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Preface

For 5 days, May 18–22, 2015, more than 170 mathematicians from 50 countries
attended the International Conference on Differential and Difference Equations and
Applications, held at the Military Academy, Amadora, Portugal.

The scientific aim of this conference was to bring together mathematicians
working in various disciplines of differential and difference equations and their
applications. There were 6 plenary lectures, 22 main lectures, and 131 communi-
cations about the current research in this field. This volume contains 41 selected
original papers which are connected to research lectures given at the conference.
Each paper has been carefully reviewed.

We take this opportunity to thank all the participants of the conference and
the contributors to these proceedings. Our special thanks belong to the Military
Academy for the sincere hospitality. We are also grateful to the Scientific and
Organizing Committees for all the effort in the preparation of the conference.

These proceedings are dedicated in memory of Professor George Sell (1937–
2015). Professor George Sell had been invited to the ICDDEA 2015 as a plenary
speaker, but was unable to come and died shortly afterwards.

We hope that this volume will serve researchers in all fields of differential and
difference equations.

Amadora, Portugal Sandra Pinelas
Brno, Czech Republic Zuzana Došlá
Brno, Czech Republic Ondřej Došlý
Wuhan China Peter E. Kloeden
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Algebraic Properties of the Semi-direct Product
of Kac–Moody and Virasoro Lie Algebras
and Associated Bi-Hamiltonian Systems

Alexander Zuevsky

Abstract We discuss the semi-direct product of Virasoro and affine Kac–Moody
Lie algebras and associated Verma modules, coadjoint orbits, Casimir functions,
and bi-Hamiltonian systems.

Mathematics Subject Classification (2000): 53C15, 53C57, 58F05, 58F07

1 The Semi-direct Product of Virasoro Algebra
with the Kac–Moody Algebra

This paper is a continuation of the paper [8] where we studied bi-Hamiltonian
systems associated to the three-cocycle extension of the algebra of diffeomorphisms
on a circle. In this note, we review results showing that certain natural problems
(classification of Verma modules, classification of coadjoint orbits, determination of
Casimir functions) [3, 5, 7] for the central extensions of the Lie algebra Vect.S1/ Ë
LG reduce to the equivalent problems for Virasoro and affine Kac–Moody algebras
(which are central extensions of Vect.S1/ and LG , respectively). Such properties
are not true in general for any semi-direct product of Lie algebras. This occurs in this
very particular case because the Lie algebras of Virasoro and affine Kac–Moody are
related by what is called the Sugawara construction. Let G be a Lie group and G its
Lie algebra. The group Diff.S1/ of diffeomorphisms of the circle is included in the
group of automorphisms of the loop group LG of smooth maps from S1 to G. The
semi-direct product Diff.S1/ Ë LG of these two groups can thus be constructed. For
any pairs .�;  / 2 Diff.S1/2 and .g; h/ 2 LG2, the composition law of the group
Diff.S1/ËLG is .�; a/�. ; b/ D .�ı ; a:bı��1/. The Lie algebra of Diff.S1/ËLG
is the semi-direct product Vect.S1/ ËLG of the Lie algebras Vect.S1/ and LG .

A. Zuevsky (�)
Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
e-mail: zuevsky@yahoo.com

© Springer International Publishing Switzerland 2016
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
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2 A. Zuevsky

Let us recall the Lie algebras that were involved in this paper. Let G be a Lie
algebra and h:; :i a nondegenerated invariant bilinear form. Vect.S1/ is the Lie
algebra of vector fields on the circle and LG the loop algebra (i.e., the Lie algebra
of smooth maps from S1 to G ); Vect.S1/C is the Lie algebra over C generated by
the elements Ln; n 2 Z with the relations ŒLm;Ln� D .n � m/LnCm. We denote by
LGC the Lie algebra over C generated by the elements gn; n 2 Z; g 2 G where
.�g C �h/n is identified with �gn C �hn with the relations Œgn; hm� D Œg; h�nCm.
The semi-direct product of Vect.S1/ with LG is as a vector space isomorphic to
C1.S1;R/˚ C1.S1;G /. The Lie bracket of SU .G / has the form

Œ.u; a/; .v; b/� D �
uv0 � u0v; va0 � ub0 C Œa; b�

�
;

for any .u; v/ 2 C1.S1;R/2 and any .a; b/ 2 C1.S1;G /2, where prime denote
derivative with respect to a coordinate on S1. The Lie algebra Vect.S1/ËLG can be
extended with a universal central extension SU .G / by a two-dimensional vector
space. Two independent cocycles are given by

!Vir
�
.u; a/; .v; b/

� D
Z

S1
u000v;

!K�M
�
.u; a/; .v; b/

� D
Z

S1
ha0; bi:

We denote by .u; a; �; ˛/ the elements of SU .G / with u 2 C1.S1;R/; a 2
C1.S1;G /, and .�; ˛/ 2 R2. The Lie bracket of SU .G / reads (see [3])

Œ.u; a; �; ˛/; .v; b; �; ˇ/� D
�

uv0 � u0v; Œa; b� � ub0 C va0;
Z

S1
u000v;

Z

S1
ha0; bi

�
:

The algebra SU .G / can be also represented as the semi-direct product of Virasoro
algebra on the affine Kac–Moody algebra. We denote by cVir and cK�M the elements
.0; 0; 1; 0/ and .0; 0; 0; 1/, respectively. If G D R, then the Lie algebra Vect.S1/ Ë
LR has a universal central extensionASU .R/ by a three-dimensional vector space.
The third independent cocycle is given by

!sp ..u; a/; .v; b// D
Z

S1

�
ub00 � va00� :

We denote by .u; a; �; ˛; �; ı/ elements of ASU .R/ with u 2 C1.S1;R/, a 2
C1.S1;G /, and .�; ˛; �/ 2 R

3. The Lie bracket ofASU .R/ is given by

Œ.u; a; �; ˛; �/; .v; b; �; ˇ; ı/�

D
�

uv0 � u0v; Œa; b� � ub0 C va0;
Z

S1
u000v;

Z

S1
ha0; bi;

Z

S1
.ub00 � va00/

�
:
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An algebraic equivalent SUC.G / of SU .G / is defined to be the Lie algebra over
C with generators Ln; n 2 Z and gn; n 2 Z; g 2 G and two central elements cVir

and cK�M satisfying the relations ŒLm;Ln� D .n � m/LnCm C .n � m/3ın;�mcVir,
ŒLm; gn� D ngnCm, Œgm; hn� D Œg; h�nCm C .n � m/hg; hiın;�mcK�M . This is a
graded Lie algebra with weights for Ln and gn equal n and zero weights of cVir

and cK�M . Similarly, an equivalent ASU C.C/ of SU .R/ is the Lie algebra over
C with generators Ln; n 2 Z and an; n 2 Z and three central elements cVir, csp,
and cK�M satisfying the relations ŒLm;Ln� D .n � m/LnCm C .n � m/3ın;�mcVir,
ŒLm; an� D nanCm C n2ın;�mcsp, Œam; an� D .n � m/ın;�mcK�M . This Lie algebra is
endowed with the grading weights n for Ln and an and zero for cVir, csp, and cK�M .

2 The Universal Enveloping Algebra of SU .G /

In some very particular cases, the modified generalized enveloping algebra of a
semi-direct product K ËH of two Lie algebras is isomorphic to the tensor product
of some modified generalized enveloping algebras of K and of H . Let fH be
the central extension of H with the two-cocycle !H . Denote by � the action
of the Lie algebra K on the Lie algebra fH . Let us introduce the semi-direct
product K Ë fH which is a central extension of K Ë H by a two-cocycle !0

H
with !0

H

�
.0; h1/; .0; h2/

� D !H .h1; h2/. A two-cocycle !K on K defines also
a two-cocycle !0

K by !0
K

�
.g1; h1/; .g2; h2/

� D !K .g1; g2/ of K Ë H . Let I
be the natural inclusion of fH into U H

!H
and J be the natural inclusion of fH

into U K ËH
!0

K ;!0

H
. We call the action of K on H realizable in U H

!H
when (1) there

exists a map F W K ! U H
!H

and a two-cocycle ˛ on K such that for any pair
.g1; g2/ in K 2 F .Œg1; g2�/ D ŒF.g1/;F.g2/� C ˛.g1; g2/1, (2) the map F satisfies
the compatibility condition, for any g 2 K and h 2 QH with the anti-commutator
ŒF.g/; I.h/� D I.g � h/, of the algebra U H

!H
.

Theorem 1. If the action ofK is realizable in U H
!H

, then we have the isomorphism
U K ËH
!0

K ;!0

H
' U K

!K �˛ ˝ U H
!H

.

2.1 The Case of SUC.G /

Let G be a simple complex Lie algebra and C' its dual Coxeter number. Introduce
the fK1; : : : ;Kng as a basis of G and the dual basis

˚
K�
1 ; : : : ;K

�
n

�
with respect to the

Killing form h:; :i. We apply Theorem 1 for K D Vect.S1/, H D LG , !K D
�!Vir, and !H D ˇ!K�M . In this case, !0

H D ˇ!K�M . For 	 D ˇ C C' ¤ 0,
the Sugawara construction [1] delivers a map F W Vect.S1/C ! U LGC

!G
defined

by F.Ln/ D .ˇ C 	/�1
P

i2Z
P

jD1;:::;n
W .Kj/i.K�

j /n�i W, i.e., the action of Vect.S1/ is
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realizable in U LG
ˇ!K�M

, with ˛ D ˇ!Vir=12	 (here, dots denote the normal ordering).
Thus, we obtain

Proposition 1. If 	 ¤ 0, then U
SUC.G /
�!Vir;ˇ!K�M

' U
Vect.S1/C
.��˛/ ˝ U LG

ˇ!K�M
.

The Lie algebra VectC.S1/ acts on the Heisenberg algebra by Ln:am D manCm C
ın;�mm2cK�M . In this case, one has !0

H D ˇ!H C�!sp. The map F W Vect.S1/C !
CSUC.C/ is defined by F.Ln/ D .2ˇ/�1

P

i2Z
W aian�i W C�ˇ�1an, for a cocycle

˛0 D .˛ C �2ˇ�1/!Vir. For CSUC.C /, we obtain

Proposition 2. For ˇ ¤ 0, we have U
BSUC.C/

�!Vir;ˇ!K�M ;�!sp
' U

Vect.S1/C

!Vir

˝ U LG
!K�M

, with


 D � � 1
12

� �2

ˇ
.

2.2 Representations of SU .G /

First, we have

Proposition 3. A positive energy representation V of SUC.G / with nonvanishing
ˇId-action of cK�M results in a pair of commuting representations of Virasoro and
affine Kac–Moody Lie algebras.

Thus, we see that positive energy representations of SUC.G / are representations
of Virasoro and affine Kac–Moody Lie algebra with commuting actions. This
proposition determines whether a SUC.G / Verma module is a sub-module of
another Verma module of SUC.G /.

Let h be a Cartan algebra of G with a basis fh1; : : : ; hkg. The Lie subalgebra k of
SUC.G / is generated by the elements fcVir; cK�M; u0; .h1/0; : : : ; .hk/0g. A Verma
module VSUC.G /

� of SUC.G / is associated to any linear form � 2 h�. Verma
modules VVir

� , VK�M
� are associated to linear forms �,� over the spaces generated by

cVir and u0, cK�M and f.h1/0; : : : ; .hk/0g, correspondingly. For any � 2 k�, the Verma
module VSUC.G /

� is a positive energy representation. Thus, VSUC.G /
� is Virasoro

and affine Kac–Moody algebra module. The generator e of VSUC.G /
� brings about a

Verma module VVir
� for Virasoro algebra. It generates also a Verma module VVir

� for
the affine Kac–Moody algebra. The linear form � satisfies �.u0/e D �.u0�F.u0//e,
i.e., .u0 � .ˇ C 	/�1

P

i2Z
P

jD1:::n W .Kj/i.K�
j /�i W/e D �.u0/e. Suppose the action of

a Casimir element of G is given by acts by D.�/Id for D.�/ 2 C. We then have
.u0 � .ˇ C 	/�1

P
i2Z
P

jD1:::n W .Kj/k.K�
j /�i W/:e D .u0 � .ˇ C 	/�1

P
jD1:::n W

.Kj/0.K�
j /0 W/:e, .�.u0/ � D.�/

2	
/e. This implies �.u0/ D �.u0/ � D.�/

2	
. The other

values of � and � can be computed by the same method.
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Proposition 4. Let � be a linear form over h with nonvanishing �.cK�M/. Then

VSUC.G /
� ' VVir

� ˝ VK�M
C

�;

where �.ei/ D �.ei/, i D 1; : : : ; n, defines �, �.cK�M/ D �.cK�M/, and �.cVir/ D
�.cVir/� ˇ

12	
defines �, �.u0/ D �.u0/� D.�/

2	
.

3 The Kirillov–Kostant Structure of SU .G /

Now we consider Kirillov–Kostant Poisson brackets of the regular dual of the semi-
direct product of Virasoro Lie algebra with the affine Kac–Moody Lie algebra.
Let K be a Lie algebra with a nondegenerated bilinear form h:; :i. A function
f W K ! R is called regular at x 2 K if there exists an element rf .x/ such
that f .x C �a/ D f .x/ C �hrf .x/; ai C o.�/, for any a 2 K . For two regular
functions f ,g W K �! R, we define the Kirillov–Kostant structure as a Poisson
structure on K with ff ; gg .x/ D hx; Œrf .x/;rg.x/�i. Then for any e 2 G , the
second Poisson structure ff ; gge .x/ compatible with the Kirillov–Kostant Poisson
structure is defined by ff ; gge .x/ D he; Œrf .x/;rg.x/�i. A nondegenerated bilinear

form on SU .G / andCVect.S1/˚ eLG is defined by

h.u1; a1; ˇ1; �1/; .u2; a2; ˇ2; �2/i D
Z

S1
u1u2 C

Z

S1
ha1; a2i C �1�2 C ˇ1ˇ2:

We denote by SU .G /0 the subset of SU .G / of elements .u; a; �; ˇ/ with

nonvanishing ˇ. Let u0 D u � kak2
2ˇ

. We denote by .CVect.S1/˚ eLG /0 the subset of

CVect.S1/˚ eLG composed of elements .u; a; �; ˇ/ with ˇ ¤ 0. Let I .u; a; �; ˇ/ D
.u0; a; �; ˇ/ be a map from SU .G /0 to .CVect.S1/ ˚ eLG /0. For nonvanishing

ˇ, let eI .u; a; �; ˇ; �/ D
�

u0 � �

ˇ
a0; a; � � �2

ˇ
; ˇ
�

be a map from SU .G / to

CVect.S1/˚eLR .

Theorem 2. I and eI are Poisson maps.

4 Casimir Functions and Coadjoint Orbits for SU .G /

Now we determine Casimir functions on CSU .G /0 and CSU .R/.

Proposition 5. Let CVir, CK�M CA be Casimir functions for Virasoro, affine
Kac–Moody, and the Heisenberg Lie algebras A correspondingly. Let SPU .G /,
CSPU .R/ be Poisson submanifolds of SU .G / and CSU .R/ defined by � D 0.
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Then the functions CVir.u0; �/, c.u; a; ˇ; �/ D CK�M.a; ˇ/, and
R

S1 ju0j1=2 are

Casimir functions on CSU .G /0. In particular, the functions cA .u; a; ˇ; �/ D
CA .a; ˇ/, CVir.u0 � �2

ˇ
a0; �/, and

R
S1 ju0 � �2

ˇ
a0j1=2 are Casimir functions on

CSU .R/0.

Let fH be a central extension of a Lie algebra H and H be a Lie group with Lie
algebra H . Then H acts on fH ? by the coadjoint action along coadjoint orbits.

Proposition 6. The coadjoint actions of the groups Diff.S1/ Ë LG and Diff.S1/ Ë
LR�C are given by

Ad�.�; g/�1.u; a; �; ˇ/ D
�
.u ı �/� 02 C �S.�/ C hg�1g0; ai� 02

C 1

2
ˇ k g�1g0 k2; �0Ad.g�1/a ı � C ˇg�1g0; �; ˇ

�
;

�
.u ı �/� 02 C �S.�/ C h g0g�1; ai� 02 C 1

2
ˇ.g0g�1/2 C �g00g�1;

�0Ad.g�1/a ı � C ˇg�1g0 � �g00g�1; �; ˇ; �
�
:

5 Dispersive Water Wave System and Other Particular Cases

It has been showed in [8] that the dispersive water wave system equation [2, 4, 6]
is a bi-Hamiltonian system related to the semi-direct product of Kac–Moody and
Virasoro Lie algebras and the hierarchy for this system was found. In this section,
some results of [8] are obtained from another point of view. We have

Proposition 7. The functions
˚
�1
�
A.u C B da

dx C C/
� j� 2 R

�
commute pairwise

for the Sugawara f:; :g0
Sug and e-braket f:; :ge with e D .1; 0; 0; 2; 0/, and A D

�
� � �

ˇ�2�
��2

, B D � �

ˇ�2� , C D � kak2
2ˇ�4� � �.

The function � 7! �1
�
A.u C B da

dx C C/
�

has an asymptotic development. The
coefficients of this development form a hierarchy. The first term of this development
is
R

S1 u, and the second one is
R

S1 .u
2 C �uC k a k2/. A linear combination of these

two terms gives the Hamiltonian of equations H.u; a/ D R
S1 .u

2C k a k2/.
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1 Introduction

Boundary value problems (BVPs) with periodic boundary conditions have become a
focus of research in many fields of physics, engineering, and mathematics, including
molecular dynamics, mechanical systems, computer simulations, and composite
materials with a periodic microstructure and so on. When such problems are solved
numerically, the periodicity condition is often imposed strongly; in other words, the
values on periodic edges are required to match exactly. For typical examples, see
[18, 19].

The purpose of this paper is to extend the application of the reproducing kernel
Hilbert space method (RKHM) to provide approximate solution of a class of first-
order periodic BVPs of the following form:

u’.x/C g.x/u.x/ D f .x; u.x// I 0 � x � 1; (1)

subject to the periodic boundary condition

u.0/� u.1/ D 0; (2)

where g(x) is continuous function, f .x; u/ 2 W1
2 Œ0; 1�, u D u.x/ 2 W2

2 Œ0; 1�

is an unknown function to be determined, kf .x; u.x// � f .x; u.x//kW1
2

�
Mku.x/� u.x/kW1

2
for x 2 Œ0; 1�, M 2 R, f (x, u) is linear or nonlinear function of

u depending on the problem discussed, and W2
2[0, 1] and W1

2[0, 1] are reproducing
kernel spaces defined in the next section. Throughout this paper, we assume that the
BVP models (1) and (2) have a unique smooth solution on the given interval [0, 1].

The numerical solvability of BVPs with periodic boundary conditions of different
orders has been pursued in literature. To mention a few, Peng [22] has discussed the
existence and multiplicity of the positive solutions for first-order periodic BVPs.
Al-Smadi et al. [4] have developed an iterative method for systems of first-order
periodic BVPs based on the RKHM. Lia [20] has presented the existence of
positive solution for fourth-order periodic BVPs. On the other hand, this method has
been implemented in several operator, differential, integral, and integrodifferential
equations side by side with their theories for instance, singular BVPs [12], sin-
gularly perturbed multipantograph delay equations (Geng and Qian, 2014), partial
differential equations [17], Fredholm-Volterra integrodifferential equation [2, 5, 6],
Fredholm integrodifferential equation ([1, 3, 14]), Volterra integrodifferential equa-
tion [7, 8], Fredholm-Volterra integral equation [11], operator equations [21], Fuzzy
differential equations [9], and others [10, 15, 16]. The basic motivation of this paper
is to apply the RKHM to develop an approach for obtaining the representation of
exact and approximate solutions for a class of periodic BVPs (1) and (2), whereas
the condition for determining solutions can be imposed in reproducing kernel space.
However, this approach is simple, needs less effort to achieve the results, and is
effective.
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The paper is organized as follows. In Sect. 2, reproducing kernel spaces are
presented in order to construct their reproducing kernel functions. In Sect. 3,
representations of exact solution for BVPs (1) and (2) together with some essential
results are introduced. Meanwhile, an iterative method for solving first-order
periodic BVPs is described based on these reproducing kernel spaces. Subsequently,
the analysis of the method is discussed in Sect. 4. In Sect. 5, numerical examples
are simulated to show the reasonableness of our theory and to demonstrate the high
performance of the proposed method. Finally, some conclusions are summarized in
the last section.

2 Preliminaries and Materials

In this section, we utilize the reproducing kernel concept to construct the space
W2

2[0, 1] in which every function satisfies the periodic boundary condition (2) and
formulate its reproducing kernel function. Besides, we present some basic results
and remarks in the reproducing kernel theory and its applications.

Definition 1. Let E be a nonempty abstract set. A function K W E � E ! R is a
reproducing kernel of the Hilbert space H if:

1. For each x 2 E;K .�; x/ 2 H .
2. For each x 2 E and ' 2 H ; h';K .�; x/i D '.x/.

The last condition is called the reproducing property: the value of the function '
at the point x is reproducing by the inner product of ' with K .�; x/.
Remark 1. A Hilbert space H of functions on a set E is called a reproducing kernel
Hilbert space (RKHS) if there exists a reproducing kernel K of H . That is, a Hilbert
space which possesses a reproducing kernel is called the RKHS.

Definition 2. The Hilbert space Wm
2 Œ0; 1� ; m 2 N; is called a reproducing

kernel if for each fixed x in [0, 1], there exist K .x; y/ 2 Wm
2 Œ0; 1� such that

hu.y/;K .x; y/iWm
2

D u.x/ for any u.y/ 2 Wm
2 Œ0; 1� and y 2 Œ0; 1�.

Definition 3. The reproducing kernel space W2
2[0, 1] defined as W2

2 Œ0; 1� D
n
u.x/ W

u’.x/ is absolutely continuous real-valued function, u’’.x/ 2 L2 Œ0; 1� ; and u.0/ D
u.1/

o
: The inner product and norm in W2

2[0, 1] are given, respectively, by

hu.x/; v.x/iW2
2

D u.0/v.0/C u’.0/v’.0/C
Z 1

0

u’’.t/v’’.t/dt; (3)

and kuk D hu; ui 12 , where u; v 2 W2
2 Œ0; 1�.
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Remark 2. The space W2
2[0, 1] is a complete reproducing kernel space, and its

reproducing kernel function K(x, y) can be written as

k .x; y/ D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

4X

iD1
ci.x/yi�1; y � x;

4X

iD1
di.x/yi�1; y > x;

(4)

where ci(x) and di.x/; i D 1; 2; 3; 4 will be given by the following assumptions:
Let’s assume that K .x; y/ 2 W2

2 Œ0; 1� satisfies the generalized differential
equations

(
@4k.x;y/
@y4

D ı .y � x/ ; @
2k.x;1/
@y2

D 0; k .x; 0/C @3k.x;0/
@y3

C c1 D 0;
@k.x;0/
@y � @2k.x;0/

@y2
D 0; @

3k.x;1/
@y3

C c1 D 0:
(5)

where ı is the Dirac delta function.

On the other hand, for x ¤ y; K(x, y) is the solution of the constant differential

equation @4k.x;y/
@y4

D 0; subject to the boundary conditions (5). That is, the character-

istic equation is given by �4 D 0 and the eigenvalues are � D 0 with multiplicity 4.
Hence, the general solution can be written as in Eq. (4).

In addition, assume that K(x, y) satisfies the equations @mk.x;xC0/
@ym D @mk.x;x�0/

@ym for

m D 0; 1; 2; and @3k.x;xC0/
@y3

� @mk.x;x�0/
@ym D �1: Through the last descriptions together

with the boundary conditions (5), the unknown coefficients ci(x) and di.x/; i D
1; 2; 3; 4 are uniquely obtained.

However, the representation of the reproducing kernel function K(x, y) in
W2

2[0, 1], using Mathematica software package, is provided by

K .x; y/D
	

1
48



x3y

�
6C3y�y2

�C3x2y
��6�3yCy2

�C6xy
�
2CyCy2

��8 ��6Cy3
��
; y � x;

1
48



48C6xy

�
2�3yCy2

�C3x2y
�
2�3yCy2

��x3
�
8�6y�3y2Cy3

��
; y>x:

(6)

Here, it should be noted that the kernel function K(x, y) is unique, symmetric,
and nonnegative for any fixed x 2 Œ0; 1� : For detailed method for obtaining the
reproducing kernel function, we refer to [12].

Theorem 1. An arbitrary bounded set of W2
2[0, 1] is a compact set of C[0, 1].

Proof Let fun.x/g1
nD1 be a bounded set of W2

2[0, 1] such that kun.x/k < M;
where M is positive constant. From representation of K(x, y), we have

ˇ̌
u.i/.x/

ˇ̌ Dˇ̌
ˇ
˝
u.x/; @i

xK .x; y/
˛
W2
2

ˇ̌
ˇ � @i

xkK .x; y/kW2
2
ku.x/kW2

2
: Since @i

xK .x; y/ ; i D 1; 2; : : : is

uniformly bounded about x and y, we have
ˇ
ˇu.i/.x/

ˇ
ˇ � Miku.x/kW2

2
: Accordingly,

ku.x/kc � M:



Analytical-Numerical Solutions for First-Order Periodic Boundary Value. . . 13

Now, we need to prove that fun.x/g1
nD1 is a compact set of C[0, 1], that is,

fun.x/g1
nD1 are equicontinuous functions. From the property of K(x, y), we have

jun .x1/�un .x2/jD
ˇ
ˇ
ˇhu.y/;K .x1; y/�K .x2; y/iW2

2

ˇ
ˇ
ˇ

� ku.x/kW2
2
kK .x1; y/�K .x2; y/kW2

2
�M

�
��K .x1; y/�K.x2; y/W2

2

�
�� :

By “mean-value theorem of differentials” and the symmetry of K(x, y), it follows
that

jK .x2; y/�K .x1; y/j D jK .y; x2/�K .y; x1/j D
ˇ
ˇ̌
ˇ

d

dx
K .y; x/

ˇ
ˇ̌
ˇ
xD	

jx2 � x1j �N jx2�x1j :

Thus, if � � jx2 � x1j � �
NM ; then one can get jun .x1/ � un .x2/j < �:

Definition 4. The reproducing kernel space W1
2[0, 1] defined as W1

2 Œ0; 1� D
n
u.x/ W

u’.x/ is absolutely continuous real-valued function, u’.x/ 2 L2 Œ0; 1�
o
: The inner

product and norm in W1
2[0, 1] are given, respectively, by

hu.x/; v.x/iW1
2

D u.0/v.0/C
Z 1

0

u’.t/v’.t/dt; (7)

and kuk D hu; ui 12 , where u; v 2 W1
2 Œ0; 1�.

In 2006, Lin and Cui have proved that the space W1
2[0, 1] is a complete

reproducing kernel and its reproducing kernel is given by

G .x; y/ D
	
.1C y/ ; y � x;
.1C x/ ; y > x:

(8)

3 Adaptation of Reproducing Kernel Algorithm

In this section, the formulation of a linear differential operator and the imple-
mentation method are presented in W2

2[0, 1]. After a while, the construction of
orthogonal function systems is introduced based on the use of the Gram-Schmidt
orthogonalization process in order to obtain exact and approximate solutions of
periodic BVPs (1) and (2). To do this, we define a differential operator L W
W2
2 Œ0; 1� ! W1

2 Œ0; 1� such that Lu.x/ D u’.x/C g.x/u.x/. Thus, the periodic BVPs
(1) and (2) can be converted into the form



14 A. Al e’damat et al.

	
Lu.x/ D f .x; u.x// ; 0 � x � 1;

u.0/� u.1/ D 0;
(9)

where u.x/ 2 W2
2 Œ0; 1� and f .x; y/ 2 W1

2 Œ0; 1� as y D y.x/
�

2 W2
2 Œ0; 1� ; y 2

.�1;1/ ; x 2 Œ0; 1� :
Corollary 1 The operator L: W2

2 Œ0; 1� ! W1
2 Œ0; 1� is a bounded linear operator.

Proof It is so easy to see that L is a linear operator. Thus, it is enough to show that
L is a bounded operator. From Definition 4, we have

kLuk2W1
2

D hLu;LuiW1
2

D Œ.Lu/.0/�2 C
Z 1

0

Œ.Lu/’.x/�2dx:

By reproducing property of K(x, y), we have

:

8
ˆ̂
<̂

ˆ̂
:̂

u.x/ D hu.y/; K .x; y/iW2
2
;

.Lu/.x/ D
D
u; LK .x; y/

�E

W2
2

;

.Lu/’.x/ D
D
u; LK .x; y/

�
’
E

W2
2

:

By Schwarz inequality, we get

j.Lu/.x/j D
ˇ̌
ˇ
ˇ
D
u; LK .x; y/

�E

W2
2

ˇ̌
ˇ
ˇ � kLK .x; y/kW2

2
kukW2

2
D M1kukW2

2
;

and

j.Lu/’.x/j D
ˇ
ˇ̌hu; .LK .x; y// ’iW2

2

ˇ
ˇ̌ � k.LK .x; y// ’kW2

2
kukW2

2
D M2kukW2

2
;

where M1;M2 > 0 are positive constants.

Thus Œ.Lu/.0/�2�M2
1kuk2W2

2
; Œ.Lu/’.x/�2�M2

2kuk2W2
2

and
Z 1

0

Œ.Lu/’.x/�2dx�M2
2kuk2W2

2
:

That is,

k.Lu/.x/k2W1
2

D Œ.Lu/.0/�2 C
Z 1

0

Œ.Lu/’.x/�2dx � �
M2
1 C M2

2

� kuk2W2
2

D Mkuk2W2
2
;

where M D M2
1 C M2

2 > 0:

Now, we construct an orthogonal system of functions f i.x/g1
iD1 of W2

2[0, 1] by
setting ˆi.x/ D G .x; xi/ and 
i.x/ D L�ˆi.x/; where fxig1

iD1 is dense on [0, 1]
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and L* is the conjugate operator of L. Consequently, in terms of the properties of
G(x, y), one obtains hu.x/; 
i.x/iW2

2
D hu.x/;L�ˆi.x/iW2

2
D hLu.x/; ˆi.x/iW1

2
D

Lu .xi/ ; i D 1; 2; : : :

Lemma 1 The fact 
i.x/ D d
dy K .x; y/ jyDxi ; i D 1; 2; : : : holds.

Proof From reproducing property of, we can obtain that
i.x/ D h
i.y/;K .x; y/iW2
2

D
hL�ˆi.x/;K .x; y/iW2

2
D hˆi.x/;LK .x; y/iW1

2
D LK .x; xi/ D d

dy K .x; y/ jyDxi :

Lemma 2 If fxig1
iD1 is dense on [0, 1]; then f
i.x/g1

iD1 is a complete system of
W2

2[0, 1].

Proof For each fixed u.x/ 2 W2
2 Œ0; 1� ; let hu.x/; 
i.x/iW2

2
D 0: That is,

hu.x/; 
i.x/iW2
2

D hu.x/;L�ˆi.x/iW2
2

D hLu.x/; ˆi.x/iW1
2

D Lu .xi/ D 0; i D
1; 2; : : : : Therefore, Lu.x/ D 0 from the density of fxig1

iD1 on [0, 1], as well as
u.x/ D 0 from the existence of L�1 and the continuity of u(x).

The orthonormal system functions
˚

 i.x/

�1
iD1 of W2

2[0, 1] can be derived from
Gram-Schmidt orthogonalization process of f
i.x/g1

iD1 as follows:


 i.x/ D
iX

kD1
ˇik
k.x/; (10)

where ˇik are orthogonalization coefficients ˇii > 0; i D 1; 2; : : : ; n
�

that are

given by

ˇij D 1

k
ik ; for i D j D 1;

ˇij D 1
r

k
ik2 �
Xi�1

kD1
�˝

i; 
 k

˛
W2
2

�2
for i D j ¤ 1; and

ˇij D
�
Xi�1

jDk

˝

i; 
 k

˛
W2
2
ˇjk

r

k
ik2 �
Xi�1

kD1
�˝

i; 
 k

˛
W2
2

�2
for i > j:

Theorem 2. For each u(x) in W2
2[0, 1], the series

X1
iD1

˝
u.x/; 
 i.x/

˛

 i.x/ is

convergent in the sense of the norm k�kW2
2
: On the other hand, if fxig1

iD1 is dense

on [0, 1] and u.x/ 2 W2
2 Œ0; 1� is the solution of problem model (9), then u(x) satisfy

the following form:



16 A. Al e’damat et al.

u.x/ D
1X

iD1

iX

kD1
ˇikf .xk; u .xk//
 i.x/; (11)

and the approximate solution can be obtained by

un.x/ D
nX

iD1

iX

kD1
ˇikf .xk; u .xk// 
 i.x/; (12)

where u0.x/ 2 W2
2 Œ0; 1� .u0 fixed/.

Proof Since u.x/ 2 W2
2 Œ0; 1�, u(x) can be expanded in the form of Fourier series

about
˚

 i.x/

�1
iD1 as u.x/ D

X1
iD1

˝
u.x/; 
 i.x/

˛

 i.x/; and since the space W2

2[0, 1]

is the Hilbert space, then the series u.x/ D
X1

iD1
˝
u.x/; 
 i.x/

˛

 i.x/ is convergent

in the norm k:kW2
2
: From the Fourier series expansion and by Eq. (7), u(x) can be

written as

u.x/ D
1X

iD1

˝
u.x/; 
 i.x/

˛
W2
2

 i.x/ D

1X

iD1

*

u.x/;
iX

kD1
ˇik
k.x/

+

W2
2


 i.x/

D
1X

iD1

iX

kD1
ˇikhu.x/; 
k.x/iW2

2

 i.x/ D

1X

iD1

iX

kD1
ˇik hu.x/;L�ˆk.x/i

W2
2


 i.x/

D
1X

iD1

iX

kD1
hˇikLu.x/; ˆk.x/i

W1
2


 i.x/ D
1X

iD1

iX

kD1
ˇikLu .xk/
 i.x/

D
1X

iD1

iX

kD1
ˇikf .xk; u .xk// 
 i.x/:

Therefore, the form in Eq. (11) is the exact solution of Eq. (9). By truncating the
series in Eq. (11), we obtain the th-truncated series approximate solution as in Eq.
(12). So, the proof of the theorem is complete.

Lemma 3. If u.x/ 2 W2
2 Œ0; 1� ; then there exists a positive constant M such that�

�u.i/.x/
�
�

c
� Mku.x/kW2

2
; i D 0; 1; where ku.x/kc D max0<x<1 ju.x/j :

Proof For any x1; x2 2 Œ0; 1� ; we have u.i/ .x1/ D ˝
u .x2/ ; @i

x1K .x1; x2/
˛
W2
2
; i D

0; 1: By the expression form of K(x, y), it follows that
�
�@i

xK .x; y/
�
�

W2
2

� Mi; i D
0; 1: Thus,

ˇ
ˇu.i/ .x1/

ˇ
ˇ D

ˇ̌
ˇ
˝
u .x2/ ; @i

x1
K .x1; x2/

˛
W2
2

ˇ̌
ˇ � �

�@i
x1

K .x1; x2/
�
�

W2
2
ku .x2/kW2

2
�

� � � Miku.x/kW2
2
; i D 0; 1: Hence,

�
�u.i/.x/

�
�

c
� max

n

i

Mi

o
ku.x/kW2

2
; i D 0; 1: The

proof is complete.
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Corollary 2. The approximate solution un(x) and its derivative u ’n(x) are con-
verging uniformly to the exact solution u(x) and its derivative u ’ (x) as n ! 1,
respectively.

Proof Form Lemma 3, for any x 2 Œ0; 1�, it easy to see that
ˇ
ˇ
ˇu.i/n .x/�u.i/.x/

ˇ
ˇ
ˇD

ˇ
ˇ̌˝un.x/�u.x/; @i

xK .x; x/
˛
W2
2

ˇ
ˇ̌���@i

xK .x; x/
�
�

W2
2
kun.x/�u.x/kW2

2
�Mikun.x/�u.x/kW2

2
;

iD0; 1:
Hence, if kun.x/� u.x/kW2

2
! 0 as n ! 1; then the approximate solution un(x)

and its derivative u ’n(x) are converging uniformly to the exact solution u(x) and its
derivative u ’ (x) as n ! 1, respectively. So, the proof of the theorem is complete.

Remark 3. In order to solve Eq. (1) numerically using the RKHS technique, we
have the following two cases:

Case 1: If Eq. (1) is linear, then the exact and approximate solutions can be obtained
directly from Eqs. (11) and (12), respectively.

Case 2: If Eq. (1) is nonlinear, then in this case the exact and approximate solutions
can be obtained by using the following algorithm:

Algorithm 1 According to Eq. (11), the representation of the solution of problem
(1) can be denoted by

u.x/ D
1X

iD1
Bi
 i.x/; (13)

where Bi D
Xi

kD1ˇikf .xk; uk�1 .xk// : In fact, Bi; i D 1; 2; : : : ; in Eq. (13) are
unknown, so we will approximate them using the known Ai as follows: For a
numerical computations, let the initial function u0 .x1/ D 0, set u0 .x1/ D u .x1/ ;
and define the n-term approximation to ys(x) by

un.x/ D
nX

iD1
Ai
 i.x/; (14)

where the coefficients Ai of 
 i.x/; i D 1; 2; : : : ; n; are given by

8
ˆ̂
<

ˆ̂
:

A1 D ˇ11f .x1; u0 .x1// ; u1.x/ D A1
1.x/;

A2 D
X2

kD1ˇ2kf .x1; uk�1 .xk// ; u2.x/ D
X2

iD1Ai
 i.x/;

un�1.x/ D
Xn�1

iD1Ai
 i.x/;An D
Xn

kD1ˇnkf .x1; uk�1 .xk// :

(15)

Consequently, the unknown coefficients Bi; i D 1; 2; : : : ; in Eq. (13) will be
approximate using the known coefficients Ai; i D 1; 2; : : : ; given in Eq. (14).
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However, in the iterative process of the series (14), we can guarantee that the
approximation un(x) satisfies the periodic boundary condition (2).

4 Convergence Analysis of the Method

In this section, we will prove that the iterative formula (14) is convergent to the
exact solution of Eq. (9) in the sense of the norm of W2

2[0, 1]. In fact, this result is
fundamental in the RKHS theory and its applications. The remaining lemmas are
collected in order to prove the pre-recent theorem.

Lemma 4 If kun.x/� u.x/kW2
2

! 0; xn ! y; .n ! 1/, and f (x, z) is continuous
in [0, 1] with respect to x, z for x 2 Œ0; 1� ; z 2 .�1;1/, then the following are held
in the sense of the norm of W2

2[0, 1]:

(a) un�1 .xn/ ! u.y/ as n ! 1:

(b) f .xn; un�1 .xn// ! f .y; u.y// ; as n ! 1:

Proof For part (a), note that

jun�1 .xn/� u.y/j D jun�1 .xn/ � un�1.y/C un�1.y/ � u.y/j
� jun�1 .xn/ � un�1.y/j C jun�1.y/� u.y/j :

By reproducing property of K(x, y), we have un�1 .xn/ D hun�1.x/;K .xn; x/iW2
2

and
un�1.y/ D hun�1.x/;K .y; x/iW2

2
. Thus,

jun�1 .xn/ � un�1.y/j D
ˇ
ˇ
ˇhun�1.x/;K .xn; x/� K .y; x/iW2

2

ˇ
ˇ
ˇ

� kun�1.x/kW2
2
kK .xn; x/ � K .y; x/kW2

2
:

From the symmetry of K(x, y), it follows that
�
��K .xn; x/ � K.y; x/W2

2

�
�� ! 0 as xn !

y; n ! 1: Hence, jun�1 .xn/� un�1.y/j ! 0 as soon as xn ! y; .n ! 1/ : On the
other hand, for any x 2 Œ0; 1�, by using Corollary 2, it holds that jun�1.y/� u.y/j !
0 as n ! 1: Therefore, un�1 .xn/ ! u.y/ in the sense of k�kW2

2
as xn ! y and

n ! 1. Thus, for part (b), by means of the continuation of f .�/, it is obtained that
f .xn; un�1 .xn// ! f .y; u.y// as xn ! y and n ! 1:

Lemma 5 For the approximate solution un(x) in iterative formula (14), the follow-
ing relations hold:

(a) Lun
�
xj
� D f

�
xj; uj�1

�
xj
��
; j � n;

(b) Lun
�
xj
� D Lu

�
xj
�
; j � n:

Proof For part (a), the proof will be obtained by mathematical induction. For j � n,
we have
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Lun
�
xj
� D

nX

iD1
AiL
 i.x/ D

nX

iD1
Ai
˝
L
 i.x/; ˆj.x/

˛
W1
2

D
nX

iD1
Ai
˝

 i.x/;L

�ˆj.x/
˛
W2
2

D
nX

iD1
Ai
˝

 i.x/; 
j.x/

˛
W2
2
:

That is,

Lun
�
xj
� D

Xn

iD1Ai
˝

 i.x/; 
j.x/

˛
W2
2
: (16)

Multiplying both sides of Eq. (15) by ˇjl, summing for l from 1 to j, and using the
orthogonality of

˚

 i.x/

�1
iD1 yields that

jX

lD1
ˇjlLun .xl/ D

nX

iD1
Ai

*


 i.x/;
jX

lD1
ˇjl
l.x/

+

W2
2

D
1X

iD1
Ai
˝

 i.x/; 
 j.x/

˛
W2
2

D Aj D
jX

lD1
ˇjlf .xl; ul�1 .xl// :

If j D 1; then Lun .x1/ D f .x1; u0 .x1// : Besides, if j D 2; then
ˇ21Lun .x1/ C ˇ22Lun .x2/ D ˇ21f .x1; u0 .x1// C ˇ22f .x2; u1 .x2//, that is,
Lun .x2/ D f .x2; u1 .x2//. Thus Lun

�
xj
� D f

�
xj; uj�1

�
xj
��

for j � n:
For part (b), from Corollary 2 as well as by taking limits in Eq. (14), we

have u.x/ D
X1

iD1Ai
 i.x/: Thus, un.x/ D Pnu.x/, where Pn is an orthogonal

projector from the space W2
2[0, 1] to Spanf
 1,
 2, : : : ,
 ng. Therefore, Lun

�
xj
� D˝

Lun.x/; ˆj.x/
˛
W1
2

D ˝
un.x/;L�ˆj.x/

˛
W2
2

D ˝
Pnu.x/; 
j.x/

˛
W2
2

D ˝
u.x/;Pn
j.x/

˛
W2
2

D
˝
u.x/; 
j.x/

˛
W2
2

D ˝
u.x/;L�ˆj.x/

˛
W2
2

D ˝
Lu.x/; ˆj.x/

˛
W1
2

D Lu
�
xj
�
: So, the proof of

the lemma is complete.

Lemma 6 The sequence fun.x/g1
nD1 in the iterative formula (14) is monotone

increasing in the sense of k�kW2
2
:

Theorem 3. Suppose that fxig1
iD1 is dense on a compact interval [0, 1] and

kun.x/kW2
2

is bounded in formula (14), then the n-term approximate solution un(x)
in the iterative formula (14) is convergent to the exact solution u(x) of Eq. (9) in

the space W2
2[0, 1] and u.x/ D

X1
iD1Ai
 i.x/; where Ai; i D 1; 2; : : : are given by

Eq. (14).

Proof First of all, we will prove the convergence of un(x). From iterative formula
(14), we infer that unC1.x/ D un.x/ C AnC1
 nC1.x/: By the orthogonality of˚

.x/

�1
iD1; it follows that kunC1k2W2

2
D kunk2W2

2
C .AnC1/2 D kun�1k2W2

2
C .An/

2
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C .AnC1/2 D � � � D ku0k2W2
2

C
XnC1

iD1 .Ai/
2: From Lemma 6, the sequence

kunkW2
2

is monotone increasing, and from the boundedness of kunkW2
2
; we have

X1
iD1.Ai/

2 < 1; that is, fAig1
iD1 2 l2 .i D 1; 2; : : : / : Hence, kunkW2

2
is convergent

as n ! 1:

Let m > nI for .um � um�1/ ? .um�1 � um�2/ ? � � � ? .unC1 � un/ ; it follows
that

kum.x/� un.x/k2W2
2

D kum.x/ � um�1.x/C um�1.x/� � � � C unC1.x/� un.x/k2W2
2

� kum.x/ � um�1.x/k2W2
2

C � � � C kunC1.x/ � un.x/k2W2
2

D
mX

iDnC1
.Ai/

2 ! 0; .n ! 1/ :

Considering the completeness of W2
2[0, 1], there exists u.x/ 2 W2

2 Œ0; 1� such that
un.x/ ! u.x/ as n ! 1 in sense of k:kW2

2
:

Secondly, we will prove that u(x) is the solution of Eq. (9). Since fxig1
iD1 is dense

on compact interval [0, 1], thus for any x 2 Œ0; 1� ; there exists subsequence
˚
xnj

�

such that xnj ! x; as j ! 1: From Lemma 5, Lun
�
xnj

� D f
�
xnj ; uj�1

�
xnj

��
. Hence,

let j ! 1; we have Lu.x/ D f .x; u.x// : That is, u(x) is solution of Eq. (9). The
proof is complete.

Theorem 4. Assume that un.x/ 2 W2
2 Œ0; 1� is the solution of BVP (9) and rn.x/ D

ku.x/� un.x/kW2
2

is an error function, where un(x) is the approximate solution that
is given by iterative formula (14). Then the sequence of number frng is monotone
decreasing in the sense of k:kW2

2
and rn ! 0 as n ! 1:

Proof Based on the previous results, it is obvious that

krn.x/k2W2
2
Dku.x/�un.x/k2W2

2
D
�
�
�
�
�

1X

iDnC1

iX

kD1
ˇikF .xk; uk�1 .xk/ ;Tuk�1 .xk// 
 i.x/

�
�
�
�
�

2

W2
2

D
��
�
�
�

1X

iDnC1
Ai
 i.x/

��
�
�
�

2

W2
2

D
1X

iDnC1
.Ai/

2;

and krn�1.x/k2W2
2

D
X1

iDn
.Ai/

2: Thus, krn.x/kW2
2

� krn�1.x/kW2
2
: Consequently,

the error rn is monotone decreasing in the sense of k:kW2
2
: The proof is complete.
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5 Applications and Test Problems

In this section, some numerical examples are studied to demonstrate the per-
formance, accuracy, and applicability of the present method for both linear and
nonlinear problems. Results obtained are compared with the exact solution of each
example and are found to be in good agreement with each other. In the process
of computation, all the symbolic and numerical computations performed by using
Mathematica software package.

Example 1 Consider the following linear equation

u’.x/C u.x/ D x2 C x � 1; 0 � x � 1; (17)

subject to periodic boundary condition

u.0/� u.1/ D 0 (18)

The exact solution is u.x/ D x .x � 1/ :

Using RKHS method, taking xi D i�1
n�1 , i D 1; 2; : : : ; n. The numerical results at

some selected grid points for n D 51 are given in Table 1.

To show the accuracy of the present method for our tested problems, we report
two types of error. The first one is the absolute error, Absn(x), and the second
one is the relative error, Reln(x), which are defined, respectively, by Absn.x/ D
ju.x/ � un.x/j, Reln.x/ D Absn.x/

ju.x/j ;where x 2 Œ0; 1�, un(x) is the n-term approximation

of u(x) obtained by the RKHS method, and u.x/ 2 W2
2 Œ0; 1� is the exact solution.

Example 2 Consider the following nonlinear equation

u’.x/C u.x/e�u.x/ D 2x � 1C ln
�
x2 � x C 1

�

x2 � x C 1
; 0 � x � 1; (19)

subject to periodic boundary condition

u.0/� u.1/ D 0 (20)

Table 1 Numerical results for Example 1

xi u(x) u51(x) Abs51(x) Rel51(x)
0.16 �0:1344 �0:13440010447668405 1:04477 � 10�7 7:77356 � 10�7

0.32 �0:2176 �0:21760010031925470 1:00319 � 10�7 4:61026 � 10�7

0.48 �0:2496 �0:24960009873547984 9:87355 � 10�8 3:95575 � 10�7

0.64 �0:2304 �0:23040009968473152 9:96847 � 10�8 3:95575 � 10�7

0.80 �0:1600 �0:16000010319136138 1:03191 � 10�7 6:44946 � 10�7

0.96 �0:0384 �0:03840010934533122 1:09345 � 10�7 2:84753 � 10�6
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Table 2 Numerical results for Example 2

xi u(x) u51(x) Abs51(x) Rel51(x)
0.16 �0:1443323708899199 �0:1443322995528097 7:13371 � 10�8 4:94256 � 10�7

0.32 �0:2453891602615295 �0:2453890219359414 1:38326 � 10�7 5:63699 � 10�7

0.48 �0:2871488812901222 �0:2871487102608685 1:71029 � 10�7 5:95612 � 10�7

0.64 �0:2618843796306403 �0:2618842287680727 1:50863 � 10�7 5:76066 � 10�7

0.80 �0:1743533871447777 �0:1743532975615985 8:95832 � 10�8 5:13802 � 10�7

0.96 �0:0391567152011939 �0:0391566982754902 1:69257 � 10�8 4:32255 � 10�7

The exact solution is u.x/ D ln
�
x2 � x C 1

�
:

Using RKHS method, taking xi D i�1
n�1 , i D 1; 2; : : : ; n. The numerical results at

some selected grid points for n D 51 are given in Table 2.

6 Conclusion

The main concern of this work has been to propose an efficient algorithm for the
solutions of first-order periodic BVPs. The goal has been achieved by introducing
the RKHS method to solve this class of differential equations. We can conclude
that the RKHS method is a powerful and efficient technique in finding approximate
solution un(x) for linear and nonlinear problems. In the proposed algorithm, the
solution u(x) and the approximate solution un(x) are represented in the form of
series in W2

2[0, 1]. Moreover, the approximate solution and its derivative converge
uniformly to the exact solution and its derivative, respectively.
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Existence of the Mild Solutions for Nonlocal
Fractional Differential Equations of Sobolev
Type with Iterated Deviating Arguments

Alka Chadha and Dwijendra N. Pandey

Abstract This paper investigates a nonlocal differential equation of Sobolev type
of fractional order with iterated deviating arguments in Banach space. The sufficient
condition for providing the existence of mild solution to the nonlocal Sobolev-
type fractional differential equation with iterated deviating arguments is obtained
via technique of fixed-point theorems and analytic semigroup method. Finally, an
example is given to explain the applicability of the abstract results developed.

Keywords Fractional calculus • Caputo derivative • Fractional differential equa-
tion • Nonlocal conditions • Deviated argument

Mathematics Subject Classification (2010): 26A33, 34K37, 34K40, 34K45,
35R11, 45J05, 45K05.

1 Introduction

Recently, the investigation of fractional differential equation has been picking up
much attention from researchers. This is due to the fact that fractional differential
equations have various applications in engineering and scientific disciplines, for
example, fluid dynamics, fractal theory, diffusion in porous media, fractional
biological neurons, traffic flow, polymer rheology, neural network modeling, vis-
coelastic panel in supersonic gas flow, real system characterized by power laws,
electrodynamics of complex medium, sandwich system identification, nonlinear
oscillation of earthquake, models of population growth, mathematical modeling of
the diffusion of discrete particles in a turbulent fluid, nuclear reactors, and theory
of population dynamics. Also, the fractional differential equation is an important
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tool to describe the memory and hereditary properties of various materials and
phenomena. The details on the theory and its applications may be found in books
[11, 14, 16, 18] and references cited therein. In addition, there is considerably
interest on the part of mathematics in the examination of differential equation
with a deviated argument, both in connection with problems in the hypothesis of
control system and because of the intrinsic richness and beauty of such equations.
Differential equations with deviated argument have extraordinary applications in
the hypothesis of self-oscillating systems, problems connected with combustion in
rocket motion, the hypothesis of automatic control, a series of biological problems,
and the problem of long-range planning in economics and in numerous other fields
of sciences and technology, the quantity of which is consistently extending. For
more studies of such types of equations, we refer to monograph [7] and papers
[8, 19, 20] and references cited therein.

On the other hand, the abstract evolution equations with nonlocal conditions
have been studied by many authors. The existence of a solution for abstract
Cauchy differential equation with nonlocal conditions in a Banach space has been
considered first by Byszewski [3]. In physical science, the nonlocal condition may
be connected with better effect in applications than the classical initial condition
since nonlocal conditions are normally more exact for physical estimations than the
classical initial condition. For the study of nonlocal evolution equation, we refer to
[3–5, 9, 10] and references cited therein.

Our main aim of this paper is to examine the Sobolev-type nonlocal differential
equation of fractional order with iterated deviating arguments in Banach space X

illustrated by

cDˇ
t ŒEBz.t/� D Lz.t/C H.t; z.t/; z.d1.t; z.t////; 0 � t � T0; (1)

z.0/ D z0 C h.z/; z0 2 X (2)

where d1.�; z.�// D b1.�; z.b2.�; � � � ; z.bm.�; z.�/// � � � ///; m 2 N, cDˇ
t is the

fractional derivative in Caputo derivative of order ˇ, ˇ 2 .0; 1/, and T0 2 .0;1/.
In (1), we assume that the operators L W D.L/ � X ! Z, B W D.B/ � X ! Y,
and E W D.E/ � Y ! Z are closed operators, where X;Y, and Z are the Hilbert
spaces such that Z is continuously and densely embedded in X; the state y.�/ takes
its values in X. Thus, function H W Œ0;T0� � X � X ! X is an appropriate function,
and h is a map from some space of functions satisfying some conditions to be stated
later. For more studies of Sobolev-type differential equations, we refer to papers
[1, 2, 5, 9, 10, 12, 13, 17] and references cited therein.

We divide the article into three parts. Section 2 presents some basic definitions,
lemmas, and theorems. Section 3 focuses on existence result of mild solution
to consider system by virtue of the theory of semigroup via fixed-point tech-
nique. Section 4 considers an application for illustrating the discussed abstract
results.
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2 Preliminaries

In this section, some essential facts about semigroup theory, fractional calculus,
theorems, and lemmas which will be required to obtain our result are stated.

Definition 2.1 ([16]). Let z 2 L1.Œ0;T0�;RC/. The fractional integral .Jˇ0;t/ of
function z with order ˇ is defined by

J
ˇ
0;tz.t/ D 1

�.ˇ/

Z t

0

.t � �/ˇ�1z.�/d�; (3)

where � denotes the classical gamma functions. We can also write Jˇz.t/ D .gˇ �
z/.t/, here

gˇ.t/ WD
(

1
�.ˇ/

tˇ�1; t > 0;

0; t � 0:
(4)

The notation � stands the convolution of functions and limˇ!0 gˇ.t/ D ı.t/, ı
means delta Dirac function.

Definition 2.2 ([16]). The fractional derivative in Riemann-Liouville sense is given
by

RLDˇ
0;tz.t/ D 1

�.n � ˇ/
dn

dtn

Z t

0

.t��/n�ˇ�1z.�/d�; t>0; ˇ>0; ˇ2.n�1; n/; n 2 N;

(5)
and z 2 Cn�1.Œ0;T0�;X/.

Definition 2.3 ([16]). The Caputo fractional derivative is given by

cDˇ
0;tz.t/ D 1

�.n � ˇ/

Z t

0

.t � �/n�ˇ�1zn.�/d�; n � 1 < ˛ < n; (6)

where z 2 Cn�1..0;T0/IX/\ L1..0;T0/IX/.
Throughout the paper, we assume that .X; k�k/; .Y; k�k/, and .Z; k�k/ are Banach

spaces. The symbol C.Œ0;T0�;X/ represents the space of continuous functions z W
Œ0;T0� ! X which is a Banach space with the following norm:

kzkŒ0;T0 � D supfkz.t/k W t 2 Œ0;T0�g:

The notation L.X/ stands for the Banach space of bounded linear operators f W X !
X endowed with the norm kf kL.X/ D supfkf .y/k W kyk D 1g. Now, we impose the
following data on operators L and E and B:
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(C1) E W D.E/ � Y ! Z and B W D.B/ � X ! Y are linear operators and
L W D.L/ � X ! Z is closed.

(C2) D.B/ � D.L/, Im.B/ � D.E/, and E;B are bijective operators.
(C3) The operators E�1 W Z ! D.E/ � Y and B�1 W Y ! D.B/ � X are

assumed to be linear, bounded, and compact operators.

By the hypothesis .C3/, it follows that B�1E�1 is closed and injective. Thus, its
inverse is also closed, i.e., EB is closed. By the hypothesis .C1/–.C3/ and closed
graph theorem, we conclude the boundedness of the linear operator LB�1E�1.
Therefore, LB�1

E
�1 generates a semigroup fS.t/; t � 0g, S.t/ WD e�LB�1E�1

.
Thus, without loss of generality, we may assume that N0 WD supt�0 kS.t/k < 1
and W1 D kE�1k;W2 D kB�1k.

According to previous definitions, the system (1)–(2) is equivalent to the
following integral equation

ŒEB�z.t/ D ŒEB�z.0/C
Z t

0

.t � �/ˇ�1

�.ˇ/
ŒLz.�/ C H.�; z.�/; z.h1.�; y.�////�d�; (7)

provided the integral in (7) exists for a.e. t 2 Œ0;T0�.
In this work, M D LB

�1
E

�1 W D.M/ � Z ! Z is assumed to be a generator of
a compact analytic semigroup fS.t/; t � 0g of uniformly bounded linear operators.
Thus, it follows that there exists a positive constant N0 � 1 such that kS.t/k � N0

for each t � 0. We assume that 0 2 �.M/, �.M/ means resolvent set of M.
Therefore, we may determine the fractional power M˛ for ˛ 2 .0; 1� as a closed
linear operator with domain D.M˛/ with inverse M

�˛ . Moreover, the subspace
D.M˛/ is a dense subset of X with the norm kzk˛ D kM˛zk for z 2 D.M˛/. Thus, it
is not difficult to show that D.M˛/ is a Banach space with supremum norm. Hence,
we signify the space D.M˛/ by X˛ endowed with the ˛-norm .k � k˛/. We also have
that X	 ,! X˛ for 0 < ˛ < 	 which implies the continuity of embedding mapping.
Thus, we may define X�˛ D .X˛/

� for each ˛ > 0, dual space of X˛, is a Banach
space endowed with the norm

kzk�˛ D kM�˛zk; forz 2 X�˛:

For more details on the fractional powers of closed linear operators, we refer to the
book by Pazy [15].

Now, we present the following lemma follows from the results [6, 21] which will
be used to establish the required result.

Lemma 2.1 ([15]). Let us assume that M generates an analytic semigroup
S.t/; t � 0, and 0 2 �.M/. Then,

.a/ S.t/ W X ! D.M˛/ 8 t > 0, ˛ � 0.

.b/ S.t/M˛z D M
˛S.t/z for each z 2 D.M˛/.

.c/ For each t > 0,
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k dj

dtj
S.t/k � Nj; j D 1; 2; (8)

where Nj; j D 1; 2 are some positive constants.
.d/ The operator M˛S.t/ is bounded and kM˛S.t/k � N˛t�˛e�ıt for each t > 0.
.e/ For each ˛ 2 .0; 1� and z 2 D.M˛/, then kS.t/z � zk � C˛t˛kM˛zk.

Remark 2.1 ([5]). The operator .M/�˛ is a linear bounded operator in X such that
D.M˛/ D Im.M�˛/.

We denote by C˛T0 D C.Œ0;T0�;X˛/ Banach space of all continuous function
z W Œ0;T0� ! X˛ endowed with the following norm

kzkC˛T0 D sup
0�t�T0

kz.t/k˛ 8 z 2 C˛T0 :

Now, we consider the space

C˛�1
T0 D fz 2 C˛T0 W kz.�1/ � z.�2/k � Lj�1 � �2j; 8 �1; �2 2 Œ0;T0�g; (9)

which is Banach space with norm k � kC˛T0 .
According to Definition 2:4 in [5], we provide the definition of mild solution to

system (1)–(2).

Definition 2.4. A function z 2 C.Œ0;T0�;X/ is called a mild solution of system (1)–
(2) if z.0/ D z0 C h.z/ and following integral equation

z.t/ D Uˇ.t/ŒEB�Œz0 C h.z/�

C
Z t

0

.t�#/ˇ�1
Vˇ.t�#/H.#; z.#/; z.d1.#; z.#////d#; t 2 Œ0;T0�; (10)

is satisfied by z.�/, where

Uˇ.t/ D
Z 1

0

B
�1
E

�1'ˇ.�/S.tˇ�/d�;

Vˇ.t/ D
Z 1

0

ˇB�1
E

�1�'ˇ.�/S.tˇ�/d�;

'ˇ.�/ D 1

ˇ
�

�1� 1
ˇ  ˇ.�

�1
ˇ / � 0;

 ˇ.�/ D 1

�

1X

kD1
.�1/k�1��ˇk�1 �.kˇ C 1/

kŠ
sin.k�ˇ/; � 2 .0;1/;

and 'ˇ.�/ denotes probability density function defined on .0;1/, i.e., 'ˇ.�/ � 0,
0 < � < 1 with

R1
0
'ˇ.�/d� D 1.
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Remark 2.2 ([21]). For each � 2 Œ0; 1�
Z 1

0

��'ˇ.�/d� D
Z 1

0

��ˇ� ˇ.�/d� D �.1C �/

�.1C ˇ�/
: (11)

Lemma 2.2 ([5]). Let us assume that S.t/; t � 0 is a semigroup of uniformly
bounded linear operators generated by operator M. Then, the operator Uˇ.t/ and
Vˇ.t/, t � 0, are bounded linear operators such that

.1/ We have kUˇ.t/zk � W1W2N0kzk and kVˇ.t/zk � W1W2N0

�.ˇ/
kzk for each z 2 X.

.2/ The families fUˇ.t/; t � 0g and fVˇ.t/; t � 0g are strongly continuous, i.e.,
for 0 � �1 < �2 � T0 and z 2 X, we have kUˇ.�2/z � Uˇ.�1/zk ! 0 and
kVˇ.�2/z � Vˇ.�1/zk ! 0 as �2 ! �1.

.3/ The Uˇ.t/ and Vˇ.t/; t � 0, are both compact operators if S.t/; t � 0, is
compact.

.4/ For each z 2 X, 0 < 	 < 1, and 0 < ˛ < 1, we have MVˇ.t/z D M1�	VˇM	z
for t 2 Œ0;T0�. We also have kM˛Vˇ.t/k � ˇW1W2N˛�.2�˛/

�.1Cˇ.1�˛// t�˛ˇ for each t 2
.0;T0�.

.5/ For any z 2 X˛ and fixed t � 0, we have kUˇ.t/zk˛ � W1W2N0kzk˛ and
kVˇ.t/zk˛ � W1W2N0

�.ˇ/
kzk˛ .

Lemma 2.3. For each � 2 Lp.Œ0;T0�;X/ and p 2 Œ1;1/,

lim
�!0

Z T0

0

k�.# C �/ � �.#/kpd# D 0; (12)

where �.s/ D 0 for s … Œ0;T0�.

3 Main Result

In this segment, the sufficient condition for providing the existence of the ˛-mild
solution for system (1)–(2) is derived. To prove the required result, we have to
impose the following assumptions on the data of the system (1)–(2).

.J1/ The nonlinear function H W Œ0;T0��X˛ �X˛�1 ! X is a HRolder continuous
function, and there exist constants LH > 0 and 
1 2 .0; 1� such that

k H.t; z1;w1/ � H.s; z2;w2/k � LH.jt � sj
1 C k z1 � z2k˛
Ck w1 � w2k˛�1/; (13)

for each .t; z1;w1/; .s; z2;w2/ 2 Œ0;T0� � X˛ � X˛�1.
.J2/ The functions bi W Œ0;1/ � X˛�1 ! Œ0;1/; .i D 1; � � � ;m/ are continuous

functions, and there are positive constants Lbi and 0 < 
2 � 1 such that
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jbi.t; z1/ � bi.s; z2/j � Lbi .jt � sj
2 C k z1 � z2k˛�1/; (14)

for all .t; z1/; .s; z2/ 2 Œ0;T0� � X˛�1.
.J3/ h 2 C.X˛;X˛/ is a nonlinear function, and there exists positive constant Lh

such that

kh.w1/ � h.w2/k˛ � Lhkw1 � w2k˛; (15)

for each w1;w2 2 X˛ .

Now, we consider the following space

S˛ D fz 2 C˛T0 \ C˛�1
T0 W kzk˛ � Rg; (16)

where R > 0 is a constant to be defined later. It is clear that S˛ is a closed and
bounded subset of C˛�1

T0
which is complete.

Theorem 3.1. If the assumptions .J1/–.J3/ are fulfilled and z0 2 D.M˛/ with

K�DW1W2N0kEBkLhCW1W2N˛�.2�˛/
�.1Cˇ.1�˛// LF.2CLLb/

T0ˇ.1�˛/

ˇ.1�˛/<1; (17)

then the system (1)–(2) admits at least one ˛-mild solution on Œ0;T0�.

Proof. Firstly, we consider the map ‡ W S˛ ! S˛ defined by

.‡z/.t/ D Uˇ.t/ŒEB�.z0 C h.z//

C
Z t

0

.t � #/ˇ�1
Vˇ.t � #/H.#; z.#/; z.d1.#; z.#////ds; t 2 Œ0;T0�:

(18)

Clearly, it is easy to show that ‡ W C˛T0 ! C˛T0 by using the fact that H and bi are
continuous functions. Now, it remains to show that ‡z 2 C˛�1

T0
. To this end, let

�1; �2 2 Œ0;T0� with �1 < �2. Then, we get

k.‡z/.�2/ � .‡z/.�1/k˛�1 � k.Uˇ.�2/� Uˇ.�1//ŒEB�.z0 C h.z//k˛�1

C k
Z �2

0

.�2 � #/ˇ�1
Vˇ.�2 � #/H.#; z.#/; z.d1.#; z.#////d#

�
Z �1

0

.�1 � #/ˇ�1
Vˇ.�1 � #/H.#; z.#/; z.d1.#; z.#////d#k˛�1;

�k.Uˇ.�2/ � Uˇ.�1//ŒEB�.z0 C h.z//k˛�1

C k
Z �2

�1

.�2 � #/ˇ�1
Vˇ.�2 � #/H.#; z.#/; z.d1.#; z.#////d#k˛�1
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C k
Z �1

0

.�2 � #/ˇ�1
Vˇ.�2 � #/H.#; z.#/; z.d1.#; z.#////d#

�
Z �1

0

.�1 � #/ˇ�1
Vˇ.�1 � #/H.#; z.#/; z.d1.#; z.#////d#k˛�1:

(19)

From the first term of the above inequality, we have

ŒUˇ.�2/ � Uˇ.�1/�M
˛�1ŒEB�.z0 C h.z//

D
Z 1

0

B
�1
E

�1'ˇ.�/ŒS.�ˇ2 �/� S.�ˇ1 �/�M˛�1ŒEB�.z0 C h.z//d�:

Also, we have that for each z 2 X

ŒS.�ˇ2 �/� S.�ˇ1 �/�z D
Z �2

�1

d

ds
S.sˇ�/zds D

Z �2

�1

ˇ�sˇ�1
MS.sˇ�/zds:

Therefore, we estimate the first term as

Z 1

0

B
�1
E

�1'ˇ.�/kS.�ˇ2 �/ � S.�ˇ1 �/kk M
˛�1ŒEB�.z0 C h.z//kd�

�
Z 1

0

'ˇ.�/kB�1
E

�1kŒ
Z �2

�1

k d

ds
S.sˇ�/kds�kŒEB�kk z0 C h.z/k˛�1d�;

�
Z 1

0

'ˇ.�/W1W2ŒN1.�2 � �1/�kŒEB�k � kz0 C h.z/k˛�1d�;

� K1.�2 � �1/

Z 1

0

'ˇ.�/d�;

D K1.�2 � �1/; (20)

where K1 D W1W2N1kŒEB�kkz0 C h.z/k˛�1. The second term can be estimated

Z �1

0

k .�1 � #/ˇ�1
Vˇ.�1 � #/� .�2 � #/ˇ�1

Vˇ.�2 � #/k˛�1k

� H.#; z.#/; z.d1.#; z.#////kd#;

� kB�1
E

�1k
Z �1

0

Z 1

0

'ˇ.�/k Œ d

d&
S..& � #/ˇ�/j&D�2

� d

d&
S..& � #/ˇ�/j&D�1 �M˛�2k

� kH.#; z.#/; z.d1.#; z.#////kd�d#;



Existence of the Mild Solutions for Nonlocal Fractional Differential Equations. . . 33

� W1W2

Z �1

0

Z 1

0

'ˇ.�/Œ

Z �2

�1

k M
˛�2 d2

d&2
S..& � #/ˇ�/kd&�NHd�d#;

� W1W2

Z �1

0

Z 1

0

'ˇ.�/

k M

˛�2kN2.�2 � �1/
�

NHd�d#;

� K2.�2 � �1/; (21)

where K2 D W1W2k M˛�2kN2NHT. The third integral is estimated as

Z �2

�1

k.�2 � #/ˇ�1
Vˇ.�2 � #/k˛�1kH.#; z.#/; z.d1.#; z.#////kd#

�
Z �2

�1

Z 1

0

'ˇ.�/kB�1
E

�1kk Œˇ.�2 � #/ˇ�1�MS..�2 � #/ˇ�/�M˛�2k

�k H.#; z.#/; z.d1.#; z.#////kd�d#;

� W1W2

Z �2

�1

Z 1

0

'ˇ.�/k d

d&
S..& � #/ˇ�/j&D�2M˛�2kNHd�d#;

� K3.�2 � �1/; (22)

where K3 D N1W1W2k M˛�2kNH.
Thus, from the inequality (19) to (22), we obtain that

k .‡y/.�2/� .‡y/.�1/k˛�1 � L.�2 � �1/; (23)

for a positive suitable constant L D P3
lD1 Kl. Therefore, we conclude that .‡y/ 2

C˛�1
T0

. Hence, we deduce that the operator ‡ W C˛�1
T0

! C˛�1
T0

is a well-defined map.
Next, we prove that ‡ W S˛ ! S˛ . For 0 � t � T0 and z 2 S˛ , we get that

k .‡z/.t/k˛
� k Uˇ.t/ŒEB�.z0 C h.z//k˛

C
Z t

0

k .t � #/ˇ�1
Vˇ.t � #/H.#; z.#/; z.d1.#; z.#////k˛d#;

� W1W2N0kEBk � ky0 C h.y/k˛ C W1W2N˛NH�.2 � ˛/T0ˇ.1�˛/

.1 � ˛/�.1C ˇ.1 � ˛//
: (24)

We choose R D W1W2N0kEBk � kz0 C h.z/k˛ C W1W2N˛NH�.2�˛/T0ˇ.1�˛/
.1�˛/�.1Cˇ.1�˛// such that

k .‡y/kC˛T0 � R:

Therefore, we conclude that ‡.S˛/ � S˛ . Next, we will show that ‡ is a
contraction mapping. For y; z 2 S˛ , and 0 � t � T0, we get that k.‡y/.t/ �
.‡z/.t/k˛
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� kUˇ.t/ŒEB�Œh.y/ � h.z/�k˛Ck
Z t

0

.t�#/ˇ�1
Vˇ.t � #/ŒH.#; y.#/; y.d1.#; y.#////

�H.#; z.#/; z.d1.#; z.#////�d#k˛;

� W1W2N0kEBkLhky � zk˛ C ˇW1W2N˛�.2 � ˛/
�.1C ˇ.1 � ˛//

Z t

0

.t � #/ˇ.1�˛/�1

�kH.#; y.#/; y.d1.#; y.#//// � H.#; z.#/; z.d1.#; z.#////kd#: (25)

Now, we estimate

k H.#; y.#/; y.d1.#; y.#//// � H.#; z.#/; z.d1.#; z.#////k
� LHŒky.#/ � z.#/k˛ C ky.d1.#; y.#/// � z.d1.#; z.#///k˛�1�

� LHŒky.#/ � z.#/k˛ C kM�1k � ky.d1.#; z.#///� z.d1.#; z.#///k˛
Cky.d1.�; y.�///� y.d1.�; z.�///k˛�1�: (26)

Let

dj.#; z.#// D bj.#; z.bjC1.#; � � � ; z.#; bm.#; z.#/// � � � ///; j D 1; 2; � � � ;m; z 2 S˛;

with dmC1.#; z.#// D # [20, p. 2183]. Thus, we obtain

jd1.#; y.#//� d1.#; z.#//j D jb1.#; y.d2.#; y.#////� b1.#; z.d2.#; z.#////j;
� Lb1ky.d2.#; y.#/// � z.d2.#; z.#///k˛�1;

� Lb1 Œky.d2.#; y.#/// � y.d2.#; z.#///k˛�1
Cky.d2.#; z.#/// � z.d2.#; z.#///k˛�1�;

� Lb1 ŒLjb2.#; y.d3.#; y.#///� b2.#; z.d3.#; z.#///j
CkMk�1ky � zkC˛T0 �;
� � �

� ŒLm�1Lb1 � � � Lbm C Lm�2Lb1 � � � Lbm�1 C � � � C LLb1Lb2

CLb1 �kMk�1ky � zkC˛T0 : (27)

Therefore, we get

k H.#; y.#/; y.d1.#; y.#//// � H.#; z.#/; z.d1.#; z.#////k
� LH.2C LLbkMk�1/ky � zkC˛T0 ;
� LH.2C LLb/ky � zkC˛T0 ; (28)
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where Lb D ŒLm�1Lb1 � � � Lbm C Lm�2Lb1 � � � Lbm�1 C � � � C LLb1Lb2 C Lb1 � > 0.
Thus, from the inequalities (25) and (28), we obtain k.‡y/.t/ � .‡z/.t/k˛

� ŒW1W2N0kEBkLh C ˇW1W2N˛�.2� ˛/

�.1C ˇ.1� ˛//
LH.2C LLb/

Tˇ.1�˛/

ˇ.1� ˛/
�ky � zkC˛T0 ;

D K�ky � zkC˛T0 : (29)

Taking supremum of t over Œ0;T0� and getting

k.‡y/ � .‡z/kC˛T0 � K�ky � zkC˛T0 : (30)

Since K� D W1W2N0kEBkLh C W1W2N˛�.2�˛/
�.1Cˇ.1�˛// LH.2C LLb/

Tˇ.1�˛/

.1�˛/ < 1. It implies
that‡ is a contraction mapping on S˛ with constant K� < 1. Therefore, there exists
a fixed point of the mapping ‡ by Banach fixed-point theorem which is just a mild
solution for the problem (1)–(2). ut

4 Example

We consider the following nonlocal differential problem

cDˇ
t Œwuu.t; u/ � wuuuu.t; u/�C @2w.t; u/

@u2
D eH.u;w.t; u//CeG.t; u;w.t; u//;

u 2 S; t 2 Œ0;T�; (31)

w.0; u/ D
nX

sD1
Csw.ts; u/; x 2 Œ0; ��; (32)

w.t; 0/ D w.t; �/ D 0; 0 < t � 1; (33)

where cDˇ
t denotes the fractional derivative in Caputo sense of order ˇ 2 .0; 1�,

Cs > 0 are constants for s D 1; � � � ; n.
Take X D Y D Z D L2Œ0; �� and S D Œ0; ��. Let us consider the operator

E;B;L on domains and ranges which is contained in L2Œ0; �� defined by

Ew D w00; Bw D w � w00 .EBw D w00 � w0000/; Lw D �w00; (34)

and domains D.E/; D.B/, D.L/ which are given by

fw2X W w;w0; w00; w0000 are absolutely continuous; w0000 2 X; w.0/ D w.�/D0g:
(35)



36 A. Chadha and D.N. Pandey

Thus, the operators have the following expression:

Ew D
1X

mD1
m2.w;wm/wm; Bw D

1X

mD1
.1C m2/.w;wm/wm; (36)

and Lw D P1
mD1.�m2/.w;wm/wm with wm.t/ D .

p
2=�/ sin.mt/; m D 1; � � � ; as

the orthogonal set of eigenfunctions of L. Moreover, we have

B
�1
E

�1w D
1X

mD1

1

m2.1C m2/
.w;wm/wm; (37)

LB
�1
E

�1w D
1X

mD1

�1
1C m2

.w;wm/wm; (38)

S.t/z D
1X

mD1
exp.

�At

1C m2
/.z;wm/wm: (39)

Clearly, the operator B�1E�1 is bounded and compact such that kB�1E�1k � 1. It
is also well known that M D LB�1E�1 generates a strongly continuous semigroup
S.t/ on L2Œ0; �� with kS.t/k � e�t � 1.

Let w.t/ D w.t; �/, h.w/ D Pn
sD1 Csw.ts; u/. Now, we define the function H W

RC � X � X ! X as

H.t; #; �/.u/ D eH.u; �/CeG.t; u; #/; for u 2 .0; �/; (40)

where eH W Œ0; 1� � X ! X is defined as

eH.u; �/ D
Z u

0

K.u; y/�.y/dy; (41)

and eG W RC � Œ0; 1� � X ! X satisfies following condition

keG.t; u; #/k � W.u; t/.1C k#k1=2/; (42)

where Q is continuous in t and Q.�; t/ 2 X. Now, from the definition of H and h,
it can be easily shown that H and h satisfy the assumption .J1/–.J3/. Applying the
result of Theorem 3:1, we can get that the system (31)–(33) admits a unique mild
solution on Œ0;T�.
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On Source Identification Problem for Telegraph
Differential Equations

Allaberen Ashyralyev and Fatma Çekiç

Abstract In the present paper, the source identification problem for a telegraph
equation with unknown parameter p

8
<̂

:̂

d2u.t/
dt2

C ˛
du.t/

dt C Au.t/ D p C f .t/ .0 � t � T/;

u.0/ D '; u0.0/ D  ; u.T/ D �

(1)

in a Hilbert space H with the self-adjoint positive definite operator A is investigated.
Operator approach permitted us to establish stability estimates for the solution of
the problem (1). In applications, three source identification problems for telegraph
equations are investigated.

Keywords Inverse problem • Telegraph equation • Stability

AMS subject classifications: 35R30, 35L20, 35B35

1 Introduction

The differential equations with parameters play a very important role in many
branches of science and engineering. Some examples were given in temperature
over-specification by Dehghan [12], robotic chemistry (chromatography)by Kimura
and Suzuki [19], and physics (optical tomography) by Gryazin, Klibanov, and
Lucas [18].

The source identification problem for partial differential equations has been
studied extensively by many researchers (see [1–11, 13–16, 20–22, 24, 26–28]
and the references therein). However, such problems were not well investigated in
general.
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Our goal in this paper is to investigate telegraph equations with parameter. It is
known that various boundary value problems for telegraph equations with parameter
can be reduced to source identification problem for the differential equation (1) in
a Hilbert space H with self-adjoint positive definite operator A and A � ıI. Here
ı > 0; ˛ > 0, and

ı >
˛2

4
: (2)

The pair fu.t/; pg is called a solution of problem (1) if the following conditions
are satisfied:

(i) u.t/ is twice continuously differentiable function on Œ0;T�. The derivatives
at the endpoints of the segment are understood as the appropriate unilateral
derivatives.

(ii) The element u.t/ belongs to D.A/ for all t 2 Œ0;T�, and the function Au.t/ is
continuous on Œ0;T�.

(iii) u.t/ satisfies the equation and boundary conditions (1), p 2 H.

It is clear that for finding a solution u.t/ of problem (1), it is useful to apply the
substitution

u.t/ D v.t/C A�1p; (3)

where v.t/ is the solution of the following nonlocal boundary value problem for the
differential equation

8
<̂

:̂

d2v.t/
dt2

C ˛
dv.t/

dt C Av.t/ D f .t/ .0 � t � T/;

v.T/ D v.0/C � � '; vt.0/ D  

(4)

and p is the unknown element defined by formula

p D A .� � v.T// : (5)

The present paper is organized as follows. Section 1 is introduction. In Sect. 2, the
main theorem on stability of problem (1) is established. In applications, theorems
on the stability inequalities for the solution of three source identification problems
for the telegraph equations are established.

2 The Main Theorem

Let H be a Hilbert space, A be a positive definite self-adjoint operator with A � ıI,
where ı > 0. Let ˛ > 0 and

ı >
˛2

4
: (6)
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Throughout this paper, fc.t/; t � 0g is a strongly continuous cosine operator
function defined by the formula

c .t/ D eitB1=2 C e�itB1=2

2
:

Then, from the definition of the sine operator function s .t/

s.t/u D
tZ

0

c.s/u ds;

it follows that

s .t/ D B�1=2 eitB1=2 � e�itB1=2

2i
:

Here B D A � ˛2

4
I. For the theory of cosine operator function, we refer to [17]

and [23].
Now, let us give some lemmas that will be needed below.

Lemma 1. The estimates hold:

kc.t/kH!H � 1;
�
�B1=2s.t/

�
�

H!H
� 1;

�
�B�1=2��

H!H
� 1
q
ı � ˛2

4

: (7)

Lemma 2. Assume that

1 >

0

B
@1C

˛
2q
ı � ˛2

4

1

C
A e� ˛

2 T : (8)

Then, the operator

I �
�

c.T/C ˛

2
s.T/

�
e� ˛

2 T

has inverse

P D
n
I �

�
c.T/C ˛

2
s.T/

�
e� ˛

2 T
o�1

;

and the following estimate

jjPjjH!H � M (9)

holds, where M D M.ı; ˛/ > 0.
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Firstly, the solvability of problem (1) in the space C.H/ of the continuous H-
valued functions '.t/ defined on Œ0;T�, equipped with the norm

kukC.H/ D max
0�t�T

jj'.t/jjH

is investigated. We will prove the following main theorem on continuous depen-
dence of the solution on the given data.

Theorem 1. Suppose that '; � 2 D.A/ and  2 D.A
1
2 /. Let conditions (6) and (8)

be satisfied and f .t/ be continuously differentiable function on Œ0;T�. Then, for the
solution .u.t/; p/ of problem (1) in C.H/ � H the following stability inequalities

c kukC.H/ C k A�1p kH� M.ı; ˛/
h
k'kH C k�kH C

�
�
�A� 1

2  
�
�
�

H
C kf kC.H/

i
;

�
�� d2u

dt2

�
��

C.H/
C kAukC.H/ C kpkH � M.ı; ˛/


��
��A'

�
�
��

H

C k'kH C
�
�
�A

1
2  
�
�
�

H
C kA�kH C k�kH C max

0�t�T
kf 0.t/kH C kf .0/kH

�

hold, where M.ı; ˛/ is independent of f .t/; t 2 Œ0;T� and '; ; �.

Proof of Theorem 1 is based on formulas (3) and (5) and the following theorem
on well posedness of nonlocal boundary value problem (4).

Theorem 2. Suppose that the assumptions of Theorem 1 hold. Then, for the
solution v.t/ of problem (4) in C.H/ the stability estimates

kvkC.H/ � M.ı; ˛/

k'kH C k kH C k�kH C kf kC.H/

�
; (10)

�
��
�

d2v

dt2

�
��
�

C.H/

C kAvkC.H/ (11)

� M.ı; ˛/
h

kA'kH C k'kH C
�
�
�A

1
2  
�
�
�

H
C kA�kH C k�kH

C max
0�t�T

�
�f 0.t/

�
�

H C kf .0/kH

i

hold, where M.ı; ˛/ does not depend on f .t/; t 2 Œ0;T� and '; ; �.

Proof. First, we obtain the formula for solution of problem (4) under the assump-
tion (6). We have the following formula

v.t/ D e� ˛
2 tc .t/ v.0/C ˛

2
e� ˛

2 ts.t/v.0/C e� ˛
2 ts.t/ 

C
tZ

0

e� ˛
2 .t�z/s.t � z/f .z/dz (12)



On Source Identification Problem for Telegraph Differential Equations 43

for the mild solution of initial value problem

8
<̂

:̂

d2v.t/
dt2

C ˛
dv.t/

dt C Av.t/ D f .t/ .0 � t � T/;

v.0/isgiven; v0.0/ D  :

Applying condition v.T/ D v.0/C � � ', and formula (12), we get

v.0/ D
�

c.T/C ˛

2
s.T/

�
e� ˛

2 Tv.0/C e� ˛
2 Ts.T/ 

C
TZ

0

e� ˛
2 .T�z/s.T � z/f .z/dz C ' � �: (13)

By Lemma 2, under the assumption (8), there exists of inverse

P D
n
I �

�
c.T/C ˛

2
s.T/

�
e� ˛

2 T
o�1

:

Therefore, using (13), we obtain

v.0/ D P

8
<

:
e� ˛

2 Ts.T/ C
TZ

0

e� ˛
2 .T�z/s.T � z/f .z/dz C ' � �

9
=

;
: (14)

Consequently, the solutions of problem (4) satisfy formulas (12) and (14).
Second, we obtain estimate (10). Using formulas (14) and (12) and estimate (7),

we obtain

kv.0/kH � M1.ı; ˛/



k'kH C

�
�
�A� 1

2  
�
�
�

H
C k�kH C max

0�t�T
kf .t/kH

�
;

max
0�t�T

kv.t/kH � M2.ı; ˛/



kv.0/kH C

�
�
�A� 1

2  
�
�
�

H
C max

0�t�T
kf .t/kH

�
:

Estimate (10) follows from these estimates.
Third, we obtain estimate (11). Applying A to formula (14) and estimates (7),

we get

kAv.0/kH � kPkH!H

n��
�A

1
2 B� 1

2

��
�

H!H
e� ˛

2 T
��
�B

1
2 s.T/

��
�

H!H

��
�A

1
2  
��
�

H
C kA'kH

C kA�kH C �
�AB�1��

H!H

h
kf .T/kH C e� ˛

2 T kc.T/kH!H kf .0/kH

i
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� ��AB�1��
H!H

TZ

0

e� ˛
2
.T�z/ k c.T � z/ kH!H

h˛
2

k f .z/ kH C k f 0.z/ kH

i
dz

9
=

;

� M1.ı; ˛/

8
<

:
kA'kH C kA�kH C �

�A1=2 
�
�

H
C kf .0/kH C

TZ

0

�
�f 0.t/

�
�

H
dt

9
=

;
: (15)

Applying A to formula (12) and using an integration by parts, we can write the
formula

Av.t/ D e� ˛
2 tc.t/Av.0/C ˛

2
e� ˛

2 tA
1
2 s.t/A

1
2 v.0/C A

1
2 e� ˛

2 ts.t/A
1
2  

Ce� ˛
2 tAB�1

2

4e
˛
2 tf .t/ � c.t/f .0/ �

tZ

0

e
˛
2 zc.t � z/

h˛
2

f .z/C f 0.z/
i

dz

3

5 :

Using the last formula and estimates (7), we obtain

kAu.t/kH � kc.t/kH!H e�
˛
2 t kAv.0/kH

C k B
1
2 s.t/ kH!H

��
�A1=2B�

1
2

��
�

H!H

ˇ̌
ˇ̌ ˛

2e
˛
2 t

ˇ̌
ˇ̌ k A

1
2 v.0/ kH

C k B
1
2 s.t/ kH!H

�
��A1=2B�

1
2

�
��

H!H

ˇ̌
e�

˛
2 t
ˇ̌ k A

1
2  kH

C ��AB�1
��

H!H


kf .t/kH Ce�
˛
2 t kc.t/kH!H kf .0/kH

�

C ��AB�1
��

H!H

tZ

0

e�
˛
2
.t�z/ k c.t�z/ kH!H

h˛
2

k f .z/ kH C k f 0.z/ kH

i
dz

� M3.ı; ˛/



kAv.0/kH C k A

1
2  kH C kf .0/kH C max

0�t�T
k f 0.t/ kH

�

for any t 2 Œ0;T�. Then, we get

max
0�t�T

k Av.t/ kH

�M3.ı; ˛/



k Av.0/ kH C k A

1
2  kH C kf .0/kH C max

0�t�T
k f 0.t/ kH

�
: (16)

Estimate

max
0�t�T

kAu.t/kH

� M4.ı; ˛/

8
<

:
kA'kH C kA�kH C ��A1=2 

��
H

C kf .0/kH C
TZ

0

��f 0.t/
��

H
dt

9
=

;
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follows from estimates (11), (15) and (16). Finally, estimate for max
0�t�T

�
�
� d2u

dt2

�
�
�

H

follows from the last estimate and the triangle inequality. Theorem 2 is proved. ut
Now, we will consider three applications of Theorem 1.

First, we consider the nonlocal boundary value problem for telegraph equation

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

utt.t; x/C ˛ut.t; x/ � .a.x/ux/x C ıu.t; x/ D p.x/C f .t; x/;

0 < t < T; 0 < x < l;

u.0; x/ D '.x/; ut.0; x/ D  .x/; u.T; x/ D �.x/; 0 � x � l;

u.t; 0/ D u.t; l/; ux.0; x/ D ux.t; l/; 0 � t � T:

(17)

Problem (17) has a unique smooth solution .u.t; x/; p.x// for the smooth a.x/ �
a > 0; x 2 .0; l/; ı > 0; a.l/ D a.0/; '.x/;  .x/; �.x/; .x 2 Œ0; l� and f .t; x/.t 2
.0;T/; x 2 .0; l// functions. This allows us to reduce boundary value problem (17)
to abstract boundary value problem (1) in a Hilbert space H D L2Œ0; 1� with a self-
adjoint positive definite operator Ax defined by formula

Axu.x/ D �.a.x/ux/x C ıu (18)

with domain

D.Ax/ D fu.x/ W u.x/; ux.x/; .a.x/ux/x 2 L2Œ0; 1�; u.1/ D u.0/; ux.1/ D ux.0/g :

Theorem 3. Let conditions (6) and (8) be satisfied. Then, for the solution
fu.t; x/; p.x//g of problem (17), we have the following stability inequalities

k u kC.L2Œ0;1�/ C k .Ax/�1 p kL2Œ0;1� (19)

� M.ı; ˛/



k ' kL2Œ0;1� C k  kL2Œ0;1� C k � kL2Œ0;1� C max

0�t�T
kf .t/kL2Œ0;1�

�
;

max
0�t�T

��u00��
L2Œ0;1�

C kukC.W2
2 Œ0;1�/

C kpkL2Œ0;1� (20)

� M.ı; ˛/



k ' kW2

2 Œ0;1�
C k  kW1

2 Œ0;1�
C max

0�t�T

�
�f 0.t/

�
�

L2Œ0;1�

C k�kW2
2 Œ0;1�

C kf .0/kL2Œ0;1�

i
;

where M.ı; �/ is independent of '.x/;  .x/; �.x/, and f .t; x/. Here, the Sobolev
space W2

2 Œ0; 1� is defined as the set of all functions f defined on Œ0; 1� such that
f and second order derivative function f 00 are both locally integrable in L2 Œ0; 1�,
equipped with the norm
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k f kW2
2 Œ0;1�

D
0

@
1Z

0

jf .x/j2 dx

1

A

1
2

C
0

@
1Z

0

jfxx.x/j2 dx

1

A

1
2

;

and the Sobolev space W1
2 Œ0; 1� is defined as the set of all functions f defined on

Œ0; 1� such that f and first order derivative function f 0 are both locally integrable in
L2 Œ0; 1�, equipped with the norm

k f kW1
2 Œ0;1�

D
0

@
1Z

0

jf .x/j2 dx

1

A

1
2

C
0

@
1Z

0

jfx.x/j2 dx

1

A

1
2

:

Proof. Problem (17) can be written in abstract form
8
<̂

:̂

d2u.t/
dt2

C ˛
du.t/

dt C Au.t/ D f .t/ .0 � t � T/;

u.0/ D '; u0.0/ D  ; u.T/ D �

(21)

in a Hilbert space L2Œ0; l� of all square integrable functions defined on Œ0; l� with
self-adjoint positive definite operator A D Ax defined by formula (18). Here, f .t/ D
f .t; x/ and u.t/ D u.t; x/ are known and unknown abstract functions defined on Œ0; l�
with the values in H D L2Œ0; l�. Therefore, estimates (19) and (20) follow from
estimates of Theorem 1. ut
Second, let ˝ � Rn be a bounded open domain with smooth boundary S;˝ D
˝ [ S. In Œ0;T� � ˝ , we consider the nonlocal boundary value problem for the
telegraph equation

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

utt.t; x/C ˛ut.t; x/ �
nP

rD1
.ar.x/uxr/xr D p.x/C f .t; x/;

x D .x1; : : : ; xn/ 2 ˝; 0 < t < T;

u.0; x/ D '.x/; @u.0;x/
@t D  .x/; u.T; x/ D �.x/; x 2 ˝;

u.t; x/ D 0; x 2 S; 0 � t � T;

(22)

where ˛r.x/; .x 2 ˝/ ; '.x/;  .x/; �.x/; �x 2 ˝� and f .t; x/; .t 2 .0;T// ; x 2 ˝ are
given smooth functions and ˛r.x/ > 0; ı � 0. We introduce the Hilbert spaces
L2.˝/ of the all square integrable functions defined on ˝, equipped with the norm

kf kL2.˝/ D

8
<̂

:̂

Z
� � �

Z

x2˝
jf .x/j2dx1 � � � dxn

9
>=

>;

1=2

:
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Problem (22) has a unique smooth solution .u.t; x/; p.x// for the smooth functions
'.x/;  .x/; ar.x/ and f .t; x/. This allows us to reduce the problem (22) to the abstract
boundary value problem (1) in the Hilbert space H D L2.˝/ with a self-adjoint
positive definite operator Ax defined by formula

Axu.x/ D �
nX

rD1
.ar.x/uxr/xr (23)

with domain

D.Ax/ D ˚
u.x/ W u.x/; uxr.x/; .ar.x/uxr/xr 2 L2.˝/; 1 � r � n; u.x/ D 0; x 2 S

�
:

Theorem 4. Let conditions (6) and (8) be satisfied. Then, for the solution
fu.t; x/; p.x//g of problem (22) the stability inequalities

k u kC.L2.˝// C k .Ax/�1 p kL2.˝/

� M.ı; ˛/



k � kL2.˝/ C k ' kL2.˝/ C k  kL2.˝/ C max

0�t�T
kf .t/kL2.˝/

�
;

max
0�t�T

�
�u00��

L2.˝/
C kukC.W2

2 .˝//
C kpkL2.˝/

� M.ı; ˛/



k ' kW2

2 .˝/
C k  kW1

2 .˝/
C max

0�t�T

�
�f 0.t/

�
�

L2.˝/

C k�kW2
2 .˝/

C kf .0/kL2.˝/

i

hold, where M.ı; ˛/ does not depend on '.x/;  .x/; �.x/ and f .t; x/. Here and in
future, the Sobolev space W2

2 .˝/ is defined as the set of all functions f defined on
N̋ such that f and all second order partial derivative functions fxr ;xr ; r D 1; : : : n

are both locally integrable in L2.˝/,equipped with the norm

k f kW2
2 .˝/

Dk f kL2.˝/
C

0

B
@
Z

� � �
Z

x2˝

nX

rD1
jfxr ;xr j2 dx1 � � � dxn

1

C
A

1=2

;

and the Sobolev space W1
2 .˝/ is defined as the set of all functions f defined on N̋

such that f and all first order partial derivative functions fxr ; r D 1; : : : n are both
locally integrable in L2.˝/,equipped with the norm

k f kW1
2 .˝/

Dk f kL2.˝/ C

0

B
@
Z

� � �
Z

x2˝

nX

rD1
jfxr j2 dx1 � � � dxn

1

C
A

1=2

:
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The proof of Theorem 4 is based on Theorem 1 and the symmetry properties of
the operator Ax defined by formula (23) and the following theorem on the coercivity
inequality for the solution of the elliptic differential problem in L2.˝/.

Theorem 5. For the solutions of the elliptic differential problem [25]

(
Axu.x/ D !.x/; x 2 ˝;
u.x/ D 0; x 2 S;

the following coercivity inequality holds

nX

rD1
kuxr xr kL2.˝/

� M1jj!jjL2.˝/:

Here M1 does not depend on !.x/.

Third, in Œ0;T� � ˝ , the boundary value problem for the multidimensional
telegraph equation

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

utt.t; x/C ˛ut.t; x/ �
nP

rD1
.ar.x/uxr/xr C ıu D p.x/C f .t; x/;

x D .x1; : : : ; xn/ 2 ˝; 0 < t < T;

u.0; x/ D '.x/; @u.0;x/
@t D  .x/; u.T; x/ D �.x/; x 2 ˝;

@u.t;x/
@n D 0; x 2 S; 0 � t � T

(24)

with the Neumann condition is considered. Here, n is the normal vector to S; ar.x/ �
a > 0; .x 2 ˝/; '.x/;  .x/; �.x/ .x 2 ˝/, and f .t; x/ .t 2 .0;T/; x 2 ˝/

are given smooth functions and ı > 0. Problem (24) has a unique smooth
solution .u.t; x/; p.x// for the smooth functions '.x/;  .x/; �.x/; ar.x/ and f .t; x/.
This allows us to reduce the problem (24) to the abstract boundary value problem
(1) in the Hilbert space H D L2.˝/ with a self-adjoint positive definite operator Ax

defined by formula

Axu.x/ D �
nX

rD1
.ar.x/uxr/xr C ıu (25)

with domain

D.Ax/ D
	

u.x/ W u.x/; uxr.x/; .ar.x/uxr/xr 2 L2.˝/; 1 � r � n;
@u .x/

@n
D 0; x 2 S

�
:
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Theorem 6. Let conditions (6) and (8) be satisfied. Then, for the solution
fu.t; x/; p.x//g of problem (24), the following stability inequalities

k u kC.L2.˝// C k .Ax/�1 p kL2.˝/

� M.ı; ˛/



k � kL2.˝/

C k ' kL2.˝/
C k  kL2.˝/

C max
0�t�T

kf .t/kL2.˝/

�
;

max
0�t�T

�
�u00��

L2.˝/
C kukC.W2

2 .˝//
C kpkL2.˝/

� M.ı; ˛/



k ' kW2

2 .˝/
C k  kW1

2 .˝/
C max

0�t�T

�
�f 0.t/

�
�

L2.˝/

C k � kW2
2 .˝/

C kf .0/kL2.˝/

i
;

hold, where M.ı; ˛/ does not depend on '.x/;  .x/; �.x/ and f .t; x/.

