconds) taken by the earlier Bernstein algorithms BMIO, IBBBC and the algorithm
BBPMINLP.

Example l Statistics BMIO IBBBC BBPMINLP

A B C

floudas1 2 Boxes 1003 33 29 10 31

Time 0.45 0.08 0.3 0.10 0.18

zhu1 2 Boxes 1166 173 63 61 81

Time 1.05 0.14 0.5 0.40 0.59

st testph4 3 Boxes 1870 47 20 15 29

Time 2.21 0.18 0.15 0.10 0.44

nvs21 3 Boxes 1149 785 125 67 615

Time 0.81 0.10 0.23 0.31 1.17

gbd 4 Boxes 2201 23 23 5 15

Time 1.40 0.09 0.11 0.02 0.28

st e27 4 Boxes 572 21 5 5 13

Time 0.40 0.08 0.06 0.07 0.21

zhu2 5 Boxes 2571 700 84 81 173

Time 2.71 1.40 3.35 2.30 4.13

st test2 6 Boxes 2987 107 17 16 5

Time 1.63 0.18 0.30 0.12 0.11

wester 6 Boxes * 1621 1500 4 6003

Time 5.25 300 0.07 39.83

alan 8 Boxes 4015 1 1 1 1

Time 3.03 0.01 0.01 0.02 0.01

ex1225 8 Boxes 6869 385 343 85 261

Time 6.60 0.15 0.7 0.40 3.17

st test6 10 Boxes 3003 111 18 18 91

Time 3.57 2.68 1.25 0.70 11.51

st test3 13 Boxes 3960 340 119 21 261

Time 48.50 4.32 5.61 4.31 75.40

hmittelman 16 Boxes * 431 5000 3 191

Time 61.52 1561 1.35 316.44

sep1 29 Boxes * ** ** 1034 **

Time 5.96

tln5 35 Boxes * >10,000 1003 2972 >8003

Time 68.28 18.96

* Indicates that the algorithm returned “out of memory error”.
** Indicates that the algorithm did not give the result even after

one hour and is therefore terminated.



The Bernstein Branch-and-Prune Algorithm 573

Table 3. Comparison of the global minimum obtained and computational time (in
seconds) taken by the algorithm BBPMINLP with state-of-the-art MINLP solvers.

Example l Statistics Solver/Algorithm

AlphaECP BARON Bonmin BNB20 DICOPT BBPMINLP

floudas1 2 f* −8.5 −8.5 −8.5 −5 −4 −8.5

Time 1.04 0.25 0.14 0.01 0.21 0.1

zhu1 2 f* −3.9374E

+10

−3.9374E

+10

−3.9374E

+10

−3.9374E

+10

* −3.9374E+10

Time 1.36 0.25 0.16 0.07 0.40

st testph4 3 f* −80.5 −80.5 −80.5 −80.5 −80.5 −80.5

Time 0.89 0.26 0.26 0.22 0.47 0.10

nvs21 3 f* −5.68 −5.68 −5.68 −5.68 −5.68 −5.68

Time 15.54 1.06 0.16 0.29 0.23 0.31

gbd 4 f* 2.2 2.2 2.2 2.2 2.2 2.2

Time 0.5 0.25 0.22 0.03 0.22 0.02

st e27 4 f* 2 2 2 2 2 2

Time 0.71 0.26 0.13 0.01 0.22 0.07

zhu2 5 f* 0 −51,568 0 −42, 585 0 −51,568

Time 1.94 0.25 0.16 1.38 0.23 2.30

st test2 6 f* −9.25 −9.25 −9.25 −9.25 −9.25 −9.25

Time 1.83 0.32 0.31 0.29 0.84 0.12

wester 6 f* 112,235 112,235 112,235 ** 1,12,235 112,235

Time 6.66 0.37 0.08 0.82 0.07

alan 8 f* 2.92 2.92 2.92 2.92 2.92 2.92

Time 0.61 0.23 0.20 0.14 1.02 0.02

ex1225 8 f* 31 31 31 31 31 31

Time 0.72 0.26 0.28 0.28 0.47 0.40

st test6 10 f* 471 471 471 471 471 471

Time 3.56 1.42 1.17 0.82 1.42 0.70

st test3 13 f* −7 −7 −7 ** −7 −7

Time 0.94 0.27 0.61 0.98 4.31

hmittelman 16 f* *** 13 13 19 **** 13

Time 0.42 2.62 0.09 1.35

sep1 29 f* −510.08 −510.08 −510.08 −50 −510.08 −510.08

Time 7.91 0.06 0.04 0.14 0.001 5.96

tln5 35 f* 10.6 10.3 10.6 ** 13.7 10.3

Time 12.23 0.53 52.74 0.002 18.96

algorithm BBPMINLP with flag B was seen to be the best in terms of both the
number of boxes processed and the computational time it took to found a global
minimum.

Table 3 reports for the 16 test problems the quality of the global mini-
mum obtained with the algorithm BBPMINLP and the state-of-the-art MINLP
solvers1. The bold values in the table indicate the local minimum value. For these
test problems the performance of the state-of-the-art solvers was as follows:

– AlphaECP found the local minimum for two test problem (zhu2, tln5), and
failed to solve one test problem (hmittelman).

– Bonmin found the local minimum for two test problems (zhu2, tln5).

1 All the solver were executed in their default options for the 16 test problems
considered.



574 B.V. Patil

– BNB20 found the local minimum for four test problems (floudas1, zhu2, hmit-
telman, sep1), and failed to solve three test problems (wester, st test3, tln5).

– DICOPT found the local minimum for three test problems (floudas1, zhu2,
tln5), and failed solve two test problems (zhu1, hmittelman).

However, the algorithm BBPMINLP was able to found the correct the global
minimum value for all the test problems, and compares well with the state-of-
the-art solvers in terms of the computational time.

6 Conclusions

In this work the Bernstein algorithm (BBPMINLP) was proposed to solve the
polynomial type of MINLPs. This algorithm was composed with the two new
solution search space pruning operators, namely the Bernstein box and Bernstein
hull consistency. Further, the proposed algorithm also used another pruning
operator based on the application of the Bernstein box and hull consistency
to a constraint based on the objective function f(x) and a current minimum
estimate ˜f . This step along with a cut-off test improves the convergence of the
algorithm. The performance of the proposed algorithm BBPMINLP was tested
on a collection of 16 test problems. The test problems had dimensions ranging
from 2 to 35 and number of constraints varying from 1 to 31. At the outset, the
effectiveness of the algorithm BBPMINLP was demonstrated over the previously
reported Bernstein algorithms BMIO and IBBBC. The algorithm BBPMINLP
was found to be more efficient in the number of boxes processed, resulting an
average reduction of 96–99 % compared to BMIO and 42–88 % compared to
IBBBC. Similarly, from the computational perspective BBPMINLP was found
to be well competent with the algorithms BMIO and IBBBC.

Lastly, the performance of the algorithm BBPMINLP was compared with the
existing state-of-the-art MINLP solvers, such as AlphaECP, BARON, Bonmin,
BNB20, and DICOPT. Test results showed the superiority of the proposed algo-
rithm BBPMINLP over state-of-the-art MINLP solvers in terms of the solution
quality obtained. Specifically, all solvers (except BARON) located local solution
or failed for atleast one problem from a set of 16 test problems considered. On the
otherhand, the algorithm BBPMINLP could locate correct global minimum for
all the test problems. In terms of the computational time, BBPMINLP was some
order of magnitudes slower than the considered MINLP solvers. However, this
could be due to the difference in the computing platforms used for the algorithm
implementation and testing.

Acknowledgement. This work was funded by the Singapore National Research Foun-
dation (NRF) under its Campus for Research Excellence And Technological Enterprise
(CREATE) programme and the Cambridge Centre for Advanced Research in Energy
Efficiency in Singapore (CARES).



The Bernstein Branch-and-Prune Algorithm 575

References

1. The Mathworks Inc., MATLAB version 7.1 (R14), Natick, MA (2005)
2. D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated

practical overview. Annals of Operations Research 204(1), 301–320 (2013)
3. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and

Applications. Oxford University Press, New York (1995)
4. Garloff, J.: The Bernstein algorithm. Interval Computations 2, 154–168 (1993)
5. Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd

edn. Marcel Dekker, New York (2005)
6. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and

Constraint Satisfaction. Wiley, New York (2000)
7. Kuipers, K.: Branch-and-bound solver for mixed-integer nonlinear optimization

problems. MATLAB Central for File Exchange. Accessed 18 Dec. 2009
8. GAMS Minlp Model Library: http://www.gamsworld.org/minlp/minlplib/

minlpstat.htm. Accessed 20 March 2015
9. Nataraj, P.S.V., Arounassalame, M.: An interval Newton method based on the

Bernstein form for bounding the zeros of polynomial systems. Reliable Comput.
15(2), 109–119 (2011)

10. NEOS server for optimization.: http://www.neos-server.org/neos/solvers/index.
html. Accessed 20 March 2015

11. Patil, B.V., Nataraj, P.S.V.: An improved Bernstein global optimization algorithm
for MINLP problems with application in process industry. Math. Comput. Sci.
8(3–4), 357–377 (2014)

12. Patil, B.V., Nataraj, P.S.V., Bhartiya, S.: Global optimization of mixed-integer
nonlinear (polynomial) programming problems: the Bernstein polynomial app-
roach. Computing 94(2–4), 325–343 (2012)

13. Zhu, W.: A provable better branch and bound method for a nonconvex integer
quadratic programming problem. J. Comput. Syst. Sci. 70(1), 107–117 (2005)

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.neos-server.org/neos/solvers/index.html
http://www.neos-server.org/neos/solvers/index.html


General Session



Maximum Likelihood Estimates for Gaussian
Mixtures Are Transcendental

Carlos Améndola1(B), Mathias Drton2, and Bernd Sturmfels1,3

1 Technische Universität, Berlin, Germany
amendola@math.tu-berlin.de

2 University of Washington, Seattle, USA
3 University of California, Berkeley, USA

Abstract. Gaussian mixture models are central to classical statistics,
widely used in the information sciences, and have a rich mathematical
structure. We examine their maximum likelihood estimates through the
lens of algebraic statistics. The MLE is not an algebraic function of the
data, so there is no notion of ML degree for these models. The criti-
cal points of the likelihood function are transcendental, and there is no
bound on their number, even for mixtures of two univariate Gaussians.

Keywords: Algebraic statistics · Expectation maximization ·Maximum
likelihood · Mixture model · Normal distribution · Transcendence theory

1 Introduction

The primary purpose of this paper is to demonstrate the result stated in the title:

Theorem 1. The maximum likelihood estimators of Gaussian mixture mod-
els are transcendental functions. More precisely, there exist rational samples
x1, x2, . . . , xN in Qn whose maximum likelihood parameters for the mixture of
two n-dimensional Gaussians are not algebraic numbers over Q.

The principle of maximum likelihood (ML) is central to statistical inference.
Most implementations of ML estimation employ iterative hill-climbing methods,
such as expectation maximization (EM). These can rarely certify that a globally
optimal solution has been reached. An alternative paradigm, advanced by alge-
braic statistics [8], is to find the ML estimator (MLE) by solving the likelihood
equations. This is only feasible for small models, but it has the benefit of being
exact and certifiable. An important notion in this approach is the ML degree,
which is defined as the algebraic degree of the MLE as a function of the data.
This rests on the premise that the likelihood equations are given by polynomials.

Many models used in practice, such as exponential families for discrete or
Gaussian observations, can be represented by polynomials. Hence, they have an
ML degree that serves as an upper bound for the number of isolated local maxima
of the likelihood function, independently of the sample size and the data. The ML
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 579–590, 2016.
DOI: 10.1007/978-3-319-32859-1 49



580 C. Améndola et al.

degree is an intrinsic invariant of a statistical model, with interesting geometric
and topological properties [13]. The notion has proven useful for characterization
of when MLEs admit a ‘closed form’ [19]. When the ML degree is moderate, these
exact tools are guaranteed to find the optimal solution to the ML problem [5,12].

However, the ML degree of a statistical model is only defined when the MLE is
an algebraic function of the data. Theorem1 means that there is no ML degree for
Gaussian mixtures. It also highlights a fundamental difference between likelihood
inference and the method of moments [3,10,15]. The latter is a computational
paradigm within algebraic geometry, that is, it is based on solving polynomial
equations. ML estimation being transcendental means that likelihood inference
in Gaussian mixtures is outside the scope of algebraic geometry.

The proof of Theorem 1 will appear in Sect. 2. In Sect. 3 we shed further light
on the transcendental nature of Gaussian mixture models. We focus on mixtures
of two univariate Gaussians, the model given in (1) below, and we present a
family of data points on the real line such that the number of critical points of
the corresponding log-likelihood function (2) exceeds any bound.

While the MLE for Gaussian mixtures is transcendental, this does not mean
that exact methods are not available. Quite to the contrary. Work of Yap and his
collaborators in computational geometry [6,7] convincingly demonstrates this.
Using root bounds from transcendental number theory, they provide certified
answers to geometric optimization problems whose solutions are known to be
transcendental. Theorem 1 opens up the possibility of transferring these tech-
niques to statistical inference. In our view, Gaussian mixtures are an excellent
domain of application for certified computation in numerical analytic geometry.

2 Reaching Transcendence

Transcendental number theory [2,11] is a field that furnishes tools for deciding
whether a given real number τ is a root of a nonzero polynomial in Q[t]. If this
holds then τ is algebraic; otherwise τ is transcendental. For instance,

√
2+

√
7 =

4.059964873... is algebraic, and so are the parameter estimates computed by
Pearson in his 1894 study of crab data [15]. By contrast, the famous constants
π = 3.141592653... and e = 2.718281828... are transcendental. Our proof will be
based on the following classical result. A textbook reference is [2, Theorem 1.4]:

Theorem 2 (Lindemann-Weierstrass). If u1, . . . , ur are distinct algebraic
numbers then eu1 , . . . , eur are linearly independent over the algebraic numbers.

For now, consider the case of n = 1, that is, mixtures of two univariate
Gaussians. We allow mixtures with arbitrary means and variances. Our model
then consists of all probability distributions on the real line R with density

fα,μ,σ(x) =
1√
2π

·
[

α

σ1
exp

(

− (x − μ1)2

2σ2
1

)

+
1 − α

σ2
exp

(

− (x − μ2)2

2σ2
2

)

]

. (1)



Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental 581

It has five unknown parameters, namely, the means μ1, μ2 ∈ R, the standard
deviations σ1, σ2 > 0, and the mixture weight α ∈ [0, 1]. The aim is to estimate
the five model parameters from a collection of data points x1, x2, . . . , xN ∈ R.

The log-likelihood function of the model (1) is

�(α, μ1, μ2, σ1, σ2) =
N

∑

i=1

log fα,μ,σ(xi). (2)

This is a function of the five parameters, while x1, . . . , xN are fixed constants.
The principle of maximum likelihood suggests to find estimates by maximiz-

ing the function � over the five-dimensional parameter space Θ = [0, 1]×R2×R2
>0.

Remark 1. The log-likelihood function � in (2) is never bounded above. To see
this, we argue as in [4, Sect. 9.2.1]. Set N = 2, fix arbitrary values α0 ∈ [0, 1],
μ20 ∈ R and σ20 > 0, and match the first mean to the first data point μ1 = x1.
The remaining function of one unknown σ1 equals

�(α0, x1, μ20, σ1, σ20) ≥ log
[

α0

σ1
+

1 − α0

σ20
exp

(

− (x1 − μ20)2

2σ2
20

)

]

+ const.

The lower bound tends to ∞ as σ1 → 0.

Remark 1 means that there is no global solution to the MLE problem. This
is remedied by restricting to a subset of the parameter space Θ. In practice,
maximum likelihood for Gaussian mixtures means computing local maxima of
the function �. These are found numerically by a hill climbing method, such as
the EM algorithm, with particular choices of starting values. See Sect. 3. This
method is implemented, for instance, in the R package MCLUST [9]. In order
for Theorem 1 to cover such local maxima, we prove the following statement:

There exist samples x1, . . . , xN ∈ Q such that every non-trivial critical
point (α̂, μ̂1, μ̂2, σ̂1, σ̂2) of the log-likelihood function � in the domain Θ has
at least one transcendental coordinate.

Here, a critical point is non-trivial if it yields an honest mixture, i.e. a distribu-
tion that is not Gaussian. By the identifiability results of [20], this happens if and
only if the estimate (α̂, μ̂1, μ̂2, σ̂1, σ̂2) satisfies 0 < α̂ < 1 and (μ̂1, σ̂1) �= (μ̂2, σ̂2).

Remark 2. The log-likelihood function always has some algebraic critical points,
for any x1, . . . , xN ∈ Q. Indeed, if we define the empirical mean and variance as

x̄ =
1
N

N
∑

i=1

xi, s2 =
1
N

N
∑

i=1

(xi − x̄)2,

then any point (α̂, μ̂1, μ̂2, σ̂1, σ̂2) with μ̂1 = μ̂2 = x̄ and σ̂1 = σ̂2 = s is critical.
This gives a Gaussian distribution with mean x̄ and variance s2, so it is trivial.



582 C. Améndola et al.

Proof (of Theorem 1). First, we treat the univariate case. Consider the partial
derivative of (2) with respect to the mixture weight α:

∂�

∂α
=

N∑
i=1

1

fα,μ,σ(xi)
· 1√

2π

[
1

σ1
exp
(
− (xi − μ1)

2

2σ2
1

)
− 1

σ2
exp
(
− (xi − μ2)

2

2σ2
2

)]
. (3)

Clearing the common denominator

√
2π ·

N
∏

i=1

fα,μ,σ(xi),

we see that ∂�/∂α = 0 if and only if

N
∑

i=1

[

1
σ1

exp
(

− (xi − μ1)2

2σ2
1

)

− 1
σ2

exp
(

− (xi − μ2)2

2σ2
2

)

]

×
∏

j �=i

[

α

σ1
exp

(

− (xj − μ1)2

2σ2
1

)

+
1 − α

σ2
exp

(

− (xj − μ2)2

2σ2
2

)

]

= 0. (4)

Letting α1 = α and α2 = 1 − α, we may rewrite the left-hand side of (4) as

N∑
i=1

⎡
⎣

2∑
ki=1

(−1)ki−1

σki

exp
(
− (xi − μki)

2

2σ2
ki

)⎤
⎦∏

j �=i

⎡
⎣

2∑
kj=1

αkj

σkj

exp
(
− (xj − μkj )

2

2σ2
kj

)⎤
⎦. (5)

We expand the products, collect terms, and set Ni(k) = |{j : kj = i}|. With
this, the partial derivative ∂�/∂α is zero if and only if the following vanishes:

N∑
i=1

∑
k∈{1,2}N

exp

⎛
⎝−

N∑
j=1

(xj − μkj
)2

2σ2
kj

⎞
⎠ (−1)

ki−1
α

|{j �=i:kj=1}|
(1−α)

|{j �=i:kj=2}|
⎛
⎝ N∏

j=1

1

σkj

⎞
⎠

=
∑

k∈{1,2}N

exp

⎛
⎝−

N∑
j=1

(xj − μkj
)2

2σ2
kj

⎞
⎠
⎛
⎝ N∏

j=1

1

σkj

⎞
⎠ N∑

i=1

(−1)
ki−1

α
|{j �=i:kj=1}|

(1 − α)
|{j �=i:kj=2}|

=
∑

k∈{1,2}N

exp

⎛
⎝−

N∑
j=1

(xj − μkj
)2

2σ2
kj

⎞
⎠
⎛
⎝ N∏

j=1

1

σkj

⎞
⎠α

N1(k)−1
(1−α)

N2(k)−1
[

N1(k)(1−α)

+N2(k)(−α)

]

=
∑

k∈{1,2}N

exp

⎛
⎝−

N∑
j=1

(xj − μkj
)2

2σ2
kj

⎞
⎠
⎛
⎝ N∏

j=1

1

σkj

⎞
⎠α

N1(k)−1
(1 − α)

N−N1(k)−1
(N1(k) − Nα).

