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Preface

For 5 days, May 18-22, 2015, more than 170 mathematicians from 50 countries
attended the International Conference on Differential and Difference Equations and
Applications, held at the Military Academy, Amadora, Portugal.

The scientific aim of this conference was to bring together mathematicians
working in various disciplines of differential and difference equations and their
applications. There were 6 plenary lectures, 22 main lectures, and 131 communi-
cations about the current research in this field. This volume contains 41 selected
original papers which are connected to research lectures given at the conference.
Each paper has been carefully reviewed.

We take this opportunity to thank all the participants of the conference and
the contributors to these proceedings. Our special thanks belong to the Military
Academy for the sincere hospitality. We are also grateful to the Scientific and
Organizing Committees for all the effort in the preparation of the conference.

These proceedings are dedicated in memory of Professor George Sell (1937-
2015). Professor George Sell had been invited to the ICDDEA 2015 as a plenary
speaker, but was unable to come and died shortly afterwards.

We hope that this volume will serve researchers in all fields of differential and
difference equations.

Amadora, Portugal Sandra Pinelas
Brno, Czech Republic Zuzana Dosla
Brno, Czech Republic Ondfej Dosly

Wuhan China Peter E. Kloeden
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Algebraic Properties of the Semi-direct Product
of Kac—-Moody and Virasoro Lie Algebras
and Associated Bi-Hamiltonian Systems

Alexander Zuevsky

Abstract We discuss the semi-direct product of Virasoro and affine Kac—-Moody
Lie algebras and associated Verma modules, coadjoint orbits, Casimir functions,
and bi-Hamiltonian systems.

Mathematics Subject Classification (2000): 53C15, 53C57, 58F05, 58F07

1 The Semi-direct Product of Virasoro Algebra
with the Kac-Moody Algebra

This paper is a continuation of the paper [8] where we studied bi-Hamiltonian
systems associated to the three-cocycle extension of the algebra of diffeomorphisms
on a circle. In this note, we review results showing that certain natural problems
(classification of Verma modules, classification of coadjoint orbits, determination of
Casimir functions) [3, 5, 7] for the central extensions of the Lie algebra Vect(S!) x
Z% reduce to the equivalent problems for Virasoro and affine Kac-Moody algebras
(which are central extensions of Vect(S') and .#’¥, respectively). Such properties
are not true in general for any semi-direct product of Lie algebras. This occurs in this
very particular case because the Lie algebras of Virasoro and affine Kac—-Moody are
related by what is called the Sugawara construction. Let G be a Lie group and ¥ its
Lie algebra. The group Diff(S') of diffeomorphisms of the circle is included in the
group of automorphisms of the loop group LG of smooth maps from S! to G. The
semi-direct product Diff(S') x LG of these two groups can thus be constructed. For
any pairs (¢, ) € Diff(S")? and (g, ) € LG?, the composition law of the group
Diff(S')x .29 is (¢, a)- (¥, b) = (poyr, a.bop™"). The Lie algebra of Diff(S')x LG
is the semi-direct product Vect(S') x £ of the Lie algebras Vect(S') and .£¥.

A. Zuevsky (<)
Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
e-mail: zuevsky @yahoo.com

© Springer International Publishing Switzerland 2016 1
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2 A. Zuevsky

Let us recall the Lie algebras that were involved in this paper. Let ¢4 be a Lie
algebra and (.,.) a nondegenerated invariant bilinear form. Vect(S') is the Lie
algebra of vector fields on the circle and .£¥ the loop algebra (i.e., the Lie algebra
of smooth maps from S' to ¢); Vect(S!)c is the Lie algebra over C generated by
the elements L,,n € Z with the relations [L,,, L,] = (n — m)L,+,,. We denote by
ZL%c the Lie algebra over C generated by the elements g,,n € Z,g € 4 where
(Ag + wh), is identified with Ag, + ph, with the relations [g,, b, = [g, hlutm-
The semi-direct product of Vect(S') with .Z% is as a vector space isomorphic to
C®(S',R) @ C*(S!,%9). The Lie bracket of . % (¢) has the form

[(u,a), (v,b)] = (uv' —u'v,vd — ub’ + [a,b]),

for any (u,v) € C®(S',R)? and any (a,b) € C>®(S',¥)?, where prime denote
derivative with respect to a coordinate on S'. The Lie algebra Vect(S') x .£% can be
extended with a universal central extension .’ % (¢) by a two-dimensional vector
space. Two independent cocycles are given by

wvir((u. a), (v, b)) :/ u™v,

sl

a)K_M((u,a), (v, b)) = /1 (a/’ b).

N

We denote by (u,a, x,a) the elements of /% (¥) with u € C®(S',R),a €
C>®(S',4), and (y,a) € R%. The Lie bracket of .7 % (¢) reads (see [3])

[(u,a,¢,a), (v,b,E B)] = (uv’—u’v, [a, b] — ub’ + va/,/ u’”v,/ (a’,b)).
Sl Sl

The algebra . % (¢) can be also represented as the semi-direct product of Virasoro
algebra on the affine Kac—Moody algebra. We denote by cvi; and cx—y the elements
(0,0,1,0) and (0, 0,0, 1), respectively. If 4 = R, then the Lie algebra Vect(S') x
_#R has a universal central extension .7 % (R) by a three-dimensional vector space.
The third independent cocycle is given by

wsp ((u,a), (v,b)) = /Sl (ub’/ _ va”) '

We denote by (u,a, y,, y,§) elements of %/(R) with u € C®(S",R), a €
C®(S', %), and (x,a, y) € R®. The Lie bracket of .#% (R) is given by

[(M,Cl, ¢),O[, y)v (U,b, %‘v :878)]

- (uv’—u’v,[a,b]—ub/—i—va/,/ u’”v,/ (a’,b),/ (ub”—va”).
st st st
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An algebraic equivalent % (¥) of L% (¥) is defined to be the Lie algebra over
C with generators L,,n € Z and g,,n € Z,g € ¢4 and two central elements cy;
and cx—y satisfying the relations [L,,L,] = (n — m)L,4m + (n — m)*8, —mcvir,
[Lins8n]l = ngntm, 8w ] = (8 Mg + (n — m)(g. h)8n—mck—m. This is a
graded Lie algebra with weights for L, and g, equal n and zero weights of cvi;
and cg—y. Similarly, an equivalent SU c(C) of L% (R) is the Lie algebra over
C with generators L,,n € Z and a,,n € Z and three central elements cvj, Csp,
and cg_y satisfying the relations [L,,L,] = (n — m)Lytm + (n — m)38, —ncvirs
(L, an] = Napim + 1285 —mCsps [am, an] = (n — m)8, —mck—n. This Lie algebra is
endowed with the grading weights n for L, and a,, and zero for cvi, ¢gp, and cx—y.

2 The Universal Enveloping Algebra of .7 % (¢)

In some very particular cases, the modified generalized enveloping algebra of a
semi-direct product % x 7 of two Lie algebras is isomorphic to the tensor product
of some modified generalized enveloping algebras of % and of JZ. Let J¢ be
the central extension of J# with the two-cocycle w . Denote by - the action
of the Lie algebra %" on the Lie algebra /7. Let us introduce the semi-direct
product %" x .7 which is a central extension of %" x . by a two-cocycle w’,,
with a)%((O hy), (0, hz)) = wyu(h1,hy). A two-cocycle w_ on £ defines also
a two-cocycle ', by a)j,((gl, 1), (gz,hz)) = wx(g1,82) of H x . Let I
be the natural inclusion of JZ into Uy, %0 and J be the natural inclusion of 7
into %wif; Xwi We call the action of JZ° on A realizable in %wf: when (1) there

exists amap F : # — @/aﬁj, and a two-cocycle o on % such that for any pair
(g1.82) in 2% F([g1.82]) = [F(g1). F(g2)] + @(g1.82)1, (2) the map F satisfies
the compatibility condition, for any g € J# and h € % with the anti-commutator
[F(g),I(h)] = I(g - h), of the algebra %, .

[OF7

Theorem 1. Ifthe action of J is realizable in %af;:, then we have the isomorphism
HXH ~ Gy K H
62/(1)&{,(1{;f %wf—a ® 62/60%’

2.1 The Case of .U (9)

Let & be a simple complex Lie algebra and C, its dual Coxeter number. Introduce
the {Ki, ..., K,} as a basis of ¢ and the dual basis {K},..., K} with respect to the
Killing form (., .). We apply Theorem 1 for ¢ = Vect(S'), # = LY, vy =
£wvir, and w» = Pwg_y. In this case, '), = Pwg_y.Forn = p 4+ C, # 0,
the Sugawara construction [1] delivers a map F : Vect(S)e — %(JZ “c defined
by F(L,) = (B+ ! Z Z : (Kp)i(Kf)n—i 1, i.e., the action of Vect(S') is
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realizable in %ﬂ%ZM , with @ = Bwvi/127 (here, dots denote the normal ordering).
Thus, we obtain

Proposition 1. [fn # 0, then % D~ g veeShe: o gy 29

Ewvir,Bok—m (—a) Bok—u"

The Lie algebra Vectc(S') acts on the Heisenberg algebra by L,.a,, = ma,+,, +
8p.—mm*cx—y. In this case, one has o'y, = oy +ywyp. Themap F : Vect(S") e —
S Uc(C) is defined by F(L,) = 2B8)"'Y. : aia,—; : +yB 'a,, for a cocycle

i€z
o = (o + y>B vy For S%: (%), we obtain

— 1

Proposition 2. For 8 # 0, we have %‘i}f{%ﬁlmywsp ~ %e\f\f;(s < & UL? , with
_ 1 _

o=g— L 7.

2.2 Representations of /% (4)

First, we have

Proposition 3. A positive energy representation V of . % () with nonvanishing
Bld-action of cx—y results in a pair of commuting representations of Virasoro and
affine Kac—Moody Lie algebras.

Thus, we see that positive energy representations of . % (¥) are representations
of Virasoro and affine Kac—-Moody Lie algebra with commuting actions. This
proposition determines whether a .2 (%) Verma module is a sub-module of
another Verma module of . 7(9).

Let b be a Cartan algebra of ¢4 with a basis {h, ..., h}. The Lie subalgebra ¢ of
S Uc(9) is generated by the elements {cvir, ck—u, Uo, (h1)o, - - ., (Ax)o}. A Verma
module Vfﬂ%(% of SUc(¥) is associated to any linear form A € h*. Verma
modules V", VK=" are associated to linear forms v, u over the spaces generated by
cvir and ug, cx—p and {(hy)o, . . . , (hg)o}, correspondingly. For any A € £, the Verma

S UG - e . FUD) .
module V; ©@ s a positive energy representation. Thus, V} © is Virasoro

and affine Kac—Moody algebra module. The generator e of pr% & brings about a
Verma module VI for Virasoro algebra. It generates also a Verma module VY for
the affine Kac—-Moody algebra. The linear form v satisfies v(ug)e = A(uo—F(up))e,

ie,(wo—B+n'Y 2 j=tn ¢ (Ki(K)—i 1)e = v(uo)e. Suppose the action of
i€z

a Casimir element of ¢ is given by acts by D(A)Id for D(1) € C. We then have

o= B+ M7 Yiez Djmin + (K= e = o= B+m7' 2, ¢

(K)o(K)o 2).e, (Auo) — D;j>)e. This implies v(uo) = A(uo) — D;;’. The other

values of 1 and v can be computed by the same method.
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Proposition 4. Let A be a linear form over §) with nonvanishing A(cx—py). Then
S Uc(G) Vi K—M
V/1 (o} ~ V\; ir ® V(C He

where p(e;)) = A(e;), i = 1,....,n, defines |4, W(cx—m) = Ack—m), and v(cvir) =

Alevi) — lﬁn defines v, v(up) = A(uo) — D2(2)'

3 The Kirillov—-Kostant Structure of . % (%)

Now we consider Kirillov—Kostant Poisson brackets of the regular dual of the semi-
direct product of Virasoro Lie algebra with the affine Kac—Moody Lie algebra.
Let J# be a Lie algebra with a nondegenerated bilinear form (.,.). A function
f & — Ris called regular at x € JZ if there exists an element Vf(x) such
that f(x + €a) = f(x) + €(Vf(x),a) + o(e), for any a € . For two regular
functions f,g : & —> R, we define the Kirillov—Kostant structure as a Poisson
structure on JZ with {f, g} (x) = (x,[Vf(x), Vg(x)]). Then for any ¢ € ¥, the
second Poisson structure {f, g}, (x) compatible with the Kirillov—Kostant Poisson
structure is defined by {f, g}, (x) = (e, [Vf(x), Vg(x)]). A nondegenerated bilinear

form on % (¢) and Vect(S') ® 2% is defined by

((ur, a1, B1,&1), (u2, a2, B2, 6)) = /Sl uiuy + /Sl (ar,az) + &6 + B1Bo.

We denote by % (4)" the subset of .#% (¥) of elements (u,a, £, B) with
nonvanishing 8. Let ' = u — ”;gz. We denote by (Vect(S') & %)’ the subset of
Vect(S!) @ 2% composed of elements (u, a, &, B) with 8 # 0. Let S (u,a,&,B) =
(', a,£ B) be a map from Y% (4) to (Vect(S') @ £%)'. For nonvanishing
B, let F(uw,a.t By) = (u/— Yl a € — Y;,ﬁ) be a map from Y% (%) to

B
Vect(S') @ L%.

Theorem 2. .# and .7 are Poisson maps.

4 Casimir Functions and Coadjoint Orbits for . 7% ()

Now we determine Casimir functions on %’ and %

Proposition 5. Let Gvi, x—m G be Casimir functions for Virasoro, affine
Kac—-Moody, and the Heisenberg Lie algebras <f correspondingly. Let Sp (9),

Sp% (R) be Poisson submanifolds of S % (4) and L% (R) defined by &€ = 0.
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Then the functions €vi(u',§), c(u,a,B.§) = Cx-m(a,p), and [q|u'|"/? are
Casimir functions on %’. In particular, the functions cq(u,a, B, &) =
Cy(a, B), Gl — ’//32 d.§), and [g |u — ):32 a'|''* are Casimir functions on
SUR).

Let S be a central extension of a Lie algebra ¢’ and H be a Lie group with Lie
algebra .77. Then H acts on J#* by the coadjoint action along coadjoint orbits.

Proposition 6. The coadjoint actions of the groups Diff(S") x LG and Diff(S") x
LR are given by

Ad*($.9)" (w08, 8) = (o 9)p + £5@) + (57'¢.a)”
b BN P a0 g+ B 6 B).

7’ 7 1
(wog)p? + ES(¢p) + (gg” " a)p? + 2ﬂ(g’g_l)2 +yg'g".

¢'Ad(g Vaod + Bg'e —vg's £ B.y).

5 Dispersive Water Wave System and Other Particular Cases

It has been showed in [8] that the dispersive water wave system equation [2, 4, 6]
is a bi-Hamiltonian system related to the semi-direct product of Kac—-Moody and
Virasoro Lie algebras and the hierarchy for this system was found. In this section,
some results of [8] are obtained from another point of view. We have

Proposition 7. The functions {¢1 (A(u + BZ;‘ + C)) A e R} commute pairwise
for the Sugawara {., .}gug and e-braket {., .}, with e = (1,0,0,2,0), and A =

g- v\ p=— v Cco_ P _y
g—21) p—21 28—42 ‘

The function A — ¢ (A(u+ Bjj; + C)) has an asymptotic development. The
coefficients of this development form a hierarchy. The first term of this development
is [ u, and the second one is [ (u? + yu+ || a ||?). A linear combination of these

two terms gives the Hamiltonian of equations H(u, a) = [ (u”+ | a ||?).

Acknowledgements We would like to thank the organizers of the International Conference on
Differential and Difference Equations and Applications 2015, Departamento de Ciéncias Exatas e
Naturais, Military Academy, Amadora, Portugal.



Algebraic Properties of the Semi-direct Product. . . 7
References

1. Etingof, P.I,, Frenkel, I.B., Kirillov, A.A., Jr.: Lectures on Representation Theory and Knizhnik-
Zamolodchikov Equations. Mathematical Surveys and Monographs, vol. 58. American Mathe-
matical Society, Providence (1998) _

2. Harnad, J., Kupershmidt, B.A.: Symplectic geometries on 7 G, Hamiltonian group actions and
integrable systems. J. Geom. Phys. 16(2), 168-206 (1995)

3. Kirillov, A.: Infinite dimensional Lie groups; their orbits, invariants and representations. The
geometry of moments. Lect. Notes Math. 970, 101-123 (1982)

4. Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99(1),
51-73 (1985)

5. Segal, G.: The geometry of the KdV equation. Int. J. Mod. Phys. 6(16), 2859-2869 (1991)

6. Vishik, S.M., Dolzhansky, F.V.: Analogues of the Euler-Poisson equations and magnetic
hydrodynamics connected to Lie groups. Reports of the Academy of Science of the USSR,
vol. 238(5) (1978) [in Russian]

7. Witten, E.: Coadjoint orbits of the Virasoro Group. Commun. Math. Phys. 114, 1-53 (1988)

8. Zuevsky, A.: Hamiltonian structures on coadjoint orbits of semidirect product G = Diff4(S') x
C®°(S', R). Czechoslov. J. Phys. 54(11), 1399-1406 (2004)



Analytical-Numerical Solutions for First-Order
Periodic Boundary Value Problems Using
the Reproducing Kernel Algorithm

Ayed Al e’damat, Mohammed Al-Smadi, Iryna Komashynska,
Ali Ateiwi, and Ala’ Alrawajfi

Abstract This paper proposes an efficient numerical algorithm to obtain an approx-
imate solution of first-order periodic boundary value problems. This new algorithm
is based on a reproducing kernel Hilbert space method. Its exact solution is
calculated in the form of series in reproducing kernel space with easily computable
components. In addition, convergence analysis for this method is discussed. In
this sense, some numerical examples are given to show the effectiveness and
performance of the proposed method. The results reveal that the method is quite
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1 Introduction

Boundary value problems (BVPs) with periodic boundary conditions have become a
focus of research in many fields of physics, engineering, and mathematics, including
molecular dynamics, mechanical systems, computer simulations, and composite
materials with a periodic microstructure and so on. When such problems are solved
numerically, the periodicity condition is often imposed strongly; in other words, the
values on periodic edges are required to match exactly. For typical examples, see
[18,19].

The purpose of this paper is to extend the application of the reproducing kernel
Hilbert space method (RKHM) to provide approximate solution of a class of first-
order periodic BVPs of the following form:

w(x) + gux) =f(xu@x); 0=x=<1, (1)
subject to the periodic boundary condition
u(0) —u(1) =0, (2)

where g(x) is continuous function, f (x,u) € W3 [0,1], u = u(x) € W3[0,1]
is an unknown function to be determined, ||f (x,u(x)) —f (x, u(x))||W21 <
M||u(x) — u(x)||W21 for x € [0,1], M € R, f(x,u) is linear or nonlinear function of

u depending on the problem discussed, and W%[O, 1] and W}[0, 1] are reproducing
kernel spaces defined in the next section. Throughout this paper, we assume that the
BVP models (1) and (2) have a unique smooth solution on the given interval [0, 1].

The numerical solvability of BVPs with periodic boundary conditions of different
orders has been pursued in literature. To mention a few, Peng [22] has discussed the
existence and multiplicity of the positive solutions for first-order periodic BVPs.
Al-Smadi et al. [4] have developed an iterative method for systems of first-order
periodic BVPs based on the RKHM. Lia [20] has presented the existence of
positive solution for fourth-order periodic BVPs. On the other hand, this method has
been implemented in several operator, differential, integral, and integrodifferential
equations side by side with their theories for instance, singular BVPs [12], sin-
gularly perturbed multipantograph delay equations (Geng and Qian, 2014), partial
differential equations [17], Fredholm-Volterra integrodifferential equation [2, 5, 6],
Fredholm integrodifferential equation ([1, 3, 14]), Volterra integrodifferential equa-
tion [7, 8], Fredholm-Volterra integral equation [11], operator equations [21], Fuzzy
differential equations [9], and others [10, 15, 16]. The basic motivation of this paper
is to apply the RKHM to develop an approach for obtaining the representation of
exact and approximate solutions for a class of periodic BVPs (1) and (2), whereas
the condition for determining solutions can be imposed in reproducing kernel space.
However, this approach is simple, needs less effort to achieve the results, and is
effective.
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The paper is organized as follows. In Sect. 2, reproducing kernel spaces are
presented in order to construct their reproducing kernel functions. In Sect. 3,
representations of exact solution for BVPs (1) and (2) together with some essential
results are introduced. Meanwhile, an iterative method for solving first-order
periodic BVPs is described based on these reproducing kernel spaces. Subsequently,
the analysis of the method is discussed in Sect. 4. In Sect. 5, numerical examples
are simulated to show the reasonableness of our theory and to demonstrate the high
performance of the proposed method. Finally, some conclusions are summarized in
the last section.

2 Preliminaries and Materials

In this section, we utilize the reproducing kernel concept to construct the space
W% [0, 1] in which every function satisfies the periodic boundary condition (2) and
formulate its reproducing kernel function. Besides, we present some basic results
and remarks in the reproducing kernel theory and its applications.

Definition 1. Let E be a nonempty abstract set. A function K : E X E — Risa
reproducing kernel of the Hilbert space .77 if:

1. Foreachx € E,K (-, x) € .
2. Foreachx € Eand ¢ € 57, (¢, K (-,x)) = ¢(x).

The last condition is called the reproducing property: the value of the function ¢
at the point x is reproducing by the inner product of ¢ with K (-, x).

Remark 1. A Hilbert space .7 of functions on a set E is called a reproducing kernel
Hilbert space (RKHS) if there exists a reproducing kernel K of .7#. That is, a Hilbert
space which possesses a reproducing kernel is called the RKHS.

Definition 2. The Hilbert space W}'[0,1], m € N, is called a reproducing
kernel if for each fixed x in [0, 1], there exist K (x,y) € W}'[0,1] such that
(u(y), K (x, y))len = u(x) for any u(y) € W3[0, 1] and y € [0, 1].

Definition 3. The reproducing kernel space W3[0, 1] defined as W3 [0, 1] = {u(x) :
u’(x) is absolutely continuous real-valued function, u’*(x) € L?[0, 1], and u(0) =

u(l)}. The inner product and norm in W%[O, 1] are given, respectively, by

1
(u(x), v(x))W% = u(0)v(0) + w’(0)v’(0) + /Ou”(t)v”(t)dt, 3)

and |lu| = (u, u)%, where u, v € W3 [0, 1].



12 A. Al e’damat et al.

Remark 2. The space W%[O, 1] is a complete reproducing kernel space, and its
reproducing kernel function K(x, y) can be written as

4
Y ety y<x,
k(e,y) =1 7' 4)
Zdi(x)yi_l, y > x,

i=1

where ¢;(x) and d;(x), i = 1,2, 3, 4 will be given by the following assumptions:
Let's assume that K (x,y) € W3[0, 1] satisfies the generalized differential
equations

Bk(xy)_S(y ),ak(Xl)—Ok(XO)+ak(X0)+C_0

5)
ak(x 0) _ Pkx,0) _ a*k(x 1) _ (
oy o = 0, +c; =0.

where § is the Dirac delta function.

On the other hand, for x # y, K(x,y) is the solution of the constant differential
o+ /5(;2 Y _
istic equation is given by A* = 0 and the eigenvalues are A = 0 with multiplicity 4.
Hence, the general solution can be written as in Eq. (4).

In addition, assume that K(x, y) satisfies the equations

equation = 0, subject to the boundary conditions (5). That is, the character-

El k(a/;:;ﬁ-H)) — ad kgl)nc 0) for
m=0,1,2,and 33k(g}’f§+0) - 3'”"%’;’,’,,‘_0) = —1. Through the last descriptions together
with the boundary conditions (5), the unknown coefficients c;(x) and d;(x), i =
1,2, 3, 4 are uniquely obtained.

However, the representation of the reproducing kernel function K(x,y) in

W3[0, 1], using Mathematica software package, is provided by

K (x.y) = 45 [Py (643y—y?) +3x2y (—6=3y+)?) +6xy (24+y+)?) =8 (—6+y°) | .y < x,
Y 45 [48+6xy (2—3y-+y?) +3x%y (2—3y+y?) —x* (8—6y—3y>+y°) | .y>x.
(6)

Here, it should be noted that the kernel function K(x,y) is unique, symmetric,
and nonnegative for any fixed x € [0, 1]. For detailed method for obtaining the
reproducing kernel function, we refer to [12].

Theorem 1. An arbitrary bounded set of WZ[O 1] is a compact set of C[0, 1].
Proof Let {u,(x)}o2, be a bounded set of W2[0 1] such that |lu,(x)|| < M,

where M is positive constant. From representation of K(x,y), we have |u(i) (x)i =
(100, 91K (5,3} | = HNK )2 0G0 yz- Sinee 9K (5,) i = 1,2, is
uniformly bounded about x and y, we have |u(x)| < M;||u(x)|lyz. Accordingly,
[u)l. = M.
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Now, we need to prove that {u,(x)}-—, is a compact set of C[0, 1], that is,
{un(x)} 2, are equicontinuous functions. From the property of K(x, y), we have

lun (x1) —uan (x2)|= |(u (), K (x1,y) =K (2, ) 2

= Nz 1K (1,9 =K (20 s =M | K (e1,3) =K (2. )z

By “mean-value theorem of differentials” and the symmetry of K(x, y), it follows
that

d
IK (x2,y) =K (x1, )| = |K (v, x2) =K (v, x1)| :’de 0.0 P —xi| =N lo—x].

X=1

Thus, if y < |x; — x| < then one can get |u, (x1) — u, (x2)| < €.

NM>
Definition 4. The reproducing kernel space W}[0, 1] defined as W) [0, 1] = {u(x) :

w’(x) is absolutely continuous real-valued function, u’(x) € L?[0,1] } The inner

product and norm in W3[0, 1] are given, respectively, by

1

(u(x), v(x))W21 = u(0)v(0) + /Ou’(t)v’(t)dt, @)

and [Jul = (u.u)?, where u, v € W1 [0, 1].

In 2006, Lin and Cui have proved that the space W1[0,1] is a complete
reproducing kernel and its reproducing kernel is given by

(1+y).y=<nx

(14+x),y>nx ®)

wa={

3 Adaptation of Reproducing Kernel Algorithm

In this section, the formulation of a linear differential operator and the imple-
mentation method are presented in W%[O, 1]. After a while, the construction of
orthogonal function systems is introduced based on the use of the Gram-Schmidt
orthogonalization process in order to obtain exact and approximate solutions of
periodic BVPs (1) and (2). To do this, we define a differential operator L :
W2 [0, 1] — W, [0, 1] such that Lu(x) = u’(x) + g(x)u(x). Thus, the periodic BVPs
(1) and (2) can be converted into the form
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Lu(x) =f (x,u(x), 0 <x <1,

u(0) —u(l) =0, ©)

where u(x) € W2[0,1] and f (x.y) € W1 [0.1] as y = y(x)) e W2[0.1].y €
(—00,00),x €[0,1].

Corollary 1 The operator L: W22 [0, 1] = W, [0, 1] is a bounded linear operator.

Proof 1Itis so easy to see that L is a linear operator. Thus, it is enough to show that
L is a bounded operator. From Definition 4, we have

1
Lty = L Labyy = [0 OF + [ (@ P

By reproducing property of K(x,y), we have
u(x) = (u(y), K(x.y)y2
(L)) = (1, LK (50)))

(Lu) (x) = (u LK (x, y))’>W§.

By Schwarz inequality, we get

L)) = |{w LK (e9)) | = ILK @)z el = My,

w3

and

L0 ] = |{u (LK (.9 )z

< LK @)z lullyg = Mallulys.
where M, M, > 0 are positive constants.
1
Thus [(Lu) ()1 <M} [lull 3. [(Lu)' ()] <M3 [ and / [(Lu) @)Pdx=<Mj ull5s.
0
That is,

1
1@ )y = (L) O)F + / L0 @Pdx < (M3 +M3) Nullyz = Milullyz.

where M = M? + M3 > 0.
Now, we construct an orthogonal system of functions {y;(x)}=, of W3[0, 1] by
setting ®;(x) = G (x,x;) and ¥;(x) = L*®;(x), where {x;}=, is dense on [0, 1]
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and L* is the conjugate operator of L. Consequently, in terms of the properties of
G(x,y), one obtains (u(x), lI/,-(x))Wg = (u(x),L*CIJi(x))W§ = (Lu(x), qD,-(x))Wzl =
Lu(x),i=1,2,...

Lemma 1 The fact ¥;(x) = [jiK(x, Y) ly=x, i =1,2,... holds.
Proof From reproducing property of, we can obtain that ¥;(x) = (¥;(y), K (x, y))sz =
(L*®i(x). K (x.7)) 2 = (®i(0), LK (2, 3))y1 = LK (x.21) = 4K (6.) |y=x;-

Lemma 2 If {x;}{2, is dense on [0, 1]; then {¥;(x)}2, is a complete system of
W3[0, 1].

Proof For each fixed u(x) € W2[0,1], let (u(x),llli(x))wzz = 0. That is,
W) U@y = (W) L*Bi(0)yz = (Lu(). Sy = Lux) = 0, i =
1, 2,.... Therefore, Lu(x) = 0 from the density of {x;};=, on [0,1], as well as
u(x) = 0 from the existence of L™! and the continuity of u(x).

The orthonormal system functions {llli(x) }21 of W%[O, 1] can be derived from
Gram-Schmidt orthogonalization process of {¥;(x)}2, as follows:

Wix) =Y Bali(x), (10)
k=1
where B are orthogonalization coefficients 8; > 0, i = 1,2,.. .,n) that are
given by
8 1 f P
ij = s or 1=j]=1,
Tl
1 ..
Bij = for i=j#1, and

\/ 1l =30 ()

i—1
—Zj=k(l1’i, Yz B
Bij = for i>j.

N S (X2}

Theorem 2. For each u(x) in W3[0, 1], the series Z": (u(x), Wi (x)) ¥i(x) is
convergent in the sense of the norm ||~||sz. On the other hand, if {x;};2, is dense

on [0, 1] and u(x) € sz [0, 1] is the solution of problem model (9), then u(x) satisfy
the following form:
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u(x) = Y Buf (o u () Wil), (1)

i=1k=1

and the approximate solution can be obtained by

() = Y " Buf (i 1 () i), (12)
i=1k=1
where ug(x) € W3[0, 1] (uo fixed).
Proof Since u(x) € Wf [0, 1], u(x) can be expanded in the form of Fourier series
about {llf,-(x)}?:l as u(x) = Z:l (u(x), ¥i(x))¥i(x), and since the space W3[0, 1]

is the Hilbert space, then the series u(x) = Zojl (u(x). ¥i(x)) ¥;(x) is convergent
in the norm ||.||W§. From the Fourier series expansion and by Eq. (7), u(x) can be
written as

i=1 i=1 k=1

u() = Y (), ¥i(0))y2 Wilx) = ) <u(x), Zﬂikwk(x)> Wi(x)
W

- ZZ,B,k u(x), V() y2 Wi (x) = ZZ,BL,( (u(x), L* D(x))  ¥ilx)

i=1 k=1 zlkl

=Y > (Bulux), D) Wilx) = Z Z BixLu (xi) Wi(x)

2

i=1 k=1 w) =1 k=1
Y B G ) 0,
i=1 k=1

Therefore, the form in Eq. (11) is the exact solution of Eq. (9). By truncating the
series in Eq. (11), we obtain the th-truncated series approximate solution as in Eq.
(12). So, the proof of the theorem is complete.

Lemma 3. If u(x) € W3[0, 1], then there exists a positive constant M such that
Hu(’)(x) H < M||u(x)||Wz, i = 0,1, where |u(x)||, = maxo<x<i [(x)].

Proof For any x1,x, € [0,1], we have u® (x1) = (u(x2), 0, K (x1,%2) )00 =
2
0, 1. By the expression form of K(x,y), it follows that || 8;1{ (x,y) ||W2 < M;i =
2
(u(x2), le(xhxz))sz < ||3LK(X1,X2)||W2;||M(X2)||W§

~Millu(@)lyz.i = 0.1. Hence, |u®@)], < max {Mi}||u(x)||W§,i — 0,1. The

i

0, 1. Thus,

IA

proof is complete.
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Corollary 2. The approximate solution u,(x) and its derivative u’,(x) are con-
verging uniformly to the exact solution u(x) and its derivative u’ (x) as n — 0o,
respectively.

Proof Form Lemma 3, for any x € [0, 1], it easy to see that ul! ) —u?(x)| =

(u,,(x)—u(x), K (x, x))Wg 5” K (x,x) H w2 ||u,,(x)—u(x)||W% §M,~||un(x)—u(x)||wg,
=0, 1.

Hence, if ||u, (x) — u(x) ||W§ — 0 as n — oo, then the approximate solution u,(x)
and its derivative u’,(x) are converging uniformly to the exact solution u(x) and its
derivative u’ (x) as n — oo, respectively. So, the proof of the theorem is complete.

Remark 3. In order to solve Eq. (1) numerically using the RKHS technique, we
have the following two cases:

Case 1: If Eq. (1) is linear, then the exact and approximate solutions can be obtained
directly from Eqs. (11) and (12), respectively.

Case 2: If Eq. (1) is nonlinear, then in this case the exact and approximate solutions
can be obtained by using the following algorithm:

Algorithm 1 According to Eq. (11), the representation of the solution of problem
(1) can be denoted by

u(x) =y Biwi(x), (13)
i=1

where B; = Z;_lﬂikf(xk,uk_l (x)). In fact, Bi,i = 1,2,..., in Eq. (13) are
unknown, so we will approximate them using the known A; as follows: For a
numerical computations, let the initial function uy (x;) = 0, set up (x;) = u(x1),
and define the n-term approximation to ys(x) by

Un(x¥) = Y AWi(), (14)
i=1

where the coefficients A; of ¥;(x),i = 1,2,...,n, are given by
Ay = Buf (x1,uo (x1)) , ur (x) = A1 (x),

Ay = Zi:lﬁzkf (o1, =1 (W) s ua () = Zf:lAiwi(x)’ (15)
n—1 Z"
un—l(x) = E i:lAilI/i(x),An = k=lankf (.X],I/lk—l (Xk)) :

Consequently, the unknown coefficients B;,i = 1,2,..., in Eq. (13) will be
approximate using the known coefficients A;,i = 1,2,..., given in Eq. (14).
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However, in the iterative process of the series (14), we can guarantee that the
approximation u,(x) satisfies the periodic boundary condition (2).

4 Convergence Analysis of the Method

In this section, we will prove that the iterative formula (14) is convergent to the
exact solution of Eq. (9) in the sense of the norm of W%[O, 1]. In fact, this result is
fundamental in the RKHS theory and its applications. The remaining lemmas are
collected in order to prove the pre-recent theorem.

Lemma 4 If |ju,(x) — u(x)||W% — 0, x, =y, (n = o0), and f(x, z) is continuous
in [0, 1] with respect to x, z forx € [0, 1], z € (—o0, 00), then the following are held
in the sense of the norm of W% [0,1]:

(@) uy—1 (xy) = u(y) asn — oc.

(b) f(xnv Up—1 (xn)) _)f(yv M(Y)) ,asn — oQ.

Proof For part (a), note that
|un—1 (xn) - “(y)l = |un—l (xn) - “n—l(y) + un—l(y) - u(y)|
< [un—1 (%n) — 1 )| + -1 (y) — u(y)] .
By reproducing property of K(x,y), we have u,—; (x,) = (u,—1(x), K (xp, x))w§ and
Up—1(y) = (uy—1(x), K (y,x))sz. Thus,
[un—1 (xn) — n—1 (V)| = [{ttn—1(x), K (X0, x) — K(}’ax))wg

< a1 ) [lw2 1K Gn, X) = K (3, 0) [ 2.

From the symmetry of K(x,y), it follows that H K (x,,x) — K(y,x) w2

—0asx, —
y, n — oo. Hence, |u,—1 (x,,) — u,—1(y)| = 0 as soon as x,, — y, (n — 00) . On the
other hand, for any x € [0, 1], by using Corollary 2, it holds that |u,—; (y) — u(y)| —
0 as n — oo. Therefore, u,—; (x,) — u(y) in the sense of ||-||W§ as x, — y and
n — oo. Thus, for part (b), by means of the continuation of f (-), it is obtained that
f ny ty—1 (%)) = f O, u(y)) asx, — y and n — oo.

Lemma 5 For the approximate solution u,(x) in iterative formula (14), the follow-
ing relations hold:

(@) Luy (x3) = f (. 41 (7)) .j < n,
(b) Luy () = Lu (x;) .j < n.

Proof For part (a), the proof will be obtained by mathematical induction. Forj < n,
we have
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Lu, (x)) ZA LW (x) = ZA (LYi(). &)y, = ZA Vi), L (1)),

i=1

=D AV, ¥(0)ys

i=1

That is,
Luy (5) = D A1), %)y (16)

Multiplying both sides of Eq (15) by Bj;, summing for / from 1 to j, and using the
orthogonality of {¥;(x) } _, yields that

Z,szLun () = ZA <w ), Zﬁ,zwz(x)> = DAY, W)y,

=1 i=1 W% i=1
j
=4 = Z,szf (1, wp—1 (x1)) -
=1
If j = 1, then Lu,(x;) = f(xi.uo(x;)). Besides, if j = 2, then
BarLu, (x1) + BoLu, (x2) = Barf (x1,u0 (x1)) + Baof (x2,u1 (x2)), that is,

Luy, (x2) = f (x2, u; (x2)). Thus Lu, (xj) =f (xj, Ui (xj)) forj < n.

For part (b), from Corollary 2 as well as by taking limits in Eq. (14), we

o0

have u(x) = Z,_lAilII,-(x). Thus, u,(x) = P,u(x), where P, is an orthogonal
projector from the space W%[O, 1] to Span{¥, ¥, ..., ¥,}. Therefore, Lu, (xj) =
(Lun(x)v cI)j(-x)>W1 = (u,,(x) L*qJ(X))W% = (P,,u(x), llll(x))w% = (M(.X), Pnlp](-x)>wg =
(u(x), lI/j(x))Wz = (u(x) L*®,; (x))W22 = (Lu(x), CDj(x))Wzl =Lu (xj) . So, the proof of
the lemma is complete.

Lemma 6 The sequence {u,(x)}°c, in the iterative formula (14) is monotone
increasing in the sense of |- ||sz.

Theorem 3. Suppose that {x;};=, is dense on a compact interval [0,1] and
|24, () ||W22 is bounded in formula (14), then the n-term approximate solution ,(x)
in the iterative formula (14) is convergent to the exact solution u(x) of Eq. (9) in

the space W%[O, 1] and u(x) = ZflAilII,-(x), where A;,i = 1,2, ... are given by
Eq. (14).
Proof First of all, we will prove the convergence of u,(x). From iterative formula

(14), we infer that u,+(x) = u,(x) + Ap+1¥,+1(x). By the orthogonality of
o0 .
{w(x) }2,. it follows that ||un+1||‘2V% = ||un||3vzz + (A1)’ = ||un_1||‘2,,% + (A,)°
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n+1
+ App)? = -0 = ||u0||$v22 + Zi:l (A;)*. From Lemma 6, the sequence
uy|lw2 is monotone increasing, and from the boundedness of ||u,| 2, we have
w2 g w3
o0
2:'_1(Ai)2 < oo, thatis, {A;}2, € 2(i=1,2,...). Hence, ||I/ln||W% is convergent
as 1 — 0o.

Let m > n; for (uy, — um—1) L (up—1 — um—2) L -+ L (up4+1 — uy), it follows
that

e ) = 0 ()12 = N1t () = i1 () + st (6) = =+ + 1 (6) = 0 () 2

< Nt () =ttt (2 + o+ Nt 1 () = a2

=Y (A) —>0. (1> o0).

i=n+1

Considering the completeness of W%[O, 1], there exists u(x) € W22 [0, 1] such that
u,(x) = u(x) as n — oo in sense of ||.||W22.

Secondly, we will prove that u(x) is the solution of Eq. (9). Since {x;}~, is dense
on compact interval [0, 1], thus for any x € [0, 1], there exists subsequence {xnj}
such that Xp; —> X, @8] —> 00. From Lemma 5, Lu, (xnj) =f (xnj, uj— (xn_/.)). Hence,
let j — oo; we have Lu(x) = f (x,u(x)). That is, u(x) is solution of Eq. (9). The
proof is complete.

Theorem 4. Assume that u,(x) € W3 [0, 1] is the solution of BVP (9) and r,(x) =
[lee(x) — up(x) ||W% is an error function, where u,(x) is the approximate solution that

is given by iterative formula (14). Then the sequence of number {r,} is monotone
decreasing in the sense of ||.||W§ and r, —> 0 as n — oo.

Proof Based on the previous results, it is obvious that

o) i 2
a2 =10 = ) = D D B (o it (1) Tty () Wi(x)
i=n+1k=1 w2
2
o0 2 o0
= Y Aw®| =) @’
i=n+1 w2 o i=ntl

2 o0 2
and ||rn_1(x)||W% = Zi=n(Ai) . Thus, ||rn(x)||W22 < |lra=1 (x)||W22. Consequently,
the error r, is monotone decreasing in the sense of |. || w2 The proof is complete.
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5 Applications and Test Problems

In this section, some numerical examples are studied to demonstrate the per-
formance, accuracy, and applicability of the present method for both linear and
nonlinear problems. Results obtained are compared with the exact solution of each
example and are found to be in good agreement with each other. In the process
of computation, all the symbolic and numerical computations performed by using
Mathematica software package.

Example 1 Consider the following linear equation

u’(x)+u(x)=x2+x—l,0§x§1, (17)

subject to periodic boundary condition
u(0) —u(l) =0 (18)

The exact solution is u(x) = x(x — 1).
Using RKHS method, taking x; = r";ll, i=1,2,...,n. The numerical results at

some selected grid points for n = 51 are given in Table 1.

To show the accuracy of the present method for our tested problems, we report
two types of error. The first one is the absolute error, Abs,(x), and the second
one is the relative error, Rel,(x), which are defined, respectively, by Abs,(x) =
|u(x) — u,(x)], Rel, (x) = A‘Z?ST), where x € [0, 1], u,(x) is the n-term approximation

of u(x) obtained by the RKHS method, and u(x) € Wf [0, 1] is the exact solution.

Example 2 Consider the following nonlinear equation

2x—1+ln(x2—x+l)

W (x) + u(x)e ™ = ,0=x=1, (19)
—x+1
subject to periodic boundary condition
u(0) —u(l) =0 (20)

Table 1 Numerical results for Example 1
X; u(x) us; (x) Abss; (x) Rels; (x)
0.16 —0.1344 —0.13440010447668405 1.04477 x 1077 7.77356 x 10~’
032 —02176 —0.21760010031925470 1.00319 x 10~7  4.61026 x 10’
048 —0.2496 —0.24960009873547984 9.87355 x 10™%  3.95575 x 10~
0.64 —0.2304 —0.23040009968473152 9.96847 x 10™%  3.95575 x 10~
0.80 —0.1600 —0.16000010319136138 1.03191 X 10~7  6.44946 x 10~/
0.96 —0.0384 —0.03840010934533122 1.09345 x 10~7 2.84753 x 10~°
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Table 2 Numerical results for Example 2
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X u(x) us1(x) Abss(x) Rels; (x)

0.16 —0.1443323708899199 —0.1443322995528097 7.13371 x 10™%  4.94256 x 10~
0.32  —0.2453891602615295 —0.2453890219359414 1.38326 x 10~ 5.63699 x 10~
048 —0.2871488812901222 —0.2871487102608685 1.71029 x 10~ 5.95612 x 10~
0.64 —0.2618843796306403 —0.2618842287680727 1.50863 x 10~  5.76066 x 10~
0.80 —0.1743533871447777 —0.1743532975615985 8.95832 x 10™° 5.13802 x 10~/
0.96 —0.0391567152011939 —0.0391566982754902 1.69257 x 10~  4.32255 x 10~/

The exact solution is u(x) = In (x> —x + 1)

Using RKHS method, taking x; = r’l:ll ,i=1,2,...,n. The numerical results at

some selected grid points for n = 51 are given in Table 2.

6 Conclusion

The main concern of this work has been to propose an efficient algorithm for the
solutions of first-order periodic BVPs. The goal has been achieved by introducing
the RKHS method to solve this class of differential equations. We can conclude
that the RKHS method is a powerful and efficient technique in finding approximate
solution u,(x) for linear and nonlinear problems. In the proposed algorithm, the
solution u(x) and the approximate solution u,(x) are represented in the form of
series in W3[0, 1]. Moreover, the approximate solution and its derivative converge
uniformly to the exact solution and its derivative, respectively.
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Existence of the Mild Solutions for Nonlocal
Fractional Differential Equations of Sobolev
Type with Iterated Deviating Arguments

Alka Chadha and Dwijendra N. Pandey

Abstract This paper investigates a nonlocal differential equation of Sobolev type
of fractional order with iterated deviating arguments in Banach space. The sufficient
condition for providing the existence of mild solution to the nonlocal Sobolev-
type fractional differential equation with iterated deviating arguments is obtained
via technique of fixed-point theorems and analytic semigroup method. Finally, an
example is given to explain the applicability of the abstract results developed.

Keywords Fractional calculus ¢ Caputo derivative * Fractional differential equa-
tion ¢ Nonlocal conditions ¢ Deviated argument
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1 Introduction

Recently, the investigation of fractional differential equation has been picking up
much attention from researchers. This is due to the fact that fractional differential
equations have various applications in engineering and scientific disciplines, for
example, fluid dynamics, fractal theory, diffusion in porous media, fractional
biological neurons, traffic flow, polymer rheology, neural network modeling, vis-
coelastic panel in supersonic gas flow, real system characterized by power laws,
electrodynamics of complex medium, sandwich system identification, nonlinear
oscillation of earthquake, models of population growth, mathematical modeling of
the diffusion of discrete particles in a turbulent fluid, nuclear reactors, and theory
of population dynamics. Also, the fractional differential equation is an important
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tool to describe the memory and hereditary properties of various materials and
phenomena. The details on the theory and its applications may be found in books
[11, 14, 16, 18] and references cited therein. In addition, there is considerably
interest on the part of mathematics in the examination of differential equation
with a deviated argument, both in connection with problems in the hypothesis of
control system and because of the intrinsic richness and beauty of such equations.
Differential equations with deviated argument have extraordinary applications in
the hypothesis of self-oscillating systems, problems connected with combustion in
rocket motion, the hypothesis of automatic control, a series of biological problems,
and the problem of long-range planning in economics and in numerous other fields
of sciences and technology, the quantity of which is consistently extending. For
more studies of such types of equations, we refer to monograph [7] and papers
[8, 19, 20] and references cited therein.

On the other hand, the abstract evolution equations with nonlocal conditions
have been studied by many authors. The existence of a solution for abstract
Cauchy differential equation with nonlocal conditions in a Banach space has been
considered first by Byszewski [3]. In physical science, the nonlocal condition may
be connected with better effect in applications than the classical initial condition
since nonlocal conditions are normally more exact for physical estimations than the
classical initial condition. For the study of nonlocal evolution equation, we refer to
[3-5, 9, 10] and references cited therein.

Our main aim of this paper is to examine the Sobolev-type nonlocal differential
equation of fractional order with iterated deviating arguments in Banach space X
illustrated by

‘DPIEBz(1)] = Lz(t) + H(t, 2(1), 2(dy (£, 2(£)))), 0 <t < To, (1
2(0) = z0 + h(z), 20 € X (2)

where di(7,z(7)) = bi(z,z2(ba(z, - ,2(bu(t,2(7))) ), m € N, "D’,B is the
fractional derivative in Caputo derivative of order 8, 8 € (0, 1), and Ty € (0, c0).
In (1), we assume that the operators L. : D(L) C X - Z,B : DB) C X —» Y,
and E : D(E) C Y — Z are closed operators, where X, Y, and Z are the Hilbert
spaces such that Z is continuously and densely embedded in X the state y(-) takes
its values in X. Thus, function H : [0, Tp] x X x X — X is an appropriate function,
and A is a map from some space of functions satisfying some conditions to be stated
later. For more studies of Sobolev-type differential equations, we refer to papers
[1,2,5,9, 10, 12, 13, 17] and references cited therein.

We divide the article into three parts. Section 2 presents some basic definitions,
lemmas, and theorems. Section 3 focuses on existence result of mild solution
to consider system by virtue of the theory of semigroup via fixed-point tech-
nique. Section 4 considers an application for illustrating the discussed abstract
results.
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2 Preliminaries

In this section, some essential facts about semigroup theory, fractional calculus,
theorems, and lemmas which will be required to obtain our result are stated.

Definition 2.1 ([16]). Let z € L'([0,To],R™). The fractional integral (Jg’,) of
function z with order  is defined by

Bt = 1) | =000 G)

where I denotes the classical gamma functions. We can also write J#z(r) = (gg *
7)(?), here

1 -1
"=, >0,
gp() == P 4)
0, t<0.
The notation * stands the convolution of functions and limg_. gg(f) = 8(¢), &

means delta Dirac function.

Definition 2.2 ([16]). The fractional derivative in Riemann-Liouville sense is given
by

RLDQ,z(t)— / (t—£)"P12(€)dE, 1>0, >0, Be(n—1,n), n € N,

&)

( —p)dr
and z € C"7([0, To). X).
Definition 2.3 ([16]). The Caputo fractional derivative is given by

1 t
‘DY 2(1) = S /O (t— &) FP12E)dE, n—1<a<n, 6)

where z € C"71((0, Tp); X) N L1 ((0, Tp): X).

Throughout the paper, we assume that (X, ||-]), (Y, ||-]), and (Z, ||-||) are Banach
spaces. The symbol C([0, To], X) represents the space of continuous functions z :
[0, To] — X which is a Banach space with the following norm:

Izllfo.70) = sup{llz@|| - z € [0, Tol}.

The notation L(X) stands for the Banach space of bounded linear operators f : X —
X endowed with the norm ||f||.cx) = sup{|[f( | : |ly]| = 1}. Now, we impose the
following data on operators L and [E and B:



28 A. Chadha and D.N. Pandey

(Cl) E:DE)CY — ZandB : D(B) C X — Y are linear operators and
L: D) C X — Zis closed.

(C2) D@B) c D), Im(B) C D(E), and E, B are bijective operators.

(C3) The operators E! : Z — D(E) C Yand B™! : Y — D(B) C X are
assumed to be linear, bounded, and compact operators.

By the hypothesis (C3), it follows that B"'E™! is closed and injective. Thus, its
inverse is also closed, i.e., EB is closed. By the hypothesis (C1)—(C3) and closed
graph theorem, we conclude the boundedness of the linear operator LB~ 'E~!.
Therefore, LB~'E~! generates a semigroup {S(#).z > 0}, S(t) := e LB E ',
Thus, without loss of generality, we may assume that Ny := sup,5, [S(#)| < oo
and Wy = [E7'||, W, = [|B~']].

According to previous definitions, the system (1)—(2) is equivalent to the
following integral equation

— g
re)

provided the integral in (7) exists for a.e. r € [0, Tp].

In this work, M = LB~'E~! : D(M) C Z — Z is assumed to be a generator of
a compact analytic semigroup {S(f), ¢ > 0} of uniformly bounded linear operators.
Thus, it follows that there exists a positive constant Ny > 1 such that ||S(7)|| < Ny
for each ¢t > 0. We assume that 0 € p(M), p(M) means resolvent set of M.
Therefore, we may determine the fractional power M for & € (0, 1] as a closed
linear operator with domain D(M®) with inverse M. Moreover, the subspace
D(M") is a dense subset of X with the norm |z||, = ||[M*z]| for z € D(M®). Thus, it
is not difficult to show that D(M*®) is a Banach space with supremum norm. Hence,
we signify the space D(M*) by X,, endowed with the a-norm (|| - ||). We also have
that X, < X,, for 0 < a < n which implies the continuity of embedding mapping.
Thus, we may define X_, = (X,)* for each o > 0, dual space of X, is a Banach
space endowed with the norm

[EBz(r) = [EBz(0) + /0 « [Lz(§) + HI(E. 2(8). 2 (5, y(EN)IdE. (7

lzll—¢ = [IM™%z]|, forz € X_,.

For more details on the fractional powers of closed linear operators, we refer to the
book by Pazy [15].

Now, we present the following lemma follows from the results [6, 21] which will
be used to establish the required result.

Lemma 2.1 ([15]). Let us assume that M generates an analytic semigroup
S(), t =0, and 0 € p(M). Then,

(@) S(t): X —>DM*) V>0, a>0.

(b) S(M*z = M*S(t)z for each z € D(M?).
(c) Foreacht >0,
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& ,
| G SOI=N, j=12. ®)

where N;, j = 1,2 are some positive constants.
(d) The operator M*S(t) is bounded and |M*S(t)|| < Not~*e™ for each t > 0.
(e) Foreacha € (0,1] and z € D(M®), then |S(t)z — z|| < Cut™||M“z]|.

Remark 2.1 ([5]). The operator (M)~ is a linear bounded operator in X such that
DM*) = Im(M™).

We denote by Cz, = C([0, To], Xo) Banach space of all continuous function
z: [0, To] - X, endowed with the following norm

o

lelleg, = sup lz®lla ¥ z € Cf,.
<t=<Ty

Now, we consider the space
Crl={zeCf: lzm) —z@) < Llun—nl, ¥ u,uel0.Tl}, (9
which is Banach space with norm || - [|cg .

According to Definition 2.4 in [5], we provide the definition of mild solution to
system (1)—(2).

Definition 2.4. A function z € C([0, Ty], X) is called a mild solution of system (1)—
(2) if z(0) = zo + h(z) and following integral equation

2(t) = Up(n[EB][z0 + h(2)]

+/t(t—z9)ﬂ_lVlg(t—l9)H(l9, 2(9), z(d1 (¢, z(1))))dd, t € [0,Tp], (10)
0
is satisfied by z(-), where
U0 = [ BTEpS@ ok,
0

Va(t) = [0 BBE LS O)e.

1 1 1
ep(0) = ﬂz Thyg(t ) >0,
i@ = St TP D Garp), e (0,00,
k=1 :

and ¢g(¢) denotes probability density function defined on (0, 00), i.e., pg({) > 0,
0 < ¢ < oo with [ ¢(0)dt = 1.
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Remark 2.2 ([21]). Foreachv € [0, 1]

ra+v)

I'(l+pv) (i

[ eenar = [ et uprc -
Lemma 2.2 ([5]). Let us assume that S(t),t > 0 is a semigroup of uniformly

bounded linear operators generated by operator M. Then, the operator Ug(t) and
Vg(1), t > 0, are bounded linear operators such that

(1) We have [Ug(0)z]| < W \W,No|zl| and [|Vp(0)zll < ™13 l1z]) for each z € X.

(2) The families {Ug (1), t > 0} and {Vg(t), t > 0} are strongly continuous, i.e.,
for0 < 1 < v < Tyandz € X we have |Ug(r2)z — Ug(t1)z| — 0 and
[Vg(r2)z — Vg (r1)z|| = O0as o, — 1.

(3) The Ug(t) and Vg(t), t > 0, are both compact operators if S(t), t > 0, is
compact.

(4) Foreachz € X,0<n<1,and0 < a < 1, we have MVg(t)z = M!'""VsM"z
fort € [0,Ty]. We also have |[M*Vg(t)| < ﬂwﬂ‘(?ﬁ?flr_%;a) P for each t €
(0, To).

(5) For any z € X, and fixed t > 0, we have |Ug(t)z|la < WiW,No||zllo and

IV Ozlla < 1735 2]

Lemma 2.3. For each ¢ € L7 ([0, To], X) and p € [1, 0),

To
lim / 168 + €) — p ()79 = o, (12)
=0 Jo

where ¢(s) = 0 for s ¢ [0, To].

