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Preface

In the atomic processes connected with the absorption of energy that is much larger
than binding energies of the involved atoms, there are at least two energy scales.
There are correspondingly two scales of momenta. This book is devoted to the
theory of such processes. The presented approach based on analysis of the two
regions of the recoil momenta does not always enable one to achieve high accuracy.
However, it makes it possible to clarify the mechanisms of the processes and also to
avoid the mistakes that are sometimes made in purely numerical computations.

The specifics of the experimental physics at such energies is beyond the scope of
this book, and we present the results of experiments only as an illustration of the
theory.

We assume that our reader knows the quantum mechanics and is familiar at least
with fundamental points of quantum electrodynamics. We assume also that the
reader has taken a standard course in atomic physics.

We hope that this book will be useful to the atomic physics community. We
expect also that this book will help in overcoming the prejudice that “theoretical
atomic physics is the science of precise computations.”

This book is to a large extent based on the works of the authors. We thank our
colleagues and coauthors for decades of fruitful cooperation. We are especially
grateful to Mrs. Galina Stepanova for her assistance in preparation of the
manuscript.

Saint Petersburg, Russia Evgeny G. Drukarev
Aleksandr I. Mikhailov
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Chapter 1
Introduction: What Is This Book About?

Abstract We present the main ideas of the book and describe the contents of the
book in detail.

1.1 Main Ideas

Many recent publications devoted to the interaction of photons and electrons with
atoms and molecules have the same structure. In the first step, a general quantum-
mechanical formula for the cross section is given. In the next step, themost “accurate”
numerical functions for the bound-state electrons are employed. Since the binding
energies can be measured with high accuracy, the wave functions pass the test for
reproducing the binding energies with a good accuracy. In the last step, the computer
is put to work. Sometimes, attempts are made to include interactions between the
electrons in the final state.

About thirty years ago such an approach was justified to some extent. Most cal-
culations were connected with characteristics that could be detected experimentally.
In such experiments energies of the order of the electron binding energies were
transferred to the targets. There was no small parameter, and thus there was no pos-
sibility to evaluate the equations determined by the original formalism of quantum
mechanics. The theoretical atomic physics was indeed becoming a science of precise
computations. The near-threshold behavior of processes in which one could find a
small parameter was rather an exception.

The situation changed at the end of 1980s, when new synchrotron sources of pho-
tons became available. Experiments involving photon energies of order about 10keV
were carried out. For light atoms, such energies are much larger than the binding
energies. Some of theoretical calculations which could be of practical importance
now contained a small parameter.

In the early years of quantummechanics, Bethe [1, 2] described the main features
of high-energy electron–atomic scattering; see also [3]. Here “high energy” means
that the energy greatly exceeds the binding energy of the system. Thus, for example,
an energy of 1keV can be considered a “high energy” for an atom of hydrogen,
but not for the K electrons of a neon atom. The main principles of high-energy
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atomic physics were developed and employed later in the papers of our teacher V.G.
Gorshkov and his collaborators (references will be given throughout the text). These
principles can be extended to the analysis of any interaction between high-energy
charged particles or photons with bound systems. They are as follows:

• The differential cross section of a high-energy process is enchased in the kinematic
region, where the same process on the free electrons is allowed.

• Each act of exchange by large momentum q strongly exceeding the characteristic
momentum μb of a bound system leads to a parametrically small factor.

• The interactions between the fast and slowparticipants of the process can be treated
as a perturbation.

• The cross sections can be expressed in terms of certain parameters of the bound
systems.

1.2 Subject Matter

In this book we show how these ideas work. In addition to the standard techniques of
quantummechanics, we employ the Lipmann–Schwinger equation (LSE) [4], which
allows us to find the Fourier transforms of wave functions in terms of the wave
functions at small distances. We use also Feynman diagrams, which can be viewed
as graphical illustrations of theLSE.EmployingFeynmandiagrams for describing the
bound electrons became possible due to the work of Furry [5]. The kinematic region
where themomentum transferred to the nucleus, known also as the recoil momentum,
can be made small (q ∼ μb) is called the Bethe ridge. In many cases the Bethe ridge
provides the main contribution to the cross section. The characteristics of a process
on the bound electrons at the Bethe ridge can be expressed in terms of those for the
same process on free electrons. This makes the investigation of a process on free
electrons a necessary step of theoretical analysis. Such an analysis carried out before
beginning computations helps to avoid numerous possible mistakes. Unfortunately
some of the latter can be found in published papers. These points are the subject of
Chap.2.

In Chap.3, we show how the perturbative treatment of fast electrons should be
carried out. Although looking to be simple, the perturbative approach was not always
carried out properly. Validity of the perturbation expansion does not necessarilymean
that the lowest-order approximation is sufficient even for a qualitative description of a
process. We demonstrate that in processes with large momentum q transferred to the
nucleus, the lowest-order term of perturbative series should contain the plane wave
and the first-order Coulomb correction. We also develop the perturbative approach
to the final state interaction (FSI) of a fast ejected electron with the atomic shell
[6]. We demonstrate that the lowest-order FSI correction should include the terms
describing one and two interactions between the fast electron and the atomic shell.
The amplitude of the process contains infrared divergent terms that cancel in the
expressions for the differential and total cross sections.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_3


1.2 Subject Matter 3

In Chap.4, we demonstrate that 2 → 3 processes with large recoil momenta
are described by triangle diagrams , with the main contributions determined by
the anomalous singularities of the latter [7]. This enables us to obtain analytical
expressions for the differential distributions and for the cross sections. The transfer
of large momentum between the electron and the nucleus or between electrons is
related to the small values of the corresponding distances,where the shape of thewave
functions is determined by the Kato cusp conditions [8]. We explain the importance
of the latter and construct the electron wave functions on the coalescence lines.

In Chap.5, we consider processes in the Coulomb field in the framework of non-
relativistic approximation. We introduce a technique that simplifies the calculations
in the Coulomb field [9]. We apply it to calculation of the first- and second-order
processes. In other words, we calculate the differential distributions and the total
cross sections for the photoeffect and also for the Rayleigh scattering, for the Raman
scattering, and for the Compton effect.

In Chap.6, we find the relativistic electron Coulomb functions as power series in
(αZ)2 with the Furry–Sommerfeld–Maue functions as the lowest-order approxima-
tion [10]. The results are employed for calculation of the photoionization angular
distribution and the cross section with inclusion of the terms of order α3Z3. We
consider also second-order processes. We study the role of various mechanisms for
photon elastic scattering on atoms. We present the characteristics of the Compton
scattering on the Bethe ridge with inclusion of the α2Z2 terms. Employing the results
of Chap.4, we calculate the differential distributions for the Compton scattering out-
side the Bethe ridge.

In Chap.7, we analyze the photoionization of atoms. We show the possibility of
nonrelativistic asymptotic analysis. We demonstrate that the variety of forms of the
electron–photon interactions is connectedwith the gauge invariance of quantum elec-
trodynamics.We show that the asymptotics for photoionization of s states can be cal-
culated in the velocity form by employing plane waves. In the length form one should
include also the lowest nonvanishing term of interaction between the photoelectron
and the nucleus. The latter should be included in calculations of the asymptotics for
ionization of states with � �= 0 in both forms. We analyze the Thomas–Reiche–Kuhn
sum rules for the case of a nonlocal field. We carry out asymptotic analysis also for
the relativistic case. We present a method for inclusion of the screening corrections
for the relativistic case near the threshold and far away from it, as worked out in [11].
We demonstrate that inclusion of the correlations beyond the independent particle
approximation (IPA) in the framework of the perturbative approach developed in
Chap.3 enables us to remove the discrepancy between the experimental data and
the results of the IPA calculations. We show also how inclusion of the IPA breaking
effects changes the asymptotic behavior of the photoionization cross sections [12].

Since the nonrelativistic photoionization cross section drops rapidly with an
increase of the photon energy, the higher-order processes dominate in the forma-
tion of ions at larger values of the photon energy. In Chap.8, we carry out relativistic
analysis of the second-order and third-order processes. If the photon energy is large
enough, the Compton scattering becomes the dominant mechanism of ionization.

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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4 1 Introduction: What Is This Book About?

We show that the seagull term of the nonrelativistic Compton scattering amplitude
can be viewed as the contribution of the negative-energy intermediate states in the
relativistic amplitude. We find the general equations for the characteristics of the
Compton scattering on the Bethe ridge and show their connection with equations of
the impulse approximation. Employing the results obtained in Chap. 4, we find the
differential distributions outside the Bethe ridge. We demonstrate the infrared sta-
bility of the sum of the contribution to the Compton scattering cross section coming
from soft scattered photons and the photoionization cross section, which includes the
radiative corrections. At still larger photon energies ω > ω0, the ions are produced
mainly with the creation of electron–positron pairs. We obtain the energy distribu-
tion of the electrons ejected due to this mechanism. We calculate the dependence
of ω0 on the value of the nuclear charge Z for the single-electron ions and for the
atoms containing Z electrons [13]. We find also the photon energy region where this
mechanism dominates in the creation of excited atoms.

In Chap.9, we consider mainly the double photoionization of the helium atom
and of heliumlike ions. We analyze three mechanisms of the process. They are the
shake off (SO), final-state interactions (FSI), and the quasifree mechanism (QFM).
We study their role in the distribution of photoelectrons and their contribution to the
double-to-single cross section ratio R0(ω) = σ++(ω)/σ+(ω), analyzing their depen-
dence on the nuclear charge. We suggest the perturbative model for the desctiption
of correlations between the bound electrons in which the electron interactions are
treated perturbatively, while their interactions with the nucleus are included exactly
[14]. Special attention is devoted to the quasifree mechanism, which was also first
considered in [14]. The QFM is at work only beyond the dipole approximation.
It manifested itself in experiments on the recoil momentum distribution at photon
energies ω ≈ 800 eV [15]. It modifies the shape of the spectral curve at energies
of several keV. We demonstrate that the approximate wave functions employed in
computations of the spectrum at these energies should satisfy the second Kato cusp
condition. Otherwise, they can yield a qualitatively incorrect result. At energies of
several hundred keV, the QFM dominates in large part of the energy distribution
of the photoelectrons. It is also the main mechanism of breaking the nonrelativistic
high-energy asymptotics of the ratio R0(ω).

In Chap.10, we study photoionization of fullerenes and of fullerenes with encap-
sulated atoms. We present the calculation for the photoionization cross section of
negative ions C−

60, describing the field of the fullerene shell by the Dirac bubble
potential. Investigation of dependence of the high-energy asymptotics on the shape
of the model potential is carried out. We analyze the photoionization of atom encap-
sulated into the fullerene. The energy-dependence of the cross section may differ
fundamentally from that for an isolated atom due to interference of the outgoing
electron wave with that reflected by the fullerene shell [16]. We analyze the inelastic
processes in the fullerene shell that accompany the photoionization of the encapsu-
lated atom. It appears to be possible to sum the perturbative series for photoelectron
interaction with the fullerene shell [17]. The probability of inelastic processes was
found to be close to unity in the large interval of the photon energies.

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_10
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Since electron and positron scattering on atoms is analyzed in detail in numer-
ous books, we do not consider those processes in our book (although some aspects
of electron scattering by atoms are touched on). In Chap.11, we analyze various
channels for annihilation of positrons with atomic electrons. Since in the annihi-
lation process a large energy exceeding 1 MeV is released, relativistic analysis is
required even in the case of slow positrons. Employing the results of Chap.6, we
study the dominative two-photon annihilation process on the Bethe ridge including
the contributions of order α2Z2. Using the results of Chap. 4, we investigate this
process outside the Bethe ridge. We calculate the characteristics of single-quantum
annihilation and of annihilation followed by the knockout of a bound electron to the
continuum. In the latter case, the role of the QFM mechanism described in Chap.9
is important [18]. We consider also annihilation followed by creation of μ+μ− pair
and annihilation accompanied by the creation of mesoatom.

InChap.12,we consider themutual influence of nuclear and electronic transitions.
We investigate the influence of the electronic shell on the energy distribution of
electrons ejected in nuclear β decay, employing the approach presented in Chap.3.
We demonstrate how the considered effects manifest themselves in experiments on
detection of the neutrino mass. We show how the analysis of interactions between
the beta electron and the bound electron in the decay of tritium helped to solve the
“heavy neutrino” problem. We present the results for probabilities of the creation of
vacancies in the atomic shell inβ− andβ+ nuclear decays [19]. For the case of nuclear
γ decays, we analyze the calculations of probabilities of internal nuclear conversion.
Using the perturbative model developed in Chap.9, we calculate the probability
for ejection of two electrons from the electronic shell during the same nuclear γ

transition. Employing the results obtained in Chap.4, we clarify the mechanism and
calculate the cross section for the nonresonant photoexcitation of the nucleus. We
also present an analysis of the less-explored influence of the electronic shell on the
probability of α decay.
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Chapter 2
Box of Tools

Abstract Here we introduce the system of units. We recall the main equations of
nonrelativistic quantum mechanics and quantum electrodynamics that we employ
in this book. We single out two regions for the values of the recoil momentum. In
the region of small recoil momentum called the “Bethe ridge,” the characteristics
of a process with participation of the bound electrons are expressed in terms of the
process on the free electrons. The electron functions at large recoil momenta are
calculated using the Lippmann–Schwinger equation.

2.1 Wave Functions and Propagators

2.1.1 System of Units

Weemploy a system of units that is convenient for both nonrelativistic and relativistic
problems. We put � = 1 and also measure velocities in units of the velocity of light
c, putting c = 1. The fine-structure constant is α = 1/137, and the square of the
electron charge is e2 = α. In this system of units, the nonrelativistic binding energy
of the ground state of a hydrogen atom is

I = mα2

2
, (2.1)

with m ≈ 511 keV standing for the electron mass. The energy I is 1 Rydberg (Ry)
≈ 13.6eV. The atomic unit of energy (one Hartree) is thus 2I .

The nonrelativistic binding energy for the ground state of a single-electron ion
with the nucleus of charge Z is thus

IZ = η2

2m
, I1 = I, (2.2)

with
η = mαZ . (2.3)
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8 2 Box of Tools

Hence, η has the meaning of the average linear momentum of the 1s electron.
The three-dimensional momentum k of the photon carrying the energy ω is just

k = ω. (2.4)

For any four-vectors a = (a0, a) and b = (b0,b), we define the scalar product as
a · b = a0b0 − a · b. A free electron is described by the four-momentum p = (E,p)

with E2 − p2 = m2. The kinetic energy is ε̂ = (m2 + p2)1/2 − m. Its lowest-order
nonvanishing term of expansion in powers of p2/m2 is the nonrelativistic energy
ε = p2/2m.

2.1.2 Some Aspects of Quantum Electrodynamics

Herewe recall some points of quantumelectrodynamics (QED) thatwill be employed
in this book.We do not give detailed derivations, since they are contained in a number
of books on QED [1–3].

We denote the single-particle wave function of the electron in the state with the
set of quantum numbers x in position space by ψx (r). Its Fourier transform

ψ̃x (f) =
∫

d3rψx (r)e−if ·r (2.5)

can be viewed as the wave function of the same state in momentum space. Unless
it is needed to avoid a misunderstanding, we omit the tilde for wave functions in
momentum space.

In the nonrelativistic case, the bound-state wave functions are normalized by the
condition ∫

d3r |ψb(r)|2 = 1, (2.6)

and thus ∫
d3 f

(2π)3
|ψb(f)|2 = 1. (2.7)

The functions of the continuum states with the asymptotic momenta p,p′ are
normalized by the condition

∫
d3rψ∗

p (r)ψp′(r) = (2π)3δ(p − p′), (2.8)

and thus ∫
d3 f

(2π)3
ψ∗

p (f)ψp′(f) = (2π)3δ(p − p′). (2.9)
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For the free dynamics, we have

ψp(r) = ψ(0)
p (r) = ei(p·r)ζ ; ψ(0)

p (f) = (2π)3δ(p − f)ζ. (2.10)

Here ζ is the two-component spinor χ , χ∗χ = 1. The spinors χ+ =
(
1
0

)
and

χ− =
(
0
1

)
describe two possible projections of the electron spin ±1/2 on a chosen

axis. We also use the notation
|ψ(0)

p 〉 = |p〉ζ. (2.11)

It is employed for both the nonrelativistic and relativistic cases.
In the relativistic case, the wave functions ψ are the four-component spinors.

For these functions, we have (2.6)–(2.9) with complex conjugation changed to Her-
mitian conjugation. The free motion is described by the function given by (2.10) with
ζ = u/(2E)1/2, where u is the Dirac bispinor. The explicit form of the bispinor u
depends on the form of the presentation of the Dirac 4 × 4 γ matrices. We employ
the “standard” presentation

γ0 =
(
I 0
0 −I

)
; γ =

(
0 σ

−σ 0

)
, (2.12)

where I and σ are the 2 × 2 unit matrix and the Pauli matrices

I =
(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.13)

The products of the γ matrices can be evaluated by employing the commutation
relation

γμγν + γνγμ = 2gμν, (2.14)

with gμν = 0 for μ �= ν, g00 = 1, gi j = −δi j for i, j = 1, 2, 3. We shall need one
more matrix, namely

γ5 =
(

0 −I
−I 0

)
. (2.15)

Note that sometimes γ5 is defined with the opposite sign.
We use also the 4 × 4 matrices

β = γ0; α = γ0γ =
(
0 σ

σ 0

)
. (2.16)

In the standard presentation theDirac bispinor u(p) = u(E,p) for the freemotion
and its Dirac conjugated partner ū = u+γ0 are
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u(E,p) = cE

(
χ

σ ·p
E+mχ

)
, ū(E,p) = cE

(
χ∗, −χ∗ σ ·p

E+m

)
. (2.17)

The coefficient cE is determined by the normalization condition for the bispinor
u. The relativistic-invariant condition

ūu = 2m (2.18)

corresponds to normalization of the wave function to one particle per unit of volume.
It leads to cE = √

E + m.
The bispinors u and ū at p = (E,p) can be expressed in terms of the bispinors

describing the electron at rest. Introducing

p̂ ≡
∑

μ

pμγμ =
∑

μ

pμγ μ, (2.19)

we write the Dirac equations for the free electron

( p̂ − m)u = 0; ū( p̂ − m) = 0, (2.20)

or (
α · p + βm

)
u = Eu; ū

(
− α · p + βm

)
= ūE . (2.21)

Note that these equations for ū are written for real components of the four-vector
p. We obtain also

u(E,p) =
√

E + m

2m

(
1 + α · p

E + m

)
u0; ū(E,p) =

√
E + m

2m
ū0

(
1 − α · p

E + m

)
,

(2.22)
with u0 = u(m, 0) describing the electron at rest.

We shall analyze the interaction of the bound systems with external electromag-
netic fields, which can be treated as a system of photons. The electric and magnetic
fields can be expressed in terms of the four-dimensional vector potential Aμ. In the
electromagnetic wave we can put A0 = 0 and A · k = 0, since the electric and mag-
netic fields are orthogonal to the direction of propagation of the wave. Thus a photon
carrying momentum k and energy ω = |k| can be described by the “wave function”

Ai (r) =
√
4π√
2ω

ei e
ikr; i = 1, 2, 3; e · k = 0 (2.23)

with the polarization vector e directed along the electric field in the wave. In momen-
tum representation, we have

Ai (f) =
√
4π√
2ω

eiδ(f − k); i = 1, 2, 3; e · k = 0. (2.24)
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Now we present the equations for the electron propagator, starting with the non-
relativistic case. The wave equation in the field V (r) can be written as

Hψ = εψ, (2.25)

with
H = H (0)(r) + V (r), (2.26)

while H (0)(r) = −Δ2
r /2m is theHamiltonian of the free particle. TheGreen function,

which is determined as
G = (ε − H)−1, (2.27)

satisfies the equation

(H (0)(r) + V (r) − ε)G(ε; r, r′) = −δ(r − r′). (2.28)

We employ also the notation G(p), where p = (2mε)1/2 will be referred to as the
momentum of the Green function.

In the case of free motion, when V = 0, the matrix element of the Green function
G0 takes a very simple form in momentum representation:

〈f1|G0(p)|f2〉 = G0(p, f1)δ(f1 − f2); G0(p, f1) = 1

ε − f 21 /2m + iδ
= (2.29)

= 2m

p2 − f 21 + iδ
; ε = p2

2m
; δ → 0.

The solutions of (2.25), i.e., the functions ψk for which Hψk = εkψk , form a
complete set. They describe the states of a discrete spectrum with εk < 0 and the
continuum states with ε ≥ 0. The Green function of (2.25) can be represented in
terms of its eigenfunctions

G = Sk
|ψk〉〈ψk |

ε − εk + iδ
; δ → 0. (2.30)

Here Sk denotes the sum and integration over the eigenstates of (2.25) of the
discrete and continuum spectra correspondingle.

In the relativistic case, the wave equation (the Dirac equation) of the free motion
in momentum representation is

( p̂ − m)ψ(p) = 0. (2.31)

In the spatial representation, it is

( p̂ − m)ψ(x) = 0, (2.32)
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with

p0 = i
∂

∂x0
; pi = −i∇i . (2.33)

The Green function is the solution of the equation

( p̂ − m)G(0)(x, x ′) = −δ(4)(x − x ′). (2.34)

In momentum representation,

G(0)(p) = 1

p̂ − m
, (2.35)

and

〈f1|G(0)(E)|f2〉 = p̂ + m

p2 − m2 + iδ
δ(f1 − f2), δ → 0, (2.36)

with the four-momentum p = (E, f1). While in the nonrelativistic case we did not
need to clarify the origin of the external field V , in the relativistic case the electro-
magnetic external field can be expressed in terms of a four-vector potential Aμ(x).
The Dirac equations describing the wave functions and the propagator of a fermion
with charge e (for an electron, e = −|e|) in an external electromagnetic field can be
obtained by replacing pμ → pμ − eAμ in the corresponding equations of the free
motion.

The spectrum of the Dirac equation is more complicated than that of the
Schrödinger equation. Besides the solutions ψ

(+)
k corresponding to the eigenval-

ues E+ > 0 (the states of the discrete spectrum with E+ < m and those of the
continuum with E+ ≥ m), there are solutions ψ

(−)
k with eigenvalues E−

k < 0. The
states ψ

(+)
k and ψ

(−)
k form a complete set. The relativistic propagator in an external

electromagnetic field takes the form

G = Sk
|ψ(+)

k 〉〈ψ(+)
k |

E − E+
k + iδ

+ Sk
|ψ(−)

k 〉〈ψ(−)
k |

E − E−
k − iδ

; δ → 0. (2.37)

The electron interaction with the electromagnetic field is described by the
amplitude

F = e
∫

d3x Aμ(x) jμ(x), (2.38)

with the matrix element of the current

jμ(x) = ψ̄ f (x)γ
μψi (x). (2.39)
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The current is conserved, and it satisfies the equation

∂μ jμ(x) = 0. (2.40)

Employing (2.24), we find that in momentum representation,

F = −N (ω)ek

∫
d3 f

(2π)3
ψ̄ f (f)γ kψi (f − k), (2.41)

with

N (ω) =
√
4πα

2ω
. (2.42)

The interaction of two free electrons in which their four-momenta p1 and p2
change to p′

1 and p′
2 (p1 + p2 = p′

1 + p′
2) is described by the amplitude

F = 1√
2
[ jμ(p1, p

′
1)Dμν(Q) jν(p2, p

′
2) − (p2 ↔ p′

2)]; Q = p1 − p′
1 = p′

2 − p2.

(2.43)

One can check the conservation laws Qμ jμ(p1, p′
1) = 0 and Qμ jμ

(p2, p′
2) = 0. The general form of the photon propagator Dμν(Q) is

Dμν(Q) = gμνD(Q2) + QμQν

Q2
D(�)(Q2). (2.44)

The function D(Q2) is the Fourier transform of the function D(x) that satisfies
the equation

∂

∂xα

∂

∂xα

D(x − x ′) = −4πδ(4)(x − x ′), (2.45)

i.e.,

D(Q2) = − 4π

Q2 + iδ
; δ → 0, (2.46)

while D(�) can be any scalar function of Q2. Due to the conservation of the current
j , the second term on the right-hand side (RHS) of (2.44) does not contribute to the
amplitude F .

Thus we can put

Dμν(Q) = DF
μν(Q) = −gμν

4π

Q2 + iδ
, (2.47)

corresponding to the Feynman gauge.
Due to conservation of the current, any function of the form

Dμν(Q) = DF
μν(Q) + Qμχν(Q) + χμ(Q)Qν (2.48)
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can be employed as the photon propagator. We demonstrated this, taking the scatter-
ing of the plane waves as an example. However, this can be shown in the general case
in which the electrons are moving in an external field. If χν(Q) on the RHS of (2.48)
is a four-vector, the propagator Dμν has a relativistic-invariant form. Otherwise, it
does not. The form (2.47) is known as the Feynman gauge (this explains the upper
index F). Setting Q = (ω,q), q = |q|, and putting

χ0 = 2πω

Q2q2
; χi = 2πqi

Q2q2
; χμ = 2πQμ

Q2q2
Q2 = ω2 − q2, (2.49)

we obtain the Coulomb gauge

DC
00 = 4π

q2
; DC

i j = 4π

Q2 + iδ
(δi j − qiq j

q2
); DC

0i = DC
i0 = 0; i, j = 1, 2, 3.

(2.50)
A number of other gauges are often used in applications. Choosing

χ0 = 2π

ωQ2
; χi = −2πqi

ω2q2
,

we obtain the propagator with

D00 = D0i = Di0 = 0; Di j = 4π

Q2 + iδ
(δi j − qiq j

ω2
), (2.51)

corresponding to the condition A0 = 0. Note also that the equations for the current
hold for any charged fermion.

If the initial-state wave functions ψi and the final-state wave functions ψ f in
(2.39) for the current are taken in the nonrelativistic limit, only the time component
of the current j0 obtains a nonvanishing value. Thus if at least one of the colliding
fermions can be treated in nonrelativistic approximation and the Coulomb gauge
is used for the photon propagator, only the time component DC

00 contributes to the
amplitude of a process. In particular, only the component DC

00 should be included in
interactions between the electrons and the nucleus, which we assume to be infinitely
heavy.

Note that the invariance of the amplitude under transformation expressed by (2.48)
is based on the fundamental feature of quantum electrodynamics (QED) known as
the local gauge symmetry. The density of the QED Lagrangian (usually called just
the Lagrangian) can be written as the sum of the Lagrangian of free electrons Le, the
Lagrangian of the electromagnetic field Lem , and the Lagrangian of their interaction

L = Le + Lem + Lint . (2.52)
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Writing

Le = ψ̄(x)(iγ μ∂μ − m)ψ(x); Lem = −1

4
F2

μν; Lint = −eψ̄(x)γ μAμ(x)ψ(x)

(2.53)

(Fμν = ∂μAν − ∂ν Aμ), one can see that the Lagrangian is invariant under the simul-
taneous transformations

ψ(x) → eieλ(x)ψ(x); ψ̄(x) → e−ieλ(x)ψ̄(x); Aμ(x) → Aμ(x) − ∂μλ(x).
(2.54)

Note that the terms Le and Lem treated separately change after this transformation.
One can begin with the Lagrangian of free electrons, requiring, however, local gauge
invariance. This will lead to the necessity to introduce the electromagnetic field [4].

2.1.3 The Lippmann–Schwinger Equation

Along with the standard methods of atomic physics, we shall use the Lippmann–
Schwinger equation (LSE); see, e.g., [5]. We show that the LSE is a good tool for
analysis of high-energy processes.

In the nonrelativistic case, the LSE connects the solutions of the Schrödinger
equations

H0ψ0 = εψ0 (2.55)

and
(H0 + V )ψ = εψ . (2.56)

Here H0 is not necessarily the Hamiltonian of the free motion. It can include
certain interactions, but not V . The LSE for the wave function can be obtained in a
straightforward way:

ψ = ψ0 + G0(ε)Vψ. (2.57)

It can also be written in the form

ψ = ψ0 + G(ε)Vψ0, (2.58)

with G the Green function of (2.56). On the other hand, the LSEs for G are

G(ε) = G0(ε) + G0(ε)VG(ε); G(ε) = G0(ε) + G(ε)VG0(ε). (2.59)

The LSE is illustrated by Fig. 2.1.
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Fig. 2.1 Illustration of the Lippmann–Schwinger equation. The solid lines represents the electron.
The dark blob denotes the external field. Dashed lines are for the external field in the lowest order.

One can write analogues of (2.57)–(2.59) for a light relativistic fermion moving
in the field of an infinitely heavy nucleus. In the Coulomb gauge, only the time
component of the current and the interaction Aμ jμ = ψ̄ f γ0ψi A0 contribute. Thus
the Dirac equation takes the form

( p̂ − V̂ − m)ψ = 0; G = 1

p̂ − V̂ − m
; V̂ = γ0V . (2.60)

Employing (2.35), we obtain the LSE equations

ψ = ψ(0) + G(0)(E)V̂ψ; ψ = ψ(0)(E) + G(E)V̂ψ(0), (2.61)

and

G(E) = G(0)(E) + G(0)(E)V̂ G(E); G(E) = G(0)(E) + G(E)V̂ G(0)(E).

(2.62)

Note that calculations in the nonrelativistic approximation are usually simpler
than in the relativistic case. The main simplification consists in separation of the spin
variables. Indeed, in the relativistic Hamiltonian

H = α · (p − eA) + βm + eA0, (2.63)

the space and spin variables are mixed. The corresponding nonrelativistic Hamil-
tonian

Hnr = (p − eA)2

2m
+ eA0 (2.64)

does not involve the spin variables. Thus, in the nonrelativistic approximation for the
continuum electron, i.e., in the lowest nonvanishing terms of the expansion in powers
of v2 = p2/E2, the spin variables are separated. In the many-electron wave function,
they form a symmetric or antisymmetric factor, ensuring the total antisymmetry of
the state. The nonrelativistic description of the bound electrons is justified if the
average momentum of the bound state μb is small enough. The average momentum
is defined as

μb = (2mIb)
1/2, (2.65)
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where Ib = −εb, while εb < 0 is the single-particle energy of the bound state. The
nonrelativistic approach is possible if μb � m. In fact, usually the condition is Ib �
m. Note that for the electrons of the 1s state of the hydrogenlike ions, this means that

(αZ)2 � 1. (2.66)

Thus the processes that involve the 1s states of heavy atoms require additional
analysis.

2.2 Two Scales of Momenta

We start this subsection with the analysis of Compton scattering on a bound electron.
However, we shall come to more general conclusions at the end.

2.2.1 Differential Cross Sections for Bound and Free
Electrons

The photon carrying momentum k1 and energy ω1 = |k1| is scattered by atom with
the charge of the nucleus Z . A bound electron is knocked out into the continuum,
obtaining asymptotic momentum p and energy E , while the kinetic energy is ε̂ =
E − m. The ejected photon carries momentum k2 and energy ω2 = |k2|.

The cross section of the process can be written as

dσ = 2π |F(k1,k2,p)|2δ(ω1 + Eb − E − ω2)
d3 p

(2π)3

d3k2
(2π)3

. (2.67)

Here F is the amplitude of the process (it includes the normalization factors
of the wave functions), averaging and summation over the initial- and final-state
polarizations are assumed, and Eb = m + εb(εb < 0) is the energy of the bound state.
The atom is assumed to be initially at rest. We assume its nucleus to be infinitely
heavy and thus neglect its recoil kinetic energy.

It is instructive to compare this cross section with that for Compton scattering on
a free electron. In the rest frame of the latter,

dσ0 = 2π |F0(k1,k2)|2δ(ω1 + m − E − ω2)δ(k1 − k2 − p)
d3 p

(2π)3

d3k2
(2π)3

, (2.68)

where F0(k1,k2) = F0(k1,k2,p = k1 − k2) is the amplitude of the Compton scat-
tering on the free electron.

We denote
q = p + k2 − k1. (2.69)
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Amomentumq is transferred from the nucleus. It is often called the recoilmomen-
tum. In the process with free electrons, q = 0.

Compton scattering on the free electron can take place in a limited region of the
phase volume. For example, in the case ω1 � m, the scattered photon carries the
largest part of the energy ω1. Conservation of energy and of momentum

ω1 = ω2 + ε; k1 = k2 + p,

with ε = p2/2m requires that ω1 − ω2 ≤ ω1 · ω1/m � ω1. In the general case,

ω1 ≥ ω2 ≥ ω1

1 + 2ω1/m
. (2.70)

Otherwise, the condition q = 0 cannot be satisfied.
Now we focus on the case ω1 � m, when nonrelativistic description of the elec-

trons is possible. The results can be easily generalized for the case of larger energies.
Let us write (2.67) in another way:

dσ = 2π |F(k1,k2,q)|2δ(ω1 − εb − (k1 − k2 + q)2/2m − ω2)
d3q

(2π)3

d3k2
(2π)3

.

(2.71)

We consider the case in which the energies of both the incoming and ejected
photons ω1,2 and the energy of the outgoing electron ε are much larger than the
ionization potential IZ of the K -shell electron in a hydrogenlike atom with the same
nuclear charge Z ; (2.2).

ω1,2 � IZ ; ε � IZ . (2.72)

This ensures that
ω1,2 � Ib; ε � Ib . (2.73)

We shall calculate the characteristics of the process in the lowest order of expan-
sion in powers of (IZ/ω1,2)

1/2 � 1.
The average momentum of the bound electron (2.65) is thus a natural scale for

the electron momenta. For 1s electron in the Coulomb field,

μb = η, (2.74)

with η defined by (2.3).
Now we consider two regions of the values of the recoil momenta q = |q|. These

are q <∼ μb and q � μb.
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2.2.2 The Bethe Ridge

In the region of small recoil momenta q <∼ μb, we keep q only in the wave function
of the bound electron, putting q = 0 in the continuum electron wave function and
propagators. This is possible, since the amplitude F contains the continuum electron
wave function with momentum p and the electron propagators with momenta p1 =
(2mω1)

1/2, p2 = i(2mω2)
1/2.We can put q = 0 also in the argument of the δ function

in (2.71). (The region ω1 − ω2 ∼ Ib requires a special analysis.)
In the Coulomb field, the electron continuum wave functions and the propagators

can be expanded in powers of η/p and η/|pi |, i = 1, 2. The lowest-order terms of
these expansions describe the free motion. The accuracy of this approximation will
be discussed in Chap.3. In the many-electron atom, the field is still long-range, just
being weaker due to the screening. Thus the approximation becomes better in this
case. Hence, assuming that the bound electrons are described by single-particle wave
functions ψ , we can write

F(k1,k2,q) = ψ(q)F0(k1,k2), (2.75)

where F0 is the amplitude of the process on the free electron. Thus for q <∼ μb, we
obtain [6]

dσ

dΩ2d3q
= ψ2(q)

dσ0

dΩ2
, (2.76)

where the last factor stands for the angular distribution of the free process. Similarly,

dσ

dω2d3q
= ψ2(q)

dσ0

dω2
. (2.77)

Hence

dσ

dΩ2
= dσ0

dΩ2

∫
d3q

(2π)3
ψ2(q),

dσ

dω2
= dσ0

dω2

∫
d3q

(2π)3
ψ2(q), (2.78)

with the integration over q carried out in the region q <∼ μb. As we shall see, the
integrals over all possible q, which are determined by the normalization condition
(2.7), are saturated by q <∼ μb:

∫

q<∼μb

d3q

(2π)3
ψ2(q) =

∫

0<q<∞

d3q

(2π)3
ψ2(q) = 1. (2.79)

One can see that (2.75)–(2.79) hold for every process in which the transferred
momentum can be made small if the amplitude of the free process F0 has no singu-
larities in the physical region. Otherwise, expansion in powers of q is impossible in
the vicinity of the singularity. The case of singular amplitudes will be analyzed in
Chap.4.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Employing (2.79), we can write

dσ

dΩ2
= dσ0

dΩ2
,

dσ

dω2
= dσ0

dω2
, (2.80)

for the photon energies determined by (2.73) [6].
Thus in the regionwhere transfer of smallmomentum q is possible, the differential

cross sections for the Compton scattering on the bound electron are equal to those
on the free electrons. This is true for every process that is allowed on a single bound
electron. If a process is impossible for a single free electron but is possible for two of
them, the differential cross sections take amore complicated form, yielding additional
factors; see Chap.9. In this region, the differential cross sections are determined by
smallmomenta transferred to the recoil atom.Weshall call this aquasifreemechanism
(QFM).The amplitude of a process considered as a functionof the kinematic variables
reaches its largest values in the region where q <∼ μb. This region will be referred
to as the Bethe ridge [7]. It peaks at q = 0. This condition corresponds to the free
kinematics.

Consider, for example, the Compton scattering of photons on the ground state of
the hydrogen atom. The photon energy ω1 is assumed to be high, but the wavelength
is much larger than the characteristic size of the 1s state. This means that I =
η2/2m � ω1 � η with η = mα. In other words, 10eV � ω1 � 4keV. The Bethe
ridge condition q <∼ η requires that p <∼ η, i.e., the electron energy ε <∼ I = 13.6eV.

The electron distributions do not always obtain their largest values at the Bethe
ridge. Those values can be local maxima, since there can be other mechanisms of
enhancement. The most instructive examples will be given in Chap.9.

For a single-particle process, the contribution of the QFM to the total cross section
coincides with the cross section of the process for a free electron,

σ QFM(ω) = σ 0(ω) . (2.81)

What is the role of the QFM in Compton scattering, which we consider as an
example? The answer depends on an accurate definition of the value that we wish
to calculate. According to Low’s theorem [8], the distribution dσ/dω2 behaves as
1/ω2 at ω2 → 0. Hence, in the soft photon part of the spectrum, far away from the
Bethe ridge, the cross section is also enhanced. The cross section is that

σ =
∫
0
dω2

dσ

dω2

diverges. We can calculate the value

σ(ω0) =
∫

ω0

dω2
dσ

dω2

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9


2.2 Two Scales of Momenta 21

for every finite value of ω0. The contribution of the soft photon part of the spectrum
thus contains the “large logarithm” ln(ω1/ω0). The relative importance of the QFM
and soft photon emission thus depends on the value of ω0.

The value ω0 = 0 corresponds to the situation in which no photons are emitted. It
is demonstrated in Chap.7 of the book [1] (using the example of electron–electron
scattering) that the sum of the cross sections of the process with no photon emitted,
but with inclusion of the lowest-order radiative correction and the same process with
emission of the soft photon (in the general case one can consider arbitrary number
of the soft photons) yields a finite value, and there is no “large logarithm.” In the
same way, for Compton scattering, the sum of the photoionization cross section with
inclusion of the radiative correction and the cross section of the soft photon emission
yields a finite value.

In similar way, we expect the QFM to provide the leading contribution to the
processes that can take place for a single free electron. We shall see in Chap. 9 that,
e.g., in double photoionization, the situation is more complicated. The relative role
of the QFM depends on the value of the photon energy.

2.2.3 Transfer of Large Momenta

Large momentum q can be transferred to the nucleus by any electron participating
in the process. We begin with calculation of the wave function of a bound state ψ(q)

for q � μb.
In the case q � m, we can employ a nonrelativistic approximation. Using the

LSE equation (2.57) with ψ(0) = 0, we obtain

ψ(q) =
∫

d3 f

(2π)3

d3 f1
(2π)3

〈q|G0(εb)|f〉〈f |V |f1〉ψ(f1). (2.82)

Here V is the sum of interactions of the electron with the nucleus and with the
electrons of the atomic shell:

V = VeN + Vee . (2.83)

Carrying out integration over f , we obtain

ψ(q) = −2m

q2

∫
d3 f1
(2π)3

〈q|V |f1〉ψ(f1) (2.84)

for q � μb.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_9
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Consider first the interaction with the nucleus, i.e., put V = VeN on the RHS of
(2.84). Its matrix elements are

〈r|VeN |r1〉 = −αZδ(r − r1)
r

, 〈q|VeN |f1〉 = −4παZ

(q − f1)2
. (2.85)

Since the integral on the right-hand side is saturated at f1 ∼ μb, thematrix element
〈q|VeN |f1〉 is approximately equal to 〈q|VeN |0〉 = −4παZ/q2. Thus the contribution
of the electron–nucleus interaction VeN to the wave function ψ(q) decreases at least
as q−4 at large q. If a large momentum q is transferred to the electrons of the atomic
shell, the wave function of the latter at q � μb will be involved, causing additional
powers of q−2. Hence, if largemomentum q is transferred to the atom, it is transferred
to the nucleus. In otherwords, if the electron is close to the nucleus, it interactsmainly
with the nucleus. Thus for calculation of the leading terms of order q−2 of the function
ψ(q), it is sufficient to put V = VeN on the RHS of (2.82) and (2.84).

Thus for bound s electrons, we can put 〈q|V |f1〉 = −4παZ/q2. This provides

ψ̃(q � μb) = 8πη

q4

∫
d3 f

(2π)3
ψ̃(f) = 8πη

q4
ψ(r = 0). (2.86)

For the electrons with a nonzero orbital momentum, we have ψ(r = 0) = 0, and
one cannot neglect f1 in the matrix element 〈q|V |f1〉. We can evaluate

∫
d3 f1
(2π)3

〈q|VeN |f1〉ψ(f1) = −αZ
∫

d3r
ψ(r)
r

e−iq·r. (2.87)

Thus the general expression, valid for every value of the orbital momentum �, is

ψ̃n�m(q � μb) = 2η

q2
κn�m(q), (2.88)

where

κn�m(q) =
∫

d3r
ψn�m(r)

r
e−iq·r. (2.89)

Since the integral on the RHS of (2.89) is saturated at r ∼ 1/q � 1/μb, we can
calculate it for s states just putting ψ(r) = ψ(0). This provides κ = 4π/q2, and we
obtain (2.86). For � = 1, the wave function of the state with projection of the orbital
momentum �z = m (m = ±1, 0), can be written as

ψn1m(r) =
√

3

4π
rmχn1(r). (2.90)
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Fig. 2.2 Illustration for
(2.92)–(2.95). The notation
is the same as in Fig. 2.1.

Here χ(0) �= 0, and the radial part of the wave function ψn1m(r) is Rn1(r) =
rχn1(r). Putting χn1(r) = χn1(0), we obtain

κn1m(q) = −i

√
3

4π
qm · 8πχn1(0)

q4
. (2.91)

One can see that for � �= 0, one needs the �th partial wave of the matrix element
〈q|VeN |f1〉 to obtain a nonzero value of κ . Thus for the bound state with orbital
momentum �, we can estimate κ ∼ q−2−� and ψ(q � μb) ∼ q−4−�.

One can write similar equations for the continuumwave function with asymptotic
momentum p, p <∼ μb:

ψ̃p(q � μb) = 8πη

q4

∫
d3 f

(2π)3
ψ̃(f) = 8πη

q4
ψp(r = 0). (2.92)

These expressions for ψ̃(q � μb), illustrated by Fig. 2.2, have a clear physical
meaning. The bound electron exchanges an infinite number of quanta with momenta
f ∼ μb with the nucleus and with the other electrons of the atom. There is only one
exchange of the “hard” quantum carrying large momentum q � μb. Exchange by a
larger number of hard quanta leads to additional suppression by the powers of μb/q.
In other words, exchange of hard quanta can be included perturbatively.

We turn now to the case in which the values of the recoil momenta can be as large
as q ∼ m. One should employ the relativistic equation (2.61):

ψrel(q) =
∫

d3 f

(2π)3

d3 f1
(2π)3

〈q|Grel
0 (Eb)|f〉〈f |V |f1〉γ0ψrel(f1), E = m − εb.

(2.93)
In the lowest order of expansion in powers of εb/m (for the ground state of the

Coulomb field, this parameter is α2Z2/2), we can put Eb = m in the propagator
Grel

0 (Eb) on the RHS, replacing also the relativistic wave function ψrel(f1) by a
nonrelativistic one. This provides for s states

ψ(q) = 8πη

q4

(
1 − αq

2m

)
ψ(r = 0)u0. (2.94)
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Here u0 = u(m, 0) (see (2.22)), while ψ(r = 0) is the value of the nonrelativistic
wave function at the origin. For a bound state with orbital momentum �,

ψ(q) = 2η

q2

(
1 − αq

2m

)
κn�u0. (2.95)

These equations can also be illustrated by Fig. 2.2.
Thus at q � μb, the differential cross sections dσ/dω2d3q and dσ/dΩ2d3q are

quenched at least as (q2)−3. This quenching is so strong that one can assume that
integration over q in (2.78) is carried out over the whole space; (2.79).
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Chapter 3
Perturbation Theory

Abstract We show that the interaction between a fast continuum electron with the
nucleus can be described in perturbation theory. For processes on the Bethe ridge
the plane wave can be the lowest-order approximation. For processes outside the
Bethe ridge, the lowest-order approximation should include one interaction between
the electron and the nucleus. We demonstrate that the interaction between the fast
electron and the electrons bound in the atom (final-state interactions, abbreviated
as FSI) can be presented as power series of the Sommerfeld parameter ξee. The
lowest-order FSI corrections to the cross sections are of order ξ 2

ee. In order to find
them, one should calculate the FSI amplitude up to the second order in ξee. The
infrared divergent terms emerging in the intermediate steps cancel automatically in
the expressions for the cross sections.

3.1 Interaction of the Fast Electron and the Nucleus

3.1.1 Lowest-Order Correction

We consider the motion of the electron with the asymptotic momentum p in the field
of the nucleus V . For V = 0, the wave functions are just the plane waves, given by
(2.10). Now we calculate the correction caused by a single act of interaction.

We start with the nonrelativistic case, when the kinetic energy of the electron is
ε = p2/2m � m. Employing the LSE equation (2.57), we find that the lowest-order
correction is

〈f |ψ(1)
p 〉 =

∫
d3q

(2π)3

〈f |q〉〈q|V |p〉
p2/2m − q2/2m + iδ

; δ → 0. (3.1)

Of course, one could have written immediately

ψ(1)
p (f) = 〈f |V |p〉

p2/2m − f 2/2m + iδ
. (3.2)
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However, we presented the intermediate (3.1) in order to show that it is very much
like the standard expression for the lowest-order correction provided by quantum
mechanics. The standard form for the latter is (see, e.g., [1])

|ψ(1)
n 〉 = S ′

m |ψ0
m〉 〈ψ

0
m |V |ψ0

n 〉
εn − εm

. (3.3)

Here |ψ0
m〉 are the solutions of the wave equation H0ψ = εψ , where the Hamil-

tonian H0 is not necessarily that of the free motion. In the general case, it can have
both continuum and discrete spectra; S denotes integration over the continuum
states and the summation over the states of the discrete spectra. The prime means
that the states with εm = εn are excluded. If H0 is the Hamiltonian of free motion, it
has only the continuum spectrum with εq = q2/2m.

We present the Coulomb field of the nucleus with charge Z as

V (r) = −αZ
e−λr

r
; λ → 0, (3.4)

and a little bit later, we shall explain the reasons. In momentum space

〈f |V |p〉 = −4παZ

κ2 + λ2
, (3.5)

where
κ = f − p. (3.6)

Employing (3.2), we can write

ψ(1)
p (f) = 4παZ

κ2 + λ2
· 2m

2p · κ + κ2 − iδ
, (3.7)

with κ defined by (3.6).
In the relativistic case

ψ(1)
p (f) = 4παZ

κ2 + λ2
· ( p̂ + κ̂ ′ + m)γ0u(p)

2p · κ + κ2 − iδ
(3.8)

with κ ′ = (0, κ). Using the commutation relations expressed by (2.14) and equations
of motion (2.20), we obtain

ψ
(1)
p (f) = 4παZ

κ2 + λ2
· 2E

2p · κ + κ2 − iδ
u(p) + ψ ′, ψ ′ = 4παZ

κ2 + λ2
· κ · αu(p)

2p · κ + κ2 − iδ
.

(3.9)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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The first term in this expression forψ(1)
p (f) is similar to the nonrelativistic expres-

sion (3.7) with the electron mass m replaced by its energy E . The second term
requires additional evaluation.

3.1.2 Wave Function of the Continuum State
Electron at the Origin

For the nonrelativistic electron with asymptotic momentum p, the wave function at
the origin is

ψp(r = 0) = N (p) =
∫

d3 f

(2π)3
ψ̃p(f). (3.10)

One can obtain the function N (p) for the nonrelativistic case by iterating the
LSE (2.61). In the lowest approximation, the function ψ̃p(f) is just the plane wave
given by (2.10), and (3.10) provides N (0)(p) = 1. Using (3.7), one can write the
lowest-order correction caused by the field V (r) determined by (3.4):

N (1)(p) =
∫

d3κ

(2π)3
· 4παZ

κ2 + λ2
· 2m

2p · κ + κ2 − iδ
. (3.11)

Carrying out the angular integration, we obtain

N (1)(p) =
∫

κ2dκ

(2π)2
· 4παZ

κ2 + λ2
· m

pκ
· ln κ + 2p − iδ

κ − 2p − iδ
. (3.12)

One can see that the integral on the right-hand side of this equation has both real
and imaginary parts. The former comes from all values of κ . The imaginary part is
provided by κ < 2p, for which the argument of the logarithm runs negative. In the
calculation of the real part, we can safely put λ2 = δ = 0:

N (1)(p) = ξ

π

∫ ∞

0

dκ

κ
· ln κ + 2p

|κ − 2p| = ξ

π

∫ ∞

0

dx

x
ln

x + 1

|x − 1| .

The contribution N (1) is thus determined by momenta κ ∼ p transferred to the
nucleus. The ratio

ξ = mαZ

p
(3.13)

is the parameter of interaction between the electron with asymptotic momentum p
and the nucleus. It is often referred to as the Sommerfeld parameter. One can see
that

ξ 2 = IZ
ε

, (3.14)

with IZ the binding energy of 1s electron in the Coulomb field; see (2.2).

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Employing ∫ ∞

0

dx

x
ln

x + 1

|x − 1| = π2/2,

we obtain
ReN (1)(p) = πξ/2. (3.15)

Thus the validity of the perturbative expansion for the function N (p) requires
much larger energies than those determined by (2.72) and (2.73). The higher-order
terms N (n) can be calculated by further iteration of the LSE [2].

In the relativistic case, one can calculate the lowest-order term Re N (1)(p) using
(3.9) and (3.10). Evaluation of the first term leads to replacement of the electron
mass m in the nonrelativistic expression by the energy E . Evaluation of the second
term provides

Re
∫

d3κ

(2π)3
· κ

κ2 + λ2
· 1

2p · κ + κ2
= cp; c = 1

p2

∫
d3κ

(2π)3
· 1

κ2 + λ2
· κ · p
2p · κ + κ2

.

(3.16)

Direct calculation provides c = 0. Thus in the relativistic case, (3.15) with the
relativistic value

ξ = αZE

p
(3.17)

is true. Of course, (3.13) is the nonrelativistic limit of (3.17). One can write a general
expression for the Sommerfeld parameter that is true for both the nonrelativistic and
relativistic cases:

ξ = αZ

v
, (3.18)

with v = p/E .
Note, however, that an attempt to calculate the second-order contribution N (2)

for the relativistic case would fail. The corresponding integral diverges on the upper
limit. This corresponds to the well-known fact that at (αZ)2 � 1, the relativistic
Coulomb function behaves as r−(αZ)2/2 for r → 0 [3, 4]. Thus it is not finite in this
limit.

The solution of the wave equation can be obtained up to a certain constant factor.
In nonrelativistic quantum mechanics this can be the wave function at the origin.
One can determine the modulus of this factor by the normalization condition. There
is still uncertainty regarding the phase factor. For the nonrelativistic continuumwave
function in the Coulomb field, (3.10) [1], we have

|N (p)|2 = 2πξ

1 − e−2πξ
. (3.19)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Thus

N (p) =
( 2πξ

1 − e−2πξ

)1/2
Φ, (3.20)

where |Φ|2 = 1, and hence
Φ = eiφ . (3.21)

The value of φ may differ in different approaches.
We find from (3.12) that

ImN (1)(p) = ξ

∫
dκ · κ

κ2 + λ2
· θ(2p − κ) = ξ ln 2p/λ, (3.22)

which becomes infinite if λ = 0. This is the infrared singularity, coming from small
κ → 0. It was postulated by Dalitz [5] that the infrared divergent contributions
that appear in each term of the Born series can be summed into a phase factor. The
hypothesis was proved by Gorshkov [6], who demonstrated that in the approach
based on the LSE, the terms containing λ form the factor Φ, (3.21) with

φ = ξ ln(2p/λ) . (3.23)

In the standard formalism of nonrelativistic quantum mechanics one can employ
(3.3). The terms with f 2 = p2, which provide the contributions containing ln λ,
are not included in the sum on the RHS. Thus we obtain φ = 0 and Φ = 1. Note
that each term of the partial wave expansion of the nonrelativistic Coulomb function
contains the finite phase δ� = arg(Γ (� + 1 + iξ)).

While the infrared divergent factors cancel for the processes in the Coulomb field,
a special analysis is needed for superposition of the Coulomb field VC and a short-
range field VH . Consider the elastic scattering in the field V = VC + VH . In the
framework of partial wave analysis, one can separate the purely Coulomb term FC
in the amplitude F :

F = FC + FH . (3.24)

The amplitude FH becomes zero if VH = 0. It can be viewed as the amplitude
of the scattering in the field VH , which includes the Coulomb effects as well; see,
e.g., [7].

In an important special case the field VH can be used for approximation of the
strong interactions. In this case the problem becomes important for studies of the
SU (2) breaking effects in strong interactions.

3.1.3 Inelastic Electron Scattering by Atoms

We consider here the electron collidingwith atom, producing the ion in the final state.
The electronmomentumbefore the collision isp1,while after the collision it isp′

1. The
momentum of the ejected electron is p2. We are considering high-energycollisions
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with electron momenta greatly exceeding the binding electron momentum μb, i.e.,
p1, p′

1, p2 	 μb. This enables us to calculate the amplitude in the Born approx-
imation, including only the lowest-order interaction between the incident electron
and the atom. The interaction with the nucleus does not lead to ionization, while
the interaction with an atomic electron can push the latter into the continuum. We
assume also that the ejected electron moves much slower than the projectile electron,
i.e., p2 � p1, p′

1. Thus we can neglect the exchange contributions and the Coulomb
corrections to the wave function of the projectile electrons. We investigate the effect
on the amplitude of the Coulomb corrections to the wave functions of the ejected
electrons.

To simplify the calculations we consider the nonrelativistic case with p � m.
Momentum q = p1 − p′

1 is transferred to the target atom. The ejected electron
obtains momentum p2, while momentum Q = q − p2 is transferred to the nucleus.
It is convenient to consider the scattering amplitude F as a function of the momenta
q and Q. It can be written as

F = 4πα

q2
X (Q,q); X (Q,q) =

∫
d3 f

(2π)3
ψ∗

p2(f)ψb(f − q). (3.25)

The process is illustrated by the Feynman diagram of Fig. 3.1.
We shall compare the amplitude F (0), in which the ejected electron is described

by the plane wave and the amplitude F (0) + F (1), where the lowest-order correction,

Fig. 3.1 The Feynman
diagram illustrating (3.25).
Solid lines denote the
electrons. The dark blob
stands for the atomic field.
The dashed line is for the
electron interaction (the
virtual photon)
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expressed by (3.2), is included. If the ejected electron is described by the plane wave,
we obtain, employing (2.10),

F (0)(Q) = 4πα

q2
ψb(−Q). (3.26)

If the lowest-order correction to the wave function of the ejected electron is
included, we obtain, using (3.7),

F (1)(Q) = 4πα

q2

∫
d3κ

(2π)3

−4παZψb(κ)

(Q + κ)2 + λ2
· 2m

p22 − (q + κ)2 + iδ
. (3.27)

Recall that κ = f − q.
The amplitude of the process obtains its largest values in the vicinity of region of

free kinematics, which is determined by the condition

Q = 0; q = p2. (3.28)

In the first step we consider the amplitude exactly at Q = 0. We assume also that
the bound electron is in the s state. We shall compare the amplitude F (0), in which
the ejected electron is described by the plane wave, and the amplitude F (0) + F (1),
where the lowest-order correction is included. For Q = 0, (3.26) and (3.27) take the
form

F (0) = 4πα

q2
ψ̃b(0); F (1) = 4πα

q2

∫
d3κ

(2π)3

4παZψb(κ)

κ2 + λ2

2m

2p2 · κ + κ2 − iδ
.

(3.29)

Now we evaluate the expression for F (1). Since the bound electron is in the s
state, the function ψb does not depend on the direction of momentum κ . The angular
integration can be carried out, providing

F (1) = 4πα

q2
ξ

∫
dκκ

(2π)2

4πψb(κ)

κ2 + λ2
ln

2p2 + κ

−2p2 + κ − iδ
. (3.30)

Here ξ = η/p2 is the Sommerfeld parameter of the electron ejected from the
atom.

One can see that the amplitude F (1) has imaginary part

ImF (1) = π
4πα

q2
ξ

∫
dκκ

(2π)2

4πψb(κ)

κ2 + λ2
θ(2p2 − κ). (3.31)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Its physical meaning becomes clear if we write (3.31) in the form

ImF (1) = −π

∫
d3κ

(2π)3
δ(

p22
2m

− (p2 + κ)2

2m
)F (0)(κ)FeN (κ), (3.32)

with the lowest-order amplitude F (0) defined by (3.26), while FeN = −4παZθ

(2p2 − κ)/(κ2 + λ2) is the amplitude of the elastic scattering of the electron on the
nucleus. Thus (3.32) is a manifestation of the general statement that the imaginary
part of the amplitude is due to an intermediate physical state [5, 6]. In our case, this
is the electron with momentum p2 + κ and energy (p2 + κ)2/2m = p22/2m.

We turn now to the real part of the amplitude F (1). Consider the case p2 	
μb. Since at κ ∼ p2, the wave function ψb(κ) is (μb/p2)4 times smaller than
at κ ∼ μb, the integral over κ is saturated at the values κ ∼ μb. Putting
ln |(2p2 + κ)/(2p2 − κ)| = κ/p2, we obtain

ReF (1) = F (0) · ξ · 1

π

∫
dκ

p2

ψ̃b(κ)

ψ̃b(0)
. (3.33)

Thus we found that
ReF (1)

F (0)
∼ ξ

μb

p2
∼ ξ 2. (3.34)

In the special case when the bound electron is described by the Coulomb function,
we have ψ̃b(κ)/ψ̃b(0) = (κ2/η2 + 1)−2, and thus ReF (1)/F (0) = ξ 2/4.

The careful reader will recall (3.15) and ask, Where are the terms linear in ξ?
To answer this question, let us turn again to the case in which the bound electron

is in the Coulomb field. In this case, the matrix element (3.25) can be calculated
explicitly. InChap.5,we shall introduce an easyway to calculate the amplitudes in the
Coulomb field. Now we just write down the formula for the matrix element X (q,Q)

on the RHS of (3.25), which is true for every value of transferred momentum Q.
We denote

X (Q,q) = NbN (p2)X1(Q,q), (3.35)

where Nb = (η/π)3/2 and N (p2) defined by (3.19) are the normalization factors of
the wave functions, η = mαZ , p2 = |q − Q|. In (3.35)

X1(Q,q) = 4π(− ∂

∂μ
)Y (μ,Q,q), μ = η (3.36)

with

Y (μ,Q,q) = 1

Q2 + μ2

( Q2 + μ2

q2 − (p2 + iμ)2

)iξ ; ξ = η

p2
. (3.37)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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At Q = 0 we obtain

Y (μ, 0, p2) = 1

μ2

( μ

μ − 2i p2

)iξ = Λiξ eξ arctan(μ/2p2)

μ2 e−πξ/2; Λ =
( μ2

μ2 + 4p22

)1/2
.

(3.38)

Thus in expansion in powers of ξ , the linear terms coming from the normalization
factor N (p2) are canceled by the terms caused by expansion of the last factor on the
RHS of (3.38).

One can see that total cancellation takes place only in the vicinity of the peak of the
Bethe ridge, i.e., at Q = |q − p2| � η (recall that at the Bethe ridge, |q − p2| <∼ η).
The general (3.37) provides

Y (μ,Q,q) = 1

a
(
a

|b| )
iξeξ arg b (3.39)

with a = Q2 + μ2, b = q2 − p22 + μ2 − 2i p2μ, arg b < 0. Thus the last factor
eξ arg b is approximately equal to e−πξ/2 for |q − p2| � η.

3.1.4 Use and Misuse of Plane Waves

Even in the case ξ 2 � 1, people often hesitate to check the results obtained by
employing numerical functions for continuum electrons by a comparison with those
obtained using plane waves. However, if they do this, the results sometimes appear
to be quite different. Here we try to explain why this happens.

We have seen that the normalization factor N (p) contains expansion in powers of
πξ/2, resulting in terms of the order πξ in the differential and total cross sections.
Thus, the corrections to the plane wave calculations are linear in ξ with a rather large
numerical coefficient.

Now we trace what happens to these corrections in the case of inelastic electron
scattering by atoms, considered at the end of the previous subsection. It is instructive
to consider the case of the hydrogenlike ion in the ground state. We begin with the
case Q = 0, considered above. As we have seen from (3.38), the terms of order
πξ originated by N (p) are totally canceled by similar terms of the expansion of
the function Y (μ, 0, p2). The plane wave approximation works with error ξ 2. Now
let us increase the value of Q, remaining at the Bethe ridge Q ∼ η � p2. One
can see from (3.39) that the compensation is not complete, becoming weaker as we
increase the minimal value of |Q|min = |q − p2|. Thus at the Bethe ridge, the plane
wave approximation works, but its accuracy becomes increasingly worse while we
increase the value of Q from zero to the borders of the Bethe ridge Q <∼ η.
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The situation changes if we consider the case of large transferred momenta Q ∼
p2. In the amplitude F (0), where the ejected electron is described by the plane wave,
a large momentum Q 	 η is transferred to the nucleus by the bound electron. Thus
the mechanism involves the bound-state wave functionψb(Q 	 μb), which is much
smaller than that at Q ∼ μb; see (2.86). This quenching can be avoided if we include
the Coulomb correction to the wave function of the ejected electron. Of course, we
immediately obtain a small factor ξ . However, the continuum electron now transfers
a large momentum, and the bound-state wave function ψb at f ∼ μb is involved.
Now we analyze the interplay of the two mechanisms.

Employing (2.86) and (3.26), we write

F (0) = 4παψb(r = 0)

q2
· 8πη

Q2
· 1

(q − p2)2
. (3.40)

Using (3.27) and keeping κ only in the argument of the bound state wave function
ψb, we obtain

F (1) = 4παψb(r = 0)

q2
· 8πη

Q2
· 1

q2 − p22
(3.41)

for the lowest-order Coulomb correction. Only the last factors on the right-hand sides
of these equations are different. Recall that Q = q − p2.

Thus the ratio of the amplitudes F (0) and F (1) depends on the actual values of the
momenta q and p2. If q ∼ p2 ∼ |q − p2|, the two amplitudes are of the same order.

It is well known that the distributions dσ/dq obtain the largest value at the lower
limit qmin of the values of q, which determine also the value of the total cross section
in the logarithmic approximation [1]. Since q = p1 − p′

1, its lowest possible value
is qmin = p1 − p′

1. We are considering the case in which the projectile electron
transfers to the atom only a small part of its energy. Thus p1 − p′

1 � p1, p′
1, and

qmin = p22/2p1, i.e.,
qmin � p2 .

One can see that for q � p2, the amplitudes F (0) and F (1) determined by (3.40)
and (3.41) cancel up to the terms of relative order q/p2 � 1. Thus in this case the
plane wave calculation provides the qualitatively wrong result, strongly overestimat-
ing the magnitude of the amplitude. Note, however, that in the higher-order terms,
a small momentum f ∼ η is transferred to the nucleus. These terms provide cor-
rections to the higher-order terms in ξ . Thus the amplitude F (0) + F (1) is the lowest
term of the series expansion in ξ .

To summarize the analysis of Sect. 3.1.4, the plane wave calculation can be used
for estimation of the amplitude at the Bethe ridge. However, one should analyze
the magnitude of the higher Coulomb corrections. If larger momentum Q 	 μb is
transferred to the nucleus, the amplitudes F (0) and F (1) may be of the same order
of magnitude. In the most important kinematic region q ∼ qmin, the two amplitudes
cancel each other to a large extent. The perturbative approach is possible, but the
sum F (0) + F (1) should be the zero-order approximation.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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3.2 Final State Interactions Between Electrons

3.2.1 General Analysis

In previous section we saw how to include the interaction of the fast electron and
the atomic nucleus. Now we will take into account its interaction with the atomic
shell. Transition of the electronic shell to a particular final state is called an exclusive
process. The sum of the exclusive cross sections is known as the inclusive cross
section. It is important in the cases in which one wants a detailed description of the
fast outgoing electron rather than the transitions of the atomic shell.

The interactions of the fast outgoing electron with the electrons of the atomic shell
are determined by their Sommerfeld parameter ξee = α/v with v = |vp − vi|, while
vp and vi (vi � 1) are the velocities of the fast and atomic electrons with respect to
the nucleus. Since we are considering vp 	 vi , we can just put v = vp and

ξee = α

v
= mα

p
. (3.42)

We present the results in terms of the many-electron functions of the initial and
final states of the atomic shell |Ψi 〉 and |Φn〉. We assume that the initial state is the
ground state described by the function |Ψ0〉. Similar equations can be obtained for the
case in which the initial state is an excited one. In some cases, we find it instructive
to present the equations also in terms of single-particle functions.

Transitions from the initial atomic state |Ψi 〉 to a state of the daughter ion |Φn〉
can take place even if the final-state interactions (FSI) between the fast electron and
the electronic shell are neglected. Inclusion of the FSI leads to additional terms of
order ξ 2

ee in the cross sections. However, we shall see that in many cases, they appear
to be important. We shall consider the case in which the energies transferred to the
atom by the fast electron are of the order of the atomic single-particle binding energy
of the daughter ion εb,

ωn0 ≡ εn − ε0 ∼ |εb| � εp . (3.43)

This means that we consider the final states Φn with εn � εp. The case of larger
energies, when the amplitudes obtain additional small factors, will be analyzed in
the next chapter.

There are many processes in which a fast electron can be ejected. For example,
ejection of a fast electron can be caused by interaction with a charged projectile
or with the photon. It can also be due to internal processes in the nucleus, which
can be internal conversion during nuclear γ decay or nuclear β− decay in which a
neutron bound in the nucleus decays into a bound proton, emitting an electron and
an electron antineutrino. Due to the interplay of nuclear forces, the bound proton can
become heavier than the bound neutron in some nuclei. In these cases β+ decay takes
place. The bound proton can decay into a neutron, positron, and electron neutrino. In
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this chapter, we study the processes in the atomic shell accompanying these “main
processes.”

We shall see that the amplitude of a process which includes the final state inter-
action between the fast electron and the electronic shell up to the terms of order ξ 2

ee
can be written as

F = F (0) + F (1) + F (2) , (3.44)

where the upper index s = 0, 1, 2 denotes the number of interactions between the fast
electron and the atomic shell. In the zero order terms (s = 0), the FSI are neglected.
In this subsection we consider the case of nonrelativistic fast electrons. We shall see
that in this limit, the terms on the RHS of (3.44) contain the amplitude of the main
process F as a factor, i.e., they can be written as (we omit the index of the initial
state)

F (s)
n (εp) = F (εp)T

(s)
n , (3.45)

while the amplitudes T (s)
n do not depend on the nature of the main process. Note

that for s = 0, the amplitudes F (s)
n and F indeed depend on the energy of the fast

outgoing electron εp. In the case of s = 1, 2, the amplitude of the main process F
is rather a function of the energy ε′ = εp + ωn0, which is shared between the fast
outgoing electron and the atomic shell in the next steps. However, since ωn0/εp ∼
|εn/εp| ≤ ξ 2 � 1, while the terms with s = 1, 2 provide the terms of order ξ 2

ee, we
can assume (3.45) for these terms as well.

In the relativistic case, when the spin variables are involved, the situation becomes
more complicated. Some general features of the relativistic case will be discussed at
the end of this chapter.

3.2.2 Zero Order Terms

We find it instructive to begin with the case of beta decay, since in this process, the
charge of the nucleus changes, and the atomic shell can undergo transitions even if
the FSI of the beta electron is not taken into account. If the bound electrons remain
in the same state, the amplitude of the process can be written as

T (0)
0 = 〈Φ0|Ψ0〉 . (3.46)

The vectors of states |Ψ0〉 and |Φ0〉 describe the ground states of the Hamiltonians
of the initial atom H1 and of the daughter ion H2 respectively,

H1 =
∑
i

H0i+
∑
i

UiN (Z)+
∑
i, j

Ui, j ; H2 =
∑
i

H0i+
∑
i

UiN (Z+1)+
∑
i, j

Ui, j ,

(3.47)
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with H0i the free Hamiltonian (operator of the single-particle kinetic energy),
UiN (Z) = −αZ/ri describes the interaction of the i bound electron with the nucleus
with the charge Z , and Ui, j describes the interaction between electrons i and j .

Thus for the excited states |Φn〉 of the Hamiltonian H2, the matrix elements

T (0)
n = 〈Φn|Ψ0〉 (3.48)

can obtain nonvanishing values. This requires, however, that the angular moments
of the two states be the same, i.e.,

Ln = L0 . (3.49)

This mechanism was first described in [8]. It was developed further in [9, 10]. We
can write

F (0)
n (εp) = F (εp)T

(0)
n ; (3.50)

see Fig. 3.2a. Note that the amplitude T (0)
n does not contain physical intermediate

states. Thus it is real.
One can see that the difference between H1 and H2 vanishes at large Z → ∞.

Thus for every exclusive inelastic process, we have

T (0)
n ∼ 1/Z (3.51)

for large Z . We shall see in Chap.12 that |T (0)
n | � 1 for n 
= 0 even for the β decay

of tritium with Z = 1. Thus we can assume that only one of the electrons undergoes
inelastic transitions. Following [8], we use the term “shakeoff” for the process in
which a bound electron is moved to the continuum. The process in which a bound
electron moves to an upper state of the discrete spectrum is called “shakeup.”

In this subsection, we shall use (3.48) for T (0)
n . However, we shall make some

comments on the possible evaluation of this expression. If only one (“active”) electron
changes its state, it looks reasonable to analyze the approximation in which it is
described by a single-particle function. In this approach,

T (0)
n = 〈φ f |ψi 〉〈ΦS|ΨS〉. (3.52)

Here ψi and φ f describe the active electron in the initial ground state |Ψ0〉 and in
the final state |Φn〉. The wave vector ΨS describes the ground state of the rest Z − 1
“spectator” electrons in the field of the nucleus with charge Z and the electron in
state i . The wave vector ΦS describes the Z − 1 “spectator” electrons with a hole
in state i in the field of the nucleus with charge Z + 1. The condition expressed by
(3.49) is now � f = �i . The wave equations for the functions ψi and φ f are

H1ψi = εiψi ; H2φ f = ε f φ f , (3.53)

http://dx.doi.org/10.1007/978-3-319-32736-5_12
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with

H1 = H0 +U1eN (Z) +U1ee; H2 = H0 +U2eN (Z + 1) +U2ee. (3.54)

Here U1eN = −αZ/r and U2eN = −α(Z + 1)/r describe interactions of the
electron with the nucleus in initial and final state correspondingly, U1ee and U2ee

describe interaction of the active electron with the atomic shell. Treating the differ-
ence H2 − H1 = V as a small perturbation, we can write

T (0)
n = 〈ψn|V |ψi 〉

εn − εi
〈ΦS|ΨS〉 , (3.55)

with εi(n) the eigenvalues of the wave equation (3.53) with the Hamiltonian H1, while

V = VeN + Vee; VeN = U2eN −U1eN = −α

r
; Vee = U2ee −U1ee. (3.56)

In the case of beta decay, the term VeN caused by the change of the charge of
the nucleus provides the main contribution to the perturbation V . The transitions in
the atomic shell take place even if we neglect all interactions between the electrons.
The single-particle description (3.52) is a good approximation. However, the fast
electron can be emitted from the atom by an external projectile. For example, this
can be photoionization or ionization by electron impact. In these cases, we have the
perturbations VeN = 0 and V = Vee. The problem of calculation of the amplitude
T (0)
n becomes more complicated, and the single-particle approximation may be not

good. We shall see that it can lead to quantitatively incorrect or even to qualitatively
incorrect results.

Now we calculate the probabilities of the transitions in the atomic shell including
the lowest-order FSI correction. We shall need the contributions to the amplitude
up to order ξ 2

ee [11].

3.2.3 First Order Terms

Now we include a single interaction between the outgoing beta electron and the
atomic shell. We must calculate the contribution of the Feynman diagram shown in
Fig. 3.2b.

Note that in looking for the terms of order ξ 2
ee in the amplitude, we can describe the

fast electron in the amplitude T (1)
n by a planewave. The amplitude of themain process

F depends on the interaction between the fast electron and the nucleus in terms of
the parameter ξ . The dependence contains the parameter πξ [12], which we do not
assume to be small. The fast electron with momentum p interacts with the nucleus
at the distances r ∼ 1/p, while the interactions with the atomic shell take place at
the distances r ∼ 1/μb. The interactions with the nucleus after interactions with the



3.2 Final State Interactions Between Electrons 39

(a) (b)

(c) (d)

Fig. 3.2 The Feynman diagram for the amplitude that includes the final-state interactions (FSI)
between the ejected electron and the electronic shell. In the case of β decay, the wavy line denotes
an electronic antineutrino. The solid line with the arrow is for the ejected electron. The bold line
is for the electronic shell. The dashed lines are for the electron interactions (the virtual photons).
Here a corresponds to the amplitude T (0)

n ; b is for T (1)
n ; c, d are for T (2)

n

atomic shell provide terms that contain an additional factor of order ξ 2 � 1, since
momentum transferred to the nucleus cannot greatly exceed the binding momentum
μb [11].

All the final-state electrons form the state |Φn,p〉, with p the momentum of the
fast electron. If the FSI are neglected, |Φ(0)

n,p〉 = |Φn〉 · |ψ(0)
p 〉, with |ψ(0)

p 〉 being the
plane wave. The first-order term is determined by the LSE (see Chap.2) with the
two-particle Green function G(εp + εn) (the electronic shell of the daughter ion can
be treated as an entire system), which can be written as [13]

G(ε′) =
∫

dq0
2π i

G0(εp + q0)g(εn − q0); ε′ = εp + εn, (3.57)

where G0 is the propagator of the free electron; see (2.29). Here

g(εx) =
∑
j

|Φ j 〉〈Φ j |
εx − ε j + iδ

(3.58)

is the propagator of the electronic shell. In (3.57), q0 has the meaning of the energy
transferred by the fast electron to the electronic shell of the daughter ion.

Now we can write
T (1)
n = 〈Φn|

∑
k

A(r(k))|Ψ0〉, (3.59)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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where k labels the electrons in the atomic shell, while the integral over the loop is

A(r(k)) =
∫

d3qdq0
(2π)4i

G0(εp + q0,p + q)Vee(q)g(εn − q0)e
iq·r(k)

. (3.60)

Note that (3.60) can be obtained by straightforwardly employing the rules for
building Feynman diagrams [3, 4].

We write the electron interactions in a form similar to (3.4) and (3.5):

V (r) = α
e−λr

r
; V (q) = 4πα

q2 + λ2
; λ → 0. (3.61)

Integration over the energy q0 leads to

A(r(k)) =
∑
j

B(r(k))|Φ j 〉〈Φ j | (3.62)

with

B(r(k)) =
∫

d3q

(2π)3
· 2m

p′2 − (p + q)2 + iδ
· 4πα

q2 + λ2
eiq·r(k); δ → 0, (3.63)

where p′2 = p2 + 2mωnj , ωnj is defined by (3.43). Now

T (1)
n =

∑
j

〈Φn|
∑
k

B(r(k))|Φ j 〉〈Φ j |Ψ0〉. (3.64)

Using the formula [3, 4]

1

a
· 1
b

=
∫ 1

0

dx(
ax + b(1 − x)

)2 (3.65)

and keeping only the term proportional to the large momentum p in the denominator
of the electron propagator on the RHS of (3.63), i.e., putting

B(r(k)) = −
∫

d3q

(2π)3
· 2m

2(p · q) − iδ
· 4πα

q2 + λ2
eiq·r(k)

, (3.66)

we obtain

1

2(p · q) − iδ
· 1

q2 + λ2
=

∫ 1

0

dx(
2(p · q)(1 − x) + q2x + λ2x − iδ)2

. (3.67)
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Introducing y = (1− x)/x , q′ = q+py and integrating over q′ using the relation

∫
d3q

(2π)3
· 4πeiq·r

(q2 − b2 − iδ)2
= 1

2b

∂

∂b

eibr

r
= i

eibr

2b
, b2 = p2y2 − λ2 (3.68)

we obtain

B(r(k)) = −iαm

∞∫

0

dy

b(y)
eib(y)r

(k)−ip·r(k) y . (3.69)

The integral on the RHS of (3.69) can be calculated exactly:

B(r(k)) = iξee
(
ln

(r (k) − r (k)
z )λ

2
+ CE

)
, (3.70)

with z labeling the direction of the momentum p, while CE ≈ 0.577 is Euler’s
constant. Themain contribution to the integral comes from λ/p � y � 1. Changing
the definition of λ, we can write

B(r(k)) = iξee ln(r
(k) − r (k)

z )λ. (3.71)

Thus

T (1)
n = iξee

∑
j

〈Φn|
∑
k

ln (r (k) − r (k)
z )λ|Φ j 〉〈Φ j |Ψ0〉. (3.72)

This equation is true for the states |Φ j 〉 with energies of the order of the binding
energy. These states saturate the closure condition

∑
j |Φ j 〉〈Φ j | = 1, since the

contribution of the higher states is strongly quenched (see (2.86)). Hence, using
closure, we obtain

T (1)
n = iξee〈Φn|

∑
k

ln (r (k) − r (k)
z )λ|Ψ0〉. (3.73)

Thus the first-order term T (1)
n appears to be mostly imaginary.

Recall that one should put λ → 0 in (3.72) and (3.73). The meaning of the
singularity at λ = 0 becomes clear if one writes ln (r (k) − r (k)

z )λ = ln (r (k) − r (k)
z )+

ln λ and turns to (3.72). The second term provides a nonzero value only for j = n.
This corresponds to elastic scattering of the beta electron on the bound electrons
in the state |Φn〉. Hence this is just a part of the infrared divergent Coulomb phase
discussed in Sect. 3.1.3. We expect the terms containing ln λ to cancel in the final
expressions for the probability. We shall see that this indeed happens.