The proof of Theorem 6 is based on Theorem 1 and the symmetry properties of
the operator Ax defined by formula (24) and the following theorem on the coercivity
inequality for the solution of the elliptic differential problem in L2.˝/.

Theorem 7. For the solutions of the elliptic differential problem

(
Axu.x/ D !.x/; x 2 ˝;
@u.x/
@n D 0; x 2 S;

the following coercivity inequality holds [25]

nX

rD1
kuxr xr kL2.˝/

� M1.ı/jj!jjL2.˝/:

Here M1.ı/ is independent of !.x/.
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On a One-Equation Turbulent Model
with Feedbacks

H.B. de Oliveira and A. Paiva

Abstract A one-equation turbulent model is derived in this work on the basis of
the approach used for the k-epsilon model. The novelty of the model consists in
the consideration of a general feedback forces field in the momentum equation
and a rather general turbulent dissipation function in the equation for the turbulent
kinetic energy. For the steady-state associated boundary value problem, we prove the
uniqueness of weak solutions under monotonous conditions on the feedbacks and
smallness conditions on the solutions to the problem. We also discuss the existence
of weak solutions and issues related with the higher integrability of the solutions
gradients.

Keywords Turbulence • k-epsilon model • Feedback forces • Uniqueness
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1 Introduction

The Navier–Stokes equations were proposed by Navier in 1822, and later on,
in 1845, due to the clarifying work made by Stokes, these equations found a
phenomenological justification on the basis of the principles of fluid mechanics.
Since then, these equations are used to describe Newtonian fluid flows, which, in
the case of incompressible and homogeneous fluids, can be written as
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div u D 0; (1)

@u
@t

C div.u ˝ u/ D f � 1

�
r p C � D.u/; D.u/ D 1

2

�r u C r uT
�
; (2)

where u D .u1; u2; u3/ is the velocity field, p is the pressure, � is the constant
(positive) density, and f denotes the external forces field. The tensor D.u/ is the
symmetric part of r u and accounts for the different strains in the fluid. The
positive factor � expresses the ratio of the internal forces in the fluid, called
dynamic viscosity, to the mass density �, and is usually called kinematic viscosity.
In 1883, Reynolds has succeeded to prove the importance of a threshold value
separating the laminar flow regime from the turbulent one within a similar fluid.
Nowadays, this value is known as the Reynolds number, and it is usually defined
as the ratio of inertial forces to viscous forces Re D u.l/ l

�
	 .u�r/u

�4u , where l
and u.l/ are characteristic length and velocity scales. It was Stokes, even before
Reynolds, who observed the inadequacy of (1) and (2) to model certain flow
regimes that could probably result from eddies which rendered the motion more
chaotic. However, it seems to have been Reynolds the first to study the mechanical
significance of the existence of such eddies. The approach made by Reynolds was
to assume that the flow has two different scales, leading to the supposition that it
is possible to decompose the quantities in the Navier–Stokes equations in average
and fluctuating, or aleatory, values (Reynolds hypothesis). The idea associated to
this decomposition was to filter the Navier–Stokes equations in time intervals large
enough, in comparison to the temporal scale of the flow, but small enough in
comparison with the time scale of the average of the flow. Therefore, the velocity of
a molecule was decomposed into two components:

u D u C u0; (3)

where u0 represents the fluctuating, or relative velocity, and u represents an average
velocity. Underlying this decomposition is a filter, or an average, concept that can be
mathematically defined as a Reynolds operator [15], i.e., an operatorR W R3 �! R3

defined by R.u/ D u and satisfying to the following properties:

R.u C �v/ D R.u/C �R.v/ 8 u; v 2 R3 8 � 2 RI (4)

R.R.u// D R.u/ 8 u 2 R3I (5)

R.@u/ D @ .R.u// 8 u 2 R3I (6)

R.u ˝ v/ D R.u/˝ R.v/C R..u � R.u//˝ .v � R.v/// 8 u; v 2 R3:

(7)

Observe that (5) implies that R.u0/ D 0 for any u 2 R3, and from (7) we have
R.u ˝ R.v// D R.u/˝ R.v/ and R.R.u/˝ v/ D R.u/˝ R.v/ which makes
R.u ˝ R.v// D R.R.u/ ˝ v/. Since the tensorial product is not commutative,
we have, in general, R.u ˝ R.v// 6D R.v ˝ R.u//. However, this inequality is
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not observed when the Reynolds averaged Navier–Stokes equations (RANS) are
derived in the scalar form. The definition of Reynolds operator described above is
used to filter the Navier–Stokes equations (1) and (2) in a domain � � R3, which
represents the volume occupied by the fluid on the time t 2 Œ0;T�. After some
algebraic manipulations, we obtain the so-called RANS equations

div u D 0; (8)

@u
@t

C div.u ˝ u/ D f � 1

�
rp C � div D.u/ � div.u0 ˝ u0/: (9)

Equation (9) looks the same as the momentum equation (2), with the addition of
a term involving the average of a product of fluctuating parts of the velocity. The
additional term

R WD �u0 ˝ u0 ; (10)

often called the Reynolds stress tensor, can be seen as the average of changes in u0
due to the particle transport with the fluid movement. Therefore, the tensor (10) acts
like an effective stress and cannot be determined from the classical principles. As
we do not have any way to know directly its magnitude, the modeling of its effect
is usually done in terms of known quantities or quantities that we can determine.
This is known in the literature as the closing problem of turbulence, and, as a result,
many schemes have been developed to approximate the Reynolds stress tensor.

2 The k � – Turbulent Model

Reynolds has made experiments suggesting that the tensor (10) was somehow
related with ru, which, by reasons of symmetry, can now be considered in the form
R D F.D.u//. However, the application F cannot be arbitrarily chosen, because
the model should give the same results regardless of the considered referential.
In analogy with the Stokes law for laminar flows, Boussinesq has proposed that
R D �T D.u/ (Boussinesq turbulence hypothesis), where �T was denoted by eddy
or turbulent viscosity. By a simple comparison of the traces of the last expression
with (10), it can be readily seen that the Boussinesq hypothesis must be rewritten in
the form

R D �2
3

kI C �T D.u/ ; k WD 1

2
ju0j2 ; (11)

where k is called turbulent kinetic energy, a new unknown in the problem that
needs also to be modeled. In 1942, Kolmogorov [10] proposed a model in which
the turbulence was described by �T D � k

f and l D k
1
2 =f , where l is a length

scale, suggesting that k and f , the characteristic frequency of the energy-containing
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movements, should be determined by transport equations. Inspired by the previous
model of his own, Prandtl [14] proposed, in 1945, that �T D � k

1
2 l, suggesting

also that the turbulent kinetic energy was determined from a transport equation,
but the length scale l should be algebraically prescribed. Later on, during the
1970 decade, Launder and Spalding [11] observed the importance of the turbulent
dissipation � WD �jru0j2, a new quantity, in determining the rate of dissipation of
the turbulent kinetic energy in the turbulent flow process, which, again by means
of symmetry, can be written as � WD �jD.u0/j2. The turbulent dissipation � is
determined by the first process in the energy cascade, which consists in the transfer
of energy from the largest eddies to the smaller ones. Assuming these large eddies
are characterized by length scale l0, velocity scale u0, and time scale t0 D l0=u0
and have energy of 1=2�u20, then the rate of transfer of energy can be supposed to
scale as u20=t0 D u30=l0. Consequently, � scales as u30=l0 and independently of �.
Therefore, it is reasonable to model � and consequently the turbulent viscosity (in
view of Prandtl’s hypothesis), as

� D CD
k
3
2

l
; �T D � k

1
2 l ) �T D C�

k2

�
; where � WD �jD.u0/j2 ; (12)

CD is a closure constant, and C� is a constant related with the kinematic viscosity
and determined by experimental measures of k and �. To derive an equation for the
transport of the turbulent kinetic energy, we start by considering (1) the velocity
field decomposed in the form (3). Then, subtracting (9) to this equation, we obtain

div u0 D 0: (13)

Likewise, we subtract the RANS equations (9) to the momentum equation (2), where
all the quantities are decomposed as in (3). Then, we multiply the resulting equation
by u0 and we apply the filter produced by the Reynolds operator. Using the properties
set forth at (4)–(7) and some vectorial calculus together with (10), (11)2, and (13),
we obtain

@ k

@ t
C .u C u0/ � r ju0j2

2
D R W D.u/ � 1

�
div .p0u0/C � u0 � div D.u0/: (14)

By using the hypothesis that convection by random fields produces diffusion for the
mean [12], the second term of the left-hand side of (14) can be approximated by
u � rk � div .�Drk/, where �D WD �D.k; �/ is the turbulent diffusivity. For the last
two terms, it is used an ergodicity hypothesis [4] asserting that, over a long period
of time, the remaining time on a given region in space is proportional to the region
volume. This allows us to use the approximations u0 � div D.u0/ ' jD.u0/j2 ' � and
div .p0u0/ ' 0. Using this information, we obtain the following transport equation
for k
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@ k

@ t
C u � rk D div .�Drk/C �T jD.u/j2 � � ; �D WD �D.k; �/: (15)

The usual process to derive an equation for the evolution of the turbulent dissipation
� starts by applying the rotational to the RANS equation (9), and then working with
calculus tools, the following is obtained:

@"

@t
� 2�

�
rot u0 � rot.u0 � rot u/

�
� 2�

�
rot u0 ˝ rot u0 W ru

�

� 2�
�
.rot u0 ˝ rot u0/0 W ru0

�
C
�
.u C u0/ � �rjrot u0j2

�
D �2�2jrrot u0j2:

(16)

The second term of the left-hand side can be neglected because the terms involved
approximately cancel one each other. Using an arguing similar to the Boussinesq
hypothesis, the second term is approximated by 2�CkjD.u/j2. The last term is
approximated by u � r"� div .�Dr"/ by the application of the convection-diffusion
hypothesis [12] similarly as it was done for the k-equation. Finally, the fourth term
on the left-hand side and the term on the right-hand side are usually approximated
by C "2

k to avoid the need of another equation in order to close the problem [4, 12].
After all, we arrive in the following evolution equation:

@"

@t
C u � r" D div .�D.k; "/r"/C C1kjD.u/j2 C C2

"2

k
; (17)

where C1 and C2 are positive constants that can be determined from the experiments.

3 Feedback Forces Fields

In this section we consider, for simplicity, 1-equation models comprised by
Eqs. (8), (9), (11), (12), and (15), and we assume the turbulent dissipation � depends
only on k. Observe that the consideration of 1-equation models is acceptable in the
sense that the equation for � may be discarded by prescribing an appropriate length
scale. This assumption has also implications on the turbulent viscosity and on the
turbulent diffusivity, defined at (12) and (15), in the sense that now they only depend
on k. We consider here the case when the external forces field depends on the own
velocity, i.e., we assume that the vector field f, in the momentum equation (2), is
replaced by

g � f.u/: (18)

Now, in (18), g is an external forcing term that depends only on the space and
time variables, and f.u/ is the feedback forces field that may have different signs,
according to each application where it is considered. Probably the best-known
situation happens for fluid flows in a rotating frame, where the Coriolis force
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f.u/ D 2� � u must be considered, being �, here, the angular velocity vector.
Another example is the Lorentz force f.u;B/ D �J � B considered to model
turbulent flows controlled by a magnetic field B, where J is the total electric current
intensity, given by Ohm’s law J D �.�rˆC u � B/. Here, � is the conductivity, a
material-dependent parameter, andˆ is the electric potential, which in turn satisfies
to the Poisson equation 4ˆ D div.u � B/ (see, e.g., [9]). However, our main
motivation comes from the study of flows through porous media. In this field of
the applications, it is important to consider the Darcy and Forchheimer terms to
model the drag due to the flow through the porous medium.

Here, we gather this drag in the function f.u/ D CDu C CFjuju, where CD

and CF are the Darcy and Forchheimer parameters, positive constants that depend
on the permeability and porosity of the medium. The mathematical modeling of
turbulence in porous media considers the simultaneous application of time and
volume-average operators. When this procedure is applied to the continuity and
momentum equations, they come as in (8) and (9), with the peculiarity that the Darcy
and Forchheimer terms come in the form f.u/ D CDu C CFjuju. This procedure is
being applied to many situations of turbulent fluids through porous media, as is the
case of turbulent combustion in porous media or turbulent impinging jets in porous
media (see, e.g., [5]). The underlying idea of considering this double-decomposition
concept corresponds, in a certain sense, to consider a feedback forces field

f.u/ D f.u/C f.u/0 ; f.u/ D f.u/ ; f.u/0 � u0 D h.juj/k: (19)

The best example of this situation is a drag’s force purely Darcy f.u/ D CDu for
which h.juj/ D 2CD. A more complex example of a feedback forces field satisfying
to (19) is given by the generalized Forchheimer force

f.u/ D h.juj/u ; h.juj/ D juj2n; n 2 N: (20)

The Reynolds averaged process for the momentum equation, considered with a
feedback forces field satisfying to (18) and (19) and assuming the Reynolds stresses,
is given by R D �T D, and the turbulent viscosity, defined by (12), depends only on
k, leads us to

@u
@t

C div.u ˝ u/ D g � f.u/ � 1

�
rp C div ..� C �T.k//D.u// : (21)

The same procedure used to derive the k-equation, and assuming, in addition, the
turbulent diffusivity, given by (15), depends also only on k, allows us to write

@ k

@ t
C u � rk D div .�D.k/rk/C �T.k/jD.u/j2 C h.juj/k � �.k/: (22)

Although the term h.juj/k does not bring any difficulty to our analysis, we may avoid
its presence in Eq. (22) by considering a general feedback forces field satisfying
to (19), but with (19)3 replaced by

f.u/0 � u0 D 0: (23)
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This situation happens, for instance, when we consider the Coriolis force f.u/ D
2� � u. In this case, the same procedure used to derive (22) allows us to write, in
view of (23),

@ k

@ t
C u � rk D div .�D.k/rk/C �T.k/jD.u/j2 � �.k/: (24)

4 A Stationary Problem

In this section, we consider a stationary version of the problem formulated by the
Eqs. (8), (21), and (24),

div u D 0; (25)

div.u ˝ u/ D g � f.u/� 1

�
r p C div ..� C �T.k//D.u// ; (26)

u � rk D div .�D.k; �/rk/C �T jD.u/j2 C g � �.k/ ; (27)

where for the sake of simplifying the notation, we have omitted the bars over the
filtered quantities. Observe also that in the last but one term of Eq. (27), we are
considering a more general situation than in (24). We shall consider the problem
posed by the Eqs. (25)–(27) in a bounded domain � � Rd, d D 2; 3, with a
compact boundary denoted by @�. The problem (25)–(27) is supplemented by the
following Dirichlet boundary conditions:

u D 0 ; k D 0 on @�: (28)

For the analysis we make in this work, we assume the turbulent viscosity and the
turbulent diffusivity are bounded

0 � �T.k/ � CT ; cD � �D.k/ � CD ; (29)

where CT , cD, and CD are positive constants. The following weak formulation of the
problem gives us the notion of the solutions we are interested in to look for.

Definition 1. Let � be a bounded domain of Rd, d D 2; 3, and assume that both
conditions in (29) are fulfilled. In addition, assume that

g 2 L2.�/ and g 2 Lq.�/ with
2d

d C 2
� q < d0: (30)

We say the couple .u; k/ is a weak solution to the problem (25)–(28), if u 2 V,
k 2 W1;q

0 .�/, with 2d
dC2 � q < d0, f.u/ � v 2 L1.�/ and



58 H.B. de Oliveira and A. Paiva

Z

�

..u �r/u/ �v dxC
Z

�

.�C�T.k//D.u/ W rv dxC
Z

�

f.u/ �v dx D
Z

�

g �v dx (31)

for any v 2 V \ Ld.�/, ".k/' 2 L1.�/ and

Z

�

.u � rk/' dx C
Z

�

�D.k/rk � r' dx C
Z

�

".k/' dx

D
Z

�

�T.k/jD.u/j2' dx C
Z

�

g ' dx

(32)

for any ' 2 W1;q0

0 .�/, with q0 > d, and k � 0 and " � 0 a.e. in �.

In [6, 7] we prove two distinct existence results for the problem (25)–(28) in the
sense of Definition 1. For the first existence result, we assume growth conditions
both on the feedback f.u/ and on the function ".k/ that describe the turbulent
dissipation (see [6]). For the second, we consider the case in which these terms are
strongly nonlinear, i.e., without assuming any restrictions on its growth (see [7]).
We have already established local higher integrability results for the gradients of u
and of k.

Both proofs use an iterative scheme to uncouple the Navier–Stokes equations
from the equation for the turbulent kinetic energy. The analysis of the decoupled
equations follows the approach of [1, 2], with respect to the truncation of the
feedbacks, and the arguing of [3] for the treatment of the L1 terms.

Theorem 1. Let ˝ be a bounded domain of Rd, d D 2; 3, with a Lipschitz-
continuous boundary @˝ , and let .u; k/ be a weak solution to the problem (25)–(28)
in the conditions of Definition 1.

1. If g 2 Lr.˝/, with r > 2, and f.u/ � Cjujs for 0 � s � dC2
d�2 if d 6D 2 or any

s � 0 if s D 2, then there exists � > 2 such that r u 2 L� .˝/.
2. If g 2 Lr.˝/, with r > d0, and j".k/j � Cjkjs with 0 � s � 2� 2.d�2/

d.d�1/ if d 6D 2 or

any s � 0 if d D 2, then there exists � > d
d�1 such that rk 2 L� .˝/ as long as

ru 2 L� .˝/ for � > 2d.d�1/
.d�1/2C1 .

The following result of global higher integrability that, for the reason of lack of
space, cannot be shown here will be proved elsewhere.

The proof of this result adapts the arguments of [16] (see also [8]) for the Navier–
Stokes equations together with the reasoning of [13] (see also [3]) for the equation
for the turbulent kinetic energy.
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5 On the Uniqueness

We will prove the uniqueness by imposing conditions on the monotony of f.u/ and
".k/, as well as by imposing the Lipschitz continuity of �T.k/ e �D.k/.

Theorem 2. Let ˝ be a bounded domain of Rd, d D 2; 3, with a Lipschitz-
continuous boundary @˝ , and let .u; k/ be a weak solution to the problem (25)–(28)
in the conditions of Theorem 1. If the following conditions are fulfilled for all
u1; u2 2 V and for all k1; k2 2 W1;q

0 .˝/,

.f.u1/ � f.u2// � .u1 � u2/ � 0; .".k1/ � ".k2// .k1 � k2/ � 0; (33)

j�T.k1/� �T.k2/j � CL1 jk1 � k2j; j�D.k1/� �D.k2/j � CL2 jk1 � k2j; (34)

where CL1 and CL2 are positive constants and then the weak solution .u; k/ is unique.

Remark 1. As we shall see in the proof, the above result is obtained under smallness
assumptions on kr ukL� .�/ and krkkL� .�/ for �; � > 2 if d D 2 or �; � � 2 if d 6D
2, when compared with the kinematic viscosity � and with the turbulent diffusivity
lower bound cD [see (29)2].

Proof. Being .u1; k1/ and .u2; k2/ two solutions of the problem, we start by
subtracting the corresponding equation (31) of the weak formulation where in both
is taken v WD u1 � u2 for the test function.

After some algebraic manipulations and using the assumptions (29)2 and (33)1
together with Korn’s inequality, we obtain

�

C2
K

Z

�

jr.u1 � u2/j2 dx � �
Z

�

.�T.k1/� �T.k2//D.u2/ W r.u1 � u2/ dx

�
Z

�

..u1 � u2/ � r/ u2 � .u1 � u2/ dx WD I1 C I2 ;

(35)

where CK is the Korn’s inequality constant. To estimate the term I1, we use Hölder’s
and Sobolev’s inequalities together with assertion 1 of Theorem 1, which states that
� > 2,

I1 � kk1 � k2kL2� .�/kru2kL� .�/kr.u1 � u2/kL2.�/

� C1kr .k1 � k2/kL2.�/kr.u1 � u2/kL2.�/ ; C1 D C.d; �; kru2kL� .�// :

For I2, we use Hölder’s and Sobolev’s inequalities, this in the case of d � 4, to
obtain

I2 � ku1 � u2k2L2� .�/kru2kL� .�/ � C2kr .u1 � u2/k2L2.�/ ;
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where C2DC.d; �; kru2kL� .�//. Now, gathering the estimates of I1 and I2 in (35),
we obtain, after the use of Cauchy’s inequality with suitable �,

Cukr .u1 � u2/k2L2.�/ � CIkr .k1 � k2/k2L2.�/ ; Cu D
�
�

2C2
K

� C2

�
; CI D C2

1

2�
:

(36)
Next, we subtract the Eq. (32) corresponding to k1 and k2 and taking for test
function, in both, ' D k1 � k2. After some simplifications and using the assump-
tions (29)1 and (33)2, we obtain

cD

Z

�

jr.k1 � k2/j2 dx � �
Z

�

.u1 � rk1 � u2 � rk2/.k1 � k2/ dx

�
Z

�

.�D.k1/� �D.k2//rk2 � r.k1 � k2/ dx

C
Z

�

.�T.k1/jD.u1/j2 � �T.k2/jD.u2/j2/.k1 � k2/ dx WD J1 C J2 C J3:

(37)

After a simplification of J1, we use Hölder’s and Sobolev’s inequalities, observing
that � > d

d�1 , to have

J1 � ku1kL� .�/kr .k1 � k2/kL2.�/kk1 � k2kL2� .�/

Cku1 � u2kL2� .�/krk1kL� .�/kr.k1 � k2/kL2.�/

� C1kr .k1 � k2/k2L2.�/ C C2kr.u1 � u2/kL2.�/kr .k1 � k2/kL2.�/

� CJ1kr .k1 � k2/k2L2.�/ by (36) ; CJ1 D C1 C C2
p

CI=Cu ;

where C1 D C.d; �; kru1kL� .�// and C2 D C.d; �; krk1kL� .�//. As for the term
J2, we use assumption (34)2 together with Hölder’s and Sobolev’s inequalities, the
last again in the case of � > d

d�1 , in the following way

J2 � CL2kk1 � k2kL2� .�/jr k2kL� .�/kr.k1 � k2/kL2.�/ � CJ2kr .k1 � k2/k2L2.�/ ;

where CJ2 D C.CL2 ; d; �; kr k2kL� .�//. The term J3 is firstly simplified, and
then we use the assumptions (29) and (34)1 together with Hölder’s and Sobolev’s
inequalities, and yet observing that � > 2,

J3 � CL1kk1 � k2k2L2� .�/kru1k2L� .�/
CCTkk1 � k2kL2� .�/kr .u1 � u2/kL2.�/kru1 C ru2kL� .�/

� C1kr.k1 � k2/k2L2.�/ C C2kr.k1 � k2/kL2.�/kr .u1 � u2/kL2.�/

� CJ3kr .k1 � k2/k2L2.�/ by (36) ; CJ3 D C1 C C2
p

CI=Cu ;
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where C1DC.CL1 ; d; �; kru1kL� .�// and C2DC.CT ; �; kru1kL� .�/; kru2kL� .�//.
Now, gathering the estimates of J1, J2, and J3 in (37), we obtain .cD � CJ/

R
�

jr.k1�
k2/j2 dx � 0, where CJ D P3

iD1 CJi . As a consequence, it follows, by Sobolev’s
inequality, that k1 D k2 a.e. in �, as long as cd > CJ . Consequently it follows
from (36) that also u1 D u2 a.e. in �, as long as � > 2C2C2

K , where C2 is the
constant from the estimate of I2.
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On Stationary Solutions of KdV and mKdV
Equations

A.V. Faminskii and A.A. Nikolaev

Abstract Stationary solutions on a bounded interval for an initial-boundary value
problem to Korteweg–de Vries and modified Korteweg–de Vries equation (for the
last one both in focusing and defocusing cases) are constructed. The method of the
study is based on the theory of conservative systems with one degree of freedom.
The obtained solutions turn out to be periodic. Exact relations between the length of
the interval and coefficients of the equations which are necessary and sufficient for
the existence of nontrivial solutions are established.

Keywords KdV equation • Stationary solutions
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Both Korteweg–de Vries equation (KdV)

ut C aux C uxxx C uux D 0

and modified Korteweg–de Vries equation (mKdV)

ut C aux C uxxx ˙ u2ux D 0

(the sign “C” stands for the focusing case and the sign “�” for the defocusing
one) describe propagation of long nonlinear waves in dispersive media. We assume
a to be an arbitrary real constant. If these equations are considered on a bounded
interval .0;L/, then for well posedness of an initial-boundary value problem besides
an initial profile, one must set certain boundary conditions, for example,

u
ˇ
ˇ
xD0 D u

ˇ
ˇ
xDL

D ux

ˇ
ˇ
xDL

D 0

(see [5, 7, 8, 11] and others).
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It follows from the results of Faminskii and Larkin [9] that such a problem for
KdV equation possesses certain internal dissipation: under some relations between
a and L and sufficiently small initial data solution decay at large time. Similar
properties hold for mKdV equation. In order to answer the question if the smallness
is essential, one has to construct non-decaying solutions. The simplest case of such
solutions is stationary solutions: u D u.x/. In this situation the considered equations
are reduced to the following ordinary differential equations:

u000 C au0 C uu0 D 0; (1)

u000 C au0 C u2u0 D 0; (2)

u000 C au0 � u2u0 D 0; (3)

and the boundary conditions—to the following ones:

u.0/ D u.L/ D u0.L/ D 0: (4)

The goal of the present paper is to investigate the existence of nontrivial solutions
to these problems under different relations between a and L. The method of the
study is based on the qualitative theory of conservative systems with one degree of
freedom (see, for example, [4]).

The first example of such a solution by this method for Eq. (1) was constructed
in the case a D 0 and L D 2 in [10]. In the recent paper [6] and also for Eq. (1),
such solutions were constructed for a D 1 and L 2 .0; 2�/, and exact formulas via
elliptic Jacobi functions were obtained. In the present paper, these special functions
are not used.

Lemma 1. If u 2 C3Œ0;L� is a solution to any problems (1), (4), or (2), (4),
or (3), (4), then it is infinitely smooth and periodic with period L.

Proof. Integrating each of the Eqs. (1)–(3), we obtain that the function u satisfies an
equation

u00 C F0.u/ D 0; F.0/ D 0; F 2 C1: (5)

The following [4] introduces a “full energy” E.x/ 	 1
2

�
u0.x/

�2 C F
�
u.x/

�
. Then, (5)

yields that E0.x/ 	 0, that is, E.x/ 	 const. By virtue of (4) E.L/ D 0, therefore,
E.0/ D 0 and so u0.0/ D 0. The end of the proof is obvious. ut

Further let a fundamental period for a nontrivial periodic function denotes a
minimal possible positive value of a period.

By a symbol ua;T , denote a nontrivial solution to any of considered problems with
the fundamental period T.

Theorem 1. If aL2 ¤ 4�2, then there exists a unique solution ua;L to prob-
lem (1), (4). If aL2 D 4�2, such a solution does not exist.
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Theorem 2. If aL2 < 4�2, then there exists a unique up to the sign solution ua;L to
problem (2), (4). If aL2 � 4�2, such solutions do not exist.

Theorem 3. If aL2 > 4�2, then there exists a unique up to the sign solution ua;L to
problem (3), (4). If aL2 � 4�2, such solutions do not exist.

Remark 1. If aL2 ¤ 4�n2 for certain natural n � 2, then obviously the function
u.x/ 	 n2ua=n2;L.nx/ is a solution to problems (1), (4) with the fundamental period
T D L=n. If aL2 < 4�n2 for certain natural n, then the function u.x/ 	 nua=n2;L.nx/
is a solution to problems (2), (4) with the fundamental period T D L=n. In particular,
nontrivial solutions to problems (1), (4) and (2), (4) exist for any a and positive L.
If aL2 � 4�2, then nontrivial solutions to problems (3), (4) do not exist.

Further for convenience we pass from the segment Œ0;L� to the segment Œ�1; 1�.
For x 2 Œ�1; 1� in the case of Eq. (1), make a substitution y.x/ 	 L2

4
u
�

L
2
.x C 1/

�
,

while in the case of Eqs. (2) and (3), substitution y.x/ 	 L
2
u
�

L
2
.x C 1/

�
. Then, for

b D L2

4
a, these equations transform, respectively, to the following ones:

y000 C by0 C yy0 D 0; (6)

y000 C by0 C y2y0 D 0; (7)

y000 C by0 � y2y0 D 0; (8)

and consider periodic solutions to these equations with the fundamental period
T D 2 such that

y.�1/ D y0.�1/ D 0: (9)

We apply the following lemma in the spirit of the qualitative theory of conserva-
tive systems with one degree of freedom.

Lemma 2. Consider an initial value problem

y00 C F0.y/ D 0; y.�1/ D y0.�1/ D 0; (10)

where F 2 C1, F.0/ D 0. Then, a nontrivial periodic solution to problem (10) with
the fundamental period T D 2 exists if and only if F0.0/ ¤ 0, and there exists y0 ¤ 0

such that F.y0/ D 0, F0.y0/ ¤ 0, F.y/ < 0 for y 2 .0; y0/ if y0 > 0, F.y/ < 0 for
y 2 .y0; 0/ if y0 < 0 and

Z y0

0

dy
p�2F.y/

D 1 if y0 > 0;
Z 0

y0

dy
p�2F.y/

D 1 if y0 < 0: (11)

Proof. First of all note that similarly to (5) E.x/ 	 1
2

�
y0.x/

�2 C F
�
y.x/

� 	 0 if
y.x/ is a solution to problem (10). Due to uniqueness of solutions to the initial
value problem, the condition F0.0/ ¤ 0 is necessary for the existence of nontrivial
solutions.
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Consider, for example, the case F0.0/ < 0. If the function F is negative 8y > 0,
then it is easy to see that there is no periodic solution to problem (10). Therefore, the
existence of positive y0 such that F.y0/ D 0, F.y/ < 0 for y 2 .0; y0/ is necessary.

Uniqueness of the solution implies that the function y.x/ is even (if exists). Then,
it is easy to see that it possesses the following properties: y0.x/ > 0 for x 2 .�1; 0/,
y0.x/ < 0 for x 2 .0; 1/, and y.0/ D y0, y0.0/ D 0. Again due to the uniqueness,
F0.y0/ ¤ 0.

Therefore, for x 2 Œ0; 1� the function y.x/ satisfies the following conditions:

dy

dx
D �p�2F.y/; y.0/ D y0; y.1/ D 0:

Integrating we obtain that
Z y0

0

dy
p�2F.y/

D 1.

It is easy to see that under these assumptions, the desired solution exists. The
case F0.0/ > 0 is considered in a similar way (then y0 < 0). ut

Now we can prove our theorems.

Proof (Theorem 1). Equation (6) is equivalent to equation

y00 C by C 1

2
y2 D c (12)

for certain real constant c. Therefore, construction of a solution transforms to search
of a constant c such for a function

F.y/ 	 1

6
y3 C b

2
y2 � cy D 1

6
y.y2 C 3by � 6c/ 	 1

6
yF0.y/

the hypothesis of Lemma 2 is satisfied. Note that F0.y/ D 1
2
y2 C by � c. Therefore,

the condition F0.0/ ¤ 0 implies that c ¤ 0.
Real simple nonzero roots of the function F0 exist if and only if D D 9b2 C

24c > 0, and then these roots are expressed by formulas y0 D 1
2
.�3b C p

D/ and
y1 D � 1

2
.3b C p

D/.
It is easy to see that if c > 0, then for any b the root y0 > 0, F.y/ < 0 for

y 2 .0; y0/, F0.y0/ ¤ 0. If c 2 .�3b2=8; 0/, then for b > 0 the root y0 < 0, F.y/ < 0
for y 2 .y0; 0/, F0.y0/ ¤ 0.

Therefore, we have to find the constant c for which condition (11) is satisfied.
Note that

�2F.y/ D 1

3
y.y0 � y/.y � y1/:

After the change of variable y D y0t, each of the Eq. (11) reduces to an equation

I.b; c/ 	 p
3

Z 1

0

dt
p

t.1 � t/.y0t � y1/
D 1:
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Since y0t � y1 D 1
2
.
p

D � 3b/t C 1
2
.
p

D C 3b/, it is easy to see that for the fixed b,
the function I.b; c/ monotonically decreases. Moreover, lim

c!C1 I.b; c/ D 0 and for

b > 0

lim
c!� 3

8 b2C0
I.b; c/D

r
2

b

Z 1

0

dtp
t.1�t/

D C1; lim
c!0

I.b; c/D 1p
b

Z 1

0

dt
p

t.1�t/
D �p

b
;

for b D 0

lim
c!0C0 I.b; c/ D lim

c!0C0
1p
2c

Z 1

0

dt
p

t.1 � t/.t C 1/
D C1;

for b < 0

lim
c!0C0 I.b; c/ D 1

pjbj
Z 1

0

dt

t
p
1 � t

D C1:

Therefore, the desired value of c exists and is unique if b ¤ �2, while for b D �2

such a value does not exist. ut
Remark 2. The substitution u.x/ D a0 C v.x � x0/ under the appropriate choice of
the parameters a0 and x0 transforms any periodic solution of Eq. (1) with the period
L to solution of an equation v000 C .a C a0/v0 C vv0 D 0 satisfying conditions
v.0/ D v0.0/ D v.L/ D v0.L/ D 0. Therefore, any solution of Eq. (1) with
the fundamental period L can be expressed in this way by the functions uaCa0;L.
Solutions similar to functions ua;L were considered also in [13]. In [2] representation
of periodic solutions of Eq. (1) is given via elliptic Jacobi functions. The advantage
of our approach is that it can give transparent description of solutions.

Consider, for example, the case b > 0. Then, for b 2 .0; �2/ the constructed
solution of problems (6), (9) is an even “hill” of the height y0 D 1

2
.�3b Cp

9b2 C 24c/ > 0, while for b > �2, an even “hole” of the depth y0 < 0. Note that
Ic.b; c/ < 0, Ib.b; c/ < 0. Therefore, the equation I.b; c/ D 1 determines a smooth
decreasing function c.b/. Since I.�2; 0/ D 1, we have that c.�2/ D 0. Return to
Eq. (1). Let a > 0. If u0 D 1

2
.�3a C p

9a2 C 384cL�2/, where c D c.L2a=4/, then
for L < 2�=

p
a, the solution ua;L to problems (1), (4) is a “hill” of the height u0 > 0

and for L > 2�=
p

a, a “hole” of the depth u0 < 0 (the center in both cases is at the
point L=2). In addition, u0 ! C1 as L ! 0, u0 ! 0 as L ! 2�=

p
a, u0 ! 0 as

L ! C1.

Proof (Theorem 2). Equation (7) is equivalent to equation

y00 C by C 1

3
y3 D c (13)
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for certain real constant c. Let

F.y/ 	 1

12
y4 C b

2
y2 � cy D 1

12
y.y3 C 6by � 12c/ 	 1

12
yF0.y/:

Note that the substitution z.x/ 	 �y.x/ leads to an equation similar to (13), where c
is replaced by .�c/. Therefore, further it is sufficient to assume that c > 0 (if c D 0,
then F0.0/ D 0).

Similarly to the proof of Theorem 1, we need to find the roots of the function F0.
We apply Cardano formulas. Let D D 8b3 C 36c2,

p D 3

q
6c C p

D; q D 3

q
6c � p

D if D � 0;

p D 3

q
6c C i

p
jDj D

p
2jbje i

3 arccos.3c=
p
2jbj3/; q D p if D < 0:

The function F0 has a real root y0 D p C q > 0. Moreover, if D > 0 there are two
complex conjugate roots with negative real parts and if D � 0 (it is possible only
for b < 0), two negative real roots y1 and y2 (y1 D y2 if D D 0).

According to Viète formulas, y1 C y2 D �y0, y1y2 D 6b � y0y1 � y0y2 D 6b C y20
and then

�2F.y/ D 1

6
y.y0 � y/.y2 C y0y C y20 C 6b/:

After the change of variable y D y0t, the first equation (11) reduces to an equation

I.b; c/ 	 p
6

Z 1

0

dt
q

t.1 � t/.y20t
2 C y20t C y20 C 6b/

D 1:

It is easy to see that for the fixed b the function y0.c/ monotonically increases and
y0.c/ ! C1 as c ! C1 (note that y0 D p

8jbj cos
�
1
3

arccos.3c=
p
2jbj3/� if

D < 0). Then, for the fixed b the function I.b; c/ monotonically decreases and
lim

c!C1 I.b; c/ D 0. Moreover, if c ! 0C 0, then y0.c/ ! 0 for b � 0 and y0.c/ !
p
6jbj for b < 0. Therefore,

lim
c!0C0 I.b; c/ D 1p

b

Z 1

0

dt
p

t.1 � t/
D �p

b
if b > 0;

lim
c!0C0 I.b; c/ D lim

c!0C0

p
6

3
p
12c

Z 1

0

dt
p

t.1 � t3/
D C1 if b D 0;

lim
c!0C0 I.b; c/ D 1

pjbj
Z 1

0

dt

t
p
1 � t2

D C1 if b < 0:



On Stationary Solutions of KdV and mKdV Equations 69

Hence, the desired positive value of c exists and is unique if b < �2, while for
b � �2, such a value does not exist. ut
Proof (Theorem 3). Equation (8) is equivalent to equation

y00 C by � 1

3
y3 D c (14)

for certain real constant c. Let

F.y/ 	 � 1

12
y4 C b

2
y2 � cy D � 1

12
y.y3 � 6by C 12c/ 	 � 1

12
yF0.y/:

As in the proof of Theorem 2, consider only the case c > 0.
Again apply Cardano formulas. Let D D �8b3 C 36c2,

p D 3

q
�6c C p

D; q D 3

q
�6c � p

D if D � 0;

p D 3

q
�6c C i

p
jDj D p

2be
i
3

�
�Carccos.3c=

p
2b3/
�
; q D p if D < 0:

If D > 0 then the function F0 has a real root y0 D p C q < 0 and two complex
conjugate roots y1 and y2. If D D 0 then again the function F0 has a real root
y0 D p C q < 0 and a double real root y1 D y2 > 0. Both these two cases do not
satisfy the hypothesis of Lemma 2 since F0.0/ < 0.

It remains to consider the case D < 0 (it is possible only if b > 0), then c 2
.0;

p
2
3

b3=2/. Here the function F0 has three distinct real roots, where a root y0 D
p C q D p

8b cos
�
�
3

C 1
3

arccos.3c=
p
2b3/

�
> 0, a root y1 < 0, a root y2 > y0. We

have that y1 C y2 D �y0, y2y2 D �6b C y20 and then

�2F.y/ D 1

6
y.y0 � y/.6b � y20 � y0y � y2/:

After the change of variable y D y0t, the first equation (11) reduces to an equation

I.b; c/ 	 p
6

Z 1

0

dt
q

t.1 � t/.6b � y20.1C t C t2//
D 1:

Similarly to the previous theorem for the fixed b, the function y0.c/ monotonically
increases; therefore, unlike the previous theorem, the function I.b; c/ also monoton-
ically increases. It is easy to see that

lim
c!0C0 I.b; c/ D 1p

b

Z 1

0

dt
p

t.1 � t/
D �p

b
;
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lim
c!

p

2
3 b3=2�0

I.b; c/ D
r
3

b

Z 1

0

dt

.1� t/
p

t.t C 2/
D C1:

Hence, the desired positive value of c exists and is unique if b > �2, while for
b � �2, such a value does not exist. ut
Remark 3. In [1, 3, 12] periodic solutions of Eqs. (2) and (3) were considered in the
case when the constant c D 0 in Eqs. (13) and (14). Therefore, the periodic solutions
constructed in the present paper do not coincide with solutions from that papers.
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A Filippov-Type Existence Theorem for Some
Nonlinear q-Difference Inclusions

Aurelian Cernea

Abstract We study two classes of boundary value problems associated to nonlinear
q-difference inclusions and our aim is to show that Filippov’s ideas can be suitably
adapted in order to obtain the existence of solutions for the problems considered.
Note that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem consists in proving the existence of a solution
starting from a given “quasi” solution. Moreover, the result provides an estimate
between the “quasi” solution and the solution obtained. In this way we improve
some existing results in the literature.

Keywords Difference inclusion • Set-valued map • Existence of solution

AMS subject classifications: 34A60

1 Introduction

In the last years, we may see a strong development of the study of boundary
value problems associated to q-difference equations and inclusions as one can
see in [1–3, 7, 8] etc. A reason is that in numerical analysis instead of the
standard discretization of the ordinary differential equations based on the arithmetic
progression, it can be used as the q-discretization related to geometric progression.
These alternative methods lead to q-difference equations which at limit q ! 1

correspond to the classical differential equations. On the other hand, the q-difference
equations are also useful in the theory of quantum groups [6].

In this note we consider the following problems:

D3
qx.t/ 2 F.t; x.t//; t 2 J; x.0/ D 0; Dqx.0/ D 0; x.1/ D 0; (1)

D2
qx.t/ 2 F.t; x.t//; t 2 J; x.0/ D 	x.1/; Dqx.0/ D 	Dqx.1/; (2)

A. Cernea (�)
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where Dq;D2
q;D

3
q denotes the first, the second, and the third order q-derivative,

respectively, I D Œ0; 1�, J D fqn; n 2 Ng [ f0; 1g, q 2 .0; 1/, 	 ¤ 1 and
F W I � R ! P.R/ is a set-valued map not necessarily convex valued.

Existence results for problems (1) and (2) were obtained in [1] and in [2],
respectively, for convex as well as nonconvex set-valued maps. All the results in
[1, 2] are obtained using fixed point techniques.

The aim of this note is to show that Filippov’s ideas [5] can be suitably adapted
in order to obtain the existence of solutions for problems (1) and (2). Recall that for
a differential inclusion defined by a Lipschitzian set-valued map with nonconvex
values, Filippov’s theorem [5] consists in proving the existence of a solution starting
from a given “quasi” solution. Moreover, the result provides an estimate between the
“quasi” solution and the solution obtained. In this way we improve some results in
[1, 2].

The paper is organized as follows: in Sect. 2 we recall some preliminary results
that we need in the sequel, and in Sect. 3, we prove our main results.

2 Preliminaries

Let .X; d/ be a metric space. Recall that the Pompeiu–Hausdorff distance of the
closed subsets A;B � X is defined by

dH.A;B/ D maxfd�.A;B/; d�.B;A/g; d�.A;B/ D supfd.a;B/I a 2 Ag;

where d.x;B/ D infy2B d.x; y/.
We denote by C.J;R/ the Banach space of all continuous functions from J to R

with the norm jjx.:/jjC D supt2J jx.t/j and L1.I;R/ is the Banach space of integrable
functions u.:/ W I ! R endowed with the norm jju.:/jj1 D R 1

0
ju.t/jdt.

We recall next some basic facts from q-calculus [6].
For q 2 .0; 1/ the q-derivative of a real-valued function f is defined by

Dqf .t/ D f .t/ � f .qt/

.1 � q/t
; Dqf .0/ D lim

t!0
Dqf .t/:

The higher-order q-derivatives are given by

D0
qf .t/ D f .t/; Dn

qf .t/ D DqDn�1
q f .t/; n 2 N:

For example, Dq.tk/ D Œk�qtk�1 where Œk�q D qk�1
q�1 , k 2 N. In particular, Dq.t2/ D

.1C q/t.
Note that for f differentiable at t, we have limq!1� Dqf .t/ D f 0.t/.
For y � 0 denote Jy D fyqn; n 2 Ng [ f0g and define the q-integral of the

function f W Jy ! R by
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Iqf .y/ D
Z y

0

f .s/dqs D
1X

nD0
y.1� q/qnf .yqn/;

provided that the series converges. If b1 D yqn1 , b2 D yqn2 , n1; n2 2 N, one defines

Z b2

b1

f .s/dqs D Iqf .b2/� Iqf .b1/ D .1 � q/
1X

nD0
qnŒb2f .b2/� b1f .b1/�:

Similarly, one has

I0q f .t/ D f .t/; In
q f .t/ D IqIn�1

q f .t/; n 2 N:

Note that DqIqf .t/ D f .t/ and if f is continuous at t D 0, then IqDqf .t/ D
f .t/ � f .0/. In particular, it follows that if DqIqf .t/ D g.t/, then f .t/ D Iqg.t/ C c
with c 2 R arbitrary.

The product rule and the integration by parts formula are

Dq.gh/.t/ D Dqg.t/h.t/C g.qt/Dqh.t/;
Z x

0

f .t/Dqg.t/dqt D Œf .t/g.t/�x0 �
Z x

0

Dqf .t/g.qt/dqt:

At the limit q ! 1�, the above statements correspond to their counterparts in
standard calculus.

We recall the next two technical results are proven in [1] and in [2], respectively.

Lemma 1. Let f W J ! R be continuous. The solution of the problem

D3
qx.t/ D f .t/; x.0/ D 0; Dqx.0/ D 0; x.1/ D 0;

is given by x.t/ D R 1
0 G.t; s; q/f .s/dqs, where G.:; :; :/ is the Green’s function

given by

G.t; s; q/ D
	

qs.1� t/Œq2s.1C t/ � .1C q/t� if 0 � s < t � 1;

t2.1 � qs/.q2s � 1/ if 0 � t � s � 1:

Denote M WD maxt;s2I jG.t; s; q/j.
Lemma 2. Let f W J ! R be continuous. The solution of the problem

D2
qx.t/ D f .t/; x.0/ D 	x.1/; Dqx.0/ D 	Dqx.1/;

is given by x.t/ D R 1
0

G1.t; s; q/f .s/dqs, where G1.:; :; :/ is the Green function
given by
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G1.t; s; q/ D 1

.	 � 1/2

	
	.	� 1/.qs � t/C 	 if 0 � t < s � 1;

.	 � 1/.qs � t/C 	 if 0 � s � t � 1:

Denote M1 WD maxt;s2I jG1.t; s; q/j.
Definition 1.

a) A function x.:/ 2 C.J;R/ is a solution of problem (1.1) if there exists a
function f .:/ 2 L1.J;R/ that satisfies f .t/ 2 F.t; x.t// a:e: .J/ and x.t/ DR 1
0

G.t; s; q/f .s/dqs, where G.:; :; :/ is defined in Lemma 1.
b) A function x.:/ 2 C.J;R/ is a solution of problem (1.2) if there exists a

function f .:/ 2 L1.J;R/ satisfying f .t/ 2 F.t; x.t// a:e: .J/ and x.t/ DR 1
0

G1.t; s; q/f .s/dqs, where G1.:; :; :/ is defined in Lemma 2.

3 The Main Results

First we recall a selection result (e.g., [4]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3. Consider X a separable Banach space, B is the closed unit ball in X,
H W J ! P.X/ is a set-valued map with nonempty closed values, and g W J !
X;L W J ! RC are measurable functions. If

H.t/ \ .g.t/C L.t/B/ ¤ ; a:e: .J/;

then the set-valued map t ! H.t/\ .g.t/C L.t/B/ has a measurable selection.

In order to prove our results, we need the following hypotheses:

Hypothesis.

i) F.:; :/ W I � R ! P.R/ has nonempty closed values and F.:; x/ is measurable
for any x 2 R.

ii) There exists L.:/ 2 L1.I; .0;1// such that F.t; :/ is L.t/-Lipschitz in the sense
that

dH.F.t; x1/;F.t; x2// � L.t/jx1 � x2j 8 x1; x2 2 R:

Denote L0 D R 1
0

L.s/ds.

Theorem 1. Assume that the hypothesis is satisfied and ML0 < 1. Let y.:/ 2
C.J;R/ be such that y.0/ D 0, Dqy.0/ D 0, y.1/ D 0 and there exists p.:/ 2
L1.I;RC/ verifying d.D3

qy.t/;F.t; y.t/// � p.t/ a.e. .J/.
Then, there exists x.:/, a solution of problem (1) satisfying for all t 2 J
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jx.t/ � y.t/j � M

1 � ML0

Z 1

0

p.t/dt: (3)

Proof. The set-valued map t ! F.t; y.t// is measurable with closed values and

F.t; y.t//\ fD3
qy.t/C p.t/Œ�1; 1�g ¤ ; a:e: .J/:

It follows from Lemma 3 that there exists a measurable selection f1.t/ 2 F.t; y.t//
a:e: .J/ such that

jf1.t/ � D3
qy.t/j � p.t/ a:e: .J/ (4)

Define x1.t/ D R 1
0

G.t; s; q/f1.s/dqs and one has

jx1.t/ � y.t/j � M
Z 1

0

p.t/dqt � M
Z 1

0

p.t/dt:

We claim that it is enough to construct the sequences xn.:/ 2 C.J;R/, fn.:/ 2
L1.J;R/, n � 1 with the following properties:

xn.t/ D
Z 1

0

G.t; s; q/fn.s/dqs; t 2 J; (5)

fn.t/ 2 F.t; xn�1.t// a:e: .J/; (6)

jfnC1.t/ � fn.t/j � L.t/jxn.t/ � xn�1.t/j (7)

for almost all t 2 J.
If this construction is realized, then from (4)–(7) we have, for t 2 J,

jxnC1.t/ � xn.t/j � M.ML0/
n
Z 1

0

p.t/dt 8n 2 N:

Indeed, assume that the last inequality is true for n � 1 and we prove it for n.
One has

jxnC1.t/ � xn.t/j �
Z 1

0

jG.t; t1; q/j:jfnC1.t1/ � fn.t1/jdqt1

� M
Z 1

0

L.t1/jxn.t1/� xn�1.t1/jdqt1

� M
Z 1

0

L.t1/dqt1M.ML0/
n
Z 1

0

p.t/dt

� M
Z 1

0

L.t1/dt1M.ML0/
n
Z 1

0

p.t/dt D M.ML0/
nC1

Z 1

0

p.t/dt:
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Therefore, fxn.:/g is a Cauchy sequence in the Banach space C.J;R/, hence
converging uniformly to some x.:/ 2 C.J;R/. Therefore, by (7), for almost all t 2 J,
the sequence ffn.t/g is Cauchy in R. Let f .:/ be the pointwise limit of fn.:/.

Moreover, one has

jxn.t/ � y.t/j � jx1.t/ � y.t/j C
n�1X

iD1
jxiC1.t/ � xi.t/j

� M
Z 1

0

p.t/dt C
n�1X

iD1
.M

Z 1

0

p.t/dt/.ML0/
i D M

R 1
0

p.t/dt

1� ML0
: (8)

On the other hand, from (4), (7), and (8), we obtain for almost all t 2 J

jfn.t/ � D3
qy.t/j �

n�1X

iD1
jfiC1.t/ � fi.t/j C jf1.t/ � D3

qy.t/j � L.t/
M
R 1
0

p.t/dt

1 � ML0
C p.t/:

Hence, the sequence fn.:/ is integrably bounded and therefore f .:/ 2 L1.J;R/.
Using Lebesgue’s dominated convergence theorem and taking the limit

in (5), (6), we deduce that x.:/ is a solution of (1). Finally, passing to the limit
in (8), we obtained the desired estimate on x.:/.

It remains to construct the sequences xn.:/; fn.:/ with the properties in (5)–(7).
The construction will be done by induction.

Since the first step is already realized, assume that for some N � 1, we
already constructed xn.:/ 2 C.J;R/ and fn.:/ 2 L1.J;R/, n D 1; 2; : : :N
satisfying (5), (7) for n D 1; 2; : : :N and (6) for n D 1; 2; : : :N � 1. The set-valued
map t ! F.t; xN.t// is measurable. Moreover, the map t ! L.t/jxN.t/ � xN�1.t/j is
measurable. By the Lipschitzianity of F.t; :/, we have that for almost all t 2 J

F.t; xN.t// \ ffN.t/C L.t/jxN.t/ � xN�1.t/jŒ�1; 1�g ¤ ;:

Lemma 3 yields that there exists a measurable selection fNC1.:/ of F.:; xN.:// such
that

jfNC1.t/ � fN.t/j � L.t/jxN.t/ � xN�1.t/j a:e: .J/:

We define xNC1.:/ as in (5) with n D N C 1. Thus, fNC1.:/ satisfies (6) and (7)
and the proof is complete.

The assumption in Theorem 1 is satisfied, in particular, for y.:/ D 0 if we
assume that d.0;F.t; 0// � p.t/ a.e. .J/. We obtain the following consequence of
Theorem 1.

Corollary 1. Assume that the hypothesis is satisfied, d.0;F.t; 0// � L.t/ a.e. .I/
and ML0 < 1. Then, there exists x.:/ a solution of problem (1) satisfying for all
t 2 J
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jx.t/j � ML0
1 � ML0

: (9)

Remark 1. A similar result to the one in Corollary 1 may be found in [1], namely,
Theorem 5, but without a priori estimates as in (9).

With the same proof as the proof of Theorem, we obtain a similar result for
problem (2).

Theorem 2. Assume that the hypothesis is satisfied and M1L0 < 1. Let y.:/ 2
C.J;R/ be such that y.0/ D 	x.1/, Dqy.0/ D 	Dqy.1/ and there exists p.:/ 2
L1.I;RC/ verifying d.D2

qy.t/;F.t; y.t/// � p.t/ a.e. .J/.
Then, there exists x.:/ a solution of problem (2) satisfying for all t 2 J

jx.t/ � y.t/j � M1

1 � M1L0

Z 1

0

p.t/dt:
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Complex-Valued Fractional Derivatives
on Time Scales

Benaoumeur Bayour and Delfim F.M. Torres

Abstract We introduce a notion of fractional (noninteger order) derivative on an
arbitrary nonempty closed subset of the real numbers (on a time scale). Main
properties of the new operator are proved and several illustrative examples given.

Keywords Fractional calculus • Calculus on time scales • Complex-valued oper-
ator • Hilger derivative of noninteger order
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1 Introduction

The study of fractional (noninteger) order derivatives on discrete, continuous and,
more generally, arbitrary nonempty closed set (i.e., a time scale) is a well-known
subject under strong current development. The subject is very rich and several
different definitions and approaches are available, either in discrete [1], continuous
[11], and time-scale settings [2]. In continuous time, i.e., for the time scale T D R,
several definitions are based on the classical Euler Gamma function � . For the time
scale T D Z, the Gamma function is nothing else than the factorial, while for the q-
scale, one has the q-Gamma function �q [9]. For the definition of Gamma function
on an arbitrary time scale T, see [6]. Similarly to [2, 3], here we introduce a new
notion of fractional derivative on an arbitrary time scale T that does not involve
Gamma functions. Our approach is, however, different from the ones available in
the literature [2–5]. In particular, while in [2–5] the fractional derivative at a point
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is always a real number, here, in contrast, the fractional derivative at a point is, in
general, a complex number. For example, the derivative of order ˛ 2 .0; 1� of the
square function t2 is always given by t˛ C .�.t//˛ , where �.t/ is the forward jump
operator of the time scale, which is in general a complex number (e.g., for ˛ D 1=2

and t < 0) and a generalization of the Hilger derivative .t2/� D t C �.t/.
The text is organized as follows. In Sect. 2 we recall the notion of Hilger/delta

derivative. Our complex-valued fractional derivative on time scales is introduced in
Sect. 3, where its main properties are proved and several examples given.

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
For t 2 T, we define the forward jump operator � W T ! T by �.t/ D
inffs 2 T W s > tg, and the backward jump operator � W T ! T is defined
by �.t/ WD supfs 2 T W s < tg. Then, one defines the graininess function � W T !
Œ0;C1Œ by �.t/ D �.t/ � t.

If �.t/ > t, then we say that t is right scattered; if �.t/ < t, then t is left scattered.
Moreover, if t < supT and �.t/ D t, then t is called right dense; if t > infT and
�.t/ D t, then t is called left dense. If T has a left-scattered maximum m, then we
define T� D T n fmg; otherwise T� D T. If f W T ! R, then f � W T ! R is given
by f � .t/ D f .�.t// for all t 2 T.

Definition 1 (The Hilger Derivative [8]). Let f W T ! R and t 2 T. We define
f�.t/ to be the number (provided it exists) with the property that given any � > 0

there is a neighborhood U of t (i.e., U D .t � ı; t C ı/\T for some ı > 0) such that

jŒf .�.t// � f .s/� � f�.t/Œ�.t/ � s�j � �j�.t/ � sj

for all s 2 U. We call f�.t/ the Hilger (or delta) derivative of f at t.

For more on the calculus on time scales, we refer the reader to the books [7, 8].

3 Complex-Valued Fractional Derivatives on Time Scales

Let f W T ! R with T a given time scale. We introduce here a new definition of
fractional (noninteger) delta derivative of order ˛ 2 .0; 1� at a point t 2 T� .

Definition 2 (The Delta Fractional Derivative of Order ’). Assume f W T ! R

with T a time scale. Let t 2 T
� and ˛ 2 .0; 1�. We define f�

˛
.t/ to be the number

(provided it exists) with the property that given any � > 0 there is a neighborhood
U of t (i.e., U D .t � ı; t C ı/\ T for some ı > 0) such that

ˇ
ˇ
ˇŒf ˛.�.t// � f ˛.s/� � f�

˛

.t/Œ�.t/˛ � s˛�
ˇ
ˇ
ˇ � � j�.t/˛ � s˛j (1)
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for all s 2 U. We call f�
˛
.t/ the delta derivative of order ˛ of f at t or the delta

fractional (noninteger order) derivative of f at t. Moreover, we say that f is delta
differentiable of order ˛ on T� provided f�

˛
.t/ exists for all t 2 T� . Function f�

˛ W
T� ! C is then called the delta derivative of order ˛ of f on T� .

Remark 1. In (1) we use f ˛ to denote the power ˛ of f . It is clear that the new
derivative coincides with the standard Hilger derivative in the integer order case
˛ D 1. Differently from ˛ D 1, in general f�

˛
.t/ is a complex number.

Theorem 1. Assume f W T ! R with T a time scale. Let t 2 T
� and ˛ 2 R. Then,

the following proprieties hold:

1. If f is continuous at t and t is right scattered, then f is delta differentiable of order
˛ at t with

f�
˛

.t/ D f ˛.�.t// � f ˛.t/

�˛.t/ � t˛
: (2)

2. If t is right dense, then f is delta differentiable of order ˛ at t if and only if the
limit

lim
s!t

f ˛.t/ � f ˛.s/

t˛ � s˛

exists as a finite number. In this case

f�
˛

.t/ D lim
s!t

f ˛.t/ � f ˛.s/

t˛ � s˛
: (3)

3. If f is delta differentiable of order ˛ at t, then

f ˛.�.t// D f ˛.t/C .�.t/˛ � t˛/f�
˛

.t/:

Proof. 1. Assume f is continuous at t and t is right scattered. By continuity,

lim
s!t

f ˛.�.t// � f ˛.s/

�˛.t/ � s˛
D f ˛.�.t// � f ˛.t/

�˛.t/ � t˛
:

Hence, given � > 0, there is a neighborhood U of t such that

ˇ
ˇ
ˇ
ˇ
f ˛.�.t// � f ˛.s/

�˛.t/ � s˛
� f ˛.�.t// � f ˛.t/

�˛.t/ � t˛

ˇ
ˇ
ˇ
ˇ � �

for all s 2 U: It follows that
ˇ
ˇ
ˇ
ˇf
˛.�.t// � f ˛.s/� f ˛.�.t// � f ˛.t/

�˛.t/ � t˛
Œ�˛.t/ � s˛�

ˇ
ˇ
ˇ
ˇ � � j�˛.t/ � s˛j

for all s 2 U. Hence, we get the desired result (2).
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2. Assume f is differentiable at t and t is right dense. Let � > 0 be given. Since f is
differentiable at t, there is a neighborhood U of t such that

j Œf ˛.�.t// � f ˛.s/� � f�
˛

.t/Œ�˛.t/ � s˛� j� � j �˛.t/ � s˛ j

for all s 2 U. Since �.t/ D t, we have that

j Œf ˛.�.t// � f ˛.s/� � f�
˛

.t/Œt˛ � s˛� j� � j �˛.t/ � s˛ j

for all s 2 U. It follows that
ˇ̌
ˇ f ˛.t/�f ˛.s/

t˛�s˛ � f�
˛
.t/
ˇ̌
ˇ � � for all s 2 U, s ¤ t, and

we get the desired equality (3). Assume lims!t
f ˛.t/�f ˛.s/

t˛�s˛ exists and is equal to X
and �.t/ D t. Let � > 0. Then, there is a neighborhood U of t such that

ˇ
ˇ
ˇ
ˇ
f ˛.�.t// � f ˛.s/

t˛ � s˛
� X

ˇ
ˇ
ˇ
ˇ � �

for all s 2 U. Because j f ˛.�.t//� f ˛.s/� X.t˛ � s˛/ j� �jt˛ � s˛j for all s 2 U,

f�
˛

.t/ D X D lim
s!t

f ˛.t/ � f ˛.s/

t˛ � s˛
:

3. If �.t/ D t, then �˛.t/ � t˛ D 0 and

f ˛.�.t// D f ˛.t/ D f ˛.t/C .�˛.t/ � t˛/f�
˛

.t/:

On the other hand, if �.t/ > t, then by item 1

f ˛.�.t// D f ˛.t/C .�˛.t/ � t˛/
f ˛.�.t// � f ˛.t/

�.t/˛ � t˛

D f ˛.t/C .�˛.t/ � t˛/f�
˛

.t/

and the proof is complete.

Example 1. If T D R, then (3) yields that f W R ! R is delta differentiable of order
˛ at t 2 R if and only if f�

˛
.t/ D lims!t

f ˛.t/�f ˛.s/
t˛�s˛ exists, i.e., if and only if f is

fractional differentiable at t. In this case we get the derivative f .˛/ of [10].

Example 2. If T D Z, then item 1 of Theorem 1 yields that f W Z ! R is delta-
differentiable of order ˛ at t 2 Z with

f�
˛

.t/ D f ˛.�.t// � f ˛.t/

�˛.t/ � t˛
D f ˛.t C 1/� f ˛.t/

.t C 1/˛ � t˛
:
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Example 3. If f W T ! R is defined by f .t/ 	 � 2 R, then f�
˛
.t/ 	 0. Indeed, if t

is right scattered, then by item 1 of Theorem 1 f�
˛
.t/ D f ˛.�.t//�f ˛.t/

�˛.t/�t˛ D �˛��˛
�˛.t/�t˛ D 0;

if t is right dense, then by (3) we get f�
˛
.t/ D lims!t

�˛��˛
t˛�s˛ D 0.

Example 4. If f W T ! R, t 7! t, then f�
˛ 	 1 because if �.t/ > t (i.e., t is right

scattered), then f�
˛
.t/ D f ˛.�.t//�f ˛.t/

�˛.t/�t˛ D �˛.t/�t˛

�˛.t/�t˛ D 1; if �.t/ D t (i.e., t is right

dense), then f�
˛ D lims!t

f ˛.t/�f ˛.s/
t˛�s˛ D t˛�s˛

t˛�s˛ D 1.

Example 5. Let g W T ! R, t 7! 1
t . We have g�

˛
.t/ D � 1

.t�.t//˛
. Indeed, if �.t/ D t,

then g�
˛
.t/ D � 1

t2˛
; if �.t/ > t, then

g�
˛

.t/ D g˛.�.t// � g˛.t/

�˛.t/ � t˛
D
�

1
�.t/

�˛ � �
1
t

�˛

�˛.t/ � t˛
D

t˛��˛.t/
t˛�˛.t/

t˛ � �˛.t/ D � 1

t˛�˛.t/
:

Example 6. Let h W T ! R, t 7! t2. We have h�
˛
.t/ D �˛.t/ C t˛ . Indeed, if t is

right dense, then h�
˛
.t/ D lims!t

t2˛�s2˛

t˛�s˛ D 2t˛; if t is right scattered, then

h�
˛

.t/ D h˛.�.t// � h˛.t/

�˛.t/ � t˛
D �2˛.t/ � t2˛

�˛.t/ � t˛
D �˛.t/C t˛:

Example 7. Consider the time scale T D hZ, h > 0. Let f be the function defined
by f W hZ ! R, t 7! .t � c/2, c 2 R. The fractional derivative of order ˛ of f at t is

f�
˛

.t/ D f ˛.�.t// � f ˛.t/

�˛.t/ � t˛
D ..�.t/ � c/2/˛ � ..t � c/2/˛

�˛.t/� t˛

D .t C h � c/2˛ � .t � c/2˛

.t C h/˛ � t˛
:

Remark 2. Examples 5, 6, and 7 show that in general f�
˛
.t/ is a complex number

(for instance, choose ˛ D 1
2

and t < 0).

Theorem 2. Assume f ; g W T ! R are continuous and delta differentiable of order
˛ at t 2 T� . Then the following proprieties hold:

1. For any constant �, function �f W T ! R is delta differentiable of order ˛ at t
with .�f /�

˛ D �˛f�
˛
.

2. The product fg W T ! R is delta differentiable of order ˛ at t with

.fg/�
˛

.t/ D f�
˛

.t/g˛.t/C f ˛.�.t//g�
˛

.t/ D f�
˛

.t/g˛.�.t//C f ˛.t/g�
˛

.t/:

3. If f .t/f .�.t// ¤ 0, then 1
f is delta differentiable of order ˛ at t with

�
1

f

��˛
.t/ D �f�

˛
.t/

f ˛.�.t//f ˛.t/
:
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4. If g.t/g.�.t// ¤ 0, then f
g is delta differentiable of order ˛ at t with

�
f

g

��˛
.t/ D f�

˛
.t/g˛.t/ � f ˛.t/g�

˛
.t/

g˛.�.t//g˛.t/
:

Proof. 1. Let � 2 .0; 1/. Define �� D �
j�j˛ 2 .0; 1/. Then there exists a

neighborhood U of t such that jf ˛.�.t// � f ˛.s/ � f�
˛
.t/.�˛.t/ � s˛/j �

��j�˛.t/ � s˛j for all s 2 U. It follows that

j.�f /˛.�.t// � .�f /˛.s/� �˛f�
˛

.t/.�˛.t/ � s˛/j
D j�j˛ j f ˛.�.t// � f ˛.s/� f�

˛

.t/.�˛.t/ � s˛/ j
� ��j�j˛j�˛.t/ � s˛j � �

j�j˛ j�j˛j�˛.t/ � s˛j D �j�˛.t/ � s˛j

for all s 2 U. Thus, .�f /�
˛
.t/ D �˛f�

˛
.t/ holds.

2. Let � 2 .0; 1/. Define �� D �Œ1 C jf ˛.t/j C jg˛.�.t//j C jg�˛.�.t//j��1. Then
�� 2 .0; 1/ and there exist neighborhoods U1;U2, and U3 of t such that

jf ˛.�.t// � f ˛.s/ � f�
˛

.t/.�˛.t/ � s˛/j � ��j�˛.t/ � s˛j

for all s 2 U1, jg˛.�.t// � g˛.s/ � g�
˛
.t/.�˛.t/ � s˛/j � ��j�˛.t/ � s˛j for all

s 2 U2 and such as f is continuous. Then jf .t/� f .s/j � �� for all s 2 U3. Define
U D U1 \ U2 \ U3 and let s 2 U. It follows that

j.fg/˛.�.t// � .fg/˛.s/� Œg�
˛

.t/f ˛.t/C g˛.�.t//f�
˛

.t/�Œ�˛.t/ � s˛�j
D jŒf ˛.�.t// � f ˛.s/ � f�

˛

.t/.�˛.t/ � s˛/�.g˛.�.t///C g˛.�.t//f ˛.s/

C g˛.�.t//f�
˛

.t/.�˛.t/ � s˛/ � f ˛.s/g˛.s/

� Œg�˛ .t/f ˛.t/C g˛.�.t//f�
˛

.t/�Œ�˛.t/ � s˛�j
D jŒf ˛.�.t// � f ˛.s/ � f�

˛

.t/.�˛.t/ � s˛/�.g˛.�.t///

C Œg˛.�.t// � g˛.s/ � g�
˛

.t/.�˛.t/ � s˛/�.f ˛.t//

C Œg˛.�.t// � g˛.s/ � g�
˛

.t/.�˛.t/ � s˛/�.f ˛.s/ � f ˛.t//C f ˛.s/g˛.s/

C g�
˛

.t/f ˛.s/.�˛.t/ � s˛/C g˛.�.t//f�
˛

.t/.�˛.t/ � s˛/� g˛.s/f ˛.s/

C g�
˛

.t/f ˛.s/.�˛.t/ � s˛/C g˛.�.t//f�
˛

.t/.�˛.t/ � s˛/� f ˛.s/g˛.s/

� Œg�˛ .t/f ˛.t/C g˛.�.t//f�
˛

.t/�Œ�˛.t/ � s˛�j
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� jf ˛.�.t// � f ˛.s/ � f�
˛

.t/.�˛.t/ � s˛/jj.g˛.�.t///j
C jg˛.�.t// � g˛.s/ � g�

˛

.t/.�˛.t/ � s˛/jj.f ˛.t//j
C jg˛.�.t// � g˛.s/ � g�

˛

.t/.�˛.t/ � s˛/jjf ˛.s/� f ˛.t/j
C jg�˛.t/jjf ˛.t/ � f ˛.s/jj�˛.t/ � s˛j

D ��j.g˛.�.t///jj�˛.t/ � s˛j
C ��j.f ˛.t//jj�˛.t/ � s˛j C ��j�˛.t/ � s˛j�� C ��jg�˛.t/jj�˛.t/ � s˛j

� ��j�˛.t/ � s˛j.�� C j.f ˛.t//j C jg�˛.t/j C jg�˛.t/j/
� ��j�˛.t/ � s˛j.1C j.f ˛.t//j C jg�˛.t/j C jg�˛.t/j/ D �j�˛.t/ � s˛j:

Thus, .fg/�
˛
.t/ D f ˛.t/g�

˛
.t/C f�

˛
.t/g˛.�.t// holds at t. The other product rule

follows from this last equality by interchanging functions f and g.

3. We use the delta derivative of a constant (Example 3). Since
�

f � 1f
��˛

.t/ D 0,

it follows from item 2 that
�
1
f

��˛
.t/f ˛.�.t//C f�

˛
.t/ 1

f ˛.t/ D 0. Because we are

assuming f .t/f .�.t// ¤ 0, one has
�
1
f

��˛
.t/ D �f�

˛
.t/

f ˛.�.t//f ˛.t/ .

4. For the quotient formula, we use items 2 and 3 to compute

�
f

g

��˛
.t/ D

�
f � 1

g

��˛
.t/ D f ˛.t/

�
1

g

��˛
.t/C f�

˛

.t/
1

g˛.�.t//

D �f ˛.t/
g�

˛
.t/

g˛.�.t//g˛.t/
C f�

˛

.t/
1

g˛.�.t//

D f�
˛
.t/g˛.t/ � f ˛.t/g�

˛
.t/

g˛.�.t//g˛.t/
:

This concludes the proof.

Remark 3. The delta derivative of order ˛ of the sum f C g W T ! R does not
satisfy the usual property, that is, in general .f C g/�

˛
.t/ ¤ .f /�

˛
.t/C .g/�

˛
.t/. For

instance, let T be an arbitrary time scale and f ; g be functions defined by f W T ! R,
t 7! t, and g W T ! R, t 7! 2t. One can easily find that .f C g/�

˛
.t/ D p

3 ¤
f�

˛
.t/C g�

˛
.t/ D 1C p

2.

Proposition 1. Let ˛ 2 R and m 2 N, m > 1. For g defined by g.t/ D tm, we have

g�
˛

.t/ D
m�1X

kD0
.t˛/m�k�1.�˛/k.t/: (4)
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Proof. We prove the formula by induction. If m D 2, then g.t/ D t2 and from
Example 6 we know that g�

˛
.t/ D P1

kD0.t˛/1�k.�˛/k.t/ D t˛C�˛.t/. Now assume

g�
˛

.t/ D
m�1X

kD0
.t˛/m�k�1.�˛/k.t/

holds for g.t/ D tm and let G.t/ D tmC1 D t � g.t/. We use the product rule of
Theorem 2 to obtain

G�˛.t/ D g˛.t/C �˛.t/g�
˛

.t/ D .t˛/m C �˛.t/
m�1X

kD0
.t˛/m�k�1.�˛/k.t/

D .t˛/m C
m�1X

kD0
.t˛/m�k�1.�˛/kC1.t/ D .t˛/m C

m�1X

kD1
.t˛/m�k.�˛/k.t/

D
mX

kD0
.t˛/m�k.�˛/k.t/:

Hence, by mathematical induction, (4) holds.

Example 8. Choose m D 3 in Proposition 1. Then
�
t3
��˛ D t2˛ C.t�.t//˛C�2˛.t/.

The notion of fractional derivative here introduced can be easily extended to any
arbitrary real order ˛.

Definition 3. Let ˛ > 0 and N 2 N0 be such that N < ˛ � N C 1. Then we define

f�
˛ D

�
f�

N
��˛�N

, where f�
N

is the usual Hilger derivative of order N.
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Uniform Stabilization of a Hybrid System
of Elasticity: Riesz Basis Approach

M. Driss Aouragh

Abstract A hybrid system, composed of an elastic beam governed by an Euler-
Bernoulli beam equation and a linked rigid body governed by an ordinary dif-
ferential equation, is considered. This paper studies the basis property and the
stability of a hybrid system when the usual linear boundary feedback is applied
to the end without mass. It is shown that there is a sequence of generalized
eigenfunctions of the system, which forms a Riesz basis for the state Hilbert
space. As consequence expressions of eigenvalues, the spectrum-determined growth
condition and the exponential stability are readily presented. To confirm numerically
the asymptotic estimate of eigenvalues, we shall use the spectral method to calculate
the eigenvalues.

Keywords Beams • Spectrum • Stabilization of systems by feedback •
Riesz basis

AMS subject classifications: 74K10, 47A10, 93O15, 47E05

1 Introduction

Consisting of an elastic beam, linked to a rigid antenna, this dynamical system can
be described by the Euler-Bernoulli equation for the vibration of the elastic beam
and the Newton-Euler rigid-body equations for all the oscillations of the antenna:

@tty.x; t/C @xxxxy.x; t/ D 0; 0 < x < 1; t > 0

M@tty.1; t/ � @xxxy.1; t/ D 0; t > 0 (1)

J@xtty.1; t/C @xxy.1; t/ D 0; t > 0

M.D. Aouragh (�)
FST Errachidia, M2I Laboratory, MAMCS Group, P.O. Box: 509 Boutalamine,
52000 Errachidia, Morocco
e-mail: d.aouragh@fst.umi.ac.ma

© Springer International Publishing Switzerland 2016
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics 164,
DOI 10.1007/978-3-319-32857-7_9

89

mailto:d.aouragh@fst.umi.ac.ma


90 M.D. Aouragh

where t is the time variable and x the space coordinate along the beam, in its
equilibrium position. The function y is the transverse displacement of the beam,
M the mass of the antenna, and J the moment of inertia associated with the antenna.
For further description concerning the physical structure of the system, we refer
to [4]. Our goal is to choose suitable boundary damping at the end x D 0 such that
the hybrid system can be stabilized uniformly.

We consider the elastic beam with the following boundary feedback [6]:

@xy.0; t/ D 0; .y C @xxxy C a@ty/.0; t/ D 0; t > 0; (2)

where a � 0 is a positive constant. Notice that the boundary condition (2) can
be realized by means of passive mechanical systems of springer-damper similar to
those used in [2].

In the next section, we give a result of a well-posedness of the solution of
the system, and the asymptotic expressions of eigenvalues and eigenfunctions are
derived. In Sect. 3, we show that there is a sequence of generalized eigenfunctions
of system (1)–(2), which forms a Riesz basis for the state Hilbert space and the
exponential stability of the system is obtained. Numerical simulation of eigenvalues
is presented in Sect. 4.

2 Well-Posedness, Asymptotic Expression of Eigenpairs

The energy space associated to system (1)–(2) is

H WD V � L2.0; 1/� C2; V D f� 2 H2.0; 1/=@x�.0/ D 0g

with the inner product induced norm

k.u; v; �; ı/k2 WD
Z l

0

Œjvj2 C j@xxuj2�dx C ju.0/j2 C M�1j�j2 C J�1jıj2;

The system (1)–(2) can be written as

@tY.t/ D LY.t/;Y.t/ D .y.:; t/; @ty.:; t/;m@ty.1; t/; @xty.1; t//; (3)

where the associated system operator

L.�;  ; �; ı/ D . ;�@xxxx�; @xxx�.1/;�@xx�.1//;

D.L/ D f.�;  ; �; ı/ 2 .H 4.0; 1/\ V / � V � C2=

�.0/C @xxx�.0/C a .0/ D 0; � D M .1/; ı D J@x .1/g: (4)

Lemma 1. L�1 exists and is compact on H. Hence �.L/, the spectrum of L, consists
of isolated eigenvalues only.
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Proof. For any .u; v; f ; g/ 2 H, solving

L.�;  ; �; ı/ D . ;�@xxxx�;�@xx�.1/; @xxx�.1// D .u; v; f ; g/;

produces the unique solution  D u; � D Mu.1/; ı D Ju0.1/ and

�.x/ D �.0/C f
6

� 1
6

R 1
0

t3�.t/dt �
h

f
6

C 1
2

R 1
0

t2�.t/dt
i

x

� g
2
x2 C f

6
.x � 1/3 C 1

6

R 1
x .x � 1/3y.t/dt (5)

with �.0/ D �.f C au.0/ C R 1
0 vdx/. The compactness follows from the Sobolev

embedding theorem [5]. Other conclusions are obvious, and the details are omitted.

Lemma 2. For any � D i�2 2 �.L/, there is a unique eigenfunction (up to a scalar)
.�; ��;M��.1/; J�@x�.1// where

�.x/ D �.1C MJ�4/ cos h �x C Œ2J�3 sin � C .�1C MJ�4/ cos �� cos h �.1 � x/

CŒ2J�3 sin h � � .1C MJ�4/ cos � C .�1C MJ�4/ cos h �� cos �.1 � x/

CŒ.�1C MJ�4/ sin � � 2M� cos �� sin h �.1 � x/

CŒ.1 � MJ�4/ sin h � � .1C Mj�4/ sin � C 2M� cos h �� sin �.1 � x/ (6)

and the characteristic equation that � satisfies is

.1C ia�2/Œ�.1C MJ�4/C .J�3 � M�/ cos � sin h� C .�1C MJ�4/ cos � cos h�

�.J�3 C M�/ sin � cos h�� � �3Œ2J�3 sin � sin h� C .�1C MJ�4/ cos � sin h�

C.�1C MJ�4/ sin � cos h�� D 0; (7)

Proof. Solving the eigenvalue problem

L.�;  ; �; ı/ D . ;�@xxxx�; @xxx�.1/;�@xx�.1// D �.�; ;M .1/; J@x .1//

one has  D ��; � D M .1/; ı D J 0.1/ and

@xxxx� C �2� D 0;

@x�.0/ D �.0/.1C �a/C @xxx�.0/ D 0;

@xxx�.1/� M�2�.1/ D @xx�.1/C J�2@x�.1/ D 0; (8)

Let f .x/ D �.x � 1/. Then f satisfies

@xxxxf C �2f D 0;

@xf .1/ D f .1/.1C �a/� @xxxf .1/ D 0;
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@xxxf .0/C M�2f .0/ D @xxf .0/� J�2@xf .0/ D 0 (9)

Let � D i�2I it is easily seen that for any � D i�2; the general solution of the
following equation

@xxxxf C �2f D 0;

@xxxf .0/C M�2f .0/ D @xxf .0/� J�2@xf .0/ D 0;

is of the form

f .x/ D Œ.d1�d2/�MJ�4.d1Cd2/� cos h �xCŒ.d1�d2/CMJ�4.d1Cd2/� cos �x

C2M�Œd1 sin h �x C d2 sin �x�;

where d1; d2 are arbitrary constants. By @xf .1/ D 0, one has (up to a scalar)

d1 D .1C MJ�4/ sin h � C .�1C MJ�4/ sin � � 2M� cos �;

d2 D .1 � MJ�4/ sin h � � .1C MJ�4/ sin � C 2M� cos h �;

d1 � d2 D 2MJ�4 sin h � C 2MJ�4 sin � � 2M� cos � � 2M cos h �;

d1 C d2 D 2 sin h � � 2 sin � � 2M� cos � C 2M� cos h �:

by �.x/ D f .x�1/ this is (6). In order for f to be a solution of (9), it is necessary and
sufficient that f .1/.1C �a/� @xxxf .1/ D 0; which induces (7), proving the lemma.

Lemma 3. There is a family of eigenvalues f�n D i�2n ;�i�2n g of L with the following
asymptotic expression

�n D i�2n D �a C i

�
2

M
C .m�/2

�
C O.n�1/ (10)

where m D n � 1
4
; n is a sufficiently large positive integer. A corresponding

eigenfunction ˚n D .�n; �n�n;M�n�n.1/; J�n@x�.1//; where

�n.x/ D �.1C MJ�4n / cos h �nx

CŒ2J�3n sin �n C .�1C MJ�4n / cos �n� cos h �n.1 � x/

CŒ2J�3n sin h �n�.1CMJ�4n / cos �n C.�1C MJ�4n / cos h �n� cos �n.1 � x/

CŒ.�1C MJ�4n / sin �n � 2M�n cos �n� sin h �n.1 � x/

CŒ.1�MJ�4n / sin h �n� .1CMj�4n / sin �nC2M�n cos h �n� sin �n.1�x/;

which is obtained by (6) with � D �n. The following asymptotic expression holds
where Fn.x/ D � 2

MJ �
�6
n e��n.�00

n ; �n�n;M�n�n.1/; J�n�
0.1//;
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Fn.x/D

2

6
6
4

e�m�.1�x/ � e�m�x cos m� C cos m�.1 � x/� sin m�.1 � x/
iŒe�m�.1�x/�e�m�x cos m�� cos m�.1�x/C sin m�.1�x/�
0

0

3

7
7
5

T

CO .n�1/

(11)
(11) holds uniformly in x 2 Œ0; 1�. It is seen that

lim
n!C1 kFnk2L2�L2�C2 D lim

n!C1 k 2

MJ
��6

n e��n˚nk2H D 2;

Proof. Note that for a large positive integer n, in a uniformly bounded small
neighborhood of m� D .n � 1

4
/�

j sin � j � C; j cos � j � C; je�� sin h � j � C; je�� cos h � j � C;

uniformly for all n with some constant C. By multiplying �e�� ��7.MJ/�1 on both
sides of (7), we can write (7) in a uniformly bounded small neighborhood of m� D
.n � 1

4
/� for each n to be

sin � C cos � D O.j� j�1/; or sin � C cos � D 1

�

�
ia C 2

M

�
cos � C O.j� j�2/

(12)

The first equation in (12) can be rewritten as sin 2� D �1 C O.j� j�2/. Applying
Rouche’s theorem in a small neighborhood of m� D .n � 1

4
/� where n is a large

positive integer, we obtain a solution �n which is of the form

� D �n D m� C O.n�1/; (13)

for sufficiently large n. Substituting (13) into the second equation of (12) yields

2O.n�1/ D 1

m�

�
ia C 2

M

�
C O.n�2/;

and so �n D m� C 1
m�

�
ia
2

C 1
M

�C O.n�2/:
For the estimation of (11), we treat the first component only because the second

component can be treated similarly. Now

��2
n �00

n .x/ D �.1C MJ�4n / cos h �nx

CŒ2J�3n sin �n C .�1C MJ�4n / cos �n� cos h �n.1 � x/

�Œ2J�3n sin h �n � .1C MJ�4n / cos �n

C.�1C MJ�4n / cos h �n� cos �n.1 � x/

CŒ.�1C MJ�4n / sin �n � 2M�n cos �n� sin h �n.1 � x/
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�Œ.1 � MJ�4n / sin h �n � .1C Mj�4n / sin �n

C2M�n cos h �n� sin �n.1 � x/;

Since for any bounded y > 0 and x 2 Œ0; 1�, it holds uniformly

e��ny D e�m�y C O.n�1/; sin �nx D sin m�x C O.n�1/; cos �nx

D cos m�x C O.n�1/;

Hence

2.MJ/�1e��n��6
n �00

n .x/ D �e�n.1�x/ C e��nx cos �n � cos �n.1 � x/

C sin �n.1 � x/C O.n�1/;

Moreover,

2.MJ/�1��6
n e��n�n.1/ D O.n�1/; 2.MJ/�1��6

n e��n�0
n.1/ D O.n�1/;

3 Riesz Basis Property and Exponential Stability

Theorem 1 (Guo [3]). Let A be a densely defined discrete operator, that is, .� �
A/�1 is compact for some � in a Hilbert space H. Let fzngC1

1 a Riesz basis for H. If
there are an N � 0 and a sequence of a generalized eigenvectors fxngC1

NC1 of A such
that

C1X

nDNC1
kxn � znk2 < C1

then

(i) There are an M > N and generalized eigenvectors fxn0gM
1 [ fxngC1

MC1 form a
Riesz basis for H:

(ii) Consequently, let fxn0gM
1 [ fxngC1

MC1 correspond to eigenvalues f�ngC1
1 of

A: Then �.A/ D f�ngC1
1 where �n is counted according to its algebraic

multiplicity.
(iii) If there is an M0 > 0 such that �n ¤ �m for all m; n � M0, then there is an

N0 > M0 such that all �n; n > N0 are algebraically simple.

In order to apply theorem 1 to the operator L, we consider the following system:

@tty.x; t/C @xxxxy.x; t/ D 0; 0 < x < 1; t > 0;

@xy.0; t/ D 0; y.0; t/C @xxxy.0; t/ D 0; t > 0; (14)
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M@tty.1; t/ � @xxxy.1; t/ D J@xtty.1; t/C @xxy.1; t/ D 0; t > 0;

The system operator L0 associated with (14) is nothing but the operator L with
a D 0 W

L0.�;  ; �; ı/ D . ;�@xxxx�; @xxx�.1/;�@xx�.1//;

with D.L0/ D f.�;  ; �; ı/ 2 .H4.0; 1/\ V / � V � C2=�.0/C @xxx�.0/ D 0; � D
M .1/; ı D J@x .1/g:

Then it is easily checked that L0 is indeed a discrete skew-adjoint linear operator
in H. From Lemma 2, each eigenvalue of L0 is geometrically simple and hence
algebraically simple. Because all eigenvalues of L0 lie on the imaginary axis
and the eigenvalues appear in conjugate pairs, we need to consider only positive
solutions of (7) in order to find eigenvalues of L0. From Lemma 2, we can obtain
the unique (up to a scalar) eigenfunction of L0 associated with �n D i!n to be
‰n D .fn; �nfn;M�nfn.1/; J�nf 0

n.1//; where

fn.x/ D �.1C MJ!4n / cos h !nx C Œ2J!3n sin !n

C.�1C MJ!4n/ cos !n� cos h !n.1 � x/

CŒ2J!3n sin h !n � .1C MJ!4n/ cos !n

C.�1C MJ!4n/ cos h !n� cos !n.1 � x/

CŒ.�1C MJ!4n / sin !n � 2M!n cos !n� sin h !n.1� x/

CŒ.1�MJ!4n/ sin h !n� .1CMj!4n/ sin !nC2M!n cos h !n� sin !n.1�x/;

and

Gn.x/D

2

6
6
4

e�m�.1�x/�e�m�x cos m�C cos m�.1�x/� sin m�.1�x/
iŒe�m�.1�x/�e�m�x cos m�� cos m�.1�x/C sin m�.1�x/�
0

0

3

7
7
5

T

CO.n�1/

(15)
where Gn.x/ D � 2

MJ!
�6
n e�!n.f 00

n ; �nfn;M�nfn.1/; J�nf 0
n.1//

T; Moreover,

2.MJ/�1!�6
n e�!n fn.1/ D O.n�1/; 2.MJ/�1!�6

n e�!n f 0
n.1/ D O.n�1/;

Since L0 is a discrete operator, there are only finite number of eigenvalues in
any bounded complex region, all with at most other finite number of generalized
eigenfunctions (in the sense of w-linearly independent) of L0 forming a Riesz basis
for H. Therefore, we may assume, without loss of generality, that the generalized
eigenfunctions of L0 D f�2.MJ/�1!�6

n e�!n‰ngS f their conjugates g. It follows
from (11) and (15) that there exists an N such that
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C1X

nDNC1

�
�2.MJ/�1��6

n e��n˚n�2.MJ/�1!�6
n e�!n‰n

�
�2

H
D

C1X

nDNC1
O.n�2/<C1; (16)

The same result is verified for their conjugates. We can now apply Theorem 1 to
obtain the main results of the present paper.

Theorem 2. For any a � 0

(i) There is a sequence of generalized functions properly normalized of L which
forms a Riesz basis of the Hilbert space H.

(ii) The eigenvalues of L have the asymptotic behavior (10).
(iii) All � 2 �.L/ with sufficiently large modulus are algebraically simple.

Therefore, L generates a C0 semigroup on H. Moreover, for the semigroup
eLt generated by L, the spectrum-determined growth condition holds: !.L/ D
S.L/, where

!.L/ D lim
t!C1

t�1 jj eLt jj; S.L/ D supfRe�= � 2 �.L/g

Theorem 3. Suppose a > 0. Then there exists an ! > 0 such that Re � < �!
for all � 2 �.L/. Therefore, the C0 semigroup eLt generated by L is exponentially
stable:

keLt˚k � me�!tk˚k2

for any ˚ 2 H, where m > 0 is a constant independent of ˚ .

Proof. It suffices to show that Re � < 0 for all � 2 �.L/. We start from the
eigenproblem (8). Multiplying �, the conjugate of �, on both sides of the first
equation in (8) and integrating from 0 to 1 with respect to x yields

Z 1

0

j�00.x/j2dx C �2ŒMj�.1/j2 C Jj�0.1/j2 C
Z 1

0

j�.x/j2dx� (17)

C.1C a�/j�.0/j2 D 0:

Clearly, if � is a real number, it must have � < 0. Notice that � D 0 is always not
in the spectrum of L. Suppose that � D �1 C i�2.�2 ¤ 0/. Then comparing the
imaginary parts of 7 yields

2�1Œ

Z 1

0

j�.x/j2dx C Mj�.1/j2 C Jj�0.1/j2�C aj�.0/j2 D 0: (18)

There are two cases. When �1 ¤ 0, it is obvious that �1 < 0 as a > 0. While as
�1 D 0, it must be �.0/ D 0 and so �000.0/ D 0. In this case, the solution of (8)
shall be (we may assume that �2 > 0) �.x/ D cos h

p
�2x � cos

p
�2x. But from
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Fig. 1 Distribution of eigenvalues for a D 5 (left) and functional relation between S.L/ and
a(right)

the boundary condition �000.1/ D �M�22�.1/, we arrive the contradiction that

sin h
p
�2 � sin

p
�2 D �M

p
�2.cos h

p
�2 � cos

p
�2/:

4 Numerical Simulation of Eigenvalues

In this section, the Legendre polynomial method is used to compute the spectrum
of the hybrid system. We refer the procedure to [1] for details. Here we take N D
100; M D 0:1; J D 0:2 (Fig. 1).
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Monotone Iterative Technique for Systems
of Nonlinear Caputo Fractional Differential
Equations
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Abstract In this work, we deal with the existence of extremal quasisolutions for
the following finite system of nonlinear fractional differential equation CDqu .t/ C
f .t; u .t// D 0 in .0; 1/ ; u .0/ � ˛u0 .0/ D �; u .1/ C ˇu0 .1/ D �;where
1 < q < 2; ˛; ˇ 2 .RC/n ; �; � 2 Rn and f 2 C .Œ0; 1� � Rn;Rn/ and CDq is
the Caputo fractional derivative of order q. We shall prove constructive existence
results for a class of nonlinear equations by the use of iterative method technique
combined with upper and lower quasisolutions. We construct a pair of sequences
of coupled lower and upper quasisolutions which converge uniformly to extremal
quasisolutions. Then, a uniqueness result is given under additional conditions on
the nonlinearity f .

Keywords Nonlinear fractional differential system • Coupled lower and upper
soltions • Mixed quasimonotone property • Monotone method
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1 Introduction

In the present paper, we study the existence of extremal quasisolutions for the
following finite system of nonlinear fractional differential equations

CDqu .t/C f .t; u .t// D 0 in .0; 1/ (1)

u .0/� ˛u0 .0/ D �; u .1/C ˇu0 .1/ D �; (2)

where 1 < q < 2; ˛; ˇ 2 .RC/n ; �; � 2 Rn and f 2 C .Œ0; 1� � Rn;Rn/ and CDq is
the Caputo fractional derivative of order q.
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The monotone iterative technique combined with the upper and lower solutions
offers an effective method for proving constructive existence for a variety of nonlin-
ear systems of integer order; see [3, 7, 8] and the references therein. Recently, many
works investigated nonlinear systems of fractional order by following this approach.
More precisely, most of those works treated nonlinear systems of order 0 < q < 1

(see, for e.g., [5, 9]), while few works studied nonlinear differential equations
or systems of order q � 1 in this setup. Due to comparison results established
by Shi and Zhang [10] and Al-refaii [1], some works applied successfully the
monotone iterative technique combined with the upper and lower solutions to obtain
constructive existence of nonlinear differential equations in the case where the
fractional order q 2 .1; 2/; see [2, 4, 6, 11]. Motivated by the above works, we
will introduce a method based on lower and upper quasisolutions to prove existence
of minimal and maximal quasisolutions of the problem (1)–(2).

2 Preliminary Results

In this section, we shall first present some definitions and properties related to the
Caputo fractional derivatives and the method of lower and upper quasisolutions.
We then state a positivity result. Finally, we shall state an existence and uniqueness
result for some linear system associated to our main problem.

We recall that for a function u 2 C 2 .Œ0; 1� ;R/ the Riemann–Liouville fractional
integral Iqu and the Caputo fractional derivative CDqu of order q 2 .1; 2/ are
respectively defined by

Iqu.t/ D 1
� .q/

R t
0
.t � s/q�1 u .s/ ds; and

CDqu.t/ D 1
� .2�q/

R t
0
.t � s/1�q u.2/ .s/ ds D I2�qu.2/.t/; where t > 0 and � is

the Euler Gamma function.

Lemma 1 ([11]). Let p 2 C 2 .Œ0; 1� ;R/ and M > 0. If p satisfies the following
inequalities,

CDqp.t/ � Mp .t/ � 0; t 2 .0; 1/ (3)

p .0/� ˛p0 .0/ � 0; p .1/C ˇp0 .1/ � 0; (4)

where ˛; ˇ � 0. Then p .t/ � 0 for t 2 Œ0; 1�, provided that ˛ � 1
q�1 .

Using standard arguments, we state the following:

Lemma 2. Let M > 0 and h 2 C .Œ0; 1� ;R/. A function u 2 C 2.Œ0; 1� ;R/ is
solution of the problem

CDqu.t/C h .t/ � Mu.t/ D 0; t 2 .0; 1/ (5)

u .0/� ˛u0 .0/ D �; u .1/C ˇu0 .1/ D �; (6)
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if, and only if, u is solution of the integro-differential equation

u.t/ D �C ˛ .�� �/

˛ C ˇ C 1
.1C t/C

Z 1

0

G˛;ˇ .t; s/ .h .s/ � Mu.s// ds (7)

where for t; s 2 Œ0; 1�,

G˛;ˇ .t; s/ D .˛ C t/ .1 � s/q�2 .1 � s C ˇ .q � 1//� .˛ C ˇ C 1/
�
.t � s/C

�q�1

.˛ C ˇ C 1/� .q/
:

(8)
G˛;ˇ .t; s/ is the Green’s function of the boundary value problem (5)–(6). Here, for
a real number r; rC D max.r; 0/.

Lemma 3. For all t 2 Œ0; 1�, we have

0 �
Z 1

0

G˛;ˇ .t; s/ ds � �
˛;ˇ

� .q/
;

where �
˛;ˇ

D ˛
�
1
q C ˇ .q � 1/

�
C
�

q�1
q

� �
1
q Cˇ.q�1/

� q
q�1

.˛CˇC1/ 1
q�1

.