Let (α̂, μ̂1, μ̂2, σ̂1, σ̂2) be a non-trivial isolated critical point of the likelihood
function. This means that 0 < α̂ < 1 and (μ̂1, σ̂1) �= (μ̂2, σ̂2). This point depends
continuously on the choice of the data x1, x2, . . . , xN . By moving the vector with
these coordinates along a general line in RN , the mixture parameter α̂ moves con-
tinuously in the critical equation ∂�/∂α = 0 above. By the Implicit Function The-
orem, it takes on all values in some open interval of R, and we can thus choose
our data points xi general enough so that α̂ is not an integer multiple of 1/N .
We can further ensure that the last sum above is a Q(α)-linear combination of
exponentials with nonzero coefficients.



Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental 583

Suppose that (α̂, μ̂1, μ̂2, σ̂1, σ̂2) is algebraic. The Lindemann-Weierstrass The-
orem implies that the arguments of exp are all the same. Then the 2N numbers

N
∑

j=1

(xj − μ̂kj
)2

2σ̂2
kj

, k ∈ {1, 2}N ,

are all identical. However, for N ≥ 3, and for general choice of data x1, . . . , xN as
above, this can only happen if (μ̂1, σ̂1) = (μ̂2, σ̂2). This contradicts our hypoth-
esis that the critical point is non-trivial. We conclude that all non-trivial critical
points of the log-likelihood function (2) are transcendental.

In the multivariate case, the model parameters comprise the mixture weight
α ∈ [0, 1], mean vectors μ1, μ2 ∈ Rn and positive definite covariance matrices
Σ1, Σ2 ∈ Rn. Arguing as above, if a non-trivial critical (α̂, μ̂1, μ̂2, Σ̂1, Σ̂2) is
algebraic, then the Lindemann-Weierstrass Theorem implies that the numbers

N
∑

j=1

(xj − μ̂kj
)T Σ̂−1

kj
(xj − μ̂kj

) , k ∈ {1, 2}N ,

are all identical. For N sufficiently large and a general choice of x1, . . . , xN in Rn,
the 2N numbers are identical only if (μ̂1, Σ̂1) = (μ̂2, Σ̂2). Again, this constitutes
a contradiction to the hypothesis that (α̂, μ̂1, μ̂2, Σ̂1, Σ̂2) is non-trivial. �	

Many variations and specializations of the Gaussian mixture model are used
in applications. In the case n = 1, the variances are sometimes assumed equal, so
σ1 = σ2 for the above two-mixture. This avoids the issue of an unbounded likeli-
hood function (as long as N ≥ 3). Our proof of Theorem1 applies to this setting.
In higher dimensions (n ≥ 2), the covariance matrices are sometimes assumed
arbitrary and distinct, sometimes arbitrary and equal, but often also have spe-
cial structure such as being diagonal. Various default choices are discussed in
the paper [9] that introduces the R package MCLUST. Our results imply that
maximum likelihood estimation is transcendental for all these MCLUST models.

Example 1. We illustrate Theorem 1 for a specialization of (1) obtained by fixing
three parameters: μ2 = 0 and σ1 = σ2 = 1/

√
2. The remaining two free para-

meters are α and μ = μ1. We take only N = 2 data points, namely x1 = 0 and
x2 = x > 0. Omitting an additive constant, our log-likelihood function equals

�(α, μ) = log
(

α · e−μ2
+ (1 − α)

)

+ log
(

α · e−(μ−x)2 + (1 − α) · e−x2)

. (6)

For a concrete example take x = 2. The graph of (6) for this choice is shown
in Fig. 1. By maximizing �(α, μ) numerically, we find the parameter estimates

α̂ = 0.50173262959803874... and μ̂ = 1.95742494230308167... (7)

Our technique can be applied to prove that α̂ and μ̂ are transcendental over Q.
We illustrate this for μ̂.



584 C. Améndola et al.

Fig. 1. Graph of the log-likelihood function for two data points x1 = 0 and x2 = 2.

For any x ∈ R, the function �(α, μ) is bounded from above and achieves its
maximum on [0, 1]×R. If x > 0 is large, then any global maximum (α̂, μ̂) of � is
in the interior of [0, 1] ×R and satisfies 0 < μ̂ ≤ x. According to a Mathematica
computation, the choice x ≥ 1.56125... suffices for this. Assume that this holds.
Setting the two partial derivatives equal to zero and eliminating the unknown α
in a further Mathematica computation, the critical equation for μ is found to be

(x − μ)eμ2 − x + μe−μ(2x−μ) = 0. (8)

Suppose for contradiction that both x and μ̂ are algebraic numbers over Q.
Since 0 < μ̂ ≤ x, we have −μ̂(2x − μ̂) < 0 < μ̂2. Hence u1 = μ̂2, u2 = 0 and
u3 = −μ̂(2x − μ̂) are distinct algebraic numbers. The Lindemann-Weierstrass
Theorem implies that eu1 , eu2 and eu3 are linearly independent over the field of
algebraic numbers. However, from (8) we know that

(x − μ̂) · eu1 − x · eu2 + μ̂ · eu3 = 0.

This is a contradiction. We conclude that the number μ̂ is transcendental over Q.

3 Many Critical Points

Theorem 1 shows that Gaussian mixtures do not admit an ML degree. This raises
the question of how to find any bound for the number of critical points.

Problem 1. Does there exist a universal bound on the number of non-trivial
critical points for the log-likelihood function of the mixture of two univariate
Gaussians? Or, can we find a sequence of samples on the real line such that the
number of non-trivial critical points increases beyond any bound?



Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental 585

Table 1. Seven critical points of the log-likelihood function in Theorem 3 with K = 7.

k α μ1 μ2 σ1 σ2 Log-likelihood

1 0.1311958 1.098998 4.553174 0.09999497 1.746049 −27.2918782147578

2 0.1032031 2.097836 4.330408 0.09997658 1.988948 −28.6397463805501

3 0.07883084 3.097929 4.185754 0.09997856 2.06374 −29.1550277534757

4 0.06897294 4.1 4.1 0.1 2.07517 −29.2858981551065

5 0.07883084 5.102071 4.014246 0.09997856 2.06374 −29.1550277534757

6 0.1032031 6.102164 3.869592 0.09997658 1.988948 −28.6397463805501

7 0.1311958 7.101002 3.646826 0.09999497 1.746049 −27.2918782147578

We shall resolve this problem by answering the second question affirmatively.
The idea behind our solution is to choose a sample consisting of many well-
separated clusters of size 2. Then each cluster gives rise to a distinct non-trivial
critical point (α̂, μ̂1, μ̂2, σ̂1, σ̂2) of the log-likelihood function � from (2). We pro-
pose one particular choice of data, but many others would work too.

Theorem 3. Fix sample size N = 2K for K ≥ 2, and take the ordered sample
(x1, . . . , x2K) = (1, 1.2, 2, 2.2, . . . , K, K+0.2). Then, for each k ∈ {1, . . . , K},
the log-likelihood function � from (2) has a non-trivial critical point with
k < μ̂1 < k + 0.2. Hence, there are at least K non-trivial critical points.

Before turning to the proof, we offer a numerical illustration.

Example 2. For K = 7, we have N = 14 data points in the interval [1, 7.2].
Running the EM algorithm (as explained in the proof of Theorem3 below) yields
the non-trivial critical points reported in Table 1. Their μ1 coordinates are seen
to be close to the cluster midpoints k + 0.1 for all k. The observed symmetry
under reversing the order of the rows also holds for all larger K.

Our proof of Theorem3 will be based on the EM algorithm. We first recall
this algorithm. Let fα,μ,σ be the mixture density from (1), and let

fj(x) =
1√

2π σj

exp
(

− (x − μj)2

2σ2
j

)

, j = 1, 2,

be the two Gaussian component densities. Define

γi =
α · f1(xi)
fα,μ,σ(xi)

, (9)

which can be interpreted as the conditional probability that data point xi belongs
to the first mixture component. Further, define N1 =

∑N
i=1 γi and N2 = N −

N1, which are expected cluster sizes. Following [4, Sect. 9.2.2], the likelihood
equations for our model can be written in the following fixed-point form:



586 C. Améndola et al.

α =
N1

N
, (10)

μ1 =
1

N1

N
∑

i=1

γixi, μ2 =
1

N2

N
∑

i=1

(1 − γi)xi, (11)

σ1 =
1

N1

N
∑

i=1

γi(xi − μ1)2, σ2 =
1

N2

N
∑

i=1

(1 − γi)(xi − μ2)2. (12)

In the present context, the EM algorithm amounts to solving these equations
iteratively. More precisely, consider any starting point (α, μ1, μ2, σ1, σ2). Then
the E-step (“expectation”) computes the estimated frequencies γi via (9). In
the subsequent M-step (“maximization”), one obtains a new parameter vector
(α, μ1, μ2, σ1, σ2) by evaluating the right-hand sides of the Eqs. (10)–(12). The
two steps are repeated until a fixed point is reached, up to the desired numerical
accuracy. The updates never decrease the log-likelihood. For our problem it can
be shown that the algorithm will converge to a critical point; see e.g. [16].

Proof (of Theorem 3). Fix k ∈ {1, . . . , K}. We choose starting parameter values
to suggest that the pair (x2k−1, x2k) = (k, k + 0.2) belongs to the first mixture
component, while the rest of the sample belongs to the second. Explicitly, we set

α =
2
N

=
1
K

,

μ1 = k + 0.1, μ2 =
K2 + 1.2K − 2k − 0.2

2(K − 1)
,

σ1 = 0.1, σ2 =

√

1
12K4 − 1

3K3 + (k − 43
75 )K2 − (k2 − k + 14

75 )K + 0.01

K − 1
.

We shall argue that, when running the EM algorithm, the parameters will always
stay close to these starting values. Specifically, we claim that throughout all EM
iterations, the parameter values satisfy the inequalities

1
4K

≤ α ≤ 1
K

, 0.09 ≤ μ1 − k ≤ 0.11, 0.099 ≤ σ1 ≤ 0.105, (13)

K

2
+ 0.1 ≤ μ2 ≤ K

2
+ 1.1, (14)

√

K2

12
− K

6
+ 0.01 ≤ σ2 ≤

√

K2

12
+

K

12
+ 0.01. (15)

The starting values proposed above obviously satisfy the inequalities in (13),
and it is not difficult to check that (14) and (15) are satisfied as well. To prove
the theorem, it remains to show that (13)–(15) continue to hold after an EM
update.

In the remainder, we assume that K > 22. For smaller values of K the claim
of the theorem can be checked by running the EM algorithm. In particular, for
K > 3, the second standard deviation satisfies the simpler bounds



Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental 587

K√
12

−
√

3
5

≤ σ2 ≤ K√
12

+
√

3
12

. (16)

A key property is that the quantity γi, computed in the E-step, is always
very close to zero for i �= 2k − 1, 2k. To see why, rewrite (9) as

γi =
1

1 + 1−α
α

f2(xi)
f1(xi)

=
1

1 + 1−α
α

σ1
σ2

exp
{

1
2

(

(xi−μ1
σ1

)2 − (xi−μ2
σ2

)2
)} .

Since α ≤ 1/K, we have 1−α
α ≥ K − 1. On the other hand, σ1

σ2
≥ 0.099

K/
√
12+

√
3/12

.
Using that K > 22, their product is thus bounded below by 0.3209. Turning to
the exponential term, the second inequality in (13) implies that |xi − μ1| ≥ 0.89
for i = 2k − 2 or i = 2k + 1, which index the data points closest to the kth pair.

Using (16), we obtain
(

xi − μ1

σ1

)2

−
(

xi − μ2

σ2

)2

≥
(

0.89
0.105

)2

−
(

K/2 + 0.1
K/

√
12 − √

3/5

)2

≥ 67.86.

From e33.93 > 5.4 · 1014, we deduce that γi < 10−14. The exponential term
becomes only smaller as the considered data point xi move away from the kth
pair. As |i − (2k − 1/2)| increases, γi decreases and can be bounded above by
a geometric progression starting at 10−14 and with ratio 10−54. This makes γi

with i �= 2k, 2k−1 negligible. Indeed, from the limit of geometric series, we have

s1 =
∑

i�=2k−1,2k

γi < 10−13, (17)

and similarly, s2 =
∑

i�=2k−1,2k γi(xi − k) satisfies

|s2| = |γ2k−2(−0.8) + γ2k+1(1) + γ2k−3(−1) + γ2k+2(1.2) + . . .| < 10−13. (18)

The two sums s1 and s2 are relevant for the M-step.
The probabilities γ2k−1 and γ2k give the main contribution to the averages

that are evaluated in the M-step. They satisfy 0.2621 ≤ γ2k−1, γ2k ≤ 0.9219.
Moreover, we may show that the values of γ2k−1 and γ2k are similar, namely:

0.8298 ≤ γ2k−1

γ2k
≤ 1.2213, (19)

which we prove by writing

γ2k−1

γ2k
=

1 + y exp(z/2)
1 + y

,

and using K > 22 to bound

y =
1 − α

α

σ1

σ2
exp

{

1
2

(

(

k − μ1

σ1

)2

−
(

k − μ2

σ2

)2
)}

,

z =
0.4(k − μ1) + 0.04

σ2
1

− 0.4(k − μ2) + 0.04
σ2
2

.



588 C. Améndola et al.

Bringing it all together, we have

μ1 =
1

N1

N
∑

i=1

γixi = k +
0.2γ2k + s2

γ2k−1 + γ2k + s1
.

Using γ2k + γ2k−1 > 0.5 and (18), as well as the lower bound in (19), we find

μ1 − k ≤ 0.2γ2k

γ2k−1 + γ2k
+

s2
γ2k−1 + γ2k

≤ 0.2γ2k

0.8298γ2k + γ2k
+ 10−12 ≤ 0.11.

Using the upper bound in (19), we also have 0.09 ≤ μ1 − k. Hence, the second
inequality in (13) holds.

The inequalities for the other parameters are verified similarly. For instance,

1
4K

<
0.2621 + 0.2621

2K
≤ γ2k−1 + γ2k + s1

2K
≤ 0.9219 + 0.9219 + 10−13

2K
<

1
K

holds for α = N1
N . Therefore, the first inequality in (13) continues to be true.

We conclude that running the EM algorithm from the chosen starting values
yields a sequence of parameter vectors that satisfy the inequalities (13)–(16). The
sequence has at least one limit point, which must be a non-trivial critical point of
the log-likelihood function. Therefore, for every k = 1, . . . , K, the log-likelihood
function has a non-trivial critical point with μ1 ∈ (k, k + 0.2). �	

4 Conclusion

We showed that the maximum likelihood estimator (MLE) in Gaussian mixture
models is not an algebraic function of the data, and that the log-likelihood
function may have arbitrarily many critical points. Hence, in contrast to the
models studied so far in algebraic statistics [5,8,12,19], there is no notion of an
ML degree for Gaussian mixtures. However, certified likelihood inference may
still be possible, via transcendental root separation bounds, as in [6,7].

Remark 3. The Cauchy-location model, treated in [17], is an example where the
ML estimation is algebraic but the ML degree, and also the maximum number
of local maxima, depends on the sample size and increases beyond any bound.

Remark 4. The ML estimation problem admits a population/infinite-sample
version. Here the maximization of the likelihood function is replaced by min-
imization of the Kullback-Leibler divergence between a given data-generating
distribution and the distributions in the model. The question of whether this
population problem is subject to local but not global maxima was raised in
[18]—in the context of Gaussian mixtures with known and equal variances. It is
known that the Kullback-Leibler divergence for such Gaussian mixtures is not
an analytic function [21, Sect. 7.8]. Readers of Japanese should be able to find
details in [22].



Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental 589

As previously mentioned, Theorem1 shows that likelihood inference is in
a fundamental way more complicated than the classical method of moments
[15]. The latter involves only the solution of polynomial equation systems. This
was recognized also in the computer science literature on learning Gaussian
mixtures [3,10,14], where most of the recent progress is based on variants of the
method of moments rather than likelihood inference. We refer to [1] for a study
of the method of moments from an algebraic perspective. Section 5 in that paper
illustrates the behavior of Pearson’s method for the sample used in Theorem 3.

Acknowledgements. CA and BS were supported by the Einstein Foundation Berlin.
MD and BS also thank the US National Science Foundation (DMS-1305154 and DMS-
1419018).

References

1. Améndola, C., Faugère, J.-C., Sturmfels, B.: Moment varieties of Gaussian mix-
tures. J. Algebraic Stat. arXiv:1510.04654

2. Baker, A.: Transcendental Number Theory. Cambridge University Press, London
(1975)

3. Belkin, M., Sinha, K.: Polynomial learning of distribution families. SIAM J. Com-
put. 44(4), 889–911 (2015)

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

5. Buot, M., Hoşten, S., Richards, D.: Counting and locating the solutions of polyno-
mial systems of maximum likelihood equations. II. The Behrens-Fisher problem.
Stat. Sin. 17(4), 1343–1354 (2007)

6. Chang, E.-C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Shortest paths for disc
obstacles is computable. Int. J. Comput. Geom. Appl. 16, 567–590 (2006)

7. Choi, S.W., Pae, S., Park, H., Yap, C.: Decidability of collision between a heli-
cal motion and an algebraic motion. In: Hanrot, G., Zimmermann, P. (eds.) 7th
Conference on Real Numbers and Computers, pp. 69–82. LORIA, Nancy (2006)

8. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Oberwol-
fach Seminars, vol. 39. Birkhäuser, Basel (2009)

9. Fraley, C., Raftery, A.E.: Enhanced model-based clustering, density estimation,
and discriminant analysis software: MCLUST. J. Classif. 20, 263–286 (2003)

10. Ge, R., Huang, Q., Kakade, S.: Learning mixtures of Gaussians in high dimensions.
In: STOC 2015, Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, pp. 761–770 (2015)

11. Gelfond, A.O.: Transcendental and Algebraic Numbers. Translated by Leo F.
Boron, Dover Publications, New York (1960)

12. Gross, E., Drton, M., Petrović, S.: Maximum likelihood degree of variance compo-
nent models. Electron. J. Stat. 6, 993–1016 (2012)

13. Huh, J., Sturmfels, B.: Likelihood geometry. In: Conca, A., et al. (eds.) Combinato-
rial Algebraic Geometry. Lecture Notes in Math., vol. 2108, pp. 63–117. Springer,
Heidelberg (2014)

14. Moitra, A., Valiant, G.: Settling the polynomial learnability of mixtures of Gaus-
sians. In: IEEE 51st Annual Symposium on Foundations of Computer Science, pp.
93–102 (2010)

http://arxiv.org/abs/1510.04654


590 C. Améndola et al.

15. Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans.
R. Soc. Lond. A 185, 71–110 (1894)

16. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM
algorithm. SIAM Rev. 26, 195–239 (1984)

17. Reeds, J.A.: Asymptotic number of roots of Cauchy location likelihood equations.
Ann. Statist. 13(2), 775–784 (1985)

18. Srebro, N.: Are there local maxima in the infinite-sample likelihood of Gaussian
mixture estimation? In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI),
vol. 4539, pp. 628–629. Springer, Heidelberg (2007)

19. Sturmfels, B., Uhler, C.: Multivariate Gaussian, semidefinite matrix completion,
and convex algebraic geometry. Ann. Inst. Statist. Math. 62(4), 603–638 (2010)

20. Teicher, H.: Identifiability of finite mixtures. Ann. Math. Stat. 34, 1265–1269
(1963)

21. Watanabe, S.: Algebraic Geometry and Statistical Learning Theory. Monographs
on Applied and Computational Mathematics, vol. 25. Cambridge University Press,
Cambridge (2009)

22. Watanabe, S., Yamazaki, K., Aoyagi, M.: Kullback information of normal mixture
is not an analytic function. IEICE Technical report, NC2004-50 (2004)



On the Quality of Some Root-Bounds

Prashant Batra(B)

Institute for Reliable Computing, Hamburg University of Technology,
Schwarzenbergstraße 95, 21071 Hamburg, Germany

batra@tuhh.de

Abstract. Bounds for the maximum modulus of all positive (or all com-
plex) roots of a polynomial are a fundamental building block of algo-
rithms involving algebraic equations. We apply known results to show
which are the salient features of the Lagrange (real) root-bound as well
as the related bound by Fujiwara. For a polynomial of degree n, we
construct a bound of relative overestimation at most 1.72n which over-
estimates the Cauchy root by a factor of two at most. This can be carried
over to the bounds by Kioustelidis and Hong. Giving a very short vari-
ant of a recent proof presented by Collins, we sketch a way to further
definite, measurable improvement.

