
Chapter 11
Annihilation of Positrons with Atomic
Electrons

Abstract We analyze various channels for the annihilation of positrons with atomic
electrons. Since in the annihilation process a large energy exceeding 1 MeV is
released, relativistic analysis is required even in the case of slow positrons. We
study in detail the dominative two-photon annihilation process on the Bethe ridge
and outside it. We calculate the characteristics of single-quantum annihilation and
annihilation followed by knockout of a bound electron to the continuum. In the latter
case, the role of the QFMmechanism described in Chap.9 is important. We consider
also annihilation followed by creation of a μ+μ− pair and annihilation accompanied
by creation of a mesoatom.

11.1 Two-Photon Annihilation

11.1.1 On the Bethe Ridge: Fast Positrons

Annihilation of a positron with a electron bound in an atom can be followed by
radiation of two photons. This process, illustrated by Fig. 11.1, has the largest cross
section, at least for small Z , among the various channels of annihilation of positrons
in their interactionswith atomic electrons, since it can take place on the free electrons.
The conservation laws for the free process

E + m = ω1 + ω2; p = k1 + k2 , (11.1)

with E andp the relativistic energy and three-dimensionalmomentumof the positron,
require that the difference between the energies of the radiated photons be limited
by the condition

ω1 − ω2

ω1 + ω2
≤

√
E − m

E + m
. (11.2)

Here we have assumed that ω1 ≥ ω2.
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324 11 Annihilation of Positrons with Atomic Electrons

If the condition (11.2) is satisfied and the positron kinetic energy is large enough,
i.e., ξ = αZE/p � 1, a momentum

q = k1 + k2 − p (11.3)

is transferred from the nucleus to the bound electron. Following our general approach,
we can write for the amplitude of annihilation with any bound electron at the Bethe
ridge (q ∼ μb)

F(E, ω1,q) = F0(E, ω1)S(q) , (11.4)

with S(q) defined by (9.146). In this chapter, we describe the electrons by single-
particle functions.

The amplitude of the free process F0 can be expressed in terms of the amplitude FC
of the Compton scattering on the free electron at rest. While dependence of the latter
on the energies of the incoming photon and the ejected electron is FC(EC , ω1C ), we
obtain F0(E, ω1) = FC(−EC ,−ω1C ). This is amanifestation of the general principle
of the crossing invariance of the amplitudes. The amplitude of the process in which
the system of the particles A and B converts to that of the particles C and D and that
in which a particle is changed to its antiparticle are described by the same analytical
function of kinematic variables.

Employing (2.80), we obtain for the energy distribution

dσ

dωi
= dσ0

dω2
= 2πr2e f0m

p2
, (11.5)

with dσ0/dωi the energy distribution for two-photon annihilation on the free electron,
while

f0 = 1

2

[ω1

ω2
+ ω2

ω1
+ 2

( m

ω1
+ m

ω2

)
−

( m

ω1
+ m

ω2

)2];
see (6.168). The angular distribution can be written as

dσ

dti
= dσ0

dti
= 2πr2e f0ω

2
1

p(E + m)
; ti = p · ki

pki
. (11.6)

The total cross section of annihilation is of order r2e for E − m ∼ m. In the ultra-
relativistic limit E � m, it becomes smaller, i.e., σ ∼ r2e m/E . One can see this
by employing (11.5). This equation demonstrates also that in the nonrelativistic
limit p � m (but still p � η), the energy distribution is larger than at p ∼ m
(E − m ∼ m). The increase of the total cross section is not so large, since the interval
of photon energy values diminishes, i.e., |ωi − m|/m <∼ p/m. Thus in the nonrela-
tivistic case, we obtain σ ∼ r2e m/p. The corrections to these equations are of order
α2Z2.
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The total cross section for the two-quanta annihilation on a free electron is [1]

σ0(E) = πr2e
β + 1

[
β2 + 4β + 1

β2 − 1
ln

(
β +

√
β2 − 1

)
− β + 3√

β2 − 1

]
, (11.7)

with β = E/m. In the ultrarelativistic limit E � m,

σ0(E) = πr2e
m

E

(
ln

2E

m
− 1

)
. (11.8)

The cross section for annihilation in interaction with an atom containing N elec-
trons is

σ(E) = Nσ0(E). (11.9)

In the only experiment on two-quantum annihilation of positrons with atoms [2],
the cross section was measured for 300-keV positrons absorbed by atoms of silver
(IZ = 26keV). The theoretical results overestimate the measured ones.

In the free process, the values ti are determined by those of ωi , i.e.,

t1 = t10 = p2 + ω2
1 − ω2

2

2pω1
; t2 = t20 = p2 + ω2

2 − ω2
1

2pω2
. (11.10)

We shall see that after inclusion of the terms of order ξ , the distributions dσ/dωi dti
peak at ti , which differ from the values defined by (11.10) by values of order α2Z2.
We calculate the terms ∼ ξ for a hydrogenlike atom. We include the terms linear in
q in the amplitude F0 and the lowest-order correction for interaction between the
positron and the nucleus. As in the case of Compton scattering, Coulomb corrections
to the propagators provide contributions of order ξ 2. We obtain [3]

dσ

dω1dΩ1dΩ2
= 8r2e

π2

η5mω1ω2

pa4

[
f0 ·

(
1 − 2E

m
L
)

− f1
q · k1
mω1

− f2
q · k2
mω2

]
.