3 Main Result

In this segment, the sufficient condition for providing the existence of the o-mild
solution for system (1)—(2) is derived. To prove the required result, we have to
impose the following assumptions on the data of the system (1)—(2).

(J1)  The nonlinear function H : [0, Ty] x X, X Xy—; — X is a Holder continuous
function, and there exist constants Ly > 0 and 6; € (0, 1] such that
I H(z, 21, wi) = H(s, 22, wo) || < Laa(Jt — 5| + || 21 — 22
+| wi = walla—1), (13)
for each (l, 21, Wl), (S, 22, Wz) € [0, To] X Xg X Xg—1.

(J2) The functions b; : [0, 00) x X4—1 — [0,00), (i = 1,--- ,m) are continuous
functions, and there are positive constants L, and 0 < 6, < 1 such that
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|bi(t, 21) — bis. 22)| < L, (|t — 5| + || 71 — 22[la—1). (14)
for all (z,z1), (s,22) € [0, To] X Xg—1.

(J3) h e C(Xy,X,) is a nonlinear function, and there exists positive constant L,
such that

[(w1) —h(wW2)lle = Lallwi —walla- 15)

for each wi, wy € X,,.

Now, we consider the following space

S*={zeC} NCy " Izl <R}, (16)

0

where R > 0 is a constant to be defined later. It is clear that S* is a closed and
bounded subset of C7,~ ! which is complete.

Theorem 3.1. If the assumptions (J1)—(J3) are fulfilled and zo € D(M*) with

W, W,N, T 2—a) T, P1—
K*=W,W,N||EB| L Lr(2+LL 1, (7
1 WoNo [EB|| Ly, + F(1+A(1—a)) r(2+ b)ﬂ(l_a)< (17)

then the system (1)—(2) admits at least one o-mild solution on [0, Ty).

Proof. Firstly, we consider the map Y : S* — S* defined by
(Y2)(1) = Up()[EB](z0 + h(z))
t
[0 9P Vpta = 9)HO.20). 2 0. 20 1€ 0.5
0
(18)
Clearly, it is easy to show that Y : C — C7, by using the fact that H and b; are
continuous functions. Now, it remains to show that Yz € C%O_l. To this end, let
71, T2 € [0, Ty] with 7; < 75. Then, we get

1(T2)(72) = (T2 (@) [la—1 = [[(Up(z2) = Up(2)[EB] (20 + 1(2))[la—1

H /0 % (0 = Y1V (12 — 9YE(D. 2(9). 2(d (9. 2(5))))dP
- / " (0= 9 Vgt — YE, 209). 2(dy (9 2(9))dD o,
0

<[I(Up(z2) = Up(2)[EB](z0 + 2(2)) [la—1

y / (12— 9P V(1 — VH(D, 2. 2y (9, 2(9)))dD s
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+] /0 (52 = 01V (2 — DVE(D, 2(9). 2(d (9. 2(9))))dd

- /On (11 = )7V (r = O)H, 2(9), 2(d1 (9, 2(9))))dD [lo—1.
(19)

From the first term of the above inequality, we have
[Up(z2) — Up(z1)IM* ' [EB](z0 + h(2))

- /0 BB s (O[S 0) — S OIM* [EB) (20 + h())d.
Also, we have that for each z € X

IS0 — Sl = /

!

: jsS(sﬁK)zds = /;2 BesPTIMS(sP £)zds.

Therefore, we estimate the first term as

/0 BTE ™ pp()IS(x5 ) = SO ||| M [EB](zo + h(2)) [l dE
* —Ip—1 =.d B
S/ pp(OIBE II[/ I, S ONASIIEBII 20 + /2(2) a1l
0 7] s
=< /0 9p(OOW W, [N; (2 — e)]I[EB]| x l|z0 + h(2)lla—14C,

<Ki(m—1) /0 os(0)dL,
=Ki(—1), (20)

where K; = W W, N, ||[EB]||||z0 + #(z)||a—1. The second term can be estimated
71
/ | (i =)' Vg(r1 = 9) — (2 = )P ' V(12 = )l |
0
x H(®, 2(3), 2(d1 (9, 2()))) ||V,
_ _ T] o0 d
<|B~'E lII/ / oI [, SUs =9 Ole=r,
o Jo dg

_d — 9P =2
ECEI

x |[H(W, z(), z(d (8, 2(B)))) || d¢dd,
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71 [oe] 9] d2
< [ goﬁ(z)[[n 172 7 S((s = 9)°0) s it

<viws [ ’ [ or @ [ e — )] Wedsa,

< Ky)(, — 1), 2D

where K, = W W, || M®2||N,NyT. The third integral is estimated as

[ @ = 9P Vgt — ) e [HB, 2(8). 2(d1 (3. 2(9))) | 49

< / /0 os@OIBE ]| [B(ra — )P EMS (2 — 9)P IV
|l FI(S. 2(9). 2(dy (9, 2(9)))) | L.
(%3 o0 d ﬂ o3
< [ [T @l 5 S(s =90l Nt
< Ks3(my — 1), (22)

where K3 = N1W1W2” Ma_ZHNH.
Thus, from the inequality (19) to (22), we obtain that

| (Cy)(z2) = (CY)(T)la—t < L(T2 — T1), (23)

for a positive suitable constant £ = Z?:l K. Therefore, we conclude that (Yy) €
C¢~'. Hence, we deduce that the operator Y : C§.-' — C%~" is a well-defined map.
Next, we prove that T : §¢ — S*. For0 <t < Tj and z € S%, we get that

| (T
< || Us[EB o + h(D) e
4 [0 | (= 8)F "V (t — YE, 2(8). 2(di (3. 2(9))) .

W, WoNgNe (2 — o) TP~
< W, W,No|EB| - lyo + & + - (24
< WiW2NolEBI - o +h0e + "~ Sr 4 g —ay Y

Wi WoNo NI (2—a) TP
We choose R = Wy WaNo[EB|| - |z0 + h(@)llo + " ursi G2 7 such that

| rylles, <R

Therefore, we conclude that T(S%) C S“. Next, we will show that Y is a
contraction mapping. For y, z € &% and 0 < r < Ty, we get that ||(Yy)(f) —

(Y2 (D)l
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< U )EB][A(y) — ~(@)]]la+Il /0 (=)~ Vg (1 = ) H, (@), y(di (9, y())))

—H(®, 2(3), 2(d1 (¥, 2(3))))]dV ||o.»
ﬁW1W2NaF(2 — Ol) ! _ B(1—a)—1
I(1+ B(1 —a)) /0 ¢=9)
X H, y(2), y(di (3, y(1)))) — H(W, 2(H), 2(d1 (D, 2(P)))) | dP. (25)

< Wi WoNo |EB||Lp[ly — zlle +

Now, we estimate

I H(@, y(B), y(d (8, (1)) — H(D, 2(9), 2(d1 (D, 2(3) |
< Lallly(@) — z(@)lla + [y(di (@, y())) — 2(d1 (D, 2(9)))la—1]
< Lullly(®) = z@) o + M7 - [ly(di (9, 2(9))) — 2(di (9. 2()))
+lydi(z.y(2))) = y(di(z, 2(0))) lla—1]- (26)

Let
d](l97 Z(ﬁ)) = bl(ﬁ’ Z(bl“l‘l(ﬁs Tty Z(ﬁs bm(ﬂv Z(ﬁ))) e )))7 j = 15 25 cee,m, Z € Sas
with d,,+1 (9, z(¥)) = ¥ [20, p. 2183]. Thus, we obtain

ldi (D, (D)) — di (9. 2(9)| = [b1(D, y(da2(D. (1)) — b1(D. 2(da2(D. 2(9)))) ],
< Ly Iy(d2 (8. y())) — 2(da(D. 2(9) a1
< Ly [ly(d2(9. y(9))) = y(da (D, 2())) |1
+y(d2(9.2(9))) — 2(d2 (9. 2(9))) a1
< Ly [L1b2(9, y(d3(, (D)) — b2(, 2(d3 (D, (1))
HIMI Ty = zlleg 1+

< [L’”_lLbl Ly, + L’”_ZL;,I oLy, A4 LLy Ly,
+Lp, M| ly — Zleg - (27

Therefore, we get

| H(, (), y(d1 (3, y(3)))) — H(D, 2(1), 2(d1 (&, z(D)) |
< Lu(2 + LL,IM| ") ly — z|cs

Ty’

< Lu+ LL) Ny = zllcg, - (28)
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where L, = [Lm_thl <Ly, + Lm_thl SRRV VS SRR LLbthz + th] > 0.
Thus, from the inequalities (25) and (28), we obtain || (Yy)(#) — (Y2)(?) ||«

BW W,oN, ' (2 — @) Th(1—0)
< [W, W,N,||EBJ|L Lu( + L =l .
< INWENoEBIL, + 7 L7 P s L) gl =l

= K*lly e, (29)
Taking supremum of ¢ over [0, Tp] and getting
1Y) = (Y2)lleg, < K*[ly —zlleg - (30)

Since K* = W WaNo[[EB||Ly + "L 20 O (2 + £L,) [} < 1. It implies
that Y is a contraction mapping on S* with constant K* < 1. Therefore, there exists
a fixed point of the mapping Y by Banach fixed-point theorem which is just a mild

solution for the problem (1)-(2). |

4 Example

We consider the following nonlocal differential problem

2
D [t 10) — W (1, 1] + »;32 ) _ B w(t, w) + Tt wit, 1),
ues, tel0,T], (€29)]
w(0.u) =Y Cow(ts.u). x €[0,7]. (32)
s=1
w(t,0) =w(tnr)=0, 0<t<lI, (33)

where CDf} denotes the fractional derivative in Caputo sense of order 8 € (0, 1],
C; > 0 are constants fors = 1,--- ,n.

Take X = Y = Z = I[*[0,7n] and S = [0, 7]. Let us consider the operator
[E, B, L on domains and ranges which is contained in L*[0, ] defined by

Ew=w", Bw=w-w EBw=w"—w"), Lw=-w, (34)

and domains D(E), D(B), D(LL) which are given by

""" are absolutely continuous, w”” € X, w(0) = w(m)=0}.

(35)

weX:w,w', ', w
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Thus, the operators have the following expression:

o0 o0
Ew = Z m*(w, W)W, Bw = Z(l + M%) (W, W)W (36)
m=1 m=1

and Lw = 3% (=m?) (W, W)Wy, With w,, (£) = (/2/7) sin(mz), m = 1,---, as
the orthogonal set of eigenfunctions of .. Moreover, we have

[e.]

e | o 1
LB~ E 'w= mZ::l I (W, W) Wi, (38)
e —At
Sz = ;exp(l ) @)W (39)

Clearly, the operator B~'E™! is bounded and compact such that [B™'E~!|| < 1.1t
is also well known that Ml = LB~'E™! generates a strongly continuous semigroup
S(r) on L2[0, 7] with |S(®)|| < e < 1.

Let w(t) = w(t,-), h(w) = Y ., Csw(ty, u). Now, we define the function H :
Ry xXxX — Xas

H(z, 9, &) (1) = H(u. t) + G(t.u.9), foru € (0, 7), (40)

where H : [0,1] x X — X is defined as
A0 = [ Koy, (41)

and G : R4+ x [0, 1] x X — X satisfies following condition
Gt w9 < W (L + [9]1/2), 42)

where Q is continuous in ¢ and Q(-,1) € X. Now, from the definition of H and #,
it can be easily shown that H and 4 satisfy the assumption (J1)-(J3). Applying the
result of Theorem 3.1, we can get that the system (31)—(33) admits a unique mild
solution on [0, 7.
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On Source Identification Problem for Telegraph
Differential Equations

Allaberen Ashyralyev and Fatma Cekic

Abstract In the present paper, the source identification problem for a telegraph
equation with unknown parameter p

Pu0 LoD L Au(ty = p+£(1) (0 <1< T),
1)
u(0) = ¢, u'(0) = v, u(T) = &

in a Hilbert space H with the self-adjoint positive definite operator A is investigated.
Operator approach permitted us to establish stability estimates for the solution of
the problem (1). In applications, three source identification problems for telegraph
equations are investigated.

Keywords Inverse problem ¢ Telegraph equation ¢ Stability

AMS subject classifications: 35R30, 35L.20, 35B35

1 Introduction

The differential equations with parameters play a very important role in many
branches of science and engineering. Some examples were given in temperature
over-specification by Dehghan [12], robotic chemistry (chromatography) by Kimura
and Suzuki [19], and physics (optical tomography) by Gryazin, Klibanov, and
Lucas [18].

The source identification problem for partial differential equations has been
studied extensively by many researchers (see [1-11, 13—16, 20-22, 24, 26-28]
and the references therein). However, such problems were not well investigated in
general.
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Our goal in this paper is to investigate telegraph equations with parameter. It is
known that various boundary value problems for telegraph equations with parameter
can be reduced to source identification problem for the differential equation (1) in
a Hilbert space H with self-adjoint positive definite operator A and A > §I. Here
§>0,a>0,and

o

5> . 2

4 2

The pair {u(¢), p} is called a solution of problem (1) if the following conditions
are satisfied:

(1) u(?) is twice continuously differentiable function on [0, T]. The derivatives
at the endpoints of the segment are understood as the appropriate unilateral
derivatives.

(ii) The element u(r) belongs to D(A) for all ¢ € [0, T], and the function Au(t) is
continuous on [0, T7.

(iii) u(r) satisfies the equation and boundary conditions (1), p € H.

It is clear that for finding a solution u(f) of problem (1), it is useful to apply the
substitution

u(t) = v(t) + A7'p, 3)

where v(?) is the solution of the following nonlocal boundary value problem for the
differential equation
21} v
) ety + A =f0 0 =1=T),
“)
v(T) =v(0) +§—-9.v(0) =y

and p is the unknown element defined by formula
p=AE—-v(). ®)

The present paper is organized as follows. Section 1 is introduction. In Sect. 2, the
main theorem on stability of problem (1) is established. In applications, theorems
on the stability inequalities for the solution of three source identification problems
for the telegraph equations are established.

2 The Main Theorem

Let H be a Hilbert space, A be a positive definite self-adjoint operator with A > 41,
where § > 0. Let @ > 0 and

5> . (6)
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Throughout this paper, {c(¢),# > 0} is a strongly continuous cosine operator
function defined by the formula

B 4 gmiB'?
c(t) =
0 )
Then, from the definition of the sine operator function s (¢)

t

s(Hu = /c(s)u ds,
0
it follows that
itB'/? —itB'/?
sy=8"17" ¢
21

Here B = A — 0‘42 1. For the theory of cosine operator function, we refer to [17]
and [23].
Now, let us give some lemmas that will be needed below.

Lemma 1. The estimates hold:

_ 1
||c(t)”H—>H =1 Bl/zs(t) HH—)H =1|B l/ZHH—>H = a? ’ @
i
Lemma 2. Assume that
1>]1+ 2 e 2T, (8)
-
4
Then, the operator
o _ar
11— (C(T) + 2s(T)) e 2
has inverse
woy —1
p= {1 - (c(T) + ZS(T)) e_ZT} ,
and the following estimate
[1P|lp>n <M )

holds, where M = M(8,a) > 0.
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Firstly, the solvability of problem (1) in the space C(H) of the continuous H-
valued functions ¢(¢) defined on [0, T, equipped with the norm

u = max t
[ ”C(H) 0§r§T”(p()”H

is investigated. We will prove the following main theorem on continuous depen-
dence of the solution on the given data.

Theorem 1. Suppose that ¢, & € D(A) and ¢ € D(A;). Let conditions (6) and (8)
be satisfied and f (t) be continuously differentiable function on [0, T). Then, for the
solution (u(t), p) of problem (1) in C(H) x H the following stability inequalities

— _1
¢ ullegn + 1 AP = MG.0) [l + 1N + |42 |+ Wfllcn ]

ol + [ ] + 1Al + 181 + max 1 @) + uf(O)nH}

du
dr?

+ ||Au + <M, |:HA
cun lAull ey + IPNH (8, ) <PH

hold, where M (8, @) is independent of f(t),t € [0, T] and ¢, ¥, €.

Proof of Theorem 1 is based on formulas (3) and (5) and the following theorem
on well posedness of nonlocal boundary value problem (4).

Theorem 2. Suppose that the assumptions of Theorem 1 hold. Then, for the
solution v(t) of problem (4) in C(H) the stability estimates

Iollcgy < MG, @) [llelly + 1V 1a + 11 + If e - (10)
d*v
P + Avl (11)
cH)

< MG.0)| IAglly + llelly + 42w |+ 141, + 181
+ max [0, + IFOly ]

hold, where M(8, &) does not depend on f(t),t € [0, T] and ¢, ¥, €.

Proof. First, we obtain the formula for solution of problem (4) under the assump-
tion (6). We have the following formula

v() = e3¢ (1) v(0) + ‘;‘e—‘%’s(t)v(O) + e sy

+/e_%(’_1)s(t—z)f(z)dz (12)

0
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for the mild solution of initial value problem
P @O A =f() O <1 <T),
v(0)isgiven, v’ (0) = V.

Applying condition v(T) = v(0) + § — ¢, and formula (12), we get

v(0) = (c(T) n ZS(T)) e Tv(0) + 2 Ts(T)y
T
+ / e 2 TYT — 2)f (2)dz + ¢ — £. (13)
0

By Lemma 2, under the assumption (8), there exists of inverse
[07 o —1
p= {1 - (c(T) n 2s(T)) e_ZT} .

Therefore, using (13), we obtain

T

v(0) =P {e 2 s(T)y + /e—3<T—Z>s(T —f@dz+9—E;. (14
0

Consequently, the solutions of problem (4) satisfy formulas (12) and (14).
Second, we obtain estimate (10). Using formulas (14) and (12) and estimate (7),
we obtain

[l < Mi(6.) [uwuH +a7tw] 1l + max W(r)nH} :

max [0y < Ma(d.) [uvw)uH + Aty + max uf(r)uH} .

Estimate (10) follows from these estimates.
Third, we obtain estimate (11). Applying A to formula (14) and estimates (7),
we get

1 _ 1
140 Oy = IPllmsrs {4252

e 2T HB%s(T) H ‘AélﬂHH + Ay

H—H H—H )

+ 148l + [AB™ |y [IFD s + €3 1Dl IF Ol
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T
<A, / D o =2) lnon [ 17 I+ 1£) I | dz}

0
T
< Mi.0) { Aglly + A&l + |20 ], + IFO)ll, + / 1P, b . as)
0

Applying A to formula (12) and using an integration by parts, we can write the
formula

Av(t) = e~ 3"c(1)Av(0) + ze—%fA%s(t)A%v(O) FALeSs(DAL Y

t

e HABT | A0~ cf() - [ eFetr-2 [ 3@+ )] d:

0

Using the last formula and estimates (7), we obtain

Au@® |y < le@lly—p e 2 1AV,
o
2y

1
I A2v(0) ||n
2e2

+ 1 BE5) lln—r |41/

H—H

+ 1 BE5(0) i A28

ol ARy

+ |AB™ |y LF Ol e~ 2 el gy 1 O]

I3

148 Ly [ 507 et=2) N [ 1@ + 15 ] e
0

< 02600 | 14Ol + 1A%y + 7Ol + s, 170 L]
for any ¢ € [0, T]. Then, we get

max || Av(t
max || Av(o) [

25,00 [14000) -+ 1A% L + O+ s 1761 | 10
Estimate

max ||Au(t
max | Au(o)

T
< My(8. ) {”A(p”H +IAE |y + A2y ], + IF O + / I @ HHdt}
0



On Source Identification Problem for Telegraph Differential Equations 45

follows from estimates (11), (15) and (16). Finally, estimate for max dz;‘
o<t<r Il 4= ||

follows from the last estimate and the triangle inequality. Theorem 2 is proved. O

Now, we will consider three applications of Theorem 1.
First, we consider the nonlocal boundary value problem for telegraph equation

urt(tv -x) + aul‘(tv -x) - (a(-x)ux)x + 514(1‘, -x) = p(-x) +f(ts X),

O0<t<T,0<x<l,
(17
u(0,x) = o(x), u;(0,x) = ¥y (x),u(T,x) = £(x),0 <x <1,

u(,0) = u(t,l), u,(0,x) = u,(t,),0 <t <T.

Problem (17) has a unique smooth solution (u(t, x), p(x)) for the smooth a(x) >
a>0,x e (0,0),8 > 0,a(l) = a(0), ¢x),¥(x),Ex), (x € [0,]] and f(z,x)(t €
(0,7),x € (0,1)) functions. This allows us to reduce boundary value problem (17)

to abstract boundary value problem (1) in a Hilbert space H = L,[0, 1] with a self-
adjoint positive definite operator A* defined by formula

A'u(x) = —(a(X)uy)y + Su (18)
with domain
D(AY) = {u(x) : u(x), uc(x), (a(x)uy)x € L[0, 1], u(1) = u(0), u,(1) = u,(0)}.

Theorem 3. Let conditions (6) and (8) be satisfied. Then, for the solution
{u(t, x),p(x))} of problem (17), we have the following stability inequalities

I u llcaapoy + 1| A7 p Il (19)
=M@, ) || ¢ 1) + | ¥ ooy + 11 € ooy + max ”f(t)||L2[0,l]i| ,

max ||u"||L2[0.1] + ||M||C(W§[o,1]) + ||P||L2[0.1] (20)

0<t<T

/
=< M(87 Ol) _” @ ”WZZ[(),]] + ” ) ||W21[O,1] +0§?ng Hf (t)”Lz[O.l]

+ 1€l wzpo.y + |lf(0)||L2[0,1]] ;

where M(8, A) is independent of ¢(x), ¥ (x),&(x), and f(t,x). Here, the Sobolev
space W3[0, 1] is defined as the set of all functions f defined on [0, 1] such that
[ and second order derivative function f" are both locally integrable in L, [0, 1],
equipped with the norm
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1
2

1
+1 [ fa@ax] .
/

1
2

|
IS Nwz.= /[f(x)|2dx
0

and the Sobolev space W, [0, 1] is defined as the set of all functions f defined on
[0, 1] such that f and first order derivative function f' are both locally integrable in
L, [0, 1], equipped with the norm

1
2 2

1 1
1 o= | [ VPac] + | [ reor ax
0 0

Proof. Problem (17) can be written in abstract form
ZM u
U 4™+ Au(n) =f() (0 <1 <T),
(21)

u(0) = ¢.u'(0) = Y u(T) =§

in a Hilbert space L,[0, ] of all square integrable functions defined on [0, /] with
self-adjoint positive definite operator A = A* defined by formula (18). Here, f(1) =
f(t,x) and u(r) = u(t, x) are known and unknown abstract functions defined on [0, /]
with the values in H = L,[0, []. Therefore, estimates (19) and (20) follow from
estimates of Theorem 1. O

Second, let 2 C R" be a bounded open domain with smooth boundary S, 2 =
2 US. In [0,7] x §2, we consider the nonlocal boundary value problem for the
telegraph equation

e (1,0) + ey, 0) — 3 (@ @ity )%, = p(x) + £ (2. ),
r=1

x=(x,...,x) €2,0<t<T,
(22)

u(0,x) = ¢(x), "0 = Y (x), u(T,x) = £(x),x € 2,

u(t,x) =0,x€S,0<t<T,

where o, (x), (x € £2), p(x), ¥ (x), E(x), (x € .Q) and f(t,x),(t € (0,T)) ,x € §2 are
given smooth functions and «,(x) > 0,8 > 0. We introduce the Hilbert spaces
L,(£2) of the all square integrable functions defined on £2, equipped with the norm

1/2

Wl ={ [+ [ eopan---as,

XENR
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Problem (22) has a unique smooth solution (u(z, x), p(x)) for the smooth functions
@(x), ¥ (x), a,(x) andf(z, x). This allows us to reduce the problem (22) to the abstract
boundary value problem (1) in the Hilbert space H = L,(§2) with a self-adjoint
positive definite operator A* defined by formula

Aux) ==Y (a0, (23)
r=1

with domain
D(AY) = {u(x) Du(x), uy, (x), (ar(X)uy, )y, € La(82),1 <r <n,u(x) =0,x € S}.

Theorem 4. Let conditions (6) and (8) be satisfied. Then, for the solution
{u(t,x), p(x))} of problem (22) the stability inequalities

I ooy + 1 A P e

MG, )| 1€ e + 1@ e 1Y e +0r;12xT “f(t)”Lz(.Q):| ,

max H u”’ ||

0<t<T

L@t |Iu|IC(W22(Q)) + Pl

S M(S,Ol) ” % ”W%(.Q) + ” W ”Wzl(.Q) + max Hf/(t) ”LZ(Q)

0<t<T

+ 1€z + IF O e |

hold, where M (8, o) does not depend on ¢(x), V¥ (x), £(x) and f(t,x). Here and in
future, the Sobolev space W2(82) is defined as the set of all functions f defined on
2 such that f and all second order partial derivative functions fow, . r=1,...n
are both locally integrable in L,(82),equipped with the norm

1/2

1 Bz =17 gy + | [+ [ 3l Pt |

r=1

XENR

and the Sobolev space W21 (82) is defined as the set of all functions f defined on 2
such that f and all first order partial derivative functions f,.,r = 1,... n are both
locally integrable in L, (S2),equipped with the norm

1/2

1 Ny =17 ey + /.../dexl...dxn
r=1

XER
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The proof of Theorem 4 is based on Theorem 1 and the symmetry properties of
the operator A* defined by formula (23) and the following theorem on the coercivity
inequality for the solution of the elliptic differential problem in L,(£2).

Theorem 5. For the solutions of the elliptic differential problem [25]

A*u(x) = w(x),x € £2,
u(x) =0,x € S,

the following coercivity inequality holds

n
D Mt lyi2) < Millol] -

r=1

Here M, does not depend on w(x).

Third, in [0,7] x £2, the boundary value problem for the multidimensional
telegraph equation

un (£, %) + au (1, x) — 3 (ar(Duy, )x, + Su = p(x) + f(¢, x),
r=1
x=(x1,...,x) €2,0<t<T,

(24)
u(0,x) = 9(x), "0 = Y (x), u(T,x) = E(x),x € 2,

M) —0xeS,0<t<T

with the Neumann condition is considered. Here, n is the normal vector to S, a,(x) >
a>0,(x € 2),0x),¥x),Ex) (x € 2), and f(t,x) (t+ € (0,T), x € £2)
are given smooth functions and § > 0. Problem (24) has a unique smooth
solution (u(t, x), p(x)) for the smooth functions ¢(x), ¥ (x), £(x), a,(x) and f(z, x).
This allows us to reduce the problem (24) to the abstract boundary value problem
(1) in the Hilbert space H = L,(§2) with a self-adjoint positive definite operator A*
defined by formula

Au(x) = =Y (ar(®uy,)s, + Su (25)

r=1
with domain

DAY) = Ju(x) : u(x). ux, (x), (@ (uy, )y, € La(82).1 < 7 < n, a”gl(lx) —0,xes
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Theorem 6. Let conditions (6) and (8) be satisfied. Then, for the solution
{u(t, x),p(x))} of problem (24), the following stability inequalities

I u lleway + 1A Pl
<M, @) [” § @ T 1ol 1Y L T max. |lf(f)||L2(9)i| ;

1
(nax. u ||L2(9) + lullcawz@) + 1Pl

<M@,a) [” 4 ||W22(Q) + v ||W2!(:2) +0r;12xT Hf/(f) ||L2(9)

11 € luza + IFO e

hold, where M(8, &) does not depend on ¢(x), ¥ (x), & (x) and f (¢, x).

The proof of Theorem 6 is based on Theorem 1 and the symmetry properties of
the operator A* defined by formula (24) and the following theorem on the coercivity
inequality for the solution of the elliptic differential problem in L,(£2).

Theorem 7. For the solutions of the elliptic differential problem

A*u(x) = w(x),x € £2,
a‘g(rf) =0,x€S,

the following coercivity inequality holds [25]

n
D g lly2) < M@)ol )-

r=1

Here M, (8) is independent of w(x).
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On a One-Equation Turbulent Model
with Feedbacks

H.B. de Oliveira and A. Paiva

Abstract A one-equation turbulent model is derived in this work on the basis of
the approach used for the k-epsilon model. The novelty of the model consists in
the consideration of a general feedback forces field in the momentum equation
and a rather general turbulent dissipation function in the equation for the turbulent
kinetic energy. For the steady-state associated boundary value problem, we prove the
uniqueness of weak solutions under monotonous conditions on the feedbacks and
smallness conditions on the solutions to the problem. We also discuss the existence
of weak solutions and issues related with the higher integrability of the solutions
gradients.

Keywords Turbulence ¢ k-epsilon model ¢ Feedback forces ¢ Uniqueness

Mathematics Subject Classification (2010): 76F60, 93A30, 35Q35, 76D03

1 Introduction

The Navier—Stokes equations were proposed by Navier in 1822, and later on,
in 1845, due to the clarifying work made by Stokes, these equations found a
phenomenological justification on the basis of the principles of fluid mechanics.
Since then, these equations are used to describe Newtonian fluid flows, which, in
the case of incompressible and homogeneous fluids, can be written as
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diva = 0, (D

1 1
%l;+div(u®u)=f— Vp +vD(u), D(u)=2(Vu+VuT)’ 2
p

where u = (u1, up, u3) is the velocity field, p is the pressure, p is the constant
(positive) density, and f denotes the external forces field. The tensor D(u) is the
symmetric part of Vu and accounts for the different strains in the fluid. The
positive factor v expresses the ratio of the internal forces in the fluid, called
dynamic viscosity, to the mass density p, and is usually called kinematic viscosity.
In 1883, Reynolds has succeeded to prove the importance of a threshold value
separating the laminar flow regime from the turbulent one within a similar fluid.
Nowadays, this value is known as the Reynolds number, and it is usually defined
as the ratio of inertial forces to viscous forces Re = "(i)l = (3.21“’ where [
and u([) are characteristic length and velocity scales. It was Stokes, even before
Reynolds, who observed the inadequacy of (1) and (2) to model certain flow
regimes that could probably result from eddies which rendered the motion more
chaotic. However, it seems to have been Reynolds the first to study the mechanical
significance of the existence of such eddies. The approach made by Reynolds was
to assume that the flow has two different scales, leading to the supposition that it
is possible to decompose the quantities in the Navier—Stokes equations in average
and fluctuating, or aleatory, values (Reynolds hypothesis). The idea associated to
this decomposition was to filter the Navier—Stokes equations in time intervals large
enough, in comparison to the temporal scale of the flow, but small enough in
comparison with the time scale of the average of the flow. Therefore, the velocity of
a molecule was decomposed into two components:

u=u+u, 3)

where u’ represents the fluctuating, or relative velocity, and u represents an average
velocity. Underlying this decomposition is a filter, or an average, concept that can be
mathematically defined as a Reynolds operator [15], i.e., an operator Z : R® —> R3
defined by #Z(u) = u and satisfying to the following properties:

A+ Av) = Z() + AZ(V) Yu veR® V1ieR; 4)
A (RW) = Zu) YueR’; (5)
Z(0u) = 3 (Z()) VYueR (6)

Z @ V) =Z1) @ Z(V) + Z(u—Z1) @ (v—Z(V))) VYu, velR
(N

Observe that (5) implies that Z(u’) = 0 for any u € R?, and from (7) we have
ZQ@ Z(V)) = ZW) @ Z(v) and Z(Z(u) @ v) = Z(u) ® %(v) which makes
Z Q@ Z(v)) = Z(Z(u) ® v). Since the tensorial product is not commutative,
we have, in general, Z(u ® Z(v)) # Z(v @ % (u)). However, this inequality is
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not observed when the Reynolds averaged Navier—Stokes equations (RANS) are
derived in the scalar form. The definition of Reynolds operator described above is
used to filter the Navier—Stokes equations (1) and (2) in a domain  C R3, which
represents the volume occupied by the fluid on the time ¢ € [0, T]. After some
algebraic manipulations, we obtain the so-called RANS equations

divu = 0, (®)

5 1
a‘; +divu®u) =f— Vp+ vdivD(u) — div(u’' ® ). ©)
0

Equation (9) looks the same as the momentum equation (2), with the addition of
a term involving the average of a product of fluctuating parts of the velocity. The
additional term

R:=—v®u, (10)

often called the Reynolds stress tensor, can be seen as the average of changes in u’
due to the particle transport with the fluid movement. Therefore, the tensor (10) acts
like an effective stress and cannot be determined from the classical principles. As
we do not have any way to know directly its magnitude, the modeling of its effect
is usually done in terms of known quantities or quantities that we can determine.
This is known in the literature as the closing problem of turbulence, and, as a result,
many schemes have been developed to approximate the Reynolds stress tensor.

2 The k — ¢ Turbulent Model

Reynolds has made experiments suggesting that the tensor (10) was somehow
related with Vu, which, by reasons of symmetry, can now be considered in the form
R = F(D(u)). However, the application F cannot be arbitrarily chosen, because
the model should give the same results regardless of the considered referential.
In analogy with the Stokes law for laminar flows, Boussinesq has proposed that
R = vy D(u) (Boussinesq turbulence hypothesis), where vy was denoted by eddy
or turbulent viscosity. By a simple comparison of the traces of the last expression
with (10), it can be readily seen that the Boussinesq hypothesis must be rewritten in
the form

2 1
R:—3k1+vTD(u), k= 2|u’|2, (11)

where k is called turbulent kinetic energy, a new unknown in the problem that
needs also to be modeled. In 1942, Kolmogorov [10] proposed a model in which
the turbulence was described by vy = p ; and [ = ké/f, where [ is a length
scale, suggesting that k and f, the characteristic frequency of the energy-containing
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movements, should be determined by transport equations. Inspired by the previous
model of his own, Prandtl [14] proposed, in 1945, that vy = pké [, suggesting
also that the turbulent kinetic energy was determined from a transport equation,
but the length scale / should be algebraically prescribed. Later on, during the
1970 decade, Launder and Spalding [11] observed the importance of the turbulent
dissipation € := v|VW/|2, a new quantity, in determining the rate of dissipation of
the turbulent kinetic energy in the turbulent flow process, which, again by means
of symmetry, can be written as € := v|D(w)|2. The turbulent dissipation € is
determined by the first process in the energy cascade, which consists in the transfer
of energy from the largest eddies to the smaller ones. Assuming these large eddies
are characterized by length scale [y, velocity scale uy, and time scale o = ly/ug
and have energy of 1/2pu?, then the rate of transfer of energy can be supposed to
scale as u3/ty = u3/ly. Consequently, € scales as uj/ly and independently of v.
Therefore, it is reasonable to model € and consequently the turbulent viscosity (in
view of Prandtl’s hypothesis), as

k> 2

k

e=Cp i vT:pkél:> vr =C, , wheree:=v|DW)?, (12)
€

Cp is a closure constant, and C,, is a constant related with the kinematic viscosity

and determined by experimental measures of k and €. To derive an equation for the

transport of the turbulent kinetic energy, we start by considering (1) the velocity

field decomposed in the form (3). Then, subtracting (9) to this equation, we obtain

divu’ = 0. (13)

Likewise, we subtract the RANS equations (9) to the momentum equation (2), where
all the quantities are decomposed as in (3). Then, we multiply the resulting equation
by u’ and we apply the filter produced by the Reynolds operator. Using the properties
set forth at (4)—(7) and some vectorial calculus together with (10), (11),, and (13),
we obtain

dk || 1. .
9 +u+u)-V 5 =R :D(u) — div(p'v’) + v’ -divD(w'). (14)
0

By using the hypothesis that convection by random fields produces diffusion for the
mean [12], the second term of the left-hand side of (14) can be approximated by
u - Vk — div (vpVk), where vp := vp(k, €) is the turbulent diffusivity. For the last
two terms, it is used an ergodicity hypothesis [4] asserting that, over a long period
of time, the remaining time on a given region in space is proportional to the region
volume. This allows us to use the approximations u’ - div D(u’) ~ |D(w)|? ~ € and
div (p'u’) =~ 0. Using this information, we obtain the following transport equation
for k
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dk
9y +u- Vk = div(vpVk) + v7|D@)* —€, vp = vp(k,e). (15)

The usual process to derive an equation for the evolution of the turbulent dissipation
€ starts by applying the rotational to the RANS equation (9), and then working with
calculus tools, the following is obtained:

ad
aj —2v (rot o - rot(w’ x rot u)) —2v (rotw’ @ rotu’ : Vu)

—2v ((rotu’ ® rotw')’ : Vu’) + ((u +u)- vV|rotu’|2) = —2v%|Vrotuw/|2.
(16)

The second term of the left-hand side can be neglected because the terms involved
approximately cancel one each other. Using an arguing similar to the Boussinesq
hypothesis, the second term is approximated by 2vCk|D(u)|?>. The last term is
approximated by u- Ve — div (vpVe) by the application of the convection-diffusion
hypothesis [12] similarly as it was done for the k-equation. Finally, the fourth term
on the left-hand side and the term on the right-hand side are usually approximated
by C ‘Ekz to avoid the need of another equation in order to close the problem [4, 12].
After all, we arrive in the following evolution equation:

9 2
aj Fu- Ve = div (up(k, £)Ve) + CIk[D()[2 + Czi , a7)

where C| and C, are positive constants that can be determined from the experiments.

3 Feedback Forces Fields

In this section we consider, for simplicity, 1-equation models comprised by
Egs. (8),(9), (11), (12), and (15), and we assume the turbulent dissipation ¢ depends
only on k. Observe that the consideration of 1-equation models is acceptable in the
sense that the equation for € may be discarded by prescribing an appropriate length
scale. This assumption has also implications on the turbulent viscosity and on the
turbulent diffusivity, defined at (12) and (15), in the sense that now they only depend
on k. We consider here the case when the external forces field depends on the own
velocity, i.e., we assume that the vector field f, in the momentum equation (2), is
replaced by

g —f(u). (18)

Now, in (18), g is an external forcing term that depends only on the space and
time variables, and f(u) is the feedback forces field that may have different signs,
according to each application where it is considered. Probably the best-known
situation happens for fluid flows in a rotating frame, where the Coriolis force
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f(u) = 2Q x u must be considered, being €2, here, the angular velocity vector.
Another example is the Lorentz force f(u,B) = —J x B considered to model
turbulent flows controlled by a magnetic field B, where J is the total electric current
intensity, given by Ohm’s law J = o(—V® + u x B). Here, o is the conductivity, a
material-dependent parameter, and & is the electric potential, which in turn satisfies
to the Poisson equation A® = div(u x B) (see, e.g., [9]). However, our main
motivation comes from the study of flows through porous media. In this field of
the applications, it is important to consider the Darcy and Forchheimer terms to
model the drag due to the flow through the porous medium.

Here, we gather this drag in the function f(u) = Cpu + Cg|uju, where Cp
and Cr are the Darcy and Forchheimer parameters, positive constants that depend
on the permeability and porosity of the medium. The mathematical modeling of
turbulence in porous media considers the simultaneous application of time and
volume-average operators. When this procedure is applied to the continuity and
momentum equations, they come as in (8) and (9), with the peculiarity that the Darcy
and Forchheimer terms come in the form f(u) = Cpu + Cr|u|u. This procedure is
being applied to many situations of turbulent fluids through porous media, as is the
case of turbulent combustion in porous media or turbulent impinging jets in porous
media (see, e.g., [5]). The underlying idea of considering this double-decomposition
concept corresponds, in a certain sense, to consider a feedback forces field

f(u) = f(u) + f(u)’, f(u) =fw), fu) - -w = h(u)k. (19)

The best example of this situation is a drag’s force purely Darcy f(u) = Cpu for
which /(Ju|) = 2Cp. A more complex example of a feedback forces field satisfying
to (19) is given by the generalized Forchheimer force

f(w) = a(jul)u, A(ju) = o™, neN. (20)

The Reynolds averaged process for the momentum equation, considered with a
feedback forces field satisfying to (18) and (19) and assuming the Reynolds stresses,
is given by R = vr D, and the turbulent viscosity, defined by (12), depends only on
k, leads us to

?;; +divlu®@u) =g—f(u) — ;Vp + div ((v 4+ vr(k))D(uw)) . 21

The same procedure used to derive the k-equation, and assuming, in addition, the
turbulent diffusivity, given by (15), depends also only on &, allows us to write

g’; +u-Vk = div(vp(k)VE) + vr(R)D@)? + h(ju)k —e®).  (22)

Although the term (|u|)k does not bring any difficulty to our analysis, we may avoid
its presence in Eq.(22) by considering a general feedback forces field satisfying
to (19), but with (19)3 replaced by

f(u) - v = 0. (23)
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This situation happens, for instance, when we consider the Coriolis force f(u) =
29 x u. In this case, the same procedure used to derive (22) allows us to write, in
view of (23),

dk

g, T Vk = div (vp(k) V&) + vr(k)|D(u)|* — € (k). (24)

4 A Stationary Problem

In this section, we consider a stationary version of the problem formulated by the
Egs. (8), (21), and (24),

diva = 0, 25)
divu®u) =g—f(u) — :)Vp + div ((v 4+ vr(k))D(u)), (26)
u- Vk = div (vp(k, €)Vk) + vr|D)|* + g — €(k), (27)

where for the sake of simplifying the notation, we have omitted the bars over the
filtered quantities. Observe also that in the last but one term of Eq.(27), we are
considering a more general situation than in (24). We shall consider the problem
posed by the Egs.(25)—(27) in a bounded domain Q@ C R% d = 2, 3, with a
compact boundary denoted by d€2. The problem (25)—(27) is supplemented by the
following Dirichlet boundary conditions:

u=0, k=0 ondf. (28)

For the analysis we make in this work, we assume the turbulent viscosity and the
turbulent diffusivity are bounded

0=<vr(k) =Cr, cp=<vplk)<Cp, (29)

where Cr, cp, and Cp are positive constants. The following weak formulation of the
problem gives us the notion of the solutions we are interested in to look for.

Definition 1. Let  be a bounded domain of R¢, d = 2, 3, and assume that both
conditions in (29) are fulfilled. In addition, assume that

2d
geL?(Q) and g e LY(Q) with 5 S4< d. (30)

d+

We say the couple (u, k) is a weak solution to the problem (25)-(28), if u € V,

k e Wy(Q), with 2 < g <d' f(u)-veL(Q)and
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/((u-V)u)-VdX—i—/(v+vT(k))D(u) : Vvdx+/ f(u)-vdx = / g-vdx (31)
Q Q Q Q
forany v e VN LY(Q), e(k)p € L'(R) and

/(u~Vk)<de+/ uD(k)Vk.wder/ e(k)g dx
Q Q Q (32)

=/ vT(k)|D(u)|2<de+/g‘PdX
Q Q

for any ¢ € Wol"/(Q), withg > d,andk > Oand ¢ > O a.e. in Q.

In [6, 7] we prove two distinct existence results for the problem (25)—(28) in the
sense of Definition 1. For the first existence result, we assume growth conditions
both on the feedback f(u) and on the function £(k) that describe the turbulent
dissipation (see [6]). For the second, we consider the case in which these terms are
strongly nonlinear, i.e., without assuming any restrictions on its growth (see [7]).
We have already established local higher integrability results for the gradients of u
and of k.

Both proofs use an iterative scheme to uncouple the Navier—Stokes equations
from the equation for the turbulent kinetic energy. The analysis of the decoupled
equations follows the approach of [1, 2], with respect to the truncation of the
feedbacks, and the arguing of [3] for the treatment of the L' terms.

Theorem 1. Let §2 be a bounded domain of R d = 2, 3, with a Lipschitz-
continuous boundary 052, and let (u, k) be a weak solution to the problem (25)—(28)
in the conditions of Definition 1.

1. Ifg € L'(82), with r > 2, and f(u) < Clu)’ for0 < s < ‘::; ifd # 2 or any
s > 0if s = 2, then there exists 0 > 2 such that Vu € L° (£2).

2. Ifg € L'(2), withr > d', and |s(k)| < C|k|" with 0 < s < 2— 3470 ifd # 2 or

any s > 0ifd = 2, then there exists T > il such that Vk € L (82) as long as

2d(d—1
Vu e L7(Q) foro > J00.

d

The following result of global higher integrability that, for the reason of lack of
space, cannot be shown here will be proved elsewhere.

The proof of this result adapts the arguments of [16] (see also [8]) for the Navier—
Stokes equations together with the reasoning of [13] (see also [3]) for the equation
for the turbulent kinetic energy.
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5 On the Uniqueness

We will prove the uniqueness by imposing conditions on the monotony of f(u) and
e(k), as well as by imposing the Lipschitz continuity of vr(k) e vp(k).

Theorem 2. Let §2 be a bounded domain of RY d = 2, 3, with a Lipschitz-
continuous boundary 052, and let (u, k) be a weak solution to the problem (25)—(28)
in the conditions of Theorem 1. If the following conditions are fulfilled for all
uy, w € Vandforall ky, ky € Wy*(£2),

(f(a;) —f(az)) - (u; —wz) > 0, (e(k1) — e(kz)) (k1 — k2) = 0, (33)
[vr (ki) — vr(ko)| < Cp,lki — kal, [vp(k1) — vp(k2)| < Cp, ki — kaf, (34)

where Cr, and Cy, are positive constants and then the weak solution (u, k) is unique.

Remark 1. As we shall see in the proof, the above result is obtained under smallness
assumptions on ||V (s () and || Vk|| iz () foro,t > 2if d =2o0ro, v > 2ifd #
2, when compared with the kinematic viscosity v and with the turbulent diffusivity
lower bound cp [see (29);].

Proof. Being (uy,k;) and (up, k) two solutions of the problem, we start by
subtracting the corresponding equation (31) of the weak formulation where in both
is taken v := u; — u, for the test function.

After some algebraic manipulations and using the assumptions (29), and (33);
together with Korn’s inequality, we obtain

C“)%( /Q IV(u; —w)Pdx < — /Q(VT(kl) —v7(k2))D(uy) : V(u; — uy) dx

—/Q((ul —w)-Viw - (u —w)dx:=1 + I,
(35)

where Ck is the Korn’s inequality constant. To estimate the term /;, we use Holder’s
and Sobolev’s inequalities together with assertion 1 of Theorem 1, which states that
o> 2,

I < |k = k2|l o (@ I V@2 [[Lo @) |V (01 — w2) [l 2@
< C|IVki = k)l llV@r —w)ll2), €1 = Cd, 2, ||[VuaLs @) -
For I, we use Holder’s and Sobolev’s inequalities, this in the case of d < 4, to

obtain

2

2
L < [l =Wl o [Vl @) = Cof| V(=) s -
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where C,=C(d, Q, || Vuz||Lo(@)). Now, gathering the estimates of /; and /> in (35),
we obtain, after the use of Cauchy’s inequality with suitable €,

2

2 2 _(V _ G

CUHV(ul - u2)|IL2(Q) = CI”V(kl - kZ)”LZ(Q) ’ Cu = (2C12< - C2) s CI = 2 .
(36)

Next, we subtract the Eq.(32) corresponding to k; and k, and taking for test
function, in both, ¢ = k; — k. After some simplifications and using the assump-
tions (29), and (33),, we obtain

o [ 1Vl — )P dx = = [ (@i Vi — s Vi) — k) dx
Q Q
- /Q(VD(kl) —p(k2))Vky - V (ki — k) dx 37
+ /Q(VT(kl)|D(ul)|2 — (k) |ID(W) *) (k1 — ko) dx = Jy + Jo + J5.

After a simplification of J;, we use Holder’s and Sobolev’s inequalities, observing

that T > dfl , to have

Ji = i flee@ IV = k)20 ki — ka2l 2+ (g
Hwr — ol ox o) VAL | r @) IV (ki — k2) [l 2 (0)
< GV = k)72 ) + ColIV (1 — w) 2@ IV (ki = ko)l 12

< CplIVki = k)2 by (36),  Cjy = Ci 4+ C2y/Ci/Ca,

where C; = C(d, Q, [|[Vui||Lo(@)) and C; = C(d, Q, | Vki||zz(a)). As for the term
J2, we use assumption (34), together with Holder’s and Sobolev’s inequalities, the

.. d .
last again in the case of T > %, , in the following way

J2 = Cpyllky — k2l () IV K2 lle @) IV (ki — k2) 2@ < Co IV (ki — k2)||§z(g) ,

where C;, = C(Cp,.d,Q,||Vka|Lr(@)). The term J5 is firstly simplified, and
then we use the assumptions (29) and (34); together with Holder’s and Sobolev’s
inequalities, and yet observing that o > 2,

J3 = Cp ki — k2||iz*(g)||vul It (@)
+Crllki — ka2 () IV (@1 — W) |20y [V + V|| o (@)
< GV = k) 72y + CalIV (ki = k) 20 IV (1 = 12) |2

< CpllVki —k)agy by B36), Cpy = Ci+ GG/ Cu,
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where C1 =C(CL1 s d, Q s ||Vlll ”LU(Q)) and CQZC(CT, Q s ||Vlll ”LU(Q), ||Vu2||LU(Q)).
Now, gathering the estimates of J;, J», and J3 in (37), we obtain (cp — Cj) fQ |V (k1—
k)|>dx < 0, where C; = Z?: 1 CJ;. As a consequence, it follows, by Sobolev’s
inequality, that k; = k; a.e. in €2, as long as ¢; > C;. Consequently it follows
from (36) that also u; = u, a.e. in 2, as long as v > 2C,C%, where C, is the
constant from the estimate of /5.
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On Stationary Solutions of KdV and mKdV
Equations

A.V. Faminskii and A.A. Nikolaev

Abstract Stationary solutions on a bounded interval for an initial-boundary value
problem to Korteweg—de Vries and modified Korteweg—de Vries equation (for the
last one both in focusing and defocusing cases) are constructed. The method of the
study is based on the theory of conservative systems with one degree of freedom.
The obtained solutions turn out to be periodic. Exact relations between the length of
the interval and coefficients of the equations which are necessary and sufficient for
the existence of nontrivial solutions are established.

Keywords KdV equation ¢ Stationary solutions
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Both Korteweg—de Vries equation (KdV)
U, + auy + Uy + un, =0
and modified Korteweg—de Vries equation (mKdV)

U, + auy + e £ uzux =0

(the sign “+” stands for the focusing case and the sign “—" for the defocusing
one) describe propagation of long nonlinear waves in dispersive media. We assume
a to be an arbitrary real constant. If these equations are considered on a bounded
interval (0, L), then for well posedness of an initial-boundary value problem besides

an initial profile, one must set certain boundary conditions, for example,

0

:MX

u‘x=0 = u‘x=L x=L:

(see [5, 7, 8, 11] and others).
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It follows from the results of Faminskii and Larkin [9] that such a problem for
KdV equation possesses certain internal dissipation: under some relations between
a and L and sufficiently small initial data solution decay at large time. Similar
properties hold for mKdV equation. In order to answer the question if the smallness
is essential, one has to construct non-decaying solutions. The simplest case of such
solutions is stationary solutions: # = u(x). In this situation the considered equations
are reduced to the following ordinary differential equations:

W+ au +uu =0, (D
W +au +uPu =0, 2)
W+ au — P =0, 3)

and the boundary conditions—to the following ones:
u(0) = u(L) = ' (L) = 0. (@)

The goal of the present paper is to investigate the existence of nontrivial solutions
to these problems under different relations between a and L. The method of the
study is based on the qualitative theory of conservative systems with one degree of
freedom (see, for example, [4]).

The first example of such a solution by this method for Eq. (1) was constructed
in the case a = 0 and L = 2 in [10]. In the recent paper [6] and also for Eq. (1),
such solutions were constructed for @ = 1 and L € (0, 27), and exact formulas via
elliptic Jacobi functions were obtained. In the present paper, these special functions
are not used.

Lemmal. If u € C3[0,L] is a solution to any problems (1), (4), or (2), (4),
or (3), (4), then it is infinitely smooth and periodic with period L.

Proof. Integrating each of the Eqs. (1)—(3), we obtain that the function u satisfies an
equation

W+ Fu)=0 FO0) =0 FeC>. (5)

The following [4] introduces a “full energy” E(x) = ; (u/ (x))2 +F (u(x)). Then, (5)
yields that E'(x) = 0, that is, E(x) = const. By virtue of (4) E(L) = 0, therefore,
E(0) = 0 and so #’(0) = 0. The end of the proof is obvious. O

Further let a fundamental period for a nontrivial periodic function denotes a
minimal possible positive value of a period.

By a symbol u, 7, denote a nontrivial solution to any of considered problems with
the fundamental period 7.

Theorem 1. If al?> # 4m? then there exists a unique solution u,; to prob-
lem (1), (4). If aL* = 4x?, such a solution does not exist.
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Theorem 2. If al? < 472, then there exists a unique up to the sign solution u, to
problem (2), (4). IfazL2 > 472, such solutions do not exist.

Theorem 3. If al? > 472, then there exists a unique up to the sign solution u, to
problem (3), (4). IfazL2 < 472, such solutions do not exist.

Remark 1. If al> # 4mn® for certain natural n > 2, then obviously the function
u(x) = n’u, /2. (nx) is a solution to problems (1), (4) with the fundamental period
T = L/n.If al? < 4mn® for certain natural n, then the function u(x) = nu, /n2,1(1X)
is a solution to problems (2), (4) with the fundamental period T = L/n. In particular,
nontrivial solutions to problems (1), (4) and (2), (4) exist for any a and positive L.
If aL? < 472, then nontrivial solutions to problems (3), (4) do not exist.

Further for convenience we pass from the segment [0, L] to the segment [—1, 1].
For x € [—1, 1] in the case of Eq. (1), make a substitution y(x) = izu(é(x + 1)),
while in the case of Eqs. (2) and (3), substitution y(x) = Su(’(x + 1)). Then, for
b= Lj a, these equations transform, respectively, to the following ones:

y/// + by/ + yy/ — 0, (6)
y/// + by/ + yzy/ — 0, (7)
y/// + by/ _y2y/ — O, (8)

and consider periodic solutions to these equations with the fundamental period
T = 2 such that

y(=1) =y (1) =0. €)

We apply the following lemma in the spirit of the qualitative theory of conserva-
tive systems with one degree of freedom.

Lemma 2. Consider an initial value problem
Y'+F @) =0 y-=1)=y(1)=0, (10)

where F € C*, F(0) = 0. Then, a nontrivial periodic solution to problem (10) with
the fundamental period T = 2 exists if and only if F'(0) # 0, and there exists yo # 0
such that F(yp) = 0, F'(yo) # 0, F(y) < 0fory € (0,y) if yo > 0, F(y) < 0 for
y € (30,0) if yo <0 and

0
d
Y =1 ify<0. (11

1 ifyo >0, =
w V=2F(©)

/o ¢—Cg¢(y) -

Proof. First of all note that similarly to (5) E(x) = ;(y/ (x))2 + F (y(x)) = 0if
y(x) is a solution to problem (10). Due to uniqueness of solutions to the initial
value problem, the condition F’(0) # 0 is necessary for the existence of nontrivial
solutions.
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Consider, for example, the case F’(0) < 0. If the function F is negative Vy > 0,
then it is easy to see that there is no periodic solution to problem (10). Therefore, the
existence of positive yo such that F(yo) = 0, F(y) < 0 fory € (0, yp) is necessary.

Uniqueness of the solution implies that the function y(x) is even (if exists). Then,
it is easy to see that it possesses the following properties: y'(x) > 0 for x € (—1,0),
y'(x) < 0 forx € (0,1), and y(0) = yp, y'(0) = 0. Again due to the uniqueness,
F'(yo) # 0.

Therefore, for x € [0, 1] the function y(x) satisfies the following conditions:

dy
5= V2F0) 3O =y y(1) =0.
by
Y0 dy
Integrating we obtain that / =1
0 V/=2F()
It is easy to see that under these assumptions, the desired solution exists. The
case F'(0) > 0 is considered in a similar way (then yy < 0). O

Now we can prove our theorems.