Keywords: Maximum modulus of polynomial roots · Maximum
overestimation · Improvements of Lagrange’s bound

I. It is well-known that the quality of root-bounds substantially influences the
performance of root-finding, root-approximation and root-isolation. Numerical
methods, like Newton’s [14], as well as algebraic methods, e.g., isolation methods
based on continued fraction expansions [3,5,6,17,18], vary in convergence speed
and computational effort with the starting point determined by the root-bound.

Recently, Collins [4] emphasized the usefulness of Lagrange’s real root-bound
[11]: Let p be a real polynomial with Taylor expansion

p(x) = xn +
n−1
∑

i=0

aix
i ∈ R[x], (1)

and sort the |an−i|1/i in non-decreasing order. Denoting the sum of the last two
of those elements by L(p), we have then

max{xi ∈ R : p(xi) = 0} ≤ L(p).

After giving a proof of Lagrange’s bound, Collins [4] points out that the
bound L(p) is no weaker than a bound (called here and in the following) FM(p):

FM(p) := 2 max
i=1,...,n

{|an−i|1/i}.

Obviously, L(p) ≤ FM(p), but what else is known about the numerical qual-
ity of L(p)? How does it compare to the best possible values, and the myriads
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 591–595, 2016.
DOI: 10.1007/978-3-319-32859-1 50



592 P. Batra

of other root-bounds, for samples cf., e.g., [7,12,19]? To answer these ques-
tions, let us recall first the taxonomy for root-bounds proposed by van der Sluis
[20]. After recalling this frame-work and some results, we give estimates for the
overestimation of L(p).

For a root-bound functional applied to f ∈ C[x], f(x) =
∑n

i=0 aix
i, we may

value the following qualities:

(i) computational complexity, and
(ii) overestimation with respect to μ(f) := max{|xi| : f(xi) = 0}, as well as to

�(f) := max
{

λ ≥ 0 : λn − ∑n
i=1 |an−i|λn−i = 0

}

.

When no special structure of the considered polynomial can be used, we might
like to add

(iii) homogeneity (the root-bound for f scales for the polynomial γnf(x/γ)).

For complex polynomials, the requirement that the root-bound depends only
on the moduli |an−i| of the coefficients is very common, and the respective
requirement is

(iv) absoluteness.

Finally, the technical requirement that the root-bound functional is a non-
decreasing function of the absolute values |ai| is important, and denoted as

(v) normality.

Requirements (iii) – (v) are met by the following root-bound due to Fujiwara [8]:

F (p) := 2max
{

|a0/2|1/n ; |a1|1/n−1
, . . . , |an−2|1/2 , |an−1|

}

.

Please note that this is not exactly the bound FM(p) attributed by Collins [4]
to Fujiwara. Regarding property (ii) for the bound F (p) we have, thanks to [20],
in comparison to the Cauchy root �(p) and the true maximum modulus μ(p),
that for p of degree n

�(p) ≤ F (p) ≤ 2 · �(p),

and
μ(p) ≤ F (p) ≤ 2 · n · μ(p).

To retain the nice overestimation estimates, we combine both functionals L(·)
and F (·) in a new one

LF (p) := min{L(p), F (p)}. (2)

Thus, the relative overestimation of LF (·) cannot exceed 2n. But, as LF (·) is
normal and absolute, the relative overestimation is attained for a polynomial
with an n-fold root [20, Theorem 3.8.(d)]. By homogeneity [20], we may place
this root at 1. We obtain the following



On the Quality of Some Root-Bounds 593

Theorem 1. The relative overestimation of LF (·) for a polynomial of degree n

is at most n +
√

n(n−1)
2 , no larger than n(1 + 1/

√
2) ≤ 1.72n.

From our own analysis [1], LF (p) compares favorably to Kojima’s bound [12]

2max
{∣

∣

∣

∣

a0

2a1

∣

∣

∣

∣

;
∣

∣

∣

∣

a1

a2

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

an−2

an−1

∣

∣

∣

∣

, |an−1|
}

.

As van der Sluis [20] proved, any absolute root-bound functional must realize
a maximum relative overestimation of at least 1.4n. This motivated van der Sluis
to call F (·), which has relative overestimation bounded by 2n, a nearly optimal
root-bound functional. Thus, LF (·) is closer-to-optimal in a precise sense with
bounded relative overestimation 1.72n < 2n. Let us state a first improvement of
Theorem 2.7 in [20] as

Proposition 1. LF (·) is a nearly optimal root-bound functional, a good approx-
imation from above can be easily obtained, and it is to be recommended among
all absolute root-bound functionals.

Of course, all bounds that may be derived from F (·), especially Kioustelidis’
bound for positive real roots [10], and Hong’s absolute positivity bound [9],
and those considered in the generalized framework in [2], can be re-modelled on
LF (·), computing a joint minimum as in (2). Especially, in combination with
F (·) (as above in (2)), we retain the improved overestimation bounds.

Moreover, F (p) as well as LF (p) and the other mentioned bounds can be
computed in complexity O(deg p) - thanks to the remarkable result in [13].

II. Sophisticated methods for root-bounds are unwanted, this is common
sense viz. Runge’s remark in [16, Sect. 2, p. 408], or, e.g., [15, Chap. 8, p. 270].
What can we do, when p denotes a monic complex polynomial with Taylor
expansion

p(x) = xn +
n

∑

i=1

an−ix
n−i ∈ C[x],

to improve the upper bound LF (p) of μ(p) without spending, say, more than
O(n) field operations (and approximate logarithms from the floating-point rep-
resentation)? To this end, let us first consider the latest proof of Lagrange’s
bound in [4]. If maxi=1,...,n{|an−1|1/i} =: R, and

k := min{i ∈ N : 1 ≤ i ≤ n, |an−1|1/i = R},

and
r := max

i=1,...,n
i�=k

{|an−i|1/i},

then we may express Lagrange’s bound L(p) as

L(p) = R + r.



594 P. Batra

To establish the bound, we may consider as in [4], the polynomials Ai defined
by

Ai(x) := xn − Rixn−i −
n

∑

j=1
j �=i

rjxn−j ,

with
max

i=1,...,n
{μ(Ai)} ≥ μ(p).

As noted in [4], we have

Ai+1(x + R + r) − Ai(x + R + r) ∈ R≥0[x] for i = n − 1, . . . , 1.

Thus, if μ(A1) ≤ R + r, then μ(p) ≤ R + r = L(p).
Claim. μ(A1) ≤ R + r.

Proof. It is easy to verify that

for n = 1 : L(p) = R ≥ μ(p),
and n = 2 : L(p) = R + r ≥ μ(p).

Let us assume then n ≥ 3, and compute

A1(x)(x − r) = xn−1(x2 − (r + R)x + r(R − r)) + rn+1.

This is obviously positive for x > R + r. Thus,

μ(A1) ≤ R + r, and in conclusion we have μ(p) ≤ R + r = L(p). ��

Our condensation of the proof facilitates numerical improvements of the
bound

L(p) = R + r.

Let us give one indicative sketch:
Taking into account the smallest index k, where max

i=1,...,n
{|an−i|1/i} = R is

realized, we may compute improved bounds for the fewnomial

Ak(x)(x − r)

as well as for those shifts τ ∈ R≥0 which yield polynomial differences

Ai+1(x + τ) − Ai(x + τ) ∈ R≥0[x], i = k, . . . , n − 1,

with non-negative coefficients.
Several simple, definite improvements of L(p) stemming from different gen-

eralizations of a proof-technique by Lagrange [11] have been considered by the
author. Some of the new root-bound functionals turn out to be non-normal (in
the sense of [20, Definition 3.7]), which leads to a new quest for overestimation
bounds.



On the Quality of Some Root-Bounds 595

References

1. Batra, P.: A property of the nearly optimal root-bound. J. Comput. Appl. Math.
167(2), 489–491 (2004)

2. Batra, P., Sharma, V.: Bounds on absolute positiveness of multivariate polynomi-
als. J. Symb. Comput. 45(6), 617–628 (2010)

3. Burr, M.A., Krahmer, F.: SqFreeEVAL: an (almost) optimal real-root isolation
algorithm. J. Symb. Comput. 47(2), 153–166 (2012)

4. Collins, G.E.: Krandick’s proof of Lagrange’s real root bound claim. J. Symb.
Comput. 70, 106–111 (2015)

5. Collins, G.E.: Continued fraction real root isolation using the Hong bound. J.
Symb. Comput. 72, 21–54 (2016)

6. Collins, G.E., Krandick, W.: On the computing time of the continued fractions
method. J. Symb. Comput. 47(11), 1372–1412 (2012)

7. Dieudonné, J.: La théorie analytique des polynômes d’une variable (à coefficients
quelconques). Gauthier-Villars, Paris (1938)

8. Fujiwara, M.: Über die obere Schranke des absoluten Betrages der Wurzeln einer
algebraischen Gleichung. Tôhoku Math. J. 10, 167–171 (1916)

9. Hong, H.: Bounds for absolute positiveness of multivariate polynomials. J. Symb.
Comput. 25(5), 571–585 (1998)

10. Kioustelidis, J.B.: Bounds for positive roots of polynomials. J. Comput. Appl.
Math. 16(2), 241–244 (1986)

11. Lagrange, J.-L.: Sur la résolution des équations numériques. In: Mémoires de
l’Académie royale des Sciences et Belles-lettres de Berlin, t. XXIII, pp. 539–578
(1769)

12. Marden, M.: Geometry of Polynomials. AMS Mathematical Surveys 3, 2nd edn.
AMS, Providence, Rhode Island (1966)

13. Mehlhorn, K., Ray, S.: Faster algorithms for computing Hong’s bound on absolute
positiveness. J. Symb. Comput. 45(6), 677–683 (2010)

14. Ostrowski, A.: Solution of Equations in Euclidean and Banach Spaces, 3rd edn.
Academic Press, New York (1973)

15. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University
Press, Oxford (2002)

16. Runge, C.: Separation und Approximation der Wurzeln. In: Encyklopädie der
mathematischen Wissenschaften, vol. 1, pp. 404–448. Verlag Teubner, Leipzig
(1899)

17. Sagraloff, M.: On the complexity of the Descartes method when using approximate
arithmetic. J. Symb. Comput. 65, 79–110 (2014)

18. Sharma, V.: Complexity of real root isolation using continued fractions. Theor.
Comput. Sci. 409(2), 292–310 (2008)

19. Specht, W.: Algebraische Gleichungen mit reellen oder komplexen Koeffizienten.
In: Enzyklopädie der mathematischen Wissenschaften, Band I, Heft 3, Teil II.
B.G. Teubner Verlagsgesellschaft, Stuttgart. Zweite, völlig neubearbeitete Auflage
(1958)

20. van der Sluis, A.: Upperbounds for roots of polynomials. Numer. Math. 15,
250–262 (1970)



Relative Hilbert-Post Completeness
for Exceptions

Jean-Guillaume Dumas1(B), Dominique Duval1, Burak Ekici1, Damien Pous2,
and Jean-Claude Reynaud3

1 Laboratoire J. Kuntzmann, Université Grenoble Alpes, 51, rue des Mathématiques,
UMR CNRS 5224, bp 53X, 38041 Grenoble, France

{Jean-Guillaume.Dumas,Dominique.Duval,Burak.Ekici}@imag.fr
2 Plume Team, CNRS, ENS Lyon, Université de Lyon, INRIA,

UMR 5668, Lyon, France
Damien.Pous@ens-lyon.fr

3 Reynaud Consulting (RC), Claix, France
Jean-Claude.Reynaud@imag.fr

Abstract. A theory is complete if it does not contain a contradiction,
while all of its proper extensions do. In this paper, first we introduce
a relative notion of syntactic completeness; then we prove that adding
exceptions to a programming language can be done in such a way that
the completeness of the language is not made worse. These proofs are
formalized in a logical system which is close to the usual syntax for
exceptions, and they have been checked with the proof assistant Coq.

1 Introduction

In computer science, an exception is an abnormal event occurring during the exe-
cution of a program. A mechanism for handling exceptions consists of two parts:
an exception is raised when an abnormal event occurs, and it can be handled
later, by switching the execution to a specific subprogram. Such a mechanism is
very helpful, but it is difficult for programmers to reason about it. A difficulty for
reasoning about programs involving exceptions is that they are computational
effects, in the sense that their syntax does not look like their interpretation:
typically, a piece of program with arguments in X that returns a value in Y is
interpreted as a function from X + E to Y + E where E is the set of excep-
tions. On the one hand, reasoning with f : X → Y is close to the syntax, but
it is error-prone because it is not sound with respect to the semantics. On the
other hand, reasoning with f : X + E → Y + E is sound but it loses most of
the interest of the exception mechanism, where the propagation of exceptions is
implicit: syntactically, f : X → Y may be followed by any g : Y → Z, since the
mechanism of exceptions will take care of propagating the exceptions raised by
f , if any. Another difficulty for reasoning about programs involving exceptions
is that the handling mechanism is encapsulated in a try-catch block, while the
behaviour of this mechanism is easier to explain in two parts (see for instance [11,
Chap. 14] for Java or [3, Sect. 15] for C++): the catch part may recover from
c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 596–610, 2016.
DOI: 10.1007/978-3-319-32859-1 51



Relative Hilbert-Post Completeness for Exceptions 597

exceptions, so that its interpretation may be any f : X + E → Y + E, but
the try-catch block must propagate exceptions, so that its interpretation is
determined by some f : X → Y + E.

In [8] we defined a logical system for reasoning about states and exceptions
and we used it for getting certified proofs of properties of programs in computer
algebra, with an application to exact linear algebra. This logical system is called
the decorated logic for states and exceptions. Here we focus on exceptions. The
decorated logic for exceptions deals with f : X → Y , without any mention of E,
however it is sound thanks to a classification of the terms and the equations.
Terms are classified, as in a programming language, according to the way they
may interact with exceptions: a term either has no interaction with exceptions (it
is “pure”), or it may raise exceptions and must propagate them, or it is allowed
to catch exceptions (which may occur only inside the catch part of a try-catch
block). The classification of equations follows a line that was introduced in [4]:
besides the usual “strong” equations, interpreted as equalities of functions, in
the decorated logic for exceptions there are also “weak” equations, interpreted
as equalities of functions on non-exceptional arguments. This logic has been
built so as to be sound, but little was known about its completeness. In this
paper we prove a novel completeness result: the decorated logic for exceptions
is relatively Hilbert-Post complete, which means that adding exceptions to a
programming language can be done in such a way that the completeness of the
language is not made worse. For this purpose, we first define and study the
novel notion of relative Hilbert-Post completeness, which seems to be a relevant
notion for the completeness of various computational effects: indeed, we prove
that this notion is preserved when combining effects. Practically, this means
that we have defined a decorated framework where reasoning about programs
with and without exceptions are equivalent, in the following sense: if there exists
an unprovable equation not contradicting the given decorated rules, then this
equation is equivalent to a set of unprovable equations of the pure sublogic not
contradicting its rules.

Informally, in classical logic, a consistent theory is one that does not contain
a contradiction and a theory is complete if it is consistent, and none of its proper
extensions is consistent. Now, the usual (“absolute”) Hilbert-Post completeness,
also called Post completeness, is a syntactic notion of completeness which does
not use any notion of negation, so that it is well-suited for equational logic. In
a given logic L, we call theory a set of sentences which is deductively closed:
everything you can derive from it (using the rules of L) is already in it. Then,
more formally, a theory is (Hilbert-Post) consistent if it does not contain all
sentences, and it is (Hilbert-Post) complete if it is consistent and if any sentence
which is added to it generates an inconsistent theory [21, Definition 4].

All our completeness proofs have been verified with the Coq proof assistant.
First, this shows that it is possible to formally prove that programs involving
exceptions comply to their specifications. Second, this is of help for improving
the confidence in the results. Indeed, for a human prover, proofs in a decorated
logic require some care: they look very much like familiar equational proofs, but



598 J.-G. Dumas et al.

the application of a rule may be subject to restrictions on the decoration of the
premises of the rule. The use of a proof assistant in order to check that these
unusual restrictions were never violated has thus proven to be quite useful. Then,
many of the proofs we give in this paper require a structural induction. There,
the correspondence between our proofs and their Coq counterpart was eased, as
structural induction is also at the core of the design of Coq.

A major difficulty for reasoning about programs involving exceptions, and
more generally computational effects, is that their syntax does not look like their
interpretation: typically, a piece of program from X to Y is not interpreted as a
function from X to Y , because of the effects. The best-known algebraic approach
for dealing with this problem has been initiated by Moggi: an effect is associated
to a monad T , in such a way that the interpretation of a program from X to Y is
a function from X to T (Y ) [14]: typically, for exceptions, T (Y ) = Y + E. Other
algebraic approaches include effect systems [13], Lawvere theories [18], algebraic
handlers [19], comonads [16,22], dynamic logic [15], among others. Some com-
pleteness results have been obtained, for instance for (global) states [17] and for
local states [20]. The aim of these approaches is to extend functional languages
with tools for programming and proving side-effecting programs; implementa-
tions include Haskell [2], Idris [12], Eff [1], while Ynot [23] is a Coq library for
writing and verifying imperative programs.

Differently, our aim is to build a logical system for proving properties of some
families of programs written in widely used non-functional languages like Java
or C++1. The salient features of our approach are that:

(1) The syntax of our logic is kept close to the syntax of programming languages.
This is made possible by starting from a simple syntax without effect and
by adding decorations, which often correspond to keywords of the languages,
for taking the effects into account [5,7].

(2) We consider exceptions in two settings, the programming language and the
core language. This enables for instance to separate the treatment, in proofs,
of the matching between normal or exceptional behavior from the actual
recovery after an exceptional behavior.

In Sect. 2 we introduce a relative notion of Hilbert-Post completeness in a
logic L with respect to a sublogic L0. Then in Sect. 3 we prove the relative
Hilbert-Post completeness of a theory of exceptions based on the usual throw
and try-catch statement constructors. We go further in Sect. 4 by establishing
the relative Hilbert-Post completeness of a core theory for exceptions with indi-
vidualized TRY and CATCH statement constructors, which is useful for expressing
the behaviour of the try-catch blocks. All our completeness proofs have been
verified with the Coq proof assistant and we therefore give the main ingredients
of the framework used for this verification in Sect. 5 and the correspondence
between our Coq package and the theorems and propositions of this paper in [10].