(11.11)

Here η = mαZ ,

a = q2 + η2; L = η

p
arctan

η

qn
+ n · q

2p

q2 + η2

(n · q)2 + η2
; n = p

p
, (11.12)

while fi = ωi∂ f0/∂ωi for i = 1, 2, i.e.,

f1 = 1

2

[ω1

ω2
− ω2

ω1
+ 2

m

ω1

( m

ω1
+ m

ω2
− 1

)]
; f2(ω1, ω2) = f1(ω1 ↔ ω2).

Writing
dσ

dω1dΩ1dΩ2
= ω2

1dσ

d3k1dΩ2
= ω2

1dσ

d3qdΩ2
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and integrating over q, we find that the terms proportional to L , f1, and f2 vanish,
and we come to the energy distribution dσ/dω2 in the lowest approximation of the
expansion in powers of ξ (11.5). Thus the corrections of order ξ manifest themselves
neither in the energy or angular distributions nor in the total cross section.

Integrating the distribution (11.11) over Ω2, we obtain

dσ

dω1dΩ1
= 8r2e

3π

mω1

pω2η

f0(ω1, ω2)

(1 + x2)3

[
1 + αZxF(ω1, t1)

]
. (11.13)

Here

F(ω1, t1) = λ(ω1) + E

p

Φ(x, t)

f0
; λ(ω1) =

(
1 − m

ω1
− m

ω2

)
f1
f0

+ f2
f0

− m

ω2
,

(11.14)

while
x = q1 − ω2

η
; q1 = p − k1; t ≡ pq1

pq1
= p − ω1t1

q1
. (11.15)

The function Φ is a rather bulky combination of elementary functions. We do not
present it here, referring the interested reader to the paper [3]. We provide only an
expression for

Φ(0, t) = 15

2t5

(
− 1 + 7t2

6
+ 3t4

10
+ 2 − 3t2 + t6

4t
ln

1 + t

1 − t

)
, (11.16)

which determines the shift of the positions of the peaks of the distribution (11.11) and
the shift of the differential cross sections dσ/dt1 at fixed ω1 and dσ/dω1 at fixed t1.

In free kinematics, x = 0, and thus

ω1 = ω10 = m(E + m)

E + m − pt1
; ω2 = ω20 = m(E + m)

E + m − pt2
. (11.17)

If we now include the corrections of order ξ , the peak of the distribution (11.13) is
reached at

x1 = αZ

6

(
λ(ω1) + E

p

Φ(0, t0)

f0

)
; t0 = p − Et10

E − pt10
, (11.18)

with t10 the value of t1 corresponding to the free kinematics determined by (11.10).
At a fixed value of ω1, the peak of the angular distribution is reached at

t1 = t10 − ω2η

ω1 p
x1 , (11.19)

with t10 determined by (11.10). The formula for the shift of the position of the energy
distribution peak is somewhat more complicated:
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ω1 = ω10 + α2Z2

6

ω1ω2

E + m

(
λ(ω1) + E

p

Φ(0, t0)

f0
+ ω2 f1 − ω1 f2

f0(E + m)
− 2

)
. (11.20)

Here t0 is defined by (11.18), and the RHS should be taken at ω1 = ω10, ω2 = ω20

corresponding to the free kinematics. The values of ωn0 (n = 1, 2) are given by
(11.17). In the nonrelativistic case, (11.17) can be simplified:

ω1 = ω10 + η2

12p

(
Φ(0, t0) − 3p

m
+ O(

p2

m2
)

)
. (11.21)

11.1.2 On the Bethe Ridge: Slow Positrons

Now we extend our analysis to the case in which the kinetic energy of the positron
is of order the electron binding energy. We must include interaction with the atomic
field in the positron wave function. If the ionization potential Ib is not too large,
i.e., Ib � m, the incoming positron can be described by the nonrelativistic function.
However, the positron in the intermediate state in Fig. 11.1 carries a large energy and
should be described by the relativistic propagator.

Due to the energy conservation law, ω1 + ω2 = 2m − Ib ≈ 2m. Introducing κ =
k1 + k2, we see that on the Bethe ridge, κ ∼ μb � ω1 + ω2. Thus the energies of
the radiated photons are close, i.e., |ω1 − ω2| ≤ κ ∼ μb, and

|ω1 − ω2|
ω + ω2

<∼
μb

m
� 1 . (11.22)

Each photon carries the energyωi ≈ m ≈ 500keV.The photons are radiated in nearly
opposite directions, with t12 = k1 · k2/ω1ω2 close to −1.

Fig. 11.1 Two-quantum
annihilation in the
interaction of positrons with
atomic electrons. The solid
lines stand for electrons
(positrons). The arrow marks
the positron, with the
direction of the arrow
opposite to that of the
positron momentum. The
dark blob labels the bound
electron. The helix lines are
for the photons
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We carry out calculations for annihilation with the K-shell electrons, describing
them by nonrelativistic Coulomb functions. Due to (11.22), the momenta of the
intermediate particles in the Feynman diagrams shown in Fig. 11.1 are large enough
(pa,b � η), andwith an error of order η/m ∼ αZ can be described by free relativistic
propagators.

