Chebyshev Spectral Approximation
for Diffusion Equations with Distributed
Order in Time
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Abstract In this work we provide a numerical method for the diffusion equation
with distributed order in time. The basic idea is to expand the unknown function
in Chebyshev polynomials for the time variable ¢ and reduce the problem to
the solution of a system of algebraic equations, which may then be solved by
any standard numerical technique. We apply the method to the forward and
backward problems. Some numerical experiments are provided in order to show
the performance and accuracy of the proposed method.
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1 Introduction

In the last decades, lots of attention has been devoted to the time fractional diffusion
equation (TFDE), namely, the one in the Caputo sense:

u(t,x) Dazu(z‘, X)

o o2 +f(t,x), O0<t<a O<x<b, @))]
X

where 0 < @ < 1 and the fractional Caputo derivative is defined by [2]
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u(t,x) _y 0" u(s x)
g T rQ —a) / =9 8 @

where n is the smallest integer greater than or equal to . The TFDE has been found
in a broad variety of engineering, biological, finance, and physical processes where
anomalous diffusion (AD) occurs (see, e.g., [6, 8, 10]). More recently, a general
equation has attracted the scientific community, the distributed-order time fractional
diffusion equation, given by
1 o 2
/ c(oz)a u(t, x) do = 0ult, %) +f(tx), 0<t<a 0<x<b, 3)
0 or* sz

where the function c(c) acting as weight for the order of differentiation is such that
1
1
[7,9] c(e) > 0 and / ¢(a) do = C > 0. Obviously, if ¢c(8) = . if B = o« and

0
0 otherwise, then (3) reduces to (1).
Here, we will be interested in the numerical approximation of this type of
distributed-order equations with boundary conditions of Dirichlet type:

u(t,0) = ¢o(1), u(t,b) = ¢p(t), 0<t<a, 4

and we will distinguish the following two problems: a forward problem (FDODE)
where (3) and (4) is subject to an initial condition

u(0,x) = go(x), 0<x<b, (5)

and a backward problem (BDODE), the case where (5) is replaced with the terminal
condition

u(a,x) = gq(x), 0<x<b. (6)

Numerical methods are crucial for this kind of fractional differential equations,
since only in a very few special cases, the analytical solutions can be found.
While the methods developed for TFDEs are already relatively wide, the same
cannot be said for the distributed-order diffusion equation case, since, to the
best of our knowledge, only a few works have been reported. In [4] an implicit
finite-difference method has been derived for the one-dimensional distributed-order
diffusion equation; in [11] the same idea has been followed for the numerical
approximation of nonlinear reaction-diffusion equations with distributed order
in time. In [12] a numerical scheme has been developed for the solution of
a distributed-order diffusion equation containing also a fractional derivative in
space. In [5], a finite-difference method was presented for the two-dimensional
distributed-order diffusion equation, together with an extrapolation technique to
improve the convergence orders in time. In all these papers, only finite-difference
approximations have been considered for the fractional time derivative, which may
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become heavy from the computational point of view, due to the nonlocal property
of fractional differential operators. Moreover, in all of these works, only forward
problems have been investigated.

Here we will follow an alternative approach: we consider a Chebyshev poly-
nomial approximation of the fractional derivatives. The paper is organized in the
following way: we start with a section devoted to some preliminary results that will
be used in the forthcoming sections. In Sect.3 we describe the numerical method
and we end with some numerical examples and some conclusions.

2 Preliminaries

In this section we present some auxiliary results that will be used in the derivation
of the numerical scheme. For the approximation of the integral term, we will
use Gaussian quadrature. N-point Gaussian quadrature rules are a special class of
quadrature formulas that yield the exact value of a definite integral for integral
functions that are polynomials of degree less than or equal to (2N — 1).This can
be achieved by suitable choices of the points x; and weights w;, i = 1,...,N.

These rules are conventionally given in the interval [—1, 1] and may be given by
N

1
/ fx) dx = Zwlf (x;). Obviously other intervals can be considered by using
-1 i=1
proper variable substitutions. In our case, since we are dealing with the interval
[0, 1], it is easy to see that

[rroa=y L5 ) o=z (5",

(N o

Lemma 1 ([11). Iff € C¥((0,1]), then with yy = QN + DM ™ 4

we

have:

G+ 1 £V (en)
/f(X)dx— sz(] )— (ZN)iszSCNfl-

As we have mentioned in the Sect.1, we will use Chebyshev polynomials to
approximate the fractional derivatives. Chebyshev polynomials of degree n, T,(z)
are defined in the interval [—1, 1].

