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Preface

Mathematical Aspects of Computer and Information Sciences (MACIS) is a series of
biennial conferences focusing on research in mathematical and computational aspects
of computing and information science. It is broadly concerned with algorithms, their
complexity, and their embedding in larger logical systems. At the algorithmic level,
there is a rich interplay along the numerical/algebraic/geometric/topological axes.
At the logical level, there are issues of data organization, interpretation, and associated
tools. These issues often arise in scientific and engineering computation where we need
experimental and case studies to validate or enrich the theory. MACIS is interested in
outstanding and emerging problems in all these areas. Previous MACIS conferences
have been held in Beijing (2006, 2011), Paris (2007), Fukuoka (2009), and Nanning
(2013). MACIS 2015 was held at the Zuse Institute Berlin (ZIB) located in the capital
of Germany, in the vicinity of the Freie Universitdt Berlin. Named after Konrad Zuse,
the inventor of the first programmable computer, ZIB is an interdisciplinary research
institute for applied mathematics and data-intensive high-performance computing. Its
research areas in modeling, simulation, and optimization in partnership with academia
and industry are exemplary of the goals of MACIS.

We are grateful to the session organizers (and their referees) for their critical role in
putting together the successful technical program. We also wish to extend our gratitude
to all MACIS 2015 conference participants—all of them contributed in making the
conference a success. The conference would not have been possible without the hard
work of the local organizers from ZIB, Winfried Neun, and Benedikt Bodendorf, and
the generous support of our sponsors, namely, Maplesoft and Zuse Institute Berlin
(ZIB).

This volume contains 55 refereed papers, i.e., seven invited papers and 48 submitted
papers, all of which were presented at MACIS. The papers are organized in sections
corresponding to 12 special sessions featured in the MACIS 2015 conference. The
topics of the MACIS 2015 sessions cover a wide array of research areas as follows:

SS1: Vikram Sharma: Curves and Surfaces

SS2: Jon Hauenstein: Applied Algebraic Geometry

SS3: Johannes Blomer: Implementations of Cryptography

SS4: Takeshi Ogita: Verified Numerical Computation

SS5: Johannes Blomer and Jan Camenisch: Cryptography and Privacy

SS6: Chengi Mou and Eric Schost: Polynomial System Solving

SS7: Maxime Crochemore and Costas Iliopoulos: Managing Massive Data

SS8: Viktor Levandovskyy, Alexey Ovchinnikov, Michael Wibmer: Computational
Theory of Differential and Difference Equations

SS9: Xiaoyu Chen and Jie Luo: Data and Knowledge Exploration

SS10: Rudolf Fleischer and Stefan Schirra: Algorithm Engineering in Geometric
Computing



VI Preface

SS11: Akitoshi Kawamura and Martin Ziegler: Real Complexity: Theory and
Practice
SS12: Jordan Ninin: Global Optimization

We wish to thank all the session organizers for their hard work in putting together
these sessions.

February 2016 Ilias S. Kotsireas
Siegfried M. Rump
Chee K. Yap
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Current Challenges in Developing Open
Source Computer Algebra Systems

Janko Béhml(@), Wolfram Decker!, Simon Keicher? and Yue Ren!

! University of Kaiserslautern, 67663 Kaiserslautern, Germany
{boehm, decker, ren}@mathematik. uni-kl1. de
2 Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
simonkeicher@googlemail. com

Abstract. This note is based on the plenary talk given by the second author at
MACIS 2015, the Sixth International Conference on Mathematical Aspects of
Computer and Information Sciences. Motivated by some of the work done
within the Priority Programme SPP 1489 of the German Research Council DFG,
we discuss a number of current challenges in the development of Open Source
computer algebra systems. The main focus is on algebraic geometry and the
system SINGULAR.

The first author acknowledges support from the DFG projects DE 410/8-1 and -2, DE 410/9-1 and -2,
and from the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541). The
third author was supported partially by the DFG project HA 3094/8-1 and by proyecto FONDECYT
postdoctorado no 3160016.



Modeling Side-Channel Leakage

Stefan Dziembowski

University of Warsaw

Abstract. Physical side-channel attacks that exploit leakage emitted from devices
(see, e.g., [8]) are an important threat to cryptographic implementations. A recent
trend in cryptography [9, 10] is to construct cryptographic algorithms that are
secure in a given leakage model. Over the past 15 years several such models have
been proposed in the literature, starting with the probing model of [9], where the
computation is modeled as a Boolean circuit, and the adversary can learn a limited
number of them. Other models studied in the theory community include the
bounded-leakage paradigm [1, 5], the only computation leaks model [10], the
independent leakage model [7], the auxiliary input model [3], and many others.

Some of these models have been received with skepticism by the practitioners,
who often argued that it is much more realistic to model leakage as a noisy function
of the secret data. The first model for noisy leakage was proposed in [2], and fully
formalized in [11]. Recently in [4] it has been shown that in fact the noisy leakage
model of [11] can be reduced the probing model (i.e.: every noisy leakage function
can be simulated be a probing function), which, in particular, greatly simplifies
several proofs in the noisy leakage model, and can be viewed as establishing a
bridge between theory and practice in this area.

In this talk we give an overview of the leakage models used in the literature.
We then present the reduction from [4], and talk about some follow-up work [6].

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptogra-
phy against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474—
495. Springer, Heidelberg (2009)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398-412.
Springer, Heidelberg (1999)

3. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-key encryp-
tion schemes with auxiliary inputs. In: Micciancio, D., (ed.) TCC 2010. LNCS, vol. 5978,
pp. 361-381. Springer, Heidelberg (2010)

4. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy
leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423—
440. Springer, Heidelberg (2014)

Partly supported by the WELCOME/2010-4/2 grant founded within the framework of the EU
Innovative Economy (National Cohesion Strategy) Operational Programme.



Solving Structured Polynomial Systems
with Grobner Bases

Jean-Charles Faugére

Inria, Equipe POLSYS, Centre Paris Rocquencourt, F-75005, Paris, France
Sorbonne Universits, UPMC Univ Paris 06, Equipe POLSYS,
LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract. In most cases, the number of solutions of a polynomial system is
exponential, and in finite fields, solving polynomial systems is NP-hard.
However, problems coming from applications usually have additional structures.
Consequently, a fundamental issue is to design a new generation of algorithms
exploiting the special structures that appear ubiquitously in the applications.

At first glance, multi-homogeneity, weighted homogeneity overdeter-
minedness, sparseness and symmetries seem to be unrelated structures. Indeed,
until recently we have obtained specific results for each type of structure: we
obtain dedicated algorithm and sharp complexity results too handle a particular
structure. For instance, we handle bilinear systems by reducing the problem to
determinantal ideals; we also propose ad-hoc techniques to handle symmetries.

All these results have been obtained separately by studying each structure
one by one. Recently we found a new unified way to analyze these problems
based on monomial sparsity. To this end, we introduce a new notion of sparse
Grobner bases, an analog of classical Grobner bases for semigroup algebras. We
propose sparse variants of the F4/F5 and FGLM algorithms to compute them
and we obtain new and sharp estimates on the complexity of solving them (for
zero-dimensional systems where all polynomials share the same Newton poly-
tope). As a by product, we can generalize to the multihomogeneous case the
already useful bounds obtained in the bilinear case. We can now handle in a
uniform way several type of structured systems (at least when the type of
structure is the same for every polynomial). From a practical point of view, all
these results lead to a striking improvement in the execution time.

We also investigate the non convex case when only a small subset of
monomials appear in the equations: the fewnomial case. We can relate the
complexity of solving the corresponding algebraic system with some combi-
natorial property of a graph associated with the support of the polynomials. We
show that, in some cases, the systems can be solved in polynomial time.

Joint work with Jules Svartz and Pierre-Jean Spaenlehauer.



Exploiting Structure in Floating-Point
Arithmetic

Claude-Pierre Jeannerod

Inria
Laboratoire LIP (CNRS, ENSL, Inria, UCBL), Université¢ de Lyon

Abstract. The analysis of algorithms in IEEE floating-point arithmetic is most
often carried out via repeated applications of the so-called standard model,
which bounds the relative error of each basic operation by a common epsilon
depending only on the format. While this approach has been eminently useful
for establishing many accuracy and stability results, it fails to capture most
of the low-level features that make floating-point arithmetic so highly structured.
In this paper, we survey some of those properties and how to exploit them in
rounding error analysis. In particular, we review some recent improvements of
several classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties.

Keywords: Floating-point arithmetic + IEEE standard 754-2008 - Rounding
error analysis - High relative accuracy



Symbolic Geometric Reasoning with Advanced
Invariant Algebras

Hongbo Li®®

Key Laboratory of Mathematics Mechanization, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
hli@mmrc. iss.ac.cn

Abstract. In symbolic geometric reasoning, the output of an algebraic method is
expected to be geometrically interpretable, and the size of the middle steps is
expected to be sufficiently small for computational efficiency. Invariant algebras
often perform well in meeting the two expectations for relatively simple geo-
metric problems. For example in classical geometry, symbolic manipulations
based on basic invariants such as squared distances, areas and volumes often
have great performance in generating readable proofs. For more complicated
geometric problems, the basic invariants are still insufficient and may not
generate geometrically meaningful results.

An advanced invariant is a monomial in an “advanced algebra”, and can be
expanded into a polynomial of basic invariants that are also included in the
algebra. In projective incidence geometry, Grassmann-Cayley algebra and
Cayley bracket algebra are an advanced algebra in which the basic invariants are
determinants of homogeneous coordinates of points, and the advanced invari-
ants are Cayley brackets. In Euclidean conformal geometry, Conformal Geo-
metric Algebra and null bracket algebra are an advanced algebra where the basic
invariants are squared distances between points and and signed volumes of
simplexes, and the advanced invariants are Clifford brackets.

This paper introduces the above advanced invariant algebras together with
their applications in automated geometric theorem proving. These algebras
are capable of generating extremely short and readable proofs. For projective
incidence theorems, the proofs generated are usually two-termed in that the
conclusion expression maintains two-termed during symbolic manipulations.
For Euclidean geometry, the proofs generated are mostly one-termed or two-
termed.

Keywords: Grassmann-Cayley algebra - Cayley bracket algebra - Conformal
Geometric Algebra - Null bracket algebra - Automated geometric theorem
proving



Decidability from a Numerical Point of View

Stefan Ratschan

Institute of Computer Science
Czech Academy of Sciences

Abstract. An important application of computation is the automatic analysis of
mathematical models of real-world systems, for example by simulation or for-
mal verification. Here, the systems to be automatically analyzed can be physical
systems (e.g., the wing of an airplane) or computational systems (e.g., computer
software). In the past, research in this direction has happened largely indepen-
dently for those two types of systems: Algorithms for automatically analyzing
models of physical systems have been developed mainly by engineers and
numerical mathematicians, resulting in notions such as “well-posed problem”,
and “condition number”, and algorithms for automatically analyzing models of
computational systems have been developed mainly by computer scientists
based on logic, and notions such as “decision procedure”, “decidability”, and
“computational complexity”.

Nowadays, the boundary between physical and computational systems is
vanishing, since computation is more and more intertwined with our everyday
physical world (cf. the notion of cyber-physical system). This makes it neces-
sary for the boundary between the two research strands mentioned above to be
overcome as well. In the talk, we discussed some examples of results obtained
by the speaker that point into this direction, especially results, where inspiration
from numerical analysis helps to solve problems that are considered undecidable
by computer scientists [1-3].

References

1. Franek, P., Ratschan, S., Zgliczynski, P.: Quasi-decidability of a fragment of the first-order
theory of real numbers. J. Autom. Reason. (2015). http://dx.doi.org/10.1007/s10817-015-
9351-3

2. Ratschan, S.: Continuous first-order constraint satisfaction. In: Calmet, J., Benhamou, B.,
Caprotti, O., Henocque, L., Sorge, V. (eds.) Artificial Intelligence, Automated Reasoning, and
Symbolic Computation. LNCS, vol. 2385, pp. 181-195. Springer, Berlin (2002)

3. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-decidable. Formal
Methods Syst. Des. 44(1), 71-90 (2014)

The research published in this paper was supported by GACR grant 15-14484S and with institutional
support RVO:67985807.

ORCID: 0000-0003-1710-1513
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Congruence Testing of Point Sets in Three
and Four Dimensions
Results and Techniques

Giinter Rote®™®
Institut fir Informatik, Freie Universitit Berlin
rote@inf. fu-berlin. de

Abstract. I will survey algorithms for testing whether two point sets are con-
gruent, that is, equal up to an Euclidean isometry. I will introduce the important
techniques for congruence testing, namely dimension reduction and pruning, or
more generally, condensation. I will illustrate these techniques on the three-
dimensional version of the problem, and indicate how they lead for the first time
to an algorithm for four dimensions with near-linear running time (joint work
with Heuna Kim). On the way, we will encounter some beautiful and symmetric
mathematical structures, like the regular polytopes, and Hopf-fibrations of the
three-dimensional sphere in four dimensions.
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Abstract. This note is based on the plenary talk given by the second
author at MACIS 2015, the Sixth International Conference on Mathe-
matical Aspects of Computer and Information Sciences. Motivated by
some of the work done within the Priority Programme SPP 1489 of the
German Research Council DFG, we discuss a number of current chal-
lenges in the development of Open Source computer algebra systems.
The main focus is on algebraic geometry and the system SINGULAR.

1 Introduction

The goal of the nationwide Priority Programme SPP 1489 of the German
Research Council DFG is to considerably further the algorithmic and exper-
imental methods in algebraic geometry, number theory, and group theory, to
combine the different methods where needed, and to apply them to central ques-
tions in theory and practice. In particular, the programme is meant to support
the further development of Open Source computer algebra systems which are
(co-)based in Germany, and which in the framework of different projects may
require crosslinking on different levels. The cornerstones of the latter are the
well-established systems GAP [34] (group and representation theory), POLY-
MAKE [35] (polyhedral geometry), and SINGULAR [25] (algebraic geometry, sin-
gularity theory, commutative and non-commutative algebra), together with the
newly evolving system ANTIC [41] (number theory), but there are many more
systems, libraries, and packages involved (see Sect. 2.4 for some examples).

In this note, having the main focus on SINGULAR, we report on some of
the challenges which we see in this context. These range from reconsidering the
efficiency of the basic algorithms through parallelization and making abstract
concepts constructive to facilitating the access to Open Source computer algebra
systems. In illustrating the challenges, which are discussed in Sect.2, we take
examples from algebraic geometry. In Sects. 3 and 4, two of the examples are
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highlighted in more detail. These are the parallelization of the classical Grauert-
Remmert type algorithms for normalization and the computation of GIT-fans.
The latter is a show-case application of bringing SINGULAR, POLYMAKE, and
GAP together.

2 Seven Challenges

2.1 Reconsidering the Efficiency of the Basic Algorithms

Motivated by an increasing number of success stories in applying algorithmic and
experimental methods to algebraic geometry (and other areas of mathematics),
research projects in this direction become more and more ambitious. This applies
both to the theoretical level of abstraction and to the practical complexity. On
the computer algebra side, this not only requires innovative ideas to design high-
level algorithms, but also to revise the basic algorithms on which the high-level
algorithms are built. The latter concerns efficiency and applicability.

Ezample 1 (The NEMO Project). NEMO is a new computer algebra package writ-
ten in the JULIA! programming language which, in particular, aims at highly
efficient implementations of basic arithmetic and algorithms for number theory
and is connected to the ANTIC project. See http://nemocas.org/index.html for
some benchmarks.

In computational algebraic geometry, aside from polynomial factorization,
the basic work horse is Buchberger’s algorithm for computing Grobner bases
[22] and, as remarked by Schreyer [46] and others, syzygies. While Grébner
bases are specific sets of generators for ideals and modules which are well-suited
for computational purposes, the name syzygies refers to the relations on a given
set of generators. Syzygies carry important geometric information (see [28]) and
are crucial ingredients in many basic and high-level algorithms. Taking syzygies
on the syzygies and so forth, we arrive at what is called a free resolution. Here
is a particular simple example.

Ezample 2 (The Koszul Complex of Three Variables). In the SINGULAR session
below, we first construct the polynomial ring R = Q|z, y, 2], endowed with the
degree reverse lexicographical order dp. Then we compute the successive syzygies
on the variables x,y, 2.

> ring R = 0, (x,y,2), dp;
> ideal I = x,y,2z;

> resolution FI = nres(I,0);
> print(FI[2]);

0,-y,-z,

-z, x, O,

y, 0, x

! See http://julialang.org.
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> print(FI[3]);
X’
z,

Yy

In the following example, we show how Groébner basis and syzygy computa-
tions fit together to build a more advanced algorithm.

Ezample 8 (Parametrizing Rational Curves). We study a degree-5 curve C' in
the projective plane which is visualized as the red curve in Figs.1 and 2. To
begin with, after constructing the polynomial ring R = Q[z,y, 2], we enter the
homogeneous degree-5 polynomial f € Q[z,y, z] which defines C"

> ring R = 0, (x,y,z), dp;
> poly f = x5+10x4y+20x3y2+130x2y3-20xy4+20y5-2x4z-40x3yz-150x2y2z
-90xy3z-40y4z+x3z2+30x2yz2+110xy2z2+20y3z2;

Our goal is to check whether C' is rational, and if so, to compute a rational
parametrization. For the first task, recall that an algebraic curve is rational if
and only if its geometric genus is zero. In the example here, this can be easily
read off from the genus formula for plane curves, taking into account that the
degree-5 curve has three ordinary double points and one ordinary triple point
(see the aforementioned visualization). An algorithm for computing the genus in
general, together with an algorithm for computing rational parametrizations, is
implemented in the SINGULAR library paraplanecurves.lib [15]:

> LIB "paraplanecurves.lib";
> genus(f);

0
> paraPlaneCurve(f);

Rather than displaying the result, we will now show the key steps of the algo-
rithm at work. The first step is to compute the ideal generated by the adjoint
curves of C' which, roughly speaking, are curves which pass with sufficiently
high multiplicity through the singular points of C. The algorithm for computing
the adjoint ideal (see [11]) builds on algorithms for computing normalization
(see Sect.3) or, equivalently, integral bases (see [10]). In all these algorithms,
Grobner bases are used as a fundamental tool.

> ideal AI = adjointIdeal(f);
> AI;

_[1]1=y3-y2z

_[2]=xy2-xyz

_[3]1=x2y-xyz

_[4]1=x3-x2z

The resulting four cubic generators of the adjoint ideal define the curves depicted
in Fig. 1, where the thickening of a line indicates that the line comes with a double
structure. A general adjoint curve, that is, a curve defined by a general linear
combination of the four generators, is shown in Fig. 2.
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LD =
N A

Fig. 1. Cubic curves defined by the generators of the adjoint ideal of a degree-5 curve
with three ordinary double points and one ordinary triple point. The degree-5 curve is
shown in red (Color figure online).

Fig. 2. A general adjoint curve of C of degree 3 (Color figure online).

The four generators give a birational map from C' to a curve C in projective
3-space P3. We obtain C' via elimination, a typical application of Grobner bases:

> def Rn = mapToRatNormCurve(f,AI);
> setring(Rn);
> RNC;
RNC[1]=y(2)*y(3) -y (1) *y(4)
RNC[2]=20%y (1) *y (2) -20%y (2) "2+130*y (1) *y (4)
+20%y (2) ¥y (4) +10*y (3) *y (4) +y (4) "2
RNC[3]=20%y (1) "2-20%y (1) xy (2) +130xy (1) ¥y (3)
+10%y (3) "2+20*y (1) *y (4) +y (3) *y (4)

Note that C is a variant of the projective twisted cubic curve, the rational
normal curve in P? (for a picture see Fig. 10). This non-singular curve is mapped
isomorphically onto the projective line P! by the anticanonical linear system,
which can be computed using syzygies:
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> rncAntiCanonicalMap(RNC) ;
_[1]1=2xy (2)+13*y (4)
_[2]=y(4)

Composing all maps in this construction, and inverting the resulting birational
map, we get the desired parametrization. In general, depending on the number
of generators of the adjoint ideal, the rational normal curve computed by the
algorithm is embedded into a projective space of odd or even dimension. In the
latter case, successive applications of the canonical linear system map the normal
curve onto a plane conic. Computing a rational parametrization of the conic is
equivalent to finding a point on the conic. It can be algorithmically decided
whether we can find such a point with rational coordinates or not. In the latter
case, we have to pass to a quadratic field extension of Q.

Remark 1. The need of passing to a field extension occurs in many geometric
constructions. Often, repeated field extensions are needed. The effective com-
putation of Grébner bases over (towers of) number fields is therefore of utmost
importance. One general way of achieving higher speed is the parallelization of
algorithms. This will be addressed in the next section, where we will, in partic-
ular, discuss a parallel version of the Grébner basis (syzygy) algorithm which
is specific to number fields [18]. New ideas for enhancing syzygy computations
in general are presented in [31]. Combining the two approaches in the case of
number fields is a topic of future research.

2.2 Parallelization

Parallelizing computer algebra systems allows for the efficient use of multicore

computers and high-performance clusters. To achieve parallelization is a tremen-

dous challenge both from a computer science and a mathematical point of view.
From a computer science point of view, there are two possible approaches:

— Distributed and multi-process systems work by using different processes that
do not share memory and communicate by message passing. These systems
only allow for coarse-grained parallelism, which limits their ability to work on
large shared data structures, but can in principle scale up indefinitely.

— Shared memory systems work by using multiple threads of control in a single
process operating on shared data. They allow for more fine-grained parallelism
and more sophisticated concurrency control, down to the level of individual
CPU instructions, but are limited in their scalability by how many processors
can share efficient access to the same memory on current hardware.

For best performance, typically hybrid models are used, which exploit the
strengths of both shared memory and distributed systems, while mitigating their
respective downsides.

From its version 3.1.4 on, SINGULAR has been offering a framework for coarse-
grained parallelization, with a convenient user access provided by the library
parallel.lib [48]. The example below illustrates the use of this framework:
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Ezample 4 (Coarse Grained Parallelization in SINGULAR). We implement a SIN-
GULAR procedure which computes a Grébner basis for a given ideal with respect
to a given monomial ordering. The procedure returns the size of the Grébner
basis. We apply it in two parallel runs to a specific ideal in Q[z1, . .., x4], choos-
ing for one run the lexicographical monomial ordering 1p and for the other run
the degree reverse lexicographical ordering dp:

> LIB "parallel.lib"; LIB "random.lib";

> proc sizeGb(ideal I, string monord){
def R = basering; list RL = ringlist(R);
RL[3][1]1[1] = monord; def S = ring(RL); setring(S);
return(size(groebner (imap(R,I))));}

> ring R = 0,x(1..4),dp;
> ideal I = randomid(maxideal(3),3,100);
> list commands = "sizeGb","sizeGb";
> list args = list(I,"1p"),list(I,"dp");
> parallelWaitFirst(commands, args);

[1] empty list

(2] 11
> parallelWaitAll(commands, args);

[1] 55

[2] 11

As expected, the computation with respect to dp is much faster and leads to a
Grobner basis with less elements.

Using ideas from the successful parallelization of GAP within the HPC-
GAP project (see [4-6]), a multi-threaded prototype of SINGULAR has been
implemented. Considerable further efforts are needed, however, to make this
accessible to users without a deep background in parallel programming.

From a mathematical point of view, there are algorithms whose basic strat-
egy is inherently parallel, whereas others are sequential in nature. A prominent
example of the former type is Villamayor’s constructive version of Hironaka’s
desingularization theorem, which will be briefly discussed in Sect.2.3. A promi-
nent example of the latter type is the classical Grauert-Remmert type algorithm
for normalization, which will be addressed at some length in Sect. 3.

The systematic design of parallel algorithms for applications which so far
can only be handled by sequential algorithms is a major task for the years to
come. For normalization, this problem has recently been solved [14]. Over the
field of rational numbers, the new algorithm becomes particularly powerful by
combining it with modular methods, see again Sect. 3.

Modular methods are well-known for providing a way of parallelizing algo-
rithms over Q (more generally, over number fields). For the fundamental task of
computing Grobner bases, a modular version of Buchberger’s algorithm is due
to Arnold [1]. More recently, Boku, Fieker, Steenpafl and the second author [18]
have designed a modular Grobner bases algorithm which is specific to num-
ber fields. In addition to using the approach from Arnold’s paper, which is to
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compute Grobner bases modulo several primes and then use Chinese remainder-
ing together with rational reconstruction, the new approach provides a second
level of parallelization as depicted in Fig. 3: If the number field is presented as
K =Q(«) = Q[¢]/{f), where f € Q[t] is the minimal polynomial of a, and if gen-
erators g1 (X, ), ..., gs(X, a) for the ideal under consideration are given, repre-
sented by polynomials g1 (X,t),...,9:(X,t) € Q[X,t] = Q[z1,...,%n,t], we wish
to compute a Grébner basis for the ideal I = (1(X,1),...,95(X, 1), f) C Q[X,t].
The idea then is to reduce I modulo a suitable number of primes pi, ..., Pk
(level 1 of the algorithm), get the second level of parallelization by factoriz-
ing the reductions of f modulo the p;, and use, for each i, polynomial Chinese
remaindering to put the results modulo p; together (level 3 of the algorithm).

Input

level 1

level 2

level 3

’ Modular Reconstruction (over Q) ‘

Fig. 3. Two-fold parallel modular approach to Grobner bases over number fields.

2.3 Make More and More of the Abstract Concepts of Algebraic
Geometry Constructive

The following groundbreaking theorem proved by Hironaka in 1964 shows the
existence of resolutions of singularites in characteristic zero. It is worth mention-
ing that, on his way, Hironaka introduced the idea of standard bases, the power
series analogue of Grobner bases.

Theorem 1 (Hironaka, 1964). For every algebraic variety over a field K of
characteristic zero, a desingularization can be obtained by a finite sequence of
blow-ups along smooth centers.

We illustrate the blow-up process by a simple example:

Example 5. As shown in Fig.4, a node can be resolved by a single blow-up: we
replace the node by a line and separate, thus, the two branches of the curve
intersecting in the singularity.
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Fig. 4. Blowing up a node.

In [9,20,30,32], the abstract concepts developed by Hironaka have been
translated into an algorithmic approach to desingularization. An effective vari-
ant of this, relying on a clever selection of the centers for the blow-ups, has
been implemented by Friihbis-Kriiger and Pfister in the SINGULAR library
resolve.lib [33].

The desingularization algorithm is parallel in nature: Working with blow-
ups means to work with different charts of projective spaces. In this way, the
resolution of singularities leads to a tree of charts. Figure 6 shows the graph for
resolving the singularities of the hypersurface z? — z2y? = 0 which, in turn, is
depicted in Fig. 5.

Making abstract concepts constructive allows for both a better under-
standing of deep mathematical results and a computational treatment of the
concepts. A further preeminent example for this is the constructive version
of the Bernstein-Gel’fand-Gel’fand correspondence (BGG-correspondence) by
Eisenbud, Flgystad, and Schreyer [29]. This allows one to express properties
of sheaves over projective spaces in terms of exterior algebras. More precisely, if
P(V) is the projective space of lines in a vector space V, and E is the exterior
algebra E = AV, then the BGG-correspondence relates coherent sheaves over
P(V) to free resolutions over E. Since E contains only finitely many monomials,
(non-commutative) Grobner basis and syzygy computations over E are often
preferable to (commutative) Grobner basis and syzygy computations over the
homogeneous coordinate ring of P(V'). One striking application of this, which is
implemented in MACAULAY2 [37] and SINGULAR, gives a fast way of comput-
ing sheaf cohomology. Providing computational access to cohomology in all its
disguises is a long-term goal of computational algebraic geometry.

The BGG-correspondence is an example of an equivalence of derived cate-
gories. As we can see from the above discussion, such equivalences are not only
interesting from a theoretical point of view, but may also allow for creating more
effective algorithms — provided they can be accessed computationally.
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Fig. 5. The surface z° — 2%y = 0.
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Fig. 6. The tree of charts.

2.4 Interaction and Integration of Computer Algebra Systems
and Libraries from Different Areas of Research

On the theoretical side, mathematical breakthroughs are often obtained by com-
bining methods from different areas of mathematics. Making such connections
accessible to computational methods is another major challenge. Handling this
challenge requires, in particular, that computer algebra systems specializing in
different areas are connected in a suitable way. One goal of the Priority Pro-
gramme SPP 1489, which was already mentioned in the introduction, is to
interconnect GAP, POLYMAKE, SINGULAR, and ANTIC. So far, this has lead
to directed interfaces as indicated in Fig. 7, with further directions and a much
tighter integration of the systems subject to future development.

In fact, the picture is much more complicated: The four systems rely on fur-
ther systems and libraries such as NORMALIZ [21] (affine monoids) and FLINT [42]
(number theory), and there are other packages which use at least one of the four
systems, for example homalg [49] (homological algebra) and a-tint [40] (tropical
intersection theory) (Fig.8).
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°<<( SINGULAR CAP

Algebraic Geometry Groups

Fig. 7. Directed interfaces.
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Ay,

Fig. 8. The Tropicalization of Clebsch’s diagonal cubic.

With regard to mathematical applications, the value of connecting GAP
and SINGULAR is nicely demonstrated by Barakat’s work on a several years old
question of Serre to find a prediction for the number of connected components
of unitary groups of group algebras in characteristic 2 [3,47].

A showcase application for combining SINGULAR, POLYMAKE, and GAP is
the symmetric algorithm for computing GIT-fans [17] by the first, third and
fourth author [17]. This algorithm, which will be discussed in more detail in
Sect. 4, combines Grobner basis and convex hull computations, and can make
use of actions of finite symmetry groups.

2.5 A Convenient Hierarchy of Languages

Most modern computer algebra systems consist of two major components, a
kernel which is typically written in C/C++ and a high level language for direct
user interaction, which in particular provides a convenient way for users to extend
the system. While the kernel code is precompiled and, thus, performant, the user
language is interpreted, which means that it operates at a significantly slower
speed. In addition to the differences in speed, the languages involved provide
different levels of abstraction with regard to modeling mathematical concepts.
In view of the integration of different systems, a number of languages has to
be considered, leading to an even more complicated situation. To achieve the
required level of performance and abstraction in this context, we need to set up
a convenient hierarchy of languages. Here, we propose in particular to examine
the use of just-in-time compiled languages such as JULIA.
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2.6 Create and Integrate Electronic Libraries and Databases
Relevant to Research

Electronic libraries and databases of certain classes of mathematical objects
provide extremely useful tools for research in their respective fields. An example
from group theory is the SmallGroups library, which is distributed as a GAP
package. An example from algebraic geometry is the Graded Ring Database,?
written by Gavin Brown and Alexander Kasprzyk, with contributions by several
other authors. The creation of such databases often depends on several computer
algebra systems. On the other hand, a researcher using the data may wish to
access the database within a system with which he is already familiar. This
illustrates the benefits of a standardized approach to connect computer algebra
systems and mathematical databases.

2.7 Facilitating the Access to Computer Algebra Systems

Computational algebraic geometry (and computer algebra in general) has a
rapidly increasing amount of applications outside its original core areas, for
example to computational biology, algebraic vision, and physics. As more and
more non-specialists wish to use computer algebra systems, the question of how
to considerably ease the access to the systems arises also in the Open Source
community. Virtual research environments such as the one developed within
the OpenDreamKit project® may provide an answer to this question. Creating
Jupyter notebooks* for systems such as GAP and SINGULAR is one of the many
goals of this project. A SINGULAR prototype has been written by Sebastian
Gutsche, see Fig. 9.

3 A Parallel Approach to Normalization

In this section, focusing on the normalization of rings, we give an example of
how ideas from commutative algebra can be used to turn a sequential algorithm
into a parallel algorithm.

The normalization of rings is an important concept in commutative algebra,
with applications in algebraic geometry and singularity theory. Geometrically,
normalization removes singularities in codimension one and “improves” singu-
larities in higher codimension. In particular, for curves, normalization yields a
desingularization (see Examples 6 and 7 below). From a computer algebra point
of view, normalization is fundamental to quite a number of algorithms with appli-
cations in algebra, geometry, and number theory. In Example 3, for instance, we
have used normalization to compute adjoint curves and, thus, parametrizations
of rational curves.

2 See http://www.grdb.co.uk.
3 See http://opendreamkit.org.
4 See http://jupyter.org.
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<, Jupyter Demo Last Checkpoint: 4 minutes ago (autosaved) {(«
File Edit  View nsert Cell Kernel Help | Singuar ©
B+ % & B + ¥ M EC Coe B cell Toolbar: None | |
In [S): poly logo = ((x+3)73 + 2%(x+3)72 - y"2)*(x"3 - y~2)*((x-3)"3-2%(x-3)"2-y"2);

In [6]: LIB *surf_jupyter.lib*;
Out[6]: // ** loaded /usr/local/bin/../share/singular/LI8/surf_jupyter.lib (0.0.0.1,Jan_2016)

In [7]: plot_jupyter(logo);

status

std

. stafgun i >
In (8]:| SO0 R (logo);

string

In [ ]:7sT

Fig. 9. Jupyter notebook for SINGULAR.

The by now classical Grauert-Remmert type approach [23,24,38] to com-
pute normalization proceeds by successively enlarging the given ring until the
Grauert-Remmert normality criterion [36] tells us that the normalization has
been reached. Obviously, this approach is completely sequential in nature. As
already pointed out, it is a major challenge to systematically design parallel
alternatives to basic and high-level algorithms which are sequential in nature.
For normalization, this problem has recently been solved in [14] by using the
technique of localization and proving a local version of the Grauert-Remmert
normality criterion.

To explain this in more detail, we suppose for simplicity that the ring under
consideration is an affine domain over a field K. That is, we consider a quotient
ring of type A = K[x1,...,2,]/I, where I is a prime ideal. We require that K
is a perfect field.

We begin by recalling some basic definitions and results.

Definition 1. The normalization of A is the integral closure A of A in its
quotient field Q(A),

A={a € Q(A) | there exists f € A[t] monic with f(a) = 0}.
We call A normal if A= A.

By Emmy Noether’s finiteness theorem (see [43]), we may represent A as the
set of A-linear combinations of a finite set of elements of A. That is:

Theorem 2 (Emmy Noether). A is a finitely generated A-module.
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We also say that the ring extension A C A is finite. In particular, A is again
an affine domain over K.

Ezample 6. For the coordinate ring A = K|[xz,y|/I of the nodal plane curve
C = V(I) defined by the prime ideal I = (2® + 2 — y*) C K|z, y], we have

A=Kz yl/I=K[t* - 1,6 —t] C K[t] 2 A.
T2 -1

@|—>t3—t

In particular, A is generated as an A-module by 1 and

8[|

Geometrically, the inclusion map A < A corresponds to the parametrization
AYK) - CC A*(K), t—(t2—1,65—1).

In other words, the parametrization is the normalization (desingularization) map
of the rational curve C.

Historically, the first Grauert-Remmert-type algorithm for normalization is
due to de Jong [23,24]. This algorithm has been implemented in SINGULAR,
MacaurLay2, and MAGMA [19]. The algorithm of Greuel, Laplagne, and Seel-
isch [38] is a more efficient version of de Jong’s algorithm. It is implemented in
the SINGULAR library normal.lib [39)].

The starting point of these algorithms is the following lemma:

Lemma 1 ([38]). If J C A is an ideal and 0 # g € J, then there are natural
inclusions of rings
1 _

where p, s the multiplication by a.

A — Homa(J,J) =

Now, starting from Ay = A and Jy = J, and setting
1
Ai+1 = g(g(]i CA; Jz) and Ji =V JAZ',

we get a chain of finite extensions of affine domains which becomes eventually
stationary by Theorem 2:

A=AgC - CACCAp=Apy CA

The Grauert-Remmert-criterion for normality tells us that for an appropriate
choice of J, the process described above terminates with the normalization A,, =
A. In formulating the criterion, we write N (A) for the non-normal locus of A,
that is, if

Spec(A4) = {P C A| P prime ideal}
denotes the spectrum of A, and Ap the localization of A at P, then

N(A) = {P € Spec(A) | Ap is not normal}.
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Theorem 3 (Grauert-Remmert [36]). Let (0) # J C A be an ideal with
J =+/J and such that

N(A) CV(J):={P € Spec(A) | P D J}.

Then A is normal if and only if A = Homy(J,J) via the map which sends a to
multiplication by a.

The problem now is that we do not know an algorithm for computing N(A),
except if the normalization is already known to us. To remedy this situation, we
consider the singular locus of A,

Sing(A) = {P € Spec(A) | Ap is not regular},

which contains the non-normal locus: N(A) C Sing(A). Since we work over a
perfect field K, the Jacobian criterion tells us that Sing(A4) = V(Jac(I)), where
Jac(I) is the Jacobian ideal® of A (see [27]). Hence, if we choose J = y/Jac(I),
the above process terminates with A,, = A by the following lemma.

Lemma 2 ([38]). With notation as above, N(A;) C V(v/JA;) for alli.

Ezxample 7. For the coordinate ring A of the plane algebraic curve C' from
Example 6, the normalization algorithm returns the coordinate ring of a variant
of the twisted cubic curve C in affine 3-space, where the inclusion A C A cor-
responds to the projection of C to C via (z,y, z) — (x,y) as shown in Fig. 10.

This result fits with the result in Example 6: The curve C' is rational, with a
parametrization given by

AYK) - CCA¥K), te (121,15 —t1).

Composing this with the projection, we get the normalization map from
Example 6.

Now, following [14], we describe how the normalization algorithm can be
redesigned so that it becomes parallel in nature. For simplicity of the presenta-
tion, we focus on the case where Sing(A) is a finite set. This includes the case
where A is the coordinate ring of an algebraic curve.

In the example above, the curve under consideration has just one singular-
ity. If there is a larger number of singularities, the normalization algorithm as
discussed so far is global in the sense that it “improves” all singularities at the
same time. Alternatively, we now aim at “improving” the individual singularities
separately, and then put the individual results together. In this local-to-global
approach, the local computations can be run in parallel. We make use of the
following result.

5 The Jacobian ideal of A is generated by the images of the ¢ x ¢ minors of the Jacobian
matrix (ng L), where c is the codimension and fi,..., f, are polynomial generators
J
for 1.
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/e

Fig. 10. The normalizatiorLof the nodal plane curve C' = V(x?’ +a? - y2) is a variant
of the twisted cubic curve C in 3-space.

Theorem 4 ([14]). Suppose that Sing(A) = {P1,..., P} is finite. Then:

1. For each i, let
ACB, CA

be the intermediate ring obtained by applying the normalization algorithm
with P; in place of J. Then

(Bi)p, = Ap,, and
(Bi)Q =Aqg forall P, # Q € Spec(A).

We call B; the minimal local contribution to A at P,.
2. We have -
A=DBi+...+ B,.

This theorem, together with the local version of the Grauert-Remmert crite-
rion, whose proof is given in [14], yields an algorithm for normalization which
is often considerably faster than the global algorithm presented earlier, even if
the local-to-global algorithm is not run in parallel. The reason for this is that
the cost for “improving” just one singularity is in many cases much less than
that for “improving” all singularities at the same time. The new algorithm is
implemented in the SINGULAR library locnormal.lib [12]. Over the rationals,
the algorithm becomes even more powerful by combining it with a modular app-
roach. This version of the algorithm is implemented in the SINGULAR library
modnormal.lib [13].
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4 Computing GIT-Fans

In this section, we give an example of an algorithm that uses Grobner bases,
polyhedral computations and algorithmic group theory. It is also suitable for
parallel computations.

Recall that one of the goals of Geometric Invariant Theory (GIT) is to assign
to a given algebraic variety X that comes with the action of an algebraic group G
in a sensible manner a quotient space X /G. This setting frequently occurs when
we face a variety X parameterizing a class of geometric objects, for example
algebraic curves, and an action of a group G on X emerging from isomorphisms
between the objects. There are two main problems. The first problem is that
the homogeneous space X/G is not a good candidate for X/G as it does not
necessarily carry the structure of an algebraic variety. One then defines for affine
X the quotient X//G as the spectrum of the (finitely generated) invariant ring
of the functions of X; for general X, one glues together the quotients of an affine
covering. Now a second problem arises: the full quotient X /G may not carry
much information: For instance, consider the action of C* := C\ {0} on X = C?
given by component-wise multiplication

CxX =X, (t(zy) — (tz,ty). (1)

Then the quotient X /C* is isomorphic to a point. However, considering the open
subset U := X \ {(0,0)} gives us U//C* = P!, the projective line. For general X,
there are many choices for these open subsets U C X, where different choices
lead to different quotients U //G. To describe this behaviour, Dolgachev and Hu
[26] introduced the GIT-fan, a polyhedral fan describing this variation of GIT-
quotients. Recall that a polyhedral fan is a finite collection of strongly convex
rational polyhedral cones such that their faces are again elements of the fan and
the intersection of any two cones is a common face.

Fig.11. A polyhedral fan in R2.

Of particular importance is the action of an algebraic torus G'= (C*)*, on an
affine variety X C C". In this case, Berchtold/Hausen and the third author [7,44]
have developed a method for computing the GIT-fan, see Algorithm 1. The input
of the algorithm consists of
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— an ideal a C C[T1, ..., T,] which defines X and
— amatrix Q = (q1,-..,q,) € Z¥*" such that a is homogeneous with respect to
the multigrading defined by setting deg(T}) := ¢; € Z*.

Note that the matrix @ encodes the action of (C*)¥ on X. For instance, the
action (1) is encoded in @ = (1,1).

Algorithm 1 can be divided into three main steps. For the first step, we
decompose C” into the 2" disjoint torus orbits

c= |J om 00 ={G,...,x%)eC |z £0sicq}
vC{1,...,r}

The algorithm then identifies in line 1 which of the torus orbits O(v) have a
non-trivial intersection with X. The corresponding v C {1,...,r} (interpreted
as faces of the positive orthant Qrzo) are referred to as a-faces. Using the equiv-
alence

XNO() #0 < (a

T;=0 for 2¢’y) : <T1 T Tr>oo 7& <1>7

the a-faces can be determined by computing the saturation through Grébner
basis techniques available in SINGULAR. In the second step (line 2 of the algo-
rithm), the a-faces are projected to cones in Q. For each a-face 7, defining
inequalities and equations of the resulting orbit cones

Q(7) := cone(q; | i €4) C I' :=cone(q1,...,q) C QF

are determined, where by cone(vy, ..., v;) we mean the polyhedral cone obtained
by taking all non-negative linear combinations of the v;. Computationally, this
can be done via the double description method available in POLYMAKE. We
denote by {2 the set of all orbit cones. In the final step, the GIT-fan is obtained as

A0, Q) := {Ap(w) |weTI't where Ag(w) := ﬂ 7.

weNE

To compute A(a, @), we perform a fan-traversal in the following way: Starting
with a random maximal GIT-cone Ap(wg) € A(a,Q), we compute its facets,
determine the GIT-cones Ag,(w) adjacent to it, and iterate until the support of
the fan equals cone(qy, . .., g.). Figure 12 illustrates three steps in such a process.

In line 9 of Algorithm 1, we write © for the symmetric difference in the first
component. Again, computation of the facets of a given cone is available through
the convex hull algorithms in POLYMAKE.

Algorithm 1 is implemented in the SINGULAR library gitfan.lib [16]. The
SINGULAR to POLYMAKE interface polymake.so [45] provides key convex geom-
etry functionality in the SINGULAR interpreter through a kernel level interface
written in C++. We illustrate the use of this interface by a simple example.

Example 8. We compute the normal fan F' of the Newton polytope P of the
polynomial f = 23 + 43 + 1, see Fig. 11. Note that F is the Grébner fan of the
ideal (f) and its codimension one skeleton is the tropical variety of (f).
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Fig. 12. Fan traversal.

Algorithm 1. GIT-fan

Input: An ideal a C C[T1,...,T,] and a matrix Q € Z**" of full rank such that a is
homogeneous with respect to the multigrading given by Q.
Output: The set of maximal cones of A(a, Q).
1o A:={y € Q% face | v is an a-face}

2: 2:={Q(v) |y € A}

3: Choose a vector wo € Q(7) such that dim(Ap(wo)) = k.

4: C:={Ao(wo)}

5: F = {(1, Ae(wo)) | T C A (wo) facet with = Z oI'}.

6: while there is (n,\) € F do
7
8
9
0

Find w € Q() such that w € X and Ao(w) N A = 1.
C:=CU{dp(w)}
F=Fo{(r, \e(w)) |7 C Ap(w) facet with 7  dI'}

10: return C

> LIB "polymake.so";
Welcome to polymake version 2.14
Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (TU Berlin)
http://www.polymake.org
// ** loaded polymake.so
> ring R = 0,(x,y),dp; poly f = x3+y3+1;
> polytope P = newtonPolytope(f);
> fan F = normalFan(P); F;

RAYS:

-1 -1 #0
0 1 #1
1 0 #2

MAXIMAL_CONES:

{0 1} #Dimension 2
{o 2}

{t 2}

For many relevant examples, the computation of GIT-fans is challenged not
only by the large amount of computations in lines 1 and 6 of Algorithm 1,
but also by the complexity of each single computation in some boundary cases.
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Making use of symmetries and parallel computations, we can open up the pos-
sibility to handle many interesting new cases by considerably simplifying and
speeding up the computations. For instance, the computations in line 1 of Algo-
rithm 1 can be executed independently in parallel. Parallel computation tech-
niques can also be applied in the computation of Ap(wp) and the traversal of
the GIT-fan. This step, however, is not trivially parallel.

An example of the use of symmetries is [17]; here, the first, third and fourth
authors have applied and extended the technique described above to obtain
the cones of the Mori chamber decomposition (the GIT-fan of the action of
the characteristic torus on its total coordinate space) of the Deligne-Mumford
compactification Mg ¢ of the moduli space of 6-pointed stable curves of genus
zero that lie within the cone of movable divisor classes. A priori, this requires to
consider 240 torus orbits in line 1. Hence, a direct application of Algorithm 1 in its
stated form is not feasible. However, moduli spaces in algebraic geometry often
have large amounts of symmetry. For example, on MO’G there is a natural group
action of the symmetric group Sg which Bernal [8] has extended to the input
data a and @ required for Algorithm 1. The GIT-fan A(a, @), and all data that
arises in its computation reflect these symmetries. Hence, by computing an orbit
decomposition under the action of the group of symmetries of the set of all torus
orbits, we can restrict ourselves to a distinct set of representatives. Also the fan-
traversal can be done modulo symmetry. To compute the orbit decomposition,
we apply the algorithms for symmetric groups implemented in GAP.

Example 9. We apply this technique in the case of the affine cone X over the
Grassmannian G(2,5) of 2-dimensional linear subspaces in a 5-dimensional vec-
tor space, see also [17]. By making use of the action of S5, the number of mono-
mial containment tests in line 1 can be reduced from 2'9 = 1024 to 34. A distinct
set of representatives of the orbits of the 172 a-faces consists of 14 elements. The

(o u
(i /0

Fig. 13. The adjacency graph of the set of maximal cones of the GIT-fan of G(2,5)
and the adjacency graph of the orbits of these cones under the Ss-action.
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GIT-fan has 76 maximal cones, which fall into 6 orbits. Figure 13 shows both the
adjacency graph of the maximal cones of the GIT-fan and that of their orbits
under the Ss-action. This GIT-fan has also been discussed in [2,8,26]. Note that
by considering orbits of cones not only the computation of the fan is consider-
ably simplified, but also the theoretical understanding of the geometry becomes
easier.

To summarize, Algorithm 1 requires the following key computational tech-
niques from commutative algebra, convex geometry, and group theory:

— Grobner basis computations,
— convex hull computations, and
— orbit decomposition.

These techniques are provided by SINGULAR, POLYMAKE, and GAP. At the
current stage, POLYMAKE can be used from SINGULAR in a convenient way
through polymake.so. An interface to use GAP functionality directly from SIn-
GULAR is subject to future development.
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Abstract. The analysis of algorithms in IEEE floating-point arithmetic
is most often carried out via repeated applications of the so-called stan-
dard model, which bounds the relative error of each basic operation by
a common epsilon depending only on the format. While this approach
has been eminently useful for establishing many accuracy and stabil-
ity results, it fails to capture most of the low-level features that make
floating-point arithmetic so highly structured. In this paper, we survey
some of those properties and how to exploit them in rounding error
analysis. In particular, we review some recent improvements of several
classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties.

Keywords: Floating-point arithmetic - IEEE standard 754-2008 -
Rounding error analysis -+ High relative accuracy

1 Introduction

When analyzing a priori the behaviour of a numerical algorithm in IEEE floating-
point arithmetic, one most often relies exclusively on the so-called standard
model: for base (3, precision p, and rounding to nearest, this model says that
the result # of each basic operation op € {+, —, x, /} on two floating-point num-
bers x and y satisfies

P=(zopy)(1+6), [0f<u (1)

with u = %61*1” the unit roundoff. (Similar relations are also assumed for the
square root and the fused multiply-add (FMA) operations.)

This model has been used long before the appearance of the first version of
IEEE standard 754 [17,18], and the fact that it gives backward error results
is already emphasized by Wilkinson [43]: considering for example floating-point
addition, it is easily deduced from (1) that 7 is the exact sum of the slightly
perturbed data (1 + §) and y(1 4 §), and, applying this repeatedly, that the
computed approximation to the sum of n floating-point numbers x; has the
form Y"1, 7; with |7, — 2] /|zi] < 1+ w)" ' =1 = (n—1)u+ O(u?) for all i.
© Springer International Publishing Switzerland 2016
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Backward error analysis based on the standard model (1) has developed far
beyond this basic example and turned out to be eminently useful for establishing
many accuracy and stability results, as Higham’s treatise [14] shows.

Although the standard model holds for IEEE 754 arithmetic as long as under-
flow and overflow do not occur, it fails, however, to capture most of the low-level
features that make this arithmetic so highly structured. For example, by ensur-
ing a relative error less than one, (1) implies that # has the same sign as the
exact value zopy, but it does not say that § should be zero when zopy is a
floating-point number.

Such low-level features are direct consequences of the two main ingredients
of IEEE standard arithmetic. The first ingredient is the set F of floating-point
numbers,; which (up to ignoring underflow and overflow) can be viewed as

F={0}U{MpB®: Me€Z, ' <|M|<p’}. (2)

The second ingredient is a rounding function RN : R — F, which maps any real
number to a nearest element in F:

RN(t) — t| = mi —t forallte R 3
RN() ~t| =min|f — | forallt R, 3

with ties broken according to a given rule (say, round to nearest even). This
rounding function is then used by IEEE standard arithmetic to operate on
floating-point data as follows: in the absence of underflow and overflow, xopy
must be computed as

7 = RN(zopy).

This way of combining the structured data in (2) and the minimization prop-
erty (3) implies that 7 enjoys many more mathematical properties than just (1).

The goal of this paper is to show the benefits of exploiting such lower level
features in the context of rounding error analysis. We begin by recalling some of
these features in Sect. 2. Although the list given there is by no means exhaustive
(cf. Rump, Ogita, and Oishi [37, Sect. 2]), it should already give a good idea of
what can be deduced from (2) and (3). We then review some recent improvements
of several classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties. Specifically, we will see in
Sect. 3 that various general algorithms (for summation, inner products, matrix
factorization, polynomial evaluation, ...) now have a priori error bounds which
are both simpler and sharper than the classical ones. In Sect.4 we will focus
on more specific algorithms for core computations like 2 x 2 determinants or
complex products, and show that in such cases exploiting the low-level features
of IEEE standard arithmetic leads to proofs of high relative accuracy and tight
error bounds.

Throughout this paper we assume for simplicity that § is even, that RN
rounds to nearest even, and that underflow and overflow do not occur. (For sum-
mation, however, the results presented here still hold in the presence of under-
flow, since then floating-point addition is known to be exact; see Hauser [13].)
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For more on floating-point arithmetic, we refer to the complementary texts
by Brent and Zimmermann [3, Sect. 3], Corless and Fillion [6, Appendix A],
Demmel [9, Sect.1.5], Goldberg [10], Golub and Van Loan [11, Sect.2.7],
Higham [14, Sect. 2], [15], Knuth [27, Sect. 4.2], Monniaux [29], Muller et al. [31],
Overton [33], Priest [34], Trefethen [41], and Trefethen and Bau [42, Sect. 13].

2 Low-Level Properties

Structure of the Floating-Point Number Set. By construction, the set
F contains zero, has the symmetry property F = —F, and is invariant under
scaling (that is, multiplication by an integer power of the base): z3* € F for
all z € F and k € Z. More precisely, every element of F is a multiple (by some
+3%) of an element of the subset FN[1, 3). The elements of this subset have the
form 1+ jB3'~P, where j is an integer such that 0 < j < (3 — 1)8?~! and, since
U= %ﬁl_p , this can be expressed concisely as follows:

FA[L,B) ={1,1+2u,1+4u,1+6u,...}.