1 For instance, a denotational semantics of our framework for exceptions, which relies
on the common semantics of exceptions in these languages, was given in [8, Sect. 4].



Relative Hilbert-Post Completeness for Exceptions 599

2 Relative Hilbert-Post Completeness

Each logic in this paper comes with a language, which is a set of formulas,
and with deduction rules. Deduction rules are used for deriving (or generating)
theorems, which are some formulas, from some chosen formulas called axioms. A
theory T is a set of theorems which is deductively closed, in the sense that every
theorem which can be derived from T using the rules of the logic is already in T .
We describe a set-theoretic intended model for each logic we introduce; the rules
of the logic are designed so as to be sound with respect to this intended model.
Given a logic L, the theories of L are partially ordered by inclusion. There is
a maximal theory Tmax, where all formulas are theorems. There is a minimal
theory Tmin, which is generated by the empty set of axioms. For all theories T
and T ′, we denote by T + T ′ the theory generated from T and T ′.

Example 1. With this point of view there are many different equational logics,
with the same deduction rules but with different languages, depending on the
definition of terms. In an equational logic, formulas are pairs of parallel terms
(f, g) : X → Y and theorems are equations f ≡ g : X → Y . Typically, the
language of an equational logic may be defined from a signature (made of sorts
and operations). The deduction rules are such that the equations in a theory
form a congruence, i.e., an equivalence relation compatible with the structure of
the terms. For instance, we may consider the logic “of naturals” Lnat, with its
language generated from the signature made of a sort N , a constant 0 : 1 → N
and an operation s : N → N . For this logic, the minimal theory is the theory “of
naturals” Tnat, the maximal theory is such that sk ≡ s� and sk ◦0 ≡ s� ◦0 for all
natural numbers k and �, and (for instance) the theory “of naturals modulo 6”
Tmod6 can be generated from the equation s6 ≡ idN . We consider models of
equational logics in sets: each type X is interpreted as a set (still denoted X),
which is a singleton when X is 1, each term f : X → Y as a function from X to
Y (still denoted f : X → Y ), and each equation as an equality of functions.

Definition 2. Given a logic L and its maximal theory Tmax, a theory T is con-
sistent if T �= Tmax, and it is Hilbert-Post complete if it is consistent and if any
theory containing T coincides with Tmax or with T .

Example 3. In Example 1 we considered two theories for the logic Lnat: the
theory “of naturals” Tnat and the theory “of naturals modulo 6” Tmod6. Since
both are consistent and Tmod6 contains Tnat, the theory Tnat is not Hilbert-Post
complete. A Hilbert-Post complete theory for Lnat is made of all equations but
s ≡ idN , it can be generated from the axioms s◦0≡0 and s◦s≡s.

If a logic L is an extension of a sublogic L0, each theory T0 of L0 generates
a theory F (T0) of L. Conversely, each theory T of L determines a theory G(T )
of L0, made of the theorems of T which are formulas of L0, so that G(Tmax) =
Tmax,0. The functions F and G are monotone and they form a Galois connection,
denoted F � G: for each theory T of L and each theory T0 of L0 we have F (T0) ⊆
T if and only if T0 ⊆ G(T ). It follows that T0 ⊆ G(F (T0)) and F (G(T )) ⊆ T .



600 J.-G. Dumas et al.

Until the end of Sect. 2, we consider: a logic L0, an extension L of L0, and the
associated Galois connection F � G.

Definition 4. A theory T ′ of L is L0-derivable from a theory T of L if T ′ =
T +F (T ′

0) for some theory T ′
0 of L0. A theory T of L is (relatively) Hilbert-Post

complete with respect to L0 if it is consistent and if any theory of L containing
T is L0-derivable from T .

Each theory T is L0-derivable from itself, as T = T +F (Tmin,0), where Tmin,0

is the minimal theory of L0. In addition, Theorem 6 shows that relative com-
pleteness lifts the usual “absolute” completeness from L0 to L, and Proposition 7
proves that relative completeness is well-suited to the combination of effects.

Lemma 5. For each theory T of L, a theory T ′ of L is L0-derivable from T if
and only if T ′ = T +F (G(T ′)). As a special case, Tmax is L0-derivable from T if
and only if Tmax = T +F (Tmax,0). A theory T of L is Hilbert-Post complete with
respect to L0 if and only if it is consistent and every theory T ′ of L containing
T is such that T ′ = T + F (G(T ′)).

Proof. Clearly, if T ′ = T + F (G(T ′)) then T ′ is L0-derivable from T . So, let
T ′
0 be a theory of L0 such that T ′ = T + F (T ′

0), and let us prove that T ′ =
T + F (G(T ′)). For each theory T ′ we know that F (G(T ′)) ⊆ T ′; since here
T ⊆ T ′ we get T + F (G(T ′)) ⊆ T ′. Conversely, for each theory T ′

0 we know that
T ′
0 ⊆ G(F (T ′

0)) and that G(F (T ′
0)) ⊆ G(T )+G(F (T ′

0)) ⊆ G(T +F (T ′
0)), so that

T ′
0 ⊆ G(T + F (T ′

0)); since here T ′ = T + F (T ′
0) we get first T ′

0 ⊆ G(T ′) and
then T ′ ⊆ T + F (G(T ′)). Then, the result for Tmax comes from the fact that
G(Tmax) = Tmax,0. The last point follows immediately.

Theorem 6. Let T0 be a theory of L0 and T = F (T0). If T0 is Hilbert-Post
complete (in L0) and T is Hilbert-Post complete with respect to L0, then T is
Hilbert-Post complete (in L).

Proof. Since T is complete with respect to L0, it is consistent. Since T = F (T0)
we have T0 ⊆ G(T ). Let T ′ be a theory such that T ⊆ T ′. Since T is complete
with respect to L0, by Lemma 5 we have T ′ = T + F (T ′

0) where T ′
0 = G(T ′).

Since T ⊆ T ′, T0 ⊆ G(T ) and T ′
0 = G(T ′), we get T0 ⊆ T ′

0. Thus, since T0 is
complete, either T ′

0 = T0 or T ′
0 = Tmax,0; let us check that then either T ′ = T or

T ′ = Tmax. If T ′
0 = T0 then F (T ′

0) = F (T0) = T , so that T ′ = T + F (T ′
0) = T .

If T ′
0 = Tmax,0 then F (T ′

0) = F (Tmax,0); since T is complete with respect to
L0, the theory Tmax is L0-derivable from T , which implies (by Lemma 5) that
Tmax = T + F (Tmax,0) = T ′.

Proposition 7. Let L1 be an intermediate logic between L0 and L, let F1 � G1

and F2 � G2 be the Galois connections associated to the extensions L1 of L0 and
L of L1, respectively. Let T1 = F1(T0) and let T = F2(T1). If T1 is Hilbert-Post
complete with respect to L0 and T is Hilbert-Post complete with respect to L1

then T is Hilbert-Post complete with respect to L0.



Relative Hilbert-Post Completeness for Exceptions 601

Proof. This is an easy consequence of the fact that F = F2 ◦ F1.

Corollary 10 provides a characterization of relative Hilbert-Post completeness
which is used in the next Sections and in the Coq implementation.

Definition 8. For each set E of formulas let Th(E) be the theory generated by
E; and when E = {e} let Th(e) = Th({e}). Then two sets E1, E2 of formulas are
T -equivalent if T + Th(E1) = T + Th(E2); and a formula e of L is L0-derivable
from a theory T of L if {e} is T -equivalent to E0 for some set E0 of formulas
of L0.

Proposition 9. Let T be a theory of L. Each theory T ′ of L containing T is
L0-derivable from T if and only if each formula e in L is L0-derivable from T .

Proof. Let us assume that each theory T ′ of L containing T is L0-derivable
from T . Let e be a formula in L, let T ′ = T +Th(e), and let T ′

0 be a theory of L0

such that T ′ = T +F (T ′
0). The definition of Th(−) is such that Th(T ′

0) = F (T ′
0),

so that we get T +Th(e) = T +Th(E0) where E0 = T ′
0. Conversely, let us assume

that each formula e in L is L0-derivable from T . Let T ′ be a theory containing
T . Let T ′′ = T + F (G(T ′)), so that T ⊆ T ′′ ⊆ T ′ (because F (G(T ′)) ⊆ T ′ for
any T ′). Let us consider an arbitrary formula e in T ′, by assumption there is
a set E0 of formulas of L0 such that T + Th(e) = T + Th(E0). Since e is in
T ′ and T ⊆ T ′ we have T + Th(e) ⊆ T ′, so that T + Th(E0) ⊆ T ′. It follows
that E0 is a set of theorems of T ′ which are formulas of L0, which means that
E0 ⊆ G(T ′), and consequently Th(E0) ⊆ F (G(T ′)), so that T + Th(E0) ⊆ T ′′.
Since T + Th(e) = T + Th(E0) we get e ∈ T ′′. We have proved that T ′ = T ′′, so
that T ′ is L0-derivable from T .

Corollary 10. A theory T of L is Hilbert-Post complete with respect to L0 if
and only if it is consistent and for each formula e of L there is a set E0 of
formulas of L0 such that {e} is T -equivalent to E0.

3 Completeness for Exceptions

Exception handling is provided by most modern programming languages. It
allows to deal with anomalous or exceptional events which require special
processing. E.g., one can easily and simultaneously compute dynamic evalua-
tion in exact linear algebra using exceptions [8]. There, we proposed to deal
with exceptions as a decorated effect: a term f : X → Y is not interpreted as a
function f : X → Y unless it is pure. A term which may raise an exception is
instead interpreted as a function f : X → Y +E where “+” is the disjoint union
operator and E is the set of exceptions. In this section, we prove the relative
Hilbert-Post completeness of the decorated theory of exceptions in Theorem 15.

As in [8], decorated logics for exceptions are obtained from equational logics
by classifying terms. Terms are classified as pure terms or propagators, which is
expressed by adding a decoration or superscript, respectively (0) or (1); decora-
tion and type information about terms may be omitted when they are clear from



602 J.-G. Dumas et al.

the context or when they do not matter. All terms must propagate exceptions,
and propagators are allowed to raise an exception while pure terms are not.
The fact of catching exceptions is hidden: it is embedded into the try-catch
construction, as explained below. In Sect. 4 we consider a translation of the
try-catch construction in a more elementary language where some terms are
catchers, which means that they may recover from an exception, i.e., they do
not have to propagate exceptions.

Let us describe informally a decorated theory for exceptions and its intended
model. Each type X is interpreted as a set, still denoted X. The intended model
is described with respect to a set E called the set of exceptions, which does not
appear in the syntax. A pure term u(0) : X → Y is interpreted as a function u :
X → Y and a propagator a(1) : X → Y as a function a : X → Y + E; equations
are interpreted as equalities of functions. There is an obvious conversion from
pure terms to propagators, which allows to consider all terms as propagators
whenever needed; if a propagator a(1) : X → Y “is” a pure term, in the sense
that it has been obtained by conversion from a pure term, then the function
a : X → Y + E is such that a(x) ∈ Y for each x ∈ X. This means that
exceptions are always propagated: the interpretation of (b◦a)(1) : X → Z where
a(1) : X → Y and b(1) : Y → Z is such that (b◦a)(x) = b(a(x)) when a(x) is not
an exception and (b◦a)(x) = e when a(x) is the exception e (more precisely, the
composition of propagators is the Kleisli composition associated to the monad
X +E [14, Sect. 1]). Then, exceptions may be classified according to their name,
as in [8]. Here, in order to focus on the main features of the proof of completeness,
we assume that there is only one exception name. Each exception is built by
encapsulating a parameter. Let P denote the type of parameters for exceptions.
The fundamental operations for raising exceptions are the propagators throw(1)Y :
P → Y for each type Y : this operation throws an exception with a parameter p
of type P and pretends that this exception has type Y . The interpretation of the
term throw

(1)
Y : P → Y is a function throwY : P → Y +E such that throwY (p) ∈

E for each p ∈ P . The fundamental operations for handling exceptions are the
propagators (try(a)catch(b))(1) : X → Y for each terms a : X → Y and b : P →
Y : this operation first runs a until an exception with parameter p is raised (if
any), then, if such an exception has been raised, it runs b(p). The interpretation of
the term (try(a)catch(b))(1) : X → Y is a function try(a)catch(b) : X → Y +E
such that (try(a)catch(b))(x) = a(x) when a is pure and (try(a)catch(b))(x) =
b(p) when a(x) throws an exception with parameter p.

More precisely, first the definition of the monadic equational logic Leq is
recalled in Fig. 1, (as in [14], this terminology might be misleading: the logic
is called monadic because all its operations are have exactly one argument, this
is unrelated to the use of the monad of exceptions).

A monadic equational logic is made of types, terms and operations, where all
operations are unary, so that terms are simply paths. This constraint on arity
will make it easier to focus on the completeness issue. For the same reason, we
also assume that there is an empty type 0, which is defined as an initial object :



Relative Hilbert-Post Completeness for Exceptions 603

Terms are closed under composition:

uk ◦ · · · ◦ u1 : X0→Xk for each (ui : Xi−1→Xi)1≤i≤k, and idX : X→X when k = 0

Rules: (equiv)
u

u ≡ u

u ≡ v

v ≡ u

u ≡ v v ≡ w

u ≡ w

(subs)
u : X → Y v1 ≡ v2 : Y → Z

v1 ◦ u ≡ v2 ◦ u
(repl)

v1 ≡ v2 : X → Y w : Y → Z

w ◦ v1 ≡ w ◦ v2

Empty type with terms [ ]Y : → Y and rule: (initial)
u : → Y

u ≡ [ ]Y

Fig. 1. Monadic equational logic Leq (with empty type)

for each Y there is a unique term [ ]Y : 0 → Y and each term u(0) : Y → 0 is
the inverse of [ ](0)Y . In the intended model, 0 is interpreted as the empty set.

Then, the monadic equational logic Leq is extended to form the decorated logic
for exceptions Lexc by applying the rules in Fig. 2, with the following intended
meaning:

– (initial1): the term [ ]Y is unique as a propagator, not only as a pure term.
– (propagate): exceptions are always propagated.
– (recover): the parameter used for throwing an exception may be recovered.
– (try): equations are preserved by the exceptions mechanism.
– (try0): pure code inside try never triggers the code inside catch.
– (try1): code inside catch is executed when an exception is thrown inside try.

Pure part: the logic Leq with a distinguished type P

Decorated terms: throw(1)Y : P → Y for each type Y ,

(try(a)catch(b))(1) : X → Y for each a(1) : X → Y and b(1) : P → Y , and

(ak ◦ · · · ◦ a1)
(max(d1,...,dk)) : X0 → Xk for each (a

(di)
i : Xi−1 → Xi)1≤i≤k

with conversion from u(0) : X → Y to u(1) : X → Y

Rules:

(equiv), (subs), (repl) for all decorations (initial1)
a(1) : → Y

a ≡ [ ]Y

(recover)
u
(0)
1 , u

(0)
2 : X → P throwY ◦ u1 ≡ throwY ◦ u2

u1 ≡ u2

(propagate)
a(1) : X → Y

a ◦ throwX ≡ throwY
(try)

a
(1)
1 ≡ a

(1)
2 :X → Y b(1) :P → Y

try(a1)catch(b) ≡ try(a2)catch(b)

(try0)
u(0) :X → Y b(1) :P → Y

try(u)catch(b) ≡ u
(try1)

u(0) :X → P b(1) :P → Y

try(throwY ◦ u)catch(b) ≡ b ◦ u

Fig. 2. Decorated logic for exceptions Lexc



604 J.-G. Dumas et al.

The theory of exceptions Texc is the theory of Lexc generated from some arbitrary
consistent theory Teq of Leq; with the notations of Sect. 2, Texc = F (Teq). The
soundness of the intended model follows: see [8, Sect. 5.1] and [6], which are based
on the description of exceptions in Java [11, Chap. 14] or in C++ [3, Sect. 15].

Example 11. Using the naturals for P and the successor and predecessor func-
tions (resp. denoted s and p) we can prove, e.g., that try(s(throw 3))catch(p)
is equivalent to 2. Indeed, first the rule (propagate) shows that s(throw 3)) ≡
throw 3, then the rules (try) and (try1) rewrite the given term into p(3).

Now, in order to prove the completeness of the decorated theory for excep-
tions, we follow a classical method (see, e.g., [17, Propositions 2.37 and 2.40]): we
first determine canonical forms in Proposition 12, then we study the equations
between terms in canonical form in Proposition 13.

Proposition 12. For each a(1) :X →Y , either there is a pure term u(0) :X →Y
such that a≡u or there is a pure term u(0) :X →P such that a≡throwY ◦u.

Proof. The proof proceeds by structural induction. If a is pure the result is
obvious, otherwise a can be written in a unique way as a = b ◦ op ◦ v where
v is pure, op is either throwZ for some Z or try(c)catch(d) for some c and d,
and b is the remaining part of a. If a = b(1) ◦ throwZ ◦ v(0), then by (propagate)
a ≡ throwY ◦ v(0). Otherwise, a = b(1) ◦ (try(c(1))catch(d(1))) ◦ v(0), then by
induction we consider two cases.

– If c ≡ w(0) then by (try0) a ≡ b(1) ◦ w(0) ◦ v(0) and by induction we consider
two subcases: if b ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if b ≡ throwY ◦ t(0) then
a ≡ throwY ◦ (t ◦ w ◦ v)(0).

– If c ≡ throwZ ◦w(0) then by (try1) a ≡ b(1) ◦d(1) ◦w(0) ◦v(0) and by induction
we consider two subcases: if b ◦ d ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if b ◦ d ≡
throwY ◦ t(0) then a ≡ throwY ◦ (t ◦ w ◦ v)(0).

Thanks to Proposition 12, the study of equations in the logic Lexc can be
restricted to pure terms and to propagators of the form throwY ◦ v where v is
pure.

Proposition 13. For all v
(0)
1 , v

(0)
2 : X → P let a

(1)
1 = throwY ◦v1 : X → Y and

a
(1)
2 = throwY ◦ v2 : X → Y . Then a

(1)
1 ≡ a

(1)
2 is Texc-equivalent to v

(0)
1 ≡ v

(0)
2 .

Proof. Clearly, if v1 ≡ v2 then a1 ≡ a2. Conversely, if a1 ≡ a2, i.e., if throwY ◦
v1 ≡ throwY ◦ v2, then by rule (recover) it follows that v1 ≡ v2.

In the intended model, for all v
(0)
1 : X → P and v

(0)
2 : X → Y , it is impossible

to have throwY (v1(x)) = v2(x) for some x ∈ X, because throwY (v1(x)) is in
the E summand and v2(x) in the Y summand of the disjoint union Y + E.
This means that the functions throwY ◦ v1 and v2 are distinct, as soon as their
domain X is a non-empty set. For this reason, it is sound to make the following
Assumption 14.



Relative Hilbert-Post Completeness for Exceptions 605

Assumption 14. In the logic Lexc, the type of parameters P is non-empty, and
for all v

(0)
1 : X → P and v

(0)
2 : X → Y with X non-empty, let a

(1)
1 = throwY ◦v1 :

X → Y . Then a
(1)
1 ≡ v

(0)
2 is Texc-equivalent to Tmax,0.

Theorem 15. Under Assumption 14, the theory of exceptions Texc is Hilbert-
Post complete with respect to the pure sublogic Leq of Lexc.