Proof. An elementary calculus yields to this result, so we omit the proof. ut
Let ri and si be nonnegative integers for each i; 1 � i � n, such that ri C si D n � 1,
so that we can split the vector u 2 Rn into

�
ui; Œu�ri

; Œu�si

�
. Then Eqs. (1)–(2) can be

written as

CDqui .t/C fi
�
t; ui .t/ ; Œu .t/�ri

; Œu .t/�si

� D 0 in .0; 1/ (9)

ui .0/� ˛iu
0
i .0/ D �i; ui .1/C ˇiu

0
i .1/ D �i; (10)

for each i; 1 � i � n.
Now, recall that for u; v 2 Rn; u � v implies that ui � vi for each i; 1 � i � n

and define for u; v 2 C 2 .Œ0; 1� ;Rn/ the set

Œu; v� D ˚
h 2 C 2 .Œ0; 1� ;Rn/ W u .t/ � h .t/ � v .t/ ; t 2 Œ0; 1�� :

For the sake of simplicity, we set 'i .u/ D ui .0/� ˛iu0
i .0/ and  i .u/ D ui .1/C

ˇiu0
i .1/ for each i 2 f1; : : : ; ng.

Definition 1. A function f 2 C .Œ0; 1� � Rn;Rn/ is said to possess a mixed
quasimonotone property if for each i; 1 � i � n; fi

�
t; ui; Œu�ri

; Œu�si

�
is monotone

nondecreasing in Œu�ri
and monotone nonincreasing in Œu�si

.

Definition 2. Let v;w 2 C 2 .Œ0; 1� ;Rn/, v and w are coupled lower and upper
quasisolutions of (9)–(10) if they satisfy
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CDqvi .t/C fi
�
t; vi .t/ ; Œv .t/�ri

; Œw .t/�si

� � 0 in .0; 1/ (11)

'i .v/ � �i;  i .v/ � �i; (12)

and

CDqwi .t/C fi
�
t;wi .t/ ; Œw .t/�ri

; Œv .t/�si

� � 0 in .0; 1/ (13)

'i .w/ � �i;  i .w/ � �i; (14)

for each i; 1 � i � n.

Definition 3. Let v;w 2 C 2 .Œ0; 1� ;Rn/, v and w are coupled quasisolutions of (9)–
(10) if they satisfy

CDqvi .t/C fi
�
t; vi .t/ ; Œv .t/�ri

; Œw .t/�si

� D 0 in .0; 1/

'i .v/ D �i;  i .v/ D �i;

and

CDqwi .t/C fi
�
t;wi .t/ ; Œw .t/�ri

; Œv .t/�si

� D 0 in .0; 1/

'i .w/ D �i;  i .w/ D �i;

for each i; 1 � i � n.

In the rest of the paper, we adopt the following assumptions:

.H1/ v0;w0 2 C 2 .Œ0; 1� ;Rn/ are coupled lower and upper quasisolutions of (9)–
(10) such that v0 � w0 on Œ0; 1�.

.H2/ The function f possesses a mixed quasimonotone property, and there exists
M 2 �R�C

�n
such that Mi <

� .q/
ƒ
˛i ;ˇi

and

fi
�
t; ui; Œu�ri

; Œu�si

� � fi
�
t; ui; Œu�ri

; Œu�si

� � �Mi
�
ui � ui

�

for each i; 1 � i � n, whenever v0 � u � u � w0 on Œ0; 1�.

To state our main result, we need the following Lemma

Lemma 4. Assume .H1/ and .H2/. Suppose that for each i; 1�i�n; ˛i .q � 1/�1.
Let 	 and � be two fixed functions belonging to



v0;w0

�
. Then, the uncoupled linear

fractional differential system

CDqui .t/C fi
�
t; 	i .t/ ; Œ	 .t/�ri

; Œ� .t/�si

� � Mi .ui .t/ � 	i .t// D 0 in .0; 1/ (15)

'i .u/ D �i;  i .u/ D �i; (16)

for each i; 1 � i � n, admits a unique positive solution u in


v0;w0

�
.
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Proof. First, it is obvious to see from Lemma 2 that u 2 C 2 .Œ0; 1� ;Rn/ is a solution
of problem (15)–(16) if, and only if, u is solution of the following integro-equation

ui .t/ D �i C .�i � �i/

˛i C ˇi C 1
.˛i C t/C

Z 1

0

G˛i;ˇi .t; s/ .hi .s/ � Miui .s// ds; (17)

where hi .t/ D fi
�
t; 	i .t/ ; Œ	 .t/�ri

; Œ� .t/�si

�C Mi	i .t/, on Œ0; 1�, for each 1 � i � n.
Let C .Œ0; 1� ;Rn/ be the Banach space endowed with the norm kuk1 D

sup
t2Œ0;1�

�
max
1�i�n

.jui .t/j/
�

. Define on C .Œ0; 1� ;Rn/ the operator T by Tu D
.T1u1; : : : ;Tnun/, where

Tiui .t/ D �i C .�i � �i/

˛i C ˇi C 1
.˛i C t/C

Z 1

0

G˛i;ˇi .t; s/ .hi .s/ � Miui .s// ds

for each t 2 Œ0; 1�. Let u; v 2 C .Œ0; 1� ;Rn/; then, by hypothesis on Mi and Lemma 3,
we get kTu � Tvk1 < ku � vk1. So by Banach Theorem, the operator T admits
a unique fixed point u in C .Œ0; 1� ;Rn/. Now, let us prove that u 2 


v0;w0
�
. By

hypothesis .H1/, v0 is a lower quasisolution, so v0 satisfies (11) and (12) for each
1 � i � n. Set p D v0�u. Using the fact that u satisfies (15) and (16) and the mixed
quasimonotone property of the function f , we obtain

CDqpi .t/ � fi.t; 	i; Œ	�ri
; Œ��si

/� fi.t; v
0
i ;


v0
�

ri
;


w0
�

si
/� Mi .ui � 	i/

� �Mi
�
	i � v0i

� � Mi .ui � 	i/ :

Thus CDqpi .t/ � Mipi .t/ � 0 on .0; 1/ ; 'i .p/ � 0;  i .p/ � 0. Then, by Lemma 1,
we deduce that pi .t/ � 0 on Œ0; 1�, for each 1 � i � n. That is, v0 � u. Similarly,
we prove that u � w0, which ends the proof. ut

3 Main Results

In this section, we mainly prove the existence of extremal quasisolutions for the
nonlinear fractional differential systems (1) and (2) and we state then a uniqueness
result.

Theorem 1. Consider the boundary value problem (9)–(10) with ˛ .q � 1/ � 1.
Assume that .H1/ and .H2/ hold. Then there exists

�
vk
�

k�1 ;
�
wk
�

k�1 a pair of
monotone sequences of coupled lower and upper quasisolutions of (9)–(10) such
that the sequences

�
vk
�

k�1 and
�
wk
�

k�1 converge monotonically and uniformly to

v� and w�, respectively with v0 � v� � w� � w0 on Œ0; 1�. Moreover, v� and
w� are minimal and maximal quasisolutions of (9)–(10) in



v0;w0

�
. Further, any

solution of (9)–(10) in


v0;w0

�
satisfies v� � u � w�.
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Proof. Let 	; � 2 

v0;w0

�
. Then, by Lemma 4, the uncoupled linear fractional

differential system

CDqui .t/C fi
�
t; 	i .t/ ; Œ	 .t/�ri

; Œ� .t/�si

� � Mi .ui .t/ � 	i .t// D 0 in .0; 1/ (18)

'i .u/ D �i;  i .u/ D �i; (19)

for each i; 1 � i � n, admits a unique positive solution u	;� in


v0;w0

�
. So we can

define a map A W 
v0;w0� � 
v0;w0� ! 

v0;w0

�
such that A .	; �/ D u	;� . We shall

prove that A is mixed monotone operator. Let 	1; 	2; � 2 
v0;w0� ; 	1 � 	2 be given
and suppose that x1 D A

�
	1; �

�
and x2 D A

�
	2; �

�
. Then we have CDq

�
x2i � x1i

� �
Mi
�
x2i � x1i

� D fi
�

t; 	1i ;


	1
�

ri
; Œ��si

�
� fi

�
t; 	2i ;



	2
�

ri
; Œ��si

�
� Mi

�
	2i � 	1i

�
. Using

the mixed monotone property of f and .H2/, we get CDq
�
x2i � x1i

�� Mi
�
x2i � x1i

� �
fi
�

t; 	1i ;


	2
�

ri
; Œ��si

�
� fi

�
t; 	2i ;



	2
�

ri
; Œ��si

�
� Mi

�
	2i � 	1i

� � 0.

On the other hand, we have 'i
�
x2 � x1

� D 'i
�
x2
� � 'i

�
x1
� D 0 and

 i
�
x2 � x1

� D 0. Thus, by Lemma 1, we conclude that x2i � x1i , for each
i; 1 � i � n. That is, x1 � x2, and so A .	; �/ is nondecreasing in the first variable 	.
At the same manner, we prove that A .	; �/ is nonincreasing in its second variable
�. Whence, A is mixed monotone operator.

Now define the sequences
�
vk
�

k�1 and
�
wk
�

k�1 as follows: vk D A
�
vk�1;wk�1�

and wk D A
�
wk�1; vk�1� for k � 1. We shall prove that the sequences

�
vk
�

k�1
and

�
wk
�

k�1 are nondecreasing and nonincreasing on Œ0; 1�, respectively. We will

proceed by induction. It is obvious to see that v1 D A
�
v0;w0

� � v0 and
w1 D A

�
w0; v0

� � w0. Assume that the hypothesis is true up k � 1, that
is, vk�1 � vk and wk � wk�1. The mixed monotone property of A yields to
vkC1 � A

�
vk�1;wk

� � vk and wkC1 � A
�
wk�1; vk

� � wk. Thus the sequences�
vk
�

k�1 and
�
wk
�

k�1 are monotone on Œ0; 1�.

Now, we intend to prove that, for each k � 1, vk and wk are coupled of lower and
upper quasisolutions of (9)–(10). Let k � 1. Then vk D A

�
vk�1;wk�1� satisfies

CDqvk
i C fi

�
t; vk�1

i ;


vk�1�

ri
;


wk�1�

si

�
� Mi

�
vk

i � vk�1
i

� D 0 in .0; 1/ (20)

'i
�
vk
� D �i;  i

�
vk
� D �i; (21)

for each i; 1 � i � n.

By adding fi
�

t; vk
i .t/ ;



vk .t/

�
ri
;


wk .t/

�
si

�
to both sides of (20), we obtain

CDqvk
i C fi

�
t; vk

i ;


vk
�

ri
;


wk
�

si

�

D fi
�

t; vk
i ;


vk
�

ri
;


wk
�

si

�
� fi

�
t; vk�1

i ;


vk�1�

ri
;


wk�1�

si

�
C Mi

�
vk

i � vk�1
i

�
:
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Using the fact that vk�1 � vk, wk � wk�1 and the mixed monotone property of the

function f , we get CDqvk
i C fi

�
t; vk

i ;


vk
�

ri
;


wk
�

si

�
� 0. Similarly, we show that

CDqwk
i C fi

�
t;wk

i ;


wk
�

ri
;


vk
�

si

�
� 0,which together with the fact that 'i

�
vk
� D

'i
�
wk
� D �i;  i

�
vk
� D  i

�
wk
� D �i yields to

�
vk;wk

�
is a pair of coupled lower

and upper quasisolutions of problems (9)–(10). Next, let us prove that vk � wk,
for each k � 1. We use induction argument. For k D 1, since v0 � w0 then using
the mixed monotone property of A we get v1 � A

�
w0;w0

� � w1. Now, suppose
that vk � wk, for some k � 1, then we have vkC1 � A

�
wk; vk

� D wkC1. Whence,
vk � wk, for each k � 1.

Next, since the sequences
�
vk
�

k�1 and
�
wk
�

k�1are uniformly bounded and

equicontinuous in C .Œ0; 1� ;Rn/, then, by Arzela–Ascoli Theorem,
�
vk
�

k�1 and
�
wk
�

k�1 are relatively compact in C .Œ0; 1� ;Rn/. Thus, we deduce the existence

of subsequences
�
vkj
�

j�1 and
�
wkj
�

j�1which converge to v� and w�, respectively.

Using the fact that the sequences
�
vk

i

�
k�1 and

�
wk

i

�
k�1 are monotone, we reach

to the convergence of the entire sequences that is limk!C1 vk .t/ D v� .t/ and
limk!C1 wk .t/ D w� .t/, on Œ0; 1�. Using the equicontinuity of the sequences�
vk
�

k�1 and
�
wk
�

k�1, the pointwise convergence implies the uniform one; then, we

have
�
vk
�

k�1 and
�
wk
�

k�1 converge uniformly respectively to v� and w� on Œ0; 1�.

Next, let us verify that v� and w� are quasisolutions of (9)–(10) in


v0;w0

�
. By

Lemma 2, we have for each

vk
i .t/ D �i C .�i � �i/

˛i C ˇi C 1
.˛i C t/C

Z 1

0

G˛i;ˇi .t; s/
�
hi .s/ � Miv

k
i .s/

�
ds;

where hi .t/ D fi
�

t; vk�1
i .t/ ;



vk�1 .t/

�
ri
;


wk�1 .t/

�
si

�
C Miv

k�1
i .t/, on Œ0; 1�.

Using the continuity of the function f and vk 2 

v0;w0

�
, by Lebesgue

convergence theorem, we deduce that

v�
i .t/ D �i C .�i � �i/

˛i C ˇi C 1
.˛i C t/C

Z 1

0

G˛i;ˇi .t; s/ fi
�

s; v�
i ;


v��

ri
;


w��

si

�
ds:

Similarly, we obtain

w�
i .t/D�iC .�i��i/

˛iCˇiC1 .˛iCt/C
Z 1

0

G˛i;ˇi .t; s/ fi
�

s;w�
i ;


w��

ri
;


v��

si

�
ds:

where

G˛i;ˇi .t; s/D .˛iCt/ .1�s/q�2 .1�sCˇi .q�1//� .˛iCˇiC1/
�
.t�s/C

�q�1

.˛iCˇiC1/ � .q/ :
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So,

v�
i .t/C Iqfi

�
:; v�

i ;


v��

ri
;


w��

si

�
.t/

D �iC
�
.�i��i/

˛iCˇiC1C
Z 1

0

.1�s/q�2.1�sCˇi.q�1//
.˛iCˇiC1/� .q/ fi

�
s; v�

i ;


v��

ri
;


w��

si

�
ds

�
.˛i C t/ :

Applying CDq on both sides of the last equation, it follows that CDqv�
i .t/ C

fi
�
t; v�

i .t/ ; Œv
� .t/�ri

; Œw� .t/�si

� D 0; On the other hand, a simple calculus yields to

v�
i .0/ D �i C .�i��i/

˛iCˇiC1 and
�
v�

i

�0
.0/ D .�i��i/

˛iCˇiC1 . Thus 'i .v
�/ D �i; we show also

that i .v
�/ D �i. Similarly, we get CDqw�

i .t/Cfi
�
t;w�

i .t/ ; Œw
� .t/�ri

; Œv� .t/�si

�D0
and 'i .w�/ D �i,  i .w�/ D �i. Whence, v� and w� are quasisolutions of (9)–(10)
in


v0;w0

�
.

Next, let us show that v� and w� are minimal and maximal coupled quasiso-
lutions of (9)–(10) in



v0;w0

�
. Let v and w be coupled quasisolutions of (9)–10

in


v0;w0

�
. We will use induction. We have v0 � v and w � w0. Suppose

that for some k � 1, vk � v and w � wk: For each i; 1 � i � n, we
have CDqvi .t/ C fi

�
t; vi .t/ ; Œv .t/�ri

; Œw .t/�si

� D 0; 'i .v/ D �i;  i .v/ D �i.
So, using (3) and the mixed monotone property of the function f , it follows
CDq

�
vi � vkC1

i

�� Mi
�
vi � vkC1

i

� � 0. On the other hand, we have 'i
�
v � vkC1� D

�i;  i
�
v � vkC1� D �i. Thus, by Lemma 1, we deduce that vkC1 � v. At the same

manner, we show that w � wkC1. Whence, by taking k ! C1, we reach v� � v

and w � w�. Finally, by induction argument, it is easy to show that any solution u
of (9)–(10) in



v0;w0

�
satisfies v� � u � w�. This ends the proof. ut

In the following, we state a uniqueness result.

Theorem 2. Suppose that assumptions .H1/ � .H2/ hold. Then if, for each i; 1 �
i � n, there exists Ni > 0 such that

fi
�
t; ui; Œu�ri

; Œu�si

� � fi
�
t; ui; Œu�ri

; Œu�si

� � �Ni
�
ui � ui

�

whenever v0 � u � u � w0 on Œ0; 1�, the problem (9)–(10) has unique solution in

v0;w0

�
.

Proof. By Theorem 1, there exist v� and w� minimal and maximal quasisolutions
of (9)–(10) in



v0;w0

�
such that v� � w�. By Lemma 1, we prove that w� � v� on

Œ0; 1�. Hence v� D w� is the unique solution of the problem (9)–(10) in


v0;w0

�
;

this ends the proof. ut
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Oscillatory Solutions of Boundary
Value Problems

Felix Sadyrbaev

Abstract We consider boundary value problems of the form

x00 D f .t; x; x0/;

x.a/ D A; x.b/ D B;

assuming that f is continuous together with fx and fx0 . We study also equations in a
quasi-linear form

x00 C p.t/x0 C q.t/x D F.t; x; x0/:

Introducing types of solutions of boundary value problems as an oscillatory type
of the respective equation of variations, we show that for a solution of definite
type, the problem can be reformulated in a quasi-linear form. Resonant problems
are considered separately. Any resonant problem that has no solutions of indefinite
type is in fact nonresonant. The ways of how to detect solutions of definite types are
discussed.
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1 Introduction

The classical result in the theory of boundary value problems (BVP) for ordinary
differential equations states [1] that the problem

x0 C A.t/x D f .t; x/; x 2 Rn; (1)

B1x.a/C B2x.b/ D 0; (2)

where all entries are continuous, is solvable if f is bounded and the homogeneous
problem

x0 C A.t/x D 0; B1x.a/C B2x.b/ D 0 (3)

has only the trivial solution x.t/ 	 0.
If homogeneous problem has a nontrivial solution, the situation is different and

BVP is then called resonant.
These results when interpreted for the second-order problem

x00 C p.t/x0 C q.t/x D F.t; x; x0/; (4)

x.a/ D A; x.b/ D B; (5)

state that problems (4) and (5) are solvable if F is bounded and homogeneous
problem

x00 C p.t/x0 C q.t/x D 0; x.a/ D 0; x.b/ D 0 (6)

has only the trivial solution. Otherwise (if homogeneous problem has a nontrivial
solution), the problems (4) and (5) are resonant. There is intensive literature on
solvability of resonant problems.

In this article, we treat both nonresonant and resonant the second-order BVP
through the notion of a type of a solution. It is shown that if the second-order
problem (resonant or not) has a solution x.t/ of certain type (definition will be
given soon), then it can be reformulated in the quasi-linear form with the linear
part .l2x/.t/ WD x00 C p.t/x0 C q.t/ of the same oscillatory type. This reformulation
(reduction) is not possible if the type of a solution x.t/ is indefinite (we call this
internal resonance). We show by constructing examples that there are formally
resonant problems that in fact are not resonant: they can be reformulated in a
nonresonant form.
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2 Types of Linear Parts and Types of Solutions

Consider quasi-linear problem (4), (5). We say that the linear part .l2x/.t/ D x00 C
p.t/x0 C q.t/x has type i, if a solution y.t/ of the Cauchy problem

y00 C p.t/y0 C q.t/y D 0; y.a/ D 0; y0.a/ D 1 (7)

has exactly i zeros in the interval .a; b/ and y.b/ ¤ 0.
If y.b/ D 0, then the linear part .l2x/.t/ is resonant.
For instance, the linear part x00 C k2x, where 3� < k < 4� , has type 3.
Let us pass to definition of the type of a solution.
Let �.t/ be a solution of the BVP

x00 D f .t; x; x0/; x.a/ D A; x.b/ D B: (8)

The right-hand side function f may contain a linear part.
Consider the respective equation of variations

y00 D fx.t; �.t/; �
0.t//y C fx0.t; �.t/; � 0.t//y0: (9)

Definition 1. Let �.t/ be a solution of BVP. We say that the type of �.t/ is i, if
equation of variations (9) with respect to �.t/ is such that a solution y.t/ with the
initial conditions

y.a/ D 0; y0.a/ D 1 (10)

has exactly i zeros in the interval .a; b/ and y.b/ ¤ 0. Denote this:

type.�/ D i:

If moreover y.b/ D 0, denote the intermediate type

type.�/ D .i; i C 1/: (11)

Remark 1. Therefore, a solution of type .i; i C 1/ is a solution �.t/ such that the
respective y.t/ has exactly i zeros in .a; b/ and y.b/ D 0.

Remark 2. The study of solutions of BVP in terms of solutions of equations
of variations was initiated in early papers [4–6]. The authors have observed the
existence of solutions of zero type (in our terminology) in problems satisfying some
standard requirements.

Example 1. The trivial solution �.t/ 	 0 of the problem x00 D �x C x3, x.0/ D 0;

x.�/ D 0 is of type .0; 1/ since a solution y.t/ of the Cauchy problem y00 D �y
(equation of variations with respect to �), y.0/ D 0, y0.0/ D 1 has the first zero at
t D � .
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Example 2. To illustrate types of solutions, consider the problem

x00 D �2x3; x.0/ D 0; x.1/ D 0: (12)

This problem has infinitely many solutions. These solutions can be expressed in
terms of the lemniscate sine function sl t. This function resembles the usual sine
function, and it is periodic with minimal period 4A, where A WD R 1

0
dsp
1�s4


 1:311.

The A number is an analogue of �=2. More about lemniscatic functions and a set of
formula similar to usual trigonometric relations can be found in [3].

A solution of the Cauchy problem

x00 D �2x3; x.0/ D 0; x0.0/ D ˇ (13)

is given by x.tIˇ/ D p
ˇ sl .

p
ˇt/. Functions x.tIˇ/ satisfy the condition x.1/ D

0 only for ˇ D ˙.2A/2;˙.4A/2 and so on. Let us look at first three nontrivial
solutions of the problem (13). These solutions are

x1.t/ D 2A sl .2A t/; x2.t/ D 4A sl .4A t/; x3.t/ D 6A sl .6A t/:

In order to detect their types, consider the equations of variations

y00
1 D �6x21.t/y1; y00

2 D �6x22.t/y2; y00
3 D �6x23.t/y3

along with the initial conditions y.0/ D 0, y0.0/ D 1 (Fig. 1).
It follows that type.x1/ D 1.
Figure 2 visualizes properties of x2, x3 and the respective solutions y2, y3 of

equations of variations.
The types of x2 and x3 are respectively two and three.

0.2 0.4 0.6 0.8 1.0

4

3

2

1

1

2

3

Fig. 1 A solution x1.t/ (solid line) and the respective y1.t/.dashed/
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Fig. 2 The solutions x2.t/ and x3.t/ (solid) and the respective y2.t/ and y3.t/ (dashed)

3 Reduction to Quasi-linear Problem

Return to the problem (7). The right side f may contain linear part. The case of the
problem (7) being resonant is not excluded.

Theorem 1. Suppose the problem (7) has a solution �.t/ of type i.
Then the problem can be reformulated in the quasi-linear form (4), (5), where

the linear part x00 C p.t/x0 C q.t/x in (4) has the type i.

Proof. One has that

rlx � � 00.t/ D f .t; x; x0/� f .t; �.t/; � 0.t//

D fx.t; �.t/; �
0.t//.x � �.t//C fx0.t; �.t/; � 0.t//.x0 � � 0.t//C '.t; x; x0/

(14)

or

lx � fx0.t; �.t/; � 0.t//x0 � fx.t; �.t/; �
0.t//x D � 00.t/.t; �.t/; � 0.t//� 0.t/

�fx.t; �.t/; �
0.t//�.t/C '.t; x; x0/

(15)

and finally

.l2x/.t/ D h.t/C Q'.t; x; x0/; (16)

where .l2x/.t/ D x00 � fx0.t; �.t/; � 0.t//x0 � fx.t; �.t/; � 0.t//x,

h.t/ D � 00.t/.t; �.t/; � 0.t//� 0.t/� fx.t; �.t/; �
0.t//�.t/;

Q'.t; x; x0/ is a smooth (C1) bounded function which coincides with '.t; x; x0/ in some
vicinity of .t; �.t/; � 0.t//, t 2 Œa; b�.
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The linear part .l2x/.t/ has type i since a solution �.t/ has type i. Function �, by
construction, is a solution of BVP (15), (5). ut
Remark 3. The above reduction is not possible if a solution �.t/ is of indefinite type
.i; i C 1/.

The converse of Theorem 1 is not true. There exist quasi-linear problems (i.e.,
problems with equations containing the linear part and bounded nonlinearity) that
have linear parts of definite type i and have not a solution of type i.

Indeed, consider the problem

x00 D '.x/; x.0/ D 0; x.�/ D 0; (17)

where

'.x/ D
8
<

:

0; x > 1;
�x C x3; �1 � x � 1;

0; x < �1;
(18)

Any nontrivial solution x.tI �/ of the Cauchy problem x00 D '.x/, x.0/ D 0, x0.0/ D
� has the first zero t1.�/ (if any) after the point t D 1. So the trivial solution � 	 0

is the only solution of the problem (17). The equation of variations for the trivial
solution is y00 D �y and the type of � is .0; 1/.

However, the following is true.

Theorem 2. Quasi-linear problem (4), (5), where

1) F is bounded continuous function with continuous partial derivatives Fx, Fx0 I
2) The linear part x00 C p.t/x0 C q.t/x is of type iI

either has a solution of type i or a solution of type .i � 1; i/ or a solution of type
.i; i C 1/.

The proof is based on the following lemmas which are stated here for the reader’s
convenience.

Lemma 1 (Lemma 2.1 in [7]). A set S of all solutions of BVP (4), (5) is nonempty
and compact in C1.Œ0; 1�/.

Lemma 2 (Lemma 2.2 in [7]). There are elements x�.t/ and x�.t/ in S, which
possess the properties x�0.a/ D maxfx0.a/ W x 2 Sg, x�0.a/ D minfx0.a/ W x 2 Sg.

Lemma 3 (Lemma 2.3 in [7]). Suppose that the linear part x00 C p.t/x0 C q.t/x
in (4) is of type i. Let � be any element of S.

Then for � large enough the difference u.tI �/ D x.tI �/� �.t/ has exactly i zeros
in the interval .a; b/ and u.bI �/ ¤ 0.

Here x.tI �/ stands for a solution of the Cauchy problem (4) x.a/ D A,
x0.a/ D � .

Lemma 4 (Lemma 2.4 in [7]). Let � be any element of S and u.tI �/ as above.
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Zeros ti.�/ (if any) of the function u.tI �/ continuously depend on � . If j� j < B <
C1, then there exists ı.B/ > 0 such that the distance between two consecutive
zeros of u.tI �/ cannot be less than ı. If for some �0 ¤ � 0.a/ u.bI �0/ D 0, then the
respective x.tI �0/ solves problem (4), (5).

The proof of Theorem 2 in general repeats that of Theorem 2.1 in [7] (one may
consult also the paper [8] for application).

Proof. Consider, for definiteness, a solution x�.t/ of problems (4) and (5), that is, a
solution with maximal value of the derivative x�0 at t D a. Suppose this solution is
not of type i and it is not of type .i � 1; i/ and not of type .i; i C 1/. Consider the
respective equation of variations

y00 C p.t/y0 C q.t/y D Fx.t; x
�.t/; x�0

.t//y C Fx0.t; x�.t/; x�0
.t//y0 (19)

together with the initial conditions y.a/ D 0, y0.a/ D 1. It follows from our
assumptions about x�.t/ and definition of a type of a solution that there are two
possibilities for y.t/ W either (a) �iC1 2 .a; b/ or (b) �i�1 2 .a; b/ and y.t/ doe not
vanish in .�i�1; b�.

Consider the first case. Since y.t/ is approximation for u.t; �/ D x.t; �/ � x�.t/,
this difference has .i C 1/-st zero ziC1 in the interval .a; b/ for � > x�0.a/ and
sufficiently close to x�0.a/. Let us increase � . It follows from Lemma 3 that for �
sufficiently large the difference u.t; �/ has exactly i zeros in .a; b/ and u.b; �/ ¤ 0.
Then it follows from Lemma 4 that the zero ziC1 left the interval .a; b� following
changes in � and passing through t D b at some � D �0 > x�0.a/. The respective
x.t; �0/ solves the problem (4), (5) since �.t/ does.

Therefore, there exists a solution x.t; �0/ of problems (4) and (5) with x0.a; �0/
greater than x�0.a/. This contradicts the choice of x�.t/ as a solution with maximal
value of the derivative at t D a.

Other possible cases can be considered similarly. ut

4 Resonant Problems

Consider, for simplicity, the problem

x00 C k2x D f .t; x/; x.0/ D 0; x.1/ D 0: (20)

If f is continuous function (together with fx) and bounded, then the problem above
is solvable provided that k is not multiple of � . If k D i� , where i is an integer, then
the homogeneous problem

x00 C k2x D 0; x.0/ D 0; x.1/ D 0 (21)

has a nontrivial solution, and solvability of the problem (20) is not guaranteed.
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The Fredholm alternative gives an answer in case f D f .t/. If not, the following
approach was proposed. Change the left side in equation so that it is not resonant yet,
add the same term to the right, and finally truncate modified right side appropriately
obtaining nonresonant quasi-linear problem. This problem has a solution, and if
some estimates can be proved for a solution, then this solution may solve also the
original problem.

Look how this works. Consider instead of (20) the equivalent problem

x00 C k2x C "2x D f .t; x/C "2x; x.0/ D 0; x.1/ D 0: (22)

Truncate the right side in Eq. (22) so that the truncated right side function F.t; x/
coincides with f .t; x/C "2x for x 2 Œ�N;N� and t 2 Œ0; 1�.

The modified problem

x00 C k2x C "2x D F.t; x/; x.0/ D 0; x.1/ D 0 (23)

has a solution x.t/, and the representation

x.t/ D
Z 1

0

G.t; s/F.s; x.s// ds

is valid, where G is Green’s function associated with new (nonresonant) left side. If
the key inequality

� � M � N

holds, where � and M are respectively bounds (estimate constants) for the Green’s
function jGj and jF.t; x/j, then jx.t/j � N and x.t/ is a solution of (20). Due to
Theorem 2, x.t/ has definite type induced by the linear part in (23). Therefore,
multiple application of this scheme using multiple different linear parts can prove
the existence of multiple solutions of the (resonant) problem (20). This scheme was
tested on equations of the Emden-Fowler type in [9] (see also [2]).

5 Conclusion

If the second-order BVP is known to have a solution of type i, then the problem can
be reduced to a quasi-linear problem “around” a solution, irrespective of either the
original problem is resonant or not.

If the second-order formally resonant BVP has not a solution of indefinite type,
then either it has not a solution at all or it can be reduced to quasi-linear problem.

It is reasonable to try different quasi-linearizations of a given problem since
multiple solutions can be obtained.
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An Issue About the Existence of Solutions
for a Linear Non-autonomous MTFDE

M. Filomena Teodoro

Abstract This article is concerned with the existence of solution of a certain
non-autonomous linear delayed-advanced differential equation. The main objective
is to provide the proof of a theorem introduced in Lima et al. (J. Comput.
Appl. Math. 234(9):2732–2744, 2010) about existence of solution of a class of
mixed-type functional differential equations (MTFDEs). It is an effort to complete
the theoretical basis of some computational methods introduced earlier to solve
numerically such equations, which were deduced making use of that theorem.

Keywords Mixed-type functional differential equation • Method of steps •
Boundary value problem • Existence of solution
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1 Introduction

MTFDEs are an important issue under study because they appear in a large number
of different areas of knowledge. From theoretical to applied cases, we can find a lot
of examples. From economics, the author of [3] models the competitive growth in a
life-cycle model; in [2] a short-run dynamics of optimal growth model is analyzed;
from biology, numerical schemes approximate a MTFDE from the nervous conduc-
tion in a myelinated axon in [1, 16]; some studies in optimal control using MTFDEs
can be found in [21]. The authors of [4, 5, 8] approximate traveling wave solutions
in discrete media. In [9, 10] some theory about center manifolds for MTFDEs is
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developed. The oscillatory behavior of solutions of linear MTFDEs was recently
investigated in [20], where the author has formulated some criteria which guarantee
that all the solution of an equation of certain type is oscillatory. In [12], the authors
obtain existence and stability results for a class of functional differential equations,
where the unknown depends on two variables, being a delay differential equation
with respect to one of the variables and a mixed-type equation with respect to the
other. Boundary value problems (BVPs) for second-order MTFDEs are analyzed
in [19] with the help of a Picard operator technique. Very recently, some results
have been obtained in [13], where the Fredholm theory for MTFDEs is extended,
developed in [17] to the case of implicitly defined functional differential equations.

This article is concerned with the existence of solution of a linear non-
autonomous MTFDE. The main goal of our study is the search for a solution x.t/,
defined for t 2 Œ�1; k�, (k 2 N), which verifies this equation almost everywhere
on Œ0; k � 1� and assumes known values on Œ�1; 0� and .k � 1; k�. In [14], it is
provided a discussion of existence and uniqueness theory for the problems under
consideration and described the method of steps, which is used in the construction
of several numerical algorithms proposed for linear case.

The non-autonomous linear MTFDE under study has the following form:

x0.t/ D ˛.t/x.t/ C ˇ.t/x.t � 1/C �.t/x.t C 1/; (1)

where x is the unknown function and ˛, ˇ, and � are known functions.
In [11], Eq. (1) was studied for a particular case, presenting existence and

uniqueness results. A similar approach has been followed by the authors of [6]
where a new approach to the analysis of the Eq. (1) in the autonomous case is
proposed, where ˛, ˇ, and � are known constants. They considered a boundary value
problem (BVP). They looked for a differentiable solution on an interval Œ�1; k�, k 2
N, given its values on the intervals Œ�1; 0� and .k � 1; k�. Imposing some conditions
on boundary conditions which guarantee the existence of solution, they introduced a
numerical method which to compute such solution. Based on this work, in [23] new
numerical schemes were proposed for the numerical solution of autonomous linear
BVP, based on the method of steps, collocation, and least squares. The approach
to non-autonomous linear MTFDE (when ˛, ˇ, and � are smooth functions of
t) was done in [22] and [14], where the solution of such BVPs was computed.
In particular, in [14] a discussion about existence and theory of such problems is
provided, and a numerical analysis of the introduced numerical algorithms is done.
As consequence of such work, in [15], where interesting numerical and analytical
results were obtained, the same authors introduced a numerical scheme using the
finite element method (FEM). Based on the study of analytical decomposition of
solutions of mixed-type equations as sum of “forward” solutions and “backward”
solutions, performed in [18], the authors of [7] presented an algorithm using
central difference approximation to decompose the solutions of a particular class
of MTFDE into growing and decaying components. Knowing that the nonlinear
case of such problems is richer in real applications, an important feature is to solve
nonlinear problems. Consequently, the numerical schemes developed for linear
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case were extended to solve numerically nonlinear MTFDEs, but adapted for each
particular problem. Such work can be found in [16, 25], where it is approximated an
equation from nervous conduction or in [24], where an equation which models vocal
phonation is numerically solved. Taking into consideration that several numerical
schemes were developed using the results about existence of solution for a class of
MTFDEs, presented in Theorem 1 of [14], the main objective of the present work
is to provide the proof of that theorem to complete the theoretical basis of such
computational methods.

The outline of this article is resumed in two main sections. In the next section, we
revisit the method of steps for a linear non-autonomous MTFDE with the form (1), a
method used usually in delay differential equations (DDEs) which extend a known
solution of equation in an interval to a larger interval. It is a way to increase our
knowledge about the solutions of (1) as well as it provides us sufficient conditions
for the existence of solution for this kind of MTFDE. In the third section, a theorem
about the existence of solution from [14] is presented and proved.

2 Preliminaries

Similarly to [14], the main idea of the present work is to get a particular solution of
Eq. (1) which satisfies the boundary conditions

x.t/ D
	
'1.t/; if t 2 Œ�1; 0�;
f .t/; if t 2 .k � 1; k�; (2)

where '1 and f are smooth real-valued functions, defined on Œ�1; 0� and .k � 1; k�,
respectively, .1 < k 2 N/.

It is imposed that Eq. (1) is satisfied for almost all t 2 .0; k � 1� (actually, we
require that (1) is satisfied except possibly at the integer values of t). To avoid
pathological cases (which we shall mention later), we also assume that our solution
is continuous on Œ�1; k� and has bounded variation. It follows that x0.t/ is continuous
wherever (1) is satisfied on .0; k � 1/. On .1; k � 2/, one can differentiate (1) and
conclude that x00.t/ is continuous wherever (1) is satisfied on .1; k � 2/, and the
process can be repeated. We can summarize by saying that the solution may have
a discontinuity in the first derivative at t D 0 and/or t D k � 1 and becomes
progressively smoother on this sequence of internal subintervals.

In order to analyze and solve this BVP of (1) subject to (2), we consider first an
initial value problem (IVP), with the conditions

x.t/ D '.t/; t 2 Œ�1; 1�; (3)
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where the function ' is defined by

'.t/ D
	
'1.t/; if t 2 Œ�1; 0�;
'2.t/; if t 2 .0; 1�: (4)

This reformulation provides a basis for both analytical and numerical construc-
tion of solutions using ideas based on Bellman’s method of steps for solving delay
differential equations. One solves the equation over successive intervals of unitary
length. We need to assume the non-degeneracy condition that �.t/ ¤ 0, for t � 0,
so that Eq. (1) can be rewritten in the form

x.t C 1/ D a.t/x0.t/C b.t/x.t � 1/C c.t/x.t/; t � 0 (5)

where a.t/ D 1
�.t/ , b.t/ D �ˇ.t/

�.t/ and c.t/ D �˛.t/
�.t/ .

If x0 is not defined for a particular value of t, then we shall use the value x0.t�/
in (5). In principle, we can use formula (5) to construct a solution of Eq. (1) on an
interval Œ1; k�, starting on Œ�1; 1� using the initial functions given by (4).

So, for example, if a; b; c 2 C1.Œ0; 3�/, and supposing that all the appropriate
derivatives of 'i exist, we may obtain the following expressions for the solution in
the first two intervals:

x.t/ D a .t � 1/ ' 0
2.t � 1/C b.t � 1/'1.t � 2/C c.t � 1/'2.t � 1/; t 2 .1; 2�I

x.t/ D a .t � 1/ a .t � 2/ ' 00
2 .t � 2/C 


a .t � 1/
�
a0 .t � 2/C c.t � 2/�

C c.t � 1/a.t � 2/� ' 0
2.t � 2/C 


c0.t � 2/a.t � 1/C c .t � 1/ c .t � 2/

C b .t � 1/� '2.t � 2/C Œa .t � 1/ b .t � 2/� ' 0
1.t � 3/

C 

a .t � 1/ b0 .t � 2/C c .t � 1/ b .t � 2/

�
'1.t � 3/; t 2 .2; 3�: (6)

We remark that these formulae reduce to the corresponding formulae of Table 1 in
[6], if we set c.t/ 	 c, a.t/ 	 a, b.t/ 	 b.

Continuing this process, we can extend the solution to any interval, provided
that the initial function ' and the functions a; b; c are smooth enough functions and
satisfy some simple relationships. In the next theorem, this result is formulated in
more precise terms. In Sect. 2. of [14], the relationship between solutions of (1)
subject to (2) and of (5) subject to (4) is detailed.

3 Existence Results

As we already remarked, the solution of the BVP becomes smoother as we move
away from the ends of the interval. However, the solution of the IVP, constructed
using the method of steps, becomes less smooth as time increases. The conclusions
on smoothness for the solution of the non-autonomous IVP (5) subject to (4)
constructed using the method of steps are summarized in Theorem 1.
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Theorem 1. Let x be the solution of problem (5),(4), where

˛.t/; ˇ.t/; �.t/ 2 C2L.Œ�1; 2L C 1�/; �.t/ ¤ 0; t 2 Œ�1; 2L C 1�;

'1.t/ 2 C2LC1.Œ�1; 0�/; '2.t/ 2 C2LC1.Œ0; 1�/ for some L 2 N:
(7)

Moreover, suppose that

'
.`/
1 .0

�/ D '
.`/
2 .0

C/;

'2.1/ D a.0/'0

1.0
�/C b.0/'1.�1/C c.0/'1.0/I

'
.`/
2 .1

�/ D d`

dt`

�
a.t/'0

1.t/C b.t/'1.t � 1/C c.t/'1.t/
�ˇˇ

tD0� ; ` D 0; 1; 2; : : : ; 2L C 1:

(8)

Then there exist functions ıi;l, �i;l, Nıi;l, N�i;l 2 C.Œ�1; 2L C 1�/, l D 1; : : : ;L,
i D 0; 1; : : : ; 2l, such that the following formulae are valid:

x.t/ D P2l�1
iD0 ıi;l.t/'

.i/
1 .t � 2l/CP2l�1

iD0 �i;l.t/'
.i/
2 .t � 2l C 1/; t 2 Œ2l � 1; 2l�I

x.t/ D P2l
iD0 N�i;l.t/'

.i/
2 .t � 2l/CP2l�1

iD0
Nıi;l.t/'

.i/
1 .t � 2l � 1/; t 2 Œ2l; 2l C 1� l D 1; 2; : : : :

(9)

Moreover, the solution x, constructed according to the formulae (9), belongs
to the class

C2LC1.Œ�1; 1//
\

C2L.Œ�1; 2//
\

� � �
\

C1.Œ�1; 2L C 1//: (10)

A detailed proof by induction is provided below.

Proof (Theorem 1). As usual, we begin by proving that formula (9) is true for l D 1.
If t 2 Œ1; 2�, we have

x.t/ D
1X

iD0
ıi;1.t/'

.i/
1 .t � 2/C

1X

iD0
�i;1.t/'

.i/
2 .t � 1/

D ı0;1.t/'1.t � 2/C ı1;1.t/'
.1/
1 .t � 2/C �0;1.t/'2.t � 1/C �1;1.t/'

.1/
2 .t � 1/

8
ˆ̂<

ˆ̂
:

ı0;1.t/ D 0

ı1;1.t/ D b.t � 1/

�0;1.t/ D c.t � 1/

�1;1.t/ D a.t � 1/
(11)

by formula (2).
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If t 2 Œ2; 3�, we have

x.t/ D
2X

iD0
N�i;1.t/'

.i/
2 .t � 2/C

1X

iD0
Nıi;1.t/'

.i/
1 .t � 3/

D N�0;1.t/'2.t � 2/C N�1;1.t/'.1/2 .t � 2/C N�2;1.t/'.2/2 .t � 2/C
CNı0;1.t/'1.t � 3/C Nı1;1.t/'.1/1 .t � 3/

with
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Nı0;1.t/ D a.t � 1/b0.t � 2/C c.t � 1/b.t � 2/
Nı1;1.t/ D a.t � 1/b.t � 2/

N�0;1.t/ D c0.t � 2/a.t � 1/C c.t � 1/c.t � 2/C b.t � 1/
N�1;1.t/ D a.t � 1/ .a0.t � 2/C c.t � 2//C c.t � 1/a.t � 2/

N�2;1.t/ D a.t � 1/a.t � 2/

(12)

by formula (2).
Now we shall assume that the assertion of the Theorem 1 is true for l D

1; 2; : : : ;L, where L 2 N, that is :

x.t/ D P2l�1
iD0 ıi;l.t/'

.i/
1 .t � 2l/CP2l�1

iD0 �i;l.t/'
.i/
2 .t � 2l C 1/; t 2 Œ2l � 1; 2l�I

x.t/ D P2l
iD0 N�i;l.t/'

.i/
2 .t � 2l/CP2l�1

iD0 Nıi;l.t/'
.i/
1 .t � 2l � 1/; t 2 Œ2l; 2l C 1�I

l D 1; : : : ;L:
(13)

Assuming that (13) is true, we will prove that the same equality holds true, when
l is replaced by L C 1. (For the sake of simplicity, we will write l C 1 instead of
L C 1.) That is, we want to prove that

x.t/ D P2lC1
iD0 ıi;lC1.t/'

.i/
1 .t � 2l � 2/CP2lC1

iD0 �i;lC1.t/'
.i/
2 .t � 2l � 1/; t 2 Œ2l C 1; 2l C 2�I

x.t/ D P2lC2
iD0 N�i;lC1.t/'

.i/
2 .t � 2l � 2/CP2lC1

iD0
Nıi;lC1.t/'

.i/
1 .t � 2l � 3/; t 2 Œ2l C 2; 2l C 3�I

l D 1; : : : ; L:
(14)

Assuming that (13) is true, for l C 1 , and using Eq. (2), we obtain two separate
cases (A) and (B):

(A) Consider t 2 Œ2lC1; 2lC2�. Notice that t�1 2 Œ2l; 2lC1� and t�2 2 Œ2l�1; 2l�

x.t/ D a.t � 1/

"
2lX

iD0
N�i;l.t � 1/'

.i/
2 .t � 2l � 1/C

2l�1X

iD0
Nıi;l.t � 1/'

.i/
1 .t � 2l � 2/

#0

Cb.t�1/
"
2l�1X

iD0
ıi;l.t�2/'.i/1 .t � 2l � 2/C

2l�1X

iD0
�i;l.t � 2/'

.i/
2 .t � 2l � 1/

#
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Cc.t�1/
"

2lX

iD0
N�i;l.t�1/'.i/2 .t � 2l � 1/C

2l�1X

iD0
Nıi;l.t � 1/'

.i/
1 .t � 2l � 2/

#

D a.t � 1/

"
2lX

iD0

�
N�Ki;l.t � 1/'.i/2 .t � 2l � 1/C N�i;l.t � 1/'

.iC1/
2 .t � 2l � 1/

�

C
2l�1X

iD0

� Nı0
i;l.t � 1/'

.i/
1 .t � 2l � 2/C Nıi;l.t � 1/'

.iC1/
1 .t � 2l � 2/

�
#

Cb.t � 1/

"
2l�1X

iD0
ıi;l.t � 2/'

.i/
1 .t � 2l � 2/C

2l�1X

iD0
�i;l.t � 2/'

.i/
2 .t � 2l � 1/

#

Cc.t � 1/

"
2lX

iD0
N�i;l.t � 1/'

.i/
2 .t � 2l � 1/C

2l�1X

iD0
Nıi;l.t � 1/'

.i/
1 .t � 2l � 2/

#

:

Rearranging the sums, we obtain

x.t/ D
2lX

iD0

a.t � 1/N�Ki;l.t � 1/'
.i/
2 .t � 2l � 1/C

2lX

iD0

a.t � 1/N�i;l.t � 1/'
.iC1/
2 .t � 2l � 1/

C
2l�1X

iD0

a.t � 1/Nı0

i;l.t � 1/'
.i/
1 .t � 2l � 2/C

2l�1X

iD0

a.t � 1/Nıi;l.t � 1/'
.iC1/
1 .t � 2l � 2/

C
2l�1X

iD0

b.t � 1/ıi;l.t � 2/'
.i/
1 .t � 2l � 2/C

2l�1X

iD0

b.t � 1/�i;l.t � 2/'
.i/
2 .t � 2l � 1/

C
2lX

iD0

c.t � 1/N�i;l.t � 1/'
.i/
2 .t � 2l � 1/C

2l�1X

iD0

c.t � 1/Nıi;l.t � 1/'
.i/
1 .t � 2l � 2/

or

x.t/ D
2lC1X

iD0
�i;lC1.t/'.i/2 .t � 2l � 1/C

2lX

iD0
ıi;lC1.t/'.i/1 .t � 2l � 2/ (15)

with
	
�i;lC1.t/ D 


a.t�1/ �N�Ki;l.t�1/C N�i�1;l.t � 1/
�C b.t � 1/�i;l.t � 2/C c.t � 1/N�i;l.t � 1/

�

ıi;lC1.t/ D 

a.t�1/ �Nı0

i;l.t � 1/C Nıi�1;l.t � 1/
�C b.t � 1/ıi;l.t � 2/C c.t � 1/Nıi;l.t � 1/

�
:

(16)
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We consider the following restrictions:

N��1;l.t�1/ D N�2l;l.t�1/ D �2l;l.t�2/ D �2lC1;l.t�2/ D N�2lC1;l.t�1/ D 0: (17)

(B) Consider t 2 Œ2l C 2; 2l C 3�. Notice that t � 1 2 Œ2l C 1; 2l C 2� and t � 2 2
Œ2l; 2l C 1�.

Using formulae (13), (15) and the mixed Eq. (5), we obtain

x.t/ D a.t � 1/

"
2lC1X

iD0

�i;lC1.t � 1/'
.i/
2 .t � 2l � 2/C

2lX

iD0

ıi;lC1.t � 1/'
.i/
1 .t � 2l � 3/

#0

Cb.t � 1/

"
2lX

iD0

N�i;l.t � 2/'
.i/
2 .t � 2l � 2/C

2l�1X

iD0

Nıi;l.t � 2/'
.i/
1 .t � 2l � 3/

#

Cc.t � 1/

"
2lC1X

iD0

�i;lC1.t � 1/'
.i/
2 .t � 2l � 2/C

2lX

iD0

ıi;lC1.t � 1/'
.i/
1 .t � 2l � 3/

#

D a.t � 1/

"
2lC1X

iD0

�
�0

i;lC1.t � 1/'
.i/
2 .t � 2l � 2/C �i;lC1.t � 1/'

.iC1/
2 .t � 2l � 2/

�

C
2lX

iD0

�
ı0

i;lC1.t � 1/'
.i/
1 .t � 2l � 3/C ıi;lC1.t � 1/'

.iC1/
1 .t � 2l � 3/

�
#

Cb.t � 1/

"
2lX

iD0

N�i;l.t � 2/'
.i/
2 .t � 2l � 2/C

2l�1X

iD0

Nıi;l.t � 2/'
.i/
1 .t � 2l � 3/

#

Cc.t � 1/

"
2lC1X

iD0

�i;lC1.t � 1/'
.i/
2 .t � 2l � 2/C

2lX

iD0

ıi;lC1.t � 1/'
.i/
1 .t � 2l � 3/

#

:

Rearranging the sums, we obtain

x.t/ D
2lC1X

iD0

a.t�1/�0

i;lC1.t�1/'.i/2 .t � 2l � 2/C
2lC1X

iD0

a.t � 1/�i;lC1.t � 1/'
.iC1/
2 .t � 2l � 2/

C
2lX

iD0

a.t�1/ı0

i;lC1.t�1/'.i/1 .t�2l�3/C
2lX

iD0

a.t � 1/ıi;lC1.t � 1/'
.iC1/
1 .t � 2l � 3/

C
2lX

iD0

b.t � 1/N�i;l.t � 2/'
.i/
2 .t � 2l � 2/C

2l�1X

iD0

b.t � 1/Nıi;l.t � 2/'
.i/
1 .t � 2l � 3//

C
2lC1X

iD0

c.t�1/�i;lC1.t � 1/'
.i/
2 .t � 2l � 2/C

2lX

iD0

c.t � 1/ıi;lC1.t � 1/'
.i/
1 .t � 2l � 3/;
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or rewritting

x.t/ D
2lC2X

iD0
N�i;lC1.t/'.i/2 .t � 2l � 2/C

2lC1X

iD0
Nıi;lC1.t/'.i/1 .t � 2l � 3/; (18)

with the coefficients N�i;lC1.t/ and Nıi;lC1.t/ given by

N�i;lC1.t/ D a.t � 1/
�
�0

i;lC1.t � 1/C �i;lC1.t � 1/
�

Cb.t � 1/N�i;l.t � 2/C c.t � 1/�i;lC1.t � 1/;

Nıi;lC1.t/ D a.t � 1/
�
ı0

i;lC1.t � 1/C ıi�1;lC1.t � 1/
�

Cb.t � 1/Nıi;l.t � 2/C c.t � 1/ıi;lC1.t � 1/:

The following restrictions are imposed:

ı�1;lC1.t � 1/ D ı0

2lC1;lC1.t � 1/ D Nı2lC1;l.t � 2/ D Nı2l;l.t � 2/ D ı2lC1;lC1.t � 1/ D 0;

��1;lC1.t � 1/ D �2lC2;lC1.t � 1/ D N�2lC1;l.t � 2/ D N�2lC2;l.t � 2/ D �2lC2;lC1.t � 1/ D 0:

ut
If the hypothesis of Theorem 1 is verified for some L 2 N, the solution x,

computed using formulae (9), has at least 2L � l C 1 continuous derivatives on
each interval Œl; l C 1/, for l � 1. This means that when the solution x is given on
Œ�1; 0� and .0; 1� by functions '1; '2 of class C2LC1.Œ0; 1�/ that satisfy (8), its degree
of smoothness decreases by one on each successive subinterval.

4 Final Remarks

In this article, some work presented earlier is revisited, more precisely the method
of steps. Taking into consideration that some numerical methods were developed
using the results of Theorem 1 presented in [14] about existence of solution for a
class of MTFDEs is proved of that theorem. It was made to contribute to theoretical
basis of the introduced computational methods to solve numerically MTFDEs of the
type (1). With the same purpose, the numerical analysis of the method presented in
[15], based on method of steps and FEM, is still ongoing. The idea is to generalize
the numerical analysis done in [15] for a larger class of MTFDEs.
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Magnetohydrodynamic Flow of a Power-Law
Fluid over a Stretching Sheet with a Power-Law
Velocity

Gabriella Bognár

Abstract The boundary-layer flow in a viscous non-Newtonian fluid containing
over a nonlinear stretching sheet is analyzed. The stretching velocity is assumed to
vary as a power function of the distance from the origin. The governing partial
differential equation and auxiliary conditions are reduced to nonlinear ordinary
differential equation with the appropriate corresponding conditions. The properties
and nonexistence of the solutions to the boundary value problem are examined.
The resulting nonlinear ordinary differential equation is solved numerically with a
Chebyshev spectral method. On the base of our calculations, the effects of various
parameters, namely, the power-law exponent, the MHD, and the nonlinear stretching
parameter on the dimensionless velocity gradient at the wall, are discussed.

Keywords Boundary layer • Power-law fluid • Stretching sheet • Similarity
method

AMS Subject Classifications: 34B40, 35G45

1 Introduction

The study of a boundary layer flow over a continuous solid surface due to motion
with a constant speed in an otherwise quiescent viscous fluid was investigated by
Sakiadis [13]. This type of problem is encountered in many sheeting manufacturing
processes, such as plastic sheets. Ericson et al. [9] extended this problem to
investigate the temperature distribution in the thermal boundary layer when the
temperature of the sheet is kept at constant value. After that the examination of
the velocity and the temperature distribution has been extended in various ways.
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Crane discussed the two-dimensional flow caused by a stretching of an elastic
flat sheet which moves with a velocity varying linearly with the distance from the
die [8]. Afzal et al. [1], Kuiken [11], and Banks [2] considered the case of stretching
of sheet with a power-law velocity.

The linear stretching problem was investigated when the effect of a constant
transverse magnetic field is included [4]. The boundary layer flow caused by a
sheet stretching with a power-law velocity in the presence of a magnetic field was
analyzed by Chiam [5].

All of the above approaches were made for Newtonian fluids. However, in many
real situations, non-Newtonian fluids are encountered. The most frequently used
model is the power-law Ostwald-de Waele model when a power-law relationship is
given between the shear stress and the shear rate. The boundary layer over a power-
law stretched sheet in a non-Newtonian power-law fluid was studied for permeable
surface by Guedda et al. [10] and Yacob and Ishak [14]. The numerical study of
the flow of an electrically conducting power-law fluid in the presence of a magnetic
field for linearly stretching sheet was given by Cortell [7].

Our aim is to study the flow of a power-law fluid in the presence of a magnetic
field over a sheet of stretching with power-law velocity. The properties and existence
of similarity solution to laminar boundary layer flow of non-Newtonian power-
law fluid over a continuous moving surface in the presence of transverse magnetic
field is investigated. The resulting ordinary differential equations are then solved
numerically. The influence of various fluid parameter is examined on the flow
characteristics.

2 Problem Formulation

The steady laminar flow of a non-Newtonian electrically conducting incompressible
fluid past a two-dimensional body is considered. The velocity components are
represented by u and v in the coordinates along and normal to the body surface, x
and y directions, respectively. The stretching velocity is uw D Uwxm and the imposed
external transverse magnetic field is denoted by B.x/ D B0x.m�1/=2, where B0 > 0

and m are constants [6]. The continuity and momentum equations are given by

@u

@x
C @v

@y
D 0; (1)

u
@u

@x
C v

@u

@y
D K

�

@

@y

 ˇ
ˇ
ˇ
ˇ
@u

@y

ˇ
ˇ
ˇ
ˇ

n�1
@u

@y

!

C uw
@uw

@y
� �B2u; (2)

where � denotes the density and � the electric conductivity, and the nonlinear model
describing the non-Newtonian fluid is
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�xy D K

ˇ̌
ˇ
ˇ
@u

@y

ˇ̌
ˇ
ˇ

n�1
@u

@y
I (3)

the viscosity function varies with the magnitude of the strain rate and depends
on two fluid properties, K and n, the consistency coefficient, and the power-law
exponent, respectively. The constitutive equation (3) represents the shear-thinning
(pseudoplastic) fluids for 0 < n < 1 and the shear-thickening (dilatant) fluids for
n > 1. For n D 1, one recovers a Newtonian fluid. The deviation of n from a unity
indicates the degree of deviation from Newtonian behavior.

The boundary conditions for impermeable surface are the following

(i) at the solid surface y D 0 neither slip nor mass transfer is taken: u .x; 0/ D
uw.x/, v .x; 0/ D 0,

(ii) outside the viscous boundary layer the streamwise velocity component is zero:

lim
y!1 u .x; y/ D 0: (4)

We apply the similarity solution approach by introducing

u D @ 

@y
; v D �@ 

@x
I (5)

then the continuity equation (2) is automatically satisfied. Upon substitutions, the
momentum equation (2) reduces to

@ 

@y

@2 

@y@x
� @ 

@x

@2 

@y2
D ˛

@

@y

 ˇ̌
ˇ
ˇ
@2 

@y2

ˇ̌
ˇ
ˇ

n�1
@2 

@y2

!

C uw
@uw

@x
� �B2

@ 

@y
; (6)

˛ D K=� and the boundary conditions are

@ 

@y
.x; 0/ D Uwxm;

@ 

@x
.x; 0/ D 0; lim

y!1
@ 

@y
.x; 0/ D 0: (7)

Applying similarity transformation

 .x; y/ D bxˇf .	/; 	 D dyx�ı (8)

for some parameters b; d; �; ı, (6) is reduced to the ordinary differential equation

�ˇ
ˇf 00ˇˇn�1

f 00
�0 C ˇff 00 � mf 02 � Mf 0 D 0; 	 2 .0;1/ ; (9)
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where

ı D ˇ � m; ˇ D m.2n � 1/C 1

n C 1
; (10)

and M D �B20=.uw�/ denotes the magnetic parameter. The prime indicates
differentiation with respect to 	. The corresponding boundary conditions (7) become

f .0/ D 0; f 0.0/ D 1; (11)

lim
	!1 f 0.	/ D 0: (12)

An important boundary layer characteristic is the skin-friction coefficient Cf , which
is a nondimensional form of the wall shear stress

Cf D 2Re�1=.nC1/
x



m.2n � 1/C 1

n.n C 1/

�n=.nC1/
Œ���n; (13)

where � D f 00.0/ and

Rex D uw.x/2�nxn

�
(14)

is the local Reynolds number. Cf is directly related to f 00.0/.
Equation (9) for a non-Newtonian fluid can be obtained as a special case (n D 1)

and we have

f 000 C ˇff 00 � mf 02 � Mf 0 D 0; 	 2 .0;1/ ; (15)

with boundary conditions (11) and (12). Exact analytical solution to (15) and (11)
and (12) for m D 0 of the form

f .	/ D 1p
1C M

�
1 � e�p

1CM	
�

(16)

was given by Pavlov [12].

3 Properties and Nonexistence of Solutions

The existence of solutions can be established by a shooting method. This approach
is used to find values of f 00.0/ D � for which f exists on Œ0;1/ such that f 0.1/ D 0.
So, the boundary condition at infinity (12) is replaced by f 00.0/ D � , where � ¤ 0.
The initial value problem is written as (9) and

f .0/ D 0; f 0.0/ D 1; f 00.0/ D �: (17)
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Our aim is to derive conditions on the parameters involved in (9), (17) such that
solution f� is global and satisfies boundary condition (12) for n > 1. The local
solution f� satisfies the equality

ˇ
ˇ
ˇf 00
� .	/

ˇ
ˇ
ˇ
n�1

f 00
� .	/Cˇf 0

� .	/f� .	/�Mf� .	/ D ˇ
ˇf 00.0/

ˇ
ˇn�1

f 00.0/C3nm C 1

n C 1

Z 	

0

f� .s/
2ds;

(18)
0 � 	 < 	� , for all 	� , where

�
0; 	�

�
is the maximal interval of existence. Since

� 2 R is arbitrary, problem (9), (17) has infinitely many solutions.
First, we introduce the following definitions:
A function f� .	/ is called a solution to (9), (17) if

(i) f� .	/ 2 C2 .0;1/,

(ii)
ˇ
ˇ
ˇf 00
�

ˇ
ˇ
ˇ
n�1

f 00
� 2 C1 .0;1/,

(iii) lim
	!1 f 0

� .	/ D 0 and lim
	!1 f 00

� .	/ D 0.

Let us define the Lyapunov energy function as

E.	/ D n

n C 1

ˇ
ˇ̌f 00
�

ˇ
ˇ̌nC1 � m

3
f 03
� � M

2
f 02
� ;

which satisfies

E0.	/ D �m .2n � 1/C 1

n C 1
f� f 00

�
2;

on
�
0; 	�

�
due to the differential equation of (9). Note, that

E.0/ D n

n C 1
j� jnC1 � m

3
� M

2
:

Theorem 1. For any M > 0, m C M < 0, n > 1, and m.2n � 1/C 1 > 0 satisfying

j� jnC1 � n C 1

n



m

3
C M

2

�
;

(i) solution f� is positive and monotonic increasing on
�
0; 	�

�
and global;

(ii) lim
	!1 f 00

� .	/ D 0 and lim
	!1 f 0

� .	/ D 0.

Proof. As f .0/ D 0 and f 0.0/ D 1, one can assume that f� and f 0
� are positive

on some interval .0; 	0/, for 0 < 	0 < 	� . Then, E is monotonic decreasing on
.0; 	0/, i.e.,

E .	0/ < E.0/: (19)

Applying (1), we get E .	0/ � 0.
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If f 0
� .	0/ D 0, then E.	0/ D E.0/ D 0 and E.	/ D 0 for all 0 � 	 � 	0. Hence,

f 00
� 	 0 on .0; 	0/ and � D 0 a contradiction. Therefore, f� is strictly monotonic

increasing.
Using function E, we show that f� is global. We have that

n

n C 1

ˇ
ˇ̌f 00
�

ˇ
ˇ̌nC1 � m

3
f 03
� � M

2
f 02
� � n

n C 1
j� jnC1 � m

3
� M

2
; (20)

therefore, both f 0
� and f 00

� are bounded. It implies that function f� is also bounded on
.0; 	� / if 	� is finite, which is absurd. Consequently, 	� is infinite and f� is global.

Next, we show that

lim
	!1 f 00

� .	/ D 0; (21)

which is the case if f 00
� is monotone on some interval Œ	0;1/ since f 0

� and

f 00
� are bounded. Assume that

ˇ
ˇ
ˇf 00
�

ˇ
ˇ
ˇ
n�1

f 00
� is not monotone on any interval

Œ	0;1/. Then there exists a sequence f	rg tending to infinity as r ! 1
such that

�ˇ̌
ˇf 00
�

ˇ̌
ˇ
n�1

f 00
�

�0
.	r/ D 0, and

�ˇ̌
ˇf 00
�

ˇ̌
ˇ
n�1

f 00
�

�
.	2r/ is a local maximum,

�ˇ
ˇ̌f 00
�

ˇ
ˇ̌n�1

f 00
�

�
.	2rC1/ is a local minimum. Applying 	 D 	r to the differential

equation, one gets

m.2n � 1/C 1

n C 1
f 00
� .	r/ D mf 0

�
2 .	r/C Mf 0

� .	r/

f� .	r/
: (22)

As f 0
� is bounded and tends to zero as r ! 1 then f 00

� .	r/ ! 0 as r ! 1 and

lim
	!1 f 00

� .	/ D 0: (23)

Since f 00
� goes to 0, this implies that � m

3
f 03
� � M

2
f 02
� tends to lim	!1E .	/ as 	 ! 1.

It remains to prove that lim
	!1 f 0

� .	/ D 0. Let us assume that lim
	!1 f 0

� .	/ D L with

some L > 0. Next, applying identity (18) one gets

ˇ̌
ˇf 00
� .	/

ˇ̌
ˇ
n�1

f 00
� .	/ D �m.2n � 1/C 1

n C 1
L2	C 1C 3nm

n C 1
L2	C o.	/; (24)

ˇ
ˇ̌f 00
� .	/

ˇ
ˇ̌n�1

f 00
� .	/ D mL2	C o.	/ (25)

as 	 ! 1. From this, we deduce that L D 0. This implies that lim	!1E .	/ D 0.
ut
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Moreover, the following nonexistence result will be established:

Theorem 2. Problem (9)–(12) has no nonnegative solution for n > 1, M > 0,
m C M < 0, m.2n � 1/C 1 < 0, and

j� jnC1 � n C 1

n

�
m

3
C M

2

�
: (26)

Proof. Let us assume that f is a nonnegative solution to (9)–(12). Then E0.	/ D
�ˇ f� f 00

�
2 is nonnegative. Therefore, E is monotonic increasing and hence

E.0/ � lim
	!1 E .	/ ; (27)

n

n C 1
j� jnC1 � m

3
� M

2
� 0; (28)

which contradicts (26). ut

4 Numerical Results and Discussion

The non-Newtonian MHD flow problem and the influence of the parameter values
on the dimensionless velocity gradient at the wall Œ�f 00.0/� can also be investigated
through numerical solutions. We solve the ordinary differential equation (9) under
boundary conditions (11) and (12) using a Chebyshev spectral method, in which
the method is suitable to provide very accurate results when the solution is smooth
enough.

In our calculations the collocation method is used. During collocation the func-
tion values of the interpolating polynomial at the collocation points are determined
[3]. The nth order Chebyshev polynomial of the first kind, Tn.x/ is applied. The
spectral differentiation for Chebyshev polynomials is carried out by the matrix-
vector multiplication method. For solving the boundary value problem on semi-
infinite interval, we perform truncation and linear mapping. After discretization, the
resulting system of nonlinear equations is solved with the Levenberg–Marquardt
algorithm in Matlab for different values of the stretching parameter m, of the power-
law exponent n, and of the magnetic parameter M. The values of Œ�f 00.0/� are
calculated for different parameter values of n, m, and M. The demonstration of these
values is exhibited in Figs. 1 and 2. The effect of the power-law exponent is shown
in Fig. 1 for m D 1. It is observed that Œ�f 00.0/� increases monotonically with M.
Moreover, it demonstrates that Œ�f 00.0/� decreases with increasing n. Figure 2 shows
that the effect of m is opposite. Larger m provides larger values of Œ�f 00.0/�.
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Existence of Mild Solutions for Impulsive
Fractional Functional Differential Equations
of Order ’ 2 .1; 2/

Ganga Ram Gautam and Jaydev Dabas

Abstract This paper investigates the existence result for fractional order functional
differential equations subject to non-instantaneous impulsive condition by applying
the classical fixed point technique. At last, an example involving partial derivatives
is presented to verify the uniqueness result.

Keywords Fractional order differential equation • Functional differential
equations • Impulsive conditions • Fixed point theorem
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1 Introduction

In this paper, we investigate the existence and uniqueness result of mild solutions
for the following non-instantaneous impulsive fractional functional differential
equation of the form

CD˛
t y.t/ D Ay.t/C f .t; y�.t;yt//; t 2 .si; tiC1� � J; i D 0; 1; : : : ;N; (1)

y.t/ D gi.t; y.t//; y0.t/ D qi.t; y.t//; t 2 .ti; si�; i D 1; 2; : : : ;N; (2)

y.t/ D �.t/; y0.t/ D '.t/; t 2 Œ�d; 0�; (3)
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where CD˛
t denotes the Caputo’s fractional derivative of order ˛ 2 .1; 2/ and A W

D.A/ � X ! X is the sectorial operator defined on a complex Banach space X.
Functions f W J � PC0 ! XI � W J � PC0 ! Œ�d;T� are continuous and satisfy
some assumptions, where PC0 is an abstract space defined in the next section. The
map yt is the element of PC0 and defined as yt.
/ D y.tC
/; 
 2 Œ�d; 0�. J D Œ0;T�
is operational interval such that 0 D t0 D s0 < t1 � s1 � t2 < � � � < tN � sN �
tNC1 D T are prefixed numbers. Here y0 denotes the derivative of y with respect to
t and gi; qi 2 C..ti; si� � XI X/ for all i D 1; 2; : : : ;N. The functions �; ' belong to
PC0 respectively.

The impulsive differential equations have been appeared as in natural descrip-
tion evolution processes. The impulsive effects may be instantaneous or non-
instantaneous which is shown in many disciplines. Instantaneous impulse is char-
acterized by abrupt changes of the state at certain moments, but in case of
non-instantaneous impulse, it starts abruptly at the fixed moments as the points ti,
and their action continues on the finite interval Œti; si�. For the future development
and recent update of theory for fractional functional differential equations, we refer
the papers [1, 2, 4–6, 9, 10] for state-dependent delay, and for non-instantaneous
impulse, one can see the papers [7, 8, 11, 12] and the references therein.

On the available of literature, we found that Hernandez et al. [11] used the first
time non-instantaneous impulsive condition for abstract differential equations for
order one and established the existence results. Kumar et al. [12] have studied
the fractional order problem with non-instantaneous impulse, and by using the
Banach fixed point theorem with condensing map, they established the existence
and uniqueness results. Motivated by the work [11, 12], we have studied the problem
considered in [8] for the order ˛ 2 .0; 1/ and established the existence results
of mild solution of problem. Shu et al. [14] gave the definition of mild solution
for fractional differential equations of order ˛ 2 .1; 2/ and then established the
existence results of mild solutions using the Krasnoselskii’s fixed point theorem and
analytic operator theory.

Inspired by the work [11, 12, 14] and by the survey, we found that there is no
literature on fractional functional differential equation with state-dependent delay
subject to non-instantaneous impulsive condition of order .1; 2/. This is the reason
to investigate the problems (1)–(3) and establish the existence of uniqueness result.
For further information, we have divided our work in four sections.

2 Preliminary

In this section, we have introduced some notations, basic definitions, and prelim-
inary result, which were required to establish our main results. Let .X; k � kX/ be
a complex Banach space of functions with the sup-norm kukX D supt2Jfju.t/j W
u 2 Xg, and let L.X/ denote the space of bounded linear operators from X into X
endowed with the natural norm of operators denoted by k � kL.X/.
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As usual, PC0 D C.Œ�d; 0�;X/ (with Œ�d; 0� � R) is the space formed by all the
continuous functions defined from Œ�d; 0� into X, endowed with the norm

ku.t/kPC0 D sup
t2Œ�d;0�

fju.t/jXg:

In the case of impulsive conditions, we consider

PCT D PC.Œ�d;T�I X/; 0 < T < 1;

which is a Banach space of all such functions u W Œ�d;T� ! X, which are
absolutely continuous everywhere except for a finite number of points ti 2
.0;T/; i D 1; 2; : : : ;N, at which u.tCi / and u.t�i / D u.ti/ exists and endowed
with the norm

kukPCT D sup
t2Œ�d;T�

fku.t/kX; u 2 PCTg:

For a function u 2 PCT and i 2 f0; 1; : : : ;Ng, we introduce the function Nui 2
A.Œti; tiC1�I X/ given by

Nui.t/ D
	

u.t/; for t 2 .ti; tiC1�;
u.tCi /; for t D ti:

For further analysis, again consider

PC1
T D PC.Œ�d;T�I X/; 0 < T < 1;

which is a Banach space of all such functions u W Œ�d;T� ! X, which are absolutely
continuously differentiable everywhere except for a finite number of points ti 2
.0;T/; i D 1; 2; : : : ;N, at which u0.tCi / and u0.t�i / D u0.ti/ exists and endowed
with the norm

kukPC1T
D sup

t2Œ�d;T�

8
<

:

1X

jD0
kuj.t/kX ; u 2 PC1

T

9
=

;
:

For a function u 2 PC1
T and i 2 f0; 1; : : : ;Ng, we introduce the function Nui 2

C1.Œti; tiC1�I X/ given by

Nui.t/ D
	

u0.t/; for t 2 .ti; tiC1�;
u0.tCi /; for t D ti:
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Definition 1. [13] Caputo’s derivative of order ˛ > 0 with lower limit a, for a
function g W Œa;1/ ! R such that g 2 Cn.Œa;1/;X/ is defined as

C
a D˛

t g.t/ D 1

�.n � ˛/

Z t

a
.t � s/n�˛�1g.n/.s/ds Da Jn�˛

t g.n/.t/;

where n � 1 < ˛ < n; a � 0; n 2 N.

Definition 2. The Riemann–Liouville fractional integral operator of order ˛ > 0

with lower limit a, for a function g 2 L1loc.Œa;1/;X/ is defined by

aJ0t g.t/ D g.t/; aJ˛t g.t/ D 1

�.˛/

Z t

a
.t � s/˛�1g.s/ds; ˛ > 0; t > 0;

where a � 0; n 2 N and �.�/ denotes the Gamma function.

Definition 3. Let A W D.A/ � X ! X be a closed and linear operator and ˛; ˇ > 0.
We can say that A is the generator of .˛; ˇ/ operator function if there exists ! � 0

and a strongly continuous function W˛;ˇ W RC ! L.X/ such that f�˛ W Re� > !g �
�.A/ and

�˛�ˇ.�˛I � A/�1u D
Z 1

0

e��tW˛;ˇ.t/udt; Re� > !; u 2 X:

Here W˛;ˇ.t/ is called the operator function generated by A.

Remark 1. The operator function W˛;ˇ.t/ is a general case of ˛-resolvent family
and solution operator. In the case ˇ D 1, operator function corresponds to solution
operator S˛.t/ by Definition 2.1 in [2], whereas in the case ˇ D ˛, operator function
corresponds to ˛-resolvent family defined in [3] in Definition (2.3), and operator
function corresponds to K˛.t/ in [14] in the case ˇ D 2.

The following result is based on Definition 2.1 in [11].

Definition 4. A function y W Œ�d;T� ! X s.t. y 2 PC1
T is called a mild solution

of the problems (1)–(3) if y.0/ D �.0/; y0.0/ D '.0/; y.t/ D gj.t; y.t//; y0.t/ D
qj.t; y.t// for t 2 .tj; sj� for each j D 1; 2; : : : ;N, and satisfying the following
integral equation

y.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

�.0/S˛.t/C '.0/K˛.t/
C R t

0
T˛.t/f .s; y�.s;ys//ds; t 2 Œ0; t1�;

gi.si; y.si//S˛.t � si/C qi.si; y.si//K˛.t � si/

C R t
si

T˛.t � s/f .s; y�.s;ys//ds; t 2 Œsi; tiC1�;

for i D 1; 2; : : : ;N.
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3 Main Results

In this section, we have established the existence result of solution for the prob-
lems (1)–(3). Let A be a sectorial operator and then strongly continuous functions
kS˛.t/k � MI kK˛.t/k � MI kT˛.t/k � M. Let us assume the function � W
Œ0;T��PC0 ! Œ�d;T� is continuous. Now, we introduce the following assumption:

.H1/ The function f is continuous and 9 positive constants Lf1 such that

kf .t;  / � f .t; �/kX � Lf1k � �kPC0 ; 8  ; � 2 PC0:

.H2/ The functions gi; qi are continuous and 9 positive constants Lgi ;Lqi such that

kgi.t; x/ � gi.t; y/kX � Lgi kx � ykXI kqi.t; x/ � qi.t; y/kX � Lqikx � ykX

for all x; y 2 X; t 2 .ti; si� and each i D 1; 2; : : : ;N.

Theorem 1. Let the assumptions .H1/ and .H2/ hold and are constant:

� D maxfMTLf1 ;Lgi M C Lqi M C MTLf1g < 1;

for i D 1; : : : ;N. Then there exists a unique mild solution y.t/ of problems (1)–(3)
on J.

Proof. We convert problems (1)–(3) in to the fixed point problem. Consider B D
fy W y 2 PC1

T ; y.0/ D �.0/; y0.0/ D '.0/g. Define an operator P W B ! B as

Py.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

�.0/S˛.t/C '.0/K˛.t/
C R t

0
T˛.t � s/f .s; y�.s;ys//ds; t 2 Œ0; t1�;

gi.si; y.si//S˛.t � si/C qi.si; y.si//K˛.t � si/

C R t
si

T˛.t � s/f .s; y�.s;ys//ds; t 2 Œsi; tiC1�:

(4)

It is obvious that P is well defined. Now, we will express that the operator P has
a unique fixed point. So let y.t/; y�.t/ 2 B and t 2 Œ0; t1�; we get

kPy � Py�kX �
Z t

0

kT˛.t � s/kL.Xkf .s; y�.s;ys//� f .s; y�
�.s;y�

s /
/kXds

� TMLf1ky � y�kX :

For t 2 Œsi; tiC1�, we have

kPy � Py�kX � kgi.si; y.si// � gi.si; y
�.si//kXkS˛.t � si/kL.X

Ckqi.si; y.si//� qi.si; y
�.si//kXkK˛.t � si/kL.X
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C
Z t

si

kT˛.t � s/kL.Xkf .s; y�.s;ys// � f .s; y�
�.s;y�

s /
/kXds

� .Lgi M C Lqi M C TMLf1/ky � y�kX :

For t 2 .tj; sj�, we get

kPy � Py�kX � Lgj ky � y�kX ; j D 1; 2; : : : ;N:

Gathering above results, we obtain

kPy � Py�kX � maxfMTLf1 ;Lgi M C Lqi M C MTLf1gky � y�kX

� �ky � y�kX :

Since� < 1, which implies that P is a contraction map, there exists a unique fixed
point which is the mild solution of problems (1)–(3) on J.

4 Example

In this section, we gave an example to illustrate our main result. Consider the
following fractional order functional differential equation:

@˛u.t; x/

@t˛
D @2u.t; x/

@y2
C u.t � �.kuk/; x/

49
; .t; x/ 2 [N

iD1Œsi; tiC1� � Œ0; ��; (5)

u.t; 0/ D u.t; �/ D 0; t � 0; (6)

u.t; x/ D �.t; x/; u0.t; x/ D '.t; x/; t 2 Œ�d; 0�; x 2 Œ0; ��; (7)

u.t; x/ D Gi.t; y/I u0.t; x/ D Hi.t; y/; t 2 .ti; si�: (8)

where @˛

@t˛ denotes the partial Caputo’s fractional derivative of order ˛ 2 .1; 2/; 0 D
t0 D s0 < t1 � s1 < � � � < tN � sN < tNC1 D 1 are prefixed numbers, and
�; ' 2 PC0. Let X D L2Œ0; �� be a Banach space and define the operator A W
D.A/ � X ! X by Ay D y00 with the domain D.A/ WD fy 2 X W y; y0 to be
absolutely continuous, y00 2 X; y.0/ D 0 D y.�/g. Then

Ay D
1X

nD1
n2.y; yn/yn; y 2 D.A/;

where set yn.x/ D
q

2
�

sin.nx/; n 2 N is the space of eigenvectors of A in which
element is orthogonal. It is clear that that the operator A stays the infinitesimal



Existence of Mild Solutions for Impulsive Fractional Functional Differential. . . 147

generator of an analytic semigroup operator .T.t//t�0 in Banach space X and is
defined as

T.t/! D
1X

nD1
e�n2 t.!; !n/!n; for all ! 2 X; and every t > 0:

The subordination opinion of solution operator implies that A stays the infinitesimal
generator of K.t/; S.t/. Since K.t/; S.t/ are strongly continuous operators on interval
Œ0;1/ by the theorem of uniformly boundedness, there exists a constant M > 0 such
that kS.t/k � M; kK.t/k � M for t 2 Œ0; 1�. We have for .t; �/ 2 Œ0; 1� � PC0.

Setting u.t/.x/ D u.t; x/, and

�.t; �/ D t � �.k�.0/k/; .t; �/ 2 J � PC0;

we have

f .t; �/ D �

49
I gi.t; y/ D Gi.t; y/I qi.t; y/ D Hi.t; y/;

then by the above Eqs. (5)–(8) can be composed in the given abstract form as
(1)–(3). Furthermore, we can see that for .t; �/; .t;  / 2 J � PC0, we may verify
that

kf .t; �/ � f .t;  /kL2 �
"Z �

0

	
k �
49

�  

49
k
� 2

dy

#1=2
�

p
�

49
k� �  k:

Hence function f satisfies .H1/. Similarly we can show that the functions gi; qi

satisfy .H2/. All the conditions of Theorem 1 have been satisfied, so we can drive
that the system (5)–(8) has a unique mild solution on Œ0; 1�.
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Nonlinear Dynamical Systems in Modeling
and Control of Infectious Disease

Md. Haider Ali Biswas and Md. Mohidul Haque

Abstract This paper deals with nonlinear dynamical systems in the form of
mathematical modeling to describe modeling of the dynamic behavior of biological
and biomedical systems. Nonlinear ordinary differential equations have been studied
to investigate the mysterious and complex mechanisms of the dynamics of infectious
diseases in the human body. In particular, we study a nonlinear model of HIV
immunology which describes the interactions between the human immune systems
and the viruses. In this work, we propose a modification of the HIV model proposed
by Joshi in Optim Control Appl Methods 23(4):199–213 (2002) by introducing state
constraint to the dynamics. The aim is to obtain optimal immunotherapeutic strategy
where the state constraint may play a crucial role. We treat our problem numerically
and compare the results with existing literature to illustrate the significant effect of
introducing state constraint to the dynamics of the model.

Keywords Mathematical model • Nonlinear ODEs • HIV immunology •
Optimal control • State constraints • Numerical simulations

Mathematics Subject Classification (2000): 93A30, 49K15.

1 Introduction

Nonlinear phenomena characterize all aspects of global change dynamics, from the
Earth’s climate system to human physiology [20]. These nonlinear phenomena of
rapid change in the human physiological systems can be captured and modeled by
the nonlinear ordinary differential equations (NODEs) in the form of mathematical
modeling. Since the human body is a highly nonlinear, robust, and an adaptive
physiological control system, there is a close relationship between control theory
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and biology [16]. So nonlinearity plays an influential role in describing the
mysterious and complex mechanisms of the dynamics of infectious diseases in the
human body.

In recent years, mathematical models have become the most important tools
in analyzing the dynamics of biological and biomedical systems. The processes
in biology and medicine can be, in general, described by mathematical models
where the nonlinear ordinary differential equations are the key ingredients. The
spread of infectious diseases such as HIV [6], NiV [8], and flu [9] may be modeled
as a nonlinear system of differential equations. In this paper, we study an HIV
immunology model to analyze the nonlinear behavior of the disease dynamics.
Immunotherapy is one of the most effective varieties of chemotherapy used for the
treatment of HIV-positive patients which not only kills/halts the pathogen in the
body but also helps in increasing the long-term internal resistance of our immune
systems so that the body itself can fight against the viruses. This immunotherapeutic
treatment in the form multidrug therapy from the early stage of the infections has
shown remarkable milestone toward the evolution of AIDS treatment [18]. Optimal
control technique is applied to obtain the better immunotherapeutic strategy, special
feature of which is the introduction of state constraint. Some numerical simulations
illustrate the results.

2 Nonlinear Mathematical Model

Mathematical models can provide better insights of the disease mechanisms which
lead to design better prevention, therapy, and control programs. Numbers of
mathematical models for different infectious diseases have been proposed and
investigated by several authors over the years. We refer readers to [1–5, 7, 9] for
more detailed discussions on some of the recent mathematical models of different
infectious diseases. However, the cell-virus interactions in the human body are very
complex, especially when these are the cases of HIV infections. The HIV model we
now discuss here is a simple deterministic optimal control model first proposed by
Kirschner and Webb [15] which describes the interactions between human immune
systems and HIV virus in terms of a set of nonlinear ordinary differential equations
(ODEs) given by

dT.t/

dt
D s1 � s2V.t/

ˇ1 C V.t/
� �T.t/ � �V.t/T.t/

dV.t/

dt
D �V.t/

ˇ2 C V.t/
� ˛V.t/T.t/

(1)

with the initial conditions

T.0/ D T0; V.0/ D V0: (2)
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In the above model, T.t/ and V.t/ represent the uninfected CD4CT cells and
concentrations of free infectious virus particles, respectively. � is the natural death
rate of CD4CT cells; � is the infection rate by the free virus particles. � represents
the input rate of an external virus source; ˛ is the loss rate of virus and ˇ1 and

ˇ2 are half-saturation constants. s1 � s2V.t/

ˇ1 C V.t/
represents the source/proliferation

term of uninfected CD4CT cells and �T.t/ is the natural loss of uninfected CD4CT;

�V.t/T.t/ is the loss by infection,
�V.t/

ˇ2 C V.t/
is the viral contribution to plasma, and

˛V.t/T.t/ is the viral loss.
The model (1) was further studied, explored, and extended by Joshi in [14]

in an optimal control problem introducing two control variables ui for i D 1; 2.
When modeling the immunotherapeutic treatment in a time interval Œ0;T�, the rate
of immunotherapy at each instant is t. Taking into account the immunotherapy,
the above two compartmental dynamic models (1) of HIV infections can be
reformulated by the following nonlinear systems of ordinary differential equations:

dT.t/

dt
D s1 � s2V.t/

ˇ1 C V.t/
� �T.t/ � �V.t/T.t/ � u1.t/T.t/

dV.t/

dt
D �.1� u2.t//V.t/

ˇ2 C V.t/
� ˛V.t/T.t/

(3)

with the same initial conditions (2).
Here u1 and u2 act as the control variables representing the immune-boosting

and viral-suppressing drugs, respectively, and the set of controls .u1.t/; u2.t// 2 U
is Lebesgue measurable, where

U D f.u1.t/; u2.t// W 0 � ai � ui.t/ � bi � 1 for i D 1; 2; a.e. t 2 Œ0;T�g:

u D 0 indicates no drugs at all and u D 1 indicates the maximum drug doses over
time.

The aim is to find the optimal control strategy so that the number of uninfected
CD4CT cell count at the end of treatment is maximized as much as possible while
minimizing counts of the hazardous side effects of the antiretroviral drug doses as
well as the systematic cost. The objective functional is chosen as

Minimize J.u1; u2/ WD
Z T

0

�T.t/C B1u
2
1.t/C B2u

2
2.t/ dt; (4)

where B1 and B2 are the balancing parameters which determine the relative
importance of the two factors in the objective functional.

One of the important aspects for the treatment of HIV infections is the regular
monitoring of the CD4CT cell count in the blood. We observe from the literatures
that the CD4CT cell count is very crucial for the treatment of HIV infections. The
CD4CT cell count “less than 200=mm3” indicates the severity of the disease [17].
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Our intention here is to find a new solution of the model in [14] imposing some state
constraints in the data. Our idea behind imposing the state constraints is to guarantee
that the uninfected CD4CT cell count should not go below a certain level, for
example, 200=mm3, during the entire treatment which can be ensured by increasing
the internal immunity of the CD4CT cells with several drug administrations like
antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART). We
recall that HAART is defined as treatment with at least three active antiretroviral
drugs (ARVs) and so it is often called the drug “cocktail” or triple therapy. HAART
affords us a potent way of suppressing viral replication in the blood while attempting
to prevent the virus from rapidly developing resistance to the individual ARVs.
Suppressing viral replication with HAART allows the body time to rebuild its
immune system and replenish the destroyed CD4CT cells. Until today HAART is
highly recommended for the immunotherapy of HIV-positive patients as it has been
clearly shown to delay progression to AIDS and prolong life. See, for example,
[13, 18] for some recent developments in HAART treatment and “functional cure”
from HIV infections. Failure of HAART is a sustained and high rise in the viral load
because when HAART is stopped, HIV becomes detectable in the blood once again.
So we now modify the model proposed by Joshi [14] to construct a new problem.
Our proposed modification in the above model is to introduce a state constraint in the
state variable of virus concentration meaning that the number of free virus particle
cannot pass a certain upper limit during the immunotherapeutic treatment. We take
the state constraint

V.t/ � QV ; 8 t 2 Œ0;T�; (5)

where QV is an upper bound on the free virus particle taking values in R.

3 Characterization of Optimal Control Problem

The model (3) along with the objective functional (4) and the state constraint (5) can
be reformulated as the following state-constrained optimal control problem:

.P/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

Minimize
Z T

0

L.x.t/; u.t//dt

subject to

Px.t/ D f .x.t//C g.x.t//u.t/ for a.e. t;

h.x.t// � 0 for all t;

u.t/ 2 Œ0; 1� for a.e. t;

x.0/ D x0
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where

x.t/ D .T.t/;V.t//; L.x; u/ D �T.t/C B1u
2
1.t/C B2u

2
2.t/;

f .x/ D
�

s1 � s2V.t/

ˇ1 C V.t/
� �T.t/ � �V.t/T.t/;

�V.t/

ˇ2 C V.t/
� ˛V.t/T.t/

�
;

and

g.x/ D
 

T.t/ 0

0 � �V.t/
ˇ2CV.t/

!

; u.t/ D .u1.t/; u2.t//; h.x.t// D V.t/ � QV:

We define the Hamiltonian

H.x; u; p; �/ D p � f .x/C p � g.x/u � �L.x; u/:

In the absence of state constraint h.x.t// � 0 for all t, the necessary conditions of
optimality for optimal control problem .P/ can be obtained by applying the well-
known Pontryagin Maximum Principle [19] for optimal control problem. In vein of
Vinter [22], the necessary conditions give closed forms for the controls (taking into
account the control constraints) of our problem. It is worth mentioning that our cost
is convex in u and the dynamics are linear in u. In such case the optimal solution of
our model is guaranteed by Fleming and Rishel [11].

Suppose that .x�; u�/ is the optimal solution of the above problem .P/ without
state constraint. The maximum principle in [22] asserts the existence of an
absolutely continuous function p and a scalar �0 � 0 such that:

(i) jjpjj1 C �0 > 0;

(ii) �Pp.t/ D p.t/ � fx.x�.t//C p.t/ � gx.x�.t//u�.t/ � �Lx.x�.t/; u�.t//
(iii) 8 u 2 U; p.t/ � g.x�.t//u�.t/ � �u�2 � p.t/ � g.x�.t//u.t/ � �u2 a.e.;

together with the transversality condition p.T/ D .0; 0/. Consider that p.t/ D
.pT ; pV/. Then we deduce from (iii) an explicit characterization of the optimal
control pair in normal form (i.e., � D 1) given in terms of the multipliers p:

.u�
1 .t/; u

�
2 .t// D

�
min

n
max

n
a1;

pT.t/T.t/

2B1

o
; b1
o
;

min
n

max
n
a2;

�pV.t/V.t/

2B2.ˇ2 C V.t//

o
; b2
o�
:

(6)

It is worth mentioning that the introduction of state constraint in the model
makes the analytical solution quite complicated due to the presence of nonnegative
Radon measure [22]. In such case, additional verification as well as validation
(e.g., regularity) of minimizer for optimal solution is needed. However, for such
discussions some literature (see, e.g., [12, 21]) can be of help for analytical
treatments. An adapted theorem discussed in [9] (see also [5]) for the existence
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of minimizer may provide more information for such analysis. However, in this
paper we only perform a numerical simulation of our state-constrained model to
compare the dynamic behavior of the disease before and after the antiretroviral drug
administration. We also compare the results for optimal immunotherapeutic strategy
with and without state constraint omitting the detailed analytical treatment.

4 Numerical Results

We consider the model when the virus particles are assumed to be very active and
the number of uninfected CD4CT cells counts is very low (i.e., at the late stage of
the disease). So we take the initial values as T.0/ D 400 and V.0/ D 2:0 and all
other parameters are as in Table 1. We perform all simulations for the fixed final
time T D 50 days because of the short-term drug dosages for the HAART. Before
proceeding to in-depth analysis, we would like to show readers the importance of
immunotherapy treatment using HAART. For this purpose, we first solve the model
when no immunotherapy is administered. In this case, we take the control variables
u1 D u2 D 0 and we solve the problem by using the known nonlinear “ODE solver”
written in “MATLAB” code. We then take u1 D 0:02, u2 D 0:9 and run the program
using the same “ODE solver.” The simulation results of these two cases are shown
in Figs. 1 and 2. From Fig. 1, it is easy to observe that at the very beginning of
the HIV infections, when any form of drugs as “immunotherapy” is not initiated
for treatment, the number of uninfected CD4CT cells is decreasing quickly over
time [see Fig. 1(upper one)], and at the same time the virus concentrations are
increasing very fast [see Fig. 1(lower one)]. On the other hand, Fig. 2 shows that
the immunotherapeutic treatment for HIV infections in the form of HAART as the
CD4CT cell count is growing up immediately after drug initiations [see Fig. 2(upper
one)] and the virus particles are decreasing almost to zero [see Fig. 2(lower one)].

Table 1 Definitions of the parameters and constants with their values [14]

Parameters and constants Definition of parameters Values

s1 First source coefficient 2:0

s2 Second source coefficient 0:002

� Infection rate of CD4CT cells 0:00025

� Input rate of an external virus source 30

˛ Loss rate of virus 0:007

ˇ1 First half-saturation constant 14

ˇ2 Second half-saturation constant 1:0

T Number of days 50

T0 Initial CD4CT cells 400

V0 Initial virus concentrations 2

QV Upper bound on virus concentrations 2:5
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Fig. 1 Uninfected CD4CT cells decrease quickly like a straight line (upper one) and free virus
particles increase (lower one) when no drugs are administered as a treatment measure
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Fig. 2 Uninfected CD4CT cells are increasing dramatically (upper one) and free virus particles
are decreasing to zero (lower one) when some antiretroviral drugs are administered as a treatment
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Fig. 3 Optimal state trajectories and optimal immunotherapeutic rates without state constraint

Now we solve the problem for the optimality systems when immunotherapy is
effective as “immune-boosting”(i.e. u1 2 Œ0; 0:02�) and “viral-suppressing drugs”
(i.e., u2 2 Œ0; 0:9�) during the whole treatment period. We solve the optimality
systems numerically by using the known nonlinear optimal control solver “ICLOCS
– version 0.1b” [10]. We first solve our model in the absence of state constraint. For
a better comparison, we take all initial values and parameters same as in [14] with a
fixed time interval Œ0; 50� and the results obtained in this case are presented in Fig. 3.
Now, we turn to the case of state-constrained model. We take the upper bound of
virus concentrations, i.e., QV D 2:5 and all other values are same as before. The
numerical simulation of this run is presented in Fig. 4. From a brief overview on
the comparison of Figs. 3 and 4, we can see that the virus concentration in Fig. 3
is increasing almost after 7 days of the therapy administration until the end of
final time, whereas our state-constrained model in Fig. 4 shows that this increasing
tendency of virus concentration can be halted at a certain upper bound during the
whole therapeutic process.

5 Conclusions

Immunotherapy is one of the most effective treatment strategies in the absence of
effective HIV vaccine until today. Antiretroviral therapy (ART) or highly active
antiretroviral therapy (HAART) aims to increase the internal immunity of HIV-
positive people so that the body itself can fight against the virus. In this paper,
we study a nonlinear mathematical model of HIV immunology, and a numerical
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Fig. 4 Optimal state trajectories and optimal immunotherapeutic rates with state constraint

solution of the model for the optimal immunotherapy of antiretroviral treatment
with a modification by introducing state constraint is presented. The numerical
results showing a better immunotherapeutic strategy for state-constrained case are
illustrated with simulations. Despite the challenge of analytical validations, this
result may be of help in designing the combined antiretroviral therapy in such
an efficient manner as to obtain maximum benefits from the immunotherapeutic
treatment of HIV infections.

Acknowledgements The authors would like to extend their cordial thanks to the reviewers for the
careful reading of this manuscript and their helpful comments which incorporate us to improve this
revised manuscript. The partial financial support by the Ministry of Science and Technology, The
people’s Republic of Bangladesh with the ref. no.- 39.009.002.01.00.053.2014-2015/EAS-225 is
also greatly acknowledged.