Thus the imaginary part Im T (1)
n provides the contribution of the order ξ 2

ee to the
probability. Since the zero-order term T (0)

n is real, we must calculate also the real
contributions of the order ξ 2

ee to the amplitude T (1)
n and include their interference

with T (0)
n . The problem is simplified by the fact that T (0)

n obtains nonzero values only

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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if the angular momenta of the states |Ψ0〉 and 〈Φn| are the same. Thus it is sufficient
to include only the term with � = 0 in the partial wave expansion of the exponential
term in the integrand on the RHS of (3.64):

eiq·r(k) = sin qr (k)

qr (k)
+ · · · , (3.74)

where the dots denote the terms with � 
= 0. The contribution can be obtained by
calculation of the next-to-leading term of the expansion of the RHS of (3.69) in
powers of 1/p. However, we find it simpler and more instructive to return to (3.63)
and to employ (3.74):

B(r(k)) =
∫

d3q

(2π)3
· 2m

p′2 − (p + q)2 + iδ
· 4πα

q2 + λ2

sin qr (k)

qr (k)
. (3.75)

The angular integration provides

Re B(r(k)) = ξee

π

∫
dq

q
· q2

q2 + λ2
· sin qr

(k)

qr (k)
ln |2pq + 2mωnj − q2

2pq − 2mωnj + q2
|. (3.76)

The leading term of the expansion of the logarithmic factor in powers of 1/p
provides

Re B(r(k)) = B1 + B2; B1 = −ξee

π

∫
dq

p

q2

q2 + λ2

sin qr (k)

qr (k)
; B2 = 2ξeem

πp
ωnj J2,

(3.77)
with

J2 =
∫

dq

q2 + λ2

sin qr (k)

qr (k)
. (3.78)

The integrand of the integral that determines the contribution B1 is finite at λ = 0.
Thus, putting λ = 0, we can write

B1 = −ξee

π

∫
dq

p

sin qr (k)

qr (k)
. (3.79)

Employing ∫ ∞

0
dx sin x/x = π/2,

we immediately obtain B1 = −ξee/2r (k) p, which can be written as

B1 = −ξ 2
ee

2
· r0
r (k)

, (3.80)

where r0 = 1/mα is the Bohr radius.



3.2 Final State Interactions Between Electrons 43

At first glance, the integral J2 in expression for B2 diverges at λ = 0, since the
integrand behaves as 1/q2 at q → 0. However, the divergence is spurious. The
contribution of the region q � 1/r (k)to B2 does not depend on r (k), and thus does
not contribute to the matrix element 〈Φn|B2|Φ j 〉. Separating the divergent part in J2
(3.78),

J2 =
∫

dq

q2
(
sin qr (k)

qr (k)
− 1) +

∫
dq

q2 + λ2
, (3.81)

where we put λ2 = 0 in the first term on the RHS, we obtain

B2 = −ξeem

2p
ωnj (r

(k) − 2

λ
), (3.82)

where the second term in the parentheses does not contribute to the matrix element
T (1) due to the orthogonality of the wave functions at j 
= n or due to the factor ωnj

at j = n:

〈Φn|ωnjr
(k)|Φ j 〉 = 〈Φn|[Hr (k)]|Φ j 〉 = −〈Φn| rc

r (k)
+ rc

∂

∂r (k)
|Φ j 〉, (3.83)

with rc = 1/m the Compton wave length of the electron. Thus

ReT (1)
n = ξ 2

ee

2
〈Φn|

∑
k

r0
∂

∂r (k)
|Ψ0〉. (3.84)

3.2.4 Second-Order Terms

The contribution T (2)
n is expressed by the sum of the diagrams shown in Fig. 3.2c,

d. The fast electron exchanges momenta q1 and q2 and energies q10 and q20
with the atomic shell. We can write T (2)

n = 〈Φn| ∑k1,k2
A(r(k1), r(k2))|Ψ0〉, with

A(r(k1), r(k2)) = Ac(r(k1), r(k2)) + Ad(r(k1), r(k2)). The two terms correspond to the
diagrams shown in Fig. 3.2c,

Ac(r(k1), r(k2)) =
∫

dΓ1dΓ2 f (1, 2)e
i(q1·r(k1))g(εn − q10)e

iq2·r(k2)

g(εn − q10 − q20),

(3.85)
and Fig. 3.2d,

Ad(r(k1), r(k2)) =
∫

dΓ1dΓ2 f (1, 2)e
i(q2·r(k1))g(εn − q20)e

iq1·r(k2)

g(εn − q10 − q20),

(3.86)
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with

f (1, 2) = G0(εp + q10,p + q1)Vee(q1)G0(εp + q10 + q20,p + q1 + q2)Vee(q2),

and dΓn = dqnod3qn/ i(2π)4, while the propagators G0 and g are given by (2.29)
and (3.58).

In the nonrelativistic case, the contribution of Fig. 3.2d vanishes. In order to show
this, consider q20 as a complex variable. Since the integrand decreases as |q20|−2 at
|q20| → ∞, we can integrate over the closed contour consisting of the real axis and
a semicircle with radius r → ∞. The latter can be in the upper or lower half-plane.
In both cases, the integral over the semicircle can be neglected. There is one pole in
the lower half-plane, corresponding to the condition G−1

0 = 0. Its position is

q p
20 = −q10 + a − iδ; δ → +0. (3.87)

Here a is a real value. Integrating over q20 in the lower half-plane, we express
the result in terms of the residue at the point q p

20 defined by (3.87). Now in (3.86),
the Green function g(εn − q10 − q p

20) does not depend on q10, while the propagators
g(εn − q p

20) and G0(εp + q10,p + q1) have poles at q10 in the lower half-plane, and
there are no poles in the upper half-plane. Nowwe integrate over q10 in the same way
as we integrated over q20, closing the contour in the upper half-plane. Since there
are no singularities, we have Ad = 0.

Thuswemust calculate the contribution of Fig. 3.2c. The integration over energies
q10 and q20 can be carried out in the same way as in the calculation of T (1), providing

T (2)
n =

∑
k1,k2; j1, j2

〈Φn|B(r(k1))|Φ j1〉〈Φ j1|C(r(k2))|Φ j2〉〈Φ j2|Ψ0〉, (3.88)

with B(r(k1)) determined by (3.66) (with integration over q1), while

C(r(k2)) = −
∫

d3q2
(2π)3

· 2m

2(p · (q1 + q2))
· 4πα

q2
2 + λ2

eiq2·r
(k2)

. (3.89)

In the integral over q1 and q2, one can put

1

pq1

1

p(q1 + q2)
= 1

2

( 1

pq1
+ 1

pq2

) 1

p(q1 + q2)
= 1

2

1

pq1

1

pq2
,

(3.90)

and thus we can write

C(r(k2)) = 1

2
B(r(k2)). (3.91)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Proceeding in the same way as in the calculation of ImT (1)
n , we obtain

T (2)
n = −ξ 2

ee

2
〈Φn|

∑
k1

ln
(
(r (k1) − r (k1)

z )λ
)∑

k2

ln
(
(r (k2) − r (k2)

z )λ
)
|Ψ0〉. (3.92)

Thus the amplitude T (2)
n is mostly real, and its interference with the term T (0)

n
contributes to the terms of order ξ 2

ee.

3.2.5 Probabilities of the Exclusive Processes

Now we can write an expression for any distribution dWn/dΓ of the main process
accompanied by a transition of the atomic shell to the state |Φn〉:

dWn

dΓ
= dW

dΓ
Sn, (3.93)

where dW/dΓ is the distribution of the main process at the same energy εp, while

Sn = |T (0)
n |2 + 2T (0)

n ReT (1)
n + |ImT (1)

n |2 + 2T (0)
n ReT (2)

n , (3.94)

i.e.,

Sn = |〈Φn|Ψ0〉|2 + ξ 2
ee〈Ψ0|Φn〉〈Φn|

∑
k

r0
∂

∂r (k)
|Ψ0〉

+ ξ 2
ee|

∑
k

〈Φn| ln((r (k) − r (k)
z )λ)|Ψ0〉|2

− ξ 2
ee〈Ψ0|Φn〉〈Φn|

∑
k,k1

ln((r (k) − r (k)
z )λ) ln((r (k1) − r (k1)

z )λ)|Ψ0〉, (3.95)

with the terms on the RHS corresponding to those on the RHS of (3.94). As expected,
the terms that contain ln λ or ln2 λ cancel. Note that in some of their early papers,
the authors tried to calculate the first-order term T (1), ignoring the second-order term
T (2). They faced integrals that diverged at small momenta and had to introduce a
regularization procedure. As we see, after inclusion of the second-order terms, the
divergent terms cancel.

Sometimes, the authors of publications ask, “Which correction to the shakeoff
is more important, its interference with the FSI or the FSI itself?” One can see that
the question is meaningless. They are both infinite and cancel each other to a large
extent.

The shakeoff term T (0)
n obtains a nonzero value only if the states |Φn〉 satisfy the

condition of (3.49). In this case, the angular integration in the matrix elements on
the RHS of (3.94) can be carried out, and we obtain
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Sn = |〈Φn|Ψ0〉|2 + ξ 2
ee〈Ψ0|Φn〉〈Φn|

∑
k

r0
∂

∂r (k)
|Ψ0〉

+ξ 2
ee|

∑
k

〈Φn| ln(r (k)λ)|Ψ0〉|2

− ξ 2
ee〈Ψ0|Φn〉〈Φn|

∑
k,k1

ln((r (k)λ) ln((r (k1)λ)|Ψ0〉. (3.96)

For the states |Φn〉 with Ln 
= L0, the FSI becomes the main mechanism of the
process, providing

Sn = ξ 2
ee|〈Φn|

∑
k

ln(1 − t (k))|Ψ0〉|2; t (k) = r (k)
z

r (k)
. (3.97)

3.2.6 Probability of the Inclusive Process

Now we calculate the sum of the probabilities

∑
n

dWn

dΓ
= dW

dΓ

∑
n

Sn. (3.98)

One can see that for the shakeoff terms,

∑
n

|T (0)
n |2 = 1. (3.99)

Turning to the contribution of the FSI, one can observe that the sums over the
states |Φn〉 of the two last terms on the RHS of (3.94) cancel. In other words,

∑
n

|Im T (1)
n |2 + 2

∑
n

Re T 0)
n T (2)

n = 0. (3.100)

Thus we obtain

∑
n

Sn = 1 + 2
∑
n

Re T (0)
n T (1)

n = 1 + ξ 2
ee〈Ψ0|

∑
k

r0
∂

∂r (k)
|Ψ0〉. (3.101)

Employing integration by parts, we obtain

∑
n

Sn = 1 − ξ 2
ee〈Ψ0|

∑
k

r0
r (k)

|Ψ0〉. (3.102)
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3.2.7 The Relativistic Case

Now we assume that the kinetic energy of the outgoing electron is of the order of its
mass. The amplitudes (3.45) contain the bispinor ū of the outgoing electron. Thus
the amplitudes take the form

F = ū(p)w; F (s)
n = ū(p)T (s)

n w, s = 0, 1, 2, (3.103)

where w is a certain bispinor. The amplitude T (0)
n is the same as in the nonrelativistic

case. The amplitude T (1)
n is expressed by (3.64). However, the function B(r(k)) should

be modified. The factor 2m on the RHS of (3.63) must be replaced by

ūγ0( p̂ + q̂ + m) = ū(2E − α · q). (3.104)

Herewe employed the commutation relation (2.14) and the equation ofmotion (2.21).
We neglected the contribution proportional to the transferred energy q0 ∼ μ2

b/2m �
μb, since |q| ∼ μb, and thus q0 � |q|.

Note that in the calculations of ImT (1)
n , we employed only the lowest-order terms

in the expansion in powers of q. Hence, only the first term on the RHS of (3.104)
contributes. The same refers to the calculation of ReT (2)

n . Thus (3.73) for Im T (1)
n

and (3.92) for Re T (2)
n with ξee defined by (3.42), i.e.,

ξee = αE

p
= α

v
, (3.105)

hold in the relativistic case. Also, (3.97) for the probability of exclusive processes
with Ln 
= Li is true. In the inclusive process, the cancellation expressed by (3.100)
is true.

However, the situation with ReT (1)
n is different, since here we need the next-to-

leading terms of the expansion in powers of q. We can write

Re T (1)
n = Xa

n + Xb
n,

with the two terms corresponding to the two terms on the RHS of (3.104). One can
write Xa

n = B1 + B2 with Bi defined by (3.77), while ξee is given by (3.105). The
term B1 can be represented in the form given by (3.79), providing

B1 = −ξ 2
ee

2
· m
E

· r0
r (k)

.

The term B2 is given by (3.82). Hence,

Xa
n = ξ 2

ee

2

m

E
〈Φn|

∑
k

r0
∂

∂r (k)
|Ψ0〉 . (3.106)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Now we must calculate

Xb
n = α

∑
j

〈Φn|
∑
k

BR(r(k))|Φ j 〉〈Φ j |Ψ0〉, (3.107)

with

BR(r(k)) = −
∫

d3q

(2π)3
· q
p′2 − (p + q)2 + iδ

· 4πα

q2 + λ2

sin qr (k)

qr (k)
; δ → 0. (3.108)

Writing

BR(r(k)) = cp, c = BR(r(k)) · p
p2

,

and keeping only the leading term in the denominator of the electron propagator in
(3.108), i.e., putting p′2 − (p + q)2 + iδ = −2(p · q), we obtain

c = α

p2

∫
dq

π

sin qr (k)

qr (k)
= α

2r (k)

1

p2
.

Employing also
ū(α · p) = ū(mγ0 − E) ,

see (2.21), we obtain

Xb
n = ξ 2

ee

2

m

E
〈Φn|

∑
k

r0
r (k)

|Ψ0〉(1 − m

E
γ0) (3.109)

and

Re T (1)
n = ξ 2

ee

2

m

E
〈Φn|

∑
k

r0(
∂

∂r (k)
+ 1

r (k)
)|Ψ0〉 − ξ 2

ee

2

m2

E2
〈Φn|

∑
k

r0
r (k)

|Ψ0〉γ0.
(3.110)

Due to the matrix γ0 in the last term on the RHS, the amplitude contains not only
terms of the form given by (3.103), but also terms of the form ūγ0w. If the FSI are
neglected, the probability of the process is proportional to

W1 = 1

4
Sp[ww̄uū].

Writing uū = a + bμγ μ with bμ a four-vector, we obtainW1 = bμ pμ + am. The
same remains true if we include the FSI amplitudes Im T (1)

n and Re T (2)
n . It remains

true also if we include the contribution to Re T (2)
n expressed by the first term on the

RHS of (3.110). However, the interference of the second term on the RHS of (3.110)
with amplitude T (0)

n is proportional to

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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W2 = 1

4
Sp[ww̄uūγ0] = ap0 + mb0.

This contribution requires additional analysis for each particular case.
Note that in the ultrarelativistic limit E 	 m, we can neglect the last term on

the RHS of (3.110). At these energies, we must put ξee = α. Thus for any exclusive
process,

Sn = |〈Φn|Ψ0〉|2 + α2|〈Φn|
∑
k

ln
(
(r (k) − r (k)

z )λ
)
|Ψ0〉|2

− α2〈Ψ0|Φn〉〈Φn|
∑
k,k1

ln
(
(r (k) − r (k)

z )λ
)
ln

(
(r (k1) − r (k1)

z )λ
)
|Ψ0〉 .

(3.111)

The FSI contribution for any exclusive process is of order α2.
In the sum over n, the terms of order ξ 2

ee cancel due to (3.100). In the limit
E 	 m, the terms of order ξ 2

eem/E also cancel. The terms of this order come from
the interference between the zero-order amplitudes T (0)

n and the real parts of the
first-order amplitudes Re T (1)

n . However,

∑
n

ReT (1)
n T (0)

n = m

E
〈Ψ0|

∑
k

r0(
∂

∂r (k)
+ 1

r (k)
)|Ψ0〉 = 0,

where the last equality can be obtained by integration by parts. Hence

∑
n

Sn = 1 + O(α2m
2

E2
). (3.112)

Thus in the ultrarelativistic limit, all the FSI contributions are very small, much
smaller than the radiative corrections.

Note that in systems with a large number of electrons N 	 1, all the FSI effects
are increased by the factor N . An example will be presented in Chap.10.
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Chapter 4
Singularities of Amplitudes and Wave
Functions

Abstract We demonstrate that 2 → 3 processes with large recoil momenta are
described by triangle diagrams with the main contributions determined by their
anomalous singularities. This enables us to obtain analytical expressions for the
differential distributions and for the cross sections. The transfer of large momentum
between the electron and the nucleus or between electrons is related to the small
values of the corresponding distances, where the shape of the wave functions is
determined by the Kato cusp conditions. We explain the importance of the latter and
construct the electron wave functions on the coalescence lines.

4.1 General Features of the Reactions 2 → 3

The singularities of amplitudes at the thresholds of physical channels are described
in detail in various books; see, e.g., [1]. Also, there are many books that contain an
analysis of the singularities of the pole diagrams; see [2, 3]. Here we describe the
singularities of the triangle diagrams, which are less well known but appear to be
important in atomic physics. We discuss also the singularities of the two-electron
wave functions at the electron–nucleus and electron–electron coalescence points.

4.1.1 Amplitudes Outside the Bethe Ridge

Here we show that the processes outside the Bethe ridge can be viewed as consisting
of two steps, with one of them taking place at its Bethe ridge. We begin with an
example of inelastic electron scattering by atoms, whichwe considered in Sect. 3.1.4.
Now we analyze the case of large momentaQ = q − p2 transferred to the recoil ion,
i.e., Q = |q − p2| ∼ q, p2 � μb. As we have seen, the momentumQ is transferred
to the nucleus. If the interaction between the electron with momentum p2 and the
nucleus is neglected, the amplitude is given by (3.26). We shall discuss its role later,
focusing now on the lowest-order correction provided by (3.27). It can be written as
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F (1)(Q) =
∫

d3κ

(2π)3
F (0)(κ)

2m

p22 − (q + κ)2 + iδ
FeN (Q + κ), (4.1)

where κ is the momentum transferred to the nucleus by the bound electron, and FeN
is the lowest-order amplitude of the electron–nucleus scattering in which the nucleus
obtains momentum Q + κ .

The integral on the right-hand side (RHS) is dominated by small κ ∼ μb. Note
also that the second factor of the integrand is of order m/p22 unless the values of p2
and q are close. If |q − p2| ∼ μb � q, p2, it increases, becoming of orderm/μbq �
m/q2. Thus the physical meaning of (4.1) is clear. In the first step, electron scattering
on the Bethe ridge takes place. If the values of q and p2 are close, the ionized electron
described by the second term in the integrand passes distances of order the size of
the atom approaching the nucleus at small distances of order 1/Q � 1/μb, where
the electron–nucleus scattering takes place.

Employing (3.26) and neglecting small momentum κ in the amplitude FeN , we
can represent (4.1) as

F (1)(q,p2) = F0(q)Λ(p2,q)FeN (Q), Q = q − p2, (4.2)

with F0 = 4πα/q2 the amplitude of free electron–electron scattering, and

Λ(p2,q) =
∫

d3κ

(2π)3
ψb(κ)

2m

p22 − (q + κ)2 + iδ
. (4.3)

For |q − p2| ∼ q, p2, the amplitudes F (0) (3.26) and F (1) (3.27) are of the same
order of magnitude. However, at |q − p2| ∼ μb, the amplitude F (1) appears to be
enhanced by a factor q/μb.

The amplitude can be described by the triangle diagram shown in Fig. 4.1a.

(a) (b)

Fig. 4.1 Triangle diagram describing electron scattering on the atom X . The bold lines are for
the atom X and the ions X+. The solid lines are for electrons. Block A represents the atom X as
consisting of the ion X+ and the bound electron; block B is for the electron–electron scattering.
BlockC is for the electron inelastic scattering on the ion X+. In (b), the bound electron a is replaced
by a free electron

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Here block A represents the initial atomas consisting of a bound electrondescribed
by the functionψ(κ) (line a) and the core ion. Block B denotes the electron–electron
scattering. The intermediate electron (line b) described by the second factor in the
integrand of (4.1) passes through the atom. Its scattering on the nucleus of the core
ion is shown by block C .

Presenting

1

p22 − (q + κ)2 + iδ
= −1

4π

∫
d3re−i(q+κ)·r e

ip2r

r
, (4.4)

and carrying out integration over κ , we obtain

Λ(p2,q) = − m

2π

∫
d3r

ψb(r)
r

e−iq·r+i p2r . (4.5)

If ψb describes an s state, it does not depend on the direction of r. Thus the function
Λ does not depend on the direction of the vector q,

Λ(p2, q) = −im

q
M(p2, q); M(p2, q) =

∫
drψb(r)

(
ei(p2−q)r − ei(p2+q)r

)
.

(4.6)
The integral on the RHS is saturated by r ∼ 1/μb, and the second term of the inte-
grand can be dropped:

M(p2, q) =
∫

drψb(r)e
i(p2−q)r . (4.7)

Thus the function M depends only on Δ = q − p2, i.e., M(p2, q) = M(Δ).
A similar expression can be obtained for the bound states with nonzero orbital

momenta 	. If we choose the direction of momentum q as the axis of quantization
of the angular momentum, the integral on the RHS of (4.5) obtains a nonzero value
only for 	z = 0. In this case, the angular integration by parts provides (t = q · r/qr )

1∫

−1

dtψb(r, Ω)e−iqr t = e−iqrψb(r, t = 1) − e+iqrψb(r, t = −1)

−iqr
− i

qr

1∫

−1

dte−iqr t ∂

∂t
ψb(r, Ω),

(4.8)
with further integration by parts corresponding to expansion in powers of (qr)−1 ∼
μb/q � 1. Thus

M(Δ) = (2	 + 1)1/2

(4π)1/2

∫
drψr

b (r)e
−iΔr , (4.9)

with ψr
b (r) the radial part of the wave function ψb(r).

The origin of the enhancement of amplitude in the vicinity of the point

q2 = p22 (4.10)
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(a) (b)

Fig. 4.2 Triangle diagram describing the double photoionization of the helium atom. The helix
line denotes the photon. The bold lines are for the atom of helium and the ions He+ and He++. The
solid lines are for electrons. The block A is for the single photoionization of the atom of helium as
consisting of the ion He+ and the bound electron; block B is for the electron–electron scattering.
Block C represents the residual ion He+ as consisting of the nucleus and the bound electron b. In
(b), the bound electron b is replaced by a free electron

becomes clear if one considers the process on a free electron shown in Fig. 4.1b. The
diagram has a pole if (4.10) is true.

These results are quite general for the reactions 2 → 3. In the vicinity of the point
q2 = p22, the amplitudes represented by the diagram shown in Fig. 4.1a can bewritten
as [4]

F(q,p2) = FB(q)Λ(p2,q)FC (q,p2), (4.11)

with the amplitudes FB and FC describing the two steps of the process.
The singularities of the triangle diagrams can manifest themselves in other chan-

nels [5]. Consider, for example, the process of double photoionization of the atom of
helium in a simplified model, where interaction of the bound electrons is neglected.
(We shall analyze double photoionization in detail in Chap.9.) The large energy
ε � I (which we assume for simplicity to be nonrelativistic) absorbed by the atom
is shared by the two outgoing electrons. The corresponding triangle diagram is shown
in Fig. 4.2a.

Here block A stands for single ionization of the atom; block C shows that the
residual ion consists of the bound electron (line b) and the nucleus. Block B denotes
the scattering of the photoelectron a on the electron b. The position of the pole of
the propagator describing the electron a in the diagram of Fig. 4.2b, corresponding
to replacement of the bound electron b by a free one, is determined by condition

p2 = p′2; p′2 = 2m(ε1 + ε2), (4.12)

where p = |p|, p = p1 + p2, pi , and εi (i = 1, 2) are the momenta and energies of
the outgoing electrons. The amplitude is

F(p1,p2) = FA(p)Λ(p′,p)FB(p1,p2), (4.13)

with the function Λ determined by (4.3).

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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Note that the position of singularity in the variable q2 (4.10) in the first example as
well as that of the singularity in p2 in the second example is determined by external
variables. Such singularities are known as “anomalous singularities” (see, e.g., [6]).

In the case of the Coulomb field, these features of the triangle diagrams can be
illustrated by explicit calculations.

4.1.2 Triangle Diagrams in the Case of the Coulomb Field

Here we consider the inelastic scattering of electrons on a single-electron ion with
the charge of the nucleus Z . More generally, we assume that the ion core in the block
A in Fig. 4.1a is the source of the Coulomb field. Thus the function ψ(κ) in (4.3) is
just the nonrelativistic Coulomb function. This enables us to calculate the function
Λ(p2,q) defined by (4.3) explicitly. For s electrons, Λ(p2,q) = Λ(p2, q) does not
depend on direction of momentum q. For 1s electrons,

Λ(p2,q) = −2mN1

q2 − (p2 + iη)2
; η = mαZ; N1 = ψ1s(r = 0) =

(η3

π

)1/2
.

(4.14)

Thus in the Coulomb field, the pole of the amplitude is shifted from the point q2 = p22
to the complex plane

q2 = (p2 + iη)2. (4.15)

The function M(p2, q) defined by (4.6) is

M(Δ) = −i N1

Δ − iη
; Δ = q − p2 . (4.16)

If the bound electron is in a state with a nonzero orbital momentum 	 and its
projection is given by 	z = m, the functionΛ has a pole of order 	 + 1. For example,
in the case of the 2p state with projection of the angular momentum 	z = m, we
obtain

Λ(p2,q) = −i4mN2η2qm
(q2 − (p2 + iη2)2)2

; η2 = mαZ/2; N2 =
(η3

2

π

)1/2
, (4.17)

with qm the circular components of the vector q.
Note that the pole singularity is an artifact of the Born approximation employed

for describing the wave function of the outgoing electron. In the case of the Coulomb
field, the amplitude of inelastic electron scattering given by (3.25) can be calculated
explicitly; see (3.35). For the scattering on the bound electron in the 1s state, the last
factor on the RHS of (3.35) is

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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X (p2,q) = 8π

(
η(−1 + iξ)

a
− ξ(−p + iη)

b

)(a
b

)iξ
, (4.18)

with a = Q2 + η2, b = q2 − (p2 + iη)2. One can see that in the complex q-plane,
the amplitude has branching points corresponding to a = 0 and b = 0. In the vicinity
of the point q = p2 + iη, at which b = 0, the second term in parentheses on the RHS
of (4.18) dominates at large transferred momenta q ∼ p2, q � μb.

4.1.3 Triangle Diagrams in the Case of Short-Range Forces

Now we consider the case in which block A is bound by short-range forces with the
wave equation (−Δ

2m
+U (r)

)
ψ(r) = εbψb(r), (4.19)

withU (r) = 0 for r exceeding a certain value a. This means that for the s states, the
wave function at r > a is

ψb(r) = c
e−μbr

r
; μb = (2m|εb|)1/2, (4.20)

with a certain constant c.
We begin with the case of the zero-range potential model (ZRPM), in which

a → 0. It was first used long ago by Bethe and Pierls [7] in their studies of the
deuteron. The various versions of the approach differ in the prescriptions of tending
to the limit r = 0 on the left-hand side (LHS) of the Schrödinger equation (4.19). A
popular version with U (r) = Aδ(r), where A is a certain constant, is known as the
Fermi pseudopotential. The ZRPM is used in many branches of physics. Nowadays,
it is employed also in the physics of nanostructures [8]. The simplest example for
application of ZRPM in atomic physics is the description of the outer electron in the
negative ion of hydrogen. For more applications in atomic and molecular physics,
see the review [9].

TheZRPMwave function of the bound s state is given by (4.20) in thewhole space,
and c = (μb/2π)1/2. The functionΛ(p2, q) is determinedby (4.7). The integral in the
second equality is saturated by 1/(q + p2) � r � 1/|q − p2| ∼ 1/μb, providing

M(p2, q) = −
( μb

2π

)1/2
ln

μb + i(q − p2)

μb − i(q + p2)
(4.21)

which depends now on q − p2 and on q + p2. The amplitude has branching points
at q = ±(p2 + iμb). The first equality of (4.6) provides
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Λ(p2, q) = im

q

(μb

2π

)1/2( − 1

2
ln

(q + p2)
2 + μ2

b

(q − p2)2 + μ2
b

+ i(arctan
q + p2

μb
+ arctan

q − p2
μb

)
)
.

(4.22)
In the vicinity of the point given by (4.10), the amplitude is enhanced by the loga-
rithmic factor ln(4q2/(Δ2 + μ2

b)).
One can see that the function Λ(p2, q) has pole singularities if the integral on

the RHS of (4.10) is saturated by r ∼ μ−1
b , while the logarithmic singularities are a

result of the contribution of the small distances 1/q � r � μ−1
b .

In the case of nonzero values of a, which one can meet in the physics of nanos-
tructures, we can write (4.6) as

Λ(p2, q) = Λ1(p2, q) + Λ2(p2, q), (4.23)

with the two terms on the RHS corresponding to the regions of integration r < a and
r > a with the wave function

ψb(r) = c1(a)ψint (r)θ(a − r) + c2(a)
e−μbr

r
θ(r − a), (4.24)

where ψint (r) describes the bound state in the internal region where U (r) �= 0. The
coefficients c1,2(a) are determined by the normalization condition. One can see that
if aμb < 1, the region r > a provides the logarithmic contribution

Λ2(q, p2) = i · m
q
c2(a) ln

μb + i(q − p2)

μb − i(q + p2)
, (4.25)

similar to that given by (4.21).

4.1.4 Amplitudes on the Bethe Ridge in the Presence
of Singularities

In Chap.2, we studied processes on bound electrons in the case that the amplitudes
of the corresponding processes on the free electrons do not have singularities. Now
we investigate the case in which there are singularities.

Consider as an example the disintegration of the negative ion of hydrogen H− by
electron impact. The momenta of the initial and scattered electron are p1 and p′

1;
those of the electrons ejected from the ion are p2 and p3. Momentum q = p1 − p′

1
is transferred to the atom. Assuming p1, p′

1 � p2, p3, we can neglect the exchange
terms. We consider the case in which the atom absorbs nonrelativistic energy ε.

Replacing the bound electrons by free ones and including the FSI between the
ejected electrons in the lowest nonvanishing order, we obtain the diagram presented
in Fig. 4.3a. For this reaction,

q = p, (4.26)

http://dx.doi.org/10.1007/978-3-319-32736-5_2


58 4 Singularities of Amplitudes and Wave Functions

Fig. 4.3 Double ionization
of the system containing two
noninteracting electrons by
electron impact

(a) (b)

with p = p2 + p3 the sum of the momenta of the ejected electrons.
Including the FSI between the ejected electrons in the lowest nonvanishing order,

we arrive at the diagram presented in Fig. 4.3a. Due to (4.26), the electron propagator
of this diagram has a pole at

q2 = p′2; p′2 = 2m(ε2 + ε3), (4.27)

with ε2,3 the energies of the outgoing electrons. Thus we can represent the amplitude
of the process on the free electrons as

F0(p2,p3) = 2mK (p2, p3)

p′2 − q2 + iδ
, (4.28)

with K (p2, p3) = 4πα/p2 · 4πα/p23.
We return now to ionization of the negative ion of hydrogen H−. The system

contains a bound electron with single-particle binding energy close to that in atomic
hydrogen and an outer bound electron with the much smaller binding energy εb ≈
−0.7eV. Thus the ratio of the corresponding binding momenta μout/μint ≈ 0.2 can
be treated as a small parameter. It is sufficient for our analysis to consider the lowest-
order approximation.

In the region of small momenta Q ≤ μint transferred to the nucleus, we obtain
for the amplitude in the vicinity of the pole determined by (4.27),

F(p2,p3,Q) = K (p2, p3)Λ1(p
′,q,Q), (4.29)

with

Λ1(p
′,q,Q) =

∫
d3κ

(2π)3
Ψ (κ,Q − κ)

2m

p′2 − (q + κ)2 + iδ
, (4.30)

where Ψ (κ,Q − κ) is the two-particle wave function of the bound electrons. We
neglected terms of order Q/p2,3 ∼ μint/p2,3 � 1 in the expression for K (p2,p3).
The twobound electrons transfermomentaκ andQ − κ to the nucleus. The amplitude
given by (4.29) is illustrated in Fig. 4.3b. One can see that (4.30) is very much like
(4.3) for Λ(p2,q). The difference is that (4.30) contains the two-electron wave



4.1 General Features of the Reactions 2 → 3 59

function. Assuming that the latter can be represented in terms of the single-particle
wave functionsψint,out (this is not a good approximation for accurate computations),
we can write

Ψ (κ,Q − κ) = 1√
2

(
ψout (κ)ψint (Q − κ) + ψint (κ)ψout (Q − κ)

)
. (4.31)

It is symmetric, since the two electrons in the ion H− form a singlet spin state. Thus
(4.30) takes the form

Λ1(p
′, q,Q) =

∫
d3κ

(2π)3

(√
2mψout (κ)ψint (Q − κ)

p′2 − (q + κ)2 + iδ
+

√
2mψout (Q − κ)ψint (κ)

p′2 − (q + κ)2 + iδ

)
.

(4.32)

Since the wave function ψout (κ) is strongly quenched at κ � μout , the first term
in parentheses is saturated at κ ∼ μout . Thus we can putψint (Q − κ) = ψint (Q). For
the second term in parentheses, we introduce κ ′ = Q − κ . The integral is dominated
by κ ′ ∼ μout . Putting ψint (Q − κ ′) = ψint (Q), we obtain for Q ∼ μint ,

F(p2,p3,Q) = K (p2, p3)√
2

(
Λ(p′, q) + Λ(p′, p)

)
ψint (Q); p = |p2 + p3|,

(4.33)

and q = |p − Q|. Here we employed that the functions ψint and ψout describe the s
states. Momentum Q is transferred to the nucleus by the inner electron. The terms
Λ(p′, q) and Λ(p′, p) describe the shift of the pole of the electron propagator to the
complex plane due to the bound of the outer electron. The first and the second terms
in parentheses correspond to absorption of momentum q by the outer bound electron
and by the inner one, respectively.

Today’s powerful computers enable us to obtain a very precise numerical function
of the ion H−. In the single-particle approximation, very accurate numerical func-
tions for the outer electron ψout can be found. However, the analytical properties
of the function Λ(p′, p) depend on the behavior of ψout (r) at small r � 1/μout . In
earlier papers [10], the function ψout (r) was approximated by combinations of the
exponential terms

∑
k cke

−μkr . In this case,

Λ(p′, p) = −
∑
k

ck
2m

p2 − (p′ + iμk)2
(4.34)

and a similar expression forΛ(p′, q) are a combination of the pole terms (see (4.14)).
However, the ZRPM wave function used in [11] for describing the ion H− behaves
at small r in another way (see (4.20)). This provides the logarithmic dependence
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Λ(p′, p) = i · m
q

∑
k

(μk

2π

)1/2
ln

μk + i(p − p′)
μk − i(p′ + p)

≈ i · m

2q

∑
k

(μk

2π

)1/2
ln

Δ2 + μ2
k

4p2
,

(4.35)
with Δ = p − p′, and a similar equation for Λ(p′, q).

4.1.5 Contribution of Triangle Diagrams to Differential
Cross Sections

Now we calculate the contribution of the triangle diagrams to differential cross sec-
tions. Consider again the ionization of atoms by electron impact with large momen-
tum of the outgoing electron p2 and large momentum Q transferred to the nucleus,
i.e., Q ∼ p2 � μb; see Fig. 4.3. The amplitude is given by (4.2), with the differential
cross section

dσ = |F |2dΓ , (4.36)

where the phase volume (including the flux factor) can be written as

dΓ = 2πm

p1
δ(ε1 − ε′

1 − ε2 − I )
d3 p′

1

(2π)3

d3 p2
(2π)3

. (4.37)

Evaluating the phase volume at fixed value of q,

d3 p2
(2π)3

= mQdQdε2

q(2π)2
, (4.38)

(recall that Q = q − p2), and employing also

d3 p′
1

(2π)3
= mqdqdε′

1

p1(2π)2
, (4.39)

we obtain, using (4.2),

dσ

dε2dqdQ
= 2πm

p1
|F0(q)|2|Λ(p2, q)|2 mq

p1(2π)2
|FeN (Q)|2 mQ

q(2π)2
. (4.40)

Herewe have assumed for simplicity that an s state is ionized, and thus the amplitudes
in (4.40) do not depend on directions of momenta. Recall that F0 is the amplitude
of scattering of free electrons with exchange by momentum q; FeN is the amplitude
of the eN scattering in which momentum Q is transferred to the nucleus. Note that
in eN scattering the electron energy does not change. Thus the secondary electron
carries the same energy ε2 in both processes.
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On the other hand, the cross section of free electron scattering is given by

dσ0 = 2πm

p1
|F0|2δ(ε1 − ε′

1 − q2

2m
)
d3 p′

1

(2π)3
.

Employing (4.39) and using the delta function for integration over q, we obtain

dσ0

dε2
= m3

2πp21
|F0|2 = πα2

ε1ε
2
2

(4.41)

for the energy distribution of the free electron scattering (dσ0/dε′
1 = dσ0/dε2). For

the cross section of the eN scattering, we can write

dσeN = 2πm

q
|FeN |2δ(ε2 − q2

2m
).
d3 p2
(2π)3

.

Employing (4.38) and using the delta function for integration over ε2, we obtain

dσeN (ε2)

dQ
= mQ

4πε2
|FeN |2 = 4πα2Z2m

ε2Q3
(4.42)

for the distribution of the eN scattering. These expressions are well known and are
presented in many books on quantum electrodynamics. However, these are the first
equalities in (4.41) and (4.42) that are important for us. They enable us to write [12]

dσ(p1)

dε2dQdq
= dσ0(p1)

dε2

R(p2, q)

2π

dσeN (ε2)

dQ
, (4.43)

where ε2 and Q are the energy and the solid angle of the electron ejected from the
target, Q is the momentum transferred to the nucleus, while p2 = (2mε2)

1/2, and

R(p2, q) = |M(p2, q)|2. (4.44)

If the target electron is in the ground state of the Coulomb field, we obtain,
employing (4.14),

R(p2, q) = R(Δ) = N 2
1

Δ2 + η2
; Δ = q − p2. (4.45)

If the electron is bound by the field for which ψb(r = 0) does not turn to infinity,
the function R in (4.43) depends only onΔ = q − p2, and one can replace integration
over q by that over Δ. This leads to

dσ(ε1)

dε2dQ
= s

dσ0(ε1)

dε2

dσeN (ε2)

dQ
, (4.46)
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with

s ≡
∫

dΔ

2π
R(Δ) . (4.47)

In the case of the Coulomb field, one obtains

s = N 2
1

2η
= η2

2π
(4.48)

for the 1s state.
The contribution of the small region |Δ| < η to the distribution dσ/dεdQ is thus

p2/η � 1 times that of the whole region |q − p2| ∼ p2. This is true for every field
for which ψb(r = 0) does not turn to infinity.

Hence, if we neglect interactions of the outgoing electron with the nucleus, we
shall underestimate the cross section by a factor of p2/μb � 1. This is expressed
explicitly by (4.40) and (4.41).

For a process described by the diagram shown in Fig. 4.1a, one can write

dσ

dΓ dΔ
= dσ0

dΓ0

R(Δ)

2π

dσC

dΓC
, (4.49)

where dΓ0,C and dΓ = dΓ0dΓC are the corresponding phase volumes (compare
(4.43)), and

dσ

dΓ
= s

dσ0

dΓ0

dσC

dΓC
. (4.50)

Similar equations can be written for the process described by the diagram shown in
Fig. 4.2.

One can obtain general expression for the parameter s [13]. Recall that for 	 �= 0,
the functionM is nonvanishing only for states withm = 	z = 0 (the z-axis is directed
along the momentum q). Employing (4.9), we write

R(Δ) = 2	 + 1

4π
δm0

∫
drdr ′ψ∗r

b (r)ψr
b (r

′)eiΔ(r ′−r). (4.51)

Since ∫
dΔ

2π
eiΔ(r ′−r) = δ(r ′ − r),

we obtain

s = (2	 + 1)δm0
〈ψn	m |r−2|ψn	m〉

4π
. (4.52)

Note that these equations are written for one bound electron in each shell. One
should sum over all bound electrons. For the closed subshells, we can write
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s = 〈Ψ | ∑k(r
(k))−2|Ψ 〉

4π
. (4.53)

For the subshells with 	 �= 0, only the states with 	z = 0 contribute, but their contri-
bution is enhanced by the factor 2	 + 1; see (4.51).

If ψb(r) ∼ 1/r as r → 0, the function dσ/dε2dQdΔ has a peak with the height
of the order ln2(q2/Δ2) at small Δ ∼ μb; see (4.22). However, the distribution
dσ/dε2dQ is determined by large |p2 − q| ∼ q. The region Δ ∼ μb provides a
large correction of order (μb/q) · ln2(q2/Δ2).

4.2 Fast Secondary Electrons

4.2.1 Angular Correlations and Energy Distributions

Now we consider processes in which a bound electron accepts energy in interacting
with an external source and shares it with another bound electron. The energies of
both outgoing electrons are assumed to exceed greatly the ionization potentials.

We begin with the double ionization of the ground state of a two-electron ion (or
atom) by a photon carrying energy ω. This case was mentioned briefly in Sect. 4.1.1;
see Fig. 4.2 and (4.12) and (4.13). We shall discuss this process in detail in Chap.9.
Here we assume that the bound-state wave function can be represented as the product
of single-particle functions. We can write, similar to (4.36) and (4.37),

dσ = 2π |F |2δ(ω − p22
2m

− (p − p2)2

2m
− I )

d3 p

(2π)3
· d3 p2
(2π)3

, p = p1 + p2, (4.54)

with the amplitude F given by (4.13). Hence

dσ = 2π |Fph(p)|2|Λ(p′,p)|2|Fee(p2)|2· (4.55)

δ(ω − p22
2m

− (p − p2)2

2m
− I )

p2dpdΩp

(2π)3

d3 p2
(2π)3

.

Here Fph is the amplitude of photoionization; p is the momentum of the photoelec-
tron; Fee(p) is the amplitude of the scattering of the electron with momentum p on
the free electron at rest; pi are the momenta of the outgoing electrons. Composing
(4.55) with the expression

dσph = 2π |Fph(p)|2mpdΩp

(2π)3

for the cross section of the photoionization and employing the delta function for
integration over the angles of momentum p2 at fixed value of p, we obtain

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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dσ

dε2dp
= σph(ω)

R(p′, p)
2π

dσee(ε)

dε2
; p′2 = 2mε, (4.56)

with ε = ω − I the energy absorbed by the ion. The last factor on the RHS of (4.56)
presents the scattering cross section of the electron with energy ε on the free electron
at rest.

Thus the distribution dσ/dε2dp has a sharp maximum at p = p′ with the width
of the order μb. In other words, the distribution in the angle between the momenta
of the outgoing electrons (angular correlations)

τ = p1 · p2/p1 p2
has a sharp maximum at

τ = 0 , (4.57)

corresponding to the value predicted by classical mechanics. The vicinity of this
point determines the distribution

dσ

dε2
= sσph(ω)

dσee(ε)

dε2
, (4.58)

with s given by (4.52). Note that (4.58) holds at all orders of the FSI between the
photoelectrons. In the lowest order of the FSI, we have

dσee(ε)

dε2
= πα2

ε

( 1

ε2
+ 1

ε − ε2

)2
. (4.59)

We turn now to the case in which the bound electrons are described by exponential
(Coulomb) functions. Since the interactions between the electrons are 1/Z times their
interactionswith the nucleus, thismodel becomes increasingly accuratewith increase
of Z . We shall see in Chap.9 that this is a reasonable approximation for the high-
energy double photoionization of heliumlike ions except the lightest ones. In the case
of the Coulomb functions, one can find analytical expression for the distribution

dσ

dε2dΔ
= 1

2π
· N

2
1σph(ω)

Δ2 + η2
· dσee(ε)

dε2
; Δ = p − p′. (4.60)

We can also write an expression for the double distribution in the energy and angles.
Since p2 = p21 + p22 + 2p1 p2τ , we can write Δ = p − p′ = 2p1 p2τ/(p + p′) ≈
p1 p2τ/p′. The distribution (4.60) can be written as

dσ

dε2dτ
= 1

2πa
· N 2

1σph(ω)

τ 2 + η2/a2
· dσee(ε)

dε2
, (4.61)

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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with a = p1 p2/(2mε)1/2; p1 = √
2m(ε − ε2). Since ε1,2 � I = η2/2m, we find

indeed that τ 2 � 1. The energy distribution is expressed by (4.58) with s = η2/2π ;
see (4.48).

Note that (4.58) is quite general for processes with ejection of a fast electron
carrying the energy ε. We denote the cross sections of this process and that of similar
process with ejection of secondary electrons by σ0 and σ . The high-energy part of
the spectrum of the secondary electrons can be described by the formula

dσ(ε, ε2)

dε2
= sσ0(ε)

dσee(ε)

dε2
. (4.62)

Consider now the case of very large values of ω >∼ m, corresponding to the rel-
ativistic energies of one or both photoelectrons. Their kinetic energies are ε̂i =
Ei − m. The point of the sharp maximum of the distribution dσ/d ε̂2dp, correspond-
ing to the pole of the propagator a in Fig. 4.2, is determined by the condition

(ω + m)2 − p2 = m2, (4.63)

or p = p′ with p′2 = 2ωm + ω2. Since

ω ≈ ε̂ = ε̂1 + ε̂2; p2i = 2mε̂i + ε̂i
2
, (4.64)

(4.63) leads to a peak of the angular correlations at

τ = ε̂1ε̂2

p1 p2
, (4.65)

which depends on the total energy ε̂ and on the energy sharing x = ε̂i/ε̂. The depen-
dence τ(x) for several values of ε̂ is presented in Fig. 4.4. Since the RHS of (4.65)

Fig. 4.4 Dependence of τ

defined by (4.65) on the
energy sharing x = ε̂i/ε̂.
The solid line is for ε̂/m = 1
(ε̂ ≈ 500keV). The dashed
and dotted lines represent the
results for ε̂ = 3m/2 and
ε̂ = 2m respectively
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does not exceed unity, there is a peak in the angular correlations at any energy of
the outgoing electrons. We see that τ � 1 if one of the photoelectrons obtains a
nonrelativistic energy. If both electrons are ultrarelativistic, with ε̂i � m we find
that τ → 1. The high-energy part of the spectrum of the secondary electrons can be
written similar to (4.62):

dσ(ε̂, ˆε2)
d ε̂2

= sσ0(ε̂)
dσee(ε̂)

d ε̂2
. (4.66)

Now we can formulate the main features of the distribution of fast secondary
electrons.

• The distribution dσ/dε2dτ has a sharp and narrow peak with the point τ0 deter-
mined by the energies of the outgoing electrons. In the nonrelativistic limit τ0 = 0,
the width of the peak is of order μb/(2mε)1/2.

• The distribution dσ/dε2 is determined by the values of τ close to the vicinity of
the peak.

• The shape of the spectrum of the photoelectrons is the same as that in free electron–
electron scattering.

• The spectrum is proportional to the expectation value of the sum
∑

k(r
(k))−2 of

the ionized atom.

For the case ψb(r) → 1/r as r → 0, the first feature is also true. However, the
peak is much lower, and all values of τ contribute to the energy distribution, while
the vicinity of the peak provides a large correction of the order (μb/p2) · ln2(μb/p2).

4.2.2 Internal Energy Loss

If an atom remains in the ground state after ejection of a fast electron, itswave function
changes from |Ψ0〉 to |Φ0〉, while the energy changes from ε

(i)
0 to ε

( f )
0 (ε(i, f )

0 < 0).
The ground-state energies ε

(i, f )
0 can be usually measured and calculated with good

accuracy.
If the atommoves to an excited state, the fast electron obtains a smaller energy.We

shall calculate the energy loss of the fast electron connected with possible excitation
of the atomic states. For the sake of simplicity, we consider the nonrelativistic case.
The extension of the result to the relativistic case is straightforward.

The energy distribution of the fast electrons in the process accompanied by exci-
tation of the electronic shell to the state |Φn〉 with energy εn � ε can be written,
following (4.67), as

dσn

dε
= dσ

dε
Sn , (4.67)
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with dσ/dε the distribution of the fast electrons, with the final state of the electronic
shell being |Φ0〉. Here Sn is determined by (3.94) and (3.95). The internal energy
loss of the fast electron is defined as

〈ε〉 =
∑

n(ε
( f )
n − ε

( f )
0 )dσn/dε

dσ/dε
, (4.68)

with
∑

n denoting the sum over the discrete spectrum and the integral over the
continuum. Thus

〈ε〉 =
∑
n

(ε( f )
n − ε

( f )
0 )Sn (4.69)

for every process inwhich the fast electron is ejected. In applications, one often needs
the sum on the RHS, which includes only the states for which εn does not exceed a
certain value

ε( f )
n ≤ ε( f )

max. (4.70)

If ε( f )
max is larger than all the single-particle ionization potentials, we can obtain several

general relations.
If the transitions in the electronic shell are treated in the SO approximation, we

can obtain an expression for the energy loss 〈ε〉1 in closed form. We write

〈ε〉1 =
∑
n

(ε( f )
n − ε

(i)
0 )Sn − δε0 , (4.71)

with δε0 = ε
( f )
0 − ε

(i)
0 the change of energy of the ground state. Since Sn = T (0)2

n
decreases with εn as ε−4, the first term on the RHS can be obtained by employ-
ing the closure condition. We may write

∑
n(ε

( f )
n − ε

(i)
0 )Sn = ∑

n〈Ψ0|Φn〉(ε( f )
n −

ε
(i)
0 )〈Φn|Ψ0〉 = ∑

n〈Ψ0|V |Φn〉〈Φn|Ψ0〉, with V = H2 − H1 the difference of the
electronic shell Hamiltonians in their final and initial states. Thus

〈ε〉1 = 〈Ψ0|V |Ψ0〉 − δε0 . (4.72)

Here the first term on the RHS represents the total energy transferred to the electronic
shell. It includes the change in its ground state energy after ejection of the fast
electron, which is subtracted by the second term. In the case of beta decay, we have
V = −∑

k α/r (k).
Going beyond the SO approximation, we find that due to the FSI, the probability

for excitation of the high-energy continuum states with εn � Ib decreases as 1/ε2n ;
see (4.59) and (4.60). The contribution of these states to the energy loss behaves
as ln εmax and cannot be calculated by employing the closure condition. The FSI
provide the contribution 〈ε〉2 to the energy loss. The high-energy excited states with
Ib � εn <∼ εmax determine

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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〈ε〉h2 = ξ 2
ee

〈r−2〉
2m

ln
εmax

Ib
. (4.73)

Here the upper index h indicates that this is the contribution of the high-energy excited
states, ξ 2

ee = α2/v2, and 〈r−2〉 = 〈Ψ0| ∑k r
(k)−2|Ψ0〉. The sum over the initial state

bound electrons is carried out. The low-energy excited states with ε ∼ Ib provide the
contribution 〈ε〉	2 ∼ ξ 2

ee Ib. The upper index 	 indicates that this is the contribution
of the low-energy part of the spectrum. For each single-particle bound state Ib ∼
〈r−2〉/2m, we can write

〈ε〉2 = 〈ε〉h2 + 〈ε〉	2 = ξ 2
ee

〈r−2〉
2m

ln
εmax

B
(4.74)

for the total FSI generated contribution to the energy loss, with B ≈ Ib.
The total energy loss is thus

〈ε〉 = 〈ε〉1 + 〈ε〉2 ,

with the SO contribution 〈ε〉1 given by (4.72). The parameter B should be calculated
separately in each particular case. In Chap. 12, we shall calculate it for the tritium
atom. For very large energies εmax with ln(εmax/Ib) � 1, one can put B = Ib. For
smaller energies, the expression for 〈ε〉2 with B = Ib,

〈ε〉 = ξ 2
ee

〈r−2〉
2m

ln
εmax

Ib
, (4.75)

can be used as an estimate that enables one to get a feel for the size of the effect. One
can see that (4.74) and (4.75) can be expanded to the relativistic case. The largest
value εmax of the nonrelativistic kinetic energy ε = p2/2m should be replaced by the
largest value of the kinetic energy ε̂ = E − m.

4.3 Kato Cusp Conditions

Here we analyze the electron wave functions in configurations in which the electron
and nucleus of the atom or two electrons approach each other. The triple coalescence
in the helium atom, whereby all three charged particles are at the same point, will be
discussed in the next section.

http://dx.doi.org/10.1007/978-3-319-32736-5_12
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4.3.1 Electron–Nucleus Coalescence Point

Consider an atomic electron moving in a certain central field described by the local
potential U (r) = UeN (r) +Uee(r), where the two terms stand for the interaction of
the electron with the nucleus and with the other electrons. The wave equation for the
radial part R(r) of the wave function ψ(r) describing an s electron is

R′′(r) + 2

r
R′(r) − 2mU (r)R(r) = −2mεR(r) . (4.76)

Let us consider small r → 0. In this limit, we can put U (r) = UeN (r) = −αZ/r ,
with Z the charge of the nucleus. Since R(r) does not turn to zero at r = 0 [1], the
last term on the LHS of (4.76) becomes singular. On the other hand, the RHS does not
have singularities. The only way to make the two statements consistent is to assume
that this singularity is compensated by that of the second term, i.e.,

dR(r)

dr
|r=0 = −ηR(r)r=0 , (4.77)

as found by Kato [14]. Surprisingly, this observation was made thirty years after
the Schrödinger equation was first written down. Note that for the ground state of a
hydrogenlike ion, we have R(r) = N1e−ηr , and (4.77) holds for all values of r .

A nonzero value of the derivative R′(r = 0) is the consequence of the singularity
of the potentialU (r) at r = 0. Without singularities ofU (r), the wave function R(r)
would have been an analytic function of r2, for which dR(r)/dr = 2rdR(r)/dr2,
and thus dR(r)/dr = 0 at r = 0. In our case, dR/dr2 goes to infinity at r = 0,
since dR(r)/dr has a nonzero value expressed by (4.77), which is usually called
the first Kato cusp condition. The Kato condition remains true if nonlocal exchange
interactions are taken into account, since the exchange terms do not have singularities
at r = 0.

A similar condition can be written for the single-particle states with orbital
momentum 	 �= 0. In this case, the wave equation for the radial function R	(r) is

R′′
	 (r) + 2

r
R′

	(r) − 2mU (r)R	(r) − 	(	 + 1)

r2
R	(r) = −2mεR	(r). (4.78)

One can write R	(r) = r 	χ	(r) with χ	(0) �= 0. The RHS behaves as r 	 as r → 0.
The contributions proportional to r 	−2 at 	 > 1 on the LHS cancel identically, and
cancellation of the terms of order r 	−1 takes place if

dχ(r)

dr
|r=0 = − η

	 + 1
χ(r = 0) . (4.79)

TheKato conditions are true also if thewave functionψ describes a single-particle
state in a multielectron system. For the multielectron functionΨ (r1, r2, . . .), the first
Kato condition takes the form
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∂Ψ̂ (r1, r2, . . .)
∂r1

|r1=0 = −ηΨ (0, r2, . . .), (4.80)

where Ψ̂ means that the function is averaged over the sphere with a small radius
r1 → 0. This can be proved by expansion of the function Ψ (r1) (other variables
are fixed) in partial waves near the origin. We write Ψ (r1) = ∑

	,m Ψ	,m , where
Ψ	,m = ∑

n cn	Rn	(r1)Y	m(Ω). Thus ∂Ψ	,m(r1)/∂r1 = ∑
n cn	R′

n	(r1)Y	m(Ω). Now
we check (4.80) for the partial waves Ψ	,m , recalling that Rn	(r1) ∼ r 	

1 . For 	 = 0,
(4.79) can be obtained in the same way as for the single-particle case. For 	 ≥
2, both the RHS and LHS go to zero, since Rn	(0) = R′

n	(0) = 0. For 	 = 1, we
have Ψ1,m(r1) = 0, while ∂Ψ1,m(r1)/∂r1|r1=0 ∼ Y	m(Ω), which goes to zero after
integration over the sphere.

4.3.2 Electron–Electron Coalescence Point

We begin by considering an S state of a two-electron atom. The two-electron wave
function Ψ can be considered as a function of three scalars r1 = |r1|, r2 = |r2|, and
r12 = |r1 − r2|, with ri the positions of the electrons with respect to the nucleus. In
the wave equation HΨ = εΨ , the Hamiltonian

H = − Δ1

2m
− Δ2

2m
− αZ

r1
− αZ

r2
+ α

|r1 − r2| (4.81)

takes the form H = H1 + H2 + H12 with

Hi = H (0)
i + Vi ; H (0)

i = −1

2m

( ∂2

∂r2i
+ 2

ri

∂

∂ri

)
; Vi = −αZ

ri
, (4.82)

while

H12 = H (0)
12 + V12; H (0)

12 = −1

m

( ∂2

∂r212
+ 2

r12

∂

∂r12
+ h1

∂2

∂r1∂r12
+ h2

∂2

∂r2∂r12

)
,

(4.83)
with

h1 = r21 − r22 + r212
2r1r12

; h2 = h1(1 ↔ 2); V12 = α

r12
. (4.84)

Cancellation of the singularities at r12 = 0 in the term H12 leads to the second Kato
cusp condition for the spin–singlet states

∂Ψ (r1, r2, r12)

∂r12
|r12=0 = ν

2
Ψ (r1, r2, r12 = 0); ν = mα. (4.85)
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For the spin–triplet states, the wave function is space-antisymmetric. HenceΨ (r12 =
0) = 0, and (4.85) means that expansion of the wave functionΨ (r12) in powers of r12
begins with the terms r212. This cusp condition holds for every multielectron system
near the point of a two-electron coalescence.

For the two-electron states with total angular momentum L �= 0, the requirement
that the terms that have singularities at r12 = 0 cancel also leads to certain relations
between the wave function and its derivative at this point. We shall not consider this
case here, referring the reader to the original papers [15, 16].

4.3.3 A Wave Function Based on the Kato Cusp Condition

Here we consider the Schrödinger equation for the electron moving in the Yukawa
potential

U (r) = −g
e−λr

r
; λ, g > 0 . (4.86)

Initially, this potential was supposed to describe the nucleon interactions. However,
the situation with strong interactions appeared to be more complicated. In recent
decades, the Yukawa potential has been used in atomic physics, and numerical solu-
tions have been obtained. This potential is weaker than the Coulomb potential with
the same coupling constant g. At λ exceeding a certain critical value λc, the bound
state in this field ceases to exist. We demonstrate that a simple wave function based
only on the requirement to have proper asymptotics at small and large r reproduces
the value of λc fairly well [17].

The wave equation describing the s state in the Yukawa potential is

R′′(r) + 2

r
R′(r) + 2mg

e−λr

r
R(r) = −2mε(g, λ)R(r) . (4.87)

At λ = 0, the energy of the ground state is ε = −mg2/2, sinceU is just the Coulomb
potential of the nucleus with charge Z = g/α (recall that α = e2 = 1/137). Increas-
ing λ, we make the field weaker, thus making |ε| smaller. The value λc corresponds
to the ground-state energy

ε(g, λc) = 0 . (4.88)

This equation determines the value of the ratio λc/g. This happens because the
scale transformation r ′ = ζr of (4.87) leads to the relation ε(g, λ) = ζ 2ε(g/ζ, λ/ζ ).
Putting ζ = g (for g = α, this means that we express all parameters in atomic units),
we obtain ε(g, λ) = g2ε(1, λ/g), and (4.88) can be written as

ε(1, λ∗
c) = 0 λ∗

c = λc/g . (4.89)

It was understood long ago that λc/mg ≈ 1 [18]. Later, (4.88) was solved more
accurately by numerical methods; see, e.g., [19].
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We can write ∫
drφ∗(r)H(r)φ(r)∫

drφ∗(r)φ(r)
= ε (4.90)

for the wave functions that provide the solution of (4.87), where H the Hamiltonian
in the Yukawa field,

H = − 1

2m

d2

dr2
+U (r) , (4.91)

and the wave equation (4.87) is

Hφ = εφ; φ(r) ≡ r R(r) . (4.92)

Nowwe try to build an approximate solution of (4.87) or (4.92). The large-distance
behavior can be found by setting U = 0 on the LHS of (4.92). Thus at r → ∞, we
have

R(r) = e−μr

r
; μ = (−2mε)1/2. (4.93)

However, this function does not satisfy the Kato condition (4.77), which requires
R′ = −mgR at r = 0. Therefore, we add an exponential term to the numerator of
(4.93):

R(r) = e−μr − e−κr

r
, (4.94)

with κ > μ, which does not change the asymptotics at large r and ensures the Kato
condition if

κ = 2η − μ; η = mg. (4.95)

Note that the binding energy is ε(λ) = −μ2/2m, while ε(0) = −η2/2m.
Since the exponential factor on the RHS of (4.86) makes the field weaker, we see

that μ < η. Thus indeed, we have κ > μ.
Now substituting the wave function (4.94) into (4.90) and putting ε = 0, we find

that
λc

η
= 2(

√
eh

eh − 1
− 1); eh ≡ e1/2 ≈ 1.6487. (4.96)

This provides the value λc/η ≈ 1.1884, which is very close to the value λc/η =
1.1906 found in [19].

The binding energy for λ < λc can be expressed in terms of μ, λ, and η using
(4.90). An explicit formula is given in [17]. Here we present results for g = α.
For λ/mα = 1.1, i.e., in the vicinity of the critical value, this approach provides
ε = −2.189 × 10−3 atomic units (a.u.), while numerical computations [19] lead to
ε = −2.287 × 10−3 a.u.At smaller values ofλ, the deviation diminishes.Atλ/mα =
0.8, for example, the function (4.94) gives ε = −0.0444 a.u., while ε = −0.0447
a.u. was obtained in [17].
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4.4 Wave Functions of Helium and Heliumlike Ions

4.4.1 Three-Particle Coalescence Point

In the early days of quantummechanics, there were attempts to calculate the binding
energy of the ground state of the helium atom by employing approximate functions
written as

Ψa(r1, r2, r12) = e−a(r1+r2)P(r1, r2, r12) , (4.97)

with the parameter a and the coefficients of the polynomial P(r1, r2, r12) =∑
ci jkr i1r

j
2 r

k
12 determined by the variational principle. The exponential drop at

r1,2 → ∞ is due to the behavior of theHamiltonian H given by (4.82) as r1, r2, r12 →
∞. In this limit, the interactions −αZ/ri and α/r12 can be neglected, and the
Hamiltonian can be written as a sum of two Hamiltonians for free noninteracting
electrons H = H (0)

1 + H (0)
2 . The corresponding solution of the wave equation is

Ψ ∼ e−a(r1+r2), with a = (−mε)1/2.
However, by 1935, it was understood that the solution of the wave equation cannot

take the form of (4.97), since it is unable to describe the configuration in which both
electrons and the nucleus are at the same point [20]. Soon, Barlett [21] suggested
that inclusion of the logarithmic terms might solve the problem. In 1954, Fock found
an expansion of the helium wave function near the three-particle coalescence point
involving the logarithmic terms and proved it to be capable of solving the Schrödinger
equation [22].

The Fock expansion is written in hyperspherical coordinates, in which the limit
r1, r2, r12 → 0 corresponds to only one hyperradial variable r = (r21 + r22 )

1/2 → 0.
The two hyperangular variables can be chosen, e.g., as αh = 2 tan−1(r2/r1) and
θh = cos−1((r21 + r22 − r212)/2r1r2). In these variables, the expansion near r = 0 can
be written as

Ψ (r, αh, θh) =
∞∑
k=0

[k/2]∑
m

rk(ln r)mψk,m(αh, θh), (4.98)

where [k/2] is the greatest integer that does not exceed k/2. It was proved in [22]
that it is possible in principle to find all the functions ψk,m(αh, θh). It was shown in
[23] that the radius of convergence of the Fock series is about half the radius of the
helium atom. The terms of the expansion up to k = 6 are presented in [24].

While the expression on the RHS of (4.98) satisfies the Kato cusp conditions,
each term of the expansion may not. For example, the contribution that includes the
terms linear in r written in the variables ri , r12 takes the form (in this subsection we
are using the normalization Ψ (0, 0, 0) = 1)

Ψ
(1)
F (r1, r2, r12) = 1 − η(r1 + r2) + νr12/2; η = mαZ; ν = mα, (4.99)
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for which (4.77) and (4.85) are not true. Thus the approximate wave functions can be
improved either by ensuring the Kato cusp conditions or by including several terms
of the Fock expansion.

4.4.2 Account of Analytical Properties in Approximate
Wave Functions

The binding energy of the ground state of the helium atom that is measured with
relative error 2 × 10−7 [25] is the standard test for the accuracy of the approximate
wave functions. Today’s computers make it possible to calculate the value with high
accuracy without worrying about the analytical properties; see, e.g., [26]. However,
Kato predicted in his 1957 paper [14] that proper treatment of singularities improves
the rate of convergence of the computations with approximate functions.

Pioneering calculations employing the Fock expansion [27] confirmed the state-
ment. The calculation of the binding energy of the helium atom with accuracy 10−9

required 52 parameters, while the same accuracy of the computations employing
the functions represented by (4.97) needed 1078 parameters. It was noticed that the
variational calculations of the coefficients of the functions involving the logarithmic
terms mimic those of the Fock expansion [16].

If the approximate wave function is chosen in a reasonable form, the variational
procedure finds the parameters that ensure the validity of the Kato cusp condition.
For example, the wave function of the form

Ψa(r1, r2, r12) = e−a(r1+r2)+br12 P(r1, r2, r12) (4.100)

with four parameters satisfies the first Kato cusp condition with an accuracy of 6%
[28, 29]. The error diminishes if a larger number of parameters is employed. The
function given by (4.100), with 14 parameters, reproduces the binding energywith an
accuracy of 3 × 10−5. One needs 210 parameters to obtain this accuracy, employing
functions of the form represented by (4.97).

Since the function [30]

φ(r1, r2, r12) = exp (Ψ
(1)
F (r1, r2, r12)) , (4.101)

with Ψ
(1)
F defined by (4.99), satisfies both Kato cusp conditions and reproduces the

lowest term of the Fock expansion, it is reasonable to look for the solution of the
wave equation in the form [31]

Ψ = φΦ . (4.102)

The function Φ(r1, r2, r12) satisfies the equation

H ′Φ = ε′Φ . (4.103)
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Here H ′ = H (0)
1 + H (0)

2 + H (0)
12 + V ′, where the free Hamiltonians H (0)

i , i = 1, 2,
are represented by (4.82), while the Hamiltonian H (0)

12 is given by (4.83). The inter-
actions are described by the operator

V ′ =
(
ν − η(h1 + h2)

) ∂

∂r12
− ν

2

(
h1

∂

∂r1
+ h2

∂

∂r2

)

with η = mαZ , ν = mα, and hi determined by (4.84). The operator V ′ does not
contain the Coulomb singularities. In (4.103), we have ε′ = ε + η2/m + ν2/4m.

The wave functions for the S states of the helium atom and of heliumlike ions
in the form (4.101) were suggested in [31, 32]. The locally correct function Φ was
obtained by the correlation function hyperspherical harmonic (CFHH) method. The
function Φ includes the logarithmic terms. It behaves as r21,2 as r1,2 → 0 and as r212
as r12 → 0. The CFHH functions with a more complicated form of the function Ψ

(1)
F

also succeeded in describing the negative hydrogen ion H−. Thus they satisfy both
Kato cusp conditions. We shall employ the CFHH functions in Chap.9.

4.4.3 Approximate Wave Functions on Coalescence Lines

On the electron–nucleus coalescence lines r1 = 0 (or r2 = 0) and on the electron–
electron coalescence line r12 = 0, rather simple wave functions that respect the ana-
lytical properties appear to be capable of ensuring good accuracy. Assuming that on
the electron–nucleus coalescence line where r1 = 0, r2 = r12 = R, the approximate
wave function is given by Ψa(0, R, R) = Nφ(0, R, R) with φ defined by (4.101),
i.e., φ(0, R, R) = Ne−(η−ν/2)R , we obtain

Ψa(R) = Ne−(η−ν/2)R . (4.104)

Recall that we set ν = mα. Similarly, on the electron–electron coalescence line
r12 = 0, r1 = r2 = R, we obtain the approximate function

Ψa(R) = Ne−2ηR . (4.105)

In (4.104) and (4.105), we have N = Ψ (0, 0, 0). The CFHH calculations provide
N = 0.07ν3 for the ion H− and N = 1.55ν3 for helium. At large Z , we can expect
that N becomes close to its Coulomb value NC = ν3Z3/π . In helium, the CFHH
calculations give r = 0.61 for the ratio r = N/NC , while they give r = 0.83 for
Z = 6. These simple wave functions approximate accurate numerical functions with
an error that does not exceed several percent. They work not only for heliumlike
ions, but also for the negative hydrogen ion H−.

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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To characterize the accuracy of these approximate functions, we introduce

y1,2(R) = log
∣∣∣Ψa(R) − ΨCFHH (R)

ΨCFHH (R)

∣∣∣,

where y1 corresponds to the wave function (4.104) on the electron–nucleus coales-
cence line,while y2 corresponds to thewave function (4.105) on the electron–electron
coalescence line. The functions y1,2(R) for several bound systems containing two
electrons are shown in Fig. 4.5.

Fig. 4.5 The functions y1,2(R) for the negative ion H− (a), for the helium atom (b), and for the
ion Be+ (c). The horizontal axis is for the distance R in atomic units [33]
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The accuracy of the wave functions (4.104) and (4.105) becomes worse for large
R, since they do not have proper asymptotics as R → ∞. The accuracy is improved
by applying the two-exponential representation [34] of the function Ψa(R). For the
approximate function on the electron–nucleus coalescence line, we have

Ψa(R) ≡ f (R) = C(e−λR + γ e−βR) , (4.106)

where the second term is required to have proper asymptotics as R → ∞. Two other
parameters γ and λ are determined by the condition that at R → 0, they should
reproduce the terms of order R and R2 of the Fock expansion. This means that the
first and second derivatives in R of the function f (R) should be the same as those
of the Fock expansion on the electron–nucleus coalescence line:

Ψ
(2)
F (0, R, R) = 1 − νR

(
Z − 1

2

)
+ ν2R2

12

(
4Z2 − 2Z(3 − ln 2) + 1 − 2ε

ν2

)
+ 0(R2) .

(4.107)
The normalization coefficient C can be found, e.g., by computation of the value of
the CFHH function at R = 0.

This provides two equations that connect the parameters λ, β, and γ . For example,
equating the terms of order R in (4.106) and (4.107) provides

λ = (η − β − ν/2)(1 + γ ) + β . (4.108)

Analysis involving the second derivatives in R shows that λ > β. Thus the first
term on the RHS of (4.106) decreases more rapidly than the second one. Hence the
asymptotic of f (R) at large R is indeed determined by the second term on the RHS
of (4.106) for every Z .

To find f (R) at large R, note that in the limit r2 � r1, we can put r12 = r2, and
the variables r1 and r2 are separated in the wave equation

(−Δ1

2m
+ −Δ2

2m
− αZ

r1
− α(Z − 1)

r2

)
Ψ = εΨ, (4.109)

where ε is the energy of the ground state. For the helium atom, we have ε ≈ −78.9
eV. Thus, the solution of (4.109) can be represented as Ψ (r1, r2) = ψ1(r1)ψ2(r2). It
is reasonable to look for the solution on the assumption that

(−Δ1

2m
− αZ

r1

)
ψ(r1) = −IZψ(r1) ,

with IZ = η2/2m. This means that the bound electron located at the point r1 does not
feel the electron that is far away at r2 � r1. Thus in the asymptotic r2 → ∞, we have
(−Δ2/2m)ψ2(r2) = (ε + IZ )ψ(r2) with IZ = η2/2m), providing ψ2(r2) ∼ e−kr2

with k = (−2εm − η2)1/2. Hence, f (R) ∼ e−kR at large R, and we can put β = k =
(−2εm − η2)1/2. For the helium atom, we have λ = 1.59ν, β = 1.34ν, γ = 0.55,
while η = 2ν. Thus we can write
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Ψa(R) = N1e
−λ1R + N2e

−λ2R . (4.110)

For helium, the CFHH calculations provide λ1 = 1.59ν, λ2 = 1.34ν and N1 =
0.65ν3, N2 = 0.35ν3.

A similar procedurewas carried out for thewave function on the electron–electron
coalescence line. The Fock expansion on this line is

Ψ
(2)
F (R, R, 0) = 1 − 2νRZ + ν2R2

(
2Z

3

( 2

π
− 1

)
ln νR − 2ε

3
+ 5

3
Z2 − 3Z

10
+ 3

2

)
,

(4.111)
and the parameters of this function are λ = 5.54ν, β = 3.41ν, γ = 2.60. The wave
function on the electron–electron coalescence line takes the form (4.110). For the
helium atom, we have λ1 = 5.54ν, λ2 = 3.41ν, while N1 = 0.38ν3, N2 = 0.99ν3.
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Chapter 5
The Coulomb Field. Nonrelativistic Case

Abstract We introduce a technique that simplifies calculations in theCoulombfield.
We apply it for calculating first- and second-order processes. In other words, we
calculate the differential distributions and the total cross sections for the photoeffect
and also for the Rayleigh scattering, for the Raman scattering, and for the Compton
effect.

5.1 Wave Functions and Propagator

5.1.1 General Remarks

In this section, we carry out calculations for the nonrelativistic electron moving in
the Coulomb field of a nucleus with charge Z . The potential energy of the electron
in the Coulomb field is known to be

U (r) = −αZ

r
. (5.1)

Such calculations are important, since it is instructive to understand how the processes
go on or the mechanisms of the processes in the simplest case of the hydrogen atom
or hydrogenlike ion before studying more complicated atoms. The nonrelativistic
electron wave functions in the Coulomb field are available in closed form [1, 2]. The
same refers to the nonrelativistic Coulomb Green function [3–5]. This enables us to
investigate processes of higher order. The technique developed in [6–8] simplifies
the calculations. Thus we can trace how the quantitative estimates are supported by
the results of the calculations.

Moreover, the development of physics of multicharged ions requires their theoret-
ical investigation. In such systems, the interaction between electrons can be included
perturbatively, with the Coulomb field calculations as the zero-order approximation.
This expansion in powers of 1/Z appears to be useful for a large number of systems,
even in the case of helium.

© Springer International Publishing Switzerland 2016
E.G. Drukarev and A.I. Mikhailov, High-Energy Atomic Physics,
Springer Series on Atomic, Optical, and Plasma Physics 93,
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In this chapter, we do not include relativistic corrections to the bound state wave
functions, which are usually of order (αZ)2. Even for uranium, with Z = 92, we
obtain (αZ)2 = 0.45, and the nonrelativistic results can be employed as estimates.

Recall that in every central field, the dependence of the nonrelativistic single-
electronwave functions on the angular variables is separated in the spherical harmon-
ics Y�m(Ω), where � andm are the angular momentum and its projection on a certain
axis. The bound-state wave functions can be written as ψn�m(r) = Rn�(r)Y�m(Ω),
with the radial parts Rn�(r) satisfying the equation

− R′′
n� − 2

r
R′
n� + �(� + 1)

r2
Rn�(r) + 2mU (r)Rn� = 2mεn�Rn� . (5.2)

It is due to the specifics of the Coulomb field that the energies of the bound states do
not depend on �:

εn� = εn = − η2

2m

1

n2
; η = mαZ . (5.3)

This was found by Niels Bohr a century ago, before quantum mechanics was formu-
lated.

For a continuum electron with energy ε > 0, the radial function Rε�m satisfies the
equation similar to (5.2):

− R′′
ε� − 2

r
R′

ε� + �(� + 1)

r2
Rε�(r) + 2mU (r)Rε� = 2mεRε� . (5.4)

The continuum radial wave function is given by Rε� = Cr �−1F(iη/p + � + 1, 2� +
2,−2i pr), where the last factor is the confluent hypergeometric function, p =
(2mε)1/2, while C is the normalization constant. The radial wave function of the
bound states Rn� is described by the same equation with ε = εn , while the latter is
given by (5.3).

In an alternative description of the continuum wave functions, we can choose
the three components of the asymptotic momentum p as three independent quantum
numbers. In this case, the continuumwave functionψp(r) is determined by the value
of the asymptotic momentum p. We shall employ both forms, focusing, however, on
the latter one.

5.1.2 Technique of Calculations

The key point of the approach is to present the nonrelativistic electronwave functions
in momentum space as the matrix elements of the Yukawa potential

Viλ(r) = e−λr

r
; 〈r1|Viλ|r2〉 = Viλ(r1)δ(r1 − r2), (5.5)
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in the plane wave basis

〈f1|Viλ|f2〉 = 〈f2|Viλ|f1〉 =
∫

d3r
e−λr

r
e−if1·r+if2·r = 4π

(f2 − f1)2 + λ2
. (5.6)

The definition of λwith the factor i appears to be convenient for calculations with the
continuumwave functions. Integration over themomenta is carried out by employing
the closure relation ∫

d3 f

(2π)3
|f〉〈f | = 1, (5.7)

leading to the products of two Yukawa potentials. The latter can be evaluated as

− ∂

∂λ
ViλViτ = Vi(λ+τ) . (5.8)

5.1.3 Wave Functions of the Bound States

We begin with the ground state 1s. In the spatial representation, the wave function is

ψ1s(r) = N1e
−ηr ; η = mαZ , N1 = (

η3

π
)1/2. (5.9)

Presenting

e−ηr = −∂Viη(r)

∂η
, (5.10)

we obtain for the wave function in momentum representation

ψ1s(f) = 8πηN1

( f 2 + η2)2
, (5.11)

or

ψ1s(f) = N1

(
− ∂

∂η

)
〈f |Viη|0〉 . (5.12)

The wave functions of the higher ns bound states in spatial representation are

ψns(r) = NnL
1
n (2ηnr)e

−ηnr ; ηn = mαZ/n, η1 = η, Nn =
(η3

n

π

)1/2
, (5.13)

with L 1
n the associated Laguerre polynomials. Thus there is a finite number k < n

of terms (2ηnr)k . Since one can write
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rke−λr = (−1)k
∂ke−λr

(∂λ)k
, (5.14)

the wave functions in momentum space can be written as

ψns(f) = NnL
1
n

(
− 2λ

∂

∂ηn

)(
− ∂

∂ηn

)
〈f |Viηn |0〉; λ = ηn , (5.15)

while the derivatives do not act on λ. In particular, for the 2s state,

ψ2s(f) = N2

(
1 + η2

∂

∂η2

)(
− ∂

∂η2

)
〈f |Viη2 |0〉 . (5.16)

In order to illustrate how this technique works, let us prove the orthogonality of
the functions ψ1s and ψ2s . We calculate

J =
∫

d3 f

(2π)3
ψ1s(f)ψ2s(f) = (5.17)

= N1N2

(
− ∂

∂η1

)(
1 + η2

∂

∂η2

)(
− ∂

∂η2

) ∫
d3 f

(2π)3
〈0|Viη1 |f〉〈f |Viη2 |0〉.