To obtain the cross section of the process, we can employ results for differential
distributions of the Compton scattering on the K electrons with ejection of slow
electrons carried out in Sect. 6.4. The distribution dσC/dω2dt12 is represented by
(6.162). Employing this result, we obtain

dσ

dω1dκ
= r2e

27

3

mη4ξκ3(p2 + 3κ2 + η2)

[(p − κ)2 + η2]3[(p + κ)2 + η2]3 · N (κ)(1 + t212) (11.23)

for |ω1 − m| <∼ η and κ <∼ η. Here

N (κ) = N 2
+ exp(2ξχ); χ = arctan

(
2ηp

κ2 − p2 + η2

)
, (11.24)

with

N 2
+(ξ) = 2πξ

exp(2πξ) − 1
, (11.25)

in the squared normalization factor of the positron wave function. Recall that ξ =
η/p = (IZ/ε)1/2.

On the RHS of (11.23), the last factor is the only term depending on ω1 with
t12 = 1 − (4m2 − κ2)/2ω1ω2. Taking into account the identity of two photons, we
obtain

dσ

dκ
= 1

2

m+κ/2∫
m−κ/2

dω1
dσ

dω1dκ
= r2e

27

3

mη4ξκ4(p2 + 3κ2 + η2)

[(p − κ)2 + η2]3[(p + κ)2 + η2]3 · N (κ).

(11.26)
This determines the angular distribution

dσ

dt12
= m2

κ

dσ

dκ
,

where the distribution dσ/dκ is given by (11.26) with κ2 = 2m2(1 + t12). The total
cross section can be obtained by integration over κ , and the integral is saturated at
κ ∼ η. The cross section is of order r2e · m/p.

For very slow positrons with p � η, it is reasonable to evaluate

exp (2ξχ) = exp

(
4η2/(κ2 + η2)

)
(11.27)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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on the RHS of (11.24). In this limit, σ ∼ r2e ξ
2e−2πξ /(αZ). The exponential quench-

ing is due to the strong repulsion between the nucleus and the slow positron.
At ε ≤ IZ , annihilation with the electrons of multielectron atoms is more com-

plicated, since the correlation between the positron and atomic electrons should be
included. The positron captures one of the atomic electrons, creating a new two-
particle bound state, the positronium. In the next step, the positronium decays into
two photons if the positronium has spin S = 0, or into three photons for S = 1. This
becomes the dominant annihilation mode [4]. The positron annihilation on mole-
cules is still more complicated, since the vibrational degrees of freedom become
involved [5].

11.1.3 Photon Distribution Outside the Bethe Ridge

If the photon energies satisfy the inequality (11.2), we can calculate the angular
distribution dσ/dt1 for every value of the angle t1. Recall that if t1 is close to t10 (i.e.,
their difference is of order αZ ), which corresponds to free kinematics and is given by
(11.10), the distribution is determined by small recoil momenta q ∼ η. If the values
of t1 are not close to t10, a large recoil momentum q � μb should be transferred to
the nucleus.

Following the analysis carried out in Chaps. 3 and 5, we can consider the process
as consisting of two steps. The first is scattering of the positron on the atom. In
this process, a large momentum q is transferred to the atom. As we have seen in
previous chapters, since q � η, this momentum should be transferred to the nucleus.
After the scattering, the positron carries momentum p′ = p + q′ with q′ ≈ q, i.e.,
|q′ − q| � q. Since the energy is not transferred in this collision, |p′| = p′ = p. In
the second step, the scattered positron is annihilated with the bound electron. Here
two photons are radiated and a small momentum of order μb is transferred to the
nucleus. The angle between the directions of the momenta k1 and p′ is determined
by free kinematics. Thus for t ′ = k1p′/k1 p′, we can write

t ′ = t10 , (11.28)

with t10 determined by (11.10).
Similar to the case of Compton scattering (8.31), the distribution in photon energy

and recoil momentum can be written as

dσ

dω1dϕdq2
= 〈ψi |r−2|ψi 〉

4π
· dσ0

dω1dϕ
· dσe+A(ε)

dq2
. (11.29)

Here ϕ is the angle between the planes determined by the vectors p, q and p′, k1;
dσ0/dω1dϕ is the differential cross section for the positron two-quanta annihilation
with the free electron, while dσeA is that for the scattering of the positron on the
atom. At q � η, the latter can be treated in the Born approximation. It is dominated

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_8
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by scattering on the nucleus and can be written similar to (8.32) as

dσe+A(ε)

dq2
= dσe+N (ε)

dq2
= |Ve+N (q2)|2

2π

E2

p2
(1 − q2

4E2
) , (11.30)

with the positron–nucleus interaction Ve+N (q2) = 4παZ/q2.
The distribution (11.29) can be written in terms of the angular variables of the

radiated photon. Writing q2 = 2p2(1 − tp) with tp = pp′/p2, we represent (11.30)
as

dσe+N (ε)

dq2
= 1

2p2
dσe+N (ε)

dtp
; dσe+N (ε)

dtp
= 4πα2Z2

p2(1 − tp)2
E2

p2

(
1 − p2(1 − tp)

2E2

)
.

(11.31)
The distribution

dσe+N (ε)

dt1
= dσe+N (ε)

dtp

dtp
dt1

can be obtained using the relation tp = t1t ′ + (1 − t21 )
1/2(1 − t ′2)1/2 cosϕ and

(11.28). Carrying out integration over ϕ, we obtain

dσ

dω1dt1
= α2

2

〈ψi |r−2|ψi 〉
p2

· E
2

p2
dσ0

dω1
·
(

1 − t1t10
(t1 − t10)2

− p2

2E2

1

|t1 − t10|
)

. (11.32)

This expression is true outside the Bethe ridge, i.e., at |t1 − t10| >∼ αZ . On the Bethe
ridge, |t1 − t10| ∼ αZ , and one should use the equations of Sect. 11.1.1.