In order to use them in the interval [0, a], we introduce the change of variable

z = 2t/a — 1 and obtain the so-called shifted Chebyshev polynomials 7,,(f) =

2t
T, — 1). These shifted Chebyshev polynomials can also be obtained from the
a

following expression (see [3]):
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‘ 2%+ k1)
_ _1\h—k _
Tan(t) = nk§=0( 1) 20! (n —k)!aktk’ n=12,...,

where
Ta,i(o) = (_1)1 and Ta,i(a) = 15 (7)

and satisfy the following orthogonality relation:

/ T j(O) Tk (D) wa(t)dt = Sijhy,
0

1
wherea)a(t):\/ 2andho:n,hk:’2’,k:1,2,....
at —t

A function y(¢) belonging to the space of square integrable functions on [0, a] may
be expressed as

oo

Y1) =Y ciTuild), ®)
i=0
where the coefficients ¢; are given by
<y(t)v Tai(t) > 1 /a .
¢ = ’ = YO Tai(Hwa () dt, i=0,1,2,....
17011 hi Jo

For computational purposes, only the first (m + 1) terms in (8) are considered:

Y =Y eiTai(®), te€[0.al, )

i=0
and the following result holds:

Theorem 1 ([3]). Let y(t) be a square integrable function on [0,a]. Then, given
m € N, y(t) may be approximated by y,,(t), defined by (9), and for o > 0, we have

» o (D22 k— 1) (k1)
ym(t)_ ciw, ( ) k 047 z(k): . ' ! k (10)
-Zm kZM (i—k) ) (k+1—at)a

00 i k—[a]

and the error |E(m)| = |D*y(t) — D*y, ()] < Z Ci Z Z Oijk |

i=m+1 k=[a] j=0
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where, forhg =2, hj =1, j=1,2,...,

(=D 2i(i + k— DI (k—o + 1))

Orjk = N . : :
W (k+ ) (=M (k—a—j+ DIk +j—a+ Da

3 Numerical Method

In the derivation of the numerical method, we proceed as in the classical (integer
order) case. Let

m

w(t.x) & un(t.) = 0i()Tai(0), (11)

i=0

Using a Gaussian quadrature formula with n points, (9) and (10), we obtain

n m 2 ] /3/+1 " m
; Z (IBJ + 1) Z Z Vi (_x)wl(k )ti—k— ﬁ]j — Z ﬁj(X)Ta,i(t)"l‘f(x, t).

j=1 _[fify k=0 i=0
(12)
Note that in thi elo,1], j=1,. athen | P 21 =
ote that in this case * o €[0,1], j= ,n, and then 5 =1,j=1,...,n

Now, we collocate Eq. (12) at m points #,. For collocation points, we use the roots
of the shifted Chebyshev polynomial of degree m, T, ,,(¢):

n m i—1 ﬁ1+1 ﬁ+1
e (M) Sl S aom s

2 j=1 i=1 k=0
p=0,....m—1. (13)
We obtain in this way m ordinary differential equations on the (m + 1) unknowns
vi(x), i=0,...,m

Using the fact that 7,;(0) = (—1)" and taking the initial condition (5) into
account, we obtain the extra equation:

D (=Dvix) = go(). (14)

i=0

Alternatively, since 7,;(a) = 1, from the terminal condition (6), we obtain



260 M.L. Morgado and M. Rebelo

m

D i) = ga(x) (15)

i=0
On the other hand, by substituting (11) on the boundary conditions (4), we obtain

m

D 0i0)Tui(1) = (1), (16)
i=0
Y v Tai()) = i (). (17)
i=0

At the collocation points #,, p = 0,...,m — 1, (16) and (17) are as follows:

m

> 00 Tailty) = po(t). p=0.....m—1. (18)
i=0
Zvi(b)Ta,i(tp) = ¢h(tp), p= 0,...,m— 1. (19)
i=0

Therefore, in order to obtain the functions {v;}/_, that define the approximate
solution of the forward problem (3), (4), (5), we must solve the system of differential
equations (13)—(14), with boundary conditions (18) and (19).

In order to obtain an approximate solution of the backward problem (3), (4), (6),
we must solve the system of differential equations (13)—(15), with boundary
conditions (18) and (19).