The numbers lying exactly halfway between two consecutive elements of F, such
as for example 1+ v and 1 + 3u, are called midpoints for F.

Some First Consequences of Rounding to Nearest. Since by definition
IRN(t) —t| < |f —¢t| for all f in F, choosing t = z + € with z € F and ¢ € R
gives [RN(z + €) — (z + €)| < |e]. With € = 0 we recover the obvious property
that rounding a floating-point number leaves it unchanged:

zeF = RN(z)==. (4)

Setting € = y with y in F, we deduce further that for floating-point addition the
error bound implied by the standard model (1) can be refined slightly:

z,y€F = [RN(z+y) = (z+y)| <min{ulz +yl [z} [y]}.  (5)

(Similarly, a sharper bound can be deduced for the FMA operation by taking
e = yz.) We will see in Sect.3 how to exploit such a refinement in the context
of floating-point summation.

Besides (4), other basic features include the following ones:

teR = |RN(t)| = RN(}¢|), (6)
teR, keZ = RN(t3")=RN(t)s", (7)
t,t' eR, t<t = RN(t) <RN(®). (8)

Combining (4) with the monotonicity property (8), we see for example that
if x € F satisfies z < ¢ for some real ¢, then x < RN(t).

As another example, we note that (4), (7), and (8) already suffice to prove
that the classical approximation to the mean of two floating-point numbers
behaves as expected in base 2 (but not in base 10): using (7) and then (4) gives
7:= RN(RN(z+y)/2) = RN((z+y)/2); then, using f := min{x,y} < (z+y)/2 <
max{z,y} =: g together with (8), we deduce that RN(f) < # < RN(g) and,
applying (4) again, we conclude that f < 7 < g.
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The Functions ufp and ulp. A very convenient tool to go beyond the standard
model is provided by the notion of unit in the first place (ufp), defined in [37] as

fo(t) 0 if t =0,
u =
P glogs It if ¢ & R\{0}.

Tts relationship with the classical notion of unit in the last place (ulp) is via the
equality ulp(t) = 2uufp(t), and its definition implies immediately that

te R\{0} = ufp(t) <|t| < Pulp(t). (9)
From (4), (6), (8), it then follows that

teR = ufp(t) < |RN()| < Sufp(t).

Thus, RN(¢) belongs to a range for which the distance between two consecutive
floating-point numbers is exactly 2u ufp(¢), and being nearest to ¢ implies

IRN(¢) — t| < wufp(t).

In terms of ulp’s, this is just the usual half-an-ulp absolute error bound (attained
at every midpoint) and, dividing further by |t| > 0, we arrive at

RN() ] _ ufp(t)

te R\{0} = 0 Su

(10)

This inequality is interesting for at least three reasons. First, recalling (9), it
allows us to recover the uniform bound u claimed by the standard model (1).
Second, it shows that the relative error can be bounded by about u/8 instead
of u when |¢t| approaches its upper bound Sufp(t); this is related to a phenomenon
called wobbling precision [14, p. 39] and indicates that when deriving sharp error
bounds the most difficult cases are likely to occur when |¢| lies in the leftmost part
of its range [ufp(t), Sufp(t)). Third, it makes it easy to check that the bound u
is in fact never attained, as noted in [14, p. 38|, since either |t| = ufp(t) € F or
ufp(t)/|t| < 1. Indeed, the following slightly stronger statement holds:

RN() —t| _ _u

t € R\{0 < :
cR\0} = It] 1+u

(11)

If |¢| > (14w)ufp(t), the above inequality follows directly from the one in (10).
Else, rounding to nearest implies that |[RN(t)| = ufp(t) < [¢t| < (14+u)ufp(t) and,
recalling that ¢ has the same sign as its rounded value, we conclude that

IRN(t) —t] 1 ufp(t) 1 1 u

It| B It] T+u 1+u
The bound in (11) is given by Knuth in [27, p. 232] and, in the special case
where t = 2 +y or t = xy with z,y € F, it was already noted by Dekker [§]
(in base 2) and then by Holm [16] (in any base). Furthermore, it turns out to
be attained if and only if ¢ is the midpoint +(1 + u)ufp(¢); see [25]. This best
possible bound refines the standard model (1) only slightly, but we shall see in
the rest of this paper that it can be worth exploiting in various situations.
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Exact Floating-Point Subtraction and EFTs. We now briefly review what
can be obtained ezactly using floating-point and rounding to nearest. A first
classical result is Sterbenz’ theorem [40, p. 138], which ensures that floating-point
subtraction is exact when the two operands are close enough to each other:

z,yelF, y/2<x<2 = z—y€el.

Another exactness property is that the absolute error due to floating-point
addition or multiplication is itself a floating-point number:

x,y €F, ope{+,x} = zopy — RN(zopy) € F.

Furthermore, various floating-point algorithms are available for computing simul-
taneously the rounded value # = RN(z op y) and the exact value of the associated
rounding error e = z op y — 7. For addition, these are the Fast2Sum algorithm of
Kahan [26] and Dekker [8], and the more general 2Sum algorithm of Knuth [27]
and Mgller [28]. For multiplication, it suffices to use the FMA operation as
follows:

7 «— RN(zy), e «— RN(zy — 7). (12)

(If no FMA is available, the pair (7, e) can be obtained using 7 multiplications
and 10 additions, as shown by Dekker in [8].) These algorithms define in each
case a so-called error-free transformation (EFT) [32], which maps (z,y) € F?
to (#,e) € F? such that zopy = # + e. In Sect.4 we will see in particu-
lar how to exploit the transformation given by (12), possibly in combination
with Sterbenz’s theorem. For more examples of EFT-based, provably accurate
algorithms—especially in the context of summation and elementary function
evaluation—we refer to [35] and [31] and the references therein.

3 Revisiting Some Classical Wilkinson-Style Error
Bounds

3.1 Summation

Given z1,...,x, € F, we consider first the evaluation of the sum 22;1 x; by
means of n — 1 floating-point additions, in any order. Following Wilkinson [43],
we may apply the standard model (1) repeatedly in order to obtain the backward
error result shown in Sect. 1, from which a forward error bound for the computed
value 7 then follows directly:

)f - le <a)d |z, a=(1+u)""t-1. (13)
1

i=1 i=

Such a bound is easy to derive, valid for any order, and a priori essentially best
possible since there exist special values of the z; for which the ratio error/(error
bound) tends to 1 as u — 0. The expression giving «, however, is somehow
unwieldy and it is now common practice to have it replaced by the concise yet
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rigorous upper bound v,,_1, using Higham’s ~; notation “y, = ku/(1 — ku) if
ku < 17 [14, p. 63]. Both bounds have the form (n —1)u+ O(u?) and the second
one further assumes implicitly that the dimension n satisfies (n — 1)u < 1.

Recently, it was shown by Rump [36] that for recursive summation one can
in fact always replace « in (13) by the simpler and sharper expression

a=(n—1u.

In other words, the terms of order O(u?) can be removed, and this without
any restriction on n. The proof given in [36, p. 206] aims to bound the forward
error |f — Y i x;| directly, focusing on the last addition and proceeding by
induction on n; in particular, one key ingredient is the refined model (5) of
floating-point addition, which is used here to handle the case |z,| < u 21:11 ;.
As noted in [24, Sect. 3], this proof technique is in fact not restricted to recursive
summation, so the constant (n — 1)u eventually holds for any summation order.

3.2 Other Examples of O(u?)-Free Error Bounds

Similar improvements have been obtained for the error bounds of several other
computational problems, which we summarize in Table1. The algorithms for
which these new bounds hold are the classical ones (described for example
n [14]) and the role played by « depends on the problem as follows: for dot
products, « should be such that |7 — 2Ty| < «a|z|T|y| with z,y € F" and #
denoting the computed value; for matrix multiplication, |C' — AB| < «o|A||B]
with A € F**" and B € F"**; for Euclidean norms (in dimension n), powers,
and products, |F —r| < a|r|; for triangular system solving and LU and Cholesky
matrix factorizations, we consider the usual backward error bounds |AT| < «|T|
for (T'+ AT)z = b, |AA| < o|L||U| for LU = A+ AA, and |AA| < a|RT||R] for
RTR = A+ AA. (Here the matrices T, U, R have dimensions n x n, and L has
dimensions m x n with m > n.) Finally, for the evaluation of a(z) = > a;x’
with Horner’s rule, a is such that |7 — a(z)] < a Y i, laiz’].

The new values of o shown in Table1 are free of any O(u?) term and thus
stmpler and sharper than the classical ones. In the last three cases, the price to
be paid for those refined constants is some mild restriction on n; we refer to [38]
for a precise condition and an example showing that it is indeed necessary.

4 Provably Accurate Numerical Kernels

4.1 Computation of ab + cd

As a first example of such kernels, let us consider the evaluation of ab + cd for
a,b,c,d € F. This operation occurs frequently in practice and is especially useful
for complex arithmetic, discriminants, and robust orientation predicates. Since it
is not part of the set of core IEEE 754-2008 functions for which correct rounding
is required or recommended (and despite the existence of hardware designs as
the one by Brunie [4, Sect. 3.3.2]), this operation will in general be implemented
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Table 1. Some classical Wilkinson-style constants made simpler and sharper. Unless

otherwise stated these results hold for any ordering, and (x) means “if n < u~'/?”.

Problem Classical o New « Reference(s)
summation (n—Du+0®w?) | (n—1)u [24,36]

dot prod., mat. mul. | nu 4+ O(u?) nu [24]

Euclidean norm (2 +1Du+0®w?) | (24 1u [25]

Tr=0b, A=LU nu + O(u?) nu [39]

A=R"R (n+Du+0®w?) | (n+1u [39]

z™ (recursive, B =2) | (n — Du+Ow?) | (n—Du  (¥) | [12]

product 122 --xn | (n— Du+O0@W?) | (n—1u (x)|[38]

poly. eval. (Horner) | 2nu -+ O(u?) 2nu (%) | [38]

in software using basic floating-point arithmetic. When doing so, however, some
care is needed and a classical scheme like RN(RN(ab) + RN(cd)) or, if an FMA
is available, RN(ab + RN(ed)) can produce a highly inaccurate answer.

To avoid this, the following sequence of four operations was suggested by
Kahan (see [14, p. 60]):

W :=RN(cd); f:=RN(ab+w); e:=RN(cd—1w); #:=RN(f+e).

Here the FMA operation is used to produce f and also to implement an EFT
for the product cd, as in (12), thus giving e = c¢d — W exactly. By applying to 1,
f, and 7 the refined standard model given by (11) it is then easy to prove that

uled|
2r| -

2u(1 + v), r=ab+ cd, Y= (14)
This kind of analysis (already done by Higham in the 1996 edition of [14]) shows
that Kahan’s algorithm computes ab + cd with high relative accuracy as long
as 1 % 1. The latter condition, however, does not always hold, as there exist
inputs for which 1 is of the order of u=! and the relative error bound 2u(1 + )
is larger than 1.

This classical analysis was refined in [21], where we show that Kahan’s algo-
rithm above is in fact always highly accurate: first, a careful analysis of the
absolute errors €; = f — (ab+ ) and e; = 7 — (f + e) using the ufp (or ulp)
function gives |e1], |e2| < Buufp(r), so that |F — r| = |e; + €| < 2Bulr|; then, by
studying €; and ey simultaneously via a case analysis comparing |es| to uufp(r),
we deduce that the constant 20u can be replaced by 2u (that is, the term v can
in fact be removed from the bound in (14)); third, we show that this bound is
asymptotically optimal (as u — 0) by defining

a=b=p1 41, =l B d=aprt 4 g2

and checking (by hand or, since recently, using a dedicated Maple library [22])
that the error committed for such inputs has the form 2u — 4u? + O(u?).
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A similar scheme was proposed by Cornea, Harrison, and Tang [7, p. 273],
which ensures further that the value returned for ab+cd is the same as for cd+ab.
(Such a feature may be desirable when, say, implementing complex arithmetic.)
We refer to [19,30] for sharp error analyzes combining ufp-based arguments, the
refined bound u/(1 4 u), and Sterbenz’ theorem.

4.2 Complex Multiplication

Another important numerical kernel is the evaluation of the real and imaginary
parts R = ac — bd and I = ad + bc of the complex product z = (a + ib)(c + id).
Consider first the conventional way, which produces R = RN(RN(ac) — RN(bd))
and I = RN(RN(ad) + RN(bc)). Although R or I can be completely inaccurate,
it is known that high relative accuracy holds in the normwise sense: Brent,
Percival, and Zimmermann [2] showed that 2 = R + il satisfies

z—|z| < V3u
z

and that this bound is asymptotically optimal (at least in base 2); in particular,
the constant /5 = 2.23. .. improves upon classical and earlier ones like V8 =
2.82... by Wilkinson [44, p. 447] and 1 + /2 = 2.41... by Champagne [5].

Assume now that an FMA is available. In this case, R can be obtained as
RN(ac — RN(bd)) or RN(RN(ac) — bd), and similarly for I, so that z can be
evaluated using four different schemes. We showed in [20] that for each of these
schemes the bound v/5u mentioned above can be reduced further to 2u and that
this new bound is asymptotically optimal. We also proved that this normwise
bound 2u remains sharp even if both R and I are computed with high relative
accuracy as in Sect. 4.1.

The bound v/5u was obtained in [2] via a careful ulp-based case analysis.
For the bound 2u we have proceeded similarly in [20, Sect. 3] but, as we observe
n [25], in this case a much shorter proof follows from using just the refined
standard model given by (11).

A direct application of these error bounds is to complex division: as noted by
Baudin in [1], if au bounds the normwise relative error of multiplication, then the
bound (a+3)u+O(u?) holds for division—assuming the classical formula z/y =
(z9)/(yy)—and thus we can take o +3 = 5 or 5.23... depending on whether
the FMA operation is available or not. However, despite this and some recent
progress made in the case of complex inversion [23], the best possible constants
for complex division (with or without an FMA) remain to be determined.

Acknowledgements. I am grateful to Ilias Kotsireas, Siegfried M. Rump, and Chee
Yap for giving me the opportunity to write this survey. This work was supported in part
by the French National Research Agency, under grant ANR~13-INSE-0007 (MetaLibm).
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Abstract. In symbolic geometric reasoning, the output of an algebraic
method is expected to be geometrically interpretable, and the size of
the middle steps is expected to be sufficiently small for computational
efficiency. Invariant algebras often perform well in meeting the two expec-
tations for relatively simple geometric problems. For example in classi-
cal geometry, symbolic manipulations based on basic invariants such as
squared distances, areas and volumes often have great performance in
generating readable proofs. For more complicated geometric problems,
the basic invariants are still insufficient and may not generate geometri-
cally meaningful results.

An advanced invariant is a monomial in an “advanced algebra”, and
can be expanded into a polynomial of basic invariants that are also
included in the algebra. In projective incidence geometry, Grassmann-
Cayley algebra and Cayley bracket algebra are an advanced algebra in
which the basic invariants are determinants of homogeneous coordinates
of points, and the advanced invariants are Cayley brackets. In Fuclid-
ean conformal geometry, Conformal Geometric Algebra and null bracket
algebra are an advanced algebra where the basic invariants are squared
distances between points and and signed volumes of simplexes, and the
advanced invariants are Clifford brackets.

This paper introduces the above advanced invariant algebras together
with their applications in automated geometric theorem proving. These
algebras are capable of generating extremely short and readable proofs.
For projective incidence theorems, the proofs generated are usually two-
termed in that the conclusion expression maintains two-termed during
symbolic manipulations. For Euclidean geometry, the proofs generated
are mostly one-termed or two-termed.

Keywords: Grassmann-Cayley algebra - Cayley bracket algebra -
Conformal Geometric Algebra - Null bracket algebra - Automated
geometric theorem proving

1 Algebraic Approach to Geometric Reasoning

In classical geometry, besides the Euclidean approach to geometric reasoning,
the algebraic approach can be described by the following diagram:
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algebraization
Geometric input — — — — — — algebraic expressions

| |
| |
Euclidean deduction | | algebraic manipulations
| |
! !

interpretation?
Geometric conclusion «— — — — — — algebraic conclusion

The following are key aspects in evaluating the algebraic approach:

— Symbolic algebraic manipulations: how-to and efficiency.
— Geometric interpretation of an algebraic conclusion: how-to.
— Completeness: Is the diagram commutative for arbitrary input of a given class?

While efficiency is very important for algorithms, geometric interpretability is
vital for the algebraic approach to be geometrically successful, and completeness
measures the scope of applicability. We use the following example to illustrate the
problem of geometric interpretability by several algebraic methods for geometric
theorem proving.

Example 1 (33rd M. Putnam Math Competition, 1972). A quadrilateral in
space with equal opposite angles has equal opposite edges (Fig. 1).

Fig. 1. Example 1.

In the planar case, the conclusion is obviously wrong. This example can
can be used to test algebraic methods for the ability of generating geometri-
cally meaningful non-degeneracy conditions, preferably the non-coplanarity of
the quadrilateral.

The canonical algebraization is by coordinatization:

A =(0,0,0), B = (21,0,0),
C = (z1 + x2,23,0), D = (21 + 22 + 24,23 + x5, 2¢),
d, = |AB|, d» = |BC|, ds=|CD|, di — DA
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Hypothesis:

— 6 equalities: 2 of angles, 4 of squared distances by coordinates. The equality
of two angles is represented by the equality of their cosines.
— 4 inequalities of distances being nonzero.

Conclusion:
g1:=d1 —d3 =0,
g2 Z:dg—d420.

Method 1. Characteristic Set [21]. When computing the characteristic set
of the 6 equalities under the order of variables d; < x; by the Maple package
wsolve of Dingkang Wang, Maple returns “Error, (in expand/bigprod) object
too large”.

When computing the characteristic set of the 6 equalities together with the
following 4 equalities obtained from the 4 inequalities by introducing variables
Yr, k = 1..4 such that

hk = y,%dk -1 = O,

then under y;, < d; < x;, 301 branches are generated in a flash with a laptop,
among which 243 (resp. 249) branches do not pseudo-reduce g; (resp. g2) to zero.
Then non-degeneracy conditions are obtained by investigating the initials of the
remaining branches. They are complicated polynomials without clear geometric
meaning.

Method 2. Grébner Basis [3]. Computing the Grébner basis of the ideal Z
of the 6 equalities under the same order of variables d; < x; in deglex ordering
of monomials is easy for Maple; the result does not reduce any of g1, g» to zero.

To find a non-degeneracy condition, by the method of F. Winkler [20], we
compute a Grobner basis of the saturation ideal (Z : g{°), and obtain 20 elements,
5 of which are not in v/Z. The simplest one is

p= d2{4(d1 + d3)$% + 4(d1 + d3)$2l‘4 + Q(Qd% + 2d1ds + d% — di)l‘g
+ Q(d% + d% + dqid3 + d2d4)l‘4 + d? + d%dg + d1d§ + dld?)) — dldi
— d2dy — 2dadydy + d3 — dyd2).

So a non-degeneracy condition of g1 = 0 is p # 0. As dy # 0 by the hypothesis,
the second factor in the expression of p, denoted by p/ds, is a simpler non-
degeneracy condition.

Similarly, a Grobner basis of the second saturation ideal (Z : ¢5°) is com-
puted, which contains 19 elements, 5 of which are not in v/Z. The second factor
of p is one of the 5 elements, so it is a non-degeneracy condition for go = 0.

By the Grobner basis method, we get the result that the conclusion is true
if p/dy # 0. The geometric meaning of polynomial p/ds is not clear.

Method 3. Vector Algebra [7]. Introduce 4 unit vectors ej, ez, e3, €4 to rep-
resent the directions of the 4 sides:

B—A:dlel, C—B:dQGQ, D—C:d363, A—D:d4e4.
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Hypothesis:
die; + doeg + dses + dsey =0,
€1 €2 = €3 - ey,
€] -e4 = ey - e3, (11)
el=el=el=el=1,
di,da,ds,dy # 0.
Conclusion:

Triangulating (1.1) by vectorial equation solving [8]: under the order of vari-
ables d; < e;, the characteristic set in vectorial equation form contains only 1
branch of maximal dimension — an algebraic variety defined by 8 scalar-valued
polynomials, as following;:

dyeq + dses + daes + dyeq,

el —1,

2

e; —1,

ey (12)
dy4 — do,

ds — dy.

Both conclusions are already in it. All other branches each have scalar-valued
components of at least 9 polynomials, and the conclusions are false on them.
Furthermore, A, B, C,D are coplanar on all other branches.

So the theorem is generically true with non-degeneracy condition: the non-
coplanarity of the quadrilateral. The conclusion is automatically discovered dur-
ing triangulation.

What happened during vectorial equation solving? To uncover the myth, we
show the procedure of triangulating the equations led by vector variable e3 after
the elimination of e4, the latter being trivial by the first equation of (1.1). The
input equations led by eg3 are

2
ez =1,
2(d2d3 — d1d4)62 -e3 = d% + di - d% - d%,
2(d2d3 - d1d4)(d1d2 - d3d4)e1 c€e3 = d% - Qd%di + di - d%d% - d%di
— d3d3 — d3d3 + Adydadsdy.

Solving for es by the following identity in vector algebra:
(e1 x e3)%es = —(ez-e3)e; x (€] X €3) + (e3-e;)ey X (€1 X e3) + ey x eg, (1.3)
where local parameter/coordinate A satisfies
M = (e; x er)%es — (e2-e3)’el — (e3-e1)?es +2(e; -es)(es-e3)(es - e1),

we get

(di+da+ds+ds)(dy+do—ds —dy)(dy +ds —do — dy) (dy + dy — da — d3)
{(d1ds — dads)es — (dide — dsda)er — (d% - di)e2} = 0.
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The two overbraced factors each lead to the maximal branch (1.2), while the
other factors lead to lower dimensional configurations.

The vector algebra method leads to the beautiful triangulation result (1.2).
When recalling the coordinate approach, one gets the mixed feeling that on
one hand, by decomposing high dimensional geometry into a sequence of one
dimensional geometries, Descartes’ introduction of coordinates greatly facilitates
the representation and manipulation of geometric objects; on the other hand,
however, this factitious decomposition induces two big problems:

1. Results from algebraic computations are either difficult to interpret geomet-
rically, or geometrically meaningless. Their dependencies upon the specific
coordinate systems are either difficult or impossible to separate from the geo-
metric properties they represent.

2. Middle expression swell: Both the input expression and the output expression
are small in size, but the middle expressions are huge. Some computations
are possible only theoretically.

Vectors and invariants, or more accurately, the coordinate-free version of
covariants, have obvious representational advantage over coordinates, but do
not necessarily lead to any manipulational advantage. The reason is that invari-
ant indeterminates are not algebraically independent, and a generic algebraic
relation among invariants is called a syzygy. In invariant-theoretic method, peo-
ple do not get rid of algebraic dependencies, otherwise it becomes a traditional
coordinate method. Although a monomial of basic invariants is geometrically
meaningful, it is not so for a polynomial of basic invariants. With the presence
of syzygies, the classical approach to normalizing an invariant, Young’s straight-
ening algorithm [22], has no control of middle expression swell.

It remains a challenge how geometric reasoning with covariants can be done
more efficiently while preserving geometric meaning and controlling middle
expression size. To meet the challenge, advanced invariant algebras are called for.

In this paper, two advanced invariant algebras are introduced: Grassmann-
Cayley algebra and Cayley bracket algebra for projective incidence geometry, and
Conformal Geometric Algebra and null bracket algebra for Euclidean conformal
geometry. They are capable of generating extremely short and readable proofs
in automated theorem proving.

2 Geometric Reasoning by Basic and Advanced
Invariants

We start with a typical example in projective incidence geometry.
Example 2 (2D Desargues’ Theorem, valid for nD). If lines 11, 22’ 33’ concur,
then points a =12N1'2", b=13N1'3", ¢ = 23N 2’3’ are collinear (Fig.2).

Method 4. Area Method [4]. A 3D vector represents the homogeneous coor-
dinates of a point in the projective plane. In the affine model of projective plane,
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Fig. 2. Desargues’ Theorem.

the determinant of the homogeneous coordinates of three affine points a, b, c,
denoted by [abc], is related to the signed area Sapc of triangle abc by

[abc] := det(a, b, c) = 2Sape.

Chou, Gao and Zhang developed a readable proof generating method based
on basic geometric invariants such as areas, ratios, squared distances, etc., and a
set of elimination rules from geometric constructions. For Desargues’ Theorem,
the area method can generate an elegant rational monomial proof, i.e., in each
step of manipulating the conclusion expression, the expression remains a ratio-
nal function whose numerator and denominator are both monomials of basic
invariants. Details can be found in [4].

Method 5. Biquadratic Final Polynomials [2,5]. The method of Bokowski,
Sturmfels and Richter-Gebert is based on the theory of biquadratic final polyno-
mials. It searches for all kinds of geometric constraints that can be expressed by
biquadratic bracket equalities, and then finds a subset of such equalities whose
multiplication produces a biquadratic binomial representation of the conclusion
after canceling common bracket factors.

For Desargues’ Theorem, let d = 11’ N 22/, then a binomial proof is given
by this method as following:

3’c,1’a,2d concur = [23'd][1’ac] = —[2cd][1'3'a]
1'd,2a,3b concur = [2ab][31'd] = [23a][1’bd]
3,3.d collinear = [23d][1'3'd] = —[23'd][31'd]
1,3.b collinear =  [1'bd][1’3’a] = —[1’ab][1'3'd]
2,3,c collinear =  [23a][2cd] = —[23d][2ac]

X X

I I
a,b,c collinear <= [2ab][l’ac] = [2ac]|[l’ab].

Method 6. Cayley Bracket Algebra [10]. The method of Li and Wu is
based on Grassmann-Cayley algebra, Cayley expansion and factorization. A
Grassmann algebra is obtained by extending a base vector space with the outer
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(exterior) product. While a projective point a is represented by a vector of homo-
geneous coordinates and denoted by the same symbol a, line ab is represented
by B := a A b, so that point c is on the line if and only if ¢ A B = 0. Similarly,
plane abc is represented by C := a A b A ¢, and point d is on the plane if and
only if dAC = 0.

The meet product “V” is the dual of the outer product “A”. Let “~” be the
Hodge dual operator [12] of the Grassmann algebra, then

(BVC)~:=B~AC".

Grassmann-Cayley algebra is Grassmann algebra equipped also with the meet
product and the dual operator. It is an algebra of span and intersection of linear
subspaces. For example, the intersection of lines 12,1'2’ is represented by (1 A
2) VvV (1’ A2'). As a point on both line 1’2" and line 12, the linear combination
representations of the intersection on the two lines respectively are given by the
following shuffle formula:

(1A2)V(1'A2)=[122]1 —[121']2' = [11'2']2 — [21'2]1. (2.1)

A Cayley bracket is a scalar-valued monomial in Grassmann-Cayley algebra.
Cayley bracket algebra is a commutative algebra generated by Cayley brackets.
It is an algebra of advanced projective invariants, and includes bracket algebra
as a subalgebra.

Cayley expansion [10] refers changing an expression of Cayley bracket algebra
into bracket algebra. The purpose is to make simplification by eliminating all
meet products. As Grassmann-Cayley algebra is neither associative nor commu-
tative, converting an expression from Cayley bracket algebra into bracket algebra
is a simplification from the algebraic viewpoint. The shuffle formula from left to
right is a typical example.

Cayley factorization [19] is the inverse of Cayley expansion. It converts a
bracket polynomial into a (rational) Cayley bracket, so that an incidence con-
struction interpretation of the bracket polynomial can be read from the resulting
Cayley bracket expression.

For Desargues’ Theorem, the hypothesis is the concurrence of lines 11/, 22/,
33’, whose representation in Cayley bracket algebra is

(1A1)V(2A2)V(BAZ)=0.

The expression has 48 terms if expanded into homogeneous coordinate variables.
The conclusion that intersections 12N 1’2", 13N 1’3/, 23N 2’3’ are collinear is
represented by

HAA2) VA A2)HAA3) V(A A H(2A3) V(2 A3)Y =0.

It has 1290 terms if expanded into homogeneous coordinate variables.
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The following binomial proof is valid also for the nD case. It is by simplifying

the conclusion expression with Cayley expansion and factorization:

A2 V@ A2)VHAA3)V (A (2A3) V(2 A3)}]
bingmial LI A2)V (LAB)V (I AS)H(I A2)V (2A3)V (2. A3)}
(

Y
—{AA2)V(2A3) V(2 AZHL A2)V(AA3) V(DL A} (22)

mengmial 19 93)(1/2/3/)(—[11'3/][232/] + [131'][223'])

Jactor  _[123)[1'2/8)(1 A1) V (27 2) V (BA3)).

Remark on monomial expansion: (L A 2)V (LA 3) = [123]1, as according to
(2.1), the other term vanishes as a result of [121] = 0.

It turns out that with Cayley expansion and Cayley factorization, all projec-
tive incidence theorems tested so far have robust binomial proofs, in that when
there is more than one monomial/binomial Cayley expansion available, then any
such expansion leads to a binomial proof ultimately. The features of the Cayley
bracket algebra method includes:

— easy and robust steps, no peculiar choice necessary in manipulations;
— short terms;

— input and output geometrically meaningful;

— hypothesis and conclusion expressions interrelated quantitatively;

— geometric theorems expressed as algebraic identities: easy to apply.

For example, in the proof (2.2), the hypothesis is in fact not used, and we
get the following identity in Cayley bracket algebra:

{HaA2)v@' A2OH@A3) V(' A3)H(2A3)V (2 A3}
= —[123][1'2'3'|(1 A1)V (2A2)V (3AT).

It provides a quantitative description of the relation between the hypothesis
expression and the conclusion expression, and is a much more general result
than the original theorem. The identity from right to left is the converse of
Desargues’ Theorem, with the non-degeneracy conditions [123][1'2/3'] # 0 (the
non-degeneracy of triangles 123 and 1’2'3’) occurring naturally. Desargues’ The-
orem and its converse represented in algebraic identity form can be applied
directly as term rewriting rules in symbolic manipulations.

A highlight of advanced invariant computing method is that advanced invari-
ants are manipulated by their own mechanism, without resorting to low-level
invariants or coordinates. The number of terms of the hypothesis expression and
the conclusion expression when expanded into coordinates clearly indicates huge
middle expression swell if manipulations are done in coordinates.

In history, Descartes’ introduction of coordinates is a key step from quali-
tative description to quantitative analysis of geometric configurations. However,
coordinates are sequences of numbers, they have no geometric meaning by them-
selves. Leibniz once dreamed of a geometric calculus dealing directly with geo-
metric objects rather than with sequences of numbers. He needed an algebra
that is so close to geometry that every expression has clear geometric meaning,
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and every algebraic manipulation corresponds to geometric transformation. Such
an algebra, if exists, is rightly called geometric algebra, and its elements called
geometric numbers.

Leibniz’s dream in projective incidence geometry is realized by Grassmann-
Cayley algebra and Cayley bracket algebra. Despite the efficiency, there are still
limitations with this geometric algebra, for example the following:

— Inefficient representation of Euclidean metric structure.
In Grassmann-Cayley algebra, for a vector a representing a point, both ana =
0 and a Va = 0. So this algebra cannot describe metric structure without
extending the base numbers field.

— Lack of associativity between the outer product and the meet product.

— Inefficiency in handling nonlinear geometric objects.

In the past few years, at least for 3D projective geometry, with the introduc-
tion of an associative algebra for modeling projective line geometry, the second
limitation is significantly alleviated [16]. The first limitation calls for advanced
invariant algebras of Euclidean geometry.

3 Euclidean Invariants: From Basic to Advanced Ones

All Euclidean invariants are functions of distances. For algebraic invariants, there
are two basic ones: the squared distances between two points (or equivalently, the
inner products of two difference vectors), and the signed volumes of simplexes.

In history, there has been an advanced Euclidean invariant algebra: Cayley-
Menger determinants (or bi-determinants) [1,18]. Besides invariant algebras,
there also have been advanced algebras of covariants. For 3D geometry, vec-
tor algebra and quaternionic-variable (non-commutative) polynomial algebra are
two advanced algebras of covariants. Their nD generalization is the Clifford alge-
bra over R”.

In Euclidean geometry, a line segment ab has length d,p. In vector form, for
points a, b represented by vectors,

d’, =(a—b)>’=(a—b)-(a—b)=2a’+b?—2a-b, (3.1)

where the dot symbol denotes the inner product. What are these: a?, b? and
a - b? They always depend on the reference point (the origin of all vectors),
and are geometrically meaningless. None of the above mentioned algebras of
invariants or covariants makes a? geometrically meaningful for “point” a.
What do we expect from a - b? It should reflect some relation between the
two points. The only candidate is — the distance! Then a - a has to be zero, i.e.,
a must be a null vector. Then from (3.1) we get
(a—b)*  day
a-b= 5 =-—— (3.2)
In history, Wachter (a student of Gauss) proposed embedding R3 isometri-
cally into the 5D Minkowski space R*!, so that all vectors of R? are represented
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by null vectors of R*1, and (3.2) is satisfied. Let e;, ez, e3,e,ey be a basis of
1
1
R%! with metric 1 . Then Wachter’s isometric embedding is
0 -1
-1 0
2,2 .2
(z,y,2) €R® — <x,y,z, 1, W) e R4

This model changes conformal transformations of R? into orthogonal transfor-
mations of R*!, hence inducing a pin group representation of 3D Euclidean
conformal transformations.

In [9], Li, Hestenes and Rockwood further studied the above model and pro-
posed a sequence of Grassmann-Cayley algebraic representations of Euclidean
conformal constructions. For example, the following list is on Minkowski repre-
sentations of planes/lines/circles/spheres in R™:

— Conformal point at infinity: e, the unique extra point for one-point compact-
ification of R™.

— Points: null vectors x, where x - e = —1 for “point” x.

— Line ab: eAaAb. Point d on line C: d A C = 0.

— Plane abc: eAaAbAc.

— Circle abe (circum-circle of triangle abc): aAbAc.

— Sphere abed (circum-sphere): aAbAcAd.

Besides the Minkowski representations, there are also the dual representa-
tions of conformal objects, affine representations and dual affine representations
of affine objects [12].

In [11], the Grassmann-Cayley algebraic representations of Euclidean con-
formal constructions are further extended to include the reduced meet product
for representing the second point of intersection of two circles/lines. For two cir-
cles/lines abjc; and abscs, “point” a is obviously a point of intersection (if both
are lines, then a = e is the conformal point at infinity). Besides this trivial point
of intersection, there is another point of intersection, denoted by bicy; N, bacs.
In particular when bjc; N, bacy = a, the two circles/lines are tangent to each
other at “point” a (in the case of two lines, that they are “tangent” to each other
at the conformal point at infinity means they are parallel to each other).

The meet product of two circles/lines has the outer product factorization

(aAbiAci)V(aAbaAcy)=aA{(biAci)Va (b2 Aca)}. (3.3)

The second factor of the outer product is called the reduced meet product:

(bl A C1) Va (b2 A C2) = [ab101CQ]b2 — [ablclbg]CQ = [ablbgcﬂcl — [301b2C2]b1. (34)
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Vector (3.4) is not null, yet it must relate to the second point of intersection,
as the meet product (3.3) equals the outer product of a with the second point of
intersection. It turns out that the null vector representation of byci;Nabacs is the
reflection of null vector a with respect to invertible vector (b; Acy) Va (ba Aca).

To manipulate reflection multiplicatively (or “monomially” to control expres-
sion size), Clifford algebra is resorted to. This is an algebra obtained by extending
a base inner-product space with the Clifford multiplication (or geometric prod-
uct), which is associative, multilinear, and satisfies aa = a? := a - a. In fact,
ab = a-b+ a A b, where the juxtaposition denotes the Clifford multiplication.

In Hestenes’ viewpoint, Clifford algebra is best constructed from Grassmann-
Cayley algebra by also equipping it with the Clifford multiplication, just like
constructing Grassmann-Cayley algebra from Grassmann algebra. This version
of Clifford algebra is very suitable for describing and manipulating geometric
constructions, and is nowadays called Geometric Algebra [6].

In Clifford algebra, the reflection of vector b with respect to vector a is
represented by

b — Ada(b) := —aba™!.

In our setting of representing the second point of intersection, the following
homogeneous reflection is more convenient:

1
b — Np(a) := iaba.

So 23 Ny 2’3’ is represented by N1((2 A 3) V1 (2' A 3)).

Conformal Geometric Algebra (CGA) refers to the Clifford algebra over the
Minkowski space R"*t1 for representing conformal transformations of R"™ by
acting upon the Minkowski representation of conformal objects, together with
other alternatives of the Minkowski representation such as the dual represen-
tation, affine representation, dual affine representation, reduced meet product
representation, etc. Conformal Geometric Algebra and the null bracket algebra
to be introduced below realize Leibniz’s dream in Euclidean conformal geometry.

An nD Clifford bracket algebra is the commutative ring generated by the
“hyper-determinants” and “hyper-inner products”, which are obtained respec-
tively by prolonging nD brackets and inner products of vector pairs with the
Clifford multiplication, as following:

a; -as = (ajas) prolonged to (ajas...as;) = (ajas...as)o,
[a;...a,] =(a; A--- Aa,)™ prolonged to [ajas...an42] = (ajas...a,19)0,

where “( );” denotes the i-grading operator: extracting the i-graded part (in
Grassmann algebra) of the argument.

Instead of anti-commutativity and commutativity, the two long brackets have
the following symmetries:

— Reversion:
<a1a2 ce an) = <32k32k—1 s al>,

(n—1)
[aras - aniol] = (=177 [appo@nio1 -l
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— Shift:
<alaQ ce a%) = <32k3182 . 'an—1>,
[ajas - anio] = (—1)" Hanioar - anio—1).

Null bracket algebra is a Clifford bracket algebra generated by null vector vari-
ables. The property aa = 0 for null vector a provides great benefits in expression
size control, in addition to adding more symmetries.

The following are geometric interpretations of the long brackets in terms of
2D trigonometry:

dalagdagag e d32l+132l+2 dazl+2al

<ala2 s 321+2> = -

2
+ Z(ajasas,a1a5a6) + - - - + Z(ayaga41,a1894182142));

ajasYazaz " Yag a2 %asjo0ar

cos(Z(ajazaz, ajazay)

[alaz e 'a2l+2] = -

+ Z(ajasas, a1asag) + - - + Z(aragag+1, a1a41a2;42)),
(3.5)

sin(Z(ajazas, ajazay)

where £(123,134) denotes the angle of rotation from the tangent direction of
oriented circle 123 at point 1 to the tangent direction of oriented circle 134 at
the same point (Fig. 3(a)).

Fig. 3. £(123,134) (left); Miquel’s 4-Circle Theorem (right).

For example when [ = 1 in (3.5), then 2[ajasazay] = —da,a,dara;daza; dasa;
sin Z(ajazas, ajazay). So [ajazazay] = 0 if and only if the four points are cocir-
cular/collinear.

Example 3 (Miquel’s 4-Circle Theorem). Four circles intersect at eight points
cyclically. If 1,2, 3,4 are cocircular, so are 5,6,7,8 (Fig.3(b)).

Method 7. Conformal Geometric Algebra 4+ Null Bracket Algebra.
Similar to Example 2, we remove the cocircularity of points 1,2,3,4 from the
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hypothesis, and see how the conclusion expression varies, with the hope that the
removed constraint comes up automatically as a factor in the result.
New hypothesis:

— Free points: 1,2,3,4,5,7;
— Intersections: 6 = 15N 37, and 8 = 15 N4 37.

In Conformal Geometric Algebra, the two intersections are represented by

6=2"{(LAB) V2 (BAT)I2{(LAB) V2 (BAT)};
8=2"(1LAB) V4 (BAT)}I{(LAB) V4 (BAT)}.

Conclusion expression: [5678]. It equals zero if and only if 5,6, 7,8 are cocircu-
lar/collinear.
The following is an elegant monomial proof:

6,8

5678] = 2725{(1A5) V2 (BAT)I2{(LA5) V2 (3AT)}
T{AA5)Va(BAT)}4{(1A5) Vs (3AT)}]
creand . _9-2(1257][1457)(2357)[3457][51237341]

monamial (1. 5)(3 - 7)[1234][1257][1457][2357][3457],

where the monomial factorization is: aba = 2(a- b)a.

As anticipated, bracket [1234] representing the missing constraint occurs
automatically in the result. Thus we get a quantitative (hence stronger) version
of Miquel’s 4-Circle Theorem: If 6 = 15Ny 37 and 8 = 15 Ny 37, then

[5678]  [1234] [1257][3457]
(5-6)(7-8) (1-2)(3-4) [1457][2357]

By now over one hundred theorems in FEuclidean geometry have been
tested, and

— about 4/5 are given robust monomial or binomial proofs;

— more than 1/3 are given monomial proofs;

— by removing one or several equality constraints from the hypothesis, usually
the missing constraints can be recovered from the conclusion expression;

— the computing steps are short and easy;

— input and output are geometrically meaningful;

— quantitative description of the relationship between the conclusion and some
(in some cases, even all) equality constraints of the hypothesis, can be
obtained; the experiment is more or less like playing a game, exciting and fun.

4 Conclusion

Advanced invariants of projective incidence geometry and Euclidean conformal
geometry help to achieve tremendous simplifications in automated theorem prov-
ing, discovering, and extending.
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Why can the computing be so short? A partial explanation is that many
syzygies among basic invariants are integrated into symmetries within advanced
invariants, and handling the latter is much easier.

Then how to compute? The answer includes expansion, factorization, nor-
malization, and division of invariant polynomials and non-commutative covari-
ant polynomials. In this paper we have used examples to illustrate expansion and
factorization sufficiently. We do not have space left to talk about normalization
and division, but refer to [14,15] for some new advances.

Finally, to what extent is the proving method complete? This is a funda-
mental problem of coordinate-free geometric reasoning. The completeness issue
can be stated as follows: can every geometrically meaningful conclusion deduced
from algebraic manipulations of the coordinate polynomials representing given
geometric constraints be also deducible from symbolic manipulations of the (non-
commutative) polynomials of (advanced) invariants and covariants?

For example for 3D Euclidean geometry and vector algebra, the question is
raised as following: If in 3D geometric reasoning by coordinate variables z;, y;, 2
and basis vectors ej, €3, €3, both the input and the output are polynomial func-
tions of the vector variables v; = z;e; +y;e2 + 2;e3, and the algebraic manipula-
tions include only polynomial addition, subtraction, multiplication and division,
can the output also be deducible in the vector algebra of the variables v;, without
further introducing any coordinate or parameter?

For invariant algebras, the answer to the completeness question is generally
affirmative, while for covariant algebras, although a lot of efforts have been
taken in recent years, even for Grassmann-Cayley algebra and vector algebra,
the answer is not clear. By now, we have only reached the following conclusion for
3D covariant algebras [13,17]: When compared with coordinate polynomials with
arithmetic operations, the following covariant associative algebras are complete:

1. mon-commutative polynomial ring in quaternionic variables;
2. non-commutative polynomial Ting in quaternionic vector variables;
3. non-degenerate Clifford polynomial ring in 38D vector variables.
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Congruence Testing of Point Sets in Three
and Four Dimensions

Results and Techniques
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Abstract. I will survey algorithms for testing whether two point sets are
congruent, that is, equal up to an Euclidean isometry. I will introduce the
important techniques for congruence testing, namely dimension reduc-
tion and pruning, or more generally, condensation. I will illustrate these
techniques on the three-dimensional version of the problem, and indicate
how they lead for the first time to an algorithm for four dimensions with
near-linear running time (joint work with Heuna Kim). On the way, we
will encounter some beautiful and symmetric mathematical structures,
like the regular polytopes, and Hopf-fibrations of the three-dimensional
sphere in four dimensions.

1 Problem Statement

Given two n-point sets A, B C R?, we want to decide whether there is a transla-
tion vector ¢ and an orthogonal matrix R such that RA+t:={Ra+t|ac A}
equals B, that is, A and B are congruent. Congruence asks whether two objects
are the same up to Euclidean transformations, or in other words, whether they
are considered equal from a geometric viewpoint. Congruence is therefore one of
the fundamental basic notions.

The translation vector ¢ can be easily eliminated from the problem by initially
translating the two sets A and B such that their centers of gravity lie at the
origin O.

If we do not restrict the dimension d, congruence becomes equivalent to
graph isomorphism: a given graph G = (V, E) with n vertices vy, ..., v, can be
represented by n + |E| points in n dimensions. We simply take the n standard
unit vectors eq,...,e, and add a point (e; + e;)/2 for each edge v;v; € E.
Then two graphs are isomorphic if and only if their corresponding point sets are
congruent.

We thus restrict our attention to small dimensions. In two and three dimen-
sions, algorithms with a running time of O(nlogn) have been known. We review
some of these algorithms, because their techniques are also important for higher
dimensions.

The Computational Model: Exact Real Arithmetic. We use the Real Random-
Access Machine (Real-RAM) model, as is common in Computational Geometry.

© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 50-59, 2016.
DOI: 10.1007/978-3-319-32859-1_4
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We assume that we can compute arithmetic operations and square roots of real
numbers exactly in constant time. The reason for this choice is not so much
convenience, but the range of possible input instances. With rational inputs, for
example, one cannot even realize a regular pentagon. Thus, the difficult problem
instances, which are the symmetric ones, as we will see, would disappear.

It makes sense to ask for approximate congruence within some given toler-
ance . This problem is, however, NP-hard already in two dimensions (Iwanowski
1991). It becomes polynomial when the input points are sufficiently separated
in relation to e, and thus there is hope to solve the approximate congruence
problem in higher dimensions, under suitable assumptions and at least in an
approximate sense. This is left for future work.

2 Two Dimensions

In the plane, congruence can be tested by string-matching techniques
(Manacher 1976). We sort the points clockwise around the origin, in O(nlogn)
time, and represent the point set as a cyclic string alternating between n dis-
tances from the origin and n angular distances between successive points. Two
n-point sets A and B are then congruent if and only if their string representa-
tions a and (8 are cyclic shifts of each other. This is equivalent to asking whether
« is a substring of 83, and it can be tested in linear time.

This idea can be extended to symmetry detection for a single set A: We
find the lexicographically smallest cyclic reordering of the string. The starting
point of this string, together with the cyclic shifts which yield the same string,
gives rise to a set of p equidistant rays starting from the origin, which we call
the canonical axes. Then the set A has a rotational symmetry group of order p,
consisting of all rotations that leave the set of canonical axes invariant.

3 Three Dimensions

For testing congruence in space, there are several algorithms, which use different
tools (Sugihara 1984; Atkinson 1987; Alt et al. 1988). We describe a variation
which is very simple and illustrates the principal techniques that are used in this
area: dimension reduction, pruning, and condensation.

Pruning and condensation tries to successively reduce A to a smaller and
smaller point set A’ while not losing any symmetries that A might have. Initially,
we set A’ := A. We compute the convex hull H(A") of A" in O(|A’|1log|A’|) time.
Let A’ denote the set of vertices of the polytope H(A’). We classify the points
of A’ by degree in the graph of H(A’). In case there are at least two different
degrees in the graph, we replace A’ by the smallest degree class in A’ and repeat
the convex-hull computation. In each iteration, the size of A’ is reduced to half
or less. We simultaneously carry out all steps for the set B. If at any stage, we
notice an obvious difference between A’ and B’, for example, if |A’| # |B’|, we
conclude that A and B are not congruent, and we terminate.
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This pruning loop ends when all vertices in H(A'), and also in H(B'), have
the same degree. At first glance, this procedure looks dangerous because we have
thrown away points (including all points interior to the hulls of A and B) and
have thereby thrown away information: The sets A’ and B’ might be congruent,
whereas the original sets A and B are not. However, the prime goal of successive
pruning steps is to eventually reduce the points sets to some sets A’ and B’
which are so small that we can afford to try all possibilities of mapping a fixed
chosen point ug € A’ to some point v € B’. This is done as follows:

Once we have picked the point v, we can reduce the dimension of the problem
by one: we choose some rotation R that brings ug to v. We denote by P the
plane perpendicular to the axis through Rug = v, and we project the sets RA
and B onto P. (Here we must take the original sets A and B again.) To each
projected point, we attach the signed distance from P as a label. We then look
for two-dimensional congruences in P, but for labeled point sets. The labeling
information can be easily incorporated into the algorithm of Sect. 2.

Thus, when |A’| = |B’| is small, we can finish the problem by |A’| instances
of two-dimensional congruence in O(|A’|nlogn) time.

Let us now see how we continue when our pruning process gets stuck. We
will describe the steps only for the set A’, but the reader has to keep in mind
that they are carried out for the set B’ in parallel. If the convex hull H(A4') is
one-dimensional or two-dimensional, then we have found an axis or a plane with
a corresponding axis or plane in H(B’). This allows us to reduce the question
to one or two-dimensional problems, as described above.

We are left with the case that H(A’) is a three-dimensional polytope. By
pruning, we can assume that all vertices of the graph of H(A’) have the same
degree d. By Euler’s formula, d can be 3, 4, or 5. Euler’s formula also yields
the number of faces F' in terms of the number n’ of vertices of H(A'): |F| =
(d=2)/2-n"+2< %n' + 2. We now try to prune the faces by face degrees. If
there are at least two different face degrees, the smallest degree class F of faces
has at most 3n’ + 1 elements. This number is smaller than n’ unless n’ = 4 and
H(A') is a tetrahedron. We compute the centers of gravity of the faces in F’, and
replace A’ by the set of these centers. We call this procedure a condensation. Like
pruning, it reduces A’ to a smaller set, but in contrast to pruning, the smaller
set is not necessarily a subset of A’.

With the new condensed set A’ we restart the whole procedure from scratch,
beginning with the convex hull computation. The only case where neither con-
densation, nor pruning, nor dimension reduction is possible is a convex polytope
H(A’) in which all vertices and all faces have the same degree. Such a polytope
must have the combinatorics of one of the five regular polytopes (Platonic solids):
the tetrahedron, the octahedron, the icosahedron, the cube, or the dodecahedron.
We know therefore that |A’| < 20, and we can resort to dimension reduction,
which leads to at most 20 two-dimensional instances.

In all the above-mentioned pruning and reduction steps, we must avoid that
the reduced set A’ contains only the origin. When such a case would arise, we
artificially select a different class of vertices or faces.
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4 Pruning and Condensation

Pruning is very versatile: we can use any criterion of points that we can think
of, as long as it is not too expensive to compute. For example, in our algorithm
for four dimensions, we will build the closest-pair graph G, which connects all
pairs of points of A’ whose distance equals the smallest inter-point distance in
the set, and try to prune by degree in this graph. If, however, all vertices happen
to have degree 1 in G, thus forming a perfect matching of A’, we condense A’ to
the set of midpoints of the matching edges.

The power of the pruning technique is that we can concentrate on those cases
where pruning fails. These instances are highly symmetric and regular, and we
will capitalize on this regularity to extract structures from the point set that
allow us to proceed.

Formally, a condensation procedure is a mapping F' that maps a set A to a
set A’ = F(A). This mapping must be equivariant under rotations:

R-F(A)=F(R- A), for all rotations R

A pruning procedure is the special case where F(A) C A. We say that condensa-
tion is successful if F'(A) is smaller than A and F'(A) is not the empty set or just
the origin. We will be able to ensure a reduction by a constant factor for success-
ful condensation steps, and thus we need not worry about the time for iterating
the condensation, because the size of A’ decreases at least geometrically.

5 The Three-Dimensional Point Groups

We have seen that congruence testing is closely connected to symmetry: “Ran-
dom” point sets have no symmetries and are easy to check for congruence. The
hard cases are the symmetric ones. It is therefore no surprise that congruence
testing algorithms can tell us something about the symmetry groups of point
sets.

In Sect. 3, we have stopped condensation as soon as we reached the combi-
natorial structure of a Platonic solid. By further condensation, based the edge
lengths, we can achieve that the only remaining cases must also have the geom-
etry of a Platonic solid, see Algorithm K in Kim and Rote (2016) for details.
From this we can conclude the following theorem.