Proof. Using Corollary 10, the proof relies upon Propositions 12 and 13. The
theory Texc is consistent, because (by soundness) it cannot be proved that
throw

(1)
P ≡ id(0)P . Now, let us consider an equation between terms with domain

X and let us prove that it is Texc-equivalent to a set of pure equations. When
X is non-empty, Propositions 12 and 13, together with Assumption 14, prove
that the given equation is Texc-equivalent to a set of pure equations. When X
is empty, then all terms from X to Y are equivalent to [ ]Y so that the given
equation is Texc-equivalent to the empty set of pure equations.

4 Completeness of the Core Language for Exceptions

In this section, following [8], we describe a translation of the language for excep-
tions from Sect. 3 in a core language with catchers. Thereafter, in Theorem 21,
we state the relative Hilbert-Post completeness of this core language. Let us call
the usual language for exceptions with throw and try-catch, as described in
Sect. 3, the programmers’ language for exceptions. The documentation on the
behaviour of exceptions in many languages (for instance in Java [11]) makes use
of a core language for exceptions which is studied in [8]. In this language, the
empty type plays an important role and the fundamental operations for deal-
ing with exceptions are tag(1) : P → 0 for encapsulating a parameter inside
an exception and untag(2) : 0 → P for recovering its parameter from any given
exception. The new decoration (2) corresponds to catchers: a catcher may recover
from an exception, it does not have to propagate it. Moreover, the equations also
are decorated: in addition to the equations ‘≡’ as in Sect. 3, now called strong
equations, there are weak equations denoted ‘∼’.

As in Sect. 3, a set E of exceptions is chosen; the interpretation is extended as
follows: each catcher f (2) : X → Y is interpreted as a function f : X+E → Y +E,
and there is an obvious conversion from propagators to catchers; the interpre-
tation of the composition of catchers is straightforward, and it is compatible
with the Kleisli composition for propagators. Weak and strong equations coin-
cide on propagators, where they are interpreted as equalities, but they differ on
catchers: f (2) ∼ g(2) : X → Y means that the functions f, g : X + E → Y + E
coincide on X, but maybe not on E. The interpretation of tag(1) : P → 0 is an
injective function tag : P → E and the interpretation of untag(2) : 0 → P is a
function untag : E → P +E such that untag(tag(p)) = p for each parameter p.
Thus, the fundamental axiom relating tag(1) and untag(2) is the weak equation
untag ◦ tag ∼ idP .

More precisely, the decorated logic for the core language for exceptions Lexcore

is defined in Fig. 3 as an extension of the monadic equational logic Leq. There is



606 J.-G. Dumas et al.

Pure part: the logic Leq with a distinguished type P

Decorated terms: tag(1) : P → , untag(2) : → P , and

(fk ◦ · · · ◦ f1)
(max(d1,...,dk)) : X0 → Xk for each (f

(di)
i : Xi−1 → Xi)1≤i≤k

with conversions from f (0) to f (1) and from f (1) to f (2)

Rules:

(equiv≡), (subs≡), (repl≡) for all decorations

(equiv∼), (repl∼) for all decorations, (subs∼) only when h is pure

(empty∼)
f : → Y

f ∼ [ ]Y
(≡-to-∼)

f ≡ g

f ∼ g
(ax)

untag ◦ tag ∼ idP

(eq1)
f
(d1)
1 ∼ f

(d2)
2

f1 ≡ f2
only when d1 ≤ 1 and d2 ≤ 1

(eq2)
f1, f2 : X → Y f1 ∼ f2 f1 ◦ [ ]X ≡ f2 ◦ [ ]X

f1 ≡ f2

(eq3)
f1, f2 : → X f1 ◦ tag ∼ f2 ◦ tag

f1 ≡ f2

Fig. 3. Decorated logic for the core language for exceptions Lexcore

an obvious conversion from strong to weak equations (≡-to-∼), and in addition
strong and weak equations coincide on propagators by rule (eq1). Two catchers
f
(2)
1 , f

(2)
2 : X → Y behave in the same way on exceptions if and only if f1◦ [ ]X ≡

f2◦[ ]X : 0 → Y , where [ ]X : 0 → X builds a term of type X from any exception.
Then rule (eq2) expresses the fact that weak and strong equations are related
by the property that f1 ≡ f2 if and only if f1 ∼ f2 and f1 ◦ [ ]X ≡ f2 ◦ [ ]X . This
can also be expressed as a pair of weak equations: f1 ≡ f2 if and only if f1 ∼ f2
and f1 ◦ [ ]X ◦ tag ∼ f2 ◦ [ ]X ◦ tag by rule (eq3). The core theory of exceptions
Texcore is the theory of Lexcore generated from the theory Teq of Leq.

The operation untag in the core language can be used for decomposing the
try-catch construction in the programmer’s language in two steps: a step for
catching the exception, which is nested into a second step inside the try-catch
block: this corresponds to a translation of the programmer’s language in the
core language, as in [8], which is reminded below; then Proposition 16 proves
the correctness of this translation. In view of this translation we extend the core
language with:

– for each b(1) : P → Y , a catcher (CATCH(b))(2) : Y → Y such that CATCH(b) ∼
idY and CATCH(b) ◦ [ ]Y ≡ b ◦ untag: if the argument of CATCH(b) is non-
exceptional then nothing is done, otherwise the parameter p of the exception
is recovered and b(p) is ran.

– for each a(1) :X → Y and k(2) :Y → Y , a propagator (TRY(a, k))(1) : X → Y
such that TRY(a, k) ∼ k ◦a: thus TRY(a, k) behaves as k ◦a on non-exceptional
arguments, but it does always propagate exceptions.



Relative Hilbert-Post Completeness for Exceptions 607

Then, a translation of the programmer’s language of exceptions in the core lan-
guage is easily obtained: for each type Y , throw(1)Y =[ ]Y ◦ tag : P → Y . and for
each a(1) : X → Y , b(1) : P → Y , (try(a)catch(b))(1) = TRY(a, CATCH(b)) : X → Y .
This translation is correct: see [10] for a proof of Proposition 16.

Proposition 16. If the pure term [ ]Y : 0 → Y is a monomorphism with respect
to propagators for each type Y , the above translation of the programmers’ lan-
guage for exceptions in the core language is correct.

Example 17 (Continuation of Example 11). We here show that it is possible
to separate the matching between normal or exceptional behavior from the
recovery after an exceptional behavior: to prove that try(s(throw 3))catch(p)
is equivalent to 2 in the core language, we first use the translation to get:
TRY(s◦[ ]◦tag◦3, CATCH(p)). Then (empty∼) shows that s◦[ ]tag◦3 ∼ [ ]◦tag◦3.
Now, the TRY and CATCH translations show that TRY([ ] ◦ tag ◦ 3, CATCH(p)) ∼
CATCH(p) ◦ [ ] ◦ tag ◦ 3 ∼ p ◦ untag ◦ tag ◦ 3. Finally the axiom (ax) and (eq1)
give p ◦ 3 ≡ 2.

In order to prove the completeness of the core decorated theory for excep-
tions, as for the proof of Theorem 15, we first determine canonical forms in
Proposition 18, then we study the equations between terms in canonical form
in Proposition 19. Let us begin by proving the fundamental strong equation for
exceptions (1): by replacement in the axiom (ax) we get tag◦untag◦tag ∼ tag,
then by rule (eq3):

tag ◦ untag ≡ id0. (1)

Proposition 18. 1. For each propagator a(1) : X → Y , either a is pure or
there is a pure term v(0) : X → P such that a(1) ≡ [ ](0)Y ◦ tag(1) ◦ v(0). And
for each propagator a(1) : X → 0 (either pure or not), there is a pure term
v(0) : X → P such that a(1) ≡ tag(1) ◦ v(0).

2. For each catcher f (2) : X → Y , either f is a propagator or there is an
propagator a(1) : P → Y and a pure term u(0) : X → P such that f (2) ≡
a(1) ◦ untag(2) ◦ tag(1) ◦ u(0).

Proof. 1. If the propagator a(1) : X → Y is not pure then it contains at least one
occurrence of tag(1). Thus, it can be written in a unique way as a = b◦tag◦v
for some propagator b(1) : 0 → Y and some pure term v(0) : X → P . Since
b(1) : 0 → Y we have b(1) ≡ [ ](0)Y , and the first result follows. When X =
0, it follows that a(1) ≡ tag(1) ◦ v(0). When a : X → 0 is pure, one has
a ≡ tag(1) ◦ ([ ]P ◦ a)(0).

2. The proof proceeds by structural induction. If f is pure the result is obvious,
otherwise f can be written in a unique way as f = g◦op◦u where u is pure, op
is either tag or untag and g is the remaining part of f . By induction, either
g is a propagator or g ≡ b ◦ untag ◦ tag ◦ v for some pure term v and some
propagator b. So, there are four cases to consider. (1) If op = tag and g is a
propagator then f is a propagator. (2) If op = untag and g is a propagator
then by Point 1 there is a pure term w such that u ≡ tag ◦ w, so that



608 J.-G. Dumas et al.

f ≡ g(1) ◦ untag ◦ tag ◦ w(0). (3) If op = tag and g ≡ b(1) ◦ untag ◦ tag ◦ v(0)

then f ≡ b ◦ untag ◦ tag ◦ v ◦ tag ◦ u. Since v : 0 → P is pure we have
tag ◦ v ≡ id0, so that f ≡ b(1) ◦ untag ◦ tag ◦ u(0). (4) If op = untag and
g ≡ b(1) ◦ untag ◦ tag ◦ v(0) then f ≡ b ◦ untag ◦ tag ◦ v ◦ untag ◦ u. Since v
is pure, by (ax) and (subs∼) we have untag ◦ tag ◦ v ∼ v. Besides, by (ax)
and (repl∼) we have v ◦ untag ◦ tag ∼ v and untag ◦ tag ◦ v ◦ untag ◦ tag ∼
untag ◦tag ◦ v. Since ∼ is an equivalence relation these three weak equations
imply untag ◦ tag ◦ v ◦ untag ◦ tag ∼ v ◦ untag ◦ tag. By rule (eq3) we get
untag ◦ tag ◦ v ◦ untag ≡ v ◦ untag, and by Point 1 there is a pure term w
such that u ≡ tag ◦ w, so that f ≡ (b ◦ v)(1) ◦ untag ◦ tag ◦ w(0).

Thanks to Proposition 18, in order to study equations in the logic Lexcore we
may restrict our study to pure terms, propagators of the form [ ](0)Y ◦tag(1) ◦v(0)

and catchers of the form a(1)◦untag(2)◦tag(1)◦u(0). The proof of Proposition 19
is given in [10].

Proposition 19. 1. For all a
(1)
1 , a

(1)
2 : P → Y and u

(0)
1 , u

(0)
2 : X → P , let

f
(2)
1 = a1 ◦untag◦tag◦u1 : X → Y and f

(2)
2 = a2 ◦untag◦tag◦u2 : X → Y ,

then f1 ∼ f2 is Texcore-equivalent to a1 ◦ u1 ≡ a2 ◦ u2 and f1 ≡ f2 is Texcore-
equivalent to {a1 ≡ a2 , a1 ◦ u1 ≡ a2 ◦ u2}.

2. For all a
(1)
1 : P → Y , u

(0)
1 : X → P and a

(1)
2 : X → Y , let f

(2)
1 = a1 ◦ untag ◦

tag ◦ u1 : X → Y , then f1 ∼ a2 is Texcore-equivalent to a1 ◦ u1 ≡ a2 and
f1 ≡ a2 is Texcore-equivalent to {a1 ◦ u1 ≡ a2 , a1 ≡ [ ]Y ◦ tag}.

3. Let us assume that [ ](0)Y is a monomorphism with respect to propagators.
For all v

(0)
1 , v

(0)
2 : X → P , let a

(1)
1 = [ ]Y ◦ tag ◦ v1 : X → Y and a

(1)
2 =

[ ]Y ◦ tag ◦ v2 : X → Y . Then a1 ≡ a2 is Texcore-equivalent to v1 ≡ v2.

Assumption 20 is the image of Assumption 14 by the above translation.

Assumption 20. In the logic Lexcore, the type of parameters P is non-empty,
and for all v

(0)
1 : X → P and v

(0)
2 : X → Y with X non-empty, let a

(1)
1 =

[ ]Y ◦ tag ◦ v1 : X → Y . Then a
(1)
1 ≡ v

(0)
2 is Texc-equivalent to Tmax,0.

Theorem 21. Under Assumption 20, the theory of exceptions Texcore is Hilbert-
Post complete with respect to the pure sublogic Leq of Lexcore.

Proof. Using Corollary 10, the proof is based upon Propositions 18 and 19.
It follows the same lines as the proof of Theorem 15, except when X is empty:
because of catchers the proof here is slightly more subtle. First, the theory Texcore

is consistent, because (by soundness) it cannot be proved that untag(2) ≡ [ ](0)P .
Now, let us consider an equation between terms f1, f2 : X → Y , and let us prove
that it is Texcore-equivalent to a set of pure equations. When X is non-empty,
Propositions 18 and 19, together with Assumption 20, prove that the given
equation is Texcore-equivalent to a set of pure equations. When X is empty, then
f1 ∼ [ ]Y and f2 ∼ [ ]Y , so that if the equation is weak or if both f1 and f2
are propagators then the given equation is Texcore-equivalent to the empty set



Relative Hilbert-Post Completeness for Exceptions 609

of equations between pure terms. When X is empty and the equation is f1 ≡ f2
with at least one of f1 and f2 a catcher, then by Point 1 or 2 of Proposition 19, the
given equation is Texcore-equivalent to a set of equations between propagators;
but we have seen that each equation between propagators (whether X is empty
or not) is Texcore-equivalent to a set of equations between pure terms, so that
f1 ≡ f2 is Texcore-equivalent to the union of these sets of pure equations.

5 Verification of Hilbert-Post Completeness in Coq

All the statements of Sects. 3 and 4 have been checked in Coq. The proofs can
be found in http://forge.imag.fr/frs/download.php/680/hp-0.7.tar.gz, as well as
an almost dual proof for the completeness of the state. They share the same
framework, defined in [9]:

1. the terms of each logic are inductively defined through the dependent type
named term which builds a new Type out of two input Types. For instance,
term Y X is the Type of all terms of the form f : X → Y;

2. the decorations are enumerated: pure and propagator for both languages,
and catcher for the core language;

3. decorations are inductively assigned to the terms via the dependent type
called is. The latter builds a proposition (a Prop instance in Coq) out of a
term and a decoration. Accordingly, is pure (id X) is a Prop instance;

4. for the core language, we state the rules with respect to weak and strong
equalities by defining them in a mutually inductive way.

The completeness proof for the exceptions core language is 950 SLOC in Coq
where it is 460 SLOC in LaTEX. Full certification runs in 6.745 s on a Intel i7-
3630QM @2.40 GHz using the Coq Proof Assistant, v. 8.4pl3. Below table details
the proof lengths and timings for each library.

Proof lengths and benchmarks

Package Source Length in Coq Length in LaTEX Execution time in Coq

exc cl-hp HPCompleteCoq.v 40 KB 15KB 6.745 s

exc pl-hp HPCompleteCoq.v 8 KB 6KB 1.704 s

exc trans Translation.v 4 KB 2KB 1.696 s

st-hp HPCompleteCoq.v 48 KB 15KB 7.183 s

6 Conclusion and Future Work

This paper is a first step towards the proof of completeness of decorated logics
for computer languages. It has to be extended in several directions: adding basic
features to the language (arity, conditionals, loops, . . . ), proving completeness
of the decorated approach for other effects (not only states and exceptions); the
combination of effects should easily follow, thanks to Proposition 7.

http://forge.imag.fr/frs/download.php/680/hp-0.7.tar.gz


610 J.-G. Dumas et al.

References

1. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebr. Methods Program. 84, 108–123 (2015)

2. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

3. C++ Working Draft: Standard for Programming Language C++. ISO/IEC
JTC1/SC22/WG21 standard 14882:2011

4. Domı́nguez, C., Duval, D.: Diagrammatic logic applied to a parameterisation
process. Math. Struct. Comput. Sci. 20, 639–654 (2010)

5. Dumas, J.-G., Duval, D., Fousse, L., Reynaud, J.-C.: Decorated proofs for com-
putational effects: states. In: ACCAT 2012, Electronic Proceedings in Theoretical
Computer Science 93, pp. 45–59 (2012)

6. Dumas, J.-G., Duval, D., Fousse, L., Reynaud, J.-C.: A duality between exceptions
and states. Math. Struct. Comput. Sci. 22, 719–722 (2012)

7. Dumas, J.-G., Duval, D., Reynaud, J.-C.: Cartesian effect categories are Freyd-
categories. J. Symb. Comput. 46, 272–293 (2011)

8. Dumas, J.-G., Duval, D., Ekici, B., Reynaud, J.-C.: Certified proofs in programs
involving exceptions. In: CICM 2014, CEUR Workshop Proceedings 1186 (2014)

9. Dumas, J.-G., Duval, D., Ekici, B., Pous, D.: Formal verification in Coq of program
properties involving the global state. In: JFLA 2014, pp. 1–15 (2014)

10. Dumas, J.-G., Duval, D., Ekici, B., Pous, D., Reynaud, J.-C.: Hilbert-post com-
pleteness for the state and the exception effects (2015). arXiv:1503.00948 [v3]

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley (2005)

12. Idris. The Effects Tutorial
13. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL. ACM Press,

pp. 47–57 (1988)
14. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
15. Mossakowski, T., Schröder, L., Goncharov, S.: A generic complete dynamic logic

for reasoning about purity and effects. Form. Asp. Comput. 22, 363–384 (2010)
16. Petricek, T., Orchard, D.A., Mycroft, A.: Coeffects: a calculus of context-dependent

computation. In: Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, pp. 123–135 (2014)

17. Pretnar, M.: The logic and handling of algebraic effects. Ph.D. University of Edin-
burgh (2010)

18. Plotkin, G., Power, J.: Notions of computation determine monads. In: Engberg,
U., Nielsen, M. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

19. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)

20. Staton, S.: Completeness for algebraic theories of local state. In: Ong, L. (ed.)
FOSSACS 2010. LNCS, vol. 6014, pp. 48–63. Springer, Heidelberg (2010)

21. Tarski, A.: III On some fundamental concepts in mathematics. In: Logic, Seman-
tics, Metamathematics: Papers from 1923 to 1938 by Alfred Tarski, pp. 30–37.
Oxford University Press (1956)

22. Uustalu, T., Vene, V.: Comonadic notions of computation. Electr. Notes Theor.
Comput. Sci. 203, 263–284 (2008)

23. Ynot. The Ynot Project

http://arxiv.org/abs/1503.00948


Optimal Coverage in Automotive Configuration

Rouven Walter1,2(B), Thore Kübart1,2, and Wolfgang Küchlin1,2

1 Symbolic Computation Group, WSI Informatics, Eberhard-Karls-Universität,
Tübingen, Germany

rouven.walter@uni-tuebingen.de
2 Steinbeis Technology Transfer Centre STZ OIT, Tübingen, Germany

tkuebart@gmail.com
http://www-sr.informatik.uni-tuebingen.de

Abstract. It is a problem in automotive configuration to determine the
minimum number of test vehicles which are needed for testing a given set
of equipment options. This problem is related to the minimum set cover
problem, but with the additional restriction that we can not enumerate
all vehicle variants since in practice their number is far too large for each
model type. In this work we illustrate different use cases of minimum
set cover computations in the context of automotive configuration. We
give formal problem definitions and we develop different approximate
(greedy) and exact algorithms. Based on benchmarks of a German pre-
mium car manufacturer we evaluate our different approaches to compare
their time and quality and to determine tradeoffs.