Proof (Theorem I). Equation (6) is equivalent to equation
" 1 2
y +by+2y =c (12)

for certain real constant c. Therefore, construction of a solution transforms to search
of a constant ¢ such for a function

b 1 1
2y2 —cy= 6y(y2 +3by—60) = yFo(y)

Fo) = L5+
6
the hypothesis of Lemma 2 is satisfied. Note that F'(y) = é y? + by — c. Therefore,
the condition F’(0) # 0 implies that ¢ # 0.

Real simple nonzero roots of the function F, exist if and only if D = 9b* +
24¢ > 0, and then these roots are expressed by formulas yy = é(—3b + +/D) and
yi =—13b+ /D).

It is easy to see that if ¢ > 0, then for any b the root yo > 0, F(y) < 0 for
y € (0,y0), F'(yo) # 0.If ¢ € (—3b?/8,0), then for b > 0 the root yy < 0, F(y) < 0
fory € (y0,0), F'(yo) # 0.

Therefore, we have to find the constant ¢ for which condition (11) is satisfied.
Note that

1
—2FM) = 300 =» 0 —y).
After the change of variable y = yyt, each of the Eq. (11) reduces to an equation

1 dt
1.0 = ¢3/0 Vil =Dt —y1) :
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Since yot —y; = é(\/D —3b)t + é(\/D + 3b), it is easy to see that for the fixed b,
the function /(b, ¢) monotonically decreases. Moreover, 1141{1 I(b,c) = 0 and for
c—>T00

b>0
lim  I(b.c) \/2/1 a oo, lim I(b,c)= | /1 “ )
1 ,C)= = oo, It €)= = ’
3540 bJo i(1-0) =0 Vb lJo Jt(1—1) b
forb =0
. . 1 1 dt
lim I(b,c) = lim = too
=040 =040 \/2¢ Jo /t(1 —1)(t + 1)

forb <0

1 Udr
lim I(b,c) = / = 400.
c=>0+0 VIbl Jo tV/1—1

Therefore, the desired value of ¢ exists and is unique if b # 72, while forb = 7
such a value does not exist. O

2

Remark 2. The substitution u(x) = ag + v(x — xp) under the appropriate choice of
the parameters ay and xy transforms any periodic solution of Eq. (1) with the period
L to solution of an equation v + (a + ap)v’ + vv’ = 0 satisfying conditions
v(0) = v'(0) = v(L) = v (L) = 0. Therefore, any solution of Eq.(1) with
the fundamental period L can be expressed in this way by the functions w44,z
Solutions similar to functions u, ; were considered also in [13]. In [2] representation
of periodic solutions of Eq. (1) is given via elliptic Jacobi functions. The advantage
of our approach is that it can give transparent description of solutions.

Consider, for example, the case b > 0. Then, for b € (0, 7r2) the constructed
solution of problems (6), (9) is an even “hill” of the height yo = é(—Sb +
V/9b? + 24¢) > 0, while for b > 7%, an even “hole” of the depth y, < 0. Note that
I.(b,c) < 0, (b, c) < 0. Therefore, the equation /(b, c) = 1 determines a smooth
decreasing function c(b). Since I(%,0) = 1, we have that c¢(7?) = 0. Return to
Eq.(1). Leta > 0. If uy = é(—3a + +/9a? + 384cL~2), where ¢ = ¢(L2a/4), then
for L < 27/ +/a, the solution u, ;. to problems (1), (4) is a “hill” of the height uy > 0
and for L > 27/ +/a, a “hole” of the depth uy < 0 (the center in both cases is at the
point L/2). In addition, uy — +oco as L — 0, ug — 0 as L — 27/ /a, up — 0 as
L — +oo.

Proof (Theorem 2). Equation (7) is equivalent to equation

" 13_
y +by+3y =c (13)
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for certain real constant c. Let

Lo
Y —cy= y(y3 + 6by — 12¢) = yFo(y)

FO = '+,

Note that the substitution z(x) = —y(x) leads to an equation similar to (13), where ¢
is replaced by (—c). Therefore, further it is sufficient to assume that ¢ > 0 (if ¢ = 0,
then F'(0) = 0).

Similarly to the proof of Theorem 1, we need to find the roots of the function Fy.
We apply Cardano formulas. Let D = 853 4 36¢2,

p={/6c+«/D, q=€/6c—\/D it D> 0,
p = VJ6c+iVIDl = Valblet =IO, ieD <.

The function F has a real root yo = p + g > 0. Moreover, if D > 0 there are two
complex conjugate roots with negative real parts and if D < 0 (it is possible only
for b < 0), two negative real roots y; and y, (y; = y, if D = 0).

According to Viete formulas, y; +y> = —yo, y1y2 = 6b — yoy1 — yoy2 = 6b + y3
and then

1
—2F() = Y00 =07 + 3oy + 55 + 6b).
After the change of variable y = yy¢, the first equation (11) reduces to an equation

dt

I(b,c) = V6 -
/ \/t(l DO + V2t + 2 + 6b)

1.

It is easy to see that for the fixed b the function y(c) monotonically increases and
yo(c) — 400 as ¢ — +o0 (note that yy = \/8|b|cos(; arccos(3c/\/2|b|3)) if
D < 0). Then, for the fixed b the function /(b, c) monotonically decreases and

lim I(b,c) = 0. Moreover, if ¢ — 0 + 0, then yo(c) — 0 for » > 0 and yo(c) —

c—>+00

\/6|b| for b < 0. Therefore,

1 t b4
lim I(b,c) = / = if b > 0,
c=0+0 Vb Jo \/t(l -1 /b
lim I(b,c lim / =400 ifb=0,
c—>0+0 (b.c) = =040 /12¢ \/t(l - )
1 Uar
lim I(b,c) = / =400 ifb<O.
e=>0+0 Vbl Jo V1 -2
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Hence, the desired positive value of ¢ exists and is unique if b < 72, while for
b > 72, such a value does not exist. O
Proof (Theorem 3). Equation (8) is equivalent to equation
" 1 3
Yitby—y=c (14)

for certain real constant c. Let

b, 1, 1
—cy=— —6by + 12¢) = — _yFy(y).
y o —cy lzy(y y + 12¢) 12” 0(y)

1
F(y) =— 4
) Y 1,

As in the proof of Theorem 2, consider only the case ¢ > 0.
Again apply Cardano formulas. Let D = —8b* 4 36¢2,

p={/—6c+JD, q=€/—6c—x/D if D > 0,
_ 3 . _ i(n+arccos(3c/«/2h3)) _ .
p = \/—6c+i\/|D| = v/2bes , g=p ifD<0O.

If D > O then the function Fy has a real root yo = p + ¢ < 0 and two complex
conjugate roots y; and y,. If D = 0 then again the function F has a real root
Yo = p + g < 0 and a double real root y; = y, > 0. Both these two cases do not
satisfy the hypothesis of Lemma 2 since F’(0) < 0.

It remains to consider the case D < 0 (it is possible only if b > 0), then ¢ €

(O, «éz b3/ 2). Here the function Fy has three distinct real roots, where a root yo =

p+q= +/8bcos(% + }arccos(3c/~/2b%)) > 0,arooty; < 0,arooty, > yo. We
have that y; + y» = —yo, y2y2 = —6b + y3 and then

1
—2F() = (00 = Y)(6b =35 = yoy = ¥*).
After the change of variable y = yyt, the first equation (11) reduces to an equation
dt

1
I(b,c)zx/6/ =L
0 \/t(l —)(6b—y2(1 + 1 + )

Similarly to the previous theorem for the fixed b, the function yy(c) monotonically
increases; therefore, unlike the previous theorem, the function (b, ¢) also monoton-
ically increases. It is easy to see that

lim 1(b.c) 1 /1 dt T
im ,c) = = ,
c—>0+0 Vb Jo \/t(l —1) Vb
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3 (! dt
lim I(b,c) = \/ / = 400
> Y2132 blo (1-1)/tt+2)

Hence, the desired positive value of ¢ exists and is unique if b > 72, while for
b < 72, such a value does not exist. O

Remark 3. In[1, 3, 12] periodic solutions of Egs. (2) and (3) were considered in the
case when the constant ¢ = 0 in Egs. (13) and (14). Therefore, the periodic solutions
constructed in the present paper do not coincide with solutions from that papers.
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A Filippov-Type Existence Theorem for Some
Nonlinear g-Difference Inclusions

Aurelian Cernea

Abstract We study two classes of boundary value problems associated to nonlinear
g-difference inclusions and our aim is to show that Filippov’s ideas can be suitably
adapted in order to obtain the existence of solutions for the problems considered.
Note that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem consists in proving the existence of a solution
starting from a given “quasi” solution. Moreover, the result provides an estimate
between the “quasi” solution and the solution obtained. In this way we improve
some existing results in the literature.

Keywords Difference inclusion ¢ Set-valued map ¢ Existence of solution

AMS subject classifications: 34A60

1 Introduction

In the last years, we may see a strong development of the study of boundary
value problems associated to g-difference equations and inclusions as one can
see in [1-3,7,8] etc. A reason is that in numerical analysis instead of the
standard discretization of the ordinary differential equations based on the arithmetic
progression, it can be used as the g-discretization related to geometric progression.
These alternative methods lead to g-difference equations which at limit ¢ — 1
correspond to the classical differential equations. On the other hand, the g-difference
equations are also useful in the theory of quantum groups [6].
In this note we consider the following problems:

sz(t) e F(t,x(t)), teJ, x(0)=0, Dyx(0)=0, x(1)=0, €]
Dflx(t) e F(t,x(1), teld, x(0)=nx(1), Dyx(0)=nDx(1), 2)
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where Dq,Dz,DZ denotes the first, the second, and the third order g-derivative,
respectively, I = [0,1],J = {¢", n € N} U{0,1},¢q € (0,1),n # 1 and
F: I xR — Z(R) is a set-valued map not necessarily convex valued.

Existence results for problems (1) and (2) were obtained in [1] and in [2],
respectively, for convex as well as nonconvex set-valued maps. All the results in
[1, 2] are obtained using fixed point techniques.

The aim of this note is to show that Filippov’s ideas [5] can be suitably adapted
in order to obtain the existence of solutions for problems (1) and (2). Recall that for
a differential inclusion defined by a Lipschitzian set-valued map with nonconvex
values, Filippov’s theorem [5] consists in proving the existence of a solution starting
from a given “quasi” solution. Moreover, the result provides an estimate between the
“quasi” solution and the solution obtained. In this way we improve some results in
[1,2].

The paper is organized as follows: in Sect.2 we recall some preliminary results
that we need in the sequel, and in Sect. 3, we prove our main results.

2 Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu—Hausdorff distance of the
closed subsets A, B C X is defined by

dy(A, B) = max{d*(A, B),d*(B,A)}, d* (A, B) = sup{d(a, B);a € A},

where d(x, B) = inf,epd(x,y).
We denote by C(J, R) the Banach space of all continuous functions from J to R
with the norm |[x(.)||c = sup,; |x(#)| and L' (I, R) is the Banach space of integrable

functions u(.) : I — R endowed with the norm ||u(.)||; = fol |u(z)|dr.
We recall next some basic facts from g-calculus [6].
For ¢ € (0, 1) the g-derivative of a real-valued function f is defined by

(1) —f(qt)
(1—q) ’

The higher-order g-derivatives are given by

Dy =" D,f(0) = lim D, ().

DY (1) =f(1). DIf(t) =D,DI"'f(r), neN.

For example, D, (*) = [k],#*~! where [k], = ‘5__11 , k € N. In particular, D,(*) =
(1+ 9t

Note that for f differentiable at 7, we have lim,_,;— D,f (1) = f' (7).

For y > 0 denote J, = {yq", n € N} U {0} and define the g-integral of the
functionf : J, — R by
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y o0
1f0) = [ 16 = 3501 = g’ 0"

n=0

provided that the series converges. If b; = yg"', b, = yq"*, ny,n, € N, one defines
by 0
| S6)dys = 1f (b2) = 1 (b)) = (1 =) > " q"baf (b2) — bif (b)].
1 n=0

Similarly, one has

Df(n =fn. If@) =LI"'f(), neN.

Note that D I,f(1) = f(¢) and if f is continuous at t = 0, then I,D,f(t) =
f() = £(0). In particular, it follows that if D I,f() = g(¢), then f(f) = I,g(t) + ¢
with ¢ € R arbitrary.

The product rule and the integration by parts formula are

D,(gh)(t) = D,g(t)h(t) + g(qt)Dgh(1),

/0 0Dyt = O] — /0 "Dy f(0g(andy.

At the limit ¢ — 1—, the above statements correspond to their counterparts in
standard calculus.
We recall the next two technical results are proven in [1] and in [2], respectively.

Lemma 1. Letf : J — R be continuous. The solution of the problem
Dix(t) = f(1). x(0) =0, Dux(0) =0, x(1)=0,

is given by x(f) = fol G(t,s,q)f (s)dys, where G(.,.,.) is the Green’s function
given by

gs(1=0[g*s(A1+—(1+q1] if 0<s<t<I,

G(t,s,q) = .
(t.s,q) P(1—gs)(g®>s—1) if 0<t<s<I.

Denote M := max; e; |G(t, 5. ).

Lemma 2. Letf : J — R be continuous. The solution of the problem
Dpx(t) = £(1),  x(0) = nx(1),  Dyx(0) = nDyx(1),

is given by x(f) = fol Gi(t, s, q)f (s)dys, where G\(.,.,.) is the Green function
given by
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1 nn—1(gs—0+n if 0<r<s<l1,

GO = 12 V- Dlas—0+n if 0<s<r=1.

Denote M, := max, e |G1(t, 5, q)|.

Definition 1.

a) A function x(.) € C(J,R) is a solution of problem (1.1) if there exists a
function f(.) € L'(J,R) that satisfies f(t) € F(t,x(t)) a.e. (J) and x(f) =
fol G(1, s, q)f (s)dys, where G(., ., .) is defined in Lemma 1.

b) A function x(.) € C(J,R) is a solution of problem (1.2) if there exists a
function f(.) € L'(J,R) satisfying f(t) € F(t,x(t)) a.e. (J) and x(t) =
fol Gi(t,s,9)f (s)d,s, where G, (., ., .) is defined in Lemma 2.

3 The Main Results

First we recall a selection result (e.g., [4]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3. Consider X a separable Banach space, B is the closed unit ball in X,
H :J — Z(X) is a set-valued map with nonempty closed values, and g : J —
X,L:J — Ry are measurable functions. If

H@®) N(gt)+L#HB) #93 ae. (J),

then the set-valued map t — H(t) N (g(¢t) + L(t)B) has a measurable selection.
In order to prove our results, we need the following hypotheses:
Hypothesis.

i) F(.,.) : I x R — Z(R) has nonempty closed values and F (., x) is measurable
forany x € R.

ii) There exists L(.) € L'(I, (0, 00)) such that F(t,.) is L(t)-Lipschitz in the sense
that

dy(F(t,x1), F(t,x2)) < L(t)|x1 —x2] V x1,x2 € R.

Denote Ly = fol L(s)ds.
Theorem 1. Assume that the hypothesis is satisfied and MLy < 1. Let y(.) €
C(J,R) be such that y(0) = 0, D,y(0) = 0, y(1) = 0 and there exists p(.) €

L'(I,Ry) verifying d(D,y(1), F(z,y(1))) < p(1) a.e. (J).
Then, there exists x(.), a solution of problem (1) satisfying for allt € J
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M 1
1) —y@)| < Hdt. 3
o=yl = | L[ )
Proof. The set-valued map t — F(t, y(f)) is measurable with closed values and

F(t,y(1)) N{Dpy(0) +pO[=1. 11} # 0 a.e. (J).

It follows from Lemma 3 that there exists a measurable selection f1(¢) € F(¢, y(¢))
a.e. (J) such that

Ifi () = D)y(1)| < p()) ae. (J) “)

Define x;(f) = fol G(1, s, q)f1(s)d,s and one has

1 1
(@) —y@® <M /0 p(tydt <M /0 p(t)dt.

We claim that it is enough to construct the sequences x,(.) € C(J,R), f,(.) €
L'(J,R), n > 1 with the following properties:

1
X (1) :/ G(t, s, Qfn(s)dys, te€J, 5)
0
fn(t) € F(tv -xn—l(t)) a.e. (‘I)s (6)
[fot1(D) = fo (D] < L@ x4 (8) — x0—1 (D) @)

for almost all t € J.
If this construction is realized, then from (4)—(7) we have, for t € J,

1
g1 (1) — 00 < M(MLo)" /0 p(di ¥n €N,

Indeed, assume that the last inequality is true for n — 1 and we prove it for n.
One has

1
s (1) — 3a(0)] < /0 Gt 112 @) o1 (1) — £ (0 |yt
1
<M /0 L) (1) = 0 (1) gt
1 1
< M/O L(tl)dqth(MLo)"/o p(t)dt

1 1 1
<M /0 L(t)dty M(MLy)" /0 p(t)dt = M(MLo)"*! /0 p(Ddt.
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Therefore, {x,(.)} is a Cauchy sequence in the Banach space C(J,R), hence
converging uniformly to some x(.) € C(J, R). Therefore, by (7), for almostall t € J,
the sequence {f;,(¢)} is Cauchy in R. Let f(.) be the pointwise limit of f,(.).

Moreover, one has

n—1

(1) = Y| < P (1) =y @) + D i1 (1) — xi(0)]

i=1

! ! ! . M [ p(tydr
<ut [ ptoar-+ > [ poannzy =M RPOE
On the other hand, from (4), (7), and (8), we obtain for almost all € J
= M [ p(r)at
50 = D] = 3 s 0] + ) — Dyt = Ly P ’;;L)O +p(0).

i=1

Hence, the sequence f,(.) is integrably bounded and therefore f(.) € L'(J, R).

Using Lebesgue’s dominated convergence theorem and taking the limit
in (5), (6), we deduce that x(.) is a solution of (1). Finally, passing to the limit
in (8), we obtained the desired estimate on x(.).

It remains to construct the sequences x,(.),f,(.) with the properties in (5)—(7).
The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1, we
already constructed x,(.) € C(J,R) and f,() € L'(J,R), n = 1,2,...N
satisfying (5), (7) forn = 1,2,...N and (6) forn = 1,2,...N — 1. The set-valued
map t — F(t, xy(f)) is measurable. Moreover, the map t — L(#)|xy (f) — xy—1(?)] is
measurable. By the Lipschitzianity of F(z, .), we have that for almost all # € J

F(t,xn (1) N {fn @) + LOxn (@) —xv—1 (0)|[-1, 1]} # 0.

Lemma 3 yields that there exists a measurable selection fy;(.) of F(.,xy(.)) such
that

n+1@) —fv@] < LONxn (@) — xv—1 (@) a.e. (J).

We define xy(.) as in (5) with n = N + 1. Thus, fy+1(.) satisfies (6) and (7)
and the proof is complete.

The assumption in Theorem 1 is satisfied, in particular, for y(.) = 0 if we
assume that d(0, F(z,0)) < p(¢) a.e. (J). We obtain the following consequence of
Theorem 1.

Corollary 1. Assume that the hypothesis is satisfied, d(0, F(t,0)) < L(t) a.e. (I)
and MLy < 1. Then, there exists x(.) a solution of problem (1) satisfying for all
trelJ
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MLy

1—MLy ®

lx(t)] <

Remark 1. A similar result to the one in Corollary 1 may be found in [1], namely,
Theorem 5, but without a priori estimates as in (9).

With the same proof as the proof of Theorem, we obtain a similar result for
problem (2).

Theorem 2. Assume that the hypothesis is satisfied and MLy < 1. Let y(.) €
C(J,R) be such that y(0) = nx(1), Dyy(0) = nD,y(1) and there exists p(.) €

L'(I,Ry) verifying d(Dyy(1), F(1,y(1))) < p() a.e. (J).
Then, there exists x(.) a solution of problem (2) satisfying for all t € J

1
(1) =y(0)] = 1_17;1 L /0 p(Ddt.
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Complex-Valued Fractional Derivatives
on Time Scales

Benaoumeur Bayour and Delfim F.M. Torres

Abstract We introduce a notion of fractional (noninteger order) derivative on an
arbitrary nonempty closed subset of the real numbers (on a time scale). Main
properties of the new operator are proved and several illustrative examples given.

Keywords Fractional calculus ¢ Calculus on time scales * Complex-valued oper-
ator * Hilger derivative of noninteger order
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1 Introduction

The study of fractional (noninteger) order derivatives on discrete, continuous and,
more generally, arbitrary nonempty closed set (i.e., a time scale) is a well-known
subject under strong current development. The subject is very rich and several
different definitions and approaches are available, either in discrete [1], continuous
[11], and time-scale settings [2]. In continuous time, i.e., for the time scale T = R,
several definitions are based on the classical Euler Gamma function I". For the time
scale T = Z, the Gamma function is nothing else than the factorial, while for the g-
scale, one has the g-Gamma function I, [9]. For the definition of Gamma function
on an arbitrary time scale T, see [6]. Similarly to [2, 3], here we introduce a new
notion of fractional derivative on an arbitrary time scale T that does not involve
Gamma functions. Our approach is, however, different from the ones available in
the literature [2-5]. In particular, while in [2-5] the fractional derivative at a point
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is always a real number, here, in contrast, the fractional derivative at a point is, in
general, a complex number. For example, the derivative of order o« € (0, 1] of the
square function #* is always given by #* + (o(#))*, where o (?) is the forward jump
operator of the time scale, which is in general a complex number (e.g., fora = 1/2
and ¢ < 0) and a generalization of the Hilger derivative (1*)2 = t + o (¢).

The text is organized as follows. In Sect. 2 we recall the notion of Hilger/delta
derivative. Our complex-valued fractional derivative on time scales is introduced in
Sect. 3, where its main properties are proved and several examples given.

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
For + € T, we define the forward jump operator 0 : T — T by o(t) =
inf{s € T : s > ¢}, and the backward jump operator p : T — T is defined
by p(t) := sup{s € T : s < t}. Then, one defines the graininess function u : T —
[0, +oo[ by u(t) = o (1) —t.

If o(f) > t, then we say that ¢ is right scattered; if p(f) < t, then ¢ is left scattered.
Moreover, if t < supT and o(f) = t, then ¢ is called right dense; if # > inf T and
p(t) = t, then ¢ is called left dense. If T has a left-scattered maximum m, then we
define T = T\ {m}; otherwise T" = T.If f : T — R, thenf° : T — R is given
by f°(t) = f(o(¢)) forallz € T.

Definition 1 (The Hilger Derivative [8]). Letf : T — R and r € T. We define
f4(2) to be the number (provided it exists) with the property that given any € > 0
there is a neighborhood U of 7 (i.e., U = (t—§,t+ 6) N'T for some § > 0) such that

[F(0(®) —f&] =2 Dl (@) — ]| < €lo(®) —s]

for all s € U. We call f4(¢) the Hilger (or delta) derivative of f at z.

For more on the calculus on time scales, we refer the reader to the books [7, 8].

3 Complex-Valued Fractional Derivatives on Time Scales

Letf : T — R with T a given time scale. We introduce here a new definition of
fractional (noninteger) delta derivative of order « € (0, 1] at a point t € T*.

Definition 2 (The Delta Fractional Derivative of Order «). Assumef : T — R
with T a time scale. Let # € T and o € (0, 1]. We define f4° (7) to be the number
(provided it exists) with the property that given any € > 0 there is a neighborhood
Uoft(ie,U=(t—6,t+ ) NT forsome s > 0) such that

[ (o) =f* O] = Olo()* = s"]| < €lo(®* -7 QY
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for all s € U. We call f2 (1) the delta derivative of order « of f at ¢ or the delta
fractional (noninteger order) derivative of f at r. Moreover, we say that f is delta
differentiable of order & on T* provided f4° (¢) exists for all # € T*. Function f4" :
T* — C is then called the delta derivative of order o of f on T*.

Remark 1. In (1) we use f* to denote the power o of f. It is clear that the new
derivative coincides with the standard Hilger derivative in the integer order case
o = 1. Differently from o = 1, in general f4” (¢) is a complex number.

Theorem 1. Assume f : T — R with T a time scale. Let t € T“ and o € R. Then,
the following proprieties hold:

1. Iff is continuous at t and t is right scattered, then f is delta differentiable of order
o at t with

o) =f*(0)

A —
fo0= oo () — 1

2

2. If t is right dense, then f is delta differentiable of order o at t if and only if the
limit
O =)
im

s—>t % — s«
exists as a finite number. In this case

=)

o — 5@ ©)

A% N
4 (1) = lim
3. Iff is delta differentiable of order o at t, then

o @) =f(0) + (@) =)™ ().
Proof. 1. Assume f is continuous at ¢ and ¢ is right scattered. By continuity,

L E0) =) _ o)~
s=>t g%(t) — s¢ o*(t) —r

Hence, given € > 0, there is a neighborhood U of ¢ such that

[Ho@) =f*(s) _ f* o) —f*()

<€
(1) — s¥ o%(t) — ¢

for all s € U. It follows that

[ @) =@

Mwm—ﬁm— e

[0 (1) — 5°]

< €lo®(n) — s

for all s € U. Hence, we get the desired result (2).
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2. Assume f is differentiable at # and 7 is right dense. Let € > 0 be given. Since f is
differentiable at 7, there is a neighborhood U of ¢ such that

| [P (0 (@) = )] =2 Do () = 5T |< € | 0%()) =5 |

forall s € U. Since o (t) = ¢, we have that
| [ @) = f* @] —f* O —s*T < € | o%(1) =5 |

for all s € U. It follows that ‘fﬂ(rf,):f;z(‘v) —fA”(t)‘ < eforalls € U,s # t, and
we get the desired equality (3). Assume lim;,_, f (2:’: ) exists and is equal to X

and o () = t. Let € > 0. Then, there is a neighborhobd U of t such that

Fe@) —fs)

1 —s®

X

<e€

forall s € U. Because | f*(0 (1)) —f*(s) — X(* —s5%) |< €|t* —s¥| forall s € U,

o0 =f46s)
P .

FA%(1) = X = lim ,
—

3. Ifo(f) = t, then 0*(t) — t* = 0 and
@) =) =140 + (@ (@) — U @)
On the other hand, if o' (f) > ¢, then by item 1

fHle®) =@
o) —r

= f2(0) + (0%(0) — ) (1)

[He@) =40 + (%) — 1)

and the proof is complete.

Example 1. If T = R, then (3) yields that f : R — R is delta differentiable of order
@ att € Rif and only if f4“(r) = lim,, " U 7.©) exists, i.e., if and only if f is
fractional differentiable at 7. In this case we get the derivative @ of [10].

Example 2. If T = Z, then item 1 of Theorem 1 yields that f : Z — R is delta-
differentiable of order « at r € Z with

P = [o@) =f*@) _ f*t+1) =@
I 1) T L (N U ) L
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Example 3. Tff : T — R is defined by f(f) = A € R, then f2"(¢) = 0. Indeed, if ¢

is right scattered, then by item 1 of Theorem 1 4% (f) = s ((fa(?t;:{: 0= aﬁi;ﬁ; =0;

if ¢ is right dense, then by (3) we getha (1) = limy_,, l::j: =0.

Example 4. Iff : T — R, t > t, then f2" = 1 because if o(f) > t (i.e., t is right

scattered), then f2" (f) = fu(;(?t;:f:(t) = szg:;x = 1;if o(t) = t (i.e., t is right
dense), then f4" = lim,_,, /" O = #—=* —

1o —s* 1% —s%

Example 5. Letg : T — R, t+> |. We have g (1) = .Indeed, if o (¢) = ¢,

1
(10 ()”

then g4 (1) = — 5, if 6/() > 1, then
1 o _ 1 o o(_aot()
2y — §OO) =0 _ (o) = () I
& oo (f) — 1 o4 (f) — 1 @ _ge() | roe(r)

Example 6. Leth : T — R, t — 2. We have h2*(r) = 0%(r) + *. Indeed, if ¢ is

. o . 200 __ 2« . . .
right dense, then KA (t) = limy—,, * t"‘—i"‘ = 21%; if ¢ is right scattered, then

h* (o (1) —h*(r) o (r) — >

A% _
O=" epy—rw = e —r

=0o%@) + 1°.

Example 7. Consider the time scale T = hZ, h > 0. Let f be the function defined
by f:hZ — R, t+> (t —c)?, ¢ € R. The fractional derivative of order o of f at # is

_ o) =10 _ (0@ =) = ((t—0)*)"

ALY

FTO=" ey e 59(1) — 1@
_(t—i—h—c)z“—(t—c)z“
B (t+ h)* — '

Remark 2. Examples 5, 6, and 7 show that in general f2° (¢) is a complex number
(for instance, choose o = é and t < 0).

Theorem 2. Assume f,g : T — R are continuous and delta differentiable of order
a at t € T*. Then the following proprieties hold:

1. For any constant A, function Af : T — R is delta differentiable of order o at t
with (Af)2" = A4f2%
2. The product fg : T — R is delta differentiable of order a at t with

(Y (1) =4 08" (0) +1*(0)g™ () = 4" (18" (@ (0) +1* (g™ ().

3. Iff()f (o (1)) # O, then } is delta differentiable of order a at t with

N =
(f) 0= feonro’
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4. If g(t)g(a(r)) # O, then é is delta differentiable of order a at t with
(f)“ (o = 0O = 05" 0
g g o(m)g ()

Proof. 1. Let ¢ € (0,1). Define ¢* = If\” € (0,1). Then there exists a
neighborhood U of ¢ such that [f*(a (1)) — f%(s) — f2“ ()(0%(t) — s%)| <

€*|a*(t) — s*| for all s € U. It follows that
(AN (0 (1) — (AN)* () = A% () (0 (1) — 5°)]
= 10 @) —f“(s) = ) (0% (1) — ) |

< €A 0% () — 57| < |;|a Ao (@) = s%| = €|o®(1) — ]

for all s € U. Thus, (Af)2" (1) = A%f4°(¢) holds.
2. Let € € (0,1). Define €* = €[l + [f*()| + g%(a(?)| + 1&g (o(?))]]”". Then
€* € (0, 1) and there exist neighborhoods Uy, U,, and U; of ¢ such that

(0 (0) = f*(s) = 2" (0" (1) = s)| < €*[0* (1) — s°]|

for all s € Uy, |g%(0 (1)) — g% (s) — g2" (1) (0¥ (1) — s%)| < €*|o*(r) — s%| for all
s € U, and such as f is continuous. Then |[f(f) —f(s)| < €* for all s € Us. Define
U=U; NU,NU;sandlets € U. It follows that

() (0 (1) = (f)* () — [g" (O (1) + g (0 (NF*" D] [0 (1) — 5]

= [[F*((®) = f*(s) = ()" (1) = s)(&" (@ (1)) + g (a(1)f* (5)
+ 8@ (0% (1) = 57) = f*(5)g% (5)
— [ () + g (e ) O]lo* (1) = 57

= [ (@@®) = f*(s) = )% () = )8 (0 (1))
+ 8% (0) — g%(s) — g (N (0™ (1) = s (1))
+[¢°(0(1) = 8%() — g (D@ (1) = SN (5) = (1)) + ¥ (5)g" (5)
+ 8% (O ()0 (1) = s*) + g (@ (1) (0% (1) = 5%) — g (5)/* (s)
+ 82 (O ()0 (1) = s*) + g (@ (1) (0% (1)) = 5*) —f* (5)g" (s)
— [ @) + g (@)Y O]lo* (1) =57
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< f*( @) =) =¥ O (1) = s)I(g* (@ (1))
+18%(@ (1) — g%(s) — g () (@0* (O = s )]
+18%(@ (1) = g%(s) = g () (0 (D) = s)IIf* (5) =/ ()|
+1g4 DI @) = ©)o® () = 5°
= €"|(g*(@))lo* (@) — 5%
+ | @)0” (1) = 5| + €¥[0% (1) — 57 |e* + "% (D)]]0% (1) — 5°]
< " 0%(0) = s"[(€" + (O] + g )] + &> )]
< o) = s“|(L+ ()] + g )] + 8% (D)) = €|o®(D) — %]

Thus, (f2)2 (t) = f*(1)g*" (1) + 2" (£)g* (o (1)) holds at . The other product rule
follows from this last equality by interchanging functions f and g.

AlX
3. We use the delta derivative of a constant (Example 3). Since (f . }) (=0,

it follows from item 2 that (;) Of* (o (D) +£2 () fal(,) = 0. Because we are

. A% A
assuming f(¢)f (o (¢)) # 0, one has (;) (1 = fw(gf(r));f?(r).
4. For the quotient formula, we use items 2 and 3 to compute

p p p
(f) (t)=(f'1) (t)=f°‘(t)(1) O+r0
8 8 8

o

g¥(a (1)
_ 8 A% @) A 1
=70 o T P geo)
P05 0 — (08" 0
e

This concludes the proof.

Remark 3. The delta derivative of order @ of the sum f + g : T — R does not
satisfy the usual property, that is, in general (f 4+ )2 (1) # (F)2" (t) + (¢)*" (¢). For
instance, let T be an arbitrary time scale and f, g be functions defined by f : T — R,
tt,and g : T — R, t — 2. One can easily find that (f + g)2" (1) = /3 #
A0+ (0 =1+ V2

Proposition 1. Let o € Rand m € N, m > 1. For g defined by g(t) = 1", we have

m—1

g (0 =Y ()" (0™ . @

k=0
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Proof. We prove the formula by induction. If m = 2, then g(rf) = #* and from
Example 6 we know that g4 (r) = Z,;O(t”‘)l_k (09)*(t) = 1* + 0*(f). Now assume

m—1

g () =) ()"0 )

k=0

holds for g(t) = " and let G(t) = "*! = . g(t). We use the product rule of
Theorem 2 to obtain

m—1

G (1) = g" (1) + 0" (g™ (1) = ()" +0“ (1) Y_(**)" (6! ()

k=0

m—1 m—1
— (ta)m + Z(ta)m—k—l(o_a)k-l-l(t) — (ta)m + Z(ta)m—k(o_a)k(t)

k=0 k=1

()" (@) (0.

[
NE

k

I
<)

Hence, by mathematical induction, (4) holds.
Example 8. Choose m = 3 in Proposition 1. Then (t3)A(y = 2%+ (to (1) +02(1).

The notion of fractional derivative here introduced can be easily extended to any
arbitrary real order o.

Definition 3. Let o > 0 and N € Ny be such that N < o < N + 1. Then we define

AN

A = (fAN) , where f 4" is the usual Hilger derivative of order N.
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Uniform Stabilization of a Hybrid System
of Elasticity: Riesz Basis Approach

M. Driss Aouragh

Abstract A hybrid system, composed of an elastic beam governed by an Euler-
Bernoulli beam equation and a linked rigid body governed by an ordinary dif-
ferential equation, is considered. This paper studies the basis property and the
stability of a hybrid system when the usual linear boundary feedback is applied
to the end without mass. It is shown that there is a sequence of generalized
eigenfunctions of the system, which forms a Riesz basis for the state Hilbert
space. As consequence expressions of eigenvalues, the spectrum-determined growth
condition and the exponential stability are readily presented. To confirm numerically
the asymptotic estimate of eigenvalues, we shall use the spectral method to calculate
the eigenvalues.

Keywords Beams ¢ Spectrum e Stabilization of systems by feedback e
Riesz basis

AMS subject classifications: 74K10, 47A10, 93015, 47E05

1 Introduction

Consisting of an elastic beam, linked to a rigid antenna, this dynamical system can
be described by the Euler-Bernoulli equation for the vibration of the elastic beam
and the Newton-Euler rigid-body equations for all the oscillations of the antenna:

al‘l‘y(xs t) + axxxxy(-x7 t) = 0, 0<x< 1, r>0
May(1,1) — 0 y(1,6) =0, >0 (D
Ja)my(l, t) + 3xxy(1, t) = 0, t>0
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where ¢ is the time variable and x the space coordinate along the beam, in its
equilibrium position. The function y is the transverse displacement of the beam,
M the mass of the antenna, and J the moment of inertia associated with the antenna.
For further description concerning the physical structure of the system, we refer
to [4]. Our goal is to choose suitable boundary damping at the end x = 0 such that
the hybrid system can be stabilized uniformly.

We consider the elastic beam with the following boundary feedback [6]:

0,y(0,1) =0, (y+ Opy +ady)(0,7) =0, >0, 2)

where a > 0 is a positive constant. Notice that the boundary condition (2) can
be realized by means of passive mechanical systems of springer-damper similar to
those used in [2].

In the next section, we give a result of a well-posedness of the solution of
the system, and the asymptotic expressions of eigenvalues and eigenfunctions are
derived. In Sect. 3, we show that there is a sequence of generalized eigenfunctions
of system (1)—(2), which forms a Riesz basis for the state Hilbert space and the
exponential stability of the system is obtained. Numerical simulation of eigenvalues
is presented in Sect. 4.

2  Well-Posedness, Asymptotic Expression of Eigenpairs

The energy space associated to system (1)—(2) is
H:=7xL*0,1)xC?, ¥ ={peH*0,1)/3:$(0) =0}

with the inner product induced norm

I
(0.8, 8)|” := / [0 + [8ul*]dx + [u(0)* + M7 [¢] + 78],
0
The system (1)—(2) can be written as

atY(t) = LY(t)v Y(t) = (y(v t)v al‘y('s t)s maty(ls l), axty(ls t))v (3)
where the associated system operator
L. ¥.8,8) = (¥, =Oxxuxp, Oxxxp (1), —0xxp (1)),
D(L) = {($,¥,8.8) € (A0, )N V) x ¥ x C?/
$(0) + 00 (0) + ay(0) = 0.& = My (1), 8 = Jo .y (D)} “4)

Lemma 1. L™! exists and is compact on H. Hence o (L), the spectrum of L, consists
of isolated eigenvalues only.
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Proof. For any (u,v,f,g) € H, solving

L(¢’ Y, é‘a 5) = (Wv _axxxx¢7 _axx¢(1)v 3xxx¢(1)) = (M, v, f, g)7

produces the unique solution ¥ = u, ¢ = Mu(l), § = Ju/(1) and

$x) = $(0) +§ — § Jo Pv(ndr— [‘2 +3f r2v<r)df] X
=+ =1+ L = 1) y()ar (5)

with ¢(0) = —(f + au(0) + fol vdx). The compactness follows from the Sobolev
embedding theorem [5]. Other conclusions are obvious, and the details are omitted.
Lemma 2. Forany A = it> € o(L), there is a unique eigenfunction (up to a scalar)
(¢, AP, MAP(1), A0 (1)) where
d(x) = —(1 + MJt*) cosh tx + [2J7%sin T + (=1 + MJt*) cos t]cosh t(1 —x)
+[27* sinh T — (1 + MJt*) cos T + (=1 + MJt*) cosh t]cos (1 —x)
+[(=1 4+ MJt*)sin T —2M7 cos t]sinh (1 —x)
+[(1 = MJt*)sinh © — (1 + Mjt*)sin © 4+ 2Mz cosh t]sin (1 —x) (6)

and the characteristic equation that A satisfies is

(1 + iat®)[—(1 + MJt*) + (J©° — Mt) cos tsinht + (=1 + MJt*) cos T cos ht
—(JT° + Mt)sintcos ht] — T3 [2J 3 sin T sin it + (—1 + MJt*) cos T sin ht
+(—=1 + MJt*)sint cosht] = 0, (7)

Proof. Solving the eigenvalue problem

L(d)v wv Cs 8) = (!ﬁs _axxxxd)v axxxd)(l)v _axxd)(l)) = A(d)v wv MW(1)7 JaXW(l))

onehas ¥ = A¢p, ¢=My(l), §=Jy'(1)and

axxxx¢ + /’\42(15 = 07
9:¢(0) = ¢(0)(1 + Aa) + 0 (0) = 0,
axxx¢(1) - Mkzd)(l) = axx¢(1) + szaxd)(l) =0, (8)

Let f(x) = ¢(x — 1). Then f satisfies

axxxxf"f' A2f = Os
A (1) = f(D)(1 + Aa) — 0 (1) = 0,
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deuef (0) + MAPF(0) = 3, (0) — JA2D,(0) = O )

Let A = it?; it is easily seen that for any A = it?, the general solution of the
following equation

axxxxf + A-zf = O’
B (0) + MA’f(0) = 8f (0) — JA*3.f(0) = O,

is of the form

f(x) = [(di—do)—MJIt*(dy+d>)] cos h Tx+[(dy—do)+MJIt* (d+d>)] cos Tx
+2Mt[d; sinh tx + d, sin Tx],

where d, d, are arbitrary constants. By d,f(1) = 0, one has (up to a scalar)

dy = (1 + MJt*)sinh t + (=1 + MJt*)sin © — 2M<t cos T,
dy = (1 = MJt*)sinh t — (1 + MJt*)sin 7 + 2Mt cosh T,
di —dy = 2MJ7*sinh © + 2MJt*sin © — 2Mt cos T —2M cosh t,
di+d, =2sinht—2sin T —2Mtcos T+ 2Mtcosh t.
by ¢ (x) = f(x—1) this is (6). In order for f to be a solution of (9), it is necessary and
sufficient that f(1)(1 + Aa) — 9, f (1) = 0, which induces (7), proving the lemma.

Lemma 3. There is a family of eigenvalues {1, = it?, —it2} of L with the following
asymptotic expression

An=it2 = —a+i (é + (mn)2) +0om™ (10)

where m = n — ,, nis a sufficiently large positive integer. A corresponding

eigenfunction @, = (¢n, Aydp, MA, P, (1), A0, (1)), where
$u(x) = —(1 + MJt) cosh t,x
+[2J¢ sin 7, + (=1 + MJt}) cos 1,]cosh 7,(1 — x)
+[2J72 sinh T,—(1+MJt}) cos 1, +(—1+ MJz}) cosh 7,] cos 7,(1 — x)
+[(=1 + MJz}) sin 1, — 2Mt, cos t,]sinh 7,(1 — x)
+[(1=MJz}) sinh ©,— (1+Mjz}) sin 7,+2M7, cosh 7,] sin 7,(1—x),

which is obtained by (6) with t = 1,. The following asymptotic expression holds

where F,(x) = — 2 770" (@), Aupn, MAupu (1), JA,9' (1)),
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—mnu(l—x) __ ,—mux

cos mm + cos ma(l —x) —sin mm (1 — x) !

e e
f ,—ma(l—x)__ ,—mmux _ _ 1 _
Fo(x) = ;[e e cos mm— cos mm(1—x)+ sin mm(1—x)] 40 ()
0
(1D

(11) holds uniformly in x € [0, 1]. It is seen that

2
: 2 _ . —6 _—1, 2
—1>1$00 ||Fn||L2XL2Xc2 - nl}r—Poo ||MJTn e an”H = 2’
Proof. Note that for a large positive integer n, in a uniformly bounded small
neighborhood of mm = (n — i)rr
|sin 7] < C,|cos t| < C,|le *sinht| <C,|le "cosht|<C,

uniformly for all 7 with some constant C. By multiplying —e ="z~ (MJ)~" on both
sides of (7), we can write (7) in a uniformly bounded small neighborhood of mm =
(n— }1)71 for each n to be

1 2
sin T 4+cos T = O(|t|™!), or sin T4 cos T = (ia + M) cos T+ O(|t|7?)
T
(12)

The first equation in (12) can be rewritten as sin 2t = —1 + O(|t|~2). Applying
Rouche’s theorem in a small neighborhood of mm = (n — }1)71 where n is a large
positive integer, we obtain a solution t, which is of the form

T=1,=mr 4+ 0n"), (13)

for sufficiently large n. Substituting (13) into the second equation of (12) yields
1 2
20(n7Y) = (ia + ) +0n™?),
mm M

and so 7, = mmw + mlﬂ (% + A;) +0(n™2).
For the estimation of (11), we treat the first component only because the second
component can be treated similarly. Now
7,297 (x) = —(1 + MJt)) cos h ,x

+[2J¢ sin 7, + (=1 4+ MJt¥) cos 1,]cosh 7,(1 — x)
—[2J7} sinh t, — (1 + MJz}) cos 1,
+(=1 + MJt) cosh 1,] cos 7,(1 —x)
+[(—-1+ MJ‘L’::) sin 7, — 2Mt, cos t,]sinh 7,(1 — x)
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—[(1 —MJ‘C:) sinh 7, — (1 + Mjrj) sin 1,
+2Mrt, cos h 7,] sin 7,(1 — x),

Since for any bounded y > 0 and x € [0, 1], it holds uniformly

e =™ L O(n™ "), sin T,x = sin mrx + O(n”Y), cos T,x

= cos mmx + O(n™ "),
Hence

2MN) e 09! (x) = —e™ T 4 e cos 1, — cos T,(1 —x)

+sin 7,(1 —x) + O(n™ ),
Moreover,

2(MI) 't e, (1) = O(n7Y), 2(MT) ' STl (1) = O(n Y,

3 Riesz Basis Property and Exponential Stability

Theorem 1 (Guo [3]). Let A be a densely defined discrete operator, that is, (A —
A)~Vis compact for some A in a Hilbert space H. Let {zn}foo a Riesz basis for H. If
there are an N > 0 and a sequence of a generalized eigenvectors {xn};_f_ol of A such
that

+o00

2
Z l[xn — zal|” < +o00

n=N+1

then

(i) There are an M > N and generalized eigenvectors {x, }11‘/1 U {xn};,;fl form a
Riesz basis for H.

(ii) Consequently, let {xno}llw U {xn};,;fl correspond to eigenvalues {Gn}foo of
A. Then o(A) = {o, Too where o, is counted according to its algebraic
multiplicity.

(iii) If there is an My > O such that 6,, # o,, for all m,n > M, then there is an
No > My such that all 0,,,n > Ny are algebraically simple.

In order to apply theorem 1 to the operator L, we consider the following system:

0y (x, 1) + Oceey(x, 1) = 0, 0<x<l1,t>0,
3:3(0,1) = 0,(0,1) + dxey(0.1) =0, >0, (14)
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Mo, y(1,1) — 0poy(1,8) = JOuy(1,8) + 9y y(1, 1) = 0, t>0,

The system operator Ly associated with (14) is nothing but the operator L with
a=0:

Lo(9,¥.8.8) = (V. —0uxxx®, Oxnxp (1), =02 (1)),

with D(Lo) = {(¢,¥.£.8) € (H* (0, 1) N ¥) x ¥ x C?/¢(0) + d1up(0) = 0,¢ =
My (1),8 = Jo .y (1)}

Then it is easily checked that L is indeed a discrete skew-adjoint linear operator
in H. From Lemma 2, each eigenvalue of L is geometrically simple and hence
algebraically simple. Because all eigenvalues of L lie on the imaginary axis
and the eigenvalues appear in conjugate pairs, we need to consider only positive
solutions of (7) in order to find eigenvalues of Ly. From Lemma 2, we can obtain
the unique (up to a scalar) eigenfunction of Ly associated with u, = iw, to be

U, = (fu, lnfus Mtnfu (1), J 1, (1)), where
f(0) = —(1 + MJo}) cosh w,x + [2J sin o,
(=1 + MJw?) cos w,]cosh @,(1 — x)
+2Jw} sinh @, — (1 + MIo?) cos w,
+(-1+ MJa)n4) cosh w,] cos w,(1 —x)
+[(-1+ MJa)i) sin w, — 2Mw, cos w,]sinh w,(1 — x)
+[(1 —MJa),f) sinh w,— (1 +Mja)3) sin w,+2Mw, cos h w,] sin w,(1—x),

and
e (1= _p=mx cos 4 cos m(1—x)—sin ma(l—x) "

G )= :-)[e—mﬂ(l—x)_e—mﬂx cos mm— cos mm(l—x)+ sin mmw(1—x)] Lom™
0

(15)
where G, (x) = — 7 @, ¢~ (f, pnf. Mitafu(1). J p1f, (1)), Moreover,

2MN) " w, e (1) = O™, 2(MI) o Cemf(1) = O,

Since Ly is a discrete operator, there are only finite number of eigenvalues in
any bounded complex region, all with at most other finite number of generalized
eigenfunctions (in the sense of w-linearly independent) of Ly forming a Riesz basis
for H. Therefore, we may assume, without loss of generality, that the generalized
eigenfunctions of Ly = {—2(MJ) 'w, Se=W,} | J { their conjugates }. It follows
from (11) and (15) that there exists an N such that
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+o0 +o0
S 2 g S o2 (M) oy e by = Y 0 <400, (16)
n=N+1 n=N+1

The same result is verified for their conjugates. We can now apply Theorem 1 to
obtain the main results of the present paper.

Theorem 2. Foranya > 0

(i) There is a sequence of generalized functions properly normalized of L which
forms a Riesz basis of the Hilbert space H.

(ii) The eigenvalues of L have the asymptotic behavior (10).

(iii) All A € o(L) with sufficiently large modulus are algebraically simple.
Therefore, L generates a Cy semigroup on H. Moreover, for the semigroup
el generated by L, the spectrum-determined growth condition holds: w(L) =
S(L), where

o) = lim || e ||, S(L) = sup{ReA/ A € (L)}
t—>—+00

Theorem 3. Suppose a > 0. Then there exists an @ > 0 such that Re A < —w
for all & € o(L). Therefore, the Cy semigroup e generated by L is exponentially
stable:

le“@|| < me™"|| @]

forany ® € H, where m > 0 is a constant independent of .

Proof. Tt suffices to show that Re A < 0 for all A € o(L). We start from the
eigenproblem (8). Multiplying ¢, the conjugate of ¢, on both sides of the first
equation in (8) and integrating from 0 to 1 with respect to x yields

1 1
[ pa s 2pipE + g P + [ pwpad  an)
0 0
+(1 4 ad)|p(0)]> = 0.
Clearly, if A is a real number, it must have A < 0. Notice that A = 0 is always not

in the spectrum of L. Suppose that A = A + iA2(A2 # 0). Then comparing the
imaginary parts of 7 yields

1
20 /0 6@ Pdx + MBI + ¢ (D] + alpOF =0.  (18)

There are two cases. When A; # 0, it is obvious that A; < 0 as a > 0. While as
A1 = 0, it must be ¢(0) = 0 and so ¢”’(0) = 0. In this case, the solution of (8)
shall be (we may assume that 1, > 0) ¢(x) = cosh +/Ax —cos +/A,x. But from
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Fig. 1 Distribution of eigenvalues for a = 5 (lefr) and functional relation between S(L) and
a(right)

the boundary condition ¢ (1) = —MA3¢ (1), we arrive the contradiction that

sinh \/)kz —sin \/)kz = —M\//\z(cosh \//\2 — Cos \/)kz).

4 Numerical Simulation of Eigenvalues

In this section, the Legendre polynomial method is used to compute the spectrum
of the hybrid system. We refer the procedure to [1] for details. Here we take N =
100, M =0.1, J=0.2Fig.1).
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Monotone Iterative Technique for Systems
of Nonlinear Caputo Fractional Differential
Equations

Faten Toumi

Abstract In this work, we deal with the existence of extremal quasisolutions for
the following finite system of nonlinear fractional differential equation “D%u (f) +
ftu(@) = 0 in (0,1),u(0) — o' (0) = A,u(l) + Bu’' (1) = p,where
1 <g<2apBec®HD)',AueRandf € C([0,1] x R",R") and D9 is
the Caputo fractional derivative of order g. We shall prove constructive existence
results for a class of nonlinear equations by the use of iterative method technique
combined with upper and lower quasisolutions. We construct a pair of sequences
of coupled lower and upper quasisolutions which converge uniformly to extremal
quasisolutions. Then, a uniqueness result is given under additional conditions on
the nonlinearity f.
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1 Introduction

In the present paper, we study the existence of extremal quasisolutions for the
following finite system of nonlinear fractional differential equations

DUu(t) +f (t,u(r)) =0in (0,1) (1)

u(0) —eu' (0) = A,u (1) + pu’ (1) = p, 2)

where 1 <g <2,a,8€ R+)", A, u e R andf € € ([0, 1] x R*, R") and D7 is
the Caputo fractional derivative of order g.
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The monotone iterative technique combined with the upper and lower solutions
offers an effective method for proving constructive existence for a variety of nonlin-
ear systems of integer order; see [3, 7, 8] and the references therein. Recently, many
works investigated nonlinear systems of fractional order by following this approach.
More precisely, most of those works treated nonlinear systems of order 0 < g < 1
(see, for e.g., [5, 9]), while few works studied nonlinear differential equations
or systems of order ¢ > 1 in this setup. Due to comparison results established
by Shi and Zhang [10] and Al-refaii [1], some works applied successfully the
monotone iterative technique combined with the upper and lower solutions to obtain
constructive existence of nonlinear differential equations in the case where the
fractional order ¢ € (1,2); see [2, 4, 6, 11]. Motivated by the above works, we
will introduce a method based on lower and upper quasisolutions to prove existence
of minimal and maximal quasisolutions of the problem (1)—(2).

2 Preliminary Results

In this section, we shall first present some definitions and properties related to the
Caputo fractional derivatives and the method of lower and upper quasisolutions.
We then state a positivity result. Finally, we shall state an existence and uniqueness
result for some linear system associated to our main problem.

We recall that for a function u € €2 ([0, 1], R) the Riemann—Liouville fractional
integral I9%u and the Caputo fractional derivative *D%u of order ¢ € (1,2) are
respectively defined by

I9u(r) = r}q) Jo ¢ —5)"""u(s)ds, and

Dlu(n) = 14, Jo (t=5)""1u@ (s)ds = >~ (t), where t > 0 and I’ is
the Euler Gamma function.

Lemma 1 ([11]). Let p € €2 ([0,1],R) and M > 0. If p satisfies the following
inequalities,

“Dip(t) —Mp (1) < 0.1 € (0. 1) 3)

p0)—ap (0)=0,p(1)+ pp’ (1) =0, 4)

where o, B > 0. Then p (t) > 0 for t € [0, 1], provided that « > qil.
Using standard arguments, we state the following:

Lemma2. Let M > 0 and h € €([0,1],R). A function u € €>*([0,1],R) is
solution of the problem

DIu(t) + h (1) — Mu(t) = 0,1 € (0, 1) (5)

u(0) —au' (0) = A,u(1) + pu’ (1) = p, (6)
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if, and only if, u is solution of the integro-differential equation

(n—=2)

1
u(t) =1+ aot+ Bl 141+ /0 Gap (t,5) (h(s) — Mu(s)) ds (7

where for t,s € [0, 1],

@+D(1—5) A =s+B@g-1))—(@+B+ 1 (t—s%)""

Gop (t,5) = (@+B+DT (g

(®)
Gap (t,5) is the Green’s function of the boundary value problem (5)—(6). Here, for
a real number r,rT = max(r, 0).

Lemma 3. Forallt € [0, 1], we have

0 /Q;( )d. Ao
= ap (1,8)ds < "
0 7 I (@
(00"
_ +8(q—1)) "
whereAa_ﬂ:a<;+,3(q—l))+(qql> ! I
(a+B+1) 4!
Proof. An elementary calculus yields to this result, so we omit the proof. O

Let r; and s; be nonnegative integers foreach i, 1 <i <n,suchthatr,+s; =n—1,
so that we can split the vector u € R” into (ui, [ul,, , [“]x,-)- Then Egs. (1)—(2) can be
written as

CDu; (1) + fi (t.ui (1) [u (0], . [u (©],,) = 0in (0, 1) €))

u; (0) — oy (0) = Ajyu; (1) + B (1) = s (10

foreachi,1 <i <n.
Now, recall that for u, v € R", u < v implies that ; < v; foreachi,1 <i <n
and define for u, v € €2 ([0, 1], R") the set

[u,v] = {h e€?([0,11.R) :u@) <h(@®) <v(t).,te]0, 1]}.
For the sake of simplicity, we set ¢; () = u; (0) — o} (0) and ¥; () = u; (1) +
B (1) foreachi € {1,...,n}.

Definition 1. A function f € % ([0, 1] x R",R") is said to possess a mixed
quasimonotone property if for each i,1 < i < n,f; (t, u;, [ul, , [“]s,) is monotone
nondecreasing in [u],. and monotone nonincreasing in [u], .