References

1. Agarwal, M., Verma, V.: Modeling and analysis of the spread of an infectious disease cholera
with environmental fluctuations. AAM Int. J. 7(1), 406–425 (2012)

2. Biswas, M.H.A.: Necessary conditions for optimal control problems with and without state
constraints: a comparative study. WSEAS Trans. Syst. Control 6(6), 217–228 (2011)

3. Biswas, M.H.A.: AIDS epidemic worldwide and the millennium development strategies: a light
for lives. HIV AIDS Rev. 11(4), 87–94 (2012)



158 M.H.A. Biswas and M.M. Haque

4. Biswas, M.H.A.: Optimal chemotherapeutic strategy for HIV infections- state constrained case.
In: Proceedings of the 1st PhD Students’ Conference in Electrical and Computer Engineering
organized by the Department of Electrical and Computer Engineering, Faculty of Engineering,
University of Porto, 28–29 June, 2012

5. Biswas, M.H.A.: Necessary conditions for optimal control problems with state constraints:
theory and applications. Ph.D. Thesis, Department of Electrical and Computer Engineering,
Faculty of Engineering, University of Porto, Portugal, 2013

6. Biswas, M.H.A.: On the evolution of AIDS/HIV treatment: an optimal control approach. Curr.
HIV Res. 12(1), 1–12 (2014)

7. Biswas, M.H.A.: On the immunotherapy of HIV infections via optimal control with constraint.
In: Proceedings of the 18th International Mathematics Conference 2013 jointly organized by
Bangladesh Mathematical Society and Independent University Bangladesh, Dhaka, pp. 51–54,
20–22 March, 2014

8. Biswas, M.H.A.: Optimal control of Nipah virus (NiV) infections: a Bangladesh scenario.
J. Pure Appl. Math. Adv. Appl. 12(1), 77–104 (2014)

9. Biswas, M.H.A., Paiva, L.T., de Pinho, M.D.R.: A SEIR model for control of infectious
diseases with constraints. Math. Biosci. Eng. 11(4), 761–784 (2014)

10. Falugi, P., Kerrigan, E., van Wyk, E.: Imperial College London Optimal Control Software
User Guide (ICLOCS), Department of Electrical and Electronic Engineering, Imperial College
London, London, England, 2010

11. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Applications of
Mathematics, vol. 1. Springer, New York (1975)

12. Galbraith, G.N., Vinter, R.B.: Lipschitz continuity of optimal controls for state constrained
problems. SIAM J. Control Optim. 42, 1727–1744 (2003)

13. Garcia, F.: Functional cure of HIV infection: the role of immunotherapy. Immunotherapy. 4(3),
245–248 (2012)

14. Joshi, H.R.: Optimal control of an HIV immunology model. Optim. Control Appl. Methods
23(4), 199–213 (2002)

15. Kirschner, D., Webb, G.F.: Immunotherapy of HIV-1 infection. J. Biol. Syst. 6(1), 71–83 (1998)
16. Naidu, D.S., Fernando, T., Fister, K.R.: Optimal control in diabetes. Optim. Control Appl.

Methods 32, 181–184 (2011)
17. Perelson, A.S., Kirschner, D.E., Boer, R.D.: Dynamics of HIV infection of CD4CT cells. Math.

Biosci. 114, 81–125 (1993)
18. Persaud, D.: Baby ‘cured’ of HIV with triple-drug therapy. In: Proceedings of the 20th

Conference on Retroviruses and Opportunistic Infections (CROI 2013), Atlanta, 3–6 March,
2013

19. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical
Theory of Optimal Processes. Wiley, New York (1962)

20. Rial, J.A., Pielke Sr., R., Beniston, M., Claussen, M., Canadell, J., Cox, P., Held, H., Noblet-
Ducoudré, N.D., Prinn, R., Reynolds, J.F., Salas, J.D.: Nonlinearities, feedbacks and critical
thresholds within the Earth’s climate system. Clim. Chang. 65, 11–38 (2004)

21. Shvartsman, I.A., Vinter, R.B.: Regularity properties of optimal controls for problems with
time-varying state and control constraints. Nonlinear Anal. Theory Methods Appl. 65, 448–
474 (2006)

22. Vinter, R.B.: Optimal Control. Birkhäuser, Boston (2000)



Analysis of Difference Approximations to Delay
Pseudo-Parabolic Equations

Gabil M. Amiraliyev, Mustafa Kudu, and Ilhame Amirali

Abstract This work deals with the one-dimensional initial-boundary Sobolev or
pseudo-parabolic problem with delay. For solving this problem numerically, we
construct fourth-order difference-differential scheme and obtain the error estimate
for its solution. Further, for the time variable, we use the appropriate Runge–Kutta
method for the realization of our differential-difference problem. Numerical results
supporting the theory are presented.

Keywords Sobolev equation • Delay difference scheme • Error estimate

Mathematics Subject Classification: 65M15, 65M20, 65L05, 65L70

1 Introduction

We consider the initial-boundary value problem for pseudo-parabolic dif-
ferential equation with delay in the domain Q D � � Œ0;T� I � D
Œ0; l� ; Q D � � .0;T�; � D .0; l/:

@u .x; t/

@t
� a.t/

@3u .x; t/

s@t@x2
D b.t/

@2u .x; t/

@x2
C c.t/

@2u .x; t � r/

@x2
C d.t/u .x; t/

C f .x; t/ ; .x; t/ 2 Q; (1)

u .x; t/ D ' .x; t/ ; .x; t/ 2 � x Œ�r; 0� ; (2)
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u .0; t/ D u .l; t/ D 0; t 2 .0;T� ; (3)

where a � ˛ > 0; b; c; d; f and ® are sufficiently smooth functions satisfying certain
regularity conditions to be specified and r > 0 represents the delay parameter.
Equations of this type arise in many areas of mechanics and physics. They are
used to study heat conduction [1], homogeneous fluid flow in fissured rocks [2],
shear in second-order fluids [3, 4], and other physical models. The important
characteristic of these models is that they express the conservation of a certain
quantity (mass, momentum, heat, etc.) in any sub-domain. For a discussion of
existence and uniqueness results of pseudo-parabolic equations, see [5, 6, 8, 23].
Various finite difference schemes have been constructed to treat such problems [9–
12, 20]. For example, in [13] two difference approximation schemes to a nonlinear
pseudo-parabolic equation are developed. Each of these schemes possesses a unique
solution which can be obtained by an iterative procedure. Further in [14] two
difference streamline diffusion schemes for solving linear Sobolev equations with
convection-dominated term are given. We can see other numerical methods of this
type of equations in [15] (see also the references cited in them). In [17] a Crank–
Nicolson–Galerkin approximation with extrapolated coefficients is presented for
three cases for the nonlinear Sobolev equation along with a conjugate gradient
iterative procedure which can be used efficiently to solve the different linear systems
of algebraic equations arising at each step from the Galerkin method. In [28] the
author studies a finite volume element approximation of pseudo-parabolic equations
in three spatial dimensions. We also note that various approximate methods for
delay parabolic equations were investigated in [3, 18, 19, 21, 22, 24–27]. In this
study, we use the method of lines for the discretization in space variable for the
problem (1), (2), and (3). The method of lines is a general technique for solving
partial differential equations by typically using finite difference relationships for the
spatial derivatives or the time derivative. Our aim is to get a fourth-order accurate
difference-differential scheme and to establish the error estimate for its solution.
Numerical results are also given at the end to demonstrate the efficiency of the
method.

2 Construction of the Scheme

On the �, we introduce the uniform mesh

!h D fxi D ih; i D 1; 2; : : : ;N � 1; h D l=Ng

and denote gxx;i D .giC1 � 2gi C gi�1/ =h2 for any mesh function gi.
To construct the difference scheme, we will use the following relation which is

valid for any g.x/ 2 C6
�
�
�
:



g00 .xiC1/C 10g00 .xi/C g00 .xi�1/

�
=12 D gxx;i C Ri; (4)
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where

Ri D g.4/ .�i/ h4=240; �i 2 .xi�1; xiC1/ :

Let x D xi in (1)

@u .xi; t/

@t
� a.t/

@3u .xi; t/

@t@x2
D b.t/

@2u .xi; t/

@x2
C c.t/

@2u .xi; t � r/

@x2
C d.t/u .xi; t/

C f .xi; t/ ; xi 2 !h; t 2 .0;T� : (5)

Using formula (4) in (5), we obtain



u0

iC1.t/C 10u0
i.t/C u0

i�1.t/
�
=12� a.t/u0

xx;i.t/ D b.t/uxx;i.t/C c.t/uxx;i .t � r/

C d.t/ ŒuiC1.t/C 10ui.t/C ui�1.t/� =12C Qfi.t/C Ri.t/; i D 1; 2; : : : ;N � 1;
(6)

ui.t/ D 'i.t/; (7)

u0.t/ D uN.t/ D 0; (8)

where

Qfi.t/ D ŒfiC1.t/C 10fi.t/C fi�1.t/� =12;

Ri.t/D h4

240



a.t/

@7u .�i; t/

@t@x6
Cb.t/

@6u .�i; t/

@x6
Cc.t/

@6u .�i; t�r/

@x6

�
; �i2 .xi�1; xiC1/ :

Taking into account the following relations



u0

iC1.t/C 10u0
i.t/C u0

i�1.t/
�
=12 D u0

i.t/C u0
xx;i.t/h

2=12;

d.t/ ŒuiC1.t/C 10ui.t/C ui�1.t/� =12 D d.t/ui.t/C d.t/uxx;i.t/h
2=12;

and neglecting the remainder term Ri in (6), we propose the following difference-
differential scheme for approximating (1), (2), and (3):

y0
i.t/� �

a.t/ � h2=12
�

y0
xx;i.t/ D �

b.t/C d.t/h2=12
�

yxx;i.t/C c.t/yxx;i .t � r/

C d.t/yi.t/C Qfi.t/; i D 1; 2; : : : ;N � 1; t 2 .0;T� ; (9)

yi.t/ D 'i.t/; i D 0; 1; 2; : : : ;N; t 2 .0;T� ; (10)

y0.t/ D yN.t/ D 0; t 2 .0;T� : (11)
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3 The Error Estimate and Convergence

For the error function zi.t/ D yi.t/ � ui.t/; from (6), (7), (8), (9), (10), and (11), we
have the following difference-differential problem:

z0
i.t/ � �

a.t/ � h2=12
�

z0
xx;i.t/ D �

b.t/C d.t/h2=12
�

zxx;i.t/C c.t/zxx;i .t � r/

C d.t/zi.t/ � Ri.t/; i D 1; 2; : : : ;N � 1; (12)

zi.t/ D 0; t 2 .0;T� ; (13)

z0.t/ D zN.t/ D 0; t 2 .0;T� : (14)

Theorem 3.1. Let the derivatives @7u
@t@x6

; @
6u
@x6

be bounded on the Q and ˛ � h2=12 �
˛� > 0: Then the error of the problem (9), (10), and (11) satisfies

jyi.t/ � ui.t/j � Ch4; i D 0; 1; : : : ;N; t 2 .0;T� ; (15)

where C is a constant which is independent of h.

Proof. Let Z.t/ D .z1.t/; z2.t/; : : : ; zN�1.t//T . Then Eqs. (12), (13), and (14) can be
expressed in vector form as

Z0.t/C �
a.t/�h2=2

�
MZ0.t/D � �b.t/Cd.t/h2=2

�
MZ.t/�c.t/MZ .t�r/

Cd.t/Z.t/�R.t/ (13)

Z.0/ D 0; (17)

where

R.t/ D .R1.t/;R2.t/; : : : ;RN�1.t//T ; M D 1

h2

0

BB
B
@

2 �1 0 : : : 0

� 1 2 �1 : : : 0
:::

:::
:::

:::

: : : : : : �1 2

1

CC
C
A
:

The matrix M can be diagonalized as [7, 16]:

M D B�1diagonal .�1; �2; : : : �N�1/B

with

B D B�1 D .bik/
N�1
i;kD1 D

�
.�1/iCk

p
2=N sin .�ik=N/

�N�1
i;kD1;
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�i D 4

h2
cos2

�
�i

2N

�
; i D 1; : : : ;N � 1:

Multiplying (16) on the left by B and denoting

BZ.t/ D ‰.t/ D . 1.t/;  2.t/; : : : ;  N�1.t//T ;

BR.t/ D ˆ.t/ D .�1.t/; �2.t/; : : : ; �N�1.t//T :

Equation (16) turning into the decomposed system as:

 0
s.t/C �

a.t/ � h2=12
�
�s 

0
s.t/ D � �b.t/C d.t/h2=12

�
�s s.t/

�c.t/�s s .t � r/C d.t/ s.t/C �s.t/; s D 1; 2; : : : ;N � 1:

Therefore problems (16) and (17) reduce to

 0
s.t/C As.t/ s.t/C Bs.t/ s .t � r/ D gs.t/; (18)

 s.0/ D 0; s D 1; 2; : : : ;N � 1 (19)

with

As.t/ D
�
b.t/C d.t/h2=12

�
�s � d.t/

1C �s .a.t/ � h2=12/
; Bs.t/ D c.t/�s

1C �s .a.t/� h2=12/
;

gs.t/ D �s.t/

1C �s .a.t/ � h2=12/
:

It is not hard to show that the coefficients As(t) and Bs(t) are bounded independently
of h:

jAs.t/j � jb.t/Cd.t/h2=12j�s

1C�s.a.t/�h2=12/
C jd.t/j

1C�s.a.t/�h2=12/
� ˛�1�

�kbk1 C kdk1h2=12
�
�s C kdk1= .1C �s˛�/ :

Since h � l
2

and �s � �1 D 4
h2

cos2 �
2N � 8

l2
; then

jAs.t/j � c0;

with

c0 D ˛�1�
�kbk1 C kdk1l2=48

�C �
1C 8˛�l�2

��1kdk1:
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Similarly we have for Bs(t)
jBs.t/j � c1 with c1 D ˛�1� kck1:
Further, (18) and (19) can be written

 s.t/ D
Z t

0

gs.t/e
�
Z t

�

As .	/ d	
d� �

Z t

0

Bs.t/ s .� � r/ e
�
Z t

�

As .	/ d	
d� (20)

Estimating that integral terms separately and taking into consideration that

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

Z t

0

Bs.t/ s.t/e

Z t

�

As .	/ d	
d�

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

� c1e
c0T
Z t

0

j s .t � r/jd�

and

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

Z t

0

gs.t/e

Z t

�

As .	/ d	
d�

ˇ̌
ˇ
ˇ
ˇ
ˇ̌

� ec0Tkgsk1;

after denoting ıs.t/ D j s.t/j ; from inequality (20), we have

ıs.t/ � C0kgsk1 C C1

Z t

0

jıs .� � r/jd� (21)

with C0 D ec0T ;C1 D c1ec0T . Using variable transformation � � r D � in (21),
we get

ıs.t/ � C0kgsk1 for 0 < t � r

and

ıs.t/ � C0kgsk1 C C1

Z t�r

0

jıs .�/jd� � C0kgsk1 C C1

Z t

0

jıs .�/j d� for t > r:

From here, by virtue of Gronwall’s inequality, we obtain

ıs.t/ � C0kgsk1eC1t:

Thereby

ıs.t/ � Ckgsk1 (22)

with constant C independently of h.
The inequality (22) in turn implies that

j s.t/j � C��1
s ˛�1� k�sk1: (23)
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Since

j�s.t/j �
NX

kD1
jbskj jRkj �

p
2=N

NX

kD1
jRkj �

p
2=N .N � 1/Ch4 � p

NCh4 � Ch3:5;

the inequality (23) leads to

j s.t/j � ˛�1� ��1
s Ch3:5:

Further, from

zi.t/ D
N�1X

kD1
bik k;

we obtain

jzi.t/j � ˛�1� Ch3:5
N�1X

kD1
��1

k jbikj � Ch3:5
p
2=N .N � 1/

N�1X

kD1
h2=

�
4cos2

�
�k
2N

��

� Ch4h2
N�1X

kD1
1=
�
4sin2

�
�.N�k/
2N

��
:

(24)

Taking into account the following inequality sin x > 2x=�; 0 < x < �=2, in (24),
consequently we obtain

jzi.t/j � Ch6
N�1X

kD1
1=

 
4

�2

�
� .N � k/

2N

�2!

D Ch6N2

N�1X

kD1

1

.N � k/2
� Ch4;

i.e., (15) is proved.

4 Numerical Example

Consider the particular problem

@u

@t
.x; t/ � 2 @

3u

@t@x2
.x; t/ � @2u

@x2
.x; t/C e�1 @2u

@x2
.x; t � 1/C u .x; t/

D e�t sin h.x/; .x; t/ 2 Œ0; 1� � .0; 2� ;

u .x; t/ D 100e�t .sin h.x/� x sin h.1// ; .x; t/ 2 Œ0; 1� � Œ�1; 0� ;

u .0; t/ D u .1; t/ D 0; t 2 .0; 2� :
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Table 1 The results on [0, 1]x[0, 1]

(x, t) Exact solution R.K. approximation Absolute error

(0.1,0.1) �1.570197786 �1.570153231 4.455494E-5
(0.2,0.2) �2.759469471 �2.759409134 6.033661E-5
(0.3,0.3) �3.558895504 �3. 558807959 8.754480E-5
(0.4,0.4) �3.976884921 �3.9766781183 1.037385E-4
(0.5,0.5) �4.033749807 �4.033583955 1.658516E-4
(0.6,0.6) �3.757555971 �3.75741264 1.433313E-4
(0.7,0.7) �3.180983155 �3.180821732 1.614228E-4
(0.8,0.8) �2.338980692 �2.338813886 1.668061E-4
(0.9,0.9) �1.267047838 �1.266830828 2.170103E-4

Table 2 The results on [0, 1]x[1, 2]

(x, t) Exact solution R.K. approximation Absolute error

(0.1,1.1) �0.5776434849 �0.577438881 2.0460337E-4
(0.2,1.2) �1.015152085 �1.014844225 3.0786018E-4
(0.3,1.3) �1.309244489 �1.308933987 3.1050242E-4
(0.4,1.4) �1.463014204 �1.462684133 3.3007124E-4
(0.5,1.5) �1.483933616 �1.483571592 3.6202417E-4
(0.6,1.6) �1.382327593 �1.381934256 3.9333711E-4
(0.7,1.7) �1.170218303 �1.169809452 4.0885078E-4
(0.8,1.8) �0.860462914 �0.860194326 2.6858776E-4
(0.9,1.9) �0.466120867 �0.465889942 2.3092442E-4

The exact solution of this problem is

u .x; t/ D 100e�t .sin h.x/� x sin h.1// ; .x; t/ 2 Œ0; 1� � Œ�1; 0� :

To solve this problem numerically, we use the appropriate Runge–Kutta method.
The spatial and time steps are both taken to be 0.1. The values for exact and
numerical solutions and appropriate pointwise errors are shown in Tables 1 and 2.

It can be observed that the obtained results are essentially in agreement with the
theoretical analysis described above.

5 Conclusion

In this paper, we have designed a fourth-order accurate difference-differential
scheme to solve a time-delayed pseudo-parabolic partial differential equation in
one dimension. An appropriate error estimate has provided. For the realization of
our differential-difference problem, we use the fourth-order Runge–Kutta method.
We have implemented the present method on standard test problem. It is observed
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from the results that the present method approximates the exact solution very well.
The main lines for the analysis of the convergence carried out here can be used for
the study of more complicated linear differential problems with second- and third-
type boundary conditions.
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Oscillations of Delay and Difference Equations
with Variable Coefficients and Arguments

I.P. Stavroulakis

Abstract Consider the first-order linear differential equation with several deviating
arguments:

x0.t/C
mX

iD1
pi.t/x.�i.t// D 0

"

x0.t/�
mX

iD1
pi.t/x.�i.t// D 0

#

, t � t0

and the discrete analogue difference equation

�x.n/C
mX

iD1
pi.n/x.�i.n// D 0, n � 0

"

rx.n/�
mX

iD1
pi.n/x.�i.n// D 0, n � 1

#

where the functions pi; �i; �i 2 C.Œt0;1/;RC/ and �i.t/ Œ�i.t/� are retarded (�i.t/ �
t/ Œadvanced (�i.t/ � t/� arguments, for every i D 1; 2; : : : ;m, limt!1 �i.t/ D 1,
and .pi.n//, 1 � i � m are sequences of nonnegative real numbers, �i.n/ Œ�i.n/�,
1 � i � m are retarded .�i.n/ � n � 1/ [advanced (�i.n/ � n C 1/] arguments,
lim

n!1 �i.n/ D 1, and � [r] denotes the forward [backward] difference operator

�x.n/ D x.nC1/�x.n/ [rx.n/ D x.n/�x.n�1/]. A survey on the oscillation of all
solutions to these equations is presented in the case of several deviating arguments
and especially when well-known oscillation conditions are not satisfied. Examples
illustrating the results are given.
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1 Introduction

Consider the differential equation with several variable coefficients and arguments:

x0.t/C
mX

iD1
pi.t/x.�i.t// D 0

"

x0.t/ �
mX

iD1
pi.t/x.�i.t// D 0

#

; t � t0; (1.1)

where the functions pi; �i; �i 2 C.Œt0;1/;RC/ and �i.t/ Œ�i.t/� are retarded
arguments (�i.t/ � t/ Œadvanced arguments �i.t/ � t� for every i D 1; 2; : : : ;m,
and limt!1 �i.t/ D 1, and the discrete analogue difference equation

�x.n/C
mX

iD1
pi.n/x.�i.n// D 0, n � 0

"

rx.n/�
mX

iD1
pi.n/x.�i.n// D 0, n � 1

#

(1.2)

where .pi.n//, 1 � i � m are sequences of nonnegative real numbers, �i.n/ Œ�i.n/�,
1 � i � m are retarded �i.n/ � n � 1 [advanced �i.n/ � n C 1] arguments,
lim

n!1 �i.n/ D 1, and � [r] denotes the forward [backward] difference operator

�x.n/ D x.n C 1/� x.n/ [rx.n/ D x.n/� x.n � 1/].
Let T0 2 Œt0;C1/, �.t/ D minf�i.t/ W i D 1; : : : ;mg and �.�1/.t/ D

inff�.s/ W s � tg. By a solution of the retarded Eq. (1.1), we understand a
function u 2 C.Œt0;C1/I R/, continuously differentiable on Œ�.�1/.T0/;C1/ and
that satisfies (1.1) for t � �.�1/.T0/. [Analogously for the advanced Eq. (1.1)]. Such
a solution is called oscillatory if it has arbitrarily large zeros, and otherwise it is
called nonoscillatory.

By a solution of the retarded difference Eq. (1.2), we mean a sequence of real
numbers .x.n//n��w which satisfies (1.2) for all n � 0:Here, w D � min n�0

1�i�m
�i.n/.

It is clear that, for each choice of real numbers c�w; c�wC1; : : : ; c�1; c0, there
exists a unique solution .x.n//n��w of (1.2) which satisfies the initial conditions
x.�w/ D c�w; x.�w C 1/ D c�wC1; : : : ; x.�1/ D c�1; x.0/ D c0.

By a solution of the advanced difference Eq. (1.2), we mean a sequence of real
numbers .x.n//n�0 which satisfies (1.2) for all n � 1.
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A solution .x.n//n��w (or .x.n//n�0) of the difference Eq. (1.2) is called oscilla-
tory, if the terms x.n/ of the sequence are neither eventually positive nor eventually
negative. Otherwise, the solution is said to be nonoscillatory.

For the general theory of these equations, the reader is referred to [1, 9, 11, 13,
14, 18, 19, 25].

In this paper we present a survey on the oscillation of all solutions to these
equations in the case of several variable coefficients and arguments and when well-
known oscillation conditions are not satisfied.

2 Oscillation Criteria for Eq. (1.1)

For Eq. (1.1), the following results have been established.
In 1982, Ladas and Stavroulakis [17] (see also in 1984, Arino et al. [2]) studied

the equation with several constant arguments of the form

x0.t/C
mX

iD1
pi.t/x.t � �i/ D 0

"

x0.t/ �
mX

iD1
pi.t/x.t C �i/ D 0

#

; t � t0; / (1.10)

under the assumption that

lim inf
t!1

Z t

t��i=2

p.s/ds > 0

"

lim inf
t!1

Z tC�i=2

t
p.s/ds > 0

#

; i D 1; 2; : : : ;m;

and proved that each one of the following conditions

lim inf
t!1

Z t

t��i

pi.s/ds >
1

e



lim inf

t!1

Z tC�i

t
pi.s/ds >

1

e

�
for some i; i D 1; 2; : : : ;m;

(2.1)

lim inf
t!1

Z t

t��

mX

iD1
pi.s/ds >

1

e

"

lim inf
t!1

Z tC�

t

mX

iD1
pi.s/ds >

1

e

#

;

where � D minf�1;�2;; : : : ; �mg; (2.2)

2

4
mY

iD1

� mX

jD1
lim inf

t!1

Z t

t��j

pi.s/ds

�
3

5

1
m

>
1

e

2

6
4

2

4
mY

iD1

� mX

jD1
lim inf

t!1

Z tC�j

t
pi.s/ds

�
3

5

1
m

>
1

e

3

7
5

(2.3)
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or

1

m

mX

iD1

�
lim inf

t!1

Z t

t��i

pi.s/ds

�

C 2

m

mX

i<j
i;jD1

"�
lim inf

t!1

Z t

t��j

pi.s/ds

��
lim inf

t!1

Z t

t��i

pi.s/ds

�# 1
2

>
1

e
(2.4)

2

66
4
1

m

mX

iD1

�
lim inf

t!1

Z tC�i

t
pi.s/ds

�

C 2

m

mX

i<j
i;jD1


�
lim inf

t!1

Z tC�j

t
pi.s/ds

��
lim inf

t!1

Z tC�j

t
pi.s/ds

�� 1
2

3

7
7
5 >

1

e
(2.4)

implies that all solutions of Eq. (1.10) oscillate. Later in 1996, Li [20] proved that
the same conclusion holds if

lim inf
t!1

mX

iD1

Z t

t��i

pi.s/ds >
1

e
: (2.5)

In 1984, Hunt and Yorke [15] considered the equation with variable coefficients
of the form

x0.t/C
mX

iD1
pi.t/x.t � �i.t// D 0; t � t0; (1.100)

under the assumption that there is a uniform upper bound �0 on the �i’s and proved
that if

lim inf
t!1

mX

iD1
�i.t/pi.t/ >

1

e

then all solutions of Eq. (1.100) oscillate.
In 1984, Fukagai and Kusano [10], for Eq. (1.1), established the following

theorem.
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Theorem 2.1 ([10], Theorem 10). Consider Eq. (1.1) and assume that there is a
continuous non-decreasing function ��.t/ Œ��.t/� such that �i.t/ � ��.t/ � t Œt �
��.t/ � �i.t/� for t � t0, 1 � i � m. If

lim inf
t!1

Z t

��.t/

mX

iD1
pi.s/ds >

1

e

"

lim inf
t!1

Z ��.t/

t

mX

iD1
pi.s/ds >

1

e

#

(2.6)

then all solutions of Eq. (1.1) oscillate. If, on the other hand, there exists a
continuous non-decreasing function ��.t/ Œ��.t/� such that ��.t/ � �i.t/ Œ�i.t/ �
��.t/� for t � t0, 1 � i � m, limt!1 ��.t/ D 1 and

Z t

��.t/

mX

iD1
pi.s/ds � 1

e

"Z ��.t/

t

mX

iD1
pi.s/ds � 1

e

#

for all sufficiently large t;

then Eq. (1.1) has a nonoscillatory solution.

In 2000, Grammatikopoulos et al. [12] improved the above results, in the case of
the retarded Eq. (1.1), as follows:

Theorem 2.2 ([12], Theorems 2.6). Assume that the functions �i are non-
decreasing for all i 2 f1; : : : ;mg:

Z 1

0

ˇ̌
pi.t/ � pj.t/

ˇ̌
dt < C1; i; j D 1; : : : ;m

and

lim inf
t!1

Z t

�i.t/
pi.s/ds > 0; i D 1; : : : ;m:

If

mX

iD1

�
lim inf

t!1

Z t

�i.t/
pi.s/ds

�
>
1

e
; (2.7)

then all solutions of Eq. (1.1) oscillate.

Observe that all the above-mentioned oscillation conditions (2.1)–(2.7) involve
lim inf only. Moreover, it is an interesting problem to investigate Eq. (1.1) with non-
monotone arguments and derive sufficient oscillation conditions, involving lim sup,
which is the main objective in the following.

Theorem 2.3 ([16]). Assume that there exist non-decreasing functions �i 2
C.Œt0;C1// such that

�i.t/ � �i.t/ � t .i D 1; : : : ;m/; (2.8)
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and

lim sup
t!C1

mY

jD1

"
mY

iD1

Z t

�j.t/
pi.s/ exp

�Z �i.t/

�i.s/

mX

iD1
pi.�/

� exp

�Z �

�i.�/

mX

iD1
pi.u/du

�
d�

�
ds

# 1
m

>
1

mm
: (2.9)

Then all solutions of Eq. (1.1) oscillate.

In the case of monotone arguments, we have the following.

Theorem 2.4 ([16]). Let �i be non-decreasing functions and

lim sup
t!C1

mY

jD1

"
mY

iD1

Z t

�j.t/
pi.s/ exp

�Z �i.t/

�i.s/

mX

iD1
pi.�/

� exp

�Z �

�i.�/

mX

iD1
pi.u/du

�
d�

�
ds

# 1
m

>
1

mm
: (2.10)

Then all solutions of Eq. (1.1) oscillate.

Corollary 2.1 ([16]). Let �i be non-decreasing functions and

lim sup
t!C1

mY

jD1

� mY

iD1

Z t

�j.t/
pi.s/ds

� 1
m

>
1

mm
; (2.11)

Then all solutions of Eq. (1.1) oscillate.

Corollary 2.2 ([16]). Let �i be non-decreasing functions, pi.t/ � p.t/ .i D
1; : : : ;m/ and

lim sup
t!C1

mY

jD1

Z t

�j.t/
p.s/ ds >

1

mm
; (2.12)

Then all solutions of Eq. (1.1) oscillate.
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Corollary 2.3 ([16]). Let �i be non-decreasing functions, pi.t/ � p D const and

pm lim sup
t!C1

mY

iD1
.t � �i.t// >

1

mm
; (2.13)

Then all solutions of Eq. (1.1) oscillate.

Remark 2.1. It should be pointed out that the condition (2.9) of Theorem 2.3
presents for the first time sufficient conditions (in terms of lim sup/ for the
oscillation of all solutions to Eq. (1.1) with several non-monotone arguments. They
are also independent and essentially improve all the related oscillation conditions in
the literature.

The following examples illustrate the significance of the results.

Example 2.1 (cf. [4, 16, 22]). We consider a generalization of an example presented
in [4], where the equation

x0.t/C 1

e
x.�.t// D 0; t � 0;

with the retarded argument

�.t/ WD
8
<

:

t � 1; t 2 Œ3n; 3n C 1�;

�3t C .12n C 3/; t 2 Œ3n C 1; 3n C 2�;

5t � .12n C 13/; t 2 Œ3n C 2; 3n C 3�:

was studied. Here we discuss the more general equation:

x0.t/C px.�.t// D 0; t � 0; p > 0; (2.14)

and illustrate how our methodology can be utilized to prove the existence of
oscillatory solutions for some range of the parameter p. In this case, as in [4], one
may choose the function

�.t/ D
8
<

:

t � 1; t 2 Œ3n; 3n C 1�;

3n; t 2 Œ3n C 1; 3n C 2:6�;

5t � .12n C 13/; t 2 Œ3n C 2:6; 3n C 3�:

Now note that, since �.t/ � t � 1,

Z t

�.t/
pdu �

Z t

t�1
pdu D p:
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The choice of tn D 3n C 3 gives

C D lim sup
t!C1

Z t

�.t/
p exp

�Z �.t/

�.s/
p exp

�Z �

�.�/

pdu

�
d�

�
ds

� lim
n!C1

Z 3nC3

3nC2
p exp

�Z 3nC2

5s�.12nC13/
p exp.p/d�

�
ds D 1

5

�
e5 pep � 1

�
e�p:

The inequality

1

5

�
e5 pep � 1

�
e�p > 1

is satisfied for (the numbers that follow are rounded to the third decimal place unless
exact) p 2 Œ0:303; 0:358�: Thus, for p 2 Œ0:303; 0:358�, the condition (2.10) of
Corollary 2.1 is satisfied and therefore all solutions to the above Eq. (2.14) oscillate.
Observe, however, that when p 2 Œ0:303; 0:358� in (2.14), we find

A D lim sup
t!1

Z t

�.t/
pds D p � (2.6) < 1

a WD lim inf
t!1

Z t

�.t/
pds D p <

1

e

and

Z 3nC3

�.3nC3/
p exp

( Z �.3nC3/

�.s/
pd�

)

ds D
Z 3nC3

3nC2
p exp

	Z 3nC2

5s�.12nC13/
pd�

�
ds

D 1

5
.e5p � 1/ < 1:

That is, none of the oscillation conditions (2.1)–(2.6) is satisfied.

Remark 2.2 ([16]). It is obvious that if for some i0 2 f1; : : : ;mg all solutions of the
equation

x0.t/C pi0
.t/ x.�i0

.t// D 0

oscillate, then all solutions of Eq. (1.1) also oscillate.

Example 2.2 ([16]). Let p; �1;�2 2 .0;C1/ and consider the sequences
˚
tk
�1

kD1
such that tk " C1 for k " C1, tk C 2� < tkC1 .k D 1; 2; : : : /, where � D
maxf�i; i D 1; 2g. Choose p, �1 and�2 such that

p2 �1 �2 >
1

4
(2.15)
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and

p�i < 1 .i D 1; 2/: (2.16)

Let p.t/ D p for t 2 Œtk; tk C �� .k D 1; 2; : : : / and p.t/ D 0 for t 2 RCn 1
U

kD1
Œtk; tk C��.

According to (2.15) it is obvious that the condition (2.13) is fulfilled, where m D
2 and �i.t/ D t � �i .i D 1; 2/ a.e. and therefore all solutions to Eq. (1.1) are
oscillatory. However, for the equations

x0.t/C p.t/ x.t ��i/ D 0 .i D 1; 2/

by (2.16), we have

lim sup
t!C1

Z t

t��i

p.s/ ds < 1 .i D 1; 2/

and

lim inf
t!C1

Z t

t��i

p.s/ ds D 0 .i D 1; 2/:

Remark 2.4 ([16]). In the above-mentioned Example 2.2, by a solution, we mean
an absolutely continuous function which satisfies the corresponding equation almost
everywhere.

Example 2.3 ([16]). Consider the equation:

x0.t/C p1x.�1.t//C p2x.�2.t// D 0; t � 0; p1; p2 > 0; (2.17)

where

�1.t/ D

8
ˆ̂
<

ˆ̂
:

t � 1; t 2 Œ3n; 3n C 1�;

�3t C .12n C 3/; t 2 Œ3n C 1; 3n C 2�;

5t � .12n C 13/; t 2 Œ3n C 2; 3n C 3�;

�2.t/ D

8
ˆ̂
<

ˆ̂
:

t � 2; t 2 Œ3n; 3n C 1�;

�t C 6n; t 2 Œ3n C 1; 3n C 2�;

3t � .6n C 8/; t 2 Œ3n C 2; 3n C 3�:
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We can take

�1.t/ D

8
ˆ̂
<

ˆ̂
:

t � 1; t 2 Œ3n; 3n C 1�;

3n; t 2 Œ3n C 1; 3n C 2:6�;

5t � .12n C 13/; t 2 Œ3n C 2:6; 3n C 3�;

�2.t/ D

8
ˆ̂
<

ˆ̂
:

t � 2; t 2 Œ3n; 3n C 1�;

3n � 1; t 2 Œ3n C 1; 3n C 2:N3�;
3t � .6n C 8/; t 2 Œ3n C 2:N3; 3n C 3�:

Note that, since �1.t/ � t � 1 and �2.t/ � t � 2, we have

Z t

�1.t/
du �

Z t

t�1
du D 1;

Z t

�2.t/
du �

Z t

t�2
du D 2:

Set P D p1 exp.p1 C p2/C p2 exp.2p1 C 2p2/: The choice of tn D 3n C 3 gives

lim sup
t!C1

2Y

jD1

� 2Y

iD1

Z t

�j.t/
pi exp

�Z �i.t/

�i.s/

2X

iD1

pi exp

�Z �

�i.�/

.p1 C p2/du

�
d�

�
ds

� 1
2

� lim
n!C1

2Y

jD1

� 2Y

iD1

Z 3nC3

�j.3nC3/

pi exp

�Z �i.3nC3/

�i.s/

2X

iD1

pi exp

�Z �

�i.�/

.p1 C p2/du

�
d�

�
ds

� 1
2

� lim
n!C1

2Y

jD1

�Z 3nC3

�j.3nC3/

p1 exp

�Z 3nC2

�1.s/
Pd�

�
ds

� 1
2 �

�Z 3nC3

�j.3nC3/

p2 exp

�Z 3nC1

�2.s/
Pd�

�
ds

� 1
2

D lim
n!C1

�Z 3nC3

3nC2

p1 exp

�Z 3nC2

�1.s/
Pd�

�
ds

� 1
2 �

�Z 3nC3

3nC2

p2 exp

�Z 3nC1

�2.s/
Pd�

�
ds

� 1
2

�
�Z 3nC3

3nC1

p1 exp

�Z 3nC2

�1.s/
Pd�

�
ds

� 1
2 �

�Z 3nC3

3nC1

p2 exp

�Z 3nC1

�2.s/
Pd�

�
ds

� 1
2

D lim
n!C1

�Z 3nC3

3nC2

p1 exp

�Z 3nC2

5s�.12nC13/

Pd�

�
ds

� 1
2 �
�Z 3nC3

3nC2

p2 exp

�Z 3nC1

3s�.6nC8/

Pd�

�
ds

� 1
2

�
�Z 3nC2

3nC1

p1 exp

�Z 3nC2

�3sC.12nC3/

Pd�

�
ds C

Z 3nC3

3nC2

p1 exp

�Z 3nC2

5s�.12nC13/

Pd�

�
ds

� 1
2

�
�Z 3nC2

3nC1

p2 exp

�Z 3nC1

�sC6n
Pd�

�
ds C

Z 3nC3

3nC2

p2 exp

�Z 3nC1

3s�.6nC8/

Pd�

�
ds

� 1
2

DW D.p1; p2/:



Oscillations of Delay and Difference Equations 179

Let p1 D 0:1, then, by direct computation, we get

D >
1

4
;

if p2 � 0:158. That is, when p1 D 0:1 and p2 � 0:158 in Eq. (2.17), the
condition (2.9) of Theorem 2.3 is satisfied and therefore all solutions to this equation
oscillate.

Note that since the delays are not monotone, Theorem 2.2 cannot be applied to
this example. We now compare our result with Theorem 2.1. Note that

�1.t/; �2.t/ � �1.t/; forevery t > 0:

The choice p1 D 0:1, p2 D 0:158 gives

lim inf
t!1

Z t

�1.t/
.p1 C p2 /ds D p1 C p2 D 0:258 <

1

e
;

that is, the condition (2.6) is not satisfied.

3 Oscillation Criteria for Eq. (1.2)

In this section we study the difference equation with several variable arguments

�x.n/C
mX

iD1
pi.n/x.�i.n// D 0

"

rx.n/�
mX

iD1
pi.n/x.�i.n// D 0

#

(1.2)

If �i.n/ D n � ki and �i.n/ D n C ki where ki > 0, 1 � i � m, then Eq. (1.2)
reduces to the difference equation with several constant arguments of the form

�x.n/C
mX

iD1
pi.n/x.n � ki/ D 0

"

rx.n/�
mX

iD1
pi.n/x.n C ki/ D 0

#

(1.20)

In 1989, Erbe and Zhang [8], in 1999, Tang and Yu [23] and in 2001 Tang and
Zhang [24] proved that either one of the following conditions

mX

iD1

�
lim inf
n!1 pi.n/

� .ki C 1/

.ki/
ki

kiC1
> 1; (3.1)
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lim inf
n!1

mX

iD1

�
ki C 1

ki

�kiC1 nCkiX

jDnC1
pi.j/ > 1; (3.2)

or

lim sup
n!1

mX

iD1

nCkiX

jDn

pi.j/ > 1; (3.3)

implies that all solutions of the retarded difference Eq. (1.2)0 oscillate, while in 2002,
Li and Zhu [21] proved that if

lim inf
n!1

mX

iD1

�
ki C 1

ki

�kiC1 n�1X

jDn�ki

pi.j/ > 1; (3.4)

then all solutions of the advanced difference Eq. (1.2)0 oscillate.
Set

�.n/ D max
1�i�m

�i.n/; n 2 N0; (3.5)

�.n/ D min
1�i�m

�i.n/; n 2 N: (3.6)

In 2005, Yan et al. [26] and, in 2006, Berezansky and Braverman [3] proved
that if

lim inf
n!1

n�1X

jD�.n/

mX

iD1
pi.j/

�
n � �i.j/C 1

n � �i.j/

�n��i.j/C1
> 1; (3.7)

or

lim sup
n!1

mX

iD1
pi.n/ > 0 and lim inf

n!1

mX

iD1

n�1X

jD�.n/
pi.j/ >

1

e
; (3.8)

then all solutions of the retarded difference Eq. (1.2) oscillate.
In 2014, Chatzarakis et al. [5] proved that if

lim sup
n!1

mX

iD1

nX

jD�.n/
pi.j/ > 1

2

4lim sup
n!1

mX

iD1

�.n/X

jDn

pi.j/ > 1

3

5 ; (3.9)

or lim supn!1
Pm

iD1 pi.n/ > 0 and
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lim inf
n!1

mX

iD1

n�1X

jD�i.n/

pi.j/ >
1

e

2

4lim inf
n!1

mX

iD1

�i.n/X

jDnC1
pi.j/ >

1

e

3

5 ; (3.10)

then all solutions of Eq. (1.2) oscillate.
Also in 2014, Chatzarakis et al. [6] established the following theorem.

Theorem 3.1 (see [6], Theorems 2.1 [3.1]). Assume that the sequences .�i.n//
Œ.�i.n//�, 1 � i � m are increasing and

˛ D min f˛i W 1 � i � mg ; (3.11)

where

˛i D lim inf
n!1

n�1X

jD�i.n/

pi .j/

2

4˛i D lim inf
n!1

�i.n/X

jDnC1
pi .j/

3

5 : (3.12)

If 0 < ˛ � 1=e, and

lim sup
n!1

mX

iD1

nX

jD�.n/
pi.j/

2

4lim sup
n!1

mX

iD1

�.n/X

jDn

pi.j/

3

5 > 1 �
�
1 � p

1 � ˛
�2
; (3.13)

then all solutions of (1.2) oscillate.
If, additionally,

pi.n/ � 1� p
1 � ˛ for all largen; .1 � i � m/ (3.14)

and

lim sup
n!1

mX

iD1

nX

jD�.n/
pi.j/

2

4lim sup
n!1

mX

iD1

�.n/X

jDn

pi.j/

3

5 > 1 � ˛



1

3
p
1 � ˛ C ˛ � 2

� 1

�
;

(3.15)
then all solutions of (1.2) oscillate.

In 2015 the above result was improved by Chatzarakis et al. [7] as follows.

Theorem 3.2 ([7]). Assume that the sequences .�i.n// Œ.�i.n//�, 1 � i � m are
increasing; .�.n// Œ.�.n//� is defined by (3.5) Œ(3.6)� and define ˛ by (3.11).

If 0 < ˛ � 1=e, and

lim sup
n!1

mX

iD1

nX

jD�.n/
pi.j/

2

4lim sup
n!1

mX

iD1

�.n/X

jDn

pi.j/

3

5 > 1 � 1 � ˛ � p
1 � 2˛ � ˛2

2
;

(3.16)
then all solutions of (1.2) oscillate.
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If, additionally,

pi.n/ � ˛

2
for all largen; .1 � i � m/ (3.17)

and

lim sup
n!1

mX

iD1

nX

jD�.n/
pi.j/

2

4lim sup
n!1

mX

iD1

�.n/X

jDn

pi.j/

3

5 > 1 �
"

2
1 � p

1 � 2˛ � ˛2

2C ˛
� ˛

#

;

(3.18)
then all solutions of (1.2) oscillate.

Remark 3.1 ([7]). It is easy to see that

2
1 � p

1 � 2˛ � ˛2
2C ˛

� ˛ > 1 � ˛ � p
1 � 2˛ � ˛2
2

> ˛



1

3
p
1 � ˛ C ˛ � 2 � 1

�
>
�
1 � p

1 � ˛
�2
:

Therefore, when (3.17) holds, then the condition (3.18) is weaker than condi-
tions (3.16), (3.15) and (3.13).

Remark 3.2 ([7]). When ˛ ! 0, then all the above-mentioned condi-
tions (3.18), (3.16), (3.15) and (3.13) reduce to

lim sup
n!1

mX

iD1

nX

jD�.n/
pi.j/ > 1;

2

4lim sup
n!1

mX

iD1

�.n/X

jDn

pi .j/ > 1;

3

5

that is, to the condition (3.9). However the improvement is clear when

˛ ! 1

e
' 0:367879441

For illustrative purposes we give the values of the lower bound on the above
conditions when ˛ D 0:367879441 W

(3.13) W 0:957999636

(3.15) W 0:879366479

(3.16) W 0:863457014

(3.18) W 0:826495955

That is, the conditions (3.16) and (3.18) essentially improve (3.9), (3.13)
and (3.15).
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4 Examples

We illustrate the significance of the results by the following examples.

Example 4.1 ([7]). Consider the difference equation with three retarded arguments:

�x.n/C p1.n/x.n � 1/C p2.n/x.n � 2/C p3.n/x.n � 3/ D 0; n � 0; (4.1)

where

p1.2n/ D 7

100
; p1.2n C 1/ D 4

10
;

p2.3n/ D p2.3n C 1/ D 5

100
; p2.3n C 2/ D 35

100
;

p3.4n/ D p3.4n C 1/ D p3.4n C 2/ D 3

100
; p3.4n C 3/ D 98

1000
:

Here m D 3, �1.n/ D n � 1, �2.n/ D n � 2, �3.n/ D n � 3 and �.n/ D n � 1. It is
easy to see that

˛1 D lim inf
n!1

n�1X

jDn�1
p1.j/ D 7

100
D 0:07;

˛2 D lim inf
n!1

n�1X

jDn�2
p2.j/ D 2 � 5

100
D 0:1;

˛3 D lim inf
n!1

n�1X

jDn�3
p3.j/ D 3 � 3

100
D 0:09:

Thus

˛ D min f˛i W 1 � i � 3g D min f0:07; 0:1; 0:09g D 0:07 <
1

e
:

Also,

lim sup
n!1

3X

iD1

nX

jDn�1
pi.j/ D lim sup

n!1

2

4
nX

jDn�1
p1.j/C

nX

jDn�1
p2.j/C

nX

jDn�1
p3.j/

3

5

D 7

100
C 4

10
C 5

100
C 35

100
C 3

100
C 98

1000
D 0:998:
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Observe that

0:998 > 1 � 1 � ˛ � p
1 � 2˛ � ˛2

2
' 0:997358086;

that is, condition (3.16) of Theorem 3.2 is satisfied and therefore all solutions of
Eq. (4.1) oscillate.

Observe, however, that

0:998 < 1;

0:998 < 1�
�
1� p

1� ˛
�2 ' 0:998730152;

lim inf
n!1

3X

iD1

n�1X

jD�.n/

pi.j/ D lim inf
n!1

2

4
n�1X

jDn�1

p1.j/C
n�1X

jDn�1

p2.j/C
n�1X

jDn�1

p3.j/

3

5

D 7

100
C 5

100
C 3

100
D 0:15 <

1

e
;

lim inf
n!1

3X

iD1

n�1X

jDn�ki

pi.j/ D lim inf
n!1

2

4
n�1X

jDn�1

p1.j/C
n�1X

jDn�2

p2.j/C
n�1X

jDn�3

p3.j/

3

5

D 7

100
C 2 � 5

100
C 3 � 3

100
D 0:26 <

1

e
;

lim inf
n!1

3X

iD1

�
ki C 1

ki

�kiC1 nCkiX

jDnC1

pi.j/

D lim inf
n!1

2

4
�
2

1

�2 nC1X

jDnC1

p1.j/C
�
3

2

�3 nC2X

jDnC1

p2.j/C
�
4

3

�4 nC3X

jDnC1

p2.j/

3

5

D 22 � 7

100
C
�
3

2

�3
� 2 � 5

100
C
�
4

3

�4
� 3 � 3

100
D 0:901944444 < 1;

3X

iD1

�
lim inf
n!1

pi.n/

�
.ki C 1/

.ki/
ki

kiC1

D 7

100
� 2

2

11
C 5

100
� 3

3

22
C 3

100
� 4

4

33

D 0:901944444 < 1;

lim inf
n!1

n�1X

jD�.n/

3X

iD1

pi.j/

�
n � �i.j/C 1

n � �i.j/

�n��i.j/C1
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D
�
2

1

�2
� 7

100
C
�
3

2

�3
� 5

100
C
�
4

3

�4
� 3

100
D 0:543564814 < 1;

and therefore none of the conditions (3.9), (3.13), (3.8), (3.10), (3.2), (3.1) and (3.7)
is satisfied.

Example 4.2 ([7]). Consider the difference equation with two retarded arguments

�x.n/C p1.n/x.n � 2/C p2.n/x.n � 1/ D 0; n � 0; (4.2)

where

p1.3n/ D p1.3n C 1/ D 1

10
; p1.3n C 2/ D 1

2
; n � 0;

p2.2n/ D 7

100
; p2.2n C 1/ D 3273

10000
; n � 0:

Here m D 2, �1.n/ D n � 2, �2.n/ D n � 1 and �.n/ D n � 1. It is easy to see that

˛1 D lim inf
n!1

n�1X

jDn�2
p1.j/ D 2 � 1

10
D 0:2;

˛2 D lim inf
n!1

n�1X

jDn�1
p2.j/ D 7

100
D 0:07:

Thus

˛ D min f˛i W 1 � i � 2g D min f0:2; 0:07g D 0:07 <
1

e
:

Furthermore, it is clear that

pi.n/ >
˛

2
D 0:035 for all large n; .1 � i � 2/ :

pi.n/ > 1 � p
1 � ˛ ' 0:035634923 for all large n; .1 � i � 2/

Also,

lim sup
n!1

2X

iD1

nX

jDn�1
pi.j/ D lim sup

n!1

2

4
nX

jDn�1
p1.j/C

nX

jDn�1
p2.j/

3

5

D 1

10
C 1

2
C 7

100
C 3273

10000
D 0:9973:

Observe that
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0:9973 > 1 �
"

2
1� p

1 � 2˛ � ˛2

2C ˛
� ˛

#

' 0:997262002;

that is, conditions (3.17) and (3.18) of Theorem 3.2 are satisfied and therefore all
solutions of Eq. (4.2) oscillate.

Observe, however, that

0:9973 < 1;

lim inf
n!1

3X

iD1

n�1X

jD�.n/
pi.j/ D lim inf

n!1

2

4
n�1X

jDn�1
p1.j/C

n�1X

jDn�1
p2.j/

3

5

D 1

10
C 7

100
D 0:17 <

1

e
;

lim inf
n!1

2X

iD1

n�1X

jD�i.n/

pi.j/ D lim inf
n!1

2

4
n�1X

jDn�2
p1.j/C

n�1X

jDn�1
p2.j/

3

5D2 � 1
10

C 7

100
D0:27<1

e
;

0:9973 < 1 �
�
1 � p

1 � ˛
�2 ' 0:998730152;

0:9973 < 1 � ˛



1

3
p
1 � ˛ C ˛ � 2

� 1

�
' 0:997317675;

lim inf
n!1

2X

iD1

�
kiC1

ki

�kiC1 n�1X

jDn�ki

pi.j/ D lim inf
n!1

"�
3

2

�3
� 2 � 1

10
C22 � 7

100

#

D0:955<1;

0:9973 < 1�1 � ˛ �
p
1 � 2˛ � ˛2

2
'0:997358086;

lim inf
n!1

n�1X

jD�.n/

2X

iD1
pi.j/

�
n � �i.j/C 1

n � �i.j/

�n��i.j/C1

D
�
3

2

�3
� 1
10

C
�
2

1

�2
� 7

100
D 0:61754<1;

and therefore none of the conditions (3.9), (3.8), (3.10), (3.13), (3.15), (3.4), (3.16)
and (3.7) is satisfied.

Example 4.3 ([7]). Consider the advanced difference equation

rx.n/� p1.n/x.n C 2/� p2.n/x.n C 1/ D 0; n � 1 (4.3)
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where

p1.3n/ D p1.3n C 1/ D 1

10
; p1.3n C 2/ D 1

2
; n � 1

p2.2n/ D 8

100
; p2.2n C 1/ D 3164

10000
; n � 1:

Here m D 2, �1.n/ D n C 2, �2.n/ D n C 1 and �.n/ D n C 1. It is easy to see that

˛1 D lim inf
n!1

nC2X

jDnC1
p1.j/ D 2 � 1

10
D 0:2;

˛2 D lim inf
n!1

nC1X

jDnC1
p2.j/ D 8

100
D 0:08:

Thus

˛ D min f˛i W 1 � i � 2g D min f0:2; 0:08g D 0:08 <
1

e
:

Furthermore, it is clear that pi.n/ > ˛
2

D 0:04 for all large n, .1 � i � 2/.

pi.n/ > 1 � p
1 � ˛ ' 0:040833695 for all large n; .1 � i � 2/

Also,

lim sup
n!1

2X

iD1

�.n/X

jDn

pi.j/ D lim sup
n!1

2

4
nC1X

jDn

p1.j/C
nC1X

jDn

p2.j/

3

5

D 1

10
C 1

2
C 8

100
C 3164

10000
D 0:9964:

Observe that

0:9964 > 1 �
"

2
1� p

1 � 2˛ � ˛2

2C ˛
� ˛

#

' 0:996362477;

that is, conditions (3.17) and (3.18) of Theorem 3.2 are satisfied and therefore all
solutions of Eq. (4.3) oscillate.

Observe, however, that

0:9964 < 1;
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lim inf
n!1

2X

iD1

nCkiX

jDnC1
pi.j/ D lim inf

n!1

2

4
nC2X

jDnC1
p1.j/C

nC1X

jDnC1
p2.j/

3

5

D 0:2C 0:08 D 0:28 <
1

e
;

0:9964 < 1 �
�
1 � p

1 � ˛
�2 ' 0:998332609;

0:9964 < 1�˛



1

3
p
1�˛C˛�2�1

�
' 0:996448991;

lim inf
n!1

2X

iD1

�
ki C 1

ki

�kiC1 n�1X

jDn�ki

pi.j/ D lim inf
n!1

"�
3

2

�3
� 2 � 1

10
C 22 � 8

100

#

D 0:995 < 1;

0:9964 < 1 � 1� ˛ � p
1 � 2˛ � ˛2

2
' 0:996508488;

and therefore none of the conditions (3.9), (3.10), (3.13), (3.15), (3.4) and (3.16) is
satisfied.
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On Asymptotic Classification of Solutions
to Nonlinear Regular and Singular
Third- and Fourth-Order Differential Equations
with Power Nonlinearity

I.V. Astashova

Abstract For the equation

y.n/ C p0 jyjk sign y D 0;

in the cases n D 3; 4, p0 > 0 or p0 < 0 for regular nonlinearity k > 1 and singular
nonlinearity 0 < k < 1 asymptotic classification of all solutions are given.

It is the first time when all results on this classification are represented together
for regular and singular cases.

Keywords Nonlinear higher-order ordinary differential equation • Asymptotic
behavior • Qualitative properties • Asymptotic classification of solutions

UDK 517.91
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1 Introduction

The first asymptotic classification of solutions to the Emden–Fowler equation of
the second order appears in [12]. Generalizations of the equation of higher orders
were investigated from different points of view later in the book [16] and in a great
number of articles of different authors. In particular, sufficient conditions are given
for the existence of some special types of solutions to these equations (see, e.g.,
[1, 3, 7, 9, 13–15, 18, 19]). See also [5] with its references. Qualitative properties
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of solutions to third- and fourth-order equations of this type were investigated in
[1–6, 11, 20, 21]. Note that qualitative properties of similar linear equations of the
third and fourth orders were investigated in [16, 17, 21].

The previous author’s results on asymptotic classification of all possible solutions
are seen in [5, 8, 10]. The purpose of this article is to represent together the
asymptotic classification of all possible solutions to Emden–Fowler type third- and
fourth-order equations both in regular and singular cases for comparison of their
asymptotic behavior.

2 Regular Nonlinearity (k > 1)

Theorem 1. Suppose k > 1 and p0 > 0. Then all nontrivial non-extensible
solutions to the equation

y000.x/C p0 jyjk�1 y.x/ D 0 (1)

are divided into the following five types according to their asymptotic behavior (see
Fig. 1):

1–2. Defined on semiaxes .b;C1/ Kneser (up to the sign) solutions:

y.x/ D ˙C3k .x � b/�
3

k�1 ;

where

C3k D
ˇ
ˇ
ˇ
ˇ
3.k C 2/.2k C 1/

p0 .k � 1/3
ˇ
ˇ
ˇ
ˇ

1
k�1

: (2)

3. Defined on semiaxes .�1; b/ oscillatory, in both directions, solutions having
the form

y.x/ D .b � x/�
3

k�1 h . log.b � x/ /

with some oscillatory periodic function h.
4–5. Defined on bounded intervals .b0; b00/ oscillatory near the right boundary and

nonvanishing near the left one solutions satisfying

y.x/ D ˙C3k .x � b0/�
3

k�1 .1C o.1// as x ! b0 C 0;

and, at their local extremum points x0;

ˇ
ˇy.x0/

ˇ
ˇ D ˇ

ˇb00 � x0ˇˇ� 3
k�1Co.1/

as x0 ! b00 � 0:
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y

x

y’’’+ y3 = 0

0

1

2
5

4

3

Fig. 1 Solutions to the equation y000 C y3 D 0

Remark 1. The case p0 < 0 can be reduced to the above one by the substitution
x 7! �x.

Theorem 2. Suppose k > 1 and p0 > 0. Then all nontrivial non-extensible
solutions to the equation

y IV.x/C p0 jyjk�1 y.x/ D 0 (3)

are divided into the following three types according to their asymptotic behavior
(see Fig. 2):

1. Defined on semiaxes .�1; b/ oscillatory solutions. The distance between their
neighboring zeros infinitely increases near the left boundaries of the domains
and tends to zero near the right ones. The solutions and their derivatives satisfy
the relations lim

x!�1 y.j/.x/ D 0; lim
x!b

ˇ̌
y.j/.x/

ˇ̌ D 1 for j D 0; 1; 2; 3. At the points

of local extremum, the following estimates hold:

C1 jx � bj� 4
k�1 � jy.x/j � C2 jx � bj� 4

k�1 (4)

with the positive constants C1 and C2 depending only on k and p0.
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y

x

yIV + y3 = 0

0

1

2

3

Fig. 2 Solutions to the equation y IV C y3 D 0

2. Defined on semiaxes .b;C1/ oscillatory solutions. The distance between their
neighboring zeros tends to zero near the left boundaries of the domains and
infinitely increases near the right ones. The solutions and their derivatives satisfy
the relations lim

x!C1 y.j/.x/ D 0; lim
x!b

ˇ
ˇy.j/.x/

ˇ
ˇ D 1 for j D 0; 1; 2; 3. At the

points of local extremum, estimates (4) hold with the positive constants C1 and
C2 depending only on k and p0.

3. Defined on bounded intervals .b0; b00/ oscillatory solutions. All their derivatives
y.j/, with j D 0; 1; 2; 3; 4, satisfy

lim
x!b0

ˇ
ˇy.j/.x/

ˇ
ˇ D lim

x!b00

ˇ
ˇy.j/.x/

ˇ
ˇ D 1:

At the points of local extremum sufficiently close to any boundary of the domain,
estimates (4) hold, respectively, with b D b0 or b D b00 and the positive constants
C1 and C2 depending only on k and p0.

Theorem 3. Suppose k > 1 and p0 < 0. Then all nontrivial non-extensible
solutions to Eq. (3) are divided into the following 13 types according to their
asymptotic behavior (see Fig. 3).
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y

x

yIV = y3

0

12

13

10

11

8

7

9

6

1

2

3

4

5

Fig. 3 Solutions to the equation y IV D y3

1–2. Kneser (up to the sign) solutions on semiaxes .b;C1/ W

y.x/ D ˙C4k .x � b/�
4

k�1 ;

where

C4k D
�
4.k C 3/.2k C 2/.3k C 1/

jp0j .k � 1/4

� 1
k�1

: (5)

3–4. “Left” Kneser (up to the sign) solutions on semiaxes .�1; b/ W

y.x/ D ˙C4k .b � x/�
4

k�1 :

5. Periodic oscillatory solutions on .�1;C1/. All of them can be received
from one, say z.x/; by the relation

y.x/ D �4z.�k�1x C x0/

with arbitrary � > 0 and x0. So, there exists such a solution with any
maximum h > 0 and with any period T > 0; but not with any pair .h;T/.
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6–9. Defined on bounded intervals .b0; b00/ solutions with the power asymptotic
behavior near the boundaries of the domain (with the independent signs ˙):

y.x/ � ˙C4k.p.b
0// .x � b0/�

4
k�1 x ! b0 C 0;

y.x/ � ˙C4k.p.b
00// .b00 � x/�

4
k�1 x ! b00 � 0:

10–11. Defined on semiaxes .�1; b/ solutions which oscillate near �1 and have
the power asymptotic behavior near the right boundary of the domain:

y.x/ � ˙C4k.p.b// .b � x/� 4
k�1 x ! b � 0:

For each solution a finite limit of the absolute values of its local extrema
exists as x ! �1.

12–13. Defined on semiaxes .b;C1/ solutions which oscillate near C1 and have
the power asymptotic behavior near the left boundary of the domain:

y.x/ � ˙C4k.p.b// .x � b/�
4

k�1 x ! b C 0:

For each solution a finite limit of the absolute values of its local extrema
exists as x ! C1.

3 Singular Nonlinearity (0 < k < 1)

While studying the asymptotic behavior of solutions in the case of regular nonlin-
earity, k > 1; only maximally extended solutions are usually considered, because
solutions can behave in a special way only near the boundaries of their domains. If
k < 1; then special behavior can occur also near internal points of the domains. This
is why a notion of maximally unique (MU) solutions is introduced.

Definition 1. A solution u W .a; b/ ! R with �1 � a < b � C1 to any ordinary
differential equation is called a MU solution if the following two conditions hold:

(i) the equation has no other solution equal to u on some subinterval of .a; b/I
(ii) either there is no solution defined on another interval containing .a; b/ and

equal to u on .a; b/; or there exist at least two such solutions not equal to each
other at points arbitrary close to the boundary of .a; b/.

Theorem 4. Suppose 0 < k < 1 and p0 > 0. Then all MU solutions to the equation

y000.x/ D p0 jyjk�1 y.x/ (6)

are divided into the following five types according to their asymptotic behavior (see
Fig. 4):
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y

x

y’’’=|y|1/2 sgn y

03

2

1

5

4

Fig. 4 MU solutions to the equation y000 D jyj1=2sgn y

1–2. Constant-sign solutions with power behavior on .b; C1/ W

y.x/ D ˙C3k .x � b/
3
1�k ;

where C3k is defined by (2).
3. Oscillatory, in both directions, solutions on .�1; b/ having the form

y.x/ D .b � x/
3

1�k h . log.b � x/ /

with some oscillatory periodic function h.
4–5. Defined on .�1;C1/ solutions oscillating near �1; having asymptotically

power behavior near C1 W

y.x/ D ˙C3k x
3
1�k .1C o.1// as x ! C1;

and having no point x0 with y.x0/ D y0.x0/ D y00.x0/ D 0. At their local
extremum points x0 the satisfy

ˇ
ˇy.x0/

ˇ
ˇ D ˇ

ˇx0ˇˇ 3
1�k Co.1/

as x0 ! �1:

Remark 2. The case p0 < 0 can be reduced to the above one by the substitution
x 7! �x.

Theorem 5. Suppose 0 < k < 1 and p0 > 0. Then all MU solutions to Eq. (3) are
divided into the following three types according to their asymptotic behavior (see
Fig. 5):
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y

x

yIV +|y|1/2 sgn y = 0

0

2

1

3

Fig. 5 MU solutions to the equation y IV C jyj1=2sgn y D 0

1. Oscillatory solutions defined on .�1; b/. The distance between their neighbor-
ing zeros infinitely increases near �1 and tends to zero near b. The solutions
and their derivatives satisfy the relations lim

x!b
y.j/.x/ D 0; lim

x!�1
ˇ
ˇy.j/.x/

ˇ
ˇ D 1

for j D 0; 1; 2; 3. At the points of local extremum, the following estimates hold:

C1 jx � bj� 4
k�1 � jy.x/j � C2 jx � bj� 4

k�1 (7)

with positive constants C1 and C2 depending only on k and p0.
2. Oscillatory solutions defined on .b;C1/. The distance between their neighbor-

ing zeros tends to zero near b and infinitely increases near C1. The solutions
and their derivatives satisfy the relations lim

x!b
y.j/.x/ D 0; lim

x!C1
ˇ
ˇy.j/.x/

ˇ
ˇ D 1

for j D 0; 1; 2; 3. At the points of local extremum, estimates (7) hold with positive
constants C1 and C2 depending only on k and p0.

3. Oscillatory solutions defined on .�1; C1/. All their derivatives y.j/ with j D
0; 1; 2; 3; 4 satisfy

lim
x!�1

ˇ̌
y.j/.x/

ˇ̌ D lim
x!C1

ˇ̌
y.j/.x/

ˇ̌ D 1:

At the points of local extremum, the estimates

C1 jxj� 4
k�1 � jy.x/j � C2 jxj� 4

k�1 (8)

hold near �1 or C1 with positive constants C1 and C2 depending only on k
and p0.
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Fig. 6 MU solutions to the equation y IV D jyj1=2sgn y

Theorem 6. Suppose 0 < k < 1 and p0 < 0. Then all MU solutions to Eq. (3)
are divided into the following 13 types according to their asymptotic behavior (see
Fig. 6):

1–2. Defined on semiaxes .�1; b/ solutions with the power asymptotic behavior
near the boundaries of the domain (with the same signs ˙):

y.x/ � ˙C4k jxj� 4
k�1 ; x ! �1;

y.x/ � ˙C4k .b � x/�
4

k�1 ; x ! b � 0;

where

C4k D
�
4.k C 3/.2k C 2/.3k C 1/

jp0j .k � 1/4

� 1
k�1

:

3–4. Defined on .b;C1/ solutions with the power asymptotic behavior near the
boundaries of the domain (with the same signs ˙):

y.x/ � ˙C4k .x � b/�
4

k�1 ; x ! b C 0;

y.x/ � ˙C4k x� 4
k�1 ; x ! C1:

5. Defined on the whole axis periodic oscillatory solutions. All of them can be
received from one solution, say z.x/; by the relation
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y.x/ D �4z.�k�1x C x0/

with arbitrary � > 0 and x0. So, there exists such a solution with any
maximum h > 0 and with any period T > 0; but not with any pair .h;T/.

6–9. Defined on .�1;C1/ solutions having the power asymptotic behavior
near �1 and C1 (with all sign combinations admitted):

y.x/ � ˙C4k jxj� 4
k�1 ; x ! ˙1:

10–11. Defined on .�1;C1/ solutions which oscillate as x ! �1 and have the
power asymptotic behavior near C1:

y.x/ � ˙C4k x� 4
k�1 ; x ! C1:

Each solution has a finite limit of the absolute values of its local extrema as
x ! �1.

12–13. Defined on .�1;C1/ solutions which oscillate as x ! C1 and have the
power asymptotic behavior near �1:

y.x/ � ˙C4k jxj� 4
k�1 ; x ! �1:

Each solution has a finite limit of the absolute values of its local extrema as
x ! C1.

4 Sketch of Proofs

To obtain the above results on asymptotic classification of all maximally extended
solutions to the equation

y.n/ C p0jyjk sign y D 0; p0 ¤ 0; (9)

with k > 1 and all MU solutions to (9) with 0 < k < 1; an auxiliary dynamical
system is investigated on the .n � 1/-dimensional sphere (see [4, 5, Chap. 5–7]; [8]
for regular nonlinearity).

Note that if a function y.x/ is a solution to Eq. (9), the same is true for the function

z.x/ D Ay.Bx C C/; (10)

where A ¤ 0; B > 0; and C are any constants satisfying

jAjk�1 D Bn: (11)
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Any nontrivial solution y.x/ to Eq. (9) generates in Rn n f0g the curve�
y.x/; y0.x/; y00.x/; : : : ; yn�1.x/

�
. We can define an equivalence relation on Rn n f0g

such that all solutions obtained from y.x/ by (10)–(11) generate equivalent curves,
i.e., curves passing through equivalent points (may be for different x). We assume
the points .y0; y1; y2; : : : ; yn�1/ and .z0; z1; z2; : : : ; zn�1/ in Rn n f0g to be equivalent
if and only if there exists a positive constant � such that

zj D �nCj.k�1/yj; j D 0; 1; 2; : : : ; n � 1:

The quotient space obtained is homeomorphic to the .n �1/-dimensional sphere:

Sn�1 D ˚
y 2 R

n W y20 C y21 C y22 C � � � C y2n�1 D 1
�

having exactly one representative of each equivalence class since the equation

�2ny20 C �2.nC2.k�1//y21 C � � � C �2.nC.n�1/.k�1//y2n�1 D 1

has exactly one positive root � for any .y0; y1; y2; : : : ; yn�1/ 2 R
n n f0g.

Now, equivalent curves in R
n n f0g generate the same curves in the quotient

space. The last ones are trajectories of an appropriate dynamical system, which can
be described, in different charts covering the quotient space, by different formulas
using different independent variables.

For example, on the chart that covers the points corresponding to positive values
of solutions and has the coordinate functions

uj D y.j/y�ˇj with ˇj D 1C j.k � 1/

n
; j D 1; : : : ; n � 1;

the dynamical system can be written as

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

du1
dt

D u2 � ˇ1u21;

duj

dt
D ujC1 � ˇju1uj; j D 2; : : : ; n � 2;

dun�1
dt

D �p0 � ˇn�1u1un�1

(12)

with the independent variable

t D
Z x

x0

y.�/
k�1

n d�:

Qualitative properties of the trajectories of the dynamical system on the sphere
do not depend essentially on whether k in (9) is greater or less than 1. However, the
properties of the related solutions to Eq. (9) differ according to the case, regular or
singular, considered.
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Globally, the dynamical system can have some fixed points, which depends on
the sign of p0 and the parity of n. They correspond to the solutions to Eq. (9) with
power-law behavior, which can be defined by explicit formulas, namely,

y.x/ D ˙C jx � x�j�n=.k�1/

with arbitrary x� and C defined by (2), (5), or similar formulas for n > 4.
In the regular case, these solutions, if maximally extended, have a vertical

asymptote at one of their domain boundaries (which is finite) and tend to zero near
another one (which is infinite). In the singular case, the related MU solutions vanish
with all their n �1 lower-order derivatives at one of their domain boundaries (which
is finite) and infinitely grow in absolute value near another one (which is infinite).

The dynamical system on the sphere can also have nonconstant periodical
trajectories. They correspond to oscillatory solutions to (9) that can be written
with the help of some periodic functions, but can be nonperiodic themselves. Their
extrema and the lengths of their constant-sign intervals behave in different ways
according to the sign of p0; the parity of n; and regular or singular case considered.

Investigation of stability of the fixed points and periodical trajectories gives
information on the rest of the solutions to Eq. (9), which appear to have, near
the boundaries of their domains, asymptotically the same behavior as that of the
solutions mentioned before.
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Some Properties of a Generalized Solution
for 3-D Flow of a Compressible Viscous
Micropolar Fluid Model with Spherical
Symmetry

Ivan Dražić and Nermina Mujaković

Abstract We consider the nonstationary 3-D flow of a compressible viscous and
heat-conducting micropolar fluid bounded with two concentric spheres that present
solid thermoinsulated walls. We assume that the fluid is perfect and polytropic in
the thermodynamical sense, as well as that the initial density and temperature are
strictly positive. We take sufficiently smooth spherically symmetric initial functions
and analyze the corresponding problem with homogeneous boundary data.

In this work we give the overview of the current progress in mathematical
analysis of the described problem with particular emphasis on the existence
theorems and the large time behavior of the solution.

Keywords Micropolar fluid • Spherical symmetry • Generalized solution

AMS Subject Classifications: 35Q35, 76N10

1 Introduction

The micropolar fluid is a type of fluid which exhibits microrotational effects, as well
as microrotational inertia which enables us to consider some physical phenomena
that cannot be treated by the classical Navier–Stokes equations. It is important
to emphasize that it has been shown experimentally that the inclusion of the
phenomena at the microlevel significantly improves the mathematical model of the
fluid flow [10].
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The first considerations that go in the direction of studying micro phenomena,
and which are known to science today, appear in the works of Cosserat brothers
created at the beginning of the last century. However, due to its complexity,
this theory remained neglected for many years until in the 1960s. A.C. Eringen
introduced the concept of the micropolar fluid. The model of micropolar fluids in
the last two decades has become an important area of interest for mathematicians
and engineers especially in the modeling of liquid crystals with rigid molecules,
magnetic fluids, clouds with dust, muddy fluids, some biological fluids, etc.

Here we analyze the compressible flow of an isotropic, viscous, and heat-
conducting micropolar fluid, which is in the thermodynamical sense perfect and
polytropic. The model for this kind of flow in the one-dimensional case was
first described by Mujaković in [7]. In her later works, she analyzed the one-
dimensional model in relation to existence, regularity, and stabilization for different
kinds of problems with homogeneous and nonhomogeneous boundary conditions.
A significant number of results related to this one-dimensional model have been
systematized in the fifth and sixth chapters of the book [11], but for recent progress
in this area, we refer to [8] and [4] and the references cited therein.

In this work we analyze the motion of the described fluid between two concentric
spheres, which enables us to consider the spherically symmetric solution to the
governing system if we assume that the initial functions are spherically symmetric
and smooth enough.

The paper is organized as follows. In the next section, we will describe the
governing three-dimensional system and derive its spherically symmetric form in
the Lagrangian description. Then we will give an overview of the current progress
in mathematical analysis of this problem. We will introduce the generalized solution
to the problem together with the existence and uniqueness theorems. Finally, we will
mention some recent results concerning the large time behavior of the solution.

2 The Mathematical Model

The mathematical model of the described fluid is stated, for example, in the book of
Lukaszewicz [6] and reads

P�C � div v D 0; (1)

� Pv D div T C �f; (2)

�jI P! D div C C Tx C �g; (3)

� PE D T W rv C C W r! � Tx � ! � div q C �ı; (4)

T D .�p C � div v/I C 2� sym rv C 2�r skw rv � 2�r!skw; (5)

C D c0.div !/I C 2cd sym r! C 2ca skw r!; (6)
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q D �kr
; (7)

p D R�
; (8)

E D cv
: (9)

Here �, v, !, E, and 
 are, respectively, mass density, velocity, microrotation
velocity, internal energy density, and absolute temperature. T is the stress tensor,
C is the couple stress tensor, q is the heat flux density vector, f is the body force
density, g is body couple density, and ı is the body heat density. p denotes pressure
and the positive constant jI is micro-inertia density. � and � are coefficients of
the viscosity, and �r, c0, cd, and ca are coefficients of the micro-viscosity. By the
constant k (k � 0), we denote the heat conduction coefficient, the positive constant
R is the specific gas constant, and the positive constant cv denotes the specific heat
for a constant volume.

Equations (1)–(4) are, respectively, local forms of conservation laws for the mass,
momentum, momentum moment, and energy. Equations (5)–(6) are constitutive
equations for the micropolar continuum. Equation (7) is the Fourier law, and
Eqs. (8)–(9) present the assumptions that our fluid is perfect and polytropic.
Coefficients of viscosity and coefficients of micro-viscosity are related through the
Clausius–Duhamel inequalities, as follows:

� � 0; 3�C 2� � 0; �r � 0: (10)

cd � 0; 3c0 C 2cd � 0; jcd � caj � cd C ca: (11)

Vector Tx in Eqs. (3) and (4) is an axial vector with the Cartesian components
.Tx/i D "ijkTjk, where "ijk is the Levi-Civita alternating tensor1 and sym T and skw T
are the symmetric and skew-symmetric parts of the tensor T. The differential (dot)
operator in Eqs. (1)–(4) denotes the material derivative defined by

Pa D @a
@t

C .ra/ � v: (12)

The colon operator in Eq. (4) is the scalar product of tensors defined by

A W B D tr.ATB/: (13)

We take the following homogeneous boundary conditions:

vj@˝ D 0; !j@˝ D 0;
@


@�

ˇ
ˇ
ˇ̌
@˝

D 0; (14)

1We assume the Einstein notation for summation.
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where ˝ � R3 is the spatial domain of our problem and the vector � is the exterior
unit normal vector. These boundary conditions mean that we analyze the flow of the
fluid through a chamber with solid thermo-insulated walls. In our case it will be the
flow between two concentric spheres and we have

˝ D
	

x D .x1; x2; x3/ W x 2 R3; a < jxj < b; jxj D
q

x21 C x22 C x23

�
: (15)

We introduce the spherically symmetric initial conditions:

�0.x/ D �0.r/; v0.x/ D x
r
v0.r/; !0.x/ D x

r
!0.r/; 
0.x/ D 
0.r/; (16)

where �0, v0, !0, and 
0 are known real functions defined on �a; bŒ2, x D
.x1; x2; x3/ 2 R3, r D jxj and assume that �, v, !, and 
 are spherically symmetric
too:

vi.x; t/ D xi

r
v.r; t/; !i.x; t/ D xi

r
!.r; t/; i D 1; 2; 3; (17)

�.x; t/ D �.r; t/; 
.x; t/ D 
.r; t/: (18)

Using the assumptions (17) and (18), the spatial domain (15) becomes a one-
dimensional domain �a; bŒ. The governing system now takes the form

@�

@t
C @

@r
.v�/C 2�

r
v D 0; (19)

�

�
@v

@t
C v

@v

@r

�
D �R

@

@r
.�
/C .�C 2�/

@

@r

�
@v

@r
C 2

v

r

�
; (20)

�jI

�
@!

@t
C v

@!

@r

�
D �4�r! C .c0 C 2cd/

@

@r

�
@!

@r
C 2

!

r

�
; (21)

�cv

�
@


@t
C v

@


@r

�
D k

�
@2


@r2
C 2

r

@


@r

�
� R�


�
@v

@r
C 2

v

r

�

C.�C 2�/

�
@v

@r
C 2

v

r

�2
� 4�

v

r

�
2
@v

@r
C v

r

�

C.c0 C 2cd/

�
@!

@r
C 2

!

r

�2
� 4cd

!

r

�
2
@!

@r
C !

r

�
C 4�r!

2; (22)

�.r; 0/ D �0.r/; v.r; 0/Dv0.r/; !.r; 0/D!0.r/; 
.r; 0/D
0.r/; (23)

v.a; t/ D v.b; t/D0; !.a; t/D!.b; t/D0; @

@r
.a; t/D @


@r
.b; t/D0; (24)

for r 2�a; bŒ and t 2�0;TŒ.

2a and b are the radii of boundary spheres from (15).
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In the mathematical analysis of compressible fluids, it is convenient to use
Lagrangian description. The Eulerian coordinates .r; t/ are connected to the
Lagrangian coordinates .�; t/ by the relation

r.�; t/ D r0.�/C
Z t

0

Qv.�; t/d�; r0.�/ D r.�; 0/ D �; (25)

where Qv.�; t/ is defined by Qv.�; t/ D v .r.�; t/; t/.
We introduce the new function 	 and the constant L by

	.�/ D
Z �

a
s2�0.s/ds; 	.b/ D

Z b

a
s2�0.s/ds D L (26)

and define the new coordinate, x D L�1	.�/. With this new coordinate the spatial
domain becomes �0; 1Œ, and we finally get the following initial-boundary problem:

@�

@t
D �1

L
�2
@

@x

�
r2v
�
; (27)

@v

@t
D �R

L
r2
@

@x
.�
/C �C 2�

L2
r2
@

@x

�
�
@

@x

�
r2v
�
�
; (28)

�
@!

@t
D �4�r

jI
! C c0 C 2cd

jIL2
r2�

@

@x

�
�
@

@x

�
r2!

�
�
; (29)

�
@


@t
D k

cvL2
�
@

@x

�
r4�

@


@x

�
� R

cvL
�2


@

@x

�
r2v
�C �C 2�

cvL2



�
@

@x

�
r2v
��2

� 4�

cvL
�
@

@x

�
rv2
�Cc0C2cd

cvL2



�
@

@x

�
r2!

��2 � 4cd

cvL
�
@

@x

�
r!2

�C4�r

cv
!2; (30)

�.x; 0/ D �0.x/; v.x; 0/ D v0.x/; !.x; 0/ D !0.x/; 
.x; 0/ D 
0.x/; (31)

v.0; t/ D v.1; t/ D 0; !.0; t/ D !.1; t/ D 0;
@


@x
.0; t/ D @


@x
.1; t/ D 0; (32)

considered on the domain QT D�0; 1Œ��0;TŒ.
The function r.x; t/ is defined by

r.x; t/ D r0.x/C
Z t

0

v.x; �/d�; .x; t/ 2 QT : (33)

where

r0.x/ D
�

a3 C 3L
Z x

0

1

�0.y/
dy

� 1
3

; x 2�0; 1Œ (34)

and a > 0 is a radius of smaller boundary sphere.
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3 Properties of the Solution

In this section we consider the properties of the so-called generalized solution to the
problem (27)–(32).

Definition 1. A generalized solution to the problem (27)–(32) in the domain QT is
a function

.x; t/ 7! .�; v; !; 
/.x; t/; .x; t/ 2 QT ; (35)

where

� 2 L1.0;TI H1.�0; 1Œ// \ H1.QT/ ; inf
QT

� > 0 ; (36)

v; !; 
 2 L1.0;TI H1.�0; 1Œ// \ H1.QT/\ L2.0;TI H2.�0; 1Œ//; (37)

that satisfies the Eqs. (27)–(30) a.e. in QT and conditions (31)–(32) in the sense of
traces.

Let us mention that by using the embedding and interpolation theorems, one can
conclude that our generalized solution could be treated as a strong solution. In fact,
we have

� 2 L1.0;TI C.Œ0; 1�// \ C.Œ0;T�;L2.�0; 1Œ// ; (38)

v; !; 
 2 L2.0;TI C1.Œ0; 1�// \ C.Œ0;T�;H1.�0; 1Œ//; (39)

v; !; 
 2 C.QT/: (40)

We first analyzed the existence of the generalized solution to the problem (27)–
(32). Using the Faedo–Galerkin method, we proved in [1] the existence locally
in time. After that we analyzed the uniqueness of the solution in [9], and finally
based on extension principle, we proved in [2] the global existence theorem for the
problem (27)–(32). These results are summarized in the following theorem.

Theorem 1. Let the functions �0; 
0 2 H1.�0; 1Œ//, v0; !0 2 H1
0.�0; 1Œ// satisfy the

conditions

�0.x/ � m; 
0.x/ � m for x 2�0; 1Œ (41)
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where m 2 RC: Then for any T 2 RC, there exists a unique generalized solution to
the problem (27)–(32) on the domain QT having the property


 > 0 in QT : (42)

In the second stage of our research, we analyzed the large time behavior of the
solution to the problem (27)–(32). Theorem 1 ensures the existence on the arbitrary
but finite time interval �0;TŒ. Because of that we were not able to analyze the
behavior of the solution when t ! 1 and had to prove that the solution exists
on the time interval �0;1Œ as well, which is the purpose of next theorem obtained
in [3].

Theorem 2. Let the initial functions �0, v0, !0, and 
0 satisfy the same conditions
as in Theorem 1. Then the problem (27)–(32) has a solution on the domain Q1 D
�0; 1Œ��0;1Œ with the properties

� 2 L1.0;1I H1.�0; 1Œ//; (43)

@�

@t
2 L1.0;1I L2.�0; 1Œ// \ L2.Q1/; (44)

@�

@x
2 L2.0;1I L2.�0; 1Œ//; (45)

v; ! 2 L1.0;1I H1.�0; 1Œ// \ H1.Q1/ \ L2.0;1I H2.�0; 1Œ//; (46)


 2 L1.0;1I H1.�0; 1Œ//; (47)

@


@x
2 L2.0;1I H1.�0; 1Œ//; (48)

@


@t
2 L2.Q1/: (49)

In the following theorem, which is also proved in [3], we proved the stabilization
of the solution when t ! 1.

Theorem 3. Let .�; v; !; 
/ be a generalized solution to the problem (27)–(32) in
the domain Q1. Then we have the convergence

.�; v; !; 
/ ! .��; 0; 0; 
�/ (50)

in the space
�
H1.�0; 1Œ/

�4
when t ! 1, where

�� D
Z 1

0

1

�0.x/
dx; (51)


� D 1

cv

Z 1

0

�
cv
0.x/C 1

2
v20 C jI

2
!20

�
dx: (52)
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For the function r, we have the convergence

r ! r� (53)

in the space H2.�0; 1Œ/ when t ! 1 where

r�.x/ D �
a3 C 3xu�� 13 ; x 2 Œ0; 1� ; (54)

and the constant a is the same as in (34).

The proof of Theorem 2 is based on a series of uniform-in-time a priory estimates
and the proof of Theorem 3 on the results Theorem 2 and application of Friedrichs
and Poincare inequalities.

Recently, in [5], Huang and Lian deduced the nature of the convergences (50)
and (53). They showed that the solution .�; v; !; 
/ decays to a constant state with
exponential rate. Their result is stated in the next theorem.

Theorem 4. Let .�; v; !; 
/ be a generalized solution to the problem (27)–(32) in
the domain Q1. Then there exist constants C1 > 0 and �1 D �1.C/ > 0 such that
for any fixed � 2�0; �1� and for any t > 0, we have

e� t .k�.t/ � ��k2H1 C kv.t/k2H1 C k!.t/k2H1 C k
.t/ � 
�k2H1

�

C
Z t

0

e�s
�k�xk2H1 C kvxk2H1 C k!xk2H1 C k
xk2H1

C kvtk2 C k!tk2 C k
tk2
�
.s/ds � C1; (55)

where �� and 
� are defined by (51) and (52).
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Nonoscillatory Solutions
of the Four-Dimensional Neutral
Difference System

Jana Krejčová

Abstract We study nonoscillatory solutions of four-dimensional nonlinear neutral
difference systems. We state asymptotic properties of solutions, and we establish
sufficient conditions for the system to have weak property B and property B.

Keywords Difference systems • Weak property B • Non-oscillatory solutions •
Asymptotic properties
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1 Introduction

In this paper, we study asymptotic behavior of solutions of a four-dimensional
system:

�.xn C pnxn�� / D An f1 .yn/

�yn D Bn f2 .zn/

�zn D Cn f3 .wn/

�wn D Dn f4
�
x�n

�
;

(S)

where n 2 N0 D fn0; n0 C 1; : : :g, n0 is a positive integer, � is a nonnegative integer,
and fAng ; fBng ; fCng ; fDng are positive real sequences defined for n 2 N0. � is the
forward difference operator given by �xn D xnC1 � xn.
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The sequence � W N ! N satisfies

lim
n!1 �n D 1: (H1)

The most common form of this sequence is � D n ˙ �; where � 2 N. The sequence
fpng is a sequence of the real numbers and it satisfies 0 � pn < 1. Functions fi W
R ! R for i D 1; ::; 4 satisfy

fi.u/

u
� 1; u 2 Rn0: (H2)

This property implies that u and fi.u/ have the same sign for i D 1; ::; 4 and u 2 Rn0.
Throughout our paper we assume that the system (S) is in the canonical form, which
means that the following conditions hold

1X

nDn0

An D 1;

1X

nDn0

Bn D 1;

1X

nDn0

Cn D 1: (H3)

By a solution of the system (S), we mean a vector sequence .x; y; z;w/ which
satisfies the system (S) for n 2 N0: We investigate nonoscillatory solutions in this
paper. Therefore, the first important thing is to divide solutions into oscillatory and
nonoscillatory.

The component x is said to be nonoscillatory if it is either eventually positive
or eventually negative. The non-oscillation of the components y, z, w is defined
by the same way. A solution of the system (S) is said to be nonoscillatory if all
of its components x; y; z;w are nonoscillatory. Otherwise, a solution is said to be
oscillatory.

Another important property is the boundedness. A solution of the system (S)
is said to be bounded if all of its components x; y; z;w are bounded. Otherwise, a
solution is said to be unbounded.

Definition 1. The system (S) has weak property B if every nonoscillatory solution
of (S) satisfies

xnzn > 0 and ynwn > 0 for large n: (1)

Definition 2. The system (S) has property B if any nonoscillatory solution of (S)
satisfies either

lim
n!1 jxnj D lim

n!1 jynj D lim
n!1 jznj D lim

n!1 jwnj D 1; (2)

or

lim
n!1 xn D lim

n!1 yn D lim
n!1 zn D lim

n!1 wn D 0: (3)
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Solutions satisfying (1) and xnyn > 0 are called strongly monotone solutions,
while solutions satisfying (1) and xnyn < 0 are called Kneser solutions. Hence,
weak property B means that any nonoscillatory solution is either Kneser or strongly
monotone solutions and property B means that these solutions are either unbounded
or vanishing at infinity in all their components. Property B is defined in accordance
with those for the higher-order differential equations or for the system of differential
equations; see [7] and references therein.

In the last few years, great attention has been paid to the study of neutral
difference equations. The system (S) is a prototype of even-order neutral systems
and can be easily rewritten as a fourth-order nonlinear neutral difference equation.
Equations with quasi-differences have been widely studied in the literature; see,
for example, [2–6, 8, 9]. Oscillatory properties of solutions of the fourth-order
difference equations are investigated in [6]. Their approach is based on studying
the considered equation as a four-dimensional difference system, where fDng is a
negative real sequence. Asymptotic properties of neutral type difference equations
can be found in [8]. The problem of boundedness of solutions of (S) with �n D n��
has been investigated in the recent paper [1].

The aim of this paper is to investigate asymptotic behavior of nonoscillatory
solutions of (S). We are motivated by the paper [2], where asymptotic properties of
(S) with fpng D f0g have been investigated. We extend results from [1] and [2].
We give sufficient conditions that (S) has weak property B and property B. This
completes the results from [6], where they study property A.

2 Preliminaries

First, we point out some basic properties of (S) which we use to prove the main
results of the paper.

Throughout our article, we use the notation

sn D xn C pnxn�� ; (4)

where n 2 N0.

Lemma 1. Let fxng and fpng be real sequences, where n 2 N0 and pn satisfy 0 �
pn < 1. Let fsng be the sequence defined by (4). Then fxng is bounded if and only if
fsng is bounded.

Moreover, if s is positively increasing for large n, then for large n

xn D sn � pnxn�� � sn � pnsn�� � sn�� .1 � pn/: (5)

Proof. By (4) and the fact pn � 0, we get the equivalency between the boundedness
of x and s.

The second statement follows from the fact xn � sn and sn�� � sn.
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Lemma 2 ([6, Lemma 1]). Assume lim pn D P, 0 < P < 1. If x is bounded and

lim sn D S 2 R;

then x is convergent and

lim xn D S

1C P
:

In particular, if s tends to zero as n ! 1, then x tends to zero as n ! 1, too.

If the system (S) has a solution .x; y; z;w/, then it has the solution
.�x;�y;�z;�w/ as well. Thus, throughout the paper, we can focus on solutions
whose first component is eventually positive for large n.

The following lemma describes the possible types of nonoscillatory solutions.

Lemma 3. Any nonoscillatory solution .x; y; z;w/ of the system (S) with eventually
positive x is one of the following types:

type .a/ xn > 0 yn > 0 zn > 0 wn > 0 for large n;
type .b/ xn > 0 yn > 0 zn > 0 wn < 0 for large n;
type .c/ xn > 0 yn < 0 zn > 0 wn < 0 for large n:

Proof. Let .x; y; z;w/ be a nonoscillatory solution of (S) such that xn > 0 for large
n. There are eight possible types of these solutions. We prove that solutions of the
following types do not exist:

type .i/ xn > 0 yn > 0 zn < 0 wn > 0 for large n;
type .ii/ xn > 0 yn < 0 zn < 0 wn > 0 for large n;
type .iii/ xn > 0 yn < 0 zn < 0 wn < 0 for large n;
type .iv/ xn > 0 yn > 0 zn < 0 wn < 0 for large n;
type .v/ xn > 0 yn < 0 zn > 0 wn > 0 for large n:

First, assume that there exist n1 2 N0 and a solution such that zn < 0, wn > 0

for n � n1 � n0. From the fourth equation of (S), we have �wn > 0 and this
implies that there exists k > 0 such that wn � k for large n. Using (H2) we have
f3.wn/ � wn � k. By the summation of the third equation of (S), we have

zn � zn0 D
n�1X

iDn0

Cif3 .wi/ � k
n�1X

iDn0

Ci:

Passing n ! 1, we get a contradiction with the fact that zn < 0. This excludes
solutions of types (i) and (ii).

Let us suppose that there exists solution such that xn > 0, yn < 0, zn < 0 for large
n. By (4) s is positive and the first equation of (S) implies that s is decreasing for
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large n. Therefore, s is bounded. Since y is eventually negatively decreasing, there
exists h < 0 such that yn � h. Using (H2) we have f1.yn/ � yn � h. Using the
summation of the first equation of (S) and passing n ! 1, we get a contradiction
with the boundedness of s. Therefore, a solution of type (iii) cannot exist.

Assume that there exists a solution of type (iv). Therefore, we have zn < 0 and z
is decreasing for all large n. This implies that there exists l < 0 such that zn � l for
large n. From (H2) we get f2.zn/ � zn � l. By the summation of the second equation
of (S) and passing n ! 1, we get a contradiction with the positivity of y.

Finally, assume that there exists a solution of type (v). Therefore, we have zn > 0

and z is increasing for all large n. This implies that there exists g > 0 such that
zn � g for large n. From (H2) we get f2.zn/ � zn � g. Using the summation of the
second equation of (S), we get a contradiction with negativity of y. Thus, solutions
of type (v) cannot exist.

By Definition 1, the system (S) has weak property B if there exist only solutions
of type (a) and (c). Solutions of type (a) are called strongly monotone and solutions
of type (c) are called Kneser solutions. We have to determine some asymptotic
properties of these solutions for the purpose of investigation property B. Properties
of strongly monotone solutions are summarized in the following lemma.

Lemma 4. Any solution of type (a) satisfies

lim
n!1 xn D 1; lim

n!1 yn D 1; lim
n!1 zn D 1: (6)

Proof. Let .x; y; z;w/ be a solution of type (a). Because y is positive and increasing,
there exists k > 0 such that yn � k for large n. By the summation of the first equation
of (S), we get

sn � sn0 D
n�1X

iDn0

Aif1 .yi/ �
n�1X

iDn0

Aiyi � k
n�1X

iDn0

Ai:

Passing n ! 1 we get sn ! 1. Lemma 1 implies that s is unbounded if and only
if x is unbounded. Therefore limn!1 xn D 1.

To prove the other statements, we use similar arguments. Because z is eventually
positively increasing, there exists h > 0 such that zn � h for large n. Using the
summation of the second equation of (S), we get yn ! 1 for n ! 1.

Finally, w is eventually positively increasing; thus, there exists l > 0 such that
wn � l for large n. By the summation of the third equation of (S), we obtain that
zn ! 1 for n ! 1.

The following lemma summarizes properties of Kneser solutions.

Lemma 5. Any solution of type (c) satisfies

lim
n!1 yn D 0; lim

n!1 zn D 0; lim
n!1 wn D 0: (7)
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Proof. Assume that the solution .x; y; z;w/ is of type (c). Since y is negative and
increasing, there exists limn!1 yn D k, k � 0. If k < 0, then from the summation
of the first equation of (S), we get sn ! �1 as n ! 1, which is a contradiction
with the boundedness of s. Therefore limn!1 yn D 0.

Since z is eventually positively decreasing, there exists limn!1 zn D h � 0.
Suppose h > 0. By the summation of the second equation of (S), we obtain a
contradiction with the negativity of y. Thus, limn!1 zn D 0.

Similarly, since w is eventually negatively increasing, there exists limn!1 wn D
l � 0. Suppose l < 0. By the summation of the third equation of (S), we obtain a
contradiction with the positivity of z. Therefore limn!1 wn D 0.

Now, we can continue to state sufficient conditions for the system (S) to have
weak property B and property B.

3 Property B

The first theorem gives the simple criterion that system (S) has property B.

Theorem 1. If

1X

nDn0

Dn D 1 (8)

holds, then the system (S) has property B.

Proof. By Lemma 3, there are only three possible types of nonoscillatory solutions.
Assume that .x; y; z;w/ is a type (b) solution. Since x is positive, then s is positive
and from the first equation of (S) we get that s is increasing. Therefore, by Lemma 1
there exists a real constant k > 0 such that xn � k for large n. By the summation of
the fourth equation of (S), we get

wn � wn0 D
n�1X

iDn0

Dif4
�
x�i

� �
n�1X

iDn0

Dix�i � k
n�1X

iDn0

Di: (9)

Passing n ! 1 we get the contradiction with the negativity of w. Thus, the system
(S) does not have solutions of type (b).

If .x; y; z;w/ is a solution of type (a), then using the same argument as in the
previous and by (9), we get wn ! 1 for n ! 1. From this fact and Lemma 4, we
get that all solutions of type (a) satisfy (2).

If .x; y; z;w/ is a solution of type (c), then there exists limn!1 xn D h, h � 0.
If we assume h > 0, then by the summation of the fourth equation of (S), we get
a contradiction with the negativity of w. Therefore, limn!1 xn D 0. From that fact
and Lemma 5, we get that all solutions of type (c) satisfy (3).