Another important region outside the Bethe ridge is the one where the energy of
one of the photons is much smaller than that of the other one, e.g., ω2 � ω1. The
distribution of the soft photons is similar to that in Compton scattering; see (8.35):

dσ

dω2dΩ1
= α

π
· v2

ω2
·
∫

dΩ2

4π
· 1 − τ 2

(1 − vτ)2
· dσs

dΩ1
; τ = p · k2

pω2
, (11.33)

with v = p/E the velocity of the positron. Here dσs is the differential cross section
of the process without the soft photon. In other words, σs is the cross section of
annihilation with all initial energy converted into the energy of a single photon. This
process will be analyzed below.

http://dx.doi.org/10.1007/978-3-319-32736-5_8
http://dx.doi.org/10.1007/978-3-319-32736-5_8
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11.2 Annihilation with Radiation of One Photon

11.2.1 Single-Quantum Annihilation

The possibility of single-quantum annihilation of a positron in its interaction with
a bound electron was predicted by Fermi and Uhlenbeck in 1933. They carried out
the first calculation of the cross section based on the Born approximation and the
Coulomb potential. The result is presented, e.g., in the book [1]. The corresponding
Feynman diagram is shown in Fig. 11.2. The process in which one of the bound
electrons is annihilated while the others do not change their states,

e+ + A = A+ + γ , (11.34)

with A and A+ denoting the atom, and the positive ion is crossing-invariant with
respect to the photoionization process

γ + A = A+ + e− .

Thus the cross section can be expressed in terms of the photoionization amplitude
Fph .

Denoting the four-vector of the photoelectron in the photoionization process by
Pph , we can write for the cross section of the single-quantum annihilation

dσ+
ann = 1

v
|Fph(−Pph)|2 ω2dΩ

(2π)2
; ω = E + Eb , (11.35)

where v is the positron velocity, and Eb is the total energy of the bound electron
annihilated in interaction with the positron. The upper index+ indicates that we have
a single-charged ion A+ in the final state. The recoil ion obtains large momentum
q ∼ m.

Fig. 11.2 Single-quantum
annihilation in interaction of
positrons with atomic
electrons. The notations are
the same as in Fig. 11.1
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The theory of the process mirrors that for photoionization. Employing the results
of Sect. 6.3, we estimate σ+

ann ∼ r2e α
4Z5. In the hydrogenlike approximation, the

cross section of annihilation with the K-shell electrons of the atom with nuclear
charge Z is

σ+
ann(E) = 4πr2e α

4Z5

(β + 1)2
√

β2 − 1

[
β2 + 2

3
β + 4

3
− β + 2√

β2 − 1
ln (β +

√
β2 − 1)

]
,

(11.36)

where β = E/m. This equality is true in the lowest order in ξ = αZ/v [1]. The
cross section reaches its largest value at E ≈ 2m. For annihilation of nonrelativistic
positrons with E − m � m,

σ+
ann(E) = 4πr2e α

4Z5

3

p

m
, (11.37)

while in the ultrarelativistic limit E � m,

σ+
ann(E) = 4πr2e α

4Z5m

E
. (11.38)

These expressions are true in the lowest order in powers of ξ = αZ/v. Besides the
hydrogenlike calculations, the cross section of annihilation with K and L electrons
was obtained for a number of atoms by employing the screened Coulomb functions
[6, 7]. Also, the Z -dependence of the angular distribution has been traced experi-
mentally [8].

11.2.2 Annihilation Followed by Ionization

Single-quantum annihilation can be followed by the knockout of a bound electron
to the continuum. In the process,

e+ + A = A++ + e− + γ, (11.39)

the energy of the positron E , is shared between the electron with energy E1 and the
photon carrying the energy ω. Neglecting the binding energies, we can write

E + 2m = E1 + ω . (11.40)

In this reaction, a three-dimensional momentum

q = p1 + k − p (11.41)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
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is transferred from the nucleus. One can see that this reaction is crossing-invariant
with respect to the double photoionization considered in Chap. 9.

Here we focus on the case in which the positron annihilates with one of the 1s
electrons, and the second 1s electron is knocked out to the continuum. Let us analyze
the contributions of the main mechanisms to the cross section of the process σ++

ann .
The annihilation removes one of the bound 1s electrons and thus changes the

effective charge felt by the second one. This is the familiar shakeoff (SO) mechanism
described in Chaps. 3 and 9. The SO determines the spectrum of the electrons at
small values of their kinetic energies ε1 = E1 − m ∼ Ib. Here the energy of the
radiated photon is close to its largest valueω = E1 + m − Ib. It follows from (11.40)
that ε1 + ω ≥ 2m, and we can employ the asymptotic expression (9.37). Thus the
contribution of the SOmechanism to the cross section σ++

ann of the reaction expressed
by (11.39) is

σ SO
ann(E) = σ+

ann(E)C0; C0 = m

2π2Φ2
1s

∫ ∞

0
dε1 p1|Φ(ε1)|2. (11.42)

Recall that for helium, C0 ≈ 0.016, while the Z -dependence of C0 is traced in
Sect. 9.2.