Definition 2. Let v,w € %2 ([0,1],R"), v and w are coupled lower and upper
quasisolutions of (9)—(10) if they satisfy
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D (1) + £, (1.0 (0. [0 @], bw (0],) = 0in (0,1) (11)
qu (U) S Ais wi (U) S His (12)
and
Dt (1) + f; (1w (0. I @], [o ()],) < 0in (0, 1) (13)
0 (w) = A, ¥ (w) >, (14)

foreachi,1 <i <n.
Definition 3. Letv,w € €2 ([0,1],R™), v and w are coupled quasisolutions of (9)—
(10) if they satisfy
D (1) + f; (tvi () . v ()], . [w ()];,) = 0in (0,1)
@i (v) = A, ¥i (v) = Wi,

and

D%; (1) +f; (6 wi (), [w (0], [v 0],) = 0'in (0, 1)
@i (w) = Ai, ¥i (W) = i,
foreachi,1 <i <n.
In the rest of the paper, we adopt the following assumptions:

(H1) v°,w° € €% ([0,1],R") are coupled lower and upper quasisolutions of (9)—
(10) such that v® < w° on [0, 1].

(H2) The function f possesses a mixed quasimonotone property, and there exists
M € (R%)" such that M; < [;‘” and

i-Bi
fi ([, uj, [I/t]rl_ B [u]s,) _ﬁ (ta U, [I/t]r’, ) [M]_yl-) > _Mi (Lt,' - Mi)

foreachi, 1 <i < n, whenever v’ < u < u < w’on [0, 1].
To state our main result, we need the following Lemma

Lemma 4. Assume (H1) and (H2). Suppose that for each i, 1<i<n,a; (g — 1) >1.
Let 1 and & be two fixed functions belonging to [vo, wo]. Then, the uncoupled linear
[fractional differential system

Du; (1) + f; (£ (1) . [n (D], [§ O],,) = Mi (i (1) = i (1)) = 0'in (0,1)  (15)

@i () = Ay, i (u) = i, (16)

foreachi,1 <i < n, admits a unique positive solution u in [vo, WO].
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Proof. First, itis obvious to see from Lemma 2 that u € % ([0, 1], R") is a solution
of problem (15)-(16) if, and only if, u is solution of the following integro-equation

(i —

WO =hT B

1
A) (Oél+t)+/ G, p; (1,5) (hi (s) — Miu; (s)) ds,  (17)

where h; (1) = f; (1, n: (1), [n (0)],, . [§ D],) + Min; (1), on [0, 1], foreach 1 < i < n.
Let €([0,1],R") be the Banach space endowed with the norm |u|,, =

sup (max (Ju; (t)|)) Define on %([0,1],R") the operator T by Tu =

r€fo,1] \1=i=n

(Thuy, ..., Tyuy,), where

(mi —

Tu; (1) = Ai +
" o+ i +

1
Y o+ / g (1) (i (5) — Mi; () di

foreacht € [0, 1]. Letu, v € €([0, 1], R"); then, by hypothesis on M; and Lemma 3,
we get |[Tu — Tv||o < |l# — V|- So by Banach Theorem, the operator T admits
a unique fixed point u in €([0, 1], R"). Now, let us prove that u € [v°,w°]. By
hypothesis (H1), v° is a lower quasisolution, so v° satisfies (11) and (12) for each
1 <i < n.Setp = v°—u. Using the fact that u satisfies (15) and (16) and the mixed

quasimonotone property of the function f, we obtain

CDq i(t) z.ﬁ(tv Ni, [n]r,' ’ [S]gl) _.ﬁ(t’ Ul(-), [vo]ri ’ [WO]XI.) —M; (ui - 771)
E_M(nz_v) M; (u; —n;) .

Thus “D?p; (1) — Mip; (1) = 0 on (0, 1), ¢; (p) <0, ¥; (p) < 0. Then, by Lemma 1,
we deduce that p; (f) < 0 on [0, 1], for each 1 < i < n. Thatis, v° < u. Similarly,
we prove that u < w?, which ends the proof. O

3 Main Results

In this section, we mainly prove the existence of extremal quasisolutions for the
nonlinear fractional differential systems (1) and (2) and we state then a uniqueness
result.

Theorem 1. Consider the boundary value problem (9)—-(10) with a (g—1) > 1.
Assume that (H1) and (H2) hold. Then there exists (vk)k>1 , (Wk)k>l a pair of
monotone sequences of coupled lower and upper quasisolutions of (9)—(10) such
that the sequences (Uk)k>1 and (wk) > converge monotonically and uniformly to
v* and w*, respectively with v° < v* < w* < w® on [0, 1]. Moreover, v* and
w* are minimal and maximal quasisolutions of (9)—(10) in [vo, WO]. Further, any
solution of (9)—(10) in [vo, WO] satisfies v* < u < w*,
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Proof. Let n,& € [UO,WO]. Then, by Lemma 4, the uncoupled linear fractional
differential system

CDu; (1) + fi (1.0 (1) . [n ()], . [€ (D],) = Mi (i (1) — m; (1)) = 0'in (0, 1) (18)

@i () = Ay, i () = i, (19)

for each i,1 < i < n, admits a unique positive solution u,¢ in [v°, w’]. So we can
define amap A : [v°, w°] x [v, w?] — [v° W] such that A (1, §) = uy¢. We shall
prove that A is mixed monotone operator. Let ', n*, & € [v°, w°], n' < n? be given
and suppose that x' = A (n',§) and x> = A (9% ). Then we have D7 (x} — x}) —

M; (3 —x!) = f; (t, n[n'],- [E]‘Y,.) —fi (r, . [, . [E]s,-) — M; (n? — n!). Using
the mixed monotone property of f and (H2), we get “D? (x? — x}) —M; (x} —x}) <

fi (tv 77,1» ['72],,. s [S]v,) _fi (ts r’lZ’ [Uz]ri s [E]s‘,) - Mi (7712 - 77,1) =<0.

On the other hand, we have ¢; (xz—xl) = @ (xl) — @ (xl) = 0 and
Vi ()c2 —xl) = 0. Thus, by Lemma 1, we conclude that xi2 > x}, for each
i,1 <i<n.Thatis, x! <x2, and so A (n, §) is nondecreasing in the first variable 7.
At the same manner, we prove that A (1, £) is nonincreasing in its second variable
&. Whence, A is mixed monotone operator.

Now define the sequences (v")k>1 and (wk)k>1 as follows: vk = A (vk_l, w/‘_l)
and W& = A (W1 v*1) for k > 1. We shall prove that the sequences (v¥)
and (Wk)k>l
proceed by induction. It is obvious to see that v! = A (vo,wo) > v° and
w! = A(W% %) < w° Assume that the hypothesis is true up k > 1, that
is, v*71 < v* and wk¢ < w*~!. The mixed monotone property of A yields to
v > A (VA1 wh) > o and WAt < A (WA 0k) < wh. Thus the sequences
(v")kZl and (wk)kZl are monotone on [0, 1].

k=1
are nondecreasing and nonincreasing on [0, 1], respectively. We will
0

Now, we intend to prove that, for each k > 1, vk and w* are coupled of lower and
upper quasisolutions of (9)—(10). Let k > 1. Then v =A (vk_1 , wk_l) satisfies

Dok fi (1ol 0, ) - M (e = o) = 0in .1 20)

o (v) = 209 (vF) = i (21)

foreachi,1 <i <n.
By adding f; (t, vl’.‘ 0, [vk (t)]r_ , [wk (t)]x_) to both sides of (20), we obtain

Dk + f; (t, vk, [Uk]r, , [wk]Si)
:fl (t’ U{(, [Uk]r,' ’ [Wk]s,-) _f’ (t’ Ull'(_l’ [vk_l]ri ’ [Wk_l]s;) + Mi (vlk - Ul{(_l) :
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Using the fact that v*~! < v*, w¥ < w¥~! and the mixed monotone property of the
function f, we get CDIvk + f; (t, vk, [Uk]r,- , [Wk]x,-) > 0. Similarly, we show that

Cquf + fi (t, wf, [w/‘]r, , [vk]s_) < 0,which together with the fact that ¢; (vk) =

@i (W) = Ai ¥ (vF) = i (k) = i yields to (v*, w¥) is a pair of coupled lower
and upper quasisolutions of problems (9)-(10). Next, let us prove that vf < wk,
for each k > 1. We use induction argument. For k = 1, since v? < WP then using
the mixed monotone property of A we get v! < A (W%, w®) < w!'. Now, suppose
that v* < wk, for some k > 1, then we have vF™! < A (w5, v*) = w *!. Whence,
vk < wk, foreach k > 1.

Next, since the sequences (v*) are uniformly bounded and

k
i>1 and (w )kzl
equicontinuous in % ([0, 1],R"), then, by Arzela—Ascoli Theorem, (vk) > and
(w") 1~ are relatively compact in ¢’ ([0, 1], R"). Thus, we deduce the existence
of subsequences (v"f')jZl and (w"f)jzlwhich converge to v* and w*, respectively.

Using the fact that the sequences (vf‘) and ( ) are monotone, we reach

k>1 k>1
to the convergence of the entire sequences that is lim— 40 V¥ (f) = v* (¢) and
limg—s 400 W () = w* (¢), on [0, 1]. Using the equicontinuity of the sequences

(vk) 1 and (w") =10 the pointwise convergence implies the uniform one; then, we
have (v),.., and (W),

Next, let us verify that v* and w* are quasisolutions of (9)—(10) in [v°, w’]. By
Lemma 2, we have for each

converge uniformly respectively to v* and w* on [0, 1].

o) = A + (i ﬁ,M @+ + / G, (05) (1 (5) — Mook () ds

where h; (1) = f; (;, ok (@), [ (@], [ (t)]s_) + M (1), on [0, 1].
Using the continuity of the function f and v* € [v w] by Lebesgue
convergence theorem, we deduce that

* (:u“i
v ) o+ fi +

Ai) (0{1+t)+/l G, p; (1, s)f(, v v *]r_,[w*]si)ds.

Similarly, we obtain

1
W (t) A i+ (1+ﬂl+)1 (Oh+t) +/ aisﬂi (t, S)ﬁ (s’ W;-k, [W*]ri ’ [U*]Xi) ds.
where
Gop, (1,5) = (@+1) (1=5)"7% (1=s+Bi (q—1)) — (@i +fi+1) ((l‘—s)+)61—1

(ai+Bi+1) I (9)
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So,
or O + 1% (07 0], [w7], ) O
(ui=A:) b =925+ filg—1)
= Ai+ (Ol,'—i-ﬂ,'—‘rl + A (a,-+/3,-+1)1“(q(§ fi (S, v;k’ [v*]ri , [w*]ﬁ) ds ) (o; +1).

Applying D7 on both sides of the last equation, it follows that “D7v¥ (1) +
f; (t, v (@), [v* @), [w* (t)]x,-) = 0, On the other hand, a simple calculus yields to
vF(0) = A + a(,-ii;ﬁ)l and (v;“)/ 0) = a(l’i;?_;_)l Thus ¢; (v*) = A;; we show also
that y; (v*) = ;. Similarly, we get “DIw?* (1) +f; (1, w} () , [w* (1)],, . [v* (D)],,) =0
and ¢; (W*) = Ay, ¥; (W*) = ;. Whence, v* and w* are quasisolutions of (9)-(10)
in [v°, w°].

Next, let us show that v* and w* are minimal and maximal coupled quasiso-
lutions of (9)~(10) in [v°,w°]. Let v and w be coupled quasisolutions of (9)-10
in [v°,w°]. We will use induction. We have v* < v and w < w’. Suppose
that for some k > 1, v¥ < vandw < wr. For each i,1 < i < n, we
have D%, (1) + fi (t.vi (1), [v O], . W (O)];,) = 0.@i(v) = X, ¥i (V) = pu
So, using (3) and the mixed monotone property of the function f, it follows
D7 (v; — v ') = M; (v; — v¥T!) < 0. On the other hand, we have g; (v — v*!) =
Ai, ¥i (v — v**1) = w;. Thus, by Lemma 1, we deduce that v**! < v. At the same
manner, we show that w < wf*t!. Whence, by taking k — +o00, we reach v* < v
and w < w*. Finally, by induction argument, it is easy to show that any solution u
of (9)-(10) in [v°, w°] satisfies v* < u < w*. This ends the proof. ]

In the following, we state a uniqueness result.

Theorem 2. Suppose that assumptions (H1) — (H2) hold. Then if, for each i,1 <
i < n, there exists N; > 0 such that

fi (l, uj, [I/t]rl_ s [u]s,-) _ﬁ (tv Mis [u]r,- s [M]si) E _Ni (Mi - Lti)

0 0

whenever v on [0, 1], the problem (9)—(10) has unique solution in

[0, ],

Proof. By Theorem 1, there exist v* and w* minimal and maximal quasisolutions
of (9)-(10) in [vo, wo] such that v* < w*. By Lemma 1, we prove that w* < v* on

Susu=w

[0, 1]. Hence v* = w* is the unique solution of the problem (9)—(10) in [vo, WO];
this ends the proof. O
References

1. Al-Refai, M.: On the fractional derivative at extreme points. Electron. J. Qual. Theory Differ
Equ. 55, 1-5 (2012)

2. Al-Refai, M., Hajji, M.: Monotone iterative sequences for nonlinear boundary value problems
of fractional order. Nonlinear Anal. 74, 3531-3539 (2011)



Fractional Differential Equations 107

10.

11.

. Cabada, A.: The method of lower and upper solutions for second, third, fourth and higher order

boundary value problems. J. Math. Anal. Appl. 185(2), 302-320 (1994)

. Cui, Y., Zou Y.: Existence results and the monotone iterative technique for nonlinear fractional

differential systems with coupled four-point boundary value problems. Abstr. Appl. Anal.
2014, 6 p. (2014), Article ID 242591. doi:10.1155/2014/242591

. Denton, Z., Vatsala, A.S.: Monotone iterative technique for finite systems of nonlinear

Riemann-Liouville fractional differential equations. Opusc. Math. 31, 327-339 (2011)

. Hu, C., Liu, B., Xie, S.: Monotone iterative solutions for nonlinear boundary value problems of

fractional differential equation. Abstr. Appl. Anal. 2013, 8 p. (2013), Article ID 493164. doi:
10.1155/2013/493164

. Ladde, G.S., Lakshmiakntham, V., Vatsala, A.S.: Monotone iterative techniques for nonlinear

differential equations. Pitman Advanced Publishing Program. Pitman, Boston (1985)

. Lakshmikanthan, V., Leela, S.: Existence and monotone method for periodic solutions of first

order differential equations. J. Math. Anal. Appl. 91(1), 237-243 (1983)

. Ramirez, J.D., Vatsala, A.S.: Monotone iterative technique for fractional differential equations

with periodic boundary conditions. Opusc. Math. 29, 289-304 (2009)

Shi, A., Zhang, S.: Upper and lower solutions method and a fractional differential equation
boundary value problem. Electron. J. Qual. Theory. Differ. Equ. 30, 1-19 (2009)

Syam, M., Al-Refai, M.: Positive solutions and monotone iterative sequences for a class of
higher order boundary value problems. J. Fract. Calc. Appl. 4(14), 1-13 (2013)


doi:10.1155/2014/242591
doi:10.1155/2013/493164
doi:10.1155/2013/493164

Oscillatory Solutions of Boundary
Value Problems

Felix Sadyrbaev

Abstract We consider boundary value problems of the form

X =f(txx),

x(a) =A, x(b) =B,

assuming that f is continuous together with f; and f,». We study also equations in a
quasi-linear form

X'+ p®Ox + qt)x = F(t,x,x).

Introducing types of solutions of boundary value problems as an oscillatory type
of the respective equation of variations, we show that for a solution of definite
type, the problem can be reformulated in a quasi-linear form. Resonant problems
are considered separately. Any resonant problem that has no solutions of indefinite
type is in fact nonresonant. The ways of how to detect solutions of definite types are
discussed.
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1 Introduction

The classical result in the theory of boundary value problems (BVP) for ordinary
differential equations states [1] that the problem

X +A@Mx = f(t,x), x€R", (1)
Bix(a) + Box(b) = 0, (2)

where all entries are continuous, is solvable if f is bounded and the homogeneous
problem

X +A@®x =0, Bix(a)+ Bx(b) =0 3)

has only the trivial solution x(¢) = 0.

If homogeneous problem has a nontrivial solution, the situation is different and
BVP is then called resonant.

These results when interpreted for the second-order problem

X'+ p®Ox +qgt)x = F(t,x,X), 4)
x(a) = A, x(b) = B, (%)

state that problems (4) and (5) are solvable if F is bounded and homogeneous
problem

X+ p(Ox +q)x =0, x(a) =0, x(b) =0 (6)

has only the trivial solution. Otherwise (if homogeneous problem has a nontrivial
solution), the problems (4) and (5) are resonant. There is intensive literature on
solvability of resonant problems.

In this article, we treat both nonresonant and resonant the second-order BVP
through the notion of a fype of a solution. It is shown that if the second-order
problem (resonant or not) has a solution x(¢) of certain type (definition will be
given soon), then it can be reformulated in the quasi-linear form with the linear
part (Lx)(7) := X" + p(9)x’ + ¢(r) of the same oscillatory type. This reformulation
(reduction) is not possible if the type of a solution x(z) is indefinite (we call this
internal resonance). We show by constructing examples that there are formally
resonant problems that in fact are not resonant: they can be reformulated in a
nonresonant form.
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2 Types of Linear Parts and Types of Solutions

Consider quasi-linear problem (4), (5). We say that the linear part (lLx)(r) = x” +
p(H)x' + g(£)x has type i, if a solution y(#) of the Cauchy problem

Y +p@)y +4q@y=0, y@a=0 y@=1 7)

has exactly i zeros in the interval (a, b) and y(b) # 0.
If y(b) = 0, then the linear part (1>x)(¢) is resonant.
For instance, the linear part x” + kx, where 37 < k < 4, has type 3.
Let us pass to definition of the type of a solution.
Let £(¢) be a solution of the BVP

X' =f(t,xx), x(a)=A, x(b) =B. (8)

The right-hand side function f may contain a linear part.
Consider the respective equation of variations

Y' =t 6@, E' )y + £ (. E@).E )y ©)

Definition 1. Let £(¢) be a solution of BVP. We say that the type of £(¢) is i, if
equation of variations (9) with respect to £(¢) is such that a solution y(f) with the
initial conditions

y@a) =0, Y =1 (10)

has exactly i zeros in the interval (a, b) and y(b) # 0. Denote this:

type(§) = i.

If moreover y(b) = 0, denote the intermediate type

type(§) = (i,i+1). Y

Remark 1. Therefore, a solution of type (i,i 4+ 1) is a solution &(¢) such that the
respective y(#) has exactly i zeros in (a, b) and y(b) = 0.

Remark 2. The study of solutions of BVP in terms of solutions of equations
of variations was initiated in early papers [4-6]. The authors have observed the
existence of solutions of zero type (in our terminology) in problems satisfying some
standard requirements.

Example 1. The trivial solution £(f) = 0 of the problem x”" = —x + x°, x(0) = 0,
x(7r) = 0is of type (0, 1) since a solution y(f) of the Cauchy problem y” = —y
(equation of variations with respect to &), y(0) = 0, y'(0) = 1 has the first zero at
t=m.
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Example 2. To illustrate types of solutions, consider the problem
¥ ==2x, x(0)=0, x(1) = 0. (12)

This problem has infinitely many solutions. These solutions can be expressed in
terms of the lemniscate sine function sl¢. This function resembles the usual sine
function, and it is periodic with minimal period 4A, where A := fol «/fiv , ~ 1L31L
The A number is an analogue of 77/2. More about lemniscatic functions and a set of
formula similar to usual trigonometric relations can be found in [3].

A solution of the Cauchy problem

¥ =-2x, x(0)=0, X(0)=p (13)

is given by x(t; B) = \/ Bsl (\/ B1). Functions x(z; B) satisfy the condition x(1) =
0 only for 8 = =£(24)%, £(44)? and so on. Let us look at first three nontrivial
solutions of the problem (13). These solutions are

x1(t) =2As1(2A1), x(t) =4Asl(4A1), x3(t) = 6AsI(6AT).
In order to detect their types, consider the equations of variations
Wo=—6x(yi, ¥y =650y, ¥ = —6x3(0)ys

along with the initial conditions y(0) = 0, y'(0) = 1 (Fig. 1).

It follows that rype(x;) = 1.

Figure 2 visualizes properties of x;, x3 and the respective solutions y;, y3 of
equations of variations.

The types of x, and x3 are respectively two and three.

3r
2+ //—\\
N
1F AN
\
N
L L L \\‘ L
0.2 0.4 0.6 \ 0.8 1.0
\
1F \
N
N
-2r N
N
N
3L \\
b ~
4t

Fig. 1 A solution x;(¢) (solid line) and the respective y; (¢)(dashed)
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Fig. 2 The solutions x,(f) and x3(7) (solid) and the respective y, () and y3(¢) (dashed)

3 Reduction to Quasi-linear Problem

Return to the problem (7). The right side f may contain linear part. The case of the
problem (7) being resonant is not excluded.

Theorem 1. Suppose the problem (7) has a solution £(t) of type i.
Then the problem can be reformulated in the quasi-linear form (4), (5), where
the linear part X" + p(1)x’ + q(t)x in (4) has the type i.

Proof. One has that

rlx —§"(1) = f(t.x,x) — f(1.£(1). £ (1))
=Lt ED. ) —ED) + .60, E D) —E' 1) + ot x.X)
(14)

or

Ix —fo (8. 6(0). 8" (0" — fu(t.£(1). E'())x = §"(1)(1.£(1). &' (1))E (1)
—f:(t.£(0). E'(0)E@) + ¢(t. x.X)
(15)

and finally
(LX) (1) = h(t) + @(t,x,X), (16)
where (Lx)(t) = X" — fu (1.§(1). §' ()X — (1.6 (1), §' (1)),
h(t) = E"(1)(t.§(0), &' ()& (1) — £:(1, £ (1), &' (1))& (1),

@(t, x, x') is a smooth (C') bounded function which coincides with ¢(z, x, x’) in some
vicinity of (¢, £(¢), €'(¢)), t € [a, D].
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The linear part (/,x)(¢) has type i since a solution & (¢) has type i. Function &, by
construction, is a solution of BVP (15), (5). O

Remark 3. The above reduction is not possible if a solution & (7) is of indefinite type
@i, i+1).

The converse of Theorem 1 is not true. There exist quasi-linear problems (i.e.,
problems with equations containing the linear part and bounded nonlinearity) that
have linear parts of definite type i and have not a solution of type i.

Indeed, consider the problem

X' = o), x(0)=0, x(x)=0, (17)
where
0, x> 1,
px) =1 —x+2% -1 <x<1, (18)
0, x < —1,

Any nontrivial solution x(z; y) of the Cauchy problem x” = ¢(x), x(0) = 0, x'(0) =
y has the first zero #; () (if any) after the point # = 1. So the trivial solution § = 0
is the only solution of the problem (17). The equation of variations for the trivial
solution is y” = —y and the type of £ is (0, 1).

However, the following is true.
Theorem 2. Quasi-linear problem (4), (5), where

1) F is bounded continuous function with continuous partial derivatives F, F,/;
2) The linear part X" + p(t)x' + q(t)x is of type i;
either has a solution of type i or a solution of type (i — 1, i) or a solution of type
@i, i+1).
The proof is based on the following lemmas which are stated here for the reader’s

convenience.

Lemma 1 (Lemma 2.1 in [7]). A set S of all solutions of BVP (4), (5) is nonempty
and compact in C'([0, 1]).

Lemma 2 (Lemma 2.2 in [7]). There are elements x*(t) and x«(t) in S, which
possess the properties x*' (a) = max{x'(a) : x € S}, x«'(a) = min{x’(a) : x € S}.

Lemma 3 (Lemma 2.3 in [7]). Suppose that the linear part X" + p(t)x' + q(t)x
in (4) is of type i. Let & be any element of S.

Then for y large enough the difference u(t;y) = x(t; y) — £ (¢) has exactly i zeros
in the interval (a, b) and u(b;y) # 0.

Here x(#;y) stands for a solution of the Cauchy problem (4) x(a) = A,
X(a) =vy.
Lemma 4 (Lemma 2.4 in [7]). Let & be any element of S and u(t; y) as above.
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Zeros t;(y) (if any) of the function u(t; y) continuously depend on y. If |y| < B <
400, then there exists §(B) > 0 such that the distance between two consecutive
zeros of u(t; y) cannot be less than 8. If for some yy # &'(a) u(b; yo) = 0, then the
respective x(t; yo) solves problem (4), (5).

The proof of Theorem 2 in general repeats that of Theorem 2.1 in [7] (one may
consult also the paper [8] for application).

Proof. Consider, for definiteness, a solution x*(¢) of problems (4) and (5), that is, a
solution with maximal value of the derivative x*' at t = a. Suppose this solution is
not of type i and it is not of type (i — 1,7) and not of type (i,i + 1). Consider the
respective equation of variations

Y 4+ p()y + q(t)y = Fx(t,x*(1),x* (0)y + Fv (t.x* (). x*' 1))y (19)

together with the initial conditions y(a) = 0, y'(a) = 1. It follows from our
assumptions about x*(7) and definition of a type of a solution that there are two
possibilities for y(¢) : either (a) t;+; € (a,b) or (b) t;—; € (a,b) and y(r) doe not
vanish in (t;—p, b].

Consider the first case. Since y(¢) is approximation for u(z, y) = x(¢, y) — x*(¢),
this difference has (i + 1)-st zero z;4; in the interval (a,b) for y > x*'(a) and
sufficiently close to x*'(a). Let us increase y. It follows from Lemma 3 that for y
sufficiently large the difference u(z, y) has exactly i zeros in (a, b) and u(b, y) # 0.
Then it follows from Lemma 4 that the zero z;4; left the interval (a, b] following
changes in y and passing through t = b at some y = Y, > x*'(a). The respective
x(t, o) solves the problem (4), (5) since &(¢) does.

Therefore, there exists a solution x(z, yo) of problems (4) and (5) with X' (a, o)
greater than x*'(a). This contradicts the choice of x* () as a solution with maximal
value of the derivative at t = a.

Other possible cases can be considered similarly. O

4 Resonant Problems

Consider, for simplicity, the problem

X' 4+ Kx=f(t,x), x0)=0, x(1)=0. (20)
If f is continuous function (together with f;) and bounded, then the problem above
is solvable provided that k is not multiple of 7. If kK = im, where i is an integer, then
the homogeneous problem

X +kx=0, x(0)=0, x(1)=0 1)

has a nontrivial solution, and solvability of the problem (20) is not guaranteed.
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The Fredholm alternative gives an answer in case f = f(¢). If not, the following
approach was proposed. Change the left side in equation so that it is not resonant yet,
add the same term to the right, and finally truncate modified right side appropriately
obtaining nonresonant quasi-linear problem. This problem has a solution, and if
some estimates can be proved for a solution, then this solution may solve also the
original problem.

Look how this works. Consider instead of (20) the equivalent problem

X kx4 2 =f(t.x) + 2x, x(0) =0, x(1)=0. (22)

Truncate the right side in Eq. (22) so that the truncated right side function F(t, x)
coincides with £ (¢, x) + &2x for x € [-N,N] and ¢ € [0, 1].
The modified problem

X+ x4+ ex=F(tx), x©0)=0 x(1)=0 (23)

has a solution x(f), and the representation

1
x(1) 2/0 G(t,8)F (s, x(s)) ds

is valid, where G is Green’s function associated with new (nonresonant) left side. If
the key inequality

' M<N

holds, where I" and M are respectively bounds (estimate constants) for the Green’s
function |G| and |F (¢, x)|, then |x(rf)] < N and x(¢) is a solution of (20). Due to
Theorem 2, x(f) has definite type induced by the linear part in (23). Therefore,
multiple application of this scheme using multiple different linear parts can prove
the existence of multiple solutions of the (resonant) problem (20). This scheme was
tested on equations of the Emden-Fowler type in [9] (see also [2]).

5 Conclusion

If the second-order BVP is known to have a solution of type i, then the problem can
be reduced to a quasi-linear problem ‘““around” a solution, irrespective of either the
original problem is resonant or not.
If the second-order formally resonant BVP has not a solution of indefinite type,
then either it has not a solution at all or it can be reduced to quasi-linear problem.
It is reasonable to try different quasi-linearizations of a given problem since
multiple solutions can be obtained.
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An Issue About the Existence of Solutions
for a Linear Non-autonomous MTFDE

M. Filomena Teodoro

Abstract This article is concerned with the existence of solution of a certain
non-autonomous linear delayed-advanced differential equation. The main objective
is to provide the proof of a theorem introduced in Lima et al. (J. Comput.
Appl. Math. 234(9):2732-2744, 2010) about existence of solution of a class of
mixed-type functional differential equations (MTFDE?s). It is an effort to complete
the theoretical basis of some computational methods introduced earlier to solve
numerically such equations, which were deduced making use of that theorem.

Keywords Mixed-type functional differential equation ¢ Method of steps e
Boundary value problem e Existence of solution
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1 Introduction

MTFDEs are an important issue under study because they appear in a large number
of different areas of knowledge. From theoretical to applied cases, we can find a lot
of examples. From economics, the author of [3] models the competitive growth in a
life-cycle model; in [2] a short-run dynamics of optimal growth model is analyzed;
from biology, numerical schemes approximate a MTFDE from the nervous conduc-
tion in a myelinated axon in [1, 16]; some studies in optimal control using MTFDEs
can be found in [21]. The authors of [4, 5, 8] approximate traveling wave solutions
in discrete media. In [9, 10] some theory about center manifolds for MTFDEs is
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developed. The oscillatory behavior of solutions of linear MTFDEs was recently
investigated in [20], where the author has formulated some criteria which guarantee
that all the solution of an equation of certain type is oscillatory. In [12], the authors
obtain existence and stability results for a class of functional differential equations,
where the unknown depends on two variables, being a delay differential equation
with respect to one of the variables and a mixed-type equation with respect to the
other. Boundary value problems (BVPs) for second-order MTFDEs are analyzed
in [19] with the help of a Picard operator technique. Very recently, some results
have been obtained in [13], where the Fredholm theory for MTFDEs is extended,
developed in [17] to the case of implicitly defined functional differential equations.

This article is concerned with the existence of solution of a linear non-
autonomous MTFDE. The main goal of our study is the search for a solution x(z),
defined for r € [—1,k], (k € N), which verifies this equation almost everywhere
on [0,k — 1] and assumes known values on [—1,0] and (k — 1,k]. In [14], it is
provided a discussion of existence and uniqueness theory for the problems under
consideration and described the method of steps, which is used in the construction
of several numerical algorithms proposed for linear case.

The non-autonomous linear MTFDE under study has the following form:

X(1) = a(x(®) + B0)x(t — 1) + y()x(t + 1), ey

where x is the unknown function and «, 8, and y are known functions.

In [11], Eq.(1) was studied for a particular case, presenting existence and
uniqueness results. A similar approach has been followed by the authors of [6]
where a new approach to the analysis of the Eq. (1) in the autonomous case is
proposed, where «, B, and y are known constants. They considered a boundary value
problem (BVP). They looked for a differentiable solution on an interval [—1, k], k €
N, given its values on the intervals [—1, 0] and (k — 1, k]. Imposing some conditions
on boundary conditions which guarantee the existence of solution, they introduced a
numerical method which to compute such solution. Based on this work, in [23] new
numerical schemes were proposed for the numerical solution of autonomous linear
BVP, based on the method of steps, collocation, and least squares. The approach
to non-autonomous linear MTFDE (when «, 8, and y are smooth functions of
) was done in [22] and [14], where the solution of such BVPs was computed.
In particular, in [14] a discussion about existence and theory of such problems is
provided, and a numerical analysis of the introduced numerical algorithms is done.
As consequence of such work, in [15], where interesting numerical and analytical
results were obtained, the same authors introduced a numerical scheme using the
finite element method (FEM). Based on the study of analytical decomposition of
solutions of mixed-type equations as sum of “forward” solutions and “backward”
solutions, performed in [18], the authors of [7] presented an algorithm using
central difference approximation to decompose the solutions of a particular class
of MTFDE into growing and decaying components. Knowing that the nonlinear
case of such problems is richer in real applications, an important feature is to solve
nonlinear problems. Consequently, the numerical schemes developed for linear
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case were extended to solve numerically nonlinear MTFDEs, but adapted for each
particular problem. Such work can be found in [16, 25], where it is approximated an
equation from nervous conduction or in [24], where an equation which models vocal
phonation is numerically solved. Taking into consideration that several numerical
schemes were developed using the results about existence of solution for a class of
MTFDEs, presented in Theorem 1 of [14], the main objective of the present work
is to provide the proof of that theorem to complete the theoretical basis of such
computational methods.

The outline of this article is resumed in two main sections. In the next section, we
revisit the method of steps for a linear non-autonomous MTFDE with the form (1), a
method used usually in delay differential equations (DDEs) which extend a known
solution of equation in an interval to a larger interval. It is a way to increase our
knowledge about the solutions of (1) as well as it provides us sufficient conditions
for the existence of solution for this kind of MTFDE. In the third section, a theorem
about the existence of solution from [14] is presented and proved.

2 Preliminaries

Similarly to [14], the main idea of the present work is to get a particular solution of
Eq. (1) which satisfies the boundary conditions

@i1(0), if t € [-1,0],

O =\ 10y, ifre (1.4,

@

where ¢ and f are smooth real-valued functions, defined on [—1, 0] and (k — 1, k],
respectively, (1 < k € N).

It is imposed that Eq. (1) is satisfied for almost all ¢ € (0, k — 1] (actually, we
require that (1) is satisfied except possibly at the integer values of 7). To avoid
pathological cases (which we shall mention later), we also assume that our solution
is continuous on [—1, k] and has bounded variation. It follows that x’ () is continuous
wherever (1) is satisfied on (0,k — 1). On (1, k — 2), one can differentiate (1) and
conclude that x”(¢) is continuous wherever (1) is satisfied on (1,k — 2), and the
process can be repeated. We can summarize by saying that the solution may have
a discontinuity in the first derivative at + = 0 and/or t = k — 1 and becomes
progressively smoother on this sequence of internal subintervals.

In order to analyze and solve this BVP of (1) subject to (2), we consider first an
initial value problem (IVP), with the conditions

-x(t) = (p(t)v re [_15 l]s (3)
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where the function ¢ is defined by

@i1(0), if t € [-1,0],

@ (1), if 1 € (0, 1]. “4)

@) =

This reformulation provides a basis for both analytical and numerical construc-
tion of solutions using ideas based on Bellman’s method of steps for solving delay
differential equations. One solves the equation over successive intervals of unitary
length. We need to assume the non-degeneracy condition that y(f) # 0, forz > 0,
so that Eq. (1) can be rewritten in the form

x(t+ 1) =a@®Ox (@) +b®Ox(t—1) +c@®x(@), t>0 (5)

where a(f) = yzt)’ b(t) = —’38 and c(f) = —‘;‘/8
If X' is not defined for a particular value of 7, then we shall use the value x'(¢7)
in (5). In principle, we can use formula (5) to construct a solution of Eq. (1) on an
interval [1, k], starting on [—1, 1] using the initial functions given by (4).
So, for example, if a,b,c € C'([0,3]), and supposing that all the appropriate
derivatives of ¢; exist, we may obtain the following expressions for the solution in

the first two intervals:

x(t) =a(—1)@5(t—1) + bt — De1(t—2) + c(t — Dga(t — 1), re(1,2];

xO) =a—1)a@t—2)¢)(t—=2)+[a@—1)(d ¢ —2)+ c(t —2))
+c(t—Dat=2)] g5t —2) + [t =2)at—1) +c(t—1)c(t—2)
+b(= D]t =2) +[a(t—1)b(t—2)]¢j(t—3)
+la=DP =2 +ct-1D)be—2)]@(—3), t€@2.3. (6)

We remark that these formulae reduce to the corresponding formulae of Table 1 in
[6], if we set c(t) = ¢, a(t) = a, b(t) = b.

Continuing this process, we can extend the solution to any interval, provided
that the initial function ¢ and the functions a, b, ¢ are smooth enough functions and
satisfy some simple relationships. In the next theorem, this result is formulated in
more precise terms. In Sect.2. of [14], the relationship between solutions of (1)
subject to (2) and of (5) subject to (4) is detailed.

3 Existence Results

As we already remarked, the solution of the BVP becomes smoother as we move
away from the ends of the interval. However, the solution of the IVP, constructed
using the method of steps, becomes less smooth as time increases. The conclusions
on smoothness for the solution of the non-autonomous IVP (5) subject to (4)
constructed using the method of steps are summarized in Theorem 1.
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Theorem 1. Let x be the solution of problem (5),(4), where

a(n), PB@), y@) e CH(-1,2L+1]), y(@) #0, te[-1,2L+1],
@1(t) € CHHI([=1,0]),  @a(t) € C?LF1([0,1])  for some L € N.

(7
Moreover, suppose that
07 (07) = g3 (o).
() = ago)wf(o_) + b(0)p1 (—1) + c(0)g; (0);
0 (17) = 4, (a()@](t) + b1 (t — 1) + (@1 (1) ],p- . £ = 0.1,2,.... 2L+ L.
®)

Then there exist functions 8, €, 8;5, €1 € C([-1,2L+ 1)), =1,...,L
i=0,1,...,2l such that the following formulae are valid:
X0 = Y05 sue) (1 — 2D + X5 eey (1 =20+ 1), 1€ [21—1,21];
x(t) =YX paunel @ =20 + Y2 50— 20— 1), reL2A+1]I=12,....
9
Moreover, the solution x, constructed according to the formulae (9), belongs
to the class

=Ly (=L)€' (-1.2L + 1).  (10)

A detailed proof by induction is provided below.

Proof (Theorem 1). As usual, we begin by proving that formula (9) is true for / = 1.
Ift € [1,2], we have

1 1
X0 =Y 8100t =2) + Y el (¢ — 1)
=0

i=0

= 8011t —2) + 81109 (1 = 2) + 01 (D2t — 1) + €11 (D (1 — 1)

8o1(t) =0

S11(t) =b(t—1)
€1(t) =c(t—1)
e =a(t—1)

Y

by formula (2).
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If r € [2, 3], we have

2 1
x(0) =Y a1y =20+ 5i1(0e (t—3)

=0 =0
= &1 (@2t —2) + @1 (NS (t = 2) + &1 (D7 (1 — 2) +
801 (D@1t =3) + 811 (0" (1 — 3)

with
8o.1(1) = a(t — Db/ (t —2) + c(t — D)b(t - 2)
§1.1(1) = a(t — 1)b(t — 2)
1) =t —=2)at—1)+c(t—Dec(t—2)+b(t—1) (12)
1) =a@t—1)@E—2)+c(t—2)) + c(t— Da(t—2)
€.1(1) = a(t—1)a(t—2)

by formula (2).

Now we shall assume that the assertion of the Theorem 1 is true for [ =
1,2,...,L, where L € N, that is :

x(t) = Y2 800" (0 — 20 + Y2 el (1 =20+ 1), te 20— 1,20);

x(0) = Yy &unes (1 —21) + Y1 8 (t— 21— 1), 1€ 21,21+ 1];
I=1,...,L
(13)
Assuming that (13) is true, we will prove that the same equality holds true, when
[ is replaced by L + 1. (For the sake of simplicity, we will write / + 1 instead of
L + 1.) That is, we want to prove that

x(0) = Y s 0t —20—2) + Y e (09 (= 20— 1), t €20+ 1,214 2);

x(t) =Y (e (=20 —2) + Y5 (e (1 — 21— 3), te [21+2.20+ 3];
I=1,....L
(14)

Assuming that (13) is true, for!+ 1, and using Eq. (2), we obtain two separate
cases (A) and (B):

(A) Consider 7 € [2[+1,2[4-2]. Notice that t—1 € [2], 2]+ 1] and t—2 € [2/—1, 2]

21 2i—1
x(t) = a(t—1) [Z Gt — Dy (1 =21 1)+ Y 8yt — Doy (t — 21— 2)}
i=0 i=0

21—1 21—1

+b(—1) [Z 8= (1 =21 =2) + Y eyt — 2)p (1 — 21 — 1)]

i=0 i=0
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21 21—1
+e(t—1) [Z Gut—D)gy (1= 21— 1) + Y 8t — D (t — 21 - z)]

i=0 i=0

21
—a(t—1) [Z (z,,l(t — D — 20— 1) + &4t — DV — 21— 1))

i=0

21—1
+Y (S;J(t — 1)@\ (1 — 21— 2) + 8,4t — D!V (1 — 21 — 2))}

i=0

20—1 20—1
+b(t—1) [Z 8t =" (1= 21— 2) + Y et —2)gy (¢ — 21 — 1)}

i=0 i=0
21 ‘ 2-1 ‘

+e(t—1) [Z Gt — Dy (t—21— 1)+ Y 8t — Doy (¢ — 21— 2)} .
i=0 i=0

Rearranging the sums, we obtain

21 21
X0y =Y alt—DE =D (=20 — 1)+ Y alt — Dt — Doy (=20~ 1)

i=0 i=0
21—1 _ ) 21—1 _ )
+ ) a— D, — D1 —20—=2) + Y a(t — D8yt — Do} =20 —2)
i=0 i=0
21—1 ) 21—1 )
+ )b — D8 — 2 (1 —20—2) + Y bt — eyt —2)p3 (1 — 2 — 1)
i=0 i=0
21 ) 21—1 _ )
+Y et — Dt — e (=20 — 1)+ Y et — DSt — Doy (1 — 21— 2)
i=0 i=0
or
2[+1 ) 21 )
x(0) =Y e (e —2— 1)+ S’ —20-2) (15
i=0 i=0
with

% €i1(1) = [a(t=1) (€1(=1) + &—1,(t = 1)) + b(t = Deis(t — 2) + c(t — eyt — 1)]
S (1) = [a(=1) (8],(t = 1) + Si—14(t = 1)) + b(t = 1)8;4(t = 2) + c(t — DSt — 1] .
(16)
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We consider the following restrictions:
€—11(t—=1) = €, (t—1) = €21,(1—=2) = €2141,(1—2) = €x141,(1—1) = 0. (17)

(B) Consider ¢ € [2] 4+ 2,21 + 3]. Notice that t —1 € [21+ 1,2/ +2]andt—2 €
[21,2] + 1].
Using formulae (13), (15) and the mixed Eq. (5), we obtain

/7

2141 21
X0 = a(t—1) {Z €1t — D (1 =20 —=2) + > 841t — Doy (1 — 21 — 3)}
i=0 i=0
21 ) 21—1 _ )
+b(r—1) [Z Gut =209 (1 =2 =2+ Y 8t — 209" (1 — 21 — 3)}
i=0 i=0
2141 ) 21 )
+e(t—1) [Z €1t — Dy (1 =21=2) + Y gt — Doy (t — 21 — 3)}
i=0 i=0

2141
= att—1) {Z (€1 (= D6 (1= 2= 2) + 1141 = DV =21 = 2))
i=0

i=0

21
D0 (8 (= Dl (1= 21=3) + 81141 — D Ve = 21 3))}

21 21—1
+b(t—1) [Z Gut =209y (1 =20 =2+ Y 8t — 209" (1 — 21 — 3)}

i=0 i=0

2041 21
+e(t—1) [Z €1t =Dy (1 =21 =2) + Y gt — Doyt — 21 — 3)} :

i=0 i=0

Rearranging the sums, we obtain

20+1 2141
X0 =Y a(=1)e/, 1 (=1 (1 =21—2) + Y a(t— eyt — Depf T —21—2)
i=0 i=0

21 21
+ > a=184, (=D (=21=3) + Y alt = D1t — Dof T (1 — 20— 3)

i=0 i=0
21 ) 21—1 _ )
+ ) bt — DE — 293 (1 — 20— 2) + Y bt — Dii(t — 2)¢\" (1 — 21 — 3))
i=0 i=0

20141 21
+ ) =€t = s =20 =2) + D et — D841 (¢ — Dol (1 — 20 = 3),
i=0

i=0
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or rewritting

21+2 ) 21+1 ~ )
D)= &9t =20-2)+ Y (e (t—20-3),  (18)
i=0 i=0

with the coefficients €; ;4 (¢) and Si,l+l (7) given by
G () = a(t — 1) (e;,+1(z— 1) + € (1 — 1))
bt — )& (t —2) + et — Degypr (£ — 1),
S () = a(t — 1) (sgm(z— D)+ Simp g (1 — 1))

+b(t — 1)8;y(t —2) + c(t — )81 (t — 1).

The following restrictions are imposed:

St =1) =84 0 = 1) = St —2) = Syt —2) = Sy 441t — 1) =0,

i1t —1) = eypr 1t — 1) = €xyq14(t —2) = €y404(t —2) = exyqo4+1(t—1) = 0.
O

If the hypothesis of Theorem 1 is verified for some L € N, the solution x,
computed using formulae (9), has at least 2L — [ + 1 continuous derivatives on
each interval [[,] + 1), for [ > 1. This means that when the solution x is given on
[—1, 0] and (0, 1] by functions ¢y, ¢, of class C2:+1([0, 1]) that satisfy (8), its degree
of smoothness decreases by one on each successive subinterval.

4 Final Remarks

In this article, some work presented earlier is revisited, more precisely the method
of steps. Taking into consideration that some numerical methods were developed
using the results of Theorem 1 presented in [14] about existence of solution for a
class of MTFDE:s is proved of that theorem. It was made to contribute to theoretical
basis of the introduced computational methods to solve numerically MTFDEs of the
type (1). With the same purpose, the numerical analysis of the method presented in
[15], based on method of steps and FEM, is still ongoing. The idea is to generalize
the numerical analysis done in [15] for a larger class of MTFDE:s.
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Magnetohydrodynamic Flow of a Power-Law
Fluid over a Stretching Sheet with a Power-Law
Velocity

Gabriella Bognar

Abstract The boundary-layer flow in a viscous non-Newtonian fluid containing
over a nonlinear stretching sheet is analyzed. The stretching velocity is assumed to
vary as a power function of the distance from the origin. The governing partial
differential equation and auxiliary conditions are reduced to nonlinear ordinary
differential equation with the appropriate corresponding conditions. The properties
and nonexistence of the solutions to the boundary value problem are examined.
The resulting nonlinear ordinary differential equation is solved numerically with a
Chebyshev spectral method. On the base of our calculations, the effects of various
parameters, namely, the power-law exponent, the MHD, and the nonlinear stretching
parameter on the dimensionless velocity gradient at the wall, are discussed.

Keywords Boundary layer ¢ Power-law fluid ¢ Stretching sheet ¢ Similarity
method

AMS Subject Classifications: 34B40, 35G45

1 Introduction

The study of a boundary layer flow over a continuous solid surface due to motion
with a constant speed in an otherwise quiescent viscous fluid was investigated by
Sakiadis [13]. This type of problem is encountered in many sheeting manufacturing
processes, such as plastic sheets. Ericson et al. [9] extended this problem to
investigate the temperature distribution in the thermal boundary layer when the
temperature of the sheet is kept at constant value. After that the examination of
the velocity and the temperature distribution has been extended in various ways.
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Crane discussed the two-dimensional flow caused by a stretching of an elastic
flat sheet which moves with a velocity varying linearly with the distance from the
die [8]. Afzal et al. [1], Kuiken [11], and Banks [2] considered the case of stretching
of sheet with a power-law velocity.

The linear stretching problem was investigated when the effect of a constant
transverse magnetic field is included [4]. The boundary layer flow caused by a
sheet stretching with a power-law velocity in the presence of a magnetic field was
analyzed by Chiam [5].

All of the above approaches were made for Newtonian fluids. However, in many
real situations, non-Newtonian fluids are encountered. The most frequently used
model is the power-law Ostwald-de Waele model when a power-law relationship is
given between the shear stress and the shear rate. The boundary layer over a power-
law stretched sheet in a non-Newtonian power-law fluid was studied for permeable
surface by Guedda et al. [10] and Yacob and Ishak [14]. The numerical study of
the flow of an electrically conducting power-law fluid in the presence of a magnetic
field for linearly stretching sheet was given by Cortell [7].

Our aim is to study the flow of a power-law fluid in the presence of a magnetic
field over a sheet of stretching with power-law velocity. The properties and existence
of similarity solution to laminar boundary layer flow of non-Newtonian power-
law fluid over a continuous moving surface in the presence of transverse magnetic
field is investigated. The resulting ordinary differential equations are then solved
numerically. The influence of various fluid parameter is examined on the flow
characteristics.

2 Problem Formulation

The steady laminar flow of a non-Newtonian electrically conducting incompressible
fluid past a two-dimensional body is considered. The velocity components are
represented by u and v in the coordinates along and normal to the body surface, x
and y directions, respectively. The stretching velocity is u,, = U,,x™ and the imposed
external transverse magnetic field is denoted by B(x) = Box" /2, where By > 0
and m are constants [6]. The continuity and momentum equations are given by

u dv 0 0
ox o dy
ou 4 K9 [|ou]"" du 4 ou,, B )
= w —0 s
. ox v dy  pady \|dy dy ! ay !

where p denotes the density and o the electric conductivity, and the nonlinear model
describing the non-Newtonian fluid is
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ou
dy

n—1 BM

Txyy = K ay B 3

the viscosity function varies with the magnitude of the strain rate and depends
on two fluid properties, K and n, the consistency coefficient, and the power-law
exponent, respectively. The constitutive equation (3) represents the shear-thinning
(pseudoplastic) fluids for 0 < n < 1 and the shear-thickening (dilatant) fluids for
n > 1. For n = 1, one recovers a Newtonian fluid. The deviation of n from a unity
indicates the degree of deviation from Newtonian behavior.

The boundary conditions for impermeable surface are the following

(i) at the solid surface y = 0 neither slip nor mass transfer is taken: u (x,0) =
u,(x), v (x,0) =0,
(ii) outside the viscous boundary layer the streamwise velocity component is zero:

lim u (x,y) = 0. “4)
y—>00

We apply the similarity solution approach by introducing

&)

then the continuity equation (2) is automatically satisfied. Upon substitutions, the
momentum equation (2) reduces to

oy Py _dy ey _ o (|Pv gty R L
— = Uy, - [}
dy dydx  0x 0dy? dy \| 9y? dy2 ox dy
a = K/p and the boundary conditions are
Gl il ad
Bw (x,0) = Ux™, aw (x,0) =0, lim 4 (x,0) = 0. @)
y X y—>00 Jy
Applying similarity transformation
v () =0, = dy? ®)

for some parameters b, d, k, 8, (6) is reduced to the ordinary differential equation

WW@#MMWHWﬂL%&w, ©)
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where
mQ2n—1) + 1
§=pB—m, = , 10
p-m p=""""" (10)
and M = oBé/ (u,,p) denotes the magnetic parameter. The prime indicates

differentiation with respect to 1. The corresponding boundary conditions (7) become

f0) =0, f(0)=1, (11)
Jim_ ' =0. (12)

An important boundary layer characteristic is the skin-friction coefficient Cr, which
is a nondimensional form of the wall shear stress

oan [m@n =1y + 1Vt
Cr = 2Re; /! “’[ a4 1) } [—y]". (13)
where y = f(0) and
2—n
v X
Re, = " (x)p (14)

is the local Reynolds number. Cy is directly related to f(0).
Equation (9) for a non-Newtonian fluid can be obtained as a special case (n = 1)
and we have

f///+ﬂﬁ//_m/2_Mf/:Os UE(OsOO)s (15)

with boundary conditions (11) and (12). Exact analytical solution to (15) and (11)
and (12) for m = 0 of the form

fln) = (1= emvim) (16)

JI+M

was given by Pavlov [12].

3 Properties and Nonexistence of Solutions

The existence of solutions can be established by a shooting method. This approach
is used to find values of f”/(0) = y for which f exists on [0, 00) such that f'(c0) = 0.
So, the boundary condition at infinity (12) is replaced by f”(0) = y, where y # 0.
The initial value problem is written as (9) and

f0)=0,70)=1, f'(0)=y. a7
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Our aim is to derive conditions on the parameters involved in (9), (17) such that
solution f, is global and satisfies boundary condition (12) for n > 1. The local
solution f, satisfies the equality

3nm+ 1

o[ s+ s 0-ms o = o) o+

1
/ 1, (5)ds,
0
(18)
0 <75 < n,, forall n,, where (O, '7;/) is the maximal interval of existence. Since
y € Ris arbitrary, problem (9), (17) has infinitely many solutions.
First, we introduce the following definitions:

A function f, (1) is called a solution to (9), (17) if
(i) f,(n) € C*(0, 00),
n—1
(ii) W £ €€ (0,00),
(i) lim f}(n) = 0and lim f(n) = 0.
n—>00 n—>00

Let us define the Lyapunov energy function as

n n+1 m M
E — V// _ /3 _ /2’
W= 30 7 o)
which satisfies
mQ2n—1)+1
E/ — _ //2’
() n 1 I,

on (0, 7,) due to the differential equation of (9). Note, that

n m M
E0) = nkl 70T
(0) N 1|)’| 3 2

Theorem 1. ForanyM >0, m+M <0, n> 1, and m(2n—1) + 1 > 0 satisfying

n+1<n+1 m+M
s, 5T

(i) solution f, is positive and monotonic increasing on (O, 77;/) and global;
(ii) lim f(n) = 0and lim f(n) = 0.
n—>00 n—>00

Proof. As f(0) = 0 and f'(0) = 1, one can assume that f, and f; are positive
on some interval (0, 7o), for 0 < no < 7n,. Then, E is monotonic decreasing on

(0, ng), i.e.,
E (no) < E(0). (19)

Applying (1), we get E (n9) < 0.
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If £, (o) = 0, then E(1o) = E(0) = 0 and E() = 0 for all0 < n < 7. Hence,
f}j’ = 0 on (0,770) and y = 0 a contradiction. Therefore, f, is strictly monotonic
increasing.

Using function E, we show that f, is global. We have that

n n+1_mf/3_Mf/2< n Iyln-l-l_m_
377 277 T n+1 3

/!

M
n+1107 2

. (20)

therefore, both f; and f}’ are bounded. It implies that function f, is also bounded on
(0, n,,) if n, is finite, which is absurd. Consequently, n, is infinite and f, is global.
Next, we show that

Jim_ 1/ =0, (21)

which is the case if f) is monotone on some interval [no,00) since f; and
n—1
f,/ are bounded. Assume that Lf)ﬁ’ f;/ is not monotone on any interval

[10,00). Then there exists a sequence {1,} tending to infinity as r — o0
n—1 / n—1
such that Of}ﬁ’ f}ﬁ’) (n) = 0, and Of;’

n—1
Of;’ 1 ) (N2,+1) is a local minimum. Applying n = 7, to the differential

equation, one gets

f;’) (12,) is a local maximum,

mf, > (n,) + Mf;, (n,)
Sy ()

m2n—1) + 1

n+1 f;ﬁl (nr) =

(22)

As f, is bounded and tends to zero as r — oo thenf}’ (,) — 0 as r — oo and
lim f7'(n) = 0. (23)
n—>o00

Since f; goes to 0, this implies that —'g’ff — Azlf)ﬁz tends to lim, o E (1) as n — oo.
It remains to prove that lim f)ﬁ (n) = 0. Let us assume that lim f)ﬁ(n) = L with
n—>o0 n—>o0

some L > 0. Next, applying identity (18) one gets

m(2n—1)—}-1L2 1+ 3n

m
[? , 24
n—+1 n—+1 n+ o) (24)

e o =
W(n)}n_lf;/(n) = mL*n + o(1) (25)

as ) — oo. From this, we deduce that L = 0. This implies that lim, s E (1) = 0.
O
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Moreover, the following nonexistence result will be established:

Theorem 2. Problem (9)—(12) has no nonnegative solution for n > 1, M > 0,
m+M<0,m2n—1)+1<0, and

. n+1/(m M
ly|"+! > +). (26)
n 3 2

Proof. Let us assume that f is a nonnegative solution to (9)—(12). Then E'(n) =
-B 1 f}f’ 2 is nonnegative. Therefore, E is monotonic increasing and hence

E(0) < lim E(n), (27)
n—>o0
n atr_m M
_ <0, 28
R (28)
which contradicts (26). O

4 Numerical Results and Discussion

The non-Newtonian MHD flow problem and the influence of the parameter values
on the dimensionless velocity gradient at the wall [—f”(0)] can also be investigated
through numerical solutions. We solve the ordinary differential equation (9) under
boundary conditions (11) and (12) using a Chebyshev spectral method, in which
the method is suitable to provide very accurate results when the solution is smooth
enough.