The derivatives should be calculated at η1 = η; η2 = η/2.
This equality can be evaluated as

J = N1N2

(
− ∂

∂η1

)(
1 + η2

∂

∂η2

)(
− ∂

∂η2

)
〈0|Viη1Viη2 |0〉 = (5.18)

= N1N2

(
1 + η2

∂

∂η2

)(
− ∂

∂η1

)
〈0|Viη1+iη2 |0〉; 〈0|Viη1+iη2 |0〉 = 4π

(η1 + η2)2
.

The first equality is due to (5.7); the second follows from (5.8). Direct calculation of
the derivatives indeed provides J = 0.

We begin the representation of the functions with the orbital momentum � �= 0,
considering the 2p state. In the spatial representation, the function of the 2p state
with the projection m of the orbital momentum � = 1 is

ψ21m(r) = N2η2rme
−η2r . (5.19)

Writing
r = −i∇qe

i(q·r)|q=0 . (5.20)

and carrying out the Fourier transformation, we obtain

ψ21m(f) = i N2η2
∂

∂η2
(∇q)m〈f |Viη2 |q〉|q=0 . (5.21)
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For every value of the orbital momentum �, the angular part of the wave function
is described by the spherical harmonics Y�m(Ω) = Pm

� (cos θ)eimφ . Here

Pm
� (t) = (1 − t2)m/2 d

m P�

(dt)m

are the associated Legendre functions, while P� are the Legendre polynomials.
(the functions Pm

� are often referred to as the “associated Legendre polynomials,”
although the functions Pm

� (t) are not polynomials in general. However, Pm
� (cos θ)

are polynomials for even m). The radial part contains the factor r �. These are com-
mon features of the nonrelativistic bound state wave functions in a central field. Thus
except for the Laguerre polynomials, the Coulomb wave function contains a factor
of the form

A�m = r �
[
sin θeiφ

]m �−m∑
k=0

c�m
k (cos θ)k, (5.22)

where c�m
k can be expressed in terms of the coefficients of the Legendre polynomials.

Labeling the axis of quantization of the angular momentum by z, we can write in
the terms of the cyclic components q0 = qz , q+ = −(qx + iqy)/

√
2, q− = (qx −

iqy)/
√
2:

rm[sin θeiφ]m = [i∇+]meiq·r|q=0; rk[cos θ ]k = [−i∇0]meiq·r|q=0.

Here the operator ∇ acts on the vector q. Thus

A�m =
(
i
√
2∇+

)m �−m∑
k=0

c�m
k (−i∇0)

kr �−k−meiq·r|q=0 . (5.23)

Employing (5.14), we have

ψn�m(f) = Nn(−1)�L 2�+1
n+�

(
− 2ηn

∂

∂ηn

)(
i
√
2∇+

)m · (5.24)

�−m∑
k=0

c�m
k (−i∇0)

k ∂�−k−m

∂(ηn)�−k−m
〈f |Viηn |q〉|q=0.

5.1.4 Wave Functions of the Continuum States

The nonrelativistic Coulomb wave function with the asymptotic momentum p can
be expressed in the spatial representation as
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ψp(r) = Npe
i(p·r)F(iξ, 1, i pr − ip · r); ξ = η

p
. (5.25)

Here F(iξ, 1, i pr − ip · r) is the confluent hypergeometric function. The normal-
ization factor Np = N (p) is given by (3.20). In the asymptotic r → ∞, this wave
function is the superposition of the plane wave and the outgoing wave.

In order to represent the wave function (5.25) in terms of the matrix element of
the Yukawa potential, we employ the representation (see, e.g., [2])

F(a, b, z) = 1

2π i

Γ (1 − a)Γ (b)

Γ (b − a)

∮
dx

x

( −x

1 − x

)a
(1 − x)b−1ezx . (5.26)

Here the contour of integration is a closed loop encircling the cut between the branch
points x = 0 and x = 1 in the counterclockwise direction. This is true for every
Re(b − a) > 0. Now we can write the last factor on the RHS of (5.25) as

F(iξ, 1, i pr − ip · r) = Ĵx e
ix(pr−p·r) , (5.27)

where

Ĵx = 1

2π i

∮
dx

x

( −x

1 − x

)iξ
, (5.28)

with the same contour of integration as in (5.26).
Multiplying the integrand in (5.27) by 1 = −(e−λr/r)′, where the prime denotes

the derivative in λ at λ = 0, and carrying out the Fourier transformation, we obtain

ψp(f) = −Np
∂

∂λ
Ĵx 〈f |Vpx+iλ|p(1 − x)〉|λ=0 . (5.29)

The integrand on the RHS decreases as |x |2 as |x | → ∞. Thus we can modify
the contour of integration, which begins at the real axis at a certain x0 > 1, makes
a closed loop encircling the cut between the branch points x = 0 and x = 1 in
the counterclockwise direction, runs along the positive real axis, makes a circle
with R → ∞, and returns to x0 along the real axis. The only singularity of the
integrand inside this contour is the pole at the point determined by the equality
(f − p(1 − x))2 = (px + iλ)2. The residue at this point provides

ψp(f) = 8πηNp

A0B0

( A0

B0

)iξ ; A0 = (p − f)2; B0 = f 2 − p2. (5.30)

The lower index 0 recalls that the values correspond to λ = 0. This is an explicit
expression for the continuum wave function. However, (5.29) is more useful for
applications.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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5.1.5 Examples of Applications

This technique enables us to obtain easily the two expressions that were given above
without derivation. In Sect. 3.1.4, we presented the result of calculation of the integral

X (q,Q) =
∫

d3 f

(2π)3
ψ∗

p2(f)ψ1s(f − q); Q = q − p2, (5.31)

with the Coulomb wave functions. In Sect. 4.1.1, we gave expression for the integral

Λ(p2,q) =
∫

d3κ

(2π)3
ψ1s(κ)

2m

p22 − (q + κ)2 + iδ
; δ → 0, (5.32)

for the Coulomb function ψ1s .
We begin with the latter case. Presenting

2m

p22 − (q + κ)2 + iδ
= − m

2π
〈κ |Vp2+iδ| − q〉 (5.33)

and using (5.12), we can write

Λ(p2,q) = − m

2π
N1

(
− ∂

∂η

) ∫
d3κ

(2π)3
〈0|Viη|κ〉〈κ |Vp2+iδ| − q〉. (5.34)

Employing the closure condition expressed by (5.7), we find

Λ(p2,q) = − m

2π
N1

(
− ∂

∂η

)
〈0|ViηVp2+iδ| − q〉. (5.35)

Using (5.8), we obtain

Λ(p2,q) = − m

2π
N1〈0|Vp2+iη|q〉 , (5.36)

providing (4.14).
Turning to (5.31) and employing (5.29) for the continuum wave function, we

obtain, similar to (5.34) and (5.35),

X (q,Q) = −NpN1
∂

∂η
Ĵx 〈q|Vp2x+iη|p2(1 − x)〉 . (5.37)

The integrand on the RHS can be calculated in the same way as that in (5.29),
leading to

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Ĵx 〈q|Vp2x+iη|p2(1 − x)〉 = 4π

A

( A

B

)iξ ; A = Q2 + η2; B = q2 − (p2 + iη)2.

(5.38)
This provides the value given by (3.36) for X (q,Q).

5.1.6 Green Function

While the Coulomb electron wave functions were obtained in the early days of
quantum mechanics, a closed expression for the nonrelativistic Coulomb propagator
was found only in the 1960s [3–5]. We mark only the milestones of the derivation,
referring the reader to the paper [5] for the details.

The Green function can be written in the form

〈r2|G(ε)|r1〉 = Sn�m
〈r2|ψn�m〉〈ψn�m |r1〉

ε − εn
, (5.39)

where S denotes the sum over the states of the discrete spectrum and integration
over the continuum states. Introducing

p2 = 2mε, ζ = η/p , (5.40)

one can find that for |ζ | < 1,

〈r2|G(ε)|r1〉 = Ĵy〈r2|g(ε)|r1〉; Ĵy = 2m
∫ ∞

1
dy

( y + 1

y − 1

)iζ
, (5.41)

with

〈r2|g(ε)|r1〉 = i p

4π
eipy(r1+r2) J0(γ u); γ 2 = p2(y2 − 1); u2 = 2(r1r2 + r1 · r2),

(5.42)
where J0 is the Bessel function of order 0. For |ζ | < 1, the integral over y converges.
The condition |ζ | < 1 is true for |ε| > IZ , i.e., for ε > IZ and negative values of
ε for which −ε > IZ . In the former case, ζ is real, while in the latter it is purely
imaginary.

We introduce a more complicated operator, which will be useful in applications:

Υ (ε; λ1, λ2) = V ′
iλ2

g(ε)V ′
iλ1

, (5.43)

where V ′
iλ = ∂Viλ/∂λ. Since

V ′
iλ|λ=0 = −1 , (5.44)

we can write
g(ε) = Υ (ε; 0, 0) . (5.45)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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The Green function can be viewed as a special case of the operator

G (ε; λ1, λ2) = V ′
iλ2

G(ε)V ′
iλ1

, (5.46)

i.e.,
G(ε) = G (ε; 0, 0) , (5.47)

and the matrix element in spatial representation can be written, similar to (5.41),

〈r2|G (ε; λ1, λ2)|r1〉 = Ĵy〈r2|Υ (ε; λ1, λ2))|r1〉 . (5.48)

Since
− 〈r|V ′

iλ|r′〉 = e−λrδ(r − r′) , (5.49)

we have

〈r2|Υ (ε; λ1, λ2)|r1〉 = i p

4π
ei(z1r1+z2r2) J0(γ u); zi = py + iλi , (5.50)

with γ and u defined by (5.42).
In order to obtain the momentum space matrix element 〈f2|Υ |f1〉, one can employ

an integral representation of the Bessel function (see, e.g., [9]):

J0(v) = 1

2π i

∮
dt

t
et−

v2

4t , (5.51)

with the contour running around the point t = 0. Thus

〈r2|Υ (ε; λ1, λ2)|f1〉 =
∫

d3r1e
i(f1·r1)〈r2|Υ (ε; λ1, λ2))|r1〉 = (5.52)

= −i peiz2r2
( −∂

∂λ1

) 1

z21 − f 21

1

2π i

∮
dtet

t − i A(f1r2 − z1r2)
,

with zi = py + iλi (i = 1, 2), A = γ 2/(z21 − f 21 ), γ 2 = p2(y2 − 1). The integral is
determined by the pole of the integrand, providing

〈r2|Υ (ε; λ1, λ2)|f1〉 = Γ̂
ei(z2−z1A)r2ei(f1·r2)A

z21 − f 21
; Γ̂ = ∂

∂λ1

∂

∂λ2
. (5.53)

This enables us to calculate

〈f2|Υ (ε; λ1, λ2)|f1〉 = −i pΓ̂
〈f2|Vz2−z1A|f1A〉

z21 − f 21
(5.54)
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and

〈f2|G (ε; λ1, λ2)|f1〉 = −i p ĴyΓ̂
〈f2|Vz2−z1A|f1A〉

z21 − f 21
. (5.55)

In (5.54) and (5.55), one can make permutations f1, z1 ←→ f2, z2.
We can represent the matrix element 〈f2|G (ε)|f1〉 in symmetric form. Direct eval-

uation of the RHS of (5.54) provides

〈f2|Υ (ε; λ1, λ2)|f1〉 = −i Γ̂
4πp

γ 4 + 2(f2 · f1 − z1z2)γ 2 + ( f 21 − z21)( f
2
2 − z22)

.

(5.56)

Replacing integration over y in the operator Ĵy by integration over t = (y +
1)/(y − 1), we obtain another form of the matrix element, namely

〈f2|Υ (ε; λ1, λ2)|f1〉 = i16πmpΓ̂
∫ ∞

1
dt

t iζ

at2 − 2bt + ā
. (5.57)

Here

a = α1α2; α j = f 2j − (p + iλ j )
2; ā = ᾱ1ᾱ2; ᾱ j = f 2j − (p − iλ j )

2;
(5.58)

b = β1β2 − 4p2(f1 · f2); β j = p2 + f 2j + λ2
j .

For ε > 0, p is real, and ā = a∗. Due to (5.47), the matrix element of the Green
function in momentum representation is

〈f2|G(ε)|f1〉 = 〈f2|G (ε; 0, 0)|f1〉. (5.59)

This can be demonstrated directly, since (5.44) leads to

− 〈f |V ′
iλ|f ′〉|λ=0 = δ(f − f ′), (5.60)

and thus

〈f2|G (ε; 0, 0)|f1〉 =
∫

d3 f ′
1

(2π)3

d3 f ′
2

(2π)3
〈f2|V ′

iλ2
|f ′
2〉〈f ′

2|G(ε)|f ′
1〉〈f ′

1|V ′
iλ1

|f1〉|λ1,2=0 =
(5.61)

〈f2|G(ε)|f1〉.

Thus for the matrix elements

T (ε; λ1, λ2) = Viλ2G(ε)Viλ1 , (5.62)



5.1 Wave Functions and Propagator 91

we can write

〈f2|T (ε; λ1, λ2)|f1〉 = −i p Ĵy
〈f2|Vz2−z1A1 |f1A1〉

z21 − f 21
= −i p Ĵy

〈f2A2|Vz1−z2A2 |f1〉
z22 − f 22

;
(5.63)

Ai = p2(y2 − 1)

z2i − f 2i
.

It is important that in the first equality, the dependence on f2 is contained only in the
state 〈f2|, while in the second one, dependence on f1 is contained only in the state
|f1〉. Also, similar to (5.57), we have

〈f2|T (ε; λ1, λ2)|f1〉 = i16πmp
∫ ∞

1
dt

t iζ

at2 − 2bt + ā
. (5.64)

We shall see that these expressions will be useful in applications.
Note that for |ζ | < 1, the matrix element on the LHS of (5.57) can be written in

terms of the hypergeometric functions. One can write

I (ζ ) =
∫ ∞

1
dt

t iζ

at2 − 2bt + ā
= 1

a
· X (iζ, z+) − X (iζ, z−)

z+ − z−
, (5.65)

where z± = (b ± √
b2 − aā)/a are the roots of the denominator of the integrand,

while

X (iζ, z) =
∫ ∞

1
dt

t iζ

t − z
= − 2F1(1,−iζ, 1 − iζ, z)

iζ
. (5.66)

Thus (5.57) can be represented as

〈f2|Υ (ε; λ1, λ2)|f1〉 = −16πmp2

η
· 2F1(1, −iζ, 1 − iζ, z+) −2 F1(1, −iζ, 1 − iζ, z−)

a(z+ − z−)
.

(5.67)

A more rigorous analysis [4, 5] shows that this form for the matrix element is
true also for−IZ < ε < 0. In this case, ζ is purely imaginary, and the real parameter
χ = iζ changes in the interval 0 < χ < ∞. The RHS of (5.67) has poles at χ =
n (n = 1, 2, 3, . . .) since the hypergeometric functions 2F1(a, b, c, z) has poles in
parameter c at c = 0, 1, 2, . . . corresponding to the bound states. More explicitly,
one can write for Imζ > 0,

X (iζ, z) = − 1

iζ
+ zX (iζ − 1, z) = −

N−1∑
k=0

1

iζ − k
+ zN X (iζ − N , z). (5.68)
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At Imζ ≤ 0, (5.68) is true for the function X (iζ, z) = −2F1(1,−iζ, 1 − iζ, z)/
(iζ ) (see (5.67)) and N > χ . As expected, the matrix element has poles at χ = k
(k = 1, 2, 3, . . . ) corresponding to the bound states.

5.2 Photoeffect

This effect is the lowest-order process of interaction between the photon and a bound
electron. The photon interacts with the bound electron, moving it to continuum. The
process is caused by the first-order term of the Hamiltonian H = −e(A · f)/m with
A the vector potential of the electromagnetic field; f is the electron momentum. The
amplitude of the process is

Fph = N (ω)〈ψp|γ |ψi 〉 ; N (ω) =
√
4πα

2ω
, . (5.69)

Here ψi and ψp are the nonrelativistic Coulomb functions of the initial bound state
andfinal continuumstate,γ = e · f/m is the vertex of the electron–photon interaction
in the nonrelativistic approximation, and e is the polarization vector of the absorbed
photon, e · k = 0. We can write

Fph = N (ω)

∫
d3 f

(2π)3
〈ψp|f〉e · f

m
〈f − k|ψi 〉 . (5.70)

Recall that in our system of units, the photon energy is ω = k. We consider the
photoionization of the ground state electron in the Coulomb field; the final state is
the continuum electron with asymptotic momentum p. Its energy is ε = ω1 − IZ =
p2/2m. Our calculations are carried out for a single-electron ion. In the case of a
complete K shell, one should multiply the result by the factor 2, corresponding to
the number of electrons. The electron wave functions are described by (5.12) and
(5.29). Integration over momenta f can be carried out using the relation

f
(

− ∂

∂μ

)
〈k|Viμ|f〉 = ĥ(μ)〈k|Viμ|f〉; ĥ(μ) = μ∇k − k

∂

∂μ
, (5.71)

which is true for every μ. Thus

fψ1s(f − k) = N1f(− ∂

∂η
)〈k|Viη|f〉 = N1ĥ(η)〈k|Viη|f〉. (5.72)

Since e · k = 0, we can put
ĥ(η) = η∇k . (5.73)
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We obtain, employing (5.38),

Fph = N (ω)NpN1
e∇k

m

4πη

A

( A

B

)iξ
, (5.74)

with A = (k − p)2 + η2, B = k2 − (p + iη)2. In other words,

Fph = enpM; np = p
p
; M = N (ω)N1Np

p(1 − iξ)

m
T (η); (5.75)

T (η) = 8πη

A2

( A

B

)iξ
.

The differential cross section

dσ nr
ph = mp

π
|Fph |2 dΩ

4π
(5.76)

after the averaging over the photon polarizations can be written as

dσ nr
ph = mp

2π
|M |2(1 − t2)

dΩ

4π
; t = k · p/ω1 p. (5.77)

Thus the angular distribution vanishes if the direction of the electron momentum
p is the same as that of the photon momentum k. Since k 
 max(p, η), one can
put k = 0 on the RHS of (5.75) after calculation of the gradient. In this limit, the
amplitude M does not depend on the angular variables. Its expansion in powers of
ω2/η2 (at ω ∼ IZ ) or in powers of ω2/p2 (at larger values of ω) provides terms of
order (αZ)2 and ε/m respectively. Thus they are of the same order of magnitude
as the relativistic corrections and cannot be included in nonrelativistic calculation
of the cross section. However, inclusion of the terms linear in k can be useful for
analysis of the contributions of the higher multipoles.

The total cross section of photoionization of the 1s state is thus

σ nr
ph = 29π2

3
αr20

1

Z2

( IZ
ω

)4 · exp (−4ξ arctan(1/ξ))

1 − exp (−2πξ)
. (5.78)

Recall that r0 = 1/mα is the Bohr radius. In the high-energy limit ω � IZ , one can
put 1 − exp (−2πξ) = 2πξ , which yields thewell-knownbehaviorσph ∼ ω−7/2.We
shall discuss the possibility and limits of the asymptotic analysis in Chap. 7. Note that
this can be obtained without calculations and for any binding field. Indeed, in this
limit, a largemomentumq = k − p is transferred to the nucleus, andq ≈ p � η. It is
transferred by the initial electron, and the amplitude contains the factor ψi (p)(e · p).
Following the analysis of Chap. 2, we find that ψ(p) ∼ 1/p4. This estimate leads to
the asymptotic law.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Note that the approach developed in Sect. 5.2 enables us to obtain the cross section
of photoionization of any bound state with quantum numbers n, �,m. The amplitude
M in (5.75) should be replaced by

M = N (ω)NnNp
p(1 − iξ)

m
Tn�m; Tn�m = Γn�mT (ηn), (5.79)

with Γn�m certain differential operators. In particular, for 2s and 2p electrons, we
can write, following Sect. 5.2,

Γ200 = (1 + η2
∂

∂η2
); Γ21m = iη2(∇k)m . (5.80)

5.3 Second Order Processes I

5.3.1 General Analysis

The nonrelativistic Hamiltonian of interaction between photons and electrons is

H = −e
A · f
m

+ e2
A2

2m
. (5.81)

To obtain the amplitude of a second-order scattering process, one should include the
first term of the Hamiltonian in the second order of perturbation theory. This provides
the pole terms shown in Fig. 5.1a, b. The second term should be included in the first
order, providing the “seagull” contribution known also as the A2 term. It is shown in
Fig. 5.1c. One can write general expressions for every binding field.

There are twopole terms. In the first, shown in Fig. 5.1a, the initial electron absorbs
the photon withmomentum k1 and polarization e1. This is followed by ejection of the
photon with momentum k2 and polarization e2. In the second, illustrated in Fig. 5.1b,

(a) (b) (c)

Fig. 5.1 The Feynman diagrams for a second-order process.Helix lines denote the absorbed photon
withmomentum k1 and the scattered photon withmomentum k2. The solid lines stand for electrons;
the dark blobs denote the binding field. The diagrams a and b illustrate the pole terms, and diagram
c is for the seagull term
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ejection of the photon with momentum k2 occurs before absorption of the photon
with momentum k1. The pole terms for the process in which the initial state of the
electron is |ψi 〉, while the final state electron is 〈ψ f |, can be represented as

Fa = N (ω1)N (ω2)

∫
d3 f1
(2π)3

d3 f2
(2π)3

〈ψ f |f2 − k2〉
e∗2 · f2
m

〈f2|G(pa)|f1〉 e1 · f1
m

〈f1 − k1|ψi 〉.
(5.82)

Here pa = √
2m(ω1 − Ii ), Ii is the potential of ionization of the initial state, Ii = IZ

for the 1s electron in the Coulomb field, and

Fb = N (ω1)N (ω2)

∫
d3 f1
(2π)3

d3 f2
(2π)3

〈ψ f |f2 + k1〉 e1 · f2
m

〈f2|G(pb)|f1〉
e∗2 · f1
m

〈f1 + k2|ψi 〉,
(5.83)

with pb = i
√
2m(ω2 + Ii ).

The seagull term can be written immediately as

Fc = e1 · e∗
2

m
N (ω1)N (ω2)

∫
d3 f

(2π)3
〈ψ f |f〉〈f − q|ψi 〉; q = k1 − k2. (5.84)

The total amplitude is
F = Fa + Fb + Fc . (5.85)

We shall carry out the calculations for the 1s state of the Coulomb field as the
initial state, discussing also the general features of the processes that are common to
all binding fields.

There are three characteristic values of the photon energy ω1 = k1. These are the
electron binding energy IZ = η2/2m; the energy ω = η at which the wavelength of
the photon is equal to the size of the bound state; and the relativistic scale ω = m.
Recall that in the case of the hydrogen atom, I1 = 13.6eV, η = 3.7keV. At ω <∼ η,
the transferredmomentum q ≤ 2ω ≤ η. The casesω ∼ IZ , IZ 
 ω 
 η, andω ∼ η

need separate analysis.We shall consider also the high-energy nonrelativistic asymp-
totics η 
 ω1 
 m. To have a picture for every binding field, one should just replace
η by the average binding momentum μ.

In the following sections, we consider elastic scattering, i.e., |ψi 〉 = |ψ f 〉 = |ψ〉.
The equations will be written for one electron in each state. If there are two elec-
trons, the amplitudes are summed coherently, and the equations for the differential
distributions and for the cross sections should be multiplied by the factor 4.

5.3.2 Amplitude of Rayleigh Scattering

We begin our investigation of the processes of the second order in photon–electron
interactions by considering the scattering of photons on atoms in which the bound
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electrons do not undergo transitions. The photon can scatter on the bound electrons.
It can also scatter on the nucleus. There can also be scattering in the Coulomb field
(Delbrück scattering). We shall discuss contributions of the two latter channels in
Sect. 5.3.3. For the energies considered in this subsection, scattering on the bound
electrons, known also as Rayleigh scattering, is the dominant mechanism. The ampli-
tude of the process is connected with an important parameter of the atom known as
polarizability.

Since thephoton energydoes not change,ω1 = ω2 = ω and k1 = |k1| = k2 = |k2|
(recall that in our system of units, ωi = ki ). The cross section σ and the amplitude
F of the process are related by the equation

dσ = 2π |F |2δ(ω2 − ω1)
d3k2
(2π)3

= ω2|F |2dΩ

(2π)2
, (5.86)

where averaging over polarizations of the initial-state photons and summation over
polarizations of the final-state photons is carried out.

Before beginning the calculations, we estimate the relative role of the pole and
seagull terms. These estimates aswell as (5.82)–(5.85) are true for every bindingfield.
We begin with the photon energies ω of the order of the binding energy IZ . Recall
that IZ = 13.6eV for hydrogen, while IZ = 1.36 keV for neon. The integrals on the
RHS of (5.82)–(5.84) are saturated by f ∼ η. The photonmomenta are ki ∼ IZ 
 η,
and they can be neglected while we perform estimates. Since the matrix element
〈f2|G|f1〉 at these energies is of order 1/IZ , the RHS of (5.82) and (5.83) are of order
4πα(η/m)2/IZ ∼ 4πα/m, i.e., of the same order as the seagull term Fc. Thus at
ω ∼ IZ , all three terms on the RHS of (5.85) are important. At ω � IZ , the seagull
term dominates.

We return now to the case of Rayleigh scattering in the Coulomb field. Recall
that here ψi = ψ f = ψ1s , the wave function of 1s electron; its energy is ε = −IZ
with IZ = η2/2m, η = mαZ . We begin with the pole terms Fa,b. Integration over
momenta f1,2 carried out using (5.71)–(5.73) provides

Fa = N 2(ω)N 2
1η2(e∗

2 · ∇k2)(e1 · ∇k1)〈k2|T (εa; η, η)|k1〉; εa = ω − IZ , (5.87)

with the matrix element on the RHS defined by (5.64) with f j = k j .
While we consider the energies ω ∼ IZ , we have pa,b ∼ η, while k j = ω j ∼

η(αZ) 
 η, pa,b. Thus, although (5.87) provides exact dependence of the amplitude
Fa on the photonmomenta k1,2, wemust include only the leading nonvanishing terms
of the expansion in powers of ω2

j/η
2. The higher terms are of order (αZ)2, and their

inclusion is beyond the nonrelativistic approximation. This approach is usually called
the dipole approximation, since it is equivalent to inclusion of the partial wave with
� = 1 only. Thus we must put k1 = k2 = 0 after we calculate the derivatives. In this
approximation, we find that

Fa = e1 · e∗
2Φa , (5.88)
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with

Φa = −i N 2(ω)
27mpaη5

(pa + iη)8
X (ζa); ζa = η

pa
, (5.89)

where pa=
√
2m(ω − IZ ), and

X (ζa) =
∫ ∞

0

dtt iζa+1

(t − κ(ζa))4
= 2F1(4, 2 − iζa, 3 − iζa, κ)

2 − iζa
; κ = (1 − iζa)2

(1 + iζa)2
.

(5.90)

The contribution of the pole term Fb = e1 · e2Φb can be represented in a similar
way, with momentum pa replaced by pb = i

√
2m(ω + IZ ).

The seagull amplitude is

Fc = e1 · e∗
2Φc; Φc = −N 2(ω)N 2

1

m
〈k2|V ′

iη+iλ|k1〉, (5.91)

with V ′ denoting the derivative with respect to η, and λ = η. While ω 
 η, we can
put k1 = k2 = 0, thus obtaining Φc = N 2(ω)/m. Note that this is true for every
binding field, since for q = 0,

Φc = N 2(ω)

m

∫
d3 f

(2π)3
〈ψ |f〉〈f |ψ〉 = N 2(ω)

m
. (5.92)

The last equality is due to the normalization condition
∫
d3 f /(2π)3〈ψ |f〉〈f |ψ〉 = 1.

Finally, the amplitude of the Rayleigh scattering is

F = e1 · e2Φ(ω); Φ(ω) = Φa(ω) + Φb(ω) + Φc(ω). (5.93)

Note that in the limiting case ω 
 IZ , the amplitude is proportional to ω2 in
every binding field. This happens because at ω = 0, the seagull term, which does not
depend on ω, is canceled by the pole terms. We shall demonstrate this in Chap.7. In
expansion of the pole terms in powers of ω/εn , the linear terms cancel.

At ω 
 η, i.e., while the dipole approximation is valid, the amplitude of the
Rayleigh scattering is connected with an important characteristic of the atom known
as dipole polarizability. We shall give a more detailed analysis of these points in
Chap.7.

Consider now another limiting case, ω � IZ . If, however, ω 
 η = mαZ , the
photonmomenta ki 
 η can be neglectedwhilewemake estimates, as in the previous
case. For hydrogen, the condition IZ 
 ω <∼ η means that 10eV 
 ω <∼ 4keV, for
neon 1keV 
 ω <∼ 40keV. The matrix elements of the Green function are now
of order 1/ω; see (5.39). Thus each of the pole terms is of order 4πα/m · IZ/ω,
i.e., Fa,b ∼ Fc · IZ/ω 
 Fc. Also, the energies of the Green functions are εa = ω −
Iz , εb = −ω − IZ , and the contributions Fa,b cancel up to terms of order IZ/ω.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Therefore, at these energies, the amplitude is determined by the seagull term Fc with
the sum of the pole terms Fa + Fb providing a correction of order I 2Z/ω2.

Hence in the whole region ω � IZ , the amplitude is determined by the seagull
term. If also ω 
 η, it is given by (5.92). Momentum transferred to the nucleus
q 
 η can be neglected, and the amplitude is equal to that on a free electron,

F = F0 = e1 · e∗
2N

2(ω)

m
. (5.94)

At larger energies ω >∼ η, one can no longer neglect the transferred momentum q
in (5.84). In the general case (the binding field is not necessarily a Coulomb field),
we can write for the amplitude

Fc = e1 · e∗
2N

2(ω) f (q2)

m
; f (q2) =

∫
d3 f

(2π)3
〈ψ |f〉〈f − q|ψ〉 = (5.95)

∫
d3r |ψ(r)|2ei(q·r).

The function f (q2) is usually called a form factor. In the Coulomb case, we obtain,
employing (5.91),

f (q2) = 16η4

(q2 + 4η2)2
. (5.96)

The amplitude of the Rayleigh scattering on the other bound states can be obtained
by applying certain differential operators acting on η and λ to the RHS of (5.82)–
(5.84); see Sect. 5.1.

5.3.3 Cross Section of the Rayleigh Scattering

In the whole region ω 
 η, the dependence of the differential distribution on the
angles comes only from the common factor e1 · e∗

2. Thus one can write

dσ

dt
= ω2|Φ(ω)|2

4π
(1 + t2); t = k1 · k2/ω1ω2, (5.97)

with Φ(ω) = Φa(ω) + Φb(ω) + Φc, Φa,b defined by (5.87), (5.62); Φc is given by
(5.92).

Following the analysis of the previous subsubsection, we find that for ω 
 IZ ,
the cross section is proportional to ω4. This was found by Lord Rayleigh in 1871.
For ω ∼ IZ , the cross section is
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σ(ω) = 2

3π
ω2|Φ(ω)|2. (5.98)

For IZ 
 ω 
 η, we can put Φ = Φc, and the cross section is equal to the cross
section of scattering by the free electron σTh , known as the Thomson cross section,
i.e.,

σ = σTh = 8π

3
r2e , re = α

m
, (5.99)

and the field which binds the electron is not necessarily a Coulomb field. Note that
this equation can be obtained in the framework of classical electrodynamics (see,
e.g., [10]). The cross section σTh represents the ratio of the flux of radiated energy
to that of the incoming energy.

At ω ∼ η, the equations become more complicated. We have still Φ = Φc, but
one cannot neglect the transferred momentum q2 = 2ω(1 − t) unless the angle of
scattering is small, i.e., unless 1 − t 
 1. In the latter case, the angular distribution
is given by (5.97), with Φ = Φc determined by (5.92). For every value of t at these
values of the photon energies,

dσ

dt
= πr2e (1 + t2)| f (q2)|2; q2 = 2ω2(1 − t), (5.100)

This equationwith f (q2) defined by (5.95) is true for every IZ 
 ω ≤ η. Forω 
 η,
one can put q2 = 0. As we have seen, f (0) = 1.

In thewhole region IZ 
 ω 
 m, the total cross section of theRayleigh scattering
can be expressed as

σ = σTh
1 + x + x2/2

(1 + x)3
; x = ω2

η2
. (5.101)

One can see that σ < σTh , with the limiting value σ = σTh in the limit ω 
 η. In
the asymptotics ω � η, we expect σ ∼ 1/ω2, since one can put dt = qdq/ω2 in the
phase volume, while the integral over q is saturated by q ∼ η and does not depend
on ω. For ω � η, (5.101) provides

σ(ω) = σTh
η2

2ω2
, (5.102)

thus confirming the estimate.
As we mentioned above, the photon can undergo elastic scattering on the nucleus.

Treating the latter as a heavy spinless particle with the mass M � m and considering
the process in its rest frame, we find that the amplitude is determined by the seagull
term. Hence, it becomes smaller than the value on the bound electrons by a factor
of m/M 
 1. The situation becomes more complicated if we take into account that
the nucleus is a system of nucleons. Here the case in which the photon energy is
close to the excitation energy of the nucleus requires additional analysis. Otherwise,
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Fig. 5.2 Photon scattering
in the Coulomb field of the
nucleus. Notation is the same
as in Fig. 5.1

the amplitude is at least m/mN times the value on the bound electrons, with mN ≈
940MeV standing for the mass of the nucleon.

Photon scattering in theCoulombfield knownasDelbrück scattering is a quantum-
electrodynamic effect that can be viewed as a renormalization of its wave function.
The process can be considered as the conversion of a photon to an off-mass shell
electron–positron pair converting later back to a photon; see Fig. 5.2. The details of
the process are described, e.g., in [11]. The amplitude of the Delbrück scattering FD

contains at least two interactions of the e+e− pair with the nucleus. Also, the gauge
invariance requires that FD contains the energy of each photon as a factor. Thus FD

contains an additional small factor of order (αZ)2ω2/m2, and can be neglected at
the energies considered here.

5.4 Second Order Processes II: Raman and Compton
Scattering

Now we study the processes in which absorption of a photon with energy ω1 by a
bound electron is followed by radiation of the photon with energy ω2 and transition
of the bound electron to an excited state of the discrete or continuum spectrum. The
equations will be written for one electron in each state. For the case of two electrons,
the equations for the differential distributions and for the cross sections should be
multiplied by the factor 2.

5.4.1 Raman Scattering

In Raman scattering, the bound electron is transferred to another bound state. The
differential distribution is now

dσ

dΩ
= ω2

2|F |2
4π2

, (5.103)

while ω2 = ω1 − (Ii − I f ), with Ii, f the ionization potentials of initial and final
bound states.
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For every binding field, the amplitude of the process is given by (5.82)–(5.85). The
same refers to the estimates given in this section, which we present for the Coulomb
case. At ω ∼ IZ 
 η, the pole terms of the amplitude obtains the parametrically
largest values if the orbitalmomenta of the initial and final states satisfy the inequality

Δ� = |� f − �i | = 0, 2 . (5.104)

This happens because in each vertex of the pole terms, the electron undergoes mainly
a dipole transition, which can be described by putting k1 = k2 = 0. Transitions
with other values of Δ� require inclusion of the higher powers of the expansion in
ki/ fi ∼ ki/η 
 1.As to the seagull term, it vanishes forq = 0 due to orthogonality of
thewave functions. Thus, if condition (5.104) is satisfied, the amplitude is determined
by the pole diagrams and is of the order of the Rayleigh amplitude.

At larger energies, the contribution of the pole terms obtains an additional small
factor (IZ/ω)2. On the other hand, the transitions with Δ� = 1 described by the
seagull term require only the lowest term of the expansion in powers of q/ fi . They
become dominative at ω1/η � (IZ/ω1)

2, i.e., at ω1 � η(αZ)2/3. For hydrogen, this
means ω1 � 120eV. The amplitude of these transitions is much smaller than the
Rayleigh amplitude. At ω1 ∼ η, the amplitudes are dominated by the seagull terms.
The processes with all values of Δ� are important, and the amplitudes are of the
same order as in Rayleigh scattering. Note, however, that parametric estimates do
not exclude additional numerical quenching.

In the case of the Coulomb field, the amplitude of the Raman scattering with any
initial and final electronic states can be expressed in terms of the matrix elements
given by (5.82)–(5.84). Here we present the results for scattering on the 1s electron
with its excitation to the L shell. Thus the photon carrying the energy ω1 is absorbed
by the 1s electron, which is moved to the 2s or 2p state, and a photon with the energy
ω2 = ω1 − 3IZ/4 is radiated.

Proceeding similar to Sect. 5.2, one can represent the amplitudes of excitations to
the 2s and to 2p states in terms of the matrix elements

Fa = N (ω1)N (ω2)N1N2η(e∗
2 · ∇k2)(e1 · ∇k1)Γ2�mη2〈k2|T (εa; η2, η)|k1〉,

(5.105)
Fb = N (ω1)N (ω2)N1N2η(e∗

2 · ∇k2)(e1 · ∇k1)Γ2�mη2〈k1|T (εb; η2, η)|k2〉,

with εa = ω1 − IZ , εb = −ω2 − IZ/4, while operators Γ2�m are defined by (5.80).
Also, for the seagull term,

Φc = −N (ω1)N (ω2)N1N2

m
Γ2�m〈k2|V ′

iη+iη2 |k1〉. (5.106)

Thus for excitation of 2s state,

Fc = e1 · e∗
2Φc; Φc = N (ω1)N (ω2)

m

4
√
2η4q2

(q2 + λ2)3
; λ = 3η

2
, (5.107)
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while for excitation of 2p state with projection of the angular momentum �z = m,

Φc = i
N (ω1)N (ω2)

m

6
√
2η5qm

(q2 + λ2)3
, (5.108)

with qm the cyclic component of the vector q.
As we have seen, the seagull term dominates if the energy ω1 is large enough. In

the case of the 2s state, this is ω1 � η(αZ)2/3 (for hydrogen, ω1 � 120eV), while
in the case of the 2p state, this is ω1 � IZ (for hydrogen, ω1 � 14eV). For heavier
atoms, we can just write ω1 � IZ . At these energies, one can put ω1 = ω2, and the
angular distributions for transitions to ns states are given by (5.100) with

f 22s = 32η8q4

(q2 + λ2)6
; f 22p = 72η10q2

(q2 + λ2)6
. (5.109)

Thus at ω1 ∼ IZ the transitions 1s → 2s and 1s → 2p are dominated by the
pole diagrams. The 1s → 2s transition is allowed in the dipole approximation, while
1s → 2p is not. Thus the cross section for 1s → 2p is about α2Z2 times that for
1s → 2s.

The situation changes for ω1 � IZ . If also ω1 
 η, we can neglect q in the
denominators of the expressions in (5.109), finding the limiting equations for the
cross sections

σ2s = σTh ·
(4
9

)5 · 64 · 56
45

ω4
1

η4
≈ σTh · 1.38ω4

1

η4
; (5.110)

σ2p = σTh

(4
9

)5 · 64 · ω2
1

η2
≈ σTh · 1.11ω2

1

η2
,

with domination of the 1s → 2p transition. For ω1 � IZ (however, ω1 
 m), the
cross sections of excitation of the 2s and 2p states are

σ2s = σTh
8

5

(2
3

)8
β2 7 + 2β + β2

(1 + β)5
; (5.111)

σ2p = σTh
4

5

(2
3

)8
β
20 + 16β + 11β2 + 3β3

(1 + β)5
; β = 16

9

ω2
1

η2
.

These equations are illustrated in Fig. 5.3.
In the high-energy nonrelativistic asymptotics ω1 � η and [12]

σ2s ≈ σTh · 2
6

36
· 2
5

η2

ω2
1

≈ σTh · 3.5 · 10−2 η2

ω2
1

; (5.112)
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Fig. 5.3 Energy dependence
for the cross sections of
photon scattering
accompanied by transition of
the bound electron from the
1s state to the 2s state (curve
1) and to the 2p state (curve
2) for ω1 ∼ η. The horizontal
axis is for β = 16ω2

1/9η
2.

The vertical axis shows
S = σ2s,2p/σTh × 10−2

σ2p ≈ σTh · 2
6

36
· 3
5

η2

ω2
1

≈ σTh · 5.3 · 10−2 · η2

ω2
1

.

Here the two cross sections are of the same order of magnitude. For calculations of
the Raman scattering cross sections in several particular cases, see, e.g., [13, 14].

5.4.2 Compton Scattering

Now interaction of the photon with a bound electron moves the latter to continuum
state with momentum p. We shall find the energy distribution dσ(ω1)/dω2 and the
cross section σ(ω1). Before carrying out the calculations, we canwrite expression for
the energy distribution atω2 → 0. The pole termwith the photon carryingmomentum
k2 → 0 behaves as 1/ω2 asω2 → 0, while the other contributions obtain finite values
in this limit. This term can be written as

F(p,k2) = 〈p,k2|γG0(ε′)|p′〉Fph(p′). (5.113)

Here p′ = p + k2; Fph is the amplitude of photoionization; γ is the vertex of inter-
action between the electron and the photon with momentum k2. One can represent
this equation as

F(p,k2) = φ(p,k2)Fph(p); φ(p,k2) = N (ω2)

2mω2

e∗
2 · p
m

. (5.114)
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Here we kept only the terms that increase as 1/ω2 and neglected the terms of the
relative order p/m in the denominator of the Green function. Writing

dσ = |Fph(p)|2|φ(p,k2)|2dΓ
d3k2
(2π)3

, (5.115)

with dΓ the phase volume for photoionization, we obtain

dσ(ω1)

dω2
= σph(ω1)w(ω1, ω2); w(ω1, ω2) = 2α

3π

p2

m2

1

ω2
. (5.116)

Hereσph is the photoionization cross section of the same electronic state. This expres-
sion is true for every initial electronic state and for every binding field. Note that
(5.116) is a very general relation connecting the cross sections of the processes with
and without radiation of a soft photon [11, 15].

Below we focus on Compton scattering on the 1s electron in the Coulomb field
[16]. The energy conservation law is

ω1 − IZ = ε + ω2 . (5.117)

Here ε = p2/2m is the energy of the outgoing electron. The differential cross section
of the process can be written as

dσ

dω2
= ω2

2mp|F |2dΩedΩγ

(2π)5
. (5.118)

Here dΩe,γ are the solid angles of the final-state particles; the amplitude F is given
by (5.82)–(5.85).

Compare the contributions of the pole and seagull terms to the amplitude. For
ω1 
 η, one can neglect k1,2 in the pole terms, but not in the seagull term, since the
latter vanishes at k1 − k2 = 0 due to the orthogonality of the wave functions. Hence
the seagull term contains an additional small factor of order ω1/η. Thus at ω1 ∼ IZ ,
the pole terms dominate. The seagull term contributes at ω1 ≥ η(αZ)2/3. Recall that
for hydrogen, this means that ω1 ≥ 200eV. The pole terms of the amplitudes can be
written in terms of the matrix elements defined by (5.57):

Fa = N (ω1)N (ω2)N1Np(e1 · ∇1) Ĵx Γ̂ 〈k2 + p(1 − x)|T (εa; λ − i px, η)|k1〉,
(5.119)

εa = ω1 − IZ , λ = 0,

with the operator Ĵx defined by (5.28), Γ̂ = e∗
2 · (∇2 − p(1/x − 1)∂/∂λ), and N1 and

Np are the normalization factors of the 1s and continuum electrons. The operators
∇1,2 act onmomenta k1,2. Forω1 
 η, we can put k1 = k2 = 0 in thematrix element
after calculation of the derivatives.
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Thus

Fa = 8π
N (ω1)N (ω2)N1Np

mη3

(
e1 · e∗

2Sa + (e1 · n)(e∗
2 · n)Ta

)
; re = α

m
. (5.120)

Here n = p/p. We introduce the dimensionless parameters

xi = ωi/IZ . (5.121)

Recall that earlier we introduced ε/IZ = ξ−2. Employing the technique developed
in Sect. 5.1, we obtain

Sa = −i
∫ 1

0

dyy f (y)

λ(y)
A−1+iξ B−1−iξ ;

Ta = 2(1 − iξ)(2 − iξ)

ξ 2

∫ 1

0
dyy f (y)A−3+iξ B−iξ . (5.122)

Here λ(y) = [x1(1 − y) − 1]1/2,

f (y) =
( iζ − 1

iζ + 1

ζλ + 1

ζλ − 1

)iζ
,

while ζ = η/pa = (x1 − 1)−1/2, A = λ2 − ξ−2, B = (λ + ξ−1)2. The amplitude Fb

can be obtained by changing (k1, ω1, e1) to (−k2,−ω2, e2).
To calculate the seagull term, we introduce

κ = k1 − k2. (5.123)

The seagull contribution can be expressed explicitly:

Fc = 8παZN (ω1)N (ω2)N1Np(e1 · e∗
2)

(1 − iξ

A0
+ 1 + iξ

B0

)
A−1+iξ
0 B−iξ

0 . (5.124)

Here A0 = q2 + η2 with q2 = |p − κ |2, while B0 = κ2 − (p + iη)2. For ω1 
 η,
this expression can be simplified:

Fc = 8π
N (ω1)N (ω2)N1Np

mη3

p · κ

η2
(e1 · e∗

2)
ξ 6(1 − iξ)

(ξ 2 + 1)3
· exp (−2ξ arctan(1/ξ)).

(5.125)
One can see that at least for ω1 
 η, the interference between the pole and the

seagull terms vanishes after integration of the angular distribution. Thus the energy
distributions can be written as

dσ(ω1)

dω2
= dσP(ω1)

dω2
+ dσSG(ω1)

dω2
, (5.126)
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with the lower indices P and SG denoting the respective contributions of the pole
and seagull terms.

Webegin our calculation of the energy distributions, considering the caseω1 ∼ IZ .
One can see that the seagull contribution to the amplitude is quenched by a factor
of order αZ . This provides a correction of order (αZ)2 to the cross section, which
cannot be included in the framework of the nonrelativistic approach. Thus we include
only the pole terms. In terms of the dimensionless variables x1,2 and ξZ , we can write
dσ(ω1)/dω2 = dσP(ω1)/dω2. The general expression for the latter is

1

σTh

dσP

dx2
= 32

x2
x1

X (x1, x2)

1 − exp (−2πξ)
, (5.127)

with

X = |S|2 + 2

3
Re(S∗T ) + 1

3
|T |2; S = Sa + Sb; T = Ta + Tb. (5.128)

Thus the energy spectrum is expressed in terms of the “universal” (scaled) function
X (x1, x2).

In the case η � ω1 � IZ (x1 � 1), we can distinguish two regions of the spec-
trum. At electron energy ε ∼ IZ , the transferred momentum q ∼ η is small, and
the amplitude obtains the largest values. The distribution becomes much smaller at
larger values of the energy of the outgoing electron. In any case, we must add the
contribution of the seagull term, which is

1

σTh

dσSG

dx2
= 28

3

ω2
1

η2
V (ξ); V (ξ) = ξ 10

(1 + ξ 2)5

exp (−4ξ arctan(1/ξ))

1 − exp (−2πξ)
. (5.129)

This expression presents the distribution in terms of the universal parameters x1,2 and
the ratio ω1/η. In other words, the distribution depends on parameters xi and on the
nuclear charge Z separately. As we estimated above, the energy distribution on the
Bethe ridge x1 − x2 ∼ 1 
 x1,2 is dominated by the seagull term forω1 � η(αZ)2/3.
From (5.129), one can find that the local maximum at small values of the electron
energy x1 − x2 
 x1 is reached at ε = 0.16IZ (for hydrogen, it is ε = 2.1eV).

At ε � IZ , a large momentum q ∼ p � η is transferred to the nucleus. Thus we
are outside the Bethe ridge. If the outgoing electrons (as well as the intermediate
electrons in the pole terms) are described by plane waves, a large momentum q is
transferred to the nucleus by the initial-state electron. Hence both pole and seagull
terms contain the factor ψ1s(q). However, the contribution to the seagull term calcu-
lated in this approximation is canceled by that containing the lowest-order Coulomb
correction to thewave function of the outgoing electron, which contains an additional
factor of order ω1/p 
 1, which is due to a partial cancelation of the two leading
terms in the wave function of the outgoing electron corresponding to the plane wave
F (0)
c and to the lowest-order Coulomb correction F (1)

c . We demonstrated this for the
initial s states.
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The plane-wave term is

F (0)
c = e1 · e∗

2

m
N (ω1)N (ω2)ψi (q) (5.130)

with q = p − κ . The term containing the lowest Coulomb correction is (see
Sect. 3.1.3)

F (1)
c = e1 · e∗

2

m

∫
d3 f

(2π)3

−4παZ

(q + f)2
· 2m

p2 − (κ − f)2
ψi (f), (5.131)

with the integral saturated at f ∼ η. Thus we can neglect f everywhere except the
wave function ψi . Since ω1 
 η, we can also put κ = 0 and q = p. Hence

F (1)
c = e1 · e∗

2

m
N (ω1)N (ω2)

∫
d3 f

(2π)3
ψi (f) · −8πη

q4
. (5.132)

Employing (2.86) for the wave function ψi (q), we find that indeed, F (0)
c = −F (1)

c .
The errors in this equality are of order η/p and ω1/η. Thus at ε � IZ , the energy
distribution is determined by the pole terms. This is true for every binding field.

Examples of photon spectra are presented in Fig. 5.4.
As expected, the distribution obtains the largest values at small x2, in agreement

with (5.116).
Nowwe calculate the total cross section. Due to the infrared divergence atω2 → 0

(5.116), we must ensure the proper treatment of the soft photon region. We assume
that the detector of the ejected electrons can distinguish the electrons with the largest
available energy εm = ω1 − IZ from those with energy ελ < εm , but cannot distin-
guish the electrons with energies ελ < ε < εm . This is equivalent to the introduc-
tion of a cutoff ω2 > ωλ = ω1 − IZ − ελ in the spectrum of the ejected photons. In
Chap.8, we shall carry out a more rigorous procedure for treatment of soft photons.
Here we only investigate dependence of our results on the actual value of ωλ.

We have seen that a large part of the cross section can be estimated as coming
from the region of the ejected soft photons, where the spectrum is described by
(5.116). The upper limit of the values of x2 where this equation is valid is a certain
x2 = c(x1 − 1), with c an unknown coefficient. Employing (5.78) for σph , we find
that this part of the cross section can be represented as

σ ′
P

σTh
= U (x1) ln

(c(x1 − 1)

ωλ/IZ

)
; U (x1) = 27

3

x1 − 1

x41

exp (−4ξ arctan(1/ξ))

1 − exp (−2πξ)
.

(5.133)

The lower index P reminds the reader that this contribution comes from the pole
terms. Nowwe can look for the values ofω1 where the ratio σ ′

P/σTh reaches it largest
values by calculation of the derivativewith respect to x1. Assuming that the resolution
threshold is proportional to the energy of the photoelectron, i.e., ωλ = λ(ω1 − IZ )

with λ 
 1, we obtain that the contribution (5.133) reaches its largest value at

x1 = ω1

IZ
= 1.56 , (5.134)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_8
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Fig. 5.4 Photon energy
distributions for Z = 20 in
three cases: a the total cross
section is dominated by the
pole terms (x1 = 2); b the
pole and seagull terms
provide equal contributions
to the cross section (x1 = 5);
c the cross section is
dominated by the seagull
term (x1 = 8) [16]

which is ω1 = 21.2eV for hydrogen. If ωλ does not depend on ω1 (or depends on
it in a more complicated way), the maximum of (5.133) is shifted from the value
(5.134). In changing the value of λ from 10−3 to 2 · 10−3, we change the value of σ ′

P
by about 10% if c ∼ 10−1.

The contribution of the seagull term (5.129) is

σSG

σTh
= 64

3
(αZ)2x21

∫ x1−1

0
dxpV (xp); xp = ε/IZ = ξ−2. (5.135)

The cross section of the Compton scattering depends on x1 and Z separately.
The energy dependence of the cross section for several values of Z , calculated by
employing (5.82–5.85) for the amplitude, is shown in Fig. 5.5. The maxima, which
are close to those predicted by (5.134), originate from the soft photon region.

One can see that the contribution of the low-energy photons (5.133) decreases
with energy, while the contribution of the low-energy electrons (5.135) increases
with energy. At x1 � 1, i.e., at ω1 � IZ (but still ω1 
 η), the integral on the RHS
of (5.135) does not depend on the actual value of the upper limit, being saturated
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Fig. 5.5 Energy dependence
of the Compton scattering
cross section for several
values of the nuclear charge
Z [16]

by xp ∼ 1. Direct calculation provides
∫ ∞
0 dxpV (xp) = 6.6 · 10−3, leading to the

limiting relation
σ

σTh
= 0.14(αZ)2x21 = 0.56

ω2
1

η2
(5.136)

for IZ 
 ω1 
 η. Analysis of the case ω1 ∼ η can be carried out in a similar way.
Here the cross section is determined by the seagull terms, but its dependence on the
energies is more complicated.

As well as in the cases of Rayleigh and Raman scattering, the calculations for the
other states in the Coulomb field can be carried out by applying certain differential
operators to the RHS of (5.82)–(5.84); see Sect. 5.2.

In the high-energy nonrelativistic limit η 
 ω1 
 m, the momenta of the out-
going electrons satisfy the condition p � η in most of the Bethe ridge. The cross
section is determined by q ∼ η, where the amplitude is

F = F0ψi (q) , (5.137)

where F0 determined by (5.94) is the amplitude for the process on the free electron at
rest. Following the general analysis carried out in Sect. 2.2.2, we obtain in this limit

σ = σTh . (5.138)

This is true for every bound state in every binding field.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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5.4.3 Total Cross Section of Photon Scattering

Now we can draw some conclusions regarding the total cross section σtot of the
photon scattering on an atom, which is summed over the final states of the electrons
(inclusive cross section). One can write

σtot = σel + σR + σC , (5.139)

with the first term on the RHS standing for the cross sections of the elastic (Rayleigh)
scattering, the second term is the sum of the cross sections of the Raman scattering,
while the last one is the cross section of the Compton scattering. The amplitude of
the process, in which the final state of the electron is labeled by the lower index x ,
can be written as

Fx = F0Tx (q); Tx (q) = 〈ψx |eiq·r|ψin〉. (5.140)

Proceeding similarly to what we did in Sect. 2.2.2, we obtain

dσtot

dΩ2d3q
= Sx |Tx (q)|2 dσTh

dΩ2
. (5.141)

Due to the completeness (closure) condition

Sx |ψx 〉〈ψx | = 1, (5.142)

we obtain ∫
d3q

(2π)3
Sx |Tx(q)|2 = 1, (5.143)

and thus
dσtot

dΩ2
= dσTh

dΩ2
, (5.144)

and also
σtot = σTh . (5.145)

We have seen earlier that at IZ 
 ω1 
 η, the sum (5.139) is dominated by
Rayleigh scattering, while at η 
 ω1 
 m, it is dominated by Compton scattering.
This is also true for every binding field. The new content is that (5.145) is true also
for ω1 ∼ η for every bound state and for every binding field. In this energy region,
all three possible processes are important. The distribution between the channels
depends on the initial state and on the nature of the binding field.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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5.5 Expansion in Powers of 1/Z

Now we shall include interactions between the electrons moving in the Coulomb
field of the nucleus. Since the strength of this interaction is 1/Z times that between
the electrons and the nucleus, it is expected to be determined by the parameter 1/Z .
Unexpectedly, the lowest-order terms appear to provide a rather accurate description
even for the case of helium, where Z = 2.

5.5.1 Ground-State Energies of Heliumlike Ions

If the interactions between the bound electrons is neglected, the energy of the ground
state of the helium atom is ε0 = −2IZ ≈ −109eV. This differs strongly from the
experimental value ε ≈ −78.9eV. Now let us include the lowest-order correction
caused by interaction between the bound electrons. It is

εee = 〈Ψ |Uee|Ψ 〉 . (5.146)

Here Ψ (r1, r2) = ψ(r1)ψ(r2), while the single-particle wave functions ψ(r) are
determined by (5.9), andUee = α/|r1 − r2| is the interaction between the electrons.
Hence

εee =
∫

d3r1d
3r2ρ(r1)

α

|r1 − r2|ρ(r2) , (5.147)

with ρ(ri ) = ψ∗(ri )ψ(ri ). Since only the monopole term of the partial wave expan-
sion for the function 1/|r1 − r2| contributes, we can put

1

|r1 − r2| = 1

r1
(r1 > r2); 1

|r1 − r2| = 1

r2
(r2 > r1), (5.148)

εee = 2(4π)2
∫ ∞

0
dr1r1ρ(r1)

∫ r1

0
dr2r

2
2ρ(r2). (5.149)

Direct calculation provides

εee = 5

4
Z I1; I1 = mα2

2
≈ 13.6 eV. (5.150)

One can obtain this expression as well by employing the technique developed in
Sect. 5.1. We suggest that the reader carry out this exercise.

For helium, (5.150) provides εee = 34.0eV. This leads to the energy ε = ε0 +
εee = −74.8eV, which differs by about 5% from the experimental value. One could
expect the accuracy to be about 1/Z2 = 1/4. However, it appears to be much better.
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It is instructive to compare this result with the ground-state energy value obtained
by assuming that the approximate wave function of two 1s electrons takes the form
Ψa(r1, r2) = ψ(Zef f ; r1)ψ(Zef f ; r2), withψ(Zef f ; ri ) the functions in theCoulomb
field of the nucleus with certain effective charge Zef f [1]. Of course, such a function
is not a solution of thewave equation for helium.However, we can try tominimize the
discrepancy between its LHS and RHS by requiring that F(Zef f ) = 〈Ψa(Zef f )|H −
ε|Ψa(Zef f )〉, with the Hamiltonian H determined by (4.81) reaching its smallest
value. This is known as the variational principle. The condition ∂F(Zef f )/∂Zef f = 0
provides the equation

Z2
e f f + Zef f (

5

8
− 2Z) = 0; Zef f = Z − 5

16
, (5.151)

and the binding energy is

ε = −2I1Z
2(1 − 5

16Z
)2. (5.152)

Note that the lowest correction of the order 1/Z coincides with that obtained in the
perturbative approach; (5.150).

For helium, we have Zef f = 27/16, and the energy is ε = −77.5eV. This deviates
from the experimental value by less than 2%.

5.5.2 Photoionization of Helium Near the Threshold

At relatively small photon energies ω, corresponding to the energies of the photo-
electrons ε ≤ IZ , the hydrogenlike formula (5.78) does not reproduce the experi-
mental values for the cross sections. For example, for helium, it provides the value
σph = 3.15Mb at the threshold of the process (ε → 0), while the experimental value
is σph = 7.40Mb. Nowwe shall see how the situation changes if we include the elec-
tron interactions in the lowest order of perturbation theory.

We must add the amplitude (5.75), in which the electrons do not interact, and
the amplitudes in which the initial-state or final-state electrons interact in the lowest
order of perturbation theory. In the latter case, the amplitude can be written as

F (1) = N (ω)

∫
d3q

(2π)3
J1(q)

4πα

q2
J2(q) + · · · , (5.153)

with

J1(q) =
∫

d3 f

(2π)3

d3 f1
(2π)3

〈ψp|f − q〉〈f |G(p)|f1〉e · f1
m

〈f1 − k|ψ〉; (5.154)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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J2(q) =
∫

d3 f2
(2π)3

〈ψ |f2〉〈f2 − q|ψ〉.

Hereψ andψp are the Coulombwave functions describing the bound 1s electron and
the photoelectron. The dots on the RHS of (5.153) denote the contribution in which
the final-state single-particle electron functions are permuted. A similar expression
can be written for the amplitude that includes electron interactions in the initial state.

One can evaluate the integrals on the RHS of (5.153) and (5.154) by employing
the technique developed in Sect. 5.2. Integration over f1 provides

∫
d3 f1
(2π)3

〈f |G(p)|f1〉e · f1
m

〈f1 − k|ψ〉 = N1η

m
e · ∇k〈f |G(p)Viη|k〉|k=0. (5.155)

Integration over f can be carried out by employing (5.29), providing

J1(q) = ηN1Np
e · ∇k

m

(
− ∂

∂λ

)
Ĵx 〈p(1 − x) + q|T (ε,−i px + λ, η)|k〉|k=0,λ=0.

(5.156)
Integration over f2 provides

J2 = N 2
1

(
− ∂

∂η

)
〈q|Viη+iκ |0〉, (5.157)

where me must put κ = η after calculation of the derivative. Now we write

1

q2
〈q|Viμ|0〉 = 1

μ2

(
〈q|V0|0〉 − 〈q|Viμ|0〉

)
. (5.158)

The matrix element on the RHS of (5.156) can be represented in the form (5.63),
with dependence on q contained only in |q〉. This enables us to calculate the integral
over q. Thus the amplitude F (1) can be written in terms of one-dimensional integrals,
which are presented in [17].

As we have seen in Chap.3, the electron interactions are determined by the para-
meter ξee = α/v, where v is their relative velocity. The bound state does not have a
definite momentum, but we can characterize it by the average momentum η = mαZ .
Thus the effective value of ξ is 1/Z for initial-state interactions. In the final state,
it is of the same order for all ε <∼ IZ . As we have seen in Chap.4, at large energies
ε � IZ , the real part of the amplitude F (1) is proportional to ξee, but it obtains also
additional quenching due to large values of the photoelectronmomenta p � η. There
is no such quenching at ε ∼ IZ , and Re F (1) ∼ ξ = 1/Z . Thus the corrections of
order 1/Z to the cross section come from the interference terms F (0) · Re F (1).

Inclusion of these corrections makes the deviations from the experimental data
much smaller. The threshold value of the cross section for helium becomes σph =
7.19Mb, with 3% deviation from the experimental data.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Chapter 6
The Coulomb Field. Relativistic Case

Abstract We obtain the relativistic electron Coulomb functions as power series in
α2Z2 with the Furry–Sommerfeld–Maue functions as the lowest order approxima-
tion. The results are employed for calculation of photoionization angular distribution
and the cross section with inclusion of the terms of order α3Z3. We consider also
second-order processes. We study the role of various mechanisms for photon elastic
scattering on atoms. We present the characteristics of Compton scattering on the
Bethe ridge with inclusion of the α2Z2 terms. Employing the results of Chap.4, we
calculate the differential distributions for the Compton scattering outside the Bethe
ridge.

6.1 Wave Functions

6.1.1 Wave Functions with Fixed Angular Momentum

The relativistic electron in the Coulomb field is described by the Dirac equation

(
α · p + βm − αZ

r

)
ψ = Eψ; p = −i∇. (6.1)

Solutions of (6.1) are analyzed in books on quantum electrodynamics; see, e.g., [1].
Here we recall the main points.

We do not now assume the velocities of the bound and continuum electrons (in
units of the speed of light) to be small. Thus we do not consider α2Z2 to be a small
parameter. We also employ relativistic kinematics.

As in any central field, the state of the electron can be determined by the energy
E , the total momentum j , which is the sum of the orbital momentum and spin, and its
projection jz = m. Each state is the combination of the states with the orbital angular
momenta � = j ± 1/2, thus having different spatial parities. The wave functions
ψE j�m with � = j ± 1/2 of both discrete and continuum spectra can be obtained in
closed form:

© Springer International Publishing Switzerland 2016
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ψE j�m(r) =
(

gE j�(r)Ω j�m(n)

i fE j�′(r)Ω j�′m(n)

)
; Ω j�′m(n) = −(σ · n)Ω j�m(n); n = r

r
;

(6.2)
�, �′ = j ± 1/2 ,

with Ω j�m(n) the spherical spinors. Below, we shall omit the lower indices of the
functions g(r) and f (r).

The radial functions g(r) and f (r) are singular at the origin:

g(r), f (r) ∼ rγ−1 r → 0, (6.3)

where
γ =

√
( j + 1/2)2 − (αZ)2. (6.4)

For the discrete spectrum the energy is

E = m
(
1 + (αZ)2

(n − j − 1/2 + γ )2

)−1/2
, (6.5)

with n = 1, 2, . . . .
Considering the nonrelativistic limit (αZ)2 → 0, one can see that n is the analogue

of the principal quantum number of the nonrelativistic case. For the bound states we
have j ≤ n − 1/2 and � ≤ n − 1. Thus for n = 1 there is only one state; its angular
momentum is j = 1/2. This state has also a definite value of the angular momentum
� = 0. To keep a connection with the nonrelativistic notation, it is usually denoted
by 1s1/2. There are states with j = 1/2 and j = 3/2 for n = 2. The former can be
treated as the superposition of the states with � = 0 and � = 1, i.e., of the 2s1/2 and
2p1/2 states. The latter is usually notated as 2p3/2.

In the spectrum of the Dirac equation, the energy levels corresponding to the
same n and j but different � = j ± 1/2 remain doubly degenerate. The observable
difference between these values, called the Lamb shift, can be calculated by means
of quantum electrodynamics. The point is described in detail in the book [2] for small
Z and in the review [3] for large Z .

We present as an example the wave function of the ground state (n = 1, j = 1/2):

ψ1s(r) =
(

g(r)χ
−i(σ · n) f (r)χ

)
; n = r

r
, (6.6)

with χ the two-component Pauli spinor,

g(r) = N1e
−ηr (ηr)γ−1h1(γ ); f (r) = −N1e

−ηr (ηr)γ−1h2(γ ); η = mαZ ,

(6.7)
where γ = √

1 − α2Z2 while N1 = (η3/π)1/2 is the value of the nonrelativisticwave
function at the origin, and
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h1(γ ) =
( 1 + γ

2Γ (1 + 2γ )

)1/2; h2(γ ) = h1(γ )
1 − γ

αZ
. (6.8)

Note that the product of the first two factors in the expressions for g(r) and f (r)
forms the nonrelativistic wave functionψnr

1s of the 1s state. The energy of the electron
in the ground state is

E1s = m
√
1 − α2Z2 = mγ . (6.9)

Thus the relativistic electron appears to be bound more strongly than the nonrel-
ativistic one.

The wave function ψE jm of the continuum state also can be written as the sum
of the functions (6.2) with � = j ± 1/2. The radial functions g(r) and f (r) can
be represented in terms of the confluent hypergeometric functions F(γ + 1 + iξ,

2γ + 1; 2i pr), with γ defined by (6.4). Explicit expressions for the functions
ψE jm(r) are given in [1].

However, in contrast to the nonrelativistic case, a closed representation for the
continuum wave function ψp with the asymptotic momentum p is unknown. The
continuum wave functions at E � m make an exception [4].

6.1.2 The Continuum Wave Function in the Ultrarelativistic
Limit

To find the expression for the continuum function, we begin with the Dirac equation
(6.1) written in the form

(
E − α · p − βm − V

)
ψp = 0,

with V = −αZ/r and p = −i∇. We use the notation

k̃ = α · k (6.10)

for any three-dimensional vector k, and multiply the wave equation on the left by
the operator E + p̃ + βm − V . This leads to the equation

(
∇2 + p2 − 2EV + i(∇̃V ) + V 2

)
ψp = 0; p2 = E2 − m2. (6.11)

Substituting ψp(r) = eip·rF(r)up, with the spinor up corresponding to the free
motion, we find that the function F(r) satisfies the equation

(
∇2 + 2ip∇ − 2EV + V 2 + i(∇̃V )

)
F(r)up = 0. (6.12)
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We try to find the wave function at r >∼ 1/m corresponding to momentum q <∼ m
transferred to the nucleus. Thus pr � 1. In this limit, we can omit two last terms in
the parentheses on the right-hand side (RHS) of (6.12). Thus

(
∇2 + 2ip∇ − 2EV

)
F(r) = 0. (6.13)

Now we solve a simpler equation, in which the first term in parentheses is
neglected: (

ip∇ − EV
)
F(r) = 0, (6.14)

We shall analyze the value of the neglected term in the next step. Putting F(r) =
eiw(r), we write (6.14) as

p∇w + EV = 0. (6.15)

The solution of this equation is

w(rz, rt ) = αZ ln (pr + prz) f (rt ), (6.16)

the z-direction of the momentum p, rt is orthogonal to p, r2t = r2 − r2z , and f is an
arbitrary function of rt . The choice f = 1 leads to the wave function (we omit the
phase factor)

ψp = eip·reiαZ ln (pr+prz)up. (6.17)

Putting f (rt ) = −αZ ln (p2r2t ) on the RHS of (6.16), we obtain another solution,

ψp = eip·re−iαZ ln(pr−prz)up. (6.18)

The solutions (6.17) and (6.18) are known as distorted plane waves. Calculating
the first term on the left-hand side (LHS) of (6.13) with the functions determined by
(6.17) and (6.18), we obtain an additional condition for the validity of these wave
functions,

pr ± p · r � 1 . (6.19)

Thus at E � m, the wave functions represented by (6.17) and (6.18) obtained by
Pratt [4] are the solutions of the wave equation (6.11) under the restriction expressed
by (6.19). The corrections to these functions are of order m/E .

Analysis of the wave equation enables us to obtain an approximate wave function
that is free from the limitation (6.19). The condition r � 1/E enables us to neglect
the last two terms on the LHS of (6.11). We come to the equation

(∇2 + p2 − 2EV )ψp = 0 , (6.20)

which is just the nonrelativistic equation for the electron in the Coulomb field with
the massm replaced by the total energy E . Its solution is the modified nonrelativistic



6.1 Wave Functions 119

wave function ψnr
p (r) = eip·rFnr (r) with the same replacement m → E . In the next

step, we include all the terms except the last one on the LHS of (6.11),

(
∇2 + p2 − 2EV + i(∇̃V )

)
ψp = 0. (6.21)

In neglecting the term V 2, we have neglected the terms of higher order in αZ .
Representing the solution of (6.21) in the form ψp(r) = eip·r(Fnr (r)up + φ(r)), we
obtain, employing (6.20) [5],

φ(r) = −i
∇̃
2E

Fnr (r)up . (6.22)

This is the lowest correction to the nonrelativistic wave function; the higher cor-
rection yields the additional factor αZ .

The latter equation is a special case of the Furry–Sommerfeld–Maue (FSM) func-
tions [5, 6], which are the combination of the nonrelativistic terms and the first-order
correction proportional to αZ . We shall try to find an expansion of the relativistic
functions in powers of the relativistic parameter αZ . The coefficients of this expan-
sion will be the functions of the Coulomb parameter ξ = αZE/p. The zero-order
terms are the FSM functions.

6.1.3 Furry–Sommerfeld–Maue Approximation

Let us find the ground-state function for (αZ)2 → 0, i.e., γ → 1. In this limit, the
functions h1,2 defined by (6.8) are h1 = 1/

√
2, h2 = αZ/2

√
2. Thus the ground-state

wave function can be written as

ψ FSM
1s (r) = (1 − i∇̃

2m
)ψnr

1s (r)u0, (6.23)

with u0 the bispinor of the free electron at rest. Thus for the ground state, the FSM
function is expressed in termsof the nonrelativistic one. Inmomentum representation,

ψ FSM
1s (f) =

(
1 + f̃

2m

)
ψnr

1s (f)u0 . (6.24)

Using the technique developed in Sect. 5.2, one can find a similar relation between
the FSM and the nonrelativistic functions for every bound state. Note that for small
f = |f | ∼ η, the second term in parentheses on the RHS of (6.23) provides a small
correction of order αZ to the first term. At large f ∼ m, both terms are of the same
order.

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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For the continuum states, the dependence of the functions ψE jm(r) on (αZ)2 is
contained in the parameter γ defined by (6.4). In the FSM approximation, we must
put

γ = j + 1/2 . (6.25)

Under this assumption, the series for the continuum wave function

ψp(r) =
∑
jm

a jmψE jm(r); p = |p| =
√
E2 − m2 (6.26)

was found to be

ψ FSM
p (r) = Npe

i(p·r)
(
1 − i∇̃

2E

)
1F1(iξ, 1, i pr − ip · r)up. (6.27)

Here

Np = N (p) =
√

2πξ

1 − e−2πξ

is the normalization factor of the nonrelativistic continuum function with three-
momentum p and total energy E ; see (3.19). Note that we keep the relativistic
value of the energy E on the RHS of (6.27), and ξ = αZE/p; see (3.17) and (3.18).
Neglecting the second term in the parentheses on the RHS of (6.27), we would obtain
the corresponding nonrelativistic function with the electron rest energy m replaced
by E ; see (5.25).

Carrying out the Fourier transform, we find that in the momentum space,

ψ FSM
p (f) =

(
1 + f̃ − p̃

2E

)
ψnr

p (f)up. (6.28)

Similarly to the case of the discrete spectrum, the second term in parentheses on
the RHS provides a small correction of order αZ to the first term for small q =
|f − p| 	 E . At large q ∼ E , both terms are of the same order.

Employing the explicit expression (5.30) for the nonrelativistic function, we can
also represent the FSM function as

ψ FSM
p (f) = Np

(
− ∂

∂λ
+ i p∇̃p

2E

)
Φp(f, λ)up|λ=0 = (6.29)

Np

(
− ∂

∂λ
+ αZ

i∇̃p

2ξ

)
Φp(f, λ)up|λ=0.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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In the second equality, the factor αZ manifests itself explicitly. In (6.29),

Φp(f, λ) = 4π

a

(a
b

)iξ ; a = q2 + λ2; b = (q + p)2 − (p + iλ)2; q = f − p.

(6.30)
The operator ∇p in (6.29) does not act on ξ and q.

These expressions for the FSM continuum wave function can be obtained by
comparing the Lippmann–Schwinger equations for the nonrelativistic wave function
(with the relativistic value of the energy E) and for the relativistic one. We define,
separating the bispinor of free motion up,

ψp = ϕpup . (6.31)

In the nonrelativistic case, we have just ψnr
p = ϕnr

p . Note that ϕp is a 4 × 4 matrix
acting on the Lorentz indices of the bispinor up. The nonrelativistic ϕnr

p is a unit
matrix. The LSE can be written as

ϕnr
p = ϕ(0)

p − G0(p)V0ϕ
nr
p ; ϕp = ϕ(0)

p − G0(p)γ0V0ϕp. (6.32)

Here ϕ(0)
p describes free motion, p = |p|, while the propagator

〈f |G0(p)|f1〉 = G0(p, f)δ(f − f1); G0(p, f) = 2E

p2 − f 2 + iδ
; δ → 0, (6.33)

with p2 = E2 − m2, differs from the nonrelativistic Green function of free motion
given by (2.29) by the factor E/m. The Coulomb interaction between the nucleus
and the electron is represented as

V = −αZV0; 〈r|V0|r1〉 = δ(r − r1)
r

; 〈f |V0|f1〉 = 4π

(f − f1)2
. (6.34)

It is instructive to write these equations in terms of the Möller operator

|ϕnr
p 〉 = M nr |ϕ(0)

p 〉 = M nr |p〉 . (6.35)

The nonrelativistic operator M nr satisfies the equation

M nr = 1 − αZG0(p)V0M
nr , (6.36)

while in the relativistic case,

|ϕp〉 = M |p〉 M = 1 − αZG(p)γ0V0M , (6.37)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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with the Green function of the free Dirac equation G given by (2.35). The equations
for the Möller operator presented above are the direct consequence of the LSE (see
Sect. (2.1.3)). For further calculations,we introduceG+ = Gγ0 andG− = G+ − G0,
i.e.,

〈f1|G±(p)|f2〉 = G±(p, f1)δ(f1 − f2); G±(p; f) = f̃ + βm ± E

p2 − f 2 + iδ
. (6.38)

We write (6.37) as
M = 1 − αZG+V0M . (6.39)

Here and below, we omit the argument p of the electron propagators.
Now we solve (6.39) in the FSM approximation, i.e., we keep only corrections of

order αZ to the nonrelativistic operator M nr . Thus

M FSM = 1 − αZG+V0M
nr . (6.40)

Comparing this expression with (6.36), we obtain

M FSM = (1 − αZG−V0)M
nr . (6.41)

Using (6.35), we obtain

ψ FSM
p (f) =

(
ϕnr
p (f) − αZ〈f |G−V0|ϕnr

p 〉
)
up . (6.42)

Due to the equation of motion (mγ0 − E)up = −p̃up, we can write

ϕFSM
p (f) − ϕnr

p (f) = −αZ
f̃ − p̃
2E

〈f |G0V0|ϕnr
p 〉. (6.43)

Employing (6.36), we obtain −αZG0V0|ϕnr
p 〉 = −|p〉 + |ϕnr

p 〉, coming to (6.28).
For the Coulomb Green function in the FSM approximation, we obtain

GFSM
c = M FSMG+; 〈f |GFSM

c |f1〉 = 〈f |M FSM |f1〉G+(f1). (6.44)

Note that since the difference between the right-hand sides of (6.4) and (6.25) is
of the order (αZ)2/�, the FSM functions become increasingly accurate for processes
in which high values of the orbital momenta are involved. For example, if an electron
scatters on a small angle θ 	 1, the momentum q ≈ pθ is transferred to the target.
The transverse distances rt ∼ 1/q are important, and effective values of angular
momentum are � = p/q � 1. Thus the corrections to the FSM functions are of
order (αZ)2q/p.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2


6.2 The αZ Dependence of Electron Functions 123

6.2 The αZ Dependence of Electron Functions

6.2.1 Power Series for Wave Functions

Now we obtain the relativistic Möller operator as a power series of the parameter
αZ :

M =
∑
n=0

(αZ)nM (n) , (6.45)

where the term with n = 0 corresponds to the nonrelativistic approximation, and
M (0) = M nr . We also find from (6.41) that M (1) = −G−V0M nr . Note that the
termsM (n) on the RHS of (6.45) depend on the Coulomb parameter ξ = αZE/p.