1 Introduction

In automotive configuration we face the minimum set cover problem in several
use cases. For example, it is necessary to determine the minimum number of
vehicles needed to cover all the equipment options of a set of tests in order to
avoid the unnecessary construction of (very expensive) test vehicles. Since the
size of the set of configurable vehicles can grow up to approximately 10100 for
a model type [9], an enumeration of this set is not possible in practice. This
problem can be solved by an implicit representation of this set as a Boolean
formula, where each satisfying variable assignment represents a valid vehicle
configuration [10,16]. Now we face the problem how to perform optimization
tasks within this implicitly represented set.

In this work, we make the following contributions:

1. We illustrate use cases of optimal coverage computations in the automotive
configuration domain.

2. We give formal problem definitions for each use case.
3. We present greedy and exact algorithms for the optimal coverage problem

with an implicit representation of the models.

R. Walter and T. Kübart—Contributed equally to this work.

c© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 611–626, 2016.
DOI: 10.1007/978-3-319-32859-1 52



612 R. Walter et al.

4. We evaluate the performance and quality tradeoff of our algorithms on bench-
marks based on real automotive configuration data from a premium German
car manufacturer.

This work is organized as follows: In Sect. 2 we introduce our formal back-
ground and notation. In Sect. 3 we point out related work. We illustrate different
use cases in Sect. 4 and give formal problem descriptions in Sect. 5. In Sect. 6
(resp. Sect. 7) we develop greedy (resp. exact) algorithms to address the opti-
mal coverage problem. Section 8 contains a detailed evaluation of the different
approaches and a comparison in terms of time and quality. Section 9 contains a
conclusion.

2 Preliminaries

Our mathematical foundation is Propositional Logic over an infinite set of
Boolean variables V and standard operators ¬,∧ and ∨ with constants � and
⊥. The set of Boolean variables occurring in a Boolean formula ϕ is denoted by
vars(ϕ). A variable assignment β is a mapping from vars(ϕ) to B = {0, 1}. The
evaluation of formula ϕ under β is denoted by β(ϕ). If β(ϕ) = 1, then β is called
a model of ϕ. A literal is a variable or its negation. A clause is a disjunction
of literals. A formula is in Conjunctive Normal Form (CNF) if it is a conjunc-
tion of clauses. The NP-complete SAT Problem [5] is the question whether a
propositional formula is satisfiable. For a more detailed description, see Chap. 2
of [4].

Furthermore, we consider Pseudo-Boolean Constraints (PBC) [12] of the form
∑n

i=1 aili ≥ b for ai ∈ Z, literals li and b ∈ Z. A PBC is a generalization of a
clause. The decision problem, called Pseudo-Boolean Solving (PBS), for a set
of PBCs is the question whether an assignment β exists which simultaneously
satisfies all constraints. The optimization problem for a target function

∑

i=1 cili
for ci ∈ Z and literals li is called Pseudo-Boolean Optimization (PBO).

3 Related Work

Singh and Rangaraj [15] describe a model to calculate vehicle configurations
aimed at providing the production planning with a set of test variants before
actual sales orders are received. The underlying ILP is solved by Branch &
Price so that configurations are calculated by the so-called column generation
method [7].

If a vehicle is not constructible after the selection of some options, a customer
would like to receive an optimal repair suggestion, i.e., the maximum number of
(prioritized) selections which are simultaneously constructible. Walter et al. [17]
use partial weighted MaxSAT to formulate and solve such re-configuration use
cases in the context of automotive configuration.



Optimal Coverage in Automotive Configuration 613

4 Use Cases in the Context of Automotive Configuration

A product overview formula ϕPOF [10] is a Boolean formula which aggregates all
configuration constraints of a vehicle series, such that each model β of ϕPOF rep-
resents a configurable (and therefore constructible) vehicle. Such formulas have
been developed in our Technology Transfer Centre for 5 German car manufac-
turers. Furthermore, all parts (materials) from which cars of a vehicle series may
be constructed are listed in a bill-of-materials (BOM). A BOM is structured into
positions, each with alternative position variants (e.g., the Engine position with
Engine 1, Engine 2, etc., as variants). Each variant has an attached selection
condition, which is a Boolean formula ϕi. Given any vehicle as a model β of
ϕPOF, each ϕi must evaluate to true if, and only if, the material of this variant
belongs in the car β.

Next we present two use cases from automotive configuration involving ϕPOF.

1. Optimal Test Vehicle Coverage. When testing a new type series of vehi-
cles, the manufacturer builds test vehicles to validate the correct behavior
of all vehicle configurations. For cost effectiveness, test vehicles are packed
with a maximum number of equipment options. However, not all options are
compatible with each other (e.g., different gear boxes). Therefore, the prob-
lem is to find the minimum number of test vehicles which contain all given
equipment options.

2. Optimal Verification Explanation. In [10], different kinds of verification
tests for the BOM in relation to the POF were pioneered. One verification
consists of checking for each BOM position that the variant selection formulas
do not overlap, i.e., no constructible vehicle will select two alternative mate-
rials within a position. This is done by solving the formula ϕPOF ∧ ϕi ∧ ϕj

for all position variant combinations i and j with i �= j. If the result is true,
then there exists a constructible vehicle which selects two alternative materi-
als at the same position. Furthermore, a position may cause multiple overlap
errors. In practice it is important to give the user a comprehensive, but at the
same time short, error description, and therefore we need to find a minimum
number of models covering all overlap errors.

5 Formal Problem Descriptions

We will now reduce the solution of our use cases to the solution of a minimization
version of the NP-complete Set Cover Problem [8], which is defined as follows:

Definition 1 (Minimum Set Cover Problem). Let U = {e1, . . . , em} be a set of
elements called the universe. Let S = {E1, . . . , En} ⊆ P(U) be a set of subsets
of the universe U whose union

⋃

E∈S E = U is the universe. A cover is a subset
C ⊆ S whose union

⋃

E∈C E = U is the universe.



614 R. Walter et al.

The problem of finding a cover of minimum cardinality is the minimum set
cover problem which can be defined as a 0–1 ILP [14]:

min
∑

E∈S
xE

s.t.
∑

E:e∈E

xE ≥ 1 ∀e ∈ U

xE ∈ {0, 1} ∀E ∈ S
Next, we formulate both use cases of Sect. 4 in terms of a 0–1 ILP.

5.1 Encoding of a Variable Target Set

For the first use case, Optimal Test Vehicle Coverage, we consider a target
set T = {c1, . . . , cm} ⊆ vars(ϕPOF) of configurable options, i.e., ϕPOF ∧ c is
satisfiable for each c ∈ T . Otherwise, we have to remove the non-configurable
options from T first. Then we consider the universe U = T and the (practically
huge) set of all configurable vehicles S = {β | β(ϕPOF) = 1} = {β1, . . . , βn}. We
define the matrix A(ϕPOF, T ) as follows:

A (ϕPOF, T ) :=

⎛

⎜

⎝

β1(c1) . . . βn(c1)
...

...
β1(cm) . . . βn(cm)

⎞

⎟

⎠

Each column represents the projection of a model of ϕPOF (i.e., of a con-
structible vehicle) onto the options in T . Each 0/1 entry indicates whether the
model covers the target variable ci ∈ T or not. Then the problem of finding a
minimum number of vehicles covering T can be defined by a 0–1 ILP as follows:

min
n

∑

i=1

xi

s.t. A (ϕPOF, T ) ·

⎛

⎜

⎝

x1

...
xn

⎞

⎟

⎠
≥ 1,

xi ∈ {0, 1}, i = 1, . . . , n

(1)

In other words, we want to find a minimum number of constructible vehicles
whose chosen options (the true assigned variables) cover T . Variable vector
(x1 . . . xn) describes which vehicles are chosen.

5.2 Encoding of a Boolean Formula Target Set

Target set T , as defined above, consists of variables but this is no restriction for
the general case if we want to cover a set of Boolean formulas {ψ1, . . . , ψm}: For
each ψi we introduce a new selector variable si and add the implication si → ψi



Optimal Coverage in Automotive Configuration 615

to the set of constraints. The resulting target is T = {s1, . . . , sm}, consisting
only of variables. If a selector variable si is covered by a model, then the model
also satisfies the corresponding formula ψi.

In the second use case Optimal Verification Explanation, we consider
a BOM position with k variants resulting in a set of overlap errors OE ⊆
{{i, j} | i, j = 1, . . . , k and i �= j}, i.e. formula ϕPOF ∧ ψi ∧ ψj is satisfiable
for every {i, j} ∈ OE. We can encode this use case by introducing a new selector
variable si for every formula ψi ∧ ψj with {i, j} ∈ OE and following the steps
described in the previous paragraph.

5.3 Implicit Vehicle Representation

In the context of automotive configuration we face the problem that enumerating
all variants is not possible in practice, since the number of models for a model
type, implicitly described by ϕPOF, can grow up to an order of 10100 [9]. Thus,
we cannot explicitly construct matrix A (ϕPOF, T ) and solve the corresponding
0–1 ILP. Instead, we solve the problem by using the implicit representation ϕPOF

of all vehicle configurations. In the following sections we will present greedy and
exact algorithms to address the problem of implicit representation.

6 Greedy Algorithms

We present two greedy algorithms in this section. We assume that the target set
T only contains configurable variables w.r.t. the constraints in ϕ, i.e., ϕ ∧ v is
satisfiable for all v ∈ T .

Algorithm 1. SAT-Based Greedy
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: {β1, . . . , βl}

1 B ← ∅
2 while T �= ∅ do
3 β ← SAT

(
ϕ ∧∨v∈T v

)
4 T ← T \ {v ∈ T | β(v) = 1}
5 B ← B ∪ {β}
6 return B

Algorithm 1 shows a simple greedy algorithm based on iterative SAT calls. In
each iteration we solve the formula ϕ with the additional condition that at least
one target variable has to be covered, forced by the constraint

∨

v∈T v. Thus,
the target set T will be completely covered in some iteration and the algorithm
terminates. No optimization computation at all is done, we only solve a decision
problem in each iteration. To reduce the number of iterations, we exploit the



616 R. Walter et al.

model by removing its covered codes from the target. In the worst case, only one
code is covered in each iteration, yielding a total of |T | SAT calls.

Here we use the SAT solver as a black box, i.e., any SAT solver can be used.
Since the number of iterations depends on the model quality, we can modify the
heuristics of the SAT solver. E.g., when deciding over a variable, we may choose
a variable v ∈ T and branch on β(v) = 1 first.

Algorithm 2. PBO-Based Greedy
Input: Boolean formula ϕ, target T ⊆ vars(ϕ), number of duplicates k ∈ N

Output: {β1, . . . , βl}
1 B ← ∅
2 while T �= ∅ do

3 CoverCondition ← ∧k
i=1 ϕ(i) ∧∧v∈T

(
sv → ∨k

i=1 v(i)
)

4 TargetFuction ← max
∑

v∈T sv

5 β ← PBO (TargetFunction, CoverCondition)

6 T ← T \
{

v ∈ T | ∃i ∈ {1, . . . , k} : β
(
v(i)
)

= 1
}

7 B ← B ∪ Extract(β)

8 return B

We can improve Algorithm1 by optimizing over the target set, i.e., by max-
imizing the target function

∑

v∈T v. Optimization over a target function can be
done by a PBO or an ILP solver. We then cover the maximum number of tar-
get variables for the next model. Furthermore, we can compute multiple models
simultaneously by creating duplicates. Let ϕ(i) be a duplicate of ϕ by replacing
each variable v ∈ vars(ϕ) by a fresh variable v(i). We then consider k duplicates
ϕ(1), . . . , ϕ(k) at the same time. In order to maximize over the target variables,
we introduce fresh selector variables sv for each v ∈ T and add the constraints
∧

v∈T
(

sv → ∨k
i=1 v(i)

)

. The new target function is
∑

v∈T sv. If a variable sv is

assigned to 1, then at least one of the variables v(1), . . . , v(k) is assigned to 1.
Algorithm 2 shows this approach of simultaneously optimizing k duplicates of
the input formula ϕ. In the set of models B we gather all models by extracting
from the current model β models with original variable names. Since we only
solve a local optimization problem this approach is not optimal in general.

Using k duplicates, the number of variables is k·|vars(ϕ)|. Since all duplicates
represent the same formula, except for the variable names, we add plenty of
symmetry. Symmetries slow down the search process because identified conflicts
within a subset of duplicates hold for all combinations of duplicates but have to
be re-identified again. Symmetry breaking techniques try to avoid this problem.
For example, we could add a lexicographical order of the variables by additional
constraints [6]. However, our experiments have shown that this technique does
not improve the performance on our instances from automotive configuration,
and therefore we discarded this technique in this application.



Optimal Coverage in Automotive Configuration 617

7 Exact Algorithms

Next we will present exact algorithms. We start by reusing the idea of duplicates
of the input formula ϕ from greedy Algorithm 2. We have to choose the number
of duplicates k large enough to simultaneously cover all target codes. To find the
optimum number of k, we start by k = 1 and increase k by 1 in each iteration
until k is large enough. In each iteration we want to ensure that all target
variables are covered by at least one duplicate. Thus, we add the cover condition
∧

v∈T
∨k

i=1 v(i). Then we have to check if all duplicate constraints plus the cover
condition can be satisfied. If satisfiable, k is large enough and we can extract the
optimal cover from the delivered model β. If unsatisfiable, we increase k by 1.
Algorithm 3 shows this approach.

Algorithm 3. SAT-Based Incremental Linear Search
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: {β1, . . . , βl}

1 k ← EstimateLB(ϕ, T )
2 while true do

3 CoverCondition ← ∧v∈T
∨k

i=1 v(i)

4 (st, β) ← SAT
(∧k

i=1 ϕ(i) ∧ CoverCondition
)

5 if st = true then return {β1, . . . , βl} = Extract(β)
6 else k ← k + 1

We can reduce iterations by estimating a good lower bound for k (subroutine
EstimateLB in Algorithm 3). In automotive configuration there are structures
which we can exploit. There are regular and optional groups of variables which
are constrained to ensure that exactly one or at most one of a group of options is
assigned to 1. For example, a constructible vehicle has exactly one engine from
the regular group of engines. For optional groups like radio, navigation system
or CD player, at most one element can be selected. Let Gmax be the group of
regular and optional groups such that |Gmax ∩ T | ≥ |G ∩ T | for all regular and
optional groups G of ϕ. Then |Gmax ∩ T | is a lower bound since the variables in
Gmax ∩ T have to be covered by separate models.

Algorithm 3 can also be used in a decremental mode. We start with k dupli-
cates and decrease the value of k by 1 in each iteration until the formula becomes
unsatisfiable. A decremental mode has the advantage that the SAT solver has
to prove satisfiability in each iteration (except for the last). This is generally
faster than proving unsatisfiability. Especially the instances in automotive con-
figuration are not too restrictive, and a model can often be found quickly. To
make decremental linear search competitive we have to estimate a good upper
bound first. A trivial upper bound is |T |, but we can also use any of the greedy
algorithms presented in Sect. 6.



618 R. Walter et al.

Algorithm 4. SAT-Based Binary Search
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: {β1, . . . , βl}

1 B ← ∅
2 lb ← EstimateLB(ϕ, T )
3 ub ← EstimateUB(ϕ, T )

4 mid ← ub−lb
2

+ lb
5 while lb ≤ ub do

6 CoverCondition ← ∧v∈T
∨mid

i=1 v(i)

7 (st, β) ← SAT
(∧mid

i=1 ϕ(i) ∧ CoverCondition
)

8 if st = true then
9 B ← Extract(β)

10 ub ← mid − 1

11 else
12 lb ← mid + 1

13 mid ← ub−lb
2

+ lb

14 return B

Furthermore, we can conduct binary search with a trivial range between 1
and |T |, or with improved ranges between |Gmax ∩ T | and the result of a greedy
algorithm as an upper bound. Algorithm4 illustrates this approach.

A substantial disadvantage of the formula Xk =
∧k

i=1 ϕ(i)∧CoverCondition in
the previously presented linear and binary search are the contained symmetries.
For example, if formula ϕ implies the constraint exact(1, {c1, . . . , ck+1}) (e.g.,
a regular group of engines), then formula Xk contains the constraints of an
unsatisfiable pigeon hole instance: It is impossible to distribute the k+1 options
over the k models. Unsatisfiable pigeon hole instances are known to be very
difficult for a SAT solver. Thus, Algorithms 3 and 4 are only suited for instances
with a small optimum.

Linear programming combined with Branch & Bound provides an approach
for calculating the models of an optimal coverage by iterative rather than
simultaneous computation. Algorithm5 illustrates the so called Branch & Price
(B&P) approach [3] which calculates a solution x of the relaxation of the 0–1 ILP
problem (1) (xi ≥ 0, xi ∈ R for all i = 1, . . . , n) by Column Generation [7], and
which takes a non-integer xi of the solution to preferably branch with xi = 1.

The Master Program (MP) of Column Generation corresponds to the relax-
ation of the 0–1 ILP Problem (1). To calculate an optimal solution of MP, a
feasible solution is required first. A feasible, qualitatively good starting solution
for MP can be determined, for example, with the help of a greedy algorithm. The
set C = {β1, . . . , βt} of models of such a starting solution leads to a Restricted



Optimal Coverage in Automotive Configuration 619

Algorithm 5. Branch & Price
Input: Boolean formula ϕ, target T ⊆ vars(ϕ)
Output: {β1, . . . , βl}

1 C ← InitialCover(ϕ, T )
2 return Solve(ϕ, T , C)

3 func Solve(ϕ, T , C) : {β1, . . . , βl}
4 (x = (x1, . . . , xd), D) ← ColumnGen(ϕ, T , C) // Real number solution x
5 if ∀i : xi ∈ {0, 1} then return {βi ∈ D | xi = 1}
6 lb ←∑xi

7 B ← Solve(D, T ) // Integer min. set cover with explicit models
8 ub ← |B|
9 if ub − lb < 1 then return B

10 else
11 β ← Select(x, D) // Pick a model to branch
12 Tβ ← {v ∈ T | β(v) = 0}
13 B ← {β} ∪ Solve(ϕ, Tβ , D) // Including beta
14 ub = min(ub, |B|)
15 if ub − lb < 1 then return B
16 else
17 ϕ¬β ← ϕ ∧∨v∈Tβ

v

18 D¬β ← {β ∈ D | β(ϕ¬β) = 1}
19 D¬β ← ExtendToCompleteCover(D¬β)
20 return Solve(ϕ¬β , T , D¬β) // Excluding beta and neighbours

Master Program (RMP):

A (C, T ) :=

⎛

⎜

⎝

β1(c1) . . . βt(c1)
...

...
β1(cm) . . . βt(cm)

⎞

⎟

⎠
,

min
t

∑

i=1

xi

s.t. A (C, T ) ·

⎛

⎜

⎝

x1

...
xt

⎞

⎟

⎠
≥ 1,

xi ∈ R≥0, i = 1, . . . , t

(RMP)

Derived from the strong duality theorem [14, 7.4] of linear programming, an
optimal dual solution y ∈ R

m, y ≥ 0, of RMP provides a criterion that might
indicate if an optimal solution x of RMP is an optimal solution of MP: If there
is no model β of ϕ with

∑

yiβ(ci) > 1, then the corresponding basis to x is also
optimal for MP. If the criterion does not hold, C is extended by a model β of
ϕ that fulfills

∑

yiβ(ci) > 1. Determining such a model β is called the pricing



620 R. Walter et al.

step, which results in solving a PBO subproblem. In this manner, C is extended
until the criterion verifies that the optimal values of RMP and MP are identical.