Before annihilation with the atomic electron, the positron can knock out another
electron from a bound state. Note that while single-quantum annihilation with a
free electron is not possible, a similar process of interaction of the positron with
a system of two free electrons in a spin-singlet state can take place [9]. In such a
process, the recoil momentum is q = 0. To find the conditions for this quasifree
mechanism (QFM), note that in free kinematics, (p − k)2 = p21, and E1 = E0 − ω,
with E0 = E + 2m the largest energy available for the outgoing electron. Since
E2
1 − p21 = m2, we obtain

ω = 2mω0

E0 − pt
; t = p · k

pk
, (11.43)

with ω0 = E + m the largest energy available for the photon. Thus the limits for the
photon energy are

2mω0

E0 + p
≤ ω ≤ 2mω0

E0 − p
. (11.44)

For nonrelativistic positrons with p � m, the energy of the photon and the kinetic
energy of the outgoing electron are ω ≈ 4m/3 and ε1 ≈ 2m/3 respectively. They
vary in small intervals of order p/m near these values. In the ultrarelativistic limit
E � m, the energy carried by the photon is limited by the condition m ≤ ω ≤ E .

The QFM amplitude is proportional to that of the process on the free electrons; see
(9.145). The energy distribution of the radiated photons in the interval determined
by (11.44) is

dσ++
ann

dω
= σ1Z

3W (ω)
m

p2
I ; σ1 = πr2e α

4, (11.45)

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9
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with I determined by (9.176);

W (ω) =
(

ε1 + ω0

ε1ω0

)2[
EE1 − m2 − κ2 + (

mω

ω0ε1
)2(EE1 − 2ε1ω0 + m2 + κ2)

]
;

(11.46)

κ2 = (E2 − E2
1)

2 − ω4

4ω2
; ω0 = ε1 + ω;

see (9.200). Introducing the dimensionless parameters x = ω/ω0 and γ = m/ω0,
we can write (11.45) and (11.46) as

dσ++
ann

dx
= σ1Z

3W (x)
m

ε
I , (11.47)

with

W (x) = γ
(2 − x

1 − x

)2
[
2(x − γ ) +

[
1 −

( γ x

1 − x

)2][4(1 − x)

x
− γ

(2 − x)2

x2

]]
.

(11.48)

The QFM contribution to the cross section σ++
ann is

σ QFM
ann (E) = σ1Z

3 f (E); f (E) = I
m

ε
·
∫ x2

x1

dxW (x), (11.49)

with the limits of integration

x1 = 2m

E0 + p
; x2 = 2m

E0 − p
, (11.50)

corresponding to (11.44).
We write σ+

ann(E) = σ1Z5ϕ(E), with

ϕ(E) = 4m3

p(E + m)2

( E2

m2
+ 2

3

E

m
+ 4

3
− E + 2m

p
ln

E + p

m

)
,

determined by (11.36). We write also σ QFM
ann (E) = σ1Z3 f (E), with f (E) defined

by the second equality of (11.49). Similar to the case of double photoionization, the
double-to-single ionization ratio can be written as

R(E) = σ++
ann (E)

σ+
ann(E)

= σ SO
ann(E) + σ QFM

ann (E)

σ+
ann(E)

= C0 + σ QFM
ann (E)

σ+
ann(E)

. (11.51)

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9
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Here we neglected the terms of order Ib/ε. Employing (11.35) and (11.48), we
represent the ratio (11.51) as

R(E) = c + β(E)

Z2
; β(E) = f (E)/ϕ(E) . (11.52)

Note that the functions f (E) and β(E) depend on the quantum number of ionized
states through the factor I .

Now we focus on elimination of two 1s electrons. We employ the perturbative
model developed in Sect. 9.2.2. The amplitude is described by the Feynman diagrams
presented in Fig. 11.3. Recall that in this case, the values of the parameters that enter

Fig. 11.3 Annihilation of
positrons with atomic
electrons accompanied by
ionization. a Corresponds to
the shakeoff (SO)
mechanism. b Illustrates the
quasifree mechanism
(QFM). The notation is the
same as in Fig. 11.1

Fig. 11.4 Energy
dependence of the cross
sections. The horizontal axis
is for the positron energy E
related to the positron mass
m. The vertical line is for the
functions f (E), ϕ(E), and
β(E) defined in Sect. 11.1.2.
Reproduced from [9]

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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(11.45), (11.49), and (11.52) areI = 1/8 and c = 0.09 respectively. The functions
f (E), ϕ(E), and β(E) are shown in Fig. 11.4. For nonrelativistic positrons with
ε � m (but ε = E − m � IZ ), we obtain

β(E) = 1

9
· m

E − m
. (11.53)

Thus at small values of Z and ε, the ratio R can become larger than unity. Hence
double ionization can becomemore probable than a single one. In the ultrarelativistic
limit, the two lowest terms of the expansion in powers of m/E provide

β(E) = 1

4

[
1 + m

4E

(
11 ln

E

m
+ 6 ln 2 − 35

2

)]
. (11.54)

The ultrarelativistic asymptotics for the ratio R corresponds to β = 1/4 and is:

R = 0.34

Z2
. (11.55)

Hence it is just the same as for the double-to-single photoionization ratio. However,
in contrast to that case, R(E) exceeds its asymptotic value for every value of the
positron energy.