It follows from (6.39) that for n ≥ 1,

M (n) = (−G+V0)
n−1M (1), (6.46)

i.e., all the terms are expressed through the operatorM (1). Thus the continuumwave
function can written as

ϕp = ϕnr
p + αZ

∑
n=0

(−αZ)n(G+V0)
nϕ1

p, (6.47)

with ϕ1
p = ϕFSM

p − ϕnr
p = M (1)ϕ(0)

p . For example, up to the terms (αZ)3,

ϕp = ϕnr
p + αZϕ1

p − (αZ)2G+V0ϕ
1
p + (αZ)3G+V0G+V0ϕ

1
p . (6.48)

Since the continuum wave functions can be obtained only as the αZ series, it
is reasonable to have the bound state wave functions in a similar form. The wave
function of the ground state can be written as

ψ1s(r) = N1φ1su0; φ1s = (r + iτ r̃)e−ηrΓ (1 + σ)r−σ−1, (6.49)

with Γ (x) the Euler gamma function, while

η = mαZ; γ =
√
1 − (αZ)2; τ =

(1 − γ

1 + γ

)1/2; σ = 1 − γ. (6.50)

We shall see that the additional factor Γ (1 + σ) is introduced to make further cal-
culations more convenient. The normalization factor is now

N 2
1 = (2η)2γ+1(1 + γ )

8πΓ (2γ + 1)Γ 2(1 + σ)
.
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In the limit (αZ)2 → 0, we obtain γ = 1, τ = αZ/2, and ψ1s = ψ FSM
1s . In the limit

αZ → 0, we obtain τ = 0 and ψ1s = ψnr
1s .

Now we find the ground-state wave function in momentum space. For the FSM
function, we can put σ = 0, r−σ−1 = r−1, and the wave function can be represented
in terms of the matrix elements of the Yukawa potential, as was done in Sect. 5.2 for
the nonrelativistic case:

φ1s(f) = Γη〈f |Viη|k〉; Γη =
(

− ∂

∂η
+ αZ

2
∇̃k

)
|k=0. (6.51)

In order to include the higher terms of the αZ series, we employ the relation

r−1−σΓ (1 + σ) =
∫ ∞

0
dλe−rλλσ , (6.52)

and write
φ1s(f) = Γλ〈f |Viη+iλ|k〉 , (6.53)

with

Γλ = Γη

(
− ∂

∂η

) ∫ ∞

0
dλλσ . (6.54)

Setting here λσ = eσ ln λ = 1 + σ ln λ + · · · , we obtain an expansion in powers
of σ . Expanding also the parameter τ in powers of αZ , we obtain an expansion of
the function φ1s in powers of αZ . For the first two terms of the expansion, we obtain

(
− ∂

∂η

) ∫ ∞

0
dλ〈f |Viη+iλ|k〉 =

(
− ∂

∂η

) ∫ ∞

η

dρ〈f |Viρ |k〉 = 〈f |Viη|k〉,

and we arrive at (6.51). For the terms up to (αZ)3, we obtain

Γλ = Γη + (αZ)2

2
Γη

(
− ∂

∂η

) ∫ ∞

0
dλ ln λ. (6.55)

Returning to the continuum wave functions, note that they depend on αZ directly
and also through the Sommerfeld parameter ξ = αZ/v. Equations (6.45) and (6.47)
include both. In the next section, we obtain an equation that treats the dependence
on these two parameters separately.

6.2.2 Relativistic Functions in Terms of FSM Functions

We have seen that relativistic functions can be expressed in terms of the lowest-order
Möller operators M nr and M 1. Now we shall represent them as power series in

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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α2Z2 with the coefficients expressed in terms of the FSM operators [7]. We begin
by representing the functions in terms ofM nr and M FSM . Putting

M = M FSMΛ, (6.56)

we write (6.39), employing (6.41), as

(1 − αZG−V0)M nrΛ = 1 − αZG+V0M nrΛ + α2Z2AΛ; A = G+V0G−V0M nr .

(6.57)

We evaluate

− 1 + (1 − αZG−V0)M
nrΛ + αZG+M nrΛ = (1 + αZG0V0)M

nrΛ − 1 = Λ − 1.
(6.58)

Employing (6.36), we find that αZG0V0M nrΛ = 1 − M nrΛ. Thus we arrive at an
equation for Λ:

Λ = 1 + (αZ)2AΛ, (6.59)

which represents the Möller operator in terms of M nr and M FSM . The iteration
procedure demonstrates that Λ can be written as a sum of the terms An . Thus ΛA =
AΛ, and we can write (6.59) as

Λ = 1 + (αZ)2ΛA . (6.60)

Nowwe demonstrate that the operator A depends only on the parameter ξ .Writing
(6.60) for the matrix elements

〈f |Λ|p〉 = 〈f |p〉 + (αZ)2
∫

d3 f1
(2π)3

〈f |Λ|f1〉〈f1|A|p〉 (6.61)

and representing

〈f1|A|p〉 =
∫

d3k

(2π)3
〈f1|A1|k〉〈k|A2|p〉; A1 = G+V0G−; A2 = V0M

nr ,

(6.62)

we canwrite (f̃1 + E + mβ)(k̃ − E + mβ) = f̃1k̃ − p2 + (k̃ − f̃1)(E − mβ) for the
spinor structure of the numerator. Since this matrix acts on the bispinor up, the factor
(E − mβ) in the last term can be replaced by p̃, and we have

〈f1|A|p〉 =
∫

d3k

(2π)3

f̃1k̃ + (k̃ − f̃1)p̃ − p2

(p2 − f 21 + iδ)(f1 − k)2(p2 − k2 + iδ)
〈k|A2|p〉. (6.63)
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Employing the technique developed in Sect. 5.2, we obtain for the last factor on the
RHS of (6.63),

〈k|A2|p〉 =
∫

d3q

(2π)3
〈k|V0|q〉〈q|ϕnr

p 〉 = 4πN (ξ)

a

(a
b

)iξ ; (6.64)

a = (k − p)2; b = k2 − p2,

with N (ξ) the normalization factor of the nonrelativistic continuum function. Intro-
ducing

v = f
p
; v1 = f1

p
; u = k

p
; n = p

p
, (6.65)

we can write (6.63) in the form

〈f1|A|p〉 = 1

p3
〈v1|A|n〉, (6.66)

〈v1|A|n〉 =
∫

d3u

(2π)3

ṽ1ũ + (ũ − ṽ1)ñ − 1

(1 − v2
1 + iδ)(v1 − u)2(1 − u2 + iδ)

〈u|A2|n〉,

where
〈u|A2|n〉 = p2〈k|A2|p〉.

Since also 〈f |p〉 = 〈v|n〉/p3 = δ(v − n)/p3, we find that

〈f |Λ|p〉 = 1

p3
〈v|Λ|n〉, (6.67)

and (6.61) can be written as

〈v|Λ|n〉 = 〈v|n〉 + (αZ)2
∫

d3v1

(2π)3
〈v|Λ|v1〉〈v1|A|n〉. (6.68)

Here the matrix element of the operator A does not contain any dependence on
the parameter (αZ)2. Its dependence on the parameter ξ is determined by (6.64) and
(6.66).

Thus iteration of (6.59) and (6.60) provides the expansion of the relativistic wave
function in powers of (αZ)2 with the coefficients of the power series being functions
of ξ :

Λ((αZ)2, ξ) = 1 + (αZ)2A(ξ)Λ
(
(αZ)2, ξ

)
. (6.69)
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Its solution in operator form is

Λ((αZ)2, ξ) = 1

1 − (αZ)2A(ξ)
. (6.70)

An actual solution can be obtained by iteration of (6.69).
Thus the relativistic Coulombwave function of a continuum electron with asymp-

totic momentum p can be represented in terms of the nonrelativistic Coulomb wave
function

ψp(f) = Mϕ0
pup , (6.71)

with operator M given by (6.56), while Λ is determined by (6.70). Similarly, one
can represent the relativistic Coulomb propagator as

GC(E) = MG+(E) , (6.72)

while G+ is given by (6.38).
Note that there is no sense in calculating too many terms of the expansion in

powers of (αZ)2. The solution of the Dirac equation does not include the radiative
corrections,which are of orderα ∼ 0.01. For example, at Z ≤ 50,we obtain (αZ)4 ≤
2 × 10−2, and for these values of Z , inclusion of the terms of the order (αZ)4 is
beyond the accuracy of the approach.

Applications will be presented in next three sections.

6.3 Photoeffect

6.3.1 General Remarks

Calculation of the angular distribution and of the total cross section is a more difficult
task than it was in the nonrelativistic case. The spin variables are involved,making the
calculations more complicated. The continuum wave function cannot be represented
in closed form, and can be obtained only as a power series of the parameter αZ . Also,
the ratio of the photon-to-electronmomenta is k/p ∼ 1. Thus all angular momenta of
the outgoing electron may provide a noticeable contribution, and (5.70) is no longer
valid. The angular distribution becomes much more complicated.

The general expression for the angular distribution of the photoelectrons is very
much like the expression in the nonrelativistic case. For a single bound electron in
the initial state, we have

dσ ph = pE |F̄ph |2 dΩ

4π2
; t = k · p/ωp . (6.73)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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The overbar indicates that averaging over polarizations in the initial state and
summation over those in the final state are carried out. For the photoelectron energy
we have E2 = p2 + m2, and in the limit E − m 	 m, we arrive at (5.76). However,
now

Fph = 〈ψp| Â|ψi 〉; Â = −Aγ (6.74)

while ψi and ψp are the relativistic wave functions of the initial and final electrons,
and γ are the Dirac matrices. We carry out calculations for the bound electron in 1s
state. A similar analysis can be carried out for any bound state in the Coulomb field.

We shall present all equations for the case of one electron in the 1s state. The
results for the closed K shell can be obtained by multiplying by the factor 2.
In the nonrelativistic case, this was trivial, since the two K electrons are inde-
pendent. In the relativistic case, the spin variables are involved, and one should
carry out a simple calculation. The amplitude is proportional to the matrix element
M = 〈Ψ f |γ1 + γ2|Ψ0〉. Here 1 and 2 stand for the space and spin coordinates of the
two electrons, γi = (ae · p + ibσ i · h)eik·ri (i = 1, 2), and the vector h is a com-
position of vectors k, e and p. Also, Ψ0 = ϕ1s(1)ϕ1s(2)S0 is the initial-state wave
function, with S0 describing the two-electron state with spin S = 0. The final-state
wave function is Ψ f = ΦsS0 + ΦaS1μ, withS1μ describing the two-electron state
with spin S = 1 and its projection μ. Here Φs = (ϕp(1)ϕ1s(2) + ϕp(2)ϕ1s(1))/

√
2

and Φa = (ϕp(1)ϕ1s(2) − ϕp(2)ϕ1s(1))/
√
2 are respectively the symmetric and

antisymmetric space wave functions. Employing the relation (σ 1 + σ 2)S0 = 0,
we obtain M = [ae · pS ∗

0 S0 + ibS ∗
1μσ · hS0]

√
2〈ϕp|eik·r|ϕ1s〉. After summation

over the spin variables of the final-state electrons, we obtain |M |2 = 2[(a2(e · p)2 +
b2h2)〈ϕp|eik·r|ϕ1s〉2]. Since the expression in square brackets corresponds to the case
of one electron in the K shell, this proves our statement.

There are two relativistic parameters in our process. In the nonrelativistic case,
we considered photoionization in the lowest order in powers of αZ . Now we go
beyond this approximation. Also, in the nonrelativistic case, the energies of the
photons were limited by the condition E − m 	 m. Now we analyze mostly the
case of fast electrons with E − m >∼ m. We begin, however, with the case in which
the photon energy ω is close to the ionization potential of the 1s state, which is now
IZ = m(1 − γ ), and the photoelectrons absorb the energy ω − IZ 	 m.

6.3.2 Threshold Ionization of Heavy Ions

The amplitude of the photoeffect can be obtained by direct employing (6.74) with
the electron wave functions described by (6.2). Considering the ionization of the 1s
state, we represent its wave function as

ψ1s(r) =
(

g(r)Ω 1
2 0M

(n)

i f (r)Ω 1
2 1M

(n)

)
; n = r

r
, (6.75)
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where M = ±1/2 is the projection of the total angular momentum j = 1/2 of the
1s electron.

Integration over the angular variables in (6.74) by expansion of the exponential
factor in spherical harmonics leads to the set of radial integrals R±

κ . Here we use
the conventional notation κ = � for j = � − 1/2, while κ = −� − 1 is used for
j = � + 1/2. The upper indices of R±

κ correspond to the values M = ±1/2. The
integrands contain the products g(r) fκ(r) and f (r)gκ(r). For example,

R+
κ = −

√
�(�2 − 1)

2� + 1

∞∫

0

drr2F(r)g�(r)( j�−1(kr) + j�+1(kr)), (6.76)

where j�±1 are the spherical Bessel functions. The cross section of the photoeffect is

σph = 16παpE

ω
·

∑
κ=±n

(|R+
κ |2 + |R−

κ |2), (6.77)

with integer values of n �= 0.
If p >∼ m, the integrals R±

κ are saturated at r ∼ 1/p and can be estimated as
R±

κ ∼ (k/p)�−1 ∼ 1. Thus, strictly speaking, one needs an infinite number of terms
on the RHS of (6.77). It was shown in [8] that n = 8 terms are necessary to achieve
an accuracy of 10% at E ≈ 1MeV. Of course, this is easy for today’s computational
facilities. However, it is useful to have a simple analytical formula. In the threshold
region such a formula can be obtained.

If the photon energy is close to the binding energy of the ionized state, and thus the
momentum of the photoelectron p → 0, the photoionization proceeds at distances of
order the size of the K shell rK = 1/η, with η = mαZ . Since ω → IZ ≈ mα2Z2/2,
we can estimate

R±
κ ∼ (k/η)�−1 ∼ (αZ)�−1 , (6.78)

except R−
−1 ∼ (αZ)2. Thus the series on the RHS of (6.77) can be rearranged to a

power series in α2Z2. The number of terms is determined by the required accuracy
of computations. For example, if we want to achieve the accuracy α6Z6, we need
−4 ≤ κ ≤ 3 [9].

In the nonrelativistic limit, we can write

σph = σ nr
ph = σ0 f (τ ) , (6.79)

with σ nr
ph determined by (5.78), τ = p2/η2, while

σ0 = 28π2αe−4

3mω
= 168

1 − γ
[barn] (6.80)

is the nonrelativistic value of σph at the threshold where ω = m(1 − γ ).

http://dx.doi.org/10.1007/978-3-319-32736-5_5


130 6 The Coulomb Field. Relativistic Case

Employing the explicit equations for the Coulomb functions gκ and fκ , one can
simplify calculations in the vicinity of the threshold, where p 	 η [9]. For

ω − IZ <∼ α2Z2 IZ ≈ mα4Z4

2
, (6.81)

where p <∼ αZη (thismakes about 50keVabove the threshold in the case of uranium),
expansion in powers of k/η and p/η provides

σph(p) = σ0

(
f (τ ) − 0.393a − 0.144a2 + 1.023τa + O(a3)

)
. (6.82)

Here a = α2Z2, τ = p2/η2, while

f (τ ) = 1 − 5τ/3 + 94τ 2/45 + O(τ 3) . (6.83)

The threshold value (p = 0) for uranium σ = 0.793σ0 provided by (6.82) appears
to be very close to the result of direct numerical computations σ = 0.789σ0 presented
in [10].

6.3.3 The αZ Dependence of Amplitude

Nowwe consider the case in which the photoelectron carries a large energy E − m >∼
m.We calculate the angular distribution and the total cross section of photoionization
of the hydrogenlike atoms, taking into account the terms of relative order (αZ)2.
Since the process cannot proceed for a free electron, the lowest-order amplitude is
proportional to αZ . Thus we must include the terms up to (αZ)3.

The wave function of the 1s state is expressed by (6.53). The wave function of
the continuum state is given by (6.48). Combining these expressions, we can write

Fph = N (ω)NpN1ūpTu0 , (6.84)

where up and u0 are the Dirac bispinors corresponding to the free motion, while

T = T0 + αZT1 + (αZ)2T2 + (αZ)3T3 , (6.85)

with the terms on the RHS corresponding to the expansion of the wave function of
the photoelectron (6.48):

T0 = 〈ϕnr
p |Viμ|k〉êΓλ; T1 = 〈ϕ1

p|Viμ|k〉êΓλ; T2 = −〈ϕ1
p|V̂0GViη|k〉êΓη,

(6.86)

T3 =
(

− ∂

∂η

)
〈ϕ1

p|V̂0GV̂0GViη|k〉ê .
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The operators Γλ and Γη act on the left. Since the process can not take place on
the free electron, the term T0 is actually proportional to αZ . In the lowest-order term
T0 + αZT1, only the contributions of order αZ are included in the wave function of
the photoelectron.The corrections up to order (αZ)2 are included in thewave function
of the 1s electron. In the term (αZ)2T2, thewave functionof the 1s electron is included
in the FSM approximation. The contribution (αZ)3T3 contains the nonrelativistic
wave function of the 1s electron.

Note that the functions Tn (n = 0, 1, 2, 3) contain two more parameters that
depend on αZ . These are the Coulomb parameter ξ = αZE/p and momentum
η = mαZ .

6.3.4 Calculations in the Lowest Order in αZ

Here we calculate the amplitude T in the lowest nonvanishing order in αZ . It can be
represented as

T LO = T LO
0 + αZT LO

1 . (6.87)

The upper index LO is for “leading order.” The terms on the RHS of (6.87) are

T LO
0 = 〈ϕnr

p |Viη|k〉êΓη; T LO
1 = (− ∂

∂η
)〈ϕ1

p|Viη|k〉ê. (6.88)

Employing the technique developed in Sect. 5.2 we obtain

T LO
0 = −ê

∂

∂η
Φp(k, η); T LO

1 = − c̃
b
Φp(k, η), (6.89)

with Φp(k, η) and b defined by (6.30), while c = q − iηp/p, and momentum q =
k − p is transferred to the nucleus. Recall that η = mαZ .

While we are calculating the lowest nonvanishing terms of the αZ expansion, we
put η = 0 in all ingredients of (6.89) except the function

Θ =
(a
b

)iξ =
( q2 + η2

k2 − (p + ıη)2

)iξ
, (6.90)

which enters the amplitude (6.87) as a factor.
In the lowest order of expansion in powers of (αZ)2, the energy conservation law

can be written as
E = ω + m; p2 − k2 = 2mω . (6.91)
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Thus, employing (6.87), we can write

ūpT
LOu0 = 4παZΘ

q2
ū p

(2mê(1 − q̃/2m)

q2
− 2E(1 − q̃/2E)ê

2mω

)
u0. (6.92)

Here we evaluated the second term by employing equation of motion ū pmγ0 =
ū p(E + p̃). The first and second terms in the parentheses describe the transfer of
large momentum q � η to the nucleus by the bound electron and by the photoelec-
tron respectively. One can immediately recognize the FSM structure of both terms.
Writing the numerator of the second term as ū p(E − m − k̃)êu0, we see that for
ω 	 m, the first term dominates, as it should be in the nonrelativistic limit.

Thus the amplitude of the photoeffect is

Fph = N (ω)NpΘX , (6.93)

where

X = N1X1; X1 = 4παZ

q2
ūp

(
ê(2m − q̃)

q2
− (2E − q̃)ê

2mω

)
u0. (6.94)

Recall that N1 = (η3/π)1/2 is the value of the nonrelativistic Coulomb wave
function of the 1s electron at the origin. These equations have a clear physical mean-
ing. The amplitude X describes the process in which the electrons interact with the
nucleus only once, transferring large momentum q � η. The first term in paren-
theses describes this interaction in the initial state, while the second corresponds to
interaction in the final state. All exchanges by small momenta f ∼ η are described
by the factors N1, Np, and Θ on the RHS of (6.93).

As well as in the nonrelativistic case, the amplitude turns to zero for the photon
and photoelectron moving along the same line, i.e., for t = ±1. In the nonrelativistic
case, this happened because the spin of the electron was neglected, and the amplitude
was proportional to the product e · p. However, in the relativistic case, there are also
structures proportional to e[kσ ] and e[pσ ]. They do not vanish for p parallel to k.
One should do some algebra of γ matrices to prove the statement for the relativistic
case.

One can evaluate the factor Θ , writing it as

Θ = e−πξχ(ξ)Φ(ξ); χ(ξ) = exp (ξ arctan
2pη

p2 − k2 − η2
); Φ(ξ) = eiξφ,

(6.95)
with φ = ln |a/b|. Since χ(ξ) ≈ exp (α2Z2E/ω) ≈ 1, we can put

Θ = e−πξΦ . (6.96)
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Thus the amplitude depends on ξ in terms of the parameterπξ , i.e., the coefficients
of the expansion in powers of ξ are numerically large. We do not carry out this
expansion, keeping the dependence on ξ given by (6.96).

Employing (6.94), we obtain for the angular distribution

dσph

dt
= pM

ω

F(θ)

q4
; dt = sin θdθ, (6.97)

with θ the angle between the directions of momenta k and p,

M(ξ) = 2π · 4πα(αZ)2N 2
pN

2
1 e

−2πξ , (6.98)

and

F(θ) = 4mp2 sin2 θ

q4

(
1 + q2

4m2
(
ω

m
− 1)

)
. (6.99)

Here q2 = p2 + ω2 − 2pω cos θ . One can see that the distribution (6.99) turns to
zero at θ = 0 and at θ = π .

Integration of (6.97) provides an expression for the cross section

σph(ω) = M(ξ)

4m5

ζ 2(1 − ζ 2)3/2

(1 − ζ )5

(4
3

+ 1 − 2ζ

ζ(ζ + 1)
· (1 − ζ 2

2
√
1 − ζ 2

ln
1 + √

1 − ζ 2

1 − √
1 − ζ 2

)
)
,

(6.100)

with
ζ = m

E
. (6.101)

In the limit πξ 	 1, i.e., for Np = 1, e−2πξ = 1, this formula was obtained by
Sauter in the early days of quantum mechanics [11]. In the ultrarelativistic limit
E � m, the asymptotic of the cross section is

σph(ω) = M(αZ)

4m5
· m

ω
. (6.102)

6.3.5 Inclusion of Higher-Order Terms

In order to increase the region of the values of Z where our calculations are valid,
we must include the higher-order terms of the expansion in powers of αZ . Also, the
angular distribution (6.97) turns to zero for the forward and backward photoemission
(sin θ = 0). Thus to obtain a nonvanishing contribution for these angles, we must
include the higher-order terms.
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The lowest-order amplitudes (LOA) (6.89) are proportional to αZ ; the corre-
sponding angular distribution (6.97) is proportional to (αZ)2. The (αZ)3 term of the
angular distribution also vanishes for sin θ = 0, since it comes from the interference
between LOA and the term of order (αZ)2. Thus the lowest-order nonvanishing con-
tribution comes from the terms of order (αZ)2 of the amplitude. Hence the amplitude
(6.85) gives the leading nonvanishing contribution and a correction of order αZ to
the angular distributions at small angles and at those close to π . It describes the
angular distribution with relative error (αZ)3 at other angles.

The higher-order terms of the amplitude (6.85) can be calculated by employing
the technique developed in Sect. 5.1 [12]. The last term T3 can be evaluated in the
limit η = 0. Here we employ a useful relation:

F(k1,k) ≡
(

− ∂

∂η

)
〈k1|Viη|k〉|η=0 = (2π)3δ(k1 − k). (6.103)

One can see that indeed, F(k,k1) = 0, unlessk = k1 while
∫
d3kF(k1,k)/(2π)3

= 1. Thus one can write

T3 = 〈ϕ1
p|V̂0GV̂0|k〉G(k)ê . (6.104)

One can find that all the terms that compose the amplitude (6.85) contain the factors
(a/b)iξ and 1/q2. The amplitude can be written as

T =
(a
b

)iξ αZ

q2

(
τ0 + αZτ1 + (αZ)2τ2 + (αZ)3τ3

)
, (6.105)

where τn do not depend on αZ . The angular distribution is thus

dσph

dt
= M(ξ)

p

ω

A(θ)

q4
, (6.106)

with M(ξ) defined by (6.98), and

A(θ) = F(θ) + αZG(θ) + (αZ)2F1(θ) + (αZ)3G1(θ) , (6.107)

with F(θ) determined by (6.99). Here F(θ) comes from the square of the LOA; G
originates from interference between the LOA and the leading correction of order
αZ , etc. Employing notation introduced in (6.105), we can write

F = 〈τ0τ0〉; G = 2Re〈τ1τ+
0 〉; F1 = 〈τ1τ+

1 〉 + 2Re〈τ2τ+
0 〉; (6.108)

G1 = 2Re〈τ2τ+
1 〉 + 2Re〈τ3τ+

0 〉,

where the angle brackets denote averaging over the electron spins.

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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Now we calculate the angular distribution, including the terms up to those of
the order αZ , i.e., neglecting the contributions of the order α2Z2. For large θ ∼ 1
(excluding those close toπ ), we can neglect the last two terms on the RHS of (6.107).
Employing the technique worked out in Sect. 5.2, we obtain

G(θ) = π

2

p2 sin2 θ

q3

(
2 − ω

m

)(
1 + ω − m

2m − ω
· q2(pm + Eq)

mp(pq − p · q)

)
. (6.109)

Note that the denominator of the last factor never turns to zero. This is because p =√
ω2 + 2mω > k, and thus p · q = (k2 − p2 − q2)/2 < 0. The contribution comes

from the interference between the LOA and the leading correction. Although the
latter does not vanish for θ = 0, π [13], the function G(θ) does.

Consider now the case of small angles. Recall that the functions F and G become
zero for θ = 0. Hence for small values of θ , the higher-order terms containing the
functions F1 andG1 should be included.Thedistribution (6.106) depends on the angle
θ in terms of the structures (ep)2 and (kp)2. At small θ , the former is proportional
to θ2, while the latter has a constant value. Thus as θ → 0, 〈τ0τ+

i 〉 (i = 1, 2, 3) are
proportional to θ2. Hence at small θ 	 1, we can write F(θ) = θ2 f , G(θ) = θ2g,
presenting

A(θ) = θ2 f + αZθ2g + (αZ)2F1(0) + (αZ)3G1(0), (6.110)

with F1 = 〈τ1τ+
1 〉, G1 = 2Re〈τ2τ+

1 〉.
For θ2 ∼ αZ , the first term on the RHS of (6.110) gives the leading contribution,

with the second and third terms providing corrections of the order αZ . Here we need

F1(0) = ω

16q2
(1 − q

2ω
)2[(π ω

p
)2 + 4(1 − q2

2ωp
ln

h

q
)2]; h = p + ω, (6.111)

with q = p − ω. For smaller angles θ ∼ αZ , the first and third terms dominate on
the RHS, while the second and the fourth give a correction of order αZ . We do not
show here a complicated expression for the function G1(0). However, we shall need
its ultrarelativistic limit

G1(0) ≈ −0.23π

2

ω

m2

(
1 + O(

m

E
)
)
. (6.112)

Analysis of the region of small angles becomes increasingly important in the
ultrarelativistic case.

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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6.3.6 Ultrarelativistic Case

Now we consider the case of ultrarelativistic photoelectrons with energies E � m.
This requires very large photon energies ω � m. In the lowest nonvanishing order
of expansion in powers of m/E , we obtain p = k, p − k = m. The momentum
transferred to the nucleus is

q2 = m2γ 2 + 4E2 sin2(θ/2); E = ω + mγ ; γ =
√
1 − α2Z2. (6.113)

As we have seen, the angular distribution is proportional to q−4, reaching its
largest values near the lowest limit of possible variations of q. Thus we are mostly
interested in studying the region of small θ ∼ m/E , where q2 is of orderm2 and can
be represented as

q2 = q2
1 E

2; q2
1 = ζ 2γ 2 + θ2, (6.114)

where ζ = m/E .
We shall carry out our calculations in the lowest order of expansion in powers

of m/E [4, 14]. In this limit, the amplitude is determined by (6.74) with the photo-
electron described by the modified nonrelativistic Coulomb wave function, in which
the electron mass is replaced by its energy E . The FSM and higher corrections are
quenched by the powers of the parameter αZζ .

We begin with calculation of the angular distribution in the FSM approximation.
It is determined by (6.97), and the second term dominates in the expression (6.99)
for the function F(θ). Putting γ = 1 in the expression (6.114) for q2

1 , we obtain

dσph

dt
= M(ξ)

m5
· ζ 3θ2

q6
1

. (6.115)

Wemust put ξ = αZ in the factorM(ξ) defined by (6.98). The distribution obtains
the largest value at θ2 = θ2

0 = ζ 2/2 = m2/2E2. The cross section is determined by
the values of θ2 ∼ ζ 2, being given by (6.102).

Inclusion of the correction of order αZ given by (6.109) modifies the shape of the
angular distribution, providing

dσph

dt
= M(ξ)

m5

ζ 3θ2

q6
1

(
1 − παZ

2
· m
q

)
. (6.116)

For moderate values of Z this shifts the position θ0 of the peak. For θ = 0 expres-
sion in parentheses on the RHS of (6.116) runs negative if Z ≥ 74. This signals the
importance of the higher-order corrections.

The wave function (6.17) enables us to calculate the amplitude as a function of
the parameter αZ . Also, the amplitude can be calculated in all orders of expansion
in powers of αZ . Employing the exact relativistic wave function of the 1s electron
given by (6.53), we obtain
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T = êΓλΦp(k, μ); μ = ν + λ , (6.117)

with Φp(k, μ) determined by (6.30).
This amplitude can be written as

T = ê(−2p)iξ σΓη I ; I =
∫ ∞

0
dλλσ−1(q2 + μ2)iξ−1(z + iμ)−iξ ; (6.118)

z = mγ ; γ =
√
1 − α2Z2; σ = 1 − γ .

However, the expressions are too complicated for actual calculations. That is why
we employ expansion in powers of αZ .

For very small angles θ 	 ζ , we can put q2 = m2γ 2, and obtain

dσph

dt
= M(ξ)E3

m5
(θ2 f1(αZ) + (αZζ )2 f2(αZ)). (6.119)

Fig. 6.1 The angular
distribution of
photoelectrons. The
horizontal axis is for
Eθ/m(W = E). The
vertical axis is the function
F = (dσ/dt)/σ0 with
σ0 = 8πα(αZ)3E/m3.
Reproduced from [15] with
permission of AIP
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Hence, the second term becomes important for θ ≤ αZζ . Employing (6.99), (6.109),
(6.111), (6.112), and (6.118), we find that up to the terms of order α3Z3,

f1(x) = 1 − 1.57x − 2.58x2 + 1.49x3; f2(x) = 0.87 − 0.37x − 0.86x2 .

(6.120)
The distribution (6.120) reaches its local minimum at θ = 0 if Z ≤ 56, since

f1 > 0 for those values of Z . It changes to a peak at Z > 56, when f1 runs negative.
Employing (6.119) and (6.120), one can trace the shape of the angular distribution

with variation of the nuclear charge Z [15] (Fig. 6.1).

6.4 Elastic Scattering of the High Energy Photons on Atoms

6.4.1 Channels of the Process

Now we consider scattering of photons with energies ω >∼ m on an atom in which
the state of the atom does not change. If we assume the nucleus to be an infinitely
heavy particle without excited states, there are two channels of the process. Besides
the scattering of the photon on the bound electrons (Rayleigh scattering), the photon
can be scattered by the Coulomb field of the nucleus (Delbrück scattering). Roughly
speaking, the latter process can be viewed as conversion of the photon to an electron–
positron pair moving in the Coulomb field, annihilating into a photon in a further
step. Thus the amplitude of the process can be written as F = FR + FD .

If we treat the nucleus as a heavy particle without internal structure, we must
include the nuclear Thomson scattering. Taking into account possible excitations of
the nucleus, we must include the nucleus resonance scattering, which can provide a
noticeable contribution if the photon energy is close to the excitation energy. Now
the amplitude of the process can be written as

F = FR + FD + FNTh + FNR , (6.121)

with the four terms on the RHS corresponding to the amplitudes of the four channels
listed above.

6.4.2 Rayleigh Scattering

We begin by considering the process at the Bethe ridge, i.e., at q ∼ η = mαZ . In
the lowest order of expansion in powers of αZ , the amplitude is represented by the
diagram shown in Fig. 6.2a and the diagram with permutation of the photons.
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(a) (b)

Fig. 6.2 Feynman diagrams for the Rayleigh scattering on the bound electron. The helix lines are
for the photons. The solid lines denote the electrons. The dark blobs in (a) and (b) are for the
Coulomb field of the nucleus. The dashed line in (b) shows the interaction between the nucleus and
the intermediate-state electron, i.e., the lowest-order correction to the free electron propagator

The propagators are those of the free motion, and we can write for any two-photon
process [16]

FR = Fa
R + (1 ↔ 2); Fa

R = −N (ω1)N (ω2)

∫
d3 f

(2π)3
ψ̄ f (f)ê∗

2G(p1, f + k2)ê1ψi (f − q);
(6.122)

q = k1 − k2,

where G is the Green function of the free Dirac equation, and p21 = (ω1 + E1s)
2 −

m2. The amplitude Fa
R(1 ↔ 2) corresponds to permutation of the two photons. It

can be obtained by the replacement k1 ←→ −k2, ω1 ←→ −ω2, e1 ←→ e∗
2 in the

amplitude Fa . In the case of Rayleigh scattering, ψ f = ψi and ω1 = ω2 = ω. We
focus on the case of a 1s electron with ψ f = ψi = ψ1s .

In the lowest order of expansion in powers of αZ the small momentum f ∼ η

should be neglected in the propagators. After a simple calculation, we find that at
q ∼ η, which determines the cross section, the nonrelativistic equation (5.95) is true
for the relativistic case as well for any binding field. In the special case of the 1s
electron in the Coulomb field, we obtain (5.96).

For the calculation that includes terms of order αZ , it is sufficient to calculate the
amplitude Fa with the wave functions taken in the FSM approximation. The lowest
Coulomb correction to the Green function, see Fig. 6.2b, provides a contribution of
the order α2Z2. To prove the statement, we include this contribution in the amplitude.
Now

FR = Fa
R + Fb

R + (1 ↔ 2) , (6.123)

with the term Fb
R containing the Coulomb correction to the propagator. We can write

Fb
R = αZN (ω1)N (ω2)

∫
d3 f

(2π)3

d3s

(2π)3
ψ̄ f (f)ê∗

2G(p1, f + k2)γ0V0(s)× (6.124)

G(p1, f + k2 − s)ê1ψi (f − q − s).

http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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The amplitude Fb
R contains an additional integral over s, which is saturated at

s ∼ η. Thus we can put G(p1, f + k2 − s) = G(p1,k2), yielding

Fb
R = N (ω1)N (ω2) · αZ

∫
d3 f

(2π)3
ψ̄ f (f)ê∗

2G(p1, f + k2)γ0G(p1,k2)ê1× (6.125)

∫
d3s

(2π)3
V0(s)ψi (f − q − s).

Considering the scattering on the 1s state (one can easily generalize for any bound
state), we see that the amplitude Fb differs from the amplitude Fa by replacement
of the function ψ1s(f − q) in the integrand by

τ(f − q) = −αZγ0G(p1,k2)
∫

d3s

(2π)3
V0(s)ψi (f − q − s) = (6.126)

= −αZγ0G(p1,k2)N1〈q|Viη|f〉.

Since f ∼ η, we can estimate for ω ∼ m,

Fb
R

Fa
R

∼ q2

m2
. (6.127)

Note that we did not make any assumptions on the value of q. At the Bethe ridge,
where q ∼ η, we have indeed Fb/Fa ∼ α2Z2.

Now we calculate the amplitude on the Bethe ridge, taking into account the terms
of the orderα2Z2. Thewave function of the 1s electron that includes theα2Z2 terms is
given by (6.53), with operator Γλ defined by (6.55), where we can put Γη = −∂/∂η

in the second term on the RHS. Including also the terms of order q2/m2 in the
amplitude Fa

R , we obtain for one electron in the 1s state,

FR = e1 · e∗
2

m
N 2(ω) f (q)χ∗

2

(
1 − q2

4m2
− i

σ [k1k2]
2mω

+ α2Z2

2
κ(q)

)
χ1; (6.128)

f (q) =
( λ2

q2 + λ2

)2; λ = 2η; ω = ω1 = ω2.

Here χ1,2 are the Pauli spinors,

κ(q) = ln
q2 + λ2

λ2
+ q2 − λ2

qλ
arctan

q

λ
. (6.129)

Note that f (q) in (6.128) is the nonrelativistic form factor defined by (5.95). If
there are two electrons in the K shell, we must sum the amplitude (6.128) for both

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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electrons. The term containing the Pauli matrix vanishes, since the electrons compose
the state with spin S = 0.

Now we can calculate the angular distribution for small values of the angle θ

between directions of the photon momenta k1 and k2. For a single electron in the 1s
state we obtain

dσ

dΩ
= r2e f

2(q)
(
1 − q2

4m2
− q2

2ω2
+ α2Z2κ(q)

)
, (6.130)

where q2 = ω2θ2. For two electrons in the K shell,

dσ

dΩ
= 4r2e f

2(q)
(
1 − q2

2m2
− q2

2ω2
+ α2Z2κ(q)

)
. (6.131)

Here we replaced the characteristic factor 1 + cos2 θ by 2 − q2/ω2. Both equa-
tions describe the distribution for θ <∼ η/ω 	 1.

We turn now to the kinematic region outside the Bethe ridge, i.e., q ∼ ω � η. In
the amplitude Fa

R , a large momentum q is transferred to the nucleus by the initial-
state or final-state electron. In the former case, the integral over f is saturated at
f ∼ η, while in the latter case, it is dominated by large f ≈ q, with |f − q| ∼ η. In
the amplitude Fb

R , a large momentum is transferred to the nucleus in the propagator,
and the integral over s is dominated by large s ≈ q, with |s + q| ∼ η. Since the
angular distribution at these values of q is much smaller than in the region of small
q, we carry out calculations in the lowest order of expansion in powers of α2Z2. For
one electron in the K shell, we obtain

FR = N 2(ω)
16η4

mq4
χ∗
2

{
(e1 · e∗

2)
[
1 − q2

8m2
(1 + n1n2)

]
+ q2

8m2
(e1 · n2)(e∗

2 · n1) +

+ i

4m

[
(σq)(u[e1e∗

2]) + (σ · [wq])
]}

χ1 . (6.132)

Here ni = ki/ω, u = n1 − n2, w = n1(e1 · e∗
2) + n2(e1 · e∗

2) − e∗
2(e1 · n2) − e1(e∗

2 ·
n1).

For two electrons in the K shell,

FR = 2N 2(ω)
16η4

mq4

{
(e1 · e∗

2)
[
1 − q2

8m2
(1 + n1n2)

]
+ q2

8m2
(e1 · n2)(e∗

2 · n1)
}
.

(6.133)
The angular distribution for the closed K shell at θ � η/ω is

dσ

dΩ
= 29r2e η

8

q8

(
1 + t2 − q2

4m2
(1 − q2

8m2
)(1 + t)2

)
. (6.134)

Here q2(t) = 2ω2(1 − t), t = cos θ . Combining this equation with (6.131), we
can write an expression for the angular distribution that is valid for all values of θ

for the closed K shell:
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dσ

dΩ
= 2r2e f

2(q)(1 + t2)
(
1 + α2Z2κ(q) − q2

4m2
(1 − q2

8m2
)
(1 + t)2

1 + t2

)
. (6.135)

The cross section is dominated by small θ <∼ η/ω (q <∼ η). The region of θ ∼ 1
(q ∼ ω) contributes to the correction of order (αZ)6. Up to the terms of order α2Z2,
we obtain for one electron in the 1s state,

σ1 = σTh(αZ)2
m2

2ω2

(
1 + α2Z2(

7

6
− 3π2

16
− m2

ω2
)
)
, (6.136)

while for the closed K shell,

σ2 = 2σTh(αZ)2
m2

ω2

(
1 + α2Z2

(2
3

− 3π2

16
− m2

ω2

))
. (6.137)

Here σTh = 8πr2e /3 is the Thomson cross section; see (5.99). Note that the rela-
tivistic effects strongly diminish the value of σ1,2. At ω = m ≈ 500 keV, the expres-
sion in parentheses on the RHS of (6.137) becomes of order α4Z4 for Z >∼ 85. As
we have seen, in the lowest approximation, the ratio of cross sections of elastic scat-
tering on the atom with one and two electrons σ1 and σ2 is just r = σ2/σ1 = 4. The
spin-dependent terms that manifest themselves in the contributions of the order α2Z2

lead to deviations from this law.
Note that (6.132) and (6.133) can be employed for investigation of the polarization

effects in the elastic scattering of the photons on atoms. Experiments in which polar-
ization of both incident and scattered photons is fixed have recently been planned
[17, 18].

6.4.3 Delbrück Scattering

The photon can undergo elastic scattering in the Coulomb field of the nucleus; see
Fig. 5.2. The process requires at least two interactions with the nucleus, since the sum
of the diagrams with an odd number of interactions vanishes. The latter statement is
known as Furry theorem [1]. Thus the amplitude can be written as

FD = N 2(ω)(αZ)2 · e1 · e∗
2

m
(a1(ω, q) + ia2(ω, q)), (6.138)

where a1,2 are real. The amplitude a2(ω, 0) (q = 0 at θ = 0) is related to the cross
section of creation of e+e− pairs in the Coulomb field.

If we include both the Rayleigh and Delbrück mechanisms, the amplitude is given
by F = FR + FD . The angular distribution is

dσ

dΩ
= dσR

dΩ
+ dσint

dΩ
+ dσD

dΩ
, (6.139)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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with the first and last terms standing for purely Rayleigh and Delbrück contributions,
while the second term describes their interference. At small q ∼ η, the first term on
the RHS is described by (6.131), while

dσint

dΩ
= 4r2e (αZ)2 f (q)a1(ω, 0) , (6.140)

thus contributing to the corrections of order α2Z2 in the angular distribution. The
role of the interference term increases at ω � m, since a1 ∼ ω/m at these energies.

Inclusion of the interference terms (6.140) modifies the distributions (6.136) and
(6.137) [19]:

σ1 = σTh(αZ)2
m2

2ω2

[
1 + α2Z2

(7
6

− 3π2

16
− m2

ω2
+ 6a1(ω, 0)

)]
, (6.141)

while for the closed K shell,

σ2 = 2σTh(αZ)2
m2

ω2

[
1 + α2Z2

(2
3

− 3π2

16
− m2

ω2
+ 3a1(ω, 0)

)]
. (6.142)

The function a1(ω, 0) was calculated in [20].
In the ultrarelativistic limit ω � m,

a1(ω, 0) = 7

18

ω

m

(
1 + O

(m
ω

))
, (6.143)

and the interference terms determine the corrections of order α2Z2.
At large q ∼ ω, the three terms on the RHS of (6.139) are of respective orders

r2e (αZ)8 · m4/ω4, r2e (αZ)6 · m2/ω2, and r2e (αZ)4, with domination of the Delbrück
scattering.

6.4.4 Scattering on the Nucleus

In the first step, we treat the nucleus as a single free particle with the charge e′ = eZ
and mass M = AmN , where A is the atomic number. Recall that the nucleon mass
is mN ≈ 940MeV. Such a target, which may also have the anomalous magnetic
moment μA, can be described by the Dirac equation

(
p̂ + e′ Â − M − i

2
μAσμνFμν

)
ψ = 0; Fμν = ∂Aν

∂xμ

− ∂Aμ

∂xν

. (6.144)

The anomalous magnetic moment is caused by the strong interactions. We can
employ this equation to describe the photon scattering on the nuclei. In any case, for
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the photon energies ω 	 M (even for hydrogen, this means ω 	 1GeV), the spin
terms are not important [21], and we arrive at the Thomson amplitude

FNTh = −e1 · e∗
2
N 2(ω)Z2

AmN
, (6.145)

which provides the cross section

σNTh = σTh · m2

m2
N

· Z
4

A2
. (6.146)

For the photon energies ω close to the excitation energy of the nucleon Er , the
amplitude contains the characteristic factor (Er − ω − iΓ/2)−1, with Γ the width
of the excited state. Thus the amplitude is enhanced at |ω − Er | <∼ Γ . The process is
called nuclear resonant scattering. Its cross section has the Breit–Wigner shape. For
the dipole excitations we obtain, neglecting the Thomson scattering and including
only one channel of decay,

σN R = π

ω2
· Γ 2

(Er − ω)2 + Γ 2/4
. (6.147)

6.4.5 Isolation of Partial Contributions

The angular distribution of the Rayleigh scattering has a sharp peak at small angles.
Its contribution is easily isolated in a number of experiments [22].

It follows from the analysis presented above that at large angles θ � η/ω, the
process is the interplay of the Delbrück scattering and nuclear Thomson scattering.
The amplitudes describing these two mechanisms behave with Z in the same way.
The amplitude of the Thomson scattering is also proportional to 1/A. Thus the role
of the Thomson scattering increases at small values of the atomic number A. This is
supported by the results of the experiment [23] on elastic scattering of photons with
energy ω = 1.6MeV by the light nuclei H, Li, C, and Al. The results are in very
good agreement with those predicted by (6.146); see Fig. 6.3.

At large angles, the Delbrück scattering dominates for heavier atoms. The results
for scattering of photons carrying energy ω = 1.33MeV on the nucleus 208Pb (Z =
82) [22] are presented in Fig. 6.4. They demonstrate that inclusion of the contribution
of the Delbrück scattering is necessary to obtain agreement between experimental
and theoretical results at θ ≥ 90 deg.

It is instructive to look at the results on small-angle scattering of photons with
energy ω = 7278keV on 208Pb presented in Table6.1 [24]. Calculating the dis-
tribution XS = dσ/dΩ , corresponding to superposition of the Rayleigh and Del-
brück scattering (the nuclear Thomson amplitude is small), we find the discrepancy
between the experimental data and theoretical results. Inclusion of the contribution
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Fig. 6.3 Dependence of the elastic scattering differential cross section at angle 124◦ for 1.6-MeV
gamma rays on the value of nuclear charge Z . The open circles are ratios of the measured cross
sections to the classical Thomson cross section. Reproduced from [23] with permission of AIP

of the nuclear resonant scattering (Er = 7.28MeV) XNR and its interference with
the Rayleigh and Delbrück amplitudes XI NT provides XT = XS + XNR + XI NT ,
which is close to the experimental value XEXP .

6.5 Compton Scattering

6.5.1 General Relations

Now a photon with energy ω1 is absorbed by a bound electron in 1s state. There is
a scattered photon with energy ω2 as well as the continuum electron with energy E
in the final state. The energies of the particles participating in the process are bound
by the condition

ω1 + E1s = ω2 + E . (6.148)
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Fig. 6.4 Theoretical values for the angular distribution of elastic photon scattering on Pb at
1.33MeV with and without inclusion of Delbrück scattering (D) compared with experimental data.
Here NT and NR are for the nuclear Thomson scattering and nuclear resonant scattering respec-
tively. The experiment clearly indicates that the Delbrück amplitudes must be included to obtain
satisfactory agreement. Reproduced from [22] with permission of Elsevier Publishing

Table 6.1 Role of nuclear resonant scattering in the elastic scattering of a photon with energy
ω = 7278keV on the nucleus of lead

X in mb/sr θ = 1.0dg θ = 1.7dg

XS 920 244

XNR 347 347

XI NT 182 105

XT 1449 696

XEXP 1490 ± 80 663 ± 30

Reproduced from [24] with permission of AIP



6.5 Compton Scattering 147

The nucleus transfers momentum q to the electrons, and

k1 + q = p + k2 , (6.149)

with photon momenta ki and electron momentum p. The differential cross section
of the process can be written as

dσ = |F̄ |2dΓ ; dΓ = 2πδ(ω1 + E1s − ω2 − E) · d3 p

(2π)3
· d3k2
(2π)3

. (6.150)

As usually, the overbar indicates that averaging over polarizations in the initial
state and summation over those in the final state are carried out. Multiplying by
δ(k1 − k2 − p + q)d3q, we can write the phase volume in (6.150) as

dΓ = dΓ0 · d3q

(2π)3
, (6.151)

where

dΓ0 = (2π)4δ(ω1 + E1s − ω2 − E) · δ(k1 − k2 − p + q)
d3 p

(2π)3
· d3k2
(2π)3

(6.152)

is the phase volume for Compton scattering on the free electron.
We shall focus on Compton scattering on the 1s electron. Similar calculations

can be carried out for other states in the Coulomb field by employing the technique
described in Sect. 5.2. We discuss also features of the process that are common for
the process on the bound state in any field.

6.5.2 Lowest Order Calculations on the Bethe Ridge

We begin with analysis of the process on the Bethe ridge, i.e., in the kinematic
region where the recoil momentum can be made small, q <∼ η [25]. The energies of
the outgoing particles are limited by the conditions

ε ≡ E − m ≤ ω1

1 + m/2ω1
; ω2 ≥ ω1

1 + 2ω1/m
. (6.153)

Thus the electron energy cannot be too large, while the photon energy cannot be
too small. Note that in the process on the free electrons the energy ω2 is determined
by the scattering angle θ between momenta k1 and k2:

ω2 = ω20 = ω1

1 + ω1(1 − t)/m
; t = cos θ . (6.154)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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Consider first ejection of relatively slow electrons with momentum p <∼ η =
mαZ , and thus ε <∼ IZ . We find that on the Bethe ridge, ω2

1(1 − t) <∼ η2 in this
case. Thus for ε ∼ IZ , the Bethe ridge corresponds to the small scattering angles of
outgoing photons:

θ <∼
m

ω1
· αZ . (6.155)

Also, the energies ω2 may differ from ω20 by values of the order mα2Z2.
Since at p <∼ η, the condition q <∼ η corresponds to κ <∼ η with κ = k1 − k2, we

can use the results obtained for Rayleigh scattering. The amplitude of the process,
which is valid for all values of kinematic variables, is presented by (6.122)–(6.125),
whereψ f is the Coulomb continuum functionψp. On the Bethe ridge, the amplitude
Fb provides a correction of order α2Z2. Thus in the lowest order of αZ expansion,

F = Fa + (1 ↔ 2) = e1 · e∗
2

m
N (ω1)N (ω2)ūpW (p, κ)u0; W (p, κ) = −NpN1

∂

∂η
Φp(κ, η).

(6.156)

Direct calculation provides

− ∂

∂η
Φp(κ, η) = 8π

(η(1 − iξ)

a2
+ iξ(p + iη)

ab

)
· Θ, (6.157)

with a = (κ − p)2 + η2, b = κ2 − (p + iη)2, while Θ is defined by (6.90). It can
be written as

Θ = Φ(ξ)eξ arg b; Φ(ξ) = eiξ ln | ab | . (6.158)

For the distributions of slow electrons at the Bethe ridge, we obtain

dσ

dω2dΩdΩe
= r2e (1 + t2)

pEω2

ω1

|W |2
(2π)3

, (6.159)

with Ωe the solid angle of the ejected electron. Note that |W |2 contains the fac-
tor |Θ|2 = exp (2ξ arg b), where b = b1 − 2iηp, with b1 = κ2 − p2 + η2. Thus
arg b = − arctan (2ηp/b1) for b1 > 0, while arg b = −π + arctan (2ηp/|b1|) for
b1 < 0. After some algebra, we obtain

arg b = −π

2
+ arctan(

κ2 − p2 + η2

2ηp
) (6.160)
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and

|Θ|2 = exp (−πξ) exp (2ξχ); χ = arctan
(κ2 − p2 + η2

2ηp

)
. (6.161)

The dependence on the angular variables of the ejected electron is contained only
in the parameter a; (6.157). Carrying out this integration and taking into account that
(6.159) is true for small θ and p <∼ η, we obtain

dσ

dtdω2
= πr2e · 28(1 + t2)mη6ω2κ

2(p2 + 3κ2 + η2)

3ω1[(p − κ)2 + η2]3[(p + κ)2 + η2]3 · exp (−πξ) exp (2ξχ)

1 − exp (−2πξ)
,

(6.162)

which is true for allω1 � IZ . Further evaluation of this expression requires numerical
computations.

Now we turn to the case in which the outgoing electron carries large momentum
p >∼ m � η, and thus the energy ε >∼ m. Analysis similar to that carried out above
for the slow electrons shows that Fb/Fa ∼ q2/m2, and thus in the lowest orders of
αZ series, it is sufficient to put F = Fa + (1 ↔ 2), with

Fa = −N (ω1)N (ω2)

∫
d3 f

(2π)3
ψ̄p(f)ê∗

2G(p1, f + k2)ê1ϕ1s(f − κ)u0, (6.163)

where κ = k1 − k2, G is the Green function of the free Dirac equation, and p21 =
(ω1 + E1s)

2 − m2. Of course, if ϕp(f) is the plane wave, we obtain immediately

Fa = F0ψi (q) , (6.164)

with F0 the amplitude of the Compton scattering on the free electron at rest. This is
true for every bound state in any field.

Hence, the energy distribution at the Bethe ridge is equal to that of the Compton
scattering on the free electron at rest,

dσ

dω2
= dσ0

dω2
, (6.165)

and also for the total cross section,

σ(ω1) = σ0(ω1) . (6.166)

Thus the cross section of the Compton scattering on a bound electron is equal to
that on the free electron.

The characteristics of the free process are usually presented in books on quantum
electrodynamics; see, e.g., [1]. The energy distribution is known to be
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dσ0

dω2
= 2πr2e

m

ω2
1

· f0(ω1, ω2) , (6.167)

with

f0(ω1, ω2) = 1

2

[ω1

ω2
+ ω2

ω1
+ 2(

m

ω1
− m

ω2
) + (

m

ω1
− m

ω2
)2

]
. (6.168)

The total cross section is

σ0(ω1) = 2πr2e
[1 + β

β3

(2β(1 + β)

1 + 2β
− ln (1 + 2β)

)
+ ln (1 + 2β)

2β
− 1 + 3β

(1 + 2β)2

]
,

(6.169)
β = ω1/m. At ω1 � m

σ(ω1) = πr2e
m

ω1

(
ln

2ω1

m
+ 1

2

)
. (6.170)

In order to estimate the accuracy of (6.165) and (6.166) and to find the leading-
order corrections, we calculate the amplitude with the Coulomb functions of both
initial and final states. This enables us to include the αZ and α2Z2 terms in the next
steps. Also, we shall be able to trace dependence on the parameter πξ , which we do
not necessarily assume to be small.

Since the integral on the RHS of (6.163) is saturated by |f − κ | <∼ η 	 p, we
can put G(p1, f + k2) = G(p1,k1) in the integrand for the lowest-order term of
expansion in powers of αZ . This provides

F = F0W (p, κ) , (6.171)

with W (p, κ) defined by (6.156). However, now we must include only the lowest-
order term of the expansion in powers of ξ . Thus

W (p,k2) = 8π
ηN1NpΘ

a2
; a = (κ − p)2 + η2 , (6.172)

and

dσ

dω2dt
= dσ0

dt
· 8

3π
· ω1

ω20κ

mη5

(Δ2 + η2)3
· N 2

p · |Θ|2; Δ = κ − p. (6.173)

Note that
dσ0

dt
= 2π

ω2
20

ω2
1

· f0(ω1, ω20) , (6.174)
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with ω20(t) determined by (6.154), is the angular distribution of the Compton scat-
tering on the free electron. The distribution (6.173) reaches its largest values at
Δ ∼ η 	 p, κ . It peaks at Δ = 0.

As expected, (6.171) turns into (6.164) for the 1s state of the Coulomb field if
we put Np = 1, Θ = 1. We have kept these factors, since they include dependence
on the parameter πξ , which is not assumed to be small. Employing (6.161) and also
writing

N 2
p = 2πξ

1 − exp(−2πξ)
= eπξ (1 − π2

6
ξ 2 + O(ξ 4)), (6.175)

we find that

N 2
pΘ

2 = exp(2ξχ)
(
1 − π2

6
ξ 2

)
. (6.176)

In the vicinity of the center of the peak where |Δ| 	 IZ ∼ mα2Z2, we can put
χ = η/2p, and

N 2
pΘ

2 = 1 +
(
m

E
− π2

6

)
ξ 2 + O(ξ 4) . (6.177)

Whilewe neglect terms of orderαZ , we can put N 2
pΘ

2 = 1 on theRHS of (6.173).
As we shall see, the region of large recoil momenta q � η provides contributions

of order α4Z4 to the differential and total cross sections. Thus the leading corrections
to (6.164), (6.165), and (6.166) come from more accurate calculations at the Bethe
ridge.

6.5.3 Inclusion of Higher Order Terms on the Bethe Ridge

Now we carry out more accurate calculations on the Bethe ridge. We begin with
calculation of the terms of order αZ . Since the amplitude Fb provides a correction
of the order α2Z2, we have still F = Fa . The wave functions ϕ1s and ϕp on the RHS
of (6.163) should be taken in the FSM approximation, and only the corrections of
order ξ should be included in the expansion of Fa .

Omitting the intermediate steps of the calculation (they are presented in [25]), we
write the angular distribution

dσ

dω2dΔ
= dσ0

dω2
· 8

3π

η5

(Δ2 + η2)3
(1 + γΔ/m). (6.178)

The parameter γ can be expressed in terms of the function f0 defined by (6.168).
We define also
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f1(ω1, ω2) = ω1
∂ f0(ω1, ω2)

∂ω1
= 1

2

[
ω1

ω2
− ω2

ω1
− 2m

ω1

(
1 + m

ω1
− m

ω2

)]
(6.179)

and

f2(ω1, ω2) = ω2
∂ f0(ω1, ω2)

∂ω2
= f1(ω1 ↔ −ω2). (6.180)

With this notation,

γ = 3E

2p
+ k1 · κ f1

ω1κ f0
+ k2 · κ f2

ω2κ f0
. (6.181)

The peak of the distribution dσ/dω2dt is reached at ω2 = ω20 + δω2, where

δω2 = η2

12m
· Eω20

mω1

[
1 + 2

E − m

E

(
1 + m

ω1
)(1 + f1

f0
) + (t + E

ω1
) · f2

f0

)]
,

(6.182)
with an error of order α2Z2. In (6.182), we have fi = fi (ω1, ω20).

This equation can be simplified in special cases. For example, if ω1 	 m, we
obtain

δω2 = η2

12m

(
1 + ω1

m
(1 − t) + O

( ω2
1

m2

))
. (6.183)

In the ultrarelativistic case, ω1 � m, and if also ω20 � E , we obtain

δω2 = η2

12m
· 3E − 2m

m
·
(
1 − E − m

ω1
· 3E − 4m

3E − 2m
+ O(

E2

ω2
1

)
)
. (6.184)

The term proportional to γΔ/m on the RHS of (6.178) vanishes after one inte-
gration of the distribution. Thus there are no αZ corrections to (6.165) and (6.166)

Consider now corrections of the orderα2Z2. Now F = Fa + Fb. In the amplitude
Fa , we must take the relativistic functions ϕ1s and ϕp up to terms of the order α2Z2,
following the approach developed in Sect. 5.2.1. As we have seen, the amplitude Fb

is α2Z2 times smaller than Fa . It can be calculated in the lowest order of expansion
in powers of ξ . Thus Fb can be described by (6.125):

Fb = αZN (ω1)N (ω2)ūpê∗
2G(p1,p + k2)γ0G(p1,k2)ê1u0τ(κ); (6.185)

τ(κ) =
∫

d3s

(2π)3
V0(s)ϕ1s(κ − s) = 4πN1

κ2 + η2
.

The rather complicated final expressions for the distributions and for the shift δω2

are given in [25]. We present only the angular and energy distributions in the limit
ω1 � m and the high-energy asymptotics of the cross section. For θ � √

η/ω1, we
have

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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Fig. 6.5 Function F(ω1)

defined by (6.188) [26]

dσ

dt
= dσ0

dt
· (1 + α2Z2 f (ω1, t)); f (ω1, t) = ln 2 − 5

3
− 5t

6
+ O(

m

ω1
),

(6.186)
while the energy distribution is

dσ

dω2
= dσ0

dω2
· (1 + α2Z2 f (ω1, ω2)); f (ω1, ω2) = ln 2 − 5

2
+ 5

6
· m(ω1 − ω2)

ω1ω2
+ O(

m

ω1
).

(6.187)

For the total cross section, we obtain

σ(ω1) = σ0(ω1) · (1 + α2Z2F(ω1)) , (6.188)

with the function F(ω1) shown in Fig. 6.5. Its high-energy asymptotic is

F(ω1) = ln 2 − 5

2
≈ −1.81 , (6.189)

with errors of order (lnω1/m)−1. Note that for Z >∼ 92, the high-energy limit of
the expression 1 + α2Z2F(ω1) becomes of order α4Z4, and the higher-order terms
should be calculated.

6.5.4 Outside the Bethe Ridge

Aswe shall see, here it is convenient to analyze the distribution of the ejected electrons
rather than that of the scattered photons. On the Bethe ridge, the energies of the
ejected electrons are limited by condition (6.153). In the free process, the angle θe
between the direction of the electron momentum and that of the incoming photon is
determined by the relation

te ≡ cos θe = t0 = ε(ω1 + m)

pω1
; ε = E − m . (6.190)

Thus on the Bethe ridge, |te − t0| <∼ η/ω1 	 1.
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Consider now the case in which the energy of the ejected electron is limited by the
condition (6.153), but the scattering angle differs from that determined by (6.190) by
values larger than a small value η/ω1. This requires a large recoil momentum q � η.
Following the theory developed in Sect. 4.1, the process can be viewed as consisting
of two steps. In the first step, Compton scattering with small recoil momentum of
order η takes place. It is followed by scattering of the ejected electron on the nucleus
in which a large momentum q � η is transferred. In other words, the Compton
effect with the scattering angle of the electron determined by (6.190) is followed
by scattering on the nuclei, which leads to additional rotation of the electron linear
momentum. The triple differential cross section takes the form (see (4.49))

dσ

dεdqdκ
= dσ0

dε
· R(Δ)

2π
· dσeN (ε)

dq
. (6.191)

Recall that

R(Δ) = N 2
1

Δ2 + η2
; Δ = κ − p; N 2

1 = η3

π
, (6.192)

while σeN is the cross section of the electron scattering on the nucleus. The vicinity
of the surplus of the distribution determines the double differential cross sections

dσ

dεdq
= η2

2π
· dσ0

dε
· dσeN (ε)

dq
; dσ

dεdΩe
= η2

2π
· dσ0

dε
· dσeN (ε)

dΩe
. (6.193)

Since dσeN (ε)/dΩe is proportional to α2Z2, this mechanism provides corrections
of order α4Z4 to the energy distribution in the interval determined by (6.153) and to
the total cross section.

At larger electron energies outside the interval (6.153), a large momentum q can
be transferred to the nucleus by the electron in the initial, intermediate, or final
state. All these contributions are of the same order of magnitude. Since ξ 	 1,
interaction of the outgoing electron with the nucleus can be treated perturbatively.
However, in agreement with the analysis carried out in Sect. 3.1, the plane wave and
the lowest-order Coulomb correction provide contributions of the same order. These
contributions make up the two terms in the expression for the amplitude Fa in the
lowest order of expansion in powers of ξ and αZ :

Fa = −αZN (ω1)N (ω2)N1

q4
ūpê∗

2G(p1,k2)ê1u0+ (6.194)

αZN (ω1)N (ω2)N1

q2
ūpγ0G(p2, κ)ê2G(p1,k1)ê1u0.

The amplitude is F = Fa + Fb + (1 ↔ 2), with Fb describing exchange by hard
momentum q � η with the nucleus in the intermediate state

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Fb = αZN (ω1)N (ω2)N1

q2
ūpê2G(p1,k1 + q)γ0G(p1,k1)ê1u0 . (6.195)

Due to the common factor N1η ∼ (αZ)5/2 in the amplitudes Fa and Fb, the part of
the spectrum outside the interval (6.153) provides a contribution to the cross section
of order α5Z5.
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Chapter 7
Photoionization of Atoms

Abstract We show that in the high-energy nonrelativistic limit the leading devia-
tions of the energy dependence of the bound-states photoionization cross sections
from the asymptotic laws are described by the same factor (called the Stobbe factor).
The Stobbe factor cancels in the cross section ratios, making possible an asymptotic
analysis. We demonstrate that the variety of forms of electron–photon interactions
is connected with the gauge invariance of quantum electrodynamics. We show that
the asymptotics for photoionization of s states can be calculated by employing the
plane waves in the velocity form for the electron–photon interaction. In the length
form one should include also the lowest nonvanishing term of interaction between
the photoelectron and the nucleus. The latter should be included in calculations
of the asymptotics for ionization of states with � �= 0 in both forms. We analyze
the Thomas–Reiche–Kuhn sum rules for the case of a nonlocal field. We carry out
asymptotic analysis also for the relativistic case. We present the method of inclusion
of screening corrections for the relativistic case near the threshold and far away from
it. We demonstrate that inclusion of correlations beyond the independent particle
approximation (IPA) in the framework of the perturbative approach developed in
Chap.3 enables us to remove the discrepancy between the experimental data and
the results of IPA calculations. We show also how inclusion of IPA breaking effects
changes the asymptotic behavior of the photoionization cross sections.

7.1 High-Energy Nonrelativistic Asymptotics

Here we assume that the atomic electrons move in a certain central field V . The
electron single-particle wave functions describing the states of the discrete and con-
tinuum spectra are respectively ψn�m and ψp.

© Springer International Publishing Switzerland 2016
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7.1.1 Ionization of s States

The amplitude is given by (5.69) and (5.70)withψi describing an s state.We consider
the limit p � μb with μb = (2mIb)1/2 the averaged momentum of the bound state.
Thus in our limit, ε � Ib.

A large momentum q = k − p ≈ −p, q � Ib, should be transferred to the
nucleus. As we demonstrated in Sect. 2.1.4, the transfer of a large momentum can
be treated perturbatively. The ion accepts the large recoil momentum from either the
initial or ejected electron. To investigate the relative role of the two mechanisms, we
include the two lowest-order terms of the perturbative series of the photoelectron
wave function:

〈ψp| = 〈ψ(0)
p | + 〈ψ(1)

p |; 〈ψ(0)
p | = 〈p|; 〈ψ(1)

p | = 〈ψ(0)
p |VG = 〈p|VG. (7.1)

The amplitude of the photoionization can be written as

F = F0 + F1; Fk = N (ω)〈ψ(k)
p |γ |ψi 〉; k = 0, 1. (7.2)

Here ψi is the wave function of the bound electron, γ = e · f/m is the vertex of the
electron–photon interaction in the nonrelativistic approximation, e is the polarization
vector of the absorbed photon, e · k = 0. Recall that N (ω) = (4πα/2ω)1/2.

We find immediately that

F0 = e · p
m

N (ω) .ψi (p). (7.3)

The general analysis carried out in (2.4) provides ψi (p) ∼ p−4.
We can write also

F1 = N (ω)J ; J =
∫

d3 f

(2π)3
〈p|VG|f〉e · f

m
〈f |ψi 〉. (7.4)

Here a large momentum is transferred to the nucleus by the outgoing electron, and
J is saturated at f ∼ μb. Now we write

〈p|VG|f〉 = V (p − f)
2m

p2 − f 2
. (7.5)

Since the interaction with a large transferred momentum |p− f | � μb is dominated
by that with the nucleus (see (2.4)), we can estimate V ≈ −4παZ/(p− f)2. At large
f � μb, the wave function 〈f |ψi 〉 is quenched by a factor μ4

b/ f
4. Thus the integral

J is saturated by f ∼ μb. Expanding

V (p − f) ≈ V (p)(1 + 2pf/p2), (7.6)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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we see that the second term is needed to obtain a nonvanishing value. This is because
the ejected electron carries angular momentum � = 1, and the corresponding partial
wave is needed. Note that we cannot calculate the amplitude F1 in such a way,
since the integral J diverges after evaluation (7.6). A rigorous calculation requires
knowledge of the shape of the wave functionψi (f). However, we can make an order-
of-magnitude estimate. Integration over the region f ∼ μb provides F1 ∼ F0μ

2
b/p

2,
and the amplitude is dominated by the contribution F0. Hence we can put F = F0.

This has a simple explanation. In the amplitude F0, the initial electron transfers
a large momentum q to the nucleus, while in the amplitude F1, the photoelectron
does it. In both cases, the wave functions are quenched at large q. This corresponds
to a small probability of approaching the nucleus. The photoelectron carries orbital
momentum � = 1, with the wave function obtaining an additional factor r �. That is
why the quenching of the amplitude F1 appears to be stronger.

Now we write

F = e · p
m

N (ω)

∫
d3re−ip·rψ(r) . (7.7)

Here and belowwe omit the index i of the functionψi . Since the integral is dominated
by small r ∼ 1/μb, we can expand the initial-state wave function near the origin
ψ(r) = ψ(0) + rψ ′(0). Multiplying the integrand by e−λr |λ=0, we calculate

F = e · p
m

N (ω)
(
ψ(0) − ψ ′(0)

∂

∂λ

) ∫
d3re−ip·r−λr |λ=0. (7.8)

Since ∫
d3re−ip·r−λr = 8πλ

(p2 + λ2)2
, (7.9)

we obtain

F = −e · p
m

· N (ω)
8πψ ′(0)

p4
, (7.10)

or, employing the first Kato condition ψ ′(0) = −ηψ(0), see (4.77),

F = e · p
m

· N (ω)
8πηψ(0)

p4
; η = mαZ . (7.11)

Thus the angular distribution of a photoelectron knocked out from 1s state aver-
aged over the polarizations of the photon is

dσ

dt
= 3(1 − t2)

4

A1s

ω7/2
; A1s = (4π)2

√
2

3
· α · (αZ)2

|ψ(0)|2
m3/2

, (7.12)

with t = k · p/kp. The cross section is

σ(ω) = A1s

ω7/2
. (7.13)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Note also the expression for A1s in terms of the radial wave function R1s(r) ≡
χ(r) = √

4πψ1s(r):

A1s = 4π
√
2

3
· α · (αZ)2

|χ(0)|2
m3/2

. (7.14)

For an s state, the value |ψ(0)|2 can be expressed in terms of the potential V (r):

|ψ(0)|2 = m

2π
〈ψ |V ′|ψ〉 . (7.15)

To prove the statement, we set ψ(r) = R(r)/
√
4π , i.e., R(r) is the radial part of the

wave function, and we introduce u(r) = r R(r). We now multiply both sides of the
wave equation

− u′′(r) = 2m(εb − V (r))u(r) (7.16)

by the function u′(r) and integrate over r . Evaluation of the LHS provides

−
∫ ∞

0
dru′′(r)u′(r) = −1

2

∫ ∞

0
dr [u′2(r)]′ = −1

2
u′2(r)|∞0 = 1

2
|R(0)|2 = 2πψ2(0).

(7.17)
On the other hand, evaluation of the RHS leads to

2m

∞∫

0

dr(εb − V (r))u(r)u′(r) = m

∞∫

0

dr(εb − V (r))(u2(r))′

= m

∞∫

0

drV ′(r)u2(r) = m
∫

d3rV ′(r)ψ2(r), (7.18)

proving the relation (7.15).

7.1.2 Ionization of States with � �= 0

One can expect that the amplitude obtains an additional factor p−�. This is because
the wave functions behave as r � at r → 0, while the distances r ∼ 1/p are important.
We demonstrate how this happens, beginning with the case � = 1.

The wave function of the bound state with orbital momentum � = 1 and its
projection m can be written as

ψn1m(r) =
√

3

4π
rmχ(r); Rn1(r) = rχ(r); χ(0) �= 0. (7.19)
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We denote the amplitude describing photoionization of the state n, 1,m by Fm . In
the first step, we neglect the interaction of the photoelectron with the residual ion.
We obtain, similar to (7.3),

Fm0 =
√

3

4π

e · p
m

N (ω)

∫
d3rrme

−ip·rχ(r) . (7.20)

Since rme−ip·r = i(∇p)me−ip·r, we obtain, after integration by parts,

Fm0 = −i

√
3

4π

e · p
m

N (ω)(∇p)m · 8πχ ′(0)
p4

, (7.21)

and finally

Fm0 = −i

√
3

4π
· e · p

m
· N (ω)

16πηpmχ(0)

p6
. (7.22)

Here we employed the Kato condition χ ′(0) = −ηχ(0)/2; see (4.79). Thus indeed,
the amplitude F0 for the ionization of p states is of order 1/p5. Compared with the
amplitude for s states, it contains an additional factor of order 1/p.

Nowwe include the first-order correction to thewave function of the photoelectron
caused by interaction with the residual ion. Recall that interactions of a photoelec-
tron with bound electrons followed by the transfer of a large momentum q � μb

with the bound electrons are quenched by additional powers of 1/q ≈ 1/p. Thus
we must include only interactions with the nucleus. To calculate the corresponding
contribution to the amplitude Fm1, we employ the Fourier transform of the function
(7.19),

ψn1m(f) = i

√
3

4π
(∇ f )mχ(f) , (7.23)

and write, similar to (7.4),

Fm1 = i

√
3

4π
N (ω)J1; J1 =

∫
d3 f

(2π)3
〈p|VG|f〉e · f

m
(∇ f )mχ( f ). (7.24)

In integration by parts, the action of operator ∇ f on the matrix element 〈p|VG|f〉
provides additional powers of p in the denominator. The corresponding terms should
be neglected in the asymptotics. Thus we obtain

J1 = −em

∫
d3 f

(2π)3
〈p|VG|f〉χ( f )

m
. (7.25)

Here we can put 〈p|VG|f〉 = 〈p|VG|0〉 = 2mV (p)/p2. This happens because
the ejected electron can carry angular momentum � = 0. At large p, we can put
V (p) = −4παZ/p2, obtaining

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Fm1 = i

√
3

4π
· em
m

N (ω) · 8πηχ(0)

p4
; χ(0) = χ(r = 0). (7.26)

Thus Fm1 ∼ 1/p4 is of the same order as F0 and should be included in the asymptotics

Fm = Fm0 + Fm1 . (7.27)

At first glance, this looks a little bit unexpected, since in a process with small
transferred momentum q ∼ μb, one would expect the Coulomb correction to be ξ

times smaller than the contribution of the plane wave. However, in the high-energy
photoionization, a large momentum q � μb is transferred to the nucleus. In the
amplitude F0, the photoelectron does not interact with the nucleus, and the momen-
tum q is transferred by the bound electron. Thus the amplitude contains the fac-
tor ψ(q), corresponding to small distances from the nucleus. In the amplitude F1,
momentum q is transferred by the photoelectron. This also provides a small factor.
However, the bound-state wave function enters the amplitude F1 with small momen-
tum f ∼ μb. Thus the bound electron remains on the distances r ∼ 1/μb, where
its density obtains the largest values, and |ψ(f)| � |ψ(q)|. Due to the interplay of
these factors, the amplitudes F0 and F1 become of the same order of magnitude.

Note that the angular distribution related to one electron in the 2p state,

dσ

dΩ
= mp

(2π)2
·
∑

m |Fm0 + Fm1|2
3

, (7.28)

is isotropic, since the sum
∑

m |Fm0 + Fm1|2 does not contain angular dependence.
A simple way to see this is to choose the direction of the photon polarization as the
axis of quantization of the angular momentum, i.e., em = eδm0. Direct calculation
(we ignore the common factor i in the amplitudes Fm0 and Fm1) demonstrates that∑

m(F2
m0+2Fm0Fm1) = 0, and thus

∑
m |Fm |2 = ∑

m |Fm1|2, which does not contain
angular dependence. Thus (7.28) can be written as

dσ

dt
= A21

2
· 1

ω9/2
; A21 = 2

√
2πα(αZ)2 · |χ(0)|2

m5/2
. (7.29)

This provides an instructive example of a possible misuse of plane waves. Assum-
ing that since the photoelectron moves fast, it can be described by the plane waves,
thus putting Fm = Fm0, one would obtain the qualitatively incorrect angular distrib-
ution dσ/dt ∼ 1 − t2. In particular, it would vanish for electrons moving along the
direction of the photon momentum. This is not the case for the real angular distrib-
ution. Also, such an “approach” would overestimate the cross section for ionization
of a 2p electron by the factor 4/3.

The cross section for the ionization of one 2p electron is

σ2p(ω) = A21

ω9/2
. (7.30)
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Similarly, one can show that for ionization of any state with � �= 0, one should
include the interaction of the ejected electron with the residual ion. The cross section
has the form

σn�(ω) = An�

ω7/2+�
, (7.31)

where An� does not depend on the photon energy and contains the factor |χ�(0)|2,
where χ�(r) = Rn�(r)/r �.

The energy behavior of the cross sections σn� is well known; see, e.g., [1].

7.1.3 Possibility of Asymptotic Analysis

Recent experiments on high-energy photoionization demonstrate that (7.31) is satis-
fied with poor accuracy. To understand what happens, let us return to the Coulomb
case. Employing (5.79), we obtain an expression for the cross section of the photoion-
ization of a hydrogenlike ion with nuclear charge Z , which includes the lowest-order
term of the expansion in powers of 1/ω, but does not contain the expansion in powers
of πξ :

σ1s(ω) = 16
√
2π

3Z2
αr20

(mα2Z2

ω

)7/2
e−πξ ; r0 = 1

mα
. (7.32)

Recall that ξ = mαZ/p, and p = √
2m(ω − I ) is the momentum of the photo-

electron. Thus the high-energy equation that includes the leading correction to the
asymptotics is

σ1s(ω) = 16
√
2π

3Z2
αr20

(mα2Z2

ω

)7/2
(1 − πξ) . (7.33)

Hence, in the case Z = 1, (7.29) holds with an accuracy of 10% for ω ≥ 14keV.
For the hydrogenlike ion with Z = 2, the condition is ω ≥ 56keV. However, at
these energies, ω/m ≥ 0.1, and the relativistic corrections are of this order. Thus for
Z > 2, there is no region where the high-energy nonrelativistic asymptotics of the
cross section work.

Now we show that the deviations of the cross sections of photoionization of the
states n� from their asymptotic values are described by a common factor. To illustrate
the statement, consider the wave equation for the single-particle wave function in
the state n, which can belong to either the discrete or continuum spectrum:

Hψ(r) = εψ(r); H = p2

2m
+ V (r); p = −i

∇
m

. (7.34)

We can write
V (r) = −αZ/r + Vee , (7.35)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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where the first term on the RHS is the interaction of the electron in the state n with
the nucleus, while Vee stands for its interaction with the other electrons. Since in the
asymptotics we deal with wave functions at distances r that are much smaller than
the characteristic distances in the atom, we can put Vee(r) = Vee(0) on the RHS of
(7.35). Thus the wave equation (7.34) can be written as

− Δ

2m
ψ(r) − αZ

r
ψ(r) = ε̃ψ(r); ε̃ = ε − Vee(0). (7.36)

This is just the equation for the electron in the Coulomb field with the shifted value
of energy. For large Z � 1, we can employ the Thomas–Fermi model estimate
Vee(0) = 1.45mα2Z4/3. For small Z ∼ 1, we have Vee(0) ∼ mα2. Thus the energy
dependence of the cross section is the same as in the case of the Coulomb field with
nuclear charge Z .