Method Solve(ϕ, T , C) of Algorithm 5 realizes our Branch & Price approach.
It calls method ColumnGen(ϕ, T , C) first, which returns an optimal solution
x of the last RMP solved in Column Generation. In addition, it returns the
corresponding set D of models, which contains an optimal basis of MP. The
optimal solution x of the relaxation provides a lower bound lb =

∑

xi. If x
consists only of integers, Column Generation has already created an optimal
cover. Otherwise an upper bound ub = |B| can be derived from the models of D
by calculating a minimum cover B consisting only of models of D. If ub− lb < 1
holds, B is optimal for the integer program. Otherwise, if the gap between upper
bound and lower bound is too wide, we branch.

Since one model normally goes hand in hand with many similar mod-
els of low Hamming distance, a branch with xi = 1 is examined first (sub-
routine Select(x,D)). A possible selection heuristic could be β = βj with
xj = max{xi | xi < 1}. For that, we execute Solve(ϕ, Tβ ,D) with an updated
target Tβ : Only those options have to be covered that are not yet covered by
β = βi. Also, all models of D are made available to the next RMP, so that it is
not necessary to calculate them again. If the gap between lower bound and upper
bound cannot be reduced below the value of 1, then xi = 0 will be examined.

When applying xi = 0, β is rejected as a possible model in the cover. We
can extend the formula ϕ by an additional constraint so that from now on every
model covers at least one option that is not covered by β. This is allowed, because
we cut off only models weaker than β. This constraint is especially effective if we
ensure that models created by column generation have the following property:
There is no model γ of ϕ such that {ci | β(ci) = 1} � {ci | γ(ci) = 1}. We ensure
this property as follows: Instead of adding a model β with

∑

yiβ(ci) > 1 directly
to C, we calculate a prime implicant p of ϕ with β |= p. Then we generate the
model β′ of ϕ by setting all Don’t Cares of p to 1. The inequality

∑

yiβ
′(ci) > 1

follows from y ≥ 0. Finally we extend the RMP by adding β′ to C.
Example 1 illustrates the execution of Algorithm 5.

Example 1. Let T = {c1, . . . , c9} and ϕ =
∨8

i=1 Mi such that:

A (ϕ, T ) =

M1 M2 M3 M4 M5 M6 M7 M8
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1 1 0 0 0 0 0 0 c1
1 0 1 1 1 0 0 0 c2
0 1 1 1 1 0 0 0 c3
0 0 0 0 0 1 1 0 c4
0 0 0 0 0 1 0 1 c5
0 0 0 0 0 0 1 1 c6
0 0 1 1 1 1 1 0 c7
0 0 0 1 1 1 0 1 c8
0 0 0 0 1 0 1 1 c9



Optimal Coverage in Automotive Configuration 621

We assume that the initial cover is C = {M1,M2,M6,M7}. The execution
of B&P(ϕ, T ) leads to the following steps:

– ColumnGen(ϕ, T , C) � D(0) = {M1,M2,M5,M6,M7,M8},
x(0) = (0.5 0.5 0.5 0.5 0.5 0.5)T /∈ Z

6 ⇒ lb(0) = 3.0
– Solve(D(0), T ) � B(0) = {M1,M2,M6,M7} ⊆ D(0) ⇒ ub(0) = 4
– Gap is too wide: ub(0) − lb(0) = 1
– Select(x(0),D(0)) � β = M5, Tβ = {c1, c4, c5, c6}
– Call Solve(ϕ, Tβ ,D(0))

• ColumnGen(ϕ, Tβ ,D(0)) � D(1) = {M1,M2,M5,M6,M7,M8},
x(1) = (1.0 0.0 0.0 0.5 0.5 0.5)T /∈ Z

6 ⇒ lb(1) = 2.5
• Solve(D(1), Tβ) � B(1) = {M1,M6,M7} ⊆ D(1) ⇒ ub(1) = 3
• ub(1) − lb(1) = 0.5 < 1, Return B(1)

– B(0) = {β} ∪ B(1), ub(0) remains 4, gap is still too wide
– ϕ¬β = ϕ ∧ (c1 ∨ c4 ∨ c5 ∨ c6) = ϕ ∧ ¬M3 ∧ ¬M4 ∧ ¬M5

– D
(0)
¬β = {M1,M2,M6,M7,M8}

– Call Solve(ϕ¬β , T ,D
(0)
¬β)

• ColumnGen(ϕ¬β , T ,D
(0)
¬β) � D(2) = {M1,M2,M6,M7,M8},

x(2) = (1.0 1.0 0.5 0.5 0.5)T /∈ Z
5 ⇒ lb(2) = 3.5

• Solve(D(2), T ) � B(2) = {M1,M2,M6,M7} ⇒ ub(2) = 4.0
• ub(2) − lb(2) = 0.5 < 1, Return B(2)

– Return B(2).

8 Experimental Evaluation

Our tests were run with the following setup: Intel(R) Core(TM) i7-5600U CPU
with 2.60 GHz and 4 GB main memory running 64 Bit Windows 7 Professional.

We used six product overview formulas from a German premium car manufac-
turer. Each product overview formula ϕPOF represents the constructible vehicles
on the level of a model type. Due to the sensitive kind of data, we cannot publish
the formulas, but Table 1 shows some of their characteristics.

Table 1. Product overview formula characteristics

ϕPOF

1 2 3 4 5 6

|vars(ϕPOF)| 1778 2252 2561 1928 2263 1886

|vars(CNF(ϕPOF))| 4133 4687 5018 3547 4059 3971

|CNF(ϕPOF)| 70986 82281 88133 60628 64200 72893



622 R. Walter et al.

8.1 Use Case 1: Optimal Test Vehicle Coverage

In order to choose a realistic target set, we set the country option to the market
Germany, which provides a huge variant space. Typically, we are not interested
in finding an optimal coverage for worldwide constructible vehicles but only for
a specific market. Further, we excluded regular groups (exactly one element has
to be selected) which are not relevant when testing vehicle features, i.e., air bag
warning label, user manual, paint, upholstery, etc. Thus, we have target sizes |T |
of 488, 622, 618, 334, 496, and 340, for instances 1, 2, 3, 4, 5, and 6, respectively.

In our evaluations, we used Java 1.8 with the two external solvers SAT4J [11]
(with the default solver Glucose 2.1 [1]) and CPLEX [2].

Table 2 shows the greedy solver configurations we used, where k in parenthe-
ses is the number of duplicates used. The solver configuration PBO-based greedy
algorithm using SAT4J-PBO uses the greedy variant of SAT4J-PBO, since exact
PBO solving by SAT4J proved to be too inefficient for our test instances.

Table 2. Greedy solver configurations

Abbreviation Algorithm SAT solver Decision heuristic

ASAT1 SAT-Based Greedy CPLEX Default

ASAT2 SAT-Based Greedy SAT4J Default

ASAT3 SAT-Based Greedy SAT4J Positive first

APBO1(k) PBO-Based Greedy CPLEX Default

APBO2(k) PBO-Based Greedy SAT4J-PBO Default

Table 3 shows the evaluation results of greedy solver settings for Use Case 1.
Entries in bold are the best ones among the greedy solvers. Column ‘Distance
to Opt.’ shows the difference |cover| − |optimal cover|, i.e., the distance to the
optimal cover. A distance of 0 is optimal. The PBO-based greedy approach
with configuration APBO2(k) is one of the fastest but the distance to the opti-
mum increases for k > 1. The PBO-based greedy approach with configuration
APBO1(k) is slower by more than a factor 10 but delivers better upper bounds.

Table 4 shows the exact solver configurations we used for the evaluation.
Columns LB and UB show the method used to compute a lower bound and
upper bound, respectively. Number k in parentheses is the number of duplicates
used by the greedy solver for the computation of an upper bound. Linear search
with incremental mode and binary search either exceeded the timeout limit, or
an out-of-memory exception was thrown on most of the instances. Therefore,
we left these two solver settings completely out of the evaluations. The reason
behind this could be that these two solver settings perform a great number of
satisfiability checks where the result is false, which amounts to exploring the
whole search space with all of its symmetries to prove that there is no solution.



Optimal Coverage in Automotive Configuration 623

Table 3. Results of Use Case 1 with greedy algorithms

Solver Time (s) Distance to Opt.

1 2 3 4 5 6 1 2 3 4 5 6

ASAT1 45.14 92.87 96.74 45.31 47.71 59.24 96 146 144 98 99 110

ASAT2 5.97 9.48 10.99 3.47 7.48 4.17 352 437 449 223 366 210

ASAT3 0.73 2.41 2.70 0.79 1.06 1.33 29 60 73 36 44 44

APBO1(1) 6.44 21.66 19.48 8.35 9.30 10.85 0 6 5 3 3 0

APBO1(2) 7.23 34.13 35.21 16.28 14.88 15.74 1 4 4 4 3 0

APBO1(4) 10.18 150.52 869.43 157.92 75.57 37.85 3 2 4 2 1 0

APBO2(1) 0.39 0.93 0.98 0.44 0.51 0.61 0 8 10 7 7 0

APBO2(2) 0.61 1.27 1.28 0.50 0.67 0.67 1 10 10 8 7 0

APBO2(4) 0.51 1.71 1.54 0.66 0.91 0.88 3 10 16 10 13 0

APBO2(10) 1.69 5.50 4.15 1.52 2.30 2.23 27 42 34 20 29 20

Table 4. Exact solver configurations

Abbreviation Algorithm SAT solver Mode LB UB

ELS1(k) Linear search CPLEX decremental |Gmax ∩ T | APBO2(k)

EBP1(k) B&P – – – APBO1(k)

EBP2(k) B&P – – – APBO2(k)

Table 5 shows the results of Use Case 1 using exact algorithms. For all
Branch & Price settings we used a PBO-based greedy approach since it deliv-
ers good upper bounds, respectively initial covers, within a reasonable time.
The best running times, except for one instance, are exhibited by the EBP2(1)
configuration.

Table 5. Results of Use Case 1 with exact algorithms

Solver Time (s)

1 2 3 4 5 6

ELS1(1) 21.51 t/o t/o 748.08 717.99 63.43

ELS1(2) 32.80 t/o t/o 526.33 597.19 76.39

EBP1(1) 7.38 58.79 171.93 25.79 30.77 12.31

EBP1(2) 10.01 95.32 234.6 34.22 42.12 17.87

EBP1(4) 13.29 232.16 1366.38 228.73 114.87 56.47

EBP2(1) 2.31 46.35 167.01 13.91 12.17 1.55

EBP2(2) 1.83 50.09 217.61 20.05 24.84 2.09

EBP2(4) 2.61 55.53 176.02 32.16 14.38 2.07

EBP2(10) 7.99 72.69 273.52 18.11 21.79 3.72



624 R. Walter et al.

8.2 Use Case 2: Optimal Verification Explanation

For Use Case 2 we created random pairs a ∧ b of options a, b ∈ vars(ϕ) to
simulate overlap errors. The target set consists of all created pairs. To investigate
the limits of the B&P algorithm we created different target set sizes. Figure 1
shows the increasing running time. For instance 3, we could increase the target
size to 400. For all other instances we could increase the target size to 600. For
greater target set sizes the algorithm aborted with an out-of-memory exception.

100 200 300 400 500 600

0

500

1,000

1,500

2,000

2,500

target size |T |

ti
m

e(
s)

instance 1

instance 2

instance 3

instance 4

instance 5

instance 6

Fig. 1. Use Case 2: Running times for exact solver EBP1(1) (Color figure online)

Table 6 shows a comparison of the optimum results and the upper bounds
computed by APBO1(1) for Use Case 1 and Use Case 2. We created this table
for the same target size. Use Case 2 has a higher optimum in most cases and the
upper bound is often worse.

In summary, it became clear that covering the target set is more difficult for
Use Case 2: (i) The upper bounds are worse, (ii) the PBO instances are more
complex in the pricing step, and (iii) the improvement in the MP is less.

However, we observed that in both use cases B&P solved the instances by
branching with xi = 1 and never had to revise this decision.



Optimal Coverage in Automotive Configuration 625

Table 6. Comparison of upper bounds of Use Case 1 and Use Case 2 for APBO(1)

Instances

1 2 3 4 5 6

Use Case 1 Optimum 13 18 16 10 11 20

Upper bound 13 24 21 13 14 20

Distance 0 6 5 3 3 0

Use Case 2 Optimum 15 18 − 12 12 20

Upper bound 18 25 − 15 17 23

Distance 3 7 − 3 5 3

9 Conclusion and Future Work

We presented greedy and exact approaches to the minimum set cover problem
with an implicit representation of the models. We evaluated our approaches on
real data of a German premium car manufacturer. The exact Branch&Price
approach with an upper bound computed by a PBO-based greedy approach was
able to solve all instances of Use Case 1, and it was able to solve 1 instance of
Use Case 2 up to a target size of 400, and 5 instances up to a target size of 600.

We plan to investigate further improvements: (i) Heuristics for the choice of
k for the greedy Algorithm2 (ii) different computations of upper bounds during
Branch and Price, and (iii) a portfolio approach, where we analyze the instance
and the target set first and afterwards select an appropriate algorithm.

Even though our first attempts in using symmetry breaking techniques did
not help to improve the speed of linear search (cf. the description of Algorithm3),
a deeper investigation is necessary. The duplication of the input formula intro-
duces plenty of symmetry and there may be a way to exploit these symmetries
by further symmetry breaking techniques [13] to reduce the search space. This
may help to make the linear and binary search algorithms competitive.

References

1. Glucose 2.1. http://www.labri.fr/perso/lsimon/glucose/. Accessed Sept 2015
2. IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/index.html. Accessed Sept 2015
3. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:

Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46, 316–329 (1996)

4. Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd edn. Springer,
Heidelberg (2012)

5. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158.
ACM, New York, NY, USA (1971)

http://www.labri.fr/perso/lsimon/glucose/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html


626 R. Walter et al.

6. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of
the 5th International Conference on Principles of Knowledge Representation and
Reasoning, pp. 148–159. Morgan Kaufmann (1996)

7. Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation.
Springer, Heidelberg (2005)

8. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Sym-
posium on the Complexity of Computer Computations. The IBM Research Sym-
posia Series, pp. 85–103. Plenum Press, New York (1972)

9. Kübler, A., Zengler, C., Küchlin, W.: Model counting in product configuration. In:
Lynce, I., Treinen, R. (eds.) Proceedings 1st International Workshop on Logics for
Component Configuration, LoCoCo 2010, vol. 29, pp. 44–53. EPTCS (2010)

10. Küchlin, W., Sinz, C.: Proving consistency assertions for automotive product data
management. J. Autom. Reasoning 24(1–2), 145–163 (2000)

11. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean
Model. Comput. 7(2–3), 59–66 (2010)

12. Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In:
Handbook of Satisfiability. Frontiers Artificial Intelligence and Applications, vol.
185, pp. 695–733. IOS Press, Amsterdam (2009). Chap. 22

13. Sakallah, K.A.: Symmetry and satisfiability. In: Biere, A., Heule, M., van Maaren,
H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers Artificial Intelligence and
Applications, vol. 185, pp. 289–338. IOS Press, Amsterdam (2009)

14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
15. Singh, T.R., Rangaraj, N.: Generation of predictive configurations for production

planning. In: Aldanondo, M., Falkner, A. (eds.) Proceedings of the 15th Interna-
tional Configuration Workshop, pp. 79–86. Vienna, Austria, August 2013

16. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. Artif. Intell. Eng. Des. Anal. Manuf. 17(1), 75–97
(2003). special issue on configuration

17. Walter, R., Zengler, C., Küchlin, W.: Applications of MaxSAT in automotive con-
figuration. In: Aldanondo, M., Falkner, A. (eds.) Proceedings of the 15th Interna-
tional Configuration Workshop, pp. 21–28. Vienna, Austria, August 2013



Author Index

Améndola, Carlos 579
An, Wenya 383
Anai, Hirokazu 236
Aronica, Salvatore 285

Bates, Daniel J. 109
Batra, Prashant 591
Beyer, Andreas 63
Blömer, Johannes 166
Böhm, Janko 3
Bouaguel, Waad 398
Bournez, Olivier 469
Brake, Daniel A. 109, 124
Brauße, Franz 474
Bürgisser, Peter 130

Chen, Xiaoyu 383
Clement, Benoit 550

Daleo, Noah S. 137
Daykin, Jacqueline W. 290
Decker, Wolfram 3
Drton, Mathias 579
Dumas, Jean-Guillaume 596
Duval, Dominique 596

Ekici, Burak 596

Férée, Hugo 489
Freitag, James 343
Fukasaku, Ryoya 231
Fukui, Tetsuo 421

Giesen, Joachim 305
Graça, Daniel S. 469
Günther, Peter 151
Gustavson, Richard 358

Hambasan, Radu 406
Hauenstein, Jonathan D. 124, 137

Imbach, Rémi 78
Iwane, Hidenao 231, 236

Jeannerod, Claude-Pierre 25
Joswig, Michael 429
Juhnke, Jakob 166

Keicher, Simon 3
Kinoshita, Takehiko 199
Kiss, Ágnes 181
Kobayashi, Munehiro 236
Kociumaka, Tomasz 320
Kohlhase, Michael 406
Kohn, Kathlén 130
Korovina, Margarita 474
Krämer, Juliane 181
Krömker, Susanne 63
Krummel, Volker 151
Kübart, Thore 611
Kubo, Takayuki 218
Küchlin, Wolfgang 611
Kutas, Péter 143

Lairez, Pierre 130
Lange, Marko 535
Langiu, Alessio 285
Laue, Sören 305
Levin, Alexander 362
Li, Hongbo 35
Li, Wei 343
Liu, Yu 63
Loho, Georg 429
Löken, Nils 166
Lorenz, Benjamin 429

Maciejewski, Anthony A. 109
Mara, Hubert 63
Marzi, Francesca 285
Matsuzaki, Takuya 236
Mazzola, Salvatore 285
Mignosi, Filippo 285
Miller, Mirka 290
Mizuguchi, Makoto 218
Monnet, Dominique 550
Mörig, Marc 446, 451
Moroz, Guillaume 78



Mouelhi, Emna 398
Mueller, Jens K. 305
Mufti, Ghazi Bel 398
Müller, Norbert 474

Nabeshima, Katsusuke 252
Nakao, Mitsuhiro T. 199
Nazzicone, Giulio 285
Ninin, Jordan 550, 555

Oishi, Shin’ichi 218, 224
Okayama, Tomoaki 202, 224

Patil, Bhagyesh V. 560
Pogudin, Gleb 377
Pouget, Marc 78
Pouly, Amaury 469
Pous, Damien 596
Putkaradze, Vakhtang 109

Quedenfeld, Frank-M. 268

Radoszewski, Jakub 320
Ren, Yue 3
Reynaud, Jean-Claude 596
Rote, Günter 50
Ryan, Joe 290

Sánchez, Omar León 358
Sato, Yosuke 231
Schirra, Stefan 451
Schröder, Matthias 505
Schröter, Benjamin 429
Shirai, Shizuka 421
Sidorov, S.P. 93
Sommese, Andrew J. 124
Steinberg, Florian 505
Stoykova, Velislava 335
Stüber, Anke 181
Sturmfels, Bernd 130, 579

Tajima, Shinichi 252
Takayasu, Akitoshi 218

van der Hoeven, Joris 520

Walter, Rouven 611
Wang, Dongming 383
Watanabe, Yoshitaka 199
Wiśniewski, Bartłomiej 320
Wolf, Christopher 268