11.3 Annihilation Without Radiation

11.3.1 Annihilation with Ionization

The energy released in the annihilation of a positron with a bound electron can be
absorbed by another bound electron. The latter moves to the continuum. Thus the
final state of the process consists of the ion with two holes in the electron shell and
the ejected electron in the continuum. In this process,

e+ + A → A++ + e−,

illustrated by Fig. 11.5a, the ejected electron obtains the energy

E1 = E + 2m (11.56)

(here we neglected the values of the binding energies). The process cannot take place
in a system of free electrons, since it requires a large momentum

q = p − p1 (11.57)

to be transferred to the nucleus. Since q ≥ p1 − p, we find, employing (11.56), that
q2 ≥ 4m2.
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Fig. 11.5 Annihilation of
positrons with atomic
electrons without radiation. a
Ionization; b Creation of
μ+μ− pairs. The muons are
shown by bold lines. The
other notation is the same as
in Fig. 11.1

(a) (b)

The amplitude of the process can be written as

F = 4πα

∫
d3r ′ψ̄−p(r′)γ μψa(r′)

∫
d3r Dμν(ρ)ψ̄p1(r)γ

νψb(r) − (a ↔ b).

(11.58)
Here ψ−p and ψp1 are the wave functions describing the positron and the ejected
electron, ψa,b are the wave functions of the bound electrons in the states a and b,
and ρ = r − r′. The photon propagator Dμν in the Feynman gauge written in spatial
representation is

Dμν(ρ) = gμν

∫
d3 f

(2π)3

exp(ifρ)

f 2 − ω2 − i0
; ω = E + m. (11.59)

Hence, (11.58) can be written as

F = 4πα

∫
d3 f

(2π)3

Aμ(−f, a)Bμ(f, b)
f 2 − ω2 − i0

− (a ↔ b), (11.60)

with

Aμ(−f, a) =
∫

d3r ′ψ̄−p(r′)γ μψa(r′) exp(−ifr′),

Bμ(f, b) =
∫

d3rψ̄p1(r)γμψb(r) exp(ifr).

Note that Aμ(−f, a) is the matrix element of the single-quantum annihilation of the
positron with the bound electron in the state a. Also, Bμ(f, b) is the matrix element
for photoionization of state b.

As we have seen in Sect. 3.1.2, a large momentum q � μb can be transferred to
the nucleus by a bound electron or by a positron in the initial state or by a continuum
electron in the final state, and the corresponding contributions to the amplitude are of
the same order of magnitude. Thus, although the ejected electron carries the kinetic
energy ε1 ≥ 2m, its interaction with the recoil ion should be included. On the other

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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hand, for αZ � 1, it can be treated perturbatively. The same refers to a description
of the positron while its energy is large enough, ε1 � IZ .

We carry out calculations for the K electrons of the hydrogenlike atom. To obtain
the amplitude in the lowest order of the expansion in powers of αZ , we describe all
electrons and the positron by the FSM functions; see (6.24) and (6.29) [10]. Note
that there were earlier calculations for this process in which the bound electrons were
described by the Coulomb functions, while the positron and the ejected electron were
described by plane waves. As we said before, such calculations do not include all
the terms contributing in the leading order in αZ .

We obtain for the angular distribution

dσ

dΩ
= r2e (αZ)8

4

N 2(ξ1)N 2+(ξ)p1m4

pω4
T (θ); ξ = αZE

p
; ξ1 = αZE1

p1
. (11.61)

Here N 2 and N 2+ are the squared normalization factors of the ejected electron and of
the positron determined by (3.19) and (11.25); θ is the angle between the directions
of the positron and electron momenta p and p1. The angular factor

T (θ) = 16m2

q2

(
1 − 4m2

q2

)
(11.62)

is the same for all Z . It reaches its largest value Tmax = 1 at q2 = 8m2, i.e., at

θ = θ0 = arccos

(
1 − 4m2

ω2

)1/2

. (11.63)

For nonrelativistic positrons θ0 → π/2. For ultrarelativistic positrons with E � m,
we obtain θ0 → 0, i.e., the ejected electron moves in the same direction as the
positron. An example of the angular distribution is given in Fig. 11.6.

Integration of the angular distribution (11.61) provides

σ = 8πr2e (αZ)8
N 2(ξ1)N 2+(ξ)m6

p2ω4

(
ln

p1 + p

p1 − p
− pp1

2ω2

)
. (11.64)

The cross section obtains its largest values, which are of order r2e (αZ)8, at ε ∼
m. In the ultrarelativistic region E � m, it decreases as r2e (αZ)8m6/E6. For the
nonrelativistic positrons with ε, p � m, we obtain, putting E = m, E1 = 3m, and
p1 = 2

√
2m,

σ = 21/2πr2e (αZ)8

8

N 2(ξ1)N 2+(ξ)m

p
. (11.65)

Note that if the positron energy is so small that 2πξ >∼ 1, the factor N 2+(ξ) ∼
2πξe−2πξ provides exponential quenching of the cross section.

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Fig. 11.6 Angular distribution for annihilation with ionization at E = 2m. The horizontal line is
for the angle θ between the directions of the momenta of the incoming positron and the outgo-
ing electron. The vertical line is for the differential cross section dσ/dΩ in μb/sterrad units.
Reproduced from [10]

To obtain more accurate expressions for the cross section, we represent the next-
to-leading correction in powers of αZ [11]. We must include the α2Z2 terms in the
expansion of the wave functions of the bound and continuum electron and that of the
positron. Such a term for the 1s wave function is determined by (6.53). It is given
by the third term on the RHS of (6.48) for the wave function of the ejected electron.
Including also a similar correction for the wave function of the positron, we obtain
for the angular distribution

dσ

dΩ
= 4r2e (αZ)8N 2(ξ1)N

2
+(ξ)

p1m6

pω4q2
T1(θ) , (11.66)

with

T1(θ) = 1 − 4m2

q2
+ πη

p1

(
8mE1

q2
− 2p1

q
− 1

)
. (11.67)

The total cross section, which includes the lowest αZ correction, is

σ = 8πr2e (αZ)8
N 2(ξ1)N 2+(ξ)m6

p2ω4

[
ln

p1 + p

p1 − p
− pp1

2ω2
− πη

p1

(
ln

p1 + p

p1 − p
− pp1

ω2

)]
.