We turn now to (5.74) for the photoionization amplitude of the ground state in the
Coulomb field. Treating πξ as a separate parameter, we find that the dependence is
reproduced by the factor

h(πξ) = N (πξ)e−πξ . (7.37)

Recall that N (πξ) = Np is the normalization factor of the continuumwave function.
The factor e−πξ comes from the ratio (A/B)iξ in (5.74). It emerges just because in
the photoionization p � k. This stresses the “model-independent” nature of this
term. Using the technique developed in Sect. 5.2, one can demonstrate (see, e.g., [2])
that the factor ( A

B

)iξ =
[ (p − k)2 + μ2

n

k2 − (p + iμn)2

]iξ
(7.38)

has the same form for amplitudes of photoionization of any bound state. Thus the
amplitudes of ionization of n� states contain the common factor

Qn(ξ) = h(πξ) exp (2ξ arctan ξ/n) , (7.39)

and the energy dependence of the photoionization cross section has the form

σn�(ω) = C
D(πξ) exp (4ξ arctan ξ/n)Pn�(ξ

2/n2)

ω7/2+�
. (7.40)

Here C is a constant factor,

D(πξ) = h2(πξ) = N 2(πξ) exp (−2πξ); N 2(πξ) = 2πξ

1 − exp (−2πξ)
,

(7.41)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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while Pn� are the polynomial ratios. For the lowest states,

P10 = 1; P20 = 1 + 3(ξ/2)2

1 + (ξ/2)2
; P21 = 1 + 8(ξ/2)2

3[1 + (ξ/2)2] .

Hence we have obtained the factor

Sn = D(πξ) exp (4ξ arctan ξ/n) , (7.42)

which is common for photoionization cross sections of every state in the nth shell.
The factor D(πξ) is the same for every bound state. Note that the values of the

parameter ξ = mαZ/(2mε)1/2, with the energy of the photoelectron ε = ω − In ,
differ for different n. However, with accuracy In�/ω, we can replace ξ by

ξ̂ ≡ mαZ

(2mω)1/2
. (7.43)

Thus the high-energy behavior of the cross section of photoionization of the single-
particle n� state is determined by the factor ω7/2+� and by the factor D defined by
(7.41), which varies with the energy much more slowly. It can be written as

σn�(ω) = An�D(ξ̂ )

ω7/2+�
. (7.44)

The corrections to (7.44) are of order ξ 2/n. Note that corrections to (7.30) are much
larger. They are of order πξ .

We can write

D(πξ) = 2πξ

eπξ − e−πξ
S(πξ) , (7.45)

where
S(πξ) = exp (−πξ) , (7.46)

often referred to as the Stobbe factor, contains the sharpest dependence on the para-
meter πξ .

Thus the ratio of the cross sections of photoionization of the same state at the high
energies ω1 and ω2 is [3]

σ(ω1)

σ (ω2)
≈ D1

D2

(ω2

ω1

)7/2+�

, (7.47)
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with D1,2 denoting the factor D(πξ) given by (7.45) corresponding to the energies
ω1,2. Also, the ratios of cross sections from different states, e.g.,

Rn�(ω) = σn0(ω)

σn�(ω)
, (7.48)

converge to their nonrelativistic high-energy limit much faster than the cross sections
themselves.

7.1.4 Preasymptotic Behavior of the Cross Sections

Preasymptotic behavior of the cross sections manifests itself in corrections of order
1/ω. Besides the direct numerical calculations, it is desirable to find approximate
analytical formulas. The analytic perturbation theory developed in [4] provides a
possibility to find analytical expressions for the wave functions of both discrete and
continuum states. The approach is based on the assumption that the atomic potential
can be represented as that of the Coulomb field of the point nucleus multiplied by
a factor, which can be written as a series in powers of λr with λ ≈ mαZ1/3 of the
order of the inverse Thomas–Fermi radius of the atom:

V (r) = −αZ

r

(
1 + c1λr + c2(λr)

2 + c3(λr)
3 + · · ·

)
. (7.49)

Such a representation enables us to find analytical expressions for the electron
wave functions of both discrete and continuum spectra in the region λr <∼ 1. This
means that for the lowest bound states such as the K shell in most atoms and the L
shell for high Z , the approach describes the wave functions in the region r <∼ 1/μb,
where these functions obtain the largest values. Introducing

ν = λ

η
; η = mαZ (7.50)

(ν ∼ Z−2/3), one obtains for the wave function of the 1s state up to the terms λ3r3,

ψ1s(r) = NψC
1s(r) · s(r); s(r) = 1 + c2

2
λ2r2 + c3λ

2r2ν + c3
3

λ3r3. (7.51)

Here ψC
1s is the Coulomb function,

N = 1 − 3

2
c2ν

2 − 11

2
c3ν

3; (7.52)

is the normalization factor. Note that deviations of the shape of the wave func-
tions from the Coulomb functions begin with terms of order λ2. The second-order
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perturbative corrections are of order λ4. Similar expressions are obtained for the
continuum wave functions. The terms linear in λ lead only to a shift of the bind-
ing energies from the Coulomb values. For the ground state, the Coulomb value
IZ = η2/2m is shifted to ε = IZ (1 − 2c1ν − 3c2ν2 − 6ν3).

This enables us to find analytical formulas for the photoionization cross sections
as functions of the parameter ξ [5]. For the 1s electron, it is

σ(ω) = N 2σC(ω) f (cn, ξ
2), (7.53)

with σC the Coulomb cross section given by (5.78). The analytical expression for
the function f (cn, ξ 2) is presented in [5]. The preasymptotic behavior of the cross
section is determined by the lowest-order terms of the expansion in powers of ξ 2 of
the cross section σC and of the function

f (cn, ξ
2) = 1 + ξ 2

(
− 1

2
c2ν

2 + 7c3ν
3
)

+ O(ξ 4) . (7.54)

The value of λ is chosen as the inverse Thomas–Fermi radius of the atom, i.e.,
λ = 1.13mαZ1/3. Thus ν = 1.13/Z2/3 is the ratio of the size of the K shell to that
of the Thomas-Fermi atom. The values of the coefficients cn are obtained by fitting
the Hermann–Skillman atomic potential (a modification of the Hartree–Fock field in
which the nonlocal exchange term is approximated by an effective local one) in the
internal region of the atom, i.e., at λr ≤ 1 for each value of the nuclear charge Z .

To illustrate the accuracy of the approach, we compare the result for the cross
section of ionization of the K shell of the Ca atom (Z = 20) at ω = 20keV to the
result obtained by application of direct numericalmethods. In the described approach,
one obtains σ = 7.511 barn, while in numerical calculations, it is 7.544barn.

7.2 Forms of Electromagnetic Interactions

7.2.1 Forms of Interaction and Gauge Invariance

Here we analyze the various forms of interaction between the nonrelativistic atomic
electron and the photon. We are looking for expressions in the dipole approximation,
i.e., in the lowest order of expansion in the photon momentum k.

A variety of forms occurs, since the vector potential of electromagnetic field is not
uniquely defined. Interaction of the electron with an electromagnetic field described
by a four-dimensional vector A with time-component A0 and space components
Ai = (A)i , written usually as A = (A0,A), is determined by the contribution

L I (x) = −eAμ(x) jμ(x) (7.55)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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(for the electron, e = −|e|) to the Lagrangian density. Here x = (t, r) is a point
in four-dimensional space, j = (ψ∗

e ψe, ψ
∗
e αψe) is the electron current, while ψe

is the operator of the electron field. In the nonrelativistic limit, j i = ψ∗
e v

iψe. Only
three of the four components Aμ are independent, corresponding to the three possible
projections of the photon spin S = 1.Theonly possible relativistic invariant condition
that can tie up the components Aμ is the Lorentz condition ∂Aμ/∂xμ = 0. Equations
of motion are invariant under the gauge transform

A′
μ = Aμ + ∇μλ(x); ∇μ =

( ∂

∂t
,−∇ j

)
; j = 1, 2, 3 , (7.56)

with the function λ(x) satisfying the condition

∂

∂xμ

∂λ(x)

∂xμ
= 0. (7.57)

The standard choice for interaction of an electron with an external photon is
A0 = 0. In this case,

A(x) = A(r)e−iωt ; A(r) =
√
2π

ω
eeik·r; ω = |k|; e · k = 0, (7.58)

with e the polarization vector (direction of the electric field in the electromagnetic
wave). Thus

L I (x) = eψ̄e(x)v · A(r)ψe(x)e
−iωt ; v = −i∇

m
= p

m
. (7.59)

On the other hand, we can choose

λ(x) = λ(t, r) = r · A(t, r), (7.60)

with A determined by (7.58). Direct calculation confirms that (7.57) is satisfied.
Carrying out the transformation (7.56), we obtain

A′
0(x) = A′

0(r)e
−iωt ; A′

0(r) = −iωr · A(r), A′
i (x) = A′

i (r)e
−iωt ; (7.61)

A′
i (r) = −ikir · A(r).

In the nonrelativistic approximation, v � 1, and we put A′
μ jμ = A′

0 j
0. Employing

(7.61), we obtain

L I (x) = −eψ̄e(x)A
′
0(x)ψe(x)e

−iωt = iωeψ̄e(x) · A(r)ψe(x)e
−iωt , (7.62)

with A determined by (7.58).
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The matrix element Sn′n describing the transition between the states |n〉 and 〈n′|
of atomic electrons with energies En and En′ can be written as

Sn′n = 〈n′|
∫

d4xHI (x)|n〉 = −〈n′|
∫

d4xL I (x)|n〉,

with HI the Hamiltonian of the interaction. Since the time dependence of the elec-
tron wave functions can be singled out as ψn(x) = ψn(r)e−i En t and ψ̄n′(x) =
ψ̄n′(r)e+i E ′

n t , the integral over t can be calculated as

∫
dtei(En′−En−ω)t = 2πδ(En′ − En − ω).

The delta function ensures energy conservation. We obtain the amplitude

Mn′n = −e
∫

d3r Aμ(r) jμn′n(r), (7.63)

with jμn′n(r) = ψ̄n′(r)γ μψ(r), and in thenonrelativistic limit, j in′n(r) = ψ∗
n′(r)viψ(r).

Details of the derivation of (7.63) are given, e.g., in the book [6]. To obtain the ampli-
tudes in the dipole approximation, we must put k = 0 in expressions (7.58) forA(r).
Thus, if the vector potential is determined by (7.58), we obtain

Mv
n′n = N (ω)hv

n′n; hv
n′n = 〈Ψn′ |

∑
k

e · v(k)|Ψn〉 . (7.64)

Here k labels the atomic electrons. The upper index v corresponds to the operator vk

in the integrand on the RHS. This is known as the “velocity” or “gradient” form of
the electron–photon interaction. However, if the vector potential is given by (7.61),
we obtain

Mr
n′n = N (ω)hrn′n; hrn′n = iεn′n〈Ψn′ |

∑
k

e · r(k)|Ψn〉; εn′n = εn′ − εn. (7.65)

The upper index r corresponds to the operators r(k) on the RHS of the integrand.
This is the “length” form for the electron–photon interaction.

If the states n and n′ are described by wave functions that satisfy the Schrödinger
equation with Hamiltonian

H = −
∑
k

Δk

2m
+

∑
k

−αZ

rk
+

∑
k ′>k

α

|rk ′ − rk | , (7.66)

where k and k ′ label the atomic electrons and Δk is the Laplace operator acting on
the electron, labeled by k, we have
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Mv
n′n = Mr

n′n; hv
n′n = hrn′n . (7.67)

However, one actually uses certain approximations for the interaction V , and relation
between the two forms requires additional analysis.

Now we assume that the many-electron functions Ψn′,n are described by combi-
nations of the one-electron functions that satisfy (7.34), with V a local potential.
The two forms of interaction with the photon that cause a transition between the
single-particle states |i〉 and 〈 f | are

hv
f i = 〈ψ f |e · v|ψi 〉; hrf i = iε f i 〈ψ f |e · r|ψi 〉, (7.68)

and hv
f i = hrf i . This can be demonstrated in the following way. Since |i〉 and 〈 f | are

the eigenstates of the same Hamiltonian H given by (7.34), the amplitude hrf i can
be evaluated as ε f i 〈ψ f |r|ψi 〉 = 〈ψ f |Hr − rH |ψi 〉. Direct calculation provides

[H, r] = −i
p
m

+ [V, r] , (7.69)

and hence [7]

hrf i = 〈ψ f |e · p
m

|ψi 〉 + i〈ψ f |e · [V, r]|ψi 〉 . (7.70)

For the local field V , the last term on the RHS vanishes, proving the statement.
Similarly, one can show that in the local field, the “accelerator form” for the matrix
element

haf i = i〈ψ f |e · ∇V

mε f i
|ψi 〉 (7.71)

(in the classical equation of motion, the electron acceleration is proportional to ∇V )
is equivalent to two other elements. One could see that the variety of forms for
the electron–photon interactions is connected with the gauge invariance of quantum
electrodynamics.

Note that
hv

f i = hrf i = haf i (7.72)

for the exact solutions of the wave equation (7.34). In fact, approximate wave func-
tions are usually used. For them, the results may differ, and a small value of the
deviations between computations in various forms would signal good accuracy of
the employed wave functions.

We turn now to the case of a self-consistent field,where the single-particle function
of each electron depends on the distributions of the other electrons. In the Hartree
approximation, the potential V in (7.34) is

V (r) = −αZ

r
+ W (r) , (7.73)
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where

W (r) = α

∫
d3r ′ ρ(r′)

|r′ − r| ; ρ(r′) =
∑
k

ψ∗
k (r′)ψk(r′),

with k labeling the atomic electrons. The potentialW (r) is a local one. However, the
states |i〉 and 〈 f | belong to different Hamiltonians, since the density of the atomic
electrons ρ(r′) changes if one of the electrons undergoess a transition. The forms
remain equivalent under the assumption that this change is numerically small and
thus is unimportant. This assumption is known as the “frozen core approximation.”

The Hartree–Fock approximation includes also the nonlocal exchange potential.
In this case,

V (r) = VHF (r) = −αZ

r
+ W (r) + K (r) , (7.74)

with the exchange potential

K (r) = −α

∫
d3r ′ u(r′, r)

|r′ − r| ; u(r′, r) =
∑
k

ψ∗
k (r′)ψk(r). (7.75)

It provides a nonzero contribution to the second term on the RHS of (7.70). Now we
try to calculate it.

Recall that the general expression for the result of the action of the operator V on
the state |ψ〉 is

〈r|V |ψ〉 =
∫

d3r ′〈r|V |r′〉〈r′|ψ〉 =
∫

d3r ′〈r|V |r′〉ψ(r′). (7.76)

For the exchange potential, we have

〈r|K |r′〉 = −α

∑
k ψk(r)ψ∗

k (r′)
|r′ − r| , (7.77)

with the sum over the occupied states k. For a local potential,

〈r|W |r′〉 = W (r)δ(r − r′) (7.78)

and 〈r|W |ψ〉 = W (r) · ψ(r). Now we express the function ψ(r′) on the RHS of
(7.76) in terms of the function ψ(r). This can be done using the relation (see, e.g.,
[8])

ψ(r′) = eia·pψ(r); a = r′ − r, (7.79)
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where the operator p = −i∇ acts on r. Note that (7.79) is just the Taylor series
expansion of the function ψ(r′) about the point r. Thus we can write

V (r;p) =
∫

d3r ′〈r|V |r′〉eia·p. (7.80)

For the case of the local potential, the LHS does not depend on p, due to (7.78).
The matrix element of the interaction with the electromagnetic field is M f i =

〈ψ f |HI |ψi 〉. The Hamiltonian of interaction HI = HA−H is the difference between
the atomic Hamiltonian in the external field A and that without the field. The operator
HI can be obtained by replacing p by p− eA in the atomic Hamiltonian (7.34). Note
that now the matrix element of the potential V depends on p. Employing (7.80), we
obtain

〈ψ f |V (p)|ψi 〉 =
∫

d3r
∫

d3r ′ψ∗
f (r)〈r|V |r′〉eia·pψi (r). (7.81)

For a description of photoionization, we must include only the lowest order of the
electron charge e. In the dipole approximation, i.e., putting k = 0 in the second
equality of (7.58), we obtain A = √

2π/ωe. Setting M f i = N (ω)h f i , we obtain

h f i =
∫

d3rψ∗
f (r)

e · p
m

ψi (r) + i
∫

d3rψ∗
f (r)e

[ ∫
d3r ′〈r|V |r′〉(r′ψi (r′)) −

−
∫

d3r ′〈r|V |r′〉(rψi (r′))
]
. (7.82)

Since

∫
d3rψ∗

f (r)
[ ∫

d3r ′〈r|V |r′〉(r′ψi (r
′)) −

∫
d3r ′〈r|V |r′〉(rψi (r

′))
]

= 〈ψ f |[V, r]|ψi 〉 ,

(7.83)

we obtain, employing (7.70),
h f i = hrf i . (7.84)

Hence one must use the length form of interaction with the electromagnetic field in
the case of a nonlocal potential [9, 10].

In practical computations, one sometimes replaces the exchange potential by an
effective local potential. This can be done, e.g. by calculation of the function u(r′, r),
assuming that the atomic electrons are described by plane waves with momenta
p ≤ pF , while the Fermi momentum pF is determined by the density ρ(r). In this
Hartree–Fock–Slater approximation, the exchange potential is replaced by the local
potential Kef f (ρ(r)). In this approach, one is free to use any form of interaction.
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7.2.2 Thomas–Reiche–Kuhn Sum Rule

In the case of local potentials, when the length and velocity forms are equivalent,
their combination provides the simplest way to obtain an important relation between
the probabilities of the photoexcitation and photoionization processes. Returning to
the many-electron states, we can write expressions for probabilities of transitions
between the states |n〉 and 〈n′|.

We introduce the dimensionless characteristics of such transitions fnn′ , called the
“dipole oscillator strength.” They are defined as

fn′n = 2mεn′n|x̂n′n|2 εn′n = εn′ − εn; fnn′ = − fn′n. (7.85)

Here x is the projection of the vector r on an arbitrary chosen direction, x̂ = ∑
k x

(k)

with k labeling atomic electrons. Employing (7.64) and (7.65), we can express the
squared amplitude of the transition between the states n and n′ caused by absorption
of a photon in terms of the oscillator strength

|Mn′n|2 = πre fn′n . (7.86)

As we have seen, this expression is true even if the interaction V contains nonlocal
terms.

We turn now to the case of a local field V (r). Employing the equivalence of the
length and velocity forms, we can write

fn′n = 2i( p̂x )nn′(x̂)n′n = −2i(x̂)nn′( p̂x )n′n; p̂ =
∑
k

p(k) . (7.87)

The sum over a complete set of the states n′ provides

Sn′ fn′n = i[ p̂x , x̂]nn . (7.88)

Here Sn′ denotes the sum over the states of the discrete spectrum and integration
over the continuum states with weight d3 p′/(2π)3. For each electron,

i[pi , r j ] = δi j , (7.89)

and thus i[ p̂x , x̂]nn = Ne, with Ne the number of atomic electrons in the state n.
Hence we come to the Thomas–Reiche–Kuhn sum rule

Sn′ fn′n = Ne . (7.90)

This equation enables us to investigate the relative probability of various channels
of excitation.
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The contributions of the discrete and continuum states to the left-hand side of
(7.90) can be written separately. We illustrate this by considering the case of single-
particle excitations, i.e., only one of the electrons in the state n undergoes excitation.
Generalization to many-particle excitations is straightforward.

Employing (7.64) and (7.65), one can write the photoionization cross section of
the state n in terms of the oscillator strength

σph(ω) = 2π2re

∫
d3 p′

(2π)3
δ(ω − p′2

2m
− In) fp′n; re = α

m
, (7.91)

with In the ionization potential of the initial state n, p′ the photoelectron momentum.
Integrating both sides over ω, we obtain

1

2π2re

∞∫

In

dωσ(ω) =
∫

d3 p′

(2π)3
fp′n , (7.92)

with the term on the RHS being just the contribution of the continuum states to the
LHS of (7.90). Thus the Thomas–Reiche–Kuhn sum rule can be written as

∑
n′′

fn′′n + 1

2π2re

∫ ∞

In

dωσph(ω) = Ne . (7.93)

Here n′′ labels the states of the discrete spectrum.
The relation (7.93) is known also as the “golden sum rule.” Note that both terms

on the LHS can be measured experimentally. The “golden sum rule” is widely used
in the analysis of experimental data on photoionization and photoexcitation. For the
case of many-particle excitations, σph is the cross section of the photoabsorption
process in which at least one electron is moved to the continuum.

Recall that (7.90) and (7.93) are obtained under the assumption that the velocity
and the length forms of the interaction are equivalent. This is true for the exact
solutions of the wave equation with the Hamiltonian (7.66). However, it can be
violated if approximate functions are employed. If the approximate Hamiltonian
contains a nonlocal term, it is reasonable to write (7.85) as

fn′n = 2mεn′n|x̂n′n|2 = 2mx̂n′n[H, x̂]n′n . (7.94)

Using (7.69) projected onto the x-axis, we obtain

∑
n′′

fn′′n + 1

2π2re

∞∫

In

dωσph(ω) + f nlocn = Ne , (7.95)

with
f nlocn = m[x̂, [H, x̂]]nn . (7.96)
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7.2.3 Amplitude of Photoionization in Length Form

Herewe calculate the asymptotics of the amplitude for the photoionization of a bound
s state in length form. As we have seen, the final-state wave function can be treated
perturbatively. The calculation presented below illustrates the fact that the number
of perturbative terms depends on the form of electromagnetic interaction employed
in the calculations.

As we have seen in Sect. 7.1.1, in velocity form, the amplitude is given by (7.7)
and (7.10). It corresponds to description of the photoelectron by the plane wave. In
length form, one should write the vertex of the electron–photon interaction in (7.2)
as γ = −ωe∇ f . The contributions to the amplitude corresponding to the description
of the photoelectron by the plane wave are given by (7.7) and (7.10) with momentum
p replaced by the operator −mω∇p. This provides

Fr
0 = −e · p

m
· N (ω)

16πψ ′(r = 0)

p4
; η = mαZ (7.97)

which is twice the contribution of the plane-wave term in the velocity form given by
(7.10).

To understand what happened, we turn now to the contribution of the lowest
correction to the wave function of the outgoing electron. As we know, it comes from
the interaction with the nucleus V . We obtain, instead of (7.4),

Fr
1 = N (ω)J ; J = −ω

∫
d3 f

(2π)3
· 〈p|VG|f〉 · e · ∇ f 〈f |ψi 〉, (7.98)

with ∇ f acting on f . Employing (7.5), we put

〈p|VG|f〉 = − 8πη

p2(p − f)2
≈ −8πη

p4
− 16η

p6
p · f (7.99)

in the integral. Integration by parts over f provides

Fr
1 = −e · p

m
· N (ω)

8πηψ(0)

p4
. (7.100)

Thus the contribution of the plane wave F0 and that of the lowest correction F1

provide contributions of the same order. Their sum is

Fr = Fr
0 + Fr

1 = −e · p
m

· N (ω)
8π

p4
· (2ψ ′(0) + ηψ(0)). (7.101)

Due to the first Kato condition, 2ψ ′(0) + ηψ(0) = −ηψ(0). As expected, the
amplitude Fr is equal to that calculated in the velocity form; (7.10).
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Note that if the approximate functions employed in the computations do not
satisfy the Kato condition, the equivalence of the two forms is lost. Note also that
a calculation that includes only the plane wave overestimates the cross section by a
factor of 4. This would be one more example of the possible misuse of plane waves.

7.2.4 Amplitude of Rayleigh Scattering in Length Form

As we have seen in Chap.5, the nonrelativistic amplitude of Rayleigh scattering can
be presented as the sum of the seagull and pole terms. In the velocity form for the
interaction between the photon and electron, it can be written as

F = N 2(ω)

m2
X ;

X = e∗
2 · e1Nem + Sn

( 〈Ψ1|e∗
2p̂|Ψn〉〈Ψn|e1p̂|Ψ1〉

ω + ε1n
+ 〈Ψ1|e1p̂|Ψn〉〈|Ψn|e∗

2p̂|Ψ1〉
−ω + ε1n

)
.

(7.102)
Here we put Ψi = Ψ f = Ψ1 and ε f = εi = ε1.

Now we try to obtain an expression for the amplitude in length form. Due to
(7.89), we can write e∗

2 ·e1 = e∗
2i e1 jδi j = ie∗

2i e1 j [pi , r j ] = ie∗
2 ·p e1 ·r− ie1 ·r e∗

2 ·p.
This enables us to write

e∗
2 · e1Ne = Sn

(
i〈Ψ1|e∗

2p̂|Ψn〉〈Ψn|e1r̂|Ψ1〉 − i〈Ψ1|e1r̂|Ψn〉〈Ψn|e∗
2p̂|Ψ1〉

)
.

(7.103)

The sum of the first terms in the parentheses on the RHS of (7.102) and (7.103) is

〈Ψ1|e∗
2p̂|Ψn〉

( 〈Ψn|e1p̂|Ψ1〉
ω + ε1n

+ im〈Ψn|e1r̂|Ψ1〉
)

= im
ω〈Ψ1|e∗

2p̂|Ψn〉〈Ψn|e1r̂|Ψ1〉
ω + ε1n

(7.104)
for each value of n. After a similar evaluation of the second terms in the same
parentheses, we obtain the amplitude in length form:

F = 2παωSn

( 〈Ψ1|e∗
2 r̂|Ψn〉〈Ψn|e1r̂|Ψ1〉
ω + ε1 − εn

+ 〈Ψ1|e1r̂|Ψn〉〈|Ψn|e∗
2 r̂|Ψ1〉

−ω + ε1 − εn

)
. (7.105)

One can see that the velocity and length forms have their strong points. In the
velocity gauge, there is a separate seagull term, which provides the main contribution
to the cross section in a large interval of values of the photon energy. There is no
such thing as the seagull term in the length gauge. However, (7.105) enables us to
present the elastic scattering of a photon by an atom in terms of the operator of dipole
momentum

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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d = e
∑
k

r(k) . (7.106)

This can be done by representing (7.105) as [8]

F = −2πωe∗
2i e1 jαi j (ω) , (7.107)

with

αi j (ω) = −Sn

( 〈Ψ1|di |Ψn〉〈Ψn|d j |Ψ1〉
ω − εn1 + iδ

+ 〈Ψ1|d j |Ψn〉〈|Ψn|di |Ψ1〉
−ω − εn1 + iδ

)
; δ → 0,

(7.108)

the tensor of dipole polarizability, which can be defined in such a way for any
system. Recall that S means the sum over the states of the discrete spectrum and
integration over continuum states. If the system has a spherical symmetry, we can
put αi j (ω) = δi jαd(ω) with

αd(ω) = 2

3
Sn

εn1|〈Ψ1|d|Ψn〉|2
ε2n1 − ω2 + iδθ(εn1)

. (7.109)

Here the lower index d stands for dipole. Note that εn1 > 0. The static characteristic

αd(0) = 2

3
Sn

|〈Ψ1|d|Ψn〉|2
εn1

(7.110)

is called a polarizability. It describes the leading (second perturbative order) shift
of the energy caused by the electrostatic field. For the ground state of hydrogen,
α(0) = 4.5r30 [8]. Another role of polarizability is that it characterizes modification
of the amplitude describing the interaction between the photon and the electronic
shell. We shall meet with this aspect of polarizability in Chap.10.

7.3 Relativistic Case

7.3.1 The Lowest Order αZ Terms

Here we calculate the cross section of photoionization of a single-particle electron
state by photons carrying energies ω >∼ m. The analysis is similar to that carried out
in Sect. 6.1, but the wave function ψ is no longer a Coulomb function. As we have
seen in Sects. 6.1 and 6.3, the lowest order of the αZ series for the amplitude can
be written in terms of the nonrelativistic wave function ψ(r). The large momentum
q = |q| >∼ m (q = k − p) can be transferred to the recoil ion in either the initial or
final state.

http://dx.doi.org/10.1007/978-3-319-32736-5_10
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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Employing (2.94) and (2.95), we find that for every s state, the amplitude and the
cross section are described by (6.97)–(6.99) with N1 replaced by the nonrelativistic
wave function of the s state at the origin ψnr

ns (r = 0). The factor M(ξ) defined by
(6.98) can be represented as

M(ξ) = 2π · 4πα(αZ)2D(πξ)|ψnr
ns (r = 0)|2 , (7.111)

with the factor D(ξ) defined by (7.45).
To understand what happens for the bound states with � �= 0, it is sufficient to

analyze the contribution in which the large momentum q is transferred to the recoil
ion by the initial-state electron. In this contribution, the photoelectron is described
by a plane wave, and the amplitude can be evaluated as

Fph = 〈ψp| Â|ψ〉 = N (ω)ūpêϕ(q)u0 . (7.112)

Recall that ψ = ϕu0. Following the analysis carried out in Sect. 2.2.3, we can write

ψ(q) = 2η

q2

(
1 − αq

2m

) ∫
d3 f

(2π)3

ϕ(f)
(q − f)2

u0 . (7.113)

The integral is saturated by f of order the characteristicmomentumof the bound state
μb. Thus we can assume that f � q, and the integral on the RHS obtains a nonzero
value only if we expand the denominator up to the terms ( f/q)�, while for s states,
we could put (q − f)2 = q2 there. Thus the amplitude has different q dependence
for different values of �. This changes the shape of the angular distribution, which
obtains also an additional small factor μ2�

b /q2� ∼ μ2�
b /m2�. In the hydrogenlike

approximation, this factor is (αZ)2�. Also, the shape of the ω dependence of the
cross section varies with the value of �.

In the ultrarelativistic case, momenta q ∼ m determine the cross section. Thus
the cross section decreases as ω−1 for every value of the orbital momentum �. It can
be written as

σn�(ω) = Cn�D(πα)

mω
, (7.114)

with

Cn� = α · (αZ)2
(μn�

m

)2� |χn�(r = 0)|2
m3

cn� , (7.115)

where χn�(r) is related to the radial part of the function ϕ(r) as Rn�(r) = r �χn�(r),
and cn� is a dimensionless numerical coefficient.

Note that in the ultrarelativistic case, the quenching of the angular distribution
for large � is more pronounced at q ∼ ω � m. In this region, it contains the factor
μ2�
b /ω2� instead of μ2�

b /m2� at q ∼ m.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Further computations require separate calculations of the parameter χ(0). For the
internal shells, perturbative calculations of deviations from the Coulomb field are
possible, except for a very small nuclear charge Z . They will be considered in the
next two sections.

7.3.2 Far Away from the Threshold

Here we consider the case in which the photoelectron carries the energy ε � IZ . We
carry out calculations for ionization of the electron in 1s state.

The Coulomb cross section of the process is modified by interaction of the elec-
tronic shell with both the bound electron and the photoelectron. It is often referred to
as the “screened cross section,” while its difference from the Coulomb cross section
is usually called the “screening correction.” Using the results obtained in Sect. 3.4.7,
we find that the screening corrections for the photoelectron change the cross section
of the photoeffect by magnitudes of relative order ξ 2

ee Z < α. This is smaller than
the influence of the radiative corrections. Thus we have to study only the interaction
between the electronic shell and the electron of the ionized state.

The ionized electron is bound by the field V (r), which is the sum of the field of
the nucleus VeN = −αZ/r and the field created by Z − 1 electrons of the atomic
shell Vee, V = VeN + Vee. We calculate the screening corrections, treating Vee as a
perturbation:

V (r) = V0(r) + V1(r); V0 = VeN ; V1 = Vee . (7.116)

In the standard formalism, the expressions for perturbative corrections involve all
functions of the Coulomb spectrum. Here we employ another method, in which the
correction to the wave function of the 1s electron is expressed solely in terms of the
Coulomb 1s wave function. Such an approach was suggested by Zeldovich [11]. It
was realized by Polikanov [12] for the Schrödinger equation and was employed for
the Dirac equation in [13, 14].

In this approach, the expressions for the higher-order perturbative corrections are
less complicated than in the standard one.We shall use this feature in the next section.

We demonstrate that the screened andCoulomb cross sections σ and σC are linked
by a simple relation,

σ(ω) = (1 + τ(Z))σC(ω) , (7.117)

which does not depend on the accuracy of calculation of the Coulomb cross section.
In other words, it does not depend on the number of terms of the αZ series.

The wave function of the electron in the 1s state of the screened Coulomb field
can be written as

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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ψ1s(r) = 1

r

(
G(r)Ω 1

2 0M
(n)

i F(r)Ω 1
2 1M

(n)

)
; n = r

r
. (7.118)

For theCoulombfieldwithout screening, this is just (6.6),whereweputG(r) = rg(r)
and F(r) = r f (r). The radial wave functions G(r) and F(r) satisfy the set of
equations

G ′ − 1

r
G − (E − V + m)F = 0; F ′ + 1

r
F + (E − V − m)G = 0. (7.119)

Putting F(r) = G(r)Φ(r), we obtain another set of equations. Now we have a
Riccati equation for the function Φ(r):

Φ ′ + 2

r
Φ + BΦ2 + B − 2m = 0; B(r) ≡ E − V (r) + m , (7.120)

while the equation for G(r) is

G ′ − (
1

r
+ BΦ)G = 0. (7.121)

The latter equation enables us to represent the function G(r) in terms of Φ(r).
Since for the ground state, the radial function has no nodes, we can assume that
G(r) ≥ 0, writing (7.121) as d lnG(r)/dr = 1/r + B(r)Φ(r). Thus

G(r) = C(Z)r exp

(∫ r

0
dx B(x)Φ(x)

)
, (7.122)

with C a numerical coefficient depending only on the nuclear charge Z .
Now we calculate the lowest-order screening correction to the Coulomb wave

function. We put G = G0 + G1, Φ = Φ0 + Φ1, B = B0 + B1, E = E0 + E1, and
C = C0(1 + C1). The wave functions and energies with the lower index 0 are the
Coulomb ones; see Sect. 6.1. Those with lower index 1 are caused by perturbation
V1. Note that

Φ0(r) = − αZ

1 + γ
; γ = (1 − α2Z2)1/2, (7.123)

does not depend on r . The perturbative correction Φ1(r) satisfies the equation

Φ ′
1 + 2

(1
r

+ B0Φ0

)
Φ1 + (E1 − V1)(1 + Φ2

0 ) = 0. (7.124)

Since (7.121) enables us to write 1/r + B0Φ0 = G ′
0/G0, we find that

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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Φ1(r) = −(1 + Φ2
0 )G

−2
0 (r)

∫ r

0
dx(E1 − V1(x))G

2
0(x)

= − 2

1 + γ
G−2

0 (r)
∫ ∞

0
dx(E1 − V1(x))G

2
0(x). (7.125)

Employing the boundary conditions G, F → 0 at r → ∞ and the normalization
condition

∫ ∞

0
dr(G2

0(r) + F2
0 (r)) =

∫ ∞

0
dr(1 + Φ2

0 (r))G
2
0(r) = 1,

we find that

E1 =
∫ ∞

0
dxV1(x)G

2
0(x) . (7.126)

We assume that the field created by the atomic shell Vee is described by the
Thomas–Fermi potential and can be approximated by a sum of several Yukawa
terms [15]:

Vee = −α(Z − 1)

r

n∑
i

ai exp (−biλr). (7.127)

Here λ = 1.13mαZ1/3 is the Thomas–Fermi radius; ai and bi are the dimensionless
coefficients. We put an = −1, bn = 0, and impose the additional condition

n∑
i

ai = 0 . (7.128)

The potential V (r) = VeN + Vee with Vee defined by (7.127) has proper asymptotics
at large distances V (r → ∞) = −α/r , as well as at small distances V (r → 0) =
−αZ/r .

For λr � 1, we obtain Vee ≈ α(Z − 1)/r · ∑n
i aibiλr . For r ∼ 1/m, we have

Vee/VeN ∼ λr ≈ αZ1/3 � 1. Thus at these distances, the electron interaction
Vee = V1 can be treated as a perturbation. We assume that n = 4 and accept the
numerical values of ai and bi presented in [15]. These are a1 = 0.1, a2 = 0.55,
a3 = 0.35, a4 = −1, while b1 = 6.0, b2 = 1.2, b3 = 0.3, b4 = 0.

Introducing for a function f (λ),

Ŝ f (λ) =
n∑
i

ai f (biλ) , (7.129)

we obtain after straightforward evaluation of (7.125),
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Φ1(r) = Φ0 Ŝ(1 + ν/2)−2γ

(
γ −1 + 2

ν/2∫

0

dv exp (−2ηrv)(1 + v)2γ−1

)
; ν = λ

η
.

(7.130)
The power of the exponent is 2ηrv < b1λr � 1. One can see immediately that
Φ1 ∼ ηr · ν2 at small r . Thus we can put Φ1(r) = 0 for r ∼ 1/m.

Employing (7.122), we can write the function G(r) = G0(r) + G1(r) for any
value of r as

G(r) = G0(r)(1 + C1)

(
1 +

∫ r

0
dx[B0(x)Φ1(x) + B1(x)Φ0]

)
. (7.131)

Following our previous analysis, we can put Φ1 = 0 for r ∼ 1/m. For these values
of r , the integral on the RHS is of order ηrν2 � 1 and can be neglected. Hence the
main effect of screening is the modification of the normalization constant C . Thus
we find that indeed, for r ∼ 1/m, one can put

G1(r) = C1G0(r); F1 = C1F0(r) . (7.132)

The values of C1(Z) can be found from the normalization condition

∫ ∞

0
dr

(
1 + Φ2(r)

)
G2(r) = 1, (7.133)

for the functions G = G0 + G1 and Φ = Φ0 + Φ1. Note that here we need the
functions Φ1(r) and G1(r) for all values of r ; (7.125) and (7.122).

Using the well-known explicit expressions for the Coulomb functions G0 andΦ0,
we obtain

C1 = M(Z) = −(1 + γ )(1 + 2γ )(1 − γ /2)
ν2

4

∑
i

ai b
2
i ; ν = λ

η
, (7.134)

and

Fph = (1 + M(Z))FC
ph; dσ = (1 + 2M(Z))dσC

ph; σ = (1 + 2M(Z))σC
ph .

(7.135)

Recall that γ = (1 − α2Z2)1/2. One can demonstrate that the second-order per-
turbative correction is of order λ4/η4. Thus the screening correction does not modify
the shape of the energy dependence of the ionization cross section. Since M(Z) < 0,
the screening diminishes the value of the cross section. Relative corrections to the
parameter M(Z) are of order λ2/η2. They are smaller than 0.1 already for Z ≥ 7.

Employing the numerical values of the coefficients ai and bi presented above, we
obtain

M(Z) = −1.414(1 + γ )(1 + 2γ )(1 − γ /2)Z−4/3. (7.136)
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In the limit α2Z2 � 1, we can put γ = 1, which gives

M(Z) = −4.24Z−4/3. (7.137)

The screening corrections for the electrons from the higher shells can be calculated
in a similar way. Note that in this case, the wave functions have nodes, and evaluation
of (7.120) is not as straightforward as it was in the case of the K shell.

7.3.3 In the Vicinity of the Threshold

Nowweconsider the case of very slowphotoelectrons,withmomenta pmuch smaller
than the binding momenta μb. This means that ω ≈ εb. For the 1s electrons, this
means that ω − εb <∼ α2Z2 IZ , with IZ the Coulomb value of the binding energy. In
Sect. 6.3.2, we carried out calculations for the unscreened Coulomb field. Now we
include screening, employing the technique developed in [16].

The Coulomb cross section is dominated by the first term in parentheses on the
RHS of (6.82), which provides about 80% of the total cross section. This is the
nonrelativistic limit of the cross section, and we include screening only for this term.

First we must find the screening corrections for the wave functions of the bound
1s and continuum electrons. We need these functions at the distances of order the
size of the K shell, r ∼ 1/η. Employing (7.122), we obtain in the first order of
perturbative theory

ψ1s = ψC
1s

[
1 + Ŝ

4
ν2

[
− 3 + η2r2 + ν

3

(
11 − 2η2r2 − 2

3
η3r3

)]]
. (7.138)

The second perturbative correction is of order (Ŝν2)2.
Carrying out a similar calculation for the partial wavewith � = 1 of the continuum

wave function, we obtain an expression for the screened Coulomb cross section,
which differs from the unscreened one (6.82) by a factor

φ(ν) = 1 + Ŝν2
(

− 103

30
+ 541

126
ν2

)
. (7.139)

The screened cross section is expressed in terms of the parameter τ = p2c/η
2, where

pc = √
2m(ω − IZ ) is the momentum of the photoelectron in the unscreened case:

σph(p) = σ0

(
f (τ )φ(ν) − 0.393a − 0.144a2 + 1.023τa + O(a3)

)
. (7.140)

Here a = α2Z2, while f (τ ) is determined by (6.83), σ0 is the value of the Coulomb
cross section at the threshold; see (6.80).

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6


184 7 Photoionization of Atoms

For the uranium atom, the physical threshold is ω = 116keV. Here (7.140) pro-
vides σ = 1.41 × 103 barn (for two electrons in the K shell). This is very close to
σ = 1.37 × 103 barn obtained earlier [17] by numerical calculations.

7.4 Photoionization Beyond the Independent Particle
Approximation

7.4.1 Correlations in the L Shell

About fifty years ago, all the existing data on photoionization could be described
in the framework of the independent particle approximation (IPA), where the wave
function of the atomic electronic shell was presented as a composition of single-
particle functions. It was found in the 1960s that IPA does not always reproduce
the experimental data at photon energies not far from the threshold. However, for a
long time there was a general belief that at photon energies far above the thresholds,
photoionization could be described in the framework of IPA.

Experiments on photoionization of the L shell of the neon atom [18] (Z = 10)
forced researchers to doubt the latter statement. The 2s to 2p cross section ratio
R21(ω) = σ20(ω)/σ21(ω) defined by (7.48)wasmeasured at photon energies of about
1keV. The binding energies of 2s and 2p electrons are about 40 and 20eV; a small
energy shift of 0.1eV between 2p1/2 and 2p3/2 states can be neglected. Following
analysis carried out in Sect. 7.1, the ratio R21 was expected to be proportional to ω,
i.e., RI

21(ω) = aIω. (In this subsection, the upper index I indicates that the values are
related to the IPA case.) Experiments demonstrated that the ratio is indeed a linear
function of ω. However, the line was shifted, R21(ω) = aω + b, and the value of the
slope a differed from that obtained by the Hartree–Fock (HF) calculations.

To understand what happens, we employ the results obtained in (6.1). In the IPA
picture, the photon interacts with the 2p electron directly. The latter transfers large
momentum p to the nucleus, approaching it at small distances r ∼ 1/p. This leads
to a small factor (μL/p)4 in the amplitude, with μL the average momentum of the
electron in the L shell. Beyond the IPA, another channel of the process is possible.
Instead of interacting with the 2p state, the photon interacts with the 2s electron,
creating a hole. The photoelectron pushes the 2p electron into the 2s hole by electron
impact. In the first step, the 2s electron transfers large momentum to the nucleus.
This provides a small factor of order (μL/p)3. Thus it is not as small as in the case of
a 2p electron. The second step takes place at distances of order the size of the L shell
(rather than at the small distances at which photoionization takes place), and thus we
avoid suppression by powers of momentum. However, interaction of the outgoing
electron with the bound electron provides the Sommerfeld factor ξee = αm/p; see
(3.42). Hence, the IPA breaking correction to the amplitude is of order αm/μL and
does not depend on the photon energy. In the hydrogenlike approximation, this is
2/Z , making 20% for the case of neon. Thus it should be included.

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Now we calculate the IPA breaking effects for photoionization of 2p and 2s
electrons, tracing the lowest-order terms of expansion of the amplitude in powers of
ξee [19]. We assume that the atomic electrons move in a certain effective field, and
we carry out calculations in nonrelativistic approximation. The calculations are very
much like those carried out in Sect. 3.2. Note that our analysis does not require the
asymptotic behavior of the cross sections σ2p and σ2s .

We begin with the ionization of the 2p state. We write the two-electron states
consisting of one 2p and one 2s electron as |i, j〉, where i denotes the set of quantum
numbers 2, 1,m (m = 0,±1), while j stands for the set 2, 0, 0. The IPA amplitude
of photoionization of the 2p state is

F I
i = fi = 〈p, j |γ |i, j〉 , (7.141)

with p denoting the state of the photoelectron; γ is the vertex of the electron–photon
interaction. Here the 2s electron is just a spectator (we neglect a small change of the
effective field caused by creation of the hole in the 2p state). Now we assume that
the final-state interactions (FSI) of the photoelectron with the bound electrons are
neglected in the amplitude fi , and we include the admixture of other two-electron
states by the lowest-order FSI between the electrons Vee. The amplitude becomes

Fi = fi +
∑
k

〈p, j |Vee|k, j〉〈k, j |γ |i, j〉
ω + εi − εk

−
∑
k

〈p, j |Vee|k, i〉〈k, i |γ | j, i〉
ω + ε j − εk

,

(7.142)
with k standing for vacancies in both continuum and discrete spectra,

〈p, j |Vee|k, i〉 =
∫

d3rd3r ′ψ∗
p (r)ψk(r)

α

|r − r′|ψ
∗
j (r

′)ψi (r′). (7.143)

The second term on the RHS of (7.142) describes the scattering of the photoelectron
ejected from the 2p state on the bound 2s electron. This is just a correction to the
IPA amplitude fi . The third term represents the IPA breaking mechanism described
above. It is illustrated by the Feynman diagram shown in Fig. 7.1.

The interactionVee does not dependon the spin variables. Thus the spin projections
of the states 2s and 2p in the IPA breaking term should be the same. Hence the space
part of the function describing the two-electron state should be antisymmetric.

The main contribution to the sum over k in the IPA breaking term comes from the
continuum states with momentum p′ close to p. To prove the statement, we introduce
p′ = p + q, and write

〈p, j |Vee|p′, i〉 = 4πα

q2 + λ2
〈 j |eiq·r|i〉 . (7.144)

Recall that λ → 0 is introduced to avoid divergence in integrations over q at the
lower limit. It vanishes in the final expressions for the cross sections. The last factor
decreases rapidly for q � μL . Thus we can put

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Fig. 7.1 The main IPA breaking contribution to the amplitude of the high-energy photoionization
of the 2p state. Solid lines stand for electrons, p labels the photoelectron carrying momentum p.
The helix line is for the photon. The dashed line denotes the electron interaction (exchange by
virtual photon) in the final state

〈k, i |γ | j, i〉 = 〈p, i |γ | j, i〉 = f j (7.145)

in the IPA breaking term. This enables us to write

Fi = fi + F (1)
i ; F (1)

i = −
∑
j

f j B ji , (7.146)

where F (1)
i represents the IPA breaking effects caused by the FSI, while

Bji =
∫

d3q

(2π)3

1

ω + ε j − εp+q
· 4πα

q2 + λ2
〈 j |eiq·r|i〉 ≡ 〈 j |B(r)|i〉. (7.147)

We omitted the second term on the RHS of (7.142), since it provides just a correction
to fi due to scattering of the photoelectron on the 2s electron. One can see that the
operator B(r) is just the one defined by (3.66) with p′2 = 2m(ω + ε j ).

The initial-state interaction beyond the effective (self-consistent) field also pro-
vides the IPA breaking effect, mixing the 2s, 2p two-electron state with a 2s, k state,
where k labels an unoccupied p state of the discrete or continuum spectrum. The
corresponding amplitude written in the lowest order of perturbation theory is

Fin
2p = Sk fkG

(2s)
k,2p; G(2s)

k,2p = 〈k, 2s|Vee|2p, 2s〉
ε2p − εk

. (7.148)

If the state k belongs to the discrete spectrum, then fk is the IPA amplitude of
photoionization. If it belongs to the continuum, then fk is the amplitude of the
absorption of the photon by the electron moving in the field of the atom. Unlike
the FSI case, the IPA breaking amplitude Fin

2p can be calculated only numerically.
We expect the contribution to be small, since the amplitudes of ionization from
excited states are small. For the heavy atoms with large Z , it is quenched by a factor
mα/μL ∼ 1/Z . In any case, a large value of IPA breaking effects in the initial state

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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would mean that single-particle representation is not a good approximation for this
state. We shall neglect these contributions in our equations. We shall estimate the
contribution of the IPA breaking terms in the initial state for the special case of
ionization of the L shell of neon several paragraphs below.

Employing the results of Sect. 3.2, we obtain

Bji = iξeeS ji , (7.149)

with Sji = 〈 j | ln (r − rz)λ|i〉 = 〈 j | ln (rλ(1 − t))|i〉; see (3.71). Here the direction
of the photoelectron momentum is chosen as the axis of quantization of the angular
momentum. Writing ln (rλ(1 − t)) = ln (rλ) + ln (1 − t), we note that the term
ln (rλ) vanishes due to the orthogonality of the angular parts of the wave functions.
Thus

Sji = 〈 j | ln (1 − t)|i〉 , (7.150)

and
Fi = fi − iξee f j S ji . (7.151)

Direct calculation provides

S200,21m = b1d2s,2pδm0 , (7.152)

with

b1 =
√
3

2

∫ 1

−1
dtt ln (1 − t) = −

√
3

2
, (7.153)

while

d2s,2p =
∫ ∞

0
drr2ψr

2s(r)ψ
r
2p(r) (7.154)

is the overlap integral of the radial functions with angular momenta 1 and 0. Note that
the matrix element S200,21m obtains a nonzero value only for the state with m = 0.

We use a conventional definition in which the bound-state wave functions with
m = 0 are real. Since the amplitude of photoionization of a p state with m = 0
contains the factor i , both terms on the RHS of (7.151) are purely imaginary. The
squared amplitude for ionization of the state i = 2, 1, 0 can be written as

|Fi |2 = | fi |2 − 2Re(iξee f j S ji f
∗
i ) + ξ 2

ee| f j S ji |2. (7.155)

The asymptotics of the photoionization amplitude from a p state with m = 0 can be
represented as fi = −i f̂i with Im f̂i = 0. Thus (7.155) can be written in terms of
real variables as

|Fi |2 = | fi |2 + 2ξee f j S ji f̂i + ξ 2
ee| f j S ji |2. (7.156)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Now we can carry out integration over the angular variables and consider the IPA
breaking effects in terms of the cross sections. This is possible, since the angular
dependence of the amplitude f2s is determined by the product of e · n and n = p/p.
For the amplitude f2p of photoionization from the state with azimuthal quantum
number m there are two terms, proportional to em and to (e · n)nm . For the axis
of quantization of the angular momentum along the vector n and m = 0, all three
structures coincide, being just ez . The influence of 2s electrons on the photoionization
of 2p electrons can be written as [19]

σ2p(ω)

σ I
2p(ω)

= 1 + 2ξeeb1d2s,2p

√
RI
21(ω)

3
+ ξ 2

eeb
2
1d

2
2s,2p R

I
21(ω). (7.157)

Only two of six 2p electrons (those with m = 0) contribute to the IPA breaking
amplitude. Note that (7.157) is true also for the multicharged ions that have n < 6
electrons in the 2p state, with RI

21 the IPA cross section ratio for this ion.
An analysis analogous to that carried out in Chap.3 shows that the amplitude

F (1)
2p has also a small real part with ReF (1)

2p ∼ (μL/p) · ImF (1)
2p � ImF (1)

2p . Also, the

second-order perturbative amplitude F (2)
2p ismostly realwithRe F (2)

2p ∼ ξeeIm F (1)
2p �

Im F (1)
2p . These terms do not interfere with those on the RHS of (7.146), providing

small corrections of order μ2
b/p

2 and ξ 2 to the IPA breaking terms on the RHS of
(7.157).

Recall that ξee = (I1/ω)1/2 with I1 = 13.6eV. Therefore, if the IPA cross section
ratio exhibits the asymptotic behavior

RI
21(ω) = aIω , (7.158)

where aI does not depend on ω, the RHS of (7.157) does not depend on the photon
energy ω. Introducing the dimensionless parameter κ = (aI I1)1/2, we obtain

σ2p(ω)

σ I
2p(ω)

= 1 + 2b1d2s,2p√
3

κ + b21d
2
2s,2pκ

2, (7.159)

and the RHS does not depend on ω.
Nowwe study the influence of 2p electrons on the photoionization of 2s electrons.

We can write, similar to (7.155),

|Fj |2 = | f j |2 − 2Re(iξee fi Si j f
∗
j ) + ξ 2

ee| fi Si j |2, (7.160)

with Si j = Sji . Comparing (7.155) and (7.160), one can see that the second terms on
the RHS contain the amplitudes f ∗

2p and f2p respectively. Thus they have different
signs, and

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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σ2s(ω)

σ I
2s(ω)

= 1 − 2ξee
b1d2s,2p√
3RI

21(ω)

+ ξ 2
ee

b21d
2
2s,2p

3RI
21(ω)

. (7.161)

If (7.158) is satisfied, we obtain

σ2s(ω)

σ I
2s(ω)

= 1 − 2

√
I1
3aI

b1d2s,2p
ω

+ I1
3aI

b21d
2
2s,2p

ω2
. (7.162)

Thus the IPA breaking effects vanish in the asymptotics.
How do the IPA breaking effects change the asymptotic law given by (7.158)?

Employing (7.159) and (7.162), we obtain

R21(ω) = aω + b + c/ω . (7.163)

Here

a = aI

K
; b = −2

κ√
3

b1d2s,2p
K

; c = I1
b21d

2
2s,2p

3K
, (7.164)

where,
K = 1 + 2b1d2s,2p

κ√
3

+ b21d
2
2s,2pκ

2, (7.165)

is the RHS of (7.159). The last term on the RHS of (7.163) can be neglected, since
ω � I1. Thus the dependence R21(ω) remains linear. The value of b1 is given by
(7.153). As to the overlap matrix element d2s,2p defined by (7.154), its calculation
with the Coulomb functions give d2s,2p = −√

3/2 ≈ −0.87 for every value of the
nuclear charge Z , andwe can expect that its Hartree–Fock value is always negative as
well. Since b1 is also negative, we find that K > 1. Hence, the correlations diminish
the slope of the line (7.158) and shift it downward.

We return to ionization of neon, which we mentioned at the beginning of this
section. The HF calculations provide the behavior (7.158) for the photon energies
between 0.7 and 1.0keVwith aI = 2.19 keV−1. Hencewe can put κ = 0.17. TheHF
computation provides d2s,2p = −0.95. We obtain K −1 = 0.19 from correlations in
the final state determined by (7.157) and (7.162). An additional contribution −0.02
to K − 1 comes from correlations in the initial state; see (7.157). Thus we arrive at
the value K = 1.17. Hence, in (7.163),

a = 1.87 keV−1; b = −0.14 , (7.166)

which is much closer to the observed values; see Fig. 7.2.



190 7 Photoionization of Atoms

Fig. 7.2 Ratio of the 2s to
2p photoionization cross
sections for neon. The dots
and large circles are the
experimental data obtained
in [18] and [20] respectively.
The solid line shows the
results based on the
perturbative calculations
described in the text. The
dashed and chain curves are
results obtained in [19] in the
Hartree–Fock and RPAE
approximations respectively
[19]

7.4.2 Random Phase Approximation with Exchange

In the calculations carried in the previous subsubsection, we actually calculated the
sum ∑

k

|k, j〉〈k, j |
ω + ε j − εk

in the plane-wave basis for the states k. A more accurate approach requires calcula-
tions in which all electrons are moving in the field of the atom.

The IPA amplitude of the process in which an atomic electron is moved from the
single-particle bound state |i〉 to a vacant single-particle state 〈 f |, which can belong
to the discrete or continuum spectrum, is F0 = 〈 f |γ |i〉. We omit the indices of the
other bound electrons, since they do not change their states, contributing only to the
effective field, acting in the states |i〉 and 〈 f |. Now we assume that one of the bound
electrons, i.e., that in state j , can also undergo transitions. The photon can interact
directly with state j , and the interaction between the electrons can push the electron
from state |i〉 to the hole in state | j〉. This leads to the amplitude

F1a =
∑
k

〈 f, j |Vee|i, k〉〈k|γ | j〉
ω + ε j − εk + iδ

, (7.167)

with the two-particle matrix element of the ee interaction given by (7.143). Here the
photon interacts directly with the electron in state j , transferring it to an unoccupied
state k. The electron interaction moves it to the hole in state j and pushes the electron
from state i to the continuum. The amplitude
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F1b = −
∑
k

〈 j, f |Vee|i, k〉〈k|γ | j〉
ω + ε j − εk + iδ

, (7.168)

with permutation 〈 f, j | → 〈 j, f |, describes the process in which the photoelectron
knocked out from state j moves to the continuum, also pushing the bound electron
from state i to the hole in state j . One can see that the process considered in Sect. 7.4.1
is described by the amplitude F1b with i = 2, 1, 0, j = 2, 0, 0, and 〈 f | = 〈p|.

Another possibility is that the interaction Vee transfers the electrons from the
bound states |i〉 and | j〉 to unoccupied states 〈 f | and 〈k|. The latter can belong to
the discrete or continuum spectrum. The photon interacts with the electron in state
〈k|, pushing it back to the hole in state j . The amplitude is

F2a =
∑
k

〈 j |γ |k〉〈k, f |Vee| j, i〉
−ω + ε j − εk + iδ

. (7.169)

The replacement |i, j〉 → −| j, i〉 provides the amplitude F2b. These contributions
to the amplitude are shown in Fig. 7.3.

We denote the amplitude by

F = F0 + F1a + F1b + F2a + F2b , (7.170)

Fig. 7.3 The Feynman diagram for photoionization of the bound state i in the random phase
approximation with exchange (RPAE). The photoelectron is labeled by f . The diagram 0 is for
direct interaction of the photon with the electron in state i . In diagram 1a, the photon interacts with
a bound electron in state j , moving it to an unoccupied intermediate state. In next step, the electron
moves back to state j , transferring the energy to the bound electron in state i . The latter is moved
to the continuum. In the exchange diagram 1b, the photon also creates a hole in state j . The bound
electron moves from state i to the vacancy in state j , transferring the energy to the photoelectron. In
the diagrams 2a and 2b, the electron interaction mixes the two-electron state of the bound electrons
i and j to the vacant states k and f , and the photon moves the electron from state k to the vacancy
in state j . Diagram 2b differs from 2a by a permutation of the initial single-particle states i and j
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summed over all bound states j as F = 〈 f |M |i〉, where M can be treated as the
operator of the γ e interaction beyond the IPA. Thus we obtain

〈 f |M |i〉 = 〈 f |γ |i〉 +
∑
k, j

〈 f̃ , j̃ |Vee|i, k〉〈k|γ | j〉
ω + ε j − εk + iδ

+
∑
k, j

〈 j |γ |k〉〈k, f |Vee| j̃, ĩ〉
−ω + ε j − εk + iδ

,

(7.171)
with 〈ã, b̃| = 〈a, b| − 〈b, a|. In (7.171), the sum is carried out over all occupied
states j and over all vacant states k.

This equation presents the amplitude of the transition between a bound state and
a vacant state with the IPA effects included in the lowest order of the perturbative
theory. It can be treated as the first iteration of the general equation that ties the
amplitudes of the bound-to-vacant transitions of the electron,

〈 f |M |i〉 = 〈 f |γ |i〉 +
∑
k, j

〈 f̃ , j̃ |Vee|i, k〉〈k|M | j〉
ω + ε j − εk + iδ

+
∑
k, j

〈 j |M |k〉〈k, f |Vee| j̃, ĩ〉
−ω + ε j − εk + iδ

.

(7.172)
This equation with the Hartree–Fock functions as the single-particle basis forms the
“random phase approximation with exchange” (RPAE). The approach in which the
exchange terms are neglected, i.e., 〈 f̃ , j̃ | = 〈 f, j |; 〈 j̃, ĩ | = 〈 j, i |, is known as the
“random phase approximation” (RPA). Derivation of (7.172) is given in a number of
books; see, e.g., [21, 22]. Therefore, we do not repeat it here.

The calculations pioneered by Amusia and his collaborators [22] demonstrated
that the RPAE succeeds in describing the correlation effects in the low-energy pho-
toionization. Note a strong point of the approach: the length and velocity forms
of the electron–photon interactions are equivalent. After photoionization has taken
place, the effective field felt by the electron–spectators changes. The RPAE does not
account for this effect. It is included in the generalized version of the RPAE known
as the GRPAE [23].

One can see that it workswell for investigations of the correlations at high energies
also. The results of the RPAE calculations for ionization of the L shell of neon
are presented in Fig. 7.2. The amplitude F1b dominates, since at amplitude F1a ,
the electron interaction transfers large energy. Therefore, inclusion of the exchange
terms is of crucial importance. Below, we shall meet also the relativistic version of
the random phase approximation (RRPA) [24], based on the Dirac wave equation.
The relativistic approach becomes increasingly important for the internal shells of
heavy atoms.

Note, however, that theRPAEdoes not pick the terms inwhich the photon connects
two vacant states. Thus, for example, the IPA breaking effects in the initial state
described by (7.147) are not included in RPAE calculations and should be analyzed
separately.
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7.4.3 Correlations in the Higher Subshells

Now we consider the higher subshells, which contain the states with the angular
momenta � > 1. We focus on their correlations with the s electrons of the same
subshell.

The lowest-order IPAbreaking amplitude is described by (7.151)with i = n, �,m,
j = n, 0, 0, where

Sji = b�dn0,n�δm0 , (7.173)

with

dn0,n� =
∫ ∞

0
drr2ψr

ns(r)ψ
r
n�(r) , (7.174)

while

b� =
√
2� + 1

2
X�; X� =

∫ 1

−1
dt P�(t) ln (1 − t) , (7.175)

where P�(t) is the Legendre polynomial. Employing the Rodrigues formula [25]

P�(t) = 1

2� · �!
d�

dt�
(t2 − 1)�, (7.176)

and integrating � times by parts, one can find that X� = −2/�(� + 1) for � > 0, and

b� = −
√
2� + 1

�(� + 1)
. (7.177)

The squared amplitude is described by (7.155) for every value of �. However, the
second term on the RHS, which describes the interference between the IPA and IPA
breaking amplitudes, has a nonzero value only for odd values of �. This is because
the IPA amplitude contains the factor i�, while the leading IPA breaking amplitude
is mostly imaginary. There is no interference in the case of even values of �, and this
term vanishes.

Thus for odd values of �, the influence of the ns electron on the cross section of
ionization of n� states is

σn�(ω)

σ I
n�(ω)

= 1 + 2ξeeb�dn0,n�

√
RI
n�(ω)

2� + 1
+ ξ 2

eeb
2
�d

2
n0,n�R

I
n�(ω), (7.178)

while the influence of n� electrons on ionization of ns states can be written as

σns(ω)

σ I
ns(ω)

= 1 − 2ξee
b�dn0,n�√

(2� + 1)RI
n�(ω)

+ ξ 2
ee

b2�d
2
n0,n�√

(2� + 1)RI
n�(ω)

. (7.179)
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Fig. 7.4 Ratio of the 3s to
3p photoionization cross
section for argon. The dots
show the experimental data
obtained in [26]. The solid
line shows the results based
on perturbative calculations
described in the text. The
dashed and chain curves are
results obtained in [19] in the
Hartree–Fock and RPAE
approximations respectively
[19]

An instructive example is provided by photoionization of the 3p state in argon by
photons carrying energies of about 1keV [26]; see Fig. 7.4. One can see that there
is a large discrepancy between the experimental data and the results of the IPA HF
calculations. The HF value of the 3s to 3p photoionization ratio at ω = 1 keV is
R31 = 0.78. Employing (7.178) and (7.179), we find that since R31 < 1, the influence
of the 3p electron on the ionization of the 3s state is larger than that of the 3s electron
on the ionization of the 3p state. The IPA breaking effects diminish the slope of the
IPA curve and shift it downward. The IPA breaking effects in ionization of the 3s and
3p states add −0.090 and −0.077 respectively to R31. This provides R31 = 0.61.
Note that the RPAE value is R31 = 0.58.

For even values of �,

σn�(ω)

σ I
n�(ω)

= 1 + ξ 2
eeb

2
�d

2
n0,n�R

I
n0(ω), (7.180)

with dn0,n� and b� determined by (7.174) and (7.177). Although at large energies
for � ≥ 2, the last terms on the RHS of (7.178) and (7.180) dominate, one cannot
discriminate other contributions at finite energies, since the factors b2� and d2

�0 can
be small. For example, b22 ≈ 0.14. Note that in such a way, one can find correlations
between the electrons with any orbital momenta � and �′.

In Fig. 7.5, we demonstrate an example illustrating the correlations in the M shell
in the ionization of krypton (Z = 36) by photons with energies in the region of 1keV.
The RRPA calculations of the cross section ratios demonstrate that the correlations
provide a noticeable contribution and improve agreement with the experimental data
[27].
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Fig. 7.5 Ratio among 3s,
3p, and 3d cross sections of
Kr. The points are the
experimental data obtained
in [27]. The solid and dashed
curves show the theoretical
results for the fully coupled
RRPA) and RRPA with
couplings between different
subshells omitted. The
horizontal axis is for the
photon energies in eV.
Reproduced from [27] with
permission of AIP

7.4.4 Intershell Correlations

If the photon energy is much larger than the binding energies of the states i = n, �,m
and j = n′, �′,m ′, the amplitude that includes correlations between these sates is
given by (7.151) with

Sji = sn′�′,n�δm ′m; sn′�′,n� = b�′�dn′�′,n�, (7.181)

where

dn′�′,n� =
∫ ∞

0
drr2ψr

n′�′(r)ψr
n�(r) , (7.182)

while

b�′� =
√

(2�′ + 1)(2� + 1)

2

∫ 1

−1
dt P�′(t)P�(t) ln (1 − t). (7.183)

The squared amplitude of photoionization of the state |i〉, which includes correlations
with states j , is

|Fi |2 = | fi |2 + 2Re
∑
j

(iξee f j S ji f
∗
i ) + ξ 2

ee|
∑
j

f j S ji |2. (7.184)

To express (7.184) in terms of the cross sections, we must take into account that
some of the contributions to the RHS vanish, since the amplitudes of photoionization
of states with orbital momenta � contain the factors i�. Also, the azimuthal quantum
numbers of the electrons participating in correlations should be the same, i.e., m =
m ′ = m ′′. Denote the state n′, �′,m ′ by j ′, and define θ��′ = (1− (−1)�−�′

)/2. Thus
θ��′ = 1 for odd values of �−�′, turning to zero for even values of this difference. The
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cross section of photoionization of a state i with orbital momentum � that includes
correlation with the states having momenta �′, �′′ < � can be written as

σi = σ I
i + 2ξee

∑
j ′

s j ′i
(
σ I
i σ I

j ′ N j ′i

)1/2
θ��′ + ξ 2

ee

∑
j ′, j ′′

s j ′i s j ′′i (1 − θ�′�′′)
(
σ I
j ′σ

I
j ′′

)1/2
.

(7.185)
Here s j ′i = b�′�dn′�′,n�, and the factor N j ′i = (2�′ + 1)/(2� + 1) reflects the fact that
only the terms with m ′ = m contribute to the second term on the RHS.

Now we consider the case of very high photon energies, which exceed strongly
the binding energy in the K shell. The RPAE calculations of 2p photoionization of
nitrogen and neon for energies up to 10keV [28] demonstrated a strong cancellation
between correlations with the 2s and 1s states in the angular distributions of the
photoelectrons. Now we demonstrate that in our perturbative approach, such cancel-
lation takes place at the amplitude level. We show also that this is a general tendency
[29].

Note first that when we include the inner shells, the whole picture becomes more
complicated. For example, the photon can interact directly with the 2s electron,
while the 1s electron undergoes shakeup into the hole in the 2s state of the ion.
The latter step is described by the overlap matrix element 〈ψ ′r

2s |ψr
1s〉, with ψ ′r

2s the
radial wave function of the 2s electron in the field of the ion. In the final step, the
photoelectron pushes the 2p electron to the 1s hole of the final-state ion. We can
neglect the contribution of such channels, assuming that |〈ψ ′r

n′s |ψr
ns〉| � 1. Under this

assumption, the inclusive cross section with the sum over all possible states of the
final ion coincides with the exclusive cross section in which the spectator electrons
do not undergo transitions.

We begin with ionization of the 2p state. The term with i = 2, 1, 0 on the RHS of
(7.151) contains the factor d2s,2p. Its value for Z = 1 is −0.87. The HF calculation
provides d2s,2p = −0.91 for Z = 5, becoming closer to −1 for larger Z . The
corresponding factor d1s,2p for correlation with the 1s state is positive, since the
function ψr

1s is always positive, while the function ψr
2p is positive except at the

point r = 0, where it becomes zero. These two contributions have different signs,
exhibiting the tendency to cancellation.Correlationswith othern′s (n′ ≥ 2) electrons,
if there are any, aremuch smaller. This happens for two reasons. The high-energy IPA
amplitudes fn′s decrease with n′. Also, closure requires that Sx |〈ψr

xs |ψr
2p〉|2 = 1,

with summation over states of both the discrete and continuum spectra. Thus the
values of d2s,2p and d1s,2p (the Coulomb value is 0.48 in the latter case) almost
saturate the closure condition, and the values of the overlap integrals dn′s,2p with
n′ > 1 are much smaller. Hence only correlations with 2s and 1s electrons are
important. For the same reason, in ionization of the np state, the correlations with
ns and 1s electrons are the largest.

Now we analyze the influence of the s electrons from various n′ shells on the
cross section of ionization of the np states. We can write (7.185) as
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σnp = σ I
np + 2ξee

∑
j ′

s j ′i (
σ I
i σ I

j ′

3
)1/2 + ξ 2

ee

∑
j ′, j ′′

s j ′i s j ′′i (σ
I
j ′σ

I
j ′′)

1/2, (7.186)

with j ′ and j ′′ denoting the n′s and n′′s states respectively. We can rearrange the
RHS as

σnp = σ I
np + 2ξee

[ ∑
j ′

s j ′i
(σ I

i σ I
j ′

3

)1/2 + ξee

2
s2j ′iσ

I
j ′

]
+ ξ 2

ee

∑
j ′ �= j ′′

s j ′i s j ′′i (σ
I
j ′σ

I
j ′′)

1/2.

(7.187)
Here the term in square brackets on theRHSdescribes the “individual” contribution to
the IPA breaking effect of n′s electrons, while the last term provides the interference
of correlations with n′s and n′′s electrons. In the asymptotics, the RHS does not
depend on ω, and the correlation effects change the slope r In of the line Rn1 ≡
σns/σnp = aI

nω to an1 = aI
n1/K . Putting K = 1 + λ, we can write

λ =
∑
n′

λn′ +
∑
n′′ �=n′

τn′,n′′ . (7.188)

Here each λn′ is the contribution of an n′s electron; the sum
∑

n′ λn′ corresponds to
the term in square brackets on the RHS of (7.187). The cross terms τn′,n′′ contain the
products of contributions of n′s and n′′s electrons. The sum

∑
n′′ �=n′ τn′,n′′ corresponds

to the third term on the RHS of (7.187).
We use (7.188) to analyze the interplay of the partial contributions. For nitrogen,

we have λ1 = −0.29, λ2 = 0.44, while τ1,2 = −0.23. Thus λ = −0.08. For neon,
λ1 = −0.17, λ2 = 0.18, while τ1,2 = −0.03, providing λ = −0.02. The correlations
of the 2p electrons with those in the 2s and 1s states compensate each other to a large
extent. For ionization of the 3p state in argon, λ1 = 0.086, λ3 = −0.077, while the
other parameters are much smaller. Thus we face the tendency of compensation of
the correlations once again.

Ionization of 3d electrons in titanium (Z = 22) provides another illustration of
the tendency. Nonrelativistic calculations carried out for ω = 50 keV gave λ ≈ 0.04,
while the individual contributions are about ten times larger.

7.4.5 Nonrelativistic High-Energy Asymptotics

Now we calculate the leading terms of the expansion in powers of 1/ω of the cross
sections for ionization of n� states beyond the IPA. As we have seen in Sect. 7.1.3,
the IPA amplitudes have a common factor h(ξ) representing the dependence on the
parameter πξ -(7.37). Thus the IPA cross sections contain the factor D(ξ) = h2(ξ);
see (7.41). Since we presented the IPA breaking amplitudes as linear combinations
of the IPA amplitudes, the cross section beyond the IPA will also contain the factor
D(ξ).
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We begin with IPA breaking effects in the final state. As we have seen, in the case
of s states, the IPA breaking effects manifest themselves beyond the leading terms
of the asymptotics. The cross section can be expressed by (7.44) with � = 0,

σn0(ω) = An0D(ξ̂ )

ω7/2
, (7.189)

with An0 equal to its IPA value An0, i.e., An0 = An0.
For the states with � = 1, the IPA and IPA breaking terms depend on the photon

energy in the same way. Thus all the terms on the RHS of (7.155) contribute to the
asymptotics. Also, only correlations with s states contribute to the asymptotics. We
obtain

σn1(ω) = An1D(ξ̂ )

ω9/2
. (7.190)

Now An1 differs from its IPA value An1:

An1 = An1 + 2b1
∑
n′

dn′0,n1

( An1An′0 I1
3

)1/2 + I1b
2
1

( ∑
n′

dn′0,n1A
1/2
n′0

)2

, (7.191)

with the sum over all occupied n′s states, and I1 = mα2/2 ≈ 13.6eV.
For � ≥ 1, the asymptotics are determined by the IPA breaking contribution,

expressed by the last term on the RHS of (7.190). As in the case � = 1, only
correlations with s states contribute to the asymptotics. We obtain

σn�(ω) = An�D(ξ̂ )

ω9/2
, (7.192)

with

An� = I1b
2
�

( ∑
n′

(dn′0,n�A
1/2
n′0

)2

. (7.193)

The amplitudedescribing the IPAbreaking in the initial state for photoionizationof
2p states is given by (7.147).A similar equation can bewritten for the photoionization
of any n� state. The n� electron can be transferred to a vacant n′� state by the ee
interaction. In the next step, it undergoes direct interaction with the photon. The
amplitude has the same energy dependence as the IPA amplitude. This mechanism
contributes to the terms beyond the asymptotics if � > 1. For � = 0, 1, it should
be included. However, usually it is numerically small, due to the small amplitude
of photoionization from the excited states. For strongly bound states with binding
energies εb � I1, it is quenched by the factor mα/μn�. In any case, in the high-
energy limit, the amplitude of photoionization can be expressed in terms of a single
parameter that is the derivative of the wave function of this state at the origin. Hence,
the IPA breaking effect in the initial state can be treated as a certain renormalization
of the single-particle wave function.
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Thus the IPA breaking effects do not alter the asymptotic law for s states. For p
states they do not change the energy dependence of the cross section, but modify
the coefficient of the asymptotics. For � ≥ 2, the IPA breaking effects determine the
asymptotics and change their energy dependence from D(ξ)/ω7/2+� to D(ξ)/ω9/2

[30].

7.4.6 Peculiarities of the Relativistic Case

Nowwe consider the correlations for relativistic photoelectrons. The ratioω/m is no
longer a small parameter. As in the nonrelativistic case, the q dependence of the IPA
amplitudes contains the factor (μn�/q)�. However, nowone cannot neglect the photon
momentum k in the expression for the recoil momentum q = |k − p|. Employing
the results of Sect. 7.4.3, one can see that (7.156), or more generally (7.184), which
presents the squared IPA breaking amplitude in terms of the IPA amplitudes, is true
in the relativistic case. However, the relation between the amplitudes and the cross
sections is not as simple as in the nonrelativistic case. It requires a complicated
angular integration.

Recall that in the nonrelativistic case, the second term on the RHS of (7.155)
vanishes for even values of �, since the bound-state wave functions are real. The
relativistic amplitudes contain both real and imaginary parts of the same order of
magnitude for all values of �. Neither part can be neglected without a more detailed
analysis.

Employing the results of Sect. 7.4.1, we can estimate the IPA breaking corrections
to the cross sections as

σn�(ω) − σ
(I )
n� (ω)

σ
(I )
n� (ω)

∼ α

ζ �
n�

; α2

ζ 2�
n�

, (7.194)

with ζn� = μn�/m. The first and second terms on the RHS correspond to the second
and third terms on the RHS of (7.155). In the hydrogenlike approximation, ζn� =
αZ/n, and

σn�(ω) − σ
(I )
n� (ω)

σ
(I )
n� (ω)

∼ α

(αZ)�
; α2

(αZ)2�
. (7.195)

Here we do not trace the n dependence.
Thus in the ionization of s states, the IPA breaking effects provide small correc-

tions of order α, i.e., of the same order as the relativistic corrections. In the ionization
of p states, the IPA breaking effects are of order 1/Z , being determined by the second
term on the RHS of (7.155). The third term provides a correction of order 1/Z2. For
higher values of �, one cannot make a definite conclusion about the relative role of
the two terms. The relative role of the third term with respect to the second one can
be described by the parameter γ� = (αZ)1−�/Z . We obtain γ2 = 0.31 and γ3 = 0.10
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for the lightest atoms containing d and f electrons with the charges of the nuclei
Z = 21 and Z = 57 respectively. Thus one cannot neglect the third term on the RHS
of (7.184) without additional analysis.

In the ultrarelativistic limitω � m, the energy dependence of the photoionization
amplitudes is the same for all bound states. Thus the left-hand sides of (7.194) and
(7.195) do not depend on ω.

The strong cancellation between the partial contributions to the correlations in
the nonrelativistic case makes the relativistic calculations increasingly important.
For example, in the ionization of neon and argon at energies of about 70keV, the
relativistic corrections to contributions of correlations of the electrons from different
shells are of order 0.14. However, these corrections become of order the total correla-
tion effect, calculated in the nonrelativistic approximation. It is still not clear whether
the cancellations obtained in the nonrelativistic approximation still take place after
taking relativistic effects into account.
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Chapter 8
Ionization and Excitation by Photon Impact
at Higher Energies

Abstract Since the nonrelativistic photoionization cross section decreases rapidly
with an increase of the photon energy, the higher-order processes dominate in the
formation of ions at larger values of photon energy. We carry out relativistic analy-
sis of the second- and third-order processes. If the photon energy is large enough,
the Compton scattering becomes the dominant mechanism for creation of ions. We
show that the seagull term of the nonrelativistic Compton scattering amplitude can
be viewed as the contribution of the negative-energy intermediate states in the rel-
ativistic amplitude. We obtain the general equations for the characteristics of the
Compton scattering on the Bethe ridge and show their connection with equations of
the impulse approximation. Employing the results obtained in Chap.4, we obtain the
differential distributions outside the Bethe ridge. We demonstrate the infrared sta-
bility of the sum of the contribution to the Compton scattering cross section coming
from the soft scattered photons and the photoionization cross section that includes the
radiative corrections. At still larger photon energies exceeding certain value ω0, the
ions are produced mainly accompanied by the creation of electron–positron pairs.
We determine the energy distribution of the electrons ejected due to this mecha-
nism. We calculate the dependence of ω0 on the value of the nuclear charge Z for
the single-electron ions and for the atoms containing Z electrons. We find also the
photon energy region where this mechanism dominates in the creation of excited
atoms.