Theorem 1. The symmetry group of a finite three-dimensional set of points is
either

1. the symmetry group of one of the five Platonic solids,
2. the symmetry group of a prism over a regular polygon,
8. or a subgroup of one of the above groups. O

These groups are the discrete subgroups of the orthogonal group O(3) of 3 x 3
orthogonal matrices, and they are called the three-dimensional point groups.
Case 2 covers the reducible groups (and their subgroups), those groups that are
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direct products of lower-dimensional point groups. They come from the case
when our algorithm used dimension reduction. Theorem 1 is not very explicit,
and quite redundant: The octahedron and the cube are dual to each other and
have the same symmetries, and so do the dodecahedron and the icosahedron. The
tetrahedral group is contained both in the group of the cube and of the dodeca-
hedron. With some work, the explicit list of groups can be worked out from this
theorem. However, the resulting classification of three-dimensional point groups
was already known in the 19th century (Hessel’s Theorem). We will mention
potential extensions to four dimensions in Sect. 8.

6 General Dimensions

The best algorithms for general dimension d are a deterministic algorithm of
Brass and Knauer (2002) and a randomized algorithm of Akutsu (1998). They
reduce the dimensionality d of the problem by three, respectively four dimensions
at a time, and achieve running times of O(n/%31logn) and O(nl%/21/21ogn),
respectively, for high enough dimensions.

7 Four Dimensions

We have recently managed to solve congruence testing in four dimensions in
optimal O(nlogn) time.

Theorem 2. Given two sets A and B of n points in four dimensions, it can be
decided in O(nlogn) time and O(n) space whether A and B are congruent.

The algorithm is based on condensation and dimension reduction, but the details
are quite involved, see Kim and Rote (2016). We can therefore give only rough
overview, referring to the following flowchart, and glossing over many details.

: points A’
£p01nts Al R: Mirror

C: Iterative Case circles C M: Mark and points A’
Condensation Condense —
O: Orbit Great Circles
Cycles circles C i
143 Dimension 2+2 Dimension
Reduction Reduction

7.1 Iterative Pruning and Condensation Using the Closest-Pair
Graph (Algorithm C)

After pruning by distance from the origin, we can assume that A lies on the
three-dimensional sphere S* C R*. As in Atkinson (1987), we compute the closest
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distance 0 = min{ ||a — d'|| : a,a’ € A,a # a' } and the closest-pair graph G on
the vertex set A, which connects all pairs of points whose distance is . The
vertex degrees in H are bounded by the kissing number K3 = 12, the maximum
number of equal balls with disjoint interiors that can simultaneously touch a ball
of the same size on S3. The closest-pair graph can be computed by divide and
conquer in O(nlogn) time in any fixed dimension (Bentley and Shamos 1976).

Now we start an iterative pruning and condensation process on G, first based
on vertex degrees, and working its way up to higher and higher orders of regu-
larity. In the end, we will have pruned G to such a degree that all directed edge
figures, consisting of some edge uv and all adjacent edges, are congruent. This
allows us to conclude that copies of a certain pattern can be found “everywhere”
in G. This pattern is a path tgugvowy with the property that its three edges tguy,
ugvg, and vowy have the same length ¢ and the two angles tougvy and ugvowg
are equal. In G, we can then define a nonempty set S of paths aa’a” with the
following property.

For every path ajasas € S, there is a (unique) edge asas € G such that
asaszay € S and ajasazay is congruent to tougvowy.

7.2 Generating Orbit Cycles (Algorithm O)
By repeatedly applying this property, we can conclude:

For every triple ajasas € S, there is a unique cyclic sequence ajas .. .ag
such that a;a;y1a;42a;43 is congruent to tougvowp for all 7. (Indices are
taken modulo [.)

Moreover, there is a rotation matrix R such that a;11; = Ra;. In other
words, ajas . ..ay is the orbit of a; under the rotation R.

We call such a cyclic sequence an orbit cycle. If the points A would live in R3,
the geometric situation is easy to imagine: If the points tgugvowy lie in a plane,
then the orbit cycle lies on a circle. Otherwise, they form an infinite helix that
winds around an axis. This intuition is not misleading: on S?, the situation is
the same, except that the axis of the helix is a great circle instead of a line.

The last case it the most interesting case for us: If the points tyugvowy do
not lie in a plane, we can extract the axis circle from each orbit cycle. We will
then work with the set C of these circles.

7.3 Marking and Condensation of Great Circles (Algorithm M)

We are given a set C of great circles in S3. We will treat these circles as objects
in their own right, independent of the point set A from which they came.

The Distance Between Circles. We start by computing the closest-pair graph
on C. To to this, we have to define a distance between great circles. We do this
by embedding them in the 5-sphere S° C RS. Great circles in the 3-sphere can
be equivalently regarded as 2-dimensional planes through the origin in 4-space,
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and we can use Pliicker coordinates to represent them. (Planes in 4-space can
be equivalently regarded as lines in (projective) 3-space, and this is the most
familiar type of Pliicker coordinates.) The Pliicker coordinates are a 6-tuple of
numbers in projective 6-space. We normalize them and represent each circle
as a pair of antipodal points on S°, and define the Plicker distance between
two circles as the smallest distance between the four representative points. This
distance is a geometric invariant: In a different coordinate system, a plane will
have different Pliicker coordinates, but Pliicker distances are unchanged.

Other distances have been considered in the literature. Conway et al. (1996)
have tried to pack lines, planes, etc. in Grassmannian spaces, using the chordal
distance (which comes from representing a plane as a symmetric 4 x 4 projec-
tion matrix) and the geodesic distance on the Plicker surface. For our case,
the Pliicker distance gives the embedding of lowest dimension and is therefore
preferable.

The closest-pair graph G(C) is thus computed in 6 dimensions. The number
of neighbors is bounded by the kissing number K5 in 5 dimensions, which is
known to be bounded by 44.

We now look at each pair C, D of adjacent circles in G(C). When projecting D
on the plane of C, the image will generically be an ellipse D’. We use the major
axis of D’ to mark two points on C. Similarly, we project C to the plane of D
and generate two markers on D. Repeating this for all edges of G(C) produces
at most 2K5 < 88 markers on each circle of C. These markers form a new set of
points A’, and we start the whole algorithm from scratch with this set of points.

We argue that the new set A’ is smaller than the original set A from which
the orbit cycles are generated. We know that every point of A can belong only
to a bounded number of orbit cycles, by the degree constraint in G(A). If all
orbit cycles are long enough, meaning that they contain sufficiently many points,
we can therefore guarantee that the number of orbit cycles is small, say |C| <
|A]/200, and then |A’| < 88 -|C| will be a successful condensation of A. If the
orbit cycles are short, it means that the closest distance d must be longer than
some threshold §y. Then, by a straightforward packing argument on S3, the size
of A is bounded by a constant, and we can “trivially” solve the problem by
dimension reduction.

Isoclinic Circles and Hopf Bundles. The above procedure fails to generate mark-
ers if all projected ellipses turn out to be circles. Such planes C, D are called
1soclinic. They come in two variations, left-isoclinic and right-isoclinic. It turns
out that being isoclinic imposes a strong structure on the involved circles. We
formulate their properties for right-isoclinic pairs; analogous statements hold for
left-isoclinic pairs.

Proposition 3. 1. The relation of being right-isoclinic is transitive (as well as
reflexive and symmetric). An equivalence class is called a right Hopf bundle.

2. For each right Hopf bundle, there is a right Hopf map h that maps the circles
of this bundle to points on S2.

3. By this map, two isoclinic circles with Plicker distance v/2sina are mapped
to points at angular distance 2cc on the “Hopf sphere” S2.
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4. A circle can have at most Ky =5 closest neighbors on the Pliicker sphere S?
that are right-isoclinic.

The right Hopf map in Property 2 is obtained as follows (Hopf 1931, Sect.5):
Choose a positively oriented coordinate system z1, y1, z2, yo for which some circle
Cy of the bundle lies in the z1y;-plane. Then the map h: S? — S? defined by

h(zy1,y1,22,y2) = (2($1y2 —y1%2), 2(x122 + Y1Y2), 1 — 2(553 + y%))

maps all points on a circle of the bundle to the same point on S?. A different
choice of Cy would lead to a different map, but by Property 3, the images are
related by an isometry of S2. The constant Ky = 5 in Property 4 is the kissing
number on the 2-sphere. Property 4 is a direct consequence of Properties 2 and 3.

We use Proposition 3 in the following way: If all pairs of circles in a component
of the closest-pair graph G(C) are right-isoclinic, we know that they must belong
to a common Hopf bundle. We then use a condensation procedure on the Hopf
sphere, similar to the one described in Sect. 3, to condense the set of circles, and
repeat the construction of the closest-pair graph.

If a circle C' has both a left-isoclinic neighbor D and a right-isoclinic neigh-
bor D', we conclude by Property 1 that D and D’ cannot be isoclinic. We can
therefore mark points on D and D’.

To summarize, we repeatedly condense the set C of circles until we can mark
some points A’ on them, or until the number of circles in C gets smaller than some
threshold. In the latter case, we apply 242 Dimension Reduction, as described
below in Sect. 7.5

7.4 The Mirror-Symmetric Case (Algorithm R)

The generation of orbit cycles requires that the points tgugvowg don’t lie in a
plane. We can guarantee that such 4-tuples exist, unless the edge figures are
perfectly mirror-symmetric: The perpendicular bisector of every edge uwv in G
acts as a mirror, reflecting the neighbors ¢ of u to the neighbors w of v. Since
each edge tu and each edge vw has the same mirror-symmetry, the mirror images
of the mirrors are also mirrors. It follows that the component of G that contains
u is the orbit of u under the group generated by the mirror reflections for the
edges incident to wu.

Such groups, groups that are generated by reflections, are called Coxeter
groups, and they have been classified in all dimensions, cf. Coxeter (1973),
Table 4 on p. 297. In four dimensions, there are eight such groups, which are
related to the regular polytopes of 4-space, plus an infinite class of reducible
groups, which are direct products two-dimensional Coxeter groups.

We deal with the Coxeter groups as follows. For each group I" in the finite
list, we determine the smallest distance § such that the neighbors of a point
u € S? at distance 6 can generate the group I'. The smallest value 6., of these
bound implies, by a packing argument, that |A| is bounded by a constant, and
thus we can resort to dimension reduction.
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For the infinite family of reducible groups, we are able to identify the two
complementary 2-dimensional planes corresponding to the two factor groups, and
thus we can replace each component of G(A) by two circles. We process these
circles like the the circles that result from orbit cycles (Algorithm M, Sect. 7.3).

7.5 242 Dimension Reduction

The classical dimension reduction procedure applies when the image of a point
in A (or a line through the origin) is known. The image of the complementary
3-dimensional hyperplane is then also known, and we call this 71+3 dimension
reduction. By contrast, in 2+2 dimension reduction, we have identified a two-
dimensional plane P for the point set A and another two-dimensional plane Q)
for B, and we are looking for congruences that map P to ), besides mapping A
to B.

We first choose a joint coordinate system x1,y1, 2,y in which P and @
coincide with the xy;-plane. The allowable rotations are therefore restricted to
independent rotations in the x1y;-plane (by some angle ¢) and in the comple-
mentary zoys-plane (by some angle 9). After introducing polar coordinates in
the two planes, the problem reduces to translational congruence between two
point sets A and B on the two-dimensional torus [0,27)2. The distance compo-
nents of the polar coordinates are attached as a label to each point on the torus,
and only points with equal label can be mapped to each other.

We now apply a sequence of condensation and relabeling steps, using Voronoi
diagrams on the torus, which eventually lead to canonical sets Ay and By. These
sets play the same role as the canonical axes of Sect. 2 for the problem of a single
rotation (or “translation on the one-dimensional torus”): If A and B are con-
gruent (under the constraint of mapping P to @), then we can choose arbitrary
points a € Ay and b € BO, and the unique rotation that maps a to b will map A
to B. We therefore have to test only a single candidate rotation.

8 The Four-Dimensional Point Groups

It is tempting to extend the high-level “characterization” of three-dimensional
point groups of Theorem 1 to four dimensions:

Conjecture 4. A four-dimensional point group is either

1. the symmetry group of one of the five four-dimensional regular solids,
2. a direct product of lower-dimensional point groups,
3. or a subgroup of one of the above groups.

The four-dimensional point groups have been enumerated, first by Threlfall and
Seifert (1931) for the case of direct congruences only (determinant +1), and
most lately by Conway and Smith (2003). The book of Conway and Smith gives
an explicit list of these groups (Tables4.1-4.3, pp. 44-47). Thus, in principle,
it should be a trivial matter to settle Conjecture 4. However, these groups are
specified algebraically, and it is not easy to see geometrically what they are.
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When we started our work, we hoped that our techniques would shed light on
Conjecture 4, as was the case for three dimensions (Theorem 1), but so far, the
implications of our algorithm are not so strong. (On the other hand, the analysis
of our algorithm uses the classification of four-dimensional finite Coxeter groups,
i.e., those point groups that are generated by reflections.)

It would also be interesting to see to what extent Conjecture 4 generalizes to
higher dimensions. The regular polytopes are known in all dimensions. However,
in eight dimensions, the root lattice Fg has symmetries that don’t come from
regular polytopes, thus providing counterexamples to a straightforward gener-
alization of Conjecture 4 for eight dimensions, and most likely also for six and
seven dimensions.
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Abstract. Data fusion of inputs from fundamentally different imaging
techniques requires the identification of a common subset to allow for
registration and alignment. In this paper, we describe how to reduce the
isosurface of a volumetric object representation to its exterior surface,
as this is the equivalent amount of data an optical surface scan of the
very same specimen provides. Based on this, the alignment accuracy is
improved, since only the overlap of both inputs has to be considered.
Our approach allows for a rigorous reduction below 1% of the original
surface while preserving salient features and landmarks needed for fur-
ther processing. The presented algorithm utilizes neighborhood queries
from random points on an ellipsoid enclosing the specimen to identify
data points in the mesh. Results for a real world object show a signif-
icant increase in alignment accuracy after reduction, compared to the
alignment of the original representations via standard approaches.

1 Motivation

In the field of non-destructive testing, Computed Tomography (CT), as well as
optical scans, is widely used for quality inspection of industrial parts.

Figure 1 shows a typical example of a real-world industrial object, as acquired
via optical 3D imaging (a) and Computed Tomography, i.e., the extracted iso-
surface (b). Both imaging techniques have their own strengths and weaknesses.
Data fusion now requires to align those representations, shown in (c¢), which is in
principle feasible through standard approaches. Unfortunately, due to the char-
acteristics of the acquired data sets, alignment algorithms are prone to introduce
errors, which we address in the following. We introduce the notation Mgt for
any isosurface mesh generated from CT data and the notation M, for a surface
acquired with an optical 3D scanner.

Optical Acquisition systems typically apply fringe pattern projection and stereo-
scopic scanning. The field of view in which data points are acquired, is restricted
to the focal area of the camera system. Depth information per data point is
computed by triangulation via disparity in camera views and displacement of
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(a) Mesh of optical scan Mqpy  (b) Isosurface mesh Mcr  (c) Super-imposed Mopy (red)
and Mcr (green)

Fig. 1. Industrial example of a cylinder cast in different representations. (Color figure
online)

the projected pattern. Thus, any data point acquired by optical systems must
be visible either from both cameras or the projector and a camera.

Limitations of optical scanning arise since optical surface scanners are unable
to acquire data points in narrow cavities or deep trenches. Also, M, cannot
reveal any interior structure or under cuttings. Therefore, M,y may have defects
on the captured surface. They manifest as holes in the mesh. Other holes are
due to reflective, translucent or matt black surfaces which are very difficult to
acquire.

Any vertex v in Moy satisfies

Mopt = {v|FA(v,dy,da) with £L(v) > ¢ A object N A(v,dy,d2) =0}. (1)

This implies the condition of an unblocked view from cameras d; and ds to any
point on the object. The opening angle ¢ of the triangle A(v, dy,d2) depends on
the specific setup of the optical scanning system and describes the disparity angle
of one camera and the projector or both cameras. Therefore, the minimal opening
angle of any cavity of the object defines which data points can be acquired.

Cone Beam X-ray Computed Tomography (CBCT) is a cross sectional imaging
technique derived from conventional X-ray imaging. X-rays emit from a point
source, forming a cone shape, and interact with the object under investigation.
The interaction follows the Beer-Lambert law according to which the transmis-
sion of the X-ray is related to the line integral of the attenuation coefficients of
the object along a ray. A planar detector placed behind the specimen, perpen-
dicular to the central ray, measures the intensity of each ray. The resulting 2D
image corresponds to a conventional X-ray image and is referred to as a projec-
tion. In CBCT, a series of such projections are acquired while the source and
detector pair is moving along a predefined trajectory with respect to the object.
In a legacy CT, the trajectory is a full circle around the object while the center
of the circle lies in the object.
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Cone beam artifact

Y Trajectory plane Boundary of the object

(a) Schematic of the CT geometry. (b) Cone beam artifacts in red areas.

Fig. 2. CT system arrangement and visualization of common defect. (Color figure
online)

With the projection images and a full circular trajectory, the attenuation
coefficients in the illuminated area which contains the whole object can be com-
puted using reconstruction algorithms such as the Feldkamp-Davis-Kress (FDK)
method [FDK84]. Since the attenuation coefficients in the area are not homo-
geneous, the result is often represented as a 3D grid of voxels, which leads to a
problem when trying to fuse data from optical scanning represented as polygons.
Either a Marching Cubes algorithm [LC87] or in our case Volume Enclosing Sur-
face Extraction Algorithm (VESTA) [Sch12] is applied to generate a watertight
surface mesh Mcr from the scalar data on the dense voxel grid as reconstructed
from the CT scans.

Limitations and artifacts of CT are related to Tuy’s sufficiency condition
[Tuy81], which suggests that only the attenuation coefficients in the circular
trajectory plane can be exactly reconstructed. In the rest of the volume, cone
beam artifacts arise due to the uncertainty of the attenuation coefficients.

The surfaces that are parallel to the trajectory plane are blurred by this
effect. This leads to a reduced spatial resolution in y-direction which further
causes segmentation problems. As shown in Fig. 2b, the boundary of the object
(blue) is not properly reconstructed within red areas. A limited-angle CT scan
uses a trajectory that is less than a full circle which violates Tuy’s condition. The
reconstruction from limited-angle scans is an underdetermined problem which
has non-unique solutions [Ram91]. To mitigate the artifacts and to narrow down
the solution set, a regularization term is used during reconstruction [LSFS14].
As prior information, we include the optical scan result to improve the output
of the reconstruction algorithm.

The Key Problem in aligning object representations of fundamentally disparate
imaging techniques is caused by the imbalance of represented information and
difference in spatial resolution. For full-angle CT data and accompanying optical
scan data of the very same object, inaccuracies in alignment do occur [BMK14].
Due to the corresponding artifacts, limited-angle data presents an even greater
challenge. The data fusion task requires a very accurate alignment, which in
turn is not feasible as long as internal structures contribute to the alignment
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error. A higher degree of accuracy can be achieved if only essential data points
contribute to the alignment error. Consequently, aiming at the for preservation of
relevant parts and the omission of incomparable regions, we need an efficient data
reduction. In our setup, a mesh M, has a very high resolution up to ~10 pm,
but lacks all data from internal structures. Isosurfaces Mt from volumetric
data sets contain, in contrast, all interior and exterior structures, but generally
have a lower accuracy of only ~ 75 pum. So, for each data point on the exterior
surface from CT, we have several data points describing the very same surface
in the optical scan. However, the interior surface contained in CT data is not
represented in optical data at all.

The exterior surface of an object, in our context, includes all surface parts
visible from the outside. According to our definition in Eq. (1), Myp is only a
fraction of the complete exterior surface, which in turn is a fraction of all the
data included in M. Mopy and Mcr provide different representations of the
identical object, and to extract suitable subsets for alignment, the very same
reduction can be applied to both. The key contributions of our approach are:

— identification of vertices, guaranteed to be on the exterior surface,
— reduction of Mgt and My to corresponding subsets, and
— improvement of alignment, by omitting vertices which only contribute to error.

2 Alignment Algorithms

The alignment of mesh-based object representations usually follows one of two
principles, either continuously evaluating randomly generated transformations
or iteratively converging to a solution. Whereas the former is implemented in
our project, the latter is applied via Meshlab'.

RANdom Sample And Consensus (RANSAC) is an alignment scheme generating
various hypotheses and verifying or falsifying those hypotheses based on random
sample surveys. Our implementation follows Winckelbach et al. [WMWO06] and
selects a vertex pair vy and ve in each iteration. A 4D-vector ¢ characterizing
those vertices is computed from the vector v1vs, the normal vector n; of vertex
v1, and ng of vertex vs. The four components of ¢ are:

e
the length of viv3,
. —_—
the rotation angle between n; and ny around wvyv3,
. . . RN JENE—N
the inclination angle between vyvs and ny around v1v3 X nq,
. . . —_— _
the inclination angle between v1v3 and ny around vyvs X ns.

=W

For each iteration the vertex pair is selected alternatingly from Mg and Mcr.
The computed c vector is stored along with the selected point pair in a database
for this mesh, e.g., a hash table. In addition the database of the other mesh
is searched for a similar ¢ vector. If a similar vector is already stored in the

! Software provided by: Visual Computing Lab, CNR-ISTI, Pisa, Italy: http://
meshlab.sourceforge.net/
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Fig. 3. ICP offset of cross sections from Mcr (green) and from Moy (red). (Color
figure online)

database of the other mesh, the characteristics of the corresponding vertex pairs
are alike. In this case a hypothesis is formulated, i.e., a transformation matrix
mapping one vertex pair on the other is computed. The hypothesis is tested by
applying the transformation matrix to a random sample of vertices of one mesh
and measuring the distance of the transformed vertices to the surface of the
other mesh. If the root mean square error (RMSE) of the transformed vertices
is below a given threshold the hypothesis is accepted as a global solution for the
alignment task, if not the hypothesis is rejected and a new iteration starts.

This approach is very reliable and converges quickly to a suitable solution
if both meshes are from the same imaging technique or at least have similar
spatial resolution. For My and Mcr this is generally not the case as shown
by Beyer et al., which either causes the absence of hypotheses at all due to
the lack of sufficiently similar ¢ vectors and therefore no convergence. In case
the similarity condition and the verification threshold are relaxed, the approach
converges to alignments which are not accurate enough for our scenario. Thus,
the presented implementation of RANSAC is preferred to, e.g., align partial mesh
representations, as an optical scanner provides them, to construct the complete
scan result, but is not suited for aligning Mp; and Mcr.

Iterative Closest Point (ICP) algorithms successively minimize the error in rota-
tion and translation between two meshes, i.e. between the two sets of vertices,
to find an alignment [BM92]. The approach works fine for data points generated
from the same imaging technique and, contrarily to RANSAC, does not seem
to suffer from the difference in spatial resolution for My, and Mcr. On the
downside, due to the imbalance of information as described above, ICP tends to
introduce a drift in the resulting transformation. This is caused by the internal
structures only represented in Mgt and the attempt to minimize the distance
per vertex between the meshes. Since those vertices do not have a suitable coun-
terpart in Mope the introduced drift can be seen as over-compensation. Figure 3
presents the offset as cross sections of both meshes.
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3 Strategies for Estimating the Outer Dimensions
of an Object

Many approaches are known to estimate the outer dimensions of the mesh rep-
resentation of an object; we present them according to the level of detail they
provide. All of them have been implemented and the relevant ones are investi-
gated in Sect. 5.

The Minimal Volume Enclosing Ellipsoid (MVEE) is an oriented ellipsoid
with nine degrees of freedom, i.e., zyz-position of the center, orientation of the
three perpendicular axes and the three radii along these axes. The implementa-
tion based on Todd et al. [TYO0T7] computes a parametric form of an enclosing
primitive around the object. If the object is not already known to be roughly
cuboid, this presents a better estimation of the dimensions in the general case
(Fig. 4a).

The Convex Hull (CH) is the smallest convex set of vertices of an object which
contains the object itself. It is an even better estimation of the object’s dimen-
sions than MVEE and usually is the basis of calculating MVEE, since it reduces
the problem size drastically. However, it lacks a parametric form (Fig. 4b).

Alpha Shapes (AS) define a shape around the object, but this shape does not
need to be convex. So far, it is the best approximation of the object’s dimensions
and commonly compared to shrink-wrapping or gift-wrapping an object. The
Delaunay triangulation of all object vertices [Joe91] provides a basis to compute
the a-complex [EM94] and in turn the a-shape as shown in Fig.4c. Depending
on the chosen a-value, the surface varies, i.e., the value defines how tight Mg
approximates the input mesh. We choose « such that the tightest hull is com-
puted which still produces one connected component. Any deviation results in
Mg either loosely fitting the input mesh, or containing several unconnected
surface parts.

The evaluation is shown in Sect.5 after the presentation of our method in
the following section.

(b) Convex Hull (c) Alpha Shape

Fig. 4. Different hulls around Mpg.
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4 Random Convex-Edge Affine Feature (RanCEAF)
Selection

In our approach, the selection of surface points is performed via nearest neighbor
search. The seeds of those queries are randomly distributed on an enclosing
ellipsoid around the mesh M. Thus, the seeds are guaranteed to be above the
mesh itself and unrelated to the resolution of the underlying mesh.

Nearest neighbor searches (NNS) can be efficiently carried out by a suitable
data structure, e.g., a k-d tree storing all vertices of the mesh under investigation.
The seed vertex s of our query is above the exterior surface and the nearest
neighbor v is chosen as:

veMsit. o= sl, = min (Ip—sll,). (2)

Thus, v is the one vertex from the mesh, which is closest to the seed vertex s,
and it is also ensured that v is not below the exterior surface.
A randomized distribution for seeds s is generated via spherical coordinates
f and ¢. A Mersenne Twister pseudo-random generator of 32-bit numbers with
a state size of 19937 bits is employed to provide a uniform distribution of u,v €
[0, 1], with
0 = 2ruand ¢ = cos™! (2v — 1). (3)

In combination with a given radius r, the relation of spherical coordinates and
Cartesian coordinates is established. In case of » = 1, the distribution contains
points on a unit sphere such that any small area on the sphere is expected to
hold the same number of points.? Let MVEE be described by its center cyvee,
perpendicular axes a1, as, az, and the respective radii 1, 79, r3, which are derived
from an eigenvalue decomposition to get a parametric form [TYO07]. The zyz-
coordinates of a point ¢’ = (q;, q;,¢.) are based on ¢ and ¢ as follows:

q, = risin (0) cos (¢), ¢, = ra2sin(f)sin(¢), ¢, =rzcos(f). (4)

This formulation respects the radii of the ellipsoid but not its orientation and
location, all points ¢’ in (4) are located on an axis-aligned ellipsoid centered at the
origin of the Cartesian coordinate system. A transformation ¢ given by a 4 x 4
matrix A; is computed from a rotation to axes ai,as,a3 and the translation
to the center cyver of the MVEE. Thus, after applying (4), any point ¢ is
transformed by A; to its final position ¢ on the surface of the MVEE around M.

Locally convex regions in the underlying mesh serve as attractors for NNS if
they represent a protruding structure on the exterior surface. To expand their
scope in answering NNS queries, each generated point ¢ on the MVEE is shifted
for simplicity by a factor e = 2, such that its distance to cyveg is doubled.
This finally represents the seed location s as shown in Fig.5b. The last step
is necessary to prevent local maxima of the mesh, contributing to the CH and

2 Eric W. Weisstein, Sphere Point Picking: http://mathworld.wolfram.com/
SpherePointPicking.html.
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Fig. 5. NNS without and with shifted seed vertices (2D example). (Color figure online)

defining the size of the MVEE, from only being selected by an NNS query in
case the randomized seed vertex s is identical to this extreme point of M. Any
factor e > 1 is sufficient, since the chosen value only effects the initial query, and
is already compensated after the first seed-shift operation.

Seed-shift operations allow for the extraction of larger surface parts, gradually
relaxing the constraints on proximity to the MVEE and therefore the original
seed vertex s. As shown in Fig. 5c, subsequent NNS with shifted seed vertices
s" allow for bypassing the most prominent and most protruding structures and
expanding the selected exterior surface parts. In this case any seed vertex s is
shifted towards the center cmyer by the distance ||v — s||,, which equals the
distance to its nearest neighbor as it was returned from the initial query. It
is still not possible to penetrate the exterior surface since the only vertex p €
M which can be reached from s by shifting it to position s’ is v itself—and
therefore a vertex on the exterior surface. The benefit of this operation is, that
less prominent but still salient, locally convex regions on the exterior surface can
be added to the extracted subset.

The attributes of the extracted data are that both reduced meshes

— only contain those parts visible from the outside, i.e., the exterior surface,

— exclude narrow cavities and covered regions behind obstacles,

— include samples distributed over the whole object, preferably from salient
regions,

— only contain measurement results, and no kind of smoothing, collapsing or
averaging.

With this Random Convex-Edge Affine Feature (RanCEAF) selection, we
present an approach to extract almost the same meaningful subset from each
of the meshes Mt and Mcr as a pre-processing step to allow for efficient and
robust alignment.

5 Evaluation

Approaches like AABB and MVBB identify six vertices each which is not suf-
ficient for providing an alignment. Likewise, the MVEE is calculated from the
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Fig. 6. Curvature visualized via Euclidean distance of MSII feature vectors.

set of vertices in the CH, but defined by eight points. Thus, they only allow for
an estimation of object dimensions, but there is no identification of the exterior
surface is performed.

Exterior surface identification is expected to include salient regions visible
from the outside, i.e., from the perspective of an optical scanner. Internal struc-
tures and parts of the mesh covered by obstacles shall not be included. We
measure curvature as salience via Multi-scale Integral Invariants [MKJB10],
determine the fraction of the total surface included in the extracted surface
and the salience of all vertices within this subset.

Multi-scale Integral Invariants (MSIl) are computed from the intersection of
the surface M and a set of n isocentric spheres with different radii, i.e., scales.
The analysis is performed for each vertex v of the mesh, i.e., while each v defines
the center of the nested spheres. The largest sphere Sy has the radius rg depend-
ing on the size of the desired features. For the nested spheres 5;...5,_1 the radii
are equidistantly chosen such that radius r, of each sphere equals r, = ro —z72.
In our case, n = 16 spheres are computed, which is heuristically a good trade-
off between accuracy and performance. Two variants are implemented for the
analysis, computing either (a) the fraction of the volume of S, and the enclosed
volume as intersection of S, and the volume below the intersected surface area
of the mesh, or (b) the fraction of the surface of a disc with the radius r, and
the surface area of the intersection of mesh and sphere.

A 16D feature vector holding the results per sphere is computed per vertex
v € M. The output of these computations are in the range |0, 3773 for analysis
based on enclosed volume and ]0, +oo[ for analysis based on enclosed surface.
After normalization for each of the radii, the feature vector contains entries in the
range |0, +oo[ for enclosed surface and |0, 1] for enclosed volume. MSII provides
invariant curvature information on various scales, i.e., it is prone to translation
and rotation of the mesh and provides robust results for different resolution
levels of the mesh. Therefore, it is highly suitable for analyzing the very same
object represented as Mcr in lower resolution and M,y in higher resolution
while computing comparable feature vectors as shown in Fig. 6a and c.

The following evaluation of surface extraction methods considers the MSII
analysis based on intersected volume since it is closer related to Gaussian
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curvature and conveniently provides results in the range ]0, 1[. The intersected
surface parts estimate mean curvature and provide results in a range not suitable
for our analysis.

Convex Hull identifies the convex set of any M including the extreme points
as described in Sect. 3, and allows for generating My as shown in Fig. 4b. For
Mt 1785 of 1.30 million vertices contribute to the CH, for Mg, these are 2903
of 4.81 million vertices. Since the CH is not influenced by any parameter except
the vertices of the mesh itself and each mesh contains exactly one convex set,
no alternative subset can be identified. With the highest mean MSII value of all
subsets and the absence of vertices with a MSII value close to zero, the result
as shown in Fig.7c is a sufficient feature extraction. The CH never contains
internal structures but contains only the most prominent protruding structures.
It is therefore not suitable to provide the basis of an accurate alignment in
general. Intuitively, it seems sufficient in the presented case, but the applied
ICP algorithm cannot compute a valid transformation.

Alpha Shape generates a surface Mag for Mgr. As shown in Fig.8, AS does
not identify the exterior surface, since interior structures are covered by Mag
and therefore included in the resulting subset. The same holds for Mag of Myt
shown in Fig.4c. The mean MSII values in the subsets are in the region of
the corresponding original meshes (see Table 1) and the histogram in Fig. 8c is
dominated by MSII values close to zero which makes AS unsuitable for feature
extraction. Experiments with lower a-values did not improve the result.

RanCEAF subset of M,y (Fig. 9a) for 50k seeds contains 7474 vertices of all 4.81
million vertices. The RanCEAF subset of Mt (Fig. 9b) contains 5023 vertices
of all 1.30 million vertices. As the extracted surface parts in both cases represent
less than 0.05 % of the vertices p € M, only the most prominent structures have
been selected. The number of (removed) duplicates within the selection indicates
that a small fraction of the exterior surface dominates the result by answering
multiple NNS queries each. Thus, for sample sizes larger that 50 k seeds no dras-
tic change in the extracted subset is expected since we already over-sampled this
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Fig. 7. Convex Hull algorithm applied to Mcr.
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Fig. 8. Alpha Shape algorithm applied to Mcr.

subset by one order of magnitude. To allow for scalable mesh reduction, shift-seed
operations (Fig.5) provide sufficient data for alignment. The mean MSII values
provided in both subsets are second highest after CH, which makes RanCEAF a
suitable method for feature extraction. None of the presented RanCEAF results
include interior structures and only after the third seed-shift operation MSII
values close to zero dominate the histogram (Figs. 10f and 11f). For illustration
purposes, Figs.9, 10, and 11 show the extracted set of vertices and their con-
nected faces. Via region growth in each vertex of the subset, more faces can be
included to extract a larger portion of the exterior surface.

Seed-shift operations, as applied to Mgy in Fig. 10, and to Mcr in Fig. 11
expand the regions from which exterior surface points are selected and still pro-
vide a higher mean MSII value than the original meshes in Fig.6. As the per-
centage of vertices with an MSII value >1.0 in Table 1 indicates, expanding the
subset does not over-represent regions with low MSII values. In our experiments,
the best increase in alignment accuracy was based on the output of the second
seed-shift operation for My, and Mcr.

6 Results

We have shown that our proposed method RanCEAF efficiently identifies the
exterior surface of a given mesh. Furthermore, it allows to over-represent convex
areas since they serve as attractors for regional queries from seeds on the enclos-
ing ellipsoid. The protruding areas include the local maxima of the object under
investigation and the resulting subset of all data points is suitable for alignment.
The presented approach does not—in contrast to AS—introduce additional faces
or require any further post-processing. The proposed method provides a reliable
surface reduction, which can be iteratively expanded by applying multiple seed-
shift operations. In general, the RanCEAF algorithm only relies on the vertices
of the mesh M and therefore can be applied to point clouds. Only for the analysis
based on MSII, faces are required in a pre-processing step and only for the sake
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Fig. 9. RanCEAF result for 50k seeds.

of evaluating our approach. The comparison of size and salience of extracted sub-
sets, as shown in Table 1, indicates that the subsets extracted by our method are
sufficiently large to serve as input for computing an alignment, and yet salient
enough to grasp the essential structures of the presented geometry. The inherent
parallelism of our approach is easily exploited (in our evaluation on an Intel
Xeon E7-4870) and therefore not corrected for comparison to single-threaded
algorithms in Table 1. For the presented object, the alignment of the complete
meshes My and Mgt via the ICP algorithm in Meshlab resulted in an RMSE
of 2.736 mm. Computing the transformation matrix based on the extracted sur-
faces of both meshes and applying the obtained transformation to Mgy and
M, provided a RMSE of 2.722 mm. The increase in accuracy reads as 0.5 %
or an RMSE reduction of 14 wm, which potentially affects the selection of cells
on the dense voxel grid as reconstructed from CT scans. Notice that there is no
perfect alignment for both meshes. Therefore, the RMSE cannot be zero and the
real increase in accuracy is higher than 0.5 %.
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(a) Mopt subset: 1% seed-shift (b) Mopt subset: 2% seed-shift (¢) Mopy subset: 3™ seed-shift
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Fig. 10. RanCEAF with seed-shifts applied to Mopt.
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Fig. 11. RanCEAF with seed-shifts applied to Mcr.
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Table 1. Objects shown in Fig. 1 after applying evaluated approaches.

Vertices | Surface |Surface |Salient vertices|Mean salience| CPU time
(total) |area coverage | (in % with (in subset (in sec)
(in cm?) | (in %) |MSII > 1.0) | via MSII)

Mesh from optical scan Mopt 4813688 | 1042.9 69.19 12.47 0.444 -
Mesh from CT isosurface McT 1303299 1507.3 | 100.00 4.94 0.349 -
Convex Hull Mgy of Mopt 2903 0.5 0.04 67.30 1.343 35.8
Convex Hull Mgy of Mcr 1785 4.4 0.29 57.45 1.114 8.7
Alpha Shape Masg of Mopt 449773 | 16.6 1.10 13.41 0.464 551.9
Alpha Shape Mg of McT 607004 593.7 39.39 1.17 0.326 135.5
RanCEAF subset of Mopt 7474 1.9 0.13 64.78 1.229 37.4
RanCEAF subset of Mg 5023 13.1 0.87 55.15 1.119 7.1
RanCEAF 15! seed-shift of Mopt | 38527 25.6 1.70 29.66 0.714 76.8
RanCEAF 15! seed-shift of Mg | 29802 | 90.7 6.02 23.87 0.643 14.1
RanCEAF 2"% seed-shift of Mopy| 45954 | 40.2 2.67 17.42 0.497 116.3
RanCEAF 27% seed-shift of Mcor | 39958 129.0 8.56 17.80 0.488 21.3
RanCEAF 3"% seed-shift of Mopt | 47499 47.1 3.12 11.45 0.392 156.6
RanCEAF 3"¢ seed-shift of Mcer | 43671 144.9 9.61 16.29 0.410 28.1

7 Outlook

Although the described imbalance in information, contained in My and Mcr,
could be mitigated by the presented approach, the mismatch in resolution of
both imaging techniques still presents a challenge to alignment algorithms. In
the further pursuit of our work, our focus will be to investigate alignment schemes
which do not rely on point to point comparison for registration. Instead of per-
forming seed-shift operations for all seed vertices alike, adaptive application to
selected seeds, based on the local geometry, would reduce runtime and preserve
more features. The fact that both representations are known to describe the
very same object and that they also both contain the object as a whole, matches
with the challenges within our joint project ILATO?. Especially for dealing with
artifacts from Limited-Angle CT, any data point irrelevant for alignment has
to be neglected since the registration based on the remaining exterior surface
points is already very difficult. For metrology applications and industrial qual-
ity inspections, technical drawings of the specimen are available as CAD files.
Registration of an optical scan surface and CAD, which contains interior struc-
tures, can benefit from the presented approach. Likewise, coordinate-measuring
machines (CMM) provide highly accurate tactile measurements of an object’s
surface. Registering the CMM output with Mcr of this object can be enhanced
by neglecting the interior structures of Mcr. We will pursue further investi-
gations to estimate the minimal RMSE for the given alignment depending on
resolution and fidelity of the acquisition systems and to determine the actual
increase in accuracy our approach provides.

3 http://www.iwr.uni-heidelberg.de/groups/ngg/ILATO/.
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Abstract. Let Cpng be a smooth real analytic curve embedded in
R3, defined as the solutions of real analytic equations of the form
P(z,y,z) = Q(z,y,z) = 0 or P(z,y,2) = %—1: = 0. Our main objec-
tive is to describe its projection C onto the (z,y)-plane. In general, the
curve C is not a regular submanifold of R? and describing it requires to
isolate the points of its singularity locus X. After describing the types
of singularities that can arise under some assumptions on P and @, we
present a new method to isolate the points of Y. We experimented our
method on pairs of independent random polynomials (P, Q) and on pairs

of random polynomials of the form (P, %—f) and got promising results.

Keywords: Topology of analytic real curve - Apparent contour -
Singularities isolation - Numeric certified methods

1 Introduction

Consider a smooth analytic curve Cpng C R? defined by P(z,y, 2) = Q(z,y,2) =
0 with P,Q analytic functions, and its projection C C R? on the (z,y)-plane.
Computing the topology of C, or computing a graph topologically equivalent to
C, requires computing the set X of its singularities (see Sect. 1.2 for a rigorous
definition). In a second step, the study of the complement of X' allows one to
recover the topology of the curve. This fundamental problem arises in fields such
as mechanical design, robotics and biology. A specific case of interest is when
Q@ = P, (where P, is the partial derivative %—f). In this case, the curve C is the
apparent contour of the surface P(z,y,z) = 0. This case has been intensively
studied and extended in the framework of the catastrophe theory (see [10] and
references therein). Moreover, determining the topology of a projection of a space
curve is an important step to compute its topology [7,11]. Similarly determining
the topology of the apparent contour of a surface is an important step to compute
its topology [1,5].

The goal of this paper is to take advantage of the specific structure of the
singularities X' and to propose a characterization allowing to isolate them effi-

ciently. Since we do not restrict our work to the case P = P, = 0, we also give
© Springer International Publishing Switzerland 2016
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a mathematical description of the types of singularities arising in the projection
of curves defined by P = @@ = 0 under some generic assumptions.

Our approach to isolating the singularities X' is to construct a new system
so-called ball system, the roots of which are in a one-to-one correspondence
with the points of Y. As shown with experimental results, this system suits
numerical certified solvers such as subdivision methods or homotopy solvers in
the polynomial case.

The rest of the paper is organized as follows. Section 2 classifies the singu-
larities of C and relates them to the points where the projection I1, is not a
diffeomorphism. The construction of the ball system and a proof of regularity of
its solutions are exhibited in Sect. 3. Section 4 is dedicated to experiments. The
rest of this section presents previous and related works, and gives explicitly the
assumptions on P and @ for our method.

1.1 Previous Works

State-of-the-art symbolic methods that compute topology of real plane curves
defined by polynomials are closely related to bivariate system solving.

Symbolic methods mainly rely on resultant and sub-resultant theory to iso-
late critical points, see for instance the book chapter [23] and references within.
There are some alternatives, using for instance Groébner bases and rational uni-
variate representations [6,27].

Numerical methods can be used together with interval arithmetic to compute
and certify the topology of a non-singular curve when the interest area is a
compact subset of the plane [15,19,26]. However they fail near any singular
point of the curve. Isolating singularities of a plane curve f(x,y) = 0 with a
numerical method is a challenge since it is described by the non-square system
f = fz = fy = 0, and singularities are not necessarily regular solutions of this
system.

Non-regular solutions can be handled through deflation systems (see for
instance [3,12,13,17,18,25]), but the resulting systems are usually still overdeter-
mined or contain spurious solutions. Overdetermined systems can be translated
into square systems using combinations of their equations with first derivatives
[8]. Another deflation adapted to the singularities of the projection of a generic
algebraic space curve using sub-resultant theory was proposed in [14]. In this
paper we present a new deflation square system that can handle analytic curves.

Square systems with regular solutions can be solved by numerical approaches.
Classical homotopy solvers [21] find all complex solutions of latter systems when
their equations are polynomials. Subdivision methods [20,22,24,28] are numeric
certified approaches to find all real solutions lying in an initial bounded domain of
a system of analytic equations. When the latter are polynomial, these approaches
can be extended to unbounded initial domains [24,28].

Starting with the work of Whitney [29], the catastrophe theory was developed
to classify the singularities arising while deforming generic mappings (see [2,10]
for example). From an algorithmic point of view, the authors of [9] use elements
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of the catastrophe theory to derive an algorithm isolating the singularities arising
in mappings from R? to R?.

1.2 Notations and Assumptions

In the following, Cpng denotes the curve defined as the zero set of the real
analytic functions P(z,vy,2) and Q(x,vy,2) and By is an open subset of R%. We
will denote by II,, the projection from Cpng to the (x,y)-plane, and by C the
projection II,,(Cpng)-

Regular Points and Af Singularities. A point p of the curve C is regular if
there is a small neighborhood U of p in R? such that CNU is a regular submanifold
of R2. Otherwise it is singular. A singular point p of a curve C is of type Af if and
only if C is equal to the solutions of the equation z2+4**1 = 0 on a neighborhood
U of p, up to a diffeomorphism from U C R? to V C R? [2, Sect. 9.8]. Remark
that those are not the only type of singularities that can appear on a plane
curve. Notice that the types A;k and A, are equivalent and simply denoted
by Asi. We will call node a singularity of type A] or equivalently a transverse
intersection of two real curve branches. We also call cusp a singularity of type
Agy and ordinary cusp the singularity A;. With this notation, a point p of C is
regular if and only if it is of type Ag.

In Sect. 2, we will describe the types of singularities of C assuming that :

(A1). The curve Cpng is smooth above By.

(A2). For any (a, 8) in By, the system P(«, 3,2) = Q(a, 8, z) = 0 has at most 2
real roots counted with multiplicities.

(A3). There is at most a discrete set of points («, 3) in By such that P(«, 3, 2) =
Q(a, B,2) = 0 has 2 real roots counted with multiplicities.

(A4). Iy is a proper map from Cpng N (B x R) to its image, that is the inverse
image of a compact subset is compact.

Then in Sect. 3, we will introduce the system of analytic equations that we
will use to compute the singularities of C. The solutions of this system will be
regular under the following additional assumption:

(A5). The singularities of the curve C are either nodes or ordinary cusps.

Notice that Thom Transversality Theorem implies that (A;), (As), (A3) and
(As) hold for generic analytic maps P, Q defining Cpng (see [10, Theorem 3.9.7
and Sect. 4.7]), and (A4) holds at least for generic polynomial maps. If we assume
only that the curve is smooth (assumption (41)), it would be interesting to prove
that all the other assumptions hold after a generic linear change of coordinates.

If P,@ are polynomials, a semi-algorithm checking these conditions is given
in [14, Semi-Algorithm 1]. Otherwise when P, @ are analytic maps, the latter
semi-algorithm can be adapted only when By is bounded.



Numeric and Certified Isolation of the Singularities 81

2 Description of the Singularity Locus X

The different types of singularities of a plane curve have been classified in [2] for
example. We describe in this section the types of singularities that can arise on
the curve C under the Assumptions (A4;) — (A4), and we relate those singulari-
ties with the projection mapping II,,. More precisely, using Arnold’s notation
recalled below, we show that under the Assumptions (A4;) — (A4), the singulari-
ties of C are of type Af (Lemma 2 and Corollary 1). Moreover, we show that a
singular point of C is either a critical value of II,,, or the image of two distinct
points of Cpng by Iy

Singularities of C and Critical Points of II,,. The critical points of II,,
are the points of Cpng where the tangent to the curve is vertical, i.e. aligned
with the z-axis. Assuming that the conditions (A7) — (A4) are satisfied by the
curve Cpng, we show that for p a point on the curve IT,,(Cpng):

1. if p is a critical point of II,,, then it is a cusp point of C (singularity of type

A2(k+1));
2. if p is the image of two distinct points of Cpng, then it is a singularity of type

2k+1
3. otherwise, it is a regular point.

In particular, this implies that a point p is singular if and only if it is a critical
value of II, or it has two antecedents by Il .

Lemma 1. Let p be a point of C. If p is not a critical value of I, and H;yl (p)
has only one antecedent, then p is a reqular point of C.

Proof. For U an open set of R?, we will denote by IT gy the restriction of I1,, to
Crnq OH;yl (U). Since p is not a critical value of II,,, there exists a neighborhood
U of p such that U does not contain any critical value of II,,, such that II. gy is
an immersion. Then, since p has a unique antecedent, (As) ensures that there is
a neighborhood V' of p such that H;/y is a homeomorphism. Thus H;{J‘V is an
embedding and p is a regular point. O

Lemma 2. Let p be a point of C. If p has two antecedents by Il,, then p is a
singularity of C of type Ay | with k > 0.

Proof. If IT .} (p) contains more than one antecedent of p, then (Az) implies that
p has exactly two antecedents ¢, and g¢,. Since II,, is proper by Assumption
(A4) and Cpng is smooth by Assumption (A7), for a small enough neighborhood
U of p, H;yl(U) is bounded and is the union of two smooth connected branches
of Cpng- And (As) implies that in a small enough neighborhood of p, p is the
only point with two antecedents. Let u = (ug, uy, u) and v = (vg, vy, v.) be the
two vectors tangent to Cpng at the antecedents ¢, and ¢, of p. Assumption (As)
implies that neither u nor v are vertical, hence @ = (uy,u,) and 0 = (v, v,) are
non-zero vectors of R?2. We now distinguish two cases.
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First, & and 0 are independent vectors. In this case, the mapping () =

(1;; o )71 - () is a diffeomorphic change of coordinates. Moreover (gf( (<‘§Z))) =

Qv (qu)
exists an analytic function f : R +— R such that Y = f(X) and f(0) = f(0) =0
such that the projection of the branch at ¢, has an equation of the form Y =
X2f (X). Symmetrically, the projection of the branch at ¢, has an equation of
the form X = Y2g(Y'). Thus, up to a diffeomorphism of R?, the curve C around

p has an equation of the form (Y — X2f(X))(X —Y2g(Y)) = 0, or equivalently
(X +Y - X2f(X) - Y25(Y))? — (X =Y — X2f(X) + Y2G(Y))? = 0. That is,
p is a singularity of type A7, also called a node.

In the case where @ and v are co-linear, we follow the same approach, using

this time the diffeomorphic change of coordinate (35 ) = ( —uy )_1 -(y)- More-

PX(‘Zu)
over (QX (4u) )

function theorem at ¢, and gq,, and we conclude that there exist two analytic
functions f and g such that on a neighborhood of p, the curve C is given
by the equation (Y — X2f(X)(Y — X2?g(X)) = 0. That can be rewritten as
(2Y — X2(f(X) + g(X)))? — X*(g(X) — f(X))? = 0. Assumption (A3) ensures
that the projections of the 2 branches have only one common point, such that
9(X) — f(X) does not vanish identically. Then, denoting by k the valuation of
F(X) = g(X), p is a singularity of type A;, 4. O

(9) and ( Py (au) ) # (§). Thus by the analytic implicit function theorem, there

= (9). As in the previous case, we use the analytic implicit

Finally, if p is a critical value of 11, we use Arnold’s classification of singu-
larities and prove that p is a singular point of type As(41) with & > 0.

Lemma 3. Assume that the curve Cpng satisfies (A1) — (As). Let q be a critical
point of I, . Then, there exists a neighborhood U of ¢ and an invertible 2 x 2
matriz M of real analytic functions such that:

(5)=M- (X;f;—;k) o d(x,y,z) (1)

where @ : (z,y,2) — (¢(z,y),¥(2)) is a diffeomorphism and k is a natural
integer.

Corollary 1. Let p be a point of C. If p is a critical value of Il,,, then p is a
cusp of C of type Ag(y41) with k > 0.

Proof (of the corollary). Let ¢ be the critical point associated to p and denote
Tey the projection from R3 to R?. First we show that it is sufficient to study the
behavior of Cpng in a neighborhood of ¢ to describe the curve C in a neighbor-
hood of p. Indeed, Assumptions (As) and (A4) imply that above a small enough
neighborhood of p, the curve Cpng has a unique connected branch. In particu-
lar for any neighborhood U of the critical point ¢ there exists a neighborhood
V C U such that 7., (V)N C C I, (U NCpngq).