In our calculations the collocation method is used. During collocation the func-
tion values of the interpolating polynomial at the collocation points are determined
[3]. The nth order Chebyshev polynomial of the first kind, 7, (x) is applied. The
spectral differentiation for Chebyshev polynomials is carried out by the matrix-
vector multiplication method. For solving the boundary value problem on semi-
infinite interval, we perform truncation and linear mapping. After discretization, the
resulting system of nonlinear equations is solved with the Levenberg—Marquardt
algorithm in Matlab for different values of the stretching parameter m, of the power-
law exponent n, and of the magnetic parameter M. The values of [—f”(0)] are
calculated for different parameter values of n, m, and M. The demonstration of these
values is exhibited in Figs. 1 and 2. The effect of the power-law exponent is shown
in Fig. I for m = 1. It is observed that [—f"(0)] increases monotonically with M.
Moreover, it demonstrates that [—f” (0)] decreases with increasing n. Figure 2 shows
that the effect of m is opposite. Larger m provides larger values of [—f"(0)].
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Existence of Mild Solutions for Impulsive
Fractional Functional Differential Equations
of Order o € (1, 2)

Ganga Ram Gautam and Jaydev Dabas

Abstract This paper investigates the existence result for fractional order functional
differential equations subject to non-instantaneous impulsive condition by applying
the classical fixed point technique. At last, an example involving partial derivatives
is presented to verify the uniqueness result.

Keywords Fractional order differential equation ¢ Functional differential
equations * Impulsive conditions ¢ Fixed point theorem
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1 Introduction

In this paper, we investigate the existence and uniqueness result of mild solutions
for the following non-instantaneous impulsive fractional functional differential
equation of the form

EDYy(t) = Ay(t) + f(t. Youy))s t € (si.ti1] CJ, i=0,1,...,N, (D
y(t) = gi(tvy(t))’ y/(t) = ‘Zi(tv)’(t))’ te (thsi]a i= 1727 ... 3N7 (2)
y®) = ¢, ¥y (©) = ¢, t € [-d,0], (3)
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where €D denotes the Caputo’s fractional derivative of order « € (1,2) and A :
D(A) C X — X is the sectorial operator defined on a complex Banach space X.
Functions f : J x PCy — X; p : J X PCy — [—d, T] are continuous and satisfy
some assumptions, where PCy is an abstract space defined in the next section. The
map y; is the element of PCy and defined as y,(0) = y(t+0), 6 € [-d,0].J = [0, T]
is operational interval suchthat 0 = 7o = 5o < t) <51 < h < -+ <ty < sy <
ty+1 = T are prefixed numbers. Here y’ denotes the derivative of y with respect to
tand g;,q; € C((t;,s;] x X;X) foralli = 1,2,..., N. The functions ¢, ¢ belong to
PC) respectively.

The impulsive differential equations have been appeared as in natural descrip-
tion evolution processes. The impulsive effects may be instantaneous or non-
instantaneous which is shown in many disciplines. Instantaneous impulse is char-
acterized by abrupt changes of the state at certain moments, but in case of
non-instantaneous impulse, it starts abruptly at the fixed moments as the points ¢;,
and their action continues on the finite interval [t;, s;]. For the future development
and recent update of theory for fractional functional differential equations, we refer
the papers [1, 2, 4-6, 9, 10] for state-dependent delay, and for non-instantaneous
impulse, one can see the papers [7, 8, 11, 12] and the references therein.

On the available of literature, we found that Hernandez et al. [11] used the first
time non-instantaneous impulsive condition for abstract differential equations for
order one and established the existence results. Kumar et al. [12] have studied
the fractional order problem with non-instantaneous impulse, and by using the
Banach fixed point theorem with condensing map, they established the existence
and uniqueness results. Motivated by the work [11, 12], we have studied the problem
considered in [8] for the order ¢ € (0,1) and established the existence results
of mild solution of problem. Shu et al. [14] gave the definition of mild solution
for fractional differential equations of order @ € (1,2) and then established the
existence results of mild solutions using the Krasnoselskii’s fixed point theorem and
analytic operator theory.

Inspired by the work [11, 12, 14] and by the survey, we found that there is no
literature on fractional functional differential equation with state-dependent delay
subject to non-instantaneous impulsive condition of order (1, 2). This is the reason
to investigate the problems (1)—(3) and establish the existence of uniqueness result.
For further information, we have divided our work in four sections.

2 Preliminary

In this section, we have introduced some notations, basic definitions, and prelim-
inary result, which were required to establish our main results. Let (X, || - ||x) be
a complex Banach space of functions with the sup-norm |ju|x = sup,c;{|u(?)| :
u € X}, and let L(X) denote the space of bounded linear operators from X into X
endowed with the natural norm of operators denoted by || - [|(x).
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As usual, PCy = C([—d, 0], X) (with [—d, 0] C R) is the space formed by all the
continuous functions defined from [—d, 0] into X, endowed with the norm

lu@®llpc, = SUPO]{IM(t)Ix}.

te[—d,
In the case of impulsive conditions, we consider
PCy = PC([—d,T]; X), 0 < T < o0,

which is a Banach space of all such functions u : [—-d,T] — X, which are
absolutely continuous everywhere except for a finite number of points #; €
(0, 7), i = 1,2,...,N, at which u(tl.+) and u(r;7) = u(t;) exists and endowed
with the norm

lullpc; = sup {llu(®)|x,u € PCr}.
t€[—d,T)

For a function u € PCr and i € {0,1,...,N}, we introduce the function u; €
A([t;, ti+1]; X) given by

_ u(t), for t e (t;, tiaq],
Lti([) — (l (l l+1]
u(t"), for t =1,
For further analysis, again consider

PC) = PC([—d,T];X), 0 < T < o0,

which is a Banach space of all such functions u : [—d, T] — X, which are absolutely
continuously differentiable everywhere except for a finite number of points #; €
0,7), i = 1,2,...,N, at which u’(tl.+) and /(7)) = u'(1;) exists and endowed
with the norm

1
lullper = sup 3> W @]x,u € PC;
t€[—d,T) =0
For a function u € PC} and i € {0,1,...,N}, we introduce the function u; €
C'([ti, ti+1]; X) given by

W' (1), for t € (4, tit1],
W' (th), for t =1,

ui(t) = {
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Definition 1. [13] Caputo’s derivative of order « > 0 with lower limit a, for a
function g : [a, 00) — R such that g € C"([a, o0), X) is defined as

o 1 ! n—o— n n—o n
Dps = L [ = o = ),
wheren—1 <o <n,a>0, neN.

Definition 2. The Riemann—Liouville fractional integral operator of order o > 0

with lower limit a, for a function g € L} . ([a, 00), X) is defined by

80 = 80, W0 = (la) / = g(s)ds. > 0. 1> 0,

where a > 0, n € N and I'(-) denotes the Gamma function.

Definition 3. LetA : D(A) C X — X be a closed and linear operator and «, 8 > 0.
We can say that A is the generator of («, B) operator function if there exists w > 0
and a strongly continuous function W, g : Rt — L(X) such that {A% : ReA > w} C
p(A) and

o0
AP —A) Ty = / e_l’Wa,ﬁ(t)udt, Rel > w, u € X.
0

Here W, g(?) is called the operator function generated by A.

Remark 1. The operator function W, g(7) is a general case of o-resolvent family
and solution operator. In the case B = 1, operator function corresponds to solution
operator Sy (7) by Definition 2.1 in [2], whereas in the case § = «, operator function
corresponds to a-resolvent family defined in [3] in Definition (2.3), and operator
function corresponds to K, (¢) in [14] in the case 8 = 2.

The following result is based on Definition 2.1 in [11].

Definition 4. A functiony : [-d,T] — X s.t. y € PC}. is called a mild solution

of the problems (1)-(3) if y(0) = ¢(0).y'(0) = ¢(0), y(1) = g(t.y(1).y'(1) =
qj(t,y(t)) for t € (t,s;] for each j = 1,2,...,N, and satisfying the following
integral equation

$(0)Sa (1) + 9(0)K, (1)

y(t) — + .f()t Ta(t)f(sv yp(x,yj))dsa IS [O, tl],
8i(si, y(5))Sa (t — 51) + qi(si, y(5:) Ko (£ — 57)
+ ff, To (1 = ) (S, Yp(s.y,))ds, t € [sitig1],

fori=1,2,...,N.
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3 Main Results

In this section, we have established the existence result of solution for the prob-
lems (1)—(3). Let A be a sectorial operator and then strongly continuous functions
IS« = M:|Ka@)|| = M:|To(®| < M. Let us assume the function p :
[0, T] x PCy — [—d, T] is continuous. Now, we introduce the following assumption:

(Hy) The function f is continuous and 3 positive constants L; such that
If @ v) —f@.5lx < Lally —Ellpcy. Y .6 € PCo.
(H>) The functions g;, g; are continuous and 3 positive constants Ly, L,, such that
llgi(r,x) — gi(t, M llx = Lg llx = yllx: lgi(t. x) — qi(r, y)llx = Ly, llx — yllx
forallx,y € X,t € (t;,s;]Jandeachi = 1,2,...,N.
Theorem 1. Let the assumptions (H) and (H,) hold and are constant:

A = max{MTLy,, LyM + Ly,M + MTLyy}y < 1,

fori=1,...,N. Then there exists a unique mild solution y(t) of problems (1)—(3)
onlJ.

Proof. We convert problems (1)—(3) in to the fixed point problem. Consider % =
{y:y e PCL y(0) = ¢(0),y(0) = ¢(0)}. Define an operator & : # — % as

$(0)Sa (1) + ¢(0)K, (1)

_ +f()t Ta(t_S)f(svyp(x,ys))dsy te [0,1‘1],
Fy = 8i(si, y(5:1)Sa (t — 5i) + qi(si, y(si)) Ko (1 — 5;) @
+ ./: TOC (t - S)f(s, )’p(s,ys))dS, 1t e [S,’, tH—l]-

It is obvious that & is well defined. Now, we will express that the operator & has
a unique fixed point. So let y(r), y*(¢) € B and t € [0, 1,]; we get

t
12y = 2y"x < /0 17 (t = ) Nx I (5. Ypis) = F (5. V(s lxdls

< TMLg|ly — y*|lx-

Fort € [s;, t;+1], we have

12y — 2y*x = lgi(si. y(s0)) — gilsi. " (s xS (£ = s:) | ex
+lgi(si, y(s:)) — qi(si. " (s) x| Kar (2 = s0) i
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+ / ‘t 1T (6 = )l (5. Vptsi) = F (5. ¥y s
< (LgM + LM + TML1) |y = y™ 1x-
For t € (1, 5;], we get
| Zy — 2y*|lx < Lglly—y*lx. j=1.2,....N.
Gathering above results, we obtain

| Py — Zy*|lx < max{MTLy,, LM + Ly;M + MTL}|ly — y*|Ix
< Ally = y*|x.

Since A < 1, which implies that & is a contraction map, there exists a unique fixed
point which is the mild solution of problems (1)—(3) on J.

4 Example

In this section, we gave an example to illustrate our main result. Consider the
following fractional order functional differential equation:

o 2 _
%u(t, x) _ d-u(t, x) n u(t cr(||u||),x)’(t’x) i Uﬁvzl[siyti+l] <[0.7]. (5)

or 0y? 49

u(t,0) = u(t,7) =0, t>0, (6)
u(t,x) = ¢(t,x),u'(t,x) = ¢(t,x),t € [-d,0],x € [0, ], @)
u(t,x) = Gi(t,y); u'(t,x) = Hi(1,y), t € (t;, 5. (3)

where g; denotes the partial Caputo’s fractional derivative of order @ € (1,2),0 =
th =50 <t <85 <+ <ty =< sN < tyy; = 1 are prefixed numbers, and
¢.¢ € PCy. Let X = L*[0, 7] be a Banach space and define the operator A :
D(A) C X — X by Ay = y” with the domain D(A) := {y € X : y,y to be
absolutely continuous, y” € X, y(0) = 0 = y(7)}. Then

o
Ay =0’ y)yn. ¥ € D(A),

n=1

where set y,(x) = \/ JZT sin(nx), n € N is the space of eigenvectors of A in which
element is orthogonal. It is clear that that the operator A stays the infinitesimal
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generator of an analytic semigroup operator (7(f));>0 in Banach space X and is
defined as

o
T(Hw = Ze‘"z’(w, w,)w,, forall w € X, and every t > 0.

n=1

The subordination opinion of solution operator implies that A stays the infinitesimal

generator of K (), S(). Since K (), S(f) are strongly continuous operators on interval

[0, 00) by the theorem of uniformly boundedness, there exists a constant M > 0 such

that ||S(?)|| < M, ||K(1)|| < M fort € [0, 1]. We have for (¢, ¢) € [0, 1] x PCy.
Setting u(r)(x) = u(t,x), and

p(t.¢) =t —=a([O)). (t.¢) € J x PCo,

we have

)= 0 sty = Gy 0t = By,

then by the above Eqgs.(5)—(8) can be composed in the given abstract form as
(1)—(3). Furthermore, we can see that for (¢, ¢), (t, V) € J x PCy, we may verify
that

b4 2 1/2
|V(t,¢)—f<r,w>||yf[/o {ni—jf’gu} dy} <Y1yl

Hence function f satisfies (H;). Similarly we can show that the functions g;, ¢;
satisfy (H;). All the conditions of Theorem 1 have been satisfied, so we can drive
that the system (5)—(8) has a unique mild solution on [0, 1].
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Nonlinear Dynamical Systems in Modeling
and Control of Infectious Disease

Md. Haider Ali Biswas and Md. Mohidul Haque

Abstract This paper deals with nonlinear dynamical systems in the form of
mathematical modeling to describe modeling of the dynamic behavior of biological
and biomedical systems. Nonlinear ordinary differential equations have been studied
to investigate the mysterious and complex mechanisms of the dynamics of infectious
diseases in the human body. In particular, we study a nonlinear model of HIV
immunology which describes the interactions between the human immune systems
and the viruses. In this work, we propose a modification of the HIV model proposed
by Joshi in Optim Control Appl Methods 23(4):199-213 (2002) by introducing state
constraint to the dynamics. The aim is to obtain optimal immunotherapeutic strategy
where the state constraint may play a crucial role. We treat our problem numerically
and compare the results with existing literature to illustrate the significant effect of
introducing state constraint to the dynamics of the model.

Keywords Mathematical model ¢ Nonlinear ODEs ¢ HIV immunology e
Optimal control * State constraints * Numerical simulations

Mathematics Subject Classification (2000): 93A30, 49K15.

1 Introduction

Nonlinear phenomena characterize all aspects of global change dynamics, from the
Earth’s climate system to human physiology [20]. These nonlinear phenomena of
rapid change in the human physiological systems can be captured and modeled by
the nonlinear ordinary differential equations (NODE:s) in the form of mathematical
modeling. Since the human body is a highly nonlinear, robust, and an adaptive
physiological control system, there is a close relationship between control theory
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and biology [16]. So nonlinearity plays an influential role in describing the
mysterious and complex mechanisms of the dynamics of infectious diseases in the
human body.

In recent years, mathematical models have become the most important tools
in analyzing the dynamics of biological and biomedical systems. The processes
in biology and medicine can be, in general, described by mathematical models
where the nonlinear ordinary differential equations are the key ingredients. The
spread of infectious diseases such as HIV [6], NiV [8], and flu [9] may be modeled
as a nonlinear system of differential equations. In this paper, we study an HIV
immunology model to analyze the nonlinear behavior of the disease dynamics.
Immunotherapy is one of the most effective varieties of chemotherapy used for the
treatment of HIV-positive patients which not only kills/halts the pathogen in the
body but also helps in increasing the long-term internal resistance of our immune
systems so that the body itself can fight against the viruses. This immunotherapeutic
treatment in the form multidrug therapy from the early stage of the infections has
shown remarkable milestone toward the evolution of AIDS treatment [18]. Optimal
control technique is applied to obtain the better immunotherapeutic strategy, special
feature of which is the introduction of state constraint. Some numerical simulations
illustrate the results.

2 Nonlinear Mathematical Model

Mathematical models can provide better insights of the disease mechanisms which
lead to design better prevention, therapy, and control programs. Numbers of
mathematical models for different infectious diseases have been proposed and
investigated by several authors over the years. We refer readers to [1-5, 7, 9] for
more detailed discussions on some of the recent mathematical models of different
infectious diseases. However, the cell-virus interactions in the human body are very
complex, especially when these are the cases of HIV infections. The HIV model we
now discuss here is a simple deterministic optimal control model first proposed by
Kirschner and Webb [15] which describes the interactions between human immune
systems and HIV virus in terms of a set of nonlinear ordinary differential equations
(ODEs) given by

ar(y B sV (1) B B
ddt =5 B+ V(o) uT (@) — AV(@)T(t) 0
Vi) _ vV — aVOT()

dt B+ V()

with the initial conditions

T0) =Ty, V(0)=W. 2
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In the above model, T(f) and V(¢) represent the uninfected CD4*T cells and
concentrations of free infectious virus particles, respectively. u is the natural death
rate of CD4™" T cells; A is the infection rate by the free virus particles. y represents
the input rate of an external virus source; « is the loss rate of virus and 8, and
52 V(1)
Bi+ V()
term of uninfected CD4™ T cells and T (¢) is the natural loss of uninfected CD4™" T;

Vit
AV(£)T () is the loss by infection, v

B2+ V()

aV(t)T(¢) is the viral loss.

The model (1) was further studied, explored, and extended by Joshi in [14]
in an optimal control problem introducing two control variables u; for i = 1,2.
When modeling the immunotherapeutic treatment in a time interval [0, 7], the rate
of immunotherapy at each instant is ¢. Taking into account the immunotherapy,
the above two compartmental dynamic models (1) of HIV infections can be
reformulated by the following nonlinear systems of ordinary differential equations:

B are half-saturation constants. s; — represents the source/proliferation

is the viral contribution to plasma, and

dr() _ V(1)

o _ya Bt T
_yU—u _
i = v 2VOTO

with the same initial conditions (2).

Here u; and u; act as the control variables representing the immune-boosting
and viral-suppressing drugs, respectively, and the set of controls (u(?), u2(7)) € U
is Lebesgue measurable, where

U={(),u®):0<a; <ui(t) <b;<1fori=1,2, ae.t€[0,T]}.

u = 0 indicates no drugs at all and ¥ = 1 indicates the maximum drug doses over
time.

The aim is to find the optimal control strategy so that the number of uninfected
CD4™ T cell count at the end of treatment is maximized as much as possible while
minimizing counts of the hazardous side effects of the antiretroviral drug doses as
well as the systematic cost. The objective functional is chosen as

T
Minimize J(uy, up) 1= / —T(#) + Biu3(t) + By (1) dt, “)
0

where B; and B, are the balancing parameters which determine the relative
importance of the two factors in the objective functional.

One of the important aspects for the treatment of HIV infections is the regular
monitoring of the CD4™ T cell count in the blood. We observe from the literatures
that the CD4™ T cell count is very crucial for the treatment of HIV infections. The
CD4™T cell count “less than 200/mm?*” indicates the severity of the disease [17].
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Our intention here is to find a new solution of the model in [14] imposing some state
constraints in the data. Our idea behind imposing the state constraints is to guarantee
that the uninfected CD41T cell count should not go below a certain level, for
example, 200/mm?, during the entire treatment which can be ensured by increasing
the internal immunity of the CD4* T cells with several drug administrations like
antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART). We
recall that HAART is defined as treatment with at least three active antiretroviral
drugs (ARVs) and so it is often called the drug “cocktail” or triple therapy. HAART
affords us a potent way of suppressing viral replication in the blood while attempting
to prevent the virus from rapidly developing resistance to the individual ARVs.
Suppressing viral replication with HAART allows the body time to rebuild its
immune system and replenish the destroyed CD4" T cells. Until today HAART is
highly recommended for the immunotherapy of HIV-positive patients as it has been
clearly shown to delay progression to AIDS and prolong life. See, for example,
[13, 18] for some recent developments in HAART treatment and “functional cure”
from HIV infections. Failure of HAART is a sustained and high rise in the viral load
because when HAART is stopped, HIV becomes detectable in the blood once again.
So we now modify the model proposed by Joshi [14] to construct a new problem.
Our proposed modification in the above model is to introduce a state constraint in the
state variable of virus concentration meaning that the number of free virus particle
cannot pass a certain upper limit during the immunotherapeutic treatment. We take
the state constraint

V(i) <V, Vielo,T], (5)

where V is an upper bound on the free virus particle taking values in R.

3 Characterization of Optimal Control Problem

The model (3) along with the objective functional (4) and the state constraint (5) can
be reformulated as the following state-constrained optimal control problem:

T

Minimize / L(x(?), u(?))dt

0
subject to
(P) x(t) = f(x(1)) + g(x(2))u(r) fora.e.t,
h(x(f)) <0 forall ¢,
u(t) € [0,1] fora.e.t,
x(0) = xo
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where

x(t) = (T(1), V1), L(x,u) = =T (1) + Biuj(1) + Bau (1),

B V(1) yV()
@ = (51— b4 v ~PTO=AVOTO. T aV(OT().

and

g = (T(()t) _ y?/(r) ) cu() = (D), ux(0), h(x(®) = V(1) = V.

B2+V ()

We define the Hamiltonian

H(x,u,p,A) =p-f(x) +p-gx)u— AL(x, u).

In the absence of state constraint £(x(t)) < 0 for all #, the necessary conditions of
optimality for optimal control problem (P) can be obtained by applying the well-
known Pontryagin Maximum Principle [19] for optimal control problem. In vein of
Vinter [22], the necessary conditions give closed forms for the controls (taking into
account the control constraints) of our problem. It is worth mentioning that our cost
is convex in u and the dynamics are linear in u. In such case the optimal solution of
our model is guaranteed by Fleming and Rishel [11].

Suppose that (x*, u™) is the optimal solution of the above problem (P) without
state constraint. The maximum principle in [22] asserts the existence of an
absolutely continuous function p and a scalar Ay > 0 such that:

@ Ilplloe + A0 >0,
(i) —p(1) = p(1) - fe(F (D) + p(0) - gx(x™ (D)™ () — AL (x* (1), u™ (1))
(iii) Yue U, p(t)-gx*@)u*(t) — Au*? < p(t) - g(x* (1)) u(t) — Au? ae.,

together with the transversality condition p(T) = (0,0). Consider that p(r) =
(pr,pv). Then we deduce from (iii) an explicit characterization of the optimal
control pair in normal form (i.e., A = 1) given in terms of the multipliers p:

pr(DT (1) } bl},

—pv(t)V(zt])Bl } b2}>_ ©

2B;(B> + V(1))

(1), ut (1) = (min{max {al,
min { max {az,

It is worth mentioning that the introduction of state constraint in the model
makes the analytical solution quite complicated due to the presence of nonnegative
Radon measure [22]. In such case, additional verification as well as validation
(e.g., regularity) of minimizer for optimal solution is needed. However, for such
discussions some literature (see, e.g., [12, 21]) can be of help for analytical
treatments. An adapted theorem discussed in [9] (see also [5]) for the existence
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of minimizer may provide more information for such analysis. However, in this
paper we only perform a numerical simulation of our state-constrained model to
compare the dynamic behavior of the disease before and after the antiretroviral drug
administration. We also compare the results for optimal immunotherapeutic strategy
with and without state constraint omitting the detailed analytical treatment.

4 Numerical Results

We consider the model when the virus particles are assumed to be very active and
the number of uninfected CD4™ T cells counts is very low (i.e., at the late stage of
the disease). So we take the initial values as 7(0) = 400 and V(0) = 2.0 and all
other parameters are as in Table 1. We perform all simulations for the fixed final
time 7 = 50 days because of the short-term drug dosages for the HAART. Before
proceeding to in-depth analysis, we would like to show readers the importance of
immunotherapy treatment using HAART. For this purpose, we first solve the model
when no immunotherapy is administered. In this case, we take the control variables
u; = uy = 0 and we solve the problem by using the known nonlinear “ODE solver”
written in “MATLAB” code. We then take u; = 0.02, u, = 0.9 and run the program
using the same “ODE solver.” The simulation results of these two cases are shown
in Figs. 1 and 2. From Fig. 1, it is easy to observe that at the very beginning of
the HIV infections, when any form of drugs as “immunotherapy” is not initiated
for treatment, the number of uninfected CD41 T cells is decreasing quickly over
time [see Fig. 1(upper one)], and at the same time the virus concentrations are
increasing very fast [see Fig. I(lower one)]. On the other hand, Fig.2 shows that
the immunotherapeutic treatment for HIV infections in the form of HAART as the
CD4™T cell count is growing up immediately after drug initiations [see Fig. 2(upper
one)] and the virus particles are decreasing almost to zero [see Fig. 2(lower one)].

Table 1 Definitions of the parameters and constants with their values [14]

Parameters and constants Definition of parameters Values
S1 First source coefficient 2.0
k%) Second source coefficient 0.002
A Infection rate of CD41 T cells 0.00025
y Input rate of an external virus source 30

o Loss rate of virus 0.007
B First half-saturation constant 14

B2 Second half-saturation constant 1.0

T Number of days 50

Ty Initial CD4 T cells 400

Vo Initial virus concentrations 2

1% Upper bound on virus concentrations 2.5
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Fig. 1 Uninfected CD41 T cells decrease quickly like a straight line (upper one) and free virus
particles increase (lower one) when no drugs are administered as a treatment measure

CDA4*T cells count under Treatment
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Fig. 2 Uninfected CD4T T cells are increasing dramatically (upper one) and free virus particles
are decreasing to zero (lower one) when some antiretroviral drugs are administered as a treatment
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Fig. 3 Optimal state trajectories and optimal immunotherapeutic rates without state constraint

Now we solve the problem for the optimality systems when immunotherapy is
effective as “immune-boosting”(i.e. u; € [0,0.02]) and “viral-suppressing drugs”
(i.e., up € [0,0.9]) during the whole treatment period. We solve the optimality
systems numerically by using the known nonlinear optimal control solver “ICLOCS
—version 0.1b” [10]. We first solve our model in the absence of state constraint. For
a better comparison, we take all initial values and parameters same as in [14] with a
fixed time interval [0, 50] and the results obtained in this case are presented in Fig. 3.
Now, we turn to the case of state-constrained model. We take the upper bound of
virus concentrations, i.e., V = 2.5 and all other values are same as before. The
numerical simulation of this run is presented in Fig. 4. From a brief overview on
the comparison of Figs.3 and 4, we can see that the virus concentration in Fig.3
is increasing almost after 7 days of the therapy administration until the end of
final time, whereas our state-constrained model in Fig. 4 shows that this increasing
tendency of virus concentration can be halted at a certain upper bound during the
whole therapeutic process.

5 Conclusions

Immunotherapy is one of the most effective treatment strategies in the absence of
effective HIV vaccine until today. Antiretroviral therapy (ART) or highly active
antiretroviral therapy (HAART) aims to increase the internal immunity of HIV-
positive people so that the body itself can fight against the virus. In this paper,
we study a nonlinear mathematical model of HIV immunology, and a numerical
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Fig. 4 Optimal state trajectories and optimal immunotherapeutic rates with state constraint

solution of the model for the optimal immunotherapy of antiretroviral treatment
with a modification by introducing state constraint is presented. The numerical
results showing a better immunotherapeutic strategy for state-constrained case are
illustrated with simulations. Despite the challenge of analytical validations, this
result may be of help in designing the combined antiretroviral therapy in such
an efficient manner as to obtain maximum benefits from the immunotherapeutic
treatment of HIV infections.
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Analysis of Difference Approximations to Delay
Pseudo-Parabolic Equations

Gabil M. Amiraliyev, Mustafa Kudu, and Ilhame Amirali

Abstract This work deals with the one-dimensional initial-boundary Sobolev or
pseudo-parabolic problem with delay. For solving this problem numerically, we
construct fourth-order difference-differential scheme and obtain the error estimate
for its solution. Further, for the time variable, we use the appropriate Runge—Kutta
method for the realization of our differential-difference problem. Numerical results
supporting the theory are presented.

Keywords Sobolev equation ¢ Delay difference scheme ¢ Error estimate
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1 Introduction

We consider the initial-boundary value problem for pseudo-parabolic dif-
ferential equation with delay in the domain Q = Q x [0,7]; Q =
0,]], 0=2x(0,T], Q=(0,)):

du (x, 1) u(x, 1) _ 0%u (x, 1) 0%u (x,t—r)
o a(r) o = b(r) 92 +c(?) 92 + d()u(x,1)
+f(x0), (1) €, )]
u(x,t) =91, (x,1) € Qx[-r,0], 2)
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u@,0)=u(,r)=0, te(0,7], 3)

wherea > o > 0, b, c,d, f and ¢ are sufficiently smooth functions satisfying certain
regularity conditions to be specified and r > 0 represents the delay parameter.
Equations of this type arise in many areas of mechanics and physics. They are
used to study heat conduction [1], homogeneous fluid flow in fissured rocks [2],
shear in second-order fluids [3, 4], and other physical models. The important
characteristic of these models is that they express the conservation of a certain
quantity (mass, momentum, heat, etc.) in any sub-domain. For a discussion of
existence and uniqueness results of pseudo-parabolic equations, see [5, 6, 8, 23].
Various finite difference schemes have been constructed to treat such problems [9—
12, 20]. For example, in [13] two difference approximation schemes to a nonlinear
pseudo-parabolic equation are developed. Each of these schemes possesses a unique
solution which can be obtained by an iterative procedure. Further in [14] two
difference streamline diffusion schemes for solving linear Sobolev equations with
convection-dominated term are given. We can see other numerical methods of this
type of equations in [15] (see also the references cited in them). In [17] a Crank—
Nicolson—Galerkin approximation with extrapolated coefficients is presented for
three cases for the nonlinear Sobolev equation along with a conjugate gradient
iterative procedure which can be used efficiently to solve the different linear systems
of algebraic equations arising at each step from the Galerkin method. In [28] the
author studies a finite volume element approximation of pseudo-parabolic equations
in three spatial dimensions. We also note that various approximate methods for
delay parabolic equations were investigated in [3, 18, 19, 21, 22, 24-27]. In this
study, we use the method of lines for the discretization in space variable for the
problem (1), (2), and (3). The method of lines is a general technique for solving
partial differential equations by typically using finite difference relationships for the
spatial derivatives or the time derivative. Our aim is to get a fourth-order accurate
difference-differential scheme and to establish the error estimate for its solution.
Numerical results are also given at the end to demonstrate the efficiency of the
method.

2 Construction of the Scheme

On the 2, we introduce the uniform mesh
wp =4 =1ih, i=12,....N—1, h=1/N}
and denote g,.; = (gi+1 — 2g; + gi—1) /h* for any mesh function g;.
To construct the difference scheme, we will use the following relation which is

valid for any g(x) € C® ():

[¢” (xir1) + 108" (x;) + &" (xi=1)] /12 = gui + R, 4)
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where
R = gW (&) h*/240, & € (xim1,Xip1) -

Letx = x; in (1)

u (x;, t Pu (x;, t 0%u (x;, ¢t 0%u (x;, t —
+f(xi 1), xi €y, t€(0,T). %)

Using formula (4) in (5), we obtain

[u;H(t) + lOu;(t) + u;_l(t)] /12 — a(t)u;x,i(t) = bty i (t) + c(Oupe; (t—7)
+ d(1) [uip1 (1) + 10ui(0) + wim (D] /12 + fi()) + Ri(®), i=1,2,... . N—1,

(6)
ui(t) = @i(t), @)
uo(t) = uy(t) = 0, (®)
where
Ji@) = [ (0 + 10/(0) + fi1 (0] /12,
nt 07u (&,1) 0%u &0 0%u (&, t—r)
Ri(f)=240 |:a(f) 9196 +b(1) 96 +c() 956 :| o &€ (i1 Xig1)

Taking into account the following relations
[ 11 (1) + 10u(t) + u_y (1)] /12 = u(t) + ul, (DR /12,

d(®) [uir1 (1) + 10u;(t) + i1 (0] /12 = d(O)ui(t) + d(O)urei (R /12,

and neglecting the remainder term R; in (6), we propose the following difference-
differential scheme for approximating (1), (2), and (3):

Yi(6) = (a(t) = K*/12) Y i (1) = (b(2) + ()R /12) ye i () + €(0)ywi (£ = 7)
+d)yi(0) +fi(0), i=1,2,..., N—-1, 1e(0,7T], 9)

yi(t) = i(), i=0,1,2,...,N, te(0,T], (10)

yO(t) = yN(t) = O’ te (Ov T] . (11)
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3 The Error Estimate and Convergence

For the error function z;(t) = y;(t) — u;(¢), from (6), (7), (8), (9), (10), and (11), we
have the following difference-differential problem:

Z(t) — (a(t) — h*/12) 2, (1) = (b(t) + d(Dh* /12) zyx (1) + () zeri (t — 1)

Fdu(t) —Ri(D), i=1,2,....N—1, (12)
zi(t) =0, t€(0,7], (13)
20(t) =zn() =0, 1€ (0,7T]. (14)

Theorem 3.1. Let the derivatives 83[;;‘6 , giz be bounded on the Q and o — h?/12 >

ox > 0. Then the error of the problem (9), (10), and (11) satisfies
lyi(t) —ui(r)] < Ch*, i=0,1,...,N, 1€ (0,T], (15)

where C is a constant which is independent of 4.

Proof. Let Z(1) = (z1(£), 22(1). . . ., zy—1(£))". Then Eqgs. (12), (13), and (14) can be
expressed in vector form as

Z' O+ (a(®)—h*/2) MZ (t)= — (b(1)+d ()R> ] 2) MZ(H)—c()MZ (t—r)

+d(t)Z(1)—R(1) (13)
Z(0) =0, a7)
where
2 -1 0...0
r 1] -1 2-1...0
R(t) = (Ri(1) Ro(0), ... Ry (1)), M =, :
...... —1 2

The matrix M can be diagonalized as [7, 16]:
M= B_ldiagonal (A1, A2, ... ANy—1)B
with

B=B"'= byl = <(_1)i+k\/2/N sin (mk/N))jvk_l ’
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A .
A= ccos2 (™), i=1.... . N—1.
2 N

Multiplying (16) on the left by B and denoting

BZ(H) = (1) = (Y1 (1), Y2 (0), ..., ¥n—1 (1)),

BR(H) = ®(1) = ($1(1), $2(1), ..., pn—1(1))".

Equation (16) turning into the decomposed system as:

V(1) + (at) — 12 /12) A9 (1) = — (b(1) + d(0)h?/12) Asis(D)

—c(OAYs t—1) +dOY () + ¢s(1), s=1,2,...,N—1.

Therefore problems (16) and (17) reduce to

W;(f) + As(t)ws(t) + Bs(t)ws (t - r) = gx(t)v (18)
V(0) =0, s=12,....N—1 (19)
with
(b + d(h?/12) A5 — d(1) _ c(H)As
A0 = 14 A (a(t) —h2/12) B = 14 A, (a(t) — h2/12)’
_ és(1)
gs(1) =

1+ A, (a(t) — h2/12)°

It is not hard to show that the coefficients A,(¢) and B(¢) are bounded independently
of h:
|b()+d(r)h? /12| A d(2)]
IAs(0] = 1+, (a()—h?/12) 1+, (a()—h?2/12)
<" (1Pl + 1dlloo?/12) A5 + [ldl oo/ (1 + Asats) .

. I _ 4 2 8
Since h < ; and A; > Ay = 2 COS™ 4 > 5, then
|As ()] < co,

with

_ _o\—1
co =" ([blloo + ldllool/48) + (1 + 8atul™?) " [|d|| .-
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Similarly we have for B,(f)
|Bs(1)| < ¢ with ¢; = o3 !|¢]| po-
Further, (18) and (19) can be written

t - A d t - A d
U(1) = / e / ondny / B (- / MO o)

Estimating that integral terms separately and taking into consideration that

t

t Ay d t
/ Bs(rm(r)e/ Loy, ffle""T/ W, (= r)|de
0 0

t
, / Ay () dn )
and /gx(t)e T dr| < €% ||gsllys
0

after denoting §,(r) = |(¢)|, from inequality (20), we have
t
8.0 < Collely + €1 [ 18,e = nlar @
0

with Cy = €T, C; = c1e®T. Using variable transformation 7 — r = £ in (21),
we get

85(t) < Collgsll; for 0<t<r

and

—r t
5.(1) < Collgsll, + Gy / 15, (€)[d& < Collgsl, + C / 16, ()| d for 1> 1.
0 0

From here, by virtue of Gronwall’s inequality, we obtain
Cit
85(1) = Collgsll ™"
Thereby
85(1) = Cllgsll (22)

with constant C independently of &.
The inequality (22) in turn implies that

[vs ()] < CAT oIl (23)
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Since

N N
60 < Y Ibal IR < V2/N IRl < V2/N (N = 1) Ch* < VNCIi* < Ch*”,
k=1 k=1
the inequality (23) leads to
W] < o' AT CR.

Further, from

N—1
zi(t) = Zbikl/fk,
k=1
we obtain
N—1 N—1
(O] < e CIPy " A bl < CHASV2/N (N = 1) ) W/ (4cos? (34))
k=1 k=1 (24)
N-1
= anty 1/ (4sin? ("90)).

k=1

Taking into account the following inequality sinx > 2x/7w, 0 < x < 7/2, in (24),
consequently we obtain

N—1 2 N—1
4 (7 (N—k) 62 1 4
|z,-(t)|§Ch6§ 1/( ( ) = Ch°N E < Ch*,
=1 w2 2N - (N — k)

i.e., (15) is proved.

4 Numerical Example

Consider the particular problem

2 2

u °u _10%u
grow2 D T g DT,

=e'sinh(x), (x,1) €10,1] x(0,2],

?;;(x,t)—Z Gt —1) +u(x.1)

u (x, ) = 100e™ (sin h(x) — xsin h(1)), (x,1) € [0,1] x [-1,0],

u(0,t) =u(l,t) =0, t € (0,2].
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Table 1 The results on [0, 1]x[0, 1]

G.M. Amiraliyev et al.

(x, 1) Exact solution ~ R.K. approximation Absolute error
(0.1,0.1) —1.570197786 —1.570153231 4.455494E-5
(0.2,0.2) —2.759469471 —2.759409134 6.033661E-5
(0.3,0.3) —3.558895504 —3.558807959 8.754480E-5
(0.4,04) —3.976884921 —3.9766781183 1.037385E-4
(0.5,0.5) —4.033749807 —4.033583955 1.658516E-4
(0.6,0.6) —3.757555971 —3.75741264 1.433313E-4
(0.7,0.7) —3.180983155 —3.180821732 1.614228E-4
(0.8,0.8) —2.338980692 —2.338813886 1.668061E-4
(0.9,0.9) —1.267047838 —1.266830828 2.170103E-4

Table 2 The results on [0, 1]x[1, 2]

(x, 1) Exact solution R.K. approximation ~ Absolute error
(0.1,1.1) —0.5776434849 —0.577438881 2.0460337E-4
(0.2,1.2) —1.015152085  —1.014844225 3.0786018E-4
(0.3,1.3) —1.309244489  —1.308933987 3.1050242E-4
(0.4,1.4) —1.463014204  —1.462684133 3.3007124E-4
(0.5,1.5) —1.483933616  —1.483571592 3.6202417E-4
(0.6,1.6) —1.382327593  —1.381934256 3.9333711E-4
(0.7,1.7) —1.170218303  —1.169809452 4.0885078E-4
(0.8,1.8) —0.860462914  —0.860194326 2.6858776E-4
(0.9,1.9) —0.466120867  —0.465889942 2.3092442E-4

The exact solution of this problem is
u(x,1) = 100e™" (sin h(x) — xsink(1)), (x,1) € [0,1] x [-1,0].

To solve this problem numerically, we use the appropriate Runge—Kutta method.
The spatial and time steps are both taken to be 0.1. The values for exact and
numerical solutions and appropriate pointwise errors are shown in Tables 1 and 2.

It can be observed that the obtained results are essentially in agreement with the
theoretical analysis described above.

5 Conclusion

In this paper, we have designed a fourth-order accurate difference-differential
scheme to solve a time-delayed pseudo-parabolic partial differential equation in
one dimension. An appropriate error estimate has provided. For the realization of
our differential-difference problem, we use the fourth-order Runge—Kutta method.
We have implemented the present method on standard test problem. It is observed
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from the results that the present method approximates the exact solution very well.
The main lines for the analysis of the convergence carried out here can be used for
the study of more complicated linear differential problems with second- and third-
type boundary conditions.
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Oscillations of Delay and Difference Equations
with Variable Coefficients and Arguments

I.P. Stavroulakis

Abstract Consider the first-order linear differential equation with several deviating
arguments:

X0+ ) pil)x(xi(1) =0 [x’(r) — Y pilDx(0i(0) = 0} N

i=1 i=1

and the discrete analogue difference equation

Ax(n) + Zpi(n)x(ti(n)) =0,n>0 |:Vx(n) - Zpi(n)x(ai(n)) =0,n> 1:|
i=1 i=1

where the functions p;, 7;, 0; € C([to,00), R") and 7;(¢) [0;(¢)] are retarded (z;(f) <
1) [advanced (o;(f) > f)] arguments, for every i = 1,2,...,m, lim;—o 7;(f) = 00,
and (p;(n)), 1 < i < m are sequences of nonnegative real numbers, t;(n) [0;(n)],
1 < i < mare retarded (t;(n) < n— 1) [advanced (0;(n) > n + 1)] arguments,
nl—l>nolo 7;(n) = oo, and A [V] denotes the forward [backward] difference operator
Ax(n) = x(n+1)—x(n) [Vx(n) = x(n)—x(n—1)]. A survey on the oscillation of all
solutions to these equations is presented in the case of several deviating arguments
and especially when well-known oscillation conditions are not satisfied. Examples
illustrating the results are given.
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1 Introduction

Consider the differential equation with several variable coefficients and arguments:

X0+ pidx(zi() =0 [x’(r) = pix(oi(r)) = 0} a=1. (LD
i=1 i=1

where the functions p;,7;,0; € C([to.00),R") and 7(t) [0:(r)] are retarded

arguments (7;(f) < t) [advanced arguments o0;(t) > ¢] forevery i = 1,2,...,m,

and lim,—, o, 7;(f) = 00, and the discrete analogue difference equation

Ax(n) + D pim)x(zi(n)) = 0.n > 0 [Vx(n) =Y pilmx(oi(m) = 0,n > 1}

i=1 i=1

(1.2)

where (p;(n)), 1 < i < m are sequences of nonnegative real numbers, 7;(n) [0;(n)],
1 < i < m are retarded 7;(n) < n — 1 [advanced o;(n) > n + 1] arguments,
nlggo 7;(n) = oo, and A [V] denotes the forward [backward] difference operator
Ax(n) = x(n + 1) — x(n) [Vx(n) = x(n) —x(n — 1)].

Let Ty € [ty,+00), ©(f) = min{r(¢¥) : i = 1,....m} and 7—)() =
inf{z(s) : s > t}. By a solution of the retarded Eq.(1.1), we understand a
function u € C([ty, +00); R), continuously differentiable on [t(—1)(T), +00) and
that satisfies (1.1) for # > t—)(Tp). [Analogously for the advanced Eq. (1.1)]. Such
a solution is called oscillatory if it has arbitrarily large zeros, and otherwise it is
called nonoscillatory.

By a solution of the retarded difference Eq. (1.2), we mean a sequence of real

numbers (x(7)),>—, which satisfies (1.2) foralln > 0. Here, w = —min ,>o0 t;(n).
1<i<m
It is clear that, for each choice of real numbers c_,,, c_+1,..., c—1, Co, there

exists a unique solution (x(n)),>—, of (1.2) which satisfies the initial conditions
x(=w) = c_p, x(—w+ 1) = c_y41, ..., x(—1) = c_1,x(0) = ¢o.

By a solution of the advanced difference Eq. (1.2), we mean a sequence of real
numbers (x(n)),,»o which satisfies (1.2) foralln > 1.



Oscillations of Delay and Difference Equations 171

A solution (x(1))n>—w (or (x(n)),~) of the difference Eq. (1.2) is called oscilla-
tory, if the terms x(n) of the sequence are neither eventually positive nor eventually
negative. Otherwise, the solution is said to be nonoscillatory.

For the general theory of these equations, the reader is referred to [1, 9, 11, 13,
14, 18, 19, 25].

In this paper we present a survey on the oscillation of all solutions to these
equations in the case of several variable coefficients and arguments and when well-
known oscillation conditions are not satisfied.

2 Oscillation Criteria for Eq. (1.1)

For Eq. (1.1), the following results have been established.
In 1982, Ladas and Stavroulakis [17] (see also in 1984, Arino et al. [2]) studied
the equation with several constant arguments of the form

X0+ pil)x(t—1) =0 [x’(r) =Y pilx(t+ 1) = 0} = 1,) (L1

i=1 i=1

under the assumption that

t t+71;/2
liminf/ p(s)ds > 0 |:liminf/ p(s)ds > O:| Ji=1,2,...,m,
t —>00 t

t—>00 —

and proved that each one of the following conditions

t 1 t+1; 1
liminf/ pi(s)ds > [lim inf/ pi(s)ds > :| forsomei,i=1,2,...,m,
+ e t—oo  J, e

—>00 —
2.1)
o t m 1 o t+t M 1
htrgégf/r_r ;pi(s)ds > . htrgcl)gf/t ;pi(s)ds > |
where t = min{z; 12, ..., T}, 2.2)

1 1
m m m m

n T ot 1
l_[ ( 2 htrgcl)gf/t_tjpi(s)ds) >e l—[ (thrgégf/t pi(s)ds) >e
j=

i=1 i=1 N j=1

(2.3)
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or

m

1 t
> (lim inf / p,-(s)ds)
m =00 [, .

i=1

1
2 m t t 2 1
+ 23 | timinf [ pi(s)ds ) ( liminf [ pi(s)ds )| > (2.4)
m t—00 -1 t—>oo J, o e

i<j
ij=1

m

1 t+1;
E (lim inf / p,-(s)ds)
m t—oo [,

i=1

. 147 147 2 1
+ 73 [( lim inf / p,-(s)ds) (lim inf / p,-(s)ds):| > (24
m t—oo J, t—oo J, e

i<j
ij=1

implies that all solutions of Eq. (1.1’) oscillate. Later in 1996, Li [20] proved that
the same conclusion holds if

m t 1
1itlggf; /Hi pi(s)ds > . (2.5)

In 1984, Hunt and Yorke [15] considered the equation with variable coefficients
of the form

X0+ Y pildx(t — (1) = 0,1 = 1o, (1.17)
i=1

under the assumption that there is a uniform upper bound tj on the 7;’s and proved
that if

) ) m 1
lim inf ; w(Opi(t) > _

then all solutions of Eq. (1.1”) oscillate.
In 1984, Fukagai and Kusano [10], for Eq.(1.1), established the following
theorem.
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Theorem 2.1 ([10], Theorem 1'). Consider Eq.(1.1) and assume that there is a
continuous non-decreasing function t*(t) [0« (t)] such that t;(t) < t*(t) <t [t <
0x(t) < 0i()] fort = 1, 1 <i <m. If

ox (1) M 1
lim inf / Zp,(s)ds> [hgégf /t > pils)ds > e] (2.6)

™ = i=1

then all solutions of Eq.(l1.1) oscillate. If, on the other hand, there exists a
continuous non-decreasing function t«(t) [0*(t)] such that t4(t) < 7;(t) [0:(t) <
o* (D)) fort =1y, 1 <i<m, lim_ o T4(f) = 00 and

o*(@) m 1
/ Zp,(s)ds < |:/ Zp,-(s)ds < :| for all sufficiently large t,
(D) 1 =1 €

then Eq. (1.1) has a nonoscillatory solution.

In 2000, Grammatikopoulos et al. [12] improved the above results, in the case of
the retarded Eq. (1.1), as follows:

Theorem 2.2 ([12], Theorems 2.6). Assume that the functions t; are non-
decreasing forall i € {1,...,m}:

o
/ |pi(t) — pj(0)| dt < +o0, ij=1,....m
0
and

t
liminf/ pi(s)ds >0, i=1,...,m.

—> 00
7i(t)

1If

m t 1
> (litm inf / p,-(s)ds) >, (2.7)
£ —00 - e

= i(1)

then all solutions of Eq. (1.1) oscillate.

Observe that all the above-mentioned oscillation conditions (2.1)—(2.7) involve
lim inf only. Moreover, it is an interesting problem to investigate Eq. (1.1) with non-
monotone arguments and derive sufficient oscillation conditions, involving lim sup,
which is the main objective in the following.

Theorem 2.3 ([16]). Assume that there exist non-decreasing functions p; €
C([ty, +00)) such that

) <ui() <t (@(=1,...,m), (2.8)
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and

m m t pui(t) ™M
hmsupl_[ |:1_[/ ()p,-(s)exp(/() Zpi(é)
i=1 Y nls) =1

t—>+00 j=1

- L
X exp (/ p,-(u)du)df;‘)ds:| > . (2.9)
i(§) ; m

Then all solutions of Eq. (1.1) oscillate.
In the case of monotone arguments, we have the following.

Theorem 2.4 ([16]). Let t; be non-decreasing functions and

Ti(r) m
hmsup]_[[]_[/ pz(S)eXp(/ ZP:(&)

t—>—+00

X exp ( / 02 > p,(u)du)dg)ds] > mlm (2.10)

Then all solutions of Eq. (1.1) oscillate.

Corollary 2.1 ([16]). Let t; be non-decreasing functions and

hmsupl_[ (H/()p,(s)ds) > mlm, (2.11)

t—>+oo

Then all solutions of Eq. (1.1) oscillate.

Corollary 2.2 ([16]). Let t; be non-decreasing functions, p;(t) > p(t) (i =
1,...,m)and

m t 1
lim supl_[ / p(s)ds> . (2.12)
mm

t—>+o00 =1 510

Then all solutions of Eq. (1.1) oscillate.
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Corollary 2.3 ([16]). Let t; be non-decreasing functions, p;(t) > p = const and

- 1
i t—1(t , 2.13
priimsup [T —=n() > (2.13)

m
1=+

Then all solutions of Eq. (1.1) oscillate.

Remark 2.1. 1t should be pointed out that the condition (2.9) of Theorem 2.3
presents for the first time sufficient conditions (in terms of limsup) for the
oscillation of all solutions to Eq. (1.1) with several non-monotone arguments. They
are also independent and essentially improve all the related oscillation conditions in
the literature.

The following examples illustrate the significance of the results.

Example 2.1 (cf. [4, 16, 22]). We consider a generalization of an example presented
in [4], where the equation

X (@) + ix(t(t)) =0,t>0,

with the retarded argument

t—1, t€[3n,3n+ 1],
(t) ;=9 =3t+(12n+3), t€[3n+1,3n+2],
5t— (12n + 13), te3n+2,3n+ 3.

was studied. Here we discuss the more general equation:
X(1) + px(z(1) = 0,1 = 0.p > 0, (2.14)
and illustrate how our methodology can be utilized to prove the existence of

oscillatory solutions for some range of the parameter p. In this case, as in [4], one
may choose the function

t—1, t€[3n,3n+ 1],
o(t) = 4 3n, te3n+1,3n+ 2.6],
5t— (12n + 13), te€3n+2.6,3n+ 3].

Now note that, since t(f) <t—1,

t t
/ pdu > / pdu = p.
(1) —1
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The choice of 1, = 3n + 3 gives

t a(1) 3
C = lim sup/ pexp (/ pexp (/ pdu)dé)ds
t—>+o00 Jo(r) 7(s) (&)

3n+3 3n+2 1 ,
> lim pexp (/ pexp(p)dg)ds = (65”6 - 1) eP.
n—>+00 J3,45 55—(12n+13) 5

The inequality
1
(eSP"p — 1) e?>1

is satisfied for (the numbers that follow are rounded to the third decimal place unless
exact) p € [0.303,0.358]. Thus, for p € [0.303,0.358], the condition (2.10) of
Corollary 2.1 is satisfied and therefore all solutions to the above Eq. (2.14) oscillate.
Observe, however, that when p € [0.303,0.358] in (2.14), we find

t
A= limsup/ pds=p- (26) <1
o

=00 (1)

t
1
a:= liminf/ pds =p <
. e

—>0o0 (t)

and

3n+3 o(3n+3) 3n+3 3n+2
/ pexp / pdE} ds = / pexp {/ pdé} ds
o(3n+3) z(s) 342 5s—(12n+13)

1 5
= 7 —1) < 1.
S =1

That is, none of the oscillation conditions (2.1)—(2.6) is satisfied.
Remark 2.2 ([16]). Itis obvious that if for some iy € {1, ..., m} all solutions of the

equation

X (1) + pi, (1) x(x;, (1) = 0

oscillate, then all solutions of Eq. (1.1) also oscillate.

Example 2.2 ([16]). Let p, Aj, Ay € (0, +00) and consider the sequences {tk}/c:il
such that t; 1 400 for k 1 400, ty + 2A < t41 (k = 1,2,...), where A =
max{A;, i = 1,2}. Choose p, A; and A; such that

1
PPALA; > A (2.15)
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and

pAi<1 (i=12). (2.16)

o0
Let p(r) = pfort € [t tr + Al (k = 1,2,...) and p(r) = O for¢ € R+\kgl

[t te + A

According to (2.15) it is obvious that the condition (2.13) is fulfilled, where m =
2 and 7;(f) = t— A; (i = 1,2) ae. and therefore all solutions to Eq.(1.1) are
oscillatory. However, for the equations

X0 +pOxt—A)=0 (i=1,2)

by (2.16), we have

t—>—+00

t
limsup/ p(s)ds<1 (i=1,2)
t—A;
and

t
liminf/ p(s)ds=0 (i=1,2).
t

t—>—+00 —A;

Remark 2.4 ([16]). In the above-mentioned Example 2.2, by a solution, we mean
an absolutely continuous function which satisfies the corresponding equation almost
everywhere.

Example 2.3 ([16]). Consider the equation:

X (@) + p1x(z1(8)) + pax(r2(1)) = 0, t > 0, p1.p2 > 0, (2.17)
where
t—1, t € [3n,3n+ 1],
(1) = {-3t+ (12n+3), t€[3n+1,3n+2],

St—(12n+13), t€[Bn+2.3n+3],

t—2, t € [3n,3n+ 1],
0(f) = | —t + 6n, teBn+1,3n+2],
3t—(6n+38), te€3n+2,3n+3].
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We can take
t—1, t € [3n,3n+1],
o1(t) = 4 3n, te3n+1,3n+ 2.6],
5t— (12n+13), te€[3n+2.6,3n+ 3],
t—2, t € [3n,3n+ 1],
o) =13n—1, teBn+1,3n+23],
3t—(6n+8), te[3n+23,3n+3].