Now, we get the assertion by Definition 2.
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In view of Theorem 1, in the sequel, we assume
P1

nDn0
Dn < 1:

In the following, we state sufficient conditions for the system (S) to have weak
property B and property B. To ensure these properties, we have to exclude solutions
of type (b). The following theorem gives a condition for the nonexistence of
solutions of type (b).

Theorem 2. If

1X

iDn0

Di

0

@
i�1X

jDn0

Cj

1

A D 1 (10)

holds, then the system (S) has weak property B.

Proof. By Definition 1, weak property B means that there exist only solutions of
types (a) and (c). Assume that .x; y; z;w/ is a type (b) solution. Since x is positive
and s is positive and increasing, by Lemma 1 there exists k > 0 such that xn � k for
large n. By the summation of the fourth equation of (S), we get

w1 � wn D
1X

iDn

Dif4
�
x�i

� �
1X

iDn

Dix�i � k
1X

iDn

Di; (11)

�wn � k
1X

iDn

Di:

Using the summation of the third equation of (S), we have

zn � zn0 D
n�1X

iDn0

Cif3 .wi/ �
n�1X

iDn0

Ciwi;

�zn C zn0 �
n�1X

iDn0

Ci .�wi/ � k
n�1X

iDn0

Ci

0

@
1X

jDi

Dj

1

A :

Passing n ! 1 and using the change of summation

1X

iDn0

Ci

0

@
1X

jDi

Dj

1

A D
1X

iDn0

Di

0

@
i�1X

jDn0

Cj

1

A D 1;

we get the contradiction with the boundedness of z. Thus, solutions of type (b) do
not exist and (S) has weak property B.
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Theorem 3. Assume lim pn D P, 0 < P < 1 and

1X

iDn0

Di

0

@
�i���1X

jDn0

Aj

 
j�1X

kDn0

Bk

 
k�1X

lDn0

Cl

!!1

A D 1: (12)

In addition, if (10) holds, then the system (S) has property B.

Proof. By Theorem 2, the system (S) has only solutions of types (a) and (c). Let
.x; y; z;w/ be a solution of type (a). Thus, w is positively increasing, and there exists
a constant t > 0 such that wn � t for large n. From the third equation of (S), we get

zn �
n�1X

iDn0

Cif3.wi/ �
n�1X

iDn0

Ciwi � t
n�1X

iDn0

Ci:

Substituting this into the second equation of (S), we obtain

yn �
n�1X

iDn0

Bif2.zi/ �
n�1X

iDn0

Bizi � t
n�1X

iDn0

Bi

0

@
i�1X

jDn0

Cj

1

A :

Using the first equation of (S), we have

sn �
n�1X

iDn0

Aif1.yi/ � t
n�1X

iDn0

Ai

0

@
i�1X

jDn0

Bj

 
j�1X

kDn0

Ck

!1

A : (13)

Since s is positively increasing, by Lemma 1 the inequality (5) holds. Taking into
account lim.1� pn/ D 1� P > 0, there exists p > 0 such that 1� pn � p; therefore,

xn � sn�� .1 � pn/ � p sn�� :

Substituting (13) into the fourth equation of (S), we get

wn �
n�1X

iDn0

Dix�i � p t
n�1X

iDn0

Di

0

@
�i���1X

jDn0

Aj

 
j�1X

kDn0

Bk

 
k�1X

lDn0

Cl

!!1

A :

Passing n ! 1 we get wn ! 1. From here and Lemma 4, solution of type (a)
satisfies (2).

Now assume that .x; y; z;w/ is a solution of type (c). By Lemma 5, we have to
prove that limn!1 xn D 0. Because s is positive and decreasing, it is bounded.



Nonoscillatory Solutions of the Four-Dimensional Neutral Difference System 223

Thus, there exists limn!1 sn D S, S � 0. By Lemma 2, there exists limn!1 xn D
S=.1C P/. Put h D S=.1C P/. Assume S > 0. Then h > 0. Using Lemma 5, (H2),
and the summation from n to infinity of the fourth equation of (S), we obtain

�wn � h
1X

iDn

Di:

Substituting and using the summation of the third equation of (S), we have

�zn C zn0 �
n�1X

jDn0

Cj.�wj/ � h
n�1X

jDn0

Cj

0

@
1X

iDj

Di

1

A :

Passing n ! 1 and using the change of summation, we get that (10) implies
P1

jDn0
Cj

�P1
iDj Di

�
D 1. This leads to the contradiction with the boundedness

of z. Therefore, h D 0.
Now, we get the assertion by Definition 2.

Example 1. Consider the system:

�.xn C Pxn�� / D yn

�yn D zn

�zn D wn

�wn D n.�2/f4 .xnC� / ;

(14)

where 0 < P < 1, � 2 N.
The system is in the canonical form. We apply conditions from Theorem 3:

1X

iDn0

i.�2/
0

@
iC����1X

jDn0

 
j�1X

kDn0

 
k�1X

lDn0

1

!!1

A D 1;

1X

iDn0

i.�2/
0

@
i�1X

jDn0

1

1

A D 1:

They are all satisfied. Thus, the system (14) has property B.
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4 Concluding Remarks

Results of this paper generalized results in [2] and make a motion to study the system
(S), for example, when (S) is not in the canonical form.

Another interesting problem is to study (S) with �1 < pn < 0. In this case, the
problem is existence of unbounded solution of type xn > 0, yn < 0, zn < 0, wn < 0

for large n.
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Comparison Theorems for Weighted Focal
Points of Conjoined Bases of Hamiltonian
Difference Systems

Julia Elyseeva

Abstract In this paper we prove comparison theorems for the number of weighted
focal points of conjoined bases of Hamiltonian difference systems. The notion of a
weighted focal point introduced by O. Došlý and J. Elyseeva (Appl. Math. Lett. (43)
2015, 114–119) plays an important role in spectral theory for discrete Hamiltonian
eigenvalue problems with nonlinear dependence on the spectral parameter. We
present new relations between the numbers of weighted focal points of conjoined
bases of two Hamiltonian systems and derive corollaries to these relations general-
izing comparison results for the classical number of focal points. The consideration
is based on the comparative index theory for symplectic difference systems.

Keywords Hamiltonian difference systems • Weighted focal point • Discrete
Sturmian theory • Comparative index

Mathematics Subject Classification (2000): 39A21, 39A22

1 Introduction

We consider the discrete Hamiltonian systems [3, 15]

�xkC1 D AkxkC1 C Bkuk; �uk D CkxkC1 � AT
k uk; det .I � Ak/ ¤ 0; (1)

�OxkC1 D OAk OxkC1 C OBk Ouk; �Ouk D OCk OxkC1 � OAT
k Ouk; det

�
I � OAk

�
¤ 0; (2)

k D 0; 1; : : : ;N;
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associated with the Hamiltonians

Hk D H T
k ; Hk D

��Ck AT
k

Ak Bk

�
; OHk D OH T

k ;
OHk D

�� OCk OAT
kOAk OBk

�
; (3)

where Ak; Bk; Ck; OAk; OBk; OCk 2 R
n�n. System (1) is the most important special case

of the discrete symplectic systems

ykC1 D Skyk; yk D
 

xk

uk

!

2 R
2n; k D 0; 1; : : : ;N: (4)

The matrix Sk with the blocks Ak; Bk; Ck; Dk 2 Rn�n is symplectic, i.e.,

Sk D
�
Ak Bk

Ck Dk

�
; S T

k JSk D J; J D
�
0 I

�I 0

�
; k D 0; 1; : : : ;N; (5)

I being the n � n identity matrix. For Hamiltonian system (1), this matrix has the
form

Sk D
�
.I � Ak/

�1 .I � Ak/
�1Bk

Ck.I � Ak/
�1 Ck.I � Ak/

�1Bk C I � AT
k

�
: (6)

In this paper, we derive comparison results for the number of weighted focal points
of conjoined bases of (1) and (2). This new notion was introduced in [8] for
discrete eigenvalue problems for the Hamiltonian difference systems with nonlinear
dependence on spectral parameter. The notion of a weighted focal point coincides
with the classical notion of focal points [3, 4, 16] in the case when the symmetric
matrix Bk in (1) is nonnegative definite, i.e., Bk � 0. In the general case, ind.Bk/ ¤ 0

(here ind A is the number of negative eigenvalues of A D AT ); the number of
weighted focal points is closely related to the notions of weighted nodes (for
n D 1) and relative oscillation numbers (for n > 1) introduced for the Wronskians
of solutions of the scalar and matrix difference Sturm–Liouville equations (see
[1, 2, 14]). For example, for the discrete Sturm-Liouville equation

�.rk�xk/ � qkxkC1 D 0; rk ¤ 0; k D 0; : : : ;N � 1 (7)

(which can be rewritten in form (1)) the number of (forward) weighted focal points
is defined as follows (see [8, Example 2.2])

#.xk/ D
8
<

:

1; rk > 0; xk ¤ 0; xkxkC1 � 0;

�1; rk < 0; xkC1 ¤ 0; xkxkC1 � 0

0; otherwise:
; (8)

Then, for the case rk > 0, the quantity #.xk/ � 0 coincides with the multiplicity of a
generalized zero of xk and takes the values from the set f0; 1g. For arbitrary rk ¤ 0,
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we have by (8) that any strictly positive (negative) solution xk of Eq. (7) is weighted
nonoscillatory, i.e., #.xk/ D 0; k � 0. Note that for any other nontrivial solution

Oxk of (7), in this case we have the estimate j#.Ox; 0;N/j � 1; #.Ox; 0;N/ D
NP

kD0
#.Oxk/

(see the next section), and then for the total number l.Ox; 0;N/ of generalized zeros

in .0;N C 1�, we derive
NP

kD0
ind.rk/ � 1 � l.Ox; 0;N/ �

NP

kD0
ind.rk/ C 1, where

ind.rk/ D 1 for rk < 0 and ind.rk/ D 0; rk > 0. For example, this estimate holds
for any nontrivial solution of the Fibonacci sequence xkC2 D xkC1 C xk rewritten in
form (7) with rk D .�1/k. So we see that the notion of a weighted focal point can
be useful in the investigation of the oscillatory behavior of conjoined bases of (1)
with respect to the behavior of

P
ind.Bk/.

In this paper, we present analogs of classical comparison theorems [5–7, 11]
for weighted focal points (see Sect. 3). So we prove an analog of [11, Theorem 2.1]
presenting relations between the number of weighted focal points of conjoined bases
of (1) and (2) (see Theorem 1). Then we derive corollaries to Theorem 1 based on
the modified majorant condition Hk � OHk for the discrete Hamiltonians (3). Note
that this condition coincides with the classical one for discrete Hamiltonian systems
[5, 7] if and only if ind. OBk/ D ind.Bk/ (see Corollary 2 in the next section). In the
general case, the classical majorant condition is not assumed to be satisfied in the
results of Sect. 3.

2 Number of Weighted Focal Points

We will use the following notation. For a matrix A, we denote by AT ; A�1, A�; rank A
and ind A, respectively, its transpose, inverse, Moore–Penrose pseudoinverse, rank
(i.e., the dimension of its image), and index (i.e., the number of its negative
eigenvalues). We use the notation Sp.2m/ for the group of symplectic matrices of the
dimension 2m, and we also use the notation�Ak for the forward difference operator
AkC1 � Ak. By I and 0, we denote the identity and zero matrices of appropriate
dimensions.

Recall now some basic concepts of the oscillation theory of symplectic difference
systems (4) (see [4]).

A 2n � n matrix solution Yk D �Xk
Uk

�
of (4) with n � n matrices Xk; Uk is said to

be a conjoined basis if

rank Yk D n and XT
k Uk D UT

k Xk (9)

and the conjoined basis Yk of (4) with the initial condition YM D �
0
I

�
at k D M is

said to be the principal solution at M.
The concept of multiplicity of a focal point of a conjoined basis Yk of (4) was

introduced in [16] as follows. Let

Mk D .I � XkC1X�kC1/Bk; Tk D I � M�
k Mk; Pk D TT

k XkX�kC1BkTk;



228 J. Elyseeva

then obviously MkTk D 0, and it can be shown (see [16]) that the matrix Pk is
symmetric. The multiplicity of a forward focal point of the conjoined basis Yk in the
interval .k; k C 1� is defined as the number

m.Yk/ WD m1.Yk/C m2.Yk/; m1.Yk/ WD rank Mk; m2.Yk/ WD ind Pk: (10)

Based on the previous definition, we introduce the number of weighted focal points
as follows (see [8]).

Definition 1. A conjoined basis Yk of Hamiltonian difference system (1) has a
weighted (forward) focal point in .k; k C 1� if m.Yk/� ind.Bk/ ¤ 0. In this case, the
number of weighted (forward) focal points in .k; k C 1� is defined as

#k D #.Yk/ WD m.Yk/� ind.Bk/; (11)

where m.Yk/ is given by (10).

Note that we have the estimate for #.Yk/ (see [8])

j#.Yk/j � rank Bk � n:

Another important estimate for the number of weighted focal points of conjoined
bases Y; OY of (1) follows from the separation result (see [10, Corollary 3.1] and

[9]) jl.Y; 0;N/� l. OY; 0;N/j � rank w.Y; OY/ � n; l.Y; 0;N/ D
NP

kD0
m.Yk/, where the

Wronskian given by

w.Y; OY/ D YTJ OY (12)

is constant for conjoined bases of Hamiltonian system (1) (see [4]). Using (11), we
have the same estimate for weighted focal points of conjoined bases of (1)

j#.Y; 0;N/� #. OY; 0;N/j � rank w.Y; OY/ � n; #.Y; 0;N/ D
NX

kD0
#.Yk/: (13)

The main results of this paper are based on the comparative index theory established
in [10, 11]. According to [10], we define the comparative index for 2n � n matrices
Y; OY with condition (9) using the notation

(
M D .I � XX�/ OX; X D ŒI 0�Y; OX D ŒI 0� OY;
T D I � M �M ; D D DT D T wT.Y; OY/X� OXT ;

where w.Y; OY/ is the Wronskian given by (12). The comparative index is defined
by �.Y; OY/ D �1.Y; OY/ C �2.Y; OY/, where �1.Y; OY/ D rankM and �2.Y; OY/ D
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indD . According to [11, p. 449, Property 7] for the comparative index, we have the
estimate

0 � �.Y; OY/ � rank w.Y; OY/ � n: (14)

Comparison theorems for symplectic difference systems derived in [11] are based
on the following notion of the comparative index for a pair of symplectic matrices.
Here, we use the notation

hS i D
�
X

U

�
; X D

�
I 0

A B

�
; U D

�
0 �I
C D

�
; S D

�
A B

C D

�

for arbitrary symplectic matrix S separated into n � n blocks A ; B; C ; D
according to (5). In [11, Lemma 2.3], we proved that 4n � 2n matrices hS i; h OS i
associated with S ; OS 2 Sp.2n/ obey (9) (with n replaced by 2n) and then the
comparative index for the pair hS i; h OS i is well defined. For the comparative index
of the symplectic coefficient matrices Sk; OSk associated with (1) and (2) by (6), we
derive the following result.

Lemma 1. Let Sk; OSk be the symplectic coefficient matrices associated with (1)
and (2) via (6), then

�.hSki; h OSki/ D ind.Hk � OHk/C ind. OBk/� ind.Bk/; (15)

where Hk; OHk are the discrete Hamiltonians given by (3).

Proof. Using (6) it is easy to verify by direct computations that

LhSkiP D

0

B
B
@

I 0

Ak Bk

Ck �AT
k

0 I

1

C
C
A D NT

 
I

�Hk

!

; L D diag

��
0 I

�I I

�
;

�
I I

�I 0

��
;

N D

0

B
B
@

I 0 0 0

0 0 0 I
0 0 I 0
0 �I 0 0

1

C
C
A ;

where L; N 2 Sp.4n/ and P D
�

I � Ak �Bk

0 I

�
2 R2n�2n. Since det P ¤ 0 and L is

symplectic block diagonal, we can apply [10, p. 448, Properties 1,2] evaluating

�.hSki; h OSki/ D �.LhSkiP;Lh OSki OP/ D �

 

NT

 
I

�Hk

!

;NT

 
I

� OHk

!!

;

where OP associated with (2) is defined by analogy with P.



230 J. Elyseeva

Next, applying [10, Theorem 2.2] with W D N; ZŒ0 I�T D � I
�Hk

�
; OZŒ0 I�T D

� I
� OHk

�
, we derive

�
�
NT
� I

�Hk

�
;NT

� I
� OHk

�� D �
�� I

�Hk

�
;
� I

� OHk

��

C�
�� I

� OHk

�
;N
�
0
I

�� � �
�� I

�Hk

�
;N
�
0
I

��
;

(16)

where we have used [10, p. 449, Property 9]. By the definition of the comparative
index, the addends in the right-hand side of (16) coincide with the respective
addends in (15). The proof is completed. ut
Corollary 1. The condition

�.hSki; h OSki/ D 0 (17)

holds if and only if

ind.Hk � OHk/ D ind.Bk/� ind. OBk/ (18)

Corollary 2. The condition

Hk � OHk (19)

and (17) are simultaneously satisfied if and only if ind OBk D ind Bk.

3 Main Results

In this section, we derive relations between the number of weighted focal points of
conjoined bases of (1) and (2) (compare with [11, Theorem 2.1]).

Theorem 1. Let Yk; OYk be conjoined bases of (1) and (2) and Zk; OZk be symplectic
fundamental matrices of these systems such that the conditions Yk D ZkŒ0 I�T ; OYk D
OZkŒ0 I�T hold. Then for the numbers #.Yk/; #. OYk/ of weighted focal points of Yk; OYk

in .k; k C 1�, we have the relation

#. OYk/� #.Yk/C��.Yk; OYk/ D ind.Hk � OHk/ � �.h OZ�1
kC1ZkC1i; h OZ�1

k Zki/; (20)

and hence

#. OY;M;N/ � #.Y;M;N/C �.YNC1; OYNC1/ � �.YM; OYM/

D
NP

kDM
.ind.Hk � OHk/� �.h OZ�1

kC1ZkC1i; h OZ�1
k Zki//; (21)

where #. OY;M;N/; #.Y;M;N/ are the numbers of (forward) weighted focal points
in .M;N C 1�.
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Proof. For the proof we use [11, Theorem 2.1] and [7, Theorem 3.3]. Under the
notation of Theorem 1, we have the following relation between the classical number
m.Yk/; m. OYk/ of focal points of conjoined bases Yk; OYk of symplectic difference
systems with the coefficient matrices Sk; OSk

m. OYk/ � m.Yk/C��.Yk; OYk/ D �.hSki; h OSki/� �.h OZ�1
kC1ZkC1i; h OZ�1

k Zki/:
(22)

Substituting into (22) representation (15) for �.hSki; h OSki/ and using Definition 1
of the number of weighted focal points, we derive (20). Summing (20) from k D 0

to k D N, we prove (21). The proof is completed. ut
Corollary 3. For the left-hand side of (20), we have the estimate

�ind. OHk � Hk/ � #. OYk/� #.Yk/C��.Yk; OYk/ � ind.Hk � OHk/ (23)

and then

�
NP

kDM
ind. OHk � Hk/ � �.YNC1; OYNC1/ � #. OY;M;N/ � #.Y;M;N/

�
NP

kDM
ind.Hk � OHk/C �.YM; OYM/

(24)

Proof. The right inequality in (23) is the direct consequence of (20) because
�.h OZ�1

kC1ZkC1i; h OZ�1
k Zki/ � 0. The left inequality is based on the equality (see [11,

Theorem 2.1])

�.hSki; h OSki/� �.h OZ�1
kC1ZkC1i; h OZ�1

k Zki/
D �.h OZ�1

k Zki; h OZ�1
kC1ZkC1i/� �.h OSki; hSki/; (25)

then, using (25) by analogy with the proof of Theorem 1, we derive

ind.Hk� OHk/��.h OZ�1
kC1ZkC1i; h OZ�1

k Zki/D�.h OZ�1
k Zki; h OZ�1

kC1ZkC1i/� ind. OHk�Hk/:

(26)

The left inequality in (23) follows from (26) because �.h OZ�1
k Zki; h OZ�1

kC1ZkC1i/ � 0.
Summing (23) and using that any comparative index is nonnegative, we derive (24).

ut
So we see that inequality (24) generalizes estimate (13) to the case when Y; OY are
conjoined bases of (1) and (2) (note that �.Y; OY/ � n by (14)).

Corollary 4. Assume (19); then for any conjoined bases Yk; OYk of (1) and (2), we
have

�
NX

kDM

rank. OHk � Hk/� n � #. OY;M;N/ � #.Y;M;N/ � n; (27)
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in particular, if OYk is the principal solution of (2) at M, then

�
NX

kDM

rank. OHk � Hk/� n � #. OY;M;N/ � #.Y;M;N/ � 0; (28)

Remark 1. (i) Note that the classical majorant condition (17) (see [7, formula
(2.13)]) for systems (1) and (2) is not assumed in the results of this section.
In particular, under assumption (19) we have �.hSki; h OSki/ D ind. OBk/ �
ind.Bk/ � 0. If we assume (19) and #.Y;M;N/ D 0, we have by (28) that

�
NX

kDM

rank. OHk � Hk/ � n � #. OY;M;N/ � 0 (29)

for the principal solution OYk of (2) at M, i.e., the number of weighted focal
points of this solution is non-positive.

(ii) If we assume majorant condition (17), then for the classical number of
focal points of Y; OY in .M;N C 1�, we have by Corollary 1 and (24) that
l. OY;M;N/ � l.Y;M;N/ � n and l. OY;M;N/ � l.Y;M;N/ � 0 when OYk is
the principal solution of (2) at M (see [6, Theorems 1.2,1.3]). In particular,
l.Y;M;N/ D 0 implies l. OY;M;N/ D 0 for the principal solution of (2) at M
(compare with (29)).

(iii) As it was pointed out in [8, Remark 2.8(ii)], the notion of a weighted focal point
is important in the development of the relative oscillation theory for Hamil-
tonian eigenvalue problems. Relative oscillation theory developed for linear
symplectic spectral problems in [12, 13] measures the difference between
the spectra of two different eigenvalue problems, rather than measuring the
spectrum of one single problem only. Similar results, incorporating the new
notion of weighted focal points, we hope to prove for discrete eigenvalue
problems with the different Hamiltonians Hk.�/; OHk.�/. Theorem 1 is the
first step in this direction.

Acknowledgements This research is supported by the Federal Programme of Ministry of
Education and Science of the Russian Federation in the framework of the state order [grant number
2014/105].
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Interpolation Method of Shalva Mikeladze
with Following Applications

Liana Karalashvili

Abstract The paper deals with the numerical method of Shalva Mikeladze, the
accuracy of which depends on the number of interpolation points. The method
called the method without saturation is devoted to the numerical solution of ordinary
differential equations. It is constructed on the basis of an interpolation formula
to solve numerically linear and nonlinear ordinary differential equations of any
order and systems of such equations. Using its different versions, it is possible
to solve boundary value, eigenvalue, and Cauchy problems (Mikeladze, Soobsh
AN GSSR 45(2):284–296, 1967 and Mikeladze, Soobsh AN GSSR 47(2):263–268,
1967). This method in combination with the method of lines can also be applied
to solve boundary value problems for partial differential equations of elliptic type
(Makarov, Karalashvili, Soobsh AN GSSR 131(1):33–36, 1988). As a model, the
Dirichlet problem for a Poisson equation in the symmetric rectangle is considered.
This application created a semi-discrete difference scheme with matrices of central
symmetry having certain properties.

Keywords Method without saturation • Interpolation points • Boundary value
problem • Centro-symmetric matrices

Mathematics Subject Classification (2000): 35J25, 65N40

1 Introduction

In the 60s of the last century, several works of Shalva Mikeladze [5, 6] were
published, where he proposed a new numerical method of solving ordinary differ-
ential equations. The method was based on his general interpolation formula for
solving numerically any order linear and nonlinear ordinary differential equations
and systems of such equations
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y.k/
�
a C htˇ

� D H
t˛;tˇ
n;k C hn�k

mX

�D1
A

t˛;tˇ
�;k y.n/ .a C ht�/C R

t˛;tˇ
m;k ; (1)

where

H
t˛;tˇ
n;k D

n�k�1X

�D0

�
tˇ � t˛

�� h�

�Š
y.kC�/ .a C ht˛/ ; A

t˛;tˇ
�;k D 1

.n � k � 1/Š

�
mX

�D�


 �Y

sD1
s¤�

.t� � ts/

��1Z tˇ

t˛

�
tˇ � t

�n�k�1
P��1 .t/ dt; (2)

R
t˛;tˇ
m;k D hmCn�k

.n � k � 1/Š

�
Z tˇ

t˛

�
tˇ � t

�n�k�1
Pm .t/ y.n/ .a C ht; a C ht1; : : : ; a C htm/ dt; (3)

h D .b�a/
mC1 , .b � a/ is the length of integration segment, k D 0; n � 1,

ˇ D 1;m C 1.
Formula (1) in different versions can be used to solve boundary value, eigenvalue,

and Cauchy problems.
The same formula can also be obtained by means of the Lagrange interpolation

formula [2], in which

A
t˛;tˇ
�;k D 1

.n � k � 1/Š
Z tˇ

t˛

�
tˇ � t

�n�k�1
lm� .t/ dt; (4)

where l.m/j .t/ D .t � 1/.t � 2/ : : : .t � m/

.t � j/.j � 1/Š.�1/m�j.m � j/Š
, j D 1;m are Lagrange fundamental

polynomials.
Because of the uniqueness of interpolation polynomials (2) and (4), they are

identical. In the case of equidistant location of interpolation points on the integration
segment tˇ D ˇ, t˛ D 0, formula (2) can be simplified for easy calculations.

2 Semi-Discrete Scheme for the Dirichlet Problem
with a Poisson Equation

One of the methods of solving partial differential equations is the well-known
method of lines [1]. According to this method, in the two-dimensional case, the
discretization of a differential operator is carried out by one independent variable,
and the initial problem is reduced to a system of ordinary differential equations.
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Here, we use the method of lines which is modified with the aid of Mikeladze’s
formula. This modified method establishes the relation between the function u.x; y/
and its second-order partial derivatives by y variable with a constant step h

u.x;�b C ih/ D H0;i
2;0 C h2

mX

�D1
A0;i�;0

@2u.x;�b C �h/

@y2
C R0;im;0.x/; (5)

where

H0;i
2;0 D

1X

�D0

.ih/�

�Š

@�u .x;�b/

@y2
; A0;i�;0 D

Z i

0

.i � t/ � l.m/� .t/ dt (6)

R0;im;0.x/ D hmC2
Z i

0

.i � t/

� Pm .t/
@2u .x;�b C ht;�b C h; : : : ;�b C mh/

@y2
dt: (7)

Let us assume that at any region˝ , the function u.x; y/ has m C2 partial derivatives
with respect to the variable y. Using (5) we obtain

u .x; y C .i C 1/ h/� 2u .x; y C ih/C u .x; y C .i � 1/ h/

D h2
mX

�D1
�2

i A0;i�1�;0

@2u .x; y C �h/

@y2
C�2

i R0;i�1m;0 : (8)

It is required to find a function, which is a solution of the following boundary value
problem

@2u .x; y/

@x2
C @2u .x; y/

@y2
D �f .x; y/; .x; y/ 2 ˝u.x; y/ D 0; .x; y/ 2 �: (9)

Let us cover the region ˝ D f.x; y/ j � a � x � aI �b � y � bg by the lines
y D yi D �b C ih, i D 1;m, which are parallel to the x-axis with the interval h D
2b=.m C 1/. Denote ui .x/ D u .x; yi/ and fi .x/ D f .x; yi/. Each triple of functions
ui�1 .x/ ; ui .x/ ; uiC1 .x/ satisfies equality (8) which we rewrite as follows

�
mX

�D1
.A0;iC1�;0 � 2A0;i�;0 C A0;i�1�;0 /

@2u .x; y/

@y2
ˇ̌
yDy�

C h�2ŒuiC1.x/� 2ui.x/C ui�1.x/� D h�2�riR
0;i
m;0:
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But by virtue of Eq. (9), we have the relation
@2u .x; y/

@y2
ˇ
ˇ
yDy� D �f� .x/ � u00

� .x/.

Substituting this expression into the preceding equality, we obtain the following
system of ordinary differential equations

mX

�D1
.A0;iC1�;0 � 2A0;i�;0 C A0;i�1�;0 /Œu00

� .x/C f� .x/�

C h�2ŒuiC1.x/� 2ui.x/C ui�1.x/� D h�2�riR
0;i
m;0; (10)

x 2 .�a; a/ ; u0 .x/ D umC1 .x/ D 0; ui .˙a/ D 0; i D 1;m;

where

�riR
0;i
m;0 D R0;iC1

m;0
.x/� 2R0;i

m;0
.x/C R0;i�1

m;0
.x/; (11)

Neglecting the remainders and denoting the approximate solutions by vi.x/, we get
the semi-discrete scheme of the modified method of lines

mX

�D1
a.m/i� Œv

00
� .x/C f� .x/�C h�2ŒviC1.x/� 2vi.x/C vi�1.x/� D 0; (12)

where

a.m/i� D A0;iC1�;0 � 2A0;i�;0 C A0;i�1�;0 D �riA
0;i
�;0 (13)

v0 .x/ D vmC1 .x/ D 0; x 2 .�a; a/ ; vi .˙a/ D 0; i D 1;m:

Let us write (10) and (12) in the vector-matrix form

A.U00 C F/C h�2MU D h�2MR; U.˙a/ D 0 (14)

A.V 00 C F/C h�2MV D 0; V.˙a/ D 0; (15)

where

A D Am D Œa.m/ij �
m
i;jD1; M D Mm D Œ1;�2; 1�mi;jD1;

U D .u1.x/; u2.x/; : : : ; um.x//
T ;

V D .v1.x/; v2.x/; : : : ; vm.x//
T ; F D .f1.x/; f2.x/; : : : ; fm.x//

T ;

R D .R0;1m;0.x/;R
0;2
m;0.x/; : : : ;R

0;m
m;0.x//

T :

In the case of equidistant lines, a.m/ij D �riA
0;i
�;0 can be transformed to the

following form, convenient for calculations
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a.m/ij D
Z i

i�1

Z zC1

z
l.m/j .t/ dtdz (16)

a.m/ij D 2

Z 1

0

Z 2z

z
l.m/j .t C i � 1/ dtdz (17)

a.m/ij D
Z 1

0

.1 � x/
h
l.m/j .x C i/C l.m/j .�x C i/

i
dx: (18)

As to the matrices in semi-discrete scheme (15), we may say that Mm D
Œ1;�2; 1�m1 is a three-diagonal non-singular double-symmetric matrix (symmetric
and centrosymmetric), corresponding to the second difference derivative with the
well-studied properties. As to the matrix Am, it is a centrosymmetric matrix with
certain properties, which behaves as a unit matrix. If we multiply matrix-vector
Eq. (15) from the left by M�1 and solve the eigenvalue problem for the matrix
B D M�1A, then the system of differential Eq. (12) splits into m equations with
only one unknown function in each equation and can be solved by the well-known
methods.

3 Order of Approximation

Let us first check whether (12) tends to the initial equation when step h D 2b=
.m C 1/ tends to zero:

lim
h!0

viC1.x/� 2vi.x/C vi�1.x/
h2

D � lim
h!0

mX

�D1
a.m/i� Œv

00
� .x/C f� .x/� :

Expanding the right side of this equality into a Taylor series at the point yi D �bCih,
we obtain

� @2v .x; y/

@y2
ˇ
ˇ
yDy� D

h
f .x; y�/C @2v .x; y�/

@x2

i mX

�D1
a.m/i�

C lim
h!0

m�1X

jD1

hj

jŠ



@jf .x; yi/

@yj
C @jC2v .x; y�/

@x2@yj

�
�

mX

�D1
.� � i/j a.m/i� :

Lemma 3.1. For the numbers A
t˛;tˇ
�;k , the following relation is fulfilled

mX

�D1
.t� � t˛/

� A
t˛;tˇ
�;k D

�
tˇ � t˛

��Cn�k

.�C n � k/Š
�Š; � D 1;m � 1: (19)
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For the considered problem (9), formula (19) .t� D �, t˛ D 0, n D 2, k D 0/ takes
the form

mX

�D1
��A0;i�;0 D i�C2�Š

.�C 2/Š
; � D 0;m � 1 (20)

Since a.m/i� D �2
i A0;i�;0, by (21) we have

mX

�D1
��a.m/i� D

mX

�D1
���2

i A0;i�;0

D �2
i

.i � 1/�C2�Š
.�C 2/Š

D �Š

.�C 2/Š

h
.i � 1/�C2 � 2i�C2 C .i C 1/�C2i

(21)

Using Lemma 3.1 and the properties of binomial coefficients, after some further
simplifications, we come to

� @2v .x; yi/

@y2
D f .x; yi/C @2v .x; yi/

@x2

C 2 lim
h!0

h
mC1
2

i

X

jD1

h2j

.2j C 2/Š



@2jf .x; yi/

@y2j
C@2jC2v .x; yi/

@x2@y2j

�
: (22)

Since this limit equals zero, we obtain the initial Eq. (9).

Using the above notations vi .x/ D v .x; yi/, vi .x/Cfi .x/ D � @2v.x;y/
@y2

ˇ̌
yDyi in (12)

and expanding the unknown function and its second derivative by y into a Taylor
series at the point y D y0 D �b, we have

v .x; yi/ D
mC1X

�D1

.ih/�

�Š

@�v .x;�b/

@y�
C O

�
hmC2�

@2v .x; y�/

@y2
D

m�1X

�D0

.�h/�

�Š

@�C2v .x;�b/

@y�C2 C O .hm/ : (23)

Let us substitute (23) into (12), then

mX

�D1
a.m/i�

(

�
m�1X

�D0

.�h/�

�Š

@�C2v .x;�b/

@y�C2 C O .hm/

)

C h�2
(

mC1X

�D0

h�

�Š

@�v .x;�b/

@y�

h
.i C 1/� � 2i� C .i � 1/�

i
)

C O .hm/
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D
m�1X

�D0

h�

�Š

@�C2v .x;�b/

@y�C2

 

�
mX

�D1
��a.m/i�

!

C
m�1X

�D0

h�

.�C 2/Š

@�C2v .x;�b/

@y�C2 �2
i .i � 1/�C2 C O .hm/ :

By (21) we have

D
m�1X

�D0

h�

�Š

@�C2v .x;�b/

@y�C2

(

��2
i

.i � 1/�C2 �Š
.�C 2/Š

C�2
i

.i � 1/�C2

.�C 1/ .�C 2/

)

C O .hm/ :

Lemma 3.2. If the solution of problem (9) u.x; y/ 2 CmC2
�
˝
�
, then the approxi-

mation error of the modified method of lines is of m-th order.

4 Convergence

Let Z D U � V be the error of the modified method of lines. Using this notation
and subtracting (12) from (10), for the error Z we obtain the following system of
equations

mX

�D1
a.m/i� z00

� .x/C h�2ŒziC1.x/ � 2zi.x/C zi�1.x/� D h�2�riR
0;i
m;0; (24)

z0 .x/ D zmC1 .x/ D 0; x 2 .�a; a/ ; zi .˙a/ D 0; i D 1;m;

where R0;im;0, i D 1;m, is given by expression (7) and the matrix-vector form of this
system is

AZ00.x/C h�2MZ.x/ D h�2MR; Z.˙a/ D 0; (25)

Z D .z1.x/; z2.x/; : : : ; zm.x//; R D .R0;1m;0.x/;R
0;2
m;0.x/; : : : ;R

0;m
m;0.x//

T :

Let us multiply (25) by Z from the right using the scalar product formula (26) for
the semi-discrete schemes

.U;V/
˝�_

!
D
Z a

�a
.U;V/_

!
dx D

Z a

�a

mX

iD1
hui .x/ vi .x/ dx (26)

Z a

�a

�
AZ00;Z

�
dx C h�2

Z a

�a
.MZ;Z/ dx D h�2

Z a

�a
.MR;Z/ dx: (27)
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Let us use Green’s first formula to transform the first addend of (27) as follows

Z a

�a

�
AZ00;Z

�
dx D

Z a

�a

mX

iD1
h

� mX

jD1
a.m/ij z00

j .x/

�
� zi .x/ dx

D
Z a

�a

mX

iD1
h


 mX

jD1
a.m/ij .�z0

j .x//z
0
i .x/C zi .x/ z0

j .x/
ˇ̌
a�a

�
dx

D �
Z a

�a

mX

iD1
h

� mX

jD1
a.m/ij z0

j .x/

�
z0

i .x/ dx D �
Z a

�a

�
AZ0;Z0� dx:

(28)

It is known that the matrix .�M/ is positive definite. Besides, by direct
calculations we see that .AZ;Z/ � �2 .Z;Z/ when m � 5: Taking into account (28)
and a fact that matrices A and .�M/ are positive definite, from (27) we obtain

h�2
Z a

�a
.�MZ;Z/ dx � h�2

Z a

�a
.�MR;Z/ dx: (29)

Let us consider

h�2
Z a

�a
.�MZ;Z/ dx D �

Z a

�a

�
Zyy;Z

�
dx

D
Z a

�a

�
Zy;Zy

�
dx D ��Zy

��2
˝�_

!
: (30)

Similarly, for the right-hand side of inequality (29), we have

h�2
Z a

�a
.�MR;Z/ dx D

Z a

�a

�
Ry;Zy

�
dx: (31)

By virtue of the Cauchy–Buniakowski inequality, we obtain

Z a

�a

�
Ry;Zy

�
dx �

�Z a

�a

�
Ry;Ry

�2
dx

� 1
2

�
�Z a

�a

�
Zy;Zy

�2
dx

� 1
2

D �
�Ry

�
�
˝�_

!
� ��Zy

�
�
˝�_

!
: (32)

Using (31) and (32), we get h�2 R a
�a .�MR;Z/ dx � �

�Ry

�
�
˝�_

!
� ��Zy

�
�
˝�_

!
.

Then (29) with (30) and last relation will give the following inequality:
�
�Zy

�
�
˝�_

!
��

�Ry

�
�
˝�_

!
. Thus, the convergence rate estimate in the difference-continuous norm

W1
2 reduces to the estimate of the first difference derivative norm of remainder

(7) [4].
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Theorem 4.1. If the solution of problem (9) u.x; y/ 2 W1
2 .˝/, then for the error

of the semi-discrete scheme of lines (15) in the difference-continuous norm W1
2 the

following estimate holds:

�
�Zy

�
�
˝�_

!
���Ry

�
�
˝�_

!
�C

�
4e2b

m C 1

�m�2
jujWmC2

2 .˝/
; m � 5; CD 16b3e5

�

r
2

3�
:

Appendix: Examples of Centrosymmetric Matrices

Elements of inverse of the three-diagonal Mm D Œ1;�2; 1�m1 matrix M�1 Dh
m�1

ij

im

i;jD1 are:

m�1
ij D � 1

m C 1

8
ˆ̂
<

ˆ̂
:

i .m C 1 � j/ ; i < j

i .m C 1 � i/ ; i D j

.m C 1 � i/ j; i > j

A1 D I1 and A2 D I2 are unit matrices. In general, Am behaves as a unit matrix [3].
It is easy to notice for m D 3, m D 4, and for m D 5 that

A3 D 1

12

2

4
13 �2 1
1 10 1

1 �2 13

3

5 D I3 C 1

12

2

4
1 �2 1
1 �2 1
1 �2 1

3

5 ;

A�1
3 D 1

12

2

4
11 2 �1
�1 14 �1
�1 2 11

3

5 D I3 � 1

12

2

4
1 �2 1
1 �2 1
1 �2 1

3

5 :

A4 D 1

12

2

6
6
4

14 �5 4 �1
1 10 1 0

0 1 10 0

�1 4 �5 14

3

7
7
5 D I4 C 1

12

2

6
6
4

2 �5 4 �1
1 �2 1 0

0 1 �2 0

�1 4 �5 2

3

7
7
5 ;

A�1
4 D 1

12

2

6
6
4

10 5 �4 1

�1 14 �1 0

0 �1 14 �1
1 �4 5 10

3

7
7
5 D I4 � 1

12

2

6
6
4

2 �5 4 �1
1 �2 1 0

0 1 �2 0

�1 4 �5 2

3

7
7
5 :
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A5 D 1

720

2

6
6
6
6
6
4

897 �528 582 �288 57
57 612 42 12 �3
�3 72 582 72 �3
�3 12 42 612 57

57 �288 582 �528 897

3

7
7
7
7
7
5

D I5 C 1

720

2

6
6
6
6
6
4

177 �528 582 �288 57
57 �108 42 12 �3
�3 72 �138 72 �3
�3 12 42 �108 57
57 �288 582 �528 177

3

7
7
7
7
7
5

A�1
5 D 1

720

2

6
6
6
6
6
4

548 508 �552 268 �52
�52 808 �12 �32 8

8 �92 888 �92 8

8 �32 �12 808 �52
�52 268 �552 508 548

3

7
7
7
7
7
5

D I5 � 1

720

2

66
6
6
6
4

172 �508 552 �268 52
52 �88 12 32 �8
�8 92 �168 92 �8
�8 32 12 �88 52

52 �268 552 �508 172

3

77
7
7
7
5
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Parabolic Obstacle Problem with Measurable
Coefficients in Morrey-Type Spaces

Lubomira G. Softova

Abstract We consider obstacle problem related to linear divergence form parabolic
system with measurable coefficients in domain with irregular boundary. Supposing
that the data of the problem and the obstacle belong to Morrey-type space, we get
Calderón–Zygmund type estimate for the gradient of the solution.

Keywords Parabolic systems • Obstacle • Morrey-type spaces • Measurable •
Coefficients • Small BMO • Reifenberg-flat domain

Mathematics Subject Classification (2000): Primary 35K87, secondary 35B65,
35R05, 46E30

1 Introduction

The obstacle problem for partial differential equations arises naturally in the
classical elasticity theory as one of the simplest unilateral problems in the study of
mechanics of elastic membranes. Roughly speaking, it aims to find the equilibrium
position of an elastic membrane, the boundary of which is keeping fixed and which
is constrained to stay above a prescribed obstacle. More generally, the obstacle
problems provide a basic analytic tool in the study of variational inequalities and
free boundary problems for PDEs. They are involved in various geometric and
potential theory problems such as capacities of sets or minimal surfaces. We refer
the reader to the classical texts [9, 10, 13, 14] for more details.

Our work is motivated by the recent papers [1, 2, 19], where the authors devel-
oped the Calderón-Zygmund theory for nonlinear elliptic and parabolic problems
with irregular obstacles. To the difference of [1, 2, 19], we deal with differential
operators with rough coefficients having quite arbitrary discontinuities in one
direction. This situation is closely related to the equilibrium equations of linearly
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elastic laminates and composite materials. Even if there have been recently a lot
of works in this direction, most of the obtained results consider single equations
without obstacles; see [3–5, 7, 8, 12, 16, 17].

Another difference with the cited results consists of the fact that we derive
estimate for the gradient of the solution in the framework of the generalized Morrey-
type spaces under possibly more general assumptions on the weight function
extending in such a way the results obtained in [6, 12]. Regarding the considered
non-smooth domain, we suppose that it is flat in the sense of Reifenberg [18].
Roughly speaking, this means that the boundary is well approximated by hyper-
planes at each point and at each scale. This is a sort of “minimal regularity” of the
boundary that guarantees the validity of the main results of the geometric analysis.
For instance, C1 or Lipschitz domains with small Lipschitz constant belong to
that category. The class of Reifenberg-flat domains goes beyond these common
examples and contains domains with rough fractal boundaries such as the von Koch
snowflake. In addition, domain which is flat in the sense of Reifenberg is also
Jones’flat and possesses the extension properties (see [18, 20]).

Turning back to our problem, let ˝ be a bounded domain in Rn; n � 2 and Q D
˝ � .0;T�;T > 0 be a cylinder. Denote by @Q the usual parabolic boundary

˚
˝ �

ft D 0g�[˚@˝�Œ0;T��. Hereafter, we adopt the standard summation convention on
the repeated indexes, with 1 � ˛; ˇ � n, and 1 � i; j � m where m � 1. The letter
c will denote a positive constant that varies from one appearance to another and can
be calculated explicitly in terms of known quantities as �;�;m; n; p, and jQj.

This announce extends some recent results obtained in [6] in collaboration with
S.-S. Byun. We study obstacle problem related to the system

ui
t � D˛

�
A˛ˇij .x; t/Dˇuj

� D �D˛f ˛i .x; t/ in Q : (1)

The obstacle is given by vector function  D . 1; : : : ;  m/ W Q ! Rm with the
same kind of regularity as the weak solution of (1):

(
 2 L2.0;TI H1.˝;Rm//;  t 2 L2.0;TI H�1.˝;Rm/;

 i � 0 a:e:on @Q; i D 1; : : : ;m:
(2)

Further, we define admissible set A consisting of vector functions:

(
u 2 C0.0;TI L2.˝IRm//\ L2.0;TI H1

0.˝;R
m//

ui.�; 0/ D 0 a:e:in ˝: ui �  i a:e:in Q :

The function u 2 A is called weak solution to the obstacle problem related to
(1)–(2) if for all � 2 A with �t 2 L2.0;TI H�1.˝;Rm// the variational inequality
holds
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Z T

0

h� i
t ; �

i � uii dtC
Z

Q
A˛ˇij .x; t/Dˇuj � D˛

�
� i � ui

�
dxdt

�
Z

Q
f ˛i .x; t/ � D˛

�
� i � ui

�
dxdt : (3)

We assume that the coefficients A˛ˇij W Q ! Rmn�mn are uniformly elliptic and
uniformly bounded, namely, there exist positive constants � and � such that

kA˛ˇij kL1.Q/ � � and �j�j2 � A˛ˇij .x; t/�
i
˛�

j
ˇ; a:e: in Q (4)

for all matrices � 2 Mm�n.
According to the classical theory and some recent results [1, 2, 9], if F 2

L2.Q;Rm�n/, there exists a unique weak solution u 2 A of (3) satisfying

kDukL2.Q/ � c
�kFkL2.Q/ C k tkL2.Q/ C kD kL2.Q/

�
: (5)

2 Generalized Parabolic Morrey-type Spaces

Let us describe the spaces that we are going to use. We consider parabolic cylinders
Ir.y; �/ D Br.y/ � .� � r2; � C r2/ with respect to the classical parabolic metric
and cylinders Cr in which we isolate the variable x1

Cr.y; �/ D ˚
.x1; x0; t/ 2 R

nC1 W jx1 � y1j < r; jx0 � y0j < r; jt � � j < r2
�
:

For some fixed x1 2 .y1 � r; y1 C r/, we consider the x1-slice of Cr:

C x1
r .y

0; �/ D ˚
.x0; t/ 2 R

n�1 � R W .x1; x0; t/ 2 Cr.y; �/
�
:

Taking now the �-slice of Cr, we get the cube:

C �
r .y/ D ˚

.x1; x0/ 2 R
n W jx1 � y1j < r; jx0 � y0j < r

�
:

We call weight positive and measurable function ' W RnC1 � RC ! RC.

Definition 1. Let Q be a cylinder in RnC1. A function f 2 Lq.Q/; 1 < q < 1;

belongs to the generalized Morrey-type space Lq;' .Q/ if the following norm is finite

kf kLq;' .Q/ D sup
.y;� /2Q

r>0

�
1

'.Ir.y; �//

Z

Qr

jf .x; t/jq dxdt

� 1
q

:
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These spaces are widely studied under various conditions on ' (see [11, 12, 15] and
the references therein). Let f 2 L1loc.R

nC1/ and

M f .y; �/ D sup
r>0

1

jIr.y; �/j
Z

Ir.y;�/
jf .x; t/j dxdt

be the Hardy-Littlewood maximal operator. It is well known that M is bounded in
the Lebesgue and Morrey spaces. Moreover, it is bounded also in Lp;' for various ';
[11, 12, 15]. Here we need the following result.

Lemma 1 (Maximal inequality, [12]). Assume that there is a positive constants �
such that for any fixed .y; �/ 2 RnC1 and any r > 0 holds true

sup
r<s<1

essinf
s<�<1'.I� .y; �//�nC2

snC2 � �
'.Ir.y; �//

rnC2 : (6)

Then there is a constant cq > 0 such that for any q 2 .1;1/

kf kLq;' .RnC1/ � kMf kLq;' .RnC1/ � cqkf kLq;' .RnC1/ 8 f 2 Lq;' .RnC1/ :

Imposing in addition a monotonicity condition on '; precisely

'.Ir.y; �// � '.Is.z; �// for all Ir.y; �/ � Is.z; �/ (7)

we get the estimate

sup
.y;� /2Q

r>0

jIr.y; �/ \ Qj
' .Ir.y; �//

� �1; (8)

with �1 > 0 depending on n, ', and Q [5, 12]. Then the Hölder inequality implies

kf k2L2.Q/ � c.n; p; jQj; '/kf kLp;' .Q/ : (9)

3 Statement of the Problem and Main Result

Definition 2. We say that .A˛ˇij ;˝/ are .ı;R/-vanishing of codimension 1; if:

i) For every fixed .y; �/ 2 Q and r 2 .0; 1
3
R�, there exists a new coordinate system

.x; t/ centered in .y; �/ 	 .0; 0/ such that

1

jC3r.0; 0/j
Z

C3r.0;0/

jA˛ˇij .x; t/ � A
˛ˇ

ij C x1
3r .0;0/

.x1/j2 dxdt � ı2 (10)

where A
˛ˇ

ij C x1
3r .0;0/

.x1/ is the integral average of A˛ˇij over C x1
3r .0; 0/.
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ii) For every fixed .y; �/ 2 Q and r 2 .0; 1
3
R� such that dist.y; @˝/ D dist.y; x0/ �p

2r with x0 2 @˝ , there exists a coordinate system .x; t/ in which .x0; �/ 	
.0; 0/ is the origin and ˝ verifies the Reifenberg condition illustrated on the
graphic:

˝ \ fx 2 C �
3r.0/ W x1 > 3rıg � ˝ \ C �

3r.0/ � ˝ \ fx 2 C �
3r.0/ W x1 > �3rıg :

The part i) means that the coefficients have small mean oscillation (small BMO)
with respect to .x0; t/, while in x1 they are only measurable and could have arbitrary
jump. The second part of the definition asserts that ˝ is .ı;R/-Reifenberg flat
domain (see [18, 20]). Moreover, it implies (cf. [16, 17]) that there is a constant
0 < ˛ D ˛.ı; n; @˝/ < 1

2
such that

˛ jC �
3r.x0/j � jC �

3r.x0/\˝j � .1 � ˛/jC �
3r.x0/j :

We prove the following result (see [6] for details).

Theorem 1. For any given p 2 .2;1/ and weight ' satisfying (6)–(7), suppose
that jFj2; j tj2; jD j2 2 L

p
2 ;'.Q/. Let u 2 A be a solution of (3)–(4). Then there

exists a small constant ı D ı.�;�;m; n; p; '/ > 0 such that if
�
A˛ˇij ;˝

�
are .ı;R/-

vanishing of codimension 1, then jDuj2 2 L
p
2 ;'.Q/ and

��jDuj2��
L

p
2 ;'.Q/

� c
���jFj2��

L
p
2 ;'.Q/

C ��j tj2
��

L
p
2 ;'.Q/

C ��jD j2��
L

p
2 ;' .Q/

�
: (11)

Let us note that (5) and (9) ensure the existence of unique weak solution of (3).
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4 Auxiliary Results

In this section, we give several preliminary results that we need in order to prove
the main theorem (see [5–7] for details). Our approach is based on the Vitali
covering lemma and estimates of the upper level sets of the maximal function of
the gradient M .jDuj2/. Fix .y0; �0/ 2 Q; take a cylinder Ir.y0; �0/, and consider
Qr D Ir.y0; �0/\ Q. For any solution u of (3), we define the upper level sets

C Df.x; t/ 2 Qr W M .jDuj2/ > N2g ;
D Df.x; t/ 2 Qr W M .jDuj2/ > 1g [ f.x; t/ 2 Qr W M .jFj2/ > ı2g

[ f.x; t/ 2 Qr W M .j tj2 C jD j2/ > ı2g ; (12)

C � D � Qr for N > 1 :

For any .y; �/ 2 C and for each � > 0, we define the measure function

$.�/ D jC \ C�.y; �/j
jC�.y; �/j 2 C0.0;1/; lim

�!0C

$.�/ D 1; lim
�!C1$.�/ D 0 :

Lemma 2. Suppose that there exists " 2 .0; 1/ for which $.1/ < ". Then the

following estimate holds jCj � "
�
10

p
2

1�ı
�nC2 jDj .

Moreover, for those � for which$.�/ � " holds the inclusion Qr \C�.y; �/ � D.

The estimate follows by the Vitali covering lemma applied to a set of mutually
disjoint cylinders fC�i.yi; �i/g such that .yi; �i/ 2 C and $.�i/ D " (see [6,
Lemma 4.1]). The inclusion can be proved as in [6, Lemma 5.1] using localizable
solutions studied in [19].

The next result comes from the measure theory and has been proven in various
functional spaces (see [5, 6, 12]).

Lemma 3. Let h 2 L1.Q/ be a nonnegative function, q 2 .1;1/ and � > 0; 
 > 1
be constants. Then h 2 Lq;' .Q/ if and only if

S WD sup
.y;� /2Q

r>0

X

k�1


 kqjf.x; t/ 2 Qr W h.x; t/ > �
 kgj
'.Ir.y; �//

< 1 :

Moreover, there exists c D c.
; �; q; ';Q/ such that 1cS � khkq
Lq;' .Q/ � c.1C S / .

Fixing " > 0 as in Lemma 2, we obtain a power decay estimate for the upper level
sets of the maximal function of Du.
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Lemma 4. Suppose $.1/ < " for some " 2 .0; 1/; then for each .y; �/ 2 Qr and
each positive integer k; we have

ˇ
ˇ˚.x; t/ 2 Qr W M .jDuj2/ > N2k

�ˇˇ � �k
1

ˇ
ˇ˚.x; t/ 2 Qr W M .jDuj2/ > 1�ˇˇ

C
kX

iD1
�i
1

ˇ
ˇ˚.x; t/ 2 Qr W M .jFj2/ > ı2N2.k�i/

��
(13)

C
kX

iD1
�i
1

ˇ̌˚
.x; t/ 2 Qr W M .j tj2 C jD j2/ > ı2N2.k�i/

�ˇ̌

with �1 D "
�
10

p
2

1�ı
�nC2

.

The Lemma 2 ensures the validity of (13) for k D 1. Further, the proof follows by
induction.

To get (11), we use the invariance of the problem under scaling and normaliza-
tion. This property follows by straightforward calculations.

Proof (Theorem 1). By suitable change of the functions, we make the norms of F
and  small enough. Precisely, taking

K 	 kjFj2k
L

p
2 ;'.Q/

C kj tj2k
L

p
2 ;'.Q/

C kjD j2k
L

p
2 ;' .Q/

we define

Qu D ıu.x; t/p
K

; eF D ıF.x; t/p
K

; Q D ı .x; t/p
K

: (14)

Consider now upper level sets C and D defined for Qu. For each .y; �/ 2 C, we have

$.1/ � cjC j � c
Z

Qr

M .jD Quj2/ dxdt � c
Z

Q

�jeFj2 C j Q tj2 C jD Q j2� dxdt

� c
�
keFj2k

L
p
2 ;' .Q/

C k Q tj2k
L

p
2 ;'.Q/

C kD Q j2k
L

p
2 ;'.Q/

�
� cı2 < " :

Now applying Lemma 3 with h D M .jD Quj2/; 
 D N2; � D 1; q D p
2
; and

Lemma 4, we get

† 	
1X

kD1

N2k p
2

ˇ̌˚
.x; t/ 2 Qr W M .jD Quj2/ > N2k

�ˇ̌

'.Ir.y; �//

�
1X

kD1

Nkp�k
1

ˇ
ˇ˚.x; t/ 2 Qr W M .jD Quj2/ > 1�ˇˇ

'.Ir.y; �//
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C
1X

kD1
Nkp

kX

iD1

�i
1

ˇ
ˇ˚.x; t/ 2 Qr W M .jeFj2/ > ı2N2.k�i/

�ˇˇ

'.Ir.y; �//

C
1X

kD1
Nkp

kX

iD1

�i
1

ˇ
ˇ˚.x; t/ 2 Qr W M .j Q tj2 C jD Q j2/ > ı2N2.k�i/

�ˇˇ

'.Ir.y; �//

�
1X

kD1
.Np�1/

k jQrj
'.Ir.y; �//

C
1X

iD1
.Np�1/

i
1X

kDi

N.k�i/p

ˇ
ˇ˚.x; t/ 2 Qr W M .jeFj2/ > ı2N2.k�i/

�ˇˇ

'.Ir.y; �//
„ ƒ‚ …

†0

C
1X

iD1
.Np�1/

i
1X

kDi

N.k�i/p

ˇ
ˇ˚.x; t/ 2 Qr W M .j Q tj2 C jD Q j2/ > ı2N2.k�i/

�ˇˇ

'.Ir.y; �//
„ ƒ‚ …

†00

�
1X

kD1
.Np�1/

k ��1 C†0 C†00�

where we have used (8) in the last step. By the auxiliary Lemmas, we get

†0 � c

'.Ir.y; �//

�
jQrj C

Z

Qr

jeF.x; t/jp

ıp
dxdt

�

†00 � c

'.Ir.y; �//

�
jQrj C

Z

Qr

j Q t.x; t/jp C jD Q .x; t/jp

ıp
dxdt

�
:

Unifying the above estimates, applying again (8) and (14), and taking the supremum
of † over .y0; �0/ 2 Q and r > 0, we get

S � c
1X

kD1
.Np�1/

k


1C 1

ıp
keFkp

Lp;' .Q/ C 1

ıp

�
k Q tkp

Lp;' .Q/ C kD Q kp
Lp;' .Q/

��

� c
1X

kD1
.Np�1/

k :

Taking " small enough such that Np�1 � Npc1" < 1, we get S < 1 and in view of
Lemma 2 and (14), we get (11) through the maximal inequality.
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Chebyshev Spectral Approximation
for Diffusion Equations with Distributed
Order in Time

Maria Luísa Morgado and Magda Rebelo

Abstract In this work we provide a numerical method for the diffusion equation
with distributed order in time. The basic idea is to expand the unknown function
in Chebyshev polynomials for the time variable t and reduce the problem to
the solution of a system of algebraic equations, which may then be solved by
any standard numerical technique. We apply the method to the forward and
backward problems. Some numerical experiments are provided in order to show
the performance and accuracy of the proposed method.

Keywords Fractional differential equation • Caputo derivative • Diffusion equa-
tion • Chebyshev polynomials • Distributed order equation

Mathematics Subject Classification (2000): 26A33, 41A50

1 Introduction

In the last decades, lots of attention has been devoted to the time fractional diffusion
equation (TFDE), namely, the one in the Caputo sense:

@˛u.t; x/

@t˛
D D

@2u.t; x/

@x2
C f .t; x/; 0 < t � a; 0 < x < b; (1)

where 0 < ˛ < 1 and the fractional Caputo derivative is defined by [2]
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@˛u.t; x/

@t˛
D 1

�.1� ˛/

Z t

0

.t � s/�˛
@nu.s; x/

@sn
ds; (2)

where n is the smallest integer greater than or equal to ˛. The TFDE has been found
in a broad variety of engineering, biological, finance, and physical processes where
anomalous diffusion (AD) occurs (see, e.g., [6, 8, 10]). More recently, a general
equation has attracted the scientific community, the distributed-order time fractional
diffusion equation, given by

Z 1

0

c.˛/
@˛u.t; x/

@t˛
d˛ D @2u.t; x/

@x2
C f .t; x/; 0 < t � a; 0 < x < b; (3)

where the function c.˛/ acting as weight for the order of differentiation is such that

[7, 9] c.˛/ � 0 and
Z 1

0

c.˛/ d˛ D C > 0: Obviously, if c.ˇ/ D 1

D
if ˇ D ˛ and

0 otherwise, then (3) reduces to (1).
Here, we will be interested in the numerical approximation of this type of

distributed-order equations with boundary conditions of Dirichlet type:

u.t; 0/ D �0.t/; u.t; b/ D �b.t/; 0 < t < a; (4)

and we will distinguish the following two problems: a forward problem (FDODE)
where (3) and (4) is subject to an initial condition

u.0; x/ D g0.x/; 0 < x < b; (5)

and a backward problem (BDODE), the case where (5) is replaced with the terminal
condition

u.a; x/ D ga.x/; 0 < x < b: (6)

Numerical methods are crucial for this kind of fractional differential equations,
since only in a very few special cases, the analytical solutions can be found.
While the methods developed for TFDEs are already relatively wide, the same
cannot be said for the distributed-order diffusion equation case, since, to the
best of our knowledge, only a few works have been reported. In [4] an implicit
finite-difference method has been derived for the one-dimensional distributed-order
diffusion equation; in [11] the same idea has been followed for the numerical
approximation of nonlinear reaction-diffusion equations with distributed order
in time. In [12] a numerical scheme has been developed for the solution of
a distributed-order diffusion equation containing also a fractional derivative in
space. In [5], a finite-difference method was presented for the two-dimensional
distributed-order diffusion equation, together with an extrapolation technique to
improve the convergence orders in time. In all these papers, only finite-difference
approximations have been considered for the fractional time derivative, which may



Chebyshev Approximation for Distributed-Order Diffusion Equations 257

become heavy from the computational point of view, due to the nonlocal property
of fractional differential operators. Moreover, in all of these works, only forward
problems have been investigated.

Here we will follow an alternative approach: we consider a Chebyshev poly-
nomial approximation of the fractional derivatives. The paper is organized in the
following way: we start with a section devoted to some preliminary results that will
be used in the forthcoming sections. In Sect. 3 we describe the numerical method
and we end with some numerical examples and some conclusions.

2 Preliminaries

In this section we present some auxiliary results that will be used in the derivation
of the numerical scheme. For the approximation of the integral term, we will
use Gaussian quadrature. N-point Gaussian quadrature rules are a special class of
quadrature formulas that yield the exact value of a definite integral for integral
functions that are polynomials of degree less than or equal to .2N � 1/.This can
be achieved by suitable choices of the points xi and weights !i, i D 1; : : : ;N.
These rules are conventionally given in the interval Œ�1; 1� and may be given by
Z 1

�1
f .x/ dx Š

NX

iD1
!if .xi/. Obviously other intervals can be considered by using

proper variable substitutions. In our case, since we are dealing with the interval
Œ0; 1�, it is easy to see that

Z 1

0

f .x/ dx D 1

2

Z 1

�1
f

�
t C 1

2

�
dt Š 1

2

NX

jD1
!jf

�
tj C 1

2

�
:

Lemma 1 ([1]). If f 2 C.2N/.Œ0; 1�/, then with �N D .NŠ/4

.2N C 1/Œ.2N/Š�3

 ˘

4N
, we

have:

Z 1

0

f .x/ dx � 1

2

NX

jD1
!jf

�
tj C 1

2

�
D �N

f .2N/.cN/

.2N/Š
; 0 � cN � 1:

As we have mentioned in the Sect. 1, we will use Chebyshev polynomials to
approximate the fractional derivatives. Chebyshev polynomials of degree n, Tn.z/
are defined in the interval Œ�1; 1�.

In order to use them in the interval Œ0; a�, we introduce the change of variable
z D 2t=a � 1 and obtain the so-called shifted Chebyshev polynomials Ta;n.t/ D
Tn

�
2t

a
� 1

�
. These shifted Chebyshev polynomials can also be obtained from the

following expression (see [3]):
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Ta;n.t/ D n
nX

kD0
.�1/n�k 2

2k.n C k � 1/Š

.2k/Š.n � k/Šak
tk; n D 1; 2; : : : ;

where

Ta;i.0/ D .�1/i and Ta;i.a/ D 1; (7)

and satisfy the following orthogonality relation:

Z a

0

Ta;j.t/Ta;k.t/!a.t/dt D ıkjhk;

where !a.t/ D 1p
at � t2

and h0 D � , hk D �
2

, k D 1; 2; : : :.

A function y.t/ belonging to the space of square integrable functions on Œ0; a� may
be expressed as

y.t/ D
1X

iD0
ciTa;i.t/; (8)

where the coefficients ci are given by

ci D < y.t/;Ta;i.t/ >

kTa;ik2 D 1

hi

Z a

0

y.t/Ta;i.t/!a.t/ dt; i D 0; 1; 2; : : : :

For computational purposes, only the first .m C 1/ terms in (8) are considered:

ym.t/ D
mX

iD0
ciTa;i.t/; t 2 Œ0; a�; (9)

and the following result holds:

Theorem 1 ([3]). Let y.t/ be a square integrable function on Œ0; a�. Then, given
m 2 N, y.t/ may be approximated by ym.t/, defined by (9), and for ˛ > 0, we have

D˛ym.t/D
mX

iDd˛e

iX

kDd˛e
ciw

.˛/
i;k tk�˛; w.˛/i;k D .�1/i�k22ki.iCk�1/Š� .kC1/

.i�k/Š.2k/Š� .kC1�˛/ak
(10)

and the error jE.m/j D jD˛y.t/ � D˛ym.t/j �
1X

iDmC1
ci

0

@
iX

kDd˛e

k�d˛eX

jD0

i;j;k

1

A ;
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where, for h0 D 2, hj D 1; j D 1; 2; : : : ;


i;j;k D .�1/i�k2i.i C k � 1/Š�
�
k � ˛ C 1

2

�

hj�
�
k C 1

2

�
.i � k/Š� .k � ˛ � j C 1/� .k C j � ˛ C 1/a˛

:

3 Numerical Method

In the derivation of the numerical method, we proceed as in the classical (integer
order) case. Let

u.t; x/ 
 um.t; x/ D
mX

iD0
vi.x/Ta;i.t/; (11)

Using a Gaussian quadrature formula with n points, (9) and (10), we obtain

1

2

nX

jD1
!jc

�
ˇj C 1

2

� mX

iDd ˇjC1

2 e

i�d ˇjC1

2 eX

kD0
vi.x/w

�
ˇjC1

2

�

i;k ti�k� ˇjC1

2 D
mX

iD0
Rvi.x/Ta;i.t/Cf .x; t/:

(12)

Note that in this case ˇjC1
2

2 Œ0; 1�; jD1; : : : ; n, and then

�
ˇjC1
2

�
D 1; jD1; : : : ; n.

Now, we collocate Eq. (12) at m points tp. For collocation points, we use the roots
of the shifted Chebyshev polynomial of degree m, Ta;m.t/:

1

2

nX

jD1
!jc

�
ˇj C 1

2

� mX

iD1

i�1X

kD0
vi.x/w

�
ˇjC1

2

�

i;k t
i�k� ˇjC1

2
p D

mX

iD0
Rvi.x/TL;i.tp/C f .x; tp/;

p D 0; : : : ;m � 1: (13)

We obtain in this way m ordinary differential equations on the .mC1/ unknowns
vi.x/; i D 0; : : : ;m.

Using the fact that Ta;i.0/ D .�1/i and taking the initial condition (5) into
account, we obtain the extra equation:

mX

iD0
.�1/ivi.x/ D g0.x/: (14)

Alternatively, since Ta;i.a/ D 1, from the terminal condition (6), we obtain
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mX

iD0
vi.x/ D ga.x/ (15)

On the other hand, by substituting (11) on the boundary conditions (4), we obtain

mX

iD0
vi.0/Ta;i.t/ D �0.t/; (16)

mX

iD0
vi.b/Ta;i.t/ D �b.t/: (17)

At the collocation points tp; p D 0; : : : ;m � 1, (16) and (17) are as follows:

mX

iD0
vi.0/Ta;i.tp/ D �0.tp/; p D 0; : : : ;m � 1; (18)

mX

iD0
vi.b/Ta;i.tp/ D �b.tp/; p D 0; : : : ;m � 1: (19)

Therefore, in order to obtain the functions fvigm
iD0 that define the approximate

solution of the forward problem (3), (4), (5), we must solve the system of differential
equations (13)–(14), with boundary conditions (18) and (19).
In order to obtain an approximate solution of the backward problem (3), (4), (6),
we must solve the system of differential equations (13)–(15), with boundary
conditions (18) and (19).

4 Numerical Results

In this section, we apply the proposed method to solve some examples for which the
analytical solution is known. We define the absolute error at the point .t; x/ by

em.t; x/ D ju.t; x/� um.t; x/j; .t; x/ 2 Œ0; a� � Œ0; b�:

Example 1. Forward problem:

c.˛/ D �

�
5

2
� ˛

�

f .t; x/ D
p

t.x � 1/2
�
3
p
�.t � 1/.x � 1/2x2 � 8t.5x.3x � 2/C 1/ log.t/

�

4 log.t/
;

with analytical solution given by u.x; t/ D t3=2x2.1 � x/4; .t; x/ 2 Œ0; 1� � Œ0; 1�.
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Fig. 1 Example 1: pointwise absolute error at the points .t; x/ 2 Œ0; 1� � Œ0; 1� for several values
of m. From left to right: m D 3, m D 5, m D 7, m D 9

In order to approximate the integral that defines the distributed-order derivative,
we will use a 3-point Gaussian quadrature formula.

In Fig. 1 the domain pointwise absolute errors are displayed. We see that the
pointwise error goes up to the order of 2� 10�4; 4� 10�5; 1� 10�5; and 4� 10�6
if we consider on the series expansion of u, (11), m D 3; m D 5; m D 7; and
m D 9, respectively. This shows that the numerical solutions are in good agreement
with the exact solutions, and we have more accuracy if we consider more terms on
the series approximation (11) of u.

As a second example we consider, a backward problem which is defined by

Example 2. Backward problem

c.˛/ D �

�
7

2
� ˛

�

f .t; x/ D t3=2
�
15

p
�.t � 1/x.x � 1/2 C 16t.2 � 3x/ log.t/

�

8 log.t/
;

with analytical solution given by u.t; x/ D t5=2.1� x/2x; .t; x/ 2 Œ0; 1� � Œ0; 1�.
In these backward problems, the unknown solution u.x; t/ has to be determined

from the boundary measurements �0.t/ and �b.t/ and terminal time measurement
ga.x/, which normally contain noises in practical problems. Thus, in order to test
the proposed method, first we apply the method, with several values of m, to the
second example without noise on the data and then we apply the method with some
noise on the boundary and terminal data.

The comparison results between u.0; x/ and um.0; x/ are displayed in Table 1,
for several values of x 2 Œ0; 1� and m D 1; 3; 5; 7 and 9. From the results in
Table 1, it can be observed that the error is smaller for the biggest value of m that we
consider. Thus, the overall errors can be made smaller by adding new terms from
the series (11) that approximate u.t; x/.

Now, we consider Example 2 with several levels of noise, ıD10�i; iD2; : : : ; 5,
on the boundary and terminal data: Nga.x/Dga.x/Cı; N�0.t/D�0.t/Cı; N�b.t/
D�b.t/Cı. In Fig. 2 we show the absolute error at points .x; 0/; x 2 Œ0; 1� obtained
for the approximation (11) with m D 5 and several levels of noise. It can be
observed that the noise has influence on the numerical results.
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Table 1 Example 2: the absolute errors related with the approximate solutions
um.x; t/; m D 1; 3; 5; 7 and m D 9, at the points .0; x/; x 2 f0:2; 0:4; 0:5; 0:6; 0:7; 0:9g
x e1.0; x/j e3.0; x/j e5.0; x/ e7.0; x/ e9.0; x/

0.2 1:261 � 10�1 3:614 � 10�3 5:725 � 10�6 8:529 � 10�6 4:397 � 10�6

0.4 1:583 � 10�1 5:447 � 10�3 2:407 � 10�5 5:669 � 10�6 3:122 � 10�6

0.5 1:466 � 10�1 5:545 � 10�3 4:123 � 10�5 1:809 � 10�6 1:048 � 10�6

0.6 1:221 � 10�1 5:114 � 10�3 5:335 � 10�5 2:030 � 10�6 1:064 � 10�6

0.7 8:987 � 10�2 4:223 � 10�3 5:660 � 10�5 4:689 � 10�6 2:514 � 10�6

0.9 5:522 � 10�2 2:979 � 10�3 4:870 � 10�5 5:350 � 10�6 2:825 � 10�6

0.0 0.2 0.4 0.6 0.8 1.0

0.00995

0.00996

0.00997

0.00998

0.00999

0.01000

0.01001

x
0.0 0.2 0.4 0.6 0.8 1.0

0.00095

0.00096

0.00097

0.00098

0.00099

0.00100

0.00101

0.0 0.2 0.4 0.6 0.8 1.0

0.00095

0.00096

0.00097

0.00098

0.00099

0.00100

0.00101

0.0 0.2 0.4 0.6 0.8 1.0
0

0.00001

0.00002

0.00003

0.00004

Fig. 2 Absolute error for Example 2 using m D 5 and different noise levels ı. From left to right:
ı D 10�2 , ı D 10�3, ı D 10�4, ı D 10�5

5 Conclusions

In this work we have presented an alternative method (than finite-difference meth-
ods) for the numerical approximation of time distributed-order diffusion equations
that is able to deal with both initial (or forward) and terminal (or backward)
problems. The numerical results presented for examples with known analytical
solutions illustrate the accuracy of the proposed method. In the future we intend
to provide a full comparison with the finite-difference methods and analyze the
convergence of the scheme.
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On Polarization Dynamics in Ferroelectric
Materials

M. Driss Aouragh, M. Hadda and M. Tilioua

Abstract We consider a mathematical model describing polarization dynamics in
ferroelectric material. The model consists of a Maxwell system for electromagnetic
field coupled with a second-order time-dependent equation for the evolution of
polarization. We study the long-time behaviour of weak solutions and prove that
all points of the !-limit set of any trajectories are solutions of the stationary model.

Keywords Ferroelectrics • Polarization dynamics • Maxwell system • Global
existence • Uniqueness • Long-time behaviour

AMS Subject Classifications: 35L10, 35K05

1 Introduction

In this work we are dealing with long-time behaviour of weak solutions of a
mathematical system arising in the theory of ferroelectric materials. We shall
consider the model considered in [2]. It is given by full Maxwell system for
electromagnetic field coupled with a second-order time-dependent equation for the
evolution of polarization. To describe the model equations, we consider ˝ � R3 a
bounded and regular open set of R3. The generic point of R3 is denoted by x. We
assume that a ferroelectric material occupies the domain ˝ . The polarization field
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of the ferroelectric material is denoted by P.t; x/. Its evolution is governed by the
following second-order time-dependent equation; see [2]

8
<

:

@2t P C ˛@tP C curl 2P C kP D ˇE in R
C �˝;

curl P � � C ı� � ..@tP C ˛P/ � �/ D 0 on RC � @˝;
P.t D 0/ D P0 and @tP.t D 0/ D P1 in ˝;

(1)

coupled with

8
ˆ̂
<

ˆ̂
:

@tH � curl E D 0 in RC �˝;
@t.E C P/C �E C curl H D 0 in RC �˝;
H � � C ˇ� � .E � �/ D 0 on RC � @˝;
H.0; x/ D H0.x/ and E.0; x/ D E0.x/ in ˝;

(2)

where .E;H/ represents the electromagnetic field, “�” is the usual vector product,
curl denotes the rotational operator and curl 2P D curl .curl P/ D r �.r �P/. Here
� denotes the outward normal on the boundary of ˝ , and ˛, ˇ; � and ı are positive
constants. The Silver-Müller boundary condition considered in (2) is a first-order
approximation to the so-called transparent boundary conditions, i.e. no energy loss
is observed on the boundary. Silver-Müller condition allows for reflections back into
˝ . It can be found in the literature under other names as well such as Leontovich
or impedance boundary condition. For more information about the Silver-Müller
boundary condition, we highly recommend the book of Müller [9].

Throughout, we make use of the following notation. For ˝ an open bounded
domain of R3, we denote by L2.˝/ D .L2.˝//3 and H1.˝/ D .H1.˝//3 the
classical Hilbert spaces equipped with the usual norm denoted by j � j2 and j � jH1.˝/.
We also consider the following classical space used in the theory of Maxwell
equations H .curl ;˝/ D fu 2 L2.˝/; curl u 2 L2.˝/g.

We define the energy

E .t/ D j@tP.t/j22Cjcurl P.t/j22C kjP.t/j22C˛j
p
ıP.t/��j22CjE.t/j22CjH.t/j22 (3)

and the initial energy

E0 D jP1j22 C jcurl P0j22 C kjP0j22 C ˛j
p
ıP0 � �j22 C jE0j22 C jH0j22 (4)

We have the following energy estimate:

Lemma 1. If .E;H;P/ is a regular solution of the problem (1) and (2), then we
have the following energy estimate:

E .t/C 2

Z t

0

.˛j@tPj22 C � jEj22 C j
p
ˇE � �j22 C j

p
ı@tP � �j22/ds � E0: (5)



On Polarization Dynamics in Ferroelectric Materials 267

Proof. To obtain the energy inequality, we formally take the inner product of (1)
by P, the first equation of (2) by H and the second of 2 by E, summing up and
integrating over˝ the resulting equations and using the divergence theorem.

Before discussing problem (1) and (2), let us first review some previous
results on ferroelectric systems. Greenberg et al. [7] considered particular solutions
of ferroelectric system (1) and (2) with transverse magnetic symmetry and the
boundary condition P � � D 0. They supposed that the ferroelectric material
occupies a cylinder with generators parallel to the x3-axis and a uniform, simply
connected cross section ! and considered only solutions which are independent
of the variable x3 and have, with some abuse of notation, the special form, E D
r0eu3;H D ˇ.h1u1 C h2u2/, and P D r0pu3 in ! � R2, where ˇ D ˇ0r0 and
.u1; u2; u3/ is an orthonormal basis of R3. Reducing so the coupled full systems
of Maxwell’s equations (1) and (2) to scalar wave equations, they were able to
study the asymptotic behaviour with respect to the time variable and prove that
the reduced (scalar) ferroelectric system tends to a steady state in which the scalar
polarization is governed by a non-linear scalar equation that has multiple solutions.
Next results concern dimensional reduction for thin ferroelectric materials [1] and
the limiting behaviour when the thickness of the medium tends to zero is obtained. In
the framework of time harmonic dependency of the solutions, the work [8] discusses
the model equations of ferroelectric media introduced in [7]. By classical methods,
among other results existence and uniqueness of the solutions for frequencies which
are far from 0 are proved, and the regularity of the solutions when the polarization
satisfies the boundary condition P �� D 0 is obtained. Finally, in a periodic setting,
the work [6] addresses global existence of weak solutions for Landau–Lifshitz–
Maxwell equations. In fact the model considered in [6] generalizes (1)–(2) in the
sense that it is coupled with Landau–Lifshitz equation for magnetization field.

The rest of the paper is divided as follows. In the next section, we give a global
existence and uniqueness result for the model (1) and (2). The purpose of Sect. 3 is
to characterize the long-time behaviour of the solutions. We conclude the paper in
Sect. 4 by giving some comments.

2 Global Existence of Weak Solutions

We first state the definition of weak solutions to problem (1) and (2).

Definition 1. We say that .E;H;P/ is a weak solution to the problem (1) and (2)
if (1) and (2) are satisfied in the sense of distributions and

E;H 2 L1.RCIL2.˝// and E 2 L2.RCIL2.˝//
@tP; curl P 2 L1.RCIL2.˝// and @tP 2 L2.RCIL2.˝//: (6)

Moreover, for all t � 0; the energy inequality (5) holds true.
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Following the lines of the proof given in [2] (see also [4]), we may prove, by
using classical results of the semigroup theory [10] and its application to semilinear
equations, the following results dealing with the Silver-Müller boundary conditions.
For more details, we refer to [3].

Theorem 1. Let .H0;E0;P0;P1/ 2 L2.˝/ � L2.˝/ � H .curl ;˝/ � L2.˝/

such that P0 � � 2 L2.@˝/. Then there exists a unique weak solution H;E 2
L1.RCIL2.˝// and P 2 L1.RCIH .curl ;˝// to the problem (1) and (2). The
tangential traces H � �;E � �; @tP � � belong to L2.RCIL2.@˝// and P � � 2
L1.RCIL2.@˝//.

We have the following time regularity result:

Proposition 1. Let .H;E;P/ be a weak solution of (1) and (2). We assume that

H0;E0;P0;P1; curl P0 2 H .curl ;˝/

We assume moreover that P0 � �;P1 � � 2 L2.@˝/. Then

@tH; @tE; @2t P 2 L1.RCIL2.˝//
H;E;P; @tP 2 L1.RCIH .curl ;˝//:

(7)

Lemma 2. There exists a constant C > 0 such that, if .H;E;P/ is a global solution
of (1) and (2), we have

8
<̂

:̂

jEj2
L1.RCIL2.˝// C jHj2

L1.RCIL2.˝// � C

jPj2
L1.RCIL2.˝// C jEj2

L2.RCIL2.˝// C j@tPj2
L2.RCIL2.˝// � C

j@tPj2
L1.RCIL2.˝// C jcurl PjL1.RCIL2.˝// � C:

(8)

Moreover we have
8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

jE � �j2
L2.RCIL2.@˝// � C;

jH � �j2
L2.RCIL2.@˝// � C;

jP � �j2
L1.RCIL2.@˝// � C;

j@tP � �j2
L2.RCIL2.@˝// � C:

(9)

In similar way, we get the following estimates for the time partial derivatives of the
solution:

Lemma 3. There exists a constant C > 0 such that, if .H;E;P/ is a global solution
of (1)–(2), we have
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8
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
:̂

j@2t Pj2
L1.RCIL2.@˝// C jcurl @tPj2

L1.RCIL2.@˝// � C;

j@tEj2
L1.RCIL2.@˝// C j@tHj2

L1.RCIL2.@˝// C jcurl Hj2
L1.RCIL2.@˝// � C

jcurl Pj2
L1.RCIL2.@˝// C jcurl 2Pj2

L1.RCIL2.@˝// � C

jcurl 2@tPj2
L1.RCIL2.@˝// � C

jcurl Ej2
L1.RCIL2.@˝// � C:

(10)

3 The Limit as t Goes to C1

We investigate the long-time behaviour of the solutions of (1). More precisely,
we study the !-limit set of the trajectories and characterize the !-limit points as
solutions of a suitable stationary problem. We proceed as in Carbou–Fabrie [5].

Let P be a weak solution of (1). We call !-limit set of the trajectory P the
following set

!.P/Dfp 2 H .curl ;˝/; 9 tn; lim
n!C1 tnD C1;P.tn; :/*p in H .curl ;˝/ weaklyg

Consider a weak solution P of (1). From the energy estimate (5), the !-limit set
!.P/ is non-empty. We denote p a point of this set. Hence, there exists a sequence
.tn/n�1 with limn!1 tn D C1 such that P.tn; :/ tends to p in H .curl ;˝/ weakly,
in L2.˝/ strongly and a.e. in ˝ .

Let a > 0 fixed. For s 2 .�a; a/ and x 2 ˝ , we define for n large enough

pn.s; x/ D P.tn C s; x/:

We consider a function � 2 C1
0 ..�a; a// such that

	
�a.s/ D 0 out of Œ�a; a�I �a.s/ D 1 on Œ�a C 1; a � 1�
0 � �a � 1I j�0

a.s/j � 2:
(11)

We set

Pn
a.x/ D 1

2a

Z a

�a
P.tn C s; x/�a.s/ds

Hn
a.x/ D 1

2a

Z a

�a
H.tn C s; x/�a.s/ds

and

En
a.x/ D 1

2a

Z a

�a
E.tn C s; x/�a.s/ds:
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We have the following convergence result:

Lemma 4. The sequence .pn/n�1 satisfies the following convergences

pn ! p in L2..�a; a/ �˝/ strongly,
pn * p in L

2..�a; a/IH .curl ;˝// weakly.
(12)

By the estimates on P (Lemma 2), Pn
a is bounded in H .curl ;˝/ uniformly with

respect to n and a, extracting a subsequence there exists a subsequence such that
Pn

a * Pa in H .curl ;˝/ weak.
Lemma 2 shows also that E and H are bounded in L1.RCIL2.˝//. Then Hn

a and
En

a are bounded in L2.˝/ independently of a and n. So by extracting a subsequence,
we may assume that .En

a;H
n
a/n�1 converges in L2.˝/ weakly to .Ea;Ha/ as n tends

to C1.
Passing to the limit for polarization. In the weak formulation of (1), we take

as test function 1
2a�a.t � tn/‰.x/ where ‰ is a function lying in D. N̋ /. Letting

s D t � tn, we obtain

1

2a

Z a

�a

Z

˝

.@2t pn.s; x/C a@tpn.s; x/C kpn.s; x// �‰.x/�a.s/ dxds

�ˇ
Z

˝

En
a.x/‰.x/dx C 1

2a

Z a

�a

Z

˝

curl pn.s; x/ � curl .‰.x/�a.s// dxds

� ı

2a

Z a

�a

Z

@˝

@tpn � � �‰.x/�a.s/ � � d�ds

� ı

2a

Z a

�a

Z

@˝

˛pn � � �‰.x/�a.s/ � � d�ds D 0: (13)

Now for a fixed value of the parameter a, we take the limit of the previous
equation when n tends to C1. We then pass to the limit as a tends to C1 to
get

Z

˝

kP1 �‰.x/ dx C
Z

˝

curl P1.x/ � curl‰.x/ dx

�ˇ
Z

˝

E1.x/‰.x/dx � ı

Z

@˝

˛P1 � � �‰.x/ � � d� D 0: (14)

It remains to derive the equation satisfied by E1.
Passing to the limit for electromagnetic field. We first recall the equation

verified by Hn
a and En

a. We write the weak formulation of the second equation of (2)
by considering the test function‰.t; x/ D 1

2a�a.t � tn/�.x/ with � 2 D.R3/. Letting
n tends to C1 in the weak formulation of (2), we get

˛a C
Z

˝

Ha.x/curl �.x/dx C �

Z

˝

Ea.x/�.x/dx D 0;

where ˛a tends to 0 as a goes to C1.
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Now, as a goes to C1, we obtain

Z

˝

H1.x/ � curl �.x/dx D �

Z

˝

E1.x/�.x/dx: (15)

In the same way, we pass to the limit in the first equation of (2).
Gathering all convergence results obtained, we have

Theorem 2. If P is a weak solution of (1), then each point P1 in !.P/ is a weak
solution of the steady-state system

8
<

:

P1 2 H .curl ;˝/I
curl 2P1 C kP1 D ˇE1 in ˝I
curl P1 � � C ı˛� � P1 � � D 0 on @˝

(16)

coupled to

8
<

:

curl E1 D 0 in ˝;
�E1 C curl H1 D 0 in ˝;
H1 � � C ˇ� � .E1 � �/ D 0 on @˝:

(17)

4 Concluding Remarks

In this paper, a ferroelectric system with Silver-Müller boundary condition is
investigated. Global existence and uniqueness result is given, and the long-time
behaviour of the solutions is studied. The calculations performed in this paper can be
generalized to the model that couples magnetization field M with .E;H;P/ [6]. More
precisely, for the coupled system [with the same initial and boundary conditions as
in (1) and (2)]

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

@tM � ˛1M � @tM D �.1C ˛21/M � .4M C H/ in RC �˝;
@2t P C ˛@tP C curl 2P C kP D ˇE in RC �˝;
@t.H C M/ � curl E D 0 in RC �˝;
@t.E C P/C �E C curl H D 0 in RC �˝;
M.t D 0/ D M0 in ˝; @�M D 0 on R

C � @˝

(18)

one obtains by similar calculations, as t goes to C1, the following limit problem

	
M1 � .4M1 C H1/ D 0 in ˝I @�M1 D 0 on @˝
div .H1 C M1/ D 0 in ˝;

(19)

coupled to (16) and (17). Note that in (18), the assumed initial data have to satisfy
the compatibility condition div .H0 C M0/ D 0 in ˝ .
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On a Discrete Number Operator Associated
with the 5D Discrete Fourier Transform

M.K. Atakishiyeva, N.M. Atakishiyev, and J. Méndez Franco

Abstract We construct an explicit form of a difference analogue of the quantum
number operator in terms of the raising and lowering operators that govern eigen-
vectors of the 5D discrete (finite) Fourier transform. Eigenvalues of this difference
operator are represented by distinct non-negative numbers so that it can be used
to systematically classify, in complete analogy with the case of the continuous
classical Fourier transform, eigenvectors of the 5D discrete Fourier transform, thus
resolving the ambiguity caused by the well-known degeneracy of the eigenvalues of
the discrete Fourier transform.

Keywords Discrete Fourier transform • Raising and lowering operators •
5D eigenvectors

Mathematics Subject Classification (2000): 39A10, 39A12, 42A38

1 Introduction

We are to begin by recalling first a few well-known facts about the classical Fourier
transform (FT) and its finite analogue, discrete Fourier transform (DFT). It is known
that the Hermite functions

 n.x/ WD c�1
n Hn.x/ exp

�� x2=2
�
; cn D

qp
� 2n nŠ ; (1)
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where Hn.x/ are the classical Hermite polynomials, represent an important explicit
example of an orthonormal and complete system in the Hilbert space L2.R; dx/ of
square-integrable functions on the full real line x 2 R. It is further well known that
the functions  n.x/ possess the simple transformation property with respect to the
Fourier transform: they are eigenfunctions of the Fourier transform, associated with
the eigenvalues i n,

.F  n/ .x/ 	 1p
2�

Z

R

e i x y  n.y/ dy D i n  n.x/ : (2)

The question is then can be posed whether there is a way of deriving the
eigenfunctions (1) of the Fourier transform, which does not presuppose a knowledge
of the analytic formula (2) to be proved.

Since mutually commuting operators have the same set of eigenfunctions, one
may solve this problem by defining such a self-adjoint differential operator with
simple spectrum of distinct eigenvalues that commutes with the FT operator F
. Then the eigenfunctions of that differential operator can be found by solving
a corresponding to this case differential equation, and they will be at same time
the eigenfunctions of the F : So in this way, one reduces a problem of finding
eigenfunctions of the FT operator F to one of solving some differential equation.

To illustrate how to find such differential operator, let us start with the first-order
differential operator d

dx and evaluate its action on the Fourier integral transform:

d

dx

Z

R

e i x y f .y/ dy D i
Z

R

e i x y y f .y/ dy ; (3)

where f .x/ 2 L2.R; dx/. Consequently, from the right side of (3), one deduces that
the next step should be to evaluate

x
Z

R

e i x y f .y/ dy D � i
Z

R

�
d e i x y

dy

�
f .y/ dy D i

Z

R

e i x y d f .y/

dy
dy ; (4)

upon integrating by parts the middle term in (4). From (3) and (4), it thus follows
that

�
x ˙ d

dx

� Z

R

e i x y f .y/ dy D ˙ i
Z

R

e i x y

�
y ˙ d

dy

�
f .y/ dy : (5)

In the operator form, these identities can be written as intertwining relations

aF D iF a ; a�F D � iFa� ; (6)

where

a WD 1p
2

�
x C d

dx

�
; a� WD 1p

2

�
x � d

dx

�
; (7)
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are the lowering and raising first-order differential operators, which obey the
standard Heisenberg commutation relation



a ; a�

� WD a a� � a� a 	



d

dx
; x

�
D I : (8)

The final step for finding the desired differential operator is actually revealed by the
intertwining relations (6) because one readily concludes that

a�aF D i a�Fa D Fa�a (9)

on account of both identities in (6). Consequently, the self-adjoint second-order
differential number operator N WD a�a does commute with the FT operator F ,
and it only remains to resolve the eigenproblem Nfn.x/ D �nfn.x/ for this operator
N. It is not difficult to show then that the eigenfunctions of the number operator
N are the Hermite functions  n.x/ (up to the arbitrariness in the choice of a
normalization constant factor), whereas the corresponding eigenvalues are �n D
n; n D 0; 1; 2; : : : .

Turning to the discrete Fourier transform ˚ .N/; we recall that it is based on N
points and represented by the N � N unitary symmetric matrix with elements

˚ .N/
m; n D 1p

N
exp

 
2�i

N
m n

!

	 1p
N

q m n ; (10)

where q WD e
2�i
N and m; n 2 f0; 1; : : : ;N�1g. Given a vector Ev with components

fvkgN�1
kD0 , one can compute another vector Eu with components

um D
N�1X

nD0
˚ .N/

m; n vn ; (11)

referred to as the discrete (finite) Fourier transform of the vector Ev. Those vectors
Efk, which are solutions of the standard equations

N�1X

nD0
˚ .N/

m; n

�Efk
�

n
D �k

�Efk
�

m
; k 2 f0; 1; : : : ;N�1g ; (12)

then represent eigenvectors of the DFT operator ˚ .N/, associated with the eigen-
values �k. Since the fourth power of ˚.N/ is the unit matrix, the only four distinct
eigenvalues among �ks are ˙ 1 and ˙ i.

Although there exists a plethora of discussion in the literature on eigenvectors
of the DFT (see, e.g. [1–11] and the relevant references quoted there), the problem
of deriving eigenvectors of DFT analytically still remains to be solved. Recently,
Atakishiyeva and Atakishiyev [12] have proposed a strategy for resolving this
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problem by constructing a self-adjoint difference operator N .N/ (with distinct non-
negative eigenvalues) in terms of the difference raising and lowering operators,
which are defined by the intertwining relations

bN ˚
.N/ D i˚.N/ bN; bT

N ˚
.N/ D � i˚.N/ bT

N: (13)

The ability to solve a difference equation for eigenvectors of this discrete number
operator N .N/, which commutes with the DFT operator ˚.N/; then enables one to
define an analytical form of the desired set of eigenvectors for the latter operator.

An important aspect to observe at this point is that although the idea of making
use an analogy with the continuous case for deriving eigenvectors of the DFT is not
new (see, e.g. [3, 4]), it seems, however, that there never was consistent attempt to
find out how symmetry properties of the continuous Fourier transform might best
be transferred to the discrete case.

The limited aim of this presentation is to restrict our attention to the 5D DFT
and give a detailed account of how one can solve the eigenproblem for the discrete
number operator N .5/ by using the difference raising and lowering operators that
govern eigenvectors of the 5D discrete Fourier transform ˚.5/.

The motivation for selecting this special dimension N D 5 of the general discrete
Fourier transform˚.N/ is twofold. First, this dimension is large enough to contain a
multiple eigenvalue, and therefore one has to handle the same degeneracy problem
as in the more general case. Second, this dimension is small enough in order to have
calculational advantages that appear in the process of resolving the eigenproblem
for the discrete number operator N .5/. We hope that this study will deepen our
understanding of the case with an arbitrary ND discrete Fourier transform and help
us to provide some rigorous proofs, still needed for general values of N.