Then, Lemma 3 shows that there exists a neighborhood U of ¢ and a diffeo-
morphism ¢ from ., (U) C R? to V' C R? a neighborhood of (0,0) such that
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¢y (CprgnU)) = {(X,Y) € V | X2—Y3T2k} In particular, p is a singularity
of type Ay(r41) with k > 0, that is a cusp. O

Proof (of Lemma 3). This lemma is essentially a consequence of the analytic
implicit function theorem, combined with our assumptions. First, ¢ is a crit-
ical point thus Cpng has a vertical tangent at ¢, up to a translation, we
assume ¢ = (0,0,0). Since Cpng is non-singular (Assumption (A;)), the matrix

( gz ((Z)) gzg%) is invertible. Using the analytic implicit function theorem ([16]

or [10, Corollary 2.7.3]), there exist two real analytic functions f,g from R to
R such that P(f(z),9(2),2) = Q(f(2),9(2),z) = 0 on a small enough neigh-
borhood of 0. In particular, letting & := z — f(z) and § = y — g(2) we have
P=PE+f(2),7+9(2),2) and Q = Q(Z+ f(2),7+g(2), z). Using Hadamard’s
lemma ([10, Proposition 4.2.3]), there exist real analytic functions a, b, ¢, d such

= a7 Y —c-T Y 3 Py(q) Py(q) \ s : _
that P=a-Z+b-yand Q = ¢- T +d-g. Moreover, since (Qw(q) Qy(q)) is invert

c(q) d(q)
a small enough neighborhood of q. Then we have:

(5) = (5753) = (B). @)
Moreover, since the curve has a vertical tangent at ¢, we have f,(0) = g,(0) = 0.
And according to Assumption (Az), either f,.(0) or g,.(0) is not zero. Without
restriction of generality, assume p := g,,(0) # 0. Up to a scale of the variable
z, we can assume that pu = 2. Thus, there exist analytic functions u,v such
that f and g are of the form f(z) = 22u(z) and g(z) = 2%(1 + 2v(z2)). Let-
ting ¢ : z — Z := 2\/1+ zv(2), we have Q(z,y,¢v " (Z)) =y — Z> = 0. In
particular, the function P = x — z%u(z) can be rewritten as P(x,y,1% " (Z)) =
x — Z2%(s(Z%) + Zt(Z?)) with s and t two real analytic functions. Note that ¢
cannot have all its derivatives vanishing at 0 since otherwise there would be a
strictly positive dimensional set of points with two or more antecedents, con-
tradicting Assumption (As). Let k € N be the valuation of ¢, i.e. its first non
vanishing derivative at 0. Then, there exists ¢ an analytic function such that
t(Z?) is of the form Z2¥(n + Z?t'(Z?)). The function P(z,y,1 '(Z)) is of the
form x — Z%(s(Z?) + Z' 2 (n+ Z2t'(Z?))). Using Q to substitute 1(z)? by y in
P, there exists a matrix My := (4 §) where e is an analytic function, such that:

_sw) s
(7” v —¥( )3+2’°(n+yt(y))) = M, - M, - (5) ) (3)

ible, the matrix (a(q) b(Q)) is also invertible. Let M; be the inverse of (¢%) on

y—(2)?

Finally we recover (1) with:

) 1
o(z,y) = (nertl(Jyfy) , o Y(z) =21+ 2v(2), M= Ml_1 - M2_1 . (nﬂg(y) ?) |
3 Modeling System

Following the result of Sect. 2, a naive approach to represent the singularities X
of C is to use the two following systems.
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1. For (x,y, 21, 22) € By x R%:
P(z,y,z1) = P(z,y,22) = Q(z,y,21) = Q(z,y,22) = 0 and z1 # 2.
2. For (z,y,2) € By x R:
P(z,y,2) = Q(z,y,2) = P.(z,y,2) = Q:(z,y,2) = 0.

However, the first system is numerically unstable near the set z; = 25 and the
second one is over-determined. Instead, we will introduce an unified system. First
we define the operators that will be used to construct our system.

3.1 Ball System

Definition 1. Let A(z,y,z) be a real analytic function. We denote by S.A and
D.A the functions:

1

A+ ) + Awyo— i) ifra >0
S'A(I7yvca T2) = A(l’,y70) Zf o = 0 (4)

1

i(A(x,y,c—Fi\/—rg) + Az, y,c —i/—T2)) ifra <0

5 A e+ V) — Al e - y77) 2> 0
DA((E, Y,cC, TQ) = Az(x,y, C) ifro =0. (5)

s (A e+ iv/=7) = Al ye = iv=)) if 2 <0

By abuse of notation, if M is a matrix of real analytic functions, S.M and D.M
denote the matrices with the operator applied on each entry.

If A is a real analytic function, then S.A and D.A are also real analytic
functions (see Lemma 6). This allows us to introduce the so-called ball system
that we will use to compute Y. In this system we map two solutions (z,y, 21)
and (z,y,22) of P =Q = 0 (or P = P, = 0) to their center (z,y,c) and the
square of their radius 7o = 72, with r = |27 —c| = |22 — ¢|. Figure 1 illustrates this
mapping for singularities of the apparent contour of a torus. Its left part shows
the surface P = 0, its set of z-critical points Cpnp, and the apparent contour
C = II.,(Cpnp,). Its right part shows, for nodes and ordinary cusp singularities,
their respective antecedents by II,,, centers ¢ and radii 7.

Lemma 4. Let S be the set of solutions of the so-called ball system:

S.P(x,y,c,m2) =0
S.Q(z,y,c,m2) =0
D.P(xz,y,c,1m3) =0
D.Q(z,y,c,m3) =0

in Bg x R x RT. Then I1;,(S) = ¥, where II;, is the projection from R* to the
(z,y)-plane.

(6)
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Fig. 1. Left: a torus, in bold line its set of z-critical points, its apparent contour, and
the zoom zone corresponding to the right figure. Right: a detail, with antecedents,
centers and radius corresponding to singularities.

Proof. According to Sect. 2, the singularity locus of C is exactly the union of
the critical values of II,, and of the points that have several antecedents.
They correspond respectively to the solutions of S such that » = 0 and such
that » > 0. a

One of the main advantage of this system is that its solutions are regular when
the condition (Aj) is satisfied, and thus can be solved using certified numerical
algorithms such as homotopy or subdivision methods (see Sect. 4).

Lemma 5. Under the Assumptions (A1) — (A4), all the solutions of the system
S.P=S5Q=D.P=D.Q=0in By xRxRY are reqular if and only if (As) is
satisfied.

The next subsection is dedicated to the proof of this lemma.

3.2 Regularity Condition

Lemma 6. If A is a real analytic function, then S.A and D.A are real analytic

functions. Moreover, the derivatives of S.A with respect to x,y,c,ry are respec-

tively S.A,,S.Ay, S A, %D.Az. The derivative of D.A with respect to x,y,c, o

are respectively D. A, D.A,, D.A, and % if ro > 0 and éAzzz ifra =0.

Proof. First, on a neighborhood of 7 > 0, S.A and D.A are compositions of
analytic functions, and thus are analytic. Likewise, for ro < 0, S.A and D.A are
analytic functions, and all the coefficients of their series expansions are real, thus
they are real valued analytic functions. Finally, on a neighborhood of (z,y, ¢, 0),
if A(z,y,c+7)=>,"an(z,y,c)r", the series expansions of S.A and D.A for
ro < 0, 79 =0 and ry > 0 coincide as:

oo o0
S A(z,y,c,m2) = Z aon(x,y,c)ry, D.A(z,y,c,re) = Z agn+1(z,y, c)ry.
n=0

n=0
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Thus S.A and D.A are analytic functions. The expressions of their derivatives
follow from the formulas. a

Lemma 7. If v : U C R3 — V C R? is an analytic diffeomorphism of the
form Y(z,y,z) = (V1(x,y), v2(x,y), ¥3(z,y, 2)), so-called triangular, then the
mapping:

SD¢ : (xayvcv TZ) = (’lpl(l’ay)vwQ(xvy)vs'dB(xvyacv T2)7T2(D"l/}3(xayvcv 7“2))2)

is a real analytic diffeomorphism from {(z,y,c,m2) € R® x R | (z,y,c+ /r2) €
U to {(X,Y,C,Ry) € R3 x RT | (X,Y.C + VRz) € V).
Moreover, if A:R?> — R is an analytic map, we have:

S (Aow) = (S.4)0 (SD.y)
D.(Ao) = (D.A)o (SD.3p) x D.as.

Proof. According to the previous lemma, SD.1) is analytic. Moreover, since 1!
is analytic, SD.(¢~1) is also analytic. Assuming that the inequalities at the end
of the lemma are correct, we can use them to check that SD.(¥)~1) o SD.% is
the identity by developing the formula. Such that SD.1 is a diffeomorphism.
To prove the final identities of the lemma, let (X,Y,C,Ry) =
SD.p(z,y,c,rm2). We can observe that ¢s3(z,y,c + /r2) = C + /Ry and
Y3(z,y,¢c — /r2) = C — /Ry by expanding S.ip3 + \/r2(D.1p3)? and S.ps —
v/72(D.13)2. Using these formula, we can deduce the identities by expanding
the right and left hand side of the equalities. O

Lemma 8. Let P,Q be two analytic functions from U C R3 to R and assume
that there exist two analytic functions P,Q, a 2 X 2 invertible matriz of analytic
functions and a triangular diffeomorphism ¢ : U — V C R? such that (5) =

M - (g) o ¢. Then we have:

S.P
5P SM roD.¢psD.M ~
S5.Q _ S.Q o SD.¢
D.P D.P '
D.M  D.¢3S.M -
D.Q ¢3 D.Q
T
where the matrix T is invertible, of inverse T := (D_Ai'%;;.% S.Z\Zl}l%;;g )

Proof. First, using the identity ab+ cd = 1(a + c)(b+d) + 3(a — ¢)(b — d), we

can deduce: )
s.p S.(Pog)
sa o ( S.M  roD.M ) S.(Qo¢)
pp | = D.(P
Do D.M  S.M (2o ¢)

D.(Qo @)
Finally, expanding the operators in the right hand side vector using the for-
mula in Lemma 7, we prove the desired identity. Finally, since ¢ is a triangular
diffeomorphism, we can use the formula of Lemma 7 with A = (¢~ 1)3 to get
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1 =D((¢ "3 0¢) = D.(¢7")305D.¢ x D.¢h3. In particular, D.¢p3 is never 0
and T is well defined. Expanding T - T, we get the identity, such that T is the

inverse of T O
Corollary 2. A point p solution of the system S.P = S.Q = D.P = D.Q =0
is regular if and only if the point SD.¢(p) is reqular in the system S.P = 5.Q =

D.P=D.Q=0.

Proof. The claim of the lemma can be verified by developing the product vector.
For the corollary, it is sufficient to observe that on a point p solution of the
system, the Jacobian matrices satisfy the relation:

s.p s.B
Jacy (f,'_?,) (p) =T - Jacsp.g(p) <§Q> - Jac,(SD.¢).
D.Q s

P
Q
We have now all the tools necessary to prove Lemma 5.

Proof (of Lemma 5). First, let ¢ be a solution of our system with 7o = 0. Then,
according to Lemma 3, there exists an invertible matrix M and a triangular
diffeomorphism ¢ such that on a neighborhood of ¢ we have:

342k
() =0 (575 ) 0wy, 2).

Thus, the point ¢ is regular in the ball system if and only if (0,0, 0) is regular
in the ball system generated by X — Z3+2% and Y — Z? (Corollary 2). Computing
the associated Jacobian matrix, we can check that g is regular if and only if £ = 0,
that is, if and only if its projection p is an ordinary cusp.

Now, let ¢ = (z,y, ¢,r2) be a solution of the ball system with ro > 0. In this
case ¢ represents two points ¢ = (x,y,c++/r2) and ¢2 = (z,y,c—/T2) of Cpng
with the same projection.

According to Lemma 6 the equation det Jac, 4 c.r,)(S-P,S.Q,D.P,D.Q) = 0
can be written

S.P, S.P, S.P, Dﬁ
S.Qr S.Qy S.Q. P

D.P, D.P, D.P. SP5-Dp | =0
S5.Q-
D@JM%DQszzQ

This determinant simplifies using the facts that (a) D.P = D.Q = 0 at the
solutions, (b) one can multiply lines 3 and 4 by /72 and column 4 by 2,/73, c)
one can replace lines ¢y, ¢3 by ¢1 + l3,¢1 — {3 and {5, 04 by lo + €4, 05 — £4. The
equation is then equivalent to

Po(q1) Py(q1) P.(q1) P:(q1)
Qx((h) Qy(QI) QZ(QI) Qz(fh) -0
Pi(q2) Py(q2) P:(g2) —P:(q2)
Qr(q2) Qy(q2) Q=(q2) —Q-(g2)
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Expending this expression, one can check that it is equivalent to

By(@1)Qx(01) = Pa(a1)Qy(01) Py(a2)Q:(a2) — P:(a2)Qy(e2) | _
P.(q1)Qu(q1) — Pu(q1)Q:(q1) P:(92)Qx(q2) — Pu(q2)Q=(q2)

The later expression is equivalent to the condition that projection on the (z,y)
plane of the tangent vectors of the 3D curve Cpng at the points ¢; and ¢o are
collinear. Thus in the case where o > 0, a solution of the ball system is regular
iff it projects to a node. O

4 Experiments

We propose some quantitative results on the isolation of the singularities of the
projection C of a space real curve Cpng (or Cpnp, in the case of an apparent
contour) by solving the ball system proposed in this paper. We consider here that
P and @ are polynomials, hence the equations of the ball system are polynomials
and C admits at most finitely many singularities in R2. Under our assumptions,
the curve C’ defined as the resultant of P and @ with respect to z (Q = P, in the
case of an apparent contour) is the union of C and a finite set of isolated points. Its
singularities can be characterized as real solutions of a bivariate system based on
the sub-resultant chain of P and @ (or P,) (see [14]). We compare the resolution
with three state-of-the-art methods of the sub-resultant system, denoted by S
in what follows, and the ball system S.P = 5.QQ = D.P = D.QQ = 0 defined in
Subsect. 3.1, denoted by S4.

Ezxperimental Data are random dense polynomials P, () generated with degree
d and integer coefficients chosen uniformly in [—2%, 2%].

Unless explicitly stated, the given running times are averages over five
instances for a given degree d.

Testing Environment is a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine
with Linux.

4.1 Resolution Methods

Grébner Basis and Rational Univariate Representations allow one to find all
real roots of a system of polynomials. The routine Isolate of the mathematical
software Maple implements this approach.

Homotopy Continuation provides all the complex solutions of a system of
polynomials and relies on a numerical path-tracking step. Among available open-
source software implementing homotopy, we chose Bertini'! notably because it
handles both double precision (DP) and an Adaptive Multi-Precision (AMP)
arithmetics [4]. This is necessary to prevent the loss of solutions in system So
which coefficients are quotients of big integers (see Table 2).

Subdivision uses interval arithmetic (see [20,24,28] for an introduction) to
compute for a given system all its regular solutions lying in an initial open

! https://bertinind.edu/.
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box By C R"™. Here n = 2 for system Ss and n = 4 for system S;. When
P, @ are polynomials, the initial box can be R™ (see [24, p.210] or [28, p. 233]).
Otherwise, By is bounded, and the number of singularities is finite. Since we focus
on singularities induced by projection of real parts of the curve Cpng or Cpnp,,
we did only research solutions of the ball system having ro > 0. We implemented
a subdivision solver in c++, using the boost or mpfi interval arithmetic library.
The implementation is described with more details in [14].

4.2 Singularities Isolation: Comments on Tables1, 2 and 3

Tables 1, 2 and 3 report the sequential running times (columns t) in seconds
to compute the singularities of projection and apparent contour curves, using
system Ss or system Sy to represent their singularities.

Table 1 shows that for Isolate running times are better when solving system
Ss, due to its lower number of variables.

Table 2 refers to resolution with Bertini, using DP and AMP arithmetics. In
addition to running times, it reports the number of missed solutions (columns
Mis. Sols.) when using DP arithmetic. The resolution by homotopy in DP of
system Sy is not satisfactory due to the high number of missed solutions. The use
of AMP arithmetic resolves this problem: for all systems we tested, all solutions
were found. But it induces an important additional cost. System S, seems better
suited to homotopy resolution. In DP arithmetic, fewer solutions are missed and
the cost of AMP arithmetic is more acceptable. Notice however that for three
examples, a solution was missed both with DP and AMP arithmetic due to the
truncation of a path considered as converging to a solution at infinity.

Table 3 reports results obtained with our implementation of subdivision. For
a given degree, resolution times are subject to an important variance. For low
degrees it is more efficient to solve system S than system S; due to the higher
dimension (i.e. 4 instead of 2) of the research space in the latter case. The
difference of running times decreases when d increases, due to the size (in terms
of degree, number of monomials and bit-size of coeflicients) of the resultant and
sub-resultant polynomials that have to be evaluated to solve system Ss.

Table 1. Isolating singularities of projection and apparent contour curves with the
routine Isolate of Maple. Input polynomials have degree d. The running times are in
seconds. (a) Fails with error.

Projection Apparent contour
system Sz | system Sy | system Sz | system Sy
d t t t t
4 1.321 4.293 0.206 0.1874
5 26.92 100.4 5.439 6.501
6 (a) (a) 98.59 155.8
T (a) (a) (a) (a)
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Table 2. Isolating singularities of projection and apparent contour curves with Bertini
using DP and AMP arithmetic. Input polynomials have degree d. The running times
are in seconds. (b) Has been run on a unique example. (c) Solution(s) is (are) missing

due to infinite path(s) truncation.

Bertini with DP arithmetic
Projection Apparent contour
system Sa system Su system Sa system Sa
dl t  Mis. Sols. t  Mis. Sols. t Mis. Sols. t  Mis. Sols.
4| 0.864 0 1.376 1 (c)|| 0.174 0 0.46 1
5/ 16.03 3 8.326 0 3.638 0 3.818 2 (c)
6| 177.6 2 40.21 0 54.49 1 20.80 1
7| 1458 193 152.1 1 (c)|| 617.9 6 88.50 0
8> 3000 599 (b)[508.5 3 2799 885 319.3 0
9/> 3000 1389 (b)|1429 7 > 3000 1178 (b)[935.6 2
Bertini with AMP arithmetic
Projection Apparent contour
system Sz|system Sy [|system Sa|system Sy
d t t t t
4] 2.332 1.804 (c)|| 2.332 1.434
5| 147.8 13.888 147.852 15.01 (c)
6|> 3000 123.41 1005 165.7
7|> 3000 1089 (c)||> 3000 1147
8|> 3000 |> 3000 > 3000 |> 3000

Table 3. Isolating singularities of projection and apparent contour curves with sub-
division. Input polynomials have degree d. The average running times ¢ are given in
seconds together with the standard deviation o.

Projection Apparent contour

system Sa

system Sa

system Sz

system Su

t+o

t+o

t+o

t+o

0.078 £ 0.03

0.759 £+ 0.02

0.040 £+ 0.02

1.509 £ 1.97

0.351 +£ 0.13

1.973 £ 0.72

0.251 £ 0.23

25.34 £47.5

1.918 £ 0.55

6.442 £+ 3.07

1.353 £ 0.57

11.38 £ 6.98

9.528 £ 3.92

22.43 + 8.36

124.1 £ 142

54.21 + 50.3

42.69 + 16.8

57.00 &+ 16.4

57.72 £ 63.7

99.22 + 89.3

O |00 ||| Ut |

163.3 £ 111

137.5 £ 93

54.74 £ 33.3

95.11 £+ 44.5
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5 Conclusion

Given an analytic curve Cpng satisfying some specific generic assumptions, we
have described the different possible types of singularities X' of its projection C =
II,,(Cpng). Moreover we have shown that these singularities can be computed
as the regular solutions of a new so-called ball system.

Even if our characterization increases the number of variables of the system
to solve in order to compute Y, we have shown with experimental results that
the ball system can be solved with numerical methods. With homotopy it is
more often complete and faster to solve the latter system than the sub-resultant
system. A certified resolution is provided by a subdivision solver. In term of
computational cost, such solvers are known to suffer from the increase of the
dimension of the research space. However for high degrees of input polynomials,
the price to pay for solving the sub-resultant system seems higher than the one
induced by the increasing of number of variables.
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Abstract. This paper examines the problem of finding the linear algo-
rithm (operator) of finite rank n (i.e. with a n-dimensional range)
which gives the minimal error of approximation of identity operator
on some set over all finite rank n linear operators preserving the cone
of k-monotonicity functions. We introduce the notion of linear relative
(shape-preserving) n-width and find asymptotic estimates of linear rela-
tive n-widths for linear operators preserving k-monotonicity in the space
C*[0,1]. The estimates show that if linear operator with finite rank n
preserves k-monotonicity, the degree of simultaneous approximation of
derivative of order 0 < ¢ < k of continuous functions by derivatives of
this operator cannot be better than n~2? even on the set of algebraic
polynomials of degree k + 2 (as well as on bounded subsets of Sobolev

space W2 [0,1]).

1 Introduction

Different applications of computer-aided geometric design require to approxi-
mate functions with preservation of such properties as monotonicity, convexity,
concavity and the like. The part of approximation theory that deals with this
type of problem is known as the theory of shape preserving approximation. Over
the past 30 years extensive study in the theory of shape-preserving approxima-
tion has brought about new results, the most substantial of which were outlined
in [8,14,16].

The interest to the theory of shape-preserving approximation is caused pri-
marily by the fact that its results have a number of applications, most of which
relate to the use in computer-aided graphical design (CAGD) for which the
preservation of shape of graphics is essential. CAGD often considers the task of
creating a complex shape of the body surface (e.g., the fuselage of the aircraft,
engine parts, architectural structures) as a discrete set of points. To represent
the body, it is necessary to arrange these points on a curve or surface. A change
in the derivative sign or any discontinuities of the first and even second deriva-
tive are visible to the human eye. For this reason, not without interest is smooth

The results were obtained within the framework of the state task of Russian Ministry
of Education and Science (project 1.1520.2014K).
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approximation which retains the shape of the data. Spline methods of approx-
imation inheriting such geometric properties were considered, in particular, in
the works [17,24,31-33]. The review can be found in the book [23].

If function f from X has a shape property, it usually means that element f
belongs to a certain cone in X. For example, if we would like to approximate a
curve f from C[0, 1] with the preservation of monotonicity, then we should find
an approximating function from the cone of all non-decreasing functions defined
on [0,1], i.e. from the cone Al = {f € C[0,1] : f(z1) < f(z2) for any 0 < 27 <

Let X be a normed linear space, V be a cone in X (a convex set, closed
under nonnegative scalar multiplication). We will say that f € X has a shape
in the sense of V whenever f € V. Let X,, be a n-dimensional subset of X
and A C X be a set, ANV # &. Classical problems of approximation theory
are of interest in the theory of shape-preserving approximation; they include
estimation of (nonlinear) relative n-widths of ANV with the constraint V' in X

do(ANV,V)x = inf inf —gllx, 1
( Jx l)?ﬂfesggvgégﬁVHf alx W

the left-most infimum is taken over all affine subsets X,, of dimension < n, such
that X, NV # @.

The notion of relative n-width (1) was introduced by Konovalov in 1984 [13]
and some estimates of relative shape-preserving n-widths have been obtained in
papers [9,11,12]. A good introduction of n-widths can be found in [20].

In CAGD it is often necessary to find shape-preserving representations of
curves (functions from a linear normed space X) with small errors of approxi-
mation in X, which can be easily treated on a computer. These representations
could be taken from a parametric family of simple functions with a set of para-
meters which can be varied by computers to make changes in the curve. It can be
achieved by using linear combinations of functions from a given n-dimensional
subspace X,, of X with coefficients as the set of parameters. In applications X,,
is often chosen to be either the set of all algebraic polynomials of degree n—1 or
the n-dimensional subspace of algebraic splines. The main task is to construct
algorithms that calculate these parameters automatically. Moreover, one is often
interested in linear approximation algorithms which may be more practical and
easier to calculate than best approximations which are typically non-linear.

The input of such linear approximation algorithms is usually the vector of
the values of the approximated function at a certain finite number of points,
while the resulting functions are from a given finite dimensional linear subspace
of X. One of the most well-known algorithms of such type is the Bernstein

operator By, f(z) := Y (7)a'(1— )"~ f(£) for which the values of the function
=0

i
iz
f at n + 1 equidistant points in [0,1] determine the result B, f of operating

on that function, which is from the n 4+ 1-dimensional subspace of all algebraic
polynomials of degree < n.
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Recall that a linear operator mapping X into a linear space of finite dimension
n is called an operator of finite rank n. Bernstein operator B,, is the operator of
rank n + 1.

Let A be a subset of X and L : X — X be a linear operator. The value

e(A,L) :==sup||f — Lfllx = sup||({ — L) fllx
feA feA

is the error of approximation of the identity operator I by the operator L on the
set A.

Let L : X — X be a linear operator and V be a cone in X, V # &. We
will say that the operator L preserves the shape in the sense of V, if L(V) C V.
One might consider the problem of finding (if it exists) a linear operator of finite
rank n which gives the minimal error of approximation of the identity operator
on some set over all finite rank n linear operators preserving the shape in the
sense of V. This leads us naturally to the notion of linear relative n-width. We
introduce the definition of linear relative width based on Konovalov’s ideas. A
different definition of linear relative width based on the ideas of Korovkin was
given in [27].

Let V C X be acone and A C X be aset, ANV # &. Let us define Konovalov
linear relative n—width of the set ANV in X with the constraint V by

n(ANV,V)x := inf su — L, ,
( )X Lo, s IIf fllx

where infimum is taken over all linear continuous operators L,, : X — X of finite
rank n preserving the shape in the sense V| i.e. satisfying L, (V) C V.

Estimation of linear relative n-widths is of interest in the theory of shape-
preserving approximation as, knowing the value of relative linear n-width, we
can judge the quality of approximation (in terms of optimality) this or that
finite-dimensional method with shape-preserving property L, (V) C V is. The
importance of relative linear widths is connected with the following property: if
L, : X — X is a linear continuous operator of finite rank at most n, such that
L,(V)CV, then

sup H.f - LanX > 5n(A N V, V)X
feANV

In the other words, linear relative n-width 6, (A, V) x provides a lower bound on
the degree of approximation of any linear operator L of finite rank n preserving
the shape in the sense of cone V. Thus, the value of 0,,(ANV,V)x tells us how
well a given linear operator L approximates functions from ANV relative to the
theoretical lower bound.

A continuous function f : [0,1] — IR is said to be k-monotone, k£ > 1, on
[0, 1] if and only if for all choices of k41 distinct tg, . .., tx in [0, 1] the inequality
[to, .., tk]f > 0 holds, where [to, ..., tx]f denotes the k-th divided difference of f
at 0 <tg<t; <...<tr <1. Let A* denote the set of all k-monotone functions
defined on [0,1]. Note that 2-monotone functions are just convex functions and
1-monotone functions are non-decreasing functions.
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Despite the successful and active development of the shape-preserving
approximation theory as well as a large amount of publications on the topic,
the subject of the linear shape-preserving approximation is still insufficiently
studied. In particular, the problems of the quantitative estimation of the con-
vergence rate for linear approximation methods with shape preservation are not
fully covered in the literature. In this paper we will try to fill this gap.

It is well-known [21] that Bernstein operator B,, preserves k-monotonicity
for any k > 0 and has the convergence rate n~! on the set of all twice differ-
entiable functions [7]. In this paper we will find asymptotic estimates of linear
relative n-widths of subsets of Sobolev-type spaces in the space C*[0,1] with
the constraint A*. It enables us to investigate how “bad” Bernstein operator is
(in terms of the rate of convergence), compared with the best possible rate of
convergence determined by the value of the Konovalov linear relative n—width
with the constraint A*.

2 The Example of Preservation k-Monotonocity

Denote by C*[0,1], k > 0, the space of all real-valued and k-times continuously
differentiable functions defined on [0, 1], equipped with the norm

IFlexon = 32 5 sw D), 2)

0<i<k z€[0,1]

where D’ denotes the i-th differential operator, D' f(x) = d'f(x)/dz*, and D° =
I is the identity operator, and the derivatives are taken from the right at 0 and
from the left at 1. If f € C*[0,1], then f € AFiff f*)(t) >0, t € [0,1].

It is said that a linear operator L of C[0,1] into C[0,1] preserves
k-monotonicity, if L(A*F) c AF, i.e. a linear operator (algorithm) L preserves
k-monotonicity if for each k-monotone function f the resulting function Lf is
also k-monotone.

Denote by B’“[O7 1], k > 0, the space of all real-valued functions, whose k-th
derivative is bounded on [0,1] endowed with the sup-norm (2).

Let W2 [0,1] be the Sobolev space of all real-valued, (k + 1)-times dif-
ferentiable functions whose derivative of order (k + 1) is absolutely continuous
and whose derivative of order k + 2 is in L>[0,1], [|f|lcc := ess sup o, 1| f(2)]-

Denote B = {f e W [0,1]: | DF+2f||s < 1}
One of the main example of shape-preserving operator is Bernstein opera-
tor. T. Popoviciu [21] proved that if f is k-monotone on [0,1], then Bernstein
n

polynomial B, f(z) := > (})2*(1 — 2)"~* f(£) also is monotone of order k on
/=0

2
i=
[0,1]. The papers [1,4-6,22] investigate the shape preserving and convergence
properties of sequences of linear Bernstein-type operators. On the other hand, it
is well-known that one of the shortcomings for Bernstein-type approximation is
the low order of approximation [7]. In this section we present an operator with

the higher order of approximation n=2.
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Let k,n € N, n > k+2, 2; = j/n, j =0,1,...,n, and let Ay, : C¥[0,1] —
C*[0,1] be the linear operator defined in steps from left to right by (see also
[25])

k

D'f(0 naktl
Benf )= 32 O 4 G [P = DO e € 02 6)
" D A (2) !
S e
n(z—z)"
A DR () - DR ()

(k+1)!
ZL‘E(Zj,Zj+1],j:1,...,n—1. (4)

In the simplest case k = 0, the cone A® is the cone of all non-negative
functions defined on [0,1] and Ay, is defined by

Aot @) = £0) 4z (£ () = £0)) . 2 € 0.1/

et =ses () -
L O O I PR

The resulting function Ay, f is a piecewise linear function on [0,1] with break-
points (j/n, f(j/n)), 7 =0,...,n, and linear operator Ao, preserves positivity
of approximated functions (see Fig.1), i.e. Ag, is a linear positive operator.

Lemma 1. Ay, : C*[0,1] — C¥[0,1] is a continuous linear operator of finite
rank n + k + 1, such that

1. Apn(AF) C AF;
2. there exists a constant 0 < ¢ < 273 /k! not depending on n such that

sup [ Ak f = fllerp,ay < en™? (5)
feBETD AR

Proof. Since D¥(Ay.,f) is a piecewise linear function on [0,1] with the set of
breakpoints {(zj, D f(2;))}j=o.....n, then for every f € C*[0,1] such that D* f >
0 the inequality D*(Ag . f) > 0 holds, i.e. Ay, (A*) C AF.

Denote e;(z) = 2%, i =0,1,.... It can be easily verified that A e, = e, for
allp=0,1,...,k+1and if z € [z, zj41) for some 0 < j <n —1, then

(DM(Apmert2) — Dreio)(@) = (k +2)! (2541 — x) (x — 25) /2.
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1.5

0.5

0.25 0.5 0.75 1

Fig. 1. Function f(z) = 0.2 + sin(4nzx) + sin(wz) + 0.3z (solid line) and the resulting
function Ay, f, n =4, k =0, (dotted line) defined on [0,1]

Let f be a function from Bé§+2) N A*. Let € [zj,2j41]. Then D*f €
& [0,1] can be represented as
DFTLE (2))

1
T @zt [ (@00 ©

J

D*f(x) = D" f () +

where y; := max{y,0}. Similarly, if x € [z;, zj+1] then

k+1 .
MM ) = DMy f) (2) + Dot i) o
+ /1(37 — 1) DM Ay f(2) dt, (7)

j
where D{frl/lk’nf(zj) is the right-hand side derivative of Dk/lk)nf at point z;.
It follows from (6) and (7) that if = € [2;, z;41] then

(D) = D7) (@) = (@ = ) |1 (D ) = D () = D21 ()|
- / (z—t), DM f(t)dt = / (n(z—2) (241 —t), — (x — 1)) D" f(t) dt.
Since || D¥*2f||, < 1, we have

sup ’Dk(/lkmf)(a:) - Dkf(x)’

ZG[Z]‘,Z]‘]

1
< sup /
z€[0,21/0
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It follows from (8) that
1
|D¥(Ag,nf)(z) — D¥ f(2)| < Sz for every = € [0,1].
n

Since D (Agnf — f)(0) = 0 for all i = 0,...,k, we have by induction for i =
k—1,...,0 and z € [0,1]

W%Mmf—ﬁuﬂ=lﬁwa—fX®+%fD”Wmmf—ﬂﬁMt
1 xkrfi

ST ®)

We have used the fact that if g € C[0, 1] and there exists a constant a € IR such
that |g| < a on [0,1], then

x tp—1 t1 xp
og/ / / gt)]dts ... dt, < 0’
o Jo 0 p:

for every p € IN.
Then (9) implies || D*(Agnf) — D' fllcpo,1) < #ﬁ and Lemma is proved

. k —
w1thc§%2i:0m=2k 3/K!. O

Note that linear operator Ay, defined in (3) and (4) is the minimal shape-
preserving projection [18] on the first interval [0, 1], and then it is smoothly
extended to the next intervals. The paper [2] presents the example of linear finite-
dimensional approximation method that preserves k-monotonicity of approxi-
mated functions and uses the values of function at equidistant points on [0,1]
(rather than values of derivatives as it is in the definition of Ay ,,).

Figure 2 plots the comparison for errors of approximation of exponential func-
tion f(z) = €” on interval [0,1] by Bernstein operator B,, and operator Ay, for
different n and k = 1. Line (1) of the plot is Biof — f, line (2) of Fig.2 is the
error By f — f, lines (3) and (4) plot the differences Ay 10f — f and Ay 20f — f
respectively.

3 The Main Result

We need the preliminary lemma (see [26]).

Lemma 2. Let ¢ : C*[0,1] — R be a linear functional that has the following
property: ®(f) > 0 for every f € C*[0,1] such that f € A*. Let {(-,-) : C*[0,1] x
C*10,1] — R be the bi-functional generated by a functional @ in the following
way: for every f,g € C¥[0,1] we suppose (f,g) = ®(h) with h € C*[0,1] so that
D*h = D*fD*g and D'h(0) =0, i =0,1,...,k — 1. Then

(o) < [ DIENg, )2, f.g € CF[0,1]. (10)
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Fig. 2. Errors of approximation of function f(z) = exp(z) on [0,1] by (1) Bernstein
operator B,, n = 10; (2) Bernstein operator B,, n = 20; (3) operator A, n = 10,
k =1; (4) operator Ak, n =20,k =1

Using ideas of [29] let us prove the analogue of the main theorem in [25] with

the omitted requirement D*L,e;, = DFey, ey(z) := z*.

Lemma 3. Let L, : C*[0,1] — B¥[0,1] be a linear operator of finite rank n,
n > k+ 2, such that

L, (A%) c A*. (11)
Then
DFL D¥
2, (g 9 vt =Pt
+ 2 DML () — Do ()]
G+ 1) k+1(T k+1
4——¢LﬂL er(z) — DFey()| > 1 (oL (12)
k! nCk k = a2 n2 /-
Proof. Let {v1,...,v,} be the system of functions generating the linear space
{DFL,.f : f € C¥[0,1]}, i.e. spanfuy, ... sony = {D¥L,f : f € C¥[0,1]}.
Consider the matrix A = (v;(z;));=, ", where 2, = i/n, i = 0,...,n.. We

will assume that the rank of matrix A does not equal to 0, rank A # O Indeed7

if rank A = 0, then D¥L,, f(z;) = Y aj(f)vj(z) =0, i = 0,...,n, for every
j=1

f € C*[0,1], and consequently ||D¥L,e; — Dkek”B[oJ] > 1. Therefore we will

exclude the case rank A = 0 from our analysis.
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Take a non-trivial vector § = (do, ...,d,) € R*!, such that

n

i|5z| =1, Z(sﬂ)j(zi) =0, j=1,...,n
=0 i=0

Let h € C*[0,1] be such that

1. D*h(z;) =sgnd;, i=0,...,n
2. D*h is linear on each [zq, 21],. . ., [2n_1, Zn];
3. Dih(0)=0,i=0,1,...,.k— L

It follows from D*L,h € span {vi,...,v,} that

> 6:D*Lnh(z) =0

=0

Then
n

DFh(zi) =Y 6:(D*h(z;) — DLy, h(z:))

=0

||

s
Il
o

16;| D¥ L h(2:) — D*h(z;)| < |D*Lyh — DFh| ppoyy. (13)

M:

I
=)

For z € [0,1] we have
|D¥ L, h(x) — DFh(zx)| = ‘Dkth(x) — th(x)%DkLnek(;v)
Dkek( )

+ D*h(z) 'D Lney(x) — D*h(z)—

k! k!
(1= D1t gy ) @)

+ %|th(x)\|DkLnek(z) — DFey(x)]. (14)

< |D*L,

Let p, € C*[0,1] be such that

1
Dp, = ‘D’“ (h - th(m)k'ek> ,

We get D¥(h — D¥h(z)Ley) < DFp, and D*(—(h — D*h(z)5ex)) < DFp,. It
follows from L, (AF) C Ak that

DL, (h— th(:v)%ek)(x) < D¥L,p,(x) (15)

and

~ DML (h — DHh(a) o) (w) < D L) (16)
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It follows from (15) and (16) that

‘D"'Ln (h _ th(x);!ek> (2)

Let g, € C*¥[0,1] be such that

< D*L,p,(z). (17)

DFq,(t) = |t — 2| and D'q.(0) =0, i=0,1,...,k— 1.
We have

DFp,(t) = ‘D’“ (h(t) — th(x)kl!tkﬂ = |D*h(t) — D*h(z)]

< 2njt — x| = 2nD*q, ().

We get D*(2ng, — p) > 0, then it follows from the shape-preserving property
L, (A*) c A that DFL,,(2ng, — p.)(x) > 0, i.e.

Dkanz(x) < QTLDkanI(I). (18)

It follows from Lemma 2 that

1 2
1 3
< D Lo} [1+ D Ler(a) - Drea(o)]] . 19)
where
2 2 N
Yz (k + 2) F+2 (k+1),33 k1t ek
We have
2
D" Luge(@) = Gy (D Lneirs = Dexsa) ()
2 1
(k—l—l)!gc(DkL”e"€+1 Depi1)(z) + E$2(D Lner — D%er)(x)
2 2 1 o
+ (k+2)'D erya(T) Ut 1)'mD er+1(x) + Pk D"ei(z)
2
< "t ‘DkLnemz(x) - Dkek”(:p)‘
2

+ m ‘DkLnek+1(I) — Dk€k+1(m)’

4 % ‘Dk[mek(x) — Dkek(a:)’ . (20)
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If
1 1
yHDkLnek — D¥ey|| o) < yPvE (21)

then it follows from (13), (14), (17), (18), (19) that

2 1
1 k k k 1 2
L= 7 D" Laex = DPex| oy < 20 (wg[gp”D Lngm)) (1+ 471) , (22)

Both sides of the inequality are positive, therefore we get

1— )2 1
4n? sup DkLngI(x) > % >1-—, n>k+2,
z€[0,1] L+ g2 n

and then (12) follows from (20). If (21) does not hold, then (12) holds a
fortiori. 0

The positive preserving approximation (k = 0) has the same order of approx-
imation n~2 [30]. It is should be noted that k-monotonicity preserving results
can not be obtained from positive preserving results since ||D*(L,,f) — D*f|| =
|L,,(D* f) — D¥ f]|| is not hold in general.

Denote II,,, := span{eq, e1,...,en}, i.e. II,, is the set of all algebraic poly-
nomials of degree < m. Denote P, := {f € I, : |[fllempo) < 1}, ie. Py, is
the set of all algebraic polynomials of degree < m whose norm in C™[0,1] is
bounded by 1.

Theorem 1. Let n > k + 2. Then there exists 0 < ¢; < 2873 /k! not depending
on n such that
5 (BT n AR AFY o q) < ein ™2 (23)

The estimate (23) can not be improved even on the set of algebraic polynomials
Pr4o bounded in Ck+2[0, 1], i.e. there exists co > 0 not depending on n such that

Cgﬂiz < 6n(Pk+2 n Ak, Ak)ck[071]. (24)

Proof. The inequality (23) follows from Lemma 1. The estimate (24) follows from
Lemma 3. a

The proof of Lemmal shows that the finite rank n linear operator Ay,
satisfies Ay, (A*) C A¥ and

S | D (A f) = D' fllBoa) =0, 0<m < k+1,
EPIYL

for all 0 < ¢ < k. Therefore
(P N A*, AF) ko) =0

forall0 <m < k+1.
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Konovalov linear relative n-width 8, (B% T n Ak, Ak )cr[o,1) Provides a lower
bound on the degree of approximation of any linear operator of finite rank n
preserving the shape in the sense of cone AF on the subset of (k + 2)-times
differentiable functions. The theorem states that the theoretical lower bound is
n~2. Thus, the degree of approximation by Bernstein polynomials B,, (which is
equal to n~!) is not optimal relative to the best possible for linear operators
of finite rank n preserving k-monotonicity. We can remark that algorithm Ay,

defined by (3)—(4) has the optimal order of approximation n=2.

4 Conclusion

Software developers and designers often need mathematical and computational
methods for the representation of geometric objects with preserving the shape of
the data as they arise in areas ranging from industrial design, scientific visualiza-
tion, CAD/CAM to robotics. Another application of shape-preserving algorithms
is in the optimization theory and the theory of dynamic optimization. In par-
ticular, the paper [3] presents algorithms for solving the dynamic programming
problems based on shape-preserving methods of approximation and shows the
applicability of the cone-preserving algorithms for the optimal growth problem.

The paper shows that if linear operator with finite rank n preserves k-
monotonicity, the degree of simultaneous approximation of derivative of order

0 < < k of continuous functions by derivatives of this operator cannot be bet-

ter than n=2 even on the set Py o (as well as on the ball Bé§+2)). Results show

that the shape-preserving property of operators is negative in the sense that the
error of approximation of such operators does not decrease with the increase of
smoothness of approximated functions. In other words, there is saturation effect
for linear finite-rank operators preserving k-monotonicity (see also [28]). Tt is
worth noting that non-linear approximation preserving k-monotonicity does not
have this shortcoming [15]. On the other hand, for sequences of linear operators
preserving k-monotonicity (as well as intersections of cones) there are [10,19]
simple convergence conditions (Korovkin type results).
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Abstract. Cooperating robotic systems, especially in the context of
fault-tolerance of complex robotic mechanisms, is an important ques-
tion for theoretical and applied studies. In this paper, we focus on one
measure of fault tolerance in robots, namely, the multiplicity of the con-
figurations for reaching a particular point in the workspace, which is
difficult to measure using traditional methods. As a particular example,
we consider the case of a free-swinging failure of a robotic arm that is
handled by having a cooperating functional robot grasp the link adja-
cent to the failed joint. We present an efficient method to compute the
multiplicity measure of the workspace, based on the tools from numerical
algebraic geometry, applied to the inverse kinematics problem re-cast in
the form of a polynomial system. To emphasize the difference between
our methods and more traditional approaches, we compute the measure
of workspace based on the multiplicity of configurations, and optimize
placement of synergistic robot arms and the optimal grasp point on each
link of the broken robot based on this measure.

Keywords: Workspace mapping - Joint failure - Homotopy
continuation - Monte Carlo methods

1 Introduction

Fault-tolerance and robustness play important roles in the design of autonomous
systems, including robotic arms. Often times, this has been achieved with either
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redundancy in drive systems, or cooperating robotic arms. Consideration of fault-
tolerance is essential in dangerous locations, and continues to be studied exten-
sively. Determining the reliability of a robot via fault-tree analysis appeared in
[1], which permits quantification of weaknesses in design. The detection and iso-
lation of faults, in various components of a robot, such as sensors, controllers,
and actuators, as well as collision with environmental elements, was treated in
[2-5]. Failure-tolerant regions of a workspace were defined in [6], which also gave
a method for computing a fail-tolerance measure which allows a robot to oper-
ate in real-time within this fail-tolerant region. Other measures of fail-tolerance
include analysis of the singular values of the Jacobian matrix for a robot [7] and
a ‘manipulability index’ as defined in [8].

Anticipation of failures has also been explored considerably; decomposing
a task into primary and secondary goals is one method of dealing with these
problems. Robots can be designed and operated with fail-tolerance in mind, such
as dual actuators at joints [9], kinematic redundancy [9-13], and reconfigurability
[14]. Prioritization of tasks subject to other constraints (e.g., environmental)
was treated in [15], restriction of operation to a fault-tolerant region in [16], and
anticipation of free-swinging joint failures in [17]. The overarching theme in this
field is graceful degradation of performance.

In this paper, we consider autonomously operated robotic systems that are
deployed into a hazardous or remote location, such that the repair of a failed joint
is impractical or impossible. If the system has to operate for an extended period
of time, we want the system to operate to the best of its remaining physical
capability after a joint failure. Certainly, there are many ways for a robotic
system to fail. Sensors give false or no readings; electronic components break;
controllers fault; actuators seize or give way. We aim to supplement present
methods regarding graceful joint failure, by informing designers and operators
of possibilities for assistance to a broken robot by a functional one, should one be
available. In the event of a free-swinging failure, our method provides information
about optimal placement of a predetermined socket or other suitable apparatus
on an articulated arm to allow assistance from a functional robot. Even with an
actuator with non-free-swinging failure, such as unexpected resistance or friction,
our method could contribute to mission success. The failure-proof of systems has
been particularly important for applications such as space-faring vehicles [11].

To make our consideration more realistic, suppose a system operating in a
remote environment possesses several robotic arms for various tasks. Should one
joint in one arm fail, the presence of a second arm may open the way to preserve
some of the workspace of the failed arm. In particular, if the second arm can
grasp the first, perhaps some of the lost workspace can be restored. In this work,
we shall assume that the relative position of the bases for robotic arms cannot
change, and only one joint fails at a time.

As far as fault-tolerance consideration of a single robot goes, the multiplicity
of configurations may not be a relevant quantity. For the purpose of restoring
workspace using cooperating robotic arms the multiplicity of configurations is of
crucial importance. As we shall see below, the workspaces of cooperating robots
tend to consist of several isolated sets.
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The main goal of this paper is to outline a method that is alternative to
the traditional ways of workspace computation. The main difference is that we
use sampling directly in the workspace, and therefore are not subject to failures
of a Jacobian method due to possible singularities of the forward kinematics
mapping. Our method, which is based on the applications of ideas in algebraic
geometry (homotopy continuation) to the solution of polynomial problems, can
provide the exact number of solutions for each particular point of the workspace.
In particular, the inverse kinematics problem can be cast as a polynomial system,
and homotopy continuation provides a means for efficiently producing numerical
approximations of all isolated complex and real-valued solutions of the polyno-
mial system. Methods of algebraic geometry have been applied in the kinematic
description of robots, see for example [18-23]. However, analysis of the cooper-
ation of multiple arms via the tools of numerical algebraic geometry has never
been explored.

We shall outline a particular application of the method: computation of
workspace and optimization of the grasping point for two cooperating robots,
in case of joint failure of the first robot. This example was chosen as a realistic
demonstration, leading to interesting shapes of workspaces with several sets of
multiple solutions. For the optimization, we ask two questions: (a) What is the
best placement of the two robots in relation to each other? (b) Is there a best
place for the second arm to grasp the first? Clearly, the answer to both questions
depends on the choice of measure for the post-failure workspace, which is prob-
lem dependent. In this paper, we introduce a multiplicity-weighted workspace
measure, depending on both the number of robot configurations and the geomet-
ric size of the workspace. Combining this on the pre- and post-failure workspaces
gives a single measure, parameterized by a user-determined weighting factor, and
the distance between robot bases and grasp point.

The key feature of this manuscript is the application of methods of algebraic
geometry to the description of fault tolerance of two cooperating robots. These
techniques are guaranteed to give all isolated solutions to algebraic equations
describing the positions of robotic arms, and thus robustly find solutions in
arbitrarily complex settings, such as multiple joint values in isolated regions of
joint-space.

In Sect.2, we provide a formal statement of the general problem we are
considering. Details about our method are described in Sect. 3, and background
regarding the numerical solution of polynomial systems may be found in Sect. 4.
Sections 5.1 and 5.2 respectively contain two and three dimensional examples.

2 Formal Problem Statement

Given two articulated arms, we optimize the placement of grasping sockets to
maximize post-failure workspace (we assume a socket attachment mechanism of
the two arms as considered in [14]). That is, if one robot has a free swinging joint
failure as in [24,25], we would like to ensure that when the functional robot joins
at the socket to assist in completion of tasks, the resulting cooperative workspace
is as large as possible. A simplified example of this problem is in Fig. 1.
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Fig.1. Two robots in grasping configuration, with functional robot contacting the
disabled unit at point P. This is a simplified 2D model of the general 6D position and
orientation scenario. Parameter ¢ is the distance between the robot bases.

Each robot has its own pre-failure workspace, W7, Wy C R™ x SO(N), where
n and N depend on the particular mechanism type. When the two robots are
placed near enough, there is an intersection workspace W = Wy N Ws. In a
grasping configuration, there is a post-failure workspace Wy, which contains all
remaining workspace locations Robot 1 can reach, if Robot 2 attaches to a socket
location on Robot 1. The measures |Wn| and |W| developed below in Eq. (2)
depend on the separation between the robots, as well as their orientation. Note
that the intersection workspace does not depend on the grasping point, as it
reflects the workspace prior to failure for each robot. In both pre- and post-
failure workspaces, we take into account joint limits, which are an important
consideration for practical applications. Indeed, robots typically have limited
range of movement for each joint, which reduces the size of all workspaces.
These limits introduce a dependence on the relative rotations of the robots to
each other, and to the measures of the various workspaces.

The parameters describing an optimal configuration of two cooperating
robots include: separation between cooperating arms, relative orientation of the
bases, and location of grasping point. In this paper, we do not optimize with
respect to base position of each robot, as we consider that the position of the
bases must be given from design limitations, e.g. the placement of power cords
and motors on the apparatus. Nevertheless, our method is capable of optimizing
socket placement for different base separations, and this is demonstrated in the
examples.

In order to quantify post-failure workspace size and find an optimal configu-
ration, we introduce a maximizing objective function (2. There are many possible
objective functions one can imagine, and the right choice depends on the appli-
cation. In this paper, we define a multiplicity-weighted measure of workspace W
and objective function {2, through the multiplicity of configurations (i.e., the
number of inverse kinematic solutions placing the robot in the specified config-
uration) at a given point z, denoted m(zx):



Workspace Multiplicity and Fault Tolerance 113

Wi [ mia (1)

Ox = (1= N[Wi| + A(IWh | = [Wa)), (2)

where A is a weighting factor to be chosen by the user. We have chosen Eq. (2) for
an example objective function in order to balance between the benefit of having
a second robot, and the maximization of the post-failure workspace. A configura-
tion which imparts entirely distinct workspaces would maximize A(|W7|— |Wh]),
but Wy would be an empty set. Contrarily, we might find a configuration which
results in full restoration of Wy upon entering grasping stance, but which makes
the pre-failure workspaces overlap greatly, so A(JW1|—|Wn|) would be small. We
prefer to balance between pre- and post-failure benefits of having two robots,
and Eq. (2) is one way of doing this.

It seems that one obvious way to maximize |W;| could be to set § = 0 so the
two robots have exactly the same base point, and make the two robots identical.
However, this may be an impractical situation. First of all, there may be much
greater benefit by compromising and having smaller intersection workspaces by
placing the robots further apart; second, depending on robot geometry, it could
be awkward or impossible for two identical robots to operate from the same base
point.

In fact, the number of configurations could be infinite at some points in the
workspace. However, this is an algebraic condition so this set of all points in
the workspace for which this is true has measure zero. Such points are kinematic
singularities and should be excluded in Eq. (2) above. More practically, the Monte
Carlo methods used later in the paper miss such points with probability one.

3 Workspace Computation

In this section, we describe our solution to the problem outlined in Sect. 2.
We start with notation. Let the separation between bases be § and without
loss of generality let this translation between coplanar bases be entirely along
the z-axis; we sort out-of-limit solutions in a post-processing procedure. We con-
sider 0 < ¢ < dpax, the largest value of § corresponding to the sum of the lengths
of each robot fully extended. The normalized distance to the grabbing point or
socket, measured from the failed joint, is denoted by a, with 0 < a < 1; the point
at which a socket is attached to the left robot, hereafter Robot 1, is P; a test
point in space is @; and the origin at the base of Robot 1. Finally, let the fully
functional machine be known as Robot 2. A simplified version of this notation is
found in Fig. 1.

There is some probability that each joint could fail, so it is important to take
into consideration the placement of a socket on each link (of non-zero length).
We use the Denavit-Hartenberg (DH) convention to describe the configurations
of the two robots, and describe the contact point P in terms of the DH parame-
ters for Robot 1, as P is some distance a from the origin of the previous frame.
A spatial sample @) can be said to be in the post-failure workspace of Robot
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1 for a parameter pair (4, a), if there exists a set of joint angles such that end
effector of Robot 1 is at @), and the end effector of Robot 2 is at P.

The equations for the inverse kinematics problem for each step of the method
are first solved via a standard homotopy run at p*, a random point in complex
parameter space. Then all subsequent runs at points in the workspace are treated
as parameter homotopies, beginning at p*. For W;, the parameters are the z, y,
z coordinates of @; for W, we add parameter J; and for Wy, we add a. The
software package Bertini [28] can be used to compute numerical approximations
of the solutions of polynomial systems. Bertini works over C, so we find solutions
for each point regardless of whether it lies inside the workspace. However, the
points that have solutions for which all variables are numerically real-valued are
those lying within the workspace, while those with nonzero imaginary component
lie outside.