Note that, since 71(f) <t — 1 and 7,(f) <t — 2, we have

t t t t
/ duz/ du =1, / dui/ du = 2.
71(1) t—1 (1) =2

Set P = piexp(p1 + p2) + p2exp(2p1 + 2p2). The choice of t, = 3n 4 3 gives

t o) 2 § 2
lim sup 1_[ (1_[ / Di exp (/ Zp,- exp (/ (1 + pz)du)dé)ds)
=00 ;= aj(1) wi(s) ()

i=1

l_[ ﬁ 3n+3 0i(3n+3) 22: 3 2
lim ( / Di €Xp (/ Di €Xp ( (1 + pz)du)d;?) ds)
n%+oo i=170iG3n+3) 7i(s) i—1 % (§)

i=

%

2

3n+3 3n+42 : 3n+3 3n+1 :
lim 1_[ (/ D1 exp (/ Pdé)ds) X (/ D2 exp (/ Pdé)ds)
Vl—>+00j=1 0;(3n+3) 71(s) 0;(3n+3) 2(s)
3n+3 3n+42 ] 3n+3 3n+1 ]
= lim (/ D1 exp (/ Pd?;’)ds) X (/ D2 exp (/ Pd?;’)ds)
n—>+o00 \ J3n42 71(5) 3n+2 (s)
3n43 3n4-2 ] 3n43 3n41 i
X(/ P1 exp (/ Pdé)ds) X (/ D2 exXp (/ Pdé)ds)
3n+1 71 (s) 3n+1 72 (s)
3043 3n42 ; 343 3n+1 ;
= lim (/ P1exp (/ PdE) ds) X (/ D2 exp (/ Pdg)ds)
n—400 3n+2 5s—(12n+13) 3n+42 3s—(6n+8)
3n+42 3n+42 3n+3 3n+42 :
X(/ P1 exp (/ Pdé)ds + P1 exp (/ Pdé)ds)
3n+1 —3s5+(12n43) 3n+2 5s—(12n413)

3n42 3n+1 3n43 3n+1 B
X (/ D2 €Xp (/ Pdé) ds + D2 €xXp (/ Pdé) ds)
3n+1 —s+6n 3n+2 3s—(6n+8)

=:D(p1,p2).

v
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Let p; = 0.1, then, by direct computation, we get

D> |
4

if p» > 0.158. That is, when p; = 0.1 and p, > 0.158 in Eq.(2.17), the
condition (2.9) of Theorem 2.3 is satisfied and therefore all solutions to this equation
oscillate.

Note that since the delays are not monotone, Theorem 2.2 cannot be applied to
this example. We now compare our result with Theorem 2.1. Note that

71(1), 1o () < 01(¢), foreveryt > 0.

The choice p; = 0.1, p, = 0.158 gives

t

1
lim inf @1+ p2)ds=p1 +p2=0258 <
e

—
=00 Joy (1)

that is, the condition (2.6) is not satisfied.

3 Oscillation Criteria for Eq. (1.2)

In this section we study the difference equation with several variable arguments

i=1 i=1

Ax(n) + Zpi(n)x(ri(n)) =0 |:Vx(n) — Zpi(n)x(cri(n)) = 0:| (1.2)

If t;(n) = n—k; and 0;(n) = n + k; where k; > 0, 1 < i < m, then Eq.(1.2)
reduces to the difference equation with several constant arguments of the form

Ax(n) + Y pi(mx(n— k) =0 [Vx(n) = D _pin)x(n + k) = o} (1.2)

i=1 i=1

In 1989, Erbe and Zhang [8], in 1999, Tang and Yu [23] and in 2001 Tang and
Zhang [24] proved that either one of the following conditions

. (ki + 1)
lim inf p;(n) _ > 1, 3.1
; ( n—00 pitn ) (ki)kx
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k + 1 ki+1 n+k;
lim inf Z( N ) > i) > 1. (3.2)
j=n+1
or
m n+k;
hm supZ Zp,(/) > 1, (3.3)
i=1 j=n

implies that all solutions of the retarded difference Eq. (1.2)' oscillate, while in 2002,
Li and Zhu [21] proved that if

ki 4+ 1\ At
lgglong( N ) 'kai(])>17 (3.4)
J=n—ki

then all solutions of the advanced difference Eq. (1.2) oscillate.
Set

t(n) = max 1i(n), n € Ny, (3.5)

o(n) = 1r<nii<nmcri(n), n e N. 3.6)

In 2005, Yan et al. [26] and, in 2006, Berezansky and Braverman [3] proved
that if

o n— m n—ti(j)+1 n—r1;(j)+1
1 f (G > 1, 3.7
imin Z Zp(/)( o) ) (3.7)
j=t(n) i=1
or
m n—l1
hmsup Zp,(n) >0 and hmlnfz Z pi()) > (3.8)
e
i=1 j=t(n)

then all solutions of the retarded difference Eq. (1.2) oscillate.
In 2014, Chatzarakis et al. [5] proved that if

m o(n)
hmsupz Z pi() > 1 hmsupZZp, GH=>1], (3.9
"o 1 j=t(n) i=1 j=n

or limsup,_, o, Y i, pi(n) > 0 and
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m n—l1 m  0i(n)

1@113ng N i hmmfz I N (3.10)

i=1 j=rt;(n) i=1 j=n+1
then all solutions of Eq. (1.2) oscillate.
Also in 2014, Chatzarakis et al. [6] established the following theorem.

Theorem 3.1 (see [6], Theorems 2.1 [3.1]). Assume that the sequences (t;(n))
[(0i(n))], 1 <i < m are increasing and

o =minf{e; : 1 <i<m}, (3.11)
where
n—1 oi(n)
a; = lim inf Z pi() | = liminf Z pi() |- (3.12)
=t j=n+1
If0<a <1/e and
m o(n)
hmsupz Z pi(j) hmsupZZpl(/) >1-— (1 -1 —a) ,  (3.13)
n—oo
i=1 j=t(n) i=1 j=n

then all solutions of (1.2) oscillate.
If, additionally,

pi(n) > 1— V-« forall largen, (1 <i<m) (3.14)
and
m o(n) 1
hmsu ; hmsu ; >1—« -1,
pZZP(}) pZZP(}) |:3x/1—o:+oz—2 :|

i=1 j=1t(n) i=1 j=n

then all solutions of (1.2) oscillate. G.15)

In 2015 the above result was improved by Chatzarakis et al. [7] as follows.

Theorem 3.2 ([7]). Assume that the sequences (t;(n)) [(0;(n))], 1 < i < m are
increasing; (t(n)) [(o(n))] is defined by (3.5) [(3.6)] and define « by (3.11).
If0<a <1/e and

m 7 1—a—V1—2a—a?

hmsupz Z pi(j) hmsupZZp,(]) >1— 5 ,

i=1 j=1(n) i=1 j=n
. . (3.16)
then all solutions of (1.2) oscillate.
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If, additionally,

pi(n) > Z forall largen, (1 <i<m) (3.17)
and
; i Z ol if ol S V120 —a
imsu ; imsu ; — —al,
”_"X’p i=lj=t(n)p ”_’°°p i=1 j=np 2ta
(3.18)

then all solutions of (1.2) oscillate.
Remark 3.1 ([7]). Itis easy to see that

1—V1—-2a—a? l—a—+1-2a—0a2
2 —o >
2+« 2

>a[3~/1—al+a—2_l}> (1_\/1_“)2'

Therefore, when (3.17) holds, then the condition (3.18) is weaker than condi-
tions (3.16), (3.15) and (3.13).

Remark 3.2 ([7]). When a« — 0, then all the above-mentioned condi-
tions (3.18), (3.16), (3.15) and (3.13) reduce to

m o(n)

liggpz Z pi() > 1, lirllgingZPi(f) > 1,

i=1 j=t(n) i=1 j=n

that is, to the condition (3.9). However the improvement is clear when

1
o — . ~ 0.367879441

For illustrative purposes we give the values of the lower bound on the above
conditions when o = 0.367879441 :

(3.13):  0.957999636
(3.15):  0.879366479
(3.16): 0.863457014
(3.18):  0.826495955

That is, the conditions (3.16) and (3.18) essentially improve (3.9), (3.13)
and (3.15).
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4 Examples

We illustrate the significance of the results by the following examples.

Example 4.1 ([7]). Consider the difference equation with three retarded arguments:

Ax(n) + pi(m)x(n—1) + po(n)x(n —2) + ps(n)x(n—3) =0, n>0, (4.1

where
7 4
2 = ) 2 1) = )
p1(2n) 100 pi(2n+1) 10
5 35
3n) = 3 1) = , 3 2) = ,
p2(3n) = p2(3n+ 1) 100 p2(3n +2) 100
(4n) =p3(4n+1) = p3(4n+2) = 3 (4n+3) = o8
P3tt) = p3En D) = P L) = 000 PR T q000°

Herem =3, ti(n) =n—1,n(n) =n—2,13(n) =n—3and t(n) =n—1.1tis
easy to see that

L . 7
o) = lim inf > p) = 100 = 007

j=n—1

— 5
o = lim inf > pa) =2- =0.1,

it 100
n—1 3
a3 = lbn—l>lor<>lf_23p3(]) =3 100 = 0.09.
j=n—
Thus
. . . 1
o =min{e; : 1 <i <3} =min{0.07,0.1,0.09} = 0.07 <
e
Also,

hmsupZ Z pi(j) = lim sup Z P1G) + Z p20) + Z p3()

n—00 i=1 j=n—1 Jj=n—1 j=n—1 Jj=n—1

—7+4+5+35+3+98—0998
100 10 100 100 100 1000
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Observe that

l—a—1—20—a?
0998>1— & ‘/2 7% £ 0.997358086,

that is, condition (3.16) of Theorem 3.2 is satisfied and therefore all solutions of
Eq. (4.1) oscillate.

Observe, however, that
0.998 < 1,

2
0.998 < 1— (1 -1 —ot) >~ 0.998730152,

3 n—1 n—1 n—1 n—1
liminf) Y pi() = liminf | > p()+ D pa()+ Y pa()
i=1 j=1(n) j=n—1 j=n—1 j=n—1

7 5 3

|
— —015< |
100 T 100 T 100 e

n—1

3 n—1 n—1 n—1
liminf) Y pi) =liminf | > pi()+ Y ;) + D pa()

i=1 j=n—k; j=n—1 j=n—2 j=n—3
- +2 > +3 3 _o26< !
~ 100 100 100 e’

3 &+ ki+1 ntki
1;3@2( k ) Z pi()

j=n+1
2 2 n+l 3 3 nt2 4 4 n+3
= lim inf (1) > p1</>+(2) > Pz(/)+(3) > n0)
j=n+1 j=n+1 Jj=n+1
7 3\? 5 4\* 3
=22 ' 4 2 T4 -3 =0.901944444 < 1,
100 " \2 100 ' \3 100

o +DSH 7 22 5 3 3 4
1 f ; = . . .
Z(iﬂ‘o%”(”)) (k)" 100 1 T 100 2 T 100 3

i=1

0.901944444 < 1,

n—l 3 . n—ti(j)+1
. L (n—Tn() +1
imint Y- Y ( )

j=t(n) i=1 n =)
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2\ 7 3\ 5 Nt 3
_ - L0 C T = 0.543564814 < 1,
1) 100 "\2) “100 T\3) T100

and therefore none of the conditions (3.9), (3.13), (3.8), (3.10), (3.2), (3.1) and (3.7)
is satisfied.

Example 4.2 ([7]). Consider the difference equation with two retarded arguments
Ax(n) + pi(n)x(n—2) + pr(mx(n—1) =0, n=0, (4.2)

where

1 1
pi(3n) =piBn+1) = 10" p1(3n+2) = 5 n=>0,

3273

T @t 1) = >
PP 00007 T

2 =
p2(2n) 100

Herem = 2, 71(n) = n— 2, 1o(n) = n— 1 and t(n) = n — 1. It is easy to see that

n—1

o . 1
o = 1}11310252 pG) =2, =02,
j=n—2
n—1
a = hm 1nf Z p2(j) = = 0.07.
j=n—1

Thus
. . . 1
o =min{e; : 1 <i <2} =min{0.2,0.07} = 0.07 <
(&
Furthermore, it is clear that
pin) > Z — 0.035 forall large n, (1 <i<?2).
pi(n) > 1 — ~/1 —a ~ 0.035634923 for all large n, (1 <i < 2)

Also,

hmsupz Z pi() = hmsup Z () + Z P2(j)

oo = 1 j=n—1 j=n—1 j=n—1

—1+1+7+3273—09973
10 0 2 100 10000 '

Observe that
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1—+/1—-20—0a?

0.9973 > 1 — |:2
24+«

- oz:| =~ 0.997262002,

that is, conditions (3.17) and (3.18) of Theorem 3.2 are satisfied and therefore all
solutions of Eq. (4.2) oscillate.
Observe, however, that

0.9973 < 1,
3 n—1 n—1 n—1
liminfy Y pi() = liminf | > pi()+ Y p20)
i=1 j=1(n) j=n—1 j=n—1
1 7 1
= =0.17
10" 100 e

2 n—1 n—1 n—1
. N , N S 1
lggggjfi ) pi(J)—l;lrglogf[ > G+ D pz(])}—l 10 100=027<,:

i=1j=1;(n) j=n—2 j=n—1

2
0.9973 < 1— (1 —V1- a) ~ 0.998730152,

1

09973 < 1 —«
|:3«/1—a+a—

57 1] ~ 0.997317675,

2 k+1 n—l 3
. kit 15 R E 1, 7
min > (%) i:%f?l@—l,ﬂg%f[(z) 2yt 'loo}—°~955<1’

v — _ w2
09973 < 1—1 ¢ */12 2 =07 0997358086,

n—1 2 —5( 1 n—1;(j)+1
e 3 300 (", 700

j=t(n) i=1

3\ 1 2\2 7
= RS : = 0.61754<1,
2) 10 1) 100

and therefore none of the conditions (3.9), (3.8), (3.10), (3.13), (3.15), (3.4), (3.16)
and (3.7) is satisfied.

Example 4.3 ([7]). Consider the advanced difference equation

Vx(n) —pi(m)x(n +2) —p2(mx(n+1) =0, n=1 (4.3)
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where

1 1
p1Bn) =piBn+1) = 10" p@Bn+2) = , MZ 1

3164
, p2(2n+ 1) = n> 1.

="
n = bl —_—
p2 1 10000

00
Herem = 2,01(n) = n+2,02(n) =n+ 1ando(n) = n+ 1. Itis easy to see that

n+2

o . 1
) = hnn_l)logf Z piG)=2- 0= 0.2,
j=n+1
n+1 8
a = hnn_l)logfj;_lpz(j) = 100 = 0.08.

Thus
. , . 1
a =min{e; : 1 <i <2} =min{0.2,0.08} = 0.08 <
e
Furthermore, it is clear that p;(n) > ¢ = 0.04 forall large n, (1 <i <?2).

2

pi(n) > 1 — /1 —a >~ 0.040833695 for all large n, (1 <i < 2)

Also,
2 o(n) n+1 n+1
limsup » ~ Y " pij) = limsup [ Y " pi() + Y _ p2(i)
n—o00 T i=n n—00 i=n i=n
1 1 8 3164
= = 0.9964.

10 + 2 + 100 + 10000

Observe that

1—V1—2a—a2

0.9964 > 1 — |:2
24w

- a:| =~ 0.996362477,

that is, conditions (3.17) and (3.18) of Theorem 3.2 are satisfied and therefore all
solutions of Eq. (4.3) oscillate.
Observe, however, that

0.9964 < 1,
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2 n+tk n+2 n+1
liminf) * Y pi) = liminf | Y pi() + Y p2()
i=1 j=n+1 j=n+1 j=n+1

1
=02+0.08=0.28 < e’

2
0.9964 < 1 — (1 —J1- a) ~ 0.998332609,

1

0.9964 < 11—«
|:3«/1—oc+oc—2

—1] 2~ 0.996448991,

2 K+l n—1 3
. . kl—‘f_ ! PR . 3 1 2 8
1L“llogfi=l( ki ) 2 pilj) = liminf (2) 202 100

Jj=n—ki
=099 <1,

l—a—+1-2a—a?
0994 < 1— & ‘/2 7Y £ 0.996508488,

and therefore none of the conditions (3.9), (3.10), (3.13), (3.15), (3.4) and (3.16) is
satisfied.
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Abstract For the equation
Y™ + poly|* signy = 0,

in the cases n = 3,4, po > 0 or pg < O for regular nonlinearity k > 1 and singular
nonlinearity 0 < k < 1 asymptotic classification of all solutions are given.

It is the first time when all results on this classification are represented together
for regular and singular cases.
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1 Introduction

The first asymptotic classification of solutions to the Emden—Fowler equation of
the second order appears in [12]. Generalizations of the equation of higher orders
were investigated from different points of view later in the book [16] and in a great
number of articles of different authors. In particular, sufficient conditions are given
for the existence of some special types of solutions to these equations (see, e.g.,
[1,3,7,9, 1315, 18, 19]). See also [5] with its references. Qualitative properties
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of solutions to third- and fourth-order equations of this type were investigated in
[1-6, 11, 20, 21]. Note that qualitative properties of similar linear equations of the
third and fourth orders were investigated in [16, 17, 21].

The previous author’s results on asymptotic classification of all possible solutions
are seen in [5, 8, 10]. The purpose of this article is to represent together the
asymptotic classification of all possible solutions to Emden—Fowler type third- and
fourth-order equations both in regular and singular cases for comparison of their
asymptotic behavior.

2 Regular Nonlinearity (k > 1)

Theorem 1. Suppose k > 1 and py > 0. Then all nontrivial non-extensible
solutions to the equation

Y (@) + poly T y(x) =0 (1)

are divided into the following five types according to their asymptotic behavior (see
Fig. 1):

1-2. Defined on semiaxes (b, +00) Kneser (up to the sign) solutions:
V() = £Cy (1= b) 7k,
where

|3k +2) 2k + 1)

Cy = 2
= k- 1y @

3. Defined on semiaxes (—oo, b) oscillatory, in both directions, solutions having
the form

Y@ = (b—x)"+1 h(log(b—x))

with some oscillatory periodic function h.
4-5. Defined on bounded intervals (b',b") oscillatory near the right boundary and
nonvanishing near the left one solutions satisfying

y(x) = £Cy (x—b) "1 (1+0(1)) as x — b +0,
and, at their local extremum points X',

_kil +o(1)

()| = [p" =X asx’ — b’ —0.
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Fig. 1 Solutions to the equation y”” +y*> = 0

Remark 1. The case pyp < 0 can be reduced to the above one by the substitution
X —x.

Theorem 2. Suppose k > 1 and py > 0. Then all nontrivial non-extensible
solutions to the equation

YV@ + oy y) =0 (3)
are divided into the following three types according to their asymptotic behavior

(see Fig.2):

1. Defined on semiaxes (—oo, b) oscillatory solutions. The distance between their
neighboring zeros infinitely increases near the left boundaries of the domains
and tends to zero near the right ones. The solutions and their derivatives satisfy
the relations x_l)imoo y?(x) =0, li_r:}? \y(j) (x)| = oo forj=0,1,2,3. At the points

- X

of local extremum, the following estimates hold:
Crlx—b| ™1 = [y()] < G o —b| ™1 4)

with the positive constants C; and C, depending only on k and py.
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Fig. 2 Solutions to the equation yIV + y* = 0

2. Defined on semiaxes (b, +00) oscillatory solutions. The distance between their
neighboring zeros tends to zero near the left boundaries of the domains and
infinitely increases near the right ones. The solutions and their derivatives satisfy
the relations lim yV(x) = 0, lim |y(i)(x)| = oo forj = 0,1,2,3. At the

x—>+00 x—>b

points of local extremum, estimates (4) hold with the positive constants C and
C, depending only on k and py.

3. Defined on bounded intervals (b, b") oscillatory solutions. All their derivatives
y(’), withj = 0,1,2,3, 4, satisfy

i ) = li 0] =
fim b2 @] = tim, 0] = e

At the points of local extremum sufficiently close to any boundary of the domain,
estimates (4) hold, respectively, with b = b’ or b = b" and the positive constants
Ci and C; depending only on k and p.

Theorem 3. Suppose k > 1 and py < 0. Then all nontrivial non-extensible
solutions to Eq.(3) are divided into the following 13 types according to their
asymptotic behavior (see Fig. 3).



On Asymptotic Classification of Solutions to Nonlinear Regular and Singular. . . 195

Fig. 3 Solutions to the equation yIvV = y

1-2.

3—4.

5.

3

Kneser (up to the sign) solutions on semiaxes (b, +00) :
y() = £Cy (x = b) 741,
where

Co = (4(k +3)(2k + 2)(3k + 1)) - -

po| (k—1)*
“Left” Kneser (up to the sign) solutions on semiaxes (—oo, b) :
Y() = £Cu (b =)™

Periodic oscillatory solutions on (—oo, +00). All of them can be received
from one, say z(x), by the relation

y(x) = A*2(Ax + x0)

with arbitrary A > 0 and xo. So, there exists such a solution with any
maximum h > 0 and with any period T > 0, but not with any pair (h, T).
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6-9. Defined on bounded intervals (b',b") solutions with the power asymptotic
behavior near the boundaries of the domain (with the independent signs +):

YX) ~ £Cu () x—b) " x> 40,

YX) ~ £Cu(pB") B —x) " x— b —0.

10-11. Defined on semiaxes (—o0, b) solutions which oscillate near —oo and have
the power asymptotic behavior near the right boundary of the domain:

V@) ~ £Cu(p(h) (b—x)"+1 x—>b—0.

For each solution a finite limit of the absolute values of its local extrema
exists as x — —00.

12-13. Defined on semiaxes (b, +00) solutions which oscillate near +o00 and have
the power asymptotic behavior near the left boundary of the domain:

Y@) ~ £Cu(p(h) (x—b) "1 x = b +0.

For each solution a finite limit of the absolute values of its local extrema
exists as x — +00.

3 Singular Nonlinearity (0 <k < 1)

While studying the asymptotic behavior of solutions in the case of regular nonlin-
earity, k > 1, only maximally extended solutions are usually considered, because
solutions can behave in a special way only near the boundaries of their domains. If
k < 1, then special behavior can occur also near internal points of the domains. This
is why a notion of maximally unique (MU) solutions is introduced.

Definition 1. A solution u : (a, b)) — R with —o0 < a < b < 400 to any ordinary
differential equation is called a MU solution if the following two conditions hold:

(i) the equation has no other solution equal to # on some subinterval of (a, b);

(ii) either there is no solution defined on another interval containing (a, b) and
equal to u on (a, b), or there exist at least two such solutions not equal to each
other at points arbitrary close to the boundary of (a, b).

Theorem 4. Suppose0 < k < 1 andpo > 0. Then all MU solutions to the equation

Y () = po |y y(x) (6)

are divided into the following five types according to their asymptotic behavior (see
Fig. 4):



On Asymptotic Classification of Solutions to Nonlinear Regular and Singular. . . 197

Fig. 4 MU solutions to the equation y”/ = |y|'/%sgn y

1-2. Constant-sign solutions with power behavior on (b, +00) :
y(x) = £Cy (x—b) 1,

where Csy, is defined by (2).
3. Oscillatory, in both directions, solutions on (—oo, b) having the form

Y(x) = (b—x)1= h (log(b—x))

with some oscillatory periodic function h.
4-5. Defined on (—o0, +00) solutions oscillating near —oo, having asymptotically
power behavior near +00 :

y(x) = £Cyx7k(1+0(1)  asx — +0o,

and having no point xy with y(xg) = y'(x0) = y'(x0) = 0. At their local
extremum points x' the satisfy

3
2, to(1
=t s o —0.

pE] =[]
Remark 2. The case pyp < 0 can be reduced to the above one by the substitution
X —x.

Theorem 5. Suppose 0 < k < 1 and py > 0. Then all MU solutions to Eq. (3) are
divided into the following three types according to their asymptotic behavior (see
Fig.5):
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Fig. 5 MU solutions to the equation y™ + |y|'/2sgny = 0

1. Oscillatory solutions defined on (—o0, b). The distance between their neighbor-
ing zeros infinitely increases near —oo and tends to zero near b. The solutions
and their derivatives satisfy the relations lin}l)y(/) (x) =0, lim |y(/) (x)‘ = 00

X—> X—>—00

forj=0,1,2,3. At the points of local extremum, the following estimates hold:
Crlx—=b[ 71 < [y(0)] < CaJx— b 7o )

with positive constants C and Cy depending only on k and py.

2. Oscillatory solutions defined on (b, +00). The distance between their neighbor-
ing zeros tends to zero near b and infinitely increases near +0o. The solutions
and their derivatives satisfy the relations lim y?(x) = 0, lim |y(i) (x)‘ =

x—>b x—>+00
forj =0,1,2,3. At the points of local extremum, estimates (7) hold with positive
constants Cy and C, depending only on k and p.
3. Oscillatory solutions defined on (—oo, +00). All their derivatives yV with j =

0,1,2,3, 4 satisfy
lim \y(/)(x)i = lim |y(/)(x)| = oo.
X—>—00 x—>400
At the points of local extremum, the estimates
_ 4 _ 4
Cul ™1 < )] = G a4 ®)

hold near —oo or 400 with positive constants C, and C, depending only on k
and p.



On Asymptotic Classification of Solutions to Nonlinear Regular and Singular. . . 199

y\\’:|y|1 ?Sgn y

13 4

IV — [y[1/2

Fig. 6 MU solutions to the equation y Iyl

sgny

Theorem 6. Suppose 0 < k < 1 and py < 0. Then all MU solutions to Eq. (3)
are divided into the following 13 types according to their asymptotic behavior (see
Fig.6):

1-2. Defined on semiaxes (—oo, b) solutions with the power asymptotic behavior
near the boundaries of the domain (with the same signs +):

V) ~ £Cy |x[ T X = —o0,
y(x)~:|:C4k(b—x_kil, x—>b—0,

where

Cur = (4(k +3)(2k + 2)(3k + 1))kil
*o pol (k— 1y :

3—4. Defined on (b, +00) solutions with the power asymptotic behavior near the
boundaries of the domain (with the same signs %):

Y(x) ~ £Cx (x—b) K1, x—b+0,
V() ~ £Cy x5, x — 400.

5. Defined on the whole axis periodic oscillatory solutions. All of them can be
received from one solution, say z(x), by the relation
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y(x) = A2 x + x0)
with arbitrary A > 0 and xo. So, there exists such a solution with any
maximum h > 0 and with any period T > 0, but not with any pair (h, T).

6-9. Defined on (—oo, +00) solutions having the power asymptotic behavior
near —oo and 400 (with all sign combinations admitted):

y(x) ~ £Cy |)c|_’<il , x — to0.

10-11. Defined on (—oo, +00) solutions which oscillate as x — —oo and have the
power asymptotic behavior near +00:

_ 4
V(x) ~ £Cyp x™ +-1, X — +o0.
Each solution has a finite limit of the absolute values of its local extrema as
X — —oQ.

12—-13. Defined on (—oo, +00) solutions which oscillate as x — +00 and have the
power asymptotic behavior near —oo:

y(x) ~ £Cy |x|_ki1, X — —00.

Each solution has a finite limit of the absolute values of its local extrema as
X — +o00.

4 Sketch of Proofs

To obtain the above results on asymptotic classification of all maximally extended
solutions to the equation

Y + polyl* signy = 0, po # 0, 9)
with k& > 1 and all MU solutions to (9) with 0 < k < 1, an auxiliary dynamical
system is investigated on the (n — 1)-dimensional sphere (see [4, 5, Chap. 5-7]; [8]

for regular nonlinearity).
Note that if a function y(x) is a solution to Eq. (9), the same is true for the function

2(x) = Ay(Bx + C), (10)
where A # 0, B > 0, and C are any constants satisfying

A = B (11)
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Any nontrivial solution y(x) to Eq.(9) generates in R" \ {0} the curve
(v(0).Y (x),y"(x)., ...,y "' (x)). We can define an equivalence relation on R" \ {0}
such that all solutions obtained from y(x) by (10)—(11) generate equivalent curves,
i.e., curves passing through equivalent points (may be for different x). We assume
the points (yo, y1,¥2, - -, Yu—1) and (2o, 21, 22, - - - , Zu—1) in R" \ {0} to be equivalent
if and only if there exists a positive constant A such that

= A"y j=0,1,2,...,n— 1.
The quotient space obtained is homeomorphic to the (n — 1)-dimensional sphere:
ST ={yeR": N+t +y =1}
having exactly one representative of each equivalence class since the equation
AZy2 4 Q22002 20612

has exactly one positive root A for any (vo, y1,y2,...,yn—1) € R"\ {0}.

Now, equivalent curves in R” \ {0} generate the same curves in the quotient
space. The last ones are trajectories of an appropriate dynamical system, which can
be described, in different charts covering the quotient space, by different formulas
using different independent variables.

For example, on the chart that covers the points corresponding to positive values
of solutions and has the coordinate functions

. j(k—1
uj:y(/)y_ﬂj Wlthﬂ/=1+J( ),jzl,...,l’l—l,
n
the dynamical system can be written as

dul
, =2 Bius,

i .
X :14;+1—,3ju114,~, ]:2,...,}1—2, (12)
Up—1
;t = —po — Pr—1u1tty—1

with the independent variable

= [ o' a

X0

Qualitative properties of the trajectories of the dynamical system on the sphere
do not depend essentially on whether & in (9) is greater or less than 1. However, the
properties of the related solutions to Eq. (9) differ according to the case, regular or
singular, considered.
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Globally, the dynamical system can have some fixed points, which depends on
the sign of py and the parity of n. They correspond to the solutions to Eq. (9) with
power-law behavior, which can be defined by explicit formulas, namely,

y(x) = £C |x —x*| 7D

with arbitrary x* and C defined by (2), (5), or similar formulas for n > 4.

In the regular case, these solutions, if maximally extended, have a vertical
asymptote at one of their domain boundaries (which is finite) and tend to zero near
another one (which is infinite). In the singular case, the related MU solutions vanish
with all their n — 1 lower-order derivatives at one of their domain boundaries (which
is finite) and infinitely grow in absolute value near another one (which is infinite).

The dynamical system on the sphere can also have nonconstant periodical
trajectories. They correspond to oscillatory solutions to (9) that can be written
with the help of some periodic functions, but can be nonperiodic themselves. Their
extrema and the lengths of their constant-sign intervals behave in different ways
according to the sign of py, the parity of n, and regular or singular case considered.

Investigation of stability of the fixed points and periodical trajectories gives
information on the rest of the solutions to Eq.(9), which appear to have, near
the boundaries of their domains, asymptotically the same behavior as that of the
solutions mentioned before.
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Some Properties of a Generalized Solution
for 3-D Flow of a Compressible Viscous
Micropolar Fluid Model with Spherical
Symmetry

Ivan Drazi¢ and Nermina Mujakovié¢

Abstract We consider the nonstationary 3-D flow of a compressible viscous and
heat-conducting micropolar fluid bounded with two concentric spheres that present
solid thermoinsulated walls. We assume that the fluid is perfect and polytropic in
the thermodynamical sense, as well as that the initial density and temperature are
strictly positive. We take sufficiently smooth spherically symmetric initial functions
and analyze the corresponding problem with homogeneous boundary data.

In this work we give the overview of the current progress in mathematical
analysis of the described problem with particular emphasis on the existence
theorems and the large time behavior of the solution.

Keywords Micropolar fluid ¢ Spherical symmetry ¢ Generalized solution

AMS Subject Classifications: 35Q35, 76N10

1 Introduction

The micropolar fluid is a type of fluid which exhibits microrotational effects, as well
as microrotational inertia which enables us to consider some physical phenomena
that cannot be treated by the classical Navier—Stokes equations. It is important
to emphasize that it has been shown experimentally that the inclusion of the
phenomena at the microlevel significantly improves the mathematical model of the
fluid flow [10].
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The first considerations that go in the direction of studying micro phenomena,
and which are known to science today, appear in the works of Cosserat brothers
created at the beginning of the last century. However, due to its complexity,
this theory remained neglected for many years until in the 1960s. A.C. Eringen
introduced the concept of the micropolar fluid. The model of micropolar fluids in
the last two decades has become an important area of interest for mathematicians
and engineers especially in the modeling of liquid crystals with rigid molecules,
magnetic fluids, clouds with dust, muddy fluids, some biological fluids, etc.

Here we analyze the compressible flow of an isotropic, viscous, and heat-
conducting micropolar fluid, which is in the thermodynamical sense perfect and
polytropic. The model for this kind of flow in the one-dimensional case was
first described by Mujakovi¢ in [7]. In her later works, she analyzed the one-
dimensional model in relation to existence, regularity, and stabilization for different
kinds of problems with homogeneous and nonhomogeneous boundary conditions.
A significant number of results related to this one-dimensional model have been
systematized in the fifth and sixth chapters of the book [11], but for recent progress
in this area, we refer to [8] and [4] and the references cited therein.

In this work we analyze the motion of the described fluid between two concentric
spheres, which enables us to consider the spherically symmetric solution to the
governing system if we assume that the initial functions are spherically symmetric
and smooth enough.

The paper is organized as follows. In the next section, we will describe the
governing three-dimensional system and derive its spherically symmetric form in
the Lagrangian description. Then we will give an overview of the current progress
in mathematical analysis of this problem. We will introduce the generalized solution
to the problem together with the existence and uniqueness theorems. Finally, we will
mention some recent results concerning the large time behavior of the solution.

2 The Mathematical Model

The mathematical model of the described fluid is stated, for example, in the book of
Lukaszewicz [6] and reads

o+ pdivv =0, (1)
ov = divT + pf, (2)
pjiw = divC + T, + pg, 3)
pE=T:Vv+C: Vo —T,-w —divq+ pé, 4)
T=(—p+Adivv)I+2usym Vv + 2u, skw Vv — 2, @ gy, 5)

C = co(dive)l 4+ 2¢ssym Vo + 2¢, skw Vo, (6)
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q=—kVo, (7)
p = Rpb, ®)
E = ¢,0. 9)

Here p, v, w, E, and 0 are, respectively, mass density, velocity, microrotation
velocity, internal energy density, and absolute temperature. T is the stress tensor,
C is the couple stress tensor, q is the heat flux density vector, f is the body force
density, g is body couple density, and § is the body heat density. p denotes pressure
and the positive constant j; is micro-inertia density. A and p are coefficients of
the viscosity, and w,, co, ¢4, and ¢, are coefficients of the micro-viscosity. By the
constant k (k > 0), we denote the heat conduction coefficient, the positive constant
R is the specific gas constant, and the positive constant ¢, denotes the specific heat
for a constant volume.

Equations (1)—(4) are, respectively, local forms of conservation laws for the mass,
momentum, momentum moment, and energy. Equations (5)—(6) are constitutive
equations for the micropolar continuum. Equation (7) is the Fourier law, and
Egs. (8)—(9) present the assumptions that our fluid is perfect and polytropic.
Coefficients of viscosity and coefficients of micro-viscosity are related through the
Clausius—Duhamel inequalities, as follows:

p =0, 34 +2pn =0, pr = 0. (10)

ca>0, 3co+2cs>0, |cg—cal <ca+ca. (11)

Vector T, in Egs. (3) and (4) is an axial vector with the Cartesian components
(Ty); = & T, where g is the Levi-Civita alternating tensor! and sym T and skw T
are the symmetric and skew-symmetric parts of the tensor T. The differential (dot)
operator in Eqs. (1)—(4) denotes the material derivative defined by

. 0Oa
a= o + (Va) - v. (12)

The colon operator in Eq. (4) is the scalar product of tensors defined by
A:B = tr(A'B). (13)
We take the following homogeneous boundary conditions:

a0
Ve =0, @l =0, P 0, (14)
90

I'We assume the Einstein notation for summation.
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where £2 C R? is the spatial domain of our problem and the vector v is the exterior
unit normal vector. These boundary conditions mean that we analyze the flow of the
fluid through a chamber with solid thermo-insulated walls. In our case it will be the
flow between two concentric spheres and we have

R=1x=x.xx):xeR a<|x|<b, x| = \/x% + x3 +x§} .1y
We introduce the spherically symmetric initial conditions:

po(X) = po(r). Vo(x) = vo(r). @o(x) = ’r‘wo(r), Oo(x) = 6o(r).  (16)

r

where po, vy, wp, and O, are known real functions defined on ]a,b[%, x =
(x1,x2,x3) € R3, r = |x| and assume that p, v, @, and 6 are spherically symmetric
too:

v, f) = o), ez = ol ,i=1,2,3, (17)
r r
o(x, 1) = p(r, 1), 0(x,1) = 0(r,1). (18)

Using the assumptions (17) and (18), the spatial domain (15) becomes a one-
dimensional domain ]a, b[. The governing system now takes the form

ap a 20
ot + ar(””) + r v="0 (19
Jdv dv d d (dv v
p(at +v3r) ——Rar(p6)+(k+2u)ar(ar+2r), (20)
(% 0% = —apo + o+ 20 ) (2 42 @
P ¢ T 05 ) = T T “Dar \ or r)’
) (39+u39)—k(329+239)—1¢(9(3”+2”)
Py ot ar) or? r or P or r
dv 02 v({ dv v
+(A+2up) +2 —4p (2. +
or r r or r
ow o) w ow w 5
+(co + 2¢4) +27) —de, (27 7 ) + 40’ 22)
Jar r r Jar r
p(r,0) = po(r), v(r,0)=vo(r), @(r,0)=wo(r), O(r,0)=0(r), (23)
v(a,t) = v(b,1)=0, w(a,t)=w(b, 1)=0, 26 (a, t)=?)9 (b, 1)=0, 24)
r r

for r €]a,b[ and t €]0, T7.

2q and b are the radii of boundary spheres from (15).
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In the mathematical analysis of compressible fluids, it is convenient to use
Lagrangian description. The Eulerian coordinates (r,7) are connected to the
Lagrangian coordinates (£, ) by the relation

r(.1) = ro(§) +/0 v(§.ndr, () =r(.0) =§, (25)

where 0 (£, 1) is defined by ¥(&,1) = v (r(§,1), 7).
We introduce the new function 1 and the constant L by

3 b
7 = / Cools)ds. n(b) = / Spols)ds = L 26)

and define the new coordinate, x = L™'n(£). With this new coordinate the spatial
domain becomes |0, 1], and we finally get the following initial-boundary problem:

op 1,0

9 = 1P e V) 0

=+ (g 0),

P aacto - _4;1%) " COJ':FL?d rp aax (p ?ic (rzw)) ’ >
= it (7050) o0+ [ 0]

_j:zpax (rv?) COcJ:LZZC ' [Pai (rzw)}z_jfzp ai (rw2)+4cl:rw2’ GO

p(x,0) = po(x), v(x,0) =vo(x), w(x,0)=wp(x), 0(x.0)=0b(x), (D

v(0,1) =v(1,1) =0, w(0,f) =w(l,t)=0, 99 0,1 = 99 (1,1) =0, (32)
ox ox

considered on the domain Q7 =]0, 1[x]0, T|.
The function r(x, 7) is defined by

r(x,t) = ro(x) + / v(x, 7)dt, (x,1) € Or. (33)
0

where

1

ro(x) = (a3 43 /0 ) pol(y) dy)3 €0, 1 (34)

and a > 0 is a radius of smaller boundary sphere.
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3 Properties of the Solution

In this section we consider the properties of the so-called generalized solution to the
problem (27)—(32).

Definition 1. A generalized solution to the problem (27)—(32) in the domain Qr is
a function

(x.0) = (p.v,®,0)(x,1), (x,1) € Or, (35)

where
p € L0, T;H'(0, 1D) N H'(Qr) , infp >0, (36)
v,w,0 € L0, T;H' (0, 1)) N H'(Qr) N L2(0, T; H2(]0, 1[)), (37)

that satisfies the Eqs. (27)—(30) a.e. in Q7 and conditions (31)—(32) in the sense of
traces.

Let us mention that by using the embedding and interpolation theorems, one can
conclude that our generalized solution could be treated as a strong solution. In fact,
we have

p € L(0,T;C([0, 1])) N C([0, T],L*(J0, 1]) , (38)
v, w,0 € L2(0,T;C'([0, 1)) N C([0, T], H' (0, 1])). (39)
v,w,0 € C(Qr). (40)

We first analyzed the existence of the generalized solution to the problem (27)-
(32). Using the Faedo—Galerkin method, we proved in [1] the existence locally
in time. After that we analyzed the uniqueness of the solution in [9], and finally
based on extension principle, we proved in [2] the global existence theorem for the
problem (27)—(32). These results are summarized in the following theorem.

Theorem 1. Let the functions py, 6y € H' (10, 1)), vo, wo € H}(0, 1)) satisfy the
conditions

po(x) > m, BGy(x) >m for x€]0,1] 41)
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where m € RT. Then for any T € R, there exists a unique generalized solution to
the problem (27)—(32) on the domain Qr having the property

0 >0 in Q. (42)

In the second stage of our research, we analyzed the large time behavior of the
solution to the problem (27)—(32). Theorem 1 ensures the existence on the arbitrary
but finite time interval ]0, 7[. Because of that we were not able to analyze the
behavior of the solution when ¢+ — oo and had to prove that the solution exists
on the time interval |0, oo[ as well, which is the purpose of next theorem obtained
in [3].

Theorem 2. Let the initial functions py, vo, wo, and Oy satisfy the same conditions
as in Theorem 1. Then the problem (27)—(32) has a solution on the domain Qs =
10, 1[x]0, oo[ with the properties

p € L*®(0, 00; H! (10, 1])), (43)
?;t’ € L*®(0, 00: L2(]0, 1)) N L2(Qc0), (44)
% ¢ 12(0, 001120, 1]). 45)
0x

v.0 € L®(0,00:H'(10. 1)) N H'(Qoo) NL*(0,00: H*(10, 1)), (46)

6 € L°°(0, 00; H'(]0, 1])), 47)
99 e L*(0, 00; H'(]0, 1])), (48)
0x
0,

o € L*(Qwo)- (49)

In the following theorem, which is also proved in [3], we proved the stabilization
of the solution when t — oo.

Theorem 3. Let (p, v, w, 0) be a generalized solution to the problem (27)—(32) in
the domain Q0. Then we have the convergence

(p,v,w,0) — (p*,0,0,0%) (50)

in the space (Hl(]O, 1[))4 when t — 00, where

L |
* = dx, 51
P /0 P ™ G

* 1 ! 1 jI
0 . /0 (CUQO(x) + zv(z) + za)g) dx. (52)
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For the function r, we have the convergence
r—r* (53)

in the space H2(]0, 1[) when t — oo where

r*(x) = (¢ + 3xu*)§ , x€][o,1], (54)

and the constant a is the same as in (34).

The proof of Theorem 2 is based on a series of uniform-in-time a priory estimates
and the proof of Theorem 3 on the results Theorem 2 and application of Friedrichs
and Poincare inequalities.

Recently, in [5], Huang and Lian deduced the nature of the convergences (50)
and (53). They showed that the solution (p, v, w, ) decays to a constant state with
exponential rate. Their result is stated in the next theorem.

Theorem 4. Let (p, v, w, 0) be a generalized solution to the problem (27)—(32) in
the domain Quo. Then there exist constants C; > 0 and y; = y1(C) > 0 such that
for any fixed y €]0, y1] and for any t > 0, we have

e (o) = p*lin + @7 + @7 + 16() = 0*117,:)
+/0te” (ol + lloxllz + lleocllZn + 16117,
+ el + lleodl® + 16:11%) (s)ds < €, (55)
where p* and 0* are defined by (51) and (52).
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under the project number 13.14.1.3.03 (Mathematical and numerical modeling of compressible
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Nonoscillatory Solutions
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Difference System
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Abstract We study nonoscillatory solutions of four-dimensional nonlinear neutral
difference systems. We state asymptotic properties of solutions, and we establish
sufficient conditions for the system to have weak property B and property B.
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1 Introduction

In this paper, we study asymptotic behavior of solutions of a four-dimensional
system:

A (X + prXn—o) = Anfi (Vn)
Ayn = By fa (zn)
Azy = Cuffs (Wn)
Aw, = Dy fi (xy,) .

)

wheren € Ny = {ng,no + 1, ...}, no is a positive integer, ¢ is a nonnegative integer,
and {A,}, {B.},{C,},{D,} are positive real sequences defined for n € Ny. A is the
forward difference operator given by Ax, = x,4+1 — X,,.
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The sequence y : N — N satisfies

lim y, = oc. (H1)
n—oo
The most common form of this sequence is y = n % t, where t € N. The sequence
{pn} is a sequence of the real numbers and it satisfies 0 < p, < 1. Functions f; :
R — Rfori = 1,..,4 satisfy
B wero. (H2)
u
This property implies that  and f; (1) have the same sign fori = 1, ..,4 and u € R\0.

Throughout our paper we assume that the system (S) is in the canonical form, which
means that the following conditions hold

o0 o0 o0
ZA,,:oo, ZB,,:oo, ZC,,:oo. (H3)
n=ng n=ng n=ng

By a solution of the system (S), we mean a vector sequence (x,y, z, w) which
satisfies the system (S) for n € Ny. We investigate nonoscillatory solutions in this
paper. Therefore, the first important thing is to divide solutions into oscillatory and
nonoscillatory.

The component x is said to be nonoscillatory if it is either eventually positive
or eventually negative. The non-oscillation of the components y, z, w is defined
by the same way. A solution of the system (S) is said to be nonoscillatory if all
of its components x, y, z, w are nonoscillatory. Otherwise, a solution is said to be
oscillatory.

Another important property is the boundedness. A solution of the system (S)
is said to be bounded if all of its components x, y, z, w are bounded. Otherwise, a
solution is said to be unbounded.

Definition 1. The system (S) has weak property B if every nonoscillatory solution
of (S) satisfies

XnZp > 0 and y,w, > 0 for large n. (1)

Definition 2. The system (S) has property B if any nonoscillatory solution of (S)
satisfies either

lim |x,| = lim |y,| = lim |z,| = lim |w,| = oo, 2)
n—>o0 n—>o0 n—>oQo n—>oo
or
lim x, = lim y, = lim z, = lim w, = 0. 3)
n—>o00 n—>o00 n—>o0 n—>o00
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Solutions satisfying (1) and x,y, > O are called strongly monotone solutions,
while solutions satisfying (1) and x,y, < 0 are called Kneser solutions. Hence,
weak property B means that any nonoscillatory solution is either Kneser or strongly
monotone solutions and property B means that these solutions are either unbounded
or vanishing at infinity in all their components. Property B is defined in accordance
with those for the higher-order differential equations or for the system of differential
equations; see [7] and references therein.

In the last few years, great attention has been paid to the study of neutral
difference equations. The system (S) is a prototype of even-order neutral systems
and can be easily rewritten as a fourth-order nonlinear neutral difference equation.
Equations with quasi-differences have been widely studied in the literature; see,
for example, [2-6, 8, 9]. Oscillatory properties of solutions of the fourth-order
difference equations are investigated in [6]. Their approach is based on studying
the considered equation as a four-dimensional difference system, where {D,} is a
negative real sequence. Asymptotic properties of neutral type difference equations
can be found in [8]. The problem of boundedness of solutions of (S) with y, = n—r
has been investigated in the recent paper [1].

The aim of this paper is to investigate asymptotic behavior of nonoscillatory
solutions of (S). We are motivated by the paper [2], where asymptotic properties of
(S) with {p,} = {0} have been investigated. We extend results from [1] and [2].
We give sufficient conditions that (S) has weak property B and property B. This
completes the results from [6], where they study property A.

2 Preliminaries

First, we point out some basic properties of (S) which we use to prove the main
results of the paper.
Throughout our article, we use the notation

Sp = Xn + PnXn—c» (4‘)

where n € Nj.

Lemma 1. Let {x,} and {p,} be real sequences, where n € Ny and p,, satisfy 0 <
pn < 1. Let {s,} be the sequence defined by (4). Then {x,} is bounded if and only if
{sn} is bounded.

Moreover, if s is positively increasing for large n, then for large n

Xn = Sn — PnXn—o > Sn — PnSn—0c > Sn—a(l _pn) (5)
Proof. By (4) and the fact p, > 0, we get the equivalency between the boundedness

of x and s.
The second statement follows from the fact x, < s, and 5,5 < s,,.
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Lemma 2 ([6, Lemma 1]). Assumelimp, = P, 0 < P < 1. If x is bounded and
lims, = S € R,

then x is convergent and

limx, = .
1+P

In particular, if s tends to zero as n — 0o, then x tends to zero as n — 00, t0o.

If the system (S) has a solution (x,y,z,w), then it has the solution
(—x, —y, —z, —w) as well. Thus, throughout the paper, we can focus on solutions
whose first component is eventually positive for large n.

The following lemma describes the possible types of nonoscillatory solutions.

Lemma 3. Any nonoscillatory solution (x,y, z, w) of the system (S) with eventually
positive x is one of the following types:

type (a) x, > 0y, >0z, > 0w, >0 for large n,
type (b) x, >0y, >0z, > 0w, <O for large n,
type (¢) x, >0y, <0z, > 0w, <O for large n.

Proof. Let (x,y,z,w) be a nonoscillatory solution of (S) such that x,, > 0 for large
n. There are eight possible types of these solutions. We prove that solutions of the
following types do not exist:

type (i) x, >0y, >0z, <0 w, > 0 for large n,
type (ii) x, >0y, <0z, <0 w, > 0 for large n,
type (iii) x, > 0y, <0z, < 0w, < 0 for large n,
type (iv) x, > 0y, > 0z, < 0w, < 0 for large n,
type (v) x, >0y, <0z, > 0w, > 0 for large n.

First, assume that there exist n; € Ny and a solution such that z, < 0, w, > 0
for n > n; > ny. From the fourth equation of (S), we have Aw, > 0 and this
implies that there exists k > 0 such that w, > k for large n. Using (H2) we have
f3(w,) = w, > k. By the summation of the third equation of (S), we have

n—1 n—1
== Y_Cfiw) = kY Ci.

i=ng i=ng

Passing n — 0o, we get a contradiction with the fact that z, < 0. This excludes
solutions of types (i) and (ii).

Let us suppose that there exists solution such thatx,, > 0, y, < 0, z, < 0 for large
n. By (4) s is positive and the first equation of (S) implies that s is decreasing for
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large n. Therefore, s is bounded. Since y is eventually negatively decreasing, there
exists # < O such that y, < h. Using (H2) we have f;(y,) < y, < h. Using the
summation of the first equation of (S) and passing n — oo, we get a contradiction
with the boundedness of s. Therefore, a solution of type (iii) cannot exist.

Assume that there exists a solution of type (iv). Therefore, we have z, < 0 and z
is decreasing for all large n. This implies that there exists / < O such that z, </ for
large n. From (H2) we get f>(z,) < z, < . By the summation of the second equation
of (S) and passing n — oo, we get a contradiction with the positivity of y.

Finally, assume that there exists a solution of type (v). Therefore, we have z, > 0
and z is increasing for all large n. This implies that there exists g > 0 such that
Zy > g for large n. From (H2) we get f>(z,) > z, > g. Using the summation of the
second equation of (S), we get a contradiction with negativity of y. Thus, solutions
of type (v) cannot exist.

By Definition 1, the system (S) has weak property B if there exist only solutions
of type (a) and (c). Solutions of type (a) are called strongly monotone and solutions
of type (c) are called Kneser solutions. We have to determine some asymptotic
properties of these solutions for the purpose of investigation property B. Properties
of strongly monotone solutions are summarized in the following lemma.

Lemma 4. Any solution of type (a) satisfies

lim x, = oo, lim y, = oo, lim z, = oo. (6)
n—o00 n—>o0o n—>oQ

Proof. Let (x,y,z,w) be a solution of type (a). Because y is positive and increasing,
there exists k > 0 such thaty, > k for large n. By the summation of the first equation
of (S), we get

n—1 n—1 n—1
Sn —Sno = ZALﬁ (y,) 2 ZA,'yi 2 kZA,

i=ng i=ng i=ng

Passing n — oo we get s, — oo. Lemma 1 implies that s is unbounded if and only
if x is unbounded. Therefore lim,,— o0 X, = 00.

To prove the other statements, we use similar arguments. Because z is eventually
positively increasing, there exists 4 > 0 such that z, > h for large n. Using the
summation of the second equation of (S), we get y, — oo forn — oco.

Finally, w is eventually positively increasing; thus, there exists / > 0 such that
w, > [ for large n. By the summation of the third equation of (S), we obtain that
zn — oo forn — oo.

The following lemma summarizes properties of Kneser solutions.

Lemma 5. Any solution of type (c) satisfies

lim y, =0, lim z, =0, lim w, = 0. @)
n—>0o0 n—o0 n—>o0
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Proof. Assume that the solution (x,y,z, w) is of type (c). Since y is negative and
increasing, there exists lim,—.o ¥y, = k, k < 0. If £ < 0, then from the summation
of the first equation of (S), we get s, — —oo as n — oo, which is a contradiction
with the boundedness of s. Therefore lim,,— 00 y, = 0.

Since z is eventually positively decreasing, there exists lim,—»c02, = h > 0.
Suppose & > 0. By the summation of the second equation of (S), we obtain a
contradiction with the negativity of y. Thus, lim,—c0 2, = O.

Similarly, since w is eventually negatively increasing, there exists lim, o w, =
I < 0. Suppose I < 0. By the summation of the third equation of (S), we obtain a
contradiction with the positivity of z. Therefore lim,— o w,, = 0.

Now, we can continue to state sufficient conditions for the system (S) to have
weak property B and property B.

3 Property B

The first theorem gives the simple criterion that system (S) has property B.
Theorem 1. If

Y Dy=o0 8®)

n=ng

holds, then the system (S) has property B.

Proof. By Lemma 3, there are only three possible types of nonoscillatory solutions.
Assume that (x,y,z, w) is a type (b) solution. Since x is positive, then s is positive
and from the first equation of (S) we get that s is increasing. Therefore, by Lemma 1
there exists a real constant k > 0 such that x, > k for large n. By the summation of
the fourth equation of (S), we get

n—1 n—1 n—1
Wa—Way = _Difa(x,) = > Dixy, = kY Di. )

i=ng i=ng i=ng

Passing n — oo we get the contradiction with the negativity of w. Thus, the system
(S) does not have solutions of type (b).

If (x,y,z,w) is a solution of type (a), then using the same argument as in the
previous and by (9), we get w, — oo for n — oo. From this fact and Lemma 4, we
get that all solutions of type (a) satisfy (2).

If (x,y,z,w) is a solution of type (c), then there exists lim,— o x, = h, h > 0.
If we assume h > 0, then by the summation of the fourth equation of (S), we get
a contradiction with the negativity of w. Therefore, lim,— o X, = 0. From that fact
and Lemma 5, we get that all solutions of type (c) satisfy (3).

Now, we get the assertion by Definition 2.
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In view of Theorem 1, in the sequel, we assume Zn —no D, < o0.

In the following, we state sufficient conditions for the system (S) to have weak
property B and property B. To ensure these properties, we have to exclude solutions
of type (b). The following theorem gives a condition for the nonexistence of
solutions of type (b).

Theorem 2. If

00 i—1
YDi[> G =00 (10)

i=ng J=no

holds, then the system (S) has weak property B.

Proof. By Definition 1, weak property B means that there exist only solutions of
types (a) and (c). Assume that (x,y, z,w) is a type (b) solution. Since x is positive
and s is positive and increasing, by Lemma 1 there exists k > 0 such that x,, > k for
large n. By the summation of the fourth equation of (S), we get

00 ) 00

w, = Zle4 (xyl.) > ZD,’XW > kZD,’, 1)
i=n N i=n i=n
W, = kZD,

Using the summation of the third equation of (S), we have

— g = Z Cifs (W) < Z Ciwi,

i=ng i=ny
n—1 00
zn+zn()>ZC(w,)>kZC ZD
i=ny i=ng Jj=i

Passing n — oo and using the change of summation

[e9) i—1
Ya(Ta)-n(ro)-=~

i=no i=ng J=no

we get the contradiction with the boundedness of z. Thus, solutions of type (b) do
not exist and (S) has weak property B.
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Theorem 3. Assumelimp, = P, 0 < P < 1 and

ipi yiflAj(jin (kic,)) = 0. (12)

i=ng J=no k=ny I=ny

In addition, if (10) holds, then the system (S) has property B.