8.1 Compton Scattering

8.1.1 Interpretation of the Seagull Term

In both photoeffect and Compton scattering, the final state contains an ion. At low
energies, the photoelectric effect dominates, while the relative contribution of the
Compton scattering is of order the fine-structure constant α. As we have seen, at very
large energies the ratio of the cross sections of these processes,R(ω) = σC(ω)/σph(ω)

(in this section, the lower indexC stands for “Compton”), is of order α/(αZ)5, which
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is larger than unity for Z ≤ 52. The cross section of the Compton scattering is larger
than that of the photoeffect for ω > ω1(Z). The value of ω1 amounts to several
kilo-electron volts for the lightest atoms, becoming about 1MeV for the heaviest
ones [1].

Before calculating the cross section σC , we discuss the matching of the general
relativistic approach with the nonrelativistic one. The relativistic amplitude of the
Compton scattering in the single-particle approximation can be written as [2]

FC = −N(ω1)N(ω2)X;

X =
∫

d3f1
(2π)3

d3f2
(2π)3

[
〈ψf |f2 − k2〉ê∗

2〈f2|G(ω1 + Ei)|f1〉ê1〈f1 − k1|ψi〉 + (8.1)

+〈ψf |f2 + k1〉ê1〈f2|G(−ω2 + Ei)|f1〉ê∗
2〈f1 + k2|ψi〉

]
,

withG the relativistic electron propagator in the atomic field. The polarization vectors
ek have only the space components, and thus êk = −(ek)iγi, (i = 1, 2, 3). The first
term describes the process in which the absorption of a photon with energy ω1 by an
atomic electron is followed by radiation of a photon with energy ω2. In the second
term, the radiation precedes the absorption. In the nonrelativistic limit (see Sect. 5.4),
we have also the A2 or seagull term with absorption and radiation at the same point.

To find the nonrelativistic limit of the amplitude (8.1), we present each propagator
as the sum of the contributions of the positive-energy and negative-energy states:

G(E) = G+(E) + G−(E); G+ =
∑
s

|ψs〉〈ψs|
E − Es + iδ

; G− =
∑
q

|ψq〉〈ψq|
E − Eq − iδ

.

(8.2)

Here s denote the states with Es > 0, while q stand for the states with Eq < 0
(actually, Eq < −m). The amplitude can be written as F+

C + F−
C , with the two terms

corresponding to the two terms on the RHS of the first equality in (8.2).
In the nonrelativistic limitω1,2 � m, the energies of the final-state and initial-state

electronsEf ,i should be close tom, i.e., |Ef ,i−m| � m. In this limit, the amplitudeF+
C

describes the nonrelativistic pole contributions. Now we focus on the contribution
F−
C = −N(ω1)N(ω2)X−; of the intermediate states with negative energies Eq:

X−
C =

∫
d3f1

(2π)3

d3f2
(2π)3

[ ∑
q

〈ψf |f2 − k2〉ê∗
2〈f2|ψq〉〈ψq|f1〉ê1〈f1 − k1|ψi〉

ω1 + Ei − Eq − iδ
+

+
∑
q

〈ψf |f2 + k1〉ê1〈f2|ψq〉〈ψq|f1〉ê∗
2〈f1 + k2|ψi〉

−ω2 + Ei − Eq − iδ

]
. (8.3)

Note that the sum over the states |ψq〉 is saturated by those with three-dimensional
momenta q = |q| � m. This is because the bound states determine important values

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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of momenta f1 ∼ μb � m, and the wave functions 〈f1|ψq〉 are strongly quenched at
q >∼ m. Thus we can put Eq = −m in the denominators of both terms on the RHS of
(8.3), which become Ei − Eq ≈ 2m. Also, we can neglect the terms corresponding
to the kinetic and potential energies in the wave equation for ψq, which is just
(γ0 + 1)|ψq〉 = 0. Hence we can put

|ψq〉 = 1 − γ0

2
|ψq〉 , (8.4)

and write

X−
C = 1

4m

∫
d3f1
(2π)3

d3f2
(2π)3

[ ∑
q

〈ψf |f2 − k2〉ê∗2(1 − γ0)〈f2|ψq〉〈ψq|f1〉ê1〈f1 − k1|ψi〉 +

+
∑
q

〈ψf |f2 + k1〉ê1(1 − γ0)〈f2|ψq〉〈ψq|f1〉ê∗2〈f1 + k2|ψi〉
]
. (8.5)

To evaluate the sum over the negative energy states, we employ the closure con-
dition ∑

s

|ψs〉〈ψs| +
∑
q

|ψq〉〈ψq| = 1, (8.6)

and replace
∑

q |ψq〉〈ψq| by 1−∑
s |ψs〉〈ψs| on the RHS of (8.5). In the sum over the

positive energy states, those with large momentum s = |s| >∼ m are quenched, since
the integrals are determined by f1,2 ∼ μb � m. For the states with s � m, we obtain
(1 − γ0)|ψs〉 = 0 in the nonrelativistic limit. Thus we can put

∑
q |ψq〉〈ψq| = 1 on

the RHS of (8.5), and
∑

q〈f2|ψq〉〈ψq|f1〉 = (2π)3δ(f1 − f2). Integrating over f2 and
changing the variable f1 of integration in the second term on the RHS of (8.5) to
f1 − k1 − k2, we obtain

F−
C = −N(ω1)N(ω2)

4m

∫
d3f1

(2π)3
〈ψf |f1 − k2〉

(
ê∗
2(1 − γ0)ê1 + ê1(1 − γ0)ê

∗
2

)
〈f1 − k1|ψi〉.

(8.7)

Now we employ the commutation relations γ0ê1,2 = −ê1,2γ0 and ê∗
2ê1 + ê1ê∗

2 =
2e∗

2e1 = −2e∗
2e1. Since also in the nonrelativistic limit γ0|ψi〉 = |ψi〉, we find that

F−
C = e∗

2 · e1
m

N(ω1)N(ω2)

∫
d3f1

(2π)3
〈ψf |f1 − k2〉〈f1 − k1|ψi〉. (8.8)

Replacing f1 − k1 by f1 in the integrand, we arrive at (5.84) for the seagull term.
Thus the seagull term approximates the sum over the negative energy states in

(8.1). It is amusing that the nonrelativistic Thomson cross section, which corresponds
to the amplitude described by the seagull diagram, is expressed in terms of essentially
relativistic characteristics.

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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8.1.2 Distribution of the Scattered Photons

Recall that we denote momenta and energies of the incoming and scattered photons
by k1,2 and ω1,2 = k1,2 ≡ |k1,2|. The total energies of the initial and outgoing
electrons are Ei and E. Treating the recoil ion as just a source of an external field,
we can write for the differential cross section

dσC = (2π)4|FC(k1,k2)|2δ(ω1 + Ei − E − ω2)dΓ ; dΓ = d3p

(2π)3

d3k2
(2π)3

,

(8.9)

with p the three-dimensional momentum of the outgoing electron, and p = |p|. Con-
sidering the recoil ion to be one of the final-state particles, which obtains momentum
−q, we can write (8.9) in the form

dσC = (2π)4|FC(k1,k2,q)|2δ(ω1 +Ei −E −ω2)δ(k1 +q−k2 −p)dΓ ′, (8.10)

dΓ ′ = d3p

(2π)3

d3k2
(2π)3

d3q

(2π)3
.

The case of soft scattered photons with ω2 � ω1 will be analyzed in Sect. 8.1.4.
Here we focus on the energies of the scattered photons ω2 ∼ ω1.

As we have seen in Chap.2, for large energies

ω1 � μb (8.11)

(in other words, for the case in which the wavelength of the incoming photon is
much smaller than the size of the bound state), the amplitude is enhanced on the
Bethe ridge, where the momentum q transferred to the recoil ion can be as small as
the average binding momentum μb. This requires that the energy of the scattered
photon be not too small:

ω2 ≥ ω1

1 + 2ω1/m
. (8.12)

If also the kinetic energy of the outgoing electron is large enough, ε � Ib, i.e.,
its momentum satisfies the condition p � μb, one can neglect q everywhere except
the bound state wave functionψi in the general equation for the amplitude (8.1). The
latter can be written as [3]

FC(k1,k2,q) = ψi(q)F0(ω1, ω2) , (8.13)

with F0 the amplitude of the Compton scattering on an electron at rest; momentum
q = −k1 +k2 +p is transferred from the nucleus. Further, we omit the lower index i
labeling the wave function of the initial state electron. Note that the accuracy of this
factorized form is μ2

b/ω
2.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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For small q ∼ μb � k1, k2, p, the amplitude FC takes the form determined by
(8.13). Thus (8.10) can be written as

dσC = (2π)4|F0(ω1, ω2)|2|ψ(q)|2δ(ω1 + Ei − E − ω2)δ(k1 − k2 − p)
d3p

(2π)3

d3k2
(2π)3

d3q

(2π)3
.

(8.14)

Here we have neglected momentum q in the argument of the delta function of
the three-dimensional momenta. We also employed that |ψ(−q)|2 = |ψ(q)|2. This
equation can be represented as

dσC = dσ0
|ψ(q)|2d3q

(2π)3
, (8.15)

with dσ0 the cross section of the process on the free electron at rest.
Recall that this relation is true for q <∼ μb. To obtain the distribution of the

scattered photons, we must integrate over q in this region. However, these are the
very values of q that saturate the normalization integral

∫
d3q|ψ(q)|2/(2π)3 = 1.

This enables us to find the energy distribution in the region ofω2 limited by condition
(8.12):

dσC

dω2
= dσ0

dω2
, (8.16)

where the term on the RHS is the energy distribution for the Compton scattering on
the free electron at rest. Note that for ω1 � m, we find from (8.12) that ω1 − ω2 ≤
2ω2

1/m � ω1. Thus for ω1 ∼ μb, the kinetic energy of the outgoing electron is of the
order of the electron binding energy, and its interaction with the atomic field should
be included.

Also, for the total cross section, we obtain for every bound state

σC(ω1) = σ0(ω1) , (8.17)

up to the terms μ2
b/ω

2
1. Thus for the Compton scattering on the atom,

σC(ω1) = Neσ0(ω1) , (8.18)

with Ne the number of bound electrons.
Now we analyze the double differential cross section dσ/dω2dt with t =

k1 · k2/ω1ω2. For Compton scattering on the free electron, the magnitude of the
momentum of a radiated photon and the angle between the momenta of the ejected
particles are linked by (6.154). The distribution is given by theKlein–Nishina formula

dσ0

dω2dt
= U(ω2, t)δ(ω2 − ω20) , (8.19)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
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with

U(ω2, t) = πr20
ω2
2

ω2
1

[
ω1

ω2
+ ω2

ω1
+ t2 − 1

]
, (8.20)

whileω20 is defined by (6.154). For a similar distribution in the free Compton scatter-
ing, there is a single line with frequency ω20 for each scattering angle. For the bound
electrons, one can expect that at a fixed value of the scattering angle, the distribution
has a peak in the vicinity of the point ω20. Introducing κ = k1 − k2, we obtain

dσC

dω2dt
= U(ω20, t)pE

∫
dΩp

(2π)3
|ψ(p − κ)|2; E = ω1 + Ei − ω2 , (8.21)

for |p− κ | <∼ μb � ω1. The integral on the RHS is saturated by small values of the
angle θp between the directions of κ and p. For every fixed value of t, the distribution
reaches its peak at ω2 = ω20, determined by (6.154) shifted by the binding energy.
(An additional shift of relative order α2Z2 was discussed in Sect. 5.3.5 for the special
case of the Coulomb field.)

Many studies of high-energyCompton scattering are based on the impulse approx-
imation,whichwas formulated in its nonrelativistic form in the early days of quantum
mechanics; see, e.g., [4]. Compton scattering on bound electrons is viewed like that
on free electrons with momenta q′ distributed with density ρ(q′) = |ψ(q′)|2. Indeed,
thismeans that the amplitude is described by (8.13). Themomentumq′ in the impulse
approximation is not equivalent to the recoilmomentumq.We demonstrate, however,
that the difference is relatively small.

In the impulse approximation, the energy delta function on the RHS of (8.14) is
used for integration over one of the components of the vector q′. In the nonrelativistic
case, this can be written

δ

(
ω2 + (κ + q′)2

2m
− ω1 − q′2

2m

)
= δ

(
ω2 + κq′

z

m
− ω1 + κ2

2m

)
, (8.22)

where the z-axis runs in the direction of the vector κ . Employing cylindrical coordi-
nates for the vector q′, one can write

dσ

dω2dt
= dσ0

dt

m

κ
j(q′

z), (8.23)

with

j(q′
z) = 2π

∫ ∞

q′
z

|ψ(q′)|2q′dq′ (8.24)

(here we have employed the spherical symmetry of the density |ψ(q′)|2), while

q′
z = −κ

2
+ m(ω1 − ω2)

κ
. (8.25)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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The impulse approximation is justified only on the Bethe ridge, where q <∼ μb,
since outside this region, a momentum q can be transferred to the nucleus not only
by the bound electron, but by the outgoing electron, as well as by the electron in an
intermediate state. In other words, it is expected to describe the distribution in the
vicinity of the peak. On the other hand, at the Bethe ridge the results provided by the
impulse approximation are expected to be close to those obtained by a straightforward
use of (8.13) and (8.14). Proceeding in the same way as in (8.22)–(8.25), we see that
the two approaches differ only in the values of qz, and this difference is small. The
delta function on the RHS of (8.14) can be written as

δ(ω2 + (κ + q)2

2m
− ω1 + Ib) = δ

(
ω2 + κqz

m
− ω1 + Ib + κ2 + q2

2m

)
(8.26)

(Ib > 0). Thus

qz = q′
z − m

κ

(
Ib + q2

2m

)
, (8.27)

where q′
z ∼ μb is the impulse approximation value determined by (8.25). Since at

the Bethe ridge κ ≈ p � μb, we find that (qz − q′
z)/qz ∼ μb/p � 1.

The factorized form of the amplitude (8.13) requires that μb � m. Thus one
cannot expect it toworkwell for theK shells of heavy atoms.However, in the example
presented in Fig. 8.1 [5], the results of the impulse approximation calculations (in
relativistic form) appeared to be close to those of direct computations based on (8.1).

Fig. 8.1 Photon energy distribution at fixed angle θ = 120◦ for the scattering of the unpolarized
photon beam with energy ω1 = 662keV on the target with Z = 82. The boxes show the result of
direct numerical calculations. The dashed line is for the results obtained by employing the relativistic
impulse approximation. The solid line is for the nonrelativistic impulse approximation. Reproduced
from [5] with permission of Elsevier Publishing
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8.1.3 Distribution of Ejected Electrons

We turn now to the distribution of the outgoing electrons. Here we set ε = E−mwith
E the total energy of the ejected electron and te = cos θe with the angle θe between
the direction of momentum of the incoming photon and that of the ejected electron.
For every value of the electron energy limited by condition (6.153), the distribution
dσC/dεdte peaks at te = t0 = cos θ0, where θ0 is the value of θe corresponding to the
free process. The latter is given by (6.190). For the Compton scattering on the free
electron, we obtain, employing (8.19),

dσ0

dεdte
= U(ε, te)δ(ε − ε0) , (8.28)

with ε0 = ω1 − ω2, while U written in terms of the parameters of the outgoing
electron,

U(ε, te) = πr20
ω2
2

ω2
1

[
ω1

ω2
+ ω2

ω1
− p2

ω2
2

(1 − t2e )

]
; ω2 = ω1 − ε. (8.29)

Here the last term in the square brackets is obtained by using the sine theorem
p/ sin θ = k2/ sin θe and k2 = ω2.

The value of the angular distribution in the vicinity of the peak te = t0 can be
obtained in the same way as for the photon distribution; see (8.21):

dσC

dεdte
= U(ε, t0)ω

2
2

∫
dΩ

(2π)3
|ψ(k2 − q1)|2; ω2 = ω1 + Ei − E, (8.30)

with q1 = k1 − p, while Ω is the solid angle of the scattered photon. The vicinity of
the peak is determined by the inequality |k2 − q1| <∼ μb � ω1.

We can calculate the value of this distribution for any value of the angle te if the
energy of the outgoing electron satisfies (6.153). If the values of te are not close to t0,
a large recoil momentum q � μb is transferred to the nucleus. Following the analysis
carried out in Chaps. 4 and 6, we can consider the process as consisting of two steps.
The first is the Compton scattering with small transferred momentum q ∼ μb and
energy ε of the outgoing electron. In the second step, the ejected electron transfers
momentum q � μb to the recoil ion. The energy of the outgoing electron does not
change, while the direction of its momentum does.

Employing (4.50) and (4.53),wefind that the distribution of the outgoing electrons
in energies and in recoil momenta is

dσC

dεdq2
= 〈ψi|r−2|ψi〉

4π
· dσ0

dε
· dσeI(ε)

dq2
. (8.31)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Here dσeI is the cross section for the scattering of the outgoing electron on the
recoil ion, and (8.31) holds in all orders of their interaction. In the Born approxima-
tion,

dσeI(ε)

dq2
= |VeI(q2)|2

2π

E2

p2

(
1 − q2

4E2

)
, (8.32)

where VeI is the interaction between the outgoing electron and the recoil ion. If the
recoil momentum q greatly exceeds the binding momenta of the internal electrons,
it is transferred primarily to the nucleus, and one can put VeI = VeN = −4παZ/q2.

The distribution (8.31) can be written in terms of the angular variables of the
ejected electron. We can write the squared recoil momentum as q2 = 2p2(1 − t′).
Here t′ = cos θ ′, with θ ′ the angle between the momentum of the ejected electron
and that of the outgoing electron with the same energy ε in the Compton scattering
on the free electron. Hence dσeI/dt′ = 2p2/q2 · dσeI/dq2, and

dσC

dεdt′
= 〈ψi|r−2|ψi〉

4π
· dσ0

dε
· dσeI

dt′
. (8.33)

This enables us to write the double differential distribution in the system with
the polar axis directed along the momentum of the incoming photon k1. Since t′ =
tet0 +

√
1 − t20

√
1 − t2e cosϕ, we have

dσC

dεdΩe
= 〈ψi|r−2|ψi〉

(4π)2
· dσ0

dε
· 2p

2dσeI

dq2
·
(
t0 −

te
√
1 − t20 cosϕ√
1 − t2e

)
, (8.34)

with Ωe the solid angle of the ejected electron.
In the ultrarelativistic case ω1 � m, the momenta of the incoming photons

and ejected electrons are almost parallel in the free process. Thus we can put
dσC/dεdΩ ′ = dσC/dεdΩe. In this case, we have t0 = 1 in the last factor on
the RHS of (8.34). This turns this factor to unity.

8.1.4 Radiation of Soft Photons

As we have seen in Sect. 5.5.2, at ω2 → 0, the amplitude of the Compton scattering
obtains a pole, corresponding to radiation of the photon by the outgoing electron after
its interaction with the recoil ion. There is no infrared singularity in the term describ-
ing the radiation of such a photon by the bound electron. This is because forω2 → 0,
only the radiation of the electric dipole photon survives, and the states n of the Green
functions on the RHS of (8.1) contributing to the process cannot coincide with the
initial state. Thus the denominator of the electron propagator does not become zero
atω2 → 0. This argument does not work for the continuumwave functions, since the
states with fixed energy are degenerate with respect to the directions of the electron
momentum.

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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This remains true in the relativistic case, where we find the factorized form for
the double differential cross section to be [6, 7]

dσC

dω2dΩ
= α

π
· v2

ω2
·
∫

dΩe

4π
· 1 − τ 2

(1 − vτ)2

dσph

dΩ
; τ = p · k2

pω2
, (8.35)

with v = p/E the velocity of the photoelectron. The distribution increases if the
energy of the scattered photon decreases. This leads to the logarithmically divergent
contribution of the soft photons to the total cross section of the Compton scattering.

In practice, the resolution of the detector of the outgoing photons is limited by
a certain value ε̄. For ω2 < ε̄, the Compton scattering is indistinguishable from the
photoionization. As we shall see, the sum of the differential cross section for the
Compton scattering integrated in the interval 0 ≤ ω2 ≤ ε̄ and the cross section for
photoionization including the lowest-order radiative corrections

σ = σ rad
ph +

∫ ε̄

0
dω2

dσC

dω2
(8.36)

does not contain infrared divergent terms. This is a special case of a more general
statement. The combination of the cross section σ1 for a radiative process and the
cross section σ0 for the radiationless process with the radiative corrections included,

σ = σ rad
0 +

∫ ε̄

0
dω2

dσ1

dω2
, (8.37)

is infrared stable.
We illustrate this by considering the Compton scattering of photons with energies

Ib � ω1 � m. The amplitude of the process for ω2 � ω1 can be written as

FC = e2p
mω2

N(ω2)Fph , (8.38)

with Fph the amplitude of the photoeffect for the same energy of the incoming photon
ω1. Thus after summation over the polarizations of the photon, we obtain

dσC = σphΦ(k2)
d3k2
(2π)3

; Φ(k2) = 4πα
p2(1 − t2)

m2ω3
2

, (8.39)

leading to
dσC

dω2
= σph · 4α

3π

v2

ω2
; v2 = p2

m2
. (8.40)

Consider now the radiative corrections to the photoionization in the lowest order of
α. These are the self-energy corrections to the wave functions of the final and initial
states and the vertex function. We calculate the radiative corrections, focusing on
the infrared divergent terms. The corrections contain the four-dimensional integrals
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over momentum of the virtual photon f . One can see that the infrared divergent terms
originate from the pole f0 = f in the contour of integration over f0. Following the
analysis done above, we find that there are no infrared divergent terms if the virtual
photon is coupled to the bound electron. Hence, such terms are contained only in the
self-energy of the outgoing electron.

As we know from quantum electrodynamics [2], the radiative correction for the
electron with four-momentum p can be included by multiplying its wave function by
the factor (1 − Σ ′)−1/2, with the self-energy

Σ(p) = α

∫
d4f

(2π)4i
γ μG(p − f )γ νDμν(f ). (8.41)

Here Dμν and G = (p̂ − f̂ − m)−1 are the photon and electron propagators, and
the derivative is taken with respect to p̂. The photoionization cross section, which
includes the lowest-order radiative corrections, is thus σ rad

ph = σph(1+Σ ′). Note that
we are tracing only the infrared divergent terms.

Since we are tracing the infrared divergent terms, we can assume that integration
over f is carried out in a limited volume f ≤ L � m. Hence we can employ the
nonrelativistic electron propagator determined by (2.29). It is reasonable to use the
photon propagator in the Coulomb gauge; see (2.50). Only the space componentsDij

of the photon propagator contribute to the infrared divergent terms. In the nonrela-
tivistic approximation, the electron–photon vertices γi,j can be replaced by pi,j/m.
Therefore,

Σ(ε,p) = −
∫

df0d3f

(2π)4i
· 4πα

m2κ(f )
· |p|2(1 − τ 2

f )

f 20 − f 2 + iδ
; τf = f · p

f |p| , (8.42)

with κ(f ) = ε − f0 − m − (p − f)2/2m + iδ. Now Σ ′ = ∂Σ/∂ε, and we must put
ε = |p|2/2m after calculation of the derivative. Integrating over f0 in the complex
plane, one finds that the infrared divergent term comes from the contribution of the
pole f0 = −f + iδ. At this point, we have κ = f (1 − vτf ), with v = |p|/m the
velocity of the ejected electron. We can put v = 0 for the nonrelativistic electron.
This provides

Σ ′ = −
∫

Φ(f)
d3f

(2π)3
, (8.43)

with Φ determined by (8.39). Hence,

σ rad
ph = σph

(
1 − 4α

3π
v2

∫ L

λ

df

f

)
. (8.44)

Here we assumed that the lower limit of integration over the three-dimensional
momentum f is λ → 0. Under the latter assumption, the contribution of soft photons
with energies ω2 ≤ ε̄ to the cross section of the Compton scattering is

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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∫ ε̄

λ

dω2
dσC

dω2
= σph · 4α

3π
v2

∫ ε̄

λ

dω2

ω2
, (8.45)

and thus the sum

σ rad
ph +

ε̄∫

λ

dω2
dσC

dω2
= σph

(
1 − 4α

3π
v2

∫ L

ε̄

dω2

ω2

)
. (8.46)

does not contain infrared-divergent terms.
The logarithmic dependence on the upper-limit cutoffL remains in amore rigorous

calculation, where one assumes L � m in the integral on the RHS of (8.41) and
employs the relativistic Green electron function and the total photon propagator. The
terms containing ln L are contained in the vertex functions. These terms cancel in
the standard renormalization procedure of quantum electrodynamics; see, e.g., [8].
A more detailed analysis of the radiative corrections to the photoionization cross
section is given in [9].

8.2 Ionization Accompanied by Creation of Pairs

8.2.1 Vacuum Assistance Mechanism

Now we turn to the mechanism in which formation of ions (or excitation of atoms
and ions) is accompanied by creation of electron–positron pairs. This is possible
for ω > 2m ≈ 1MeV. We shall see that in the high-energy asymptotics ω � m,
the cross section reaches a constant value. Thus for the photon energies exceeding
a certain value ω0(Z), the cross section exceeds that of the Compton scattering. We
shall see that the energy ω0(Z) is of order several dozens of MeV. Thus we analyze
the case ω � m, carrying out the calculations in the leading order of the parameter
m/ω.

We carry out calculations for the spectrum of the electrons and for the cross
section, focusing on the case of not very large values of nuclear charge α2Z2 � 1,
adding, however, several comments about the case in which α2Z2 is not considered
a small parameter.

Before writing expressions for the amplitude, we present the relevant Feynman
diagrams in Fig. 8.2 [10]. Figure8.2a shows the creation of pairs by an incom-
ing photon with further scattering on the bound electron. In Fig. 8.2b, the photon
energy absorbed by the bound electron is shared between the ejected electron and
the electron–positron pair. We begin with the case in which the three-dimensional
momentum p1 of the ejected electron is much larger than the average momentum of
the bound electron μb. Following our general strategy, we must find the amplitude
in the kinematic region where the process on the free electron can take place. In this
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Fig. 8.2 Feynman diagrams describing ionization of e+e− pairs. a The pair created by the photon
interacts with the bound electron. b The photon interacts with the bound electron and the absorbed
energy is shared between the electron knocked out from the atom and the e+e− pair

region, a momentum q is transferred to the nucleus by the bound electron. The other
electrons can be described by functions of free motion [11].

In this approximation, the diagrams of Fig. 8.2a do not interfere with those of
Fig. 8.2b. The interference terms in the cross section contain the electron–positron
loop with an odd number (three) of electron–photon vertices, and the contribution
vanishes due to Furry theorem [8]. Hence

dσ = dσ a + dσ b , (8.47)

with the two terms corresponding to Fig. 8.2a, b.
We shall not consider the configurations in which all the outgoing electrons carry

the energy E � m. As we shall see, here the amplitude of the process is strongly
quenched. For the same reason,we shall not consider the case inwhich only one of the
outgoing particles is ultrarelativistic. Thuswe focus on the case of twoultrarelativistic
particles in the final state.

In order to trace the leading contribution to the amplitude, recall that each prop-
agator carrying a large momentum provides a small factor in the amplitude. For
p1 ∼ k = ω, all diagrams of Fig. 8.2a, b contain two propagatorswith largemomenta.
For p1 � k, there is one propagator with large momentum in each of the diagrams
of Fig. 8.2a. There are two of them in each of Fig. 8.2b. Thus the main mechanism
is described by the diagrams shown in Fig. 8.2a. The incoming photon creates the
e−e+ pair that knocks out the atomic electron to the continuum. This is called the
“vacuum assistance mechanism” (VAM) [10].

Now we can easily extend our analysis to the case of slow ejected electrons with
p1 ∼ μb. The wave function of the ejected electron should include interactions with
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the residual ion. Momentum q can be transferred to the nucleus by either the bound
electron or the ejected electron.

Denote the four-dimensional momentum of the electron ejected from the atom by
p1, while the respective momenta of the electron and positron of the e−e+ pair are
pe and pp, and P = pe + pp. The three-dimensional momentum κ = k − P and the
energy ε1 + Ib are transferred to the atom, with ε1 = E1 − m the kinetic energy of
the ejected electron. This momentum is shared between the ejected electron and the
nucleus, i.e., κ = p1 + q. The amplitude can be written as

F = αN(ω)Φν ū(pe)[êG(pe − k)γ μ + γ μG(k − pp)ê]u(−pp)Dμν(κ)Φν, (8.48)

withG andDμν the relativistic propagator of free electron and the photon propagator
respectively, κ = (κ0, κ), while

Φν(p1, κ) =
∫

d3rψ̄p1(r)γ
νψi(r)e−iκr =

∫
d3f

(2π)3
ψ̄p1(f − κ)γ νψi(f), (8.49)

with relativistic electron wave functions ψ . For ε1 � μb, the wave function of the
outgoing electron on the RHS of (8.49) can be replaced by the plane wave.

For nonrelativistic p1 � m, it is reasonable to employ the propagator Dμν in the
Coulomb gauge. The dominating contribution to the amplitude comes from the time
component D00. In this case,

Φν(p1, κ) = Φ(p1, κ)δν0; Φ(p1, κ) =
∫

d3rψ∗
p1(r)ψi(r)e−iκr = (8.50)

∫
d3f

(2π)3
ψ∗

p1(f − κ)ψi(f).

The electrons can be described by the nonrelativistic functions ψi and ψp1 . If
ψ∗

p1(r) is replaced by ψ∗
i (r), then (8.48) represents the amplitude of creation of

e−e+ pairs in the field of the bound electron. Putting Φ = −Z , we would obtain the
amplitude FBH for pair creation in the field of the nucleus, which was first calculated
by Bethe and Heitler; see, e.g., [8].

Now we look for the energy distribution of the ejected electrons.

8.2.2 Energy Distribution of the Ejected Electrons

For relatively fast electrons ejected from the atom with ω � ε1 � Ib, we can write
now

dσ = dσ0
|ψ(q)|2d3q

(2π)3
, (8.51)
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with

dσ0 = N2(ω)|F0|2 d3p1
(2π)3

d3pe
(2π)3

, (8.52)

where F0 is the amplitude of the process in which the bound electron is replaced by
the free electron at rest.

Recall that for the scattering on the free electron, the four-dimensional momenta
of the particles involved in the process are related by the conservation law

k + p̃ = P + p1 , (8.53)

where p̃ = (m, 0) is the momentum of the initial-state electron, and P = pe + pp is
the momentum of the e−e+ pair.

We employ an expression for the distribution dσ0/d3p1 of the ejected electrons
obtained in [12] in terms of their energies and the invariant variable Δ2 = P2. Using
(8.53), one can express the latter in terms of variables of the ejected electron:

Δ2 = −2ε1(ω + m) + 2ωp1t1; t1 = kp1/ωp1. (8.54)

Thus
dσ

d3p1
= dσ0

d3p1
= ω1

πE1

dσ0

dε1dΔ2
. (8.55)

The interval of the values of Δ2 can be obtained by employing (8.53) and the
inequality

k1k2 ≥ m1m2 , (8.56)

which is true for any two particles with massesm1,2 and the four-momenta k1,2. This
can be checked directly. The definition of Δ2 provides Δ2 ≥ 4m2. Since (k + p̃)2 =
(P + p1)2 ≥ (

√
Δ2 + m)2, we obtain Δ2 ≤ 2mω. Hence

4m2 ≤ Δ2 ≤ 2mω.

It follows from (8.54) that at Δ2 ∼ 4m2, the momentum of the ejected electron
is |p1| � m. In particular, p1z ≈ 2m2/ω (the z-axis runs along the direction of the
photon momentum k). At Δ2 ∼ 2mω, we find that ω � p1z � m and p1t ≤ m, with
p1t denoting the component of the vector p1 orthogonal to the z-axis.

Calculation of the distribution (8.55) can be done by the standard methods of
quantum electrodynamics. Referring the interested reader, to [12] for the details
(several limiting cases have been studied earlier), we just present a result. For the
energy of the ejected electron Ib � ε1 � ω, the distribution is

dσ0

dε1dΔ2
= α3W (ε1,Δ

2) , (8.57)



218 8 Ionization and Excitation by Photon Impact at Higher Energies

with

W (ε1,Δ
2) = A(ε1,Δ

2)

ε1B(ε1,Δ2)
. (8.58)

Here B(ε1,Δ
2) = (Δ2 + 2mε1)

2, while

A(ε1,Δ
2) = 4β

(
1 − L + 4m

[Δ2(m − 4ε1)] + L[2m2(2ε1 + m) + Δ2(ε1 − m)]
B(ε1,Δ2)

)
,

(8.59)

with β = [(Δ2 − 4m2)/Δ2]1/2 and L = (1/β) ln [(1 + β)/(1 − β)]. The energy
distribution for Ib � ε1 � ω can be obtained by integration over Δ2 in the interval
between 4m2 and 2mω:

dσ

dε1
= αr2e

m
Tf

(ε1

m

)
(8.60)

with re = α/m, and the lower index f comes from “fast” (ε1 � Ib)

Tf (x) = 2

x

[
− x3 + x2 + 2x − 1

x2(2 + x)2
+ 2(2x4 + 7x3 + 16x2 + 5x − 3)

3x5/2(2 + x)5/2
ln (

√
x/2 + √

x/2 + 1) −
2(1 − 4x)

15
2F1(2, 4,

7

2
,− x

2
)

]
. (8.61)

Here x = ε1/m. At x � 1, we obtain

Tf (x) = 14

9
· 1
x

. (8.62)

Since at ε1 � m, the distribution behaves as ε−1
1 , the region ε1 ∼ Ib provides a

contribution of the same order of magnitude to the total cross section as the region
ε1 � Ib.

Consider now the case of slowejected electronswith kinetic energies ε1 ∼ Ib. Here
the momentum p1 and the recoil momentum q are of the same order of magnitude.
Following the analysis made at the end of Sect. 8.2.1, we can write for each bound
electron

F = − 1

Z
FBHΦ(p1, κ) . (8.63)

Since the outgoing electron is slow, at moderate values of Z we can use the non-
relativistic functions for the bound and ejected electrons for the function Φ defined
by (8.50). Now we can write

dσ = 1

Z2
dσBH |Φ(p1, κ)|2 d3p1

(2π)3
. (8.64)
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The Bethe–Heitler distribution is

dσBH = RdΓ ′; dΓ ′ = dpetdpe�dpptdpp�dEpdϕ, (8.65)

with the indices e and p corresponding to the electron and positron of the e−e+ pair,
the lower indices � and t labeling the directions along the momentum of the photon
and orthogonal to it, while

R = 8αr2e Z
2EeEp

πκ4ω3
H, (8.66)

and

H = − δ2−
(1 + δ2−)2

− δ2+
(1 + δ2+)2

+ ω2

2EeEp
· δ2− + δ2+
(1 + δ2−)(1 + δ2+)

+ (8.67)

(Ee

Ep
+ Ep

Ee

) δ−δ+ cosϕ

(1 + δ2−)(1 + δ2+)
.

Here δ−,+ = pet,pt/m. The distribution should be evaluated at pet,pt ∼ m, as in the
Bethe–Heitler case. However, now we need κt = |pet + ppt| <∼ μb � pet,pt . In this
kinematic region, we can represent (8.67) in the form

H = κ2

m2(1 + δ2+)2

(
Λ + 4δ2+t2

(1 + δ2+)2

)
, (8.68)

with t = (pet − ppt)/κ (−1 ≤ t ≤ 1) and

Λ = E2
e + E2

p

2EeEp
. (8.69)

The phase volume in (8.65) becomes

dΓ ′ = dEpp
2
ptdpptdκ2 dt

2(1 − t2)1/2
. (8.70)

After integration over the positron variables and over t, we obtain

dσ = 14

9
αr2e |Φ(p1, κ)|2 dκ2

κ2

d3p1
(2π)3

. (8.71)

At κ = 0, the factor Φ(p1, κ) becomes zero due to the orthogonality of the wave
functions involved. Thus the function |Φ(p1, κ)|2 contains κ as a factor at κ → 0,
and integration of the RHS over κ provides a finite value.

The factors Φ(p1, κ) have been computed for many cases in connection with
electron–atomic scattering.Herewepresent evaluation of (8.71) for the hydrogenlike
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ion with one electron in the 1s state. The function Φ(p1, κ) is calculated by employ-
ing the nonrelativistic Coulomb functions for describing electrons. In this case, the
average binding momentum is given by μb = η = mαZ . Employing (8.50) and
writing d3p1 = mp1dε1dΩ , we obtain

∫
dΩ

(2π)3
|Φ(p1, κ)|2 = κ2X(p1, κ); X(p1, κ) = 27N2

p

3π
exp (2ξγ ) · u(p1, κ)

v(p1, κ)
.

(8.72)

Hereu(p1, κ) = η5(p21+3κ2+η2) and v(p1, κ) = [(κ2−p21)
2+2η2(κ2+p21)+η4]3,

while γ = arg(κ2+η2−p21−2iηp1). Recall that ξ = η/p1 andNp is the normalization
factor of the outgoing electronwave function determined by (3.20). Combining (8.71)
and (8.72), we can write

dσ

dε1
= 14

9
αr2emp1

∫
dκ2X(p1, κ). (8.73)

We express the kinetic energy of the outgoing electron in “units” of the binding
energy IZ = mα2Z2/2, introducing ε̃ = p21/η

2 = ε1/IZ . Writing also κ2 = yη2, we
find that

dσ

dε̃
= 14

9
αr2eK(ε̃), (8.74)

with

K(ε̃) = 27

3(1 − e−2πξ )

∫ ∞

0
dy e−2ξγ1

μ + 3y

(y2 + 2νy + μ2)3
, (8.75)

with ξ = 1/
√

ε̃, while μ = 1 + ε̃, ν = 1 − ε̃, and γ1 = arg(y + ν + 2i
√

ε̃).
Thus we can write the energy distribution of the “slow” electrons with kinetic

energy ε1 ∼ IZ in the form similar to (8.60):

dσ

dε1
= αr2e

IZ
Ts

(ε1

IZ

)
, (8.76)

with

Ts(ε̃) = 14

9
K(ε̃). (8.77)

One can calculate K(0) = 1 − 7e−4/3 ≈ 0.957, and thus Ts(0) ≈ 1.5.
At ε1 � IZ , i.e., at ε̃ � 1, the lowest order of expansion of K(ε̃) in powers of

1/ε̃, corresponding to a plane-wave description of the outgoing electron, leads to

K(ε̃) = 1

ε̃
. (8.78)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Thus for IZ � ε1 � m,

Ts(ε̃) = 14

9
· 1
ε̃

, (8.79)

in agreement with the nonrelativistic limit of (8.60); see (8.62).
One can find a more accurate approximate expression for the function Ts(ε̃) at

ε̃ � 1. At p1 � η, the integral on the RHS of (8.73) is dominated by κ close to p1,
with |κ − p1| ∼ η. This is because momentum transferred to the nucleus is of order
η. Thus the integral on the RHS of (8.75) is dominated by y � 1, |y − ε̃| ∼ √

ε̃.
After some algebra [11], we obtain

K(ε̃) = 1

ε̃ + 1

[
1 + 0(ε̃−5/2)

]
. (8.80)

Thus several next-to-leading-order corrections to the high-energy limit of the
function Ts(ε̃) can be included by a simple factor:

g(ε̃) = ε̃

ε̃ + 1
. (8.81)

The function

T̃s(ε̃) = 14

9

1

ε̃ + 1
(8.82)

approximates the function (8.77) well enough even at small values of ε̃. The largest
relative deviations between theRHSof (8.77) and (8.82) take place at ε̃ = 0. Employ-
ing the value of K(0) obtained earlier, one can see the deviation to be about 4%.

8.2.3 Total Cross Section

Now we calculate the total cross section of the process. We can write σ = σs + σf ,
with the two terms corresponding to slow and fast ionized electrons. For a value ε0
satisfying the inequality IZ � ε0 � m, we can write

σs = αr2e
IZ

∫ ε0

0
dε1Ts(

ε1

IZ
); σf = αr2e

m

∫ ω

ε0

dε1Tf (
ε1

m
). (8.83)

Since Tf (x) decreases as ln x/x2 at x → ∞, see (8.61), the contribution σf has a
finite value at ω → ∞. Using (8.62) and (8.79), we obtain

σs = 14

9
αr2e

(
ln

ε0

IZ
+ cs

)
; σf = 14

9
αr2e

(
ln

m

ε0
+ cf

)
. (8.84)
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The contributions cs and cf come from the regions ε1 ∼ I and ε1 ∼ m respectively.
In this form, the equations for σs and σf hold for every bound state.

We obtain first the total cross section for the 1s electron in a hydrogenlike ion.
Since the low-energy limit of the function Tf coincides with the high-energy limit of
the function Ts, one can expect that the function

T̃(ε1) = Tf
(ε1

m

)
g
(ε1

IZ

)
= Tf

(ε1

m

) ε1

ε1 + IZ
(8.85)

approximates the energy distribution in the whole interval 0 ≤ ε1 � ω. The actual
numerical calculations employing the function T̃ provide

σ = 14

9
αr2e

(
ln

2

α2Z2
+ C

)
, (8.86)

with the values of C changing from 1.23 for Z = 1 to 1.31 for Z = 50. On the other
hand, one can calculate

cs =
∫ ∞

0
dε̃[Ts(ε̃) − T̃s(ε̃)] ≈ −0.027, (8.87)

with the integral saturated by ε̃ ∼ 1. Thus cs does not depend on the charge of the
nucleus. The same refers to the contribution cf . Hence C = cs + cf also should not
depend on Z , and its small variation with the value of Z is an uncertainty caused by
employing the approximate function T̃ . Thus for the 1s state of the hydrogenlike ion,
the cross section is given by (8.86) with C ≈ 1.3.

For the many-electron atoms, (8.84) remains true. The value of cf is the same
for all electrons and is the same as for the hydrogenlike case. To understand what
happens to cs, note that it is caused by interaction of the outgoing electron with
the recoil atom. This interaction reaches the largest value for the hydrogenlike case.
Thus the value of |cs| becomes even smaller and can be neglected. Hence, for every
electron state j, we can write

σj = nj
14

9
αr2e

(
ln

m

Ijb
+ C

)
; C ≈ 1.3, (8.88)

with nj the number of electrons in the state j. For the ionization of the atom, we have

σ =
∑
j

nj
14

9
αr2e

(
ln

m

Ijb
+ C

)
; C ≈ 1.3. (8.89)

Note that our cross sections reach constant values at ω → ∞. On the other hand,
cross sections of pair creation in the field of the nucleus and in the field of free
electrons increase as lnω in this limit. This happens because the logarithmic terms
are caused by the lower limitsm2/ω of integration over the momentum transferred to
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Fig. 8.3 Dependence of the
energy ω0 on the value of the
nuclear charge Z . For
ω > ω0, the VAM
photoionization cross section
for ionization of the 1s state
is larger than that for the
Compton scattering. Line 1
corresponds to the
single-electron ions; line 2 is
for atoms with Z
electrons [11]

the nucleus or to the electron. In our case, the lower limit of such integration actually
is of the order of the binding momentum. In the Coulomb case, we have ln 1/(αZ)2

instead of lnω/m.
Comparing the cross section with that of the Compton scattering, we find that for

the 1s state of the hydrogen atom, the VAM of ionization becomes more important
at ω > ω0 = 73.6MeV. The value of ω0 may become smaller for external electrons
of many-electron atoms if their binding energy is smaller than that in hydrogen. For
example, the binding energies in Na and K are 4.9 and 4.1 eV respectively, providing
the values ω0 = 66.7MeV and 65.6 MeV. The dependence of ω0 on the nuclear
charge Z is shown in Fig. 8.3.

Ionization of internal shells in coincidence with pair creation was measured in
[13] for silver and gold. The results for the K shell are 18 ± 6 mb for Ag and
8.3 ± 6.2mb for Au. The equations presented above provide 7.8mb and 5.9mb,
respectively. Note that in the latter case, Z = 79, and the errors of calculation are
about 30%. Improvement in the accuracy of both experimental and theoretical results
is still ahead.

8.3 Excitation Accompanied by the Pair Creation

8.3.1 Mechanisms of the Excitation Processes

Now we consider excitation of atoms during interactions with high-energy photons
with energies ω > 2m [14]. If the atom (ion) contains at least two bound electrons,
the lowest-order process is the shakeup following the photoionization; see Chap. 3.
As we have seen in Sect. 7.3, the photoionization cross section reaches the largest
values for ionization of the K shell. Assume for simplicity that the bound electrons

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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are described by single-particle functions. We find that bound electron can undergo
transition from the initial state i in the field of the atom described by the function
ψi to an excited state f in the field of the ion described by the function ψf . We shall
analyze this type of process in Chap.9. The cross section can be represented as

σS = σphSfi; Sfi = |〈ϕf |ψi〉|2. (8.90)

The lower index S reminds about the shakeoff origin of the contribution. Employing
(7.114) and (7.115), we find that

σS ∼ α(αZ)5Sfi/mω . (8.91)

Note that due to the closure condition, Sfi < 1.
The second-order process is the Raman scattering of the photon. The photon inter-

acts with a bound electron, causing its transition to an unoccupied state of the discrete
spectrum and radiation of the photon with momentum k′. The amplitude FR of the
Raman scattering can be described by (8.1), with the free relativistic propagators G
and the wave function ψf describing an excited state of the discrete spectrum:

FR = F0Φ(q) , (8.92)

with F0 standing for the amplitude of the Compton scattering on the free electron at
rest with momentum of the outgoing electron going to zero. Momentum q = k− k′
is transferred to the atom, while Φ(q) is determined by (8.50), with ψ∗

p1 replaced by
ψ∗

f . Note that Φ is proportional to q if the states |i〉 and 〈f | have opposite parities,
being proportional to q2 if they have the same parity. Since the energy of the scattered
photon is given by ω′ = ω − Ii + If , and ω − ω′ � ω, we put ω′ = ω. Thus

σR = πr2e
ω2

∫ 4ω2

0
dq2|Φ(q)|2. (8.93)

The integral is dominated by q2 ∼ μ2 with μ = μi + μf , while μi,f are the
averaged momenta of the bound electrons in the initial and final states. Thus

σR = πr2e
μ2

ω2
bfi , (8.94)

with bfi = ∫ 4ω2

0 dq2|Φ(q)|2/μ2. Since the integral is saturated by small q2 ∼ μ2,
we can replace the upper limit of integration by infinity. Therefore,

bfi =
∫ ∞

0

dq2

μ2
|Φ(q)|2. (8.95)

These are dimensionless coefficients of order unity.

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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In the third order, the excitation of atoms (ions) can be caused by the VAM,
discussed in Sect. 8.2. The amplitude is expressed by (8.63), with the function Φ

expressed by (8.50), in which the continuum wave function ψp1 is replaced by the
wave function of the discrete spectrum ψf . Now momentum q = k − P, with P =
pe + pp the sum of momenta of the electron and positron composing the e−e+ pair,
is transferred to the atom. The cross section can be obtained by integration of the
distribution

dσV

dq2
= 14

9
αr2e

|Φ(q)|2
q2

, (8.96)

in the interval q2min ≤ q2 ≤ q2max. The lower index V corresponds to VAM. For
ω � m, we obtain qmax = 2ω, corresponding to directions of momenta pe and pp
opposite to that of the photon momentum k. For a fixed value of P = |P|, the lower
limit is given by qmin = ω −P. For any value of the energy of the outgoing electron,
it is reached at P = pe + pp. Thus qmin = ω − pe − pp. Writing pj = Ej − m2/2Ej

(j = e, p), we find that for every value of the energy of the outgoing electron, we
have qmin = Ii − If +m2ω/2EeEp. The lowest value corresponds to Ee = Ep = ω/2.
Thus

qmin ≈ Ii − If + 2m2

ω
. (8.97)

Since the function Φ(q) is quenched at q > μ, it is important to find the region
where qmin <∼ μ. Noting that Ii − If ∼ μ2/2m � μ, we obtain that qmin < μ if the
photon energy is greater than a certain characteristic value

ωc = 2m2

μ
. (8.98)

For ω � ωc, we obtain qmin � μ. In this case, we can put

σV = 14

9
αr2e cfi; cfi =

∫ ∞

0
dq2

|Φ(q)|2
q2

, (8.99)

where the coefficients cfi do not depend on ω. We replaced the lower and upper
limits of integration q2min and q

2
max by 0 and infinity respectively, since the integral is

saturated by the values q2 ∼ μ2.
In order to expand our results to the region ω <∼ ωc, we should employ (8.97) for

q2min:

σV = 14

9
αr2e dfi(ω); dfi(ω) =

∞∫

q2min

dq2
|Φ(q)|2

q2
. (8.100)

The bound-state wave functions can be approximated as ψb(r) = F (r)e−ηbr ,
withF containing polynomials in r and spherical functions. The function Φ can be
expressed in terms of the function
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J(μ) =
∫

d3r exp (−iq · r) exp (−μr) = 8πμ

(q2 + μ2)2
. (8.101)

As we have seen in Chap.5, (5.13) and (5.23), the polynomials in r and the
spherical functions can be represented in terms of the function J(μ). Noting also that
at q � μ, the function Φ(q) vanishes for q = 0 due to the orthogonality of the wave
function, one obtains

dfi(ω) = cfi
(1 + q2min(ω)/μ2)n

= cfi
(1 + ω2

c/ω
2)n

(8.102)

for the terms that contain the main dependence on q2min, where the coefficients cfi do
not depend on ω. In (8.102), n = 5 for the states |i〉 and 〈f | with opposite parities,
while n = 4 if they have the same parity. The cross section (8.100) drops sharply
when the photon energy becomes smaller than the characteristic value ωc.

8.3.2 Competition of the Contributions

We begin with the case of single-electron ions, when we must compare the cross
sections of the Raman scattering σR and the excitation by VAM. We introduce

R = σV

σR
= 14

9π

dfi(ω)

bfi

αω2

μ2
, (8.103)

with bfi and dfi(ω) defined by (8.95) and (8.102). The VAM dominates at

ω > ωc; ω > ωe , (8.104)

with ωe defined by the condition R(ωe) = 1.
The electron states can be described by wave functions of the Coulomb field.

One can obtain analytical expressions for the parameters involved. If the electron is
excited to a state with principal quantum number n, we obtain μ = η(1+ 1/n) with
η = mαZ , and thus

ωc = 2m

αZ
· n

n + 1
. (8.105)

The region of VAM domination is ω > ωc(Z, n) if ωc(Z, n) > ωe(Z, n), and
ω > ωe(Z, n) if ωe(Z, n) > ωc(Z, n). Since ωe increases with Z , the lowest energy
of VAM domination is reached for the value of Z determined by the equation

ωc(Z, n) = ωe(Z, n) , (8.106)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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Table 8.1 Values of Z0 corresponding to the solution of (8.106) for 1s → 2p transition (case 1) and
1s → 2p transition (case 2) in hydrogenlike ions and to excitation of 1s electrons in multielectron
atoms (case 3)

1 2 3

Z 18.82 14.72 19.99

ωc,e 9.71 12.41 13.71

Z0 19 15 20

ωc(Z0) 9.62 12.18 13.70

ωe(Z0) 9.67 12.31 13.70

The two last lines show the values of ωc and ωe in MeV corresponding to physical (integer) nuclear
charge values Z0 closest to Z

if its solution corresponds to physically reasonable values ofZ . Examples for physical
(integer) values Z0 closest to Z are presented in Table8.1.

For excitation of the K electrons to the L shell, we have μ = 3η/2. We obtain

ωc = 4m

3αZ
. (8.107)

Direct calculation provides

|Φ2s(q)|2 = 32η8q4

(q2 + μ2)6
; |Φ2p(q)|2 = 72η10q2

(q2 + μ2)6
. (8.108)

The lower index of the function Φ labels the state in the L shell. The summa-
tion over the quantum numbers is carried out for 2p states. Now we obtain, for the
coefficients defined by (8.95) and (8.99),

b1s2s = 214

5 · 311 ≈ 1.86 · 10−2; b1s2p = 211

5 · 311 ≈ 1.86 · 10−2, (8.109)

and

c1s2s = 211

5 · 38 ≈ 6.24 · 10−2; c1s2p = 211

5 · 38 ≈ 6.24 · 10−2. (8.110)

The region of VAM domination for the 1s → 2p transition for ionization of a
single-electron ion is shown in Fig. 8.4. The smallest energy value for the VAM
domination ω = 10MeV is reached at Z = 19. One can see that the lower limit of
the VAM region exhibits a very weak dependence on Z . A similar calculation for the
1s → 2s transition provides ω = 12MeV as the smallest energy value for the VAM
domination. It is reached at Z = 15.

For excitation of the K shell in an atom with a larger number of electrons, we
must include the shakeup excitations that follow photoionization. For large Z , we
can put Sfi = sfi/Z2 with sfi < 1. We shall see in the next chapter that this estimate
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Fig. 8.4 Transition from the
1s to the 2p state in a
hydrogenlike ion with
nuclear charge Z . The solid
and dashed curves show the
energies ωc defined by
equation (8.107) and ωe
defined by the condition
R(ωe) = 1. The region of
VAM domination is
shaded [14]

works well even for Z = 2. We can neglect μf with respect to μi and assume the
Coulomb value μi = η = mαZ for the latter. Thus ωc = 2m/αZ . Comparing the
cross sections of excitations caused by the shakeup and VAM, we obtain

σV

σS
∼ ω

mα3Z3
, (8.111)

and thus for ω > ωc, the VAM dominates. Assuming also cfi/bfi ≈ 1, we find a
minimum value of the VAM domination energy to be ω = 20MeV, corresponding
to Z = 20.

Except in the case of very low Z , the results shown in Fig. 8.4 can be used for
estimates for ions with two electrons in the K shell. For excitation to the L shell, of
an ion with two electrons in the K shell, we have

σ = 28

9
αr2e · 2

11

38
= 0.56 mb, (8.112)

with 0.11mb and 0.45mb coming from excitation of the 2s and 2p states respectively.
This cross section is about one-tenth that for ionization of the ground states of heavy
atoms by the VAM mechanism.

We can make estimates for excitation of external electrons. They “feel” the
strongly screened charge Z ≈ 1. Thus we can putμi = μf = mα. Employing (8.98),
we find that the VAM is “switched on” at energies of about 100MeV. Employing
(8.94), one can see that the contribution of the Raman scattering is negligible at
these energies. It follows from (8.91) that for moderate values of Z , VAM definitely
dominates over the shakeup, while the case of large Z requires additional analysis.
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Chapter 9
Double Photoionization and Related
Processes

Abstract We analyze three mechanisms of double photoionization. They are
shakeoff (SO), final-state interactions (FSI) and the quasifree mechanism (QFM).
We study their role in the distribution of photoelectrons and their contribution to the
double-to-single cross section ratio R0(ω) = σ++(ω)/σ+(ω) in the photoionization
of the K shell of the helium atom and heliumlike ions. In the latter case, we analyze
the nuclear charge dependence of characteristics of the process. The QFM is at work
only beyond the dipole approximation. The QFM manifested itself in experiments
on the distribution in the recoil momentum at photon energies ω ≈ 800eV. It modi-
fies the shape of the spectrum curve at the energies of several keV. We demonstrate
that the approximate wave functions employed in computations of the spectrum at
these energies should satisfy the second Kato cusp condition. Otherwise, they can
provide a qualitatively incorrect result. At energies of several hundred keV the QFM
dominates in the large part of the photoelectron’s energy distribution. It is also the
main mechanism of breaking the nonrelativistic high-energy asymptotics of the ratio
R0(ω).

9.1 The General Picture

9.1.1 Objects of Investigation

Now we consider the process in which a single photon moves two bound electrons
to the continuum. We focus on ionization of the ground state of the helium atom and
of two-electron ions with both electrons in the K shell. The case of helium is best
studied both in experimental and theoretical works.

There are three channels for interaction of the photonwith the twobound electrons,
which can be separated experimentally. In single ionization, one electron is moved to
the continuum, while the second electron remains in the ground state. We denote the
cross section by σ+(ω). In ionization with excitation, the second electron moves to a
state of the discrete spectrum with quantum numbers n, �. The corresponding cross
section is σ+∗

n� (ω). We denote the total cross section of ionization with excitation

© Springer International Publishing Switzerland 2016
E.G. Drukarev and A.I. Mikhailov, High-Energy Atomic Physics,
Springer Series on Atomic, Optical, and Plasma Physics 93,
DOI 10.1007/978-3-319-32736-5_9
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by
∑

n� σ+∗
n� (ω) = σ+∗(ω). In double ionization, both electrons are moved to the

continuum. The cross section of this process is σ++(ω). It is convenient to study the
ratios

R(ω) = σ++(ω)

σ+(ω) + σ+∗(ω)
, (9.1)

which is the ratio of the cross sections of formation of the ions with Z − 2 and Z − 1
electrons and

R0(ω) = σ++(ω)

σ+(ω)
, (9.2)

representing the double-to-single cross section ratio with all the other electrons
remaining in their states. The relative probability of excitations are described by
the ratios

R∗
n�(ω) = σ+∗

n� (ω)

σ+(ω)
; R∗(ω) =

∑
n,�

R∗
n�(ω) . (9.3)

In double photoionization of the ground state of a two-electron ion,

ω + Eb = ε1 + ε2, (9.4)

with Eb the total energy of the system of two bound electrons, εi = Ei − m, E2
i =

p2i +m2, Ei andpi are the energies andmomenta of the photoelectrons, and pi = |pi |.
Momentum

q = p1 + p2 − k (9.5)

is transferred to the electrons by the nucleus. Here k is the photon momentum,
k ≡ |k| = ω. If ω � m, both photoelectrons carry the energies εi � m, and (9.4)
can be written as

ω − I 2+ = ε1 + ε2 = ε; εi = p2i /2m , (9.6)

with I 2+ = 2m − Eb; ε is the total energy carried by the photoelectrons.
Besides the total cross sections, studies of the double photoionization have focused

on distributions of photoelectrons. There are also experimental and theoretical inves-
tigations of distributions of recoil momenta.

9.1.2 Mechanisms of the Process

At the photon energies ω − I++ ∼ IZ , with IZ = mα2Z2/2, the energies of both
photoelectrons are of order ε1,2 <∼ IZ . There are no small parameters, and one should
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just try to employ the most accurate functions Ψi and Ψ f for describing the initial
and final states in the double photoionization amplitude

F++ = N (ω)〈Ψ f |γ |Ψi 〉 . (9.7)

In the position representation,Ψi (r1, r2) describes the ground state of a two-electron
system bound by the field of the nucleus (further, we omit its lower index),Ψ f (r1, r2)
describes the system of two interacting photoelectrons in the field of the nucleus. In
(9.7),

γ (r1, r2) = γ1 + γ2 (9.8)

describes the interaction of the photon with the bound system, with the two terms on
the RHS corresponding to two electrons. In the nonrelativistic case,

γi = −ieik·ri e · ∇i

m
. (9.9)

Considering the energies ω 
 IZ (for helium, this means that ω 
 55 eV), we
have a small parameter

IZ
ω

� 1 , (9.10)

and we can separate several mechanisms of the process, tracing their contributions
to the amplitude. Also, in the region (9.10), the calculations become simpler, since at
least one of the photoelectrons obtains the energy ε 
 IZ , and its interactions with
the nucleus can be treated perturbatively due to the small value of its Sommerfeld
parameter ξ = EαZ/p � 1. This photoelectron moves rapidly relative to the
second one, with Sommerfeld parameter of their interaction ξee ≈ Eα/p � 1. This
interaction also can be treated perturbatively.

Double photoionization can take place even if the FSI interactions between the
photoelectrons are neglected. A bound electron interacts with the photon directly
(we call it the “primary electron” and label it i = 1) and is knocked out to the
continuum. Another bound electron (we call it the “secondary electron” and label
it i = 2) is moved to the continuum due to a sudden change of the Hamiltonian
of the system. This is the “shakeoff” (SO) mechanism, described in Sect. 3.2. It is
reasonable to trace the acts of exchange by large momenta (much larger than the
binding momentum), since each of them provides a small factor in the amplitude. In
the shakeoff mechanism, a large momentum q ≈ p 
 μb is transferred by one of
the bound electrons to the nucleus. Thus this electron approaches the nucleus at the
distance r ∼ 1/p � 1/μb. The configuration in which both electrons obtain large
energies εi 
 IZ requires that both of them approach the nucleus at small distances.

In an alternative FSI mechanism, a bound electron is moved to the continuum
by interaction with the photon. The photoelectron pushes the secondary one to the
continuum in the next step. If the secondary electron is slow (ε2 ∼ IZ ), there is
only one act of transfer of large momentum, when the first electron approaches the
nucleus. Both final-state electrons can obtain ε1,2 
 IZ if the electrons exchange
large momentum in the final state.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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The electron that directly interacts with the photon can transfer large momentum
to the second one without participation of the nucleus. The interelectron distance r12
becomes small, i.e., r12 � μ−1

b , while both r1 and r2 are of order μ−1
b . The photo-

electrons leave the atom, transferring only small momentum q ∼ μb to the nucleus.
Following the general analysis presented in Chap. 2, the amplitude describing this
quasifree mechanism (QFM) is proportional to that of the process on the system of
free electrons. Such a process is possible if

p1 + p2 = k . (9.11)

This limits the difference between the energies of photoelectrons

β ≡ ε1 − ε2

ε1 + ε2
. (9.12)

Since |k| ≥ |p1 − p2|, we obtain

|β| ≤
√

ε

ε + m
; ε = ε1 + ε2 . (9.13)

Recall that ε = ε1 + ε2 = ω − I++ is the energy carried by the photoelectrons.
In the nonrelativistic case, we have |β| � 1, and the QFM manifests itself only

in the vicinity of the center of the spectrum. Here pi ≈ (mω)1/2.
Since in all mechanisms, exchange by large momenta takes place at distances

1/pi , in the nonrelativistic case, the partial wave expansion manifests itself as a
power series in k/p ∼ √

ω/m. The SO and FSI can be calculated in the dipole
approximation, corresponding to k = 0 in the power of the exponential factor on
the RHS of (9.9). However, the QFM does not work in the dipole approximation.
Indeed, since ε1,2 = ε(1 ± β)/2, we can write the amplitude, describing absorption
of the photon by the system of two free electrons as

F0 = (e · p1) f (ω, ε1) + (e · p2) f (ω, ε2) = (e · p1) f (ω, β) + (e · p2) f (ω,−β).

(9.14)

The explicit form of the function f (ω, β) is not important. Since |β| � 1, we find
that in the lowest order of expansion in powers of β,

F0 = (e · (p1 + p2)) f (ω, β = 0) = (e · k) f (ω, β = 0) = 0 , (9.15)

and the lowest nonvanishing term is

F0 = 2(e · p1)β f ′(ω, β = 0) , (9.16)

with f ′ the derivative with respect to β. Since for the free process β = k · (p1 −
p2)/2mω, the QFM requires going beyond the dipole approximation, which would
correspond to the lowest order of expansion in powers of k/pi .

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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As we shall see, the QFM manifests itself in differential characteristics of the
double photoionization of helium in the vicinity of the center of the spectrum at
photon energies of order 1keV and larger. It becomes increasingly important at
higher energies. These points will be analyzed in Sects. 9.3 and 9.4. In Sect. 9.2, we
consider the process in the dipole approximation, where it is a superposition of the SO
and FSI contributions. The electrons are described by nonrelativistic functions, and
the electron–photon vertex is described by the lowest order of expansion in powers
of k/p.

9.2 Double Ionization in the Dipole Approximation

9.2.1 Nonrelativistic High-Energy Asymptotics for Helium

Here we demonstrate that the main contribution to the nonrelativistic high-energy
asymptotics of the double photoionization cross section σ 2+(ω) is determined by the
SO mechanism. The value of the cross section is determined by the “edge” part of
the spectrum, where the primary electron carries most of the energy ε1 ≈ ω, while
the secondary electron carries the small energy ε2 ∼ IZ . The angular distribution of
the fast electrons is the same as in single photoionization. The secondary electrons
carry angular momenta � = 0, and they have uniform angular distribution [1].

We begin with analysis of this case. In the asymptotics, the fast electron should be
described by a plane wave, and the slow one by a nonrelativistic Coulomb function.
In (9.7),

Ψ f (r1, r2) = 1√
2

(
eip1·r1ψC

p2(r2) + eip1·r2ψC
p2(r1)

)
, (9.17)

with the upper index C standing for Coulomb. In the dipole approximation, we put
eik1·r1 = 1 on theRHS of (9.8). The leading contribution to the amplitude comes from
the first term on the RHS of (9.17) (the contribution of the second term is smaller by
a factor of p2/p1). The amplitude is

F++ = e · p1
m

N (ω)
√
2

∫
d3r2ψ

C∗
p2 (r2)J (p1; r2), (9.18)

with

J (p1; r2) = lim
λ→0

∫
d3r1Ψ (r1, r2)e−ip1·r1e−λr1 . (9.19)

Introducing ζ = r1 · r2, we can write, in the same way as in Sect. 7.1, i.e., keeping
the terms up to first order in the Taylor expansion,

Ψ (r1, r2) = Ψ (r1, ζ, r2) = Ψ (0, 0, r2) + ζΨ ′(0, ζ, r2)|ζ=0 + r1Ψ
′(r1, 0, r2)|r1=0 .

(9.20)

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Similar to Sect. 7.1, we see that only the last term of the expansion provides a nonzero
contribution to the integral on the RHS of (9.19). We find that

J (p1; r2) = −8πΨ ′(0, r2)
p41

(1+O(p−1
1 )) = 8πηΨ (0, r2)

p41
(1+O(p−1

1 )). (9.21)

HereΨ ′ denotes the derivative with respect to r1 at r1 = 0. The last equality is due to
the first Kato cusp condition. Note that the RHS of (9.21) cannot be represented as
a Taylor series at r2 → 0 due to the singularity of the wave function at r1 = r2 = 0.
We obtain

F++ = e · p1
m

N (ω)
8πη

p41

√
2Φ(p2); Φ(p2) =

∫
d3r2ψ

C∗
p2 (r2)Ψ (0, r2), (9.22)

with η = mαZ . The factor
√
2 is due to two electrons in the K shell.

Note that by approximating Ψ by a product of two single-particle functionsψ s.p.,
i.e., putting

Ψappr (r1, r2) = ψ s.p.(r1)ψ s.p.(r2), (9.23)

we would obtain

F++ = Fph

√
2

∫
d3rψC∗

p2 (r)ψ s.p.(r), (9.24)

with Fph the amplitude of single photoionization in the independent particle approx-
imation expressed by (5.69). We shall see that (9.23) is not a good approximation
for describing the asymptotics of double photoionization.

The SO amplitude of every photoionization process in a two-electron ion can be
written in a similar way. Introducing

ψ(r2) = Ψ (0, r2) , (9.25)

we canwrite, for photoionization accompanied by transition of the secondary electron
to the final state f ,

F++ = FSO = MΦ f ; M = M(ω,p1) = N (ω)
e · p1
m

8πη

p41

√
2; Φ f = 〈ψC

f |ψ〉.
(9.26)

We omit the index of the final state in the amplitudes F++ unless it is necessary to
avoid misunderstanding. For the continuum states, we write Φp2 = Φ(p2). In the
special case in which the secondary electron remains in the 1s state, this is just the
amplitude of single photoionization, which we denote by F+ in this section:

F+ = M(ω,p1)Φ1s; Φ1s =
∫

d3r2ψ
C
1s(r2)ψ(r2) = 〈ψC

1s |ψ〉. (9.27)

The integrals over r2 on the RHS of (9.22) and (9.27) are saturated by r2 ∼ 1/μb.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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Now we consider another situation, in which the first electron absorbs only a
small part of the photon energy ε1 ∼ IZ , while the secondary electron carries a
large energy ε2 ∼ ω. If the secondary electron is described by a plane wave, a
large momentum q ≈ p2 is transferred by the bound electron to the nucleus. Thus
the amplitude contains a small factor μ4

b/p
4
2, similar to that in (9.22). However, the

photon–electron vertex now provides a factor of order μb/m instead of a factor of
order

√
mω/m in (9.22). Thus the amplitude corresponding to this mechanism is

smaller than that described by (9.22) by a factor of at least μb/
√
mω � 1.

In fact, the quenching is stronger due to cancellation of the contributions coming
from the two lowest terms of the perturbative expansion for the wave function of
the fast photoelectron. If we include the lowest-order Coulomb correction, a large
momentum q can be transferred to the nucleus by the secondary electron. We put
Ψ f (r1, r2) = ψC

p1(r1)ψp2(r2), where ψp2 = ψ(0)
p2 +ψ(1)

p2 is the sum of the plane wave
and the lowest Coulomb correction; see (3.29). The corresponding contribution to
the amplitude can be written as

F++ = F0 + F1; Fk =
∫

d3r2Λ(r2)ψ(k)∗
p2 (r2), (9.28)

with

Λ(r2) = N (ω)
√
2

∫
d3r1ψ

C∗
p1 (r1)γ (r1)Ψ (r1, r2); γ (r1) = −ie · ∇1

m
.

We find immediately that

F0 = Λ̃(p2) = N (ω)
√
2

∫
d3r1ψ

C∗
p1 (r1)γ (r1)

∫
d3r2Ψ (r1, r2)e−ip2·r2 . (9.29)

Recall that now p2 
 μb. Integrating over r2 using (9.19)–(9.21), we obtain

F0 = −8πΛ′

p42
, (9.30)

where Λ′ denotes the derivative with respect to r2 at r2 = 0. Since the integral over
r1 is saturated at r1 ∼ μb, the amplitude F0 is suppressed by a small factor of order
μb/

√
mω relative to that determined by (9.22). This is in agreement with the estimate

given above.
One can see that the sum F0 + F1 is suppressed more strongly. We write (see

(7.5))

F1 =
∫

d3 f

(2π)3
Λ̃(f)

−4παZ

(p2 − f)2
2m

p22 − f 2
. (9.31)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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The integral converges at f ∼ μb � p2. Neglecting f in two last factors, we obtain

F1 = −8πηΛ(r2 = 0)

p42
; η = mαZ , (9.32)

and F0 + F1 = 0 due to the Kato condition. The higher Coulomb corrections pro-
vide the contributions of order (μ2

b/p
2
2)F0 (recall that p2 ≈ (2mω)1/2). Thus the

contribution to the amplitude of the configuration with a fast secondary electron is
smaller than that with a fast primary electron by a factor of μ3

b/p
3
2 (we do not make

difference between η and μb here).
If both primary and secondary electrons are fast, i.e., p1,2 
 μb, the amplitude

obtains a small factor of orderμ4
b/p

4
2 relative to the amplitude (9.22) if the secondary

electron is described by the plane wave. A calculation similar to (9.28)–(9.32) pro-
vides an additional small factor μ2

b/p
2
2 if we include the lowest-order Coulomb

correction ψ(1)
p2 . Thus, in spite of the large phase volume, the region p1,2 
 μb

provides a small contribution to the total cross section. The latter is described by the
region p2 ∼ μb of the differential cross section

dσ++ = 2πδ(ε1 + ε2 − ε)|F++|2 d
3 p1

(2π)3

d3 p2
(2π)3

. (9.33)

For p2 ∼ μb, it can be written as

dσ++ = 32π2
√
2

3
· α · (αZ)2

m3/2ω7/2
|Φ(p2)|2 d

3 p2
(2π)3

. (9.34)

The cross section for single photoionization from the K shell, i.e., for the process in
which one of the electrons is moved to the continuum while the second one remains
in the 1s state, is

σ+ = 32π2
√
2

3
· α · (αZ)2

m3/2ω7/2
Φ2

1s ; (9.35)

see (7.13)–(7.14).
Note that since the function Ψ (0, r2) depends only on the scalar r2, the function

Φ depends only on the energy of the secondary electron ε2. This means that the
secondary electrons are ejected with orbital momenta � = 0. Hence the function
Φ(p2) does not depend on the direction of momentum p2 and can be represented as
Φ(ε2). The cross section can be represented as

σ++(ω) = 16
√
2

3
· α · (αZ)2

m1/2ω7/2

∫ ω

0
dε2 p2|Φ(ε2)|2. (9.36)

Here the integral over the energies of the secondary electrons is saturated at ε2 ∼
Ib � ω.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Thus the SO contribution to the cross section comes from the edge region of the
spectrum ε2 <∼ IZ . Its contribution to the ratios R(ω) and R0(ω) defined by (9.2)
reaches constant values at ω → ∞. As to the FSI, they provide corrections of order
ξ 2
ee at ε2 <∼ IZ . The contribution of the FSI of two fast electrons to these ratios can
be obtained by integrating the energy distribution provided by (4.62) and (4.53) over
the interval ε2 ∼ ε. Since 〈r−2〉 ∼ μ2

b, we obtain the contribution to the cross section
σ++ ∼ (α2μ2

b/ω
2)σ+, and thus for ω 
 IZ , the relative contribution of the FSI is

much smaller than unity.
Employing (9.26) and (9.27), we obtain

lim
ω→∞ R0(ω) = C0; C0 = m

2π2Φ2
1s

∫ ∞

0
dε2 p2|Φ(ε2)|2. (9.37)

Since the integral converges at ε2 <∼ IZ � ω, we replaced the upper limit of inte-
gration ω by infinity. The Stobbe factors of both processes, which include the most
important corrections caused by the interaction of the primary electrons with the
nucleus, cancel in the ratio.

Note that in the early days of studies of double photoionization processes, inves-
tigators faced a paradox. Computations carried out employing the length form of
electromagnetic interactions provided the behavior F++ ∼ F+ p/μb for the ampli-
tude and thus R0 ∼ ω for the cross section ratio. The contribution came from the
configuration in which the secondary electron carried most of the absorbed energy.
In the length form, γ = iωer1. Proceeding in the same way as in (9.28)–(9.32), we
write

F++ = ω(F0L + F1L); FkL =
∫

d3r2ΛL(r2)ψ(k)∗
p2 (r2); k = 0, 1 (9.38)

with

ΛL(r2) = N (ω)
√
2

∫
d3r1ψ

C∗
p1 (r1)γL(r1)Ψ (r1, r2); γL(r1) = iωe · r1,

and obtain

F0L = −8πΛ′
L(r2 = 0)

p42
; F1L = −8πηΛL(r2 = 0)

p42
, (9.39)

and the amplitude

F++ = −8πω

p4
c; c = Λ′

L(r2 = 0) + ηΛL(r2 = 0) , (9.40)

which is indeed p/μb times larger than the amplitude of single photoionization
F+ if c �= 0. The computations were carried out by employing approximate wave
functions that do not satisfy the Kato condition. The latter provides c = 0 and

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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eliminates the spurious contribution. This was found by Åberg [2], who introduced
the Kato conditions into atomic physics. This is an instructive example showing why
theoretical analysis should precede computations.

The first calculations of the asymptotic value R0 = C0 for atomic helium were
carried out with the approximate initial-state wave functions written as the products
of single-particle wave functions; see (9.23). Taking ψ as the screened Coulomb
functions with the effective charge Zef f = 27/16 provided C0 = 7.2 × 10−3.
The Hartree–Fock functions gave C0 = 5.1 × 10−3. Employing more complicated
functions that include dependence on the interelectron distance r12 = |r1 − r2| [3]
provided the much larger value C0 ≈ 1.7 × 10−2, and a more contemporary CFHH
approach described in Sect. 4.4.2 provided C0 = 1.74 × 10−2 [4]. The latter results
have been confirmed by the experimental data [5] presented in Fig. 9.1. The accu-
racy of the calculations is greater than that of the measurements. The uncorrelated
wave functions failed to reproduce the asymptotic value of the double-to-single cross
section ratio, since they do not describe the dynamics of the relative motion of the
two bound electrons.

In similar way, one can calculate the cross section of photoionization with exci-
tation of the secondary electron to the n� state. This can be done by replacing Φ(ε2)

in (9.34) by

Φn� =
∫

d3r2ψ
C∗
n� (r2)Ψ (0, r2). (9.41)

The integral on the RHS becomes zero for � �= 0. Thus we can put Φn� = Φnsδ�0.
The cross section can be written, similar to (9.34),

σ+∗
ns (ω) = 32π2

√
2

3
· α · (αZ)2

m3/2ω7/2
Φ2

ns, (9.42)

and thus the asymptotics of the ratios

R∗
n = σ+∗

ns (ω)

σ1s(ω)
= Φ2

ns

Φ2
1s

= Cn (9.43)

Fig. 9.1 Double-to-single
ionization ratio for helium.
The horizontal axis is for the
photon energy in keV. The
dots show the experimental
points. The lines show the
results of calculations in
various approaches (see [5]
for references) [5]

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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do not depend on the photon energy. Excitations to the states with � ≥ 1 contribute
beyond the asymptotics. The CFHH calculations provided C2 = 4.80× 10−2, C3 =
0.59 × 10−2, C4 = 0.20 × 10−2, while R∗ = 5.8 × 10−2, and R = 1.645 × 10−2.

A smooth transition between excitations of discrete and continuum states requires
that

lim
ε2→0

dσ++

dε2
= lim

n→∞
n3σ+∗

n

2IZ
. (9.44)

Thus C∗
n decreases as n−3 at large n. One can see that (9.44) provides

lim
ε2→0

mp2Φ(ε2)

4π2
= lim

n→∞ n3Cn . (9.45)

Due to the normalization factor of the continuum wave function, Φ(ε2) ∼ ε
−1/2
2 at

ε2 → 0, and the LHS of (9.45) obtains a finite value.
Employing the closure condition for the Coulomb functions, one obtains

∞∑
n=1

Φ2
ns +

∫
dε2mp2
2π2

|Φ(ε2)|2 =
∫

d3r |Ψ (0, r)|2, (9.46)

leading to a remarkable sum rule [6]:

σ+ + σ+∗ + σ++ = 32π2
√
2

3
· α · (αZ)2

m3/2ω7/2

∫
d3r |Ψ (0, r)|2. (9.47)

9.2.2 Nuclear Charge Dependence of Asymptotics
for Heliumlike Ions

Consider now the double photoionization of two-electron ions with Z > 2. It is
reasonable to try a perturbative model in which interaction between electrons and the
nucleus is included exactly, while interaction of the bound electrons is included in the
lowest nonvanishing order of perturbation theory [7]; see Fig. 9.2. This corresponds
to the lowest order of expansion in powers of 1/Z . In the asymptotics, one can neglect
the FSI of the photoelectrons. Since in atoms the K electrons are well separated from
the others, we can expect that the approach can be applied at least for estimating the
effects in atoms as well.