We note that the inverse kinematics equations for a robot with rotary joints
are trigonometric in nature. In order to use polynomial homotopy continuation,
we write the equations in polynomial form by treating each sine-cosine pair as a
separate variable, mapping cos(f;) = ¢; and sin(f;) = s; and coupling with the
algebraic condition ¢ + 57 — 1 = 0.

We compute the initial pre-failure workspaces for each robot via a random
sampling method on an ambient set S of the workspace guaranteed to contain
the workspace, and estimate the measure of the workspaces as in Eq. (2) using
the number of samples in the workspace pointwise multiplied by multiplicity
factor for each point,

: 1<
W= lim |S|;;m<wj>, (3)
where |S| is the typical Euclidean measure of the sampling space.

The method for computing optimal §pnax and apmax is described in Algo-
rithm 1. Starting from S, we compute each of the necessary workspaces. After
computing W; we no longer need S, because W, Wy C W;. Instead, all further
computations are over Wi. Once we have the data for the multiplicities of the
workspaces, we simply compute {2y, and return its maximizing parameter values.

For the case of N > 3 joints working in 3 dimensions without orientation,
there are 3 algebraic inverse kinematic equations in 2N variables, coupled with
N Pythagorean identities, when computing W;. As long as the number of joints
equals the number of degrees of freedom in the ambient workspace, Bertini will
find all solutions, and we will be able to measure |W;|. For kinematically redun-
dant robots, the joint space consists of a set of higher N — 3 dimensional mani-
folds, which could be described by defining a mesh of the same dimensionality as
coordinates on the joints. Our method readily applies to this higher dimensional
problem. However, the issues we are facing are related to the curse of dimension-
ality, and hence in the computation of the data as a whole, not in computing the
solutions at a particular point in space, which is fast. For example, with N =5
joints, and a 3 dimension workspace, each point in the workspace corresponds
to a two dimensional manifold in joint space. To cut down the manifold to be
0-dimensional for solving via Bertini, we could discretely sample each pair of
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joints possible, and solve for the remaining three. However, combinatorial growth
issues arise, e.g. if we wanted to solve each spatial sample for each possible com-
bination of joints.

4 Homotopy Continuation

In general, given an arbitrary (not necessarily robotic) set of polynomials
f = {f1,--.,fn} in N variables for which we seek the solutions, homotopy
methods begin by choosing and solving some other related polynomial system
g ={g1,...,9n} for which the solutions are easily found. By varying the coef-
ficients in § to those of f, statements in algebraic geometry guarantee that,
with probability one, the solutions will vary continuously, thus forming solution
curves or paths from the solutions of g to those of f. These solution curves may
then be tracked numerically with standard predictor/corrector methods, such as
a combination of Runge-Kutta and Newton’s method. Further details may be
found in [19,26,27].

There is a setting in which homotopy methods are particularly effective,
and of which we make use in this paper. If instead of solving one polynomial
system f we aim to solve a large number of polynomial systems that differ only in
coefficients (i.e., we aim to solve f(p), where { is some set of parameters), there is
an especially efficient homotopy method known as a parameter homotopy. In this
setting, we first solve f(p) at a single instance of p* (typically chosen as random
complex numbers, for theoretical reasons, as described in Sect. 7.1 of [19]). This
stage may require the tracking of a number of superfluous, divergent paths.
However, all other instances of f(p) may then be solved by simply following the
handful of finite solutions at p* to any other choice of p. For example, the system
used to solve Wy, grasping on the third link, for an initial random complex
parameter choice, requires following 20,736 paths to find the sizteen solutions of
interest. Then, for all other points in the parameter space, it suffices to follow
just sixteen paths.

Again, there is much theory and detail underlying these methods, most of
which may be found in [19,27]. During the process of homotopy continuation,
a certain number of paths will fail as they near a singularity in parameter
space. In the context of robotic workspaces, these failed paths indicate prox-
imity to workspace boundary or kinematic singularity. Right now, we are not

Input : DH parameters for each robot, A, samplings of §, a, S
OUtPUt Optlmal 51[1&)(7 Amax, »Q)\ ((Smaxy attlax)

Compute Wy = {z € S| m(x) > 0}

Compute Wn(0) using Wi

Compute Wy(4, a) using W

Evaluate £25(6, a) using Equations (2) and (3)

Find dmax, Gmax maximizing 2

return Maximizers dmax, Gmax and value 2 (dmax, Gmax);

Algorithm 1. Optimization of {2
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using this information, and simply ignore failed paths; however, this property
could ultimately be used for more accurate and efficient prediction of, for exam-
ple, workspace boundaries.

In this paper, it is adequate to accept homotopy continuation as a numerical
method that will quickly provide accurate approximations to all isolated solu-
tions of a polynomial system. Several software packages are available for these
sorts of computations. We use a software package named Bertini [28], which
has been under development for the past decade by D. Bates, J. Hauenstein,
A. Sommese, and C. Wampler. The repeated calls to Bertini were parallelized
for efficiency using the method described in [29].

5 Two Examples

5.1 2D Case: Two Link Planar Robots

We start with the illustration of the method for the two dimensional example
that is shown in Fig. 1. This was first considered this [30]; the previous work has
been expanded to include more general method and examples, as in Sect. 5.2,
where the more challenging three-dimensional problem is considered.

The robots are identical, both having two joints, all link lengths having length
one; the DH parameters are summarized in Table 1.

Table 1. Denavit-Hartenberg Parameters for two-link planar robot.

ej Qj | aj dj aj,min ej,maa:
6,10 |1 |0 |—120°120°
6, 0 |1 |0 |—120° 120°

Here, we define c¢; and s; to be the cosine and sine of the joint 0; values,
respectively, with j = 1,2 corresponding to the failed robot and j = 3,4 corre-
sponding to the assisting robot. Let joint index j € {1,2,3,4}, so that we have
a sine-cosine pair for each of the two joints in the two robots. In this notation,
our equations for this step are,

cico — 81852 +¢c1 —x =0
s$1¢2 +c182+s1 —y =0
0=1< acica —asysa +c¢1 — (c3eq4 — 8384 +¢c3+6) =0 (4)
as1¢y + ac183 + 81 — (s3¢q4 + 384 +83) =0
s? + c? -1=0 Vv

To demonstrate the method, we show results for an initial sampling of » = 10*
points, taken from the two dimensional rectangle @ € [—2,2] x [—2,2]. Of these
points, 7836 had at least one real solution; the estimated Fuclidean size of the
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Table 2. Estimates of 2D workspaces and (2,3, grasping on the second link.

§ la [IW| [[Wal |[Wy| | $ys
0.276 | 0.076 | 12.79 | 7.5810 | 4.424 | 4.687
0.276 | 0.406 | 12.79 | 7.5810 | 7.946 | 7.035
0.276 | 0.736 | 12.79 | 7.5810 | 9.927 | 8.356
1.606 | 0.076 | 12.79 | 1.8904 | 6.241 | 7.795
1.606 | 0.406 | 12.79 | 1.8904 | 5.622 | 7.383
1.606 | 0.736 | 12.79 | 1.8904 | 4.718 | 6.780
2.936 | 0.076 | 12.79 | 0.2031 | 2.119 | 5.610
2.936 | 0.406 | 12.79 | 0.2031 | 2.829 | 6.083
2.936 | 0.736 | 12.79 | 0.2031 | 3.635 | 6.621

Fig. 2. Examples of joint-limited workspaces, for 6 = 1.87, a = 1, and grasping on the
first link, rotated relative to one another. Red indicates a point having one solution,
blue indicates two, and cyan indicates four (Color figure online).

workspace would be 42 x 7836/10000 ~ 12.5 ~ 47. The multiplicity measure of
the joint-limited robot, sieved during post-processing, is ~ 12.79.

The first step in the computation is to estimate the pre-failure workspaces
for each robot, as described in Algorithm 1. Secondly, we intersect and obtain
Wn = Wi N Wa, for a specified set of § values. Finally, for each pair of values
(6, a) for which we estimate the post-failure workspace, we solve Eq. (4).

As the separation increases so that the workspaces barely overlap, Robot 2
may only grasp Robot 1 near the end effector, and the resulting Wy is small. See
Fig. 2, and column four of Table2. In these plots, cyan area is fully accessible
from 4 configurations, blue corresponds to 2, and red is reachable from only one
configuration. The inaccessible area generally increases when § is increasing, and
larger § lead to smaller post-failure workspaces for fixed a. The converse is not
true: |[W| is not a monotonic function of a for a fixed §. It is interesting to note
that our method computes explicitly the number of configurations reaching the
desired point in a post-failure workspace, even in the case when the configura-
tions belong to isolated domains in the workspace. Such problems are usually
challenging for traditional methods of workspace computation.
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Fig. 3. Objective function contours for a grid of (4, a) pairs for 2D cooperating robots,
with the broken robot being grasped on the second link.

Finally, in Fig. 3 we show (2, from Eq. (2) to determine the optimal ball joint
placement. For weighting factor A = 0, 2 is simply the value of |Wy|, and
the maximizer is 6 ~ 0, and a has a range of maximizing possibilities. With
A = 1/3, the landscape is relatively flat. Increasing A further makes the size of
the intersection workspace overpower the post-failure workspace, and by A = 1
the maximum of (2 is invariant with respect to a. Therefore, the weighting factor
A plays a critical role in the determination of the optimal grabbing point.

5.2 3D Case: Three Joint Manipulators

Equations determining the kinematics of spatial robots are more complicated
than those of planar manipulators. This concerns both the higher number of
relevant equations, due to the higher number of links in a typical 3D robots, and
the structure of equations describing the motions. Yet, the method for optimizing
cooperative workspaces remains fundamentally the same, as those equations can
be brought to an algebraic form and then solved using the methods outlined in
Sect. 3. Thus, in this section we only write a sketch of the method in 3D.

Consider two cooperating PUMA 6-degree-of-freedom robots, ignoring ori-
entation of the end effector. In this paper, we use DH parameters defined as in
Table 3. Treating the first three links of the PUMA as our robot, we ignore the
wrist; we do this to reduce the dimension and to reduce the number of points
to analyze. Instead, we use a tool frame to translate from the arm to the end
effector. The frame we used retains the orientation of the arm, and translates
along the final z-axis.

Each of the workspaces W1, Wy, W~ will have six equations in six variables,
which are solved via Bertini after bringing the trigonometric part of these equa-
tions into algebraic form. Correspondingly, there will be 12 equations defining
the post-failure workspaces with 12 variables. In order to find Wi 2 we sam-
ple randomly an oversized rectangular box surrounding the robot. In order to
determine good bounds for the workspaces, we first do forward kinematics by
randomly sampling the three joint variables 6; € [0, 2r]. The result of this esti-
mate is that the cubic box [—0.9, 0.9] x [-0.9, 0.9] x [-0.9, 0.9] contains W;, and
is thus a good starting point for finding the cooperative workspaces in which we
are interested.



Workspace Multiplicity and Fault Tolerance 119

Table 3. Denavit-Hartenberg Parameters for PUMA robot.

0; o a; (m) | di (m) | 0imin |0imas
0110 0 0 —160° | 160°
0| —7/210.4318 |0.2435 | —225° | 45°
05 |0 —0.0203 | —0.0934 | —45° | 225°
O4|7/2 |0 0.4331 —110° | 170°
05| —7/2|0 0 —100° | 100°
O |m/2 |0 0.5625 | —266° | 266°

Fig. 4. Top: Slices of the pre-failure PUMA workspace W1 by the planes z = 0 (b) and
z =0 (c). (a): Combined picture of workspace with three slices z = 0, y = 0, z = 0.
Yellow color: areas accessible the angles satisfying joint limits given in Table 3. Red
color: real solutions violating joint limits. Dark blue region: inaccessible (Color figure
online).

The PUMA has joint limits that reduce its workspaces significantly. The
limits we use for this example appear in Table 3. Because joint limits are written
as inequalities 8; yin, < 0; < 0 1maz, they are not algebraic equations. We simply
use these joint limits in post-processing, only selecting the suitable joint angles
among all real solutions.

Results for various workspace computations are shown in Fig.4. These data
are based on 10* points in (x,y, z) space. Of particular interest is the presence of
voids inside of workspaces, plotted by gridding the Monte Carlo data. Unreach-
able area is represented by the dark blue color. The red and yellow colors show
the accessible work space, with the yellow areas being accessible only if the joint
limits are satisfied. The resulting workspace is essentially a torus, although the
realization we have chosen makes it hard to visualize as a volume in the 3D
space, because of the relative narrowness of the “hole”. Instead, we have chosen
to represent the workspace through the slices. Two slices by the planes x = 0
and z = 0 are shown in the top of the figure, and the combined figure presenting
the slices is shown in the bottom. The voids in W; come from the offsets of the
arm, and they expand for cooperating robots. Our results show that great care
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Fig. 5. Considering grasping on the second link to restore workspace after failure of
joint 2 of a PUMA robot. (a) Measurement of the intersection workspace |Wn|, as a
function of §. (b)—(c) Contours of the objective function {2 versus (d,a) for 3D coop-
erating robots. Note that for the case (a), A = 0 and the objective function 2 is equal
to the measure of post-failure workspace |W]|.

needs to be taken in designing and arranging robotic arms for cooperation, as it
may lead to large inaccessible regions of workspace.

We also present the plot of objective function versus parameters § and a in
Fig.5. To calculate {2y, we compute each of the workspaces Wy, Wn and Wy.
For the purposes of generating this figure, Wn is computed over a discretization
of 0 < § < 1.8 into 16 values. Finally, we compute W, for a particular value
of § and a. The results are repeated over a 16 x 16 regular grid of 0 < ¢ < 1.8,
and 0 < a < 1, and considering grasping the failed robot on each of the three
possible links. Thus, the total number of parameter combinations we considered
for Wy is 7.68 - 10°.

The {2y landscapes presented in Fig.5 for the PUMA robot are similar to
those for the 2D planar robot above in Fig.3. Because each joint could fail
independently of the others, we consider a grasping location for each link of the
robot; hence, we have an objective function landscape for each of the three links
of the PUMA. However, the landscapes for each joint are similar, so only those
for the second link are presented here.

As with the 2D example above, the weighting factor A plays a crucial role in
optimizing. The limiting cases of A = 1 and A = 0 return simply (W7 — |Wn|)
or |Wy| respectively. The maximum values of {2 occur with § ~ 0.9 m between
the robots. Around A = 1/3, we put more emphasis on increasing the remainder
of workspace accessible in grasping configuration; {2 clearly indicates to grasp
near the end of the second link. In any case, the optimal distance and grasping
location depends on the link and on A, making user preference crucial in the
optimization procedure.

6 Conclusion

We used homotopy continuation, as implemented in Bertini, to estimate the
size of workspaces, the intersection of workspaces, and post-failure grasping
workspaces in the case of having two serial robots placed near one another,
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in two and three dimensions. We also solve the problem of the optimal config-
uration for these robots for one example of a user-defined objective function.
A general algorithm for solving the problem of finding optimal placement and
configuration of two such robots was also presented.

By using algebraic geometric methods, we avoid issues such as isolated
domains and multiple solutions to inverse kinematics equations. Knowing mul-
tiple solutions may be important, especially for obstacle avoidance, where one
or more solutions may not be collision free. The homotopy continuation algo-
rithms will not encounter any difficulty in that case, whereas the Jacobian control
method will need to be augmented with the specific knowledge from the problem
and yet may fail to find all isolated solutions. Our algorithm can be extended to
more general cases. For example, it will be relatively straightforward to account
for different designs for the two robots (including unequal link lengths) in the
objective function. Also, methodological choices in the algorithm, such as the
use of homotopy continuation, have been made to make the generalization to
higher-dimensional workspaces possible.

The method we present could be complemented by the software in [31];
while their focus is not on failure tolerance, their interactive CAD workspace
mapper uses a Jacobian method to find singularities and determine workspace
boundaries of parallel manipulators, which could be supplemented by homotopy
continuation.

It should be noted that the methods of numerical algebraic geometry may
be used to compute complex positive-dimensional components of the solutions
sets of polynomial systems. Until recently, it was nearly impossible to detect
positive-dimensional real solutions. However, recent advances such as the soft-
ware Bertini_real [32,33] which implements numerical real algebraic curve and
surface decompositions, have made it possible to compute algebraic objects
including singularities. Above dimension two, the curse of dimensionality con-
tinues to constrain techniques.
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Abstract. Globally, the solution set of a system of polynomial equations
with complex coefficients can be decomposed into irreducible compo-
nents. Using numerical algebraic geometry, each irreducible component
is represented using a witness set thereby yielding a numerical irreducible
decomposition of the solution set. Locally, the irreducible decomposition
can be refined to produce a local irreducible decomposition. We define
local witness sets and describe a numerical algebraic geometric approach
for computing a numerical local irreducible decomposition for polynomial
systems. Several examples are presented.

Keywords: Numerical algebraic geometry -+ Numerical irreducible
decomposition * Local irreducible decomposition + Numerical local irre-
ducible decomposition

1 Introduction

For a polynomial system f : CV — C", the algebraic set defined by f is the
set V(f) = {x € CV | f(z) =0} . An algebraic set V is reducible if there exist
nonempty algebraic sets V;,Vo C V such that V= V3 UV, and for i # j,
Vi ¢ V;. It V is not reducible, it is irreducible. For V(f), there exist irreducible
algebraic sets V1, ..., Vi, called irreducible components, such that V(f) = Ule V;
and V; ¢ |, £ V;. The irreducible components Vi, ..., V, are said to form the
irreducible decomposition of V(f).

A fundamental computation in numerical algebraic geometry is the numerical
irreducible decomposition (NID), that is, computing a witness set for each of the
irreducible components; e.g., see [2, Chap.10]. For an irreducible component
V C V(f) € CN of dimension d and degree r, a witness set for V is the triple
{f,L,W} where £L C CV, called a witness slice, is a general linear space of
codimension d and W =V N L, called a witness point set, is a set of r points.
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One can naturally extend the global notions of reducibility, irreducible com-
ponents, and irreducible decomposition to the local case (e.g., see [5, Chap. B]).
Moreover, one can locally extend to the case that f is holomorphic in an open
neighborhood. Our main contribution is to extend the numerical algebraic geo-
metric notions to the local case via local witness sets and a numerical local irre-
ducible decomposition, defined in Sect. 2, the computation of which is described
in Sect. 3, and demonstrated on several examples in Sect. 4 using Bertini [1].

2 Local Witness Sets

Let f : CV — C" be a polynomial system, Vi,..., V) be the irreducible com-
ponents of V(f), and z* € V(f). If z* € V;, then V; localized at z* can be
decomposed uniquely, up to reordering, into a finite union of locally irreducible
components T; 1, . . ., Tj m,, €.8., see Theorem 7 of [5, Chap. B]. If z* ¢ V;, then V;
localized at x* is empty, i.e., m; = 0. Hence, the local irreducible decomposition
of V(f) at o* is UL, U, Trj.

2

Example 1. Consider the irreducible polynomial f(z) = 22 — 22 + 3. Hence, for
a general 2* € V(f) C C2?, the irreducible curve V(f) is locally irreducible at z*.
The origin arises as a self-crossing of the curve V(f) and hence decomposes into
two locally irreducible components at the origin, say

x1 near O}.

T1,1, T2 = {(ml,i\/ﬁ/\/i>

As with the global case, where witness sets form the key data structure in
formulating a NID, local witness sets will be used to formulate a numerical local
irreducible decomposition (NLID). The two key differences between a witness set
and a local witness set, which we formally define below, are:

1. a local witness set is only well-defined on a neighborhood of z*; and
2. all points in the local witness point set converge to z* as the witness slice
deforms to slice through x*.

The key to understanding the local structure of an analytic set is the
local parameterization theorem (see [5, Chap. C,D,E] and [6]). For a pure d-
dimensional reduced analytic set V C CV containing =*, the local parameteri-
zation theorem implies (among other things) that there is an open ball i/ C CV
centered at z* such that given a general linear projection 7 : CV — C? and any
open ball Be(m(z*)) with € > 0 small enough, the map 7 is a proper branched
covering from V := VN~ (B.(w(z*))) NU onto B (w(z*)). Moreover, the sheet
number is the multiplicity of the point z* on V', denoted pi,».

Remark 1. Since m is proper, the Remmert proper mapping theorem implies
that there is an analytic set R C Be(m(z*)) with dim R < d such that To\r—1(R)

is an unbranched f1,+-sheeted cover from V\x~1(R) onto B (w(z*))\R. Hence, if
V is locally irreducible at z*, then V\7~!(R) is connected and the monodromy
action on any fiber of To\r-1(R) is transitive.
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The local parameterization theorem is a local version of the Noether Normal-
ization Theorem. For a pure d-dimensional algebraic set V' C C¥V, the Noether
Normalization Theorem states that the restriction 7y to V of a general linear
projection m : CV — C? is a proper degV-to-one map of V onto C?¢. Given a
general codimension d linear space £ containing z*, it follows that LNV consists
of z* and degV — pug« smooth points. Given a preassigned open set O around
LNV, the intersection of any d codimensional linear space £’ sufficiently near £
will have £'NV C O. By choosing O as the intersection of V with deg V — iz« +1
disjoint small open balls, we see that the £'NV has precisely u,« points near z*.

Definition 1. Let f : CN — C" be a system of functions which are holomorphic
in a neighborhood of x* € CN with f(z*) = 0. Let V.C C¥ be a locally irreducible
component of V(f) at x* of dimension d and {y,...,0q : CN — C be general
linear polynomials such that ¢;(z*) = 0. For u € C%, let L, C CV be the linear
space defined by £;(x) = u; fori=1,...,d. Alocal witness set for V is the triple
{f, Lo, W} defined in a neighborhood U C C? of the origin for general u* € U
and W is the finite subset of points in V N Ly« which are the start points of the
paths defined by V N Ly where u : [0,1] — U is any path with u(0) = 0 and
u(1l) = u* which converge to x* ast — 0.

Remark 2. The choice of points W inside of V N L~ is well-defined and equal
to the multiplicity p.- of V' at x*. We call pg« the local degree of V' at z*.

Remark 3. When V is a curve, the neighborhood U is often referred to as the
endgame operating zone, e.g., see [2, Sect. 3.3.1]. For all cases, we will call U the
generalized endgame operating zone.

As Remark 1 suggests, one can perform monodromy loops using local witness
sets similarly to classical witness sets. Local witness sets can also be used to
sample components and to perform local membership testing.

In particular, a numerical local irreducible decomposition consists of a formal
union of local witness sets, one for each local irreducible component.

Ezample 2. Reconsider f from Examplel with 2* = (0,0). For simplicity, we
take ¢1(x) = x1 which then defines the neighborhood U = {u € C | |u| < 1/2}.
We arbitrarily select u* = 1/6 which implies that

vinnee ={(16/3-2 ). (he/12 )}

As u (and hence z) deforms to 0, the first two points in V(f) N L, converge
to x* while the last two converge to (0, %1), respectively. For local irreducible
components 17 1 and T4 o of V(f) at =¥, local witness sets are

Wl:{fﬁﬁu*’{g, %7§>}} andw2:{f,£m,{<%ﬁ 1-¢ )}}7

with each 77 ; having local degree 1. Since T7; U T} 2 form a local irreducible
decomposition of V(f) at «*, the formal union Wy U W, is a NLID.
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3 Computing Numerical Local Irreducible
Decompositions

When decomposing a pure-dimensional set into its irreducible components, one
simplification is to reduce down to the curve case. That is, if V C CV is pure
d-dimensional and M C C¥ is a general linear space of codimension d — 1, then
the irreducible components of V' correspond with the irreducible components
of V"N M. Unfortunately, this need not hold for the local case.

Example 3. Consider V = V(2% + 23 + 23) C C3 which is irreducible at the
origin. For a general complex plane £ = V(a1x1 + asxs — x3) through the origin,
it is easy to check that V' N L consists of two lines through the origin.

The following outlines a procedure for computing a NID that follows from
Sect. 2. We assume that we are given a polynomial system f : CV — C" and a
point z* € V(f). Since we can loop over the irreducible components of V(f), the
key computation is to compute the NLID for an irreducible component V' C V()
given a witness set {f, £, W} for V with d = dim V.

1. Select random linear polynomials ¢; : CV — C with £;(z*) = 0.

2. Pick random u* € C? in the generalized endgame operating zone. Construct
the linear spaces £, and L defined by ¢; = «} and ¢; = 0, respectively.
Compute W’ = VN L,~ via the homotopy defined by VN (t- L+ (1—1t) - Lyx).

3. Compute W, consisting of points w € W’ such that the path defined by the
homotopy V N L.+ starting at w at t =1 limit to * as t — 0.

4. Use monodromy loops inside the generalized endgame operating zone to com-
pute the local monodromy group which partitions W« = Wy U--- U W. The
NLID for V at z* is defined by the formal union JI_,{f, Lo+, W;}.

Remark 4. The key to performing the same computation in the holomorphic case
is to compute the finite set W« in Item 3. The number of such points in W~ can
be computed via a local multiplicity computation using Macaulay dual spaces
[3,9] in certain cases. For example, if 2* € CY and f: CN — CN~9 is a system
of holomorphic functions at 2* such that the local dimension of V(f) at z* is d,
it follows from [4, pg. 158] that the multiplicity of {f,¢1,...,¢q} at z* is equal
to the number of points in W«

4 Examples

4.1 Illustrative Example

Consider the irreducible curve V = V(2§ + 223 — 3z122 (21 — 22) (22 — 27)) C C?
with Fig. 1(a) plotting the real points of V and a* = (0,0). For simplicity, we
take ¢1(x) = 2x1 + 3xq, u* = 1/8, and L, defined by ¢1(z) = u. Hence, V N L,»
consists of five points, with four of the paths defined by the homotopy V N Ly
limiting to z* as ¢ — 0. Therefore, W,~ in Item 3 consists of 4 points.

We now perform monodromy loops which, in the curve case, means looping
around 0. We observe that this loop breaks into 3 distinct cycles, two remain on
their own branch and two interchange. Therefore, there are 3 local irreducible
components as shown in Fig. 1(b), two of local degree 1 and one of local degree 2.
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Fig. 1. Plot of (a) the real points of an irreducible quintic curve and (b) the real points
near the origin, which locally decomposes into three components.

4.2 Local Irreducibility and Real Solutions

If the polynomial system f has real coefficients, the complex conjugate, conj(V'),
of an irreducible component V' C V(f) is also an irreducible component. If
V' # conj(V), then all real points on V' must be contained in V' N conj(V') where
dimV > dim(V N conj(V)). For example, the “home” position of a cubic-center
12-bar mechanism [11], as presented in [10, Fig. 3], can be shown to be rigid,
i.e., isolated over the real numbers, by observing that the only two irreducible
components containing the “home” position are two sextic curves which are
conjugates of each other [7].

The NID is not always sufficient to reveal structure at singularities. Consider
the Whitney umbrella V = V(2% — 23z3) C C3, which is an irreducible surface.
For a random point on the “handle,” i.e., z* = (0,0, «) for random « € C, the
NLID reveals that V at z* has two local irreducible components, each of local
degree 1. At the origin, the NLID reveals that it is irreducible of local degree 2.
When a < 0, say 2* = (0,0, —1), global information is not enough to observe that
the real local dimension is smaller than the complex local dimension. However,
the local viewpoint does indeed reveal that the two local irreducible components
are complex conjugates of each other showing a smaller real local dimension.

4.3 Foldable Griffis-Duffy Platform

In our last example, we consider the “folded” pose, as shown in [8, Fig. 3], of
a foldable Griffis-Duffy platform with the polynomial system available at [1]
(see also [2, Chap.8]). Our local approach verifies that the local irreducible
decomposition of the “folded” pose consists of three double lines and a self-
crossing of a quartic curve as mentioned in [8,10].
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Abstract. Quadrics in the Grassmannian of lines in 3-space form a
19-dimensional projective space. We study the subvariety of coisotropic
hypersurfaces. Following Gel’fand, Kapranov and Zelevinsky, it decom-
poses into Chow forms of plane conics, Chow forms of pairs of lines, and
Hurwitz forms of quadric surfaces. We compute the ideals of these loci.
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1 Introduction

The Chow variety, introduced in 1937 by Chow and van der Waerden [4], parame-
terizes algebraic cycles of any fixed dimension and degree in a projective space,
each given by its Chow form. The case of curves in IP® goes back to an 1848
paper by Cayley [3]. A fundamental problem, addressed by Green and Morri-
son [8] as well as Gel’fand, Kapranov and Zelevinsky [6, Sect. 4.3], is to describe
the equations defining Chow varieties. We present a definitive computational
solution for the smallest non-trivial case, namely for cycles of dimension 1 and
degree 2 in IP3.

The Chow form of a cycle of degree 2 is a quadratic form in the Pliicker
coordinates of the Grassmannian G(2, 4) of lines in IP?. Such a quadric in G(2, 4)
represents the set of all lines that intersect the given cycle. Quadratic forms
in Pliicker coordinates form a projective space IP'?. The Chow variety we are
interested in, denoted G(2,2,4), is the set of all Chow forms in that IP*?. The
aim of this note is to make the concepts in [3,4,8] and [6, Sect.4.3] completely
explicit.

We start with the 9-dimensional subvariety of IP'® whose points are the
coisotropic quadrics in G(2,4). By [6, Sect. 4.3, Theorem 3.14], this decomposes
as the Chow variety and the variety of Hurwitz forms [9], representing lines
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that are tangent to a quadric surface in IP?. Section 2 studies the ideal gener-
ated by the coisotropy conditions. We work in a polynomial ring in 20 variables,
one for each quadratic Pliicker monomial on G(2,4) minus one for the Pliicker
relation. We derive the coisotropic ideal from the differential characterization
of coisotropy. Proposition 1 exhibits the decomposition of this ideal into three
minimal primes. In particular, this shows that the coisotropic ideal is radical,
and it hence resolves the degree 2 case of a problem posed in 1986 by Green and
Morrison [8]. They wrote: ‘We do not know whether [the differential characteri-
zation of coisotropy] generates the full ideal of these Chow variables.’

Section 3 derives the radical ideal of the Chow variety G(2,2,4) in P*°.
Its two minimal primes represent Chow forms of plane conics and Chow forms
of pairs of lines. We also study the characterization of Chow forms among all
coisotropic quadrics by the vanishing of certain differential forms. These repre-
sent the integrability of the a-distribution in [6, Sect. 4.3, Theorem 3.22]. After
saturation by the irrelevant ideal, the integrability ideal is found to be radical.

2 Coisotropic Quadrics

The Grassmannian G(2,4) is a quadric in IP°. Tts points are lines in IP*. We rep-
resent these lines using dual Pliicker coordinates p = (po1, poz2, Pos, P12, P13, P23)
subject to the Pliicker relation pg1pas — poep13 + pospi2. Following [9, Sect. 2], by
dual coordinates we mean that p;; is the ij-minor of a 2 x 4-matrix whose rows
span the line. The generic quadric in G(2,4) is written as a generic quadratic
form

Co €1 C2 C3 C4 Cj

€1 Cg C7 C8 C9 Cip

C2 C7 C11 C12 C13 C14 T

Qlp) = p g g craciscger | P )
C4 C9 C13 Ci6 C18 C19
Cs C10 C14 C17 C19 C20

The quadric Q(p) is an element in V := C[p]a/C{po1p23 — Po2p13 + Posp12} =~
C*'/C. Hence, ¢ = (g, c1, . . ., ca0) serves as homogeneous coordinates on IP*? =
IP(V), which — due to the Pliicker relation — need to be understood modulo

cs—c5+ N, CcgrCo— N, Cla > Cla+ A (2)

The coordinate ring Q[V] is a subring of Q]cg, c1, - . ., ¢20], namely it is the invari-
ant ring of the additive group action (2). Hence Q[V] is the polynomial ring in
20 variables cp,C1,C2,C3,Cq,C5 — C12,Cg, C7,C8,C9g + C12,C10, C11,C13, - - -, C20-

We are interested in the ¢’s that lead to coisotropic hypersurfaces of G(2,4).
For these, the tangent space at any point ¢, considered as a subspace of T;G(2,4)
= Hom(¢, €*/¢), has the form {¢ | ¢(a) = 0} + {p | im(p) € M}, for some a €
?\{0} and some plane M in €*/¢. By [6, Sect. 4.3, (3.24)], the quadric hypersur-
face {Q(p) = 0} in G(2,4) is coisotropic if and only if there exist s,t € C such
that
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0Q 9Q 9Q 9Q  9Q 9Q

— 5.Q+t- - (3
Opo1 Opas  Opo2 Opiz  Opos Opia 5-Q+t-(po1p23 — Po2p13 + pospiz) - (3)

Equivalently, the vector (t,s,—1)7 is in the kernel of the 21x3 matrix in Fig. 1.
The 3 x 3 minors of this matrix are all in the subring Q[V]. The coisotropic ideal I
is the ideal of Q[V] generated by these minors. The subscheme V(1) of IP'? =
IP(V) represents all coisotropic hypersurfaces {Q = 0} of degree two in G(2,4).
Using computations with Maple and Macaulay2 [7], we found that I has codi-
mension 10, degree 92 and is minimally generated by 175 cubics. Besides, V(1)
is the reduced union of three components, of dimensions nine, eight and five.

Proposition 1. The coisotropic ideal is the intersection of three prime ideals:

1 = PHurwitZ N PChowLines N PSquares- (4)

So, I is radical. The prime Phurwitz has codimension 10 and degree 92, it is min-
imally generated by 20 quadrics, and its variety V (Puurwitz) consists of Hurwitz
forms of quadric surfaces in IP?. The prime PchowLines has codimension 11 and
degree 140, it is minimally generated by 265 cubics, and V(PchowLines) CONSists
of Chow forms of pairs of lines in IP>. The prime Psquares has codimension 14
and degree 32, it is minimally generated by 84 quadrics, and V (Psquares) cONSists
of all quadrics Q(p) that are squares modulo the Plicker relation.

0 co 2cocs — 2¢1¢4 + 2c2c3

0 ¢ CoC10 — C1C9 + Cacg + €3C7 — caCe + C1C5

0 co CpC14 — C1C13 + C2C12 + C3C11 — C4C7 + C2C5

0 c3  cocir —cici6 + cac15 + c3c12 — cacs + c3cs

0 ca cocig — cici1s + c2c16 + €3C13 — C4C9 + CaCs

1 c5 CoCa0 — C1C19 + Cac17 + C3C14 — Cacio + €2

0 cg 2c1c10 — 2¢6c9 + 2c7c8

0 c¢r cic14 — cec13 + crc12 + €8C11 + C2C10 — C7Cy
0 cs cic17 — cgci6 + crc15 + CgC12 + €3C10 — €8Cy
-1 co C1C19 — C6C18 + C7C16 + C8C13 + CaCio — Cg

0 ci10 ci1c20 — ceC19 + crC17 + C8C1a — C9C10 + C5C10
0 c11 2cac14 — 2c7C13 + 2c11C12

1 ci2 2017 — ¢rC16 + Ci1Cis + C3C1a — CsC13 + Cla

0 c13 cac19 — crc18 + c11C16 + CaC14 + C12C13 — C9C13
0 c14 c2c20 — c7C19 + C11C17 + C12C14 + C5C14 — C10C13
0 ci5 2c3c17 — 2c8¢16 + 2c12C15

0 c16 c3c19 — cgC1g + caC17 + C12C16 — CoCl6 + C13C15
0 c17 e3c20 — cgc19 + c12€17 + €5C17 — C10C16 + C14C15
0 cis 2cqc19 — 2c9c18 + 2c13C16

0 c19 cac20 — coc19 + C5C19 — C10C18 + C13C17 + C14C16
0 c20 2c5c20 — 2c10C19 + 2C14C17

Fig. 1. This matrix has rank < 2 if and only if the quadric given by ¢ is coisotropic.
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This proposition answers a question due to Green and Morrison, who had
asked in [8] whether I is radical. To derive the prime decomposition (4), we com-
puted the three prime ideals as kernels of homomorphisms of polynomial rings,
each expressing the relevant geometric condition. This construction ensures that
the ideals are prime. We then verified that their intersection equals I. For details,
check our computations, using the link given at the end of this article.

From the geometric perspective of [6], the third prime Psquares 1S extraneous,
because nonreduced hypersurfaces in G(2,4) are excluded by Gel’fand, Kapranov
and Zelevinsky. Theorem 3.14 in [6, Sect. 4.3] concerns irreducible hypersurfaces,
and the identification of Chow forms within the coisotropic hypersurfaces [6,
Sect. 4.3, Theorem 3.22] assumes the corresponding polynomial to be squarefree.
With this, the following would be the correct ideal for the coisotropic variety
in IP19:

PHurwitz N PChowLincs = (I : PSquarcs) . (5)

This means that the reduced coisotropic quadrics in G(2,4) are either Chow
forms of curves or Hurwitz forms of surfaces. The ideal in (5) has codimension 10,
degree 92, and is minimally generated by 175 cubics and 20 quartics in Q[V].
A slightly different point of view on the coisotropic ideal is presented in
a recent paper of Catanese [2]. He derives a variety in P?° = P(C[p]2) which
projects isomorphically onto our variety V(I) C P!. The center of projection
is the Pliicker quadric. To be precise, Proposition 4.1 in [2] states the following:
For every Q € C[p]2\C (po1p23 — po2p13 + posp12) satisfying (3) there is a unique
A € C such that the quadric Q)\ = Q + A (p01p23 — Po2p13 + pogplg) satisfies

0Qy 0Qx 0Qx 5QA+5Q,\ 0Qx

: - : : =1t - (Po1P23 — Po2P13 + Po3P12 6
Opor  Opas Opo2  Opi3 Opos  Op12 ( ) ( )

for some ¢ € C. This implies that V(I) is isomorphic to the variety of all Q €
IP(C[p]2)\{Po1p23—Po2p13+Pposp12 } satisfying (6). Let Iz be generated by the 2x2
minors of the 21 X 2 matrix that is obtained by deleting the middle column of the
matrix in Fig. 1. Then V' (I3) contains exactly those @ € IP(C[p]2) satistying (6),
and V(I) is the projection of V(I3) from the center (po1p23 — po2p1s + Pospi2)-
The ideal I has codimension 11, degree 92, and is minimally generated by 20
quadrics. Interestingly, Catanese shows furthermore in [2, Theorem 3.3] that a
hypersurface in G(2,4) is coisotropic if and only if it is selfdual in P5 with respect
to the inner product given by the Pliicker quadric.

3 The Chow Variety

In this section we study the Chow variety G(2,2,4) of one-dimensional algebraic
cycles of degree two in IP®. By [6, Sect.4.1, Example1.3], the Chow variety
(G(2,2,4) is the union of two irreducible components of dimension eight in P,
one corresponding to planar quadrics and the other to pairs of lines. Formally,
this means that G(2,2,4) = V(PchowConic) UV (PchowLines), Where PchowConic 1S
the homogeneous prime ideal in Q[V] whose variety comprises the Chow forms of



134 P. Biirgisser et al.

irreducible curves of degree two in IP3. The ideal Pepowconic has codimension 11
and degree 92, and it is minimally generated by 21 quadrics and 35 cubics. The
radical ideal PchowConic N PchowLines has codimension 11, degree 232 = 92 + 140,
and it is minimally generated by 230 cubics.

Since G(2,2,4) should be contained in the coisotropic variety V' (I), it seems
that PchowConic 18 missing from the decomposition (4). Here is the explanation:

Proposition 2. Every Chow form of a plane conic in IP* is also a Hurwitz form.
In SymbOZS; Prurwitz € PchowConic and thus V(PChowConic) C V(PHurwitz)~

Our first proof is by computer: just check the inclusion of ideals in Macaulay2.
For a conceptual proof, we consider a 4 x 4-symmetric matrix M = My + eMy,
where rank(My) = 1. By [9, Equation (1)], the Hurwitz form of the corresponding
quadric surface in IP? is Q(p) = p(A2M)p”. Divide by € and let € — 0. The limit
is the Chow form of the plane conic defined by restricting M; to ker(My) ~ P2.
This type of degeneration is familiar from the study of complete quadrics [5].
Proposition 2 explains why the locus of irreducible curves is not visible in (4).

Gel'fand, Kapranov and Zelevinsky [6, Sect.4.3] introduce a class of dif-
ferential forms in order to discriminate Chow forms among all coisotropic
hypersurfaces. In their setup, these forms represent the integrability of the
a-distribution &, z. We shall apply the tools of computational commutative
algebra to shed some light on the characterization of Chow forms via integrabil-
ity of a-distributions.

For this, we use local affine coordinates instead of Pliicker coordinates.
A point in the Grassmannian G(2,4) is represented as the row space of the

matrix
10 az as
(o 1 b, b3>’ Q

We express the quadrics @ in (1) in terms of the local coordinates as, as, bs, bs,
by substituting the Pliicker coordinates with the minors of the matrix (7), i.e.,

po1 = 1, po2 = ba, poz = b3, P12 = —ag, P13 = —as, P23 = agbz — baaz. (8)

We consider the following differential 1-forms on affine 4-space:

Q 2Q oQ oQ
al = By 2+8—da3, ol = o de2+8—db3,
_ 0, 0Q ~0Q oQ
2, i 2, _v
Qq 8[)2 as + ab dag, Qg o 8[)2 dbg + 8() db3

By taking wedge products, we derive the 16 differential 4-forms
dQ Adas ANaf = qijr - dag Adag Adby Adbs  for i k1€ {1,2}.  (9)

Here the expressions ¢;;; are certain polynomials in Q[V][as, as, b, bs].
Theorems 3.19 and 3.22 in [6, Sect.4.3] state that a squarefree coisotropic
quadric @ is a Chow form if and only if all 16 coefficients g;;;; are multiples
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of . By taking normal forms of the polynomials g;;z; modulo the principal
ideal (@), we obtain a collection of 720 homogeneous polynomials in ¢. Among
these, 58 have degree three, 340 have degree four, and 322 have degree five. The
aforementioned result implies that these 720 polynomials cut out G(2,2,4) as a
subset of IP*9.

The integrability ideal J C Q[V] is generated by these 720 polynomials and
their analogues from other affine charts of the Grassmannian, obtained by per-
muting columns in (7). We know that V' (J) equals the union of G(2,2,4) with
all double hyperplanes in G(2,4) (corresponding to Psguares) Set-theoretically.
Maple, Macaulay2 and Magma verified for us that it holds scheme-theoretically:

Proposition 3. The integrability ideal J is minimally generated by 210 cubics.
Writing m for the irrelevant ideal (co, c1, ..., c20) of Q[V], we have

\/j = (J : m) = PChowConic N PChowLines N PSquares- (10)

4 Conclusion

We reported on computational experiments with hypersurfaces in the Grass-
mannian G(2,4) that are associated to curves and surfaces in IP?. For degree
2, all relevant parameter spaces were described by explicit polynomials in 20
variables. All ideals and computations discussed in this note can be obtained at

www3.math.tu-berlin.de/algebra/static/pluecker/

Many possibilities exist for future work. Obvious next milestones are the
ideals for the Chow varieties of degree 3 cycles in IP?, and degree 2 cycles in IP4.
Methods from representation theory promise a compact encoding of their gener-
ators, in terms of irreducible GL(4)-modules. Another question we aim to pursue
is motivated by the geometry of condition numbers [1]: express the volume of a
tubular neighborhood of a coisotropic quadric in G(2,4) as a function of c.
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Abstract. Let X C P" be a generically reduced projective scheme. A
fundamental goal in computational algebraic geometry is to compute
information about X even when defining equations for X are not known.
We use numerical algebraic geometry to develop a test for deciding if X
is arithmetically Gorenstein and apply it to three secant varieties.

1 Introduction

When the defining ideal of a generically reduced projective scheme X C P" is
unknown, numerical methods based on sample points may be used to deter-
mine properties of X. In [4], numerical algebraic geometry was used to decide
if X is arithmetically Cohen-Macaulay based on the Hilbert functions of sub-
schemes of X. In our present work, we expand this to decide if X is arithmetically
Gorenstein. Our method relies on numerically interpolating points approximately
lying on a general curve section of X as well as a witness point set for X, which is
defined in Sect. 2.4. This test does not assume that one has access to polynomials
vanishing on X, e.g., X may be the image of an algebraic set under a polynomial
map. In such cases, our method is an example of numerical elimination theory
(see [2, Chap. 16] and [3]).

Much of the literature regarding arithmetically Gorenstein schemes focuses
on the case in which the codimension is at most 3 (see, e.g., [6,8,10]), but
less is known for larger codimensions. Our test is applicable to schemes of any
codimension. For example, Sects. 4.2 and 4.3 consider schemes of codimension 6.

The rest of this article is organized as follows. In Sect. 2, we provide prereq-
uisite background material. In Sect. 3, we describe a numerical test for whether
or not a scheme is arithmetically Gorenstein. In Sect. 4, we demonstrate this test
on three examples.
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2 Background

2.1 Arithmetically Cohen-Macaulay and Arithmetically Gorenstein

If X C P” is a projective scheme with ideal sheaf Tx, then X is said to be
arithmetically Cohen-Macaulay (aCM) if

H(Zx)=0 for 1<i<dimX

where H!(Zx) is the i'" cohomology module of Zx. In particular, all zero-
dimensional schemes are aCM and every aCM scheme is pure-dimensional. If
X is aCM, then its Cohen-Macaulay type is the rank of the last free module in
a minimal free resolution of Zx. An aCM scheme X is said to be arithmetically
Gorenstein (aG) if X has Cohen-Macaulay type 1.

We will make use of the following fact about Cohen-Macaulay type [11, Corol-
lary 1.3.8].

Theorem 1. Let X C P" be an aCM scheme with dim X > 1 and H C P" be
a general hypersurface of degree d > 1. Then X N H is aCM and has the same
Cohen-Macaulay type as X.

2.2 Hilbert Functions

Suppose that X C P" is a nonempty scheme and consider the corresponding
homogeneous ideal I C Clzy, ..., z,]. Let Clxo,...,z,]; denote the vector space
of homogeneous polynomials of degree ¢, which has dimension ("jt), and let I; =
INClxg,...,x,]t. Then, the Hilbert function of X is the function HFx : Z — Z
defined by

0 ift <0

HFx(t) = { ("tﬂ) —dimI; otherwise.

The Hilbert series of X, denoted HSx, is the generating function of HF,
namely,

HSx(t)=> HFx(j)-t.
j=0

There is a polynomial P(t) = co+ c1t + cot? 4+ - -+ ¢,t” with deg X = P(1) such
that

P(t)
HSx(t) = (1— f)dmX+1°
The vector of coefficients [co ¢1 ca -+ ¢] is called the h-vector of X. If X is

a@G, i.e., aCM of Cohen-Macaulay type 1, then the h-vector of X is symmetric:
¢; = ¢r—i [13, Theorem 4.1]. Therefore, two necessary conditions on X to be aG
are pure-dimensionality and a symmetric h-vector. These conditions can be used
to identify schemes which are not aG, e.g., see Sect.4.2.
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2.3 Cayley-Bacharach Property

Let Z C P™ be a nonempty reduced zero-dimensional scheme with h-vector
[co ¢1 ca -+ ¢ ]. The scheme Z is said to have the Cayley-Bacharach (C-B)
property if, for every subset Y C Z with |Y| = |Z|-1, HFy (r—1) = HFz(r—1).
The following, which is [5, Theorem 5], relates the C-B property to aG schemes.

Theorem 2. If Z C P" is a nonempty reduced zero-dimensional scheme, Z is
arithmetically Gorenstein if and only if Z has the Cayley-Bacharach property
and its h-vector is symmetric.

2.4 Witness Point Sets

For a pure-dimensional generically reduced scheme X C P", let £ C P” be a
general linear space with dim £ = codim X. The set W = X N L is called a
witness point set for X.

3 Method

For a pure-dimensional generically reduced scheme X C P", one can determine
that X is arithmetically Gorenstein by combining Theorems 1 and 2. We describe
the zero-dimensional and positive-dimensional cases below. A generalization of
this approach, using Macaulay dual spaces, for pure-dimensional schemes that
are not generically reduced is currently being written by the authors and will be
presented elsewhere.

3.1 Reduced Zero-Dimensional Schemes

If dim X = 0, we can simply apply Theorem 2 to determine if X is aG. That
is, given a numerical approximation of each point in X, we use the numerical
interpolation approach described in [7] to compute the Hilbert function of X. In
particular, there is an integer px > 0, which is called the indez of regularity of
X, such that

OZHFx(—l) <1 =HFx(0) < e < HFx(px —1) < HFx(px) =HFx(pX +1) =... = |X‘

The h-vector for X is [co ¢1 -+ ¢,y ] where ¢, = HFx(t) — HFx(t — 1). Thus,
we can now test for symmetry of the h-vector, i.e., ¢; = ¢y ;.

If the h-vector is symmetric, we then test for the Cayley-Bacharach property.
That is, for each Y C X with [Y| = | X|—1, we use [7] to compute HFy (px —1).
If HFy(px — 1) = HFx(px — 1) for every such subset Y, then X has the C-B
property. Hence, if the h-vector is symmetric and X has the C-B property, then
X is aG.

Example 1. Consider X = {[0,1,1],[0,1,2],[0,1,3],[1,1,—1]} C P2 It is easy
to verify that px = 2 and the h-vector for X is [1 2 1], which is symmetric.
However, X does not have the Cayley-Bacharach property and thus is not aG,
since HFy (1) =2 # 3 = HFx(1) for Y = {[0,1,1],[0,1,2],[0, 1, 3]}.
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3.2 Generically Reduced Positive-Dimensional Schemes

If dim X > 1, Theorems 1 and 2 show that X is aG if and only if X is aCM and
a witness point set for X is aG, i.e., has a symmetric h-vector and has the C-B
property. We start with the witness point set condition and then summarize the
aCM test presented in [4].

Let W = X N L be a witness point set for X defined by the general linear
slice L. We apply the strategy of Sect.3.1 to W with one simplification for
deciding that W has the C-B property. This simplification arises from the fact
that witness point sets for an irreducible scheme have the so-called uniform
position property. That is, if X is irreducible, then W has the C-B property if
and only if HFy (ow — 1) = HFw (pw — 1) for any Y C W with |Y| = |W| - 1.
In general, if X has k irreducible components, say X1, ..., Xy with W; = X;NL,
then the witness point set W has the C-B property if and only if, fori =1,... k,
HFz (pw —1) = HFw(pw — 1) where Z; = U#i W; UY; for any Y; C W; with
|Yi| = [Wi| — 1.

If W is aG, then X is aG if and only if X is aCM. The arithmetically
Cohen-Macaulayness of X is decided using the approach of [4] by comparing the
Hilbert function of W and the Hilbert function of a general curve section of X
as follows. Let M C P™ be a general linear space with dim M = codim X + 1
and C = XNM, i.e., dimC = 1. By numerically sampling points approximately
lying on C, we compute HF¢(t) via [7] for t =1,..., pw + 1. The following is a
version of [4, Corollary 3.3] that decides the arithmetically Cohen-Macaulayness
of X via HFy and HF¢.

Theorem 3. With the setup given above, X is arithmetically Cohen-Macaulay
if and only if HFw (t) = HFo(t) — HFc(t —1) fort=1,...,pw + 1.

4 Examples

It has been speculated that the homogeneous coordinate ring of any secant vari-
ety of any Segre product of projective spaces is Cohen-Macaulay [12], but some
examples of such secant varieties are known to not be arithmetically Gorenstein
[9]. We demonstrate our test on two such secant varieties in Sects. 4.1 and 4.2.
Section 4.3 considers a secant variety of a Veronese variety.

4.1 o3(P! x P! x P! x P1)

Let X = o3(P' x P! x P! x P1) C P'®, which is the third secant variety to the
Segre product of P! x P! x P! x P! with dim X = 13. We computed a witness
point set W for X using Bertini [1] and found that deg X = 16. Using [7], we
compute

pw =6, HFy =1,3,6,10,13,15,16,16, and h=[1234321].
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Clearly, the h-vector for W is symmetric. Since X is irreducible, we selected one
subset Y C W consisting of 15 points. The witness point set W has the Cayley-
Bacharach property since HFy (5) = 15 = HFy(5) and thus we conclude W is
arithmetically Gorenstein by Theorem 2.

Next, we consider the arithmetically Cohen-Macaulayness of X . Let M C P15
be a general linear space with dim M = 3 and C' = X N M. Via sampling C, we
find that

HFs =1,4,10,20, 33, 48, 64, 80.