Yamanaka, Naoya 224

Ziegler, Martin 489, 505

628 Author Index


	Preface
	Organization
	Abstracts of Invited Papers
	Current Challenges in Developing Open Source Computer Algebra Systems
	Modeling Side-Channel Leakage
	Solving Structured Polynomial Systems with Gröbner Bases
	Exploiting Structure in Floating-Point Arithmetic
	Symbolic Geometric Reasoning with Advanced Invariant Algebras
	Decidability from a Numerical Point of View
	Congruence Testing of Point Sets in Three and Four Dimensions Results and Techniques

	Contents
	Invited Papers
	Current Challenges in Developing Open Source Computer Algebra Systems
	1 Introduction
	2 Seven Challenges
	2.1 Reconsidering the Efficiency of the Basic Algorithms
	2.2 Parallelization
	2.3 Make More and More of the Abstract Concepts of Algebraic Geometry Constructive
	2.4 Interaction and Integration of Computer Algebra Systems and Libraries from Different Areas of Research
	2.5 A Convenient Hierarchy of Languages
	2.6 Create and Integrate Electronic Libraries and Databases Relevant to Research
	2.7 Facilitating the Access to Computer Algebra Systems

	3 A Parallel Approach to Normalization
	4 Computing GIT-Fans
	References

	Exploiting Structure in Floating-Point Arithmetic
	1 Introduction
	2 Low-Level Properties
	3 Revisiting Some Classical Wilkinson-Style Error Bounds
	3.1 Summation
	3.2 Other Examples of O(u2)-Free Error Bounds

	4 Provably Accurate Numerical Kernels
	4.1 Computation of ab+cd
	4.2 Complex Multiplication

	References

	Symbolic Geometric Reasoning with Advanced Invariant Algebras
	1 Algebraic Approach to Geometric Reasoning
	2 Geometric Reasoning by Basic and Advanced Invariants
	3 Euclidean Invariants: From Basic to Advanced Ones
	4 Conclusion
	References

	Congruence Testing of Point Sets in Three and Four Dimensions
	1 Problem Statement
	2 Two Dimensions
	3 Three Dimensions
	4 Pruning and Condensation
	5 The Three-Dimensional Point Groups
	6 General Dimensions
	7 Four Dimensions
	7.1 Iterative Pruning and Condensation Using the Closest-Pair Graph (Algorithm C)
	7.2 Generating Orbit Cycles (Algorithm O)
	7.3 Marking and Condensation of Great Circles (Algorithm M)
	7.4 The Mirror-Symmetric Case (Algorithm R)
	7.5 2+2 Dimension Reduction

	8 The Four-Dimensional Point Groups
	References


	Curves and Surfaces
	Mesh Reduction to Exterior Surface Parts via Random Convex-Edge Affine Features
	1 Motivation
	2 Alignment Algorithms
	3 Strategies for Estimating the Outer Dimensions of an Object
	4 Random Convex-Edge Affine Feature (RanCEAF) Selection
	5 Evaluation
	6 Results
	7 Outlook
	References

	Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve
	1 Introduction
	1.1 Previous Works
	1.2 Notations and Assumptions

	2 Description of the Singularity Locus 
	3 Modeling System
	3.1 Ball System
	3.2 Regularity Condition

	4 Experiments
	4.1 Resolution Methods
	4.2 Singularities Isolation: Comments on Tables1, 2 and 3

	5 Conclusion
	References

	Linear k-Monotonicity Preserving Algorithms and Their Approximation Properties
	1 Introduction
	2 The Example of Preservation k-Monotonocity
	3 The Main Result
	4 Conclusion
	References


	Applied Algebraic Geometry
	Workspace Multiplicity and Fault Tolerance of Cooperating Robots
	1 Introduction
	2 Formal Problem Statement
	3 Workspace Computation
	4 Homotopy Continuation
	5 Two Examples
	5.1 2D Case: Two Link Planar Robots
	5.2 3D Case: Three Joint Manipulators

	6 Conclusion
	References

	Numerical Local Irreducible Decomposition
	1 Introduction
	2 Local Witness Sets
	3 Computing Numerical Local Irreducible Decompositions
	4 Examples
	4.1 Illustrative Example
	4.2 Local Irreducibility and Real Solutions
	4.3 Foldable Griffis-Duffy Platform

	References

	Computing the Chow Variety of Quadratic Space Curves
	1 Introduction
	2 Coisotropic Quadrics
	3 The Chow Variety
	4 Conclusion
	References

	Numerically Testing Generically Reduced Projective Schemes for the Arithmetic Gorenstein Property
	1 Introduction
	2 Background
	2.1 Arithmetically Cohen-Macaulay and Arithmetically Gorenstein
	2.2 Hilbert Functions
	2.3 Cayley-Bacharach Property
	2.4 Witness Point Sets

	3 Method
	3.1 Reduced Zero-Dimensional Schemes
	3.2 Generically Reduced Positive-Dimensional Schemes

	4 Examples
	4.1 3(P1P1P1P1)
	4.2 3(P1P1P1P2)
	4.3 3(4(P2))

	References

	Some Results Concerning the Explicit Isomorphism Problem over Number Fields
	1 Introduction
	2 Quadratic Forms
	3 Constructing Involutions
	References


	Cryptography
	Implementing Cryptographic Pairings on Accumulator Based Smart Card Architectures
	1 Introduction
	2 Background
	2.1 Definition of Pairings and the Embedding Degree
	2.2 Motivation for the Eta Pairing
	2.3 The Eta Pairing for Fields of Characteristic 2

	3 The Architecture
	4 Implementation on the Generic Architecture
	4.1 Squaring the Miller Variable
	4.2 Point Doubling and Line Functions
	4.3 Sparse Multiplication with the Line Function
	4.4 The Complete Miller Algorithm
	4.5 The Final Exponentiation

	5 Performance on Real Hardware
	5.1 The SLE 78 Smart Card
	5.2 Measurement Setup and Results
	5.3 Limitations of Today's Cryptographic Coprocessors

	6 Conclusion
	References

	Short Group Signatures with Distributed Traceability
	1 Introduction
	2 Preliminaries
	3 Group Signature Schemes and Distributed Traceability
	4 A Group Signature Scheme with Distributed Traceability
	4.1 Construction of Our Group Signature Scheme
	4.2 Proof of Anonymity
	4.3 Further Properties

	5 Extensions and Modifications
	References

	On the Optimality of Differential Fault Analyses on CLEFIA
	1 Introduction
	2 Background
	2.1 Differential Fault Analysis
	2.2 CLEFIA
	2.3 Information Theory

	3 Differential Fault Analyses on CLEFIA
	4 Information-Theoretic Analysis of DFAs on CLEFIA
	4.1 General Methodology Adapted to CLEFIA
	4.2 Results of the Information-Theoretic Analysis

	5 Improvement of the Non-Optimal DFAs
	5.1 Improvements on CLEFIA-128
	5.2 Improvements on CLEFIA-192 and CLEFIA-256

	6 Conclusion
	References


	Verified Numerical Computation
	H3 and H4 Regularities of the Poisson Equation on Polygonal Domains
	1 Introduction
	2 A Priori Error Estimations
	3 Main Theorem
	References

	Explicit Error Bound for Modified Numerical Iterated Integration by Means of Sinc Methods
	1 Introduction
	2 Review of Muhammad--Mori's Approximation Formula
	2.1 Sinc Quadrature and Sinc Indefinite Integration Combined with the DE Transformation
	2.2 Muhammad--Mori's Approximation Formula

	3 Main Results: Modified Approximation Formula and Its Explicit Error Bound
	3.1 Modified Approximation Formula
	3.2 Explicit Error Bound of the Modified Formula

	4 Numerical Examples
	5 Proofs
	5.1 Sketch of the Proof
	5.2 Bound of E1 (Error of the DE-Sinc Quadrature)
	5.3 Bound of E2 (Error of the DE-Sinc Indefinite Integration)

	6 Concluding Remarks
	References

	Verified Computations for Solutions to Semilinear Parabolic Equations Using the Evolution Operator
	1 Introduction
	2 Fixed-Point Formulation
	3 Main Theorem
	References

	Verified Error Bounds for the Real Gamma Function Using Double Exponential Formula over Semi-infinite Interval
	1 Introduction
	2 Error Bounds of the Double Exponential Formula
	2.1 Preliminary
	2.2 Main Theorem

	3 Numerical Result
	References


	Polynomial System Solving
	Improving a CGS-QE Algorithm
	1 Introduction
	2 Preliminary
	3 Computation of Signatures
	4 Examples
	5 Conclusion and Remarks
	References

	Efficient Subformula Orders for Real Quantifier Elimination of Non-prenex Formulas
	1 Introduction
	2 Problem
	3 Methodology
	3.1 Ordering Functions
	3.2 Features and Labeling for Machine Learning

	4 Computational Experiments
	4.1 Datasets
	4.2 Parameter Optimization of SVMs
	4.3 An Illustrative Example
	4.4 Experimental Results

	5 Conclusion
	References

	Solving Extended Ideal Membership Problems in Rings of Convergent Power Series via Gröbner Bases
	1 Introduction
	2 Solving Extended Ideal Membership Problems
	3 Parametric Cases
	3.1 Algebraic Local Cohomology and Membership Problems
	3.2 Comprehensive Gröbner Systems (CGS)
	3.3 Solving Extended Ideal Membership Problems

	4 Concluding Remarks
	References

	Advanced Algebraic Attack on Trivium
	1 Introduction
	1.1 Organization
	1.2 Related Work
	1.3 Our Contributions

	2 Trivium
	2.1 Definition and Direct Considerations
	2.2 Similar Variables

	3 Solving the System
	3.1 Main Core

	4 Experiments
	5 Conclusions
	References


	Managing Massive Data
	Compressing Big Data: When the Rate of Convergence to the Entropy Matters
	1 Introduction
	2 Preliminaries
	3 Experimental Results
	References

	Trends in Temporal Reasoning: Constraints, Graphs and Posets
	1 Introduction
	2 Preliminaries and Definitions
	2.1 The Constraint Satisfaction Problem
	2.2 Allen's Interval Algebra
	2.3 Subclasses of Allen's Interval Algebra

	3 Algebraic Closure Properties of Constraints
	4 Posets and the Fishburn-Shepp Inequality
	5 Conclusion
	References

	Reconstructing a Sparse Solution from a Compressed Support Vector Machine
	1 Introduction
	2 Compression
	3 Reconstruction
	4 Feature Selection
	5 Conclusions
	References

	Subquadratic-Time Algorithms for Abelian Stringology Problems
	1 Introduction
	2 Preliminaries
	3 Abelian Squares
	3.1 First Optimization
	3.2 Second Optimization
	3.3 Counting All Abelian Squares
	3.4 Abelian Borders

	4 Abelian Periods
	4.1 Computing RP Faster
	4.2 Computing GP Faster

	5 Abelian Covers
	5.1 Optimizing Running Time

	6 The Case of a Larger Alphabet
	7 Conclusions
	References

	Using Statistical Search to Discover Semantic Relations of Political Lexica -- Evidences from Bulgarian-Slovak EUROPARL 7 Corpus
	1 Introduction
	2 Bulgarian-Slovak EUROPARL 7 Corpus
	3 The Sketch Engine
	3.1 Parallel Corpora Processing in SE

	4 Semantic Analysis
	4.1 Lexical Relations

	5 Conclusion
	References


	Computational Theory of Differential and Difference Equations
	Simple Differential Field Extensions and Effective Bounds
	1 Notation
	2 Introduction
	3 Variations of the Primitive Element Theorem for Differential Field Extensions
	4 Improving the Bounds in the Differential Lüroth Theorem
	4.1 The Nonconstant Case
	4.2 The Constant Case

	References

	A New Bound for the Existence of Differential Field Extensions
	1 Preliminaries
	2 Results
	References

	Dimension Polynomials of Intermediate Fields of Inversive Difference Field Extensions
	1 Introduction
	2 Preliminaries
	3 The Main Theorem
	4 Type and Dimension of an Inversive Difference Field Extension
	5 Multivariate Dimension Polynomials of Intermediate -field Extensions
	References

	A ``Polynomial Shifting'' Trick in Differential Algebra
	References


	Data and Knowledge Exploration
	Searching for Geometric Theorems Using Features Retrieved from Diagrams
	1 Introduction
	2 OpenGeo: A Formalized Geometric Knowledge Base
	2.1 Representation of Geometric Knowledge Objects in OpenGeo
	2.2 OpenGeo Extension

	3 Searching for Geometric Theorems in OpenGeo
	3.1 Retrieving Geometric Features from Diagrams
	3.2 Filtering Out Irrelevant Theorems Using Features
	3.3 Matching Geometric Objects and Relations

	4 Processing Results of Searching
	4.1 Computing Degrees of Relevance
	4.2 Ranking the Results

	5 Implementation and Experimental Results
	5.1 Implementation Issues
	5.2 Examples and Experiments

	6 Conclusion and Future Work
	References

	New Method for Instance Feature Selection Using Redundant Features for Biological Data
	1 Introduction
	2 New Method for Instance Feature Selection
	2.1 Feature Ranking and Pertinence Study
	2.2 Similarity Study and Instance Creation

	3 Experimental Investigations
	4 Conclusion
	References

	Faceted Search for Mathematics
	1 Introduction
	2 Preliminaries
	3 Schematization of Formula Sets
	4 Implementation
	5 Finding a Cutoff Heuristic
	6 Applications and Future Work
	7 Conclusion
	References

	Evaluation of a Predictive Algorithm for Converting Linear Strings to Mathematical Formulae for an Input Method
	1 Introduction
	2 Predictive Conversion 
	2.1 Linear String Rules
	2.2 Design of Intelligently Predictive Conversion
	2.3 Predictive Algorithm

	3 Main Algorithm
	4 Conclusion and Future Work
	References


	Algorithm Engineering in Geometric Computing
	Linear Programs and Convex Hulls Over Fields of Puiseux Fractions
	1 Introduction
	2 Ordered Fields and Rational Functions
	3 Parameterized Polyhedra
	4 Tropical Dual Convex Hulls
	5 Implementation
	6 Computations
	6.1 Using polymake
	6.2 Linear Programs
	6.3 Convex Hulls
	6.4 Experimental Setup

	References

	Another Classroom Example of Robustness Problems in Planar Convex Hull Computation
	1 Introduction
	2 Short Description of Algorithm and Predicates
	3 How It Fails
	4 Conclusions
	References

	Precision-Driven Computation in the Evaluation of Expression-Dags with Common Subexpressions: Problems and Solutions
	1 Introduction
	2 Expression-Dag-Based Number Types
	3 Precision-Driven Computation
	4 Common Problems with Common Subexpressions
	5 Improved Evaluation Strategies
	6 Conclusions
	References


	Real Complexity: Theory and Practice
	Rigorous Numerical Computation of Polynomial Differential Equations Over Unbounded Domains
	1 Introduction
	2 Solving IVPs Over Unbounded Domains
	3 Contributions
	4 The Numerical Method SolvePIVPEx and Sketch of the Proof of Theorem 
	References

	Using Taylor Models in Exact Real Arithmetic
	1 Introduction
	2 Computability Using Wrapping Families
	3 Computability Using Taylor Models
	4 Arithmetic on Taylor Models in ERA
	5 Taylor Models in iRRAM
	6 Experimental Results
	7 Conclusions and Future Work
	References

	On the Computational Complexity of Positive Linear Functionals on C[0;1]
	1 Motivation and Introduction
	1.1 Recap of Discrete, Real, and Second-Order Complexity Theory
	1.2 Overview, Techniques, and Related Work

	2 Smooth Cantor Integration Is at Least as Hard as Continuous Riemann Integration
	3 Continuous Cantor Integration is at Most as Hard as Smooth Riemann Integration
	4 Generalized Hardness and Tractability Conditions
	4.1 Hardness
	4.2 Tractability
	4.3 Applications and Examples

	5 Conclusion and Perspectives
	5.1 Prototype Vs. the General Case

	References

	Average-Case Bit-Complexity Theory of Real Functions
	1 Introduction and Motivation
	1.1 Real Worst-Case and Average-Case Complexity

	2 Average Versus Worst-Case Complexity
	2.1 Proof of Theorem3

	3 Average-Case and Randomized Expected Polynomial-Time Type-2 Computation
	3.1 Probability Distributions on the Represented Space [0;1]
	3.2 Local Deterministic Average Versus Randomized Expected Worst-Case
	3.3 Proof of Theorem9

	4 Conclusion and Perspectives
	References

	Certifying Trajectories of Dynamical Systems
	1 Introduction
	2 Fast Numerical Integration
	2.1 Classical Algorithms
	2.2 Parallelism

	3 Global Certification
	3.1 From Local to Global Certification
	3.2 Certifying a Numerical Trajectory
	3.3 Algorithmic Considerations and Parallelism

	4 Lagrange Models
	4.1 Taylor Models
	4.2 Lagrange Models
	4.3 Reliable Integration of Dynamical Systems
	4.4 Discussion

	References


	Global Optimization
	A New Matrix Splitting Based Relaxation for the Quadratic Assignment Problem
	1 Introduction
	1.1 Notation and Preliminaries

	2 QAP Relaxations Based on Matrix Splitting
	2.1 Non-redundant Positive Semidefinite Matrix Splitting
	2.2 Interrelated Matrix Splitting

	3 Additional Cuts Based on Symmetric Functions
	3.1 Further Improvements

	4 Numerical Results
	References

	Global Optimization of H Problems: Application to Robust Control Synthesis Under Structural Constraints
	1 Context
	2 H Control Synthesis Under Structural Constraints
	3 Global Optimization of min/max Problems
	4 Application
	References

	Global Optimization Based on Contractor Programming: An Overview of the IBEX Library
	1 Kernel of IBEX
	1.1 Interval Arithmetic
	1.2 Affine Arithmetic
	1.3 Contractor Programming

	2 Lists of Contractors
	3 Optimization Strategies
	References

	The Bernstein Branch-and-Prune Algorithm for Constrained Global Optimization of Multivariate Polynomial MINLPs
	1 Introduction
	2 Background
	3 Consistency Techniques
	3.1 Bernstein Box Consistency
	3.2 Algorithm Bernstein Box Consistency for a Set of Constraints
	3.3 Bernstein Hull Consistency
	3.4 Algorithm Bernstein Hull Consistency for a Set of Constraints

	4 Main Algorithm BBPMINLP
	5 Numerical Studies
	6 Conclusions
	References


	General Session
	Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental
	1 Introduction
	2 Reaching Transcendence
	3 Many Critical Points
	4 Conclusion
	References

	On the Quality of Some Root-Bounds
	References

	Relative Hilbert-Post Completeness for Exceptions
	1 Introduction
	2 Relative Hilbert-Post Completeness
	3 Completeness for Exceptions
	4 Completeness of the Core Language for Exceptions
	5 Verification of Hilbert-Post Completeness in Coq
	6 Conclusion and Future Work
	References

	Optimal Coverage in Automotive Configuration
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Use Cases in the Context of Automotive Configuration
	5 Formal Problem Descriptions
	5.1 Encoding of a Variable Target Set
	5.2 Encoding of a Boolean Formula Target Set
	5.3 Implicit Vehicle Representation

	6 Greedy Algorithms
	7 Exact Algorithms
	8 Experimental Evaluation
	8.1 Use Case 1: Optimal Test Vehicle Coverage
	8.2 Use Case 2: Optimal Verification Explanation

	9 Conclusion and Future Work
	References


	Author Index