2 5D Raising and Lowering Difference Operators

We recall that the 5D discrete (finite) Fourier transform (DFT) is traditionally re-
presented by a 5� 5 unitary symmetric matrix ˚.5/ with elements defined as in (10)
with N D 5 (see, e.g. [2, 6]). So the matrix form of ˚.5/ is

�
˚ .5/

m; n

�
D 1p

5

0

B
BB
B
B
@

1 1 1 1 1

1 q q2 q3 q4

1 q2 q4 q q3

1 q3 q q4 q2

1 q4 q3 q2 q

1

C
CC
C
C
A
; (14)

where q D exp.2�i=5/ is the 5th root of unity and indices m; n 2 f0; 1; 2; 3; 4g.
In [12] it was shown how to construct the difference lowering b5 and raising
bT

5 operators for eigenvectors of the DFT operator ˚.5/, which satisfy ‘proper’
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intertwining relations with the˚.5/ of the form (13) for N D 5. Let us draw attention
here to those intertwining relations, which evidently imply that if a vector Efk is the
eigenvector of the DFT operator ˚.5/, associated with the eigenvalue ik, 0 � k � 3,
then the vectors bT

5
Efk and b5 Efk are also the eigenvectors of the same operator ˚.5/,

associated with the eigenvalues ikC1 and ik�1, respectively. But note carefully that
this does not necessarily mean that those vectors bT

5
Efk and b5 Efk essentially coincide

(to within constant factors) with the eigenvectors EfkC1 and Efk�1 of the DFT operator
˚.5/, respectively, as it does happen to be the case with the Fourier transform
operator F . Later we detail the action of the operators b5 and bT

5 on eigenvectors of
the DFT operator ˚.5/. The operators b5 and bT

5 are explicitly given as

b5 WD c
�
2 S C T.C/ � T.�/

�
; bT

5 WD c
�
2 S � T.C/ C T.�/

�
; c D 1

4

r
5

�
; (15)

where the operator S represents the diagonal matrix with elements Skl WD sin.k
/ıkl,

 WD 2�=5, 0 � k; l � 4 and a pair of the shift operators T.˙/ are defined as
T.˙/kl WD ık˙1;l with ı�1;l 	 ı4;l and ı5;l 	 ı0;l. We also display the matrix form of
the lowering and raising operators b5 and bT

5, respectively:

�
.b5/m;m0

�
D c

0

B
B
B
BB
@

0 1 0 0 �1
�1 2 sin 
 1 0 0

0 �1 2 sin 2
 1 0

0 0 �1 �2 sin 2
 1

1 0 0 �1 �2 sin 


1

C
C
C
CC
A
; (16)

�
.bT

5 /m;m0

�
D c

0

B
B
B
B
B
@

0 �1 0 0 1

1 2 sin 
 �1 0 0

0 1 2 sin 2
 �1 0

0 0 1 �2 sin 2
 �1
�1 0 0 1 �2 sin 


1

C
C
C
C
C
A
: (17)

It is not hard to show that the determinants of both matrices b5 and bT
5 are equal to

0; therefore, they are not invertible. Observe also that both of these matrices are of
‘almost’ tridiagonal form: they have ˙1 elements in the upper-right and lower-left
corners but otherwise are tridiagonal. Since those ˙1 elements can be regarded as
cyclic extensions of the subdiagonal and the superdiagonal elements, these types of
matrices are referred to as extended tridiagonal matrices in [7–9]. Moreover, another
confirmation of the ‘cyclic’ properties of the operators b5 and bT

5 is revealed by the
identities

�
b5

�5 C 5 c4� b5 D 0 ;
�

bT
5

�5 C 5 c4� bT
5 D 0 (18)
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where � is the golden ratio, � WD .
p
5 C 1/=2 D �2 cos 2
 . This particular

irrational number � is known to turn out frequently in geometry, particularly in
figures with pentagonal symmetry (see, e.g. [13, 14]); so it is not surprising that it
appears here as well. Since the successive powers of � obey the Fibonacci recurrence
�nC1 D �n C �n�1 , n � 0, this characteristic property of the golden ratio allows
any polynomial in � to be reduced to a linear expression in � . In the sequel, it
proves therefore convenient to parametrize the operators b5 and bT

5 in terms of the
golden ratio � and its conjugate ��1 WD .

p
5 � 1/=2 D 2 cos
 D � � 1. Taking

into account that 2 sin 
 D ��1=2 and 2 sin 2
 D ���1=2, where � WD .5/1=4, one
rewrites matrices (16) and (17) as

�
.b5/m;m0

�
D c

0

B
B
B
B
B
@

0 1 0 0 �1
�1 ��1=2 1 0 0

0 �1 ���1=2 1 0

0 0 �1 ����1=2 1

1 0 0 �1 ���1=2

1

C
C
C
C
C
A
; (19)

�
.bT

5 /m;m0

�
D c

0

BB
B
B
B
@

0 �1 0 0 1

1 ��1=2 �1 0 0

0 1 ���1=2 �1 0

0 0 1 ����1=2 �1
�1 0 0 1 ���1=2

1

CC
C
C
C
A
: (20)

From the definition (15) of the lowering b5 and raising bT
5 operators, it follows that

their commutator K WD
h
b5;bT

5

i

� 	 b5 bT
5 � bT

5 b5 is equal to

K D 4 c2
h
T.C/ � T.�/; S

i

� : (21)

Its explicit matrix form in terms of the golden ratio � is

�
.K /m;m0

�
D 2 �

p
� c2

0

B
B
B
B
B
@

0 1 0 0 1

1 0 � � 2 0 0

0 � � 2 0 2.1� �/ 0

0 0 2.1� �/ 0 � � 2
1 0 0 � � 2 0

1

C
C
C
C
C
A
: (22)

To compare (22) with the continuous case, recall that the lowering and raising first-
order differential operators a and a�, associated with the Fourier transform operator
F , obey the Heisenberg commutation relation (8).

It is worthwhile to close this section by emphasizing that it was intuitively
understood much earlier that probably the extended tridiagonal type matrices lie
at the core of the adequate description of eigenvectors of the general ND discrete
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Fourier transform [3, 9]. But it seems that this particular band structure was
imprecisely attributed to those operators with distinct eigenvalues, which commute
with the associated DFT operators and can be therefore used for the unambiguous
classification of the eigenvectors of the latter ones. Only recently it has become clear
that it is the lowering bN and raising bT

N operators for the eigenvectors of the DFT
operator˚.N/ that are of the extended tridiagonal type [12]. Defined by the standard
intertwining relations (13), these operators bN and bT

N do not commute with the
˚.N/. Nevertheless, from the same defining identities for the bN and bT

N, it follows at
once that their product bT

N bN does commute with the DFT operator˚.N/. Moreover,
although the operator N .N/ WD bT

N bN is not of the extended tridiagonal type, it
turns out to be quite sufficient for finding explicit forms of all mutually orthogonal
eigenvectors the DFT operator ˚.N/ in a systematic and unambiguous way. As we
shall see in the next section, this briefly outlined above algebraic approach [12] to
solving the eigenproblem for the operator N .N/ can be effectively employed in the
particular case of the 5D DFT.

3 Eigenvalues and Eigenvectors of the Discrete
Number Operator

Let us study in detail a discrete number operator N .5/ WD bT
5 b5, whose matrix

elements are defined as

�
N .5/

�

m;m0

D c2

0

B
B
B
B
B
@

2 ���1=2 �1 �1 ���1=2
���1=2 4C � ���3=2 �1 �1

�1 ���3=2 5 � � 2���1=2 �1
�1 �1 2���1=2 5 � � ���3=2

���1=2 �1 �1 ���3=2 4C �

1

C
C
C
C
C
A
: (23)

As a product of a matrix and its transpose, the defining matrix in (23) is symmetric
and all of its eigenvalues are non-negative. Moreover, since the determinant of the
matrix (23) is equal to zero, at least one of the eigenvalues should have zero value
as well; but this lowest eigenvalue turns out to be unique, and all eigenvalues of the
matrix (23) are actually distinct.

Before entering into further details about explicit forms of the eigenvalues and
eigenvectors of the operator N .5/, we may recall first the following important facts,
associated with this eigenproblem.

In this particular case under study, when (23) is just a 5 � 5 matrix, one can
use some computer program in order to evaluate the eigenvalues and eigenvectors
of the discrete number operator N .5/. For instance, this is what one gets by using
Mathematica:

Eigenvalues of the N .5/ are c2 �k, 0 � k � 4, where �ks, arranged in the
descending order, are given by
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�4 D 1

2

�
15� p

5
�

C
q
5 � 2p5 D �

h
�.3� � 2/C ��3=2i; (24)

�3 D 1

2

�
5C p

5
�

C
q
5C 2

p
5 D �

�
� C �1=2

�
�; (25)

�2 D 1

2

�
15� p

5
�

�
q
5 � 2

p
5 D �

h
�.3� � 2/� ��3=2

i
; (26)

�1 D 1

2

�
5C p

5
�

�
q
5C 2

p
5 D �

�
� � �1=2

�
�; �0 D 0I (27)

Eigenvectors Eyk of N .5/, associated with these eigenvalues �k, 0 � k � 4, have
the following components:

�
Ey4
�4

kD0 D
n
0; � C �1=2; ��1=2; � ��1=2; � � � �1=2

o
; (28)

�
Ey3
�4

kD0 D
n
2.1� �/; 1; 1; 1; 1

o
; (29)

�
Ey2
�4

kD0 D
n
2;�

�
� C 2��1=2

�
; 2��1=2 C 3� � 2; III ; II

o
; (30)

�
Ey1
�4

kD0 D
n
0; �1=2 � �; ��1=2; ���1=2; � � �1=2

o
; (31)

�
Ey0
�4

kD0 D
n
2� C ��1=2; 1C ���1=2; 1; 1; 1C ���1=2o: (32)

Since the discrete number operator N .5/ commutes with the DFT operator˚.5/, the
above eigenvectors of the N .5/ are at the same time eigenvectors of the ˚.5/: two
of them, Ey0 and Ey2, are associated with the same eigenvalue i0 D 1 of the ˚.5/,
while the eigenvectors Ey4, Ey3 and Ey1 correspond to the eigenvalues i, i2 D �1 and
i3 D �i of the ˚.5/, respectively. Obviously, these multiplicities corresponding to
the eigenvalues ik, 0 � k � 3, of the 5D DFT operator ˚.5/, are the particular
N D 5 cases of the general explicit expressions for the multiplicities mk.ik/ of the
eigenvalues of the ND DFT [1, 10],

m0.1/ D
"

N

4

#

C 1; m1.i/ D
"

N C 1

4

#

;

m2.�1/ D
"

N C 2

4

#

; m3.�i/ D
"

N C 3

4

#

� 1; (33)

where the symbol ŒX� stands for the greatest integer in X.
It is important also to realize that the eigenvectors Eyk, 0 � k � 4, are distinct

from those eigenvectors of the DFT operator ˚.5/, which have appeared before
in the literature. For instance, in [10] Matveev evaluated explicit forms of the
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eigenvectors of the ND DFT operator˚.N/ for the values of N from N D 2 to N D 8

by combining the technique of spectral projectors for the operator ˚.N/ with the
Gramm–Schmidt orthogonalization algorithm. In particular, Matveev’s eigenvectors
Evn, 1 � n � 5, of the operator ˚.5/ (see the very end of page 644 in [10]) are
interrelated with the eigenvectors Eyk, 0 � k � 4, in (28)–(32) in the following way:
the eigenvectors Ev1 and Ev2 are some linear combinations of the Ey0 and Ey2, whereas
the eigenvectors Ev3, Ev4 and Ev5 coincide with the Ey3, Ey4 and Ey1, respectively, up to
normalization by constant factors:

Ev3 D Ey3 ; Ev4 D �

2
Ey4 ; Ev5 D ��

2
Ey1 :

Finally, the incentive for making those extended comments, given above, is just
to emphasize that this set of eigenvectors of the discrete number operator N .5/,
produced by Mathematica, is still ambiguous until a rule is given for ordering those
eigenvectors and associated eigenvalues of the operator N .5/.

We return now to a study of the eigenvectors and eigenvalues of the operator
N .5/ in a systematic algebraic way. Since the lowest eigenvalue of the N .5/ is 0,
its lowest eigenvector Ef0 is defined as

N .5/ Ef0 D 0 : (34)

Moreover, an explicit form of the same eigenvector Ef0 can be found from the simpler
equation

b5 Ef0 D 0 : (35)

Since the symmetric matrix .N .5//m;m0 in (23) clearly exhibits additional symmetry
among the entries of the all antidiagonals, it is evident that all eigenvectors of the
operatorN .5/ must be either ‘even’ or ‘odd’ with respect to that particular reflection
symmetry about the subantidiagonal f.N .5//5�k;kg4kD1 of the matrix .N .5//m;m0 ,
that is,

�Efn
�

k
D .�1/n

�Efn
�

5�k
; 0 � n; k � 4 : (36)

This means that we should look for a lowest eigenvector Ef0, whose componentwise
structure is of the form

�Ef0
�4

kD0 D
�
˛; ˇ; �; �; ˇ

�
: (37)
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Substituting (37) into (35) and employing an explicit form of the matrix (19), one
obtains only two linearly independent equations for the three unknowns ˛; ˇ and �

˛ D ˇ � �1=2 C � ; ˇ D � .1C � ��1=2/ : (38)

Taking into account that �2 D 2� �1, from (38) it follows that ˛ D � .2�C� �1=2/

and the lowest eigenvector Ef0 with the components

�Ef0
�4

kD0 D �
�
2� C � �1=2; 1C � ��1=2; 1; 1; 1C � ��1=2� (39)

is thus determined by the Eq. (35) up to normalization by a constant � . Notice
that Ef0 D � Ey0; thus, the Ef0 is also the eigenvector of the DFT operator ˚.5/

corresponding to the eigenvalue i0 D 1. Also, to normalize the lowest eigenvector
Ef0 to have length one, it suffices to choose the normalization constant � in (39) as
� D �0 	 .�2�3/

�1=2, and we shall employ in what follows the same notation Ef0 for
the unit-length lowest eigenvector with the components as in (39), but � D �0.

In order to find next eigenvectors of the number operator N .5/, we first define 4
vectors of the form

Efk WD dk

c k

�
bT

5

�kEf0 ; 1 � k � 4 ; (40)

where Ef0 is the lowest eigenvector of the N .5/ and dks are some normalization scalar
factors. Since Ef0 is the eigenvector of the DFT operator ˚.5/ also and it corresponds
to the eigenvalue i0 D 1, from the second intertwining relation in (13) for N D 5,
it follows at once that all vectors Efk, 1 � k � 4, are, in effect, the eigenvectors of
the ˚.5/,

˚.5/ Efk D dk

c k
˚.5/

�
bT

5

�kEf0 D i
dk

c k
bT

5 ˚
.5/
�

bT
5

�k�1Ef0 D : : :

D ik
dk

c k

�
bT

5

�k
˚.5/Ef0 D ik

dk

c k

�
bT

5

�kEf0 D ik Efk ; (41)

corresponding to the eigenvalues ik, respectively. Moreover, it actually turns out
that all vectors Efk, 0 � k � 4, are at the same time the eigenvectors of the number
operator N .5/. Indeed, since the operators ˚.5/ and N .5/ commute, one checks
easily that

˚.5/N .5/ Efk D N .5/ ˚.5/ Efk D ik N .5/ Efk (42)

is valid for all integer values of k between 0 and 4. This means that for any integer
k 2 Œ0; 4�, both vectors Efk and N .5/ Efk are associated with the same eigenvalues
ik of the 5D DFT operator ˚.5/. Consequently, three vectors Efk, 1 � k � 3, do
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represent the eigenvectors of the number operator N .5/ because the corresponding
multiplicities m.ik/ D 1 for those values of 1 � k � 3. As for the last vector Ef4, one
readily verifies that

N .5/Ef4 ' bT
5 b5

�
bT

5

�4 Ef0 ' bT
5 b5 bT

5
Ef3 ' bT

5

�
N .5/ C K

�Ef3 ' bT
5
Ef3 ' Ef4 ; (43)

where the symbol A ' B indicates that A is equal to B multiplied by a non-zero
scalar constant factor and we employed the fact that the vector Ef3 is an eigenvector
of the operator K also, for the same reason as it happens to be true in the case (42)
of the operatorN .5/ (despite the non-commutativity of the operatorsK and N .5/).

Since the vector Ef0 has been already defined by (34) as the lowest eigenvector of
the operator N .5/, one does conclude that the five orthonormal vectors Efk, 0 � k �
4, explicitly given as

Ef0 D 1p
�2�3

Ey0; Ef1 D 1

2

r
�

�3
Ey4; Ef2 D

p
�

2�
Ey3;

Ef3 D 1

2

r
�

�1
Ey1; Ef4 D 1

2
p
�2�3

Ey2; (44)

do represent the desired set of the eigenvectors for the number operator N .5/,

N .5/ Efk D �k Efk; 0 � k � 4; (45)

associated with the eigenvalues

�0 D 0; �1 D c2�4; �2 D c2�3; �3 D c2�1; �4 D c2�2; (46)

respectively.
The explicit analytical form of the spectrum of the discrete number operator

N .5/ can be thus represented as

�k D c2
h
5.1� ık0/C 4

�
.� � 1/sin k
 C cos k


�
sin 2k


i
; (47)

where 
 D 2�=5 and 0 � k � 4.
Our first graph compares the eigenvalues �k, 0 � k � 4, and the first 5

eigenvalues of the quantum number operator N D a�a.
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The next step is to clarify how these eigenvectors (44) transform under the action
of the operators bT

5 and b5 and then to compare them with the behaviour of their
continuous counterparts n.x/, which satisfy the well-known relations

a n.x/ D p
n n�1.x/; a�  n.x/ D p

n C 1 nC1.x/: (48)

But observe first that from (40), it follows at once that

EfkC1 D dkC1
c dk

bT
5

Efk ; 0 � k � 3 ; d0 D 1 : (49)

Therefore, the relations (49) can be explicitly written for each appropriate value of
the index k as

bT
5

Ef0 D 4 � c2p
��4

Ef1 	 	 Ef1; bT
5

Efk D
p
�kC1 EfkC1; 1 � k � 3; (50)

where 	 WD 4�=
p
��2�4 	 4=

p
5� C 21: It remains only to evaluate the last

identity

bT
5
Ef4 D 1

4c4�2
.bT

5 /
5Ef0 D � 5�

4�2
bT

5
Ef0 D �

p
.1 � 	2/ �1 Ef1; (51)
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which is a direct consequence of the second ‘cyclic’ identity in (18) and the relation

Ef4 D 1

4c4�2
.bT

5 /
4Ef0; (52)

readily obtained by the successive use of all entries in the chain of relations (49).
The formulas (50) and (51) are thus discrete analogues of those, which are collected
in the second identity of the continuous case (48).

As for the action of the lowering difference operator b5, the situation here is
slightly different. The point is that already at the first step one evaluates that

b5Ef1 D ı b5bT
5

Ef0 D ı
�
K C N .5/

�Ef0 D ıK Ef0 D ı .˛Ef0 C ˇEf4/ ; (53)

where ı WD
�
	
p
�1

��1
and coefficients ˛ and ˇ can be explicitly defined by the

following easy algebra:

.Ef0;b5Ef1/ D ı˛ D .bT
5
Ef0; Ef1/ D ı�1.Ef1; Ef1/ D ı�1 D 	

p
�1; (54)

.Ef4;b5Ef1/ D ıˇ D .bT
5
Ef4; Ef1/ D �

p
.1 � 	2/�1 .Ef1; Ef1/ D �

p
.1 � 	2/�1 : (55)

From (54) and (55), one thus concludes that ˛ D 	2�1; ˇ D � 	p1 � 	2 �1; and
the relation (53) now explicitly reads

b5Ef1 D
p
�1

h
	 Ef0 �

p
1 � 	2 Ef4

i
: (56)

The evaluation of the action of the lowering operator b5 on the remaining three
eigenvectors Efn, n D 2; 3; 4, requires less efforts for the following reason. As we
have already remarked in the process of deriving formula (43), three vectors Ef1, Ef2
and Ef3, associated with the eigenvalues ik, k D 1; 2; 3; with multiplicities 1, are
actually common eigenvectors of the number operator N .5/ and the operator K
(although these operators do not commute). Moreover, the explicit form of corres-
ponding eigenvalues of the operator K ,

K Efn D .�nC1 � �n/ Efn ; n D 1; 2; 3; (57)

is a direct consequence of the evident intertwining relation N .5/bT
5 D bT

5

�
N .5/ C

K
�

. Therefore, for 2 � k � 4 one readily derives that

b5 Efk D 1p
�k

b5 bT
5

Efk�1 D 1p
�k

�
K C N .5/

�Efk�1 D
p
�k Efk�1 : (58)

We are now in a position to write down all matrix elements of the raising and lowe-
ring operators bT

5 and b5 in the basis, built over the eigenvectors Efn, 0 � n � 4. In
particular, using (50) and (51), one readily evaluates that
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� �Efk ;bT
5
Efl
� �

D

0

B
B
B
B
B
@

0 0 0 0 0

	
p
�1 0 0 0 �p.1 � 	2/�1
0

p
�2 0 0 0

0 0
p
�3 0 0

0 0 0
p
�4 0

1

C
C
C
C
C
A
: (59)

In a like manner, from (45), (56) and (58), it follows at once that

� �Efk ;b5Efl
� �

D

0

B
B
B
BB
@

0 	
p
�1 0 0 0

0 0
p
�2 0 0

0 0 0
p
�3 0

0 0 0 0
p
�4

0 �p.1 � 	2/�1 0 0 0

1

C
C
C
CC
A
: (60)

To close this section, we point out here that as a consistency check, one may verify
that these matrix realizations (59) and (60) of the raising and lowering operators
bT

5 and b5 in the Efn-basis, respectively, do possess the same ‘cyclic’ properties as
indicated in identities (18). Indeed, a direct computation of the 5th power of the
matrix (60) shows that

� �Efk ;b5 Efl
� �5 C

h
.1 � 	2/�1�2�3�4

i1=2� �Efk ;b5 Efl
� �

D 0; (61)

where
h
.1 � 	2/�1�2�3�4

i1=2 D c4
h
.1 � 	2/�1�2�3�4

i1=2 D 5 c4�; (62)

upon using definitions of the eigenvalues �k, 1 � k � 4, given in (24)–(27). Finally,
since the operator bT

5 is the matrix transpose of b5, the former one has the same
‘cyclic’ property as the latter.

4 Eigenvectors of the N .5/ Versus the Hermite
Functions §n.x/

From the outset the ND discrete Fourier transform ˚.N/ was conceived as a
finite (discrete) analogue of the Fourier transform F , and the N eigenvectors Efk,
0 � k � N � 1, of the former transform operator were therefore required to
converge to the corresponding Hermite functions  n.x/ in the limit as N ! 1.
So the question is: How the eigenvectors Efk, 0 � k � N � 1, of a ND DFT
˚.N/ with a fixed integer value of N can be related to the Hermite functions  n.x/,
0 � n < 1 ? Note first that a ND discrete Fourier transform is actually a discrete
(finite) image of the N-dimensional subspace of the infinite-dimensional Hilbert
space L2.R; dx/, spanned by the first N basis functions  n.x/, 0 � n � N � 1, in
this space, rather than of the whole Hilbert space L2.R; dx/ itself. Consequently, one
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should find out how the eigenvectors Efk match the first N Hermite functions  n.x/,
0 � n � N � 1. In this regard, it is important to take into account the following
fundamental properties of the Hermite functions  n.x/:  n.�x/ D .�1/n n.x/,
and each function  n.x/ has exactly n alternations in its sign. As we have already
remarked above [see formula (36)], the eigenvectors Efk do exhibit the same type of
the reflection symmetry as  n.�x/ D .�1/n n.x/ in the continuous case, so that it
remains only to verify that each eigenvector Efk has the same number of alternations

in its components
�Efk
�

l
, 0 � l � N�1, as a Hermite function n.x/, associated with

it. But the careful examination of the eigenvectors Efn under study, explicitly defined
by relations (28)–(32) and (44), indicates that their components are not appropriately
structured in order to enable one to match them with the first 5 Hermite functions
 n.x/. It has been then realized that one actually needs to rearrange components
of the eigenvectors Efk and introduce another set of centred vectors Ef .c/k with the

components
�Ef .c/k

�2

lD�2, defined as

�Ef .c/k

�

l�2 D
�
.U /l;m

� �Efk
�

m
; 0 � k; l;m � 4; (63)

where U is the unitary operator, U UT D UT U D I, with the matrix elements

�
.U/m;m0

�
D

0

B
B
BB
B
@

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1

C
C
CC
C
A
: (64)

The explicit componentwise forms of these centred eigenvectors Ef .c/k , 0 � k � 4,
are

Ef .c/0 D 1p
�2 �3

n
1; 1C ���1=2; 2� C ��1=2; II; I

o
;

Ef .c/1 D 1

2

r
�

�3

n
� ��1=2; �� � �1=2; 0; � II; � I

o
;

Ef .c/2 D
p
�

2�

n
1; 1; 2.1� �/; 1; 1

o
;

Ef .c/3 D 1

2

r
�

�1

n
� ��1=2; � � �1=2; 0;�II;�I

o
;

Ef .c/4 D 1

2
p
�2 �3

n
2��1=2 C 3� � 2; �

�
� C 2��1=2

�
; 2; II; I

o
: (65)

In next 5 graphs, we compare the centred vectors Ef .c/n and the first Hermite functions
 n.x/, 0 � n � 4, respectively.
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It is to be emphasized that thus introduced centred vectors Ef .c/n are actually
eigenvectors of the centred discrete number operator N .5Ic/,

N .5Ic/ WD UN .5/ UT ; (66)

associated with the same eigenvalues �n as in (45), that is, N .5Ic/ Ef .c/n D �n Ef .c/n .
Matrix elements of this operator N .5Ic/ WD .b.c/5 /

Tb.c/5 are explicitly given as
(cf (23))

�
N .5Ic/

�

m;m0

D c2

0

B
B
B
B
B
@

5 � � ��� 3
2 �1 �1 2��� 1

2

��� 3
2 4C � ��� 12 �1 �1

�1 ��� 12 2 ��� 12 �1
�1 �1 ��� 12 4C � ��� 3

2

2��� 1
2 �1 �1 ��� 3

2 5 � �

1

C
C
C
C
C
A
; (67)
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where the centred lowering and raising operators b.c/5 and .b.c/5 /
T are defined through

the operators b5 and bT
5 , respectively, by the same similarity transformation as

in (66).
Furthermore, the centred vectors Ef .c/n turn out to be also eigenvectors of the

centred discrete Fourier transform operator ˚.5Ic/,

˚.5Ic/ WD U˚.5/ UT ; (68)

corresponding to the respective eigenvalues in. The eigenproblem for the centred
DFT operator ˚.5Ic/ can be thus written in the matrix form as

2X

nD�2
˚ .5Ic/

m; n

�Ef .c/k

�

n
D �k

�Ef .c/k

�

m
; 0 � k � 4; �2 � m � 2; (69)

and associated matrix for this eigenproblem has elements (cf (14))

�
˚ .5Ic/

m; n

�
D 1p

5

0

B
B
BB
B
@

q4 q2 1 q3 q
q2 q 1 q4 q3

1 1 1 1 1

q3 q4 1 q q2

q q3 1 q2 q4

1

C
C
CC
C
A
: (70)

A word of explanation regarding the present results (66)–(70) is in order at this
point, but let us recall first the following. Square matrices A and B are said to be
similar, if there is a non-singular matrix C (which is referred to as a transforming
matrix of B to A) such that A D CBC�1. In the case when the transforming matrix
C is a unitary matrix U, U U� D I, then B is unitarily similar to A (see, e.g.
pages 130 and 175 in [15]). Taking that into account, note that in the process of
establishing how the eigenvectors Efn are related to the Hermite functions  n.x/,
we actually arrived at another form (69) of the eigenproblem for the 5D DFT
operator, which appear to be different from the traditional one (12). This form of
DFT is also well known but less frequently used. However, some authors have even
suggested that it is better not to use the standard Fourier matrix that represents a
discretization of the Fourier transform but rather to use a ‘centred’ version of it [8].
But from (68) it is clear that ˚.5/ and ˚.5Ic/ are actually unitarily similar, with the
transforming matix (64), and they represent therefore the same linear transformation
after a change of basis. Nonetheless, it is true that there is considerable merit in
working with the non-standard 5D DFT operator˚.5Ic/ because it explicitly displays
all those symmetry properties in the eigenproblem (69), which are so characteristic
of the continuous Fourier transform. As a direct consequence of this appealing
feature of (69), the matrix form of ˚.5Ic/ clearly exhibits its remarkable symmetry:
the matrix ˚.5Ic/ is a centrosymmetric matrix [3], meaning that it is reproduced by
the similarity transformation with the transforming matrix J,

˚.5Ic/ D J˚.5Ic/ J ; (71)
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where J is the 5 � 5 matrix with ones on the antidiagonal,

�
Jm; n

�
D

0

B
B
B
B
B
@

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

Š

1

C
C
C
C
C
A
:

Finally, the operator N .5Ic/, which commutes with ˚.5Ic/, is also of the centrosym-
metric type, as is readily seen from (67).

5 Concluding Remarks

To summarize, we have constructed an explicit form of a difference analogue
of the quantum number operator in terms of the raising and lowering operators
that govern eigenvectors of the 5D discrete (finite) Fourier transform. The main
algebraic properties of this operator have been examined in detail. The eigenvalues
of this discrete number operator are represented by distinct non-negative numbers
so that this operator has been used to systematically classify, in complete analogy
with the case of the continuous classical Fourier transform, eigenvectors of the 5D
discrete Fourier transform, thus resolving the ambiguity caused by the well-known
degeneracy of the eigenvalues of the discrete Fourier transform. We hope that this
particular knowledge will help us to extend our results to the case of an arbitrary
ND discrete Fourier transform.
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Finite Difference Formulation for the Model
of a Compressible Viscous and Heat-Conducting
Micropolar Fluid with Spherical Symmetry

N. Mujaković and N. Črnjarić–Žic

Abstract We are dealing with the nonstationary 3D flow of a compressible viscous
heat-conducting micropolar fluid, which is in the thermodynamical sense perfect
and polytropic. It is assumed that the domain is a subset of R3 and that the fluid
is bounded with two concentric spheres. The homogeneous boundary conditions
for velocity, microrotation, heat flux, and spherical symmetry of the initial data are
proposed. By using the assumption of the spherical symmetry, the problem reduces
to the one-dimensional problem. The finite difference formulation of the considered
problem is obtained by defining the finite difference approximate equation system.
The corresponding approximate solutions converge to the generalized solution of
our problem globally in time, which means that the defined numerical scheme is
convergent. Numerical experiments are performed by applying the proposed finite
difference formulation. We compare the numerical results obtained by using the
finite difference and the Faedo–Galerkin approach and analyze the properties of the
numerical solutions.

Keywords Micropolar fluid flow • Spherical symmetry • Finite difference
approximations • Strong and weak convergence
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1 Introduction

The theory of micropolar fluids, established by Eringen [4], provides a mathematical
foundation for studying the model of a fluid, which takes into account the interac-
tions between the micromotion effects of fluid particles and the macromotion. The
micropolar fluid equation system is actually an extension of the classical Navier–
Stokes equations with the additional variable called microrotation, describing the
angular momentum of the particles.

In this paper, we focus on the compressible flow of the isotropic, viscous, and
heat-conducting micropolar fluid, which is in the thermodynamical sense perfect
and polytropic. The model for this type of flow was first considered by Mujaković
in [6] where she developed one-dimensional model. In [6, 7], she considered the
model with homogeneous and nonhomogeneous boundary conditions and proved
the existence and the uniqueness of the generalized solutions. The model in the
three-dimensional case, which we consider in this work, was introduced in [1].
It is assumed that the fluid occupies the domain � � R3, bounded with two
concentric spheres with radii a and b, b > a > 0; that the initial data are
spherically symmetric; and that the homogeneous boundary conditions for velocity,
microrotation, and heat flux are valid. Taking into account the spherical symmetry,
the problem reduces to the one-dimensional problem, which we consider here in the
Lagrangian description. The local existence and the uniqueness of the generalized
solution were proved in [1, 8] by using the Faedo–Galerkin method. Additionally,
the global existence and the stabilization of the generalized solution for the same
model were established in [2, 3].

We consider here the finite difference formulation of the described problem,
which is based on the approximate equation system obtained by using the finite
difference approach. It is proved in [9] that the sequence of the corresponding
approximate solutions converges to the generalized solution of our problem, which
means that the defined numerical scheme is convergent. In this work, we analyze
some properties of numerical solutions obtained with the proposed finite difference
scheme. Furthermore, we compute the numerical results by using the Faedo–
Galerkin method [1] and compare it with the results obtained with the finite
difference scheme.

The paper is organized as follows. In the second section, we introduce the
mathematical formulation of our problem. In the third section, we define the
corresponding finite difference formulation. In the fourth section, we present and
analyze some properties of the numerical solutions.
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2 Mathematical Model

In this work, we consider the three-dimensional flow of the compressible viscous
and heat-conducting micropolar fluid, being thermodynamically perfect and poly-
tropic. In the Eulerian description, the starting domain is fx j x 2 R3; a < jxj < bg,

where jxj D
q

x21 C x22 C x23 and b > a > 0. The homogeneous boundary conditions
for velocity, microrotation, heat flux, and spherical symmetry of the initial data are
proposed. This spherically symmetric problem is transformed in [1] to the one-
dimensional problem in Lagrangian coordinates in the domain h0; 1i and described
by the following system of equations:
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Here �, v, w, and 
 denote, respectively, the mass density, velocity, microrotation

velocity ,and temperature in the Lagrangian description and L D
Z b

a
s2�0.s/ ds;

(a and b are radii of the starting domain). �;�r; �; c0; cd;K; cv; jI ; and R are the
physical constants describing fluid properties for which the following relations
should be valid: �;�r; cd; jI � 0; 3�C 2� � 0, 3c0 C 2cd � 0, cv;R;K > 0. The
system is considered in the domain QT D h0; 1i � h0;Ti, where T > 0 is arbitrary.
Equations (1)–(4) are, respectively, local forms of the conservation laws for the
mass, momentum, momentum moment, and energy. We take the homogeneous
boundary conditions:

v.0; t/ D v.1; t/ D 0; !.0; t/ D !.1; t/ D 0; @x
.0; t/ D @x
.1; t/ D 0; (5)

for t 2 h0;Ti and the nonhomogeneous initial conditions:

�.x; 0/ D �0.x/; v.x; 0/ D v0.x/; !.x; 0/ D !0.x/; 
.x; 0/ D 
0.x/; (6)

for x 2 h0; 1i and for the given functions �0, v0, !0, and 
0. The function r is
defined by:
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r.x; t/ D r0.x/C
Z t

0

v.x; �/ d�; .x; t/ 2 QT ; (7)

where:

r0.x/ D
�

a3 C 3L
Z x

0

1

�0.y/
dy

�1=3
; x 2 h0; 1i: (8)

We assume that the initial functions satisfy:

�0.x/ � m; 
0.x/ � m; x 2 h0; 1i; (9)

for some constant m 2 RC and that

�0; 
0 2 H1.h0; 1i/ and v0; !0 2 H1
0.h0; 1i/: (10)

Under the stated assumptions (9) and (10), in previous papers [1, 2, 8], it is proven
that the problem (1)–(5) has unique solution .�; v; !; 
/ in the domain QT , for any
T > 0, with the following properties:

� 2 L1.0;TI H1.h0; 1i//\ H1.QT/; (11)

v; !; 
 2 L1.0;TI H1.h0; 1i//\ H1.QT/ \ L2.0;TI H2.h0; 1i//; (12)

� > 0; 
 > 0 on NQT : (13)

For the function r, it holds r 2 L1.0;TI H2.h0; 1i// \ H2.QT/ \ C. NQT /; and
r � a in NQT . These results were obtained by using the Faedo–Galerkin method
for a local existence theorem [1] and the extension principle for a global existence
theorem [2].

3 Finite Difference Formulation

In this section, we introduce the finite difference formulation for the considered
problem (1)–(6). More precisely, we define the finite difference scheme resulting
with the system of ordinary differential equations.

Let h be an increment in x such that Nh D 1 for N 2 ZC. The staggered grid
points are denoted with xk D kh, k 2 f0; 1; : : : ;Ng, and xj D jh, j 2 ˚ 1

2
; : : : ;N � 1

2

�
.

For each integer N, we construct the following time-dependent functions:

�j.t/; 
j.t/; j D 1
2
; : : : ;N � 1

2
; and vk.t/; !k.t/; k D 0; 1; : : : ;N; (14)



Finite Difference Formulation for the Model of a Compressible Viscous: : : 297

that form a discrete approximation to the solution at defined grid points:

�.xj; t/; 
.xj; t/; j D 1
2
; : : : ;N � 1

2
; and v.xk; t/; !.xk ; t/; k D 0; 1; : : : ;N:

We define the operator ı with ıgl D
glC 1

2
� gl� 1

2

h
; where l D j or l D k. For

k 2 f1; : : : ;Ng and j 2 f 1
2
; : : : ;N � 1

2
g, the functions �k, 
k and vj, !j are defined by

�k D �k� 1
2
; 
k D 
k� 1

2
, and vj D vjC 1

2
; !j D !jC 1

2
. In accordance with the given

initial conditions (6), we introduce the discrete initial conditions as:
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�
; k 2 f1; : : : ;N � 1g: (16)

and v0.0/ D vN.0/ D 0; !0.0/ D !N.0/ D 0; ı
0.0/ D ı
N.0/ D 0. Because
of (8), we take:

rk.0/ D
�

a3 C 3L

k� 1
2X

jD 1
2

h

�j.0/

�1=3
; k D 1; : : : ;N (17)

and r0.0/ D a. The functions �j.t/; vk.t/; !k.t/; 
j.t/, j D 1
2
; : : : ;N � 1

2
,

k D 1; : : : ;N � 1, and rk.t/, k D 0; : : : ;N are determined by using an appropriate
spatial discretization of the equation system (1)–(4) and (7):
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In accordance with the boundary conditions (5), we take

v0.t/ D vN.t/ D 0; !0.t/ D !N.t/ D 0; ı
0.t/ D ı
N.t/ D 0: (23)

It is clear that (18)–(22), supplemented with the discretized equations (because,
there are 3 equations included in (23)), represent the time-dependent system of
ordinary differential equations with the initial conditions (15)–(17) for 5N � 1

unknown functions. By using the solutions of this system, the approximate solutions
of the considered problem can be defined, for example, as linear splines. It is proved
in [9] that these approximate solutions converge to the generalized global solution
of our problem.

4 Numerical Examples

The obtained system of equations (18)–(22) has the form Pu.t/ D F.u.t//: For
solving it numerically, the second-order strong stability-preserving Runge–Kutta
method is used [5]:

u.1/ D un C�tF.un/

unC1 D 1

2
un C 1

2
u.1/ C 1

2
�tF.u.1//:

Here un denotes the numerical solution at time moment tn D n�t for the chosen
time step �t. For stability reasons of obtained numerical scheme, we choose �t D
O.h2/. In this way, the positivity of the density and the temperature are preserved.

Test Example 1 We take the following initial conditions: �0.x/ D ˇ
ˇx2 � 1

4

ˇ
ˇ C 1,

v0.x/ D 0, !0.x/ D 4.x2 � x4/, and 
0.x/ D 0:1 and parameters � D �r D K D
c0 D cd D 0:01, R D cv D 1, jI D 1, a D 1, and L D 1. Numerical parameters are
set to N D 16, t D 10�3.

In Fig. 1, we present the numerical results obtained with the proposed finite
difference scheme at different time moments. In shown figures, it is nicely visible
that, for larger t, the stabilization of the solution arises, which is in accordance with
the result that was proved in [3] and which states that the solution of our problem
converges to the stationary constant solution of the form .��; 0; 0; 
�/ in the

space .H1.h0; 1i//4 (when t ! 1), where �� D
�Z 1

0

1

�0.x/
dx

��1
, 
� D 1

cv

Z 1

0�
1
2
jv0.x/j2 C jI

2
j!0.x/j2 C cvj
0.x/j

�
dx.

Test Example 2—Influence of the Microrotation to the Solution Now, the initial
conditions are taken as follows: �0.x/ D 1, v0.x/ D 0, !0.x/ D sin.�x/, and

0.x/ D 0:1. The fixed parameters in this test are K D c0 D cd D 0:01, R D cv D 1,
jI D 1, a D 1, and L D 1. Numerical parameters are set to N D 16, t D 10�3.

In order to investigate the influence of the microrotation to the solution, in first
case, we fix the viscosity parameter � D 0:01 and variate the micropolar viscosity
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coefficient �r. The obtained results for velocity and microrotation are presented in
Fig. 2. In the second case, for fixed �r D 0:01, we variate the viscosity parameter�.
The corresponding numerical results are presented in Fig. 3. In both cases, the
influence of the microrotation and the corresponding parameters to the solution is
clearly visible.
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Fig. 1 Numerical results obtained at different time moments
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Fig. 2 Comparison of the numerical results obtained for fixed viscosity � D 0:01 and different
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Fig. 4 Comparison of the numerical results obtained by finite difference and Faedo–Galerkin
method

Test Example 3—Comparison with the Faedo–Galerkin Method In order to
compare the numerical results obtained with the finite difference scheme and
with the Faedo–Galerkin method (see [1]), we take the smooth initial functions:
�0.x/ D 1:0, v0.x/ D sin.�x/, !0.x/ D sin.2�x/, and 
0.x/ D 2 C cos.�x/. The
parameters are set to � D �r D K D c0 D cd D 0:01, R D cv D 1, jI D 1,
a D 1, and L D 1. As before, numerical parameters are set to N D 16, t D 10�3
for the finite difference scheme. To obtain the numerical approximations with the
Faedo–Galerkin method, we take n D 15 terms in the expression for approximating
functions. From the numerical results shown in Fig. 4, where the comparison of both
approaches is given, one can conclude that the results coincide quite well.
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9. Mujaković, N., Črnjarić-Žic, N.: Convergence of a finite difference scheme for 3D flow of a
compressible viscous micropolar heat-conducting fluid with spherical symmetry. Int. J. Numer.
Anal. Model. (in press)

doi:10.1186/s13661-015-0357-x
doi:10.1186/s13661-015-0357-x


An Optimal Control Problem in Mathematical
and Computer Models of the Information
Warfare

Nugzar Kereselidze

Abstract This article deals with the application of mathematical and computer
methods in sociology, specifically information warfare. Pursuing such research can
sometimes be met with new and interesting problems, worthy of serious attention of
mathematicians. Given ChilKer tasks, it is possible to represent that case. ChilKer
task refers to the boundary value problem for a system of ordinary differential
equations and optimal control problem for which the right-side boundary conditions
are given at different points of time for different coordinates of the unknown vector
function. For ChilKer type the boundary value problem of system of ordinary
differential equations proposed a method for finding solutions.

Keywords Information warfare • ChilKer task • Boundary value problem •
Optimal control problem • Controllable

Mathematics Subject Classification (2010): 34B60, 49J15, 90C99

1 Introduction

The term “information warfare” has become strongly established in the scientific
and other spheres of human activity. And despite the fact that the exact definition
of this term is still does not exist, it is perceived in the intuitive sense. This
situation, however, does not prevent the fact that in this area research is conducted;
scientific magazines’ are published, created by the introduction of technologies

N. Kereselidze (�)
Department of Mathematics and Computer Science, Sukhumi State University,
9. A. Politkovskaia St., Tbilisi 0186, Georgia
e-mail: tvn@caucasus.net

© Springer International Publishing Switzerland 2016
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics 164,
DOI 10.1007/978-3-319-32857-7_28

303

mailto:tvn@caucasus.net


304 N. Kereselidze

of information warfare, developing national doctrine on information security, to
prevent and reflect information or cyber warfare. We have to explore information
confrontation with the aid of mathematical and computer models since 2009.
Sokhumi State University professor Temur Chilachava offered me to deal with
confrontation issues in the information warfare. We are engaged in mathematical
models of one of the directions of information warfare—information confrontation.
Therefore, the report will use the term “information warfare” in the narrow sense
[2, 3]. Under “information warfare” we mean usage of mass media (printed or
electronic press, the Internet) by two countries or the union of two countries or
two strong economic structures (consortium’s) to conduct purposeful disinformation
or propaganda. The union of international organizations (UN, OSCE, EU, NATO,
WTO, and others) appears as the third side in this process, the effort of which is
to neutralize the tension between the two rival countries, sides and to achieve the
termination of information warfare.

The aims of information warfare can be:

• Infliction of losses to the image of the antagonist country—creating the image of
an enemy.

• Discredit of the management of the antagonist country.
• Demoralization of the personnel of the armed forces and the civilians of the

antagonist country.
• Creation of public opinion, inside and outside of the country, for justification and

argumentation of possible military operations.
• Opposition to the geopolitical ambitions of the antagonist country etc.

Of course, not all of the information warfare transformed into fighting, “hot”
war. However, it is safe to assert that every “hot” war was preceded by information
warfare. Information warfare is something similar to the artillery preparation before
approach. However, if the artillery preparation is completed as soon as the attack
begins, the information warfare is not completed and continues along with a “hot”
war.

Professor T. Chilachava proposed to consider models of information con-
frontation between two subjects which are “reconciled”—by peacekeeping third
party. This approach was clearly a pioneer in the mathematical modeling of the
information confrontation. This approach has been seen by scientists working in
the field of mathematical modeling. In particular, the Indian scientists, Professors
Bimal Kumar Mishra and Aheksha Prajapati in their work [8], used our proposed
model and determined its singular points. On the other hand, the interesting work
on mathematical modeling of Samarski A.’s and Mikhailov A.’s [10] advertising
campaign and Pugacheva E.’s and Solovenko K.’s [9] conflict situation should be
noted.
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2 Theoretical and Experimental Methods

We will consider the mathematical model of IW, taking into account the IT levels of
the parties [5, 6]:

dx.t/

dt
D ˛1x.t/

�
1 � x.t/

I1

�
� ˇ1z.t/;

dy.t/

dt
D ˛2y.t/

�
1 � y.t/

I2

�
� ˇ2z.t/; (1)

dz.t/

dt
D � .x.t/C y.t//

�
1� z.t/

I3

�

x.0/ D x0 � I1; y.0/ D y0 � I0; z.0/ D z0 � I3 (2)

Where considered x.t/, y.t/ , functions are amounts of information (as a rule—
disinformation “black” PR) disseminated by the respective antagonistic parties
to achieve information superiority in information warfare; z.t/ is the amount
of information of the peacekeeping party in a time point t, containing appeals
to the antagonistic parties to finish distributions of misinformation and to stop
information warfare; in the model, ˛1 ,˛2—are indexes of the aggressiveness of
the relevant sides; ˇ1,ˇ2—are indexes of peacekeeping readiness of the parties; �
is an index of peacekeeping activity of the third party; and I1, I2, I3 are kinds of
“equilibrium” amounts of information of the respective parties, a certain level of
their own IT development: financial or other opportunities to use foreign IT. We
consider the process of information confrontation described by the mathematical
model (1), (2)—at a certain large segment of time Œ0;T�.

Initially, we have found the solution of the Cauchy problem (1), (2), examined it,
and determined it for different values of model parameters, developing this way the
whole process of information confrontation. In general, the solution of the Cauchy
problem (1), (2) depends on the parameters of the model:

x.t; ˛1; ˛2; ˇ1; ˇ2; �; x0; y0; z0; I1; I2; I3/I
y.t; ˛1; ˛2; ˇ1; ˇ2; �; x0; y0; z0; I1; I2; I3/I (3)

z.t; ˛1; ˛2; ˇ1; ˇ2; �; x0; y0; z0; I1; I2; I3/:

Analytical solution of the Cauchy problem was obtained in [2, 3]; when the right
sides of (1) are linear relationships, there are no I1; I2; I3, peculiar “equilibrium”
volumes of information of the relevant parties, and—˛ D ˛1 D ˛2 , ˇ D ˇ1 D ˇ2 ,
and (4) is transformed to:

x.t; ˛; ˇ; �; x0; y0; z0/I y.t; ˛; ˇ; �; x0; y0; z0/I z.t; ˛; ˇ; �; x0; y0; z0/ (4)

The correlation between quantities ˛; ˇ; x0; y0; z0 for which (4) vanishes, equal to
zero, i.e., information warfare completed or not, has been established.
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Further, we will be interested in a question of completion of information warfare.
We will consider such points t�; t�� 2 Œ0;T� on which information warfare and
conditions:

x.t�/ D 0; y.t��/ D 0 (5)

are fair.
Thus, the task of completing the information warfare actually turns into a

boundary value problem for a system of ordinary differential equations: (1), (2), (5).
Note that, we do not describe boundary conditions for the third function in (5), as
they are not relevant for fixing complete information warfare.

We cannot speak uniquely about the existence of solutions of the boundary value
problem (1), (2), (5). At each set of fixed parameters˛1; ˛2; ˇ1; ˇ2; �; x0; y0; z0; I1; I2; I3,
the solution of the boundary value problem either exists or is not present.
Therefore, naturally there is a task using possibilities of variation of the parameters
connected with the peacekeeping side to solve a boundary value problem. That is,
naturally there is a problem of the control of information warfare, with the aid of
peacekeeping activity. Parameters, which the peacekeeping side can control, are its
peacekeeping activity—� , level of development of information technologies—I3,
and its initial value—z0 , with which it enters into the information warfare.

Let us touch controllability, which corresponds to the boundary value prob-
lem (1), (2), (5). Using computer simulations by controlling parameters, specifically
increasing them, in works [5, 6], let us install an opportunity to translate the
process of information confrontation with position (2) to the state (5), i.e., prob-
lem (1), (2), (5) is controllable.

But if controllability of systems is possible, why not to search for the optimal
control? So, we naturally come to the optimal control problem [7]. We believe
that u1.t/ and u2.t/ are control functions. In the system (1), we will assume
transformation of the boundary value problem (1), (2), (5) into the optimal control
problem. Thus, the purpose of the control is to transfer the system from position (2)
to state (5) for the minimum expenditure for peace side. We assume that costs of
the third party by one of the peacekeeping activities and the level of information
technology are equal to one conventional unit. So, we have:

J D
Z max.t�;t��/

0

.u1.t/
2 C u2.t/

2/dt ! inf (6)

dx.t/

dt
D ˛1x.t/

�
1 � x.t/

I1

�
� ˇ1z.t/;

dy.t/

dt
D ˛2y.t/

�
1 � y.t/

I2

�
� ˇ2z.t/; (7)

dz.t/

dt
D u2.t/ .x.t/C y.t//

�
1 � z.t/

u1.t/

�
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x.0/ D x0; y.0/ D y0; z.0/ D z0: (8)

x.t�/ D 0; y.t��/ D 0 (9)

Note, that the points t�; t�� 2 Œ0;T� usually are different and free. The optimal
control problem (6)–(9) differs from the usual control tasks. Namely, a pair
.x.t/; y.t// which characterizes the condition of information confrontation should
not be reset to zero at the same time. There may be cases: x.t�/ D 0 , y.t�/ ¤ 0, and
x.t��/ ¤ 0 , y.t��/ D 0 . This state of things is consistent with the social processes.
If the process is described by a certain vector function, the completion of the process
can mean output zeros on the coordinates of these vector functions at different time.
That is a characteristic feature of the optimal control problem (6)–(9) which, for
brevity, we shall call the ChilKer task.

We believe that x0; y0 > 0I z0 � 0 � D Œ0;T�I t�; t�� 2 �; or t� D t��,
or t� > t�� , or t� < t�� ; x.t/; y.t/z.t/ 2 PC1.�/ function with a piecewise
continuous derivative and absolutely continuous functions and u1.t/; u2.t/ 2 PC.�/
with piecewise continuous functions.

For all the meaning of time t, we have x.t/ � I1; y.t/ � I2; z.t/ � I3 and
0 � u1.t/ � I1; 0 � u2.t/ � Q , where Q is some positive real number.
Five functions x.t/; y.t/; z.t/; u1.t/; u2.t/ are called admissible controlled process or
admissible process, if (8) is performed at the points of continuity of the control
parameters and boundary conditions (8), (9) are satisfied.

jjx.t/; y.t/; z.t/jj D max.maxt2Œ0;T�jx.t/j;maxt2Œ0;T�jy.t/j;maxt2Œ0;T�jz.t/j/: In
accordance with this standard, a strong minimum is considered.

Note that we do not know in advance which of the relations t� D t��, t� > t��,
and t� < t�� is performed and t� and t�� are not fixed in the�. These circumstances
do not allow us to proceed directly to the solution of the problem (6)–(9). Thus, the
problem ChilKer should be presented by two subtasks. In fact, we must decompose
the ChilKer problem by the domain of definition and get two tasks of the classical
type—Lagrange problem in the form of Pontryagin. Case t� D t�� will not be
considered, because it is already a well-known Lagrange problem in the Pontryagin
form. For the information warfare problem, it was considered in [4]. In general, it is
successfully applied to physical type problems, in particular to variational problems
of mechanics. Therefore, we consider the case when t� < t��, the second case—
t� > t�� is treated similarly.

The functional (6) divide the interval of integration Œ0;max.t�; t��/� into two
subinterval of integration: Œ0;min.t�; t��/� and Œmin.t�; t��/;max.t�; t��/�:

Select the task A as a ChilKer subtask—a problem of optimal control:

A D
Z min.t�;t��/

0

.u1.t/
2 C u2.t/

2/dt ! inf (10)
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dx.t/

dt
D ˛1x.t/

�
1 � x.t/

I1

�
� ˇ1z.t/;

dy.t/

dt
D ˛2y.t/

�
1 � y.t/

I2

�
� ˇ2z.t/; (11)

dz.t/

dt
D u2.t/ .x.t/C y.t//

�
1 � z.t/

u1.t/

�

x.0/ D x0; y.0/ D y0; z.0/ D z0: (12)

x.t�/ D 0I y.t�/ D yA;where 0 < yA � I2I z.t�/ D zA;where 0 � zA � I3 (13)

Task A is a Lagrange task in Pontryagin form and it is possible to apply the
necessary and sufficient conditions of existence of the solution [1].

Let:

xA.t/; yA.t/; zA.t/; u1A.t/; u2A.t/; t
�
A (14)

be the solutions of task A (10)–(13).
Task B will be in the following form (B is optimal control problem):

B D
Z max.t�;t��/

min.t�;t��/

.u1.t/
2 C u2.t/

2/dt ! inf (15)

dx.t/

dt
D ˛1x.t/

�
1 � x.t/

I1

�
� ˇ1z.t/;

dy.t/

dt
D ˛2y.t/

�
1 � y.t/

I2

�
� ˇ2z.t/; (16)

dz.t/

dt
D u2.t/ .x.t/C y.t//

�
1 � z.t/

u1.t/

�

x.t�/ D xA.t
�/; y.t�/ D yA.t

�/; z.t�/ D zA.t
�/: (17)

x.t/ � 0: (18)

x.t��/ D xB � 0I y.t��/ D 0I z.t��/ D zB;where 0 � zB � I3: (19)

Tasks A and B are broadly similar, but there are differences. Here it is essential
to add conditions (18) to the B problem and it makes sense—having reached the
termination of information warfare of the first party, i.e., x.t�/ D 0 , it should not
renew it again. Therefore, on the segment Œt�; t���, the first side does not resume
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information warfare, because of the fact that there is inequality x.t/ � 0 . Denote
solutions of problem B—(15)–(19) by:

xB.t/; yB.t/; zB.t/; u1B.t/; u2B.t/; t
��
B : (20)

Now with the help of solutions (14) of problems A (10)–(13) and (20) of
problems B (15)–(19), we will have:

S D .xA.t/; yA.t/; zA.t/; u1A.t/; u2A.t// if 0 � t � t�A D t�I
S D .xB.t/; yB.t/; zB.t/; u1B.t/; u2B.t// if t�A � t � t��

B D t��: (21)

where S D .x.t/; y.t/; z.t/; u1.t/; u2.t//.
It is easy to notice that the solution (21) is admissible controlled process of the

problem ChilKer (6)–(9). Thus, we have the following :

Theorem 1. If (14) and (20) are, respectively, solutions of problems A and B,
resulting from decomposition of ChilKer problem, then (21) is an admissible
controlled process for ChilKer (6)–(9) problem.

Thus, we can conclude that the functions x.t/; y.t/; z.t/ of (21) are solutions of
ChilKer problem, (1), (2), (5) for the ODE, and transfer the system from the state
of (2) to (5), when � D u2.t/ and I3 D u1.t/

We have three points:

P0 � .0; x0; y0; z0/ (22)

PA � .t�; x.t�/ D 0; yA; zA/ (23)

PB � .t��; xB; y.t
��/ D 0; zB/: (24)

Note that, among all admissible control processes, ChilKer problem (6)–(9) passing
through the points P0;PA;PB solution (21)—is the optimal for the functional J (6).
So, we have the following theorem:

Theorem 2. For the solution of ChilKer problem (6)–(9) to which are added
conditions of passing x.t/; y.t/; z.t/ functions through the points (22)–(24), it is
necessary and sufficient existence of tasks A (14) and B (20) solutions, which are
resulted by decomposition of ChilKer problem.

3 Conclusions

For the boundary value problem of type ChilKer system of ordinary differential
equations, (1), (2), (5) proposed a method for finding solutions. The system of
ODE (1) defines the control parameters and the optimal control problem is generated
ChilKer type (6)–(9). The ChilKer type optimal control problem is divided into two
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suboptimal control, i.e., decomposition of ChilKer problem occurs on the domain
and the corresponding solutions are (14), (20) for the tasks A (10)–(13) and B (15)–
(19). It is alleged that “stapling” solutions of A and B (21) is a valid process control
for optimal control problems such as ChilKer (6)–(9) and one of the solutions
to the boundary value problem of type ChilKer system of ordinary differential
equations (1), (2), (5). The solution (21) is the best among all the solutions of the
optimal control type ChilKer (6)–(9) passing through the points (22)–(24).
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Time Nonautonomous Dynamical Systems
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Abstract Two recent developments provide insights on the appropriate definition
of a forward attractor in nonautonomous dynamical systems. One is the construction
of the component subsets of a forward attractor defined as a time-dependent family
of compact subsets and conditions that ensure that the so constructed family forward
attracts bounded subsets. Such a family is Lyapunov asymptotically stable, but often
does not exist even in simple examples of dissipative nonautonomous systems.
The other development is the recent discovery that the forward omega-limit set
is asymptotically positively invariant. This makes this set, which Vishik proposed
as the forward attractor and called the uniform attractor, a more useful concept of
forward attractor since it now provides more information about the dynamics in
current time as it approaches the omega-limit set. These developments are discussed
in this chapter in the context of discrete time nonautonomous dynamical systems
that are formulated as processes.
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1 Introduction

The nature of time in a nonautonomous dynamical system is very different from that
in autonomous systems, which depends on the time that has elapsed since starting
rather on the actual time. Consequently, limiting objects may not exist in actual
time as in autonomous systems. This is most apparent in the shortcomings in the
definition of a forward attractor in a nonautonomous systems [2, 10]. The usual
definition is an intuitive and natural counterpart of that of a pullback attractor: an
invariant family of compact subsets that attracts bounded sets in the sense of forward
rather than pullback convergence [1–3, 8]. Moreover, this definition requires the
subsets to exist for all time, also in the distant past, even though forward attraction
is really only about what happens in the distant future.

Vishik [3, 15] proposed using the forward omega-limit set as the forward
attractor, which he called the uniform attractor. This set indicates just where the
forward limit points are to be found. It is generally not invariant and provides little
information about the dynamics in actual time on the approach to the limit set. In
addition, the uniform qualifier refers to the skew product-like systems considered
by Vishik rather to more general nonautonomous dynamical systems.

Some recent developments, which clarify the situation, are discussed here.
Firstly, it was shown in [7] that the subsets of a forward attractor can be constructed
by a pullback argument within a positively invariant family of subsets just like those
of a pullback attractor. Nothing is assumed here about what is happening outside
the family of subsets. Additional conditions must be satisfied to ensure that forward
attraction holds. These are, however, not always satisfied in even simple examples.
Consequently, forward attractors in this sense may often not exist. The second
development is the proof that the forward omega-limit set is, in fact, asymptotically
positively invariant [9]. This is weaker than most other invariance concepts, but
nevertheless provides more information about the approach of the dynamics to the
omega-limit set. As such it makes Vishik’s definition of a uniform attractor much
more useful.

The forward attractor in the sense of an invariant family nonempty compact
subsets that forward attracts all families of nonempty bounded subsets is a Lyapunov
asymptotically stable family of sets. It is a special case that provides much more
information about the dynamics of the nonautonomous system in current as well in
the limiting future, but does not exist in many systems.

2 Nonautonomous Attractors

A nonautonomous difference equation on R
d has the form:

xnC1 D fn .xn/ (1)

with mappings fn W Rd ! Rd, which are assumed to be continuous here and may
vary with time n 2 Z.
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Define Z2� WD f.n; n0/ 2 Z2 W n � n0g. The nonautonomous difference
equation (1) generates a solution mapping � W Z2� � Rd ! Rd through iterated
composition, i.e., �.n; n0; x0/ WD fn�1 ı � � � ı fn0 .x0/ for all n > n0 with n0 2 Z and
each x0 2 X with the initial value �.n0; n0; x0/ WD x0.

The solution mappings of nonautonomous difference equations like (1) gener-
ate an abstract discrete time nonautonomous dynamical system formulated as a
2-parameter semigroup or process [4, 5] on the state space Rd and time set Z.

Definition 1. A (discrete time) process on the state space Rd is a mapping � W
Z2� � Rd ! Rd which satisfies the following initial value, 2-parameter evolution
and continuity properties:

i) �.n0; n0; x0/ D x0 for all n0 2 Z and x0 2 R
d,

ii) �.n2; n0; x0/ D � .n2; n1; �.n1; n0; x0// for all n0 � n1 � n2 in Z and x0 2 R
d,

iii) the mapping x0 7! �.n; n0; x0/ of Rd into itself is continuous for all .n; n0/
2 Z

2�.

The general nonautonomous case differs crucially from the autonomous one in
that the starting time n0 is just as important as the time that has elapsed since
starting, i.e., n � n0. This has some profound consequences in terms of definitions
and the interpretation of dynamical behavior, so many of the concepts that have
been developed and extensively investigated for autonomous dynamical systems, in
general, and autonomous difference equations, in particular, are either too restrictive
or no longer valid or meaningful in the nonautonomous context. The following
definitions and results are taken from [2, 8, 11, 13, 14].

Definition 2. A family A D fAn W n 2 Zg of nonempty subsets of Rd is
�-invariant if:

� .n; n0;An0 / D An; for all .n; n0/ 2 Z
2�;

or, equivalently, if fn.An/ D AnC1 for all n 2 Z. It is said to be uniformly bounded if
there exists a bounded subset B of Rd such that An � B for all n 2 Z.

Forward and pullback convergences can be used to define two distinct types of
nonautonomous attractors for a process �.

Definition 3. A �-invariant family A D fAn W n 2 Zg of nonempty compact
subsets of Rd is called a forward attractor if it forward attracts families D D fDn W
n 2 Zg of bounded subsets of Rd, i.e.:

distRd .� .n; n0;Dn0 /; An/ ! 0 as n ! 1 .n0 fixed/ (2)

and a pullback attractor if it pullback attracts families D D fDn W n 2 Zg of
bounded subsets of Rd, i.e.:

distRd .� .n; n0;Dn0 /; An/ ! 0 as n0 ! �1 .n fixed/: (3)
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Here:

distRd .x;B/ WD inf
b2B

kx � bk; distRd .A;B/ WD sup
a2A

distRd .a;B/

for nonempty subsets A, B of Rd.

Remark 1. A forward attractor is, in fact, a Lyapunov asymptotically stable �-
invariant family of sets. The required attractivity is given by the forward con-
vergence (2), while the Lyapunov stability part follows from forward attraction
combined with the continuity in initial conditions uniformly on a bounded time
interval. Lyapunov stability can be interpreted as continuity in initial conditions
uniformly over all future time. Analogously, pullback convergence (3) implies what
can be considered as continuity in initial conditions uniformly over all past initial
times.

Note that each uniformly bounded �-invariant family is characterized by the
bounded entire solutions.

Proposition 1. A uniformly bounded family A D fAn W n 2 Zg is �-invariant
if and only if, for every pair n0 2 Z and x0 2 An0 , there exists a bounded entire
solution � such that �n0 D x0 and �n 2 An for all n 2 Z.

The existence of a pullback attractor follows from that of a pullback absorbing
family in the following generalization of the theorem for autonomous global
attractors. The proof is simpler if the pullback absorbing family is assumed to be
�-positive invariant.

Definition 4. A family B D fBn W n 2 Zg of nonempty compact subsets of Rd

is called pullback absorbing if, for every family D D fDn W n 2 Zg of bounded
subsets of X and n 2 Z, there exists an N.n;D/ 2 N such that:

� .n; n0;Dn0 / � Bn for all n0 � n � N.n;D/:

It is said to be �-positively invariant if � .n; n0;Bn0 / � Bn for all .n; n0/ 2 Z2�.

The assumption about a �-positively invariant pullback absorbing family is not a
serious restriction, since one can always be constructed given a general pullback
absorbing family [11].

Theorem 1. Suppose that a process � has a �-positively invariant pullback
absorbing family B D fBn W n 2 Zg.

Then there exists a global pullback attractor A D fAn W n 2 Zg with component
sets determined by:

An D
\

j�0
�
�
n; n � j;Bn�j

�
for all n 2 Z: (4)

Moreover, if A is uniformly bounded, then it is unique.
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The situation is somewhat more complicated for forward attractors than for
pullback attractors due to some peculiarities of forward attractors [14], e.g., they
need not be unique. For each r � 0 the process generated by:

xnC1 D fn.xn/ WD
(

xn; n � 0;
1
2

xn; n > 0
(5)

has a forward attractor A .r/ with component subsets:

A.r/n D
8
<

:

r Œ�1; 1�; n � 0;

1
2n r Œ�1; 1�; n > 0:

(6)

These forward attractors are not pullback attractors.
It is often asserted in the literature that there is no counterpart of Theorem 1 for

nonautonomous forward attractors. In fact, such construction (4) in continuous time
was shown by Kloeden & Lorenz [7] to hold within any positively invariant family
but provides only a candidate for a forward attractor; other conditions must also
hold.

3 Construction of Forward Attractors

The following important property of forward attractors holds for essentially the
same reasons as in continuous time [7].

Proposition 2. A uniformly bounded forward attractor A D fAn W n 2 Zg in Rd

has a �-positively invariant family B D fBn W n 2 Zg of nonempty compact subsets
with An � Bn for n 2 Z, which is forward absorbing.

A key observation for the construction of a forward attractor is provided by the next
theorem [7].

Theorem 2. Suppose that a process � on Rd has a �-positively invariant family
B D fBn W n 2 Zg of nonempty compact subsets of X.

Then � has a maximal �-invariant family A D fAn W n 2 Zg in B of nonempty
compact subsets determined by:

An D
\

n0�n

� .n; n0;Bn0 / for each n 2 Z: (7)

In view of Proposition 2, the component sets of any uniformly bounded forward
attractor can be constructed in this way. Note that nothing is assumed here about the
dynamics outside of the family B.
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3.1 A Condition Ensuring Forward Convergence

The �-invariant family A D fAn; n 2 Zg constructed in Theorem 1 need not be
a forward attractor, even when the �-positively invariant family B is a forward
absorbing family, e.g., consider any example of a pullback attractor that is not a
forward attractor.

Another important observation, if somewhat obvious, is that there should be no
!-limit points from inside the family B that are not !-limit points from inside the
family A . For each n0 2 Z, the forward !-limit set with respect to B is defined by:

!B.n0/ WD
\

m�n0

[

n�m

�.n; n0;Bn0 /:

The set !B.n0/ is nonempty and compact as the intersection of nonempty nested
compact subsets and:

lim
n!1 distX .�.n; n0;Bn0 /; !B.n0// D 0 .fixed n0/:

Since An0 � Bn0 and An D �.n; n0;An0 / � �.n; n0;Bn0 /;

lim
n!1 distX .An; !B.n0// D 0 .fixed n0/: (8)

Moreover, !B.n0/ � !B.n0
0/ � B for n0 � n0

0, where the final inclusion is from
the uniform boundedness of B, since �.n; n0;Bn0 / � Bn for each n � n0. Hence
the set:

!1
B WD

[

n02Z
!B.n0/

is nonempty and compact. It is often called the uniform attractor of the non-
autonomous system, even though it is not invariant [3, 15].

From (8) it is clear that:

lim
n!1 distX

�
An; !

1
B

� D 0: (9)

The !-limit points for dynamics starting inside the family of sets A are defined by:

!1
A WD

\

n02Z

[

n�n0

An D
\

n02Z

[

n�n0

�.n; n0;An0 / � B;

which is nonempty and compact as a family of nested compact sets. Obviously,
!1
A � !1

B � B. The example below shows that the inclusions may be strict.
The following result was proved in [7].
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Theorem 3. A is forward attracting from within B if and only if !1
A D !1

B .

A will then be a forward attractor, if B is forward absorbing.

3.2 Example

Consider the piecewise autonomous equation:

xnC1 D �n xn

1C jxnj ; �n WD
(
�; n � 0;

��1; n < 0
(10)

for some � > 1, which corresponds to a switch between the two autonomous
problems at n D 0. Its pullback attractor A of the resulting nonautonomous system
has component sets An 	 f0g for all n 2 Z corresponding to the zero entire solution.
Note that the trivial fixed point Nx D 0 seems to be “asymptotically stable” for n < 0
and then “unstable” for n � 0. Moreover, the interval Œx�; xC� with x˙ D ˙.� � 1/
is like a global attractor for the whole equation on Z, but it is not really one since it
is not invariant or minimal for n < 0 (Fig. 1).

A similar situation occurs in the nonautonomous difference equation:

xnC1 D fn.xn/ WD �n xn

1C jxnj ; (11)

where f�ngn2Z be a monotonically increasing sequence with limn!˙1 �n D �˙1
for � > 1, which is asymptotically autonomous in both directions with the limiting
systems as (10).

Fig. 1 Trajectories of the piecewise autonomous equation (10) with � D 1:5 (left) and the
asymptotically autonomous equation (11) with �n D 1C 0:9 n

1Cjnj
(right)
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The nonautonomous difference equations (10) and (11) are asymptotically
autonomous in both directions, but the pullback attractor does not reflect the full
limiting dynamics, in particular in the forward time direction. It clearly does not
satisfy the assumptions of Theorem 3.

4 What Really Is a Forward Attractor?

The definition of a forward attractor in Definition 3 as �-invariant family A D
fAn; n 2 Zg of nonempty compact subsets of R

d that forward attracts families of
bounded sets was introduced as an obvious counterpart to a pullback attractor.

Forward attraction (2) is, however, very different conceptually from pullback
attraction (3) in that it is about what happens in the distant future and not in
actual time, i.e., current time. Pullback convergence, seemingly contradictorily, is in
this sense the natural generalization of convergence in autonomous systems, which
depend only on the elapsed time since starting, so limit sets exist, in fact, in actual
time. Moreover, as seen in system (5) above, forward attractors need not be unique.

Another curious feature of forward attractors in the sense of Definition 3 is
that they require the entire past history of the system to be known. Indeed, its
construction in Theorem 2 is based on pullback convergence, although forward
convergence is about the distant future and should be independent of the past. In
fact, forward convergence should not even require the system to be defined in the
past.

The future limiting dynamics in (10) and (11) is contained in the set Œx�; xC�
with x˙ D ˙.� � 1/, which corresponds to the omega-limit set !B in the previous
section. It is an example of what Vishik calls a uniform attractor.

Vishik [15] defined the uniform attractor to be a compact set which attracts the
forward dynamics of the system and minimal in the sense that it is contained in all
sets with this property. Nothing is said about invariance in this definition.

When the positively invariant family B in the previous section is forward
absorbing, then !B is a uniform attractor. The set Œx�; xC� for the piecewise
autonomous system (10) is invariant only for positive time, but for both systems (10)
and (11), it is positively invariant for all time. These are simple examples; in general,
the future dynamics can be much more complicated, in fact, even arbitrary.

Nevertheless, when B consists of a single compact set B, the uniform attractor
!B is asymptotically positively invariant, see [6, 12]. The following result is taken
from Kloeden & Yang [9].

Proposition 3. Suppose that B consists of a single compact set B that is forward
absorbing and positively invariant. Then, under the above assumptions, !B is
asymptotically positively invariant, i.e., for any monotonic decreasing sequence
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"p ! 0 as p ! 1, there exists a monotonic increasing sequence Np ! 1 as
p ! 1 such that for each n0 � Np:

� .n; n0; !B/ � B"p .!B/ for all n � n0; (12)

where B"p .!B/ WD fx 2 Rd W distRd .x; !B/ < "pg.

Note that Proposition 3 does not require the process � and the family B to be
defined in the past. In particular, it applies when the system is defined, say, only for
times n 2 ZC or even for n � n0 for some n0 2 ZC. Since the dynamics is assumed
to be forward dissipative, it may be easier then to find a single absorbing set.

5 Definition of a Forward Attractor

The qualifier “uniform” in Vishik’s definition of a uniform attractor comes from
uniformity assumptions on the skew product flows where the term was introduced.
The dynamics need not be, in general, uniform. What remains is the minimal
compact attracting set. Simple examples show that this set need not be invariant,
although it may be positively invariant in some cases. In general, from Proposition 3,
it is asymptotically positively invariant. This suggests the following definition.

Definition 5. The “forward attractor” of a nonautonomous dynamical system is
an asymptotically positively invariant compact attracting set that is contained in all
other sets with these properties.

This is an improvement on Vishik’s original definition, because it provides more
information about what happens in actual time on the approach to the limiting object
in the infinite future.

A forward attractor in the sense of Definition 3, i.e., a �-invariant family A D
fAn; n 2 Zg of nonempty compact subsets of Rd that forward attracts all families
D of nonempty bounded subsets of Rd (in the sense of (2)) could then be called a
Lyapunov asymptotically stable �-invariant family of sets, see Remark 1.

The corresponding omega-limit set !B is then the forward attractor in the sense
of Definition 5. For the difference equation (5), which has uncountably many
forward attractors in the sense of Definition 3, it is simply the set f0g.

The existence of a Lyapunov asymptotically stable family of sets is a very strong
property and not typical in many nonautonomous systems. The forward attractor
in the sense of Definition 5 better captures the forward limiting behavior of such
systems.
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Asymptotic Stability Regions for Certain
Two Parametric Full-Term Linear Difference
Equation

Petr Tomášek

Abstract We introduce an efficient form of necessary and sufficient conditions
for asymptotic stability of the k-th order linear difference equation y.n C k/
Ca

Pk�1
jD1.�1/jy.n C k � j/C by.n/ D 0; where a; b 2 R. The asymptotic stability

region in .a; b/ plane for this equation will be constructed and discussed with respect
to some related linear difference equations.

Keywords Difference equation • Stability • The Schur-Cohn criterion

Mathematics Subject Classification: 39A06, 39A10, 39A30.

1 Introduction

The aim of the paper is to introduce and discuss asymptotic stability conditions for
linear difference equation with constant parameters

y.n C k/C a
k�1X

jD1
.�1/jy.n C k � j/C by.n/ D 0; n D 0; 1; 2; : : : (1)

where a; b 2 R, k 2 N. We are going to utilize a certain technique based
on the Schur–Cohn criterion, which for particular cases of linear higher-order
difference equations enables us to obtain an efficient form of necessary and
sufficient conditions for asymptotic stability of such equations. First the technique
was applied to a few-term linear difference equations, where the already known
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results were confirmed and reformulated to a more convenient form and then a
new significant result was obtained in [2], where asymptotic stability of difference
equation

ynCk C ˛ynCk�1 C ˇynC1 C �yn D 0; n D 0; 1; 2; : : : ;

with real parameters ˛; ˇ and � was studied. Moreover, previous results were
mainly formulated as a parametric expression of stability region’s boundary, which
naturally followed from proof procedures based on the boundary locus technique.
Moreover there was necessary to solve an auxiliary nonlinear equation (considering
a fixed order of linear difference equation). On the other hand, conditions obtained
by the new approach are of a more compact and explicit form. In this connection we
recall some works dealing with asymptotic stability of scalar higher-order few-term
linear difference equations:

Analysed difference equation (n D 0; 1; 2; : : : :) Paper

ynCk � ynCk�1 C �yn D 0 Levin, May [11]

ynCk C ˛ynCk�1 C �yn D 0 Kuruklis [10]

ynCk C ˛ynCm C �yn D 0 Dannan [5], Cheng, Huang [4],

k > m > 0 Kipnis, Nigmatullin [9]

ynCk C ˛ynCk�1 C ˇynC1 C �yn D 0 Čermák, Jánský, Kundrát [2]

ynCk C ˛ynCk�2 C �yn D 0 Ren [12], Čermák, Tomášek [1]

ynCk C ˛ynCk�2 C ˇynC2 C �yn D 0 Čermák, Jánský, Tomášek [3]

Analysis of necessary and sufficient conditions for equations with more param-
eters or more terms turns out to be a very difficult problem. On the other hand,
a special full-term higher-order equation with two parameters gives a very simple
form of such conditions. Asymptotic stability analysis of equation

y.n C k/C a
k�1X

jD1
y.n C k � j/C by.n/ D 0; n D 0; 1; 2; : : : (2)

was done in [7] and alternative proof procedure was realized in [13]. The asymptotic
stability conditions for (2) can be captured by the next assertion.

Proposition 1. Consider Eq. (2) with a; b 2 R, k � 2. Then (2) is asymptotically
stable if and only if

a � 1 < b < 1; �1C .1 � k/a < b: (3)

The above mentioned papers inspired the author to analyse asymptotic stability of
another special two-parametric full-term linear equation (1): In Sect. 2 we introduce,
after some preliminaries, the necessary and sufficient conditions for (1) to be
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asymptotically stable. In Sect. 3 we discuss the result with respect to its geometrical
interpretation and in a connection with asymptotic stability conditions for linear
difference equation (2).

2 Asymptotic Stability Conditions

First we introduce a sufficient condition for (1) to be asymptotically stable, which
is just an appropriate reformulation of the well known Cohn stability condition for
linear difference equation (1).

Proposition 2. Consider Eq. (1) with a; b 2 R, k 2 N. If the condition

jbj < 1C .1 � k/jaj

is satisfied then (1) is asymptotically stable.

At the end of the paper is the Cohn condition compared with the necessary and
sufficient one introduced below.

In the sequel we recall the notion of inner matrices, which determinants play
a key role in our proof procedure. Let M D �` be an ` � ` matrix. We construct
.`�2/�.`�2/matrix�`�2 from�` by deleting its first and its last column and row.
Repeating this procedure we obtain a set of matrices f�1;�3; : : : ; �`g in the case
` odd and a set of matrices f�2;�4; : : : ; �`g in the case ` even. The appropriate
set of matrices (with respect to the parity of `) is called the inners of the matrix M.
Illustrating this we introduce

The concentric rectangles determine the inner matrices�1,�3 and�5 D M5 within
matrix M5 and the inner matrices �2, �4 and �6 D M6 within matrix M6. Much
more about inners and their interesting properties and usage can be found in [8].
One useful property of square matrices is the following one: a square matrix M is
said to be positive innerwise if all its inners have a positive determinant.

Theorem 1. Consider Eq. (1) with a; b 2 R, k 2 N. Then (1) is asymptotically
stable if and only if

� 1 < b < 1� a; b < 1C .k � 1/a for k oddI (4)

a � 1 < b < 1; �1C .1 � k/a < b for k even: (5)
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Proof. It is well known that (1) is asymptotically stable if and only if polynomial

P.�/ D �k C a
k�1X

jD1
.�1/j�k�j C b (6)

has all its roots inside the unit disk in the complex plane. This property is
guaranteed (in the if and only if sense) by the Schur–Cohn criterion (see [6]), which
reformulation for polynomial P.�/ given by (6) can be captured by

Proposition 3. Polynomial (6) has all its roots inside the unit disk if and only if the
sequel three conditions simultaneously hold:

1.

P.1/ > 0; i:e:
1C b > 0 for k odd
1 � a C b > 0 for k even

2.

.�1/kP.�1/ > 0; i:e:
1C .k � 1/a � b > 0 for k odd
1C .k � 1/a C b > 0 for k even

3. .k � 1/ � .k � 1/ matrices given by polynomial coefficients

are positive innerwise.

The first two conditions are easy to verify, hence our aim is to simplify the third
one. We are supposed to verify that determinants of all inner central matrices of BC

k�1
and of B�

k�1 are positive. First we introduce matrices D; I; J for efficient formulation
of the proof steps. Let Is be s � s identity matrix and let Ds and Js be s � s matrices
given by
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Matrix Js is usually referred as the skew identity matrix. Using this notion we can
express

Bk̇�1 D
	

Dk�1 C Ik�1 
 Dk�1Jk�1 ˙ bJk�1 for k odd;
Dk�1 C Ik�1 ˙ Dk�1Jk�1 ˙ bJk�1 for k even

and all their inner matrices as

�ṡ D
	

Ds C Is 
 DsJs ˙ bJs s D 2; 4; 6; : : : ; k � 1 for k odd;
Ds C Is ˙ DsJs ˙ bJs s D 1; 3; 5; : : : ; k � 1 for k even:

In the case of k odd we realize the next operations within matrix BC
k�1 (which

preserve determinants of all its inners) to get matrix QBC
k�1:

1. addition of the .k � i/-th column to the i-th column for i D 1; 2; : : : ; .k � 1/=2

2. subtraction of the i-th row from the i-th one, i D 1; 2; : : : ; .k � 1/=2
and similarly within matrix B�

k�1 to get matrix QB�
k�1:

1. subtraction of the .k � i/-th column from the i-th column, i D 1; 2; : : : ; .k �1/=2
2. addition of the i-th row to the .k � i/-th one for i D 1; 2; : : : ; .k � 1/=2

Now any inner matrix of above obtained QBC
k�1 and QB�

k�1 can be expressed as

Q�C
s D

"
.1C b/Is=2 �Ds=2Js=2 C bJs=2

Os=2 .1C a � b/Is=2 C 2Ds=2 C 2DT
s=2

#

;

Q��
s D

"
.1C b/Is=2 Ds=2Js=2 � bJs=2

Os=2 .1 � a � b/Is=2

#

;

where Ov means v � v zero matrix. The corresponding determinants can be
captured as

det Q�C
s D .1C b/s=2.1 � a � b/s=2�1.1C .s � 1/a � b/; (7)

det Q��
s D .1C b/s=2.1 � a � b/s=2 (8)

for s D 2; 4; 6; : : : ; k � 1.
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In the case of k even we realize the next operations within matrix BC
k�1 (which

preserve determinants of all its inners) to get matrix QBC
k�1:

1. subtraction of the .k � i/-th column from the i-th column, i D 1; 2; : : : ; .k �2/=2
2. addition of the i-th row to the .k � i/-th one for i D 1; 2; : : : ; .k � 2/=2

and similarly within matrix B�
k�1 to get matrix QB�

k�1:

1. addition of the .k � i/-th column to the i-th column for i D 1; 2; : : : ; .k � 2/=2

2. subtraction of the i-th row from the i-th one, i D 1; 2; : : : ; .k � 2/=2
Now we can express any inner matrix of QBC

k�1 and QB�
k�1 as

�C
s D

2

6
4

.1 � b/I.s�1/=2 oT
.s�1/=2 D.s�1/=2J.s�1/=2 C bJ.s�1/=2

o.s�1/=2 1C b !.s�1/=2
O.s�1/=2 2!T

.s�1/=2 .1C a C b/I.s�1/=2 C 2D.s�1/=2 C 2DT
.s�1/=2

3

7
5 ;

��
s D

2

6
4

.1 � b/I.s�1/=2 oT
.s�1/=2 �D.s�1/=2J.s�1/=2 � bJ.s�1/=2

o.s�1/=2 1 � b �!.s�1/=2
O.s�1/=2 oT

.s�1/=2 .1 � a C b/I.s�1/=2

3

7
5 ;

where ov is 1 � v zero matrix and !v is a 1 � v matrix, which is given by !v D
Œ�a; a;�a; a; : : : ; .�1/va�. The corresponding determinants then are

det Q�C
s D .1 � b/.s�1/=2.1 � a C b/.s�1/=2.1C .s � 1/a C b/; (9)

det Q��
s D .1 � b/.sC1/=2.1 � a C b/.s�1/=2 (10)

for s D 1; 3; 5; : : : ; k � 1.
Considering simultaneous validity of all three points of Proposition 3 we can

formulate Theorem 1. Indeed, in the case of k odd relations 1Cb > 0, 1C.k�1/a�
b > 0 and positivity of all det Q�C

s and det Q��
s , s D 2; 4; 6; : : : ; k � 1 given by (7)

and (8), respectively, give condition (4). In the case of k even relations 1�aCb > 0,
1C .k � 1/a C b > 0 and positivity of all det Q�C

s and det Q��
s , s D 1; 3; 5; : : : ; k � 1

given by (9) and (10), respectively, give condition (5). The theorem is proved. ut

3 Discussion and Observations

For a better insight into asymptotic stability dependency on equation parameters
a; b and k there can be constructed stability regions in .a; b/ plane. Figure 1 depicts
asymptotic stability region for (1) in the case of k odd whereas Fig. 2 captures the
situation in the case of k even. As we can see, the asymptotic stability region has in
the both cases a triangle shape (grey colour highlighted area). A part of the triangle
situated in the right half-plane remains preserved for any admissible value of k,
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Fig. 1 Asymptotic stability
region of (1) in .a; b/ plane
for k odd

whereas a part in the left half-plane depends on a value of parameter k. The greater
value of k is the smaller area remains for asymptotic stability, since the left side of
the triangle rotates towards the b axis round the vertex .0; 1/ in the case of k odd
and round the vertex .0;�1/ in the case of k even. The Cohn asymptotic stability
condition (the sufficient one) forms a diamond in .a; b/ plane which is in Figs. 1
and 2 highlighted by a dark-grey colour. As we can observe from the both figures,
the higher order k of difference equation we consider the higher ratio of asymptotic
stability region area given by Theorem 1 to the diamond area given by Proposition 2
becomes.

Of course Proposition 3 can be used directly for checking whether some
particular linear difference equation is asymptotically stable or not. But validity
of the third condition requires a number of determinants computing and checking
their positiveness. The form of necessary and sufficient conditions introduced in
Theorem 1 gives a realistic idea about the asymptotic stability of a class of higher-
order linear difference equations given by (1).

In the sequel we compare the obtained result with the conditions obtained for
Eq. (2), which served as a motivation for the presented analysis. If we consider
difference equation (2), we can observe that the necessary and sufficient asymptotic
stability condition (3) for (2) (considering any k � 2) corresponds with the k-
even branch of Theorem 1. Thence the asymptotic stability region (as well as the
Cohn stability domain) for Eq. (2) corresponds to situation depicted in Fig. 2, but
considering any integer order k � 2.

As it was stated in several papers, a formulation of some closed form of necessary
and sufficient asymptotic stability conditions for higher-order linear difference
equations is a very difficult problem. This fact is documented by a relatively small
number of particular cases of such equations, which have been successfully analysed
in the past. It still remains a challenge to obtain some efficient closed form of
necessary and sufficient conditions for a more general higher-order linear difference
equations, e.g. in the sense of considering more then two or three parameters or
considering some special configuration of a few-term difference equations (see the
survey in Sect. 1).
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Fig. 2 Asymptotic stability
region of (1) in .a; b/ plane
for k even
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Limit Point Criteria for Second-Order
Sturm–Liouville Equations on Time Scales

Petr Zemánek

Abstract Necessary and sufficient conditions for the classification of the second-
order Sturm–Liouville equation on time scales being in the limit point case are
established. They unify and extend some of the criteria known for the second-order
Sturm–Liouville differential and difference equations.

Keywords Sturm-Liouville equation • time scale • limit point case • criteria

Mathematics Subject Classification (2000): Primary: 34N05 Secondary: 34B20,
34B24, 39A12

1 Introduction

In this paper we focus on the limit point case of the second-order Sturm–Liouville
dynamic equation

�Œp.t/ y�.t; �/�� C q.t/ y� .t; �/ D �w.t/ y� .t; �/; t 2 Œa;1/T: (E�)

Here � 2 C and Œa;1/T ´ Œa;1/ \ T, where T denotes a time scale (i.e., any
nonempty closed subset of R), which is bounded from below with a ´ minT
and unbounded from above. The coefficients p.�/, q.�/, and w.�/ are real-valued
piecewise rd-continuous functions on Œa;1/T such that

inf
t2Œa;b�T

jp.t/j > 0 for all b 2 .a;1/T and w.t/ > 0 for all t 2 Œa;1/T: (1)
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Observe that p.�/ is allowed to change its sign. Let us emphasize that the first
condition in (1) cannot be replaced by the weaker assumption p.t/ ¤ 0 on Œa;1/T
(see [4, Remark 2.2]). We also note that (E�) includes several equations of particular
interest, especially the second-order Sturm–Liouville differential and difference
equations.

The present results belong to the Weyl–Titchmarsh theory, whose history goes
back to the seminal paper [13] devoted to Eq. (E�) in the case T D R with p.t/ 	
1 	 w.t/. One of the basic questions of this theory concerns the number of linearly
independent solutions of Eq. (E�), which are square-integrable with respect to the
weight w.�/. It can be shown that there exists at least one square-integrable solution
for every � 2 C n R, which leads to the dichotomy of Eq. (E�) as being in the limit
point case (i.e., at least one solution is not square-integrable) or in the limit circle
case (i.e., all solutions are square-integrable) (see Sect. 2 for more details). The
knowledge of the number of linearly independent square-integrable solutions plays
a crucial role in the spectral theory of operators or linear relations associated with
the underlying equation. In particular, it is closely connected with the deficiency
indices of the operator or linear relation (see, e.g., [6, 14]). Therefore, it is very
useful to develop some criteria for this classification. Some of them can be found in
[5, 12, 15]. In this paper we derive necessary and sufficient conditions for the limit
point case. They unify and extend the results derived in [1, Theorems 8, 18, and 19]
and [14, Theorems 7.4.1 and 7.4.2].

The paper is organized as follows. In the next section we recall basic results
concerning the limit point and limit circle classification of Eq. (E�). The main results
are established in Sect. 3.

2 Preliminaries

Fundamental results of the time scale calculus can be found in [2]. For brevity
we write only y�2.t/ instead of Œy� .t/�2 D y2.�.t// D Œy2.t/�� , where �.�/ is the
time scale forward jump operator. By a solution of Eq. (E�), we mean a function
y.�; �/ W Œa;1/T ! C such that y.�; �/; p.�/ y�.�; �/ 2 C1prd, i.e., they are piecewise
rd-continuously delta-differentiable on Œa;1/T, and it satisfies (E�) for all t 2
Œa;1/T (see [8, p. 4]). In addition, if � 2 R, then we may consider only real-valued
solutions.

The Weyl–Titchmarsh theory has been extended in many directions during the
last 100 years. Recently, its generalization for the symplectic dynamic systems

z�.t; �/ D S.t; �/ z.t; �/; S.t; �/ D S .t/C �V .t/; (S�)

where S.�; �/ W Œa;1/T ! C2n�2n is a piecewise rd-continuous function satisfying
for every � 2 C the symplectic-type identity

S
�.t; �/J C J S.t; N�/C �.t/ S�.t; �/J S.t; N�/ D 0; J ´

�
0 I

�I 0

�
;
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was established by the author and his collaborator in [8–10], compare with [11].

Here N� stands for the complex conjugate of � and S�.t; �/ D ŒS.t; �/�
>

. We note that
system (S�) reduces to the linear Hamiltonian differential system in the case T D R.
The following lemma shows the relationship between system (S�) and Eq. (E�). It
guarantees the existence and uniqueness of the solution of any initial value problem
associated with (E�) (see, e.g., [8, Theorem 3.4]). Moreover, it implies that the
Weyl–Titchmarsh theory for Eq. (E�) can be derived directly from the corresponding
results for system (S�). This approach was used in [7] (see also the references therein
and compare with [15]).

Lemma 1. Equation (E�) is equivalent with system (S�), where

z.t; �/ D
 

y.t; �/

p.t/ y�.t; �/

!

; S .t/ D
 
0 1=p.t/

q.t/ �.t/ q.t/=p.t/

!

;

V .t/ D �
 
0 0

w.t/ �.t/w.t/=p.t/

!

:

Proof. The proof follows by straightforward calculations. ut
We denote by L 2

w and N .�/ the linear spaces consisting of all functions and
solutions of Eq. (E�), respectively, which are square-integrable with respect to the
weight w.�/, i.e.,

L 2
w ´

	
y W Œa;1/T ! C;

Z 1

a
w.t/jy� .t/j2 �t < 1

�
;

N .�/ ´ ˚
y.�; �/ 2 L 2

w ; y.�; �/solves .E�/
�
:

Moreover, we put n.�/ ´ dimN .�/, i.e., n.�/ is the number of linearly
independent square-integrable solutions of (E�). According to [7, Theorem 3.10]
it holds 1 � n.�/ � 2 for any � 2 CnR. This estimate is obtained as a consequence
of a construction of the so-called Weyl circles, which are nested and converge to
a circle (n.�/ D 2) or a point (n.�/ D 1) (see, e.g., [9, Sects. 3 and 4]). Motivated
by this geometric background, for a given � 2 C Eq. (E�) is said to be in the limit
circle case if n.�/ D 2, while it is in the limit point case if n.�/ � 1. Although this
classification of (E�) is introduced for every particular � 2 C, the following theorem
yields the so-called invariance of the limit circle case. It is a simple consequence of
Lemma 1 and [9, Theorem 6.1], because trV .t/ D ��.t/w.t/=p.t/ D 0 for every
right-dense point t 2 Œa;1/T as discussed in [9, Remark 6.2(ii)] (see also [15,
Theorem 3.2], [5, Theorem 3.1], and [10]).

Theorem 1. If there exists �0 2 C such that n.�0/ D 2, then n.�/ D 2 all � 2 C.

Consequently we obtain the following result, which is known as the Weyl
alternative (see [9, Sect. 6]). It shows that the classification of Eq. (E�) as being
in the limit point or limit circle case does not depend on �.
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Theorem 2. Equation (E�) is either

(i) in the limit circle case for every � 2 C, i.e., n.�/ 	 2, or
(ii) in the limit point case for every � 2 C, i.e., n.�/ � 1. In this case, n.�/ D 1 for

all � 2 C n R and n.�/ 2 f0; 1g for all � 2 R.

We conclude this section with a sufficient condition for the existence of an
eventually positive increasing solution of equation (E0), which shall be useful in
the development of a limit point criterion (see Theorem 4). In the case T D R it
reduces to [14, Lemma 7.4.1].

Lemma 2. In addition to (1) let us assume that there exists b 2 Œa;1/T such
that p.t/ > 0 and q.t/ � 0 on Œb;1/T. Then equation .E0/ possesses a positive
increasing solution on .b;1/T.

Proof. We show that a positive increasing solution y.�/ on .b;1/T can be obtained
as the solution of equation (E0) determined by the initial conditions

y.b/ D 0 and p.b/ y�.b/ D 1: (2)

Let y.�/ satisfy (E0) and (2). Then there exists c 2 .b;1/T such that y.t/ > 0 on
.b; c/T. At first we show that y.t/ > 0 on .b;1/T. Let d 2 Œc;1/T be the first point
such that y.d/ � 0. Then, by the First Mean Value Theorem, we obtain

0 � y.d/� y.b/ D
Z d

b
y�.t/�t D

Z d

b

1

p.t/
Œp.t/ y�.t/��t D K

Z d

b

1

p.t/
�t;

i.e., K � 0, where inffp.t/ y�.t/; t 2 Œb; d/Tg � K � supfp.t/ y�.t/; t 2 Œb; d/Tg
(see [3, Theorem 5.41]). On the other hand,

p.t/ y�.t/ D p.b/ y�.b/C
Z t

b
q.�/ y�.�/��; t 2 Œb;1/T:

But the nonnegativity of q.�/ y�.�/ on .b; d/T implies p.t/ y�.t/ � 1 for t 2 Œb; d/T,
which yields a contradiction with K � 0. Hence y.t/ > 0 for all t 2 .b;1/T.
Therefore, p.t/y�.t/ � 1 for all t 2 Œb;1/T and consequently y�.t/ > 0 on .b;1/T,
i.e., y.�/ is positively increasing on .b;1/T, which completes the proof. ut

3 Main Results

The first result yields a necessary and sufficient condition for Eq. (E�) being in the
limit point case. If w.t/ 	 1, we obtain [1, Theorems 8 and 18] in the case T D R

and T D Z, respectively.
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Theorem 3. Equation (E�) is in the limit point case for all � 2 C if and only if
there exists a function y W Œa;1/T ! R such that y.�/; p.�/ y�.�/ 2 C1prd and

Z 1

a
w.t/ y�2.t/

�
 

1C
Z �.t/

a

1

w.s/

h
� �

p.s/ y�.s/
�� C q.s/ y�.s/

i2
�s

!�1
�t D 1:

(3)

Proof. According to Theorem 2, Eq. (E�) is in the limit point case if and only
equation (E0) has a solution, which does not belong to L 2

w . Therefore, it suffices
to restrict our attention only to equation (E0).

If (E0) is in the limit point case, then there exists its solution such that y.�/ 62 L 2
w .

In this case y.�/; p.�/ y�.�/ 2 C1prd and identity (3) is satisfied, because the second
integral is identically zero. Hence, the necessity is established.

On the other hand, let us assume there exists y.�/ such that y.�/; p.�/ y�.�/ 2 C1prd
and identity (3) holds. Moreover, we suppose that all solutions of equation (E0)
belong to L 2

w . Let u.�/ and v.�/ be normalized solutions of (E0), i.e.,

WŒu.t/; v.t/� ´ u.t/ Œp.t/ v�.t/� � v.t/ Œp.t/ u�.t/� 	 1:

If we denote

f .t/ ´ �Œp.t/ y�.t/�� C q.t/ y�.t/;

then the Variation of Constants Formula (see [2, Theorems 4.24 and 4.33]) yields

y.t/ D u.t/
h
A C

Z t

a
v�.s/ f .s/�s

i
� v.t/

h
B C

Z t

a
u�.s/ f .s/�s

i

for some A;B 2 R. Hence

jy.t/j � D1=2.t/
h
C C 2

Z t

a

�
D� .s/

�1=2 jf .s/j�s
i
;

where C ´ jAjCjBj and D.t/ WD u2.t/Cv2.t/. Upon applying the Cauchy–Schwarz
inequality (see [2, Theorem 6.15]) and the inequality of arithmetic and geometric
means, we obtain

jy.t/j � D1=2.t/



C C 2

� Z t

a
w.s/D� .s/�s

�1=2 � Z t

a

1

w.s/
f 2.s/�s

�1=2�

� D1=2.t/
h
C C 2

Z t

a
w.s/D� .s/�s

i1=2 h
C C 2

Z t

a

1

w.s/
f 2.s/�s

i1=2
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and consequently we have

y2.t/
h
C C 2

Z t

a

1

w.s/
f 2.s/�s

i�1 � D.t/
h
C C 2

Z t

a
w.s/D� .s/�s

i
(4)

Since u; v 2 L 2
w it follows

R1
a w.t/D� .t/�t μ K < 1. Hence, inequality (4)

implies

Z 1

a
w.t/ y�2.t/

 

C C 2

Z �.t/

a

1

w.s/

h
� �

p.s/ y�.s/
�� C q.s/ y�.s/

i2
�s

!�1
�t

�
Z 1

a
w.t/D� .t/

h
C C 2

Z �.t/

a
w.s/D� .s/�s

i
�t (5)

�
Z 1

a
w.t/D� .t/

h
C C 2

Z 1

a
w.s/D� .s/�s

i
�t � K.C C 2K/ < 1;

which contradicts (3), because the integrals on the left-hand sides of (3) and (5)
converge or diverge simultaneously by [3, Theorem 5.53]. Therefore, equation (E0)
is in the limit point case and the proof is complete. ut

Several limit point criteria can be obtained as a consequence of Theorem 3. For
example, the choice y.t/ 	 1 yields the following sufficient conditions, which unify
and extend [1, Theorems 1 and 19]. The second part of the corollary generalizes [14,
Theorem 7.4.2]. Observe that these criteria do not include the coefficient p.�/.
Corollary 1. Equation (E�) is in the limit point case if

Z 1

a
w.t/

 

1C
Z �.t/

a

q2.s/

w.s/
�s

!�1
�t D 1: (6)

In particular, identity (6) is satisfied when

Z 1

a

q2.t/

w.t/
�t < 1 and

Z 1

a
w.t/�t D 1: (7)

Now we apply the main result in several illustrative examples.