Therefore, by Theorem 3, X is arithmetically Cohen-Macaulay and, hence, we
can conclude it is arithmetically Gorenstein by Theorem 1. In fact, since X is
aCM, we can observe from H Fy, that two polynomials of degree 4 must vanish
on X. We found that these two polynomials generate the ideal of X meaning
that X is actually a complete intersection.

4.2 o3(P! x P! x P! x P?)

Let X = o3(P! x P! x P! x P?) C P?3, where dim X = 17. We computed a
witness point set W for X using Bertini and found that deg X = 316. Using
[7], we compute

pw =6, HFy =1,7,28,84,171,261,316,316, and h=[16 21 56 87 90 55].

Since h is not symmetric, we conclude that W and, hence, X are not arithmeti-
cally Gorenstein.

Remark 1. Although the lack of symmetry in h is sufficient to show that W is
not aG, we note that W satisfies the Cayley-Bacharach property and X is aCM.
Since X is aCM, we can observe from H Fy, that 39 polynomials of degree 4
must vanish on X which generate the ideal of X.

4.3 0'3(V4(P2))

Let v4 be the degree 4 Veronese embedding of P? into P'¢ and consider the
scheme X = o3(v4(P?)) C P4, where dim X = 8. We computed a witness point
set W for X using Bertini and found that deg X = 112. Using [7], we compute

pw =6, HFy =1,7,2884,105,111,112,112, and h=[1621562161].

Clearly, the h-vector for W is symmetric. Since X is irreducible, we selected one
subset Y C W consisting of 111 points. The witness point set W has the Cayley-
Bacharach property since HFy (5) = 111 = H Fy(5) and thus we conclude W is
arithmetically Gorenstein by Theorem 2.

Next, we consider the arithmetically Cohen-Macaulayness of X . Let M C P4
be a general linear space with dim M = 7 and C' = X N M. Via sampling C, we
find that

HF- =1,8,36,120, 225,336, 448, 560.
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Therefore, by Theorem 3, X is arithmetically Cohen-Macaulay and, hence, we
can conclude it is arithmetically Gorenstein by Theorem 1. In fact, since X is
aCM, we can observe from H Fy that 105 polynomials of degree 4 must vanish
on X and they generate the ideal of X.
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Abstract. We consider two problems. First let u be an element of
a quaternion algebra B over Q(v/d) such that u is non-central and
u? € Q. We relate the complexity of finding an element v’ such that
ww’ = —v'u and v? € Q to a fundamental problem studied earlier. For
the second problem assume that A 2 M, (Q(+/d)). We propose a poly-
nomial (randomized) algorithm which finds a non-central element [ € A
such that [> € Q. Our results rely on the connection between solving
quadratic forms over Q and splitting quaternion algebras over Q [4], and
Castel’s algorithm [1] which finds a rational solution to a non-degenerate
quadratic form over Q in 6 dimensions in randomized polynomial time.
We use these two results to construct a four dimensional subalgebra over
Q of A which is a quaternion algebra. We also apply our results to analyze
the complexity of constructing involutions.

1 Introduction

We consider the following algorithmic problem, which we call explicit isomor-
phism problem: let K be a field, A an associative algebra over K, given by
structure constants over K. Suppose that A is isomorphic to the full matrix
algebra M, (K). Construct explicitly an isomorphism A — M, (K). Or, equiva-
lently, give an irreducible A-module.

Recall, that for an algebra A over a field K and for a K-basis ay,...,a, of
A over Kthe products a;a; can be expressed as linear combinations of the a;:

aia; = Y5101 + Yij202 + 0+ VijmGm.

The elements v;;, € K are called structure constants. In this paper an algebra
is considered to be given by a collection of structure constants.

Let K be an algebraic number field. In [4] Rényai proved that the task of
factoring square-free integers can be reduced in randomized polynomial time
to the explicit isomorphism problem for quaternion algebras over K. Let us
recall the notion of an fl-algorithm. This is an algorithm which is allowed to
call oracles for factoring integers and polynomials over finite fields. The cost of
the call is the size of the input. In [2] Ivanyos, Rényai and Schicho proposed an

© Springer International Publishing Switzerland 2016
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ff-algorithm which solves the explicit isomorphism problem in polynomial time if
the dimension of the matrix algebra, the degree of K over Q and the discriminant
of K are bounded. The running time of the algorithm depends exponentially on
the first two parameters and polynomially on the third (note that in order for
the algorithm to be polynomial, it has to be polynomial in the logarithm of the
discriminant). An important research problem would be to create an algorithm
which would also run in polynomial time when the degree of the number field is
not assumed to be bounded or at least its running time depends polynomially on
the logarithm of the discriminant. We assume that A =2 M, (K). An interesting
approach to the explicit isomorphism problem would be to find a polynomial
algorithm which finds a subalgebra B of A which is isomorphic to M,,(Q). This
would immediately result in an algorithm which depends only polynomially on
the degree of the number field.

Let A = M5(Q(v/d)). In this short paper we give some results towards show-
ing that finding a subalgebra B of A which is isomorphic to M>(Q) is at least
as hard as factoring integers. On the other hand we can construct a four dimen-
sional subalgebra of A over Q which is a quaternion algebra. Our algorithm is
randomized and runs in polynomial time if one is allowed to call oracles for fac-
toring integers. Note that this does not follow from the algorithm of [2] since the
algorithm there is not polynomial in the logarithm of the discriminant.

We also give an application of our results. We construct a unitary involution
in a quaternion algebra over Q(v/d). Our algorithm is randomized and runs in
polynomial time assuming we can call oracles for integer factorisation. Note that
finding an involution of the first kind can be achieved in polynomial time [4].

2 Quadratic Forms

We denote by Hg («, 3) the quaternion algebra over the field K (char(K) # 2)
with parameters a, 3 (i.e. it has a quaternion basis 1,u,v,uv such that u? =
a,v? = 3 and uv = —vu). In this section we consider two problems. The first
question is the following. Let us assume that B is HQ( ﬁ)(a,b + 0\/3) where
a,b,c € Q. The quaternion basis is 1, u, v, uv. This means that «? is not just in
Q(+/d) but also in Q. What is the complexity of finding an element v’ such that
v"? € Q and v'u+uv’ = 0?7 One can assume that ¢ # 0 otherwise v would suffice.

Theorem 1. Let B = Hy g (a, b4cVd) given by: u? = a,v® = b+cv/d, where
a,b,c € Q,c # 0. Then finding an element v' such that uwv' +v'u = 0 and v'? is a
rational multiple of the identity is equivalent to the explicit isomorphism problem
for the quaternion algebra Hg(d — (2)2,a).

Proof. Since v’ anticommutes with u (i.e. uv’ + v'u = 0) it must be a Q(v/d)-
linear combination of v and uv. This means we have to search for sq, s2, 83,84 € Q
such that:

((s1 4+ sy/&)v + (83 + 34\/g)uv)2 0)
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Expanding this expression we obtain the following:

((s1 4 soVd)v + (s3 + s4Vd)uv)? = (2 + s2d + 25150V d) (b + cV/d)
— (82 + s2d + 25354V d)a(b + cVd)

In order for this to be rational, the coefficient of v/d has to be zero. So we
obtain the following equation:

c(s3 4 s3d) + 2bsy sy — ac(si + s3d) — 2abszsy = 0
First we divide by c. Note that ¢ is nonzero. Let f = b/c.
2 2 2, 2 _
s+ s3d +2fs182 — a(s3 + s3d) —2afszsa =0

Now consider the following change of variables: x := s1 + fsa, ¥y := $2,2 :=
s3 + Ss4f, w := s4. Note that the transition matrix of this change is an upper
triangular matrix with 1-s in the diagonal so it has determinant 1 (this means
that these two equations are “equivalent”). In terms of these new variables the
equation takes the following form:

22+ (d— fAy? —az® —a(d — f2)w? = 0.

Finding a solution of this is equivalent to finding a zero divisor in the quater-
nion algebra H(d — f?,a) (see [4] or [1, Chap. 1]). O

Now we turn to the following problem. Let us assume that A = M, (Q(v/d))
is given by structure constants. Can one find a non-central element in A whose
square is in Q in (randomized) polynomial time?

Proposition 1. Let A = Mg(@\/ﬁ) be given by structure constants. Then there
exists a randomized polynomial algorithm which finds a non-central element [,
such that I? € Q.

Proof. First we construct a quaternion basis w and w’ of A. We have the following;:
w2 =7+ tl\/g, w'2 = T2 +t2\/a

If ¢; or ty is 0 then w or w’ will be a suitable element. If rity 4+ rot; = 0
then ww’ satisfies the conditions above. From now on we assume that all three
quantities are non-zero. First observe that if ¢; or ¢y is zero then we are done
(w and w’ are not in the center since ww’ = —w'w). So from now on we assume
that neither of them is zero. In order to ensure that the square of [ is in Q(v/d)
it has to be in the Q(v/d)-subspace generated by w, w’ and ww’. The condition
12 € Q gives the following equation (s1,...,ss € Q):

((51 + soVd)w + (s34 saVd)w' + (s5 + sgVd)ww')? € Q
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If we expand this we obtain:
((51 + soVd)w + (s3 4+ saVd)w' + (s5 + seVd)ww')? = (s + ds3 + 25152V d)
(r1 + tlx/g) + (sg +ds? + 25354\/&)(7"2 + tgx/g) — (sg + dsg + 23556\/@
(7"1 + t1\/E>(T2 + tz\/(;)

In order for this to be in Q the coefficient of v/d has to be zero:

t15% + tidss + 215189 + tgs?), + tods? + 2rys3sy — (1t + t1r2)5§
—(Tltg + tl’l“g)dS% - 2(’(‘17"2 + tltgd)8586 =0

The left hand side of this equation is a quadratic form in 6 variables. First
we calculate its determinant. Its matrix is block diagonal with three 2 x 2 blocks.
So the determinant is the product of these determinants. The first determinant
is t2d — r? which is nonzero since d is not a square (note that t; is nonzero). The
second is t3d — 3 which is nonzero also (note that ¢, is nonzero). The third is
(r1ta+t1r2)2d—(r1ma+t1tad)? which is nonzero due to the same reason (note that
the coefficient of d is nonzero due to discussion at the beginning of the proof).
This is a non-degenerate quadratic form in dimension 6, so it can be solved by
Castel’s algorithm [1]. This algorithm runs in randomized polynomial time. Note
that it must have a solution since A is a full matrix algebra over Q(v/d). O

There is a nice consequence of this result.

Corollary 1. Let A = M>(Q(v/d)) be given by structure constants. Then one
can find a four dimensional subalgebra over Q which is a quaternion algebra by
a randomized algorithm which Tuns in polynomial time if we are allowed to call
oracles for factoring integers.

Proof. First we find an element [ such that /2 € Q. Then one finds an element
I' such that II' +I'l ' = 0 and I’ € Q. These can be done using the method
of Theorem 1 and Proposition 1 combined with the algorithm from [2]. The
only thing we need to show is that for any [ such that (> € Q there exists a
four dimensional subalgebra over Q which is a quaternion algebra and contains
l. Indeed, since splitting a quaternion algebra over Q can be achieved by an
ff-algorithm which runs is polynomial time [2].

There exists a subalgebra Ay in A which is isomorphic to M5(Q). In this
subalgebra there is an element I’ for which [ and I’ have the same minimal
polynomial over Q(v/d). This means there exists an m € A such that | = m~1'm.
Hence m~tAgm will contain . O

3 Constructing Involutions

In this section we consider the complexity of constructing involutions in a central
simple algebra. For definitions and basic facts from the theory of involutions the
reader is referred to [3].

Let A be a central simple algebra over K. Recall that an involution o is a
map o : A — A with the following properties:
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1. o(x +y) =o(x) + o(y) for all z,y € A.
o(xy) = o(y)o(x) for all z,y € A.
3. o(o(x)) =z for all x € A.

N

The restriction of an involution to the center of the algebra is an automor-
phism of K of order at most two. If it is the trivial automorphism then the
involution is called an involution of the first kind otherwise it is called uni-
tary or an involution of the second kind.

Let H be a quaternion algebra over a field of characteristic different from
2 given by structure constants. Then one can construct an involution of the
first kind easily. We compute a quaternion representation of the algebra. An
algorithm for this task is described in [4]. Let 1,4, j,k be a quaternion basis.
Then the following map is an involution of the first kind:

a+bi+cj+dk—a—bi—cj—dk

Let A = My(Q(v/d)) be given by structure constants. How hard is it to
construct a unitary involution on A? Theorem 1 would suggest that it is hard
to do in polynomial time. The reason for this is that if we compose a unitary
involution with an involution of the first kind, and look at the fixed elements, we
obtain a four dimensional subalgebra over @Q which is a quaternion algebra [3,
Proposition 2.22]Unfortunately it is not known whether finding such quaternion
subalgebra over Q is hard or not.

However using Corollary 1 one can construct a unitary involution in ran-
domized polynomial time if one is allowed to call oracles for factoring integers.

Corollary 2. Let A = My(Q(v/d)) be given by structure constants. One can
construct a unitary involution in randomized polynomial time with oracle calls
for factoring integers.

Proof. Let A’ be a quaternion subalgebra of A over Q given by a quaternion
basis 1,u,v,uv (u?> = a,v* = b,a,b € Q). Note that every element in A is a
Q(V/d)-linear combination of 1,u, v, uv. Then consider the following map:

cra+fButry-v+dw—a—B-u—5y-v—=06-uw
One can easily check that this is a unitary involution. O

One can also show that if A = M3(Q) is given by structure constants then
constructing an involution of the first kind in A is as hard as finding an explicit
version of this isomorphism. One may use that fact that every skew-symmetric
element (i.e. an element x such that o(x) = —x) is a zero divisor.
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Abstract. In this paper, we show how bilinear pairings can be imple-
mented on modern smart card architectures. We do this by providing
a memory-efficient implementation of the eta pairing on accumulator
based cryptographic coprocessors. We provide timing results for differ-
ent key-sizes on a state of the art smart card, the Infineon SLE 78. On
one hand, our results show that pairings can efficiently be computed on
smart cards. On the other hand, our results identify bottlenecks that
have to be considered for future smart card designs.

1 Introduction

Since the invention of the first fully functional identity based encryption (IBE)
scheme [5], that was based on bilinear pairings, pairings have become an
important tool in cryptography. Today numerous schemes such as hierarchi-
cal identity-based encryption, attribute based encryption (ABE), and identity
based signatures use pairings as their main building blocks. Many pairing based
schemes are very well suited to embedded applications. For example with IBE,
the expensive public key infrastructure of large scale systems like the internet
of things can be significantly simplified [9]. Hence, efficient implementations of
pairings on embedded and resource constrained devices will become important in
the future. In many pairing based schemes the secret key is one argument of the
pairing. To protect this secret in an adversarial environment, implementations
on smart cards are the standard solution. This raises the question if such con-
strained platforms are able to compute pairings with acceptable performance.
Furthermore, bottlenecks of current architectures have to be identified.

Our Contribution

Towards answering this question, we provide an implementation of the eta pair-
ing for fields of characteristic 2. As hardware platform, we use the Infineon
SLE 78 controller [8] that has a dedicated coprocessor for finite field arithmetic.

This work was partially supported by the German Ministry of Education and
Research, grant 16KIS0062.
© Springer International Publishing Switzerland 2016
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Because memory is a bottleneck for efficient pairing implementations on state
of the art coprocessors we base our implementation on fields of characteristic 2
that provide especially memory efficient arithmetic. This allows us to remove the
memory bottleneck and evaluate the performance of the coprocessor for fields of
size up to 2000 bits, although recent results question the applicability of small
characteristic fields for cryptography [1]. At 33 MHz, we are able to compute the
eta pairing in 60 ms for fields of size 1000 bits, in 100 ms for fields of size 1500
bits, and in 160 ms for fields of size 2000 bits.

Because of the insecurity of characteristic 2 fields, we regard our results as
proof of concept to show that pairings can be computed efficiently on smart
cards, but only if the pairing is carefully selected according to the available
resources. Furthermore, efficient implementations for fields of large prime char-
acteristic will become very important. Our analysis also indicates how size and
organization of memory have to be adapted for future cryptographic coprocessors
in order to support those implementations.

Previous Work

Previous results already show that it is indeed possible to compute pairings
on existing smart card controllers [3,11,12]. We need to distinguish between
standard controllers and controllers with dedicated hardware support of finite
field arithmetic. Regarding the former, [11] shows that the eta pairing for fields
of size approximately 1000 bits can be computed on an Atmel AVR controller in
less than 2s at a CPU clock of less than 8 MHz. In [3] it is shown that the Tate
pairing over fields of size 1000 bits can be computed on an STMicroelectronics
ST22 controller at 33 MHz in 750 ms.

Because arithmetic in finite fields is one of the major ingredients of a pairing
computation, better results on controllers with hardware support of finite field
arithmetic can be expected. In [12], different pairings are implemented on the
Philips HiPerSmart that offers special instruction set enhancements for crypto-
graphic applications. And indeed, it is shown that the Tate pairing for fields of
size 1000 bits can be computed in less than 500 ms at 20.57 MHz. Furthermore,
the eta pairing for fields characteristic 2 and of size 1500 bits can be computed
in 220ms at 20.57 MHz. Partially, this efficient implementation is achieved by
assuming that the secret argument of the pairing is constant. Hence, intermedi-
ate values solely depending on the secret are precomputed and stored in mem-
ory. We remark that our implementation is not subject to this severe and often
impractical restriction.

Organization of this Work

The paper is organized as follows. We start with some background on pairings in
Sect. 2. In Sect. 3 we define a generic accumulator based architecture of a crypto-
graphic coprocessor to abstract from the concrete hardware. Then, in Sect. 4 we
outline our implementation of the eta pairing on this architecture. We analyze
the implementation in terms of memory requirements and required base field
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multiplications. In Sect.5 we give timing results of our implementation for a
concrete instantiation and for various key-sizes on the SLE 78 smart card con-
troller. Then we will point to bottlenecks of current cryptographic coprocessors
for the computation of pairings. Finally, we will conclude in Sect. 6.

2 Background

In this section we first give a short introduction into elliptic curves and pairings.
Then, we motivate the eta pairing for our implementation. Finally, we will give
the necessary background on the eta pairing.

2.1 Definition of Pairings and the Embedding Degree

This section is only a very brief introduction. For more details on elliptic curves
and pairings we refer, for example, to [9].

Let E denote an elliptic curve that is defined over a finite field Iy, where
q = p™ for some prime p and m > 1. Based on the chord and tangent law, we
define an additive group (E,+). For a point U € FE we write U = (zy,yy) to
reference its  and y coordinate. With aU we denote scalar multiplication of U
with a € Z. Let Fyx be an extension field of F,. With E(Fx)[r] we denote the
[F r-rational r-torsion points of E, i.e., the points defined over F,x and of order
dividing 7.

For U,V € E, let lyy denote the equation of the line through U and V.
With gy we denote the equation of the tangent line through U at E. Hence, ly,v
and gy are the lines that occur while computing U 4+ V and 2U, respectively.
For n € N and P € E, we recursively define the function f, p as follows:

hp=1 Jot1,p = fn,PlP’—nP- (1)
I_(nt1)P,(n+1)P
Miller presented an algorithm to evaluate f, p efficiently at points on E [10].
If k is the smallest integer such that r divides ¢* — 1, then we call k the
embedding degree of q with respect to r. Let Gy, G2, and G be groups of order
r with G1,G2 C E(F)[r] and Gy C F?«. Then a pairing is an efficiently
computable, non-degenerate bilinear map e : G; x Gy — Gp. For cryptographic
applications the embedding degree has to be chosen such that the complexity of
computing discrete logarithms in G; and Gy and the complexity of computing
discrete logarithms in G are balanced. Note that the complexity in the former
groups is conjectured to be exponential while the complexity in the latter group
is sub-exponential. Table 1 shows some current state of the art choices of k for
large prime characteristic q.

2.2 Motivation for the Eta Pairing

Memory is a central concern when implementing cryptographic pairings on smart
cards. The basic building block of pairing calculations is the Miller algorithm [10].
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Table 1. Relation of subgroup size r, base field size ¢, extension field size ¢®, and
embedding degree k to match the complexity of computing discrete logarithms in E(Fg)
and in F}, for a large prime g. Source: Table 1.1 of [6].

Security level | logr | log q | klog g k

80 bits 160 | 160 |960-1280 |46
80 bits 160 | 320 |960-1280 |2-4
112 bits 224 | 224 |2200-3600 | 10-16
112 bits 224 | 448 |2200-3600 | 5-8
128 bits 256 | 256 |3000-5000 | 12-20
128 bits 256 | 512 |3000-5000 | 6-10

We can think of it as an interleaved computation of a double-and-add algorithm
for scalar multiplication on E(F,) and a square-and-multiply algorithm for expo-
nentiation in F . Hence, to compute the pairing, we need to store elements in IF,,
and in Fg simultaneously. This results in an overall higher memory consump-
tion compared to standard elliptic curve cryptography (ECC) or RSA. Hence,
in order to implement pairing based cryptography (PBC) on a smart card that
has been designed for standard ECC or RSA, the memory consumption has to
be reduced as far as possible.

Here, we achieve this by two means. First, we choose the eta pairing over
fields of characteristic p = 2 that allows very memory efficient implementations.
Secondly, we optimize our implementation for memory efficiency, if necessary at
the expense of extra field additions. By reducing the memory consumption, we
are able to remove the memory bottleneck of current smart card controllers.

2.3 The Eta Pairing for Fields of Characteristic 2

We now define the eta pairing according to [2, Sect. 6.1]. We stick to the notation
of [2] as far as possible. Let Fom be a finite field of characteristic 2 and size 2™.
Define the extension field F x = Fosm = Fom (s,t) with s* = s+1 and ¢* = ¢t +s.
Furthermore, define the elliptic curve E : 42 +y = 2% + x + b, where b € F,
and #E(F,) = 2™ + 1 + ea. Here, a = 2(m*1/2 and ¢ = (—1)® when m = 1,7
mod 8, and € = —(—1)® when m = 3,5 mod 8.

Define the distortion map by

P B(Fogm) — E(Faum) (2)
(z,y) — (x + 8%,y + sz +t). (3)

Now, we are able to define the eta pairing:

Definition 1. Define T = —e2("+t1/2 _ 1 and

M= (2" —1)/(2™ + 14 ea) = (22" —1)(2" —2mTV/2 L 1) (4)
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Then the eta pairing with parameter T is defined as
nr: E(]Fzm) X E(FQm) — F§4m (5)
(P,Q) = fr.p(v(@)™. (6)

Here, the exponentiation with M is also called final exponentiation.
The following theorem will allow us to simplify the computation of

frr(¥(Q)).

Theorem 1. Let P’ = —eP. The map nr is a non-degenerate, bilinear map that
can be computed as

17 (P, Q) = (fa.p V(@) e (@)
Proof. See [2, Sect. 6.1]

With the Miller algorithm (cf. [10]) the function f, pr can be efficiently evaluated
at ¥(Q). Because a is a power of 2, for the eta pairing, this computation reduces
mainly to point doubling and the evaluation of gg at 1(Q) where R is of the
form 2¢P’. The simplification is shown in Algorithm 1.

Algorithm 1. Miller algorithm for computing fr p(¢(Q)).

Require: Elliptic curve E : y?> +y = 2° + 2 + b with b € F2, P,Q € E(Fam) and
T =—e2mth/2 _q,

Ensure: frp(¢¥(Q)) € Fyam

L: (f,P',R) — (1,—€eP,—¢P)

2: forz<—(m—1)/20d0

3 fe f?

4 (fiR) — (f 9r(¥(Q)),2R)
5: end for

6: f — f : lu.P/,eP/ (T/J(Q))

7: return f

3 The Architecture

In this section, we define a model for the underlying computer architecture of our
implementation. It acts as an abstraction from the concrete architecture used
for execution of the implementation.

Our implementation is based on a platform that consists of a CPU, the main
memory (also denoted as RAM), program memory, and a big integer unit (BIU).
We assume that the CPU and the BIU are connected to the RAM via a data bus
of width wp. The BIU is an accumulator based cryptographic coprocessor that
supports operations in [F, and Fom» and consists of the following components:

1. An accumulator register ACC of width w,
2. The BIU internal memory organized as operand registers Ro,...,R,_1, each
of width w,..
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Table 2. Instruction set of the BIU

Instruction | Operand Op | Result
AddRed R:, RMOD, RMUL | ACC < ACC + Op mod RMOD
SubRed R, RMOD, RMUL | ACC < ACC — Op mod RMOD

MultRed |R; ACC < Op - RMUL mod RMOD
Load R, RMOD, RMUL | ACC «+ Op

Store R:, RMOD, RMUL | Op <+ ACC

Exch R:, RMOD, RMUL | (ACC, Op) < (Op, ACC)

3. A multiplier register RMUL of width w;.

4. A modulus register RMOD of width w,.

5. An algorithmic arithmetic unit (ALU) for performing arithmetic in F,, or in
Fym with instructions defined in Table 2.

The instruction set of the BIU is given in Table 2. Arithmetic in finite fields
is supported. In the case of IF),, the register RMOD stores the modulus p. In the
case of Fam, the register RMOD stores the irreducible polynomial f(X) of degree
m defining Fom = Fo/(f(X)).

Because wy, is assumed to be much smaller than w,., loading a register from
RAM or saving a register to RAM is much slower than the corresponding instruc-
tions Load, Store, and Exch for transferring data between internal registers. We
also assume that the internal memory of the BIU has better hardware-protection
against side channel attacks when compared to the RAM. Altogether, RAM
access is an expensive operation. This motivates our requirement to allocate
all intermediate variables within the internal memory of the BIU during the
execution of the pairing.

4 Implementation on the Generic Architecture

In this section, we provide the details of our implementation of the eta pairing
from Definition 1 on the architecture described in Sect.3. The following theo-
rem describes our implementation of Algorithm 1 with respect to the required
resources:

Theorem 2. Algorithm 1 can be computed on the BIU defined in Sect. 8 with
n = 12 general purpose operand registers of width w, = m and requires 15- (m —
1)/2 + 20 multiplications in Fom . Furthermore, no access of the BIU to RAM is
required.

The second theorem is about the implementation of the final exponentiation
from (6).

Theorem 3. Let o« € Foum and M as defined in (4). Then on the BIU from
Sect. 3, exponentiation o™ can be computed with n = 12 general purpose operand

registers of width w, = m and requires 4m + 40 multiplications in Fom . Further-
more, no access of the BIU to RAM is required.
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The remainder of this section is structured as follows. In Sect.4.1 we out-
line how squaring of the Miller variable f in Line 3 of Algorithm 1 is imple-
mented. Then in Sect. 4.2 we give details on the computation of gr(¥(Q)) and
lapr ep(¥(Q)) in Line 4 and Line 6, respectively. In Sect. 4.3 we show how the
multiplication of gr(¢¥(Q)) and lypr epr (¥(Q)) with f is implemented. Section 4.4
combines the previous results to obtain an analysis of the complete Miller algo-
rithm. Finally, in Sect. 4.5 we explain how we compute the final exponentiation
with M.

4.1 Squaring the Miller Variable

In Line 3 of Algorithm 1 we need to square the Miller variable f. Squaring is a
linear operation in fields of characteristic 2. This results in the following lemma
that summarizes the costs for the squaring in Line 3 of Algorithm 1:

Lemma 1. On the BIU from Sect. 3, the squaring of the Miller variable f in
Algorithm 1, Line 3 requires k = 4 multiplications in Fom . Furthermore, not more
than k = 4 operand registers are required to store the arguments, the output, and
all intermediate results.

Remark 1. Note the major difference to fields of characteristic p, where p is a
large prime. For squaring elements in F,», we cannot compute the coefficients in-
place. Instead k registers for storing the input and k registers for accumulating
the result are required. This results in a doubling of the required number of
registers to 2k.

We further remark that we propose another implementation than in [4].
There, an optimization is applied that requires the computation of square roots
of zr and yg [2]. In theory, the computation of square roots in characteristic 2
is efficient. In practice, square root algorithms in Fom require bit manipulations
that are inefficient without dedicated hardware [4]. This bit-fiddling would not
support our strategy of high throughput at the BIU. In [12] this problem does not
arise since P is assumed to be constant. Hence, the value of \/z and /yr can be
precomputed for each iteration of Algorithm 1. To support variable arguments
P we avoid square root computations and do not apply this optimization.

4.2 Point Doubling and Line Functions

In this section we show how doubling of R and the value of gr(¢(Q)) from
Line 4 of Algorithm 1 can be computed in a combined way. It will become clear
from Lemmas 2 and 4 that the computation of the tangent gr(¥(Q)) and the
computation of the line I, pr p/ (¢(Q)) from Line 6 have a lot of code in common.
Consequently, with Algorithm 2 we provide an implementation that is able to
handle both functions. This helps to decrease code size that is also critical for
smart cards.
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Computing the Tangent gr(1(Q)): The following lemma basically adapts [2,
Lemma 8] to our notation.

i

Lemma 2. Let P',Q € E(Fam). Define x; = ﬁ;f € Fom, y; = y%j € Fom,
80,01 € {0,1} such that 69 = 1 if and only if i = 0,3 mod 4, and &, = 1+
mod 2. Define ag,a1 € Fam as a1 = 22 + xq and ag := 22 (z; + 1g) + = +yi +
Yo + 01a1. Then the tangent line through R = 2P at (Q) is given as

gR(z/)(xQ,yQ)) :a0+5o+(a1 +51)5+t. (7)

We call elements in Faam of the form (7) sparse as only 2 instead of 4 elements in
Fom are required for their representation. We show in Sect. 4.3 that multiplication
with these elements is also more memory efficient than with arbitrary elements
of ]F24m .

Lemma 3. Let z;,y;,2Q, ¥yQ, ao, and a; be defined as in Lemma 2. Then the
simultaneous computation of ag, a1, 11, and y;11 requires 5 multiplications
in Fom on the BIU defined in Sect. 3. Furthermore, not more than 4 operand
registers are required to store all arguments, the result, and all intermediate
values.

2 and y? are com-
puted with 3 multiplications in Fom and the 4 registers Ry, ...,R3 on the BIU.
Furthermore, the computation of z;11 = z} and y;41 = y} requires two addi-
tional multiplications.

Proof. By setting d, = 1, Algorithm 2 shows how ag, a1, z2

Computing the Line l,p/ .p/(¥(Q)): We now show that Algorithm 2 can also
be used to compute lop/ pr(1(Q)) (cf. [2, Lemma 7]):

Lemma 4. Let P',Q € E(Fam). Define §p,01 € Fa such that o = (m —€)/2
mod 2 and §; = (m —1)/2 mod 2. Define ag,a1 € Fam as a1 := xp + xg and
ap == xp(xp + Q) + xp + yp + yo + d1a1. Then the tangent line through
aP’' = 2m*TD/2P" and eP’ at ¢(Q) is given as

laprep (V(Q)) = ag + 8o + (a1 + 61) s + t. (8)
With respect to the required resources we obtain:

Lemma 5. Let xp/,yp,xQ, Yo, ao, and a1 be defined as in Lemma 4. Then
the simultaneous computation of ag and ai requires 1 multiplication in Fom on
the BIU defined in Sect. 3. Furthermore, not more than 4 operand registers are
required to store all arguments, the result, and intermediate values.

Proof. The lemma directly follows by setting z; = zp/, y; = yp/, and do = 0 in
Algorithm 2.

Remark 2. Because of the special form of a in the case of the eta pairing the
input P’ does not need to be saved beyond Line 1 of Algorithm 1. This is because
xpr =20 = (Z(m-1)2)* and ypr = yo = (Ym—1)/2)*. Hence, xp: and yp: equal
the output of Algorithm 2 in the last round of Algorithm 1. We cannot use this
trick for general pairings and hence two additional registers for storing xzp, and
ypr are required in the general case.
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Algorithm 2. LineFunction: simultaneous computation of a; = x%”z + zq,

ag = x#‘s? (i +20Q) + 2 +vi +yo + d1a1, 9C;+527 and 3/7;1+52

Require: 41,02 € {0,1}, Ro < xi,R1 < ¥;,R2 < yo,Rs «— 20
Ensure: Ry «— le‘sz,Rl — yilJ“S?7 Ry «— ag = leéz (i + x0) + i + yi + yo + das,
Rs «— a1 = x;-"&" + zq

1: procedure LineFunction(d,d2)

2 Load Ro > ACC «— x;

3 Store RMUL > RMUL «+ x;

4: if 2 = 1 then

5: MultRed Ro > ACC «— x?

6: end if

7 Store RMUL b RMUL — g} 792

8: Load Ro > ACC «— x;

9: AddRed R4 > ACC «— x; + v
10: AddRed Ry > ACC «— z; + yi + yq
11: StoreR, >Ry — T + ¥ + Yo
12: LoadRg > ACC «— x;
13: AddRed R3 > ACC «+ z; + x¢@
14: Store Ro > Ro «— z; + 0
15:  MultRedRo > ACC — 2, 72 (z; + zq)
16: AddRed R, > ACC «— a:ZH‘Sz (i + 20Q) + =i + yi + yo
17: Store R, > Ry — m%“z (z; + Q) + @ + yi + Yo
18:  Load RMUL b ACC «— ) T2
19: Store Rg > Ry «— xj“z
20:  AddRedRs bACC — 2,72 g =a
21: Store R3 > Rz «+— a1
22: if 61 =1 then
23: AddRed R, > ACC «— acZH&Q (i + Q) + i + ¥i + yo + d1a1 = ao
24: Store R, > Ry — x§+52 (zi + 2Q) + i + yi + yo + d1a1 = ao
25: end if
26: if 6o = 1 then
27: Load Ry > ACC «— y;
28: Store RMUL > RMUL « y;
29: MultRed Ry > ACC «— y?
30: Store Ry > Ry — yf
31: end if

32: end procedure

4.3 Sparse Multiplication with the Line Function

In this section, we show how we compute the products in Line 4 and Line 6
of Algorithm 1. In Sect. 4.2, we showed in Lemmas 2 and 5 that one operand
occurring in these multiplications has the sparse form ag + a1s+ (9 +018) +t €
Fom (s,t). This motivates the following lemma:

Lemma 6. Define Ag = (ag + a18) with a;,b; € Fom and 69,01 € Fy. Let
B € Fam(s,t). On the BIU from Sect. 3, the computation of

(A0+50+518+t)~B (9)
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requires 6 multiplications in Fom . Furthermore, not more than 8 operand registers
are required to store the arguments, the output, and all intermediate results.

One may wonder why we do not absorb §y + s into Ag. The reason is that this
requires two additions with constants in Fs. This is very in-efficient on the BIU
because the BIU has to be stopped to load dg and ¢; into the operand registers.
We now show that we can do better by spending a few additional additions in Fom.

With B = By + Byt where B; = bg; + ba;115 we obtain for the sparse multi-
plication in (9):

A()BO + (soBo + 61308 + Bls + (A()B]_ + BO + (60 + 1)31 + (51318) t. (10)

To perform multiplications in Fom (s) we use Karatsuba’s trick for extensions
of degree 2. This allows us to perform a multiplication in Fom (s) at the cost of
only three multiplications in Fom:

AoB; = agba; + ((ag + a1)(b2i + baiy1) — agba; — arbeiy1)s + arbaip1s®  (11)
= aobz; + a1bait1 + ((ao + a1)(b2; + baiy1) — agba;)s. (12)

Our implementation of (12) on the BIU requires only four operand registers
Roi,R2it1,Raj, and Ryj41 and the special registers RMUL and ACC. Since dg, 61 € Fo
multiplication with ¢; in (10) is just a conditional execution of the correspond-
ing addition. In total, our implementation requires 8 registers to compute (10).
Furthermore, (12) has to be evaluated for i € {0,1} to compute AygBy and
ApB;j. This sums up to 6 multiplications in Fom for the computation of (10) and
completes the proof of Lemma 6.

Remark 3. For the eta pairing, the sparseness of l,p/ .p/(¥(Q)) and gr(¢¥(Q))
resulted in a multiplication that requires only 2k = 8 registers. In the general case
the image of gr(z,y) is a full F x element. Hence, in general, the multiplication in
Line 4 of Algorithm 1 requires at least 3k registers for storing the two arguments,
all intermediate values, and the result.

4.4 The Complete Miller Algorithm

In the previous sections we defined the individual components that are required
to compute Algorithm 1 on the BIU architecture. Table 3 gives an overview of the
required multiplications and the required number of registers of the individual
steps. If we combine all components into an implementation of Algorithm 1 this
sums up to (m —1)/2- 15+ 20 multiplications in Faom. Furthermore, we see that
not more than the n = 12 general purpose registers Ry, ...,R11 are required for
the complete computation. This proves Theorem 2.

Remark 4. Remarks 1 and 2 show that implementations of a pairing in large
prime characteristic requires at least 2 + k additional registers compared to the
implementation of the eta pairing. Here, 2 additional registers are required to
store the input P (see Remark 2) and k additional registers are required to
perform a squaring in fields of large prime characteristic (see Remark 1).
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Table 3. Overview of the computational costs of Algorithm 1.

Line | Computation Multiplications in Fom | Registers | Reference
Line 3| f2 4 4 Lemma 1
Line 4 | gr(¢(Q)) 3 4 Lemma 3
Line 4 | 2R 2 1 Lemma 3
Line 4 | f - gr(¥(Q)) 6 8 Lemma 6
Line 6 | lypr pr (¥(Q)) |1 4 Lemma 5
Line 6 | f-laprepr (W(Q) | 6 8 Lemma 6

4.5 The Final Exponentiation

In this section, we give an intuition how we obtain the result of Theorem 3 for
computing the final exponentiation with M from (4). As, for example, in [4], we
perform the exponentiation in two steps. In the first step, we compute the expo-
nentiation with 22™ — 1 and in the second step, we compute exponentiation with
2m — 2(m+1)/2 L 1 The exponentiation with 227 — 1 requires an application of
the 22™-th power Frobenius automorphism and an inversion. With the norm map
from Foam to Fom we can reduce the inversion in Fosm to an inversion in Fom plus
a constant number of multiplication ins Fosmn. Then we perform inversion in Fom
with Fermat’s little theorem that requires 2(m — 2) + 1 multiplications in Fom.

The exponentiation with 2™ — e2(m+1)/2 11 reduces to an application of the
2™_th power Frobenius automorphism, an exponentiation with 2("+1/2 and a
constant number of multiplications. Because squaring is linear, we can perform
exponentiation with 20m+1/2 in Fyum with 2(m — 1) multiplications in Fom. A
detailed analysis shows that 4m + 40 multiplications in Fom are required for
exponentiation with M.

The required number of n = 12 registers results from the multiplications in
Fy4m because for one multiplication, we need to store 3 elements in Foam: the
two factors and the product.

5 Performance on Real Hardware

To evaluate the performance of our implementation from the previous section, we
instantiated the implementation on the Infineon SLE 78 smart card controller.
In this section, we present timing results of the complete pairing computation
for different key sizes of practical relevance. Furthermore, we outline limitations
of current hardware for supporting fields with large characteristic.

5.1 The SLE 78 Smart Card

The CPU of the SLE 78 controller [8] is an improvement of the well-known 80251
controller and supports frequencies up to 33 MHz. It implements a 16 bit reduced
instruction set architecture. The RAM is connected via a 32 bit memory bus to
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the system. Peripherals like the cryptographic coprocessor are controlled via a
wy, = 16 bit wide peripheral bus to the system that is used for configuration and
data transfer.

The SLE 78 is equipped with a coprocessor for big integer arithmetic called
Crypto@2304T that supports 4096 bit RSA and 521 bit ECC. It is possible to
instantiate our implementation on the coprocessor as long as the size of the base
field does not exceed these 521 bit significantly.

5.2 Measurement Setup and Results

Our measurements are based on ISO7816-4 command /response pairs exchanged
between a card reader and the SLE 78. The reader sends a command to the
SLE 78 that initiates the pairing computation. The SLE 78 computes the pair-
ing and responds with the result. We measure the time between command and
response. Hence, our measurements include the timing of the pairing and a small
offset that is introduced by the communication.

We performed our experiments for base fields of size 271, 379, and 523 bits,
i.e. extension fields of size 1084, 1516, and 2092 bits, respectively. Our curves
are defined as E : y2 +y = 2% + 2 + b with b = 0 for m = 271 and b = 1 for
m € {379, 523}. From the timing results in Table 4 we see that the SLE 78 is able
to compute the eta pairing in 61 ms for fields of size 1084 bit at 33 MHz. In [11]
the same field and the same pairing is analyzed. There, a pairing computation
takes 1.9s at 7.3 MHz CPU frequency. This corresponds to a computation time
of more than 420 ms at 33 MHz. Hence, we conclude that the hardware support
of the Crypto@2304T enables a significant improvement.

Table 4. Measurement and simulation results of the pairing computation on the SLE 78
for different base fields Fom at a CPU clock of 33 MHz.

Measurement Simulation

m | k.m | Complete pairing | Miller Alg. | Final exp. Complete pairing
271|1084| 61ms 36ms (72%) | 14ms (28 %) | 50ms (100 %)
379 1516 | 98ms 58ms (70 %) | 25ms (30 %) | 83ms (100 %)
52312092 | 163 ms 99ms (70 %) | 43ms (30 %) | 142ms (100 %)

For fields of size 1500 bits, we are able to compute the eta pairing in 100 ms.
In [12], the same pairing for the same field but with one fixed argument is
computed in 220ms at 20.57 MHz. This corresponds to a computation time of
more than 137ms at 33 MHz. Note, that our implementation can handle two
variable arguments without any precomputations in less time.

For fields of size 2000 bits, we are able to compute the eta pairing in 163 ms.
We see that if we double the field size from 1084 to 2092 bits, the execution
time increases only by a factor of 2.7. This is remarkable since the asymptotic
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running time of the pairing computation is cubic in m. To explain this effect,
note that according to Theorems 2 and 3 the number of Fom multiplications is
linear in m. We conclude that the asymptotic quadratic complexity of the Fom
multiplications is partially compensated by the cryptographic coprocessor.

We are also interested in the individual execution times of the Miller loop and
the final exponentiation. Our implementation does not support measurements
of the two separate steps. Therefore, we use a simulator of the SLE 78 that is
provided by the manufacturer for debugging. During a simulation it is possible to
set break-points at arbitrary instructions and to obtain timing simulations for the
code execution. The results also listed in Table 4. We see that in the simulation,
the ratio of the computation time of the Miller algorithm is fixed at roughly
70 %. This is supported by Theorems 2 and 3 that show that the ratio of required
multiplications in Fom of the Miller algorithm is at approximately 7.5/(7.5+4) =
65 %. We see that even though our theoretical analysis in Sect. 4 neglects Fom
additions and any control overhead it predicts the simulations results correctly.

5.3 Limitations of Today’s Cryptographic Coprocessors

From the timing results of the previous section we conclude that currently, the
processing power of available cryptographic coprocessors is not the major bot-
tleneck. But our case study also shows that the internal memory of coprocessors
that were designed for RSA and standard ECC is a limitation for PBC. Fur-
thermore, in large prime characteristic fields, implementations of Algorithm 1
are less memory efficient. To give a rough idea how much memory is necessary
to compute pairings for those fields, we estimate the minimum memory require-
ments for computing pairings over fields of large prime characteristic ¢ with
m = [log(q)]. For efficiency reasons, we assume that P € E(F,) and Q € E(F )
[9, Remark I1.19]. We argue that roughly (4 + 5k)m bits of memory are required
to compute the pairing:

— 4m bits to store the coordinates of P and R

— 2km bits to store the coordinates of Q)

— km bits to store f

— km bits to store Ir p(Q) or gr(Q)

— km bits to store intermediate results during the computation of f «— f2,

f—f-lrp(@Q)or f—f gr(Q)

For the case of so-called type 3 pairings [7], we can reduce the size of @, Ir,p(Q),
and gr(Q) by a factor of ged(k,6) by using sextic twists [9]. This results in a
lower estimation of (4 4+ 3k/6 + 2k)m required bits of memory.

Next we consider some examples from Table 1. As explained in Sect. 2.1, the
embedding degree k is used to match the difficulty of the discrete logarithm
problem in E(F,) and in F;‘k. Hence, for a fixed security level, we will be given
m and k such that computing discrete logarithms has approximately the same
complexity in both groups. To balance the hardness at the 80 bit security level
with m = 160 we need extension fields of degree 4 < k < 6. Our estimation
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from above shows that for k¥ = 4 at least (4 +5-4) - 160 = 3840 bits are
required to compute the pairing. If we can use type 3 pairings, this reduces to
at least (443 +2-4) - 160 = 2400 bits of memory. This amount of memory is
already available on current cryptographic coprocessors. To balance the hardness
at the 112 bit security level with m = 224, we require extension fields of degree
10 < k < 16. Hence, for k = 10 at least (4 4+ 50) - 224 = 12096 bits are required
in the general case and with k = 12 we require (4 4+ 6 + 24) - 224 = 7616 bits
for type 3 pairings. At the 128 bit security level with m = 256 and k = 12,
16384 bits in the general case or 8704 bits in the case of type 3 pairings are
required. We remark that these estimates are very optimistic. They assume a
perfect memory organization and no specific optimizations. For example, the
use of projective coordinates or Karatsuba multiplication in F x would require
additional memory.

6 Conclusion

In this work, we analyzed an implementation of the eta pairing that we optimized
for memory constrained devices. We demonstrated its efficiency by giving timing
results for the execution on the Infineon SLE 78 smart card controller. Our
results show that this controller allows the implementation of pairings in less
than 100 ms.

But based on our analysis, we also argue that the memory of the crypto-
graphic coprocessors is critical for performing PBC beyond the 80 bit security
level. Designed for ECC and RSA, there is a gap between the performance of
the coprocessor and the size of its memory when used for the computation of
pairings. Especially in the smart card setting, memory efficient implementations
are an important topic of further research.
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1 Introduction

Group signatures, introduced by Chaum and van Heyst [15], are an important
primitive in cryptography. In group signature schemes every group member can
anonymously sign messages on behalf of the group. In case of disputes a dedicated
opening manager is able to trace signatures - he can extract the identity of the
producer of a given signature. A formal model for static group signatures schemes
and their security is defined by Bellare, Micciancio, and Warinschi [4], the case of
dynamic groups is considered by Bellare, Shi, and Zhang [5]. Both models define
group signature schemes with a single opening manager. The main difference
between these models is that the number of group members in static schemes is
fixed, while in dynamic schemes group members can join the group over time.

Important techniques to design group signature schemes were first described
by Ateniese et al. [1]. In [4,5] generic constructions of group signature schemes
are presented. The main building blocks of those constructions are generic dig-
ital signature schemes, encryption schemes, and non-interactive zero-knowledge
proof systems. Concrete realizations, for example [10] as a static and [17] as a
dynamic scheme, use efficient instantiations of these techniques to obtain efficient
and short group signature schemes. Beside efficient constructions different exten-
sions of group signatures have been considered. Schemes supporting verifier-local
revocation [11,28] or linkability [21,23,27] demonstrate the flexibility of group
signatures and inspired cryptographers to use group signatures as a tool for more
complex primitives, for example e-cash systems [2,13], credential systems [12,29]
or reputation systems [7].

Related Work. Having a single opening manager that can identify signers
requires a lot of trust in this manager. Several techniques have been consid-
ered to deal with this problem. Manulis [26] defines a variant of dynamic group
signatures, called democratic group signatures, which completely get rid of the
opening manager and where every user can trace signatures on his own. In this
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model anonymity is only guaranteed against outsiders, not against other group
members. Zheng et al. [32] extend the model of Manulis such that not every
group member can trace signatures, but a set of cooperating group members
is able to reveal a signers identity. This is achieved using threshold public key
encryption (TPKE).

Another variant of distributed tracing, but also using TPKE, is considered
by Benjumea, Choi, Lopez, and Yung [6]. They define dynamic multi-group
signatures with fair tracing. In such systems every user is a member of different
groups and only cooperating opening managers can reveal a signers identity.
These systems are strongly related to credential systems.

A model for dynamic group signatures supporting distributed tracing is
defined by Ghadafi [22]. Ghadafi also gives a generic construction for schemes
with distributed tracing.

Our Contribution. In this paper we construct a simple variant of static group
signatures with distributed traceability. Our construction is more efficient than
the generic construction by Ghadafi [22]. We use threshold public key encryp-
tion to distribute the opener’s secret key and prove the security of our scheme,
including anonymity, in the random oracle model. Our scheme is an extension
of the scheme by Boneh, Boyen, and Shacham [10]. However, our technique can
be applied to other group signature schemes to obtain distributed traceability.
Our basic construction of a group signature scheme with distributed traceabil-
ity guarantees CPA-full-anonymity, as defined in [10] and suitably extended for
distributed traceability. In the last section of this paper we briefly present three
extensions of our basic result. First, we describe how to combine our technique
with a construction due to Fischlin [20] to obtain a group signature scheme with
distributed traceability that achieves the stronger and most desirable security
notion of CCA-full-anonymity. Second, in our scheme, as well as in Ghadafi’s
scheme, there is a so called threshold ¢ such that in order to identify a signer
at least t opening managers have to cooperate. We show how to generalize our
construction such that it supports monotone access structures for traceability,
i.e. any authorized set of opening managers in the access structure can identify
signers. Last, we show how to generalize our scheme to dynamic group signatures
with distributed traceability.

2 Preliminaries

In this section we introduce the building blocks for our group signature scheme.
Similar to [8], we define bilinear groups as follows.

Definition 1 (Bilinear Group Pair). Let G, Go, Gt be groups of prime order
p with efficiently computable group operations, let 1V : Go — G1 be an efficiently
computable isomorphism, and let e: G1 X Go — G be an efficiently computable
mapping with the following properties:
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— Bilinearity: for allu € G, v € Gy and a,b € Zy,: e(u®,v’) = e(u,v)™

— Non-degeneracy: e(g1, g2) # la,-

Then we call (G1,Gz2) a bilinear group pair.

Definition 2 (Bilinear Group Generator). A bilinear group generator G is
a probabilistic polynomial time algorithm that, on input 1, outputs a descrip-
tion of a bilinear group pair (Gy,Gs). We denote the output of G by GD =
(G17G27GT7917927P7¢76)-

Throughout this paper we will assume that g1 = ¥(g2).

Since we will use bilinear group pairs in our construction of group signature
schemes, we define the used computational assumptions with respect to bilinear
group generators G.

Definition 3 (Decision Linear Problem — D-Linear2). Let (G1,G2) be a

bilinear group pair. Given gs, 98, 95,937, 9%, g5 € G3 x G3, where o, 3,7, 6 &
Zy,, the Decision Linear Problem is to decide whether € = v+ 6.

Definition 4. We say the Decision Linear assumption holds for bilinear group
generator G if for all probabilistic polynomial time algorithms A there exists a
negligible function negl such that

ey o 0 e
‘Pr [A(GD,gz,gz 95,907, 90° 95) = 1]
a § 1
—Pr [A(GDLQ%QQ 7g257g?7)915 7g1)/+ ) = 1:| ‘ < negl()\),

where the probabilities are taken over random bits used by G, A, and the random
. $
choices of o, B,7,0,€ «— Zp.
Definition 5 (¢-Strong Diffie-Hellman Problem — ¢-SDH). Let (G1,G2)
2 q
be a bilinear group pair. Given a tuple (g;,géﬂy ), . ,ggY )> , the q-Strong Diffie-
1

Hellman Problem is to output a pair <gf+7,m> , where x € Zy.

Definition 6. We say the SDH assumption holds for bilinear group generator
G if for all probabilistic polynomial time algorithms A and for every polynomial
bounded function q : Z — 7 there exists a negligible function negl such that

1
Pr [A (G]D), g;’,géﬂﬁ), e ,géﬂ’qm)) = (gl‘””,x)} < negl(}),

where the probability is taken over the random bits used by G, A, and the random
choice of vy & L.
For our construction we will use a variant of ¢-SDH called extended q-SDH :
a(X)
given (h,g;7 ... ,gé7 )>7 for h & G, output ((gl . hy)ﬁ,x,y) € Gy x ZPQ.
It is not hard to see that the following lemma holds.
Lemma 1. Let A be an algorithm that solves extended q-SDH in polynomial
time with non-negligible probability €. Then there exists an algorithm B that
solves q-SDH in polynomial time with non-negligible probability €.
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3 Group Signature Schemes and Distributed Traceability

Group signature schemes [4] are signature schemes that provide signer anonymity
by forming a group of signers that share a common public key. In case of mis-
behaving users, signer anonymity can be revoked by an opening manager. With
distributed traceability, the task of anonymity revocation is distributed among
several opening servers who need to cooperate to identify signers.