The wave function of the K shell electrons can be written as

Ψ = Ψ0 + GVeeΨ0 . (9.48)

HereG is the nonrelativistic two-electron Green function in the Coulomb field, while
Ψ0(r1, r2) = ψ1s(r1)ψ1s(r2), with ψ1s the single-particle function in the Coulomb
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(a) (b)

Fig. 9.2 Feynman diagrams illustrating the perturbative model for double photoionization. The
solid lines stand for the electrons in the Coulomb field of the nucleus (labeled by dark blobs). The
helical line is for the photon. The dashed line stands for the electron interaction in the initial state
(a) or in the final state (b). In the asymptotics, only the diagram shown in (a) contributes

field. The final-state wave function is given by (9.17). Due to orthogonality of the
wave functions, the first term on the RHS of (9.48) does not contribute to the ampli-
tude.

In terms of the single-particle functions, the amplitude of the process can be
written as

F++ = √
2
e · p1
m

N (ω)

∫
d3 f

(2π)3
X2(f)

4πα

f 2
X1(f) , (9.49)

where

X1(f) =
∫

d3 f1
(2π)3

〈p1|G(ε)|f1〉〈f1+f |ψ1s〉; X2(f) =
∫

d3 f2
(2π)3

〈ψp2 |f2〉〈f2−f |ψ1s〉.
(9.50)

The energy of the Coulomb propagator is ε = −I 2+ − ε2 < 0. Since we include
the electron interactions in the lowest order of perturbative theory, we must put
I 2+ = 2IZ , and ε = −2IZ − ε2 < 0. Note that the integrals are saturated by
f1 ∼ f ∼ μb = η, while p1 
 η.
Under the latter condition, one can write for p1 
 f1, similar to (2.86),

〈p1|G|f1〉 = 8πη

p41

∫
d3q

(2π)3
〈q|G|f1〉 , (9.51)

writing

X1(f) = 8πη

p41
X (f); X (f) =

∫
d3 f1
(2π)3

d3q

(2π)3
〈q|G(ε)|f1〉〈f1 + f |ψ1s〉. (9.52)

Thus we can write, similar to (9.22),

F++ = M(ω,p1)Φ(ε2); Φ(ε2) =
∫

d3 f

(2π3)
X (f)

4πα

f 2
X2(f). (9.53)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Integration over the electron momentum on the RHS of (9.53) can be carried
out analytically, and the function Φ(ε)may be expressed through a one-dimensional
integral. This can be done by employing the techniqueworked out in Sect. 5.1. Repre-
senting the 1s wave function in the form (5.12) and applying (5.55), we can integrate
over f1 on the RHS of (9.52):

X (f) = N1Γ̂

∫
d3q

(2π)3
〈q|ViνG(ε)Viλ| − f〉|ν=0,λ=η; N1 =

(η3

π

)1/2
, (9.54)

Γ̂ = ∂

∂ν

∂

∂λ
.

Introducing p = √
2mε2 + 2η2, we obtain

〈q|ViνG(ε)Viλ| − f〉 = −pΓ̂ Ĵy
〈q|Viμ|f A〉
f 2 + z2λ

, (9.55)

with

zν = py + ν; zλ = py + λ; μ = zν − zλA; A = − p2(y − 1)

f 2 + z2λ
, (9.56)

while

Ĵy = 2m

∞∫

1

dy
( y + 1

y − 1

)ζ ; ζ = mαZ

p
. (9.57)

After calculation of the derivatives, we must put ν = 0, λ = η.
In spite of the complicated dependence of the RHS of (9.55) on f , integration over

q leads to a very simple expression. One can see that

∂

∂ν
〈q|Viμ|a〉 = −μ

2π
〈a|Viμ|q〉〈q|Viμ|a〉 (9.58)

for every vector a. Note that all dependence of the RHS of (9.55) on ν is contained
in the parameter zν . Employing (5.46) and (5.8), we integrate over q and find that

∂

∂ν

∫
d3q

(2π)3
〈q|Viμ|f A〉 = − μ

2π

∫
d3q

(2π)3
〈f A|Viμ|q〉〈q|Viμ|f A〉 = −1. (9.59)

Thus we obtain

X (f) = pN1 Ĵy
∂

∂λ

1

f 2 + z2λ
; X1(f) = 2pηN1

p41
Ĵy

∂

∂λ
〈f |Vizλ

|0〉. (9.60)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_5
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Evaluating

X2(f) = N1

(
− ∂

∂κ

)
〈ψp2 |Viκ |f〉|κ=η (9.61)

and writing

〈f |Vizλ
|0〉 · 1

f 2
= 1

z2λ

(
〈f |V0|0〉 − 〈f |Vizλ

|0〉
)
, (9.62)

we carry out integration over f in the second equality on the RHS of (9.53):

Φ(ε2) = αpN 2
1 Ĵy

∂

∂λ

1

z2λ
〈ψp2 |Viη − Vi(η+zλ)|0〉|λ=η. (9.63)

Employing (5.28), we calculate, for every p and μ,

〈ψp|Viμ|0〉 = 4πNp
(μ + i p)iξ−1

(μ − i p)iξ+1
= 4πNp

p2 + μ2
exp(−2ξ arctan 1/ξ); ξ = η/p.

(9.64)
Finally, we obtain

Φ(ε2) = −8παpN 2
1 Np2 Ĵy

T (y)

(py + η)3
. (9.65)

Here

T (y) = ϕ1(η) − ϕ1(ρ) − (py + η)2ϕ2(ρ); ρ = 2η + py, (9.66)

ϕk(x) = (x + i p2)iξ2−k

(x − i p2)iξ2+k
= exp(−2ξ2 arctan p2/x)

(p2 + x2)k
.

Carrying out numerical integration on the RHS of (9.36), we find that in the
asymptotics,

R(ω) = C; C = c

Z2
; c = 0.090. (9.67)

Note that for the ratios defined by (9.1) and (9.2), we must put R = R0 in the
lowest order of the Z−1 expansion. For the case of helium, the perturbative model
overestimates the value by about 30%.

It is amusing that the same result can be obtained from a very simple estimation
for the magnitude of the effect. It is known that 1s electron in an atom with Z ≥ 3
can be described roughly by the Coulomb function with the effective value of the
nuclear charge Zef f = Z − s, with s ≈ 0.3 describing the “internal screening” [8].
The main contribution to the value of s comes from another 1s electron. After one
of the electrons is moved to the continuum, the wave function of the remaining one
changes by a value of order s/Z , and the probability of the SO is of order s2/Z2,
where s2 ≈ 0.09.

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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The nuclear charge dependence of the asymptotic ratio R was traced for Z ≤ 10
using variational functions of the ground state of the ion [9]. For the largest values
of Z from this interval, the ratio exhibited the behavior

R ≈ 0.09

Z2
− 0.03

Z3
. (9.68)

The authors of [10] fitted their results by employing the CFHH functions (see
Sect. 4.4.2), and the results of [9] by a three-terms formula,

R = a

Z2
+ a′

Z3
+ a′′

Z4
, (9.69)

for 2 ≤ Z ≤ 10. The values of a, a′, a′′ were found by least squares fitting. The
best fit for the data of [9] was obtained for a = 0.090, a′ = −0.022, a′′ = −0.052,
while for the results of [10], it was a = 0.090, a′ = −0.021, a′′ = −0.053. Thus
the perturbative approach indeed provides a proper value of the ratio R in the lowest
nonvanishing order of the Z−1 expansion.

Photoionization accompanied by excitation can be calculated in framework of the
perturbative model [11]. As we have seen, only excitations of s states can take place
in the asymptotics. For ionization accompanied by excitation of the ns state,

R∗
n(ω) = Cn = Φ2

ns

Φ2
1s

, (9.70)

where Φns is given by the second equality of (9.53) with

X2(f) =
∫

d3 f1
(2π)3

ψ∗
ns(f1)ψ1s(f1 − f) , (9.71)

while X1(f) is still given by the first equality of (9.50). There is no need to carry out
new calculations. The function Φns is determined by (9.65) with several changes.
Now p = η

√
2 − n−2, the normalization factor of the continuum wave function

N (ξ2) should be replaced by that of the discrete spectrum Nns =
(
η3/n3π

)1/2
, and

one should change p2 to iη/n and iξ2 to n in the functions ϕ1,2 on the RHS of (9.66).
For the case of helium, the model provides the value of the cross section ratio

for excitation of the 2s state C∗
2s = 0.023. This underestimates the results obtained

with precise wave functions carried out by several groups by a factor of about 2.
The discrepancy diminishes for larger values of n. The approach provides C∗

5s =
7.6 × 10−4, which differs from accurate results by about 15%.

Setting

Cn = cn
Z2

, (9.72)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Table 9.1 Values of an and a′
n in (9.73) calculated with the CFHH functions and the values of cn

obtained in the perturbative approach in units of 10−2

n an a′
n cn

2 8.9 15.0 9.2

3 1.7 1.4 1.7

4 0.61 0.46 0.64

5 0.30 1.16 0.30

6 0.17 0.08 0.17

we obtain the values of cn given in Table9.1. The deviations from the behavior
cn · n3 = const become less than 3% for n ≥ 5.

Now we compare the results with those carried out with the CFHH functions for
Z ≤ 10 approximated by two terms of the Z−1 series

Cn = an
Z2

+ a′
n

Z3
. (9.73)

One can see that cn = an with good accuracy. Thus again, the perturbative approach
provides the values of the ratios R∗

n in the lowest nonvanishing order of the Z−1

expansion. In contrast to the case of double photoionization, the perturbative model
underestimates the values of the excitation cross sections.

In photoionization of the ground state, the secondary electron remains mostly
in the 1s state and does not undergo transitions. The situation is different in pho-
toionization of an excited state. We introduce the total cross section for absorption
of the photon by the ion σtot = σ+ + σ+∗ + σ++ and the relative probabilities
for the channels with the secondary electrons in ns states of the discrete spectrum
rns = σ+∗

ns /σtot and in the continuum r = σ++/σtot . The photon interacts mostly
with the 1s electron, and usually two channels dominate [9]. For example, in the case
of the metastable 21S state of helium, r1s = 0.049, r2s = 0.535, r3s = 0.399. For
the double photoionization, r = 9 × 10−3.

The negative ion of hydrogen is a very special case. The results obtained in [10]
demonstrate that the probabilities of finding the secondary electron in the 1s state or
in an excited ns state of the discrete spectrum are of the same order of magnitude:
r1s = 0.590;

∑
n=2 rns = 0.394, and r = 0.016.

9.2.3 Double Photoionization at Intermediate Energies

Here we focus on the case of helium, discussing the cases of heavier atoms at the
end of the subsection.

One can see from Fig. 9.1 that in helium, the asymptotic value of the double-to-
single cross section ratio is reached at photon energies of order several keV. This can
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be understood, since the contribution of the FSI to the cross section of the double
photoionization is proportional to ξ 2

ee. The SO becomes the dominant mechanism if
the asymptotic value R0 = C0 ≈ 1.7 × 10−2 satisfies the condition

C0 
 ξ 2
ee . (9.74)

For helium, this is equivalent to ω 
 800 eV. By “intermediate energies,” we mean
the values of the photon energiesω 
 IZ , where a perturbative description of at least
one of the photoelectrons is possible, but on the other hand, deviations of the cross
section ratios from their high-energy limit is noticeable (with the relative deviations
exceeding 10%). For atomic helium, this is the region from 300–400eV to 2keV.
This is in agreement with terminology of the review [12].

We move from the high-energy region by including next-to-leading terms of the
expansion in powers of ω. There are several attractive points in this approach. It
provides the possibility of clarifying the role of various mechanisms representing
their contributions in terms of certain characteristics of the initial-state wave func-
tion. Within the framework of this approach, one can estimate the magnitude of the
neglected terms, thus controlling the accuracy [13].

Corrections which behave as 1/p1 and 1/p21, with p1 the momentum of the fast
photoelectron, can be originated by correlations in both initial and final states. The
amplitude can be written as

F++ = FSO + F I SI + FFSI , (9.75)

where I S I and FSI stand for the initial-state and final-state electron interactions.
The leading amplitude FSO is given by (9.22). Now we can write

R0(ω) = C0 + Δcorr (ω) , (9.76)

with

Δcorr (ω) = 1

|F+|2
∫

d3 p2
(2π)3

(
|FSO + F I SI + FFSI |2 − |FSO |2

)
. (9.77)

We calculate Δcorr (ω) in the leading order of the 1/ω series. Indeed, we have two
small parameters, which are the Sommerfeld parameter of the FSI between the outgo-
ing electrons ξee ≈ mα/p1 and the Sommerfeld parameter of the fast photoelectron
ξ1 = η/p1. We shall write the final expressions in terms of ξee, employing that
ξ1 = 2ξee. Recall that the amplitude FSO is real. As we have seen in Chap.3, the
amplitude FFSI describing the final-state interactions has imaginary part propor-
tional to 1/p1 and real part proportional to 1/p21. As we show below, the same refers
to the amplitude F I SI . Hence we can write

Δcorr (ω) = 1

|F+|2
∫

d3 p2
(2π)3

[
2FSO(F I SI

2 + FFSI
2 ) + |F I SI

1 + FFSI
1 |2

]
, (9.78)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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with
F I SI = i F I SI

1 + F I SI
2 ; FFSI = i F FSI

1 + FFSI
2 , (9.79)

where F I SI
i and FFSI

i (i = 1, 2) are real.
One can write similar corrections to the amplitude of a single photoionization

F+ when the second electron remains in the 1s state. However, the corresponding
contributions to Δcorr will be of order ξ 2

eeC0, and we have neglected them, since
C0 � 1. Nevertheless, we shall include the main correction of order ξ 2

eeC0, since
it contributes with a numerically large coefficient. This is a kinematic correction
that is due to the difference between the momentum of the fast photoelectron of
double photoionization p1 and that of single photoionization p. The corresponding
contribution to the ratio is

Δkin(ω) = 1

|F+(p)|2 p
∫

d3 p2
(2π)3

[
|FSO(p2, p1)|2 − |FSO(p2, p)|2

]
p1 . (9.80)

In the single photoionization momentum of the photoelectron is

p = √
2m(ω − I+) , (9.81)

while the double photoionization momentum of the fast photoelectron is

p1 =
√
2m(ω − I 2+ − ε2) = p

(
1 − IZ + ε2

2ω

)
. (9.82)

Here we neglected the higher-order terms of the expansion in powers of 1/ω, and
employed that I 2+ − I+ = IZ , with IZ = mα2Z2/2, for helium IZ = 54.4 eV. We
trace the corrections that are due to the difference between the value of themomentum
of the fast electron p1 and the value p determined by (9.81), which corresponds to
single photoionization.

The amplitude FSO behaves as p−3
1 , while the phase volume of the fast electron

contains the factor p1. Thus the double photoionization cross section is proportional
to p−5

1 . The dependence on photoelectron momentum manifests itself also in correc-
tions for thewave functions of the fast outgoing electrons.Aswe have seen inChap. 7,
in the case of single photoionization, we can separate the corrections depending on
the parameter πξ (ξ = η/p). This dependence manifests itself in the Stobbe factor
S(πξ1) = e−πξ1 ; see (7.46). There is a similar factor S(πξ1) with ξ1 = η/p1 in the
cross section of the double photoionization. Note that πξ = 1 at ω ≈ 560 eV, and
we do not treat πξ as a small parameter. Thus (9.80) can be evaluated as

Δkin(ω) = m

2π2|Φ1s |2
∫ ω/2

0
dε2 p2

[
p5

p51
e−π(ξ1−ξ) − 1

]
|Φ(ε2)|2. (9.83)

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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This provides

Δkin(ω) = ξ 2

2
(5 − πξ)

(
1 + 〈ε2〉

IZ

)
C0, (9.84)

where

〈ε2〉 =
∫ ω/2
0 dε2 p2|Φ(ε2)|2ε2∫ ω/2
0 dε2 p2|Φ(ε2)|2

. (9.85)

Note that Δkin > 0.
Now we calculate the contributions caused by correlations in the initial state. To

calculate the amplitude F I SI , wemust include the higher corrections of the expansion
in powers of 1/p1 ≈ 1/p on the RHS of (9.21). Since the process takes place at
the distances r1 ∼ p1, expansion of the amplitude in powers of 1/p1 corresponds
to expansion in powers of r1 of the integrand on the RHS of (9.19). To obtain these
terms, we carry out the Taylor expansion for the wave function Ψ (r1, r2) near the
point r1 = 0:

Ψ (r1, r2, r12) = Ψ (0, r2, r2) + r1
∂Ψ

∂r1
|r1=0 + (r12 − r2)

∂Ψ

∂r12
|r12=r2 + · · · . (9.86)

As we have seen in Chap.7, the leading contribution is provided by the term contain-
ing the first derivative. Thus to obtain corrections to the cross section of the relative
order p−2

1 , we must include the Taylor expansion up to the third order. The terms
of the expansion contain the powers of r1 and r1 · r2. The integrals containing the
powers of r1 are

Xn = lim
λ→0

∫
d3r1r

n
1 e

−ip1·r1e−λr1; X0 = lim
λ→0

8πλ

(p21 + λ2)2
= 0; (9.87)

X1 = −8π

p41
; X2 = 0; X3 = 96π

p61
.

The integrals containing the powers of r1 · r2 are calculated using the relation
r1e−ip1·r1 = i∇e−ip1·r1 , with the gradient taken with respect to p1. Thus the con-
tribution of the odd powers of the product r1 · r2 are imaginary. Note also that
limλ→0

∫
d3r1rn1 (r1 · r2)ke−ip1·r1e−λr1 = 0 for even n and every integer k. Thus some

of the terms on the RHS of (9.86) vanish after integration over r1.
Keeping only the terms that will survive, we write

Ψ (r1, r2, r12) = r1ψ
10 + r1δψ

11 + r1δ2

2
ψ12 + r31

6
ψ30. (9.88)

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Here we defined

δ = r12 − r2 = −r1 · r2
r2

− (r1 · r2)2
2r32

+ r21
2r2

(9.89)

and

ψnk(r2) = ∂n+kΨ (r1, r2, r12)

∂nr1∂kr12
|r1=0,r12=r2 . (9.90)

Employing (9.87) for integration over r1 on the RHS of (9.22), we can write for
the ISI amplitude

F I SI
1 = ξeeM(ω,p1)Φ I S I

1 (p2); F I SI
2 = ξ 2

eeM(ω,p1)Φ I S I
2 (p2),

with M determined by (9.26), and

Φ I S I
1 (p2) = − 4

ην
〈ψC

p2 |n · r/r |ψ11〉; Φ I S I
2 (p2) = 8

ην2
〈ψC

p2 |
1 − 3(n · r)2/2r2

r
|ψ11〉−
(9.91)

4

ην2
〈ψC

p2 |1 − 6(n · r)2/r2|ψ12〉 + 2

ην2
〈ψC

p2 |ψ30〉; η = mαZ; ν = mα,

and n = p1/p1. Note that F I SI
1 (p2) describes ejection of the secondary electrons

with orbital momenta � = 1. The amplitude F I SI
2 (p2) corresponds to ejection of

the electrons with orbital momenta � = 0 and � = 2. Only the terms describing the
secondary electrons with � = 0 interfere with the SO terms.

For the FSI amplitude we obtain, employing the results of Chap.3,

FFSI
1 = ξeeM(ω,p1)ΦFSI

1 (p2); FFSI
2 = ξ 2

eeM(ω,p1)ΦFSI
2 (p2); (9.92)

ΦFSI
1 (p2) = 〈ψC

p2 | ln (r − rz)λ)|ψ〉;

ΦFSI
2 (p2) = 1

2
〈ψC

p2 |r0
∂

∂r
|ψ〉 − 1

2
〈ψC

p2 | ln2 (r − rz)λ|ψ〉,

with λ → 0, while z denotes the direction of the fast photoelectron momentum.
Recall that here ψ = Ψ (0, r). Thus we can write

Δcorr (ω) = 1

Φ2
1s

∫
d3 p2
(2π)3

(2Φ(p2)Φ I S I
2 (p2) + 2Φ(p2)ΦFSI

2 (p2)+ (9.93)

+ |Φ I S I
1 (p2) + ΦFSI

1 (p2)|2),

with the terms containing ln λ canceling on the RHS.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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For illustration, we carry out computations employing a ground-state wave func-
tion depending on its variables explicitly. We use a simple version of the Bonham–
Kohl(BK) functions [14]

Ψ (r1, r2, r12) = N0

(
e−μ1r1−μ2r2 + e−μ2r1−μ1r2

)(
1 − ce−λr12

)
, (9.94)

with μ1 = 2.21ν, μ2 = 1.41ν, λ = 0.24ν, c = 0.61, and N0 = 1.64ν2, while
ν = mα. This wave function provides the proper value of the binding energy
and reproduces the true value of the asymptotics C0. The BK functions provide
〈ε2〉/IZ = 0.58, and thus Δkin = (0.068 − 0.014πξ)ξ 2. Recall that ξ = mαZ/p.
The contributions to Δcorr depend on the parameter ξee ≈ mα/p. For the BK func-
tions, Δcorr = 0.87ξ 2

ee. Note that πξ = 0.96 for ω = 600eV, while πξ = 0.42 for
ω = 3keV. Thus we can put πξ ≈ 0.7, leading to

Δkin(ω) = 0.23ξ 2
ee, (9.95)

with the final result

Δ(ω) = Δkin(ω) + Δcorr (ω) = 1.10ξ 2
ee. (9.96)

Thus we have obtained

R0(ω) = C0 + 1.10ξ 2
ee; ξ 2

ee = 13.6 eV

ω
(9.97)

for the preasymptotic behavior of the cross section ratio; see Fig. 9.3. The FSI deter-
mines about 70% of the value. Since Δ(ω) > 0, the cross section ratio approaches
the asymptotic value from above. Since at the threshold, the cross section of the
double photoionization vanishes (just due to the vanishing phase volume), while that
for single photoionization does not, the ratio also becomes zero. Hence, it peaks at a
certain finite value of the photon energy above the threshold. This peak was observed
in a number of experiments.

The contribution of the final-state interactions is dominated by the imaginary part
of the amplitude FFSI

1 represented by second term on the RHS of (9.92). This is
because the real part of the amplitude FFSI

2 is multiplied by the SO matrix element
〈ψC

p2 |ψ〉, which is numerically small. Neglecting the correlations in the initial state,
we have Δcorr = ΔFSI . The value of ΔFSI does not depend strongly on the cor-
relations in the ground state. The Hartree–Fock functions, which we have seen to
underestimate the SO value for the cross section, provide ΔFSI = 0.75ξ 2

ee. Even
neglecting the electron interactions in the ground state, i.e., describing the ground
state by the product of two single-particle Coulomb functions with Z = 2 (9.23), we
obtain ΔFSI = 0.91ξ 2

ee.
While the SOmechanism provides the monopole secondary electrons, the correc-

tion Δ(ω) is a superposition of contributions Δ�. The distribution over the angular
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Fig. 9.3 Double-to-single
photoionization ratio for the
helium atom. The horizontal
axis is for the photon energy
in eV. The black dots,
triangles, and square show
the experimental data (the
references are listed in [13]).
The solid line represents the
results of calculation
employing (9.97). The other
lines are for the calculations
carried out in other
approaches (see [13] for
references) [13]

momenta is characterized by the parameter

a� = Δ�

Δ
; Δ =

∑
Δ� . (9.98)
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Employing the functions defined by (9.94) we find

a0 = 0.29; a1 = 0.48; a2 = 0.12; a3 = 0.05, (9.99)

with domination of dipole and monopole terms.
For the double photoionization of the K shell of heliumlike ions, it is reasonable to

try the perturbativemodel formulated in Sect. 9.2.2, extending it to the lower energies
ω ∼ IZ . This was done in [15]. The initial-state wave function was given by (9.48),
while the final-state wave function was represented as

Ψ f = Ψ 0
f + GVeeΨ

0
f , (9.100)

where Ψ 0
f is the symmetrized product of two Coulomb functions describing the

photoelectrons with momenta p1,2. As in (9.48),G is the nonrelativistic two-electron
Green function in the Coulomb field. The second terms on the RHS of (9.48) and
(9.100) contain the Sommerfeld factors of electron interaction ξee = α/v, with v
the velocity of relative motion of the electrons. In the initial state v ≈ αZ , and the
Sommerfeld parameter for the electron interaction is ξ i

ee ≈ 1/Z . At ω ∼ IZ , the
same refers to the final state. Thus the amplitude

F++ = N (ω)
(
〈Ψ 0

f |γG(εa)Vee|Ψ 〉 + 〈Ψ 0
f |VeeG(εb)γ |Ψ 〉

)
, (9.101)

with εa = ε1−ω; εb = ω− IZ , and γ the operator of the e−γ interaction determined
by (9.8), provides the amplitude in the lowest order of expansion in powers of 1/Z .

At ω 
 IZ , the first term on the RHS of (9.101) is still of order ξ i
ee ≈ 1/Z ,

while the second term is of order ξee ≈ α
√
m/2ω. Inclusion of higher terms in

the interaction Vee would provide the higher terms of expansions in powers of 1/Z
and ξee. Thus for ω 
 IZ , the amplitude (9.101) reproduces the leading terms of
expansion in powers of 1/Z and ξee. Note that the amplitude does not contain infrared
logarithmic divergent terms (see Sect. 3.2). Recall the origin of such terms. After one
of the electrons leaves the atom (ion), the field that is felt by the secondary electron
changes and is shaken to an excited state. In the next step, the photoelectron undergoes
elastic scattering on the shaken one. This provides the logarithmic divergent phase.
In the present model all electrons move in the same field, and such terms do not
emerge.

Since theK electrons arewell separated from the other bound electrons, the results
can be,with somemodifications, used for the process in the neutral atoms.We employ
the only modification of assuming that the K electrons move in the Coulomb field
with the effective charge of the nucleus Zef f determined by the condition that the
experimental single-electron binding energy is equal to its nonrelativistic Coulomb
field value with charge Zef f , i.e., Iexp = mα2Z2

e f f /2. Some of results are given in
Table9.2.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Table 9.2 The double-to-single photoionization ratio for a number of neutral atoms; w = ω/Iexp
is the energy carried by the photoelectrons

Z Iexp , keV w Zeff Rexp Rtheor

10 0.87 5.75 8.0 3.2(−3) [16] 2.8(−3)

22 4.97 3.50 19.1 5.3(−4) [17] 5.1(−4)

26 7.12 2.44 22.9 2.4(−4) [17] 2.3(−4)

29 8.99 2.22 25.7 1.3(−4) [18] 1.1(−4)

The numbers in parentheses are the powers of 10. The theoretical data are taken from paper [15]

9.2.4 Photoionization Followed by Excitation: Intermediate
Energies

Recall that in the nonrelativistic high-energy limit, the excitation of an electron to
the shell with a principal quantum number n following photoionization is due to the
specific correlation in the initial state known as the shakeup (SU). Only s states can
be excited by this mechanism. Excitation of the states with nonzero angular momenta
are quenched by factors that decrease as ω−1. Similar to the double photoionization,
we can write for the ratios defined by (9.3)

R∗
ns(ω) = C∗

ns + Δns(ω) (9.102)

for � = 0, and
R∗
n�(ω) = Δn�(ω), (9.103)

for � ≥ 1. For excitation of s states, we calculate the lowest-order correction of
the asymptotics. For excitation of the states with � > 0, we obtain the leading
contribution of the expansion in powers of 1/ω.

We begin with the excitation of s states. As in the case of double photoionization,
there are contributions of kinematic corrections and corrections caused by correla-
tions in the initial and final states. The contributions of the kinematic corrections
can be obtained by replacing 〈ε2〉 by −IZ/n2 on the RHS of (9.84). Recalling that
ξ = 2ξee, we obtain

Δkin
ns (ω) = 2ξ 2

ee(5 − πξ)(1 − 1

n2
)C∗

ns, (9.104)

with ξ = η/p,where p is themomentumof photoelectron, andweput p = (2mω)1/2.
One can obtain the amplitudes that describe the contributions of correlations in

the initial and final states from expressions for the amplitudes F I SI and FFSI for the
double photoionization given by (9.93) and (9.92), replacing ψC

p2 by ψC
ns . Now we

need only the real part of the amplitude F I SI . Setting F I SI
ns = ξ 2

eeMUn and employing
(9.91), we obtain for the contribution corresponding to the orbital momentum � = 0
of the secondary electron
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Un = 4

ην2

∞∫

0

drr Rns(r)ψ
11(r) + 4

ην2

∞∫

0

drr2Rns(r)ψ
12(r)+ (9.105)

+ 2

ην2

∞∫

0

drr2Rns(r)ψ
30(r),

with Rns(r) the radial part of ψC
ns(r), ν = mα. Hence

ΔI S I
ns (ω) = 2ξ 2

ee

ΦnsUn

Φ2
1s

. (9.106)

In the description of the FSI correlations, we omit the contributions of order
ξ 2
eeC

∗
ns , since they contain two small factors. We write FFSI

ns = iξeeMSn + ξ 2
eeMTn ,

with

Sn =
∞∫

0

drr2Rns(r) ln (rλ)ψ(r); Tn = r0
2

∞∫

0

drr2Rns(r)ψ
′(r) −

− 1

2

∞∫

0

drr2Rns(r) ln
2 (rλ)ψ(r). (9.107)

This leads to

ΔFSI
ns (ω) = ξ 2

ee

2ΦnsTn + S2n
Φ2

1s

. (9.108)

Finally,
Δns(ω) = Δkin

ns (ω) + ΔI S I
ns (ω) + ΔFSI

ns (ω). (9.109)

Excitation of the p states can take place only beyond the SU approximation.
The ISI and FSI contributions can be obtained by changing ψC

p2 to ψC
n1m in the

expressions for F I SI
1 and FFSI

2 in (9.92). Choosing the direction of momentum of
the photoelectron as the axis of quantization of the angular momentum, we find that
the secondary electrons can be excited only to the states with m = 0. We obtain

F I SI
np = iξeeM(ω,p1)Vn; Vn = −4

√
3

3
r20

∞∫

0

drr2Rnp(r)ψ
11(r); (9.110)

FFSI
np = iξeeM(ω,p1)Wn; Wn = −

√
3

2

∞∫

0

drr2Rnp(r)ψ(r),
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leading to

Δnp(ω) = ξ 2
ee

(Vn + Wn)
2

Φ2
1s

. (9.111)

For � ≥ 1, only the FSI contribute to the asymptotics. Replacing ψC
p2 by ψC

n�0 in
the expression (9.92) for FFSI

1 , we obtain

Δn�(ω) = ξ 2
ee

2� + 1

�2(� + 1)2
D2

n�

Φ2
1s

; Dn� =
∞∫

0

drr2Rn�(r)ψ(r). (9.112)

Here we employed (7.176) for calculation of the angular integral.
Calculations for the helium atom carried out by employing the CFHH functions

[19] demonstrate that in the excitation of s states, all the components of the energy-
dependent contributions to the ratios R∗

n� presentedby (9.109) are important, and there
are some cancellations between them. In the excitation of p states, the contribution
of FSI provides about 4/5 of the ratios R∗

np. Excitations of s and p states provide
contributions of the same order of magnitude to the total cross section of excitation
of the shell with the given principal quantum number. Excitation of d states gives
about 10% of the latter. Contributions of the states with � ≥ 3 are much smaller.
For example, the cross section for excitation of the 4 f state is about 1/20 that of
the 4d state. For all n and �, we write Δn� = ξ 2

ee Bn�, where Bns depends on the
photon energy in terms of the parameter ζ = πξ1. For � ≥ 1, the parameter Bn� does
not depend on ω. We present some numerical results for Bn� and Bn = ∑

� Bn� in
Table9.3.

The calculated ratios R∗
n for helium can be compared with the unique set of exper-

imental data obtained by Wehlitz et al. [20]; see Fig. 9.4. As expected, a noticeable
discrepancy takes place only for ω ≤ 300 eV. The largest deviations of theoretical
results from experimental data are reached for n = 2. For n = 6, experimental data

Table 9.3 Values of Bn� for ionization accompanied by excitation of a secondary electron to the
n� state and Bn = ∑

� Bn�; ζ = πξ

State Bn� Bn

2s 0.19 − 0.07ζ

2p 0.13 0.32 − 0.07ζ

3s (3.0 − 1.1ζ ) × 10−2

3p 1.9 × 10−2

3d 3.1 × 10−3 (5.2 − 1.1ζ ) × 10−2

4s (1.0 − 0.4ζ ) × 10−2

4p 6.2 × 10−3

4d 1.4 × 10−3

4 f 7.9 × 10−5 (1.8 − 0.4ζ ) × 10−2

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Fig. 9.4 The ratio Rn(ω) for the photoionization cross section of the helium atom accompanied by
excitation of the second electron to the shell with the main quantum number n related to the single
photoionization cross section. The horizontal axis is for the photon energy in eV. The dots show the
experimental data obtained in [20]. The solid line shows the results of calculation based on (9.112)
by employing the CFHH functions [19]

are available only for ω ≤ 160 eV. However, even here, the discrepancy between the
experimental and theoretical results is not large.

In Sect. 9.2.3, we described a model of double photoionization developed in [15]
in which all the electron interactions with the nucleus are included exactly, while
the interactions between the electrons are treated in the lowest order of perturbation
theory. The approach was extended to studies of photoionization accompanied by
excitation [21]. The universal functions Hn�(ξ) that determine the ratios

R∗
n�(ω) = Hn�(ξ)

Z2n3
(9.113)

have been obtained. It was found that all Hn�(ξ) increase strongly in the region ξ >∼ 1.
Here the cross sections for excitation of the ns and np states are of the same order of
magnitude, while those with � ≥ 2 are much smaller. At n ≥ 3, the functions Hn�(ξ)

exhibit only weak dependence on n.
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9.2.5 Two Fast Photoelectrons

Now we consider the case in which both photoelectrons carry energies ε1,2 that
strongly exceed the binding energies IZ . Now the FSI determine the process, while
the SO provides only a small correction. Indeed, in the SO amplitude Φ(p2) =∫
d3r2ψC∗

p2 (r2)Ψ (0, r2), one can treat the interaction between the secondary elec-
tron and the nucleus perturbatively if its momentum satisfies p2 
 μb. At zero
order, the wave function ψC∗

p2 (r2) is just the plane wave; a large momentum p2 is
transferred to the nucleus by the initial-state electron, and the amplitude is quenched
by a factor of order p−4

2 ; see Sect. 7.1.1. Momentum p2 is transferred to the nucleus
by the secondary photoelectron if the lowest Coulomb correction is included. This
contribution also decreases as p−4

2 . Similar to the case of ejection of electrons in
electron scattering on atoms considered in Sect. 3.1, the leading terms of these con-
tributions cancel, and the SO amplitude decreases as p−5

2 .
If the FSI between the photoelectrons are included, a large momentum p2 is

transferred to the secondary electron by the primary one. If the FSI is treated in the
lowest order of perturbative theory, the final-state wave function can be represented
by (9.100). Since the energies of all electrons are large, one can describe the state
Ψ 0

f by the composition of two plane waves.
We discussed the main features of the FSI mechanism in Sect. 4.2. The double

photoionization proceeds in two steps. In the first one, a single photoionization takes
place. The real photoelectron passes from the vicinity of the nucleus to the region
where the density of the electron cloud reaches its largest values. Here it knocks out
the secondary electron by electron impact.

In Sect. 4.2, we described electrons by single-particle functions. The correspond-
ing equations can be easily generalized to two-particle functions. Proceeding in the
same way as in Sect. 4.2, we can represent the lowest-order FSI amplitude as

F++ = √
2N (ω)

∫
d3 f

(2π)3

〈p1,p2|Vee|p − f, f〉〈p − f, f |γ |Ψ 〉
ε − (p − f)2/2m − f 2/2m

+ (p2 ↔ p1),

(9.114)
p = p1 + p2; ε = ε1 + ε2,

where Ψ is the wave function of the K shell electrons, while γ is the operator of
interaction between the photon and one of the electrons. Since Vee is proportional
to p−2

2 , the FSI amplitude can be expected to decrease as p−4
2 . As we demonstrated

in Chap.4, in the kinematic region that determines the energy distribution, the FSI
amplitude is enhanced and behaves as p−3

2 . Thus, the FSI dominates the process at
ε1,2 
 IZ . This equation can be evaluated as

F++ = √
2

∫
d3 f

(2π)3

4πα

(p2 − f)2
2m

p′2 − (p − f)2 − f 2
M(ω,p−f)ψ(f)+(p2 ↔ p1),

(9.115)

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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with p′ = (2mε)1/2, whileψ(f) is the Fourier transformof the functionψ(r2) defined
by (9.25). The function M is given by (9.26). One can see that the first factor is the
amplitude of free ee scattering Fee. Since the integral is saturated by f ∼ μb � p2,
we can put Fee(p2 − f) = Fee(p2). This provides a direct analogue of (4.11):

F++ = 4πα

(
1

p21
+ 1

p22

)
M(ω,p)Λ(p, p′); (9.116)

Λ(p, p′) =
∫

d3 f

(2π)3

2m

p′2 − (p − f)2 − f 2
ψ(f).

The wave function of the ground state of a two-electron system on the electron–
nucleus coalescence line Ψ (0, r) can be well approximated by the superposition of
two exponential terms; see Sect. 4.4.3. One can write Ψ (0, r) = ψ(r) = N1e−λ1r +
N2e−λ2r , where λ1,2 are of order the binding momentum μb. For the helium atom,
λ1 = 1.34ν, λ2 = 1.59ν, and N1 = 0.35ν3, N2 = 0.65ν3, ν = mα; see (4.110).

Thus

ψ(f) = 8πN1λ1

( f 2 + λ2
1)

2
+ 8πN2λ2

( f 2 + λ2
2)

2
. (9.117)

This provides

Λ(p, p′) = −
∑
i

2mNi

p2 − (p′ + iλi )2
; i = 1, 2, (9.118)

and we can put

|Λ(p, p′)|2 = m2

p′2

(
N 2
1

κ1
+ N 2

2

κ2
+ 2N1N2

λ1 + λ2

(λ1

κ1
+ λ2

κ2

))
; κi = (p − p′)2 + λ2

i .

(9.119)
Representing the differential cross section as

dσ = |F++|2dΓ ; dΓ = 2πδ(ε1 + ε2 − ω + I++)
d3 p

(2π)3

d3 p2
(2π)3

, (9.120)

putting ε1 = (p−p2)2/2m and employing the delta function for integrating over the
angles of p1, we obtain

dσ++ = |F++|2m
2

p

d3 p

(2π)3

dε2

2π
. (9.121)

The integral over p is saturated by the values close to p′, i.e., |p − p′| ∼ λ1,2. Thus,
quite similar to the single-particle approach presented in Sect. 4.2, the distribution
dσ++/dε2dp peaks at p = p′ with the width of the peak of orderμb. In other words,
the distribution in the angle between the momenta of the outgoing electrons (angular

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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correlations) τ = p1 · p2/p1 p2 has a sharp maximum at τ = 0 corresponding to
the value predicted by classical mechanics for elastic scattering of electrons. The
vicinity of this point determines the distribution

dσ++

dε2
= C

σ+(ω)

Φ2
1s

πr2e
ε1ε

2
2

, (9.122)

with σ+(ω) the cross section of single photoionization, while Φ1s is defined by
(9.27),

C = N 2
1

λ1
+ N 2

2

λ2
+ 4N1N2

λ1 + λ2
. (9.123)

The last factor is just the energy distribution of the free e − e scattering in the Born
approximation, in agreement with the results of Sect. 4.1.5.

Proceeding in the same way as in Sect. 4.1.5, we can demonstrate the domination
of small values of |p− p′| � p, p′ without specifying the shape of the wave function
on the electron–nucleus coalescence line. We obtain, analogous to (4.62),

dσ++

dε2
= s

σ+(ω)

Φ2
1s

dσee(ε)

dε2
, (9.124)

with

s =
∫

d3r
|Ψ (0, r)|2

r2
. (9.125)

Recall that domination of the values of p close to p′, i.e., of τ close to zero,
corresponds to domination of the real intermediate state in the process. One of the
electrons absorbs the photon and moves to the continuum. In the next step, it shares
its momentum with the second bound electron.

Now we consider another type of differential cross sections that are differential in
energy and in angle of the same photoelectron. Such studies are traditionally carried
out for the linear polarization of the photons. Here we define cos θi = ti = e · pi/pi
for each photoelectron and employ the standard parameterization for the double
differential distribution in the dipole approximation

dσ++

dε1dt1
= 1

2

(
1 + βasym(ε, ε1)P2(t1)

)
, (9.126)

with P2(t1) = (3t21 − 1)/2 the Legendre polynomial of second order; βasym is called
the “asymmetry function”, ε = ω − I++. Here we calculate the asymmetry function
for the case in which both photoelectrons are fast, i.e., ε1 
 IZ and ε − ε1 
 IZ .

We write the differential cross section

dσ = |F++|2dΓ ; dΓ = 2πδ(ε1 + ε2 − ε)
d3 p1
(2π)3

d3 p2
(2π)3

(9.127)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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in terms of the variables ε1,2, t1,2 and p2 = p21 + p22 + 2p1 p2τ , where τ = cos θ12,
while θ12 is the angle between the directions of the momenta p1 and p2. Employing

the well-known relation τ = t1t2 +
√
1 − t21

√
1 − t22 cos (ϕ1 − ϕ2), we obtain

dσ = 2πF2
ee|Λ(p, p′)|2M2(ω,p)δ(ε1 + ε2 − ε)

m2 pdε1dε2dt1dt2dp

A(τ, t1, t2)(2π)5
, (9.128)

Fee = 2πα

m

(
1

ε1
+ 1

ε2

)
.

Here τ = (p2 − p21 − p22)/2p1 p2, while

A(τ, t1, t2) =
[
(1 − t21 )(1 − t22 ) − (τ − t1t2)

2
]1/2

. (9.129)

Note that this distribution is symmetric relative to the photoelectrons.
During integration over p, we can put p = p′ everywhere except in the denomina-

tors κi .Weput τ = 0 in (9.129) for A(τ, t1, t2). Thus the triple differential distribution
is

dσ

dε1dt1dt2
= m4F2

ee

16π3 p′
CM2(ω,p)√
1 − t21 − t22

, (9.130)

for t21 + t22 ≤ 1, with C defined by (9.123). Note that here the lower indices just
label the photoelectrons. Each of them can be a primary one or a secondary one. The
value τ = 0 can be reached only if t21 + t22 ≤ 1. As one can see, the distribution
dσ/dε1dt1dt2 is quenched by a factor of order μb/p′ � 1 outside this region. For
the photon energy ω = 1keV, one finds that μb/p′ ≈ 0.2.

Since the angular dependence of the function M(ω,p) defined by (9.26) is deter-
mined by the sum p1t1 + p2t2, we can write (9.130) as

dσ

dε1dt1dt2
= (p1t1 + p2t2)2√

1 − t21 − t22

X (ε1, ε2), (9.131)

where X is a symmetric function of the energies of the photoelectrons. Carrying out
integration over t1 and t2, one can see that

X = 3

4πmε

dσ

dε1
, (9.132)

while the double differential distribution indeed takes the form (9.126) [23] with the
asymmetry function

β(ε, εi ) = f
(εi

ε

)
= 3

εi

ε
− 1. (9.133)
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Recall that this expression is obtained for the case of two fast photoelectrons with
εi 
 Ib. Only the FSI mechanism of the process is included. If ε2 ∼ Ib, i.e., ε1 ≈ ε,
the process can be viewed as a single ionization with ejection of the fast electron,
with the second electron moved to the continuum due to the shakeoff (SO). The
double differential distribution is proportional to t21 , and thus can be written as

dσ

dε1dt1
= 3t21

2

dσ

dε1
, (9.134)

and βasym → 2. Thus (9.133) reproduces the limit ε1 → ε, although the mechanism
of the process is quite different. For small ε1 ∼ Ib � ε, the electron labeled by the
lower index 1 is moved to the continuum by the SOmechanism, carrying the angular
momentum � = 0. Hence, the right-hand side of (9.133) does not depend on t1, and
βasym = 0. Thus (9.133), which provides βasym = −1 for ε1 = 0, does not work for
small ε1 ∼ Ib.

The validity of (9.133) is illustrated by comparing it with the numerical results
obtained in a number of papers. Computations of the function βasym for the energy
ε = 1keV and ε1 = 920eV carried out in [22] in two different approaches provided
βasym = 1.70 and βasym = 1.86, while (9.133) gives βasym = 1.76. In the earlier
paper [24], the asymmetry coefficient was calculated for several values of the photon
energy ω. The results of [24] and our asymmetry function (9.133) are presented in
Fig. 9.5. As expected, the region of the values ε1/ε where our results agree with those
of [24] increases as we increase the value of the photon energy.

Fig. 9.5 Dependence of the
asymmetry coefficient βasym
on the fraction of energy
carried by a photoelectron in
double photoionization of
helium. The solid line
corresponds to (9.113) of the
text. The other curves
represent the results of
reference [23]. Dashed
curve: ω = 280 eV.
Dashed-dotted curve: ω = 1
keV. The dotted curve is for
ω = 2.8 keV
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9.3 Quasifree Mechanism

9.3.1 The Amplitude

Now we turn to analysis of the quasifree mechanism (QFM) [7, 25] in which the
nucleus accepts small momentum q ∼ μb � pi . While we consider the photon
energies corresponding to nonrelativistic photoelectrons, i.e., ω � m, the QFM is
possible only in the vicinity of the center of the energy distribution, where the relative
difference of the electron energies β = (ε1 − ε2)/(ε1 + ε2) is small, β � 1 (in this
section, we assume that ε1 ≥ ε2 and hence β ≥ 0). If ω � μb, i.e., the photon
wavelength is much larger than the size of the bound state, one can neglect k in the
expression (9.5) for the recoil momentum q. The QFM is possible if

β <∼

√
μ2
b

mω
. (9.135)

For atomic helium, these are the energies ω � 6keV. For ω ≈ μb, we obtain
β <∼ 0.11. If μb � ω � m, one can replace the condition q <∼ μb by that of free
kinematics q = 0. This provides

β <∼
√

ω

m
. (9.136)

The QFM leads to a strong correlation of the photoelectrons. They move approxi-
mately “back to back” with nearly opposite directions of the momenta.

In the standard formalism of quantum mechanics, we present the QFM amplitude
describing photoelectrons by plane waves. We introduce

R = (r1 + r2)/2; ρ = r1 − r2 , (9.137)

and represent the ground state wave function in terms of these variables:

Ψ (r1, r2) = Ψ̂ (R, ρ) . (9.138)

Introducing also κ = (p1 − p2)/2 ≈ p1, we write for the QFM amplitude

FQFM = √
2N (ω)

∫
d3Rd3ρe−iqR+i(κ−k/2)·ρ( ie · ∇ρ

m
− ie · ∇R

2m

)
Ψ̂ (R, ρ)+(p1 ↔ p2),

(9.139)
with q = p1 + p2 − k. Integrating by parts, we find that since |κ | 
 q, the first
integral on the RHS dominates, providing

FQFM = √
2N (ω)

eκ
m

∫
d3Rd3ρe−iqR+i(κ−k/2)·ρΨ̂ (R, ρ) + (p1 ↔ p2). (9.140)
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The integral is determined by R ∼ 1/q ∼ 1/μb, i.e., the characteristic values of R is
of the order the size of the bound state. The important values of ρ are much smaller,
being of order 1/κ � 1/μb. To pick the quadrupole terms, we represent the wave
function analogously to (9.20), i.e.,

Ψ̂ (R, ρ) = Ψ̂ (R, 0, 0) + ζ Ψ̂ ′(R, ζ, 0)|ζ=0 + ρΨ̂ ′(R, 0, ρ)|ρ=0 + 0(ρ2), (9.141)

with ζ = R · ρ. Substituting this expansion into the integral over ρ in (9.140),

J (a, R) =
∫

d3ρeia·ρΨ̂ (R, ρ); a = p1 − p2 − k
2

, (9.142)

we see that only the third term on the RHS of (9.141) contributes, providing

J (a, R) = −8πΨ̂ ′(R, 0, ρ)|ρ=0

a4
= −4πmα

a4
Ψ̂ (R, 0). (9.143)

The second equality is due to the second Kato cusp condition given by (4.85). Thus
the amplitude

FQFM = √
2N (ω)

eκ
m

∫
d3Re−iqR J (a, R) +

(
p1 ↔ p2

)
(9.144)

can be written as
FQFM = F0S(q) . (9.145)

Here

S(q) =
∫

d3re−iqrΨ (r, r) =
∫

d3 f

(2π)3
Ψ̃ (q − f, f) (9.146)

describes the transfer of momentum −q to the nucleus by the bound electrons. The
factor

F0 = −4π
√
2αN (ω)

eκ
a4

+
(
p1 ↔ p2

)
; a2 = mω (9.147)

is the amplitude of the process in which the photon moves a system consisting of
two free electrons in the spin-singlet state to the continuum. Hence, (9.145) can be
viewed as a generalization of the single-particle relation expressed by (2.75) for the
two-particle case.

Note that in the dipole approximation e−ik·ρ = 1, direct evaluation of the RHS of
(9.139) provides the amplitude

F (0)
dip = −8π

√
2αN (ω)

eq
m2ω2

∫
d3Re−iqRr0Ψ̂

′(R, 0, ρ)|ρ=0. (9.148)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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The upper index (0) means that we neglected the FSI of the photoelectrons. For
ω � μb, this contribution is much larger than the quadrupole one (9.144). As
noticed by Surić et al. [26], inclusion of the interaction between the photoelectrons
in the lowest nonvanishing order leads to the amplitude

F (1)
dip = 4π

√
2αN (ω)

eq
m2ω2

∫
d3Re−iqRΨ̂ (R, 0). (9.149)

We find that each of the amplitudes F (0,1)
dip treated separately would provide a surplus

in the center of the energy distribution. However, due to the second Kato condition,
we have F (0)

dip + F (1)
dip = 0, and there is no such thing as a dipole contribution to the

QFM.
The literature on the subject includes several direct numerical computations car-

ried out in the dipole approximation and employing approximate functions that do
not satisfy the second Kato cusp condition. They report a peak in the center of the
spectrum. We see that it is a spurious one. This provides an instructive example that
a theoretical analysis should precede computations. We address the reader to the
review [27] for more details.

Even if the quadrupole terms are separated, in calculations of the contribution of
the QFM one should employ a ground-state function that satisfies the second Kato
condition. Of course, every approximate function Ψapprox with a nonzero value of
the derivative Ψ ′

approx (R, ρ)|ρ=0 would provide a surplus in the center of the energy
distribution. However, for the quantitative results one needs an approximate function
that satisfies the Kato condition. Note that the combinations of the products of the
single-particle functionsψ s.p. do not reproduce any trace of theQFM. Such functions

Ψapprox (R, ρ) = ψ s.p.

(
R + ρ

2

)
ψ s.p.

(
R − ρ

2

)
(9.150)

are the even functions of ρ, and for them, Ψ ′
approx (R, ρ)|ρ=0 = 0.

9.3.2 Evaluation of the Shape of the Spectrum Curve

Now we trace the change of the shape of the spectrum curve with the growth of the
value of the photon energy ω [28]. We have seen that the photoelectron spectrum
has sharp peaks at the edges of the energy interval ε1,2 → 0, where the process is
dominated by the SO mechanism. At ε1,2 
 Ib, the energy distribution is the result
of interplay between the FSI and QFM. Since the amplitude of the FSI is mostly
imaginary while that of the QFM is real, we neglect the interference terms and write

dσ++

dε1
= V1(ω, β) + V2(ω, β) , (9.151)
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with V1 and V2 standing for contributions of the FSI and QFM respectively. The FSI
contribution was found in Sect. 9.2.5. Setting εi = ω(1 ± β)/2, we can write

V1(ω, β) = 2α2sv1(ω)

ω3(1 − β2)2
; v1(ω) = 211/2π2α(αZ)2

3m5
(
m

ω
)7/2, (9.152)

with s defined by (9.125). The function v1(ω) is defined in such a way that the
asymptotics of the cross section for photoionization of the K shell in the single-
particle approximation is σ+(ω) = ψ2

1s(0)v1(ω). To obtain the QFM contribution
V2, we represent the differential cross section corresponding to the QFM as

dσ++(ω) = δ
(
ε − 2ε1 − p1qz

m
− q2

2m

)
|FQFM |2 d

3 p1
(2π)3

dq2dqz
4π

, (9.153)

with z the direction of momentum p1 − k, and we put p1 − k = p1 in the argument
of the delta function. Using the delta function for integration over qz , we obtain for
the energy distribution

dσ++
QFM

dε1
= m2

2

∫
|FQFM |2 dq

2dt

(2π)3
; t = p1k/p1k, (9.154)

which can be written as

V2(ω, β) = v2(ω)

∫ 1

−1
dtt2(1 − t2)Φ(ω, β, t); v2(ω) = 32α3

(m
ω

)3
, (9.155)

while

Φ(ω, β, t) =
∫ 4p21

q2
min

dq2D(q); D(q) = S2(q). (9.156)

The function S(q) is defined by (9.146). The smallest possible value of the recoil
momentum q is qmin = ||p1 − k| − p2|. Introducing p = (mω)1/2 and estimating
|p1 − k| ≈ p1 − p1 · k/p1 and p1 − p2 ≈ pβ, we obtain

q2
min = (pβ − ωt)2; p = (mω)1/2. (9.157)

In the QFM, the nucleus obtains the momentum q ∼ μb, which is much smaller
than the momenta of the photoelectrons. The values q ∼ μb are inside the interval
of integration on the RHS of (9.156) if the value of β is small enough. In any case,
the QFM kinematics are available at the central point β = 0.

If the QFM is neglected, the spectrum curve is U-shaped, with a minimum at
the central point. The values of ω where the spectrum curve with a minimum at the
central point converts into a curve with a maximum, and vice versa, are determined
by the equation

V ′′
1 (ω, β)|β=0 + V ′′

2 (ω, β)|β=0 = 0, (9.158)
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with V ′′
1,2 the second derivatives of the functions V1,2 with respect to β. Calculation

of V ′′
1 is trivial. The first derivative is given by V ′

2 = −pv2(ω)
∫ 1
−1 dtt

2(1− t2)(pβ −
ωt)D(qmin). Noting that

∂D(qmin)

∂β
= − p

ω

∂D(qmin)

∂t

and employing integration by parts, we obtain

V ′′
2 (ω, β)|β=0 = −v2(ω)

p

ω

1∫

−1

dtt2(1 − t2)
∂D(ωt)

∂t
.

Integration by parts enables us to represent (9.158) in the form

16α2s

ω3
+ 6

√
2

π2Z2
ωm

( ω

m

)1/2
A(ω) = 0. (9.159)

Here

A(ω) =
∫ 1

−1
dtt2(1 − 2t2)D(ωt). (9.160)

We can estimate the value ω = ω1 where (9.159) is satisfied. Estimating s ∼ μ5
b,

we obtain ω1 ∼ μb(αZ)4/9. The exact value of ω1 is obtained by finding a numerical
solution of (9.159). One can find also an approximate analytical solution that is true
with relative accuracy αZ . Since the integral on the RHS of (9.146) is saturated by
r ∼ μ−1

b while ω1 ∼ μb(αZ)4/9, we can assume that ω2r2 ∼ αZ � 1. Thus we
can calculate S0 ≡ S(qmin) by putting exp (−iq · r) = 1 on the RHS of (9.146). We
obtain

A = − 2

15
B, (9.161)

with

B = |
∫

d3rΨ (r, r)|2.

Assuming that the function A(ω) is given by (9.161), we obtain the solution of
(9.159):

ω∗
1 = 52/9(παZ)4/9

( 8s2

B2m

)1/9
. (9.162)

As one can see from Table9.4, the values of ω1 and ω∗
1 are very close indeed. For

helium, ω∗
1 = 1.9keV. Employing (9.162), one can trace the Z -dependence of ω∗

1:

ω∗
1 = 0.65Z14/9. (9.163)
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One can see that at ω = ω1, the QFM contribution to the energy distribution V2 is
still much smaller than the FSI contribution V1. Thus the evaluation of the spectrum
curve begins with a small QFM surplus on the smooth FSI curve.

Thus at certain ω1 � μb, the U shape of the spectrum curve changes to a W
shape. On the other hand, for much larger energies ω 
 μb, we can write

dσ++
QFM(ω) = 2πδ

(
ε1+ (k−p1)2/2m−ω+ I 2+

)
|FQFM |2 d

3 p1
(2π)3

d3q

(2π)3
. (9.164)

Employing (9.49), we obtain

dσ++

dε1
= 28π2α3 β2

mω5

(
1 − mβ2

ω

)
Ĩ ; β2 ≤ ω

m
, (9.165)

with

Ĩ =
∫

d3q

(2π)3
|S(q)|2 =

∫
d3r |Ψ (r, r)|2. (9.166)

Thus at ω 
 μb (for helium, this means ω 
 6keV), the spectrum curve has two
peaks at

ε′ = ε

2

(
1 ± 1

2

√
2ω

m

)
. (9.167)

There are also three local minima. One of them is at the center of the energy distri-
bution εi = ε/2, while the two others are at

ε′ = ε

2

(
1 ±

√
ω

m

)
. (9.168)

This structure is due to the quadrupole nature of the QFM.
Due to the free kinematicsp1+p2 = k, the angular variables of the photoelectrons

are linked to the parameter β:

t1 = β

√
m

ω
; t2 = −β

√
m

ω
; ti = pi · k

piω
; i = 1, 2. (9.169)

Thus employing (9.165), we obtain the angular distribution

dσ++

dt1
= 27π2α3 1

m2ω3

√
ω

m
t21 (1 − t21 ) Ĩ , (9.170)

with Ĩ defined by (9.166).
We demonstrated that at ω = ω1 � μb, the U shape of the spectrum curve

changes to a W shape. At certain ω = ω2, the central peak splits into two peaks
at the points close to the center |εi − ε2| � ε/2. One can see that ω2 cannot be
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Table 9.4 The values of ω1, ω∗
1 , ω2, ω∗

2 for the ground states of two-electron ions with nuclear
charge Z

Z 1 2 3 4 5

ω1 0.55 1.93 3.70 5.89 8.49

ω∗
1 0.54 1.89 3.57 5.61 7.96

ω2 4.0 8.94 13.7 18.5 23.3

ω∗
2 4.0 9.72 14.5 19.4 24.3

The results are obtained by employing CFHH functions. The column with Z = 1 shows the data
for the negative hydrogen ion

much smaller than μb, since there is only one solution of (9.158), and it is ω1. Also,
ω2 cannot be much larger than μb, since we found the energy distribution for these
values of the photon energies just now. Hence, ω2 is of order μb. One can see that in
the region ω2 ∼ μb, the FSI contribution is smaller than that of QFM by more than
a factor of α. Thus the value ω2 is determined by condition V ′′

2 = 0 or

∫ 1

−1
dtt2(1 − 2t2)D(ωt) = 0. (9.171)

The values of ω2 obtained by numerical solution of this equation for Z ≤ 5 are
presented in Table9.4. The approximate solution ω∗

2 can be found by employing
(9.156) for the function D based on (4.105) for the wave function. In this case,
(9.171) takes the form

∫ 1

−1
dt

t2(1 − 2t2)

(t2 + a2)4
= 0; a = 2η

ω
. (9.172)

This equation has a solution a = 1.534, and thus

ω∗
2 = 1.30η = 4.86Z keV; η = mαZ . (9.173)

Evaluation of the shape of the spectrum curve is shown in Fig. 9.6.

9.3.3 High Energy Behavior of Ionization Cross Section
Ratios

Now we calculate the contribution of the QFM to the double-to-single photoioniza-
tion cross section ratio. Employing (9.170), we see that the contribution of the QFM
to the cross section of the double photoionization is

σ++
QFM(ω) = 28π2α3

15m2ω3

√
ω

m
Ĩ . (9.174)
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Fig. 9.6 Evaluation of the
shape of the spectrum curve
for the double
photoionization of helium
with increase of the photon
energy ω. The lowest image
corresponds to the energies
ω < ω1 with the FSI causing
the knockout of two fast
electrons. In the next figure,
corresponding to
ω = ω1 = 1.9keV, the QFM
becomes noticeable in the
vicinity of the center. At
ω1 < ω < ω∗ (the third
figure), the spectrum curve
peaks at its center due to the
QFM. At ω ≥ ω∗ = 8.9 keV
(next two figures), the central
peak obtains an internal
structure due to the
quadrupole nature of the
QFM [27]

The double-to-single cross section ratio in the high-energy nonrelativistic limit
becomes [29–31]

R(ω) = C + 4
√
2

5Z2

Ĩ

Φ2
1s

ω

m
. (9.175)

Here the first term corresponding to the SO does not depend on ω (see Sect. 9.2.1).
The second term, which is the QFM contribution, thus provides the lowest-order
energy-dependent correction. As to the FSI contributions, one can see, employing
(9.122), that they provide a small correction of order α2μ2

b/ω
2 to the ratio of the

cross sections.
Recall that employing the standard formalism of quantum mechanics would pro-

vide the second term on the RHS of (9.175), where

Ĩ ′ =
∫

d3R|2r0Ψ ′(R, ρ = 0)|2,

and Ψ ′ denotes the derivative of the function Ψ with respect to ρ. For the exact
solution of the wave equation, we have Ĩ = Ĩ ′, due to the second Kato cusp condi-
tion. However, these two values can differ for approximate functions employed in
computations.

The dimensionless quantity

I = Ĩ

Φ2
1s

(9.176)
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appears to be quite sensitive to the choice of the wave function in the case of helium.
OneobtainsI = 1/8 ifΨ is approximated by the product of single-particleCoulomb
functions. This value does not depend on the charge of the nucleus. One can put
Z = 2 or can employ a certain effective value Zef f . For the old variational functions
of Hylleraas [8] containing three and six parameters, one obtains I = 0.070 and
0.068 respectively. For the Kinoshita wave function [8], one has I = 0.055. The
Hartree–Fock approximation provides I = 0.11. The CFHH value is I = 0.060.
Thus the QFM provides a correction of order 5% at ω = 100keV.

The nuclear charge dependence ofI for two-electron ions traced in [32] is shown
inFig. 9.7. In the limit Z 
 1, oneobtainsI → 1/8.The same result canbeobtained
by employing the product of the Coulomb functions for describing the initial state.
The result is not a trivial one, since one could not expect such a description towork on
the electron–electron coalescence line. The contribution of QFM reaches the largest
value in the negative ion of hydrogen H−, where I = 0.017.

Anyway, as we have seen in Chap. 8, photoionization is not the main mechanism
of ionization if the photon energy is large enough. In the case of helium, the cross
section of the Compton scattering exceeds that of the photoionization if the energy
of the incoming photon satisfies ω1 >∼ 6keV. Thus it reasonable to study the double-
to-single cross section ratio for ionization by Compton scattering.

We have seen that in contrast to photoionization, Compton scattering can take
place on the free electrons. TheCompton scattering on a bound electron is determined
by the kinematic region where the process on the free electron is possible. This
requires that most of the energy be carried by the scattered photon and that the
electron energy be limited by the condition ε <∼ ω2

1/m. The asymptotics of the cross
section are reached when the outgoing electron can be described by a plane wave,
i.e., ω1 
 η. For helium, this means ω1 
 6keV. The asymptotics of the amplitude
at the Bethe ridge can be written as

FCompt = √
2N (ω1)N (ω2)

e∗
2 · e1
m

∫
d3r1d

3r2ψ
C
1s(r2)e

−iq·r1Ψ (r1, r2), (9.177)

Fig. 9.7 The nuclear charge
dependence of the parameter
I determined by (9.176) for
the ground state of the
two-electron ion. The
horizontal axis is for the
charge of the nucleus Z [32]

http://dx.doi.org/10.1007/978-3-319-32736-5_8
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where q ∼ η is themomentum transferred from the nucleus. In double ionization, the
second electron is moved to a continuum state with momentum p2 by the shakeoff.
The amplitude is

F++
Compt = √

2N (ω1)N (ω2)
e∗
2 · e1
m

∫
d3r1d

3r2ψ
C
p2(r2)e

−iq·r1Ψ (r1, r2). (9.178)

the states with small momentum p2 ∼ η determine the cross section σ++
Compt . Thus

one can expect that at ω1 
 η, the double-to-single cross section ratio

r = σ++
Compt

σCompt
, (9.179)

as well as the cross sections themselves reaches a constant value.
Indeed, experiments have shown that for helium, r = (1.25 ± 0.30) × 10−2 for

ω1 = 57 keV [33] and r = (0.98 ± 0.09) × 10−2 for ω1 = 97.8keV [34]. Since in
both single-ionization and double-ionization processes, the electrons interact with
the nucleus at distances of order the size of the bound state, the theoretical results are
less sensitive to the choice of the function describing the bound state. Calculationwith
a variational wave function for helium [35] provided r = 0.8 × 10−2. Calculations
for heliumlike ions with variational functions [36] and in the perturbative model [37]
gave r = 0.050/Z2.

9.3.4 Distributions in Recoil Momenta

We have seen that for helium the QFM provides a noticeable contribution to the
spectrum of photoelectrons starting from photon energies of about 2keV. However,
it manifests itself only in the vicinity of the center of the energy distribution. This
region provides a small contribution to the cross section, while ω � m ≈ 500
keV. The QFM corrections to the total cross section become noticeable at energies
of dozens of keV. For heavier two-electron ions, the corresponding photon energies
become larger. As it stands now, experimental data for such energies are not available.
However, a clear manifestation of the QFMwas observed recently in the experiment
carried out by Dörner’s group [38] at a much smaller value of the photon energy
ω = 800eV. It was found that the distribution in momenta q transferred to the
final-state doubly charged ions in double photoionization of helium has a surplus at
small q of order of 1 to 2 atomic units. The experiment was carried out with linearly
polarized photons. The recoil momentum qwas measured in the plane perpendicular
to the linear polarization vector of the incoming light. This enabled the researchers
to exclude the contribution of the dipole terms.

At photon energies ω >∼ 800eV, the distributions dσ++/dq2dεi for small q can
be calculated analytically and can be written as a combination of hypergeometric
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functions [39]. Note first that the distributions for small q are dominated by the
QFM. Of course, in both SO and FSI mechanisms, there are configurations in which
both electrons transfer large momenta q1,2 with |q1,2| 
 μb to the nucleus, while
the total recoil momentum is small, i.e., |q1 + q2| ∼ μb. However, since each act of
transferring of a large momentum qi 
 μb leads to an additional small factor, their
probabilities are very small. The distribution dσ++/dq2dεi provided by the SO and
the FSI peaks at q ≈ (2mω)1/2 
 μb, becoming very small at q ∼ μb. Thus we
must calculate the QFM contribution.

We calculate the amplitude of the QFM in the lowest order of expansion in powers
of q/pi . This corresponds to expansion of the bound-statewave function in the lowest
order in powers of r12/ri . Recall that ri stand for the distance between the electron and
the nucleus, while r12 is the interelectron distance. Since q ∼ μb, the higher-order
terms of the expansion in powers of q/pi are of the same order as those coming from
the interaction between the photoelectrons and the nucleus. However, they are of
quite different origin. Thus we include interactions of the electrons with the nucleus
exactly, describing the electrons by the nonrelativistic functions of theCoulombfield.
The contribution of the FSI between the outgoing electrons is proportional to the
squared Sommerfeld parameter ξ 2

ee = m2α2/(p1 − p2)2. In the QFM configuration,
p1 ≈ p2 ≈ (mε)1/2 and p1 ≈ −p2. For the photon energy ω = 800eV, the energy
carried by the photoelectrons is ε ≈ 720eV, and we obtain ξ 2

ee
<∼ 0.01. Thus we

neglect the interaction between the photoelectrons, presenting the final state function
as

Ψ f (r1, r2) = 1√
2

(
ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)

)
, (9.180)

whereψi are the single-particle nonrelativistic Coulomb field functions with asymp-
totic momenta pi .

We shall need the functions

ψi (r) = e−ipi ·rXi (r); i = 1, 2, (9.181)

with
Xi (r) = Ni X1F1(iξi , 1, i pir − ipir), (9.182)

where the normalization factors Ni are defined by (3.20). Recall that ξi = η/pi
and η = mαZ . Employing the variables R and ρ determined by (9.137) and using
the notation (9.138), we obtain an expression for the amplitude that is analogous to
(9.139), where we did not include interactions of the photoelectrons with the nucleus.
We write

F++ = T1 + T2 , (9.183)

with

T1 = i
2N (ω)√

2

∫
d3Rd3ρe−iqR+iaρ X1(R−ρ

2
)X2

(
R − ρ

2

) e · ∇ρ

m
Ψ̂ (R, ρ)+(p1 ↔ p2),

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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and

T2 = −i
2N (ω)√

2

∫
d3Rd3ρe−iqR+iaρ X1

(
R−ρ

2

)
X2

(
R−ρ

2

) e · ∇R

2m
Ψ̂ (R, ρ)+(p1 ↔ p2),

while a is defined in (9.142). The integrals corresponding to the amplitudes T1,2 are
saturated by R ∼ q−1 
 ρ. Thus we can set ρ = 0 in the functions Xi . Integrating
by parts, we find that T2 � T1, and thus putting F++ = T1, we obtain

F++ = 2N (ω)√
2

· e · a
m

·
∫

d3Re−iqRX1(R)X2(R)

∫
d3ρeiaρΨ̂ (R, ρ)+ (p1 ↔ p2).

(9.184)
Using (9.141)–(9.144) and employing the second Kato cusp condition (4.85), we
obtain

F++ = −8πα
N (ω)√

2
· e · a
a4

S1(q) + (p1 ↔ p2) , (9.185)

with

S1(q) =
∫

d3Re−iqRX1(R)X2(R)Ψ̂ (R, 0). (9.186)

As expected, in the dipole approximation, i.e., putting k = 0 in the expression for
a, we would obtain F++ = 0. If interactions between the photoelectrons and the
nucleus are neglected, then X1(R) = X2(R) = 1 and S1(q) = S(q) with S(q)

defined by (9.146). One can see that (9.185) can be written also as

F++ = F0S1(q) , (9.187)

with F0 the amplitude of the process on the free electrons. Employing (9.153) and
integrating over the angles, we obtain

dσ++

dq2dβ
= 26

15
α3 |S1(q)|2

m2ω2
. (9.188)

We employ the representation of the ground-state wave function Ψ (R, 0) as the
sum of two exponential terms Ψ̂ (R, 0) = c1e−λ1R + c2e−λ2R ; see (4.110). Thus

|S1(q)|2 = N 2(ξ1)N
2(ξ2)|

∑
i

ci I (λi )|2; I (λi ) =
∫

d3Re−iqRF1(R)F2(R)e−λi R,

(9.189)
with Fi (R) = 1F1(iξi , 1, pi R − ipiR); see (9.182). One can see that

I (λi ) = −∂ J (λi )

∂λi
; J (λi ) =

∫
d3ReiqRF1(R)F2(R)

e−λi R

R
. (9.190)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Many years ago, Nordsieck calculated the integral J (λ) in his studies of
bremsstrahlung in the Coulomb field [40]. Employing these results, we obtain

I (λ) = 8πλ

(q2 + λ2)2
Θ iξ1+iξ2(λ)T (λ)e−π(ξ1+ξ2)/2 . (9.191)

Here

Θ(λ) = q2 + λ2

s(λ)u(λ)
, s(λ) =

√
(p1 + p2)2 + λ2, u(λ) =

√
(p1 − p2)2 + λ2 ,

T (λ) =
(
1 − i(ξ1 + ξ2)

2

)[
(1 + g(λ))2F1(iξ1, iξ2, 1, g(λ)) −

− ξ1ξ2g(λ)(1 − g(λ))2F1(iξ1 + 1, iξ2 + 1, 2, g(λ))

]
,

while

g(λ) = 1 − q2 + λ2

u2(λ)
.

Note that the dependence of |S1|2 on the parameters πξi is contained in the factors
|N (ξi )e−πξi /2|2. Its expansion does not contain terms linear in πξi . The contribution
to the cross section does not contain the Stobbe factor discussed in Chap. 7.

The cross section dσ++/dq2dβ is presented in Fig. 9.8 for ω = 800eV. As
expected, it obtains the largest values at small β � 1 and in the region of small q ∼
1 a.u. It is instructive also to view the energy distribution of the angular correlation.
For ω � μb (for helium, this means ω � 6keV), we can put q = p1 + p2, and

dσ++

dτdβ
= 2p1 p2

dσ++

dq2dβ
; τ = p1 · p2

p1 p2
. (9.192)

As expected, the largest values are reached at τ close to −1, corresponding to the
electrons ejected in the opposite directions (back to back). To find the distribution
in recoil momentum for ω � μb, note that since q ≥ |p1 − p2|, we have β ≤ q/p
with p = (mε)1/2, and

dσ++

dq2
=

∫ q/p

0
dβ

dσ++

dq2dβ
. (9.193)

As expected, the distribution has a local maximum at q about 1 a.u.; see Fig. 9.9.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Fig. 9.8 Double differential
cross section for the double
photoionization of helium at
ω = 800eV [39]

Fig. 9.9 Distribution in
recoil momentum for the
double photoionization of
helium. Solid line is for
ω = 800eV; dashed line is
for ω = 1keV [39]

9.4 Ejection of Relativistic Electrons

9.4.1 Distribution of Photoelectrons

Now we consider the case in which the photon energies are of order the rest energy
of the electron m ≈ 511keV or strongly exceed this value. At least one of the
photoelectrons is a relativistic one. Herewe can single out three parts of the spectrum.
In each of them, the mechanism of the process is different. Note that in this section,
the total energies of the photoelectrons are Ei (i = 1, 2), their kinetic energies are
denoted by εi = Ei − m, and ε = ε1 + ε2.

As in the nonrelativistic case, one of the electrons can undergo a single photoion-
ization, with the second electronmoved to the continuum due to the sudden change of
the Hamiltonian. This shakeoff mechanism (SO) provides mostly the slow secondary
electrons with ε2 ∼ IZ . The SO dominates in this part of the spectrum.
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In the nonrelativistic case, the quasifree mechanism (QFM) dominates in the
vicinity of the center of the spectrum β � 1. Now the relative size of the region of
the QFM domination determined by (9.13) is of order unity.

In the intermediate part of the spectrum where both electrons carry the energies
εi 
 IZ but β <

√
ε/(ε + m), the amplitude is enhanced in the kinematic regions

where the process goes on through intermediate states close to themass shell. Double
photoionization becomes a two-step process. In oneof the channels, the photoelectron
created by direct absorption of the photon knocks out the secondary electron in
the next step. In the alternative channel, the incoming photon undergoes Compton
scattering. In the next step, the scattered photonknocks out the secondbound electron.
This enables us to obtain relatively simple expressions for the energy distributions
of the photoelectrons.

In the edge region, we can neglect the interaction between the photoelectrons.
Thus in the expression for the amplitude

F++ = 2N (ω)〈Ψ f |γ |Ψi 〉; γ = −eip1·r1eiγ i , (9.194)

the photoelectrons can be described by superposition of the single-particle functions
of the Coulomb field

Ψ f = 1√
2

(
ψp1(r1)ψp2(r2) − ψp1(r2)ψp2(r1)

)
, (9.195)

with ψ the single-particle relativistic Coulomb functions. Since p2 ∼ μb � m,
we can describe the secondary electron by a nonrelativistic function with accuracy
α2Z2.

The first electron transfers a large momentum q1 = k − p1 to the nucleus (q1 =
|q1| ∼ m 
 μb) in either the initial or final state. It approaches the nucleus at
small distances r1 ∼ 1/q1 ∼ 1/m. However, the initial-state wave function can
be expressed in terms of the nonrelativistic wave function Ψ (r1, r2) with accuracy
α2Z2 (see Sect. 2.2.3). The amplitude takes the form F++ = T (p1)Φ(p2), where
Φ(p2) is defined by (9.22). The explicit form of the function T (p1) is not important
for calculation of the double-to-single cross section ratio, since the amplitude of the
single photoionization also contains T (p1) as a factor. It is F+ = T (p1)Φ1s , withΦ1s

determined by (9.27). In the single-particle approximation, T (p1) is the relativistic
amplitude of the photoionization with relative accuracy α2Z2; see Sect. 6.3.4.

Hence in the edge region of the spectrum, the ratio F++/F+ as well as the
distribution (dσ++/dε2)/σ

+ is the same as at the nonrelativistic energy transferred to
the atom. The angular distribution of the primary electrons is the same as in the single
photoionization, while that of the secondary electrons is isotropic. The contribution
of the edge region to the double-to-single cross section ratio is given by (9.37).
Expressions for asymptotics of the cross section of photoionization accompanied by
excitation provided by (9.43) also remain true for ω >∼ m.

We turn now to the distributions of photoelectrons in the region of domination of
QFM. It is limited by the condition (9.13). The amplitude is expressed by (9.145).

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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Since the recoil momentum q ∼ μb � m, the function S(q) is given by (9.146),
withΨ the nonrelativistic wave function of the bound state. Now F0 is the relativistic
amplitude of interaction between the photon and the system of two free electrons in
the spin–singlet state. It can be written as

F0 = √
2N (ω)(Fa + Fb) . (9.196)

The two terms correspond to interactions between the electrons in the initial and final
states. Introducing the four-vectors Pa = (2m − E2,−p2) and Pb = (m +ω,k), we
can write

Fa = ū p1 êG0(Pa)γ
μu0i ū p2γ

νu0 j Dμν(ε2,p2) (9.197)

and
Fb = ū p1γ

μG0(Pb)êu0i ū p2γ
νu0 j Dμν(ε2,p2). (9.198)

Here u p1,2 and u0i,0 j are the Dirac bispinors of the photoelectrons and the electrons at
rest, i, j = 1, 2 correspond to the two possible projections of the electron spin, G0 is
the propagator of free relativistic electron, and Dμν is the propagator of the photon.
The expressions (9.197) and (9.198) are illustrated by Fig. 9.2 with the continuum
electrons and the electron in intermediate states described by the relativistic functions
of free motion.

Employing the standardQED technique,we obtain the value of |Fa+Fb|2 summed
over the polarization of the photoelectrons and averaged over photon polarizations
[31]). In actual calculations, it is convenient to employ the Feynman gauge for the
propagator Dμν . We obtain [31]

dσ++ = αr20
16π2

|S(q)|2d3qδ(E1 + E2 − ω − 2m)
W (E1)d3 p1
m2ωE1E2

, (9.199)

with q = p1 + p2 − k and

W (E1) =
(ε1 − ε2

ε1ε2

)2
[
m2 + E1E2 − κ2 +

( mω

ε1ε2

)2
(2mω + m2 − E1E2 + κ2)

]
,

(9.200)

κ2 = ω4 − (E2
1 − E2

2)
2

4ω2
; εi = Ei − m.