Example 1.

(i) Let T be arbitrary and consider Eq. (E�) with q.t/ 	 0, i.e.,

�Œp.t/ y�.t; �/�� D �w.t/ y� .t; �/: (8)

If w.t/ satisfies the second condition in (7), then Corollary 1 implies that Eq. (8)
is in the limit point case for any p.�/, e.g., put Œa;1/T D Œ0;1/Z and p.t/ D
.�1/t. Note that this fact can be easily verified, because y.t/ 	 1 is a solution
of Eq. (8) with � D 0.
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(ii) Let T be arbitrary and consider Eq. (E�) with the coefficients p.t/ D t C ˛,
q.t/ D 1=Œ�.t/C ˇ�, and w.t/ 	 1, i.e.,

�Œ.t C ˛/ y�.t; �/�� C 1

�.t/C ˇ
y� .t; �/ D � y�.t; �/; (9)

where the constants ˛; ˇ 2 R are such that p.�/ and q.�/ satisfy the basic
assumptions, i.e., �˛ 62 T, ˇ ¤ ��.t/ for all t 2 T, and ˇ ¤ �t for all
t 2 T, which are left-dense and right-scattered at the same time. In particular,
Eq. (9) reduces to

�Œ.t C ˛/ y�.t; �/�� C 1

rt C ˇ
y�.t; �/ D � y� .t; �/;

on the time scale T D rN0 D f1; r; r2; : : : g, where N0 ´ N [ f0g, r > 1 is
fixed, and ˛ ¤ �rk, ˇ ¤ �rkC1 for all k 2 N0 (see [2, Exercise 4.4]).

We show that Eq. (9) is in the limit point case. The second condition in (7)
is trivially satisfied. Since �.t/ � t, it follows

Z 1

b

q2.t/

w.t/
�t �

Z 1

b

q2.t/

w.t/
�tD

Z 1

b

�t

Œ�.t/Cˇ�2 �
Z 1

b

�t

t�.t/C2�.t/ ˇ ; (10)

where b 2 Œa;1/T is such that b > 0 and t�.t/ C 2�.t/ ˇ > 0 on Œb:1/T.
The integral on the right-hand side of (10) is convergent by [3, Theorem 5.53],
because limt!1Œt�.t/ C 2�.t/ ˇ�=Œt�.t/� D 1 and

R1
b 1=Œt�.t/��t D 1=b <

1. Therefore, the first condition in (7) is also satisfied and Corollary 1 implies
the limit point case. Note that this conclusion can be verified directly, because
y.t/ D t C ˇ 62 L 2

w solves Eq. (9) with � D 0.

Finally, based on Lemma 2, we obtain yet another limit point criterion.

Theorem 4. In addition to (1) let us assume that there exist b 2 Œa;1/T and M 2 R

such that p.t/ > 0 on Œb;1/T,

q.t/ � Mw.t/ for allt 2 Œb;1/T; and
Z 1

a
w.t/�t D 1: (11)

Then, Eq. (E�) is in the limit point case for all � 2 C.

Proof. Similarly as in the proof of Theorem 3, it suffices to show that equation (EM)
has a solution, which does not belong to L 2

w . The first condition in (11) implies
that equation (EM) satisfies the assumptions of Lemma 2. Hence, (EM) possesses
a positive increasing solution y.�;M/ on .b;1/T. Let us assume that equation (EM)
is in the limit circle case. Then, y.�;M/ 2 L 2

w and for any d 2 .b;1/T we have
Z 1

d
w.t/ y�2.t;M/�t � y�2.d;M/

Z 1

d
w.t/�t D 1:

But this contradicts the assumption y.�;M/ 2 L 2
w and the proof is complete. ut
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Continuous Dependence of the Minimum
of a Functional on Perturbations in Optimal
Control Problems with Distributed
and Concentrated Delays

Phridon Dvalishvili and Tamaz Tadumadze

Abstract Continuity of the minimum of a general functional is proved with respect
to perturbations of the initial data and right-hand side of the equation with variable
distributed and concentrated delays. Under the initial data, we understand the
collection of initial moment, of variable delays, and initial function. Perturbations
of the right-hand side of the equation are small in the integral sense.

Keywords Continuity of functional minimum • Optimal control • Delay differen-
tial equation • Perturbation

Mathematics Subject Classification (2000): 34K35; 34K27

1 Statement of the Problem: Formulation of the Main Result

Let Rn
x be an n-dimensional vector space of points x D .x1; : : : ; xn/T : Let a < t01 <

t02 < t11 < t12 be given numbers and let O � Rn
x be an open set. Let D be the

set of continuously differentiable scalar functions (delay functions) �.t/; t 2 R1t ;

satisfying the conditions

�.t/ < t; P�.t/ > 0; t 2 R
1
t ; inff�.a/ W �.t/ 2 Dg WD O� > �1:
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We denote by ˆ and �, respectively, the sets of continuous initial functions ' W
Œ O� ; t02� ! O and measurable control functions u W I ! U; where I D Œa; t12� and
U � Rr

u is a given compact set. Furthermore, f .t; x1; x2; x3; u/; .t; x1; x2; x3; u/ 2
I � O3 � U is an n-dimensional Carathéodory function satisfying the standard
conditions: for any compact set K � O, there exist mf ;K.t/;Lf ;K.t/ 2 L1.I; Œ0;1//;

such that

jf .t; x1; x2; x3; u/j � mf ;K.t/ 8.t; x1; x2; x3; u/ 2 I � K3 � U

and

jf .t; x0

1; x
0

2; x
0

3; u/� f .t; x
00

1 ; x
00

2 ; x
00

3 ; u/j � Lf ;K.t/
3X

iD1
jx0

i � x
00

i j

8.t; x0

1; x
0

2; x
0

3/; .t; x
00

1 ; x
00

2 ; x
00

3 / 2 I � K3; 8u 2 U:

Let Q be the set of continuous scalar functions q.t; x/; .t; x/ 2 Œt11; t12� � O:
To each initial � D .t0; 
.t/; �.t/; '.t// 2 ƒ D Œt01; t02� � D2 � ˆ and control

u.t/ 2 �, we assign the differential equation with distributed delay on the interval
Œ
.t/; t� and with the concentrated delay �.t/ W

Px.t/ D
Z t


.t/
f .t; x.t/; x.�.t//; x.s/; u.t//ds; (1)

x.t/ D '.t/; t 2 Œ O� ; t0�: (2)

Definition 1.1. Let � D .t0; 
.t/; �.t/; '.t// 2 ƒ and u.t/ 2 � be the initial data
and the control function. A function x.tI�; u/ 2 O; t 2 Œ O�; t1�; where t1 2 Œt11; t12�;
is called a solution of the Eq. (1) with the initial condition (2) or a solution
corresponding to the initial data � and the control u.t/ defined on the interval Œ O�; t1�;
if it satisfies the condition (2), is absolutely continuous on the interval Œt0; t1� and
satisfies the Eq. (1) almost everywhere .a.e./ on Œt0; t1�:

For given �0 D .t00; 
0.t/; �0.t/; '0.t//; let us consider the optimal control problem

Px.t/ D
Z t


0.t/
f .t; x.t/; x.�0.t//; x.s/; u.t//ds; t 2 Œt00; t1�; (3)

x.t/ D '0.t/; t 2 Œ O� ; t00�; (4)

J.w/ D q0.t1; x.t1I�0; u// ! min; (5)

where

w D .t1; u.t// 2 W D fw D .t1; u.t// W t1 2 Œt11; t12�; u.t/ 2 �g
and q0.t; x/ 2 Q is a given function.
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Here and in what follows, it is assumed that the solution x.tI�0; u/ is defined on
the interval Œ O� ; t12� for every u.t/ 2 �:
Definition 1.2. An element w0 D .t10; u0.t// 2 W is called an optimal element or a
solution of the problem (3)–(5) if

J.w0/ D inffJ.w/ W w 2 Wg WD J0:

(3)–(5) is called the optimal control problem with distributed and concentrated
delays.

Theorem 1.1. Let the following conditions hold:

(a) there exists a compact set K0 � O such that

x.tI�0; u/ 2 K0; t 2 Œ O� ; t12�; 8u.t/ 2 �:

(b) the set

n
f .t; x1; x2; x3; u/ W u 2 U

o

is convex for every fixed .t; x1; x2; x3/ 2 Œa; t12� � O3:

Then, there exists an optimal element w0 for the initial problems (3)–(5);
there exists a number ı > 0 such that for every

�ı D .t0ı; 
ı.t/; �ı.t/; 'ı.t// 2 V�0;ı D Vt00;ı � V
0;ı � V�0;ı � V'0;ı

and

gı.t; x1; x2; x3/ 2 Vı.K1/; qı.t; x/ 2 Vq0;ı.K1/

the perturbed optimal control problem

Px.t/ D
Z t


ı.t/

h
f .t; x.t/; x.�ı.t//; x.s/; u.t//

C gı.t; x.t/; x.�ı.t//; x.s//
i
ds; t 2 Œt0ı; t1�; (6)

x.t/ D 'ı.t/; t 2 Œ O� ; t0ı�; (7)

J.wI ı/ D qı.t1; x.t1I�ı; u// ! min (8)
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has a solution w0ı D .t1ı; u0ı.t//:Moreover, for any sequence ıi 2 .0; ı/; i D 1; 2;

: : : with ıi ! 0, we have

lim
i!1 J.w0ıi I ıi/ D J0:

Here

Vt00;ı D ft0 2 Œt01; t02� W jt00 � t0j < ıg;
V
0;ı D f
.t/ 2 D W max

t2I
j
0.t/ � 
.t/j < ıg;

V�0;ı D f�.t/ 2 D W max
t2I

j�0.t/ � �.t/j < ıg;

V'0;ı D f'.t/ 2 ˆ W max
t2ŒO� ;t02�

j'0.t/ � '.t/j < ıgI

K1 � O is a compact set containing a certain neighborhood of the set K0 and

Vı.K1/ D
n
gı.t; x1; x2; x3/ 2 G W

ˇ
ˇ
ˇ
Z t00

t0
gı.t; x1; x2; x3/dt

ˇ
ˇ
ˇ < ı;8t

0

; t
00 2 I;

8xi 2 K1; i D 1; 2; 3;

Z

I
Œmgı;K1

.t/C Lgı;K1
.t/�dt < ˛

o
; (9)

where G is the set of Carathéodory functions g.t; x1; x2; x3/ W I �O3 ! Rn
x satisfying

the standard conditions and ˛ > 0 is a fixed number independent of gıI

Vq0;ı.K1/ D
n
q.t; x/ 2 Q W max

.t;x/2I�K1
jq0.t; x/ � q.t; x/j < ı

o
:

Some Comments Let

f .t; x1; x2; x3; u/ D A.t; x1; x2; x3/C B.t; x1; x2; x3/u

and U be a convex set. Then the condition (b) of Theorem 1.1 is fulfilled.
Let

f .t; x1; x2; x3; u/ D A.t/x1 C B.t/x2 C C.t/x3 C D.t/u

and U be a convex set. Then the conditions (a), (b) of Theorem 1.1 are fulfilled.
Perturbations gı 2 Vı.K1/ are small in the integral sense [see (9)]. In Sect. 3,
Theorem 1.1 is proved by the scheme proposed in [6]. Finally, we note that various
small values are as a rule ignored in the numerical solution of optimal control
problems; therefore, it is important to establish the connection between the initial
and the perturbed problems. Theorems about well-posedness for various classes
of optimal control problems which contain ordinary and functional differential
equations are given in [1–7].
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2 Auxiliary Assertions

To each initial data � D .t0; 
.t/; �.t/; '.t// 2 ƒ and control u.t/ 2 �, we assign
the functional differential equation

Py.t/ D
Z t


.t/
f .t; x.t/; h.t0; '; y/.�.t//; h.t0; '; y/.s/; u.t//ds (10)

with the initial condition

y.t0/ D '.t0/; (11)

where h.�/ is the operator given by the formula

h.t0; '; y/.t/ D
(
'.t/; for t 2 Œ O� ; t0/;
y.t/; for t 2 Œt0; b�:

Definition 2.1. An absolutely continuous function y.t/ D y.tI�; u/ 2 O; t 2
Œr1; r2� � I is called solution of the Eq. (10) with the initial condition (11) or the
solution corresponding to the initial data � 2 ƒ and control u.t/ 2 � , defined on
Œr1; r2�; if t0 2 Œr1; r2�; y.t0/ D '.t0/, and satisfying the Eq. (10) a.e. on the interval
Œr1; r2�:

Remark 2.1. Let y.tI�; u/; t 2 Œr1; r2� be a solution of the Eq. (10) with the initial
condition (11). Then the function

x.tI�; u/ D h.t0; '; y.�I�; u//.t/; t 2 Œ O�; r2�

is a solution of the Eq. (1) with the initial condition (2). It is clear that

y.tI�0; u/ D x.tI�0; u/; t 2 Œt00; t12�; 8u.t/ 2 �:

Theorem 2.1 ([8]). Let the condition (a) hold, i.e., y.tI�0; u/ 2 K0; t 2 Œt00; t12�.
Then there exists a number ı > 0 such that for any

�ı D .t0ı; 
ı.t/; �ı.t/; 'ı.t// 2 V�0;ı; gı.t; x1; x2; x3/ 2 Vı.K1/

and u.t/ 2 � the perturbed equation

Py.t/ D
Z t


ı.t/
Œf .t; y.t/; h.t0ı ; 'ı; y/.�ı.t//; h.t0ı; 'ı; y/.s/; u.t//

Cgı.t; y.t/; h.t0ı ; 'ı; y/.�ı.t//; h.t0ı; 'ı; y/.s//�ds
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with the perturbed initial condition

y.t0ı/ D 'ı.t0ı/

has a solution y.tI�ı; gı; u/ defined on Œt00 � ı; t12� � .a; t12�: Also, y.tI�ı; gı; u/ 2
K1;8t 2 Œt00 � ı; t12�;8u.t/ 2 � and

lim
i!1 jy.tI�ıi ; gıi ; u/� y.tI�0; 0; u/j D 0

uniformly for t 2 Œt00 � ı; t12� and u.t/ 2 �; where ıi 2 .0; ı/; i D 1; 2; : : : with
ıi ! 0:

Due to the uniqueness, the solution y.tI�0; 0; u/ is the continuation of the solution
y.tI�0; u/ on the interval Œt00 � ı; t12�:
Theorem 2.2 ([8]). Let x.t/; y.t/; z.t/ 2 K0; t 2 Œ O� ; t12� be fixed continuous
functions and 
.t/; �.t/ 2 D be fixed delay functions. Moreover, let gıi 2 Vıi.K0/
with ıi ! 0: Then

lim
i!1 max

t0 ;t00 2I

ˇ
ˇ
ˇ
Z t00

t0

h Z t


.t/
gıi.t; x.t/; y.�.t//; z.s//ds

i
dt
ˇ
ˇ
ˇ D 0:

3 Proof of Theorem 1.1

It is not difficult to see that the convexity of the set

Pf .tI x.�/; 
0; �0/ D
n Z t


0.t/
f .t; x.t/; x.�0.t//; x.s/; u/ds W u 2 U

o
(12)

follows from the condition (b) for every fixed continuous function x.t/ 2 O; t 2
Œ O� ; t12�:

The convexity of the set (12) and the condition (a) guarantee the existence of a
solution w0 for the initial optimal control problem (3)–(5), [6].

Let ı > 0 be so small (see Theorem 2.1) that from 'ı 2 V'0;ı , it follows that
'ı.t/ 2 K1, t 2 Œ O� ; t12�: Since y.tI�ı; gı; u/ 2 K1, t 2 Œt00 � ı; t12�; we have

x.tI�ı; gı; u/ D h.t0ı; 'ı; y.�I�ı; gı; u//.t/ 2 K1; t 2 Œ O� ; t12� (13)

(see Remark 2.1). The set Pf Cgı .tI x.�/; 
ı; �ı/ is convex. Consequently, the per-
turbed optimal control problem (6)–(8) has a solution w0ı:
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Let ıi 2 .0; ı/; i D 1; 2; : : : with ıi ! 0: By virtue of Theorem 2.1, we conclude
that

lim
i!1 jx.tI�ıi ; gıi ; u0/� x.tI�0; 0; u0/j D 0 uniformlyfor t 2 Œ O� ; t12�

[see (13)]. The element w0 is an admissible element for the perturbed problem (6)–
(8), i.e.,

J.w0;ıi I ıi/ � J.w0I ıi/; i D 1; 2; : : : :

From this it follows that

J D lim
i!1 inf J.w0;ıi I ıi/ � J D lim

i!1 sup J.w0;ıi I ıi/ � J0:

To prove the theorem, it suffices to show that J D J0:
Let J < J0: From the sequence ıi, i D 1; 2; : : : , we extract a subsequence, which

will again be denoted by ıi, i D 1; 2; : : : ; such that

lim
i!1 J.w0;ıi I ıi/ D lim

i!1 qıi.t1ıi ; x.t1ıi I�ıi ; u0ıi// D J; lim
i!1 t1ıi D Ot10 2 Œt11; t12�:

It is clear that

x.tI�ıi ; gıi ; u0ıi/ D h.t0ıi ; 'ıi ; yi/.t/; t 2 Œ O� ; t12�;

where yi.t/ WD y.tI�ıi ; gıi ; u0ıi/, t 2 Œt00 � ı; t12� satisfies the integral equation

yi.t/ D 'ıi.t0ıi/C‚1i.t/C‚2i.t/; (14)

where

‚1i.t/ D
Z t

t0ıi

(Z �


ıi .�/

f .�; yi.�/; h.t0ıi ; 'ıi ; yi/.�ıi.�//; h.t0ıi ; 'ıi ; yi/.s/;

u0ıi.�//ds
o
d�;

‚2i.t/ D
Z t

t0ıi

( Z �


ıi .�/

gıi.�; yi.�/; h.t0ıi ; 'ıi ; yi/.�ıi.�//; h.t0ıi ; 'ıi ; yi/.s//
i
ds

)

d�:

From Theorem 2.1 we get

lim
i!1 jy.tI�ıi ; gıi ; u0ıi/� y.tI�0; 0; u0ıi/j D 0 (15)
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The sequence fy.tI�0; 0; u0ıi/g is equicontinuously and uniformly bounded.
Therefore, we can choose from it a subsequence which we denote again by
fy.tI�0; 0; u0ıi/g and which uniformly converges on Œt00; t12� to some function
Oy.t/: Thus,

lim
i!1 y.tI�ıi ; gıi ; u0ıi/ D Oy.t/

[see (15)]. We rewrite the Eq. (14) in the form

yi.t/ D 'ıi.t0ıi/C‰1i.t/C‰2i.t/C…1i.t/C…2i.t/; (16)

where

‰1i.t/ D
Z t

t00

n Z �


0.�/

f .�; Oy.�/; h.t00; '0; Oy/.�0.�//; h.t00; '0; Oy/.s/;

u0ıi.�//ds
o
d�;

‰2i.t/ D
Z t

t00

n Z �


0.�/

gıi.�; Oy.�/; h.t00; '0; Oy/.�0.�//; h.t00; '0; Oy/.s//ds
o
d�;

…1i.t/ D ‚1i.t/ �‰1i.t/;…2i.t/ D ‚2i.t/ �‰2i.t/:

According to Theorem 2.2, we have

lim
i!1‰2i.t/ D 0 uniformlyfor t 2 Œt00 � ı; t12�:

By a simple transformation, we can prove

lim
i!1…1i.t/ D 0; lim

i!1…2i.t/ D 0 uniformlyfor t 2 Œt00 � ı; t12�:

Using the convexity and compactness of the set P.�; Oy.�/; 
0; �0/, � 2 Œt00 � ı; t12�;
we prove in the well-known manner [5] that from the sequence

Fi.�/ D
Z �


0.�/

f .�; Oy.�/; h.t00; '0; Oy/.�0.�//; h.t00; '0; Oy/.s/; u0ıi.�//ds

we can choose a subsequence weakly converging to some function

F.�/ 2 P.�; Oy.�/; 
0; �0/; � 2 Œt00 � ı; t12�:

Moreover, there exists a measurable function Ou.t/ 2 � (see [5]) such that for any
� 2 Œt00 � ı; t12�
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F.�/ D
Z �


0.�/

f .�; Oy.�/; h.t00; '0; Oy/.�0.�//; h.t00; '0; Oy/.s/; Ou.�//ds:

Passing to the limit in (15), we obtain

Oy.t/ D '0.t00/C
Z t

t00

F.�/d� D '0.t00/

C
Z t

t00

h Z �


0.�/

f .�; Oy.�/; h.t00; '0; Oy/.�0.�//; h.t00; '0; Oy/.s/; Ou.�//ds
i
d�;

t 2 Œt00 � ı; t12�:
Now let us define a function Ox.t/; t 2 Œ O�; t12�; in the following manner

Ox.t/ D
(
'0.t/; t 2 Œ O� ; t00�;
Oy.t/; t 2 Œt00; t12�:

The function Ox.t/ satisfies the equation

Px.t/ D
Z t


0.t/
f .t; x.t/; x.�0.t//; x.s/; Ou.t//ds; t 2 Œt00; Ot10�;

and the initial condition

x.t/ D '0.t/; t 2 Œ O� ; t00�;
i.e., .Ot10; Ou.t// 2 W: Moreover, J D q0.Ot10; Ox.Ot10//: So, the assumption J < J0
contradicts the optimality of the element w0: Thus, J D J D J0. The theorem is
proved.
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of Fractional Boundary Value Problems
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Abstract We study the existence and nonexistence of positive solutions of a system
of nonlinear Riemann–Liouville fractional differential equations with integral
boundary conditions which contain some positive constants.
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Fractional differential equations describe many phenomena in various fields of
engineering and scientific disciplines such as physics, biophysics, chemistry, biol-
ogy (such as blood flow phenomena), economics, control theory, signal and
image processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see
[6, 12, 14, 15]). For some recent developments on the topic, see [1–5, 7, 11, 16] and
the references therein.
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We consider the system of nonlinear ordinary fractional differential equations
(

D˛
0Cu.t/C a.t/f .v.t// D 0; t 2 .0; 1/;

Dˇ
0Cv.t/C b.t/g.u.t// D 0; t 2 .0; 1/;

(S)

with the uncoupled integral boundary conditions
8
ˆ̂
<

ˆ̂
:

u.0/ D u0.0/ D � � � D u.n�2/.0/ D 0; u.1/ D
Z 1

0

u.s/dH.s/C a0;

v.0/ D v0.0/ D � � � D v.m�2/.0/ D 0; v.1/ D
Z 1

0

v.s/dK.s/C b0;
(BC)

where n � 1 < ˛ � n, m � 1 < ˇ � m, n; m 2 N, n; m � 3, D˛
0C and Dˇ

0C denote
the Riemann–Liouville derivatives of orders ˛ and ˇ, respectively, the integrals from
.BC/ are Riemann–Stieltjes integrals, and a0 and b0 are positive constants.

Under some assumptions on the functions f and g, by using the Schauder fixed
point theorem, we shall prove the existence of positive solutions of problem (S)–
(BC). By a positive solution of (S)–(BC), we mean a pair of functions .u; v/ 2
C.Œ0; 1�I RC/ � C.Œ0; 1�I RC/ satisfying (S) and (BC) with u.t/ > 0; v.t/ > 0

for all t 2 .0; 1�. We shall also give sufficient conditions for the nonexistence
of positive solutions for this problem. Some systems of fractional equations with
parameters subject to integral boundary conditions were studied in [8] and [10] by
using the Guo-Krasnoselskii fixed point theorem. We also mention the paper [9],
where the authors investigated the existence and multiplicity of positive solutions for
the system D˛

0Cu.t/Cf .t; v.t// D 0; t 2 .0; 1/, Dˇ
0Cv.t/Cg.t; u.t// D 0; t 2 .0; 1/,

with the integral boundary conditions (BC) with a0 D b0 D 0 [denoted by .fBC/] by
using some theorems from the fixed point index theory and the Guo-Krasnoselskii
fixed point theorem. In [9], the nonlinearities f and g may be nonsingular or singular
in t D 0 and/or t D 1. A system of fractional differential equations with parameters
where the functions f and g are sign-changing with boundary conditions .fBC/ is
investigated in [13].

In Sect. 2, we present some auxiliary results which investigate a Riemann–
Liouville fractional equation subject to integral boundary conditions. In Sect. 3, we
prove our main results, and an example which supports the obtained results is finally
presented in Sect. 4.

2 Auxiliary Results

In this section we present some auxiliary results from [9] related to a Riemann–
Liouville fractional equation with integral boundary conditions.

We consider the fractional differential equation

D˛
0Cu.t/C y.t/ D 0; t 2 .0; 1/; (1)
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with the integral boundary conditions

u.0/ D u0.0/ D � � � D u.n�2/.0/ D 0; u.1/ D
Z 1

0

u.s/dH.s/; (2)

where n � 1 < ˛ � n, n 2 N, n � 3, and H W Œ0; 1� ! R is a function of bounded
variation.

Lemma 1 ([9]). If H W Œ0; 1� ! R is a function of bounded variation, �1 D 1 �R 1
0

s˛�1dH.s/ 6D 0 and y 2 C..0; 1//\L1.0; 1/, then the solution of problem (1)–(2)

is given by u.t/ D R 1
0

G1.t; s/y.s/ ds, where

G1.t; s/ D g1.t; s/C t˛�1

�1

Z 1

0

g1.�; s/ dH.�/; .t; s/ 2 Œ0; 1� � Œ0; 1�; (3)

and

g1.t; s/ D 1

� .˛/

	
t˛�1.1 � s/˛�1 � .t � s/˛�1; 0 � s � t � 1;

t˛�1.1 � s/˛�1; 0 � t � s � 1:
(4)

Lemma 2 ([9]). If H W Œ0; 1� ! R is a nondecreasing function and �1 > 0, then
the Green’s function G1 of the problem (1)–(2) is continuous on Œ0; 1� � Œ0; 1� and
satisfies G1.t; s/ � 0 for all .t; s/ 2 Œ0; 1��Œ0; 1�. Moreover, if y 2 C..0; 1//\L1.0; 1/
satisfies y.t/ � 0 for all t 2 .0; 1/, then the unique solution u of problem (1)–(2)
satisfies u.t/ � 0 for all t 2 Œ0; 1�.
Lemma 3 ([9]). Assume that H W Œ0; 1� ! R is a nondecreasing function and�1 >

0. Then the Green’s function G1 of the problem (1)–(2) satisfies the inequalities

a) G1.t; s/ � J1.s/; 8 .t; s/ 2 Œ0; 1� � Œ0; 1�; where

J1.s/ D g1.
1.s/; s/C 1

�1

Z 1

0

g1.�; s/ dH.�/; 8 s 2 Œ0; 1�:

b) For every c 2 .0; 1=2/, we have

min
t2Œc;1�c�

G1.t; s/ � �1J1.s/ � �1G1.t
0; s/; 8 t0; s 2 Œ0; 1�;

where �1 D c˛�1 and 
1.s/ D
8
<

:

s

1 � .1 � s/
˛�1
˛�2

; s 2 .0; 1�;
˛�2
˛�1 ; s D 0;

if n � 1 < ˛ � n,

n � 3.
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Lemma 4 ([9]). Assume that H W Œ0; 1� ! R is a nondecreasing function and�1 >

0, c 2 .0; 1=2/ and y 2 C..0; 1// \ L1.0; 1/, y.t/ � 0 for all t 2 .0; 1/. Then the
solution u.t/, t 2 Œ0; 1� of problem (1)–(2) satisfies the inequality inf

t2Œc;1�c�
u.t/ �

�1 sup
t02Œ0;1�

u.t0/.

We can also formulate similar results as Lemmas 1–4 above for the fractional
differential equation

Dˇ
0Cv.t/C h.t/ D 0; 0 < t < 1; (5)

with the integral boundary conditions

v.0/ D v0.0/ D � � � D v.m�2/.0/ D 0; v.1/ D
Z 1

0

v.s/ dK.s/; (6)

where m � 1 < ˇ � m; m 2 N, m � 3, K W Œ0; 1� ! R is a function of bounded
variation and h 2 C..0; 1// \ L1.0; 1/. We denote by �2, �2, g2, 
2, G2, and J2 the
corresponding constants and functions for the problem (5)–(6) defined in a similar
manner as�1, �1, g1, 
1, G1, and J1, respectively.

3 Main Results

We present first the assumptions that we shall use in the sequel.

(J1) H; K W Œ0; 1� ! R are nondecreasing functions,�1 D 1�R 1
0

s˛�1 dH.s/ > 0,

�2 D 1 � R 1
0

sˇ�1 dK.s/ > 0.
(J2) The functions a; b W Œ0; 1� ! Œ0;1/ are continuous and there exist t1; t2 2
.0; 1/ such that a.t1/ > 0, b.t2/ > 0.

(J3) f ; g W Œ0;1/ ! Œ0;1/ are continuous functions, and there exists
c0 > 0 such that f .u/ < c0

L , g.u/ < c0
L for all u 2 Œ0; c0�, where

L D maxfR 1
0

a.s/J1.s/ ds;
R 1
0

b.s/J2.s/ dsg and J1; J2 are defined in Sect. 2
(Lemma 3).

(J4) f ; g W Œ0;1/ ! Œ0;1/ are continuous functions and satisfy the conditions

lim
u!1

f .u/

u
D 1; lim

u!1
g.u/

u
D 1:

By .J2/, we deduce that
R 1
0

a.s/J1.s/ ds > 0 and
R 1
0

b.s/J2.s/ ds > 0, that is, the
constant L from .J3/ is positive.

Our first theorem is the following existence result for problem (S)–(BC).

Theorem 1. Assume that assumptions .J1/–.J3/ hold. Then problem (S)–(BC) has
at least one positive solution for a0 > 0 and b0 > 0 sufficiently small.
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Proof. We consider the problems

(
D˛
0Ch.t/ D 0; t 2 .0; 1/;

h.0/ D h0.0/ D � � � D h.n�2/.0/ D 0; h.1/ D R 1
0

h.s/dH.s/C 1;
(7)

(
Dˇ
0Ck.t/ D 0; t 2 .0; 1/;

k.0/ D k0.0/ D � � � D k.m�2/.0/ D 0; k.1/ D R 1
0 k.s/dK.s/C 1:

(8)

The above problems (7) and (8) have the solutions

h.t/ D t˛�1

�1

; k.t/ D tˇ�1

�2

; t 2 Œ0; 1�; (9)

where �1 and �2 are defined in .J1/. By assumption .J1/ we obtain h.t/ > 0 and
k.t/ > 0 for all t 2 .0; 1�.

We define the functions x.t/ and y.t/, for all t 2 Œ0; 1�, by x.t/ D u.t/ � a0h.t/
and y.t/ D v.t/� b0k.t/, for t 2 Œ0; 1�; where .u; v/ is a solution of .S/–.BC/. Then
.S/–.BC/ can be equivalently written as

(
D˛
0Cx.t/C a.t/f .y.t/C b0k.t// D 0; t 2 .0; 1/;

Dˇ
0Cy.t/C b.t/g.x.t/C a0h.t// D 0; t 2 .0; 1/; (10)

with the boundary conditions

(
x.0/ D x0.0/ D � � � D x.n�2/.0/ D 0; x.1/ D R 1

0
x.s/dH.s/;

y.0/ D y0.0/ D � � � D y.m�2/.0/ D 0; y.1/ D R 1
0

y.s/dK.s/:
(11)

Using the Green’s functions G1 and G2 from Sect. 2 (Lemma 1), a pair .x; y/ is
a solution of problem (10)–(11) if and only if .x; y/ is a solution for the nonlinear
integral equations

8
ˆ̂
<

ˆ̂
:

x.t/ D
Z 1

0

G1.t; s/a.s/f

�Z 1

0

G2.s; �/b.�/g.x.�/C a0h.�// d� C b0k.s/

�
ds;

y.t/ D
Z 1

0

G2.t; s/b.s/g.x.s/C a0h.s// ds; t 2 Œ0; 1�;
(12)

where h.t/; k.t/, for t 2 Œ0; 1�, are given by (9).
We consider the Banach space X D C.Œ0; 1�/ with the supremum norm k � k and

define the set E D fx 2 C.Œ0; 1�/; 0 � x.t/ � c0; 8 t 2 Œ0; 1�g � X:
We also define the operator S W E ! X by

.Sx/.t/D
Z 1

0

G1.t; s/a.s/f

�Z 1

0

G2.s; �/b.�/g.x.�/C a0h.�//d� C b0k.s/

�
ds;
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for all t 2 Œ0; 1� and x 2 E: For sufficiently small a0 > 0 and b0 > 0, by .J3/, we
deduce f .y.t/C b0k.t// � c0

L and g.x.t/C a0h.t// � c0
L ; for all t 2 Œ0; 1�, x; y 2 E.

Then, by using Lemma 2, we obtain .Sx/.t/ � 0 for all t 2 Œ0; 1� and x 2 E. By
Lemma 3, for all x 2 E, we have

Z 1

0

G2.s; �/b.�/g.x.�/C a0h.�// d� � c0
L

Z 1

0

J2.�/b.�/ d� � c0; 8 s 2 Œ0; 1�;

and

.Sx/.t/ �
Z 1

0

J1.s/a.s/f

�Z 1

0

G2.s; �/b.�/g.x.�/C a0h.�//d� C b0k.s/

�
ds

� c0
L

Z 1

0

J1.s/a.s/ ds � c0; 8 t 2 Œ0; 1�:

Therefore, S.E/ � E.
Using standard arguments, we deduce that S is completely continuous. By using

the Schauder fixed point theorem, we conclude that S has a fixed point x 2 E. This
element together with y given by (12) represents a solution for (10)–(11). This shows
that our problem (S)–(BC) has a positive solution u D x C a0h; v D y C b0k for
sufficiently small a0 and b0. ut

In what follows, we present sufficient conditions for the nonexistence of positive
solutions of (S)–(BC).

Theorem 2. Assume that assumptions .J1/, .J2/, and .J4/ hold. Then problem (S)–
(BC) has no positive solution for a0 and b0 sufficiently large.

Proof. We suppose that .u; v/ is a positive solution of (S)–(BC). Then x D u �
a0h, y D v � b0k is a solution for (10)–(11), where h and k are the solutions of
problems (7) and (8) [given by (9)]. By .J2/ there exists c 2 .0; 1=2/ such that
t1; t2 2 .c; 1 � c/, and then

R 1�c
c a.s/J1.s/ ds > 0,

R 1�c
c b.s/J2.s/ ds > 0. Now by

using Lemma 2, we have x.t/ � 0, y.t/ � 0 for all t 2 Œ0; 1�, and by Lemma 4 we
obtain inft2Œc;1�c� x.t/ � �1kxk and inft2Œc;1�c� y.t/ � �2kyk.

Using now (9), we deduce that inft2Œc;1�c� h.t/ D h.c/ D �1khk and
inft2Œc;1�c� k.t/ D k.c/ D �2kkk:

Therefore, we obtain inft2Œc;1�c�.x.t/ C a0h.t// � �1kx C a0hk and
inft2Œc;1�c�.y.t/C b0k.t// � �2ky C b0kk:

We now consider

R D
�

min

	
�1�2

Z 1�c

c
a.s/J1.s/ ds; �1�2

Z 1�c

c
b.s/J2.s/ ds

���1
> 0:

By using .J4/, for R defined above, we conclude that there exists M > 0 such that
f .u/ > 2Ru, g.u/ > 2Ru for all u � M. We consider a0 > 0 and b0 > 0 sufficiently
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large such that inft2Œc;1�c�.x.t/Ca0h.t// � M and inft2Œc;1�c�.y.t/Cb0k.t// � M: By
.J2/, (10), (11), and the above inequalities, we deduce that kxk > 0 and kyk > 0.

Now by using Lemma 3 and the above considerations, we have

y.c/ � �2

Z 1�c

c
J2.s/b.s/g.x.s/C a0h.s// ds

� 2R�2

Z 1�c

c
J2.s/b.s/ inf

�2Œc;1�c�
.x.�/C a0h.�// ds

� 2R�1�2

Z 1�c

c
J2.s/b.s/kx C a0hk ds � 2kx C a0hk � 2kxk:

Therefore, we obtain

kxk � y.c/=2 � kyk=2: (13)

In a similar manner, we deduce x.c/ � 2ky C b0kk � 2kyk: So, we obtain

kyk � x.c/=2 � kxk=2: (14)

By (13) and (14), we conclude that kxk � kyk=2 � kxk=4, which is a
contradiction, because kxk > 0. Then, for a0 and b0 sufficiently large, our problem
(S)–(BC) has no positive solution. ut

4 An Example

We consider a.t/ D 1, b.t/ D 1 for all t 2 Œ0; 1�, ˛ D 5
2

(n D 3), ˇ D 10
3

(m D 4), H.t/ D
8
<

:

0; t 2 Œ0; 1=4/;
3; t 2 Œ1=4; 3=4/;
7=2; t 2 Œ3=4; 1�

and K.t/ D t4 for all t 2 Œ0; 1�. Then

R 1
0

u.s/ dH.s/ D 3u
�
1
4

� C 1
2
u
�
3
4

�
and

R 1
0
v.s/ dK.s/ D 4

R 1
0

s3v.s/ ds. We also

consider the functions f ; g W Œ0;1/ ! Œ0;1/, f .x/ D Qax˛0

xˇ0Cec ; g.x/ D Qbx�0

xı0CQd , for

all x 2 Œ0;1/, with Qa; Qb; Qc; Qd > 0, ˛0; ˇ0; �0; ı0 > 0, ˛0 > ˇ0 C 1, �0 > ı0 C 1.
We have limx!1 f .x/=x D limx!1 g.x/=x D 1.

Therefore, we consider the system of fractional differential equations

8
ˆ̂
<

ˆ̂
:

D5=2
0C u.t/C Qav˛0.t/

vˇ0 .t/C Qc D 0; t 2 .0; 1/;

D10=3
0C v.t/C

Qbu�0.t/

uı0.t/C Qd D 0; t 2 .0; 1/;
(S0)
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with the boundary conditions

(
u.0/ D u0.0/ D 0; u.1/ D 3u

�
1
4

�C 1
2
u
�
3
4

�C a0;
v.0/ D v0.0/ D v00.0/ D 0; v.1/ D 4

R 1
0

s3v.s/ ds C b0:
(BC0)

We obtain �1 D 1 � R 1
0

s3=2 dH.s/ D 1 � 3
�
1
4

�3=2 � 1
2

�
3
4

�3=2 D 10�3p3
16



0:3002 > 0, �2 D 1 � R 1

0
s7=3 dK.s/ D 1 � 4

R 1
0

s16=3 ds D 7
19


 0:3684 > 0: Then
we deduce that assumptions .J1/, .J2/, and .J4/ are satisfied. In addition, after
some computations, we obtaineA D R 1

0
J1.s/ ds 
 0:42677595,eB D R 1

0
J2.s/ ds 


0:04007233, and then L D eA. We choose c0 D 1, and if we select Qa; Qb; Qc; Qd
satisfying the conditions Qa < 1CQc

L D 1CQc
eA , Qb < 1CQd

L D 1CQd
eA , then we conclude

that f .x/ � Qa
1CQc <

1
L ; g.x/ � Qb

1CQd <
1
L for all x 2 Œ0; 1�. For example, if Qc D Qd D 1,

then for Qa � 4:68 and Qb � 4:68, the above conditions for f and g are satisfied.
So, assumption .J3/ is also satisfied. By Theorems 1 and 2, we deduce that problem
(S0)–(BC0) has at least one positive solution for sufficiently small a0 > 0 and b0 > 0
and no positive solution for sufficiently large a0 and b0.
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Reid’s Construction of Minimal Principal
Solution at Infinity for Linear Hamiltonian
Systems

Peter Šepitka and Roman Šimon Hilscher

Abstract Recently the authors introduced a theory of principal solutions at infinity
for nonoscillatory linear Hamiltonian systems in the absence of the complete
controllability assumption. In this theory the so-called minimal principal solution
at infinity plays a distinguished role (the minimality refers to the rank of the first
component of the solution). In this paper we show that the minimal principal
solution at infinity can be obtained by a suitable generalization of the Reid
construction of the principal solution known in the controllable case. Our new result
points to some applications of the minimal principal solution at infinity, e.g., in the
spectral theory of linear Hamiltonian systems.

Keywords Linear Hamiltonian system • Principal solution at infinity • Antiprin-
cipal solution at infinity • Minimal principal solution at infinity • Controllability •
Moore–Penrose pseudoinverse

Mathematics Subject Classification (2000): 34C10

1 Introduction

In this paper we consider the linear Hamiltonian system

x0 D A.t/ x C B.t/ u; u0 D C.t/ x � AT.t/ u; t 2 Œa;1/; (H)

where A;B;C W Œa;1/ ! Rn�n are piecewise continuous matrix-valued functions
such that B.t/ and C.t/ are symmetric, and the Legendre condition

B.t/ � 0 for all t 2 Œa;1/ (1)

P. Šepitka • R. Šimon Hilscher (�)
Department of Mathematics and Statistics, Faculty of Science, Masaryk University,
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holds. Here n 2 N is a given dimension and a 2 R is a fixed number. We
will not impose any controllability (normality) assumption on system (H), i.e.,
vector solutions .x; u/ of (H) may have x.t/ 	 0 and u.t/ ¤ 0 on nondegenerate
subintervals of Œa;1/ or even throughout Œa;1/. Similarly, matrix solutions .X;U/
of (H) may have X.t/ singular on subintervals of Œa;1/ with positive length. Such
possibly abnormal linear Hamiltonian systems were originally studied in [12, 13, 21]
and more recently in [6–8, 10, 11, 18, 19, 22]. We recall that in the abnormal case,
the nonoscillation of system (H) means that every conjoined basis .X;U/ of (H) has
the kernel of X.t/ eventually constant, say on the interval Œ˛;1/ for some ˛ � a. In
addition, in [15, Remark 5.4] we showed that X.t/ satisfies the estimate of its rank

n � d1 � n � dŒ˛;1/ � rank X.t/ � n; t 2 Œ˛;1/: (2)

Here dŒ˛;1/ is the order of abnormality of system (H) on Œ˛;1/, i.e., it is the
dimension of the space of solutions .x; u/ of (H) with x.t/ 	 0 on Œ˛;1/ (see also
[13, Sect. VII.3]), and

d1 WD lim
t!1 dŒt;1/ D maxfdŒt;1/; t 2 Œa;1/g; 0 � d1 � n:

In [15, 16] we initiated a general theory of principal solutions at infinity for such
an abnormal system (H). By [16, Definition 7.1] a conjoined basis . OX; OU/ of (H) is
a principal solution at infinity if the kernel of OX.t/ is constant on Œ˛;1/ and

lim
t!1

OS �.t/ D 0; OS.t/ WD
Z t

˛

OX�.s/B.s/ OX�T.s/ ds: (3)

The dagger in (3) denotes the Moore–Penrose pseudoinverse [2, 3]. Based on (2) we
then say . OX; OU/ is a minimal principal solution at infinity, denoted by . OXmin; OUmin/,
if the rank of OXmin.t/ is the smallest possible number, i.e., if rank OXmin.t/ D n � d1
on Œ˛;1/. By [15, Theorems 7.2 and 7.6], the nonoscillation of (H) is equivalent
with the existence of a minimal principal solution at infinity, which is in this case
unique up to a right nonsingular multiple. Moreover, in [16, Sect. 7], the solution
. OXmin; OUmin/ was utilized in order to construct all other principal solutions . OX; OU/
at infinity with rank OX.t/ D r on Œ˛;1/ for any integer r between n � d1 and n.
Most recently in [17, Theorem 6.5], we showed that the solution . OXmin; OUmin/ is the
smallest solution of (H) at infinity in the sense of the limit

lim
t!1 X�.t/ OX.t/ D 0;

where .X;U/ is any (antiprincipal) solution of (H) at infinity.
In the present paper we derive another important property of the minimal

principal solution . OXmin; OUmin/ at infinity, namely, its Reid construction. In the
controllable case (i.e., when d1 D 0), the principal solution . OX; OU/ at infinity
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has OX.t/ eventually invertible, and it can be constructed by the pointwise limit (the
so-called Reid construction)

� OX.t/; OU.t/� D lim
�!1

�
X� .t/;U� .t/

�
; t 2 Œa;1/; (4)

where .X� ;U� / is the conjoined basis of (H) given by the initial conditions
X� .�/ D 0 and U� .�/ invertible (see [4, p. 44] or [13, Theorem VII.3.4]). In our
main result (Theorem 1), we derive the property in (4) for the minimal principal
solution . OXmin; OUmin/ at infinity of an abnormal system (H). This result completes
the information about the solution . OXmin; OUmin/, and it can be used in further
applications, where the property in (4) was earlier applied (see Remark 6).

We note that already in [21, Definition, p. 40], Stokes uses (4) as the definition of
a principal solution . OX; OU/ at infinity for an abnormal system (H). The construction
in [21, Theorem 1, p. 40] uses properties of symmetric solutions of the associated
Riccati matrix equation on Œa;1/, hence properties of conjoined bases .X;U/
of (H) with X.t/ invertible. The approach in the present paper is direct and more
general without using the Riccati equation. Moreover, our results in Theorem 1 and
Remark 5 imply that a principal solution . OX; OU/ in [21, Definition, p. 40] is in fact
the minimal principal solution . OXmin; OUmin/ at infinity in the sense of (3).

Our recent results in [17] also reveal more information about the conjoined basis
.X� ;U� / used in the Reid construction in (4). In particular, we prove that .X� ;U� / is
an antiprincipal solution at infinity, according to [17, Definition 5.1]. This is defined
as a conjoined basis .X;U/ of (H) such that for some ˛ � a the kernel of X.t/ is
constant on Œ˛;1/, dŒ˛;1/ D d1, and

lim
t!1 S�.t/ D T; S.t/ WD

Z t

˛

X�.s/B.s/X�T.s/ ds; rank T D n � d1: (5)

In general, by [17, Corollary 4.11], the matrix T in (5) satisfies 0 � rank T � n�d1.
Therefore, upon comparing (3) and (5), we can see that antiprincipal solutions of (H)
at infinity are defined by the maximal possible rank of their associated matrix T
in (5). This is in full agreement with the controllable case (see [1, 5]).

2 Main Result

In this section we state and prove the main result of this paper. First we recall some
notions and results about linear Hamiltonian systems and their solutions (see [4, 9,
13]). A matrix solution .X;U/ is a conjoined basis of (H) if XT.t/U.t/ is symmetric
and rank.XT.t/; UT.t// D n for some and hence for all t 2 Œa;1/. Every conjoined
basis .X;U/ of (H) can be completed by another conjoined basis . NX; NU/ to form
a symplectic fundamental matrix of (H). In this case the two conjoined bases .X;U/
and . NX; NU/ are normalized, i.e., their Wronskian XT.t/ NU.t/ � UT.t/ NX.t/ 	 I on
Œa;1/. For a conjoined basis .X;U/ of (H), we define its associated orthogonal
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projectors onto the subspaces Im XT.t/ and Im X.t/ by

P.t/ WD X�.t/X.t/; R.t/ WD X.t/X�.t/; t 2 Œa;1/: (6)

By the kernel of .X;U/, we mean the kernel of its first component X. If .X;U/ has
constant kernel on Œ˛;1/, then P.t/ is constant on Œ˛;1/, and we set

P WD P.t/ on Œ˛;1/: (7)

In this case we have r WD rank X.t/ D rank P D rank R.t/ on Œ˛;1/, and
we say that .X;U/ has rank r. The matrix-valued function X� is then piecewise
continuously differentiable on Œ˛;1/; in particular X� is continuous on Œ˛;1/, so
that the function S.t/ in (5) is well defined for any such a conjoined basis .X;U/. It
follows that under (1) the matrix S.t/ is symmetric, nonnegative definite, piecewise
continuously differentiable on Œ˛;1/, and the set Im S.t/ is nondecreasing and
hence eventually constant with Im S.t/ � Im P (see [15, Theorem 4.2]). Therefore,
the orthogonal projector PS .t/ onto the set Im S.t/ is eventually constant, and we
write

PS .t/ WD S.t/ S�.t/ D S�.t/ S.t/; PS1 WD PS .t/ for t ! 1: (8)

In addition, we have the inclusions Im S.t/ D Im PS .t/ � Im PS 1 � Im P on
Œ˛;1/.

Remark 1. Let .X;U/ be a conjoined basis of (H) with constant kernel on Œ˛;1/.
In this paper we will utilize a special conjoined basis . NX; NU/ satisfying

XT.t/ NU.t/ � UT.t/ NX.t/ 	 I; X�.˛/ NX.˛/ D 0: (9)

This means that the two conjoined bases .X;U/ and . NX; NU/ are normalized. The
existence of . NX; NU/ is proven in [15, Theorem 4.4].

Following (2) we say that a conjoined basis .X;U/ of (H) is a minimal conjoined
basis on Œ˛;1/ if .X;U/ has constant kernel on Œ˛;1/ and rank X.t/ D n�dŒ˛;1/.
Similarly, .X;U/ is a maximal conjoined basis on Œ˛;1/ if X.t/ is invertible
on Œ˛;1/. Therefore, a minimal/maximal principal solution . OXmin; OUmin/ of (H)
at infinity is defined as a minimal/maximal conjoined basis on Œ˛;1/ for some
˛ � a, for which condition (3) is satisfied. Analogous terminology is used for
minimal/maximal antiprincipal solutions of (H) at infinity. It is easy to see that
minimal conjoined bases .X;U/ of (H) are characterized by the property that their
associated projectors P and PS 1 in (7) and (8) satisfy the equality P D PS1 (see
[15, Remark 5.14]). Minimal conjoined bases are extremely important, since they
serve as a tool for the construction of the minimal principal solution . OXmin; OUmin/ at
infinity. More precisely, by the proof of [15, Theorem 7.2],

� OXmin.t/
OUmin.t/

�
D
�

X.t/ NX.t/
U.t/ NU.t/

��
I

�T

�
; t 2 Œa;1/; (10)
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where .X;U/ is a minimal conjoined basis on Œ˛;1/, . NX; NU/ is the associated
conjoined basis from (9), and T WD limt!1 S�.t/.

By [16, Remark 7.11] and [17, Theorem 5.5], the property of being a principal
or an antiprincipal solution of (H) at infinity is invariant under the translation of
the initial point ˛ to the right. Therefore, without loss of generality we will assume
further on in this paper that the point ˛ is such that the abnormality of system (H)
on Œ˛;1/ is maximal, i.e.,

dŒ˛;1/ D d1: (11)

In the following theorem we present the main result of this paper.

Theorem 1. Assume (1) and (11) and suppose that .X;U/ is a minimal conjoined
basis of (H) on Œ˛;1/. Let . NX; NU/ be the associated conjoined basis of (H)
satisfying (9). Then there exists ˇ � ˛ such that NX.t/ is invertible for all t � ˇ,
and the solution .X� ;U� / of (H) given by the initial conditions

X� .�/ D 0; U� .�/ D � NXT�1.�/; (12)

is a conjoined basis satisfying

� OXmin.t/; OUmin.t/
� D lim

�!1
�
X� .t/;U� .t/

�
; t 2 Œa;1/: (13)

Proof. We start by deriving some additional properties of the conjoined basis
. NX; NU/. By [15, Theorem 4.4] and [14, Theorem 2.2.11], the functions NX.t/, NX.t/P,
and NU.t/P are uniquely determined by .X;U/ on Œ˛;1/, and on this interval

NX.t/P D X.t/ S.t/; NU.t/P D U.t/ S.t/C X�T.t/C U.t/ .I � P/ NXT.t/X�T.t/; (14)

Ker NX.t/ D Im ŒP � PS .t/�; S�.t/ D NX�.t/X.t/PS .t/: (15)

Since .X;U/ is a minimal conjoined basis on Œ˛;1/, we have P D PS1, and with

ˇ WD inf ft � ˛; rank S.t/ D n � d1g (16)

it follows that PS .t/ D PS1 on .ˇ;1/. From the first equality in (15), we then
obtain that Ker NX.t/ D f0g, so that NX.t/ is invertible for all t > ˇ. Moreover, from
the second condition in (15), we then get

S�.t/ D NX�1.t/X.t/; t 2 .ˇ;1/: (17)

Fix now � > ˇ and define on Œa;1/ the solution .X� ;U� / of (H) by the initial
conditions (12). It is easy to see that .X� ;U� / is a conjoined basis of (H). Consider
the matrices M� and N� such that
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�
X� .t/
U� .t/

�
D
�

X.t/ NX.t/
U.t/ NU.t/

��
M�

N�

�
; t 2 Œa;1/: (18)

Since by (9) the fundamental matrix in (18) is symplectic, it follows that

M� D NUT.t/X� .t/ � NXT.t/U� .t/; N� D XT.t/U� .t/ � UT.t/X� .t/ (19)

on Œa;1/. Evaluating (19) at t D � and using (12) yields that

M� D I; N� D �XT.�/ NXT�1.�/ .17/D �ŒS�.�/�T D �S�.�/: (20)

This shows that the limit of .M� ;N� / as � ! 1 indeed exists, and by (20) it is
equal to .I;�T/. Hence, from (18) we get that for each t 2 Œa;1/, the limit of
.X� .t/;U� .t// as � ! 1 also exists, and by (10) it is equal to . OXmin.t/; OUmin.t//.
Therefore, (13) holds and the proof is complete. ut
Remark 2. We note that by [15, Remark 5.3], the point ˇ in (16) also satisfies

ˇ D inf ft � ˛; . OX˛; OU˛/ has constant kernel on Œt;1/g;

where . OX˛; OU˛/ is the principal solution of (H) at the point ˛, i.e., it is the solution
given by the initial conditions OX˛.˛/ D 0 and OU˛.˛/ D I.

Remark 3. The proof of Theorem 1 gives also the answer to the question, when the
limit in (13) exists and what is its value depending on the chosen initial conditions
in (12). In this respect we have the following result. Assume that .X� ;U� / is
a solution of (H) given by the initial conditions X� .�/ D 0 and U� .�/ D K.�/,
where K.�/ is invertible for all � � � for some � > ˇ. Then for t 2 Œa;1/ the limit
of
�
X� .t/;U� .t/

�
as � ! 1 exists if and only if K.�/ D � NXT�1.�/E.�/ for � � � ,

where E.�/ is an invertible matrix such that the limit E WD lim�!1 E.�/ exists. In
this case

lim
�!1

�
X� .t/;U� .t/

� D � OXmin.t/E; OUmin.t/E
�
; t 2 Œa;1/;

where . OXmin; OUmin/ is the minimal principal solution of (H) at infinity from (10).
This statement follows from the proof of Theorem 1, in which the matrices M� and
N� are given by M� D E.�/ and N� D �S�.�/E.�/.

Remark 4. It follows by [17, Proposition 5.15] that for � > ˇ the conjoined basis
.X� ;U� / used in the Reid construction of . OXmin; OUmin/ in Theorem 1 is a (minimal)
antiprincipal solution of (H) at infinity.

Formula (17) implies an interesting property of the conjoined basis . NX; NU/.
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Proposition 1. Let .X;U/ be a minimal conjoined basis of (H) on Œ˛;1/. Then
the associated conjoined basis . NX; NU/ from Remark 1 is a maximal antiprincipal
solution of (H) at infinity.

Proof. Let ˇ � ˛ be such that NX.t/ is invertible on Œˇ;1/. Let NS.t/ be defined
as in (5) through NX.t/ on Œˇ;1/. By [17, Theorem 5.3 and Remark 5.4], it is
enough to show that the matrix NS.t/ has a limit as t ! 1. From (17) we obtain
that S�.t/X�.t/ D NX�1.t/R.t/ on Œˇ;1/, while from [15, Theorem 4.2(ii)], we get
R.t/B.t/ D B.t/ D B.t/R.t/. Hence, for t 2 Œˇ;1/ we have

NS.t/ D
Z t

ˇ

NX�1.s/B.s/ NXT�1.s/ ds D
Z t

ˇ

S�.s/X�.s/B.s/X�T.s/ S�.s/ ds

D
Z t

ˇ

S�.s/ S0.s/ S�.s/ ds D �
Z t

ˇ

ŒS�.s/�0 ds D S�.ˇ/ � S�.t/:

This shows that limt!1 NS.t/ D S�.ˇ/ � T, i.e., this limit exists, and by [17,
Remark 5.4] the conjoined basis . NX; NU/ is a (maximal) antiprincipal solution of (H)
at infinity. ut

In the following remark we prove that the approach in [21, Theorem 1, p. 40] is
a special case of our construction in Theorem 1 and Remark 3. Moreover, in view
of Proposition 1, we may conclude that the choice of the initial conditions in (12)
with . NX; NU/ being a maximal antiprincipal solution of (H) at infinity is natural and
the only possible in order to guarantee the existence of the limit in (13).

Remark 5. The comments in Remarks 3 and 4 lead to an explanation of the
construction of a principal solution of (H) at infinity by Stokes in [21, Theorem 1,
p. 40]. Let . QX; QU/ be a conjoined basis of (H) such that QX.t/ is invertible for all t � �

for some � � ˛ as in [21, pp. 39–40]. For � � � , let .X� ;U� / be the solution of (H)
given by the initial conditions X� .�/ D 0 and U� .�/ D QXT�1.�/. Note that Stokes
uses the notation .Y;Z/ and .Yc;Zc/ instead of our . QX; QU/ and .X� ;U� /. Then by
applying Remark 3 with K.�/ WD QXT�1.�/ and E.�/ WD � NXT.�/ QXT�1.�/, we shall
prove that

lim£!1.X£;U£/ exists if and only if

. QX; QU/ is a .maximal/ antiprincipal solution at infinity:

)

(21)

And in this case the limit in (21) is the minimal principal solution at infinity.
Assume first that . QX; QU/ is a (maximal) antiprincipal solution at infinity. Then by
[16, Theorem 6.3 and Remark 6.4] (with the maximal genus Gmax, since QX.t/ and
NX.t/ are invertible for large t)

lim
�!1.�MT

� / D lim
�!1

QX�1.�/ NX.�/ D L with rank L D rank NT C d1; (22)



366 P. Šepitka and R. Šimon Hilscher

where NT is the matrix in (5) associated with . NX; NU/. From Proposition 1 we know
that . NX; NU/ is a (maximal) antiprincipal solution at infinity, i.e., rank NT D n � d1.
Hence, the matrix L in (22) is invertible. Therefore, the limit in (21) exists and,
by Remark 3 with E WD �LT being invertible, it is equal to the minimal principal
solution of (H) at infinity. Conversely, assume that the limit in (21) exists, i.e.,

E WD lim
�!1 E.�/ D � lim

�!1
NXT.�/ QXT�1.�/ (23)

exists. From the fact that . NX; NU/ is a maximal antiprincipal solution at infinity (by
Proposition 1) and from [16, Theorem 6.3 and Remark 6.4], it follows that the limit

F WD lim
�!1

NX�1.�/ QX.�/ D � lim
�!1 ET�1.�/ with rank F D rank QT C d1 (24)

also exists, where QT is defined in (5) through QX.t/ on Œˇ;1/. From (23) and (24) we
then conclude that E and F are invertible with E D �FT�1, which in turn implies by
Remark 3 that the limit in (21) is the minimal principal solution of (H) at infinity.
Finally, the second condition in (24) implies that rank QT D rank F � d1 D n � d1,
so that . QX; QU/ is a maximal antiprincipal solution at infinity.

3 Comments and Concluding Remarks

In this section we make some additional observations and comments to the main
result of this paper and future research directions.

Remark 6. The construction of the minimal principal solution of (H) at infinity in
Theorem 1 can be utilized in applications in the same way as for the controllable
system (H). For example, we expect that this will be possible in the Friedrichs exten-
sion for symmetric operators associated with the linear Hamiltonian system (H) (see
[20, Theorem 3.1]) and its proof. This topic is under our investigation.

Remark 7. In this paper we show that the minimal principal solution of (H) at
infinity can be represented by the Reid construction in (13). It is an open problem
whether other principal solutions of (H) at infinity (i.e., principal solutions at infinity
with rank strictly bigger than n�d1) have a similar representation. We will address
this problem in our future work.

In the last part of this paper, we comment the construction in Theorem 1 with
respect to the used initial data. Since the representation of .X� ;U� / in (18) with
M� D I and N� D �S�.�/ from (20) does not depend on a particular choice of
. NX; NU/, the construction of . OXmin; OUmin/ in (13) also does not depend on the choice
of . NX; NU/ for a given minimal conjoined basis .X;U/. In the next result we will
show that the above construction of . OXmin; OUmin/ does not depend on the choice of
the minimal conjoined basis .X;U/. More precisely, we will show that starting with
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a different minimal conjoined basis .X;U/ leads to a right nonsingular multiple of
. OXmin; OUmin/ in (13). For this purpose we first derive an auxiliary lemma.

Lemma 1. Let .X1;U1/ and .X2;U2/ be minimal conjoined bases of (H) on Œ˛;1/,
and let . NX1; NU1/ and . NX2; NU2/ be their associated conjoined bases from Remark 1,
which satisfy XT

i .t/ NUi.t/�UT
i .t/ NXi.t/ 	 I and X�i .˛/ NXi.˛/ D 0 for i 2 f1; 2g. Then

there exists a constant invertible matrix K such that

NX2.t/ D NX1.t/K; t 2 Œ˛;1/: (25)

Proof. Let P1, R1.t/ and P2, R2.t/ be the orthogonal projectors in (7), (6) associated
with X1 and X2, respectively, First we note that Im X1.˛/ D Im X2.˛/, by [15,
Remark 5.16], so that R1.˛/ D R2.˛/. Next we represent .X1;U1/ in terms of
.X2;U2/ and . NX2; NU2/ and both .X2;U2/ and . NX2; NU2/ in terms of .X1;U1/ and
. NX1; NU1/. Thus, we have for i 2 f1; 2g
�

X3�i.t/
U3�i.t/

�
D
�

Xi.t/ NXi.t/
Ui.t/ NUi.t/

��
Mi

Ni

�
;

� NX2.t/
NU2.t/

�
D
�

X1.t/ NX1.t/
U1.t/ NU1.t/

�� NM1

NN1
�

(26)

on Œa;1/, where according to [15, Theorem 4.6], the matrices M1 and M2 are
invertible with M2 D M�1

1 and N2 D �NT
1 . Since the fundamental matrices in (26)

are symplectic, we get from (26) at t D ˛

NM1 D NUT
1 .˛/

NX2.˛/ � NXT
1 .˛/

NU2.˛/; (27)

NN1 D XT
1 .˛/

NU2.˛/ � UT
1 .˛/

NX2.˛/ D MT
2 D MT�1

1 : (28)

Therefore, NN1 is invertible. Since by (14) at t D ˛ we have P1 NUT
1 .˛/ D X�1.˛/

and P1 NXT
1 .˛/ D S1.˛/XT

1 .˛/ D 0 and R2.˛/ NX2.˛/ D X2.˛/X�2.˛/ NX2.˛/ D 0, it
follows from (27) that

P1 NM1 D X�1.˛/ NX2.˛/ D X�1.˛/R1.˛/ NX2.˛/ D X�1.˛/R2.˛/ NX2.˛/ D 0:

Therefore, again by (26) we get for t 2 Œ˛;1/

NX2.t/ D X1.t/ NM1 C NX1.t/ NN1 D X1.t/P1 NM1 C NX1.t/ NN1 D NX1.t/ NN1:

This shows that (25) holds with K WD NN1, which is by (28) invertible. ut
Assume now that in addition to .X;U/ in Theorem 1, we start with another

minimal conjoined basis .X�;U�/ of (H) on Œ˛;1/. Let . NX�; NU�/ be the associated
conjoined basis from Remark 1. If we represent .X�;U�/ in terms of .X;U/ by

�
X�.t/
U�.t/

�
D
�

X.t/ NX.t/
U.t/ NU.t/

��
M
N

�
; t 2 Œa;1/;
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where M is invertible (see [15, Theorem 4.6] again), then by Lemma 1 we have
NX�.t/ D NX.t/K on Œ˛;1/ with invertible K WD MT�1. Following (12) we construct
for � � ˇ the conjoined basis .X�� ;U�� / by the initial conditions X�� .�/ D 0

and U�� .�/ D � NXT�1� .�/ D � NXT�1.�/M. Hence, we have X�� .t/ D X� .t/M and
U�� .t/ D U� .t/M on Œa;1/, which implies that for t 2 Œa;1/

lim
�!1

�
X�� .t/;U�� .t/

� D lim
�!1

�
X� .t/M;U� .t/M

� D � OXmin.t/M; OUmin.t/M
�
:

Finally, let us mention that the construction of . OXmin; OUmin/ in (13) does not also
depend on the choice of the point ˛, which defines the interval Œ˛;1/ on which
.X;U/ is a minimal conjoined basis. More precisely, similarly to the above we get
that moving the point ˛ to the right yields a constant right nonsingular multiple in
the representation (13). The analysis of this problem goes however beyond the scope
and length of this paper, so that the details are omitted.
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On Numerical Regularity of Trisection-Based
Algorithms in 3D

Sergey Korotov, Ángel Plaza, José P. Suárez, and Pilar Abad

Abstract The longest-edge (LE-) trisection of the given tetrahedron is obtained by
joining two equally spaced points on its longest edge with the opposite vertices,
and, thus, splitting the tetrahedron into three sub-tetrahedra. On the base such
LE-trisections we introduce and numerically test the refinement algorithms for
tetrahedral meshes. Computations conducted show that the quality of meshes
generated by these algorithms does not seem to degenerate.

Keywords Longest-edge trisection • Tetrahedral mesh • Mesh adaptivity • Mesh
regularity

1 Introduction

Theoretical results regarding the regularity properties of tetrahedral meshes gener-
ated are still very limited in comparison to the vast amount of empirical studies
and tests performed for this type of meshes in the mesh generation community. The
complexity of methods to subdivide tetrahedra and an existence of many ways to
performs such subdivisions are only two possible reasons. For example, Delaunay-
type refinement in 3D is much more complicated than that one in 2D, and no
mathematical guarantee exists for the shape quality of subtetrahedra produced [2].
Concerning the longest-edge (LE-) based refinements, whether the shapes of
subtetrahedra produced by repeated LE-bisections degenerate or not is still an
open problem [13]. However, many practical implementations have shown that the
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LE-bisection is a good choice for qualitative mesh refinements [9, 22, 25]. Various
shape measures, currently used as effective quantitative means for evaluating the
quality of meshes, can be found in [8] (see also [5, 6, 15]).

There are currently two main approaches for subdividing a single tetrahedron:
octasection, sometimes called the 3D red refinement (see, e.g., [10, 28]), and
bisection (also called the green refinement) (see also [12] for a combination of these
techniques). The octasection may be preferable to bisection in the cases where the
initial mesh is relatively coarse and a high ratio of element explosion is needed.
However, the octasection-based algorithms are, in general, quite complicated to
implement, and the processing time required may result in a poor efficiency. Even
for adaptive processes, where it is aimed to produce meshes that optimally control
a measure of the error, those methods based on tetrahedral octasection may be
prohibitive, because they rarely perform satisfactory in a real time.

Typically, the main goal in the mesh generation is a generation of well-shaped
mesh elements and at the same time providing with an optimal distribution of points
within the mesh. However, no formal definition of optimality can be tracked as the
mesh is refined [14].

Some algorithms based on the LE-bisections were developed to overcome with
simplicity and efficiency the problem of mesh refinement and obtaining qualitative
tetrahedral meshes. In [25], Rivara and Levin introduced a pure three-dimensional
LE-refinement scheme. Carey et al. in [20, 21] also developed a LE-based algorithm
for evolution problems. See also [9, 26] for many numerical tests for conforming
version of LE-bisections. All mentioned above algorithms guarantee the construc-
tion of good-quality tetrahedral meshes. Empirical experimentation was provided
showing that the solid angles decrease slowly when the algorithm is iteratively
applied and that even a quality improvement behavior holds, similarly to the two-
dimensional case. Their algorithms have been successfully used in practice for the
finite element method (FEM) and multigrid applications even though no formal
proof exists on the nondegeneracy property. It should be noted that there are
other similar algorithms for local tetrahedral refinement, like those by Bänsch [3],
Kossaczký [11], Maubach [17], or Mukherjee et al. [1]. They are however not purely
LE-based algorithms.

Less attention has been given to LE-subdivisions based on the insertion of two
equidistant points on the longest edge of tetrahedra, which is also known as the 3-
tetrahedra longest edge (3T-LE) or simply the LE-trisection [23] (see Fig. 1 for an
illustration).

In this paper we extend to three dimensions the study of the nondegeneracy
property of the LE-trisection presented earlier for the two-dimensional case in
[23]. We introduce an algorithm for the refinement of tetrahedral meshes based
on the LE-trisection. The proposed algorithm can be viewed as an extension to
three dimensions of the recently published algorithm in 2D [24]. As for the LE-
bisection, the algorithm is based on equally division of the longest edge of the
tetrahedron but now in three parts. The methodology used to assert that the proposed
refinement scheme does not seem degenerate is similar to that in [9, 22, 25].
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Fig. 1 Longest-edge
trisection of a tetrahedron
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We conduct a number of numerical experiments that allow us to state the conjecture
that the nondegeneracy property of the LE-trisection holds in 3D when the iterative
refinement is applied to unstructured tetrahedral meshes.

The paper is organized as follows. In Sect. 2 we present the nondegeneracy study
of the LE-trisection algorithm for tetrahedral meshes. An empirical study is carried
out together with the evaluation of the mesh quality by means of several shape
measures. Section 3 introduces and discusses a new algorithm for the refinement of
unstructured tetrahedral meshes based on the LE-trisection. The algorithm is then
tested through a local refinement scenario. Finally, in the last section some final
remarks are given, and some guidelines are presented in order to motivate further
research on the refinements based on the LE-trisections.

2 Nondegeneracy of the LE-Trisection Algorithm

In this section, we present the results of numerical experiments, where we monitor
whether the iterative application of the LE-trisection algorithm to tetrahedral meshes
generates nondegenerated elements. In each of the tests presented, we iteratively
applied the algorithm until getting a reasonably high number (approximately, a
million and a half) of sub-tetrahedra in the final meshes.

To judge on the quality of the meshes, various shape measures are proposed in
the literature. Normally, a shape measure is a continuous function [8, 15, 19, 25],
which has to be invariant under translation, rotation, reflection, and uniform scaling
of the tetrahedron and which takes the maximum value for the regular tetrahedron
and the minimum ones—for degenerate tetrahedra. In our experiments we will use
the following four shape measures:

1. In [16] Liu and Joe introduced the quality indicator for a tetrahedron t as 	.t/ D
12 .3 volume.t//2=3

P6
iD1 l2i

, where l1; : : : ; l6 are the lengths of six edges of t.
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2. In [27] Whitehead introduced the relative thickness of a tetrahedron t as �.t/
ı.t/ ,

where �.t/ stands for the distance from the centroid of a tetrahedron t to its
boundary, and ı.t/ is the diameter of t.

3. The ratio r.t/
R.t/ , where r.t/ is the radius of the inscribed sphere and R.t/ the radius

of the circumscribed sphere around a tetrahedron t.
4. The solid angle at a vertex of a tetrahedron is related to the sum of the three

dihedral angles associated with the edges incident on that vertex. The solid angle
is a representative measure for the quality of the tetrahedral meshes.

Let t be some given tetrahedron to which the LE-trisection refinement is applied.
Then, after trisecting the initial mesh �1 D ft D t11}, a new mesh �2 D ft2i g is
obtained. The successive application of the LE-trisection scheme to any tetrahedron
and its successors yields an infinite sequence of tetrahedral meshes denoted as
�1; �2; �3; : : : .

In what follows, we will focus on the Liu–Joe shape measure as in [18, 22].
We give experimental evidence showing the convergence of the standard shape
measure 	 to a fixed positive value. This indicates that the LE-trisection algorithm
does not produce degenerating meshes, which can be further used as an argument to
mathematically investigate the validity of the nondegeneracy property for such an
algorithm. Namely, we show that for any tetrahedron tn

i 2 �n, n � 1, it holds

	
�
tn
i

� � c	.t/;

where c is a positive constant. To effectively approximate such a constant c, we

define 	
�
�j
� D minif	

�
tj
i

�
g and compute values

cj D 	
�
�j
�

	 .�1/
;

where j D 1; : : : ; 13. In the final meshes we have 1; 594; 323 tetrahedra. The value
c13 is taken then as an estimation of the constant of interest c.

We will study the refinements made for the input tetrahedra that are, in some
sense, representative for the overall mesh quality [4, 19]. Several known tetrahedral
shapes have been satisfactory used to test various meshing algorithms (see e.g. [16,
18, 22, 25]). We give descriptive names to the five different element types commonly
used in this respect. The round tetrahedron is that one which has no bad angles of
any kind (the main example is the regular tetrahedron). The needle (or thin) is such
a tetrahedron which has one small solid angle. The wedge-like element has small but
not large dihedrals and no large angles of any kind. The sliver is a tetrahedron which
has small and large dihedrals, but no large solid angle. The cap-like tetrahedron has
a large (nearly flat) solid angle. For the cap tetrahedron, the circumscribed sphere’s
radius is hence much larger than the longest edge. Table 1 reports on the exact
coordinates of vertices of five tetrahedra used in our tests.
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Table 1 The xyz coordinates of each tetrahedron used in the numerical experi-
ments

Round Needle Wedge Sliver Cap

0.00 0.00 0.00 0.00 0.00 00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.73 1.00 2.82 1.73 1.00 56.56 0.08 0.50 0.14 1.73 -1.81 0.22 1.73 1.00 0.14

1.73 3.00 0.00 1.73 3.00 00.00 1.73 3.00 0.00 1.73 3.00 0.00 1.73 3.00 0.00

3.46 0.00 0.00 3.46 0.00 00.00 3.46 0.00 0.00 3.46 0.00 0.00 3.46 0.00 0.00
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Fig. 2 Dynamics of cj D 	.�j/
	.�1/

, j D 1; : : : ; 13; for five selected tetrahedra

In Fig. 2 we plot the evolution of cj D 	.�j/

	.�1/
for j D 1; : : : ; 13. In addition,

Table 2 reports values cj for each tetrahedron considered. The results obtained
confirm that cj seems to converge asymptotically to a certain positive value. It is
worth noting that the most unfavorable case for the degeneracy constant is attained
for the regular tetrahedron, where c13 D 0:0174. On the other hand, the best case for
the degeneracy constant corresponds to the worst initial tetrahedron, of the needle
type. This is in complete agreement with many previous works, where regular and
needle tetrahedra present the worst and the best cases, respectively, for the mesh
quality evolution.

We deduce that the estimated value for the nondegeneracy constant in the LE-
trisection algorithm approaches c D 0:0174which is held for the regular tetrahedron
(see the third column in Table 2).



376 S. Korotov et al.

Table 2 Values of cj D 	.�j/
	.�1/

, j D 1; : : : ; 13; for five selected tetrahedra.
Approximated constant c13 D 0:0174 (regular tetrahedron) is the minimum
value reached among each tetrahedron type at refinement level 13

Level Number of tets Regular Needle Wedge Sliver Cap

1 3 0:6181 0:4818 0:5606 0:7141 0:7206

2 9 0:3671 0:3291 0:3418 0:4888 0:5194

3 27 0:2308 0:2727 0:2459 0:3421 0:5598

4 81 0:1602 0:1727 0:1971 0:3355 0:6404

5 243 0:1023 0:1782 0:1302 0:3104 0:4132

6 729 0:0769 0:1582 0:0910 0:2368 0:3207

7 2187 0:0582 0:1727 0:0705 0:2122 0:2582

8 6561 0:0494 0:1764 0:0633 0:1729 0:1869

9 19;683 0:0330 0:1564 0:0470 0:1615 0:1948

10 59;049 0:0328 0:1727 0:0410 0:1211 0:1422

11 177;147 0:0240 0:1764 0:0307 0:0966 0:1269

12 531;441 0:0189 0:1564 0:0283 0:0807 0:1363

13 1;594;323 0:0174 0:1636 0:0199 0:0573 0:0900

Note that this value of 0.0174 is the minimum from those obtained at refinement
level 13 for each tetrahedron considered in the experiment. For that reason, and for
the purpose of this work the constant c D 0:0174 is the experimental nondegeneracy
constant of the LE trisection method.

To complete the study, Figs. 3, 4, 5, and 6 present the evolution of the four
shape measures in average, 	, relative thickness, ratio, and solid angle, where the
function values have been normalized between 0 and 1. It is interesting to note as
the LE-trisection refinement improves in average the overall quality of the mesh for
the cases of needle, sliver, cap, and wedge (not showed in the figures) elements.
And for the regular tetrahedron, the evolving mesh is not deteriorating through the
refinements.

3 A Conforming Refinement Algorithm Based
on LE-Trisections

3.1 Description of the Algorithm

The 3D-LE-Refinement algorithm performing the conforming refinement by the
LE-trisections can be described in two steps. First, some target elements �0
belonging to the input mesh � are refined by the LE-trisections. This leads to
the appearance of three new tetrahedra for each subdivided element from �0. The
second step of the algorithm consists in making the conformity (i.e., absence of
hanging nodes) of the overall mesh by performing appropriate post-refinement of
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Fig. 4 LE-trisection of the needle-type tetrahedron

some elements in the mesh (3D conformity step). The only neighboring information
used in the algorithm is the tetrahedra attached to a given edge. Those neighboring
tetrahedra have to be also subdivided in order to assure the conformity of the final
mesh.

The algorithm is described as follows:

Algorithm 3D-LE-Refinement(�; �0 )
/* Input: � – tetrahedral mesh, �0 – list of tets to be refined
/* Output: new mesh �

Perform LE-Trisection of each tet in �0
3D-Conformity(�; �0)

End

A separate sub-algorithm is devoted to providing the mesh conformity:
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Fig. 6 LE-trisection of the cap-type tetrahedron

Algorithm 3D-Conformity(�; �0)
/* Input: � – tetrahedral mesh, �0 – list of tets to be refined
/* Output: new mesh �
/* Let L be the set of non-conforming edges in �
L=Longest-Edges of each tet in �0
/* The conformity is ensured
While L is not empy do

Let e be the non-conforming edge 2 L
S= find all tetrahedra that share the edge e
For each tetrahedron t 2 S do

Perform LE-Trisection of t
Let e be the new non-conforming edge in t
L D L [ e
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End For
End While
End

In Fig. 7, two steps of the above algorithm are illustrated. A simple input mesh
consisting of five tetrahedra is considered (see Fig. 7a: t1 D .ABCD/, t2 D .ABDE/,
t3 D .AFEB/, t4 D .AFEH/, and t5 D .AFGH/). The elements chosen to be
refined are t1 and t3 (see Fig. 7b), where the LE-trisection is already applied to the
tetrahedra t1 and t3. At this point, the conformity process is triggered through the 3D
conformity algorithm. Hanging nodes are present at edges AB and AF, and so, the
algorithm finds all tetrahedra that share those edges (Fig. 7c). As a result, the fol-
lowing tetrahedra have to be subdivided: .ABDE/; .ABXE/; .AFEH/; and.AEGH/
(see Fig. 7d).

The proposed algorithm can be viewed as a three-dimensional analogue of the
recently proposed algorithm in [24] for triangulations. Some benefits of the 3D-LE-
Refinement algorithm are:

1. The required processing time is linear in the number of new elements generated.
The storage requirement for the algorithm is proportional to the number of
tetrahedra targeted for the refinement.

2. A simple data structure is employed based on a list of nodes and a list of
coordinates. This data structure contributes to a better clarity of the algorithm,
thereby facilitating coding. Regarding running efficiency it should be noted that
the only neighboring information required is the number of tetrahedra attached
to an edge.

3. Any predefined or complicated configurations of tetrahedra depending on the
number of points in edges are not needed for the refining process. This simplifies
both, code and programming. Only the edge length calculations are needed for
the subdivision.

4. The longest edges are more likely to be split than the shorter ones. This leads
to a more uniform distribution of edge lengths of tetrahedra, thus improving the
overall aspect ratio of the mesh.

3.2 Numerical Test

Here, we describe the numerical test for studying how the algorithm performs in
a local refinement scenario. The input to the 3D-LE-Refinement algorithm is the
initial mesh of a cubic domain, which consists of 12 tetrahedra.

The local refinement is applied to tetrahedra which are interior to the cube. At
each refinement level, one selects for the initial refinement those tetrahedra which
share the vertex located at the center of the domain. The refinement is repeated
until the volume covered by the selected tetrahedra is less than a prescribed value.
Figure 8 shows the final mesh.
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Fig. 7 (a) The initial mesh with five tets t1; : : : ; t5. (b) The tetrahedra t1 and t3 divided by the LE-
trisection. (c) Tets sharing the nonconforming sides AB and AF are computed. (d) The conformity
is assured by subdividing the sharing tetrahedra .ABDE/; .ABXE/; .AFEH/; .AEGH/

The subject of special interest in refinement methods is the types and the number
of different shapes of mesh elements produced. For example, in [25], Rivara and
Levin studied the LE-bisection algorithm performing the classification of tetrahedra
generated through refinement. This is of help to assess the quality of elements
generated in the refinement process. To this end we group all the elements in four
classes in relation to the quality measure 	: class A consisting of tetrahedra with
	 2 Œ0:0; 0:2�, class B containing tetrahedra with 	 2 .0:2; 0:4�, class C having
tetrahedra with 	 2 .0:4; 0:6�, and the class D being a set of tetrahedra with
	 2 .0:6; 1:0�.
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Fig. 8 The final mesh in the
test of Sect. 3
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Table 3 Classification of tetrahedra during 600 refinement steps

Ref. level Number of tets Class A (%) Class B (%) Class C (%) Class D (%)

0 12 0;00 0;00 0;00 100;00

10 2316 0;00 35;23 23;32 41;45

200 50;196 0;00 35;79 23;74 40;47

400 100;596 0;00 35;75 23;77 40;47

600 150;996 24;90 26;82 17;89 30;39

For practical reasons, we consider the tetrahedra from the classes C and D as
acceptable for numerical computation, while those elements from the classes A
and B are perceived as poorly shaped and potentially causing various numerical
difficulties in computations.

In Table 3 we report on values for the quality of the meshes obtained during the
local refinements in our test. Percentage values for tetrahedra of the classes A, B,
C, and D are showed for a sequence of refinement levels 10, 200, 400, and 600. It
is interesting to note that the algorithm does not generate bad elements of class A
during the first 400 refinement levels. It should be noted that usually in the adaptive
mesh refinement, one can get an approximate solution with an acceptable error using
rarely more than 10 or 20 refinement steps [7].
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Although the refinement on the domain is probably destroying the quality of the
mesh due to appearance of some “badly behaving” tetrahedra, it can be noted that at
the finest mesh with 150,966 elements, the percentage of good elements (of classes
C and D) is still superior to those of a poorer quality (from classes A and B). This
result is in a good agreement with the nondegeneracy property studies from Sect. 2.

4 Final Remarks

There is no mathematical result guaranteeing the nondegeneracy property of the
LE-trisection of tetrahedra, while this has been recently obtained for triangulations
in [23]. As already seen for the LE-bisection of tetrahedra in [25], we demonstrate
in this paper that the LE-trisection also possesses the nondegeneracy property. For
example, the algorithm principally subdivides longest edges in tetrahedra, causing
so to avoid distorted elements as those appearing when subdividing shortest edges.
Furthermore, a reasonably element explosion is yielded as an element is subdivided
into three tetrahedra. This permits the application to large meshes without degrading
the algorithm efficiency.

We also introduced an algorithm which is a 3D analogue of the recently invented
algorithm for the LE-trisection of triangles (see [24]). The required processing
time is linear in the number of new element generated. The algorithm avoids any
predefined or complicated configuration of tetrahedra that might depend on points
and edges. This simplifies both, code and programming. In addition, only edge
length calculation is needed for subdivision. As in the family of LE-refinement
schemes, longest edges are more likely to be split than shorter ones. This leads to a
more uniform distribution of edge length of tetrahedra, thereby improving the aspect
ratio of the mesh. From the numerical experiments with the 3D algorithm presented
here, the meshes obtained generally lead to well-behaved (regular) tetrahedra.

Some open questions arising from the algorithm are:

(1) To confirm our conjecture by a formal proof of the nondegeneracy of the
refining process. It should be noted that at this moment this is still an open
problem even for the LE-bisection algorithm in 3D.

(2) To check the validity of the algorithm in adaptive mesh refinement scenarios,
where it is needed to track the features of the simulation as the computation
progresses.

(3) To probably improve the quality of the generated meshes by combining the
longest-edge refinement, for example, with the Delaunay strategy or with some
other mesh enrichment techniques.

Acknowledgements This work has been partially supported by CYCIT Project MTM2008-
05866-C03-02/MTM from Ministerio de Educación y Ciencia of Spain.
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Abstract We first study the well-posedness of a nonclassical and nonautonomous
diffusion equation containing unbounded delays. Then, we prove the existence and
uniqueness of local solutions, and finally we prove the global in time existence of
solutions as well as the continuous dependence on the initial values.
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Evolution process • Nonclassical diffusion equation
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1 Introduction
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8
ˆ̂
<̂

ˆ̂
:̂

@u

@t
� �.t/�@u

@t
��u D g.u/C f .t; ut/ in .�;C1/ �˝;

u D 0 on .�;C1/ � @˝
u.t; x/ D �.t � �; x/; t 2 .�1; � �; x 2 ˝

(1)

where � 2 R is the initial time, ˝ � R
n is a smooth bounded domain, � W R !

.0;C1/ is a continuous bounded function with 0 < �0 � �.t/ � �1 < 1, and the
nonlinearity g is a function satisfying the following growth conditions:

g 2 C1.R/; lim sup
jaj!C1

g.a/

a
� 0 (2)

jg.a/� g.b/j � cja � bj.1C jaj��1 C jbj��1/; (3)

with 1 < � < nC2
n�2 . The time-dependent delay term f .t; ut/ represents, for instance,

the influence of an external force with some kind of delay, memory, or hereditary
characteristics, although it can also model some kind of feedback control. Here, ut

denotes the past of the solution up to time t, which is also called a segment of the
solution; in other words, given a function u W .�1;C1/�˝ ! R, for each t 2 R,
we can define the mapping ut W .�1; 0� �˝ ! R by

ut.
; x/ D u.t C 
; x/; for 
 2 .�1; 0�; x 2 ˝:

As we have already mentioned, this abstract formulation allows to consider several
types of delay terms in a unified formulation. For instance, terms like

F1.u.t � �.t///;
Z 0

�1
F2.t; 
; u.t C 
// d
; (4)

where Fi (i D 1; 2) are suitable functions, and � W R ! Œ0;C1/, can be described
by the following corresponding fi defined as

f1.t; �/ D F1.�.��.t///; f2.t; �/ D
Z 0

�1
F2.t; 
; �.
// d
; (5)

where � W .�1; 0� ! X (X denotes certain Banach or Hilbert space concerning the
spatial variable). Then, when we replace � by ut in (5), we obtain (4).

Nonclassical parabolic equations are used to model physical phenomena such as
non-Newtonian flow, soil mechanics, heat conduction, etc. (see [1–3, 11–13, 15, 17,
18] and references therein). The asymptotic behavior of the model without the delay
term and with constant coefficients is studied in [19], where the well-posedness
of the problem and the existence of the global attractor in H1

0.˝/ and in H2.˝/,
depending on the regularity of the initial data, are shown. However, there are many
real situations in which the model can be better described if some terms containing
delays appear in the equations.
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The introduction of a time dependence in coefficient �.t/ represents the variabil-
ity of viscosity in time due, for example, to external environment temperatures. This
time dependence provides the system with a nonautonomous nature.

In [16], Rivero studied the existence of the pullback attractor and its continuity
under nonautonomous perturbations without delay, showing the existence of a
concrete structure under some assumptions on the nonlinearity. In [4], the authors
analyzed the case with bounded delay for the first time, establishing the well-
posedness of the problem when �.t/ 	 � is constant. Also, it was proved in [4] the
stability of the stationary solutions under some appropriate hypotheses on the delay
term. In [10], Hu and Wang studied this equation with a specific variable delay term
with bounded derivative, showing the existence of the pullback attractor in H1

0 and
H2 without nonlinearity nor variable coefficients, and recently, it has been analyzed
in [5] a version of our model in which the delay is bounded or finite. Our aim in this
paper is to carry out a program in which the delays do not need to be bounded; in
order words, the whole history of the problem has influence in the future behavior of
the system. This requires of nontrivial different technicalities in our analysis arising
mainly from the weighted Banach space which is necessary to consider in order to
set up an appropriate framework for the problem.

The content of this paper is the following: in Sect. 2 we introduce a phase
space which will be useful for the abstract framework and prove the existence and
uniqueness of local solution for (1). Section 3 is devoted to the study of the global
existence of solutions and the continuous dependence of solutions with respect to the
initial values. The existence of stationary solutions of our problem, the asymptotic
behavior of such stationary solutions, and the existence of attracting sets are being
investigated in a subsequent paper in preparation right now.

2 Existence of Solution

We consider the following usual spaces H D L2.˝/ with inner product .�; �/ and
associate norm j�j and V D H1

0.˝/ with scalar product ..�; �// D .A1=2u;A1=2v/,
for u; v 2 V , and associate norm k�k, where Au D ��u for any u 2 D.A/ with
D.A/ D fu 2 V W Au 2 Hg D H1

0.˝/\ H2.˝/.
One possibility to deal with infinite delays, and which we will use here, is to

consider, for any ı > 0, the following space, as has been considered previously in
the literature (see, e.g., [8, 9, 14]) :

Cı.V/ D
n
' 2 C..�1; 0�I H1

0.˝// W 9 lim
s!�1 eıs'.s/ 2 H1

0.˝/
o
;

which is a Banach space with the norm

k'kı WD sup
s2.�1;0�

eısk'.s/k:
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In order to state the problem in the correct framework, let us first establish some
initial assumptions on some terms of the equation.

For the delay term, we assume that f W R � Cı.V/ ! V satisfies:

(f1) is continuous in t,
(f2) is locally Lipschitz in Cı.V/ uniformly in time, that is, there exists a

nondecreasing function Lf W R ! R, such that for all R > 0 if k�kı ; k	kı � R;
then

kf .t; �/ � f .t; 	/k � Lf .R/k� � 	kı;

for all t 2 R, and
(f3) there exist a constant Cf > 0 and a nonnegative function  2 L1.�;T/; for

all T > � , such that, for any � 2 Cı.V/,

kf .t; �/k2 � Cf k�k2ı C  .t/; for all t > � .

Finally, we suppose that � 2 Cı.V/.
Proceeding as in [16], we can define operators B.t/ D .I C �.t/A/�1 and

QA.t/ D AB.t/, where A D �� with Dirichlet boundary conditions and the functions
Qg.t; u/ D B.t/g.u/ and Qf .t; �/ D B.t/f .t; �/, for all t 2 R; and all � 2 Cı.V/.

Then, we can write problem (1) as

du

dt
D h.t; ut/; (6)

with h W R � Cı.V/ ! V defined as h.t; �/ D QA.t/�.0/C Qg.t; �.0//C Qf .t; �/, for
all t 2 R; and � 2 Cı.V/.

The domain of the operator QA.t/ does not depend on time. In fact, if we define
our problem in H1

0.˝/, then D. QA.t// D H1
0.˝/. This operator is uniformly bounded

in time and

QA.t/ D 1

�.t/



I � .1C �.t/A/�1

�
; (7)

for any t 2 R. Also, for any ˛ > 0 and x 2 D.A˛/, A˛ QA.t/x D QA.t/A˛x.
Thanks to the continuity of the function R 3 t 7! B.t/ 2 L .H1

0.˝//, we obtain
the following estimate (see [16]):

k QA.t/ � QA.s/kL .H1
0.˝//

� Cj�.t/� �.s/j;

for a constant C 2 R.
We can now state and prove the existence of solution to our problem.
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Theorem 1. For each � 2 Cı.V/ and under assumptions (2), (3), and (f1)–(f2),
there exists � > 0 such that there is a unique solution of problem (1) defined in
the interval .�1; � C �/. In other words, there exists a function u 2 C..�1; � C
�/I H1

0.˝// with u.t; � I�/ D �.t � �/ for all t 2 .�1; � � which satisfies

u.t; � I�/ D �.0/C
Z t

�

h.r; ur/dr;

for all t 2 Œ�; � C �/.

Proof. The proof is based on the contraction mapping theorem. To this end, for the
given initial datum � 2 Cı.V/, and for a positive T to be determined later on, we
define the following space

XT
� D

n
u 2 C

�
.�1;T/I H1

0.˝/
� W u.t/ D �.t � �/ for all t 2 .�1; � �;

and kukXT
�

� 2k�kı
o
;

(8)

where kukXT
�

D sup�2.�1;T/ ku.�/k.

This space XT
� is a complete metric space (since it is a closed subset of a Banach

space).
Now we consider the operator ˚ W XT

� ! XT
� given by

˚.u/.t/ D

8
<̂

:̂

�.t � �/; t 2 .�1; � �

�.0/C
Z t

�

h.r; ur/dr; t 2 .�;T/:

Let us first check that ˚ is well defined, i.e., ˚.u/ 2 XT
� for all u 2 XT

� .
Given u 2 XT

� , the mapping ˚.u/.�/ W .�1;T/ ! H1
0.˝/ is continuous thanks

to the continuity of � and the mapping t 2 .�;T/ ! h.t; ut/. Moreover, for all t � �

we have that

k˚.u/.t/k D
�
�
�
��.0/C

Z t

�

h.r; ur/dr

�
�
�
�

� k�.0/k C
Z t

s
kh.r; ur/kdr

� k�.0/k C
Z t

s
k QA.r/kL .H1

0/
ku.r/kdr

C
Z t

s
kB.r/g.u.r//kdr C

Z t

s
kB.r/f .r; ur/kdr:

(9)



390 T. Caraballo et al.

But, k QA.r/kL .H1
0/

� a; for all r � s; and proceeding as in [16], we can prove that

B.t/ ı g is locally Lipschitz in H1
0.˝/ uniformly in t. Indeed, by (3),

kg.u/� g.v/k
L

2n
nC2

� c


Z

˝


ju � vj.1C juj��1 C jvj��1//
� 2n

nC2

� nC2
2n

� Qcku � vk
L

2n
n�2

�
1C kuk��1

L
n.��1/
2

C kvk��1
L

n.��1/
2

/

�
:

(10)

Since

2n.� � 1/
4

� 2n

n � 2 ;

we have that

H1
0.˝/ � L

n.��1/
2 :

Due to the following composition of operators,

H1
0.˝/

g��! H�1.˝/
B.t/���! H1

0.˝/;

function B.t/ ı g is locally Lipschitz in H1
0.˝/.

Therefore, for R D 2k�kı there exists Lg.R/ such that

kB.r/g.u.r//k � kB.r/ .g.u.r//� g.0//C B.r/g.0/k
� Lg.R/ku.r/k C b0jg.0/j;

(11)

where b0 > 0 is a constant such that kB.t/kL .H1
0/

� b0; for all t:
On the other hand, we have

kurkı D sup
s2.�1;0�

eıskur.s/k � sup
s2.�1;0�

ku.r C s/k � sup
�2.�1;T/

ku.�/k

D kukXT
�

� 2k�kı; (12)

for all � � r � t < T.
And as f is locally Lipschitz,

kB.r/f .r; ur/k � kB.r/ .f .r; ur/ � f .r; 0//C B.r/f .r; 0/k
� b0Lf .R/kurkı C b0kf .r; 0/k: (13)
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Then, for all t � � we have that

k˚.u/.t/k � k�.0/k C a
Z t

�

ku.r/kdr

C Lg.R/
Z t

�

ku.r/kdr C b0jg.0/j.t � �/

C b0Lf .R/
Z t

�

kurkıdr C b0

Z t

�

kf .r; 0/kdr:

Therefore,

k˚.u/.t/k � k�.0/k C �
a C Lg.R/C b0Lf .R/

� Z t

�

kurkıdr

C b0jg.0/j.t � �/C b0

Z t

�

kf .r; 0/kdr:

Then, we obtain that

k˚.u/.t/k � k�kı C R.t � �/
�
a C Lg.R/C b0Lf .R/

�

C b0jg.0/j.t � �/C b0

Z t

�

kf .r; 0/kdr; 8t 2 .�;T/:

If we write T D � C �, we then have

k˚.u/.t/k � k�kı C R �
�
a C Lg.R/C b0Lf .R/

�

C b0jg.0/j� C b0

Z �C�

�

kf .r; 0/kdr; 8t 2 .�; � C �/;

and considering � > 0 small enough, we can ensure that

k˚.u/.t/k � 2k�kı; 8t 2 .�; � C �/:

We also have the same conclusion for t 2 .�1; � �, in fact k˚.u/.t/k � k�kı , for
all t 2 .�1; � �, and therefore, we can conclude that the operator ˚ is well defined.