4 Numerical Results

In this section, we apply the proposed method to solve some examples for which the
analytical solution is known. We define the absolute error at the point (¢, x) by

em(t, x) = |u(t,x) — uu(t,x)|, (t,x) €[0,a] x [0, b].

Example 1. Forward problem:

cl@)=T (; —a)

Vil =1)? (3/m(t — 1)(x — 1)%? — 81(5x(3x — 2) + 1) log(r))

Fx = 41log(r)

’

with analytical solution given by u(x,7) = r/2x*(1 —x)*,  (t,x) € [0,1] x [0, 1].
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Fig. 1 Example 1: pointwise absolute error at the points (¢, x) € [0, 1] X [0, 1] for several values
of m. From left to right m =3, m=5m=T,m=9

In order to approximate the integral that defines the distributed-order derivative,
we will use a 3-point Gaussian quadrature formula.

In Fig. 1 the domain pointwise absolute errors are displayed. We see that the
pointwise error goes up to the order of 2 x 10™#, 4 x 107>, 1 x 107>, and 4 x 107°
if we consider on the series expansion of u, (11), m = 3, m = 5, m = 7, and
m = 9, respectively. This shows that the numerical solutions are in good agreement
with the exact solutions, and we have more accuracy if we consider more terms on
the series approximation (11) of u.

As a second example we consider, a backward problem which is defined by

Example 2. Backward problem

cla) =T (Z —Ol)

P2 (15/m (t — Dx(x — 1)* 4 161(2 — 3x) log(1))

f9) = 8log(t) ’

with analytical solution given by u(z,x) = r*/>(1 —x)%x, (1,x) € [0,1] x [0, 1].

In these backward problems, the unknown solution u(x, f) has to be determined
from the boundary measurements ¢ (f) and ¢, () and terminal time measurement
ga(x), which normally contain noises in practical problems. Thus, in order to test
the proposed method, first we apply the method, with several values of m, to the
second example without noise on the data and then we apply the method with some
noise on the boundary and terminal data.

The comparison results between u(0, x) and u,,(0,x) are displayed in Table 1,
for several values of x € [0,1] and m = 1,3,5,7 and 9. From the results in
Table 1, it can be observed that the error is smaller for the biggest value of m that we
consider. Thus, the overall errors can be made smaller by adding new terms from
the series (11) that approximate u(z, x).

Now, we consider Example 2 with several levels of noise, § =107, i=2,...,5,
on the boundary and terminal data: g,(x)=g,(x)+8, ¢o(1)=¢o(t)+8, ¢5(2)
=¢»(¢)+$. In Fig. 2 we show the absolute error at points (x, 0), x € [0, 1] obtained
for the approximation (11) with m = 5 and several levels of noise. It can be
observed that the noise has influence on the numerical results.
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Table 1 Example 2: the absolute errors related with the approximate solutions
Uy (x,f), m=1,3,5 Tandm = 9, at the points (0, x), x € {0.2,0.4,0.5,0.6,0.7,0.9}
x e1(0,x)] e3(0,%)] es(0,x) €7(0,x) €9(0,x)

0.2 1.261 x 107! 3.614x 1073 5725x107¢ 8.529%x107% 4.397 x10~°
0.4 1.583 x 107! 5447 x 1072 2.407 x 10™° 5.669x 10~° 3.122 x 10~
0.5 1.466 x 107! 5545 x 1072 4.123x 10™° 1.809x 10~° 1.048 x 10~
0.6 1.221 x 1071 5,114 x 1072 5335x 10~ 2.030 x 10~® 1.064 x 10—
0.7 8.987 x 1072 4.223x 1073 5.660 x 107> 4.689 x 107¢ 2.514 x 107°
0.9 5522X 1072 2.979x 1073 4.870x 10~ 5350 x 107% 2.825x 10~°

Fig. 2 Absolute error for Example 2 using m = 5 and different noise levels §. From left to right:
§=10"%,8=10"3,8=10"%8=10"°

5 Conclusions

In this work we have presented an alternative method (than finite-difference meth-
ods) for the numerical approximation of time distributed-order diffusion equations
that is able to deal with both initial (or forward) and terminal (or backward)
problems. The numerical results presented for examples with known analytical
solutions illustrate the accuracy of the proposed method. In the future we intend
to provide a full comparison with the finite-difference methods and analyze the
convergence of the scheme.
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