Proof. By Theorem 2, the system (S) has only solutions of types (a) and (c). Let
(x,y,z, w) be a solution of type (a). Thus, w is positively increasing, and there exists
a constant ¢ > 0 such that w,, > ¢ for large n. From the third equation of (S), we get

n—1 n—1 n—1
W= Y CHiw) =)y Cwi=t) C.
i=ng i=ng i=ng

Substituting this into the second equation of (S), we obtain

> ZBJZ(Z,)> ZB,Z, ZtZB ZC

i=ng i=ng i=ng J=no

Using the first equation of (S), we have

n—1 n—1 i—1 Jj—1
si= Y Afi) =ty Al Y B (Z ck) . (13)

i=ng i=ng J=no k=ng

Since s is positively increasing, by Lemma 1 the inequality (5) holds. Taking into
account lim(1 —p,) = 1 — P > 0, there exists p > 0 such that 1 —p,, > p; therefore,

Xn 2 Sn—a(l _pn) 2 P Sn—0o-

Substituting (13) into the fourth equation of (S), we get

n—1 n—1 yi—o—1 Jj—1 k—1
=S 0wz S 3 4 (Z B (Z cl))

i=ng i=ng J=no k=ng I=ny

Passing n — oo we get w, — oo. From here and Lemma 4, solution of type (a)
satisfies (2).

Now assume that (x,y, z, w) is a solution of type (c). By Lemma 5, we have to
prove that lim,— - x, = 0. Because s is positive and decreasing, it is bounded.
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Thus, there exists lim, 00 s, = S, S > 0. By Lemma 2, there exists lim,,— o X, =
S/(1 4+ P).Puth =S/(1 + P). Assume S > 0. Then 2 > 0. Using Lemma 5, (H2),
and the summation from # to infinity of the fourth equation of (S), we obtain

oo
W, = hZD,

Substituting and using the summation of the third equation of (S), we have

—zn+zn0>ZC( w,)>hZC ZD

J=no J=no

Passing n — oo and using the change of summation, we get that (10) implies
> (Z i=j D) = oo. This leads to the contradiction with the boundedness

of z. Therefore, h = 0.
Now, we get the assertion by Definition 2.

Example 1. Consider the system:

A (xn + Pxn—(f) = Yn
Ayn = Zn

14
Az = w, (14)

Aw, = 17V (Xut0)

where0 < P< 1,7 € N.
The system is in the canonical form. We apply conditions from Theorem 3:

!
8

i=ny Jj=nop k=ny \l=ng

i—1

S [1) = oo

i=ng J=no

They are all satisfied. Thus, the system (14) has property B.
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4 Concluding Remarks

Results of this paper generalized results in [2] and make a motion to study the system
(S), for example, when (S) is not in the canonical form.

Another interesting problem is to study (S) with —1 < p, < 0. In this case, the
problem is existence of unbounded solution of type x, > 0,y, < 0,z, <0,w, <0
for large n.

Acknowledgements This paper was processed with contribution of long-term institutional sup-
port of research activities by the Faculty of Informatics and Statistics, University of Economics,
Prague.
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Comparison Theorems for Weighted Focal
Points of Conjoined Bases of Hamiltonian
Difference Systems

Julia Elyseeva

Abstract In this paper we prove comparison theorems for the number of weighted
focal points of conjoined bases of Hamiltonian difference systems. The notion of a
weighted focal point introduced by O. Dosly and J. Elyseeva (Appl. Math. Lett. (43)
2015, 114-119) plays an important role in spectral theory for discrete Hamiltonian
eigenvalue problems with nonlinear dependence on the spectral parameter. We
present new relations between the numbers of weighted focal points of conjoined
bases of two Hamiltonian systems and derive corollaries to these relations general-
izing comparison results for the classical number of focal points. The consideration

is based on the comparative index theory for symplectic difference systems.

Keywords Hamiltonian difference systems ¢ Weighted focal point ¢ Discrete

Sturmian theory ¢ Comparative index

Mathematics Subject Classification (2000): 39A21, 39A22

1 Introduction

We consider the discrete Hamiltonian systems [3, 15]

Axpr1 = Axpg1 + Brug,  Aug = Crxp41 —A,{uk, det (I —Ak) 75 0,

Akip1 = A + Buir, Ay = Cidyyr — Ally,  det (1 _Ak) # 0,

k=0,1,...,N,
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associated with the Hamiltonians

_ T _ —Ck A/{ 2 _ "T » _ _ék A\/{
jﬁ(_%s %_(Ak Bk s t}ﬁ(_%v %(_ A‘k B‘k ) (3)

where Ay, Bi, Cy, Ak, ék, C‘k € R™". System (1) is the most important special case
of the discrete symplectic systems

Xk

Yit1 = ik, yk=( )GRZ”, k=0,1,....N. “

Ui

The matrix .%; with the blocks <%, %y, G, Zr € R™" is symplectic, i.e.,

_ "Q{k%k T . _ OI B
«Eﬂk—(%( @k)’ SIS =, J—(_IO), k=0,1,...,N, (5

I being the n x n identity matrix. For Hamiltonian system (1), this matrix has the
form
(I—-A)~! (I —A)™'By
= . 6
: (ck(l —A)T G —A) B+ T A] ©

In this paper, we derive comparison results for the number of weighted focal points
of conjoined bases of (1) and (2). This new notion was introduced in [8] for
discrete eigenvalue problems for the Hamiltonian difference systems with nonlinear
dependence on spectral parameter. The notion of a weighted focal point coincides
with the classical notion of focal points [3, 4, 16] in the case when the symmetric
matrix By in (1) is nonnegative definite, i.e., By > 0. In the general case, ind(By) # 0
(here indA is the number of negative eigenvalues of A = AT); the number of
weighted focal points is closely related to the notions of weighted nodes (for
n = 1) and relative oscillation numbers (for n > 1) introduced for the Wronskians
of solutions of the scalar and matrix difference Sturm—Liouville equations (see
[1, 2, 14]). For example, for the discrete Sturm-Liouville equation

A(rkAxk)—qukH :0, 14 750, k:(), ...,N—l (7)

(which can be rewritten in form (1)) the number of (forward) weighted focal points
is defined as follows (see [8, Example 2.2])

I, ne>0, x #0, xpxe41 <0,
#) = 4 =17 <0, 41 # 0, X341 <0, (®)
0, otherwise.

Then, for the case r;, > 0, the quantity #(x;) > 0 coincides with the multiplicity of a
generalized zero of x; and takes the values from the set {0, 1}. For arbitrary r; # 0,
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we have by (8) that any strictly positive (negative) solution x; of Eq. (7) is weighted
nonoscillatory, i.e., #(x;) = 0, k > 0. Note that for any other nontrivial solution

N

% of (7), in this case we have the estimate [#(%,0,N)| < 1, #(X,0,N) = Y_ #()
k=0

(see the next section), and then for the total number I(x, 0, N) of generalized zeros

N N

in (0,N + 1], we derive Y ind(ry) — 1 < I(x,0,N) < > ind(ry) + 1, where
k=0 k=0

ind(ry) = 1 for r, < 0 and ind(r) = 0, r; > 0. For example, this estimate holds

for any nontrivial solution of the Fibonacci sequence xz4+2 = X341 + X rewritten in
form (7) with r, = (—1)*. So we see that the notion of a weighted focal point can
be useful in the investigation of the oscillatory behavior of conjoined bases of (1)
with respect to the behavior of > ind(By).

In this paper, we present analogs of classical comparison theorems [5-7, 11]
for weighted focal points (see Sect. 3). So we prove an analog of [11, Theorem 2.1]
presenting relations between the number of weighted focal points of conjoined bases
of (1) and (2) (see Theorem 1). Then we derive corollaries to Theorem 1 based on
the modified majorant condition %, > .7 for the discrete Hamiltonians (3). Note
that this condition coincides with the classical one for discrete Hamiltonian systems
[5, 7] if and only if ind(ék) = ind(By) (see Corollary 2 in the next section). In the
general case, the classical majorant condition is not assumed to be satisfied in the
results of Sect. 3.

2 Number of Weighted Focal Points

We will use the following notation. For a matrix A, we denote by AT, A~! AT rank A
and ind A, respectively, its transpose, inverse, Moore—Penrose pseudoinverse, rank
(i.e., the dimension of its image), and index (i.e., the number of its negative
eigenvalues). We use the notation Sp(2m) for the group of symplectic matrices of the
dimension 2m, and we also use the notation AA; for the forward difference operator
Aj+1 — Ag. By I and 0, we denote the identity and zero matrices of appropriate
dimensions.

Recall now some basic concepts of the oscillation theory of symplectic difference
systems (4) (see [4]).

A 2n x n matrix solution Y, = (f,i) of (4) with n x n matrices Xy, Uy is said to
be a conjoined basis if

rankY; =n and XkTUk = UZXk )
and the conjoined basis Y; of (4) with the initial condition Y}, = ((1)) atk = M is
said to be the principal solution at M.

The concept of multiplicity of a focal point of a conjoined basis Y; of (4) was
introduced in [16] as follows. Let

My = (I = Xe1 X ) B, Ti = 1 — MMy, Py = TI XX BT
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then obviously M;T;, = 0, and it can be shown (see [16]) that the matrix Py is
symmetric. The multiplicity of a forward focal point of the conjoined basis Y in the
interval (k, k 4 1] is defined as the number

m(Yk) = ml(Yk) + }’l’lz(Yk), ml(Yk) = rankMk, mz(Yk) = inde. (10)
Based on the previous definition, we introduce the number of weighted focal points

as follows (see [8]).

Definition 1. A conjoined basis Y, of Hamiltonian difference system (1) has a
weighted (forward) focal point in (k, k 4 1] if m(Y;) —ind(By) # 0. In this case, the
number of weighted (forward) focal points in (k, k + 1] is defined as

#e = #(Y) 1= m(Y)) — ind(By), (1n
where m(Y}) is given by (10).
Note that we have the estimate for #(Y) (see [8])

|#(Yy)| < rank By < n.

Another important estimate for the number of weighted focal points of conjoined
bases Y, Y of (1) follows from the separation result (see [10, Corollary 3.1] and
N

[9) |I(Y,0,N) — I(Y,0,N)| < rankw(Y,Y) <n, I(Y,0,N) = > m(Y)), where the

k=0
Wronskian given by

w(Y,Y) =Y"JY (12)

is constant for conjoined bases of Hamiltonian system (1) (see [4]). Using (11), we
have the same estimate for weighted focal points of conjoined bases of (1)

N
[#(Y.0.N) = #(Y.0.N)| < rankw(Y. V) < n. #(Y.O.N) = ) _#(¥y).  (13)
k=0

The main results of this paper are based on the comparative index theory established
in [1AO, 11]. According to [10], we define the comparative index for 2n x n matrices
Y, Y with condition (9) using the notation

M= (I—-XXDHX, X =[10]Y, X = [I0]Y,
T=1-M M, 2 =97 = TwW (Y. Y)XIXT,

where w(Y, ?) is the Wronskian given by (12). The comparative index is defined
by u(Y,Y) = w1 (Y,Y) + p2(Y,Y), where w1 (Y,Y) = rank# and p,(Y,Y) =
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indZ. According to [11, p. 449, Property 7] for the comparative index, we have the
estimate

0 < u(Y,Y) <rankw(Y,Y) <n. (14)

Comparison theorems for symplectic difference systems derived in [11] are based
on the following notion of the comparative index for a pair of symplectic matrices.
Here, we use the notation

A=) 7=(03)7=(e7) 7=(77)

for arbitrary symplectic matrix . separated into n x n blocks &, 4, ¢, I
according to (5). In [11, Lemma 2.3], we proved that 4n x 2n matrices (-}, ()
associated with .7, . € Sp(2n) obey (9) (with n replaced by 2n) and then the
comparative index for the pair (), () is well defined. For the comparative index
of the symplectic coefficient matrices .%, . associated with (1) and (2) by (6), we
derive the following result.

Lemma 1. Let .7, 5’% be the symplectic coefficient matrices associated with (1)
and (2) via (6), then

(), (A)) = ind(H4 — HR) + ind(By) — ind(By), (15)

where 54, jﬁ are the discrete Hamiltonians given by (3).

Proof. Using (6) it is easy to verify by direct computations that

I 0
Ac By A1 ({01 (I1
L{F)P = =0 L=d , ,
(i) Ci —AT (—jﬁ Be\\=rr) 10
0 I
1000
0007
N = ,
00170
0-100

I — Ay —By
0 I
symplectic block diagonal, we can apply [10, p. 448, Properties 1,2] evaluating

where L, 91 € Sp(4n) and P = ( ) € R 2" Since detP # 0 and L is

R, () = WIL(FP, L{LAIP) = (mT (_I%),W (_%)) :

where P associated with (2) is defined by analogy with P.
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Next, applying [10, Theorem 2.2] with W = N, Z[0/]T = (_;ﬁ), zon' =

(_1 ; ), we derive

o
(L) (L)) = 1 (o) (Lha)
1 (L) M) = 1 (L) ().
where we have used [10, p. 449, Property 9]. By the definition of the comparative

index, the addends in the right-hand side of (16) coincide with the respective
addends in (15). The proof is completed. O

(16)

Corollary 1. The condition

R, (Fi) =0 (17)
holds if and only if
ind(J4 — 54) = ind(By) — ind(By) (18)
Corollary 2. The condition
A = A (19)

and (17) are simultaneously satisfied if and only if ind B, = indBy.

3 Main Results

In this section, we derive relations between the number of weighted focal points of
conjoined bases of (1) and (2) (compare with [11, Theorem 2.1]).

Theorem 1. Let Yy, fk be conjoined bases of (1) and (2) and Zy, 2k be symplectic
fundamental matrices of these systems such that the conditions Yy = Z;[0 1], Y =
Z[01]T hold. Then for the numbers #(Yy), #(Y) of weighted focal points of Yy, Yy
in (k, k + 1], we have the relation

#(Ve) — #(Y) + Au(Yi, Yo) = ind(A4 — A7) — p({Zih Zi ) (20 Z4)), (20)
and hence
#(Y.M,N) —#(Y.M.N) + pu(Yn+1, Yn41) — £ (Yar, Yr)

N , . . @1)
= k%(lnd(«%'fc — 1) — W Zi 1 Zi ) A2 Z1))),s

where #(1?, M,N), #(Y,M,N) are the numbers of (forward) weighted focal points
in(M,N + 1].
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Proof. For the proof we use [11, Theorem 2.1] and [7, Theorem 3.3]. Under the
notation of Theorem 1, we have the following relation between the classical number
m(Yy), m(Yy) of focal points of conjoined bases Yy, Yy of symplectic difference
systems with the coefficient matrices .%%, %

m(Yy) —m(Y) + Au(Ye, ¥i) = n({(F), () — n(Zik Zisa), <Z}—lzk>).22
(22)

Substituting into (22) representation (15) for u({-#%), (52,()) and using Definition 1
of the number of weighted focal points, we derive (20). Summing (20) from k = 0
to k = N, we prove (21). The proof is completed. O

Corollary 3. For the left-hand side of (20), we have the estimate
~ind( — ) < #(Ye) = #(Y0) + Ap(Ye. Vi) < ind(H — ) (23)

and then

N A A A
— Y ind(JG — ) — p(Yn1, Yn1) < #(Y,M,N) —#(Y,M,N)
k=M
N R X 24)
< > ind(4 — H) + w(Yu, Yi)
k=M

Proof. The right inequality in (23) is the direct consequence of (20) because
w((Zi L\ Zis1). (Z ' Zi)) = 0. The left inequality is based on the equality (see [11,
Theorem 2.1])

1A AP — B2t Zir)) A2 Z)

= (2" 2, 2k Zen) = () (A), (25)
then, using (25) by analogy with the proof of Theorem 1, we derive

ind(A4—0)— 1 (2t Zis1 ) A2 Zi) = (2 ) 2k Zagr ) — ind(S4—44).
(26)

The left inequality in (23) follows from (26) because 1 ((Z; ' Z), (ZA,;lleH)) > 0.
Summing (23) and using that any comparative index is nonnegative, we derive (24).
|

So we see that inequality (24) generalizes estirpate (13) to the case when Y, Y are
conjoined bases of (1) and (2) (note that u(Y,Y) < n by (14)).

Corollary 4. Assume (19); then for any conjoined bases Yy, Yi of (1) and (2), we
have

N
— > " rank(H — H4) —n < #(V.M.N) —#(Y.M.N) <n, 27)
k=M
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in particular, if Yy is the principal solution of (2) at M, then
N
— D rank(Hf — ) —n < #(T.M.N) —#(Y,M,N) <0, (28)

k=M

Remark 1. (1) Note that the classical majorant condition (17) (see [7, formula

(i)

(iii)

(2.13)]) for systems (1) and (2) is not assumed in the resu}ts of this segtion.
In particular, under assumption (19) we have u({-%%), (%)) = ind(B;) —
ind(By) > 0. If we assume (19) and #(Y,M,N) = 0, we have by (28) that

N
— D rank(# — A4) —n < #(Y.M.N) <0 (29)
k=M

for the principal solution Y of (2) at M, i.., the number of weighted focal
points of this solution is non-positive.

If we assume majorant condition (17), then for the classical number of
focal points of Y, Y in (M,N + 1], we have by Corollary 1 and (24) that
l(YMN)—l(YMN) < nandl(YMN)—l(YMN) < 0 when Yy is
the principal solution of (2) at M (see [6, Theorems 1.2,1.3]). In particular,
I(Y,M,N) = 0 implies l(?, M,N) = 0 for the principal solution of (2) at M
(compare with (29)).

As it was pointed out in [8, Remark 2.8(ii)], the notion of a weighted focal point
is important in the development of the relative oscillation theory for Hamil-
tonian eigenvalue problems. Relative oscillation theory developed for linear
symplectic spectral problems in [12, 13] measures the difference between
the spectra of rwo different eigenvalue problems, rather than measuring the
spectrum of one single problem only. Similar results, incorporating the new
notion of weighted focal points, we hope to prove for discrete eigenvalue
problems with the different Hamiltonians % (1), 5% (1). Theorem 1 is the
first step in this direction.

Acknowledgements This research is supported by the Federal Programme of Ministry of
Education and Science of the Russian Federation in the framework of the state order [grant number
2014/105].
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Interpolation Method of Shalva Mikeladze
with Following Applications

Liana Karalashvili

Abstract The paper deals with the numerical method of Shalva Mikeladze, the
accuracy of which depends on the number of interpolation points. The method
called the method without saturation is devoted to the numerical solution of ordinary
differential equations. It is constructed on the basis of an interpolation formula
to solve numerically linear and nonlinear ordinary differential equations of any
order and systems of such equations. Using its different versions, it is possible
to solve boundary value, eigenvalue, and Cauchy problems (Mikeladze, Soobsh
AN GSSR 45(2):284-296, 1967 and Mikeladze, Soobsh AN GSSR 47(2):263-268,
1967). This method in combination with the method of lines can also be applied
to solve boundary value problems for partial differential equations of elliptic type
(Makarov, Karalashvili, Soobsh AN GSSR 131(1):33-36, 1988). As a model, the
Dirichlet problem for a Poisson equation in the symmetric rectangle is considered.
This application created a semi-discrete difference scheme with matrices of central
symmetry having certain properties.

Keywords Method without saturation ¢ Interpolation points * Boundary value
problem ¢ Centro-symmetric matrices

Mathematics Subject Classification (2000): 35J25, 65N40

1 Introduction

In the 60s of the last century, several works of Shalva Mikeladze [5, 6] were
published, where he proposed a new numerical method of solving ordinary differ-
ential equations. The method was based on his general interpolation formula for
solving numerically any order linear and nonlinear ordinary differential equations
and systems of such equations
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yW (a+hig) = Hy + 0y AR (@ + he) + Ryl (1)
v=1
where
n—k—1 . hl 1
forlp _ (k+2) fartp
HYY = ;) (1 —1)" T @+ hta) . A = k1)
m M —1 ig e
XE:[FUR_“@ /(m—ﬁ" P, (D dt, )
p=v bs=1 la
sF#Ev

Rfo(sf/j hm+n—k

mk = (n—k—1)!

tﬁ ke
x/ (15— 1) P ()Y (a+ ht,a+hir, ... ,a+ hiy)di, (3)
o

h = (::l:_"l), (b —a) is the length of integration segment, k = 0,n—1,
B=1m+ 1.

Formula (1) in different versions can be used to solve boundary value, eigenvalue,
and Cauchy problems.

The same formula can also be obtained by means of the Lagrange interpolation
formula [2], in which

1 s —k—1
AP — / ts — 1) M () dt, 4
v,k (I’l—k—l)' " (ﬂ ) v() “

" t—D(=2)...(t—
wherel](. )(t): (, ,)( ) E m). ,
_ (t=DG = DI=D)" (m = ))!
polynomials.
Because of the uniqueness of interpolation polynomials (2) and (4), they are

identical. In the case of equidistant location of interpolation points on the integration
segment 13 = 3, t, = 0, formula (2) can be simplified for easy calculations.

j = 1,m are Lagrange fundamental

2 Semi-Discrete Scheme for the Dirichlet Problem
with a Poisson Equation

One of the methods of solving partial differential equations is the well-known
method of lines [1]. According to this method, in the two-dimensional case, the
discretization of a differential operator is carried out by one independent variable,
and the initial problem is reduced to a system of ordinary differential equations.
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Here, we use the method of lines which is modified with the aid of Mikeladze’s
formula. This modified method establishes the relation between the function u(x, y)
and its second-order partial derivatives by y variable with a constant step &

W —b 1) = 20+h22A013u(x b+vh)+Rm0() (5)
where
Ay (. — , i
Z (zh) d u(x b)7 A% = / (i—1)- 1 (r) drt (6)
0

0.i — hm+2 ! .
Rm,o(x) /0 (i—1)

82u(x,—b—|—ht,—b—}—h,...,—b—}—mh)dt

(N

Let us assume that at any region 2, the function u(x, y) has m + 2 partial derivatives
with respect to the variable y. Using (5) we obtain

u,y+ @+ 10)h) —2u(x,y+ih) +ulx,y+ (@—1)h)

- i1 0%u (x,y + vh)
0,i—1 ’ 0,i—1
=i? Z AIAYG oy2 + ARG (8)

It is required to find a function, which is a solution of the following boundary value
problem

0%u (x, ) n 0%u (x,y) _

" e =) @) € Qun =0, xNEr O

Let us cover the region 2 = {(x,y)| —a <x < a;—b <y < b} by the lines
y =y = —b + ih,i = 1, m, which are parallel to the x-axis with the interval 7 =
2b/(m + 1). Denote u; (x) = u (x,y;) and f; (x) = f (x, y;). Each triple of functions
ui—y (x), u; (x), w41 (x) satisfies equality (8) which we rewrite as follows

N l I 3 M(.x )
Z(AO o _ZAO Aeo 1) g i}—}v

4+ h2 (i1 (x) — 2u;(x) + uim1(x)] = h_zAViR?n’,io-
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. o Pu(xy) Y

But by virtue of Eq. (9), we have the relation 902 ‘ y=y, = —fu (¥) — u](x).

y

Substituting this expression into the preceding equality, we obtain the following
system of ordinary differential equations

m

S @Y =240, + AVl () + £, ()]

v=1
+ B i1 () — 2ui(x) + uim1 (x)] = h2AV; R?,,lo, (10)
x € (—a,a),up(x) = tpy1 (x) =0,u;(£a) =0, i=1,m,
where
AViRy) = R)H () = 2R)L () + R (@), (1)

Neglecting the remainders and denoting the approximate solutions by v;(x), we get
the semi-discrete scheme of the modified method of lines

Za ]:n) V') 4+ £ @] + AT 2vig1 (x) — 20;(x) + vie ()] = 0, (12)
v=1
where
e = A% A% 4+ A% = AV (13)

vy () = vpt1 (x) =0, x€(—a,a), vi(xa)=0, i=1m.

Let us write (10) and (12) in the vector-matrix form

AWU" +F) 4+ h*MU = h™*MR, U(4a) =0 (14)
AWV" +F)+ h™*MV =0, V(4a) =0, (15)
where
A=Ay =1a"'s). M =M, =[1.-2.1]/_,.

= (1 (%), u2(x), ..., um(x))",

= W1 (), 1202), ..., v, (), F=\%).L0), ... . [ux)T,

= (R) (1), Ry (). .. R ()T

In the case of equidistant lines, a;.'”) = AV,AS‘;B can be transformed to the

following form, convenient for calculations
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ay” / / 1™ (1) drdz (16)
i—1

2z
al” = / / 1 (¢t + i — 1) drdz (17

(m) / (1—-x) [l(m) (x+i)+ l(m) (—x + l)] dx. (18)

As to the matrices in semi-discrete scheme (15), we may say that M,, =
[1,-2,1]1" is a three-diagonal non-singular double-symmetric matrix (symmetric
and centrosymmetric), corresponding to the second difference derivative with the
well-studied properties. As to the matrix A,,, it is a centrosymmetric matrix with
certain properties, which behaves as a unit matrix. If we multiply matrix-vector
Eq.(15) from the left by M~! and solve the eigenvalue problem for the matrix
B = M™'A, then the system of differential Eq.(12) splits into m equations with
only one unknown function in each equation and can be solved by the well-known
methods.

3 Order of Approximation

Let us first check whether (12) tends to the initial equation when step h = 2b/
(m + 1) tends to zero:

Vi1 (¥) = 20i(x) + 01 (¥) _
h—0 h?

hm Z a(m) ! (x) + £, ()]

Expanding the right side of this equality into a Taylor series at the pointy; = —b+-ih,
we obtain

2 2 m
_ vy Iy, = [f(x,yv) L0 v(x,yu)] 3 gl

0y? 0x2 —
m—1 . . m
. W a]f(xsyi) W—sz (Xs)’u) wj (m)
ﬂ‘ino];j! [ oo T away | _1(”_1)} v

Lemma 3.1. For the numbers AV k , the following relation is fulfilled

);L+n—k

Z(tv )" A = (1 = te

W, p=1lm—1. 19
(1 +n— k) p==>m (19
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For the considered problem (9), formula (19) (t, = v, t, = 0, n = 2, k = 0) takes
the form

m l"H—Z,U,!

HAOE — _
D vrAY, = w2 pw=0m—1 (20)

v=1

Since a(m) AZAS '0, by (21) we have

m m

Z v“a(m) Z v“A?AS:’b
v=1 v=1
L (i — D F2p! !

i (n +2)! (M4_2'Dj_1w+2_2m+z+(i+1w+1

21

Using Lemma 3.1 and the properties of binomial coefficients, after some further
simplifications, we come to

0%v (x,y;) 0% (x,y;)
Toge Tt e

m+1
2 tim [22:] .h2j I:aij (x, i) 9% +2y (x"y")i| 2
0 2j+2)! dy¥ dx2ay%
Since this limit equals zero, we obtain the initial Eq. (9).
Using the above notations v; (x) = v (x, y;), v; (X)+f; (x) = _ ”(“) |y=y, in (12)
and expanding the unknown function and its second derivative by y into a Taylor
series at the point y = yo = —b, we have

m+1

3)k X, —
e y»—z”’) T o

0% (x ) Z (vh) M2y (x, —b)

gyie2 + O H"). (23)
Let us substitute (23) into (12), then
“ (m) (Uh) 3A+2U (X —b) m
Z gyt TOU
v=1
m+1 ;1 )
h* 9 ,—b
Ty T (xk ) [(i 2 4 (i 1)1] + 0
= Al dy
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m— A ak+2v (x —b) . (m)
T (v

m—1 A A+2
h v (x, =b) , . Py
A (i—1 onm.
+Z=:0(x+2)! gy A= DTEHOGT
By (21) we have
m—1
W 922y (x, —b A2 0 P 1) 2

= Al dyrt2 A +2)! A+DA+2)

Lemma 3.2. If the solution of problem (9) u(x,y) € Cy42 (.Q), then the approxi-
mation error of the modified method of lines is of m-th order:

4 Convergence

Let Z = U — V be the error of the modified method of lines. Using this notation
and subtracting (12) from (10), for the error Z we obtain the following system of
equations

Za“") 4@ +h i () = 2500 + 21 ] = KPAVRY, (24)
0 (@) = 2nt1 (1) =0, 1€ (-a.a), z(+a) =0, i=1lm,

where R?n’fo, i = 1,m, is given by expression (7) and the matrix-vector form of this
system is

AZ"(x) + h2MZ(x) = h">MR, Z(%a) =0, (25)
Z=(@®.20).....m0). R=ER@.R5®). ... R

Let us multiply (25) by Z from the right using the scalar product formula (26) for
the semi-discrete schemes

(U. V), o= / (U, V) dx = / > hui (x) vi (x) dx (26)
—a —a i=1
/ (AZ".Z)dx+n* | MzZ,Z)ydx=h"* | (MR, Z)dx. 27
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Let us use Green’s first formula to transform the first addend of (27) as follows

/ (AZ".Z) dx —/ Zh(Za(m) ”(x))'z,-(x)dx
- 4 =1
/ Zh[Za(”’)( 4 ()2 @) + 2 () ) [, }dx
4 =1

a m a

Zh(Za(m) ’(x))z; (x)dx = —/ (AZ'.Z)) dx.
al- 1 —_

a

(28)

It is known that the matrix (—M) is positive definite. Besides, by direct
calculations we see that (AZ, Z) > y? (Z, Z) when m < 5. Taking into account (28)
and a fact that matrices A and (—M) are positive definite, from (27) we obtain

(—=MZ,Z2)dx <h™* | (MR, Z)dx. (29)

—a —a

Let us consider
a

" (MZ.Zydv=— / (2, Z) dx

- [ @.z)i= |z ]} (0)

Similarly, for the right-hand side of inequality (29), we have

- /“ (=MR.Z) dx = /a (Ry.Z,) dx. (31)

—a —a

By virtue of the Cauchy—Buniakowski inequality, we obtain

/_ (Ry.2y) dx < (/_ (Ry,Ry)zdx)é : (/_ (zy,zy)zdx)é
= IR ua 12 ] o - (32)

Using (31) and (32), we get h™> [* (=MR,Z)dx < |Ry|, - - | %] uo-
Then (29) with (30) and last relation will give the following inequality: HZy || oxa =
HRy || oxa- Thus, the convergence rate estimate in the difference-continuous norm

W, reduces to the estimate of the first difference derivative norm of remainder

(7) [4].
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Theorem 4.1. If the solution of problem (9) u(x,y) € W21 (£2), then for the error
of the semi-discrete scheme of lines (15) in the difference-continuous norm W21 the
following estimate holds:

1Zy] o = |RY]| o =C de le|u| 42y M5 C=16b3€5\/2
Yilgxe = 1TVl @xow — m+1 Wy ®) -7 T 3’

Appendix: Examples of Centrosymmetric Matrices

Elements of inverse of the three-diagonal M,, = [l,—2,1]]" matrix M~! =

1 m
[mij ] are:

ij=1

im+1-j). i<j
_1__ . o P
m; = mt 1 ilm+1-—1i), i=j
(m+1-19)j, i>j

A = I, and A, = I, are unit matrices. In general, A,, behaves as a unit matrix [3].
It is easy to notice for m = 3, m = 4, and for m = 5 that

L1321 L [1-21
Ay = 1101 |=hL+ 1211,
12_1—213 21121
L2 -1 121
Ayl = —114—-1|=5L~- 1-21
12 -1 2 11 211221
(14 =5 4 —17 2 —5 4 —17
11101 1|1 =21
Ay = 0 0l _, 4 0|
1200 110 0 1200 1 =20
|1 4 —5 14 -1 4 =5 2
(10 5 —4 17 (2 =5 4 —17
gl V-t-ro |, T =210
4 = =14 =
12|10 =114 —1 1210 1 =20
[ 1 —4 5 10_ | -1 4 =5 2 ]
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897 —528 582 —288 57

57 612 42 12 3

As = -3 72 582 72 3
720 -3 12 42 612 57

57 —288 582 —528 897

177 =528 582 —288 57

57 —108 42 12 -3

=1+ -3 72 —138 72 -3
720 -3 12 42 -108 57

57 =288 582 —528 177

548 508 —552 268 —52
—52 808 —12 —32 8
ATl = 1| 8 92 888 —92 8
8 —32 —12 808 —52
—52 268 —552 508 548

172 =508 552 —268 52

52 —88 12 32 8

=1I5— -8 92 —168 92 -8
720 -8 32 12 88 52

52 =268 552 —508 172
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Parabolic Obstacle Problem with Measurable
Coefficients in Morrey-Type Spaces

Lubomira G. Softova

Abstract We consider obstacle problem related to linear divergence form parabolic
system with measurable coefficients in domain with irregular boundary. Supposing
that the data of the problem and the obstacle belong to Morrey-type space, we get
Calder6n—Zygmund type estimate for the gradient of the solution.

Keywords Parabolic systems ¢ Obstacle * Morrey-type spaces * Measurable ¢
Coefficients « Small BMO e Reifenberg-flat domain

Mathematics Subject Classification (2000): Primary 35K87, secondary 35B65,
35R05, 46E30

1 Introduction

The obstacle problem for partial differential equations arises naturally in the
classical elasticity theory as one of the simplest unilateral problems in the study of
mechanics of elastic membranes. Roughly speaking, it aims to find the equilibrium
position of an elastic membrane, the boundary of which is keeping fixed and which
is constrained to stay above a prescribed obstacle. More generally, the obstacle
problems provide a basic analytic tool in the study of variational inequalities and
free boundary problems for PDEs. They are involved in various geometric and
potential theory problems such as capacities of sets or minimal surfaces. We refer
the reader to the classical texts [9, 10, 13, 14] for more details.

Our work is motivated by the recent papers [1, 2, 19], where the authors devel-
oped the Calderén-Zygmund theory for nonlinear elliptic and parabolic problems
with irregular obstacles. To the difference of [1, 2, 19], we deal with differential
operators with rough coefficients having quite arbitrary discontinuities in one
direction. This situation is closely related to the equilibrium equations of linearly
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elastic laminates and composite materials. Even if there have been recently a lot
of works in this direction, most of the obtained results consider single equations
without obstacles; see [3-5, 7, 8, 12, 16, 17].

Another difference with the cited results consists of the fact that we derive
estimate for the gradient of the solution in the framework of the generalized Morrey-
type spaces under possibly more general assumptions on the weight function
extending in such a way the results obtained in [6, 12]. Regarding the considered
non-smooth domain, we suppose that it is flat in the sense of Reifenberg [18].
Roughly speaking, this means that the boundary is well approximated by hyper-
planes at each point and at each scale. This is a sort of “minimal regularity” of the
boundary that guarantees the validity of the main results of the geometric analysis.
For instance, C' or Lipschitz domains with small Lipschitz constant belong to
that category. The class of Reifenberg-flat domains goes beyond these common
examples and contains domains with rough fractal boundaries such as the von Koch
snowflake. In addition, domain which is flat in the sense of Reifenberg is also
Jones’flat and possesses the extension properties (see [18, 20]).

Turning back to our problem, let £2 be a bounded domainin R”,n > 2 and Q =
£2 x (0,T],T > 0 be acylinder. Denote by dQ the usual parabolic boundary {[2 X
{r = 0}}U {352 %[0, T]}. Hereafter, we adopt the standard summation convention on
the repeated indexes, with 1 < o, 8 < n,and 1 < i,j < m where m > 1. The letter
¢ will denote a positive constant that varies from one appearance to another and can
be calculated explicitly in terms of known quantities as A, A, m, n, p, and |Q|.

This announce extends some recent results obtained in [6] in collaboration with
S.-S. Byun. We study obstacle problem related to the system

= DuA . 0Dyd) = ~Deff ) in . 0

The obstacle is given by vector function ¥ = (¥'',...,¥™) : Q — R™ with the
same kind of regularity as the weak solution of (1):

{w € L2(0, T; H'(2,R™)), ¥, € [0, T: H™'(2,R™), ®

Y <0aeondQ, i=1,...,m.
Further, we define admissible set o/ consisting of vector functions:

u € C%0, T; L2(£2; R™)) N L*(0, T; HY (2, R™))
u'(-,0)=0aein 2. u' >yY'aeinQ.

The function u € o7 is called weak solution to the obstacle problem related to
(1)—~(2) if for all ¢ € o7 with ¢, € L>(0,T; H~'(£2,R™)) the variational inequality
holds
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T
/ (1. ¢ — ') di+ / A (r.)Dgid - Dy (¢ — o) ddr
0 9]
> / F(t) - Do (¢ — i) dxdr. 3)
o

We assume that the coefficients Af]‘.ﬂ :Q — R™M gre uniformly elliptic and
uniformly bounded, namely, there exist positive constants A and A such that

1A o) < A and  AEP < A (x.0)ELE). ae.inQ )
for all matrices § € M"™*",

According to the classical theory and some recent results [1, 2, 9], if F €
L?(Q.R™ "), there exists a unique weak solution u € .7 of (3) satisfying

1Dl 20) < ¢ (IFllz200) + 1¥illr20) + 1DV ll12(g)) - (5)

2 Generalized Parabolic Morrey-type Spaces

Let us describe the spaces that we are going to use. We consider parabolic cylinders
I (y. 1) = B.(y) x (t — r*, T + r?) with respect to the classical parabolic metric
and cylinders €, in which we isolate the variable x'
600 ={" X ) eRT X =y < W =Y <nt—1] <.
For some fixed x' € (y! — r,y' + r), we consider the x!-slice of €):
€, 1) = {(, ) e R xR (X, 1) € Gy, 7))
Taking now the t-slice of &,, we get the cube:
) ={G ) eR: =y <r X —y|<r}.

We call weight positive and measurable function ¢ : R**! x Ry — R,

Definition 1. Let Q be a cylinder in R"™!. A function f € L4(Q),1 < g < oo,
belongs to the generalized Morrey-type space L% (Q) if the following norm is finite

1
1 q
' = su x,t qudt) .
Il 22 @) ““2?9 (@(fr(y, N o, [f (x, D)
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These spaces are widely studied under various conditions on ¢ (see [11, 12, 15] and
the references therein). Let f € LI (R"*!) and

loc

AMf(y, T) = sup If Cx, 1)| dxdt

1
r>0 |jr(,)77 T)I 2 (y,7)

be the Hardy-Littlewood maximal operator. It is well known that .# is bounded in
the Lebesgue and Morrey spaces. Moreover, it is bounded also in L7 for various ¢,
[11, 12, 15]. Here we need the following result.

Lemma 1 (Maximal inequality, [12]). Assume that there is a positive constants k
such that for any fixed (v, ) € R"™"! and any r > 0 holds true

: n+2
SISO p(,0.0)

sup 2 = k2 (6)

r<s<oo

Then there is a constant c; > 0 such that for any q € (1, 00)

: 1
”f”Lq»w(Rwl) = ||Mf||Lq-w(]R"+l) = Cq|lf||Lq-w(R"+1) Vfe UN’(R”“’ ).
Imposing in addition a monotonicity condition on ¢, precisely

9(Fr (3. 7)) = 9(H(z2.§)) forall 7(y. 1) C F(z.§) (7

we get the estimate

sup |7y, 1) N Q) <kl )

(y-rr>)§Q % (jr(ys T)) N
with k1 > 0 depending on n, ¢, and Q [5, 12]. Then the Holder inequality implies

1120 < c(n.p. 121 @) 7o) - ©)

3 Statement of the Problem and Main Result

Definition 2. We say that (A‘;ﬂ , §2) are (8, R)-vanishing of codimension 1, if:

i) For every fixed (y,7) € Q and r € (0, éR], there exists a new coordinate system
(x, t) centered in (y, ) = (0, 0) such that

1 of ap 1y)2 2
0,01 S 00" 50 T oo T B =8O
where A;ﬂ @ 0.0) (x!) is the integral average of Ag.ﬂ over ‘@”_{rl (0,0).
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ii) For every fixed (y,7) € Q and r € (0, ! R] such that dist(y, 32) = dist(y, xp) <
V2r with xy € 082, there exists a coordinate system (x, 7) in which (xo,7) =
(0,0) is the origin and £2 verifies the Reifenberg condition illustrated on the
graphic:

/ \ 376

3rd

U1

RNxeE(0):x' >3r8} CRNELO)C 2N{xeEL0):x' > —3r8}).

The part i) means that the coefficients have small mean oscillation (small BMO)
with respect to (', £), while in x' they are only measurable and could have arbitrary
jump. The second part of the definition asserts that £2 is (8, R)-Reifenberg flat
domain (see [18, 20]). Moreover, it implies (cf. [16, 17]) that there is a constant
0 <o =a(,n 02) < ) such that

o5 (0)] < 1500 N 2| < (1-a)|E(x)].

We prove the following result (see [6] for details).

Theorem 1. For any given p € (2,00) and weight ¢ satisfying (6)—(7), suppose
that |F|?, |y |%, Dy |? € L29(Q). Let u € o be a solution of (3)—~(4). Then there
exists a small constant § = §(A, A, m,n,p,p) > 0 such that if (A‘.xﬂ .Q) are (8, R)-

g
vanishing of codimension 1, then |Du|? € L2 (Q) and

0Pz, ) = ¢ (IFP] 50 gy + 19250 + 11DV P] 50) - (D

Let us note that (5) and (9) ensure the existence of unique weak solution of (3).
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4 Auxiliary Results

In this section, we give several preliminary results that we need in order to prove
the main theorem (see [5—7] for details). Our approach is based on the Vitali
covering lemma and estimates of the upper level sets of the maximal function of
the gradient . (|Du|?). Fix (yo.79) € Q, take a cylinder .#,(yo, 79), and consider
O, = Z,(yo, ©0) N Q. For any solution u of (3), we define the upper level sets

¢ ={(x,1) € Q,: #(|Dul*) > N?},

D ={(x.1) € Q,: A(|Du]*) > 1} U{(x,1) € Q,: A(]F]) > 6}
U{(x.1) € Q: A(Y:|* + IDY*) > 87}, (12)

CCc®» CcQ forN>1.

For any (y, 7) € € and for each p > 0, we define the measure function

€N %0 0)
A(p) =
©) =" 14,0.0)

Lemma 2. Suppose that there exists ¢ € (0,1) for which ©(1) < e. Then the

n+2
following estimate holds |€] < ¢ (1?_“/82) |D].

Moreover, for those p for which @(p) > & holds the inclusion Q,N<€,(y, t) C D.

€ C%0,00), lim O(p) =1, lim O(p) =0.
p—>04 p—>+o0

The estimate follows by the Vitali covering lemma applied to a set of mutually
disjoint cylinders {%), (y;, 7;)} such that (y;,7;) € € and O(p;) = ¢ (see [6,
Lemma 4.1]). The inclusion can be proved as in [6, Lemma 5.1] using localizable
solutions studied in [19].

The next result comes from the measure theory and has been proven in various
functional spaces (see [5, 6, 12]).

Lemma 3. Let h € L'(Q) be a nonnegative function, q € (1,00) and ¢ > 0,60 > 1
be constants. Then h € L9 (Q) if and only if
0M1{(x, 1) € Or: h(x,1) > 6%}
= su
(y-rr>)§Q k>1 QD(%»()/, T))

Moreover, there exists ¢ = ¢(0,¢, q, ¢, Q) such that if’ < ||h||zq_¢,(Q) <c(l1+.%).

Fixing ¢ > 0 as in Lemma 2, we obtain a power decay estimate for the upper level
sets of the maximal function of Du.
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Lemma 4. Suppose O(1) < € for some ¢ € (0, 1), then for each (y,t) € Q, and
each positive integer k, we have

{(x.1) € Q2 #(IDul?) > N*}| < €f|{(x.1) € Q. 4 (|Du]*) > 1}]
k
+ 3 € (@ € 0 A (FP) > 82N (13)
i=1
k
+ 3 el € 0 AW + DY) > 8N

i=1

with € = € (10‘/2)

The Lemma 2 ensures the validity of (13) for k = 1. Further, the proof follows by
induction.

To get (11), we use the invariance of the problem under scaling and normaliza-
tion. This property follows by straightforward calculations.

Proof (Theorem 1). By suitable change of the functions, we make the norms of F
and ¥ small enough. Precisely, taking

= 1IFPl, g0, + NP 50, + IIDVPIL 20,
we define
. du(x,) =~ SF(x, 1) -~ 8Y(x, 1)
u= , F= , = . 14
JK JK 14 JK (14)

Consider now upper level sets € and © defined for u. For each (y, ) € €, we have

o) <c|€| <c | .#(Du|) dxdt < c/ (IFP? + |9:]? + | DY ?) dxat
Or 9]

<c$*<e.

+ 1l g, + 1DV g

= (IFPI,

L “(0) L “(0) L w(Q))

Now applying Lemma 3 with h = .Z(|Da|*),0 = N> A = 1, = 1, and
Lemma 4, we get

N3 [{(x. 1) € O, 4 (IDuf?) > N*}|
> = Z oA (7))

< ZNkI’ ef {(x.0) € 0, : . (IDUJ?) > 1}]
(A (v, 7))
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+ ZNkp 21: el {xn) e Q@(j/((ylFS; > SN2
+ i Nkpi e {neo: ///;@zyigz))m% > 82N} |
- g(Npel)k w(ﬂlrQ(;l, 7))
3 3 M ([F]?) > 82N
+ ; (N"el)i; v {0 €0, (.p(/ir(gt)) )> 52N }J\
>

+ g(lvpel)" gw—np ) €0t (;1/;/; (;L ITI;;W) > SN2

pa _

o0
<Y We (ki + ' + 5
k=1

where we have used (8) in the last step. By the auxiliary Lemmas, we get

, c [F(x. 1)}
> s(p(jr(y’f))(|Qr|+/ . dxdr)
17 c th(x t)|p + |D1//(x t)|p
2 ey (91, s i)

Unifying the above estimates, applying again (8) and (14), and taking the supremum
of ¥ over (yo, 79) € Q and r > 0, we get

00
D 1 il 1 v Y /
7 < Z (N"El) [ s ”F”[ZJMP(Q) + §p (”wf”[l)f’-ﬁ"(Q) + “DI'//|1U”¢(Q)):|

k=1

Mg

(NPep)* .

,,.
I

1

Taking ¢ small enough such that N?€; < NPcie < 1, we get .¥ < oo and in view of
Lemma 2 and (14), we get (11) through the maximal inequality.
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Chebyshev Spectral Approximation
for Diffusion Equations with Distributed
Order in Time

Maria Luisa Morgado and Magda Rebelo

Abstract In this work we provide a numerical method for the diffusion equation
with distributed order in time. The basic idea is to expand the unknown function
in Chebyshev polynomials for the time variable ¢ and reduce the problem to
the solution of a system of algebraic equations, which may then be solved by
any standard numerical technique. We apply the method to the forward and
backward problems. Some numerical experiments are provided in order to show
the performance and accuracy of the proposed method.

Keywords Fractional differential equation ¢ Caputo derivative ¢ Diffusion equa-
tion ¢ Chebyshev polynomials ¢ Distributed order equation

Mathematics Subject Classification (2000): 26A33, 41A50

1 Introduction

In the last decades, lots of attention has been devoted to the time fractional diffusion
equation (TFDE), namely, the one in the Caputo sense:

u(t,x) Dazu(z‘, X)

o o2 +f(t,x), O0<t<a O<x<b, @))]
X

where 0 < @ < 1 and the fractional Caputo derivative is defined by [2]
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u(t,x) _y 0" u(s x)
g T rQ —a) / =9 8 @

where n is the smallest integer greater than or equal to . The TFDE has been found
in a broad variety of engineering, biological, finance, and physical processes where
anomalous diffusion (AD) occurs (see, e.g., [6, 8, 10]). More recently, a general
equation has attracted the scientific community, the distributed-order time fractional
diffusion equation, given by
1 o 2
/ c(oz)a u(t, x) do = 0ult, %) +f(tx), 0<t<a 0<x<b, 3)
0 or* sz

where the function c(c) acting as weight for the order of differentiation is such that
1
1
[7,9] c(e) > 0 and / ¢(a) do = C > 0. Obviously, if ¢c(8) = . if B = o« and

0
0 otherwise, then (3) reduces to (1).
Here, we will be interested in the numerical approximation of this type of
distributed-order equations with boundary conditions of Dirichlet type:

u(t,0) = ¢o(1), u(t,b) = ¢p(t), 0<t<a, 4

and we will distinguish the following two problems: a forward problem (FDODE)
where (3) and (4) is subject to an initial condition

u(0,x) = go(x), 0<x<b, (5)

and a backward problem (BDODE), the case where (5) is replaced with the terminal
condition

u(a,x) = gq(x), 0<x<b. (6)

Numerical methods are crucial for this kind of fractional differential equations,
since only in a very few special cases, the analytical solutions can be found.
While the methods developed for TFDEs are already relatively wide, the same
cannot be said for the distributed-order diffusion equation case, since, to the
best of our knowledge, only a few works have been reported. In [4] an implicit
finite-difference method has been derived for the one-dimensional distributed-order
diffusion equation; in [11] the same idea has been followed for the numerical
approximation of nonlinear reaction-diffusion equations with distributed order
in time. In [12] a numerical scheme has been developed for the solution of
a distributed-order diffusion equation containing also a fractional derivative in
space. In [5], a finite-difference method was presented for the two-dimensional
distributed-order diffusion equation, together with an extrapolation technique to
improve the convergence orders in time. In all these papers, only finite-difference
approximations have been considered for the fractional time derivative, which may
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become heavy from the computational point of view, due to the nonlocal property
of fractional differential operators. Moreover, in all of these works, only forward
problems have been investigated.

Here we will follow an alternative approach: we consider a Chebyshev poly-
nomial approximation of the fractional derivatives. The paper is organized in the
following way: we start with a section devoted to some preliminary results that will
be used in the forthcoming sections. In Sect.3 we describe the numerical method
and we end with some numerical examples and some conclusions.

2 Preliminaries

In this section we present some auxiliary results that will be used in the derivation
of the numerical scheme. For the approximation of the integral term, we will
use Gaussian quadrature. N-point Gaussian quadrature rules are a special class of
quadrature formulas that yield the exact value of a definite integral for integral
functions that are polynomials of degree less than or equal to (2N — 1).This can
be achieved by suitable choices of the points x; and weights w;, i = 1,...,N.

These rules are conventionally given in the interval [—1, 1] and may be given by
N

1
/ fx) dx = Zwlf (x;). Obviously other intervals can be considered by using
-1 i=1
proper variable substitutions. In our case, since we are dealing with the interval
[0, 1], it is easy to see that

[rroa=y L5 ) o=z (5",

(N o

Lemma 1 ([11). Iff € C¥((0,1]), then with yy = QN + DM ™ 4

we

have:

G+ 1 £V (en)
/f(X)dx— sz(] )— (ZN)iszSCNfl-

As we have mentioned in the Sect.1, we will use Chebyshev polynomials to
approximate the fractional derivatives. Chebyshev polynomials of degree n, T,(z)
are defined in the interval [—1, 1].

In order to use them in the interval [0, a], we introduce the change of variable

z = 2t/a — 1 and obtain the so-called shifted Chebyshev polynomials 7,,(f) =

2t
T, — 1). These shifted Chebyshev polynomials can also be obtained from the
a

following expression (see [3]):
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‘ 2%+ k1)
_ _1\h—k _
Tan(t) = nk§=0( 1) 20! (n —k)!aktk’ n=12,...,

where
Ta,i(o) = (_1)1 and Ta,i(a) = 15 (7)

and satisfy the following orthogonality relation:

/ T j(O) Tk (D) wa(t)dt = Sijhy,
0

1
wherea)a(t):\/ 2andho:n,hk:’2’,k:1,2,....
at —t

A function y(¢) belonging to the space of square integrable functions on [0, a] may
be expressed as

oo

Y1) =Y ciTuild), ®)
i=0
where the coefficients ¢; are given by
<y(t)v Tai(t) > 1 /a .
¢ = ’ = YO Tai(Hwa () dt, i=0,1,2,....
17011 hi Jo

For computational purposes, only the first (m + 1) terms in (8) are considered:

Y =Y eiTai(®), te€[0.al, )

i=0
and the following result holds:

Theorem 1 ([3]). Let y(t) be a square integrable function on [0,a]. Then, given
m € N, y(t) may be approximated by y,,(t), defined by (9), and for o > 0, we have

» o (D22 k— 1) (k1)
ym(t)_ ciw, ( ) k 047 z(k): . ' ! k (10)
-Zm kZM (i—k) ) (k+1—at)a

00 i k—[a]

and the error |E(m)| = |D*y(t) — D*y, ()] < Z Ci Z Z Oijk |

i=m+1 k=[a] j=0
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where, forhg =2, hj =1, j=1,2,...,

(=D 2i(i + k— DI (k—o + 1))

Orjk = N . : :
W (k+ ) (=M (k—a—j+ DIk +j—a+ Da

3 Numerical Method

In the derivation of the numerical method, we proceed as in the classical (integer
order) case. Let

m

w(t.x) & un(t.) = 0i()Tai(0), (11)

i=0

Using a Gaussian quadrature formula with n points, (9) and (10), we obtain

n m 2 ] /3/+1 " m
; Z (IBJ + 1) Z Z Vi (_x)wl(k )ti—k— ﬁ]j — Z ﬁj(X)Ta,i(t)"l‘f(x, t).

j=1 _[fify k=0 i=0
(12)
Note that in thi elo,1], j=1,. athen | P 21 =
ote that in this case * o €[0,1], j= ,n, and then 5 =1,j=1,...,n

Now, we collocate Eq. (12) at m points #,. For collocation points, we use the roots
of the shifted Chebyshev polynomial of degree m, T, ,,(¢):

n m i—1 ﬁ1+1 ﬁ+1
e (M) Sl S aom s

2 j=1 i=1 k=0
p=0,....m—1. (13)
We obtain in this way m ordinary differential equations on the (m + 1) unknowns
vi(x), i=0,...,m

Using the fact that 7,;(0) = (—1)" and taking the initial condition (5) into
account, we obtain the extra equation:

D (=Dvix) = go(). (14)

i=0

Alternatively, since 7,;(a) = 1, from the terminal condition (6), we obtain
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m

D i) = ga(x) (15)

i=0
On the other hand, by substituting (11) on the boundary conditions (4), we obtain

m

D 0i0)Tui(1) = (1), (16)
i=0
Y v Tai()) = i (). (17)
i=0

At the collocation points #,, p = 0,...,m — 1, (16) and (17) are as follows:

m

> 00 Tailty) = po(t). p=0.....m—1. (18)
i=0
Zvi(b)Ta,i(tp) = ¢h(tp), p= 0,...,m— 1. (19)
i=0

Therefore, in order to obtain the functions {v;}/_, that define the approximate
solution of the forward problem (3), (4), (5), we must solve the system of differential
equations (13)—(14), with boundary conditions (18) and (19).

In order to obtain an approximate solution of the backward problem (3), (4), (6),
we must solve the system of differential equations (13)—(15), with boundary
conditions (18) and (19).

4 Numerical Results

In this section, we apply the proposed method to solve some examples for which the
analytical solution is known. We define the absolute error at the point (¢, x) by

em(t, x) = |u(t,x) — uu(t,x)|, (t,x) €[0,a] x [0, b].

Example 1. Forward problem:

cl@)=T (; —a)

Vil =1)? (3/m(t — 1)(x — 1)%? — 81(5x(3x — 2) + 1) log(r))

Fx = 41log(r)

’

with analytical solution given by u(x,7) = r/2x*(1 —x)*,  (t,x) € [0,1] x [0, 1].
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A&7 Al i g

Fig. 1 Example 1: pointwise absolute error at the points (¢, x) € [0, 1] X [0, 1] for several values
of m. From left to right m =3, m=5m=T,m=9

In order to approximate the integral that defines the distributed-order derivative,
we will use a 3-point Gaussian quadrature formula.