Now, by using the contraction mapping theorem, we prove the existence of a
fixed point for ˚.�/, which will be the solution of our problem. To this end, we need
to prove that ˚ is a contracting mapping. Let us take u; v 2 XT

� . We have

k˚.u/.t/ � ˚.v/.t/k �
Z t

s
kh.r; ur/� h.r; vr/kdr

�
Z t

s
k QA.r/kL .H1

0 /
ku.r/� v.r/kdr

C
Z t

s
kB.r/ .g.u.r//� g.v.r//C f .r; ur/� f .r; vr// kdr:
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Using the uniform bound in time for QA.t/ and B.t/, the fact that B.t/ ı g is locally
Lipschitz in H1

0.˝/, and .f2/, taking into account that ku.t/k; kv.t/k � R for all
t 2 Œs;T/ and (12), we obtain

k˚.u/.t/ � ˚.v/.t/k � K1

Z t

�

ku.r/ � v.r/kdr C K2

Z t

�

kf .r; ur/ � f .r; vr/kdr

� K1

Z t

�

ku.r/ � v.r/kdr

C K.R/
Z t

�

sup

2.�1;0�

ku.r C 
/� v.r C 
/kdr:

Taking supremum in Œ�;T/ with T D � C �

k˚.u/�˚.v/kXT
�

� K1�ku�vkXT
�
CK.R/�

 

sup
r2Œ�;T/

sup

2.�1;0�

ku.r C 
/ � v.r C 
/k
!

;

but, if u; v 2 XT
� ,

sup
r2Œ�;T/

sup

2.�1;0�

ku.r C 
/� v.r C 
/k D sup
r2.�1;T/

ku.r/ � v.r/k D ku � vkXT
�
:

Therefore, for � > 0 small enough,˚ is well defined and is a contraction in X� . The
proof is therefore complete.

3 Global Solution and Absorbing Sets

In this section we will prove that the local solution, whose existence has been proved
in Theorem 1, is in fact a global one, i.e., it is defined in the whole future and not
only in a small time interval. However, we will deduce this result after obtaining
some a priori estimates which will be also useful in our future investigation of global
asymptotic behavior to deduce the existence of absorbing sets for the evolution
process generated by our model.

For any ' 2 H1
0.˝/, taking into account (2) and arguing as in [7], for each � > 0,

there is a constant K� > 0 such that

Z

˝

g.u/u � �juj2 C K�;

Z

˝

G.u/ � �juj2 C K�

(14)

for all u 2 L2.˝/, where G.r/ D R r
0

g.
/d
 .
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Let Lb.'/ be the following energy functional

Lb.'/ D 1

2

�j'j2 C bk'k2� � b
Z

˝

G.'/; (15)

with b � 0. It is easy to prove that for � D �1
6

,

Lb.'/ � b

3
k'k2 � bK �1

6

(16)

and for any � > 0,

Lb.'/ � 1C b.�1 C 2�/

2�1
k'k2 C bK�; (17)

with �1 the first eigenvalue of A.
Taking a solution u.t; � I�/ of (1) and for b > 0,

d

dt
Lb.u/ D .u;

du

dt
/C b..u;

du

dt
//� b

Z

˝

g.u/
du

dt

D ��.t/..u; du

dt
//� kuk2 C .u; g.u//C .u; f .t; ut//

C b



�jdu

dt
j2 � �.t/kdu

dt
k2 C .g.u/;

du

dt
/C .f .t; ut/;

du

dt
/

�

� b.g.u/;
du

dt
/

� �
�
1 � �1"1

2
� 2�C "2

2�1

�
kuk2 C "2 C 1

2"2
jf .t; ut/j2

C �.t/

�
1

2"1
� b

�
kdu

dt
k2 C Kı;

for "1; "2; � > 0. Taking "1 D 1
4�1

, "2 D �1
4

, � D �1
8

and b � 1
2"1

D 2�1, we obtain

d

dt
Lb.u/ � �1

2
kuk2 C

�
�1 C 4

2�1

�
jf .t; ut/j2 C K �1

8

� �
�

�1

1C b.�1 C 2 Q�/
�

Lb.u/C
�
�1 C 4

2�1

�
jf .t; ut/j2

C
�

�1

1C b.�1 C 2 Q�/
�

K Q� C K �1
8

;

where Q� is a fixed positive constant.
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Denoting Cb D
�

�1
1Cb.�1C2 Q�/

�
, C�1 D

�
�1C4
2�1

�
and QKb D CbK Q� C K �1

8

, we have

that

d

dt

�
eCbtLb.u/

� D CbeCbtLb.u/C eCbt d

dt
Lb.u/

� eCbt.C�1 jf .t; ut/j2 C QKb/:

Integrating between � and t; t � �; and using hypothesis (f3),

eCbtLb.u.t// � eCb�Lb.�.0//C C�1

Z t

�

eCbrjf .r; ur/j2dr C
QKb

Cb

�
eCbt � eCb�

�

� eCb�Lb.�.0//C
QKb

Cb

�
eCbt � eCb�

�

C ��1
1 C�1

�Z t

�

eCbrkf .r; ur/k2dr

�

� eCb�Lb.�.0//C ��1
1 C�1Cf

Z t

�

eCbrkurk2ıdr C ��1
1 C�1

Z t

�

eCbr .r/dr

C
QKb

Cb

�
eCbt � eCb�

�
:

Taking into account (16) and (17), we obtain

b

3
eCbtku.t/k2 � eCb� . QCbk�.0/k2 C bK�2/C ��1

1 C�1Cf

Z t

�

eCbrkurk2ıdr

C ��1
1 C�1

Z t

�

eCbr .r/dr C eCbt

 QKb

Cb
C bK �1

6

!

;

where �2 > 0 is chosen and

QCb D 1C b.�1 C 2�2/

2�1
:

Consequently, if t � � , we have

eCbtku.t/k2ı � max

(

sup

2.�1;��t�

eCbte2ı
k�.t C 
��/k2;

sup

2Œ��t;0�

3

b
eCb�e.2ı�Cb/
 . QCbk�.0/k2 C bK�2/
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C 3

b
��1
1 C�1Cf e

.2ı�Cb/


Z tC


�

eCbrkurk2ıdr

C 3

b
��1
1 C�1e

.2ı�Cb/


Z tC


�

eCbr .r/dr

C 3

b
e.2ı�Cb/
eCbt

 QKb

Cb
C 2K �1

6

!)

;

but, on the one hand,

sup

2.�1;��t�

eı
k�.t C 
 � �/k D sup

2.�1;0�

eı.
�.t��//k�.
/k

D e�ı.t��/k�kı
� k�kı;

and, k�.0/k � k�kı .
On the other hand, taking 2ı > Cb, we have

sup

2Œ��t;0�

 

e.2ı�Cb/


Z tC


�

eCbrkurk2ıdr C e.2ı�Cb/


Z tC


�

eCbr .r/dr

!

�
Z t

�

eCbrkurk2ıdr C
Z t

�

eCbr .r/dr:

Therefore,

b

3
eCbtkutk2ı � eCb�

� QCbk�k2ı C bK�2
�C ��1

1 C�1

Z t

�

eCbr .r/dr

C eCbt

 QKb

Cb
C bK �1

6

!

C ��1
1 C�1Cf

Z t

�

eCbrkurk2ıdr:

Assuming that

3

b
��1
1 C�1Cf < Cb (18)

and calling ˇ D 3
b�

�1
1 C�1Cf (it means ˇ < Cb) and

˛.t/ D 3

b
eCb�

� QCbk�k2ı C bK�2
�C 3

b
��1
1 C�1

Z t

�

eCbr .r/drC 3

b
eCbt

 QKb

Cb
C bK �1

6

!

;
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by the Gronwall lemma, we obtain that

eCbtkutk2ı � ˛.t/C ˇ

Z t

�

˛.r/eˇ.t�r/dr:

Now,

ˇ

Z t

�

˛.r/eˇ.t�r/dr � 3

b
eCb�eˇ.t��/

� QCbk�k2ı C bK�2
�

C 3

b

ˇ

Cb � ˇ

 QKb

Cb
C bK �1

6

!

eCbt

C 3

b
ˇ��1

1 C�1e
ˇt
Z t

�

e.Cb�ˇ/r .r/dr:

Then,

kutk2ı � e�Cbt˛.t/C 3

b
e.Cb�ˇ/.��t/

� QCbk�k2ı C bK�2
�

C 3

b

ˇ

Cb � ˇ

 QKb

Cb
C bK �1

6

!

C 3

b
ˇ��1

1 C�1e
�.Cb�ˇ/t

Z t

�

e.Cb�ˇ/r .r/dr:

Assuming that there exists a 	0 � 0 such that for any 	 2 Œ0; 	0�,
Z t

�1
e	r .r/dr < C1; (19)

we have

kutk2ı
�!�1�����! l.t/; (20)

where

l.t/ D 3

b

 QKb

Cb
C bK �1

6

!�
1C ˇ

Cb � ˇ
�

C 3

b
��1
1 C�1

�Z t

�1
eCbr .r/dr C ˇe�.Cb�ˇ/t

Z t

�1
e.Cb�ˇ/r .r/dr

�
:
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Then, we have the global existence of any solution u.t; � I�/ of (1), i.e., for each
� 2 Cı.V/, u.�; � I�/ 2 C..�1;C1/;H1

0.˝// in Theorem 1.

Remark 1. We would like to emphasize that once we justify that the solutions of
our problem generates a nonautonomous dynamical system, this also ensures the
existence of a family of closed subsets

˚
BCı.V/.0; l

1=2.t// W t 2 R
�

in which pullback
attracts bounded subsets of Cı.V/. This will be investigated in the forthcoming
paper [6].

Now we prove a result on the continuous dependence on the initial data which
will be very useful for our future investigations on this field, in particular, when we
analyze the existence of pullback attractors for the evolution process generated by
our model.

Proposition 1. Under the assumptions of Theorem 1, any solution u.t; � I�/ of (1)
is continuous with respect to the initial condition � 2 Cı.V/: More precisely, if ui;

for i D 1; 2; are the corresponding solutions to the initial data � i 2 Cı.V/; i D 1;

2; the following estimate holds:

max
r2Œ�;t�

ku1.r/ � u2.r/k (21)

� .k�1.0/� �2.0/k C a C Lg.R/C b0Lf .R/

ı
k�1 � �2kı/e.aCLg.R/Cb0Lf .R//.t��/;

for all t 2 Œ�;T/; where R � 0 is given by

R D max.2k�1kı; 2k�2kı/:

Proof. Let ui; for i D 1; 2; be the corresponding solutions to the initial data � i 2
Cı.V/; i D 1; 2; in the interval .�1;T/; for a fixed T > � . Then we have that

u1.t/ � u2.t/ D �1.0/� �2.0/C
Z t

�

.h.r; u1r / � h.r; u2r //dr; t 2 .�;T/:

Now, taking into account (f2), (8), (12), that k QA.r/kL .H1
0/

� a; and function

B.t/ ı g is locally Lipschitz in H1
0.˝/, for R D max.2k�1kı; 2k�2kı/, it is not

difficult to deduce that

ku1.t/ � u2.t/k � k�1.0/� �2.0/k (22)

C .a C Lg.R/C b0Lf .R//
Z t

�

ku1r � u2r kıdr; t 2 .�;T/:
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As for r 2 Œ�; t� one has

ku1r � u2r kı D sup

�0

e�
ku1.r C 
/ � u2.r C 
/k

D max

(

sup

2.�1;��r�

eı
k�1.r C 
 � �/� �2.r C 
 � �/k;

sup

2Œ��r;0�

eı
ku1.r C 
/ � u2.r C 
/k
)

� max

	
eı.��r/k�1 � �2k� ; max


2Œ�;r�
ku1.
/ � u2.
/k

�
;

we conclude from (22) that for all t 2 .�;T/;

ku1.t/ � u2.t/k � ku1.�/ � u2.�/k

C .a C Lg.R/C b0Lf .R//k�1 � �2kı
Z t

�

eı.��r/dr

C .a C Lg.R/C b0Lf .R//
Z t

�

max

2Œ�;r� ku1.
/� u2.
/kdr:

If we now substitute t by r 2 Œ�; t� and consider the maximum when varying this r;
from the above, we can conclude that

max
r2Œ�;t�

ku1.r/ � u2.r/k � ku1.�/ � u2.�/k C a C Lg.R/C b0Lf .R/

ı
k�1 � �2kı

C .a C Lg.R/C b0Lf .R//
Z t

�

max
r2Œ�;
 � ku1.r/� u2.r/kd
:

Hence, by the Gronwall lemma, we obtain (21).

4 Conclusions and Future Directions

In this paper we have investigated the existence, uniqueness, and continuous
dependence with respect to the initial values of solutions of a nonclassical and
nonautonomous reaction diffusion equation with unbounded delays. This is a
preliminary step in order to study the asymptotic behavior of the solutions of the
problem. In fact, we are working on this direction in order to prove the existence
and exponential stability of the stationary (steady-state) solutions of our equation,
as well as the global asymptotic behavior within the framework of pullback attractor.
These results will be reported in [6].
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On a Weak Solvability of a System
of Thermoviscoelasticity of Oldroyd’s Type

Victor Zvyagin and Vladimir Orlov

Abstract We study the solvability in the weak sense of the initial-boundary value
problem for an Oldroyd’s type model of motion of a viscoelastic continuum.

Keywords Thermoviscoelastic continuum • A priori estimates • Successive
approximations • Weak solution
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1 Introduction

In QT D f.t; x/ W Œ0;T� �˝g, where ˝ � Rn, n D 2; 3; is a bounded open domain
with the boundary @˝ 2 C2, the following problem is considered:

@u=@t C
nX

iD1
ui@u=@xi C rp D Div � C f I Div u D 0I (1)

uj@˝ D 0; ujtD0 D u0I (2)

� C �.@�=@t C
nX

iD1
ui@�=@xi/ D 2	.
/E.u/C 2�.@E.u/=@t C

nX

iD1
ui@E.u/=@xi/I

(3)

� jtD0 D �0I (4)
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@
=@t C
nX

iD1
ui@
=@xi � ��
 D g C � W E.u/I (5)


 jtD0 D 
0; 
 j@˝ D 0: (6)

The unknowns are u.t; x/ D .u1.t; x/; : : : ; un.t; x//, p.x; t/, and 
.x; t/ as
temperature, i.e., the velocity, the pressure, the temperature, and the stress deviator
�.t; x/ D f�ij.t; x/gn

i;jD1, respectively, E.u/ D fEij.u/gn
i;jD1, Eij.u/ D 1

2
.@ui=@xj C

@uj=@xi/ is the strain velocity tensor.
Next, f .x; t/ and g.x; t/ are given body force and heat generation per unit volume,

respectively; u0.x/; 
0.x/, and �0.x/ are given initial velocity, temperature, and stress
deviator; 	.
/ > 0 is the viscosity of the continuum, � is relaxation time, and � is
the retardation time (0 < � < �).

In the present work, we study the solvability in the weak sense of the initial-
boundary value problem for an Oldroyd’s type model of motion of a viscoelastic
continuum with the constitutive law (3) (see [1, 2]).

In such a model stresses after the instant stopping of motion damped as exp.��t/,
and the velocities after instant stress relief damped as exp.��t/.

2 Statement of the Problem and the Main Result

We shall use the standard Sobolev spaces Lp.˝/; Wl
p.˝/; Lp.QT/; Wk;m

p .QT/. By
p D 2 the norms in these spaces will be denoted by j � j0; j � jl; k � k0; k � kk;m,
respectively, .� ; �/ is the scalar products in L2 spaces. Hˇ

p .˝/ is the space of Bessel
potentials, H1

p.˝/ D W1
p .˝/.

Next,
ı

W
m

p .˝/ is the closure of C1
0 .˝/ in Wl

p.˝/ .m > 0/ norm, Wm
p;0.˝/ D

Wm
p .˝/\

ı
W
1

p .˝/, W�m
p .˝/ D .

ı
Wm

p0 .˝//
0

(conjugate space), m > 0, p0 D p=
.p � 1/; V D fu W u 2 C1

0 .˝/; div u D 0g; H and V are the closure of V in L2.˝/
and W1

2 .˝/ norms, respectively.
Rn�n is the space of matrices of the order n � n, and Rn�n

s is its subspace of
symmetric matrices.

It will be convenient to us setting

� D � C 2�1E.u/; �1 D 2���1; �2.
/ D .	.
/� �/��1 (7)

to rewrite problem (1)–(6) in the form

@u=@t C
nX

iD1
ui@u=@xi � Div � � �1�u C rp D f I (8)

div u D 0I (9)
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��1� C .@�=@t C
nX

iD1
ui@�=@xi/ D 2�2.
/E.u/I (10)

@
=@t C
nX

iD1
ui@
=@xi � ��
 D g C � W E.u/C 2�1E.u/ W E.u/I (11)

uj@˝ D 0; ujtD0 D u0I (12)

� jtD0 D �0 � 2�1E.u0/ 	 �0I (13)


 jtD0 D 
0; 
 j@˝ D 0: (14)

Introduce the spaces

W1 D L2.0;TI V/\ C!.Œ0;T�I H/ \ W1
1 .0;TI V 0/I

W2 D L2.0;TI L2.˝;Rn�n
s // \ C!.Œ0;T�I W�1

p .˝;Rn�n
s //

\W1
2 .0;TI W�2

p .˝;Rn�n
s //I

W3 D Lp.0;TI ı
W
1

p .˝//\ W1
1 .0;TI W�1

p .˝//\ C!.Œ0;T�I W1�1=p
p .˝//:

Here ha; bi is the action of functional a 2 E0 from E0 upon b 2 E.

Definition 1. A triple of functions .u; �; 
/, u 2 W1, � 2 W2, 
 2 W3.u; �/;

u 2 L2.0;TI V/
\

Cw.Œ0;T�I H/;
du

dt
2 L1.0;TI V�/;

� 2 L2.0;TI L2.˝;RN�N
S //

\
Cw.Œ0;T�I H�1.˝;RN�N

S //

is a weak solution to problem (8)–(14) if it satisfies identities

d

dt
.u; '/�

nX

iD1
.ui; @'=@xi/C .r�;r'/C 2�1.ru;r'/ D hf ; 'iI (15)

d

dt
.�; ˚/ �

nX

iD1
.ui�; @˚=@xi/C ��1.�; ˚/ D 2��1.�2.
/E.u/; ˚/I (16)

d

dt
.
;  / �

nX

iD1
.ui
; @ =@xi/C �.r
;r /

D hg;  i C .� W E;  /C �1.E.u/ W E.u/;  / (17)

for any ' 2 V , ˚ 2 H1
0.˝;R

n�n
s /,  2 C1

0 .˝/ and conditions (12), (13), (14).
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Formally identities (15), (16), (17) are obtained from (8)–(10) by multiply-
ing (8), (10), and (11) by test functions in L2 and integrating by parts.

Hereafter we deal with problem (8)–(14). The main result:

Theorem 1. Let 1 < p < 4=3 by n D 2 and 1 < p < 5=4 by n D 3. Let

(a) f 2 L2.0;TI V 0/, u0 2 H,
(b) �0 � 	.
0/

2�
�

E.u0/ 2 L2.˝;Rn�n
s /, �0 2 W�1

2 .˝;Rn�n
s /, 
0 2 W1�2=p

p .˝/,
(c) g 2 L1.0;TI L1.˝//,
(d) 	.s/ 2 C.�1;C1/ and for some d > 0

0 < �=� � 	.s/ � d; s 2 .�1;C1/: (18)

Then there exists a weak solution to problem (8)–(14).

3 Auxiliary Problems

For the proof of Theorem 1, we consider the pair of auxiliary problems. The first
one is

@u=@t C
nX

iD1
ui@u=@xi � Div � � �1�u C rp D f ; (19)

div u D 0; ujtD0 D u0; uj@˝ D 0I (20)

� C �.@�=@t C
nX

iD1
ui@�=@xi/ D 2�2.
/E.u/; (21)

� jtD0 D �0 DW �0 � 2�1E.u0/ (22)

by fixed 
 2 W3.
A weak solution to (19)–(22) is the pair .u; �/, u 2 W1, � 2 W2, which solves

identities (15)–(16) by 
 D 
 .
The second one is

@
=@t C
nX

iD1
ui@
=@xi � ��
 D g C E .u/ W � C 2�1E.u/ W E.u/I (23)


 jtD0 D 
0; 
 j@˝ D 0 (24)

by fixed � 2 W2 and u 2 W1.
A weak solution to (23)–(24) is 
 2 W3, which solves identities (17) and (24) by

any  2 C1
0 .˝/.
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3.1 Solvability of Problem (19)–(22)

Theorem 2. Let conditions of Theorems 1 are fulfilled. Then problem (19)–(22) has
a weak solution and the estimate holds:

kukL1.0;TIH/ C kukL2.0;TIV/ C k�kL1.0;TIL2.˝;Rn�n
s // C k@u=@tkL1.0;TIV0/ (25)

C k@�=@tkL2.0;TIW�2
2 .˝;Rn�n

s // � M1.ju0j0; j�0j0; kf kL2.0;TIV0//; (26)

where M1 does not depend of 
 .

Theorem 2 is proved with the help of the approximation-topological method (see
[4, 6]), based on a priori estimates and the Leray–Schauder degree theory (see [3, 5]).

For this we consider the following auxiliary problem:

d

dt
.�; ˚/C 1

�
.�; ˚/ � �

nX

iD1
.

ui�

1C ı.
j� j2
2�

C juj2/
;
@˚

@xi
/C 2�.�2. N
/u;Div˚/

C "

�
.r�;r˚/ D 0; (27)

d

dt
.u; '/� �

nX

iD0
.

uiu

1C ı.
j� j2
2�2

C juj2/
;
@'

@xi
/C �1.ru;r'/

C �.�;r'/ D hf ; 'i (28)

for all ' 2 V; ˚ 2 H1
0 a.e. in .0;T/;

ujtD0 D u0; � jtD0 D �0 (29)

The numbers ı > 0; 0 � � � 1; 0 < " � 1 are parameters.
Then problem (27)–(29) is equivalent to the operator equation

QA".u; �/C �Q.u; �/ D .f ; 0; u0; �0/ (30)

The linear operator is generated by the linear part of problem (27)–(29), while Q
by its nonlinear part. The invertibility of QA" allows us rewrite in the form

.u; �/� � QA�1
" Q.u; �/ D QA�1.f ; 0; u0; �0/ (31)

in W � WM; with compact operator QA"Q.
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Here

W D fu 2 L2.0;TI V/;
du

dt
2 L2.0;TI V�/g

WM D f� 2 L2.0;TI H1
0.˝;R

n�n
S //;

d�

dt
2 L2.0;TI H�1.˝;Rn�n

S //g

with natural intersection norms.
The application of the Leray–Schauder degree theory yields the existence of

solution .uı;"; �ı;"/ of Eq. (31).
The passage to the limit by ı ! 0; " ! 0 gives the solution .u; �/ of (27)–(29).

3.2 Solvability of Problem (23)–(24)

Theorem 3. Let u 2 W1, 
0 2 W1�2=p
p .˝/, � 2 W2, g 2 L1.0;TI L1.˝//, 1 < p <

4=3 by n D 2 and 1 < p < 5=4 by n D 3. Then problem (23)–(24) has a weak
solution and the estimate holds:

k@
=@tkL1.0;TIW�1
p .˝// C k
kLp.0;TIW1

p .˝//
C sup

t
k
.t; �/k

W
1�2=p
p .˝/

(32)

� M
�
kgkL1.0;TIL1.˝// C kuk20;1 C k�k20 C k
0kW

1�2=p
p .˝/

�
: (33)

The main difficulties in the problem of a weak solvability to the linear parabolic
equation (23) consists in the membership of second and third summands to
L1.0;TI L1.˝//. In order to get the weak solvability, we regularize equation (23)
by means of application of operator A�1=2 and reduce the problem to the solvability
of equation

@.A�1=2
.t; x//=@t C A�1=2@.ui
/=@xi C A1=2
.t; x/ (34)

D A�1=2g.t; x/C A�1=2.� W E.u//C �1A
�1=2E.u/ W E.u//:

in the functional class W.p/ D f
 W A�1=2
.t; x/2W1
1 .0;TI Lp.˝//; A1=2
.t; x/2

Lp.0;TI Lp.˝//g, by p from Theorem 3.
Here A�1=2 is the fractional power of acting in Lp.˝/; 1 < p < C1 operator

Au D ���u; � > 0 with domain D.A/ D W2
p;0.˝/. Operator A�1=2 is the integral

operator of potential type and maps L1.0;TI L1.˝// into by L1.0;TI W"
p.˝//

suitable " > 0.
This provides sufficient smoothness for the solvability of Eq. (34) and necessary

a priori estimates which guarantee the convergence of iterative process in the proof
of Theorem 1.
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4 Proof of Theorem 1

Consider the sequence of problems

@unC1=@t C
nX

iD1
unC1

i @unC1=@xi � �1Div E.unC1/C rpnC1

D Div �nC1 C f ; div unC1 D 0I (35)

unC1j@˝ D 0; unC1jtD0 D u0I (36)

d�nC1=dt C 1

�
�nC1 � 2�2.


n/E.unC1/ D 0I (37)

�nC1jtD0 D �0I (38)

@
nC1=@t C
nX

iD1
unC1

i @
nC1=@xi � ��
nC1

D g C �nC1 W E.unC1/C 2�1E.u
nC1/ W E.unC1/I (39)


 jtD0 D 
0; 
 j@˝ D 0: (40)

Let un, �n, 
n be known. Substituting 
n in (35)–(38), we find weak solutions
unC1, �nC1. Then substituting unC1 and �nC1 in (39)–(40), we find weak solution

nC1. Thus, knowing .un; �n; 
n/, we find .unC1; �nC1; 
nC1/. As u0, �0, and 
0 we
take u0, �0, and 
0, respectively.

Under conditions of Theorems 2 and 3 the successive approximations
.un; �n; 
n/, n D 0; 1; : : : are well defined, and from these theorems, the estimates
follow

kunkW1 � MI k�nkW2 � MI k
nkW3 � M: (41)

Using estimates (41) we can assume that take place convergence

un ! u� weakly in L2.0;TI V/I (42)

un ! u� � �weakly in L1.0;TI H/I (43)

�n ! �� weakly in L2.0;TI H1
0.˝//I (44)

�n ! �� weakly in L2.0;TI L2.˝//I (45)


n ! 
� strongly in Lp.QT/: (46)

By this u� 2 W1, �� 2 W2, 
� 2 W3, and initial-boundary conditions (2), (4), (6)
are fulfilled.

These convergence are not enough to pass to the limit. We need the better
properties for the sequence un.
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Lemma 1. The sequence un strongly converges to u� in L2.0;TI V/.

Proof. By the standard way, we deduce from (35 the equality

1

2
junC1.t; x/j20 C 2�1

TZ

0

jE .unC1/.t; x/j20dt (47)

D �
TZ

0

.�nC1;runC1/dt C
TZ

0

hf ; unC1i dt C 1

2
ju0j20:

It is convenient to write (47 in the form

kunC1k2N D
TZ

0

hf ; unC1i dt C
TZ

0

.�nC1;runC1/dt C 1

2
ju0j2: (48)

Here we have introduced the Hilbert space N D H � L2.0;TI V/ with the scalar
product

.z;w/N D 1

2
.z1;w1/H C �1.E .z2/;E .w2//L2.0;TIL2.˝//; z D .z1; z2/;w D .w1;w2/:

The convergence (42)–(46) implies the weak convergence of un to u� in N .
The same convergence (42)–(46) implies the convergence of the right-hand side

of (48) to
TR

0

hf ; u�i dt C
TR

0

.��;ru�/dt C 1
2
ju0j2.

Thus, we have the weak convergence of un in N and the convergence of
kunC1kN ! ku�kN . It is known fact that this convergence implies strong
convergence of un to u� in N .

ut
Let us show that .u�; ��; 
�/ (23)–(24) is a weak solution to problem (8)–(14).

Since u� 2 W1, �� 2 W2, 
� 2 W3, and conditions (2), (4), (6) are fulfilled, it is
sufficient to prove that .u�; ��; 
�/ solves identities (15), (16), (17).

Since .unC1; �nC1/ is a weak solution to problem (35)–(38), then

d.unC1; '/=dt �
nX

iD1

�
.unC1/iunC1; @'=@xi

�C .r�nC1;r'/ (49)

C �1.runC1;r'/ D hf ; 'i; ' 2 V: (50)

d.�nC1; ˚/=dt C 1

�
.�nC1; ˚/ � 2.�2.


n/E .unC1/; ˚/ D 0: (51)
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Since 
nC1 is a weak solution to this problem, then

d.
nC1;  /=dt �
nX

iD1

�
unC1

i 
nC1; @ =@xi
�C �.r
;r'/ (52)

D .g;  /C .�nC1 W E.unC1/;  /C 2�1.E.u
nC1/ W E.unC1/;  /: (53)

The convergence (42)–(46) and Lemma 1 allow us to pass to the limit in (35)–(40)
and obtain identities (15), (16), (17) for .u�; ��; 
�/ that mean that .u�; ��; 
�/ is a
weak solution to problem (8)–(14). Theorem 2 is proved.
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Well-Posedness and Spectral Analysis
of Hyperbolic Volterra Equations
of Convolution Type

N.A. Rautian and V.V. Vlasov

Abstract We study the correct solvability of abstract integrodifferential equations
in Hilbert space generalizing integrodifferential equations arising in the theory
of viscoelasticity. The equations under considerations are the abstract hyperbolic
equations perturbed by the terms containing Volterra integral operators. We establish
the correct solvability in the weighted Sobolev spaces of vector-valued functions
on the positive semiaxis. We also provide the spectral analysis of operator-valued
functions which are the symbols of these equations.

Keywords Integrodifferential equations • Sobolev space • Gurtin-Pipkin heat
equation • Spectra • Operator-function

Mathematics Subject Classification (2010): Primary 34D05, Secondary 34C23

1 Introduction

Numerous problems arise in the research of integrodifferential equation applica-
tions. Let us point to some problems in studying the reduction of integrodifferential
equations in mechanics and the physics which are considered in the previous
chapters.

The first class of problems are the problems arising in the theory of viscoelas-
ticity. Integral terms like convolution describe in this case long-term memory;
thus, functions of a kernel of convolution are defined as a result of experiment.
Curves often received as a result of experiment are approximated in practice by
the sum of finite number of exponentials or series of exponents. A rather complete
description of the problems arising in the theory of viscoelasticity is given in the
recent monograph [1] (see also [5, 11] and references therein).
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The second class of problems are the problems of acoustics of emulsions. The
mixture of two liquids with various characteristics (density, viscosity, compress-
ibility coefficient) is called an emulsion. It is possible to prove by using the
homogenization theory that the equation describing an average value of sound
pressure for one-dimensional distribution of a sound wave has the abstract form
coinciding with a form of the equation, considered in this work (see [15, 16]).

The third class of problems are the problems of homogenization in multiphase
media where one of the phases is an elastic (or viscoelastic) media and the other is
a viscous (compressible or incompressible) liquid (see [15, 16]).

This paper is devoted to researching integrodifferential equations with
unbounded operator coefficients in a Hilbert space. Most of the equations under
consideration are abstract hyperbolic equations perturbed by terms containing
Volterra integral operators. These equations are the abstract forms of the
integrodifferential equations arising in the theory of viscoelasticity (see [1, 5])
and the Gurtin-Pipkin integrodifferential equations (see [3, 7, 9] for more details),
which describe heat propagation in media; it also arises in homogenization problems
in porous media (Darcy’s law) (see [15, 21]).

Due to the fact that we study not only concrete partial neutral integrodifferential
equation but a wide class of integrodifferential equations, it is natural and convenient
to consider integrodifferential equations with unbounded operator coefficients
(abstract integrodifferential equations), which can be realized as integrodifferential
partial differential equations with respect to spatial variables when necessary. For
the self-adjoint positive operator A considered in what follows, we can take, in
particular, the operator Ay D �y00, where x 2 .0; �/, y.0/ D y.�/ D 0, or
the operator Ay D ��y satisfying the Dirichlet conditions on a bounded domain
with sufficiently smooth boundary or more general elliptic self-adjoint operator of
the order 2m in bounded domain with sufficiently smooth boundary. At present,
there is an extensive literature on abstract integrodifferential equations. We restrict
ourselves by citing monographs [1, 18, 20] (see also references therein). The works
most closely related to these questions are [2, 10, 13, 14, 16, 17, 19].

2 Statement of the Problem

Let H be a separable Hilbert space, and let A be a self-adjoint positive operator with
bounded inverse acting on H.

Consider the following problem for a second-order integrodifferential equation
on RC D .0;1/:

d2u.t/

dt2
C Au.t/C Bu.t/�

Z t

0

K.t � s/Au.s/ds

�
Z t

0

Q.t � s/Bu.s/ds D f .t/; t 2 RC; (1)
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u.C0/ D '0; u.1/.C0/ D '1; (2)

where A is a positive self-adjoint operator acting on the separable Hilbert space H,
A� D A > �0 (�0 > 0), having the compact inverse operator; I is the identity
operator in the separable Hilbert space H; and operator B is symmetric on the
Dom .A/, nonnegative, .Bx; y/ D .x;By/, .Bx; x/ > 0 for arbitrary x; y 2 Dom .A/
and satisfying the inequality kBxk 6 � kAxk, 0 < � < 1, x 2 Dom .A/.

We suppose that the kernels K.t/ and Q.t/ can be represented in the following
form:

K.t/ D
1X

jD1
cje

��jt; Q.t/ D
1X

jD1
dje

��jt; (3)

where the coefficients cj > 0, dj > 0, �jC1 > �j > 0, j 2 N, �j ! C1 .j ! C1/,
and moreover, we suppose that

1X

jD1

cj

�j
< 1;

1X

jD1

dj

�j
< 1: (4)

The conditions (4) mean that K.t/;Q.t/ 2 L1.RC/. If, in addition to (4), conditions

K.0/ D
1X

jD1
cj < C1; Q.0/ D

1X

jD1
dj < C1 (5)

hold, then the kernels K.t/ and Q.t/ belong to the space W1
1 .RC/.

Equation (1) can be regarded as an abstract form of dynamical viscoelastic
integrodifferential equation where operators A and B are generated by the following
differential expressions:

A D ���1� .�u C grad.divu// ; B D ���1� � grad.divu/;

where u D u.x; t/ 2 R3 is displacement vector of viscoelastic hereditary isotropic
media that fill the bounded domain ˝ � R3 with smooth boundary, @˝; � is a
constant density, � > 0; Lame parameters �;� are the positive constants; and K.t/,
Q.t/ are the relaxation functions characterizing hereditary properties of media. On
the domain boundary @˝ , the Dirichlet condition

uj@˝ D 0: (6)

is satisfied. The Hilbert space H can be realized as the space of three-dimensional
vector functions L2.˝/.

Let us denote

A0 D A C B:
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Due to the known result (theorem [4], p.361), operator A0 is a self-adjoint positive
operator. We convert the domain Dom.Aˇ0 / of the operator Aˇ0 , ˇ > 0 into a Hilbert

space Hˇ by endowing Dom.Aˇ0 / with the norm k � kˇ D kAˇ0 � k, which is equivalent

to the graph norm of the operator Aˇ0 .
We note that operator-function L.�/ is the symbol of Eq. (1), and it has the

following form:

L.�/ D �2I C A C B � OK.�/A � OQ.�/B; (7)

where OK.�/ and OQ.�/ are the Laplace transforms of the kernels K.t/ and Q.t/,
having the representations

OK.�/ D
1X

jD1

cj

.�C �j/
; OQ.�/ D

1X

jD1

dj

.�C �j/
: (8)

2.1 Correct Solvability

By Wn
2;�

�
RC;An

0

�
we denote the Sobolev space of vector functions on the half-axis

RC D .0;1/ taking values in H endowed with the norm

kukWn
2;� .RC;A

n
0/

	
�Z 1

0

e�2� t
��
�u.n/.t/

�
�2

H C kAn
0u.t/k2H

�
dt

�1=2
; � � 0:

For more information about the spaces Wn
2;�

�
RC;An

0

�
, see monograph [6,

Chap. 1]. For n D 0 we set W0
2;�

�
RC;A00

� 	 L2;� .RC;H/.

Definition 1. We say that vector function u is a strong solution of the prob-
lem (1), (2), if it belongs to the space W2

2;� .RC;A0/ for some � > 0, satisfies (1)
almost everywhere on the half-axis RC, and satisfies the initial conditions (2).

The following theorem gives conditions for problem (1), (2) to be well solvable.

Theorem 1. If condition (5) holds, f 0.t/ 2 L2;�0 .RC;H/ for certain �0 > 0 and
f .0/ D 0, '0 2 H1, '1 2 H1=2, then there exists �1 > �0, that for any � > �1
problem (1), (2) is uniquely solvable in the space W2

2;� .RC;A0/, and its solution
satisfies the inequality

kukW2
2;� .RC;A0/ 6 d

��
�f 0.t/

�
�

L2;� .RC;H/
C kA0'0kH C

�
�
�A1=20 '1

�
�
�

H

�
; (9)

where the constant d does not depend on the vector function f and the vectors '0
and '1.
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2.2 Spectral Analysis

We proceed to study the structure of the spectrum of the operator-function L.�/ in
the case where conditions (4), (5) and conditions

sup
k2N

�2k .�kC1 � �k/ D C1: (10)

lim
k!1

�k � �k�1
�k

D 0: (11)

hold.
Moreover we suppose that

1X

kD1

ck

�k
< 1;

1X

kD1

dk

�k
< 1: (12)

Theorem 2. If conditions (12), (5), (10), and (11) hold, then the spectrum of the
operator-function L.�/ is contained in the union of the intervals �k D .��k; Qpk/ �
.��k;��k�1/, k 2 N (�0 D 0) and the strip f� 2 Cj˛1 6 Re� 6 ˛2g, where Qpk D
max fpk.�

0/; pk.�
00/g, pk.�/ are the real roots of the equation

˚�.p/ WD �

1X

kD1
ck.p C �k/

�1 C .1� �/

1X

kD1
dk.p C �k/

�1 D 1; .0 � � � 1/:

belonging to the intervals .��k;��k�1/, k 2 N (�0 D 0), � 0 WD �
�A�1=2A0A�1=2���1

,

� 00 WD
�
�
�A�1=2

0 AA�1=2
0

�
�
�, .0 < � 0 < � 00 6 1/ and

˛1 D �1
2

sup
kf kD1

1X

kD1

..ckA C dkB/f ; f /

..A C B/f ; f /
; ˛2 D �1

2
inf

kf kD1

1X

kD1

..ckA C dkB/f ; f /
�
.A C B C �2k I/f ; f

� :

Remark. According to Lemma 2.1 of [12], the operator A�1=2BA�1=2 has a bounded
closure on the space H. It follows that so does the operator A�1=2A0A�1=2 D
I C A�1=2BA�1=2 H. In turn, Lemma 2.1 of [12] mentioned above and the self-
adjointness of A0 D A C B imply that the operator A�1=2

0 AA�1=2
0 has a bounded

closure on H as well. Thus, the quantities � 0 and � 00 in the statement of Theorem 2
are well defined.

Remark. The constants ˛1 and ˛2 in the statement of Theorem 2 can be estimated as

˛1 > �1
2

�
�
�
��

A�1=2
0

 1X

kD1
ckA C

1X

kD1
dkB

!

A�1=2
0

�
�
�
��
;

˛2 < �1
2

�
��.c1A C d1B/

�1=2 �A0 C �21 I
�
.c1A C d1B/

�1=2
�
��

�1
; c1 > d1
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Theorem 3. The nonreal spectrum of the operator-function L.�/ is symmetric with
respect to the real axis and consists of eigenvalues of finite algebraic multiplicity;
moreover, for any " > 0 the eigenvalues are isolated, i.e., have no points of
accumulation, in the domain˝" WD Cn f� W ˛1 � Re� � ˛2; j Im�j < "g.

Equation (1) is related to applications: if B 	 0 then it is an abstract form
of the Gurtin-Pipkin integrodifferential equation modeling the finite speed of heat
propagation in media with memory. That integrodifferential equation is deduced
in [3].

Equations of the above type are currently investigated by many authors (see [1,
3, 10, 14, 16–19] and references therein). We impose the following assumptions:

1. The operator B is identically zero.

2. The real-valued function K.t/ D
1X

kD1
cke��kt satisfies the assumptions (5), (12).

Let fa2j g1
jD1 be eigenvalues of the operator A .Aej D a2j ej/, numbered according

to the increasing order: 0 < a21 < a22 < � � � < a2n < : : : ; an ! C1 .n ! C1/.
The corresponding eigenvectors fejg1

jD1 form an orthonormal basis of the space H.
Now we consider the structure of the spectrum of the operator-valued function

L1.�/:

L1.�/ D �2I C A � OK.�/A;
where OK.�/ is the Laplace transform of the function K.

In the considered case, (1) can be decomposed into a countable set of scalar
integrodifferential equations

u.2/n .t/C a2nun.t/ �
Z t

0

1X

kD1
cke��k.t�s/a2nun.s/ ds D fn.t/; t > 0 (13)

where un.t/ D .u.t/; en/ and fn.t/ D .f .t/; en/, n D 1; 2; : : : . Those equations are
projections (1) onto the one-dimensional spaces spanned by vectors feng.

Using the Laplace transform, we naturally arrive at the countable set of mero-
morphic functions ln.�/ D �2 C a2n � a2n

�P1
kD1

ck
�C�k

�
; n D 1; 2; : : : which are

symbols of the integrodifferential equations given by (13).
The spectrum of the operator-valued function L1.�/ is described as follows.

Theorem 4. If conditions (12), (5), (10) hold, then the spectrum of the operator-
function L1.�/ coincides with the closure of the union of the sets of zeros for the
functions fln.�/g1

nD1. The zeros of the meromorphic function ln.�/ form a countable
set of real roots f�n;kg1

nD1, satisfying the inequalities

��k < �n;k < xk < ��k�1 Œ�0 D 0�;

�n;k D xk C O

�
1

a2n

�
k 2 N .k > 1/; .an ! C1/

(14)



Hyperbolic Volterra Equations of Convolution Type 417

where xk are the real zeros of the function g.�/ D 1 �
1X

kD1

ck

�C �k
, and a pair of

complex-conjugate roots
n
�ṅ

o1
1

, �C
n D ��

n such that

�ṅ D �1
2

1X

kD1
ck ˙ ian C O

�
1

a2n

�
; .an ! C1/: (15)

Thus, the spectrum �.L1/ of the operator-valued function L1.�/ is representable as

�.L1/ 	 � [1
kD1 [1

nD1f�nk g
�[ � [1

nD1 �ṅ

�
;

where lim
n!1�nk D xk, k D 1; 2; : : : .

The proof of Theorem 4 is given in [14] (see also [17]). Picture of the spectrum
of operator-function L1.�/ is given in Fig. 1.

Remark. The spectrum of the operator-valued function L1.�/ is located in the left-

hand semi-plane f� W <� < 0g, if
1X

jD1

cj

�j
< 1. If

1X

jD1

cj

�j
> 1, then the accumulation

point x1 of the poles is located in the right-hand semi-plane f� W <� > 0g; this
corresponds to the instability case.

Fig. 1 Spectral structure in case K.t/ 2 W1
1 .RC/, ˇ D � 1

2
K.0/
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3 Conclusion and Remarks

We emphasize that our method of the proof of the theorem on the correct solvability
of the initial boundary value problem for an abstract integrodifferential equation
differs substantially from the approach used by Pandolfi in [10] and Miller in [8].
Moreover, L. Pandolfi studied solvability in function space on a finite time interval
.0;T/, whereas we study solvability in the weighted Sobolev spaces W2

2;� .RC;A2/
on the positive semiaxis RC.

Our proof of the solvability Theorem 1 essentially uses the Hilbert structure of
the space W2

2;� .RC;A20/, L2;� .RC;H/ and Paley-Wiener theorem, while in [8, 10],
considerations are performed in Banach function spaces consisting of smooth
functions on a finite time interval .0;T/.
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Difference Equations and Boundary
Value Problems

Alexander V. Vasilyev and Vladimir B. Vasilyev

Abstract We study multidimensional difference equations with a continual vari-
able in the Sobolev–Slobodetskii spaces. Using ideas and methods of the theory
of boundary value problems for elliptic pseudo-differential equations, we suggest
to consider certain boundary value problems for such difference equations. Special
boundary conditions permit to prove unique solvability for these boundary value
problems in appropriate Sobolev–Slobodetskii spaces.

Keywords Difference equation • Symbol • Factorization • Index • Boundary
value problem • Solvability

Mathematics Subject Classification (2010): Primary 39A14; Secondary 35J40

1 Introduction

We consider a general difference equation of the type

1X

jkjD0
ak.x/u.x C ˛k/ D v.x/; x 2 D; (1.1)

where D � Rm is a canonical domain like Rm;Rm˙ D fx 2 Rm W x D .x1; � � � ; xm/;

˙xm > 0g;CaC D fx 2 Rm W xm > ajx0j; x0 D .x1; � � � ; xm�1/; a > 0g; k is a multi-
index, jkj D k1 C � � � C km; f˛kg � D. Equations of a such type have a long history
[4, 5, 8] and in general there is no algorithm for solving the Eq. (1.1). If so then any
assertion on a solvability of such equations is very important and required. One can
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add that Eq. (1.1) appear in very distinct branches of a science like mathematical
biology, technical problems, etc. Also such equations have arisen in studies of the
second author [10, 11] related to boundary value problems in a plane corner. One-
dimensional case for such equations was considered in [12].

Here we will start from the equation

1X

jkjD0
aku.x C ˛k/ D v.x/; x 2 R

mC; (1.2)

with constant coefficients because further we will try to use a local principle [6] to
obtain some results on Fredholm properties of the general Eq. (1.1). We use methods
of the theory of boundary value problems for elliptic pseudo-differential equations
[1, 9]. For our case of a half-space, these methods are based on the theory of
one-dimensional singular integral equations and classical Riemann boundary value
problem [2, 3, 7].

2 Spaces, Operators, and Symbols

2.1 Spaces

Let S.Rm/ be the Schwartz class of infinitely differentiable rapidly decreasing at
infinity functions and S0.Rm/ be the space of distributions over the space S.Rm/. If
u 2 S.Rm/, then its Fourier transform is defined by the formula

Qu.�/ D
Z

Rm

e�ix��u.x/dx:

Definition 2.1. A Sobolev–Slobodetskii space Hs.Rm/; s 2 R; consists of functions
(distributions) with a finite norm

jjujjs D
0

@
Z

Rm

Qu.�/.1C j�j/2sd�

1

A

1=2

:

Let us note H0.Rm/ D L2.Rm/.
The space S.Rm/ is a dense subspace in the Hs.Rm/ [1]. The space Hs.RmC/

consists of functions from the space Hs.Rm/ which support belongs to R
mC with

induced norm. Also we need the space Hs
0.R

mC/ which consists of distributions from
S0.RmC/ admitting a continuation in the whole space Hs.Rm/. A norm in the space
Hs
0.R

mC/ is defined by the formula

jjujjCs D inf jjlujjs;

where infimum is taken from all continuations l.
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2.2 Operators

Here we consider difference operators with constant coefficients only of the type

D W u.x/ 7�!
1X

jkjD0
aku.x C ˛k/; (2.1)

where fakgandf˛kg are given sequences in Rm, and

1X

jkjD0
jakj < C1: (2.2)

Definition 2.2. An operator D of the type (2.1) with coefficients ak satisfying (2.2)
is called difference operator with constant coefficients.

Lemma 2.3. Every operator D W Hs.Rm/ ! Hs.Rm/ with constant coefficients is a
linear bounded operator 8 s 2 R.

2.3 Symbols

Definition 2.4. The function

�D.�/ D
1X

jkjD0
ake�i˛k �� (2.3)

is called a symbol of the operator D. The symbol �D.�/ is called an elliptic symbol
if �D.�/ ¤ 0;8 � 2 Rm.

Evidently under condition (2.2) �D 2 L1.Rm/, but everywhere below we
suppose that �D 2 C. PRm/ taking into account that PRm is a compactification of Rm.

3 Equations and Factorization

3.1 Equations

We are interested in studying solvability of the Eq. (1.2). It can be written in the
operator form

.Du/.x/ D v.x/; x 2 R
mC; (3.1)

assuming that v is a given function in R
mC, v 2 Hs

0.R
mC/, the unknown function u is

defined in R
mC, u 2 Hs.RmC/, and f˛kg � R

mC.
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By notation, uC.x/ D u.x/, lv is an arbitrary continuation of v on R
mC. Then

we put

u�.x/ D .lv/.x/ � .DuC/.x/;

and see that u�.x/ D 0;8 x 2 R
mC; to explain this notation. Further we rewrite the

last equation

.DuC/.x/C u�.x/ D .lv/.x/

and apply the Fourier transform

�D.�/QuC.�/C Qu�.�/ D elv.�/: (3.2)

To solve the Eq. (3.2) with an elliptic symbol �D.�/, we need to introduce a
concept of a factorization. Everywhere below we write �.�/ instead of �D.�/ for a
brevity.

3.2 Factorization

Let us denote � D .� 0; �m/; �
0 D .�1; � � � ; �m�1/.

Definition 3.1. Let �.�/ be an elliptic symbol. Factorization of elliptic symbol �.�/
is called its representation in the form

�.�/ D �C.�/��.�/;

where factors �˙.�/ admit an analytical continuation in upper and lower complex
planes C˙ on the last variable �m for almost all � 0 2 Rm�1 and �˙.�/ 2 L1.Rm/.

Definition 3.2. Index of factorization for the elliptic symbol �.�/ is called an
integer

æ D 1

2�

C1Z

�1
d arg�.�; �m/:

Remark 3.3. The index æ is not really depended on � 0 because it is homotopic
invariant.

Remark 3.4. It is a principal fact the index of factorization does not correlate with
an order of operator. For our case the order of the operator D is zero in a sense of
Eskin’s book [1], but the index may be an arbitrary integer. It is essential the index
is a topological barrier for a solvability.
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Proposition 3.5. If æ D 0, then for any elliptic symbol �.�/, a factorization

�.�/ D �C.�/��.�/

exists, and it is unique up to a constant.

This is classical result, see details in [1–3, 7].

4 Solvability and Boundary Value Problems

4.1 Solvability

Everywhere below we will denote QH.D/ the Fourier image of the space H.D/.

Theorem 4.1. If jsj < 1=2; æ D 0, then the Eq. (3.1) has a unique solution u 2
Hs.RmC/ for arbitrary right-hand side v 2 Hs

0.R
mC/.

Proof. is a very simple. It is based on properties of the Hilbert transform

.H�0 u/.� 0; �m/ D 1

�i
v:p:

C1Z

�1

u.� 0; 	m/d	m

�m � 	m

which is a linear bounded operator Hs.Rm/ ! Hs.Rm/ for jsj < 1=2 [1]. This
operator generates two projectors on some spaces consisting of boundary values of
analytical functions in C˙ on the last variable �m [1–3, 7]

…˙ D 1=2.I ˙ H�0/;

so that the representation

f D fC C f� 	 …Cf C…�f

is unique for arbitrary f 2 Hs.Rm/; jsj < 1=2. Further after factorization we write
the equality (3.2) in the form

�C.�/QuC.�/C ��1� .�/Qu�.�/ D ��1� .�/elv.�/;

and else

�C.�/QuC.�/ � .…C.��1� � elv//.�/ D .…�.��1� � elv//.�/ � ��1� .�/Qu�.�/:
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So the left-hand side belongs to the space eHs.RmC/ and the left-hand side belongs
to the space eHs.Rm�/, and these should be zero. Hence

QuC.�/ D ��1C .�/.…C.��1� � elv//.�/:

It completes the proof. 4

4.2 General Solution

Let æ 2 Z. First we introduce a function

!.� 0; �m/ D
�
�m � ij� 0j � i

�m C ij� 0j C i

�æ

;

which belongs to C. PRm/.
Evidently the functions z ˙ ij� 0j for fixed � 0 2 Rm�1 are analytical functions in

complex half planes C˙. Moreover

1

2�

C1Z

�1
d arg

�m � ij� 0j � i

�m C ij� 0j C i
D 1:

According to the index property [1–3, 7], a function

!�1.� 0; �m/�.�
0; �m/

has a vanishing index, and it can be factorized

!�1.� 0; �m/�.�
0; �m/ D �C.� 0; �m/��.� 0; �m/;

so we have

�.� 0; �m/ D !.� 0; �m/�C.� 0; �m/��.� 0; �m/;

where

�˙.� 0; �m/ D exp.‰˙.� 0; �m//; ‰
˙.� 0; �m/ D 1

2�i
lim
�!0C

C1Z

�1

ln.!�1�/.�; 	m/d	m

�m ˙ i� � 	m
:
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Now the Eq. (3.2), we rewrite in the form

.�m C ij� 0j C i/�æ�C.�/QuC.�/C .�m � ij� 0j � i/�æ��1� .�/Qu�.�/

D .�m � ij� 0j � i/�æ��1� .�/elv.�/: (4.1)

Let us note the right-hand side of the Eq. (4.1) belongs to the space eHsCæ.Rm/.
If jæ C sj < 1=2, we go to Sect. 4.1.

4.2.1 Positive Case

If s C æ > 1=2, we choose a minimal n 2 N so that 0 < s C æ � n < 1=2. Further
we use a decomposition formula for operators…˙ [1] for Qf 2 eHsCæ.Rm/

…˙Qf D
nX

kD1

…0ƒk�1
˙ Qf

ƒk
˙

C 1

ƒn
˙
…˙ƒn

˙Qf ; (4.2)

where

ƒ˙.� 0; �m/ D �m ˙ j� 0j ˙ i; .…0Qf /.� 0/ D 1

2�

C1Z

�1
Qf .� 0; �m/d�m:

We rewrite the Eq. (4.1)

�C.�/ QwC.�/C ��1� .�/ Qw�.�/ D Qh.�/;

where Qw˙.�/ D .�m ˙ ij� 0j ˙ i/�æ Qu˙.�/; Qh.�/ D .�m � ij� 0j � i/�æ��1� .�/elv.�/:
Obviously Qw˙ 2 eHsCæ.Rm

˙/; Qh 2 eHsCæ.Rm/. We set sCæ�n D ˛; 0 < ˛ < 1=2.
Since s C æ D n C ˛ > ˛ then Qh 2 eHsCæ.Rm/ H) h 2 eH˛.Rm/. According to
Theorem 4.1, we have a solution of the last equation QwC 2 eH˛.RmC/ in the form

QwC.�/ D ��1C .�/.…C Qh/.�/:

Thus

QuC.�/ D .�m C ij� 0j C i/æ��1C .�/.…C Qh/.�/;

so that QuC 2 eH˛�æ.RmC/. Now we apply the formula (4.2) to the expression …C Qh
and obtain the following representation

QuC.�/ D
nX

kD1

Qck.�
0/

�C.�/ƒk�æC .� 0; �m/
C 1

�C.�/ƒn�æC .� 0; �m/
.…˙ƒnC Qh/.� 0; �m/; (4.3)



428 A.V. Vasilyev and V.B. Vasilyev

where Qck D .…0ƒk�1C /Qh. It is not hard concluding Qck 2 eHsk.Rm�1/; sk D s C æ � k C
1=2. So we have the following

Proposition 4.2. If s C æ > 1=2, then for the solution of the Eq. (3.1), the
representation (4.3) is valid.

Note. One can prove that the functions Qck 2eHsk .Rm�1/andsk D s C æ � k C 1=2 are defined
uniquely.

4.2.2 Negative Case

If sCæ < �1=2, we choose a polynomial Qn.�/ without real zeroes so that �1=2 <
s C æ C n < 0, and use the equality

�C.�/ QwC.�/C ��1� .�/ Qw�.�/ D Qh.�/

from Sect. 4.2.1 once again. Since Qh 2 eHsCæ.Rm/, we represent

Qh D Q…C.Q�1 Qh/C Q…�.Q�1 Qh/

because Q�1 Qh 2 eHsCæCn.Rm/. Further we work with the equality

�C.�/ QwC.�/C ��1� .�/ Qw�.�/ D Q…C.Q�1 Qh/C Q…�.Q�1 Qh/

or in other words

�C.�/ QwC.�/ � Q…C.Q�1 Qh/ D Q…�.Q�1 Qh/ � ��1� .�/ Qw�.�/

So the left-hand side belongs to the space eHsCæ.RmC/, and the left-hand side
belongs to the space eHsCæ.Rm�/ so it is distribution supported on Rm�1. Its general
form in Fourier images is [1]

nX

jD1
Qcj.�

0/� j�1
m :

Thus we have the formula .QgC D …C.Q�1 Qh/

.�m C ij� 0j C i/�æ�C.�/QuC.�/ � Qn.�/gC.�/ D
nX

jD1
Qcj.�

0/� j�1
m :

and a lot of solutions

QuC.�/ D .�m Cij� 0jCi/æ��1C .�/Qn.�/gC.�/C.�m Cij� 0jCi/æ��1C .�/

nX

jD1
Qcj.�

0/� j�1
m :
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It is left to verify that functions QCj.�/ D .�m C ij� 0j C i/æ��1C .�/Qcj.�
0/� j

m belong
to eHs.Rm/. We have

jjCjjj2s D
Z

Rm

jQcj.�
0/j2j�m C ij� 0j C ij2æj��2C .�/jj�mj2j.1C j�j/2sd�;

and passing to repeated integral, we first calculate

C1Z

�1
j�m C ij� 0j C ij2æj�mj2j.1C j�j/2sd�m;

which exists only if æ C j C s < �1=2. Hence we obtain after integration that
Cj 2 HæCjCsC1=2.Rm�1/.

Thus we have proved the following

Theorem 4.3. If s C æ < �1=2, then the Eq. (3.1) has many solutions in the space
Hs.RmC/, and the formula for a general solution in Fourier image

QuC.� 0; �m/ D .�m C ij� 0j C i/æ��1C .�/Qn.�/QgC.� 0; �m/

C.�m C ij� 0j C i/æ��1C .� 0; �m/

æ�1X

kD0
ck.�

0/�k
m

holds, where ck 2 Hsk.Rm�1/; sk D �æ C k C 1=2; k D 0; � � � ;æ � 1 are arbitrary
functions.

Corollary 4.4. If under assumptions of the Theorem 4.3 v 	 0, then a general
solution of the equation

.Du/.x/ D 0; x 2 R
mC (4.4)

has the form

QuC.�/ D .�m C ij� 0j C i/æ��1C .� 0; �m/

nX

kD1
Qck.�

0/�k�1
m : (4.5)

4.3 Boundary Conditions

For a brevity we consider a homogeneous equation using the Corollary 4.4. We need
some additional conditions to uniquely determine the functions Qck; k D 1; � � � ; n. It
is an interesting fact that we cannot use the same conditions for positive and negative
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æ. Moreover the boundary operators in a certain sense are determined by the formula
for a general solution. We consider below very simple boundary operators. Usually
such operators are traces of some pseudo-differential operators on the hyperplane
xm D 0. But it is possible not for all cases.

4.3.1 Positive Case

Let us assume we know the values of QuC in n distinct hyperplanes from Rm of
type �m D pj. We denote QuC.� 0; pj/ 	 Qrj.�

0/ and obtain from the formula (4.5) the
following system of linear algebraic equations

nX

kD1
Qck.�

0/pk�1
j D Qrj.�

0/.pj C ij� 0j C i/æ��1C .� 0; pj/; j D 1; � � � ; n:

Obviously the system is uniquely solvable because its matrix has the Vander-
monde determinant. To formulate a corresponding boundary value problem, we need
some preliminaries.

We take the following boundary conditions

C1Z

�1
uC.x0; xm/e

�ipjxmdxm D rj.x
0/; j D 1; � � � ; n: (4.6)

It will mean QuC.� 0; pj/ D Qrj.�
0/. If uC 2 Hs.RmC/ then rj 2 Hs�1=2.RmC/ [1]. So

we have the following

Theorem 4.5. Let rj 2 Hs�1=2.Rm�1/; j D 1; � � � ; n. Then the boundary value
problem (4.4), (4.6) has a unique solution in the space Hs.RmC/.

Note. One can consider a linear combination of the conditions (4.6) and require nonvanishing
the associated determinant.

4.3.2 Negative Case

This case admits integration for the right-hand side of the formula (4.5); thus, we
take boundary conditions in the standard form

.AjuC/.x/jxmD0
D rj.x

0/; j D 1; � � � ; n; (4.7)

where Aj are pseudo-differential operators with symbols Aj.�
0; �m/ satisfying the

condition

jAj.�
0; �m/ � .1C j� 0j C j�mj/�j :
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Let us denote

ajk.�
0/ D

C1Z

�1
Aj.�

0; �m/.�m C ij� 0j C i/æ��1C .� 0; �m/�
k�1
m d�m:

Theorem 4.6. Let �j C æ C k < �1; rj 2 Hsj.Rm�1/; sj D s � �j � 1=2; 8j;
k D 1; � � � ; n; and the

inf
�02Rm�1

j det.ajk.�
0//nj;kD1j > 0:

Then the boundary value problem (4.4),(4.7) has a unique solution in the space
Hs.RmC/.

5 Conclusion

There are a lot of possibilities to state distinct problems for the Eq. (3.1) adding
some additional conditions. Also it seems to be interesting to transfer this approach
and results to a discrete case, i.e., for spaces of a discrete variable. This will be
discussed elsewhere.
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Discrete Dirac-Kähler and Hestenes Equations

Volodymyr Sushch

Abstract A discrete analogue of the Dirac equation in the Hestenes form is
constructed by introduction of the Clifford product on the space of discrete forms.
We discuss the relation between the discrete Dirac-Kähler equation and the discrete
Hestenes equation.

Keywords Dirac-Kähler equation • Hestenes equation • Clifford product •
Discrete models • Difference equations

Mathematics Subject Classification (2000): 81Q05, 39A12, 81R05

1 Introduction

The purpose of this paper is to discuss the relation between the discrete Dirac-Kähler
equation which was constructed in [9, 10] and a discrete analogue of the Hestenes
equation. We show that the geometric discretization scheme as developed in [10] can
be used to find a new discrete formulation of the Dirac equation for a free electron
in the Hestenes form.

We first briefly review some definitions and basic notation on the Dirac-
Kähler equation [6, 8]. Let M D R1;3 be Minkowski space with metric signature
.C;�;�;�/. Denote by �r.M/ the vector space of smooth differential r-forms,
r D 0; 1; 2; 3; 4. We consider �r.M/ over C. Let d W �r.M/ ! �rC1.M/ be the
exterior differential and let ı W �r.M/ ! �r�1.M/ be the formal adjoint of d with
respect to the natural inner product in �r.M/ (codifferential). We have ı D �d�,
where � is the Hodge star operator � W �r.M/ ! �4�r.M/ with respect to the
Lorentz metric. Denote by �.M/ the set of all differential forms on M. We have
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�.M/ D �0.M/˚�1.M/˚�2.M/˚�3.M/˚�4.M/ D �ev.M/˚�od.M/;

where�ev.M/ D �0.M/˚�2.M/˚�4.M/ and�od.M/ D �1.M/˚�3.M/.

Let ˝ 2 �.M/ be an inhomogeneous differential form and then ˝ D P4
rD0

r
!;

where
r
! 2 �r.M/. Denote by ˝ev and by ˝od the even and odd parts of ˝ , i.e.

˝ev D 0
! C 2

! C 4
! and˝od D 1

! C 3
!. The Dirac-Kähler equation is given by

i.d C ı/˝ D m˝; (1)

where i is the usual complex unit (i2 D �1) and m is a mass parameter. It is easy to
show that Eq. (1) is equivalent to the set of equations

i.d C ı/˝od D m˝ev; i.d C ı/˝ev D m˝od:

The operator d C ı is the analogue of the gradient operator in Minkowski space-
time r D P3

�D0 ��@�, � D 0; 1; 2; 3, where �� is the Dirac gamma matrix. Think
of f�0; �1; �2; �3g as a vector basis in space-time. Then the gamma matrices �� can
be considered as generators of the Clifford algebra of space-time C`.1; 3/ [2]. The
complex Clifford algebra C`.1; 3/ is a complex 16-dimensional vector space. It is
known that an inhomogeneous form ˝ can be represented as element of C`.1; 3/
over the complex field C. Then the Dirac-Kähler equation can be written as an
algebraic equation in C`.1; 3/ over C

ir˝ D m˝; ˝ 2 C`.1; 3/: (2)

Equation (2) is equivalent to the four Dirac equations (traditional column-spinor
equations) for a free electron. Let C`ev.1; 3/ be the even subalgebra of the real
algebra C`.1; 3/. The equation

�r˝�1�2 D m˝�0; ˝ 2 C`ev.1; 3/ (3)

is called the Hestenes form of the Dirac equation [4, 5]. The Hestenes equation is
equivalent to the Dirac equation [5, 7]. Suppose that for exterior forms (elements
of �.M/) the Clifford multiplication is defined. In this case the basis covectors
e� D dx� and � D 0; 1; 2; 3 of space-time are considered as generators of the
Clifford algebra. The resulting algebra �.M/ with two multiplications is called
the Grassmann-Clifford bialgebra [7]. Thus, Eq. (3) can be rewritten in terms of
inhomogeneous forms as

�.d C ı/˝e1e2 D m˝e0; (4)

where˝ 2 �ev.M/ is a real-valued form.
In this paper we construct a discrete analogue of the Hestenes Eq. (4) by

introduction of the Clifford product on the space of discrete forms. In much the same
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way as in the continuum case [1], it is shown that a solution of the discrete Dirac-
Kähler equation gives rise to four independent solutions of the discrete Hestenes
equation. Note that the discrete model is expressed clearly in terms of difference
equations.

2 Discrete Dirac-Kähler Equation

We use a discretization scheme based on the language of differential forms and
the double complex construction which is described in our preceding paper [10].
Due to space limitations, this paper does not include the relevant material from
[10]. We refer the reader to [9, 10] for full mathematical details of the approach.
This approach was originated by Dezin [3]. Let K.4/ D K ˝ K ˝ K ˝ K be
a cochain complex with complex coefficients, where K is the one-dimensional
complex generated by zero- and one-dimensional basis elements x� and e� , � 2 Z,
respectively. Then an arbitrary r-dimensional basis element of K.4/ can be written
as sk

.r/ D sk0 ˝ sk1 ˝ sk2 ˝ sk3 , where sk� is either xk� or ek� , k D .k0; k1; k2; k3/ and

k� 2 Z. The dimension r of a basis element sk
.r/ is given by the number of factors

ek� that appear in it. For example, the one-dimensional basis elements of K.4/ can
be written as

ek
0 D ek0 ˝ xk1 ˝ xk2 ˝ xk3 ; ek

1 D xk0 ˝ ek1 ˝ xk2 ˝ xk3 ;

ek
2 D xk0 ˝ xk1 ˝ ek2 ˝ xk3 ; ek

3 D xk0 ˝ xk1 ˝ xk2 ˝ ek3 ;

where the subscript � D 0; 1; 2; 3 indicates a place of ek� in ek
�. The complex K.4/

is a discrete analogue of �.M/. The cochains we will call forms, emphasising their
relationship with the corresponding continuum objects, namely differential forms.
Denote by Kr.4/ the set of all r-forms. Then we have

K.4/ D K0.4/˚ K1.4/˚ K2.4/˚ K3.4/˚ K4.4/ D Kev.4/˚ Kod.4/;

where Kev.4/ D K0.4/˚ K2.4/˚ K4.4/ and Kod.4/ D K1.4/˚ K3.4/. Any r-form
r
! 2 Kr.4/ can be expressed as

0
! D

X

k

0
!kxk;

4
! D

X

k

4
!kek; (5)

where xk D xk0 ˝ xk1 ˝ xk2 ˝ xk3 and ek D ek0 ˝ ek1 ˝ ek2 ˝ ek3 , and

1
! D

X

k

3X

�D0
!
�
k ek

�;
2
! D

X

k

X

�<�

!
��
k ek

��;
3
! D

X

k

X

(<�<�

!
(��
k ek

(�� ; (6)
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where ek
�, ek

�� and ek
(�� are one-, two- and three-dimensional basic elements of K.4/.

The components
0
!k;

4
!k; !

�
k ; !

��
k and !(��k are complex numbers. A discrete

inhomogeneous form ˝ 2 K.4/ is defined to be

˝ D 0
! C 1

! C 2
! C 3

! C 4
!: (7)

Let dc W Kr.4/ ! KrC1.4/ be a discrete analogue of the exterior derivative d and let
ıc W Kr.4/ ! Kr�1.4/ be a discrete analogue of the codifferential ı. For definitions
of these operators and other discrete operations (the [-multiplication, the discrete
Hodge star and so on), we refer the reader to [10]. In this paper we give only the
difference expression for dc and ıc. Let the difference operator�� be defined by

��!
.r/
k D !

.r/
��k � !.r/k ; (8)

where !.r/k 2 C is a component of
r
! 2 Kr.4/ and �� is the shift operator which acts

as ��k D .k0; : : : k� C 1; : : : k3/; � D 0; 1; 2; 3: For forms (5) and (6), we have

dc 0! D
X

k

3X

�D0

�
��

0
!k

�
ek
�; dc 1! D

X

k

X

�<�

�
��!

�
k ���!

�
k

�
ek
��; (9)

dc 2! D
X

k


�
�0!

12
k ��1!

02
k C�2!

01
k

�
ek
012 C �

�0!
13
k ��1!

03
k C�3!

01
k

�
ek
013

C �
�0!

23
k ��2!

03
k C�3!

02
k

�
ek
023 C �

�1!
23
k ��2!

13
k C�3!

12
k

�
ek
123

�
;

(10)

dc 3! D
X

k

�
�0!

123
k ��1!

023
k C�2!

013
k ��3!

012
k

�
ek; dc 4! D 0; (11)

ıc 0! D 0; ıc 1! D
X

k

�
�0!

0
k ��1!

1
k ��2!

2
k ��3!

3
k

�
xk; (12)

ıc 2!D
X

k


�
�1!

01
k C�2!

02
k C�3!

03
k

�
ek
0C

�
�0!

01
k C�2!

12
k C�3!

13
k

�
ek
1

C �
�0!

02
k ��1!

12
k C�3!

23
k

�
ek
2C

�
�0!

03
k ��1!

13
k ��2!

23
k

�
ek
3

�
; (13)

ıc 3! D
X

k


���2!
012
k ��3!

013
k

�
ek
01 C �

�1!
012
k ��3!

023
k

�
ek
02

C �
�1!

013
k C�2!

023
k

�
ek
03 C �

�0!
012
k ��3!

123
k

�
ek
12

C �
�0!

013
k C�2!

123
k

�
ek
13 C �

�0!
023
k ��1!

123
k

�
ek
23

�
; (14)
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ıc 4!D
X

k


�
�3

4
!k

�
ek
012�

�
�2

4
!k

�
ek
013C

�
�1

4
!k

�
ek
023C

�
�0

4
!k

�
ek
123

�
: (15)

Let ˝ 2 K.4/ be given by (7). A discrete analogue of the Dirac-Kähler Eq. (1) can
be defined as

i.dc C ıc/˝ D m˝: (16)

We can write this equation more explicitly by separating its homogeneous compo-
nents as

iıc 1! D m
0
!; i.dc 1! C ıc 3!/ D m

2
!; idc 3! D m

4
!;

i.dc 0! C ıc 2!/ D m
1
!; i.dc 2! C ıc 4!/ D m

3
!: (17)

Substituting (9)–(15) into (17), one obtains the set of 16 difference equations [10].

3 Clifford Multiplication in K.4/ and Discrete
Hestenes Equation

Let us define the Clifford multiplication in K.4/ by the following rules:

1. xkek
� D ek

�xk D ek
�; � D 0; 1; 2; 3;

2. ek
�ek
� C ek

�e
k
� D 2g��xk, where g�� D diag.1;�1;�1;�1/ is the metric tensor;

3. ek
�1

� � � ek
�s

D ek
�1����s

for 0 � �1 < � � � < �s � 3.

Note that the multiplication is defined for the basis elements of K.4/ with the
same multi-index k D .k0; k1; k2; k3/ supposing the product to be zero in all other
cases. The operation is linearly extended to arbitrary discrete forms. For example,

for any
1
!;

1
' 2 K1.4/, we have

1
!
1
' D

0

@
X

k

3X

�D0
!
�
k ek

�

1

A

0

@
X

k

3X

�D0
'
�
k ek

�

1

AD
X

k

�
!0k'

0
k � !1k'

1
k � !2k'

2
k � !3k'3k

�
xk

C
X

k


�
!0k'

1
k � !1k'

0
k

�
ek
01 C �

!0k'
2
k � !2k'0k

�
ek
02 C �

!0k'
3
k � !3k'0k

�
ek
03

C �
!1k'

2
k � !2k'

1
k

�
ek
12 C �

!1k'
3
k � !3k'1k

�
ek
13 C �

!2k'
3
k � !3k'2k

�
ek
23

�
:

Proposition 1. For any inhomogeneous form ˝ 2 K.4/, we have

.dc C ıc/˝ D
3X

�D0
e���˝; (18)
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where

e� D
X

k

ek
�; � D 0; 1; 2; 3; (19)

and �� is the difference operator which acts on each component of ˝ by the
rule (8).

Proof. We prove the claim only for the case of even forms. Similar calculations

apply to the case of odd forms. Let ˝ev D 0
! C 2

! C 4
! be the even part of ˝ . We

have

3X

�D0
e���

0
! D

X

k

�
�0

0
!kek

0 C�1

0
!kek

1 C�2

0
!kek

2 C�3

0
!kek

3

�
;

3X

�D0
e���

2
! D

X

k


�
�1!

01
k C�2!

02
k C�3!

03
k

�
ek
0

C �
�0!

01
k C�2!

12
k C�3!

13
k

�
ek
1 C �

�0!
02
k ��1!

12
k C�3!

23
k

�
ek
2

C �
�0!

03
k ��1!

13
k ��2!

23
k

�
ek
3

�

C
X

k


�
�0!

12
k ��1!

02
k C�2!

01
k

�
ek
012

C �
�0!

13
k ��1!

03
k C�3!

01
k

�
ek
013

C �
�0!

23
k ��2!

03
k C�3!

02
k

�
ek
023

C �
�1!

23
k ��2!

13
k C�3!

12
k

�
ek
123

�
;

3X

�D0
e���

4
! D

X

k

�
�0

4
!kek

123 C�1

4
!kek

023 ��2

4
!kek

013 C�3

4
!kek

012

�
:

Summing both sides of the above and using (9)–(15), we obtain

3X

�D0
e���˝

ev D
3X

�D0
e���.

0
! C 2

! C 4
!/

D dc.
0
! C 2

!/C ıc.
2
! C 4

!/ D .dc C ıc/˝ev:

Thus the discrete Dirac-Kähler equation can be rewritten in the form

i
3X

iD0
e���˝ D m˝:
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Let ˝ 2 Kev.4/ be a real-valued even inhomogeneous form. A discrete analogue of
the Hestenes Eq. (4) is defined by

�.dc C ıc/˝e1e2 D m˝e0; (20)

where e0; e1 and e2 are given by (19). This equation can be expressed in terms of
difference equations. Substituting (9)–(15) into (20) and by the rules (1)–(3), we
obtain

�0!
12
k ��1!

02
k C�2!

01
k C�3

4
!k D m

0
!k;

�2
0
!k C�0!

02
k ��1!

12
k C�3!

23
k D m!01k ;

��1
0
!k ��0!

01
k ��2!

12
k ��3!

13
k D m!02k ;

��1!
23
k C�2!

13
k ��3!

12
k ��0

4
!k D m!03k ;

��0

0
!k ��1!

01
k ��2!

02
k ��3!

03
k D m!12k ;

��0!
23
k C�2!

03
k ��3!

02
k ��1

4
!k D m!13k ;

�0!
13
k ��1!

03
k C�3!

01
k ��2

4
!k D m!23k ;

�3

0
!k C�0!

03
k ��1!

13
k ��2!

23
k D m

4
!k:

Let us introduce the following constant forms:

P˙0 D 1

2
.x ˙ e0/; P˙12 D 1

2
.x ˙ ie1e2/; (21)

where x D P
k xk is the unit 0-form, and e� is given by (19). Note that x plays a role

of the unit element in K.4/. It is easy to check that

.P˙0/2 D P˙0P˙0 D P˙0; .P˙12/2 D P˙12P˙12 D P˙12:

Hence, the forms P˙0 and P˙12 are projectors.

Proposition 2. The projectors P˙0 and P˙12 have the following properties:

P˙0P˙12 D P˙12P˙0; e0P˙0 D P˙0e0; e1e2P˙12 D P˙12e1e2; (22)

P˙0 D ˙P˙0e0; P˙12 D ˙iP˙12e1e2: (23)

Proof. The proof is a computation.
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Let

PCC D PC0PC12; PC� D PC0P�12; P�C D P�0PC12; P�� D P�0P�12:
(24)

It is obvious that (24) are projectors again.

Proposition 3. Any inhomogeneous form ˝ 2 K.4/ decomposes into four parts

˝ D ˝PCC C˝P�C C˝PC� C˝P��: (25)

Proof. By (21)˝ can be represented as

˝ D ˝PC0 C˝P�0 or ˝ D ˝PC12 C˝P�12:

This yields

˝ D .˝PC0 C˝P�0/PC12 C .˝PC0 C˝P�0/P�12:

Hence, by (24) we obtain (25).

Recall that the Hestenes equation is defined on real-valued even forms. First suppose
that the discrete Hestenes Eq. (20) acts in K.4/, i.e. acts in the same space as the
discrete Dirac-Kähler equation.

Proposition 4. Let ˝ 2 K.4/ be a solution of the discrete Dirac-Kähler equation
and then ˝PCC and ˝P�� satisfy Eq. (20), while ˝P�C and ˝PC� satisfy the
same equation but the sign of the right-hand side changed to its opposite.

Proof. It suffices to prove the claim for one of the projectors (24), say for PCC. The
other cases are similar. Multiplying Eq. (16) from the right by the projector PCC,
we obtain

i.dc C ıc/˝PCC D m˝PCC: (26)

Since PCC is constant, using (22) and (23), we have

i.dc C ıc/˝PCC D i.dc C ıc/˝PC0PC12 D i2.dc C ıc/˝PC0PC12e1e2
D �.dc C ıc/.˝PCC/e1e2;

˝PCC D ˝PC0PC12 D ˝PC12PC0e0 D ˝PCCe0:

Substituting this into (26) yields

�.dc C ıc/.˝PCC/e1e2 D m.˝PCC/e0:
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Let ˝ be the complex conjugate of ˝ . Consider the real-valued forms˝C and ˝�
given by

˝˙ D ˙1

2
.˝ C˝/e0 ˙ i

2
.˝ �˝/e1e2: (27)

By (22) and (23), it is easy to check that

˝PCC D ˝CPCC; ˝P�� D ˝�P��:

Hence, if ˝ is a solution of the discrete Dirac-Kähler equation, then ˝CPCC and
˝�P�� are solutions of Eq. (20). The forms ˝CPCC and ˝�P�� are complex-
valued again. However, if ˝CPCC and ˝�P�� are solutions of Eq. (20) then the
real and image parts of these complex-valued forms are also solutions of Eq. (20).
This is obvious since the discrete Hestenes equation is real and linear. The real and
image parts of ˝CPCC are

Re.˝CPCC/ D 1

4
.˝C C˝Ce0/; Im.˝CPCC/ D 1

4
.˝Ce1e2 C˝Ce0e1e2/:

Set

˝1 D ˝C; ˝2 D ˝Ce0; ˝3 D ˝Ce1e2; ˝4 D ˝Ce0e1e2:

Now we take the even part of these forms. A direct computation gives

˝ev
1 D 1

2
.˝od C˝

od
/e0 C i

2
.˝ev �˝

ev
/e1e2;

˝ev
2 D 1

2
.˝ev C˝

ev
/C i

2
.˝od �˝od

/e0e1e2;

˝ev
3 D 1

2
.˝od C˝

od
/e0e1e2 � i

2
.˝ev �˝

ev
/;

˝ev
4 D 1

2
.˝ev C˝

ev
/e1e2 � i

2
.˝od �˝

od
/e0; (28)

where˝ev and ˝od are the even and odd parts of ˝ D ˝ev C˝od.
Thus, we have proved the following

Proposition 5. Let ˝ 2 K.4/ be a solution of the discrete Dirac-Kähler equation.
Then˝ev

j 2 Kev.4/ and j D 1; 2; 3; 4 in the form (28) are four independent solutions
of the discrete Hestenes Eq. (20).

It should be noted that taking ˝�P�� instead of ˝CPCC, we also obtain four
independent solutions of Eq. (20) in the same form (28).
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A Remark on the Fractional Step Theta Scheme
for the Nonstationary Stokes Equations

Werner Varnhorn and Florian Zanger

Abstract The second-order convergence of the fractional step theta scheme for the
linearized nonstationary Stokes equations with error bounds growing exponentially
in time is known (Müller-Urbaniak, Dissertation Universität Heidelberg, 1994). As
pointed out in Zanger (Proc Appl Math Mech 12:587–588, 2012), this convergence
can even be shown with error bounds independent of time. The proof requires a
suitable choice of test functions depending on quite sophisticated coefficients, the
existence of which is proved in the present paper. This problem does not appear
in the case of simpler methods like the first-order Euler or the second-order Crank-
Nicolson scheme: since these schemes do not depend on additional parameters, here
the functions 2ek and ekCek�1, respectively, can be used as test functions (Varnhorn,
Math Meth Appl Sci 15(1):39–55, 1992), ek denoting the discretization error at the
k-th time level. In the case of the fractional step theta scheme, however, the question,
whether suitable coefficients do exist, proves to be so difficult that the solution of
the resulting inequalities constitutes a problem of its own.

Keywords Stokes equations • Fractional step theta • Finite differences • Semi-
discretization • Convergence

Mathematics Subject Classification (2000): 35Q35, 35J25, 76D07, 76M20

W. Varnhorn (�)
Institute of Mathematics, Kassel University, Heinrich-Plett-Str. 40, 34109 Kassel, Germany
e-mail: varnhorn@mathematik.uni-kassel.de

F. Zanger
Department of Mathematics, Heinrich-Heine University Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany
e-mail: florian.zanger@uni-duesseldorf.de

© Springer International Publishing Switzerland 2016
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics 164,
DOI 10.1007/978-3-319-32857-7_41

443

mailto:varnhorn@mathematik.uni-kassel.de
mailto:florian.zanger@uni-duesseldorf.de


444 W. Varnhorn and F. Zanger

1 Introduction

Let T > 0 be given and G � Rn be a bounded domain with a sufficiently smooth
boundary @G. In .0;T/ � G, we consider a viscous incompressible fluid flow and
assume that it can be described by the nonstationary linearized Stokes equations

ut � ��u C rp D f ;

r � u D 0; (1)

uj@G D 0 ; ujtD0 D u0:

These equations represent a system of linear partial differential equations concern-
ing n C 1 unknown functions: the vector u D .u1.t; x/; � � � ; un.t; x// denotes the
velocity field and the scalar p D p.t; x/ the kinematic pressure function of the
fluid at time t 2 .O;T/ at position x 2 G in the linearized approach. The constant
� > 0 is the kinematic viscosity, and the external force density f together with
the initial velocity u0 are given data. In (1), ut means the partial derivative with
respect to the time t; � is the Laplacian in Rn, and r D .@1; � � � ; @n/ is the gradient,
where @j denotes the partial derivative with respect to xj .j D 1; � � � ; n/. The term
r � u D @1u1 C � � � C @nun denotes the divergence of u, which vanishes due to
the incompressibility of the fluid. Finally, the no-slip boundary condition uj@G D 0

expresses that the fluid adheres to the boundary @G. In hydrodynamics, the cases
n D 2 (planar flow) and n D 3 (spatial flow) are considered mostly.

2 The Fractional Step Theta Scheme for the Stokes
Equations

Throughout the paper, let G � Rn with n > 2 be a bounded domain with boundary
@G of class C6, and let T > 0 be given. To introduce our notation, by C1

0;� .G/, we
denote the space of all solenoidal (i. e., r � ' D 0) vector fields ' 2 C1

0 .G/
n, by

Hm.G/ the Sobolev space Wm;2.G/n, and by L2� .G/ and V.G/ the closures of C1
0;� .G/

in L2.G/n and H1.G/, respectively. If

P W L2.G/n �! L2� .G/

denotes the Helmholtz projection (see [4]) such that

L2.G/n D L2� .G/ ˚ fv 2 L2.G/n j v D rp for some p 2 W1;2.G/g;
then the following result is well known [6, 7]:

Let � > 0 be some given viscosity coefficient, let u0 2 H4.G/ \ V.G/ be some
given initial velocity, and let f 2 C.Œ0;T�I H2.G/ \ L2� .G// with ft 2 C.Œ0;T�I
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L2� .G// \ L2.0;TI V.G// and ftt 2 L2.0;T;V 0.G// be some given external force
density. Let, moreover, the nonlocal compatibility condition (compare [2, 5])

f .0/C �P�u0 2 V.G/

be satisfied.1 Then the linear nonstationary Stokes equations

ut � �P�u D f in .0;T/ � G; u.0/ D u0 in G

have a unique strongly H4-continuous solution uniformly in the closed interval
Œ0;T�, i. e., it holds u 2 C.Œ0;T�I H4.G/\V.G//with ut 2 C.Œ0;T�I H2.G/\L2� .G//,
utt 2 C.Œ0;T�I L2� .G//\ L2.0;TI V.G//, and uttt 2 L2.0;TI V 0.G//.

To approximate the above solution u on a discrete time grid, the so-called
fractional step theta scheme can be used. It works as follows: first, for every N 2 N,
define a time step size h WD T=N. Then, setting

# WD 1 � 1

2

p
2 D 0; 29289 : : : ;

this leads to a finite fractional step time grid on Œ0;T� of the form

fti D ih I i D 0; #; 1� #; 1; 1C #; 2 � #; 2; 2C #; : : : ;N � #;Ng
containing 3N C1 non-equidistant grid points ti. The corresponding functions ui WD
u.ti/ WD u.ti; �/ at time ti WD ih of the exact solution u are now approximated by the
3N C 1 vector fields

v0; v# ; v1�# ; v1; v1C# ; v2�# ; v2; : : : ; vN�# ; vN ;

satisfying v0 D u0 and the fractional step theta scheme

1

#h

�
vnC# � vn

� � �P�
�
˛vnC# C .1 � ˛/ vn

� D f n;

1

.1 � 2#/ h

�
vnC1�# � vnC#� � �P�

��
1 � ˛� vnC1�# C ˛vnC# � D f nC1�# ; (2)

1

#h

�
vnC1 � vnC1�#� � �P�

�
˛vnC1 C .1 � ˛/ vnC1�#� D f nC1�# ;

where n D 0; : : : ;N � 1 and ˛ is a fixed parameter satisfying 1
2
< ˛ < 1.

Following the arguments in [7, 8], it can be shown that the finite sequence vi, i D
0; #; 1�#; : : : ;N is uniquely determined by the above fractional step theta scheme,
and it holds vi 2 H4.G/ \ V.G/ for all i D 0; #; 1 � #; : : : ;N using Cattabriga’s
estimate [1].

1For reasons on why nontrivial data u0 and f that satisfy the compatibility condition actually exist,
see [9] and [11, Remark 64].
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As the vector fields vi are considered as approximations of the corresponding
values of the exact solution ui D u.ti/ at time ti, we call the differences

ei WD vi � ui 2 H4.G/\ V.G/; i D 0; #; 1 � #; : : : ;N

the discretization errors. As outlined in the following section and in [10], these errors
can be shown to satisfy the second-order bound

kenk2 C �h
nX

kD0
krekk2

6 h4
Z tn

0

�
	�1kutttk2�1 C 	1kruttk2 C '�1kFttk2�1 C '1krFtk2

�
dt (3)

with numbers �; 	�1; 	1; '�1; '1 > 0 depending on ˛ and �.2 Due to the regularity
of the exact solution u and the assumptions on the external force f as stated above,
all norms appearing on the right-hand side of this estimate are finite.

3 Structure of the Convergence Proof

In this section we give a rough outline of the convergence proof with an emphasis
on the coefficients the existence of which we intend to prove. The proof is based
on ideas from [3] and follows the common strategy of plugging the errors into the
scheme, thereby obtaining the expressions

En WD enC# � en � #h�P�
�
˛enC# C .1 � ˛/ en

�
;

EnC# WD enC1�# � enC# � .1 � 2#/ h�P�
�
.1 � ˛/ enC1�# C ˛enC#�;

EnC1�# WD enC1 � enC1�# � #h�P�
�
˛enC1 C .1 � ˛/ enC1�#�;

which are then multiplied by suitable test functions. Depending on whether the
parameter ˛ satisfies

˛ 6 1

4#
(4)

or not, different test functions are used. We focus on the case (4) since this is where
the coefficients we are interested in come up. In this case En, EnC# , and EnC1�# are
multiplied (scalar in L2.G/n) by

2In [10] the numbers �; 	�1; 	1; '�1, and '1 are mistakenly stated to depend on nothing but ˛.
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enC# C en � #
 

4C 1

2
�
˛ � 1

2

�

!

h�P�
�
˛enC# C .1 � ˛/en

�
;

enC1�# C enC# � ı

2
�
˛ � 1

2

�h�P�
�
.1 � ˛/enC1�# C ˛enC#� ;

enC1 C enC1�# � #

2
�
˛ � 1

2

�h�P�
�
˛enC1 C .1 � ˛/enC1�#� ;

respectively, with ı to be chosen suitably. The mixed terms in the expansions of
the resulting scalar products h�j�i need to be estimated in a way that enables their
absorption by available terms. Two of these estimations are performed with Hölder’s
and Young’s inequalities with yet undetermined coefficients

C1;C2 > 0; (5)

namely,

jhrenjrenC#ij 6 C1
2

krenk2 C 1

2C1
krenC#k2;

jhrenC# jrenC1�#ij 6 C2
2

krenC#k2 C 1

2C2
krenC1�#k2:

All terms are then arranged in preparation of telescopic canceling and the following
observations can be made:

The kenC1k-terms can be handled provided

˛2

˛ � 1
2

�
 

3C 1

2
�
˛ � 1

2

�

!

.1 � ˛/ � 4
�
˛ � 1

2

�
C1 > 0;

which is equivalent to

C1 < 1: (6)

The kenC#k-terms can be handled provided

#˛ .5˛ � 2/C
�
˛ � 1

2

��
.1 � 2#/

�
˛ � 1

2
C2

�
� 4#

�
˛ � 1

2

�
1

C1

�

�
�
˛ C

�
˛ � 1

2

�
C2

�
ı > 0 (7)

and the kenC1�#k-terms can be handled provided
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�
.1 � ˛/ �

�
˛ � 1

2

�
1

C2

�
ı C .1� 2#/ .1 � ˛/

�
˛ � 1

2

�

�# .1� ˛/2 � .1 � 2#/
�
˛ � 1

2

�
1

2C2
> 0: (8)

The condition

ı > 0 (9)

comes in because it permits to drop the term

.1 � 2#/ ı

�
˛ � 1

2

��1
h�kP�

�
.1 � ˛/ enC1�# C ˛enC#� k2:

The satisfiability of the conditions (5)–(9) is crucial for telescopic canceling,
which in combination with estimates on norms of the quantities Ei stated in [10,
Lemma 3.2] finally yields the desired error bound (3).

4 Main Result

As pointed out in the previous section, the convergence proof rests upon the
following result concerning the existence of suitable coefficients for a test function
and for Young’s inequalities.

Theorem 1. Let # D 1� 1
2

p
2. Suppose the previously fixed parameter 1

2
< ˛ < 1

used in the fractional step theta scheme (2) satisfies the condition (4). Then there
are coefficients ı;C1;C2 > 0 such that the inequalities (5)–(9) hold.

Proof. Due to (4), the number

L WD �2 .1 � #/2
�
˛ C 1

2
C 1

4#
� 1 � 3#
1 � #

�

„ ƒ‚ …
> 0

�
˛ � 1

2

�

„ ƒ‚ …
> 0

�
˛ � 1

4#

�

„ ƒ‚ …
6 0

> 0

is nonnegative. If we express L D l0 C l1˛ C l2˛2 C l3˛3 as a polynomial in ˛ and
compare it to the number

H WD 2#˛ .5˛ � 2/ .1 � #/ .1 � ˛/C 2˛ .1 � #/ .1 � ˛/ .1� 2#/

�
˛ � 1

2

�

�8#
�
˛ � 1

2

�
.1 � #/ .1 � ˛/

�
˛ � 1

2

�

�
�
.1� #/ ˛ C # �

p
#
�
.1 � 2#/

�
˛ � 1

2

�
;
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also expressed as a polynomial H D h0 C h1˛ C h2˛2 C h3˛3 2 RŒ˛�, we observe
that

l0 D �2 .1 � #/2
�
1

2
C 1

4#
� 1 � 3#

1 � #
�
1

8#

< �1
2
.1 � 2#/

�p
# � #

�
� 2 .1 � #/ # D h0;

l1 D �2 .1 � #/2
�

� 1

16#2
� 1

8#
� 1

4
C 1 � 3#

1 � #

�
1

4#
C 1

2

��

< .1 � 2#/
�p

# � #
�

C .1 � #/
�
7# � 1

2

�
D h1;

l2 D 2 .1 � #/ .1 � 3#/ D h2; l3 D �2 .1 � #/2 D h3:

Therefore, H is positive. The division of the inequality H > 0 by the positive number
.1 � #/ .1 � ˛/ .1 � 2#/

�
˛ � 1

2

�
yields

.1 � #/ ˛ C # � p
#

.1 � #/ .1 � ˛/
<

2#˛ .5˛ � 2/

.1� 2#/
�
˛ � 1

2

� C 2˛ � 8#
˛ � 1

2

1 � 2#
: (10)

The positivity of # implies

.1 � #/ ˛ C # � p
#

.1 � #/ .1 � ˛/ <
.1 � #/˛ C # C p

#

.1 � #/ .1 � ˛/ : (11)

In view of (10) and (11), there is a number C2 that satisfies the three conditions

C2 >
.1 � #/ ˛ C # � p

#

.1 � #/ .1 � ˛/
; (12)

C2 <
2#˛ .5˛ � 2/

.1 � 2#/
�
˛ � 1

2

� C 2˛ � 8# ˛ � 1
2

1 � 2# ; (13)

C2 <
.1 � #/ ˛ C # C p

#

.1 � #/ .1 � ˛/ : (14)

From (12) we deduce

C2 >
.1 � #/˛ C # � p

#

.1 � #/ .1 � ˛/ D
.1 � #/

�
˛ � 1

2

�C 1
2

�
1� p

#
�2

.1 � #/ .1 � ˛/
>
˛ � 1

2

1 � ˛
; (15)
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which also implies C2 > 0. In order to see that the inequality

N2
D2

WD #˛ .5˛ � 2/C �
˛ � 1

2

� �
.1 � 2#/

�
˛ � 1

2
C2
� � 4# �˛ � 1

2

��

˛ C �
˛ � 1

2

�
C2

> 0 (16)

holds, observe that the denominator D2 is positive since C2 > 0 and that the
numerator N2 vanishes if the constant C2 is replaced by the right-hand side of (13).

The inequality

N1
D1

WD .1 � 2#/
�
˛ � 1

2

�
1
2C2

C # .1 � ˛/2 � .1 � 2#/ .1 � ˛/ �˛ � 1
2

�

.1 � ˛/ � �
˛ � 1

2

�
1

C2

<
N2
D2

(17)

can be shown as follows. Due to (15) the denominator D1 is positive. Therefore (17)
is equivalent to the positivity of the term N2D1 � N1D2. The latter can be written as
a product

N2D1 � N1D2 D .1 � #/ .1 � ˛/2 �˛ � 1
2

�

C2
�
 

C2 � .1 � #/˛ C # � p
#

.1 � #/ .1 � ˛/

!

�
 
.1 � #/˛ C # C p

#

.1 � #/ .1� ˛/
� C2

!

of three factors all of which are positive: the first one because C2 > 0, the second
one because of (12), and the third one because of (14). This shows (17). The
inequalities (16) and (17) imply the existence of a number ı that satisfies the three
conditions

ı > 0; ı >
N1
D1

; ı <
N2
D2

; (18)

which we refer to as (181), (182), and (183). Condition (181) is nothing but (9),
condition (182) yields (8), and condition (183) yields

#˛ .5˛ � 2/C
�
˛ � 1

2

��
.1 � 2#/

�
˛ � 1

2
C2

�
� 4#

�
˛ � 1

2

��

�
�
˛ C

�
˛ � 1

2

�
C2

�
ı > 0:

This inequality shows that the choice C1 D 1—impossible because it contra-
dicts (6)—would satisfy (7). Hence for continuity reasons, there is some constant
0 < C1 < 1 such that (7) holds. This completes the proof. ut
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