(11.68)

Recall that m/E1 < 1/3.
For example, for Z = 82, we find that (11.64) provides σ = 18μb for the

cross section. Inclusion of the lowest-order correction (11.68) changes the value to
σ = 15μb.

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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11.3.2 Annihilation with Creation of μ+μ− Pairs

If the positron is fast enough, it can annihilate with the bound electron, creating a
μ+μ− pair; see Fig. 11.5b. The process e+e− → μ+μ− can take place for the free
electrons. The threshold positron energy in the rest frame of the electron is

E0 = 2m2
μ/m ≈ 44GeV, (11.69)

with mμ ≈ 105MeV the muon mass. To obtain the value, we denote the four-
momentum of the positron by p = (E,p) and that of the electron at rest by
p′ = (m, 0); the momenta of μ+ and μ− are p1 = (E1,p1) and p2 = (E2,p2). The
value of the threshold energy can be obtained by squaring the momentum conserva-
tion equation p + p′ = p1 + p2 and noting that (p1 p2) ≥ m2

μ.
If the electron is in a bound state, the three-dimensional momentum q = p − p1 −

p2 can be transferred to the nucleus in the process,

e+ + A → A+ + μ+ + μ−.

The energy conservation law is E + m − Ib = E1 + E2, and the annihilation can
take place for E ≥ E , where the threshold for creation of free μ− and μ+ is [12]

E = 2mμ ≈ 211MeV (11.70)

(here we neglected terms of order m/mμ and Ib/mμ).
The amplitude of the process can be written as

A = α

∫
d3r ′ϕ̄p2(r

′)γμϕ−p1(r
′)

∫
d3r

eiωR

ωR
ψ̄−p(r)γ μψb(r); R = |r − r′|.

(11.71)

Here ω = E1 + E2 is the total energy of the μ+μ− pair; ψ−p(r) and ψb(r) are
the wave functions of the positron and the bound electrons. The wave functions
ϕ−p1 and ϕp2 describe the positive and negative muons carrying momenta p1 and p2
respectively. We employ the Feynman gauge for the photon propagator.

The muon wave functions should be calculated in the atomic field with nucleus
of finite size. At large E � mμ, the positron can be described by the FSM functions.
Recall that the accuracy of the latter can be estimated as α2Z2/�e f f , with �e f f the
effective value of the orbital moment. Since a large momentum q ∼ mμ should be
transferred to the nucleus, the process takes place at distances r ∼ 1/mμ from the
center of the nucleus. Thus we can estimate �e f f = pr � 1.

We shall carry out the calculations in the lowest order of αZ . A large momentum
q ∼ mμ can be transferred to the nucleus by any of four charged particles. As we
know, transfer of large momenta can be treated perturbatively, and we represent the
amplitude A as the sum of four terms,
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A = Aa + Ab + Ac + Ad ,

corresponding to transfer of the momentum q by the bound electron, by the incoming
positron, and by the final-state muons μ± respectively.

We begin with the transfer of the large momentum by the bound electron. At
q ∼ mμ, we must take into account the finite size of the nucleus. For the wave
function of an electron bound in an atom with a nucleus of finite size, we can write,
analogously to (2.94),

ψb(q) = −8πη

q4

αq
2m

ψb(r = 0)F(q)u0 , (11.72)

with the nonrelativistic function ψb(r = 0) on the RHS. In further calculations, we
employ the notation Nb = ψb(r = 0). The charge form factor F(q) is normalized
by the condition F(0) = 1. Describing the continuum particles by plane waves, we
write in momentum representation

Aa = −(4π)2α2ZNbF(q)
ū(p2)γμu(−p1)ū(−p)q̃γ μu0

q4s
, (11.73)

with s = (p1 + p2)2 = (E1 + E2)
2 − (p1 + p2)2 = (m + E)2 − (p − q)2 = 2mE +

2pq − q2 the denominator of the photon propagator. Note that s ≥ 4m2
μ.

Transfer of the momentum q by the incoming positron is determined by the
lowest-order correction to the plane wave:

Ab = 4πα
ū(p2)γμu(−p1)

s

∫
d3 f

(2π)3
ū(−p)γ0(k̂ + m)γ μu0

k2 − m2 · −4παZF(q + f)

(q + f)2
ψ(f);
(11.74)

k = (−E,q − p + f) .

Since the integral over f is saturated by f ∼ η � q, we can neglect f everywhere
except in the argument of the bound-state wave function. This leads to

Ab = (4π)2α2ZNbF(q)
ū(p2)γμu(−p1)ū(−p)(2E + q̃)γ μu0

q2as
; a = 2pq − q2.

(11.75)
In a similar way, one can find the contribution of the terms corresponding to the

transfer of momentum q by the final-state muons:

Ac + Ad = (4π)2α2ZNbF(q)

s ′q2

[
2
( E2

a2
− E1

a1

)
ū(p2)γ

μu(−p1)

− ū(p2)γ μq̃u(−p1)

a1
− ū(p2)q̃γ μu(−p1)

a2

]
ū(−p)γμu0 . (11.76)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Here s ′ = (p + p′)2; ai = 2piq + q2. Since ψb(r = 0) = 0 for the bound states
with � �= 0, only the s states contribute to the amplitude.