In Fig. 1 the domain pointwise absolute errors are displayed. We see that the
pointwise error goes up to the order of 2 x 10™#, 4 x 107>, 1 x 107>, and 4 x 107°
if we consider on the series expansion of u, (11), m = 3, m = 5, m = 7, and
m = 9, respectively. This shows that the numerical solutions are in good agreement
with the exact solutions, and we have more accuracy if we consider more terms on
the series approximation (11) of u.

As a second example we consider, a backward problem which is defined by

Example 2. Backward problem

cla) =T (Z —Ol)

P2 (15/m (t — Dx(x — 1)* 4 161(2 — 3x) log(1))

f9) = 8log(t) ’

with analytical solution given by u(z,x) = r*/>(1 —x)%x, (1,x) € [0,1] x [0, 1].

In these backward problems, the unknown solution u(x, f) has to be determined
from the boundary measurements ¢ (f) and ¢, () and terminal time measurement
ga(x), which normally contain noises in practical problems. Thus, in order to test
the proposed method, first we apply the method, with several values of m, to the
second example without noise on the data and then we apply the method with some
noise on the boundary and terminal data.

The comparison results between u(0, x) and u,,(0,x) are displayed in Table 1,
for several values of x € [0,1] and m = 1,3,5,7 and 9. From the results in
Table 1, it can be observed that the error is smaller for the biggest value of m that we
consider. Thus, the overall errors can be made smaller by adding new terms from
the series (11) that approximate u(z, x).

Now, we consider Example 2 with several levels of noise, § =107, i=2,...,5,
on the boundary and terminal data: g,(x)=g,(x)+8, ¢o(1)=¢o(t)+8, ¢5(2)
=¢»(¢)+$. In Fig. 2 we show the absolute error at points (x, 0), x € [0, 1] obtained
for the approximation (11) with m = 5 and several levels of noise. It can be
observed that the noise has influence on the numerical results.
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Table 1 Example 2: the absolute errors related with the approximate solutions
Uy (x,f), m=1,3,5 Tandm = 9, at the points (0, x), x € {0.2,0.4,0.5,0.6,0.7,0.9}
x e1(0,x)] e3(0,%)] es(0,x) €7(0,x) €9(0,x)

0.2 1.261 x 107! 3.614x 1073 5725x107¢ 8.529%x107% 4.397 x10~°
0.4 1.583 x 107! 5447 x 1072 2.407 x 10™° 5.669x 10~° 3.122 x 10~
0.5 1.466 x 107! 5545 x 1072 4.123x 10™° 1.809x 10~° 1.048 x 10~
0.6 1.221 x 1071 5,114 x 1072 5335x 10~ 2.030 x 10~® 1.064 x 10—
0.7 8.987 x 1072 4.223x 1073 5.660 x 107> 4.689 x 107¢ 2.514 x 107°
0.9 5522X 1072 2.979x 1073 4.870x 10~ 5350 x 107% 2.825x 10~°

Fig. 2 Absolute error for Example 2 using m = 5 and different noise levels §. From left to right:
§=10"%,8=10"3,8=10"%8=10"°

5 Conclusions

In this work we have presented an alternative method (than finite-difference meth-
ods) for the numerical approximation of time distributed-order diffusion equations
that is able to deal with both initial (or forward) and terminal (or backward)
problems. The numerical results presented for examples with known analytical
solutions illustrate the accuracy of the proposed method. In the future we intend
to provide a full comparison with the finite-difference methods and analyze the
convergence of the scheme.

Acknowledgements This work was partially supported by FCT (Portuguese Foundation for
Science and Technology) within the projects UID/MAT/00013/2013 (Centro de Matematica) and
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On Polarization Dynamics in Ferroelectric
Materials

M. Driss Aouragh, M. Hadda and M. Tilioua

Abstract We consider a mathematical model describing polarization dynamics in
ferroelectric material. The model consists of a Maxwell system for electromagnetic
field coupled with a second-order time-dependent equation for the evolution of
polarization. We study the long-time behaviour of weak solutions and prove that
all points of the w-limit set of any trajectories are solutions of the stationary model.

Keywords Ferroelectrics ¢ Polarization dynamics ¢ Maxwell system ¢ Global
existence ¢ Uniqueness * Long-time behaviour

AMS Subject Classifications: 35L10, 35K05

1 Introduction

In this work we are dealing with long-time behaviour of weak solutions of a
mathematical system arising in the theory of ferroelectric materials. We shall
consider the model considered in [2]. It is given by full Maxwell system for
electromagnetic field coupled with a second-order time-dependent equation for the
evolution of polarization. To describe the model equations, we consider 2 C R* a
bounded and regular open set of R?. The generic point of R? is denoted by x. We
assume that a ferroelectric material occupies the domain 2. The polarization field
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of the ferroelectric material is denoted by P(t, x). Its evolution is governed by the
following second-order time-dependent equation; see [2]

9P + ad,P + curl?P + kP = BE in R x 2,
curl P x v + v x ((3;P + aP) x v) = 0on RT x 942, (1)
P(t =0) = Py and 9,P(t = 0) = Py in §2,

coupled with

9,H—curlE =0 inRT x 2,
0(E+P)+0E+curlH=0 inR" x £,
Hxv+Bvx(Exv)=0 onR" x 98,
H(0,x) = Ho(x) and E(0,x) = Ey(x) in 2,

2

where (E, H) represents the electromagnetic field, “x” is the usual vector product,
curl denotes the rotational operator and curl 2P = curl (curl P) = V x (V x P). Here
v denotes the outward normal on the boundary of §2, and «, 8, o and § are positive
constants. The Silver-Miiller boundary condition considered in (2) is a first-order
approximation to the so-called transparent boundary conditions, i.e. no energy loss
is observed on the boundary. Silver-Miiller condition allows for reflections back into
§2. It can be found in the literature under other names as well such as Leontovich
or impedance boundary condition. For more information about the Silver-Miiller
boundary condition, we highly recommend the book of Miiller [9].

Throughout, we make use of the following notation. For £2 an open bounded
domain of R3, we denote by L?>(2) = (L*>(£2))? and H'(22) = (H'(£2))? the
classical Hilbert spaces equipped with the usual norm denoted by | - |> and | - |1 ().
We also consider the following classical space used in the theory of Maxwell
equations 7 (curl, 2) = {u € L>(£2), curlu € L?(£2)}.

We define the energy

&) = [0,P(1) |2+ curl P(1) |2 + k|P(1)|? + a|VEP() x v2 + |E() |2+ |H(1) > (3)
and the initial energy
& = P12 + |curl Pol2 + k|Po|2 + a|vV8Py x v|2 + |Eol2 + |Hol2  (4)

We have the following energy estimate:

Lemma 1. If (E,H, P) is a regular solution of the problem (1) and (2), then we
have the following energy estimate:

t
&) + 2/ (|d,P)2 4 0|E2 + |VBE x v + |V83,Px v[Hds < &. (5)
0



On Polarization Dynamics in Ferroelectric Materials 267

Proof. To obtain the energy inequality, we formally take the inner product of (1)
by P, the first equation of (2) by H and the second of 2 by E, summing up and
integrating over §2 the resulting equations and using the divergence theorem.

Before discussing problem (1) and (2), let us first review some previous
results on ferroelectric systems. Greenberg et al. [7] considered particular solutions
of ferroelectric system (1) and (2) with transverse magnetic symmetry and the
boundary condition P x v = 0. They supposed that the ferroelectric material
occupies a cylinder with generators parallel to the x3-axis and a uniform, simply
connected cross section @ and considered only solutions which are independent
of the variable x3 and have, with some abuse of notation, the special form, £ =
roeus, H = B(hiuy + haun), and P = ropus in o C R?, where B = Boro and
(u1,us, u3) is an orthonormal basis of R3. Reducing so the coupled full systems
of Maxwell’s equations (1) and (2) to scalar wave equations, they were able to
study the asymptotic behaviour with respect to the time variable and prove that
the reduced (scalar) ferroelectric system tends to a steady state in which the scalar
polarization is governed by a non-linear scalar equation that has multiple solutions.
Next results concern dimensional reduction for thin ferroelectric materials [1] and
the limiting behaviour when the thickness of the medium tends to zero is obtained. In
the framework of time harmonic dependency of the solutions, the work [8] discusses
the model equations of ferroelectric media introduced in [7]. By classical methods,
among other results existence and uniqueness of the solutions for frequencies which
are far from O are proved, and the regularity of the solutions when the polarization
satisfies the boundary condition P x v = 0 is obtained. Finally, in a periodic setting,
the work [6] addresses global existence of weak solutions for Landau-Lifshitz—
Maxwell equations. In fact the model considered in [6] generalizes (1)—(2) in the
sense that it is coupled with Landau—Lifshitz equation for magnetization field.

The rest of the paper is divided as follows. In the next section, we give a global
existence and uniqueness result for the model (1) and (2). The purpose of Sect. 3 is
to characterize the long-time behaviour of the solutions. We conclude the paper in
Sect. 4 by giving some comments.

2 Global Existence of Weak Solutions

We first state the definition of weak solutions to problem (1) and (2).
Definition 1. We say that (E, H, P) is a weak solution to the problem (1) and (2)

if (1) and (2) are satisfied in the sense of distributions and

E.H € L®(R*;1L2(2)) and E € L>(RT;L*(2))

6
0,P,curl P € L®(RT;1L2(£2)) and 9,P € L*(RT;L%(£2)). ©)

Moreover, for all # > 0, the energy inequality (5) holds true.
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Following the lines of the proof given in [2] (see also [4]), we may prove, by
using classical results of the semigroup theory [10] and its application to semilinear
equations, the following results dealing with the Silver-Miiller boundary conditions.
For more details, we refer to [3].

Theorem 1. Let (Hy, Ey, Py, P1) € L*(2) x L*(2) x H(curl, 2) x L2(£2)
such that Py x v € L2*(082). Then there exists a unique weak solution H E €
LP®RT;L*(2)) and P € L®°RT; s (curl, 2)) to the problem (1) and (2). The
tangential traces H x v,E x v, 0,P x v belong to L>(R1;L?(382)) and P x v €
L®(RT;1L2(082)).

We have the following time regularity result:

Proposition 1. Let (H, E, P) be a weak solution of (1) and (2). We assume that
Hy, Ey, Py, Py, curl Py € 57 (curl, £2)
We assume moreover that Py x v, P; x v € L2(382). Then

0,H,0,E,0*P € L*(R*;L*(£2)) ™
H,E,P,3,P € L®(R*; 5 (curl, 2)).

Lemma 2. There exists a constant C > 0 such that, if (H, E, P) is a global solution
of (1) and (2), we have

|E|L°°(]R+ ]Lz(.Q)) + |H|L°°(]R+ ]Lz(.Q)) — C
|P|Loo(R+ ]Lz(.Q)) + |E|L2(R+ ]LZ(Q)) + |a P|L2(R+ ]Lz(.Q)) — C (8)
|a P|L°°(R+;]L2(.Q)) + |Cur1P|Loo(R+7L2(Q)) < C.
Moreover we have
|E X v|L2(]R+ 1202y = G
|H % U|L2(R+ 12602y = 6 )
P x v|L°°(R+ 2oe) = 6
[0,P x v|? <C.

L2(RT;1L2(082)) —

In similar way, we get the following estimates for the time partial derivatives of the
solution:

Lemma 3. There exists a constant C > 0 such that, if (H, E, P) is a global solution
of (1)-(2), we have
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|at2P|i°°(]R+;IL2(BQ)) + |curl a’P|i°<>(R+;1L2(aQ)) <,

|arE|i°°(R+;]Lz(39)) + |atH|i°°(]R+;]LZ(3_Q)) + |Cur1H|i°°(]R+;]L2(3_Q)) <C
|Cur1P|ioo(R+;Lz(39)) + |curl 2P|ZOO(R+;]L2(BQ)) <C (10)
|cur128,P|ioo(R+;L2(m)) <C

|curl E| C.

2
Loo®+L2(00) =

3 The Limit as f Goes to +00

We investigate the long-time behaviour of the solutions of (1). More precisely,
we study the w-limit set of the trajectories and characterize the w-limit points as
solutions of a suitable stationary problem. We proceed as in Carbou—Fabrie [5].

Let P be a weak solution of (1). We call w-limit set of the trajectory P the
following set

w(P)={p € J(curl, £2),3t,, lirf th= 400, P(t,,.)—p in JZ (curl , §2) weakly}
n—-1+00

Consider a weak solution P of (1). From the energy estimate (5), the w-limit set
w(P) is non-empty. We denote p a point of this set. Hence, there exists a sequence
(tn)n>1 With lim,,— 0 , = +00 such that P(t,, .) tends to p in € (curl, £2) weakly,
in L2(£2) strongly and a.e. in 2.

Let a > 0 fixed. For s € (—a, a) and x € §2, we define for n large enough

Dn(s,x) = P(t, + s, x).
We consider a function p € 6;°((—a, a)) such that

pa(s) = 0outof [—a,a]; p.(s)=1on[—a+1,a—1]

11
0=p <1 |py(s)] =2 (an
We set

1 a

Pi(x) = / P(t, + s,%)pa(s)ds
2a J_,

H)(x) = 5 H(t, + 5,x)ps(s)ds
a —a

and

1 a
El(x) = Za/ E(t, + s,x)pa(s)ds.
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We have the following convergence result:

Lemma 4. The sequence (p,),>1 satisfies the following convergences

pn — pinlL2((—a, a) x 2) strongly, (12)
pn — pinL>((—a, a); 7 (curl, 2)) weakly.

By the estimates on P (Lemma 2), P? is bounded in .7(curl, £2) uniformly with
respect to n and a, extracting a subsequence there exists a subsequence such that
P! — P, in ¢ (curl, £2) weak.

Lemma 2 shows also that E and H are bounded in L>°(R™; L2(£2)). Then H" and
E" are bounded in IL?(£2) independently of a and n. So by extracting a subsequence,
we may assume that (E)}, H),> converges in ILz(.Q) weakly to (E,, H,) as n tends
to +o0.

Passing to the limit for polarization. In the weak formulation of (1), we take
as test function Zla pa(t — 1,)¥(x) where W is a function lying in Z(£2). Letting
s =t —t,, We obtain

. /_ /9 (82052 ) + adipa(s.3) + kpa(s5,)) - W) pa(s) dds

a

—B /Q El(x)W(x)dx + 21a /chrlp,,(s,x) - curl (W(x)4(s)) dxds

—a

- 5 / / 0P X V- W(x)pa(s) x v dods
2a —a JIR2

8 a
- / / ap, X v-W(x)p.(s) x vdods = 0. (13)
2a Jq Jyo
Now for a fixed value of the parameter a, we take the limit of the previous

equation when n tends to +o0o. We then pass to the limit as a tends to 400 to
get

/ kPoo - W(x) dx + / curl Poo(x) - curl W(x) dx
Q Q2

—,8/ Eoo ()W (x)dx — 5/ aPoo x V- ¥(x) xvdo =0.  (14)
2 a2

It remains to derive the equation satisfied by E.

Passing to the limit for electromagnetic field. We first recall the equation
verified by H, and E!. We write the weak formulation of the second equation of (2)
by considering the test function W(¢, x) = 2la pa(t—1,)¢ (x) with ¢ € 2(R?). Letting
n tends to +o00 in the weak formulation of (2), we get

Qg +/ H,(x)curl ¢ (x)dx + a/ E.(x)¢(x)dx =0,
2 2

where «, tends to 0 as a goes to +o0.
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Now, as a goes to +00, we obtain

/ Heoo (%) - curl £ (x)dx = o / Eoo (x)¢ (x)dx. (15)
2 2

In the same way, we pass to the limit in the first equation of (2).
Gathering all convergence results obtained, we have

Theorem 2. If P is a weak solution of (1), then each point P in w(P) is a weak
solution of the steady-state system

Poo € F(curl, 2);
curl2Pog + kPso = BEs in £2; (16)
curl Poo X v + 8V X Poo X v = 0 01 952

coupled to

curlEqoc = 0in 2,
0Esx 4+ curlHy, = 0in $2, (17)
Hoo XV + B x (Eoo x V) = 00n 052.

4 Concluding Remarks

In this paper, a ferroelectric system with Silver-Miiller boundary condition is
investigated. Global existence and uniqueness result is given, and the long-time
behaviour of the solutions is studied. The calculations performed in this paper can be
generalized to the model that couples magnetization field M with (E, H, P) [6]. More
precisely, for the coupled system [with the same initial and boundary conditions as
in (1) and (2)]

M — oM x M = —(1 + a?)M x (AM + H) inR* x £2,

9P + ad,P + curl’P + kP = BE inR* x 2,
0,(H+M)—curlE=0 inR" x 2, (18)
0,(E4+P)+0E+curlH =0 inRt x £,

M(t =0) = M,in $2, 9,M =0onRT x 92

one obtains by similar calculations, as # goes to +o0, the following limit problem

Moo X (AMoo + Hxo) = 0 in £2; 0,Ms = 0 0n 952

19
div (Hoo + Mog) = 0 in £2, (19)

coupled to (16) and (17). Note that in (18), the assumed initial data have to satisfy
the compatibility condition div (Hy + My) = 0 in £2.
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On a Discrete Number Operator Associated
with the 5D Discrete Fourier Transform

M.K. Atakishiyeva, N.M. Atakishiyev, and J. Méndez Franco

Abstract We construct an explicit form of a difference analogue of the quantum
number operator in terms of the raising and lowering operators that govern eigen-
vectors of the 5D discrete (finite) Fourier transform. Eigenvalues of this difference
operator are represented by distinct non-negative numbers so that it can be used
to systematically classify, in complete analogy with the case of the continuous
classical Fourier transform, eigenvectors of the 5D discrete Fourier transform, thus
resolving the ambiguity caused by the well-known degeneracy of the eigenvalues of
the discrete Fourier transform.

Keywords Discrete Fourier transform e Raising and lowering operators e
5D eigenvectors

Mathematics Subject Classification (2000): 39A10, 39A12, 42A38

1 Introduction

We are to begin by recalling first a few well-known facts about the classical Fourier
transform (FT) and its finite analogue, discrete Fourier transform (DFT). It is known
that the Hermite functions

Ya(x) := ¢, H,(x) exp (—x*/2), Cn = \/wr 2nnl, ()
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where H,(x) are the classical Hermite polynomials, represent an important explicit
example of an orthonormal and complete system in the Hilbert space L?(R, dx) of
square-integrable functions on the full real line x € R. It is further well known that
the functions v, (x) possess the simple transformation property with respect to the
Fourier transform: they are eigenfunctions of the Fourier transform, associated with
the eigenvaluesi”,

1 R
Frw= /R () dy = " (). @)

The question is then can be posed whether there is a way of deriving the
eigenfunctions (1) of the Fourier transform, which does not presuppose a knowledge
of the analytic formula (2) to be proved.

Since mutually commuting operators have the same set of eigenfunctions, one
may solve this problem by defining such a self-adjoint differential operator with
simple spectrum of distinct eigenvalues that commutes with the FT operator .#
. Then the eigenfunctions of that differential operator can be found by solving
a corresponding to this case differential equation, and they will be at same time
the eigenfunctions of the .%. So in this way, one reduces a problem of finding
eigenfunctions of the FT operator .% to one of solving some differential equation.

To illustrate how to find such differential operator, let us start with the first-order
differential operator i and evaluate its action on the Fourier integral transform:

d

s errma=i [ évyroa. ®
X JR R

where f(x) € L*(R, dx). Consequently, from the right side of (3), one deduces that
the next step should be to evaluate

o rinds =i [ (4 Y s — i [ oo O
v [epma==i [ (4 Yrow=i [T 0@

upon integrating by parts the middle term in (4). From (3) and (4), it thus follows

that
d ixy _ : ix d
(x:i:dx)/Re yf(y)dy—:l:l/l;e y(y:i:dy)f(y)dy. (5)

In the operator form, these identities can be written as intertwining relations

=—iZa', (6)

Y
®

”«1-
Y

a7 =i

S REN S .
a: = \/2 X ac ) a = \/2 X dx ]

where
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are the lowering and raising first-order differential operators, which obey the
standard Heisenberg commutation relation

[a,aT]:: aaT—aTaE[i,x}:I. (8)

The final step for finding the desired differential operator is actually revealed by the
intertwining relations (6) because one readily concludes that

a'a.Z =ial Za = Za'a )

on account of both identities in (6). Consequently, the self-adjoint second-order
differential number operator N := a’a does commute with the FT operator .%,
and it only remains to resolve the eigenproblem Nf,,(x) = A,f,,(x) for this operator
N. It is not difficult to show then that the eigenfunctions of the number operator
N are the Hermite functions v,(x) (up to the arbitrariness in the choice of a
normalization constant factor), whereas the corresponding eigenvalues are A, =
n,n=0,12,....

Turning to the discrete Fourier transform & W) we recall that it is based on N
points and represented by the N x N unitary symmetric matrix with elements

1 27i 1
oM = ex mn | = q™", (10)
"= v PN VN
where g 1= e™ andm, n € {0,1,...,N—1}. Given a vector ¥ with components

{vk}fy:_é , one can compute another vector z with components

wy =y &M, (11)

referred to as the discrete (finite) Fourier transform of the vector . Those vectors
fx, which are solutions of the standard equations

=

oM (fk) = M (jfk) . kel01,...,N—1}, (12)

m
0

n

then represent eigenvectors of the DFT operator @ ™, associated with the eigen-
values A;. Since the fourth power of @) is the unit matrix, the only four distinct
eigenvalues among A;s are + 1 and £ i.

Although there exists a plethora of discussion in the literature on eigenvectors
of the DFT (see, e.g. [1-11] and the relevant references quoted there), the problem
of deriving eigenvectors of DFT analytically still remains to be solved. Recently,
Atakishiyeva and Atakishiyev [12] have proposed a strategy for resolving this
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problem by constructing a self-adjoint difference operator /N (with distinct non-
negative eigenvalues) in terms of the difference raising and lowering operators,
which are defined by the intertwining relations

by @™ =id®by,  bLo™ = —io™pL. (13)

The ability to solve a difference equation for eigenvectors of this discrete number
operator ./ ™, which commutes with the DFT operator @), then enables one to
define an analytical form of the desired set of eigenvectors for the latter operator.

An important aspect to observe at this point is that although the idea of making
use an analogy with the continuous case for deriving eigenvectors of the DFT is not
new (see, e.g. [3, 4]), it seems, however, that there never was consistent attempt to
find out how symmetry properties of the continuous Fourier transform might best
be transferred to the discrete case.

The limited aim of this presentation is to restrict our attention to the 5D DFT
and give a detailed account of how one can solve the eigenproblem for the discrete
number operator .4 by using the difference raising and lowering operators that
govern eigenvectors of the 5D discrete Fourier transform @©).

The motivation for selecting this special dimension N = 5 of the general discrete
Fourier transform @™ is twofold. First, this dimension is large enough to contain a
multiple eigenvalue, and therefore one has to handle the same degeneracy problem
as in the more general case. Second, this dimension is small enough in order to have
calculational advantages that appear in the process of resolving the eigenproblem
for the discrete number operator .4 ). We hope that this study will deepen our
understanding of the case with an arbitrary ND discrete Fourier transform and help
us to provide some rigorous proofs, still needed for general values of N.

2 5D Raising and Lowering Difference Operators

We recall that the 5D discrete (finite) Fourier transform (DFT) is traditionally re-
presented by a 5 x 5 unitary symmetric matrix @ with elements defined as in (10)
with N = 5 (see, e.g. [2, 6]). So the matrix form of ®© is

11111
2 3 4
(5) 1 1!]2q4q qs
(‘Pm,n):\/s L q" g4, (14)
1 ¢ qq" 4
14" ¢ ¢ q

where g = exp(2mi/5) is the 5th root of unity and indices m,n € {0, 1,2, 3, 4}.
In [12] it was shown how to construct the difference lowering bs and raising
b;r operators for eigenvectors of the DFT operator ®©), which satisfy ‘proper’



On a Discrete SD Number Operator 277

intertwining relations with the @ of the form (13) for N = 5. Let us draw attention
here to those intertwining relations, which evidently imply that if a Vectorf‘k is the
eigenvector of the DFT operator @O associated with the eigenvalue iK,0<k<3,
then the vectors bg fk and bsfl are also the eigenvectors of the same operator @©),
associated with the eigenvalues i**! and i*~!, respectively. But note carefully that
this does not necessarily mean that those vectors b}‘f; and bs fk essentially coincide
(to within constant factors) with the eigenvectorska andf‘k_l of the DFT operator
@O, respectively, as it does happen to be the case with the Fourier transform
operator .7 . Later we detail the action of the operators bs and b} on eigenvectors of
the DFT operator ®©). The operators bs and bY are explicitly given as

1 /5
bs = c(zs + T - T<—>), b! = c(zs T 4 T(_)), c=, \/ . (15)
b4
where the operator S represents the diagonal matrix with elements Sy, := sin(k6)dy,
0 := 2m1/5,0 < k,I < 4 and a pair of the shift operators T are defined as
T,Eli) 1= O+ with §_1; = 84 and 85; = §;. We also display the matrix form of
the lowering and raising operators bs and bL, respectively:

0 1 0 0 ~1
—1 2sin6 1 0 0
((bs)m,m,) —cl o -1 2sin20 1 o |, (16)
0 0 -1 -2sin20 1
1 0 0 -1 —2sin 6
0 -1 0 0 1
1 2sinf -1 0 0
((bg)m,m/) —c|l o 1 2sin20 -1 0 (17)
0 0 1 —2sin20 —1
“1 0 0 1 —2sinf

It is not hard to show that the determinants of both matrices bs and b} are equal to
0; therefore, they are not invertible. Observe also that both of these matrices are of
‘almost’ tridiagonal form: they have £1 elements in the upper-right and lower-left
corners but otherwise are tridiagonal. Since those +1 elements can be regarded as
cyclic extensions of the subdiagonal and the superdiagonal elements, these types of
matrices are referred to as extended tridiagonal matrices in [7-9]. Moreover, another
confirmation of the ‘cyclic’ properties of the operators bs and b} is revealed by the
identities

(bs)5 +5ctThs =0, (b§)5 + 56l =0 (18)
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where T is the golden ratio, T := (+/5 4+ 1)/2 = —2cos26. This particular
irrational number 7 is known to turn out frequently in geometry, particularly in
figures with pentagonal symmetry (see, e.g. [13, 14]); so it is not surprising that it
appears here as well. Since the successive powers of t obey the Fibonacci recurrence
"t = " 4 "1 n > 0, this characteristic property of the golden ratio allows
any polynomial in t to be reduced to a linear expression in t. In the sequel, it
proves therefore convenient to parametrize the operators bs and bg in terms of the
golden ratio 7 and its conjugate ™! := (+/5—1)/2 = 2cosf = t — 1. Taking
into account that 2sin = xt'/? and 2sin26 = kt~/2, where k := (5)'/%, one
rewrites matrices (16) and (17) as

0 1 0 0 -1
—1kt/2 1 0 0
((bs)m,m,)zc 0 —1 k™2 1 o |, (19)
0 0 -1 —t Y2 1
1 0 0 -1  —krl/?
0 -1 0 0 1
1 k72 —1 0 0
((bg)m,m/)zc 0 1 k2 1 o |. (20)
0 O 11—k V2 -
-1 0 0 1 —k7!/?

From the definition (15) of the lowering bs and raising b? operators, it follows that
their commutator % := [bs, bg] = bsbl — bl bs is equal to

A =4 [T<+) —TO), s]_. Q1)

Its explicit matrix form in terms of the golden ratio t is

0 1 0 0 1
1 0 t-2 0 0
((%)m,mf) =2kt 0c=2 0 20-1) 0 |. (22)

0 0 20-7) 0 t1-2
10 0 -2 0

To compare (22) with the continuous case, recall that the lowering and raising first-
order differential operators a and a', associated with the Fourier transform operator
7, obey the Heisenberg commutation relation (8).

It is worthwhile to close this section by emphasizing that it was intuitively
understood much earlier that probably the extended tridiagonal type matrices lie
at the core of the adequate description of eigenvectors of the general ND discrete
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Fourier transform [3, 9]. But it seems that this particular band structure was
imprecisely attributed to those operators with distinct eigenvalues, which commute
with the associated DFT operators and can be therefore used for the unambiguous
classification of the eigenvectors of the latter ones. Only recently it has become clear
that it is the lowering by and raising by, operators for the eigenvectors of the DFT
operator @) that are of the extended tridiagonal type [12]. Defined by the standard
intertwining relations (13), these operators by and bTN do not commute with the
@™ Nevertheless, from the same defining identities for the by and bk, it follows at
once that their product by by does commute with the DFT operator @™ Moreover,
although the operator 4™ := bTN bx is not of the extended tridiagonal type, it
turns out to be quite sufficient for finding explicit forms of all mutually orthogonal
eigenvectors the DFT operator @™ in a systematic and unambiguous way. As we
shall see in the next section, this briefly outlined above algebraic approach [12] to
solving the eigenproblem for the operator .#™ can be effectively employed in the
particular case of the 5D DFT.

3 Eigenvalues and Eigenvectors of the Discrete
Number Operator

Let us study in detail a discrete number operator .4 ®) := bg bs, whose matrix
elements are defined as

2 T2 -1 -1 —«t'/?
—ktV? 4417 k732 -1 -1
(JV(S)) =3 -1 ke 5—c o221 | @3
" —1 =1 2%t V2 5-¢ k32
k72 —1 -1 k¥ 441

As a product of a matrix and its transpose, the defining matrix in (23) is symmetric
and all of its eigenvalues are non-negative. Moreover, since the determinant of the
matrix (23) is equal to zero, at least one of the eigenvalues should have zero value
as well; but this lowest eigenvalue turns out to be unique, and all eigenvalues of the
matrix (23) are actually distinct.

Before entering into further details about explicit forms of the eigenvalues and
eigenvectors of the operator .4, we may recall first the following important facts,
associated with this eigenproblem.

In this particular case under study, when (23) is just a 5 x 5 matrix, one can
use some computer program in order to evaluate the eigenvalues and eigenvectors
of the discrete number operator .#”®. For instance, this is what one gets by using
Mathematica:

Eigenvalues of the 4 are ¢>v;, 0 < k < 4, where s, arranged in the
descending order, are given by
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vy = ;(15 —V5) + Js—2v5= K[kGr—2)+ 2], (24)
vy = ;(5+¢5)+\/5+2J5=K(K+f1/2)z, (25)
= (15-v5) Vs -2vs=i[car-n -] o
v = ;(54-\/5)—\/5+2\/5=K(K—1:1/2)1’, w=0;  (27)

Eigenvectors y; of A~ ) associated with these eigenvalues v, 0 < k < 4, have
the following components:

4

(5)4)/{ . = {O, K+ 11/2, t_l/z, —t_l/z, —K — 11/2}, (28)

. 4

(y3)k_0 - {2(1 —o, L1, 1}, (29)
4

(y )k = {2, —(r + 2/(1’1/2),2/(‘[1/2 +3r—2, 111,11}, (30)
4

(f}l)k = {O, V2 e, V2 V2 e tl/z}, (31)
4

(io)k = {2c T W A B B u—‘/z}. 32)

Since the discrete number operator .4 commutes with the DFT operator @©), the
above eigenvectors of the .4 ® are at the same time eigenvectors of the ®: two
of them, ¥y and ¥,, are associated with the same eigenvalue i’ = 1 of the @,
while the eigenvectors y4, y3 and y; correspond to the eigenvalues i, i> = —1 and
i3 = —i of the @, respectively. Obviously, these multiplicities corresponding to
the eigenvalues i, 0 < k < 3, of the SD DFT operator &, are the particular
N = 5 cases of the general explicit expressions for the multiplicities m; (i¥) of the

eigenvalues of the ND DFT [1, 10],

nMD=[Z]+L m®=[qu,

quJz[sz} nm%DZ[NIS]—L (33)

where the symbol [X] stands for the greatest integer in X.

It is important also to realize that the eigenvectors y;, 0 < k < 4, are distinct
from those eigenvectors of the DFT operator @®, which have appeared before
in the literature. For instance, in [10] Matveev evaluated explicit forms of the
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eigenvectors of the ND DFT operator @) for the values of N from N = 2toN = 8
by combining the technique of spectral projectors for the operator @) with the
Gramm-Schmidt orthogonalization algorithm. In particular, Matveev’s eigenvectors
Uy, 1 < n < 5, of the operator o0 (see the very end of page 644 in [10]) are
interrelated with the eigenvectors i, 0 < k < 4, in (28)—(32) in the following way:
the eigenvectors Uy and ¥, are some linear combinations of the yo and y,, whereas
the eigenvectors 3, U4 and Us coincide with the ¥3, ¥4 and y;, respectively, up to
normalization by constant factors:

Finally, the incentive for making those extended comments, given above, is just
to emphasize that this set of eigenvectors of the discrete number operator .4,
produced by Mathematica, is still ambiguous until a rule is given for ordering those
eigenvectors and associated eigenvalues of the operator .4,

We return now to a study of the eigenvectors and eigenvalues of the operator
A in a systematic algebraic way. Since the lowest eigenvalue of the .4 ® is 0,
its lowest eigenvectorfo is defined as

NOF = 0. (34)

Moreover, an explicit form of the same eigenvectorfo can be found from the simpler
equation

bsfo = 0. (€R)
Since the symmetric matrix (.4 ®),, v in (23) clearly exhibits additional symmetry
among the entries of the all antidiagonals, it is evident that all eigenvectors of the
operator ./ must be either ‘even’ or ‘odd’ with respect to that particular reflection

symmetry about the subantidiagonal {(.#®)s_;;}{_, of the matrix (), v,
that is,

(h), = v (@), . o=nk=4. (36)

This means that we should look for a lowest eigenvector f;, whose componentwise
structure is of the form

(h)_ = (@prrp). (37)
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Substituting (37) into (35) and employing an explicit form of the matrix (19), one
obtains only two linearly independent equations for the three unknowns o, 8 and y

1/2

a= Bkt 4y, B=y(+kt . (38)

Taking into account that k> = 27 — 1, from (38) it follows thatox = y (27 +« t'/?)
and the lowest eigenvector f; with the components

4
(0) =y(21+/crl/2,l+Kr_1/2,1,1,1+/cr_1/2) (39)
k=0

is thus determined by the Eq (35) up to normalization by a constant y. Notice
that fy = 1y Yo; thus, the fy is also the eigenvector of the DFT operator ¢
corresponding to the eigenvalue i’ = 1. Also, to normalize the lowest eigenvector
fo to have length one, it suffices to choose the normalization constant y in (39) as
¥ = Yo = (12v3)Y/2, and we shall employ in what follows the same notation fo for
the unit-length lowest eigenvector with the components as in (39), but y = yj.

In order to find next eigenvectors of the number operator .45, we first define 4
vectors of the form

o= BN 1=ksa (40)

wheref‘o is the lowest eigenvector of the .4 ®) and dys are some normalization scalar
factors. Since f is the eigenvector of the DFT operator @® also and it corresponds
to the eigenvalue i = 1, from the second intertwining relation in (13) for N = 5,

it follows at once that all vectors ﬁ, 1 < k < 4, are, in effect, the eigenvectors of
the @©,

o7 = d’; 0 (bg)"ﬁ) =i d E T o (bT) =
= (bT) o0 = i+ & (bT) fo=iF. (41)

corresponding to the eigenvalues i¥, respectively. Moreover, it actually turns out
that all vectorsfk, 0 < k < 4, are at the same time the eigenvectors of the number
operator .#"®_ Indeed, since the operators @ and .#® commute, one checks
easily that

2O 4OF = 4O eOF = ik 4O (42)

is valid for all integer values of k between 0 and 4. This means that for any integer
k € [0, 4], both vectors f; and .#® f; are associated with the same eigenvalues
i of the 5D DFT operator o0, Consequently, three vectors f;, 1 < k < 3, do
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represent the eigenvectors of the number operator .4 ) because the corresponding
multiplicities m(i%) = 1 for those values of 1 < k < 3. As for the last vector f, one
readily verifies that

- 4, - - - -
N &F, ~ bY bs (bg) Fo~bIbsbl 7 ~ bE(JV(S’ + ) = b = fu, (43)

where the symbol A ~ B indicates that A is equal to B multiplied by a non-zero
scalar constant factor and we employed the fact that the Vectorf% is an eigenvector
of the operator % also, for the same reason as it happens to be true in the case (42)
of the operator .#”® (despite the non-commutativity of the operators . and .4 ).

Since the vectorfo has been already defined by (34) as the lowest eigenvector of
the operator .4 ) one does conclude that the five orthonormal vectors f‘k, 0<k<
4, explicitly given as

J_‘: _ 1 N ? _ 1 T J_‘: _ \/‘C N
0= \/VZVS Yo, J1 = 2V vs Y4, 2 = 2 Y3,
- 1 /72 - 1 -
— , - , 44
=, \/Ul Vi Ja 2o y2 (44)

do represent the desired set of the eigenvectors for the number operator .4,
N = Mfie  O<k=4, (45)
associated with the eigenvalues
A=0, A= c2v4, Ay = c2v3, Az = czvl, Ay = czvz, (46)
respectively.

The explicit analytical form of the spectrum of the discrete number operator
A can be thus represented as

A = c2[5(1 — Sw) + 4((f — 1)sinkd + coske) sin 2k9] : (47)
where 6 = 27/5and 0 < k < 4.

Our first graph compares the eigenvalues Ay, 0 < k < 4, and the first 5
eigenvalues of the quantum number operator N = afa.
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The next step is to clarify how these eigenvectors (44) transform under the action
of the operators b and bs and then to compare them with the behaviour of their
continuous counterparts v, (x), which satisfy the well-known relations

ay,(x) = Vg1 (0), a0 = v+ 1 (). (48)
But observe first that from (40), it follows at once that

di+1

bl fi. 0<k<3, dy=1. (49)
cdy

Jfer1 =

Therefore, the relations (49) can be explicitly written for each appropriate value of
the index k as

. dkc? s - - -
bs fo = f=nh, bl fi = VAt fitr 1 <k<3, (50)
Vs
where 7 := 4k//tvvs = 4/+/57 + 21. It remains only to evaluate the last
identity
b=y, 0% == bl = — V- A (51)
54—4€4K2 5) Jo = 4/(250_ n 1J1,



On a Discrete SD Number Operator 285

which is a direct consequence of the second ‘cyclic’ identity in (18) and the relation

1

= O, )

fa
readily obtained by the successive use of all entries in the chain of relations (49).
The formulas (50) and (51) are thus discrete analogues of those, which are collected
in the second identity of the continuous case (48).

As for the action of the lowering difference operator bs, the situation here is
slightly different. The point is that already at the first step one evaluates that

bsfi = §bsblfy =5 (%f 4 /<5>)f0 =8y =8f+Bf), (53)

~1
where § = (n\/ )Ll) and coefficients @ and § can be explicitly defined by the
following easy algebra:

(fo.bsh) = 6o = L. fi) =87 (i) = 671 = nv/As, (54)
(fabshi) = 88 = bife. i) = =V (1 =P (h.fi) = =V (A = pP)Ar . (55)

From (54) and (55), one thus concludes that « = n?A;, 8 = —p \/1 —n% A, and
the relation (53) now explicitly reads

bsfi = Vi [nfo— V1= fi]. (56)

The evaluation of the action of the lowering operator bs on the remaining three
eigenvectors fn, n = 2,3,4, requires less efforts for the following reason. As we
have already remarked in the process of deriving formula (43), three vectors]‘l,fz
and ]73, associated with the eigenvalues i* k = 1,2,3, with multiplicities 1, are
actually common eigenvectors of the number operator .4 ® and the operator .#
(although these operators do not commute). Moreover, the explicit form of corres-
ponding eigenvalues of the operator %,

K fo = Qo1 — An) fas n=1,2,3, (57)

is a direct consequence of the evident intertwining relation .4 bg = bg (JV ® 4

H ) Therefore, for 2 < k < 4 one readily derives that

bsf, = bsblfi | = o+ W(S))ﬁ_l = V. (58

1 1 (
VA Vi
We are now in a position to write down all matrix elements of the raising and lowe-
ring operators bg and bs in the basis, built over the eigenvectors f;,, 0 < n < 4.1In
particular, using (50) and (51), one readily evaluates that
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O 0 0 0 0
o WA 0 0 0 —/(1—n)A
((fk,b;ff,)) = 0o V& 0 0 0 . (59)
0 0 A O 0
0 0 0 i 0

In a like manner, from (45), (56) and (58), it follows at once that

0 v 0 0 0
o 0 0 a0 0
((f-wsfi)) = |0 0 0 Vi 0 |. (60)
0 0 0 0 VA

0—y/(I=m)A 0 0 0

To close this section, we point out here that as a consistency check, one may verify
that these matrix realizations (59) and (60) of the raising and lowering operators
bg and bs in the f,-basis, respectively, do possess the same ‘cyclic’ properties as
indicated in identities (18). Indeed, a direct computation of the 5th power of the
matrix (60) shows that

((hbs7)) + [ - mmnan] (G owsi) ) =0, @D

where

12
[(1 - 772)111213/\4] = 04[(1 - 772)1)11)2\13\14] =5c't, (62)

upon using definitions of the eigenvalues v, 1 < k < 4, given in (24)—(27). Finally,
since the operator b;r is the matrix transpose of bs, the former one has the same
‘cyclic’ property as the latter.

4 Eigenvectors of the ./ ® Versus the Hermite
Functions ¥, (x)

From the outset the ND discrete Fourier transform &™) was conceived as a
finite (discrete) analogue of the Fourier transform ., and the N eigenvectors ﬁ,
0 < k < N — 1, of the former transform operator were therefore required to
converge to the corresponding Hermite functions ¥, (x) in the limit as N — oo.
So the question is: How the eigenvectors fk, 0 <k < N -1, of a ND DFT
@™ with a fixed integer value of N can be related to the Hermite functions v, (x),
0 < n < oo ? Note first that a ND discrete Fourier transform is actually a discrete
(finite) image of the N-dimensional subspace of the infinite-dimensional Hilbert
space L*(R, dx), spanned by the first N basis functions ,(x), 0 < n < N — 1, in
this space, rather than of the whole Hilbert space L*(R, dx) itself. Consequently, one
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should find out how the eigenvectorsf‘k match the first N Hermite functions v, (x),
0 < n < N — 1. In this regard, it is important to take into account the following
fundamental properties of the Hermite functions ¥, (x): ¥,(—x) = (—=1)"v¥,(x),
and each function ¥, (x) has exactly n alternations in its sign. As we have already
remarked above [see formula (36)], the eigenvectorsfk do exhibit the same type of
the reflection symmetry as ¥,(—x) = (—1)"¥,(x) in the continuous case, so that it
remains only to verify that each eigenvectorfk has the same number of alternations
in its components (ﬂk)l ,0 <1 < N—1, as a Hermite function ¥, (x), associated with
it. But the careful examination of the eigenvectorsfn under study, explicitly defined
by relations (28)—(32) and (44), indicates that their components are not appropriately

structured in order to enable one to match them with the first 5 Hermite functions
¥, (x). It has been then realized that one actually needs to rearrange components

of the eigenvectors fk and introduce another set of centred vectors f ) with the

o N2
components (fk(c) )1 ) defined as

20\ _ .
(k)hf_«Uh@<Q¢ 0=<klm=4, (63)
where U is the unitary operator, UUT = UT U = I, with the matrix elements

00010
00001

((U)m,m/) =|10000]. (64)
01000
00100

The explicit componentwise forms of these centred eigenvectors fk(c) ,0< k<4,
are

- 1
‘0(‘)= {1,1+K‘L'_1/2, 2t + kT2 I, I},

VY213

- (c 1 _
7O = \/T {— V2 eV 0, — 11, —1},
2 V3

7O ‘/f{l 1.20=1).1 1}
2 2/( s Ly ( T)a ) k)

-(c 1 _
) \/T {—z 12 4 — V20,11, —1},
) 2 V1

e 1
©
) = 2 /s s {2m‘/2 +3r-2, — (r + 2m1/2), 2,11, 1}. (65)

In next 5 graphs, we compare the centred Vectorsﬂ(c) and the first Hermite functions
Va(x), 0 < n < 4, respectively.
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w3(X)

WA(X)

It is to be emphasized that thus introduced centred vectors fn(c) are actually
eigenvectors of the centred discrete number operator N &9,

N ED =y yOUT, (66)
associated with the same eigenvalues A, as in (45), that is, .4~ (S;C)ﬁ(c) = )Lnfn(c) .
Matrix elements of this operator .4 ¢ := (b are explicitly given as
(¢f (23))
5—t kr2 -1 -1 2%t
KT 441 x> —1 -1
(7)) =@ 1 et 2 et | 6D
- —1 1 —«t2 4 +t KT

2Kr§ -1 -1 k172 5-—1
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where the centred lowering and raising operators b(sc) and (b(sc) ) are defined through
the operators bs and b}, respectively, by the same similarity transformation as
in (66).

Furthermore, the centred vectors f‘n(c) turn out to be also eigenvectors of the
centred discrete Fourier transform operator &,

PG :=U®UT, (68)

corresponding to the respective eigenvalues i". The eigenproblem for the centred
DFT operator @) can be thus written in the matrix form as

Z ¢>(5 o ( (C)) = A (J?"(C))m’ 0<k<4d, —2<m<2, (69)

and associated matrix for this eigenproblem has elements (c¢f (14))

‘Pl q
7 q1q'q
550) 1
(fl’m,;): 1111 1. (70)
V5 4 2
¢ 41 qq
q ¢ 144}

A word of explanation regarding the present results (66)—(70) is in order at this
point, but let us recall first the following. Square matrices A and B are said to be
similar, if there is a non-singular matrix C (which is referred to as a transforming
matrix of B to A) such that A = CBC™!. In the case when the transforming matrix
C is a unitary matrix U, UU" = 1, then B is unitarily similar to A (see, e.g.
pages 130 and 175 in [15]). Taking that into account, note that in the process of
establishing how the eigenvectors f,, are related to the Hermite functions v,(x),
we actually arrived at another form (69) of the eigenproblem for the SD DFT
operator, which appear to be different from the traditional one (12). This form of
DFT is also well known but less frequently used. However, some authors have even
suggested that it is better not to use the standard Fourier matrix that represents a
discretization of the Fourier transform but rather to use a ‘centred’ version of it [8].
But from (68) it is clear that @ and ®5¢) are actually unitarily similar, with the
transforming matix (64), and they represent therefore the same linear transformation
after a change of basis. Nonetheless, it is true that there is considerable merit in
working with the non-standard 5D DFT operator @ ) because it explicitly displays
all those symmetry properties in the eigenproblem (69), which are so characteristic
of the continuous Fourier transform. As a direct consequence of this appealing
feature of (69), the matrix form of @) clearly exhibits its remarkable symmetry:
the matrix @9 is a centrosymmetric matrix [3], meaning that it is reproduced by
the similarity transformation with the transforming matrix J,

@G0 = J@(S;C)J’ (71)
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where J is the 5 x 5 matrix with ones on the antidiagonal,

00001
00010
(-]m,n) = 00100
01000
10000

Finally, the operator .4 ), which commutes with @) is also of the centrosym-
metric type, as is readily seen from (67).

5 Concluding Remarks

To summarize, we have constructed an explicit form of a difference analogue
of the quantum number operator in terms of the raising and lowering operators
that govern eigenvectors of the 5D discrete (finite) Fourier transform. The main
algebraic properties of this operator have been examined in detail. The eigenvalues
of this discrete number operator are represented by distinct non-negative numbers
so that this operator has been used to systematically classify, in complete analogy
with the case of the continuous classical Fourier transform, eigenvectors of the 5D
discrete Fourier transform, thus resolving the ambiguity caused by the well-known
degeneracy of the eigenvalues of the discrete Fourier transform. We hope that this
particular knowledge will help us to extend our results to the case of an arbitrary
ND discrete Fourier transform.
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Finite Difference Formulation for the Model
of a Compressible Viscous and Heat-Conducting
Micropolar Fluid with Spherical Symmetry

N. Mujakovi¢ and N. Crnjarié-Zic

Abstract We are dealing with the nonstationary 3D flow of a compressible viscous
heat-conducting micropolar fluid, which is in the thermodynamical sense perfect
and polytropic. It is assumed that the domain is a subset of R and that the fluid
is bounded with two concentric spheres. The homogeneous boundary conditions
for velocity, microrotation, heat flux, and spherical symmetry of the initial data are
proposed. By using the assumption of the spherical symmetry, the problem reduces
to the one-dimensional problem. The finite difference formulation of the considered
problem is obtained by defining the finite difference approximate equation system.
The corresponding approximate solutions converge to the generalized solution of
our problem globally in time, which means that the defined numerical scheme is
convergent. Numerical experiments are performed by applying the proposed finite
difference formulation. We compare the numerical results obtained by using the
finite difference and the Faedo—Galerkin approach and analyze the properties of the
numerical solutions.
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1 Introduction

The theory of micropolar fluids, established by Eringen [4], provides a mathematical
foundation for studying the model of a fluid, which takes into account the interac-
tions between the micromotion effects of fluid particles and the macromotion. The
micropolar fluid equation system is actually an extension of the classical Navier—
Stokes equations with the additional variable called microrotation, describing the
angular momentum of the particles.

In this paper, we focus on the compressible flow of the isotropic, viscous, and
heat-conducting micropolar fluid, which is in the thermodynamical sense perfect
and polytropic. The model for this type of flow was first considered by Mujakovi¢
in [6] where she developed one-dimensional model. In [6, 7], she considered the
model with homogeneous and nonhomogeneous boundary conditions and proved
the existence and the uniqueness of the generalized solutions. The model in the
three-dimensional case, which we consider in this work, was introduced in [1].
It is assumed that the fluid occupies the domain Q2 C R3, bounded with two
concentric spheres with radii ¢ and b, b > a > O0; that the initial data are
spherically symmetric; and that the homogeneous boundary conditions for velocity,
microrotation, and heat flux are valid. Taking into account the spherical symmetry,
the problem reduces to the one-dimensional problem, which we consider here in the
Lagrangian description. The local existence and the uniqueness of the generalized
solution were proved in [1, 8] by using the Faedo—Galerkin method. Additionally,
the global existence and the stabilization of the generalized solution for the same
model were established in [2, 3].

We consider here the finite difference formulation of the described problem,
which is based on the approximate equation system obtained by using the finite
difference approach. It is proved in [9] that the sequence of the corresponding
approximate solutions converges to the generalized solution of our problem, which
means that the defined numerical scheme is convergent. In this work, we analyze
some properties of numerical solutions obtained with the proposed finite difference
scheme. Furthermore, we compute the numerical results by using the Faedo—
Galerkin method [1] and compare it with the results obtained with the finite
difference scheme.

The paper is organized as follows. In the second section, we introduce the
mathematical formulation of our problem. In the third section, we define the
corresponding finite difference formulation. In the fourth section, we present and
analyze some properties of the numerical solutions.
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2 Mathematical Model

In this work, we consider the three-dimensional flow of the compressible viscous
and heat-conducting micropolar fluid, being thermodynamically perfect and poly-
tropic. In the Eulerian description, the starting domain is {x | x € R®,a < |x| < b},

where |x| = \/ x% + x% + x% and b > a > 0. The homogeneous boundary conditions
for velocity, microrotation, heat flux, and spherical symmetry of the initial data are
proposed. This spherically symmetric problem is transformed in [1] to the one-
dimensional problem in Lagrangian coordinates in the domain (0, 1) and described
by the following system of equations:

o 1,0 5
o= 17 o Y %
dbv R, A+2u 0
=L PO ( ) @
do 4y, co + 2¢cq4 2 3

Por = Ji @t Jil? ( Pax ) )

B K 3 [, 00 R ,, 0 5, A+2u( 3 ,,.\
pal‘ _CUszax (rpax) CULpeax(r U)+ c, L2 pr(r U) “4)

4;1, ad ) co + 2¢y 9 ., )2_4cd d ) 4, o
ch ox (%) + cyL? (pax (Fo) ch'Oax (re®) + Cy @

Here p, v, w, and 6 denote, respectively, the mass density, velocity, microrotation
b

velocity ,and temperature in the Lagrangian description and L = / 52 po(s) ds,

(a and b are radii of the starting domain). u, i, A, co, cq, K, ¢y, ji, ;nd R are the
physical constants describing fluid properties for which the following relations
should be valid: w, i, cq,jr > 0, 34 + 21 > 0, 3¢o + 2¢4 > 0, ¢y, R, K > 0. The
system is considered in the domain Qr = (0, 1) x (0, T), where T > 0 is arbitrary.
Equations (1)—(4) are, respectively, local forms of the conservation laws for the
mass, momentum, momentum moment, and energy. We take the homogeneous
boundary conditions:

v(0,71) =v(l,1) =0, w(0,1) = w(l,t) =0, 3,0(0,7) = 3,0(1,1) =0, (5
fort € (0, T) and the nonhomogeneous initial conditions:
p(x,0) = po(x), v(x,0) = vo(x), w(x,0) = wo(x), O(x,0) = bo(x),  (6)

for x € (0,1) and for the given functions py, vy, wy, and 6. The function r is
defined by:
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r(x,t) = ro(x) + / v(x,7)dr, (x,1) € QOr, 7
0

where:

x 1/3
ro(x) = (a3 + SL/ ! dy) , x€{0,1). (8)
0 Po(y)

We assume that the initial functions satisfy:
po(x) = m, Bo(x) = m, x€(0,1), €))
for some constant m € R™ and that
0,60 € H'({0,1)) and v, wp € Hy({0, 1)). (10)

Under the stated assumptions (9) and (10), in previous papers [1, 2, 8], it is proven
that the problem (1)—(5) has unique solution (p, v, ®, 8) in the domain Qr, for any
T > 0, with the following properties:

p € L=(0,T;H'((0,1))) N H'(Qr), (11)
v,w,0 € L0, T;H' ({0, 1))) N H'(Q7) N L*(0, T; H*({0,1))),  (12)

p>0 6>0 on Or. (13)

For the function r, it holds r € L*(0,T;H?>((0,1))) N H*(Qr) N C(Qr), and
r>a in Qr. These results were obtained by using the Faedo—Galerkin method
for a local existence theorem [1] and the extension principle for a global existence
theorem [2].

3 Finite Difference Formulation

In this section, we introduce the finite difference formulation for the considered
problem (1)—(6). More precisely, we define the finite difference scheme resulting
with the system of ordinary differential equations.

Let & be an increment in x such that N+ = 1 for N € Z*. The staggered grid
points are denoted withx; = ki, k € {0,1,....N},andx; = jh,j € {},....N—1}.
For each integer N, we construct the followmg time-dependent functions:

pi(®),6,(t), j = é,...,N— é and  ve(?), (1), k=0,1,...,N, 14)
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that form a discrete approximation to the solution at defined grid points:

p(x;,1),0(x;, 1), j = é,...,N— ' and v(xg, 1), w(x, 1), k=0,1,...,N.

27
) 8+ — 81—} .
We define the operator § with §g, = b , where ] = jorl = k. For
ke{l,...,N}tandj € {;, oo, N— ;}, the functions py, 6 and v}, w; are defined by
Pk = ,ok_%, O = -1 and v; = i1 w; = wj+§' In accordance with the given

initial conditions (6), we introduce the discrete initial conditions as:

1 [U+h 1 [U+h
oo =(, [ s [ ) e vl a9

(G=2)h —3)h

kh kh
(vk,a)k)(O) = (;l/( vo(x)dx, ;l /( a)o(x)dx) s ke {1, ., N— 1}. (16)

k—1)h k—1)h

and vg(0) = vy(0) = 0, we(0) = wy(0) = 0, §6p(0) = §6y(0) = 0. Because
of (8), we take:

k=3 Lo\ /3
rk(0)=(