Definition 7 (DOMS(t,m,n)). A group signature scheme with ¢-out-of-m-dis-
tributed traceability (with t < m) for n users consists of siz probabilistic poly-
nomial time algorithms Setup, Sign, SignatureVerify, ShareOpen, ShareVerify and
ShareCombine, and a protocol Join.

~ Setup(1*,m,t) — (PK, VK, SK, IK): on input 1* (where X is the security para-
meter), a number m of opening management servers, and a threshold t, it
outputs a public key PK, a verification key VK, a vector SK of opening man-
agement server private keys, and a key issuer private key K.

- Join(PK, IK; PK) — ukiq: This protocol is executed by the key issuer and a
userid € {1,...,n}. The key issuer takes as input PK and IK, the user takes
as input PK. It outputs a membership certificate of user id to the key issuer
and a user private key ukiq to the user. The key issuer adds the membership
certificate to a registration list Reglist.

- Sign(PK, ukig, M) — o: on input PK, ukiq and a message M, it outputs a
signature o.

— SignatureVerify(PK, M, o) — vs € {0,1}: on input PK, M and o it outputs a
bit v,.

— ShareOpen(PK,sk;, M,0) — 6;/ L: on input PK, an opening management
server private key sk;, M and o, it outputs an open share 6; or an error
symbol L.

— ShareVerify(PK, VK, M, 0,0;) — v, € {0,1}: on input PK, VK, M, o and 0;,
it outputs a bit v,.

— ShareCombine(PK, VK, M, 0, 0, RegList) — id/ L: on input PK, VK, M, o,
a set © of t open shares, and the registration list Reglist, it outputs a user
identifier id or an error symbol L.

For consistency we require that, for keys PK,VK,SK = (skq,...,sk,,),IK
generated during Setup and for every user private key ukiyq generated by executing
Join for user identifier id with respect to 1K, the following properties hold for
every message M :

— SignatureVerify(PK, M, Sign(PK, ukig, M)) = 1.

— For every valid signature o on M and every open share 0; that is output by
ShareOpen(PK, sk;, M, o) it holds: ShareVerify(PK, VK, M, 0,6;) = 1.

— For every o that is output by Sign(PK, ukiq, M) and every set © of t valid
open shares it holds: ShareCombine(PK, VK, M, o, ©, RegList) = id.
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The security notions for group signature schemes without distributed
traceability, as defined in [4], include full-anonymity and full-traceability. Full-
anonymity means that nobody except the opening manager can tell who gener-
ated a given signature. Full-traceability means that nobody is able to generate
signatures (1) on behalf of honest users and (2) which can not be traced back
to an existing user. As a drawback, the key issuer must be honest. In DOMS
we introduce a Join protocol to achieve strong-exculpability. This splits the def-
inition of full-traceability into two different security properties: traceability and
strong-exculpability. Here, traceability means that, even when the key issuer is
corrupted, it is not possible to generate signatures that can not be traced back
to an existing user, while strong-exculpability means that nobody can generate
signatures on behalf of honest users. These properties have already been consid-
ered in the context of group signatures without distributed traceability [1,24].
For DOMS the definitions of traceability and strong-exculpability can be left
unchanged. However, due to the distributed opening of signatures we have to
give an adapted definition for anonymity. In this section we give a definition of
anonymity that is an extension of the CPA-full-anonymity defined in [10]. We
discuss the stronger notion of CCA-full-anonymity in Sect.5. By incorporating
our technique into Fischlin’s CCA-fully-anonymous variant of the Boneh, Boyen,
and Shacham group signature [20], in Sect. 5 we also show how to strengthen our
basic construction to achieve CCA-full-anonymity.

Definition 8 (Anonymity - EXP?%BJ]\}S()V t,m,n)). Given a threshold group
signature scheme with t-out-of-m-distributed traceability for n users, consider the
following t-out-of-m-threshold chosen-plaintext anonymity game:

1. The adversary A chooses t — 1 different indices s1,...,8:—1 C {1,...,m}.

2. C executes Algorithm Setup to compute the key material. The public key
PK, the verification key VK, the corrupted management servers’ private keys
Skey,y...,8Kks, ,, and the key issuer’s private key IK are given to A. Then,
C and A engage in n executions of protocol Join with A playing the user’s
role, C playing the key issuers’ role. After this step, A holds user private keys
uky, ..., uky,.

3. Eventually, A outputs two user indices idg,id; and a message M upon which
it wants to be challenged.

4. The challenger computes o < Sign(PK, ukiq,, M) and returns o to A.

5. When A outputs a bit b, the output of the experiment is also V.

Definition 9. A group signature scheme with t-out-of-m-distributed traceability
DOMS(¢t,m,n) is anonymous, if for all probabilistic polynomial time algorithms
A there exists a negligible function negl such that

‘Pr {Expi{t(g‘of&s()\,t,mm) = 1] —Pr [Exp%%lagls()\,t, m,n) = 1} ‘ < negl()).

The probability is over the random bits of A, as well as the random bits used in
the experiment.
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Our definition of anonymity only ensures selective security: the adversary has
to decide which management servers he wants to corrupt before he has access to
the public keys. This simplifies our construction and the proof of security.

On Achieving Distributed Traceability. Many group signature schemes
achieve signer anonymity and signer identification by including a cipher on the
signer’s identity in the signature. So, to identify the signer the cipher needs to
be decrypted. Our approach to distribute traceability works on all group signa-
ture schemes of this kind for which the used encryption scheme has a threshold
variant. Threshold encryption schemes differ from other public key encryption
schemes as they require multiple servers to cooperate during decryption. We
apply our technique to a specific group signature scheme by Boneh, Boyen, and
Shacham [10], but it is straightforward to adapt the technique to other group
signature schemes.

4 A Group Signature Scheme with Distributed
Traceability

Our technique to achieve distributed traceability requires a group signature
scheme that includes ciphers on signer identities in signatures and uses an encryp-
tion scheme to which a threshold variant can be constructed. We illustrate our
technique using the group signature scheme given by Boneh, Boyen and Shacham
[10], but it can be used for other schemes as well. First, we present the encryp-
tion scheme and its threshold variant, then we present protocols to add users to
the group and to prove group membership. Finally, we present DOMS, a group
signature scheme with t-out-of-m-distributed traceability.

Threshold Public Key Encryption. We will use Threshold Public Key
Encryption (TPKE) [9,14,16,18,25] to achieve distributed traceability of our
group signature scheme. This idea was already proposed by [6,22].

Definition 10 (Threshold Public Key Encryption). A Threshold Public
Key Encryption Scheme TPKE consists of five probabilistic polynomial time
algorithms (KeyGen, Encrypt, ShareDec, ShareVerify, Combine), where

- KeyGen(1*,m, t) — (PK, VK, SK): on input 1* (where X is the security para-
meter), the number of decryption servers m and a threshold parameter t
(t < m), it outputs a tuple (PK,VK,SK), where PK is a public key, VK
is a wverification key and SK = (ski,...,sky,) is a vector of m private key
shares.

— Encrypt(PK, M) — c¢: on input PK and message M, it outputs ciphertezt c.

— ShareDec(PK, ¢,sk;) — 6;/ L: on input PK, ¢ and the i’th private key share
sk;, it outputs a decryption share 6; or a special error symbol L.

— ShareVerify(PK, VK, ¢, 0;) — v € {0,1}: on input PK, VK, ¢, and 0;, it outputs
a bitv e {0,1}.

— Combine(PK, VK, ¢,0) — M/ L: on input PK, VK, ¢ and a set © of t decryp-
tion shares 0;, it outputs a message M or a special error symbol L.
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As consistency requirements, for all (PK, VK, SK) output by KeyGen(1*,t,m)
the following two properties must hold:

1. For every ¢ as output of Encrypt(PK, M) and alli € {1,...,m} it holds: if 6;
is the output of ShareDec(PK, ¢, sk;), then ShareVerify(PK, VK, ¢, 6;) = 1.

2. For every c as output of Encrypt(PK, M) and every set © of t valid decryption
shares it holds: Combine(PK, VK, ¢, 0) = M.

Definition 11 (Threshold CPA - Expfif’;;];(E()\,t,m)). The Threshold Cho-
sen Plaintext Attack is defined using the following game between a challenger
and an adversary A both with input (A, t,m):

1. A outputs a set S C {1,...,m} of size |S| =1t — 1.

2. (PK, VK, SK) « KeyGen(1*,t,m) is run by the challenger. Then PK, VK and
all sk; fori € S are given to A.

3. A outputs two messages My, M1 of equal length, and receives a ciphertext
¢ — Encrypt(PK, M,) from its challenger.

4. When A outputs a bit b’ € {0,1}, return b'.

Definition 12. A Threshold Public Key Encryption Scheme is semantically
secure against chosen plaintext attacks, if for all probabilistic polynomial time
algorithms A there exists a negligible function negl such that

Pr[Exp 0 p i p (A t.m) = 1] — Pr[Exprpg s (A, t,m) = 1]| < negl()),

where the probabilities are taken over the random bits used by A and in the
experiments.

Analogously to the definition of anonymity we define selective security for the
threshold encryption. Using the techniques of [25] adaptively secure threshold
encryption schemes can be constructed.

Linear Encryption and its Threshold Variant. Linear Encryption is a pub-
lic key encryption scheme that was introduced by Boneh, Boyen, and Shacham
in [10]. It is defined as follows:

~ (PK,SK) « KeyGen(1*), where PK::(GID),ﬁﬁ,ﬁ) is the public key con-
sisting of a bilinear group pair (G1,G2) and generators (ﬂ,f),fz) € G3, and
SK:=(&1,&2) € Zp2 is the secret key such that 4 = 9% = h.

— Encrypt(PK, M): choose «, 3 & Z,, and set c:=(1p(@)*, 1h(0)°, M - p(h)*+P).

— Decrypt(PK,SK, ¢): parse ¢ as (T}, Ty, Ts) and compute M:=Ts /(T - T5?).

It is not hard to see that Linear Encryption is correct and secure under the
Decision Linear assumption. We could also define the encryption scheme in Gy,
without Go, the isomorphism v, and the pairing e. However, we need ¢ and e for
the reduction of the Threshold Linear Encryption defined below. Furthermore,
we need the following lemma to prove security of our system.
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Lemma 2. Let G = (g) be a group of prime order p and f(x) an arbitrary
polynomial over Z, of degree t — 1. Define F': Z, — G as F(z):=g’®). Suppose
X C Zy, such that | X| =t. Then, given {(z;, F(2;)}s,ex, one can evaluate F' at
any x € Z, using Lagrange interpolation (LI).

Proof.
Az», 2 i z x
F(z) = g @ L:Igm;e:x x (@) f (i) _ H (gf(xi))A i x (@) _ H F(l‘i)A”’X(I)
z;€X z;€X
Hence, using the last expression one can evaluate F'(z). a

Using Shamir’s secret sharing technique [31] we obtain a t-out-of-m Threshold
Public Key Encryption scheme, called Threshold Linear Encryption (TLE):

~ (PK, SK, VK) « KeyGen(1*,t,m), where PK:=(GD), @, 0, h) is the public key
consisting of a bilinear group pair (G1,Gy) and generators (a,9,h) € G3,
SK:=((£1(1), &2(1)), .- -, (€&1(m), &2(m))) for uniformly at random chosen poly-
nomials &7, &2 of degree t—1 over Z, such that 4510 = §¢2(0) = } are the secret
key shares, and VK:=((a&M &MY (4807 $€(m))) is the verification
key.

— Encrypt(PK, M): choose o, & Z, and set c:=(()%, ()P, M - (h)>+P).

- ShareDec(PK,ski, C)Z set 91‘712:T1£1(i), 9i7222T§2(i), and 91‘1:(91‘71, 91')2).

— ShareVerify(PK, VK, ¢, 6;): output 1, if and only if e(¢; 1,%) = e(T1,vk; 1) and
6(01‘72, ’lA)) = e(Tg, Vki72).

— Combine(PK, VK, ¢,©): If all decryption shares ; € @ are valid, for i € S C
{1,...,m},|S| > t, then use the Lagrange polynomial interpolation to decrypt
and output the message M. This can be done by computing M:=T5/ [ (6;1 -

€S
92_)2)&,5(0)_ Otherwise, output L.

Correctness of Threshold Linear Encryption:

1. For every ciphertext ¢ = (Ty, Ty, T3) = ((@)*, ¥ ()5, M - (h)*+5) as out-
put of Encrypt(PK, M) and all i € {1,...,m} it holds: let 6; be the out-
put of ShareDec(PK,sk;,c), then e(6;1,4) = e(Tfl(z),ﬁ) = e(Ty, a8 W) =
e(Ty,vki 1) and (0 2,0) = e(T5* ™, 8) = (T, 820 = e(Th, vk; ).

2. For every ¢ = (T1,T5,T5) as output of Encrypt(PK, M) and every set © of ¢
valid decryption shares it holds: Combine(PK, VK, ¢,©) = M, which follows

from Lemma 2.

Lemma 3. If the Linear Encryption scheme is semantically secure against cho-
sen plaintext attacks, then the Threshold Linear Encryption scheme TLE(t,m)
1s secure against threshold chosen-plaintext attacks.

The proof will be given in the full version of this paper.
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4.1 Construction of Our Group Signature Scheme

Our Group Signature Scheme is based on the construction given in [10]. We define
a zero-knowledge protocol which will be transformed into a group signature
scheme using the Fiat-Shamir heuristic [19].

The Basic Zero-Knowledge Protocol. Given (GD, hy,w = g3 ), where GD «—
G(1%) is the output of a bilinear group generator (such that the SDH assumption

holds), h; € G; and ~v & Z,, is some unknown value, the secret of a prover is
the tuple (A,z,y) = ((91 : h?)ﬁm,y), where z,y € Z,. To prove possession

of such a tuple, the prover can use the bilinear map e which is contained in GID:
e(4,92)" -e(A,g3) - e(h1,92) 7Y = e(g1, 92).

Protocol 1. Compute a Threshold Linear Encryption (T1,75,73) of A and
helper values:

a,ﬁin, Tii=u®, Ty:=0% Ty=A -h*P  §p=za, by=z0.

Choose blinding values 7o, 78, T2, Ty, T's, , T'5, & Z,, and compute
Ri:=u"~, Ro:=0v"?,
RS::e(T37 gQ)nn : e(hv w)_Ta I e(h7 92)_T61 IRAEIS e(hlng)_Ty7
R4::T1Tm BRTALL R5:T2TT LR

Given T1,T5,T3, Ry, Ro, R3, R4, Rs5, the verifier responds with a challenge ¢ &
Z,,. The prover computes

Sq:=Tq + CQ, Sgi=rg + cf, Spi=Ty + cx,
Syi=Ty + cy, 85, =T, + o1, 85,:=T5, + CO2
and sends them to the verifier who then checks the following five equations
ue =Tf - Ry v =T5 - Ry
e(T3,g2)% -e(h, w) ™%~ e(h, go) 1 *52-e(hy, ga) " = (e(g1, g2)/e(T3, w))*R3
TP -u™ % = Ry Tsw -v™%%2 = Ry
and accepts, if all five equations hold.

Lemma 4. The above protocol is complete (a verifier accepts all interactions
with an honest prover), zero-knowledge (there is simulator for transcripts of
protocol executions) and a proof of knowledge (there is an extractor) under the
Decision Linear assumption.

The proof is similar to that in [10] and is given in the full version of this
paper.
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Construction 2. The DOMS(¢,m,n) group signature scheme with distributed
traceability works as follows:

— Setup(1*,¢,m,n): run G(1*) to obtain GD, compute TLE keys PKyg =

(G,9,h) € G}, VKyLg and SKtig = ((£1(1),&(1)), ..., (&1(m), &(m))), and
choose element ~ & Z,, and generator hq & G1. Furthermore, fix some hash
function H: {0,1}* — Z,. Set PKpoms:= (GD, @, 7, h, g1, b1, g2, w = g3, H),
VKDoms::VKTLE, SKDQM5::SKTLE and IKDOMS3:’Y- Publish PKDOMS and
VEKpowms, give IKpoms to the key issuer and distribute SKpoms amongst the
opening management servers.

— Join(PKpowms, IKpowms): the user id picks an element yig & Z,, and sends h{*

to the key issuer. The key issuer chooses xiq & Z, and computes Ajq:=(g1 -
hYi4)t/(v+7ia)  The membership certificate (id, Aiq, 2iq) is permanently linked
to the user id and sent to her. Additionally, the key issuer stores (id, Aiq, Ziq)
in RegList. The user sets the private key to ukiq:=(Aid, Tid, ¥id)-

— Sign(PKpowms, uk;, M): apply the Fiat-Shamir heuristic to Protocol 1 and com-
pute 11, 15, T3, Ry, Rs, R3, R4, Rs5 as defined in the protocol, use the hash
function H to compute the challenge value c:=H (M, Ty, Ts, T3, R1, R, Rs,
R4, R5) and compute response-values as in the protocol to obtain signature
0:=(T1,T5,T5,¢, S0, S8, Sus Sys S615 56, )-

— SignatureVerify(PKpowms, M, c): compute the R-values using the verification
equations from Protocol 1 and output 1, if ¢ = H(M, Ty, Ty, T3, Ry, Ro, R,
R4, R5). Otherwise, output 0.

— ShareOpen(PKpows, sk; € SKpowms, M, o): verify that o is a valid signature on
M. If so, output a TLE decryption share for (71, Ts, T5). Otherwise, output L.

— ShareVerify(PKpowms, VKpowms, 8, M, 0): if o is a valid signature on M and 0 is
a valid TLE decryption share, output valid. Otherwise, output invalid.

— ShareCombine(PKpoms, VKpows, 01, - - -, 8¢, M, o, RegList): if o is not a valid
signature on M and any 6; is not a valid open share, output L. Otherwise, com-
bine the open shares/TLE decryption shares to obtain value A. Use RegList
to identify the user linked to A.

It is not hard to see that DOMS satisfies the requirements imposed on group
signature schemes with t-out-of-m-distributed traceability.

4.2 Proof of Anonymity

Lemma 5. If the Threshold Linear Encryption TLE(t, m) is semantically secure
against threshold chosen-plaintext attacks, then DOMS(t, m,n) is anonymous in
the random oracle model.

Proof. Assume A is an algorithm that breaks the anonymity of DOMS(¢, m,n).
Then we can construct an algorithm B that breaks the threshold chosen-plaintext
security of TLE(¢,m).
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In the first step algorithm A outputs a set S of management server indices,
where |S| = ¢t — 1. This set is forwarded by B to its threshold chosen-
plaintext challenger. Then B is given (PK,SK, VK), where PK = (GD, 4, 0, iz),
SK = {(£1(i),&2(1)) Vies, and VK = ((a& M &My (a&0m) 5€0m))) The
key issuer private key IK and elements hi,w for the public key are generated

by setting IK:=+ for ~ & Z, and hy & G;. Furthermore, B sets w:=g, and
gives PK, VK, SK, IK to A. Then, n simulations of the Join protocol are executed
between A and B, so A gets user private keys uky, ..., uk, with uk;:=(A4;, z;, ;).

During the interaction A is allowed to query the random oracle H. B

responses to those queries by returning some r & Z,, ensuring to respond to
identical queries with the same value.

When A outputs user indices idyg and id; and a message M upon which
it wants to be challenged, B requests a challenge from the TLE chosen-
plaintext challenger on messages Ajq, and Ajq,. Based on the challenge
ciphertext (T7,7%,73) B generates a transcript (T1,7%,T5, R1, Ra, Rs, Ry,
Rs,c¢, 54,58, Sz, Sy, 85,,5s,) of Protocol 1 using the zero-knowledge simulator
(Lemma 4). Then B patches the random oracle H(M, Ty, Ts, T5, Ri, Ra,
R3, R4, Rs):=c. If the patch fails, B outputs | and exits, but this only hap-
pens with negligible probability. Otherwise, B generates the challenge signature
o:=(T1,T5,T3,¢, 5q, S8, Sz, Sy, S51, Ss,) for A based on the transcript.

When A outputs a bit b’ as its guess on the identity used to generate the
challenge signature B outputs b’ as its guess on the message encrypted in its
challenge ciphertext.

Since B generates a valid challenge signature for user id, with the same distrib-
ution as in the real group signature scheme, B’s guess on b is correct, whenever A’s
guess is correct. Hence, B breaks the threshold chosen-plaintext security of TLE
with the same probability as A breaks the anonymity of DOMS. O

4.3 Further Properties

Our DOMS scheme also provides traceability and strong-exculpability. Traceabil-
ity can be shown assuming the SDH assumption holds. The proof informally
works as follows: given an instance of ¢-SDH we use the technique from [8] to
generate up to ¢ different group membership certificates in the Join protocol. If
an adversary against traceability outputs a signature that can not be opened to
an existing user, we use the Forking Lemma [30] to extract a complete member-
ship certificate (A, x,y). This certificate can then be transformed into a solution
to the original ¢-SDH instance using the technique of [8].

To prove strong-exculpability we have to assume that computing discrete
logarithms (DLog) is hard. This assumption is implied by D-Linear2 and SDH.
The given DLog instance is used within the Join protocol when an honest user id
sends hY" to the key issuer. If an adversary against strong-exculpability outputs
a signature that can be traced back to user id, we use the Forking Lemma [30]
to extract the complete membership certificate (Aig, Zid, ¥ia), which includes the
discrete logarithm g;q as the solution to the original DLog instance.
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5 Extensions and Modifications

In this section we briefly discuss further adaptions of our group signature scheme.
More detailed descriptions are given in the full version of this paper.

Achieving CCA-Full-Anonymity. So far, we have restricted ourselves to
CPA-full-anonymous group signatures. Here we show how to modify our scheme
to achieve CCA-full-anonymity. CCA-full-anonymity is defined analogously to
CPA-full-anonymity, except that in the anonymity experiment (Definition 8)
the adversary is also given oracle access to Open (used to open the identity of
signers in case of centralized traceability) or ShareOpen(-), ShareVerify(-), and
ShareCombine(-) (in case of distributed traceability). Among other things, the
construction of Boneh, Boyen, and Shacham, as well as ours, crucially depends
on the structure of Linear Encryption. Hence, turning our CPA-fully-anonymous
group signature into CCA-fully-anonymous group signature cannot be achieved
by simply using a CCA-secure variant of Linear Encryption. Instead, Linear
Encryption must be replaced by a CCA-secure variant while at the same time
preserving its basic structure.

Fischlin [20] shows how to transform any 3-protocol into a non-interactive zero-
knowledge proof of knowledge (NIZK) with an online extractor. As an application
of this technique, Fischlin obtains a CCA-fully-anonymous group signature scheme
based on the Boneh-Boyen-Shacham scheme. The only modification to the origi-
nal scheme is that signatures o are extended to include a NIZK proof of knowl-
edge 7 for the values «, 8 used to compute the ciphertext (77, Ts, T3), i.e. the first
three elements of a signature. Intuitively, this leads to CCA-full-anonymity, since
an adversary that submits a valid signature to the Open oracle must already know
the values «, 8 used to hide the identity of the group member. Hence, the Open
oracle is useless to an adversary. More precisely, in a simulation of an adversary
the simulator can use the online extractor for the NIZK proof of knowledge 7 to
compute the values a, (3, use these to recover the identity of the group member, and
answer Open queries correctly. By the same reasoning, combined with Lemma 2,
one sees that by incorporating Fischlin’s extension in Construction 2 we get a CCA-
fully-anonymous group signature scheme with distributed traceability.

The proofs in Fischlin’s NIZK proofs of knowledge are not of constant size
(in term of the number of group elements). Therefore, unlike the original scheme
the CCA-full-anonymous variant of the Boneh, Boyen, Shacham group signature
scheme no longer has signatures of constant size. However, as Fischlin points out,
the signatures are still moderately large, and for reasonable parameters shorter
than signatures in RSA-based schemes. The same remarks apply to our CPA-fully-
anonymous and CCA-fully-anonymous schemes with distributed traceability.

Considering Dynamic Groups. Bellare, Shi, and Zhang define in [5] a model
for dynamic group signatures. In this model the number of group members is not
fixed in advance - group members join the group over time. Hence, the Join pro-
tocol must ensure that no adversary obtains information about the membership
certificates, even under concurrent executions of the protocol. To achieve these
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properties, Join can be implemented as a concurrent zero-knowledge protocol.
In [17] such a protocol is defined, which can also be used in our system.

Additionally to the flexible group joining mechanism in dynamic groups, the
Join protocol has to ensure another security property - the non-frameability.
During the Join protocol a user commits to a personal public key upk;y. Using
this user public key the opener of signatures has to prove that the claimed user
really generated the signature in question. Non-frameability then guarantees that
the opener is not able to forge such proofs.

To achieve non-frameability in our construction, we add a new algorithm
Judge and modify the algorithm ShareCombine. As user public key upk;; we use
R, and we let ShareCombine include the proof string 7:=zjq. Recall that this
value is known to the share combiner since it is part of the membership certificate
list RegList created by the key issuer during Join. Algorithm Judge then checks
the outcome of the combining procedure by verifying the equation e(g1, g2) s
e(Aiq, wgs™) 'e(upk;f, g2). If the equation does not hold, the algorithm rejects,
which means that the combiner tried to blame the user id.

Other Variants of Distributed Traceability. In the group signature with
distributed traceability, any set of management servers large enough can identify
signers. This implies that any management server has the same rights and pow-
ers. However, it may be useful to have management servers with different rights.
This can be modeled with monotone access structures and realized similarly to
the construction given above by replacing Shamir’s secret sharing schemes with
secret sharing schemes based on monotone span programs (MSP) [3]. We briefly
discuss this generalization. Informally, a monotone access structure 20 over a
universe U = {1,...,m} is a subset of the power set of U. Elements in 2 are
called authorized sets. An access structure is called monotone if and only if every
superset of an authorized set is authorized. In group signatures with monotone
group management we are given a monotone access structure 2 over the set
of management servers and we require that every authorized set of servers in
must be able to identify signers. This allows us to express different levels of power
of the opening managers. Group signatures with monotone group management
can be realized with secret sharing schemes for monotone access structures (see
again [3]), i.e. the secret opening key is shared such that every authorized set
of opening managers can reveal the signers identity. Secret sharing schemes for
monotone access structures can be realized with monotone span programs. To
construct group signatures with monotone group management, given an access
structure A we construct an MSP-based variant of Linear Encryption such that
decryption of ciphertexts is possible if and only if decryption shares from an
authorized set in 2 are available. The security of the resulting scheme can be
proved using a reduction to the Linear Encryption. Replacing in our construction
Threshold Linear Encryption with a MSP-based Linear Encryption for access
structure 2 yields a group signature scheme with monotone group management
for access structure 2. In particular, as long as an adversary does not corrupt
an authorized set of management servers he does not obtain any information
about encrypted identities, i.e. signers. Replacing Threshold Linear Encryption
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with MSP-based Linear Encryption for the MSP-variant in our group signature
scheme increases flexibility of our constructions. This generalization only influ-
ences the decryption and combine algorithms. Protocol 1 must not be modified
and signatures remain unchanged.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
which greatly improved the paper.
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Abstract. In 2012, several Differential Fault Analyses on the AES
cipher were analyzed from an information-theoretic perspective. This
analysis exposed whether or not the leaked information was fully
exploited. We apply the same approach to all existing Differential Fault
Analyses on the CLEFTA cipher. We show that only some of these attacks
are already optimal. We improve those analyses which did not exploit
all information. With one exception, all attacks against CLEFIA-128
reach the theoretical limit after our improvement. Our improvement of
an attack against CLEFIA-192 and CLEFIA-256 reduces the number of
fault injections to the lowest possible number reached so far.

Keywords: CLEFIA - Differential fault analysis - Fault attack

1 Introduction

An attack which actively alters the computation of a cryptographic algorithm
by inducing software or hardware faults is called fault attack. A Differential
Fault Analysis (DFA) is a specific form of a fault attack. After inducing a fault
into one or several computations of a cryptographic algorithm, the secret key of
this algorithm is revealed by analyzing the difference between correct and faulty
results of the computation. For symmetric algorithms, Differential Fault Analy-
ses were first described in 1997 [3]. Since then, they were successfully applied to
various symmetric ciphers and their key schedule, e.g., DES [3], AES [9], and
CLEFIA. They were also applied to other cryptographic algorithms, such as
stream ciphers [7] and hash functions [6].

In 2012, Sakiyama et al. analyzed the information-theoretic optimality
of seven Differential Fault Analyses on the Advanced Encryption Standard
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(AES) [11]. They developed a model which quantifies the amount of information
a certain fault can deliver. Information-theoretic optimality does not imply that
an attack is also optimal from other points of view, e.g., a non-optimal method
might be easier to conduct in practice. However, an attack which is not optimal
can still be improved in the given framework, i.e., the key space can be further
reduced or a key space with the same size can be determined with less fault
injections.

We apply the approach from Sakiyama et al. to analyze the information-
theoretic optimality of Differential Fault Analyses on CLEFTA. The CLEFIA
cipher is a 128-bit block cipher proposed by Sony Corporation in 2007 [13].
Since then, several attacks against it have been published, including side channel
attacks which exploit cache accesses [10], Impossible Differential Attacks [17],
and novel methods such as the Improbable Differential Attack [16]. In this paper,
we analyze six published Differential Fault Analyses on CLEFIA [1,2,4,14,15,
18]. To the best of our knowledge, these are all DFAs on CLEFTA until today.

Contribution: We analyze all published Differential Fault Analyses on CLEFIA
from an information-theoretic perspective with the techniques introduced in [11].
These DFAs are described in Sect.3. The methodology and the results of our
analysis are described in Sect.4. Our results show that some of the attacks
are optimal, while others do not exploit all available information. With one
exception, we optimized all attacks against CLEFIA-128 which proved not to be
optimal. The optimized attacks reach the theoretical limits and thus exploit all
available information. For longer keys, all DFAs were shown not to be optimal
in our analysis. We considerably improved one of them. The improved attack
is concretely the best known attack against CLEFTIA-192 and CLEFIA-256. In
Sect. 5, we explain how we optimized the non-optimal attacks against CLEFTA-
128 and describe our improved attack against CLEFIA-192/256.

2 Background

We first explain Differential Fault Analysis. Then, we present the CLEFIA cipher
and provide background knowledge on information theory.

2.1 Differential Fault Analysis

For a Differential Fault Analysis (DFA), an attacker needs at least one correct
ciphertext and one faulty ciphertext. Thus, she has to have the ability to induce
faults on the cryptographic primitive level. These faults can be described in
detailed fault models, which include the location and the timing of the fault,
and the number of bits and bytes which are affected by the fault. A fault can,
for example, affect one byte in the register storing the first four bytes of the state
(location) in the penultimate round (timing). The assumed fault model gives the
attacker partial information about the difference between certain states of the
correct and the faulty computations, although she will not know the concrete
value of the fault in most scenarios. Since the attacker also knows the correct
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and faulty ciphertext, and thereby their difference, she can deduce information
about the secret key. Small differences in the fault models might crucially affect
the capabilities and the complexity of the attacks [3]. For the attacks analyzed
in this work, the attacker is assumed to have full control on the timing and the
location of the fault, and is able to induce not permanent, but transient faults.

2.2 CLEFIA

The 128-bit block cipher CLEFIA was developed by Sony Corporation and pre-
sented in 2007 [13]'. To be compatible with AES, CLEFIA supports key lengths
of 128, 192, and 256 bits. CLEFIA is a Feistel cipher with four 32-bit data
lines which are used during r rounds throughout the encryption and decryption
processes. Corresponding to the increasing key lengths, the number of rounds
are 18, 22, and 26. According to the four data lines, P; € {0,1}32, i € {0,...,3}
denote the four 32-bit parts of the plaintext P, so that P = Py|P;|P2|Ps.
Similarly, the state is denoted by T = Ty|T1|T2|T5 and the ciphertext by
C = Co|C1]Ca|Cs.

As shown in Fig.1, CLEFIA uses 2r round keys during encryption. In the
k*" round, RK5j, and RKo, 1 are used for k € {0,...,r — 1}. Moreover, four
whitening keys are used, from which WKy and W K; are XORed with P; and

! All figures in this section are taken from [13].
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Ps at the beginning of the encryption, while W Ky and W K3 are XORed to the
final 77 and T3. The encryption algorithm uses the 4-branch, r-round generalized
Feistel structure, GF' Ny -, between the initial and the final key whitening phases.

In every round, two 32-bit F-functions Fy and F; are used, shown in Fig. 2.
Both F-functions first XOR the input with the round key and then make use of
the 8-bit S-boxes Sy and S;. Afterwards, Fy and F} contain a diffusion layer pro-
vided by the corresponding diffusion matrices My and M;. Here, the transpose
of the state T is split into 8-bit vectors which are multiplied with the respective
matrix in GF(2%).

The four whitening keys WK, i € {0,...,3} and the 2r round keys RK;, i €
{0,...,2r—1} are calculated from the initial secret key K during a key schedule
procedure. The key scheduling for CLEFIA-128 [13] utilizes sixty 32-bit constant
values, the so-called DoubleSwap function X : {0,1}'?® — {0,1}'?® shown in
Fig. 3, and the 4-branch Feistel structure through 12 rounds, GF Ny 2. For longer
keys, altogether 84 constant values are used along with the DoubleSwap function
and the 8-branch Feistel structure with 10 rounds, GF Ng 1p.

2.3 Information Theory

The foundations of information theory have been laid down by Claude E.
Shannon in 1948 [12]. The Shannon entropy for a discrete random variable X
with p(X = ;) =p;, i =1,...,nand {x1,...,2,} € {0,1}*, is

- Zpi log, (pi)- (1)

It quantifies the uncertainty when the value of X is to be predicted. For two
discrete random variables X and Y, their joint entropy can be defined as well
as the respective conditional entropies. The joint entropy of X and Y, H(XY)
or H(X,Y), is

ZZP =, Y = y;)logy(p(X =2, Y =y;)).  (2)

=1 j=1

We have H(XY') < H(X)+H(Y), while for stochastically independent X and Y,
equality holds. Following the definition by Shannon, the conditional entropy of X
is the average of the entropy of X for each value of Y, weighted according to the
probability of getting that particular Y [12]. Thus, the entropy of X conditioned
on Y, i.e., the conditional entropy H(X | Y), is defined as

H(X|Y): Zp H(X | Y =y;), with (3)

HX|Y =y;) = Zp = 7Y = y;)logy(p(X = zi[Y = y;)).  (4)

Using the definition of the conditional probability [5], Eq. 3 becomes
H(X|Y)=HXY)-H(®Y). (5)
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3 Differential Fault Analyses on CLEFIA

We analyzed six DFAs on CLEFIA which are, to the best of our knowledge, all
published DFAs on CLEFTA. They were published between 2007 and 2013.

The first DFA was presented already in 2007 [4]. The attack against CLEFIA-
128 uses independent random byte faults at six different positions of the algo-
rithm. These are induced in Ty and T5 in rounds 15, 16 and 17 and help to reveal
RKgo, RK31, RK32 D WKg, RK33 D WK27 RK34 and RK35. ThU.S7 the attack
needs at least 6 faulty encryptions. However, the authors state that the fault
inductions have to be repeated until all bytes are recovered. They had to induce
at least 18 faults in their simulations. Based on the recovered round keys, the
original secret key can be revealed by analyzing the key scheduling algorithm. If
the key size is 192 or 256, the same procedure has to be applied in rounds » — 9
to r — 1. Here, the simulated attacks need 54 faults to be successful.

One year later, these results were improved [14]. Takahashi and Fukunaga
encrypt a random plaintext, which does not have to be known, with the same
secret key three times with CLEFIA-128. They insert four-byte faults in the 16"
round in two of these encryptions, one into Fjy and one into F}. The authors use
the fact that “a fault corrupts the intermediate values of the fault-injection round
and the subsequent rounds”. Thus, they obtain more information out of a single
fault, since they also analyze how the differences propagate through the next
two rounds. After analyzing rounds 16 to 18, 2'¥ candidates for the round keys
are left. By applying the inverse of the DoubleSwap function and GF' Ny 12 to all
round key candidates, the 128-bit secret key can be uniquely identified. Tn 2010,
the authors adapted the same attack to keys with 192 and 256 bits, where 10.78
faults are needed on average [15].

Still in 2010, multiple-byte Differential Fault Analyses were described for
CLEFTA-128 [18]. The authors propose three attack models, including the first
attack which exploits fault injections in the final round. This attack exploits
faults in the inputs of Fy and Fj in rounds 18, 17, and 16. The authors consider
multiple-byte faults, so that each single fault can affect up to four bytes. The
second attack builds on [4] and induces faults into the inputs of Fj and Fj in
both the 15" and 17" round, but extends their fault model to multiple bytes.
For the third attack, which targets the 16" round, however, the strict four-byte
fault model of [14] has been loosened to a one-to-four-byte model, so that the
attack presented in [14] can be seen as a special case of this more general attack
description. According to the authors, the minimum amount of faulty ciphertexts
for these three attacks to be successful is 5 to 6, 6 to 8, and 2. For the first two
attacks, these faults help to reveal the secret key completely. In the third attack,
219 candidates for the secret key remain. Unfortunately, the description of these
three attacks is not always easy to follow, and several statements in [18] are
inconsistent with one another. The description of these attacks in the work at
hand is to the best of our knowledge.

In 2012 it was analyzed if protecting the last four rounds of CLEFIA-128
would counter DFAs [1]. The authors show that it is sufficient to induce two
random byte-faults in the computation of Fj; and F} in round 14. It is assumed
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that the faults are induced before the diffusion operation of the F-functions, cf.
Fig.3 in [1]. These two faults are enough to uniquely reveal the secret key by
exploiting the propagation of the faults in the final four rounds. Thus, it is not
sufficient to protect the last four rounds of CLEFTA against such attacks. One
year later, the same authors extended their attack to CLEFIA-192 and CLEFTA-
256 [2]. Here, they also start to scrutinize how much information a certain fault
can provide. They induce two random faults each in the computation of Fj
and F}, in rounds r — 4 and r — 8. Thus, they induce eight faults altogether.
They can reveal the whole secret key of both CLEFIA-192 and CLEFIA-256.

4 Information-Theoretic Analysis of DFAs on CLEFTA

We adapt the information-theoretic methodology described in [11] (and recapit-
ulated in the full version of this paper [8, Sect. 4.1]) to the CLEFIA block cipher.
Then, we evaluate the optimality of all published DFAs against CLEFIA.

4.1 General Methodology Adapted to CLEFIA

We refine the general model of [11] for the 8-bit model of CLEFIA with Sy and
S1 S-boxes. The refined model is shown in Fig.4. It shows the XORing of the
round key and the application of the S-boxes Sy and S; within the F-functions
Fy and Fy of the cipher CLEFIA. x and y denote the 8-bit input and the 8-bit
output of the S-box. z is the 8-bit value for which x = z ® k with the key k.
Given a correct and a faulty execution of the encryption algorithm, the 8-bit
differences are Az = x1 ® xo, Ay = y1 By, and Az = 21 B z5. The attacker can
gain the values x1,x9, Azx,y1,y2, Ay, and Az. K, X1, X5,Y7,Y5, AX, and AY
are discrete random variables with possible 8-bit values of k, x1,x2,y1, y2, Ax,
and Ay.

To analyze the values of H (X; | AXAY) and H (AX | AY), we take a look
at the number of possible solutions for z; that satisfy

for S; € {So,S1}. The number of possible solutions to Eq.6 for z; when Ax
and Ay are given can be derived from the values of Table1 in [14]: we divide
the values by 256 since we do not regard the values for the 8-bit part k£ of the
round key but solve the equation for x; instead. Furthermore, we discard the
values for Az, Ay = 0 since we assume them to be nonzero. Hence, we discard

k

y
. X

Fig. 4. Simple cipher model using an 8-bit CLEFIA S-box Sp (S1).
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Table 1. Solutions to Eq.6 for Sy and z; with fixed Az and Ay.

Solutions for =1 | 0 2 4 6 8 10 | Total
Occurrences 39511 | 19501 | 5037 | 848 | 119 | 965025 (= 2552)

510 occurrences of 0 and one occurrence of 256 possible values for x;. For the
S-box Sy, the amount of occurrences of 0 to 10 possible solutions can be found
in Table 1. For the S-box Sy, for every Ay we obtain 0 for 128 values of Ax, 2
for 126 values of Az, and 4 for one value of Ax.

Now we calculate H (K | Y1Y2) for the case that we have no information on
the fault model, i.e., X7, AX, and K are independent and identically distributed.
Then, we calculate H (K | Y1Y>3) with additional information on the fault model.

Applying the information from Table 1, we yield for Sy

255

Hg, (AX | AY) = Y P(AY = Ay;) Hs, (AX | AY = Ay;) ~ 6.535,  (7)

=1
255

Hs, (X1 | AXAY) =3 P (AY = Ay,) Hg, (X1|AXAY = Ay,) ~ 1.465, (8)
=1

Hs, (K | V1Y2)@6.535 + 1.465 = 8 = H (K). 9)

For Sy, since its differential property is equal to the one of the AES S-box, the
calculations are analogous to calculations 5 and 6 from [11] and are thus omitted
in the present work. We have Hg, (AX | AY) = 417, Hg, (X1 | AXAY) = &,
and Hg, (K | Y1Y2) = 4L + 8 =8 =H (K).

Since Hg, (K | Y1Y2) = Hg, (K | Y1Y2) = H (K), no information on K can
be obtained without information on the fault model. We repeat the calculation
using some assumptions on the fault model. Let X C {0,1}™ be the set of values
that AX can take in the employed fault model.

As a coarse estimate for Hg, (AXAY'), we consider only the values for Az
and Ay that allow at least one possible solution for x1, i.e., 19501 + 5037 + 848 +
119 + 9 = 25514 of 2552 = 65025 values. Let X; and AX be independent and
identically distributed over {0,1}™ and X, and AY identically distributed over
{0,1}™. We have Hg, (AY) = n and

25514 - |X| - 2"
Hg, (AXAY) =~ log, (650|25|> and therefore (10)
Hs, (AX | AY) =~ log, (|X|) — 1.349. (11)
8

We have Hg, (X1 | AXAY) = 1.465 and Hg, (K | YlYg)(Q)log2 (|X]) 4+ 0.115.
Without information on the fault model we have X = {0,1}", so maxi-
mally Hg, (AX | AY) ~ n — 1.349. Hence, we define mg, := (n —1.349) —

(1))

Hs, (AX | AY) ~ 'n — log, (|X]) as the amount of information leaked from
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Table 2. Information-theoretic optimality of DFAs against CLEFIA-128. The location
and the timing of the faults describe the fault model. The number of key bits that can
be learned from a single fault is denoted with m, and ¢ denotes the number of faults
the authors use to reduce the key space to |K| candidates.

Differential fault Location Timing m t | |K| | Optimality
attack
Chen et al. [4] 1 random byte | 15, 16, 17 | 118.006 | 18 | 1 | 2 faults suffice
Takahashi, 4 known bytes | 16 96.023 | 2|1 optimal
Fukunaga [14,15]
Zhao et al. [18] 4 known bytes | 16, 17, 18 | 96.023 |12 |1 |2 faults suffice
4 known bytes | 15, 17 96.023 | 8|1 2 faults suffice
4 known bytes | 16 96.023 | 2|2 | |K| can be 1
Ali, 1 known byte |14 120.006 | 2|1 optimal
Mukhopadhyay [1,2]
Improvement on [4] |1 random byte | 15 118.006 | 2|1 optimal
Improvement on [18] | 4 known bytes | 16 96.023| 2|1 |optimal

a fault injected before the application of the S-box Sy. Thus, the amount of
information a certain fault can yield from an information-theoretic perspec-
tive depends on the amount of values the fault can attain. For S, as before,
the calculation is analogous to the one from [11] and we use the definition
mg, = (n—1) — Hg, (AX | AY) = n — log, (|]X]) for the amount of infor-
mation leaked from a fault injected before the application of the S-box S;. Since
the estimations for both Sy and S; lead to the same definition for the amount
of leaked information, we define

m &~ n — log, (|X]). (12)

4.2 Results of the Information-Theoretic Analysis

We will now present the results of our information-theoretic analysis regarding
the optimality of all existing Differential Fault Attacks against CLEFIA. We
calculate the amount of leaked information m by means of Eq.12. The results
of our analysis are summarized in Table2 for CLEFIA-128 and in Table3 for
CLEFIA-192 and CLEFIA-256.

Attacks Against CLEFIA-128. The first Differential Fault Attack against
CLEFIA-128 [4] uses 18 faults that are injected in one random byte of a four-
byte register, so we have 28 — 1 possible faults in four possible locations and
the size of the set of possible values for AX is |X| = (28 —1) - 4. We get
m =~ 128 — log, ((28 - 1) ~4) ~ 118.006. Thus, in theory one fault is suffi-
cient to reduce the key space to 2'° and two faults leak enough information
to uniquely identify the key. Since the attack in [4] needs 18 faults, it is not
information-theoretically optimal.
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Table 3. Information-theoretic optimality of DFAs against CLEFIA-192/256. The
location and the timing of the faults describe the fault model. The number of key bits
that can be learned from a single fault is denoted with m, and ¢ denotes the number
of faults the authors use to reduce the key space to |K| candidates. According to our
analysis, 2 or 3 faults suffice for achieving optimality.

Differential fault attack | Location Timing m t ||
Chen et al. [4] 1 random byte |[r —9,...,r—1 |118.006 | 54 1
Takahashi, Fukunaga [15] | 4 known bytes | —8,r — 5,7 — 2| 96.023|10.78 | 1
Ali, Mukhopadhyay [2] 1 known byte |r—8,r—4 120.006 | 8 1
Improvement on [4] 1 random byte |r — 7,r — 4 118.006 | 8 1

The second attack against CLEFIA-128 uses two faults which are injected in
four bytes with known position [14]. In the first step, they reduce the key space
to 21902 Then, they recover the key through an exhaustive search utilizing

the key schedule, but no plaintexts. For this fault model |X| = (28 — 1)4, SO
m =~ 128 — log, ((28 — 1)4) ~ 96.023 for a single fault. Therefore, two faults

are needed to uniquely identify the key. As the attack uses only two faults we
consider it optimal.

The next three DFAs by Zhao et al. [18] from 2010 are described for multiple-
byte faults that affect one to four known bytes in the calculation. For these fault

models, we have |X| = (2% — 1)i ,i€{l,...,4}, and we get
m ~ 128 — log, ((28 - 1)’), (13)

which implies for i = 1,2, 3,4, the amount of leaked information m = 120.006,
112.011,104.017,96.023, respectively.

The authors give results only for the case of four-byte faults. Hence, we
included only this case in Table2. The authors state that their first attack uses
six faults that affect eight bytes, but since the faults are injected in four-byte
registers and their description of the attack also mentions one-to-four-byte faults,
we assume four-byte faults. In case they really simulated eight-byte faults, these
would have been two independent four-byte faults during one computation. Thus,
their six faults count as twelve faults in our model, cf. Table 2. However, from
Eq.13 we find that only two faults are needed to recover the secret key. As
the attack needs more faults, it is not optimal from an information-theoretic
perspective. The second attack from [18] uses eight faults. From Eq. 13 we know
that two faults leak enough information to uniquely identify the key, so this
attack is not optimal either. The third proposed attack equates to the attack
from Takahashi and Fukunaga in the case of four-byte faults. Zhao et al. state
that with two faults the attack reduces the key space to 2'%. Since in theory two
faults are enough to uniquely identify the key, this attack is not optimal.

Another DFA against CLEFIA-128 was described by Ali and Mukhopad-
hyay [1,2]. It uses faults that affect one known byte, so we have |X| = 28 — 1.
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Since we have m ~ 128 — log, (28 — 1) ~ 120.006, two faults are needed to leak
enough information to uniquely identify the key. As their attack succeeds with
only two faults, it optimally exploits the information leaked from these faults.

Attacks Against CLEFIA-192 and CLEFIA-256. We observed that all pre-
viously presented DFAs against CLEFIA-192 and CLEFIA-256 are not optimal
from an information-theoretic perspective.

The first Differential Fault Attack against CLEFIA-192 and CLEFIA-256
was published by Chen et al. in 2007 [4]. As in their attack against CLEFIA-
128, the faults are injected in one random byte in a four-byte register. For 28 —1
possible faults in four possible locations and thereby |X| = (28 — 1) -4, we get
m ~ 128 — log, ((28 — 1) -4) ~ 118.006. Thus, in theory two and three faults
are sufficient to uniquely identify the 192-bit and 256-bit key, respectively. As
the attack needs 54 faults, it is not optimal.

In 2010 Takahashi and Fukunaga adapted their Differential Fault Attack
against CLEFTA-128 to longer keys [15]. Their faults affect four known bytes, so
the fault model gives | X| = (2% — 1)4 and we have m ~ 128 —log, ((28 - 1)4) ~
96.023, so in theory two and three faults are enough to recover the 192-bit and
256-bit key, respectively. However, since 2 - 96 = 192, an attack with only two
faults will most probably not succeed in revealing a 192-bit key. Nevertheless,
since the attack needs 10.78 faults on average, it is not optimal.

The most recent Differential Fault Attack against CLEFIA-192 and CLEFIA-
256 was published in 2013 by Ali and Mukhopadhyay [2]. Analogously to their
attack against CLEFIA-128, it works with faults that affect one known byte, so
we have |X| = 28 — 1. The attack needs eight faults to recover the key. We have
m ~ 128 — log, (28 — 1) ~ 120.006. Again, two and three faults leak enough
information to uniquely identify the 192- and 256-bit key, respectively. Thus,
this attack is not optimal, but information-theoretically the best known DFA
against CLEFIA-192 and CLEFTA-256.

5 Improvement of the Non-Optimal DFAs

For the non-optimal attacks, we seek for an improved DFA in the same fault
model, i.e., we use a subset of the faults injected in the original attack in
order to reveal the secret key. We show that with one exception, all previously
non-optimal attacks against CLEFIA-128 can be improved to be optimal from
an information-theoretic perspective. For CLEFIA-192 and CLEFIA-256, we
achieve a considerable improvement in one of the algorithms. The improved ver-
sion requires significantly less fault injections than before and achieves the best
success rate with this low fault number. Our experimental results are presented
in Tables4 and 5 and for our methodology used for the validation, the reader is
referred to the full version of the paper [8, Sect. 5.3].
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We first describe the basic idea of DFA methods on CLEFTA that is used to
reveal the round keys and thereafter the secret key K. Analyzing the 4 round,
the attacker calculates the input Zj of the F-function Fj, where k € {0,1}. Tt
can be calculated by means of the correct ciphertext and some of the round keys
of later rounds. The difference AZ} of the inputs of the F-function is calculated
with a correct and a faulty ciphertext. AZ,C 4 with i € {0,...,3} denotes the
input difference of one of the four S-boxes used in Fy. In order to obtain the
output differences AY] of the S-boxes, the inverse of the corresponding diffusion
matrix My, is apphed to the 32-bit output difference of Fj. The input-output
differences for the S-boxes are retrieved, using which differential equations for
all 8-bit states are deduced:

AY], =S(Z] ;& RKaj o4 ©® AZ] ) ®S(Z]; ® RKaj_21.). (14)

Here, we have ¢ € {0,...,3} and S denotes the S-box used in the state,
as shown in Fig.2. The dlﬁerence distribution table of an S-box stores all the
values of Z,Jc i ® RK3j_o1); corresponding to a choice (AZ,JC Z,AYJ ). Table 1

shows the possible numbers of solutions for VA ki @ RK5j_241,; in case of Sy, and
we described the case of S in Sect. 4. If j is odd, a whitening key is also XORed
to this value. Therefore, after using the difference distribution tables, a limited
number of candidates remains for each of the four 8-bit parts of the round key in
case the input-output differences are nonzero values, because the fault affected
the round. After recovering the necessary round keys, the original secret key K
can be deduced by analyzing the key scheduling of CLEFIA.

5.1 Improvements on CLEFIA-128

For the deduction of the 128-bit secret key K, the most efficient algorithm uses
the values of RK3y, RK31, RK3o ®W K3, RK33® W Ko, RK34 and RK35. Thus,
we need to recover these by examining the input-output differences in the last
three rounds. Two of the analyzed six attacks against CLEFIA-128 are already
optimal, and we improved three of the remaining four. In Table2 we see the
attacks already existing along with our proposed improvements.