Note that the denominator of the photon propagator s ′ = (p + p′)2 ≈ 2mE is
much smaller than that in the amplitudes Aa and Ab, i.e., s ′/s ∼ mE/m2

μ. Consid-
ering the energies

E � E0, (11.77)

we can put A = Ac + Ad in the main part of the phase volume, since here, |Aa +
Ab| � |Ac + Ad |. Thus the large momentum q is transferred to the nucleus mainly
by the final-state muons. In the configuration with p1 = p2 directed along p, the
sum of the contributions is Ac + Ad = 0. Hence, in the vicinity of this point, all the
terms on the RHS of (11.71) are important. Also, at p1 ≈ p2, the relative velocity of
the outgoing μ+ and μ− is small, and they undergo strong attraction; see a similar
situation in pair creation by a photon in the field of the nucleus [13].

The differential cross section of the muon pair creation in annihilation with the
electrons in the s state can be written as

dσ = 2πα
N 2
b

m2E
dσγμ+μ− , (11.78)

with σγμ+μ− the cross section for muon pair creation by a photon with energy E
and three-momentum p. We consider energies E ≥ 2mμ � m, and thus we can put
E2 = p2. In the limit of a point nucleus F(q) = 1, the cross section σγμ+μ− can be
evaluated analytically. However, this limit works only for very light atoms, for which
the cross section is very small. We carry out analysis that takes into account the finite
size of the nucleus.

The differential cross section (11.78) can be written as

dσ = τ(Z)
m4

μ

q4

p1 p2
E2mμ

F2(q)S(p1,p2)dE1dt1dt2dϕ . (11.79)

Here ti = cos θi , θi are the angles between momenta pi and p, ϕ is the angle between
the planes determined by the vectors p1,p and p2,p,

S(p1,p2) = 4m2
μ

( E2

a2
− E1

a1

)2 − m2
μq

2
( 1

a2
− 1

a1

)2+ (11.80)

2

a1a2

(
[p1q]2 + [p2q]2

)2
,

and

τ(Z) = 4r2μ(αZ)2
N 2
b

m2mμ

; rμ = α

mμ

. (11.81)
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Note that for the K shell of the hydrogenlike atom with point nucleus, we have
N 2
b = η3/π , and

τ(Z) = 4

π
r2μ(αZ)5

m

mμ

= 0.0114(αZ)5μb (11.82)

provides the scale for the cross section σ . Assuming a uniform distribution in the
sphere of radius R for the electric charge of the nucleus, we obtain for the form factor

F(q) = 3(sin qR − qR cos qr)

q3R3
; R = 1.2 · A1/3 Fm (11.83)

(recall that 1Fm=10−13 cm), with A the number of nucleons in the considered
nucleus. Since the nonrelativistic wave functions with � �= 0 become zero at the
origin, only the s atomic electrons contribute to the process. The K electrons provide
the leading contribution.

The final-state muonμ− can be captured to the atomic bound state. In the process,

e+ + A → A(μ) + μ+;

A(μ) denotes the mesoatom, i.e., the atom in which one of the electrons is replaced
by the muon μ−. The amplitude is represented by (11.71) with the wave function
ϕp2(r

′) of the continuum muon μ− replaced by its bound-state function in the field
of the atom with the nucleus of finite size. The energy conservation law is now
E + m − Ib = E1 + mμ − I (μ)

b , with the last term the ionization potential of the
mesoatom.The cross section is connectedwith the cross sectionσ b

γμ+μ− of the process
in which the photon with energy E and three-momentum p creates aμ+μ− pair with
the negative muon bound in the atom. In the lowest order of the αZ expansion,

σ = 2α(αZ)3
m

E
σ b

γμ+μ− . (11.84)

To calculate the cross section σ b
γμ+μ− , one needs thewave function of the boundmuon

in the field of the finite-size nucleus. It can be found by numerical solution of the
Dirac equation. Using the relativistic Coulomb functions for describing the bound
electrons and the FSM positron wave functions enables us to trace the nuclear charge
dependence of the cross section [14]. At characteristic energy E = 10mμ ≈ 1GeV,
it is σ = 10−5μb for Z = 60, yielding 1.5 · 10−5μb for Z = 92.

At E >∼ E0, annihilation on the free electrons becomes possible. In annihilation
on a bound electron, a small momentum q ∼ η is transferred to the nucleus. The total
cross section for annihilation on a bound electron is equal to that on a free electron.
The latter is [15]

σ0 = 2π

3
r2e

m

E

(
1 + E0

2E

)(
1 − E0

E

)1/2
. (11.85)
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Thus the cross section for annihilation with an atom containing Ne electrons is
σA = Neσ0. In the vicinity of the threshold E − E0 ∼ mμα2, (11.85) is invalid, since
the interaction of the outgoing muons should be taken into account. The RHS of
(11.85) obtains a factor that is the wave function of the relative motion of the muons
at the origin [13]. Thus at E → E0, the cross section has a finite value.

Note that μ− and μ+ can form a bound state with binding energy mμα2/4 ≈
1.4keV. The threshold of this channel is smaller than E0 by that value.

The cross sections σ0 and σA reach their largest values at E ≈ 1.7E0. Here σ0 ≈
r2e m

2/m2
μ ≈ 1μb, and thus σ ≈ Ne[μb].
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