Optimization of the Attack by Chen et al.: The fault model used by Chen
et al. in [4] is the byte-oriented model of random faults. A one-byte fault is
induced into the register composed of four bytes in an intermediate step. The
attacker knows the register into which the fault is injected, but does not have
any knowledge of the concrete location or the value of the fault. Each fault is
injected before a diffusion matrix in a certain round, so that a single random
byte fault causes four-byte faults in the next round. In their original attack, they
inject three faults into each of six locations in the 15", 16**, and 17" round.
To make this attack optimal, we show that only two of the six faults induced
in the 15 round are enough to uniquely reveal the secret key. In this fault
model, the analysis presented by Takahashi and Fukunaga in Sect.6 of their
paper [14] can be borrowed. Takahashi and Fukunaga claim that in their attack,



192 A. Kiss et al.

15th

16th

Fig. 5. Fault injection areas in the attack against CLEFIA-128 from [14,15]. (Figure
taken from [14].)

the fault injection area can be chosen from two areas. One is the area in the 15"
round within the dashed rectangle in Fig. 5, where any bit in any byte can be
corrupted. The other area is a total of four bytes in the region after the diffusion
matrix of round 15, denoted by a bold line in the same figure. Afterwards, on
the bold line all four bytes are corrupted due to the fault propagation. Since
the first injection area is the same as the one used by Chen et al. in [4], which
means that if we use the two random byte faults injected into the 15 round,
we can borrow the key retrieval technique of Takahashi and Fukunaga from [14].
Their method exploits the property of the CLEFIA key schedule procedure that
two of the whitening keys (W Ky, W K3) store the last two words of the original
secret key (Ko, K3), and thus, it uniquely verifies the original secret key. An
attacker can recover a limited number of round key candidates and from each
combination of these, a possible secret key can be calculated. Then, among 2'°-92
candidates, the original secret key is verified uniquely.

Optimization of the Attacks by Zhao et al.: Zhao et al. use a different fault
model in [18], exploiting one to four random byte-faults. The attacker does not
have any knowledge of the concrete location or the value of the faults. With these
looser conditions the authors claim their attacks to be more practical. Despite
this, they analyze their attack only with four-byte faults and thus we also include
these results in Table 2. When injecting faults according to their original fault
model, much more faults are necessary, since at each step less bytes of the input
difference are nonzero. The authors present three attacks: the first uses 12 faults
in the last three rounds, the second uses 8 faults in the penultimate round and
two rounds above, and the third attack only 2 faults in the round before the
penultimate round.

Their third attack uses only two faults if four bytes are disturbed in the 1
round. After identifying candidates for the round keys, they deduce the secret
key candidates and verify one of them as the original key. Since this verification
process is not described, we assume that they do a brute-force search on a known
plaintext-ciphertext pair. This type of exhaustive search is not necessary, since

6th
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Table 4. Experimental results on existing and proposed Differential Fault Analyses
on CLEFTA-128. With t faults, we obtained the reduced key space K in 100 or 2000
simulation experiments with the given success rate.

Differential fault attack Timing |t ||K]||Experiments | Success
Chen et al. [4] 15,16, 1718 |1 |2000 99.1%
Takahashi, Fukunaga [14,15] | 16 201 100 97 %
Zhao et al. [18] 16, 17,18 |12|1 |2000 81.3%
15, 17 811 2000 68.7%
16 22" 100 97 %
Ali, Mukhopadhyay [1,2] 14 211 {2000 91.45%
Improvement on [4] 15 21 100 97 %
Improvement on [18§] 16 2]1 100 97 %

the verification process from other attacks can be applied [1,4,14]. With this
technique, the attack is information-theoretically optimal.

In case of their first attack, Zhao et al. inject 12 four-byte faults into the
18th 17" and 16" rounds, and by means of these faults, they identify the secret
key uniquely. If we use the analysis from the above described and improved third
attack, we use only two of these faults, the ones injected into the 16" round.
Therefore, we reduced the number of faults injected to two, which is claimed in
Table 2 in order to achieve optimality for this attack.

Their second attack uses faults in two rounds. First, they induce four four-
byte faults into two locations in the 17** round, by means of which they deduce
the last four round keys. After this, they inject faults into the 15" round and
compute the remaining two round keys necessary to reveal the secret key. By
examining these injection points, no algorithm can reveal the secret key using
only two of the faults. The faults injected in the 17*" round can only recover
the last two round keys, since they do not affect the 16*" round input-output
differences. An analysis with two four-byte faults injected in the 15*" round is
not possible with the existing techniques, lacking the knowledge on the value
of the fault. If the value of the fault was known or a 32-bit brute-force search
was allowed, the method by Ali and Mukhopadhyay [1] could be used with the
fault value instead of the fault pattern. Here, we consider it impractical, since
the complexity of the attack would be 232 . 225:507 — 9257.507

5.2 Improvements on CLEFIA-192 and CLEFIA-256

Table 3 shows that there is no existing attack against CLEFTA-192/256 which is
information-theoretically optimal. In order to deduce the secret key, the most effi-
cient algorithm needs to recover RK3g, RK31, RK3o®W K3, RK33®W Ko, RK3y,
RK35, RK3s WKy, RK37 W K3, RK3g, RK39, RK40 W K3, RK41 ®W Ko,
RK,5, and RK,3. Thus, a successful attack needs to calculate the input-output
differences of at least the last seven rounds. All proposed attacks identify the
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Table 5. Experimental results on existing and proposed Differential Fault Analyses on
CLEFIA-192/256. With ¢ faults, we obtained the reduced key space K in 100 or 2000
simulation experiments with the given success rate.

Differential fault attack | Timing t | |K|| Experiments | Success
Chen et al. [4] r—9,...,r—1 |54/1 |2000 98.3%
Takahashi, Fukunaga [15] |r — 8,7 — 5,7 — 2| 10| 1 100 51 %
Ali, Mukhopadhyay [2] r—8r—4 1 12000 43.4%
Improvement on [4] r—"7r—4 1 |2000 51.2%

secret key uniquely, yet the best attack from an information-theoretic perspec-
tive is the last proposed method by Ali and Mukhopadhyay [2]. Their technique
uses the value of the faults they inject strictly into the first byte of a given regis-
ter. This register is found before the diffusion matrix of round r —4 and r — 8, so
the fault propagates with a given fault pattern shown in [2, Fig.5]. The attack
uses this fault pattern during the calculations of eight round keys. By means of
this method, we improve the analysis described by Chen et al. in [4].

Improvement of the Attack by Chen et al.: Chen et al. inject the faults
in the same area of a round as Ali and Mukhopadhyay [2], though not strictly
in the first, but randomly into one of the four bytes of the register. They induce
altogether 54 faults into rounds r —9 to r — 1, i.e., 6 faults per round. Half of the
faults are induced in Ty, and half of the faults are induced in T5. We, instead, mix
the analyses of Ali and Mukhopadhyay [2] and Takahashi and Fukunaga [15],
and apply this mixed technique to the fault model of Chen et al.

We first use four faults injected only into round r—4 (two into Ty, two into Ts).
An injected fault f implies one of four fault patterns in case of both diffusion
matrices My and M7, depending on which byte the fault was induced into. After
calculating the fault patterns, the algorithm from [2] can be borrowed. When we
use the fault pattern for the input-output differences, two times 16 checks are
necessary, since there are four possible patterns for both the fault injections.

After determining the first eight necessary round keys, we use another four
faults. We do not inject them four, but three rounds earlier, into round r — 7.
Here, we use the analysis technique from [15] to recover the rest of the necessary
round keys. In Sect. 5.1, it is explained why this attack can be directly applied
to the fault model of Chen et al.

Originally, Chen et al. injected 6 faults in 9 rounds each, altogether 54 faults.
After using only 8 of these faults injected into rounds » — 4 and r — 7, we have
all the necessary information to calculate the secret key. This way we reduced
the number of fault injections to the lowest possible number reached to date for
CLEFIA-192 and CLEFIA-256. Our attack cannot be prevented by protecting
only the last four rounds of the algorithm. Moreover, as shown in Tableb5, it
shows a better success rate than the DFA from [2].
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Conclusion

Our analysis of CLEFTA shows that an attacker needs at least two faults to
fully reveal the secret 128-bit key. Based on these findings, we improved all but
one attack against CLEFIA-128. From an information-theoretic perspective, the
improved Differential Fault Analyses all reach the theoretical limit.

For longer keys, we considerably improved one of the existing attacks. Our

proposed attack reaches the lowest number of faults reached so far.
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Abstract. This paper presents two equalities of H® and H* semi-norms
for the solutions of the Poisson equation in a two-dimensional polygonal
domain. These equalities enable us to obtain higher order constructive
a priori error estimates for finite element approximation of the Poisson
equation with validated computing.

Keywords: Poisson equation - A priori estimates

1 Introduction

Consider the Poisson equation

{—Au:f in £2, (1a)
u=0 ondf? (1b)

with a multiply-connected polygonal domain 2 C R2. The regularities of solu-
tions of the equation (1a)—(1b) depend on the shape of {2 and f. For example,
when (2 is convex and f € L%(£2), it is well-known (e.g. Grisvard [1]) that there
exists a unique solution u € Hg(£2) N H?(£2) of (1a)—(1b).

Recently, Hell, Ostermann and Sandbichler [2, Lemma2.4], and Hell and
Ostermann [3, Proposition 3] showed the following results.

Lemma 1. Let 2 = (0,1)2. Then all solutions to (1a)—(1b) lie in H3($2) for
f € HX(92). Moreover, for f € Hi(£2) N H?(82) the solution of (1a)—(1b) lies in
H*(92).

Remark 1. The assumption f € H}(2) is essential at Lemma 1. For example,
Hell and Ostermann [3] pointed out that, in the case of f = 1, the solution is
not in H3(2) even though f € C*(£2).

© Springer International Publishing Switzerland 2016

1.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 199-201, 2016.
DOI: 10.1007/978-3-319-32859-1_16



200 T. Kinoshita et al.

2 A Priori Error Estimations

Higher regularities of the solutions for the Poisson equation such as Lemma 1 will
lead us to higher order error estimations for finite element approximate solutions
of (1a)—(1b). For example, a result by Nakao, Yamamoto and Kimura [4] strongly
suggests that when f € H{(£2) and a solution u of (la)—(1b) lies in H?3(2),
for P2 (or Q2) finite element approximation uy of u, there exists numerically
determined C5 > 0 satisfying

lu = unll 73 ) < Coh® [l s - (2)
3 @)

Here, h shows the mesh size, ||“||H3(Q) and |ul s () are H} norm and H? semi-
norm of u defined by

2 2
HUHH(%(Q) = ‘U|H1(Q) = ||Vu||L2(Q)2 = \/”uleL?(n) + ||“x2HL2(Q),

2 2 2 2
|U‘H3(Q) = \/”uwlwlwl”L? +3 Huw1w1w2”L2 +3 Huﬂhwzwz”L? + Huév2£v2ﬂv2||L27

respectively. Moreover, if u has sufficient regularities and wy, is a P3 (or Q3)
finite element approximation, there also exists C3 > 0 such that

lu = unll g1y < C3h® [ul ragy (3)

where |u|H4(Q) is H* semi-norm of u defined by

2 2
|u|H4(Q) 32(”“3:13:13:13:1 HLz(Q) +4 ||Ux1x1x1x2”L2(Q)

N|=

2 2 2
+6 ||u913191319132962 HL2(Q) +4 Hul’lmzm’zmz ||L2(_(Z) + ||u91329132962962 |L2(Q)>

3 Main Theorem

We present a priori estimates replaced by f in the right-hand side of (2) and (3)
instead of H? and H* semi-norms of u, respectively.
Let D'(—A) and D?(—A) C H{(£2) be the Banach spaces defined by

D'(=A):={u€ Hy(2); —Aue Hy(2)},
D*(=A):={u€ Hy(2); —Aue Hy(2)NH*(2)},

respectively. Note that D™ (—A) (n € {1,2}) is the set of solutions of the Poisson
equation (1a)-(1b). We assume that D¥(—A) N C*(£2) is dense in D*(—A) N
HF2(0) for k=1,2.

Theorem 1. It is true that

ulgso) = V(AU 202, Yu € DY(=A) N H(02). (4)
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Remark 2. Using (2) and (4) we obtain an a priori error estimate with O(h?):
lu = unll g1 0y < Co2h® [ fll sy 2)-
Theorem 2. It is true that
[ulprso) = HAQuHB(Q), Yu € D*(—A) N HA(0). (5)
Remark 3. Using (3) and (5) we obtain an a priori error estimate with O(h®):

[lw — uh||Hé(Q) < Csh?® IAf] 20y
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Abstract. This paper reinforces numerical iterated integration devel-
oped by Muhammad-Mori in the following two points: (1) the approxi-
mation formula is modified so that it can achieve a better convergence
rate in more general cases, and (2) an explicit error bound is given in
a computable form for the modified formula. The formula works quite
efficiently, especially if the integrand is of a product type. Numerical
examples that confirm it are also presented.

Keywords: Sinc quadrature - Sinc indefinite integration
Repeated integral - Verified numerical integration - Double-exponential
transformation

1 Introduction

The concern of this paper is efficient approximation of a two-dimensional iterated

integral
b q(x)
I:/ </A f(x,y)dy> dz, (1)

with an a priori rigorous error bound. Here, g(x) is a monotone function that may
have derivative singularity at the endpoints of [a, 0], and the integrand f(z,y)
also may have singularity on the boundary of the square region [a, b] x [A, B]
(see also Figs.1 and 2). In this case, a Cartesian product rule of a well known
one-dimensional quadrature formula (such as the Gaussian formula and the
Clenshaw—Curtis formula) does not work properly, or at least its mathematically-
rigorous error bound is quite difficult to obtain, because such formulas require
analyticity of the integrand in a neighbourhood of the boundary [1].

Promising quadrature formulas that do not require analyticity at the
endpoints may include the tanh formula [15], the IMT formula [3,4], and the
double-exponential formula [20], which enjoy exponential convergence whether
the integrand has such singularity or not. Actually, based on the IMT formula,
an automatic integration algorithm for (1) was developed [12]. Further improved
version was developed as d2lri [2] and r2d2lri [13], where the lattice rule is
employed with the IMT transformation [3,4] or the Sidi transformation [16,17].

© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-32859-1_17



Explicit Error Bound for Modified Numerical Iterated Integration 203

A A

a b

Fig. 1. The domain of integration (1) Fig. 2. The domain of integration (1)
when ¢'(z) > 0. when ¢'(z) < 0.

As a related study, based on the double-exponential formula, an automatic inte-
gration algorithm over a sphere was developed [14], which also intended to deal
with such integrand singularities. The efficiency of those algorithms is also sug-
gested by their numerical experiments.

From a mathematical viewpoint, however, those algorithms do not guaran-
tee the accuracy of the approximation in reality. In order to estimate the error
(for giving a stopping criterion), Robinson and de Doncker [12] considered the
sequence of the number of function evaluation points { Ny, },, and that of approx-
imation values {Iy, }, and made the important assumption:

Dy, = |INm - INm—l‘ = |I - IN771—1|’ (2)

m

which enables the error estimation |I — Iy, | ~ DJ2Vm /Dn,,_,. A similar app-
roach was taken in the studies described above [2,13,14]. The problem here is
that it is quite difficult to guarantee the validity of (2), although it had been
widely accepted as a realistic practical assumption for constructing automatic
quadrature routines in that period. The recent trend is that the approximation
error is bounded by a strict inequality (instead of estimation ‘~’) as

|I — Iy| < Ey,

where Ey is given in a computable form (see, for example, Petras [11]). Such an
explicit error bound is desired for constructing a more reliable, verified numeri-
cal integration routine. In addition to mathematical rigor, such a bound gives us
another advantage: the sufficient number IV for the required precision, say Ny,
can be known without generating the sequence {Ix}. This means low computa-
tional cost, since we do not have to compute for any N with N < Nj.

The objective of this study is to give such an explicit error bound for the
numerical integration method developed by Muhammad-Mori [7]. Their method
is based on Sinc methods [18,19] combined with the double-exponential trans-
formation [5,20], and it has the following two features:

1. it has beautiful exponential accuracy even if f(z,y) or g(x) has boundary
singularity, and

2. it employs an indefinite integration formula instead of a quadrature formula
for the inner integral.
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The first feature is the same as the studies above [12,14], but the second one is
unique. If a quadrature rule is employed to approximate the inner integral, the
weight w; and quadrature node y; should be adjusted depending on x as

a(=)
/A xydyrvzw] f(,y;(2)),

whereas in the case of an indefinite integmtion formula, y; is fixed (independent

of x) as
q(I)
/ (z,y)dy ~ Zw] flz,y;).

A

This independence of x is quite useful to check mathematical assumptions on the
integrand f(x,y) for the exponential accuracy. Furthermore, as a special case,
when the integrand is of a product type: f(x,y) = X(2)Y (y), the number of
function evaluations to approximate (1) is drastically dropped from O(n x n) to
O(n +n), where n denotes the number of the terms of ) (it is also emphasized
in the original paper [7]).

However, rigorous error analysis is not given for the formula, and there is
room for improvement in the convergence rate. Moreover, it cannot handle the
case ¢'(z) < 0 (only the case ¢’(x) > 0 is considered). In order to reinforce their
formula, this study contributes in the following points:

3. their formula is modified so that it can achieve a better convergence rate in
both cases (i.e., the case ¢’(x) > 0 and ¢'(x) < 0), and
4. a rigorous, explicit error bound is given for the modified formula.

The error bound shows that the convergence rate of the formula is gen-
erally O(exp(—cy/n/log(y/n))), and if f(z,y) = X(z)Y(y), it becomes
O(exp(—c'n/logn)).

The remainder of this paper is organized as follows. In Sect. 2, after the review
of basic formulas of Sinc methods, Muhammad-Mori’s original formula [7] is
described. Then, the formula is modified in Sect. 3, and its explicit error bound
is also presented. Its proof is given in Sect. 5. Numerical examples are shown in
Sect. 4. Section 6 is devoted to conclusion.

2 Review of Muhammad—Mori’s Approximation Formula
2.1 Sinc Quadrature and Sinc Indefinite Integration Combined
with the DE Transformation

The Sinc quadrature and Sinc indefinite integration are approximation formulas
for definite and indefinite integration on R, respectively, expressed as

M,

/ G(E)dE ~ h Z G(ih), (3)
13 Ny
[ cman~ 3" GunIGne©. (1)

j=—N_
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where J(j, h) is defined by using the sine integral Si(z) = [;'{(sino)/c} do as

TG n)(€) = h{ + Lsifx <5/h—m}.

Although the formulas (3) and (4) are approximations on R, they can be used on
the finite interval (a, b) by using the Double-Exponential (DE) transformation

b— b
v = (€)= 1 ® tanh (gsmhg) n ;a.
Since ¢ : R — (a, b), we can apply the formulas (3) and (4) in the case of finite

intervals combining the DE transformation as

b oo M+
/ o) dz = / gWE)YE)de~h S gk (ih), (5)
a —0o0 1=—M_

z v (x) Ny
[ atway=[ g mdns Y g GnIGR @ @),

(6)

which are called the “DE-Sinc quadrature” and the “DE-Sinc indefinite integra-
tion,” proposed by Takahasi-Mori [20] and Muhammad-Mori [6], respectively.

2.2 Muhammad—Mori’s Approximation Formula

Let the domain of integration (1) be as in Fig. 1, i.e., ¢(a) = A, ¢(b) = B, and
¢'(x) > 0. Using the monotonicity of ¢(z), Muhammad-Mori [7] rewrote the
given integral I by applying y = ¢(s) as

- b ( / " b dy> ar= [ b ( / " f e a(s)d () ds) dr. (7

Note that s € (a, b) (i.e., not (A, B)). Then, they applied (5) and (6), taking
h=h, M_ =M, =m, and N_ = N, = n for simplicity, as follows:

Y (ih)
I~h Z W/ (ih) ( / f<w(z'h>,q(s>>q'<s>ds>

1=—m

~h Z W) 3 D FEh), a((iR)))d (D (ih))Y' (7h) (G, h)(ih)

i=—m j=—n

If we introduce z; = t(ih), w; = wcosh(jh)sech?(nsinh(jh)/2)/4, and o} =
Si[m k]/ mt, which can be calculated and stored prior to computation (see also a
value table for oy, [18, Table 1.10.1]), the formula is rewritten as

m

I -0 3 wid Y Sanaed @ (3+0m) b ©)

i=—m j=-n
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The total number of function evaluations, say Nigtal, of this formula is Niota) =
(2m + 1) x (2n 4+ 1). As a special case, if the integrand is of a product type:
flz,y) = X (2)Y (y), the formula is rewritten as

m

I~ ((b-a)Ph* > U@ Y. V() (;+ai_j) , (9)

i=—m Jj=—n

where U(i) = X(z;)w; and V(j) = Y(q(z;))¢ (xj)w;. In this case, Niotal =
(2m + 1) 4+ (2n + 1), which is significantly smaller than (2m + 1) x (2n + 1).
They [7] also roughly discussed the error rate of the formula (8) as follows. Let
P4 be a strip domain defined by Z; = {¢ € C : |Im (| < d} for d > 0. Assume
that the integrand g in (5) and (6) is analytic on ¥(%;) (which means g(¢(-)) is
analytic on %), and further assume that g(z) behaves O(((z — a)(b — z))" 1)
(v > 0) asx — a and  — b. Under those assumptions with some additional mild
conditions, it is known that the approximation (5) converges with O(e=2% /%),
and the approximation (6) converges with O(he™*%/") by taking h = h and

st o ()] v (2

where € is an arbitrary small positive number. Therefore, if the same assump-
tions are satisfied for both approximations in (8), it enjoys exponential accu-

racy: O(he™™%"). Since m ~ n =~ /Nyota/4 and h ~ log(cn)/n (where
¢ =2d/(v — ¢€)), this can be interpreted in terms of Nipta1 as

. <log(c Nowll) ,, [—ﬂWWD. (10)

Ntotal/4 10g(0 Ntotal/4)

If the integrand is of a product type, since m ~ n ~ Niota1/4, it becomes

log(cNiota1/4) [ 7t d(Niotal/4) ] >
O e .
< Ntota1/4 P 1Og(CNtotal/4)

Although the convergence rate was roughly discussed as above, the quantity
of the approximation error cannot be obtained because a rigorous error bound
was not given. Moreover, the case ¢’'(z) < 0 (cf. Fig.2) is not considered. This
situation will be improved in the next section.

(11)

3 Main Results: Modified Approximation Formula
and Its Explicit Error Bound

This section is devoted to a description of a new approximation formula and its
error bound. The proof of the error bound is given in Sect. 5.



Explicit Error Bound for Modified Numerical Iterated Integration 207

3.1 Modified Approximation Formula

In the approximations (5) and (6), Muhammad-Mori [7] set the mesh size as
h = h for simplicity, but here, h is selected as h = 2h. Furthermore, both
M_ = M, and N_ = N, are not assumed. Then, after applying y = ¢(s) as
in (7), the modified formula is derived as

My

w(2ih)
Teon S0 @) ( [ fwem.a@) ) ds>

i=—

~2h Y w'(%h){_z f(w(%h),q(d)(ﬂ)))fl'(d)(ﬁ))lﬁ’(jh)J(J}h)(2ih)},

i=—M_

which can be rewritten as

My
I= []ignpi(h) =2(b—a)’h? Z w2 {
i=—M_

% f(wai, q(x5))q (z5)w; <% + azi_j> } .

i=—N_

(12)

The positive integers M1 and Ny are also selected depending on h, which is
explained in the subsequent theorem that states the error bound.

The formula (12) is derived in the case ¢'(x) > 0 (cf. Fig. 1), but in the case
¢ (x) <0 (cf. Fig.2) as well, we can derive the similar formula as follows. First,
applying y = ¢(s), we have

b a(z) b b

-/ ( [ rww dy) ao= [ ([ rwaent-d©)as) a

[ ([ s@atn-d@nas— [ seaeni-d@pas) a.
Then, apply (5) and (6) to obtain

My Ny
I~2h Y 4'(2ih) { > @i a(a){—d ()} (§h) (b = J(, h)(%h))}-
i=—M_ j=—N_

Here, lim¢ o0 J(4, R)(§) = h is used. The right-hand side can be rewritten as

My
IS (h) =2(b—a)’h® Y wa

i=—M_

Ny
X a5 - o) } .
o (13)
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The formulas (12) and (13) inherit the advantage of Muhammad-Mori’s one in
the sense that Niota) = (M— + M4 + 1) x (N_ + N4 + 1) in general, but if
the integrand is of a product type: f(z,y) = X(2)Y (y), it becomes Niotal =
(M_+ My +1)+ (N_+ Ny +1), which is easily confirmed by rewriting it in the
same way as (9). Furthermore, it also inherits (or even enhances) the exponential
accuracy, which is described next.

3.2 Explicit Error Bound of the Modified Formula

For positive constants x, A and d with 0 < d < 7 /2, let us define ¢, ».q as

1
cos"tA (3 sind) cosd’

Cr A, d =

and define p, as

27K

arcsinh (MW> (0 <k <1/(2m)),
Pr =

arcsinh(1) (1/(2m) < k).
Then, the errors of I%¢(h) and I35 (h) are estimated as stated below.

Theorem 1. Let «, 3, 7, §, and K be positive constants, and d be a constant
with 0 < d < 1 /2. Assume the following conditions:

1. q is analytic and bounded in P(Dy),
2. f(,q(w)) and f(z,q(+)) are analytic in Y(Zq) for all z, w € Y(Dy),

3. it holds for all z, w € ¥(Py) that
|f(z.a(w))d' (w)] < K|z = a|*7 Mo — 2" Hw —a Mo —w/*h (14)

Let i = min{a, 8}, T = max{o, 8}, v = min{y, 8}, 7 = max{~, 8}, let h = 2h,
let n and m be positive integers defined by

B L A )

and let M_ and M, be positive integers defined by

{M_ =m, My=mllog(@/a)/h]  Gf p=a) o
My =m, M_=m-—|log(e/B)/h]  (if p=0Pp),
and let N_ and Ny be positive integers defined by
No=n, Np=n-llog(d/n)/h]  Gf v=") )
Ny=n, N_=n-—llogly/0)/h]  (if v=0),
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and let h (> 0) be taken sufficiently small so that
M_h>pa, Myh>ps, N_h>p,, Nih>ps
are all satisfied. Then, if ¢'(x) > 0, it holds that
11— I8 ()

B(~, 6 . 2¢q,
< 2K (b — a)*tPty+o-2 [(% M)Cws’d {62“ Mg 766167{?1/;1 }

i heys.d —nd/h
s e |
(18)

deqpae”

nd/h

[NE

where B(k, \) is the beta function. If ¢'(x) < 0, |I — I&<(h)| is bounded by the
same term on the right hand side of (18).

The convergence rate of (18) is O(e™ *#"), which can be interpreted in terms
of Niotal as follows. Since n ~ N_ ~ Ny and m ~ M_ ~ M, ~ (n/2), we can
see Niotal = ((n/2) + (n/2) +1)(n+n+ 1) ~ 2n%. From this and h ~ log(c'n)/n
(where ¢/ = 2d/v), the convergence rate of the modified formula is

0 _T[d\/ Ntotal/2
P g/ N /2) | |

This rate is better than Muhammad-Mori’s one (10). If the integrand is of a
product type: f(z,y) = X(2)Y (y), it becomes

oo [t )

since Niotal =~ ((n/2) + (n/2) +1) + (n+n + 1) ~ 3n in this case. This rate is
also better than Muhammad-Mori’s one (11).

Remark 1. The inequality (18) states the bound of the absolute error, say
E?P(R). If necessary, the bound of the relative error E*!(h) is also obtained
as follows:

ey LIRS B By
il ST T s - B )

4 Numerical Examples

In this section, numerical results of Muhammad-Mori’s original formula [7] and
modified formula are presented. The results of an existing library r2d2lri [13] are
also shown. The computation was done on a Mac Pro with two 2.93 GHz 6-Core
Xeon processors and 32 GB of DDR3 ECC SDRAM, running Mac OS X 10.6.
The computation programs were implemented in C/C++ with double-precision
floating-point arithmetic, and compiled by GCC 4.0.1 with no optimization. The
following three examples were conducted.
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Ezample 1. (The integrand and boundary function are smooth [7, Example 2]).

V2 2 /2 1+2v2
/ </ = ) do = 2log(L+vE) V2 ELE VTR 5
0 0

r+y+(1/2) 2

Ezample 2. (Derivative singularity exists in the integrand and boundary func-
tion [7, Example 1]).

/01 (/ e Mdy> dz = g

0

Ezample 3. (The integrand is weakly singular at the origin [2, Example 27]).

1 11—z
/ ( dy) dr=m.
0 0 VY

In the case of Example 1, the assumptions in Theorem 1 are satisfied with
a=03=6=1v=2,d=1log(2), and K = 16.6. The results are shown in
Figs.3 and 4. In both figures, error bound (say E™(h)) given by Theorem 1
surely includes the observed relative error E*!(h) in the form E*'(h) < E™!(h),
which is also true in all the subsequent examples (note that such error bound is
not given for Muhammad-Mori’s original formula). In view of the performance,
r2d2lri is better than the original/modified formulas, but its error estimate just
claims E™(h) ~ E!(h), and does not guarantee E*'(h) < E™!(h).

In the case of Example 2, the assumptions in Theorem 1 are satisfied with
a=pF=1,~v=1/2,§ =3,d =1, and K = 1.63. The results are shown in
Figs.5 and 6. In this case, the convergence of the original/modified formulas is
incredibly fast compared to r2d2lri. This is because the integrand is of a product

type: f(z,y) = X(2)Y (y).

10000

Muhammad--Mori formula —e—

10000

100 & Muhammad--Mori formula —— | 100 4 Modified formula —%— 1
Modified formula —X— 1 L ™. Error bound of modified formula --------- 1
1 Error bound of modified formula =-=-=-=-- A rod2lri —A—
5 0.01 r2d2lri B E 0.01 i Error estimate of r2d2Iri --a-- |
-
S 0.0001 5 0.0001
2 1606 | 2 1e06 f N
2 1e08 S te08 |
T tet0f S tetof
1e-12 1e-12
1e-14 1e-14
1e-16 . . . . . 116 . , ,
0 500 1000 1500 2000 2500 3000 0 0.0001  0.0002 0.0003 0.0004 0.0005
Niotal Computation time [s]
Fig. 3. Relative error with respect to Fig.4. Relative error with respect
Niotal in Example 1. to computation time in Example 1

(“Error bound of modified formula”
and “Error estimate of r2d2lri” show
each computation time needed to
obtain both the approximation value
and its error bound/estimate).
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The integrand of Example 3 is also of a product type. In this example, the
assumptions in Theorem 1 are satisfied with « =6 =1/2, 6=~y =1, d = 4/3,
and K = 1. The results are shown in Figs. 7 and 8. In this case, the performance
of r2d2lIri is much worse than that in Example 2, which seems to be due to the
singularity of the integrand. In contrast, the modified formula attains a simi-
lar convergence rate to that in Example 2. Muhammad—Mori’s original formula
cannot be used in this case since ¢(x) = 1 — x does not satisfy ¢’'(x) > 0.

5 Proofs

In this section, only the inequality (18) (for |I — I35(h)|) is proved, since |I —
I8%¢(h)]| is bounded in exactly the same way. Let us have a look at the sketch of
the proof first.

5.1 Sketch of the Proof

The error |I — IBS(h)| can be bounded by a sum of two terms as follows:

b ~ My ~ ~
I — 350 < / Fa)de—h S PR (ih)

i=—M_
~ My ~ p(ih) Ny _
b Y )| [ s = Y AGR) R IG R,
i=—M_ @ Jj=—N_

where F(z) = [ f(x,q(s))q (s)ds, fi(s) = f(p(ih), q(s))¢ (s), and h = 2h. The
first term (say F7) and the second term (say Es) are bounded as follows:

B, < B(v,6)cy 6.4 {e§”+ 2¢0,8,d ~ }QK(b _ a)a+ﬁ+y+572 eawz/ﬁ7 (19)
1 —e—2mnd/h

1 4cq.p8,d e—2nd/ﬁ 15 hC%57d
Es; < V{B(aaﬁ)+ 41— e-znd/h 1.1e2 +—d(1—e*2“d/h)

X 2K (b — )@ tAt7H=2 g=md/h (20)

A

Then, taking h = 2h, we get the desired inequality (18). In what follows, the
inequalities (19) and (20) are shown in Sects. 5.2 and 5.3, respectively.

5.2 Bound of E; (Error of the DE-Sinc Quadrature)

The following two lemmas are important results for this project.

Lemma 1 (Okayama et al. [10, Lemma 4.16]). Let L, a, and ( be posi-
tive constants, and let p = min{a, B}. Let F be analytic on W(Zq) for d with
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10000 ! . . ;
10000 T Mﬁhammaﬁ Nori fbrmula T 100 Muhammad--Mori formula —s—
100 |+ Modiifiod formula y J Modified formula —%—
H i * 1 Error bound of modified formula --------- 4
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I} 0.01 ) r2d2lri —&— 8 0.0tk Error estimate of r2d2lri --a-- ]
= Error estimate of r2d2lri --a&-- =] 0.0001 |
5 0.0001 fi 1 g 0
L 1e06 ff 1 2 te0s 1
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Niotal Computation time [s]
Fig. 5. Relative error with respect to Fig. 6. Relative error with respect to
Niotal in Example 2. computation time in Example 2.
10000 : : . :
10000 T T ——— T I Modified formula —%—
100 Modified formula —%— | 100 Error bound of modified formula === 1
Error bound of modified formula --=--==-- It 2d2li —a—
1 . r2d2iri —a— 4 - Error estimate of r2d2lri --a--:
s 0.01 Error estimate of r2d2Iri --a-- | 5 0.01 4 1
- i
g 1
5 0.0001 R J 5 0.0001
L 1006 i ANTTrA----al g 1e-06 1
E 1e-08 i g te0s
D Ae0 g te10 1
1e-12 [] 4 1e-12 1
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0 500 1000 1500 2000 2500 3000 0 0.0001 0.0002 0.0003 0.0004 0.0005
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Fig. 7. Relative error with respect to Fig. 8. Relative error with respect to
Niotal in Example 3. computation time in Example 3.

0 < d < m/2, and satisfy |F(z)| < Lz —a|* b—z|P~1 for all z € (Zy). Then
it holds that

b % - . . o—2md/h
/a F(z)dz —h _Z F((ih))y' (ih)| < Cy ey
where the constants Cy and Cy are defined by
B 2[~/ bh— a+p—-1 5
Cl = %, CQ = 2ca,ﬁ,d~ (21)

I

Lemma 2 (Okayama et al. [10, Lemma 4.18]). Let the assumptions in
Lemma 1 be fulfilled. Furthermore, let T = max{c, 8}, let m be a positive inte-
ger, let M_ and My be positive integers defined by (16), and let m be taken
sufficiently large so that M_h> Pa and M+iL > pg hold. Then it holds that

—(M_+1) 0
BT R@GR)WGR) +h S PR h)| < o3 Gy o Trestmh),

i=My+1

where Cy is a constant defined in (21).
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What should be checked here is whether the conditions of those two lemmas
are satisfied under the assumptions in Theorem 1. The next lemma answers to
this question.

Lemma 3. Let the assumptions in Theorem 1 be fulfilled, and let F' be defined
as F(z) = [7 f(z,q(w))q'(w) dw. Then, the assumptions of Lemmas 1 and 2 are

satisfied with L = K (b — a) =1 B(y,8)cy.5.4-

If this lemma is proved, combining Lemmas 1 and 2, and using the rela-
tions (15)—(17), we get the desired inequality (19). For the proof of Lemma 3,
we need the following inequalities.

Lemma 4 (Okayama et al. [10, Lemma 4.22]). Let x and y be real numbers
with |y| < m /2. Then we have

1
(1 +e™ sinh(z) cos y) COS(% sin y) ’
1
(1 + e~ msinh(@)cosy) cos(F siny)

IN

1
' 1+e™ sinh(z+iy)
1
1+e ™ sinh(z+iy)

IN

Lemma 5. Let z, &, y € R with |y| < 7 /2, let v and & be positive constants,
and let us define a function OV (x,y) as

1 5 1
POV (z,y) = 3 tanh (th;)sy sinhx) + 3
Then it holds that

/E 7| cosh(z +iy)|dz ~ BV y):v.9)
o |1 + e— msinh(z+iy) |'y|]_ + ensinh(z+iy) |5 - Cos'y+6(g Sil’ly) COSy’

where B(t; k, A) is the incomplete beta function.

Proof. From Lemma 4 and | cosh(z +1iy)| < cosh(x), we obtain

¢ 7| cosh(z +iy)|dz
o |]_ + e— msinh(z+iy) |A/‘1 + e™ sinh(z+iy) ‘5

< 1 /5 7 cosh(z) cos(y) dx
> Cos’y-i-(s(g sin y) cosy 14+e ™ sinh(x) cos y)'y(l + e sinh(z) cos y)6

_ BEOY(E, y);v,6)

~ cos7T(Zsiny) cosy’ 0

—oo

By using the estimates, Lemma 3 is proved as follows.

Proof. The estimate of the constant L is essential. Let ¢ = Re[y~'(z)] and
y = Im[yp~1(2)], i.e., 2z = (£ +1iy). By applying w = ¥(x +iy), we have
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|F'(2)]

13
[ F(za(e +i9)d (@ + i)W (@ + iy) da

3
gKlzfa\”‘*\ble"*l/ (@ +iy) —al 7o~z + i) T (z +iy)| de
¢ 7 |cosh(x +iy)|dz

o |1 +efnsinh(z+iy) |’y‘1 +ensinh(z+iy) |5'

=Klz—a|* M o— 2T (b—a)T ! /

Then, the desired bound of L is obtained by using Lemma 5 and
By (€,);7,8) < B(v,9). O

5.3 Bound of E2 (Error of the DE-Sinc Indefinite Integration)
The following two lemmas are important results for this project.

Lemma 6 (Okayama et al. [10, Lemma 4.19]). Let L, 7, and ¢ be positive
constants, and let v = min{y, §}. Let f be analytic on (Dy) for d with 0 <
d < /2, and satisfy | f(w)| < Llw —a|Y~tb—w|°~! for all w € ¥(Z4). Then it
holds that

C1Cy he~Td/h
2d 1 —e-2mnd/h’

sup
z€(a,b)

where the constants C1 and Cy are defined by

2L(b — aq)Vto-1
Oy = % Cy =2, 5. (22)
Lemma 7 (Okayama et al. [10, Lemma 4.20]). Let the assumptions in
Lemma 6 be fulfilled. Furthermore, let 7 = max{~y, 0}, let n be a positive integer,
let N_ and Ny be positive integers defined by (17), and let n be taken sufficiently
large so that N_h > p, and N h > pg hold. Then it holds that

—(N_+1) 0o
sup | > GURJIG R @)+ Y GURIG R (@)
z€(a,b) | ;2" j=Ni+1

<1.1 e%? Cy efguexp(nh%
where G(x) = f(¢¥(x))yY'(x), and Cy is a constant defined in (22).

What should be checked here is whether the conditions of those two lemmas
are satisfied under the assumptions in Theorem 1. The next lemma answers this
question.
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Lemma 8. Let the assumptions in Theorem 1 be fulfilled, and let f;(z) be defined
as fi(z) = f(¢(ih),q(2))q'(2). Then, the assumptions of Lemmas 6 and 7 are
satisfied with f = f; and L = K (¢(ih) — a)*~ 1 (b — 1(ih))?~

The proof is omitted since it is obvious from (14). Combining Lemmas 6
and 7, and using the relations (15)—(17), we have

2K (b — a)+o-1 iz hey 5.4 —xd/h
By < Oy x ———=——(Lle AT —ezmamy [ ’

where
M, R ~ -
Cs=h 3 0/)(W(ih) - a)* (b — (i) "
i=—M

What is left is to bound the term C, which is done by the next lemma.

Lemma 9. Let « and 3 be positive constants, and let n = min{«, 8}. Then Cs
s bounded as

4 —2mnd/h
C3 < (b—a)*™P71 {B(a,ﬂ) 4 ZCofd @ - } .

W 1 —e27nd/h

Proof. Let us define F as F(z) = (z — a)* ' (b— 2)?~1. We readily see

=

N
!
E
\/\

=

2 P
g/abF(;r)da:—F/ z)dz —h Z ih)

and we further see f F(z)dz = (b— a)**P~1 B(a, B). For the second term, use
Lemma 1 to obtain

4(b — a)* P 1cq g e—2md/h
dx—h_z F(p(ih))¢' (ih)| < m ey
which completes the proof. O

6 Concluding Remarks

Muhammad-Mori [7] proposed an approximation formula for (1), which can
converge exponentially with respect to Niotar even if f(z,y) or g(x) has boundary
singularity. It is particularly worth noting that their formula is quite efficient if
f is of a product type: f(x,y) = X(2)Y (y). However, its convergence was not
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proved in a precise sense, and it cannot be used in the case ¢/(z) < 0 (only the
case ¢'(x) > 0 was considered). This paper improved the formula in the sense
that both cases (¢’(x) > 0 and ¢'(z) < 0) are taken into account, and it can
achieve a better convergence rate. Furthermore, a rigorous error bound that is
computable is given, enabling us to mathematically guarantee the accuracy of
the approximation. Numerical results in Sect. 4 confirm the error bound and the
exponential rate of convergence, and also suggest that the modified formula is
incredibly accurate if f is of a product type, similar to the original formula.
This is because, instead of a definite integration formula (quadrature rule), an
indefinite integration formula is employed for the approximation of the inner
integral.

However, as said in the original paper [7], the use of the indefinite integration
formula has a drawback: it cannot be used when f(x,y) has a singularity along

y=q(z), e.g.,

Pl dy b a@
/a<A m)’ /a</A \/(Q(x)—y)(q(wﬂy)dy),

and so on (f can have singularity at the endpoints y = A and y = B, though).
This is because the assumption of Theorem 1 (more precisely, Lemmas 6 and 7) is
not satisfied in this case. In such a case, a definite integration formula should be
employed for the approximation of the inner integral. Actually, such an approach
was already successfully taken in some one-dimensional cases [8,9]. It also may
work for (1), which will be considered in a future report.
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Abstract. This article presents a theorem for guaranteeing existence of
a solution for an initial-boundary value problem of semilinear parabolic
equations. The sufficient condition of our main theorem is derived by a
fixed-point formulation using the evolution operator. We note that the
sufficient condition can be checked by verified numerical computations.

1 Introduction

Let J := (to,t1] (0 <tp < t; < 00) be a time interval and {2 a convex polygonal
domain in IR?. In this article we consider the following initial-boundary value
problems of semilinear parabolic equations:

Ou — Au= f(u)in J x £2,
u(t,z) =0 on J x 902, (1)
u(to, ) = uo(x) in 2.

Here, dyu = %, A = % + % denotes the Laplacian, the domain of the
Laplacian is D(A) = H?(2) N H(£2), f(u) is a real-valued function in J x 2
such that f : Hi(£2) — L2(£2) is a twice Fréchet differentiable nonlinear mapping
for Vt € J, and ug € H}(£2) is an initial function. Let 7 :=t; — t,.

The main aim of this article is to present Theorem 1 for proving existence
and local uniqueness of a solution to (1) in a neighborhood of an approximate
solution. This approximate solution consists of two numerical solutions. Let V}, be
a finite dimensional subspace of D(A). For two numerical solutions g, 4 € Vj,
we define the approximate solution w(t) as

w(t) = dopo(t) + w11 (t), t € J, (2)

© Springer International Publishing Switzerland 2016
I.S. Kotsireas et al. (Eds.): MACIS 2015, LNCS 9582, pp. 218-223, 2016.
DOI: 10.1007/978-3-319-32859-1_18
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where ¢;(t) (¢ = 0,1) is a linear Lagrange basis such that ¢;(¢;) = d;; (d;; is a
Kronecker’s delta for j =0, 1).

The evolution operator is introduced by Tanabe and Sobolevskii [1,2]. Using
the evolution operator, studies of parabolic equation have been developed in the
field of mathematical analysis (cf. [3,4]).

In this article, we present a fixed-point form by using the evolution operator.
Existence of its fixed-point is equivalent to that of the mild solution to (1). We
then derive a sufficient condition for verifying existence of the fixed-point. By
numerically checking whether the sufficient condition holds, existence and local
uniqueness of the mild solution to (1) are proved.

2 Fixed-Point Formulation

Let us start from the following fact: the mild solution u of (1) exists if and only
if the function z = u — w is the mild solution of

Oz — Az = f(z+w) — 0w+ Aw in J x {2,
z(t,x) =0 on J x 92,
z(to,x) = ug(x) — Go(x) in £2.
Suppose that z = e?(t=*0)y holds for a certain o > 0. Then v is a solution of the
following equation:
0w+ A(t)v = g(v) in J x £,
v(t,x) =0 on J x 992, (3)
v(to, ) = up(x) — o (x) in 2,

where

Alt) = —A+ (0 = flw®)]),

g(v) = et {f (w+ e 0) = f(w) = f @0 + f(w) — O — Aw}

holds. The operator f'[w(t)] : Hj(£2) — L*(§2) denotes a Fréchet derivative of f
at w(t) for t € J. We furthermore assume that f'[w(¢)] is a symmetric operator
fort € J.

From the definition of w in (2), the domain of A(t) becomes D (A(t)) = D(A)
for each t € J (D(A(t)) is independent of t € J). Let us fix g > 0. We define a
norm of V = H}(£2) as

ol = (IV6l3 + ullolF)"/* for o € V.
We determine the o > 0 such that o — f'[w(t)] > p a.e. 2 for Vi € J. It then
follows
[(At)u, v) 2| = |(Vu, Vo) 12 + (0 = flw(®)])u, v) o
= [(Vu, Vo) > + p(u, )2 + (0 = f'lw(®)] = p)u,v) s
< (1+CoCp) llullv[lvllv
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and

(A(t)u,u)r2 = [(Vu, V) o + ((0 — flw®)]))u, u) 2|
> [ullf,

where Cy = sup,cq |0 — f'[w(t)] — p|, C,, > 0 such that ||¢||L2 < C||¢||v. This
yields D(A(t)Y/?) =V, i.e., the following holds for ¢ € V:
1/2
lollv < IA®)26]12 < Mgllyv, M = (1+CoC2)".

For each t € J, —A(t) thus becomes the sectorial operator and generates a
holomorphic semigroup {e*SA(t)}pO over L2(£2). The eigenvalue of —A(t) for
t € J is bounded below by As = Amin + w > 0, where Ay denotes the minimum
eigenvalue of —A. Therefore, the operator A(t) becomes a symmetric positive
operator. Additionally, for ¢, s € J there exists C' > 0 and a > 0 such that

IA@)A(s) ™" = Il|z2,L2 = I(A(t) — A(5))A(s) ™ [[2,L2 < Clt — 5],

where || - ||r2,z2 denotes the operator norm over L?({2).

From the above facts it is well-known [1-4] that the operator —A(t) generates
an evolution operator {U(t,s)}; < <i<;, O L?(£2). The evolution operator is
described by

t
U(t,s) = e~ (t=9)A0) —|—/ e~ AN R )dr (tg < s <r <t <t),

S
where R(t, s) is the solution of the following integral equation:

t

R(t,s) = Ru(t,s) + / Ru(t, )R (r, s)dr, "
Ru(t,s) = —(A(t) — A(s))e” (740,

By using the evolution operator {U(t,s)}, <,<;<;,» we define a nonlinear
operator T : C(J; V) — C(J; V) as -

T(v) == U(t, to)v(to) +/ U(t, s)g(v(s))ds (to <s <t <t1). ()

to

If v satisfies the fixed-point form v = T'(v) in C(J; V'), then there exists a solution
of (3) that is described by the evolution operator. In the following we derive a
sufficient condition for verifying existence of the solution to (3). If this sufficient
condition holds, existence of the mild solution to (1) is also proved.

3 Main Theorem

Let us define a function space

X, = {v € C(J;V) :supe” =) ||u(t) ||y < oo}
teJ
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with the norm |jv||x, := sup,c;e”~%)||lu(t)||y;. The following theorem gives
a sufficient condition for guaranteeing existence and local uniqueness of a mild
solution to (1) in

By(w,p) :={ueC(J;V):|lu—-wlowwv) <p}-

Theorem 1. Assume that Gy € V}, satisfies ||ug — ﬂ0||Hé <eggand 0 <o < )‘TA
holds. Assume that w satisfies the following estimate:

[Ow — Aw — f(W)Hc(J;LZ(Q)) <.
Assume also that there exists a monotonically non-decreasing function L,

[0,00) — [0,00) corresponding to the first Fréchet derivative of f : H}(2) —
L2(0) such that

1(f'lw + h] = flwDdlle2 ) < Lo (0) 18llcwv), Yo €C(SV),

where h € X, satisfying ||h||x, < p for a certain p > 0. If

2

(M + 01 (1))eo + cOa — 20

)erf< (“22“”><1+02<T>) (Lu(p)i +6) <p (6)

holds, then the mild solution u(t) :=
ball Bj(w, p). Here, O1 (1) and Oz (T

01 ()= QCM\/?T% sinh (\/@T) and Oz (1) = 2r751nh (\/77-)

respectively, if Ri(t,s) in (4) satisfies | Rq(t, )| 2,02 < Co(t — s)e™(t=9)Aa,

u(t ), t € J, of (1) uniquely exists in the
) in (6) are given by

Before we sketch a proof of the main theorem, some lemmas are necessary.

Lemma 1. If Ry(t,s) in (4) satisfies |Ri(t,8)|2.02 < Cu(t — s)e” (= it

follows
|R(t,s) ||L2 2 < \/751nh (\/7(t — 8)) e~ (t=s)xa

Lemma 2. For the evolution operator {U(t,s)}, <,<;<;, generated by —A(t)
and v(tg) = ug — g, the following estimate holds:

1t to)o(to)ly < (Mem¢—020 40y (r) =30t ) o

Lemma 3. For the evolution operator {U(t,s)}, <,<i<;, generated by —A(t)
and g(v) in (3), the following estimate holds: -

U, s)g(u(s)lv < e 2(t—s5)"2e 2792 Ig(u(s))[| 12 (1 + Oz (7)) .
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Proofs of these lemmas are omitted for lack of space.

Sketch of the Proof. For p > 0let Z = {v € X, : ||v|lx, < p}. Let us consider
the fixed-point form (5). On the basis of Banach’s fixed-point theorem, we give
a sufficient condition of T having a fixed-point in Z. First, we derive a condition
guaranteeing T(Z) C Z. For v € Z, Lemmas] and 2 gives

1Ty < (MemE02 4 0y (7) e H0t0M) o

+/ eTE(t—s)"2em 2T g(u(s)) 2 (1 + Oa (7)) ds.

to

It follows
7 Ty < (Me (7004 40y (r) e300 ) o
t
+/ eTE(t — 5)TEeTHITINAT2) (=) gy ()| 12 (1 + O (7)) ds. (7)
to

From (3) and the assumptions of the theorem, we have

e gw(s)lza < £ (wls) + e““*“’ws)) — [(w(s) = ['w(s)]e” T us)|
) — 215 = Akl
Lo(p)p” +

L2

The upper bound of (7) with respect to ¢ € J is given by
[T ()llx, < (M+01(7)) o
21

i e()\A_20')erf< W) (1+ 02 (7)) (Lu(p)p” + ).

From (6) [|T'(v)| x, < p holds. Namely, we obtain T'(v) € Z.
Next, under the assumptions of the theorem, we show that T is a contraction
mapping on Z. For vy,vy € Z, we have

27 (Aa —20)T
_ < =" a - S0
T (v1) T('UQ)”X(, =\ eOa —20) erf ( 5 )
(1+02(7)) Lo (p)pllvr — v2llx, -
The assumption (6) also implies
27 (Aa —20)T

Therefore, T becomes a contraction mapping on Z. Banach’s fixed-point theorem
asserts that there uniquely exists a fixed-point v = T'(v) in Z. It yields that the
mild solution of (1) uniquely exists in the ball Bj(w, p). O
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Abstract. An algorithm is presented for computing verified error
bounds for the value of the real gamma function. It has been shown that
the double exponential formula is one of the most efficient methods for
calculating integrals of the form. Recently, an useful evaluation based on
the double exponential formula over the semi-infinite interval has been
proposed. However, the evaluation would be overflow when applied to
the real gamma function directly. In this paper, we present a theorem
so as to overcome the problem in such a case. Numerical results are pre-
sented for illustrating effectiveness of the proposed theorem in terms of
the accuracy of the calculation.

Keywords: Gamma function - Verified bound - Double exponential
formula

1 Introduction

This paper is concerned with a verified numerical computation of the real gamma
function. The real gamma function is defined by

I(x):= /000 u” " exp(—u)du, (1)

for all real x.

Several verified numerical algorithms have been proposed for the real gamma
function [1,2]. Basically, these algorithms use the following properties of the
gamma function,
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