The energy–momentum conservation law provides for q = 0:

E2(t1) =
√
E2
1 + ω2 − 2ωp1t1; t1 = p1 · k

p1k
. (9.201)

To obtain the energy distribution, we employ the delta function in (9.199) for inte-
gration over t1. This provides
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dσ++

dβ
= απ2r2e

Ĩ

2m2ω
W (E1); β = ε1 − ε2

ω
, (9.202)

with Ĩ determined by (9.166). Direct evaluation leads to

dσ++

dβ
= 8π2αr2e

mω2
ĨF (β) , (9.203)

with

F (β) =
( β

1 − β2

)2
[
1 + β2

β2
0

+ 2m

ω
+ 16m2

ω2
· 1 − β2/β2

0

(1 − β2)2

]
. (9.204)

Here β2
0 = ω/(ω + m) corresponds to the largest values of β for which the process

can take place without participation of the nucleus, i.e., with q = 0. Examples of the
energy distributions are presented in Fig. 9.10. The interval 0 < β < 1 represented
in Fig. 9.10 corresponds to the energy of the ejected electron ω/2 < ε1 < ω.

In the nonrelativistic approximation ω � m, the distribution becomes zero at
β2 = β2

0 , in agreement with (9.165). One can see that this is not true in the general
case. The distribution has a finite value at β2 = β2

0 , dropping rapidly for β2 > β2
0 ,

since here one cannot make the recoil momentum q be as small as the binding
momentum μb. Note also that the energy distribution vanishes in the center of the
spectrum β = 0.

In the region of QFM dominations the angles between the directions of the
momenta of the photoelectrons and that of the photon momentum are unambigu-
ously determined by the photoelectron energies

t1 = E2
1 − E2

2 + ω2

2p1ω
; t2 = E2

2 − E2
1 + ω2

2p2ω
. (9.205)

Fig. 9.10 Energy
distribution of the electrons
in the central region for the
double photoionization of
helium. The horizontal axis
is for x = β. The vertical
axis is for the functionF (x).
The numbers on the curves
denote the values of the ratio
ω/m [31]
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This enables us to calculate the angular distributions

dσ++

dti
= dσ++

dβ

dβ

dti
. (9.206)

For the faster photoelectron with E1 > E2,

β(t1) = f (t1); f (t1) ≡
−(ω + 2m)ω(1 − t21 ) + 2mt1

√
4ωm + 3ω2 + ω2t21

(ω + 2m)2 − ω2t21
,

while for slower photoelectron, β(t2) = − f (t2). The angular distributions can be
written also as

dσ++

dti
= 16π2αr2e Ĩ

mω2
F1(ti ); F1(ti ) = pi

E − Ei

F (β(ti ))

χ(ti )
, (9.207)

with E = E1 + E2 and

χ(ti ) = Epi − ωEi ti
(E − Ei )pi

. (9.208)

Note that for the faster photoelectron,

√
ω

ω + 4m
≤ t1 ≤ 1,

while for the slower electron,

−1 ≤ t2 ≤
√

ω

ω + 4m
.

The angular distributions are shown in Fig. 9.11.
Note that the QFM provides nonzero values of the distribution dσ++/dt1 for the

photoelectrons with momenta directed along the momentum of the photon. In single
photoionization, we have dσ+/dt1 = 0, unless we include the relativistic corrections
of order α2Z2 to the wave functions.

In the limit ω 
 m, the region of the QFM dominates in the largest part of the
energy distribution limited by the condition 0 ≤ β ≤ β0 = 1 − m/2ω, i.e., for both
photoelectrons,

εi ≥ m

4
≈ 125 keV. (9.209)

In the region of QFM domination, we can single out the region εi ∼ m, where the
amplitude reaches its largest values. Here it is determined by the contribution Fa
given by (9.197), where Pa = (2m − E2,−p2), and the electron propagator is
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Fig. 9.11 Angular distribution of the electrons for the double photoionization of helium. Left panel
is for the faster electron. Right panel is for the slower electron. The horizontal axes are for the angle
θi . The vertical axes are for the function F1(ti ). The numbers on the curves denote the values of
the ratio ω/m [31]

G0(Pa) = − P̂a + m

4mε2
. (9.210)

In the contribution Fb, the denominator of the propagator is 2mω, and the amplitude is
given by Fb ∼ Fam/ω � Fa . The momentum of the faster photoelectron is directed
mostly along that of the photon. The energy distribution of the slower photoelectron
at ε2 ∼ m can be obtained from (9.204). In the limit 1 − β2

0 � 1, 1 − β2 � 1, we
obtain F (β) = ω2/(8ε22). Since also

dσ++

dε2
= 2

ω

dσ++

dβ
,

we obtain for ε2 ≥ m/4,
dσ++

dε2
= 2π2αr2e

ωm

Ĩ

ε22
. (9.211)

At ω 
 m, this part of the spectrum determines the QFM contribution to the total
cross section.

Consider now the intermediate region of the spectrum, where both electrons are
fast εi 
 IZ , but their difference is large enough, i.e., β >

√
ω/(ω + m), and the

QFM does not work. We show that here the energy distribution is determined by
two-step mechanisms. Their contributions to the spectrum dσ1/dεi and dσ2/dεi do
not interfere.

One of the mechanisms was described in Sect. 4.2 for the nonrelativistic case. In
the first step, single photoionization takes place. The real photoelectron passes from
the vicinity of the nucleus to the regionwhere the density of the electron cloud reaches

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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its largest density. Here it knocks out the secondary electron by electron impact.
There is such a contribution in the relativistic case as well. The results obtained in
Sect. 4.2 with the single-particle functions can be easily generalized to the case of
the two-electron functions. The angular correlations peak at τ = ε1ε2/p1 p2. The
contribution of the discussed mechanism to the spectrum is

dσ++
1

dεi
= s

σ+(ω)

Φ2
1s

dσee(ε)

dεi
; s =

∫
d3r

|Ψ (0, r)|2
r2

, (9.212)

where ε = ε1 + ε2, the last factor is the spectrum of relativistic electron scattering,
while s was introduced earlier by (9.125).

In the relativistic case, there is another two-step mechanism. In the first step, the
photon undergoes Compton scattering on one of the bound electrons. In the next step,
the scattered photon is absorbed by the remaining bound electron, moving it to the
continuum. Neglecting the value of the binding energy, we find that the energy of the
electron ejected in the second step is εi = ωC , with ωC the energy of the scattered
photon in the Compton scattering. Similar to (9.212), we can write

dσ++
2

dεi
= s

Φ2
1s

(
σ+(εi )

dσC

dωC
|ωC=ω−εi + σ+(ω − εi )

dσC

dωC
|ωC=εi

)
, (9.213)

where the last factor of the second term in parantheses on the RHS is the energy
distribution of the photons in the free Compton scattering.

Finally, the energy distribution of the secondary electrons in the intermediate
region is

dσ++

dεi
= dσ++

1

dεi
+ dσ++

2

dεi
, (9.214)

with the two terms on the RHS determined by (9.212) and (9.213). One can see
that as in the nonrelativistic case, the contribution of these mechanisms to the cross
section is much smaller than that of the QFM.

9.4.2 Energy Dependence of the Cross Section

Integration of the RHS of (9.204) provides the contribution of the region of QFM
domination to the cross section:

σ++
QFM = 8π2αr2e

mω2
Ĩ · V (ω); V (ω) =

∫ β0

0
dβF (β); β0 =

√
ω

ω + m
. (9.215)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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The integral can be evaluated analytically. It is convenient to represent it in terms of
the parameters y = ω/m and β0:

V (ω) = A1 + A2

y
+ 16

A3

y2
− 16

A4

y3
; A1 = β0(y + 2) − L , (9.216)

A2 = β0

2
(3y + 5) − 5L

4
; A3 = β0

4

[
(y + 1)2 − y + 1

2
− L

4β0

]
;

A4 = β0

6

[
(y + 1)3 − 7(y + 1)2

4
+ 3(y + 1)

8
+ 3L

16β0

]
; L = ln

1 + β0

1 − β0
.

One can see that the contribution of the QFM to the double-to-single cross section
ratio is of the same order of magnitude as that of the SO. The contribution of the
intermediate part of the spectrum is quenched at least by a factor of order α2. Thus
for the ratio of the cross sections defined by (9.2), we can write for all ω 
 IZ ,

R0(ω) = C0 + 4
√
2

5Z2
I ϕ

( ω

m

)
, (9.217)

with I defined by (9.176). Here the first term is the high-energy limit of the SO
contribution. It does not depend on the photon energy; (9.37). The second term is the
contribution of QFM. For ω � m, we obtain ϕ(ω/m) = ω/m, while for ω 
 m,
we have

ϕ(
ω

m
) = 5

√
2

4

(
1 − m

ω

(
ln

4ω

m
− 2

3

))
≈ 1.77

(
1 − m

ω
ln

2ω

m

)
. (9.218)

In the ultrarelativistic limit ω 
 m, the QFM contribution to the cross section σ++
QFM

is determined by integration of the distribution (9.211). This provides σ++
QFM ∼ ω−1,

and the contribution to the ratio (9.217) does not depend on ω [41]. In the limit
ω 
 m, the ratio R0 reaches a new limiting value,

Rur
0 = C0 + 2

Z2
I . (9.219)

Corrections to the second term are of orderm/ω ·ln (ω/m). Thus due to the QFM, the
asymptotic Rur

0 appears to be several times larger than the high-energy nonrelativistic
asymptotic C0:

Rur
0 = C0ζ(Z). (9.220)

We traced the Z -dependence of the parameter ζ and obtained ζ = 2.83 for helium.
In the limit Z 
 1, when I = 1/8, we obtain ζ = 3.78, in agreement with the
perturbative model result [31]. We present ζ for several values of Z in Table9.5 [42].
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Table 9.5 The CFHH values
of the parameter ζ(Z), which
expresses the ratio of the
ultrarelativistic and high
energy nonrelativistic limits
of R0(ω)

Z ζ(Z)

1 2.27

2 2.83

3 3.08

4 3.17

5 3.28

10 3.52

9.5 Two-Electron Capture with Emission of a Single Photon

9.5.1 Experiment and Theory

Now we consider the process of radiative double-electron capture (RDEC) by nuclei
in their scattering on the atoms. The two target electrons are captured to a bound
state of the projectile with emission of a single photon. The upper limit for the
probability of the RDEC was found for the collisions of argon nuclei with carbon
[43] and for those of uranium nuclei with atoms of argon [44]. The process was
detected in collisions of the fully stripped ions of oxygen and fluorine with a carbon
foil [45, 46]. The most probable channel is the one in which the two electrons are
captured independently and thus two photons are emitted. However, the correlated
electrons can be captured also with the emission of a single photon. Such a process
is a challenge to the theoretical views on charge-transfer reactions and on correlation
effects in then atomic system.

In the theoretical treatment of RDEC, we consider the process in the rest frame
of the heavy nucleus, following [47]. The target electrons can be considered as free
if their atomic velocities are much smaller than that of the projectile. Neglecting
interactions between the target electrons, we view the process as the reaction of
capture of two electrons from the continuum state of the Coulomb field created by
the target nucleus to the bound state, followed by emission of a single photon. This
makes the process time-reversed double photoionization. Neglecting the internal
motion of the electrons in the target atom, we study the capture of two continuum
electrons with equal momenta p1 = p2 = p. The process is characterized by the
kinetic energy per nucleon εN (MeV/u). The corresponding electron kinetic energies
are ε = εNm/mN , where mN ≈ 940MeV is the nucleon mass.

We present the calculations in nonrelativistic approximation. They are true for the
energies of the radiated photon ω � m and for relatively light projectile nuclei with
α2Z2 � 1. The probability of double-electron capture to the K shell of a bare ion
with emission of a single photon per unit time is

dW = 2π

V 2
|F |2δ(ε1 + ε2 − ω − I++)

d3k

(2π)3
, (9.221)



9.5 Two-Electron Capture with Emission of a Single Photon 285

where ε1 = ε2 are the kinetic energies of the continuum electrons. The RDEC
amplitude F can be obtained from that of the double photoionization of the K shell
F++ by reversing the signs of themomenta of the photonk → −k andof the electrons
pi → −pi together with the complex conjugation of the polarization vector e → e∗.
Due to the symmetry with respect to the time reversal, we have |F |2 = |F++|2.
To obtain the effective cross section, one should divide this by the current flux of
incident electrons j = v/V , with v = p/m the velocity of the electrons before their
collisions with the projectile nucleus, while V is the normalization volume

dσ = dW

j
= 2π

ω2

vV
|F |2 d�

(2π)3
. (9.222)

The cross section depends on V , since we consider the three-body collision prob-
lem. In ion–atom collisions, the volume V is a characteristic of the target atom and
corresponds to an effective localization volume of the two electrons captured by the
nuclei. For each electron, one can define V = ψ−2

max

∫ |ψ(r)|2d3r , where ψ is the
single-particle function of a target electron with its largest value ψmax . Employing
the hydrogenlike functions, we can estimate for the K electrons

V ≈ V0; 1

V0
= |ψ(0)|2 = η3

π
, (9.223)

with η = mαZt , while Zt is the nuclear charge of the target. For the target electrons in
the states with principal quantum numbers n ≥ 2, we can employ (9.223), replacing
η by mαZef f /n, with Zef f < Zt the effective nuclear charge felt by the electrons.
Thus the value of the volume V is much larger than it was for the 1s electrons. Hence,
we can include only the capture of the K shell target electrons.

For the actual calculations, we employ the perturbative model formulated in
Sect. 9.2.2. We use (9.101) for the amplitude, describing the RDEC of two elec-
trons to the K shell of the projectile. The RDEC cross section can be written as
[48]

σKK = 219r2e
3απ

Z3
t

λZ5
R(ξ) , (9.224)

with Z the charge of the projectile nucleus, λ = V/V0. The universal function R(ξ),
where ξ = mαZ/p, was obtained in [48, 49] for the cross sections σKK and σK L of
RDEC to the 11S0 and 21S0 states.

The results of measurements and of calculations (λ = 1) of RDEC cross sections
are presented in Table9.6. The nonrelativistic results for uranium rather estimate
the values of the cross sections. However, one can see that the theory is consistent
with the upper limits of the cross sections found in experiments with argon and
uranium projectiles. The theory underestimates the experimental values obtained in
[45, 46], where the RDEC was detected. This leaves much room for improvement
of the theoretical approach.
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Table 9.6 The RDEC cross sections in mb/atom units measured in [45, 46] and calculated in
[48, 49]

Z εN , MeV/u Zt σKK (exp) σKK (theor) σK L (exp) σK L (theor)

18 11.4 6 ≤ 5.2 3.2 2.2

92 297 18 ≤ 10 0.025 6 × 10−4

8 2.38 6 3200±1900 160 2300±1300 112

9 2.21 6 1900±1200 221 1600 ± 980 194

9.5.2 The High-Energy Case

Now we consider the values of εN corresponding to the high but nonrelativistic
energies of the captured electrons Ib � εi � m. This corresponds to ξi � 1, for
which the cross section drops rapidly. It is unlikely that it will be measured in the
nearest future. However, from the point of view of the theory, this case is interesting,
since the amplitude is directly related to the ground-state wave function at the double
coalescence points r1 = 0, r2 = 0, r12 = 0 and at the triple coalescence point
r1 = r2 = r12 = 0. We assume that the charge of the projectile nucleus is Z 
 1.
For such values of Z , we can assume that the binding momentum μb ≈ η = mαZ ,
and that Ib = IZ = mα2Z2/2.

Interactions of the captured electrons with the target nucleus are described by the
parameters ξi = η/pi � 1 and thus can be treated perturbatively.We shall see that to
reproduce the main mechanisms of the process, one should include the lowest-order
terms describing the interactions of the incoming electrons with the target nucleus
and also between themselves.

The initial-state wave function thus can be represented as

Ψin = Ψ
(0)
in + G0VeNΨ

(0)
in + G0VeeΨ

(0)
in , (9.225)

where G0 is the Green function of the two noninteracting electrons, while Ψ
(0)
in is

the symmetrized product of the plane waves. A large momentum q 
 η (q = |q|;
q = p1 + p2 − k) can be transferred to the nucleus by the electrons in both the
initial and final states. The two mechanisms provide contributions of the same order
of magnitude to the amplitude:

F = N (ω)〈Ψ |γ |Ψin〉; γ = γ1 + γ2 . (9.226)

We begin with the dipole approximation, i.e., we neglect the terms of order
k/p. If all interactions in the initial state are neglected, the amplitude F (0) =
N (ω)〈Ψ |γ |Ψ (0)

in 〉 corresponds to the first term on the RHS of (9.225). It can be
expressed in terms of the bound-state wave function in momentum space:
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F (0) = N (ω)〈Ψ |γ |Ψ (0)
in 〉 = 2

√
2N (ω)

e∗ · p
m

∫
d3r1d

3r2Ψ (r1, r2)eip·r1eip·r2 =

= 2
√
2N (ω)

e∗ · p
m

Ψ̃ (p,p). (9.227)

Each of the bound electrons transfers a large momentum p to the nucleus. The
integrals are saturated by small r1 ∼ r2 ∼ 1/p � 1/η. Keeping r1 finite, we can
carry out the expansion (9.20) for the function Ψ . Employing the first Kato cusp
condition, we find that the linear terms of the expansion provide the contribution

F (0)
lin = 2M(ω,p)X (p); X (p) =

∫
d3r1Ψ (r1, r2 = 0)eip·r1 , (9.228)

with M(ω,p) defined by (9.26), where the polarization vector e should be changed
to e∗. However the wave function is not analytic at the tree particle coalescence
point r1 = r2 = 0 and cannot be expanded in a Taylor series. Only the terms linear
in r1,2 can be singled out; see (4.99). In the amplitude F (eN ) = 〈Ψ |γ |G0VeNΨ

(0)
in 〉

corresponding to the second term on the RHS of (9.225), we label the electron that
emits the photon with 1, and label another incoming electron with 2. The amplitude
F (eN ) can be written as the sum of two terms describing interactions of electrons 1
and 2 with the nucleus

F(eN ) = √
2

∫
d3 f

(2π)3
〈Ψ |γ1|p, f〉〈f |VeN |p〉

ε1 − f 2/2m
+ √

2
∫

d3 f

(2π)3
〈Ψ |γ2|p, f〉〈f |VeN |p〉

ε2 − f 2/2m
.

(9.229)
We focus on the contribution F (eN )′ of small f ∼ η and r2 ∼ 1/η, while r1 ∼
1/p � η. The first term on the RHS of (9.229) describes the configuration in which
electron 1 approaches the nucleus at small distances of order 1/p � 1/η to transfer
a large momentum to the nucleus. Electron 2 also transfers a large momentum to the
nucleus before being captured by the target. In the second term, electrons 1 and 2
exchange their roles. Direct calculation provides

F (eN )′ = −2M(ω,p)X1(p); X1(p) =
∫

d3 f

(2π)3
Ψ̃ (p, f). (9.230)

One can see that X1 = X , with X defined by (9.228). Employing (9.228), one finds
that F (0)

lin + F (eN )′ = 0.
The amplitude F (ee) = 〈Ψ |γ |G0VeeΨ

(0)
in 〉 is expected to be Z times smaller than

F (eN ), just because the charge of the nucleus is Z times that of the electron. However,
it should be included, since the amplitudes F (eN )′ and F (0) cancel to a great extent.
The main contribution to this amplitude comes from the configuration in which
electron 2 transfers its momentum and energy to the first one and is captured by the
target at distances of order the size of the bound state 1/η. Electron 1 approaches the
nucleus at small distances of order 1/p:

http://dx.doi.org/10.1007/978-3-319-32736-5_4
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F (ee) = 2
√
2

∫
d3 f

(2π)3
· 〈Ψ |γ1|2p − f, f〉
2ε − (2p − f)2/2m − f 2/2m

· 4πα

(p − f)2
. (9.231)

Direct calculation provides

F (ee) = − 2

Z
M(ω,p)X (2p) . (9.232)

In the dipole approximation, the leading contribution to the amplitude is F =
F (0) + F (eN )′ + F (ee) [50]. Thus

F = F1 = 2
√
2N (ω)

e∗ · p
m

[
Ψ̃ (p,p) − Z

8παm

p4
X (p) − 8παm

p4
X (2p)

]
,

(9.233)

with the function X (p) defined by (9.228). Due to partial cancellation of the first
two terms, the Z and p dependence of the amplitude is F1 ∼ N (ω)αη4/p7.

There is an alternative mechanism of the process that works beyond the dipole
approximation. Returning to the amplitudes F (eN ), one can see that one of the incom-
ing electrons can transfer a large momentum of about 2p to the nucleus in the first
step, moving after this with momentum p′ = −p. Nowwe have the electrons moving
“back to back,” and in the second step, they can be captured by the nucleus, transfer-
ring to it only a small momentum of order η. The second step is just the time-reversed
double photoionization due to the QFM. The amplitude F2 is determined by the sum
of the contributions F (eN )

a and F (eN )
b , where the integrals over f are saturated by

f = −p + q with |q| � p. Employing the results of Chap. 4, we obtain

F2 =
∫

d3q

(2π)3
F∗
QFM(q)

2m

p2 − (p − q − k)2

4παZ

(2p)2
. (9.234)

The amplitude F∗
QFM can be obtained by changing e to e∗ in the double photoion-

ization amplitude FQFM given by (9.145). Employing (9.145), we obtain

F2 =
∫

d3q

(2π)3

S(q)

p2 − (p − q − k)2

2πη

p2
F∗
0 (p). (9.235)

Here the amplitude for interaction of the photon with two free electrons F0 is given
by (9.147), while the function S(q) is defined by (9.146). Employing (4.105) for the
approximate wave function on the electron–electron coalescence line, we obtain for
the amplitude of the two-step process

F2 = πNη

p2
F∗
0 (p)

p · k + 2i pη
, (9.236)

with N ∼ η3 the normalization factor of the wave function on the electron–electron
coalescence line.

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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Comparing the amplitude F2 of the two-step process and the amplitude F1 one
can see that the two-step process dominates at least for the nonrelativistic electron
energies.
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Chapter 10
Photoionization of Endohedral Atoms

Abstract Westudyphotoionizationof fullerenes andof fullereneswith encapsulated
atoms. We present the calculation for the photoionization cross section of negative
ions C−

60, describing the field of the fullerene shell by the Dirac bubble potential.
The investigation of the dependence of the high-energy asymptotics on the shape
of the model potential is carried out. We analyze the photoionization of an atom
encapsulated into the fullerene. The energy dependence of the cross section may
differ fundamentally from that for an isolated atom due to interference of the outgo-
ing electron wave with that reflected by the fullerene shell. We analyze the inelastic
processes in the fullerene shell that accompany the photoionization of the encapsu-
lated atom. It appears to be possible to sum the perturbative series for photoelectron
interaction with the fullerene shell. The probability of inelastic processes was found
to be close to unity in the large interval of the photon energies.

10.1 Photoionization of Fullerenes

10.1.1 Fullerenes

Fullerene is a special kind of molecule containing N � 1 nuclei of carbon (Z = 6)
distributed together with 6N electrons in a thin layer between two surfaces. Such
systems are labeled as CN . The 2N atomic 1s electrons are tightly bound to the
nuclei. Four 2s2p electrons of each carbon atom are collectivized, providing 4N
valence electrons.

Fullerenes were discovered about thirty years ago [1]. The most studied is the
fullerene C60. The nuclei of carbon form 20 hexagons and 12 pentagons. The system
has a complicated icosahedral symmetry. However, in applications, the fullerene C60

can be assumed to have a spherical shape. The 60 nuclei of carbon are assumed to
be located on a sphere of radius R. The empirical value of the radius is R ≈ 6.5r0,
or R ≈ 6.5 a.u. The 120 atomic 1s electrons are located near their nuclei. The 240
collectivized electrons are located in the layer between spheres of radii R and R + Δ

(sometimes, the radii are denoted by R − Δ/2 and R + Δ/2). The width of the layer
is Δ ≈ 1.5a.u.

© Springer International Publishing Switzerland 2016
E.G. Drukarev and A.I. Mikhailov, High-Energy Atomic Physics,
Springer Series on Atomic, Optical, and Plasma Physics 93,
DOI 10.1007/978-3-319-32736-5_10
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There are a number of other fullerenes CN , which can be treated approximately
as having spherical shape. For all of them,

Δ � R . (10.1)

The charge density inside the layer has been investigated in several papers. It has
a sharp maximum in the center of the layer; see a typical shape below in Fig. 10.1.

Fig. 10.1 The radial
dependence of the electron
density (upper panel) and of
the potential energy (lower
panel) for the fullerene C60
obtained in a self-consistent
calculation [2]. Reproduced
with permission of IOP
Publishing
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Once the spherical symmetry is accepted, the single-particle states of the electrons
can be described by the principal quantum number n = 1, 2, . . . and the value of the
orbital momentum � [3]. The number of the nodes of radial wave functions is n − 1.
In the fullerene C60, the electron states either have no radial nodes (σ orbitals) or
have one node at the spherical surface (π orbitals). In the fullerene C20, 76 out of 80
valence electrons belong either to σ or to π orbitals [2].

The calculations that provide the values of the charge density in the fullerene shell
(FS) can give also the shape of the potential ϕ(r) created by the FS. However, in
applications it is desirable to have an analytical approximation for ϕ(r).

The FS potential at the space point r can be presented as the sum of potentials ϕn

andϕe created by the nuclei and the electrons respectively, i.e.,ϕ(r) = ϕn(r) + ϕe(r).
The ingredients of ϕ(r) can be represented in terms of the carbon nuclei distribution
density ρn and the electron distribution density ρe

ϕn(r) = eZ
∫

d3r ′ ρn(r′)
|r − r′| ; ϕe(r) = −e

∫
d3r ′ ρe(r′)

|r − r′| , (10.2)

where Z = 6 is the charge of the carbon nucleus. The density of the electron cloud
of the FS ρe(r′) is normalized as

∫
d3r ′ρe(r′) = ZN . (10.3)

Under the assumption of spherical symmetry, the fixed positions of the carbon nuclei
Rk can be approximated by their uniform distribution over the sphere of radius R:

ρn(r) = N

4π

δ(r − R)

R2
. (10.4)

This charge density creates the potential

ϕn(r) = eZN
∫

dΩ

4π

1

|r − R| , (10.5)

where Ω is the solid angle of the vector R. Employing (5.148) we obtain ϕn(r) =
eZN/R at r ≤ R, while ϕn(r) = eZN/r at r ≥ R.

At r → 0, the total potential reaches a finite value,

ϕ(0) = eZN

R
− 4πe

∫ ∞

0
dr ′r ′ρe(r′). (10.6)

The potential ϕ(r) determines the potential energy of the electron in the field of the
FS:

U (r) = −eϕ(r) . (10.7)

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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In actual calculations, one usually employs a model potential U (r). The model
potential should satisfy the limiting conditions at r → 0 and at r → ∞ presented
above. Also, the radial dependence of the charge density is connected with the poten-
tial by the Poisson equation Δϕ = −4πeρ, which can be written as

1

r

d2[rU (r)]
dr2

= 4παρ(r) . (10.8)

The shape of the r -dependence of the charge density determined by (10.8) with the
model potential U (r) should be consistent with the empirical data.

The simplest model potential is U (r) = 0 everywhere outside the FS, while
U (r) = −U0 with U0 > 0 inside the FS, i.e., at R ≤ r ≤ R + Δ. It can be writ-
ten as

U (r) = −U0θ(r − R)
(
1 − θ(r − R − Δ)

)
; U0 > 0. (10.9)

It was noted in [4] that this potential does not reproduce the shape of the density
dependence on r presented in Fig. 10.1. Indeed, we find from (10.8) that the charge
density actually vanishes inside the FS, where U = const. The density is rather
concentrated near the walls of the FS, where the potential U (r) suffers the jumps.

A more complicated Dirac bubble potential [5] is

U (r) = −U0r0δ(r − R); U0 > 0 . (10.10)

Sometimes, model potentials are determined by analytical functions of r with a
peak at r = R. The Dirac bubble potential can be viewed as the limiting case of the
Lorentz bubble potential. The latter is determined by the analytical formula

U (r) = −U0

π

ar0
(r − R)2 + a2

. (10.11)

The Dirac bubble potential can be treated as the limiting case of this potential at
a → 0. The Gaussian-type potential

U (r) = −U0

π
exp

(−(R − r)2

s2
)
, (10.12)

with s ≈ Δ was employed in [6].
The fullerene C60 can bind one more electron, creating the negative ion C−

60. The
energy of ionization Iaff of the additional electron (called also the electron affinity
of C60) is known to be about to 2.7 ± 0.1eV [7]. The value of U0 is usually chosen
to reproduce the value of electron affinity. This provides U0 ≈ 8eV for the “well
potential” given by (10.9), whileU0 ≈ 10eV for the Dirac bubble potential (10.10).
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The solutions of most problems connected with fullerenes require numerical cal-
culations. However, due to the existence of the small parameter Δ/R, some of the
effects can be traced analytically, at least in the lowest order in Δ/R. We shall
consider the fullerenes that can be treated as having approximately spherical shape.

10.1.2 Photodetachment of C−
60

Photoionization of the neutral fullerene is a much more complicated process than
that of an isolated atom. Even in the channel γ + C60 → e− + C+

60, the cross section
exhibits large peaks corresponding to collective excited states of the ion C+

60 [8, 9].
The double-to-single photoionization ratio in fullerenes appears to be much larger
than in the atoms [10]. Thus it is difficult to provide a simple example of analytical
calculation in this case. In photoionization of a negative ion C−

N , one can separate
the channel γ + C−

N → e− + CN in which the photon interacts with the additional
electron of the fullerene shell while the rest ones in the ground state. Since the
additional electron is well separated from the neutral FS, the process can be viewed
as a single-particle one. The neutral FS can be treated as a source of an external field.

The existence of the negative ion C−
60 was confirmed in experiments long ago.

However, there are controversial experimental results on the quantum numbers of the
extra electron state. Some experiments provide data consistent with the attachment
of the extra electron to the s state (see, e.g., [11]), while others present evidence for
a nonzero angular momentum of the observed state [12].

We shall employ theDirac bubblemodel for the FS potential,makingmore general
statements at the end. This model allows both the s and p and also the d states for
the additional electron. The spectrum of the wave equation with this potential was
studied in [13] in connection with the hyperfine splitting of the atomic levels. This
was several years before the discovery of fullerenes.

Representing the wave function of the additional electron as ψn�m(r) = χn�(r)
Y�m(Ω)/r , we come to the wave equation

[
− 1

2m

d2

dr2
+ �(� + 1)

2r2
−U0r0δ(r − R)

]
χ�(r) = εn�χ�(r), (10.13)

with εn� the energy of the extra electron. We omit the index n of the function χn�(r)
here and below. Integrating both sides of (10.13) over a small interval near the point
r = R, we obtain

1

2m

∫ R+δ

R−δ

drχ ′′
� (r) = −U0r0χ�(R). (10.14)

On the other hand,
∫ R+δ

R−δ
drχ ′′

� (r) = χ ′
�(R + δ) − χ ′

�(R − δ). Thus the derivative
χ ′(r) undergoes a jump at the point r = R. The jump of the logarithmic derivative
L(r) = χ ′

�(r)/χ�(r) is
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ΔL = lim
δ→0

[
χ ′

�(r + δ)

χ�(r)
− χ ′

�(r − δ)

χ�(r)

]
= −2U0

α
. (10.15)

We turn now to the bound-state wave functions. Everywhere except on the sphere
r = R (10.13) is just the equation of free motion. Considering first the s states, we
obtain χ0(r) = c1 exp (−μr) + c2 exp (μr), with c1,2 certain numerical coefficients
that have different values in the regions r < R and r > R; μ = √

2mIa f , while
Ia f = −ε�=0 > 0 is the electron affinity to the fullerene C60. We must put c2 = 0
for r > R, since otherwise, the normalization integral for |ψ |2 would not converge.
However, at r < R, both of c1,2 are nonzero. Since the functionχ0(r) becomes zero at
r = 0, we have c1 + c2 = 0 at r < R. Hence there are two independent coefficients.
They are determined by the requirement that the function χ0(r) is continuous at
r = R and by the normalization condition. Finally, for the s states,

χ0(r) = B0
e−μR

μR
sinh(μr), r ≤ R; (10.16)

χ0(r) = B0
sinh(μR)

μR
e−μr r ≥ R.

The constant

B0 = μ1/2 2μR(
1 − (1 + 2μR) exp (−2μR)

)1/2

is related to the value of the radial wave function at the origin,

lim
r→0

χ0(r)

r
= B0

e−μR

R
, (10.17)

with numerical value B0 = 3.93r−1/2
0 .

Carrying out a direct calculation of the discontinuity (jump) of the logarithmic
derivative and employing (10.15), we obtain the equation for the energy ε0 of the s
state of the extra electron:

U0 = μα

2

eμR

sinh (μR)
. (10.18)

This expression can be viewed as representing the electron potential energy in the
field of the FS in terms of two observables. The latter are the electron affinity and
the radius of the FS. For C60, we have U0 = 12eV.

The solutions of (10.13) for the bound stateswith any value of the angularmomen-
tum � can be written as

χ�(r) = B�

√
r

R
I�+1/2(μ�r)K�+1/2(μ�R), r ≤ R; (10.19)
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χ�(r) = B�

√
r

R
I�+1/2(μ�R)K�+1/2(μ�r), r ≥ R.

Here μ� = √
2m|ε�|, |ε�| is the electron affinity. The functions I�+1/2 and K�+1/2,

which are the solutions of (10.13), are the modified Bessel functions of the first and
third kind, respectively (the latter are known also as the Macdonald functions). They
can be represented in terms of elementary functions, e.g.,

I1/2(x) = λ(x)
sinh(x)

x
; K1/2(x) = e−x

λ(x)
; (10.20)

I3/2(x) = λ(x)

(
− sinh(x)

x2
+ cosh(x)

x

)
; K3/2(x) = e−x

λ(x)

(
1 + 1

x

)
,

with λ(x) = √
2x/π .

The normalization factors are, e.g., B1 = 3.95/r1/20 and B2 = 3.86/r1/20 . To cal-
culate the jump of the logarithmic derivative at r = R, we employ the expression for
the Wronskian

I ′
�+1/2(x)K�+1/2(x) − I�+1/2(x)K

′
�+1/2(x) = 1

x
. (10.21)

Using (10.15), we obtain the equality

2U0RI�+1/2(μ�R)K�+1/2(μ�R) = α, (10.22)

which determines the single-particle spectrum of the extra electron.
The Bargmann condition for the bound states [14],

∫
dr

r

r0
U (r) ≥ 2� + 1

2
, (10.23)

takes the form

� ≤ U0R − 1

2
(10.24)

in the case of the Dirac bubble potential. Thus for the ion C−
60, we have � ≤ 2 [15].

One can see that there is only one state for a given angular momentum �. Indeed,
assuming that there are two bound states with the same value of � and different
principal quantum numbers n and n′, we find that their wave functions are described
by (10.19) with different values ofμ� = √

2m|εk�|, where k = n, n′. These functions
should be orthogonal. However, this is impossible, since the functions I�+1/2(x) and
K�+1/2(x) do not change their signs in the interval 0 ≤ x < ∞.

We turn now to the continuum wave functions. The wave function of the contin-
uum state with the kinetic energy ε, angular momentum �, and its projection m can
be written as ψp�m(r) = χp�(r)Y�m(Ω)/r with p = (2mε)1/2. The radial function
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χp�(r) satisfies (10.13) with εn� on its RHS replaced by ε. In the simplest case of
� = 0, we can write χp0(r) = c1 sin pr + c2 cos pr , similar to the case of the dis-
crete spectrum. Since χp0(r) should vanish at r = 0, we obtain c2 = 0 at r < R. At
r > R, both of c1,2 are nonzero.

This is true for every value of the orbital momentum �. At r < R, the solution of
the wave equation is proportional to the regular (finite at the origin) solution of the
free wave equation u p�(r) = pr j�(pr), with j�(pr) the spherical Bessel functions
of the first kind. At r > R, it is a linear combination of the regular solution and the
irregular one vp�(r) = pry�(pr), where y�(pr) are the spherical Bessel functions
of the second kind, known also as the spherical Neumann functions. The functions
y�(x) behave as x−�−1 at x → 0. In the limit pr � 1,

j�(pr) ∼ sin(pr − π�/2)

pr
; y�(pr) ∼ −cos(pr − π�/2)

pr
. (10.25)

Thus in the internal region r < R, the wave function is proportional to the regular
solution of the free wave equation [15, 16]

χ�(r) = D�(p)u p�(r), r ≤ R. (10.26)

In the outer region r > R, it is a linear combination of the regular and irregular
solutions. Since the asymptotics of the radial wave function at pr � 1 are R�(r) ∼
sin(pr − π�/2 + δ�), we obtain, employing (10.25),

χ�(r) = u p�(r) cos δ�(p) − vp�(r) sin δ�(p), r ≥ R. (10.27)

Proceeding in the same way as in the case of the discrete spectrum, one obtains

D�(p) = cos δ�(p)

(
1 − tan δ�(p)

vp�(R)

u p�(R)

)
, (10.28)

tan δ�(p) = u2p�(R)

u p�(R)vp�(R) + pα/2U0
.

Now we are ready to calculate the amplitude of photoionization

F(R) = N (ω)〈ψi |γ |ψ f 〉,

with γ the operator of interaction between the photon and electron. We assume the
extra electron to be in the s state. We employ the dipole approximation, and thus
only the final-state electron carries the angular momentum � = 1.

It is reasonable to compare the amplitude F(R) with the amplitude F0 = F(R =
0) in which the wave functions of the initial and final states are described by the
second equality of (10.16) and by (10.27) respectively. The amplitude describing the
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photoionization of the negative ion A− of the atom A in the zero-range potential
approach is just F0. The corresponding cross section is [17]

σ0(ω) = 8πα

3

I 1/2(ω − I )3/2

mω3
, (10.29)

with I the ionization potential of the ion A−.
The cross section for photoionization of the negative ion of fullerene is

σ(ω) = σ0(ω)X2(ω) , (10.30)

where

X (ω) = c
1 − e−2μR

R

D1(p)

p
f (p); c =

√
2π

μ
N0Re

μR, (10.31)

with p = (2m(ω − Ia f ))1/2 the photoelectron momentum, μ = (2mIa f f )1/2, and
N0 = ψ(r = 0), while

f (p) = cosh (μR) sin pR − p

μ
cosμR + sin (pR + δ1) + p

μ
cos(μR + δ1) .

In the limit pR � 1, i.e., for the photoelectron energies ε � 0.3eV, we can
employ the asymptotic expressions for the spherical wave functions j1(pR) =
− cos pR/pR and y1(pR) = − sin pR/pR. If pα � 2U0, we can neglect the sec-
ond term of the first equality of (10.28). In this limit, i.e., for the photoelectron
energies ε � I1(U0/I1)2 with I1 = mα2/2 ≈ 13.6eV (this means ε � 10eV in the
case of C−

60), we have δ1 = 0 and D1 = 1. As one can see from (10.27), only the
regular part of the photoelectron wave function contributes in this limit. In other
words, the photoelectron is described simply by the plane wave. At these energies,
the cross section is

σ(ω) = σ a
0 (ω)

(c sin pR

pR

)2
, (10.32)

with c determined by the second equality of (10.31), while

σ a
0 (ω) = 8πα

3

I 1/2a f

mω3/2
(10.33)

is the high-energy asymptotics of the cross section σ0 given by (10.29). Note that
the Dirac bubble model may appear to be too crude if the electron wavelength 1/p
much smaller than the thickness Δ of the FS.

Anyway, we shall see in the next section that the asymptotic law
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σ(ω) ∼ I 1/2a f sin2 pR

ω5/2
, (10.34)

which follows from (10.32), is true for the model potentials providing the wave
function with a discontinuity of the derivative of the wave function at r = R.

10.1.3 Asymptotics of the Photoionization Cross Section

We shall demonstrate that the shape of the nonrelativistic asymptotic energy depen-
dence of the cross section of photodetachment from the FS depends on the form of
the model potential. We focus on ionization of the ion C−

N . As we have seen, at large
values of the photon energy ω � U0, the photoelectron can be described by a plane
wave. The amplitude can be written as

F = N (ω)
ep
m

∫
d3rψ(r)e−ipr , (10.35)

withψ(r) the single-particle wave function of the additional electron. Recall that the
factor N (ω) = (4πα/2ω)1/2 originates from the photon wave function. Assuming
the electron to be in the s state, we can writeψ(r) = ϕ(r)/

√
4π , with ϕ(r) the radial

part of ψ(r). Thus the amplitude can be represented as

F = √
4πN (ω)

en
m

J (p); J (p) =
∫

dr sin (pr)rϕ(r), (10.36)

with n the unit vector directed along the momentum p. The asymptotic photodetach-
ment cross section is thus

σ = 8πα

3

p

mω
|J (p)|2; p2 = 2m(ω − Ia f ). (10.37)

We consider first the model potentials providing the wave function ψ(r) with
the discontinuity of the first derivative ϕ′(r) at r = R, while the function ϕ(r) is
continuous at this point. The Dirac bubble potential is one of them. We introduce
R± = R ± δ and set J = X1 + X2 with

X1(p) =
∫ R−

0
dr sin (pr)rϕ(r); X2(p) =

∫ ∞

R+
dr sin (pr)rϕ(r); δ → 0.

(10.38)
Integration by parts provides

X1(p) = − R−ϕ(R−) cos pR−
p

+ 1

p

∫ R−

0
dr cos (pr)[rϕ′(r) + ϕ(r)]. (10.39)
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After a similar evaluation of the integral X2(p), we obtain

J = X3 + X4 , (10.40)

with

X3 = 1

p

R−∫

0

dr cos (pr)[rϕ′(r) + ϕ(r)]; X4 = 1

p

∞∫

R+

dr cos (pr)[rϕ′(r) + ϕ(r)].

(10.41)
Now integration by parts gives

X3(p) = [R−ϕ′(R−) + ϕ(R−)] sin pR−
p2

− (10.42)

1

p2

∫ R−

0
dr sin (pr)[rϕ′′(r) + 2ϕ′(r)],

and after a similar evaluation of X4, we obtain

J (p) = − Rλ1(R) sin pR

p2
− 1

p2

∫ ∞

0
dr sin (pr)[rϕ′′(r) + 2ϕ′(r)], (10.43)

where λn(R) = limδ→0[ϕ(n)(R+) − ϕ(n)(R−)] is the discontinuity of the nth deriva-
tive of the radial part of the wave function at r = R.

Further sequential integration by parts of the integral on the RHS of (10.42)
provides the power series in ϕ(n)(r)/pn with r = 0, R ± δ. If these power series
converge, the first term on the RHS of (10.42) provides the leading term of the
asymptotics of the amplitude. The asymptotic cross section of the photodetachment
is thus

σ = 4πα

3
√
2

R2λ2
1(R)

(mω)5/2
sin2 pR . (10.44)

Some of the model potentials provide the wave functions with continuous first
derivatives of the radial functions. For example, the wave functions corresponding to
the well potential (10.9) have a continuous first derivative at r = R, while the second
derivative ϕ(2) undergoes a jump λ2(R). After two integrations by parts in (10.41),
we obtain

J (p) = 2ϕ′(0) + Rλ2(R) cos pR

p3
+ 1

p3

∞∫

0

dr cos(pr)[rϕ(3)(r) + 3ϕ(2)(r)].

(10.45)
The first term on the RHS determines the asymptotics of the amplitude under the
conditions formulated in the previous paragraph. Thus for the well potential,
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σ =
√
2πα

3

κ2

(mω)7/2
, (10.46)

with κ = ϕ′(0) − λ1(R) cos pR.

10.2 Photoionization of Caged Atoms

10.2.1 Wave Functions of Caged Atoms

One of the common features of fullerenes is their internal empty space. The system
in which an atom A is stuffed into the fullerene CN is called an endohedral atom and
is denoted by A@CN . In this case, the molecule CN forms the FS, while A is called
a caged atom.

For internal shells of a caged atom, the characteristic size rb is much smaller than
the fullerene radius R, i.e.,

rb
R

� 1 ; (10.47)

the influence of the FS on the electron shell of a caged atom is weak. Hence the wave
functions of an isolated atom are often employed for description of a caged atom.
However, for the outer electron states of a caged atom, the ratio rb/R may appear to
be not too small. In this case, the electron states of the caged atom are influenced by
the FS.

This can be illustrated by analysis of the energy levels of the hydrogen atom stuffed
into the fullerene C60 carried out in [18]. The wave functions of the discrete spec-
trum of a caged atom of hydrogen are ψn�m(r) = Rn�(r)Y�m(Ω). The Schrödinger
equation for the functions χ�m(r) = r Rn�(r) is

[
− 1

2m

d2

dr2
+ �(� + 1)

2r2
− αZ

r
+U (r)

]
χn�(r) = εn�χn�(r) , (10.48)

with the potential energy determined by (10.9) was solved numerically. The authors
traced the dependence of the binding energies εn� on the strength of the well potential
U0. It was found that for the 1s state with rb ∼ r0, the energy value practically does
not change as we vary the value of U0 between 0 and 15eV. On the other hand, the
binding energy of the 2s state with the larger size becomes about half as large as we
change U0 in this interval.

Mixing between atomic and fullerene electron states, called hybridization, can
take place also for the outer shells of many-electron atoms [19]. For example, there
is strong hybridization of the 5s states of Xe and the FS states in the case of the endo-
hedral atomXe@C60 [20]. We limit ourselves to the cases in which the hybridization
can be neglected, at least for a qualitative analysis. Thus the wave functions of the
atomic bound states are assumed to be the same as those of the isolated atom.
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Turning to the photoelectron wave functions, we employ the Dirac bubble model
for a description of the FS field. It is convenient to consider the continuumwave func-
tions ψp�m(r) = χp�(r)Y�m(Ω)/r with definite values of the modulus of asymptotic
momentum p = (2mε)1/2 and of the orbital angular momentum �with its projection
m. The functions χp�(r) satisfy the wave equation

[
− 1

2m

d2

dr2
+ �(� + 1)

2r2
+ V (r) −U0r0δ(r − R)

]
χp�(r) = εχp�(r), (10.49)

with V (r) the field of the recoil ion. In the previous section, we constructed the
continuum functions for the wave equation with the Dirac bubble potential, i.e.,
for (10.49) with V (r) = 0; (10.26) and (10.27). These equations were based on the
features of the wave equation in the limiting cases r → 0 and r → ∞, which are
common for every central field. Thus they provide also the functions χp�(r) for the
wave equation (10.49). The function u p�(r) is the regular (vanishing at the origin)
solution of the wave equation for the isolated atom:

[
− 1

2m

d2

dr2
+ �(� + 1)

2r2
+ V (r)

]
u p�(r) = εu p�(r). (10.50)

The function vp�(r) is the irregular solution (vp�(r) → ∞ for r → 0) of the same
equation.

Since the photoionization of the caged atom takes place at distances r <∼ rb � R
from the origin, we need the photoelectron function only in the internal region of the
fullerene r < R. Here the shape of its r -dependence is the same as that of the regular
solution u p� for the isolated atom, and χ�(r) = D�(p)u p�(r); see (10.26). Such a
form of the wave function can be viewed as a result of the interference between
the wave corresponding to the electron ejected from the caged atom and the wave
reflected by the attractive fullerene shell [21]. Note that the reflection on the attractive
shell (in contrast to that on the repulsive one) does not have a classical analogue.

The coefficient D�(p) and the phase δ� for themotion in theDirac bubble potential
are given by (10.28). They were obtained by matching the expressions for the wave
function at r = R and by employing the expression for the Wronskian Wp�(r) of
(10.49). We can write (10.49) for the solution u p�(r). Multiplying both sides by the
function vp�(r) and subtracting (10.49) for vp�(r) multiplied by u p�(r), we obtain
u′′
p�(r)vp�(r) − u p�(r)v′′

p�(r) = 0 = W ′
p�(r). Thus Wp�(r) actually does not depend

on r . Calculating it at r → ∞, wefind thatWp� = u p�(r)v′
p�(r) − u′

p�(r)vp�(r) = p,
i.e., it is the same as that of (10.13). Hence the functions D�(p) and the phase shifts
due to the scattering in the FS δ� are given by (10.28), with u p�(r) and vp�(r) the
regular and irregular solutions of (10.49) [16].
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10.2.2 Polarization of the Fullerene Shell

Before interacting with the caged atom, the incoming photon undergoes elastic scat-
tering on the FS. This can be viewed as a modification of the photon wave function.
We consider the ionization of the caged atoms in the dipole approximation. In this
case, the cross section can be expressed through the dipole polarizability αd(ω) intro-
duced in Sect. 7.2. We assume that the photon wavelength greatly exceeds the size
of the fullerene, i.e.,

ωR � 1 . (10.51)

For C60, this means that ω � 600eV.
It is convenient to use the length form of the photon–electron interaction in this

case. Neglecting the photon interaction with the FS, we can write the amplitude for
photoionization of the caged atom as F (0)

γ = iei N (ω)ω
∑

k〈ψ f |r (k)
i |ψin〉, with e the

polarization vector of the incoming photon. Here ψin, f denote the initial and final
states of the caged atom. The sum is carried out over the electrons of the caged atom.

Photoionization accompanied by elastic scattering on the FS is illustrated by
Fig. 10.2.

Employing the results of Sect. 7.2.4, we can write the amplitude for photoioniza-
tion of the caged atom, which includes the photon scattering on the FS, as

Fγ = F (0)
γ + 〈ψ f |r (k)

i Bi (r(k))|ψin〉, (10.52)

Fig. 10.2 Feynmandiagram illustrating the effect of polarization.Beforemoving the bound electron
to the continuum (the continuum electron is labeled by an arrow), the photon (the helical line)
undergoes elastic scattering on the fullerene shell (bold lines), labeled FS

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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with

Bi (r(k)) = eω2
∑
n

( 〈Ψ0| ∑s Ai (r(k), r′(s))|Ψn〉〈Ψn|e · d|Ψ0〉
ω − εn0 + iδ

+ (10.53)

〈Ψ0|e · d|Ψn〉〈|Ψn| ∑s Ai (r(k), r′(s))|Ψ0〉
−ω − εn0 + iδ

)
.

Here r′(s) are the coordinates of the FS electrons. The two terms in parentheses
correspond to the two diagrams shown in Fig. 10.2, d stands for the operator of the
dipole momentum. The function ϕi (r(k)) describes the amplitude of the second-order
process in which one of the photon–electron vertices is replaced by Ai (r(k), r′(s)) =
Di j (r(k) − r′(s))r (s)

j , with Di j (r(k) − r′(s)) the photon propagator. The latter is shown
by the dashed line in Fig. 10.2. It is reasonable to employ the photon propagator in the
formgiven by (2.51),with only the space components Di j having nonzero values. The
function Di j (r − r′) is thus the Fourier transform of the photon propagator Di j (q)

determined by (2.51):

Di j (x) =
∫

d3q

(2π)3
Di j (q)eiqx =

(
δi j + 1

ω2

∂2

∂xi∂x j

)
eiωx

x
. (10.54)

In the lowest order of expansion in powers of ωR, we obtain

Di j (r(k) − r′(s)) = − δi j

ω2|r(k) − r′(s)|3 . (10.55)

Note that the integral over r is saturated by the distances of order the size of the bound
state of the caged atom, i.e., r (k) � R. On the other hand, the important values of r ′(s)
lie in the small interval of orderΔ near the value R. Thuswe can put |r(k) − r′(s)| = R
on the RHS of (10.55). This enables us to separate the integrations over r and r ′ that
provide the photoionization amplitude Fγ (ω) and the dipole polarizability αd(ω) of
the FS respectively. Hence we obtain [22]

Fγ (ω) = F (0)
γ (ω)g(ω); g(ω) = 1 − αd(ω)

R3
, (10.56)

In this approach, the factorization (10.56) is demonstrated explicitly. Of course, the
same result can be obtained by employing the Coulomb gauge for the propagator. In
this case, themain contribution comes from the expansion of the time component D00

of the photon propagator Vee = e2/|r(k) − r′((s)| in powers of r (k)/r ′(s). The leading
contribution is

Vee = e2
r(k) · r′(s)

R3
, (10.57)

which is the dipole–dipole interaction.

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_2
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The experimental data on the total cross section σtot (ω) of the photon absorp-
tion by the fullerene C60 [22, 23] enable us to find the energy dependence of the
polarizability. The optical theorem determines its imaginary part:

Im αd(ω) = σtot (ω)

4πω
. (10.58)

The real part of αd(ω) is determined by the dispersion relation. As one can see from
(7.107) and (7.108), the function αd(ω) has singularities on the real axis, and the
imaginary part Imαd(ω) is an odd function of ω. Thus the dispersion relation can be
written as

Re αd(ω) = 2

π

∞∫

I0

dω′ ω
′Imαd(ω

′)
ω′2 − ω2

= 1

2π2

∫ ∞

I0

dω′ σtot (ω
′)

ω′2 − ω2
. (10.59)

Here I0 is the energy needed for transition of the FS to the lowest excited state of the
discrete spectrum. In any case, I0 is smaller than the FS ionization potential, which
is 7.5eV for C60.

The energy dependence of both the real and imaginary parts of the polarizability
as well as that for the total cross section of photoabsorption are shown in Fig. 10.3,
whereαd(ω) is given in units of r30 (or in atomic units). Since R3 ≈ 300r30 , one can see
that the polarization of the FS strongly influences the amplitude of photoionization
of the caged atom. The energy dependence of the imaginary part is similar to that
of the total cross section. However, due to the factor 1/ω on the RHS of (10.58), the
peculiarities of the cross section at low energy are emphasized in theω-dependence of
Imαd(ω). A small peak in the cross section near the threshold transforms to a larger
one of Imαd(ω). The peak at ω ≈ 22eV corresponds to the plasmon excitation. The
energy dependence of the real part is represented by a rather smooth curve.

In the high-energy limit, i.e., for the photon energies exceeding strongly the FS
ionization potential I ≈ 7.5eV, the polarization αd(ω) decreases as 1/ω2. One can
see from Fig. 10.3 that the αd(ω) is indeed close to zero for ω > 80eV. Thus the
polarization effects are expected to be negligibly small at these energies.

At very small ω < I0, the polarizability is real. Due to the interaction with the
FS, the strength of the electric field in the electromagnetic wave E0(ω) changes to

E(ω) = E0(ω)
(
1 − αd(ω)

R3

)
. (10.60)

Note that in electrostatic limitω = 0, (10.60) can be obtained in the framework of
classical electrodynamics. The electric field E(ω) of the electromagnetic wave shifts
the electrons of the FS relative to the positive core. Thus the FS obtains a dipole
moment

d =
∫

d3r ′ρ(r′)r′.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Fig. 10.3 Dependence of
the real and imaginary parts
of the dipole polarizability
αd (ω) on the photon energy
ω. The curve in the upper
right-hand corner shows the
energy dependence of the
photoionization cross section
for the fullerene C60 based
on experimental data.
Reproduced from [22] with
permission of AIP

Here ρ(r′) is the density of the distribution of the electric charge. Since the FS is not
charged,

∫
d3r ′ρ(r′) = 0. The FS creates the electric field with the potential

ϕFS(r) =
∫

d3r ′ ρ(r′)
|r − r′| .

Inside the FS, i.e., at r < R,

ϕFS(r) =
∫

d3r ′ ρ(r′)
r ′ + E1 · r; E1 =

∫
d3r ′ ρ(r′)

r ′3 r′ ≈ d
R3

.

The field EFS(ω) created by the polarized FS changes the initial electric field E0

to the effective electric field
E = E0 + EFS , (10.61)

with EFS = −∇ϕFS = −E1. Thus we arrive at (10.60), with αd(ω) defined as the
coefficient of proportionality in the equality d(ω) = αd(ω)E0(ω).

This enables us to test certain assumptions on the macroscopic features of the FS.
For example, one can assume that in the static limit ω = 0, the FS is a conductor
[24]. This means that the electric field should vanish on the surface of the sphere with
r = R. In other words, αd(0) = R3. Note that in assuming the FS to be a conductor,
we find that the electric field vanishes inside the FS as well. The FS plays the role of
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the Faraday cage. The value αd(0) = R3 ≈ 300r30 with still smaller values at finite
values of ω [24] is unlikely to be consistent with the results presented in Fig. 10.3.
Large uncertainties of experimental data for small ω do not allow us to make a more
detailed analysis.

10.2.3 Energy Dependence of the Photoionization
Cross Section

Nowweare ready to calculate the cross section for the single-electronphotoionization
of the caged atom. We begin with the ionization of the s state. In this case, the
photoelectron obtains the angular momentum � = 1. As we have seen, the process
is determined by the distances inside the FS, where the photoelectron wave function
is proportional to that for photoionization of the isolated atom; (10.26). Employing
also (10.56), we obtain

F10(ω) = F (0)
10 (ω)D1(ω)g(ω) , (10.62)

where the lower indices label the angular momenta of the final and initial states of
the electron. The corresponding cross section is thus

σs(ω) = σ (0)
s (ω)Φ1(ω)G(ω) , (10.63)

with Φ1(ω) = D2
1(ω), while

G(ω) = |g(ω)|2 = |1 − αd(ω)

R3
|2 . (10.64)

If the electron is moved from a bound state with � �= 0, the photoelectron can
obtain the angular momenta �′ = � ± 1. The photoionization amplitude for the iso-
lated atom is thus a linear combination of the two terms F (0)

� (ω) = a�−1,�F
(0)
�−1,�(ω) +

a�+1,�F
(0)
�+1,�(ω). Due to the orthogonality of the final-state functions, in these two

terms the cross section for ionizationof the isolated atom isσ (0)
� (ω) = a2�−1,�σ

(0)
�−1,�(ω)

+ a2�+1,�σ
(0)
�+1,�(ω). In a similar way, we obtain

σ�(ω) = a2�−1,�σ�−1,�(ω) + a2�+1,�σ�+1,�(ω) (10.65)

for the cross section of photoionization of the caged atom, with the partial cross
sections

σ�′,� = σ
(0)
�′,�(ω)Φ�′(ω)G(ω); �′ = � ± 1 . (10.66)

Now we apply these equations to analysis of the photoionization of the 4d state
in the xenon atom encapsulated into the fullerene C60 [25]. The ω-dependence of
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the cross section for the isolated atom of Xe exhibits a large and broad maximum
at ω close to 100eV; Fig. 10.4. This is known as the giant resonance, which is due
to excitation of a collective state [26]. Now we shall see what changes for the pho-
toionization of the endohedral atom Xe@C60.

As we have seen, there are two major changes. The outgoing photoelectron wave
interferes with the wave that originates from reflection on the FS. We include this
effect in the framework of the Dirac bubble model. Here it is described by the factors
Φ�±1(ω) in the partial cross sections expressed by (10.66). Also, the incoming photon
undergoes interactions with the FS. This is described by the factor G(ω) on the RHS
of (10.66). Here we study the region of relatively large photon energies, where the
latter effect is not important (see Fig. 10.3). The partial cross sections of the process
on the isolated atom are computed in the framework of RPAE.

The results of calculations carried out in [25] are presented in Fig. 10.4. One
can see that the giant resonance curve is transformed into a more complicated one.
It has four well-pronounced maxima and three minima. Their origin can be easily
understood. The photoelectron can scatter on the FS on its way out of the fullerene.
The electron wave ejected from the xenon atom interferes with the scattered one.
The constructive interference leads to enhancement of the cross section. The corre-
sponding peaks are called the confinement resonances. The destructive interference
provides minima in the energy dependence. At large energies, the interaction of the

Fig. 10.4 Energy dependence for the cross section of photoionization of the 4d state in an isolated
atom of Xe (chain line) and in the caged atom of Xe in the endohedral atom Xe@C60. Reproduced
from [25] with permission of IOP Publishing
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photoelectron with the FS becomes weaker, and the cross section values become
close to those for isolated atoms.

While the shapes of the cross section energy behavior for an isolated atom of Xe
and for Xe@C60 are quite different, the areas under the curves in the region between
75eV and 180eV are very close. They provide about 2/3 of the total contribution to
the LHS of the sum rule (7.90).

A more detailed investigation of the photoionization of the Xe atom encapsulated
into the fullerene requires a more rigorous technique; see, e.g., [20]. However, the
analysis presented above is sufficient to obtain the qualitative picture of the process.
The confinement resonance structure of the energy dependencewas confirmed exper-
imentally [27].

In this example, the scattering of the photoelectrons on the FS modified the cross
section, while the polarization of the FS was not important. At smaller values of
the photon energies, both effects contribute. The energy dependence of the angular
distributions for photoionization of an isolated neon atom and that of the endohedral
atom Ne@C60 obtained in the RPAE technique were presented in [28]. The results
are shown in Fig. 10.5. The confinement resonances become much more pronounced
due to inclusion of the FS polarization by employing (10.64).

Fig. 10.5 Dipole asymmetry
parameter calculated for 2p
photoionization of isolated
neon atom and that of the
endohedral atom Ne@C60.
The chain line is for isolated
atom. The other lines are for
Ne@C60 in various
approaches. Reproduced
from [28] with permission of
AIP

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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10.3 Absorption of Photoelectrons by the Fullerene Shell

10.3.1 Photoelectron Interaction with the Fullerene Shell

In the previous section, we studied the photoionization of the caged atom without
fixing the final state of the fullerene shell. In fact, we summed over the available
final states. However, the photoelectrons can cause various inelastic processes in the
FS. These can be excitation of the collective states of the FS, knockout of one or
several electrons, knockout of one or several atoms or ions of carbon, etc. Now we
calculate the sum of the cross sections of inelastic processes in the FS during the
photoionization of the caged atom.

Because of the lack of detailed information about the FS wave functions, we
calculate only the sum of the cross sections of the inelastic processes, also called the
cross section of absorption. We shall see that this sum is not sensitive to the details
of the FS structure.

We consider the channel in which the photon interaction with the caged atom
precedes the transitions in the FS. In another channel of the same process, the photon
knocks out an FS electron, and the latter ionizes the caged atom. This mechanism
requires a special direction for the momentum of the electron ejected from the FS.
The probability is quenched by a small factor of order r2b/R

2. Thus we neglect the
contribution of this mechanism.

We limit ourselves to the case of nonrelativistic photoelectrons carrying the energy
ε = p2/2m; the photoelectron momentum is pwith |p| = p. The probability that the
photoionization of the caged atom is followed by an inelastic process in the FS is
expressed by the ratio

PA(ε) = σA(ε)

σ (isol)(ε)
, (10.67)

with σ (isol)(ε) the cross section for ionization of the isolated atom in which the
photoelectronwith the energy ε is ejected,whileσA(ε) is the absorption cross section,
i.e., the sum of the cross sections for the processes in which the photoionization of
the caged atom is accompanied by an inelastic process in the FS.

We consider the photon energies for which the photoelectron energies ε strongly
exceed the energyof its interactionwith theFS in the interior of fullerene.Weconsider
only the systems for which the hybridization effects mentioned in Sect. 10.2 can be
neglected. In this limit, the amplitude of the process with a transition of the FS to a
particular final state x contains the amplitude of photoionization of the isolated atom
F (isol) as a factor. Also, the cross section obtains the cross section of the isolated
atom σ (isol) as a factor. Thus the probability PA(ε) does not depend of the parameters
of the caged atom.

We calculate the absorption cross section as the difference between the total cross
section

σt (ε) = σ (isol)(ε)Pt (ε), Pt (ε) =
∑
x

Px (ε) (10.68)



312 10 Photoionization of Endohedral Atoms

and the elastic cross section σ0 = σ (isol)P0, which describes the process in which the
FS state does not change, i.e.,

σA(ε) = σt (ε) − σ0(ε) PA(ε) = Pt (ε) − P0(ε) . (10.69)

In the simplest case the FS undergoes ionization with one of its electrons moved
to the continuum. This is one of the channels of the double photoionization of the
endohedral atom. Recalling the results of Chap.9, we can discuss three possible
mechanisms of the process, i.e., the shakeoff (SO), final-state interactions of the
photoelectron (FSI), and the quasifree mechanism (QFM). The QFM requires that
two electrons approach each other at small distances. The electrons of the FS are
well separated from those of the caged atom. Thus there is no QFM in our case.

The photoionization changes the neutral caged atom to a positive ion. This changes
the field felt by the FS electrons. Recall that this is the familiar SO mechanism of
excitation. Since the FS electrons are separated from the caged atom by distances of
order R � rb, the SO amplitude contains the factor rb/R. Thus the SO probability
is proportional to the small factor r2b/R

2. Note that the FS reacts to the change of
the field as a whole and the probability of the SO does not depend explicitly on the
number of electrons in the FS.

Thefinal-state interaction (FSI) between the photoelectron and each of theFS elec-
trons is determined by its Sommerfeld parameter ξee = mα/p. Here we neglected
the momenta of the FS electrons. The FSI cross section is proportional to ξ 2

ee. How-
ever, we shall see that due to the large number of Ne � 1 of the FS electrons, the
actual FSI parameter is Neξ

2
ee. In the broad interval of energies Neξ

2
ee � 1. At such

energies, the FS provides the leading contribution to the absorption cross section σA.
We begin with the perturbative calculation. We shall find the ratio (10.67) with

taking into account the lowest order terms depending on ξee. The detailed calculation
for the atoms is given in Chap.3. The main points remain the same for the case of
endohedral atoms.

The leading nonvanishing FSI corrections to the cross section σA(ε) are of order
ξ 2
ee. The amplitude of photoionization of the caged atom accompanied by transition of
the FS from the ground state to a final state x can be represented as Fx = F (isol)Tx .
To include the terms of order ξ 2

ee, we calculate Tx = T (0)
x + T (1)

x + T (2)
x , with the

upper index labeling the number of interactions between the photoelectron and the
FS. Denoting the initial (ground) state of the FS by |Ψ0〉 and the final state x of the
FS by 〈Φx |, we can represent the SO amplitude as T (0)

x = 〈Φx |Ψ0〉. Note that the SO
amplitude is real. The lowest-order FSI amplitude can be written as

T (1)
x = 〈Φx |U1|Ψ0〉, U1 =

∑
k

U1(r(k)) , (10.70)

where

U1(r
(k)) = α

∫
d3q

(2π)3
G(q)g(q)eiq·r(k)

, (10.71)

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_3


10.3 Absorption of Photoelectrons by the Fullerene Shell 313

withG(q) = 2m[κ2 − [p + q)2 + i0]−1 the propagator of a free electron, κ2 = p2 +
εx0. The energy εx0 is transferred by the FSI; g(q) = 4π/(q2 + λ2) is the photon
propagator (λ → 0). Keeping only the terms proportional to the large momentum p
in the denominator of the propagator G, we obtain

U1(r(k)) = α

∫
d3q

(2π)3
G1(q)g(q)eiq·r(k)

, G1 = −2m

2p · q − i0
. (10.72)

Thus in (10.70),
U1 = iξee

∑
k

ln((r (k) − r (k)
z )λ), (10.73)

where the z-axis is directed along the photoelectron’s momentum. In a similar way,
one can obtain the second-order amplitude

T (2)
x = 〈Φx |U2|Ψ0〉, U2 = U 2

1

2
, (10.74)

which is real.
We demonstrated in Chap.3 that in the case of photoionization of atoms, the

amplitude T (1)
x has a real part that is actually proportional to ξ 2

ee. Itwas due to the terms
of order q/p in the expansion of the propagator G(q) in (10.71). The integral over q
was saturated by q ∼ 1/rb. Now it is saturated by q ∼ 1/R. This contribution, which
provides the real part ofT (1)

x , is determinedbyq ∼ 1/R. The real part of the amplitude
obtains the additional small factor r2b/R

2, and ReT (1)
x ∼ ξ 2

ee · r2b/R2 � T (2)
x . Hence

it can be neglected. Thus we obtain

Tx = 〈Φx |1 +U1 + U 2
1

2
|Ψ0〉 . (10.75)

Now we calculate the total probability Pt . The energies of the final states are
limited by the energy conservation law. If the photoelectron energy is large enough,
themost important excitations are included, andwe can employ the closure condition.
Until we have clarified the excitation spectrum of the FS, we must require that the
photoelectron energy is much larger than the average energy loss 〈ε〉 considered in
Sect. 4.2. Following (4.74), we can estimate for the valence FS electrons

〈ε〉 = ξ 2
eeN1

4R2
ln

ε

IFS
, (10.76)

with IFS the FS ionization potential, N1 = 4N . We obtain 〈ε〉 ≈ 45 eV for the
fullerenes C60 and C20.

Employing (10.73), we obtain

Pt =
∑
x

|Tx |2 = 1; P0 = 〈Φ0|Ψ0〉2 + ξ 2
ee|〈Φ0|Λ|Ψ0〉|2 − ξ 2

ee〈Φ0|Ψ0〉〈Φ0|Λ2|Ψ0〉,
(10.77)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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with
Λ =

∑
k

ln((r (k) − r (k)
z )λ) , (10.78)

while |Φ0〉 is the ground state of the FS with the ionized caged atom. Recall that
the SO amplitude for every inelastic process in the FS is quenched, e.g., 〈Φx |Ψ0〉 ∼
rb/R � 1 for every excited state x . Since the FS electrons are located in the layer
of thickness Δ � R, we can put r (k) = R on the RHS of (10.78). By this move, we
have neglected the contributions of order 1/R2 to the FSI terms. This provides

P0 = 〈Φ0|Ψ0〉2 + ξ 2
ee|〈Φ0|Λ1|Ψ0〉|2 − ξ 2

ee〈Φ0|Ψ0〉〈Φ0|Λ2
1|Ψ0〉 , (10.79)

with
Λ1 =

∑
k

ln(1 − t (k)) . (10.80)

The terms containing the product Rλ cancel on theRHSof (10.79). Direct calculation
gives

P0 = |T (0)
0 |2 − Neξ

2
ee, (10.81)

with Ne the number of electrons in the FS. This provides

PA(ε) = 1 − |T (0)
0 |2 + Neξ

2
ee . (10.82)

Neglecting all terms of order 1/R2, we put |T (0)
0 |2 = 1 and obtain PA(ε) = Neξ

2
ee.

Note that for C60, the parameter Neξ
2
ee becomes smaller than unity only for ε > 5

keV. Thus one cannot employ the perturbative approach for ε <∼ 5 keV. Fortunately,
we can sum all the perturbative series for the FSI [29].

One can write the expression for n interactions between the photoelectron and the
FS:

Un(r(k)) = α

∫
d3q1
(2π)3

· · · d3qn
(2π)3

G1(q1)G1(q1 + q2) · · ·G1(q1 + q2 + · · · + qn) ×

g(q1) · · · g(qn)eiq1·r(k) · · · eiqn ·r(k)
. (10.83)

Recall that the relation U2 = U 2
1 /2 was obtained after carrying out the evaluation

1

pq1

1

p(q1 + q2)
= 1

2

( 1

pq1
+ 1

pq2

) 1

p(q1 + q2)
= 1

2

1

pq1

1

pq2
.

see (3.90). It can be generalized for the case of an arbitrary number n. Introducing
an = p · qn we can write

1

a1
· 1

a1 + a2
· · · 1

a1 + a2 + ...an
= 1

n! · 1

a1
· 1

a2
· · · 1

an
. (10.84)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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This equation can be proved by the inductionmethod. Thus for n interactions between
the photoelectron and the FS,

Un = Un
1

n! . (10.85)

Hence, for the total amplitude, which includes also the SO (zero order in FSI) term,
we obtain

Tx =
∑
n=0

T (n)
x = 〈Φx |eU1 |Ψ0〉 = 〈Φx |eiξeeΛ|Ψ0〉, (10.86)

with Λ defined by (10.78). Putting r (k) = R, we arrive at

Tx = 〈Φx |Πk(1 − t (k))iξee |Ψ0〉; t (k) = p · r(k)

pr (k)
. (10.87)

Here we omitted the constant phase factor (Rλ)iξee . Thus

PA(ε) = 1 − |〈Φ0|Πk(1 − t (k))iξee |Ψ0〉|2. (10.88)

Carrying out the angular integrations, we obtain

PA(ε) = 1 − h

(1 + ξ 2
ee)

N1
= 1 − e−N1 ln(1+ξ 2

ee)h; h = |T (0)
0 |2, (10.89)

with N1 the number of electrons that can participate in the process. At ε ≤ Ic, with
Ic ≈ 300eV the binding energy of the core electrons in the FS, only the valence FS
electrons can participate. Thus for the fullerene CN , we have N1 = 4N . At larger
energies, all electrons participate and N1 = 6N .

Neglecting all contributions of order 1/R2, we obtain, putting h = 1,

PA(ε) = 1 − e−N1 ln (1+ξ 2
ee) . (10.90)

We return to (10.89). If the photon energy is so large that Nξ 4
ee � 1 (this means

ε � 300eV for C60 and ε � 100eV for C20), we can put ln(1 + ξ 2
ee) = ξ 2

ee in the
exponential factor e−N1 ln(1+ξ 2

ee). This provides

PA(ε) = 1 − e−N1ξ
2
ee h . (10.91)

At these energies, all the FS electrons participate, and N1 = 360 for C60 and N1 =
120 for C20. At N1ξ

2
ee � 1, we obtain (10.82).



316 10 Photoionization of Endohedral Atoms

10.3.2 High-Energy Limit

Now we consider the large energies, for which Neξ
2
ee � 1, i.e., ε � Ne · 13.6eV.

For the fullerene C60, this means that ε � 5keV, while for C20, it is ε � 1.5keV.
At these energies, the FSI can be included in the lowest orders of the perturbative
theory. The probability PA(ε) is determined by (10.82), and we must calculate the
SO amplitude T (0)

0 .
To estimate the magnitude of the matrix element 〈Φ0|Ψ0〉, we employ a simple

model for the ground states of the FS in endohedral atoms [30]. Since in the SO, the
FS reacts as a whole on ionization of the caged atom, we do not need details of the
internal structure of the FS.

We assume that the ground states of the FS electrons in the endohedral systems
with the caged atom or ion can be described in the framework of the Thomas–Fermi
model. The FS electrons are confined inside a sphere of radius R. Thus they occupy
the volume V = 4πR3/3. The potential energy of the FS electrons U < 0 can be
obtained from the Thomas–Fermi equation

ρ = (−2mU )3/2

3π2
, (10.92)

with ρ = Ne/V . Thus

U = − (3π2ρ)2/3

2m
. (10.93)

Assuming, following [31], that for the fullerene C60, R = 6.02r0, we obtain U ≈
−72eV.

After the ejection of the photoelectron, the new value of the potential energy is
U ′ = U +Uh with the contribution of the hole in the state n of the caged atom

Uh(r) = −e2
∫

d3r ′ ρh(r′)
|r − r′| ≈ −e2

r
≈ −e2

R
, (10.94)

where ρh is the electron density in the state n. The numerical value for C60 is Uh ≈
−4.5eV, and |Uh| � |U |. Thus Uh can be considered a perturbation. The change of
the value of the volume V can be obtained in the lowest order of perturbation theory.
We write

ρ ′ = (−2mU ′)3/2

3π2
, (10.95)

and the volume of the FS with the caged ion becomes

V ′ = V
(
1 − 3

2

Uh

U

)
< V . (10.96)
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Nowwemust calculate the overlap matrix element T (0) = 〈Φ0|Ψ0〉. A wave func-
tion and its lowest-order perturbative correction are known to be orthogonal [32].
Thus the difference of the shapes of the functionsΨ0 andΦ0 is a second-order effect.
The leading contribution to the deviation of thematrix element T (0) from unity comes
from the difference between the volumes V and V ′. Since T (0) is determined by inte-
gration over the volume V ′, while the functionsΨ0 andΦ0 contain the normalization
factors V−1/2 and V ′−1/2 respectively, we obtain

〈Φ0|Ψ0〉 = 1 − V ′1/2

V 1/2
= 1 − 3

4

Uh

U
. (10.97)

Thus for C60,
1 − 〈Φ0|Ψ0〉 = 0.046, h = 〈Φ0|Ψ0〉2 = 0.91. (10.98)

The numerical result does not depend strongly on the actual value of R. For example,
taking R = 5.75r0 [33], we obtain

1 − 〈Φ0|Ψ0〉 = 0.050, h = 〈Φ0|Ψ0〉2 = 0.90. (10.99)

For the fullerene C20, we can put, following [2], R = 3.89r0, providing 〈Φ0|Ψ0〉2 =
0.83.

Some additional data can be obtained by studying the distributions of the electrons
ejected from the FS. The ratio PA(ε) can be written as the sum of contributions of
the partial waves

PA(ε) =
∑
x�

|〈Φx�|Ψ0〉|2 + ξ 2
ee

∑
x,�

|〈Φx�|Λ|Ψ0〉|2 + ξ 2
ee

∑
x,�

〈Ψ0|Φx�〉〈Φx�|Λ2|Ψ0〉,
(10.100)

with Λ given by (10.78). The sum is carried out over the excited states x �= 0. As
in the previous section, we can put r (k) = R, replacing Λ by Λ1 = ∑

k ln(1 − t (k))’
see (10.80).

If � = 0, all three terms on the RHS contribute. However, due to the closure
condition,

∑
x0 |〈Φx0|Ψ0〉|2 = 1 − |〈Φ00|Ψ0〉|2 � 1. Thus for each excited state x �=

0, we have |〈Φx0|Ψ0〉|2 � 1, and we can neglect the second and third terms on the
RHS of (10.100). At � ≥ 1, the first and third terms vanish due to the orthogonality
of the angular parts of the wave functions, and only the second term on the RHS
survives. Thus we can write

PA(ε) = A0 + ξ 2
ee

∑
�≥1

A� , (10.101)

with
A0 =

∑
x

〈Φx0|Ψ0〉2 , (10.102)
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while for � ≥ 1,
A� =

∑
x

|〈Φx�|Λ1|Ψ0〉|2. (10.103)

Thus the contribution to the ratio PA(ε), which does not vanish in the limit ε → ∞,
consists of monopole terms. The contribution, which decreases as ε−1, consists of
the terms with � ≥ 1. The considered mechanism does not change the projection of
the angular momentum m on the direction of the photoelectron’s momentum. Thus
〈Φn�| = 〈Φn�,m=0| in the equations presented above.

If the photoelectron moves an FS electron from a single-particle s state, we expect
the dipole contribution with � = 1 to dominate in the sum

∑
�≥1 A�. Indeed, in this

case, we obtain, for every s electron of the FS,

〈Φx�|Λ1|Ψ0〉 = b�dx� . (10.104)

Here

dx� =
∫ ∞

0
drr2ψr

0 (r)φ
r
x�(r), (10.105)

withψr
0 (r) and φx� the radial parts of the single-particle functions for the initial- and

final-state electrons respectively; b� are the coefficients of expansion of the function
ln (1 − t) in terms of the Legendre polynomials; see (7.173, 7.174). Note that the
overlap integral dx� is not always small. Employing (7.176) for the coefficients b�,
we obtain for ionization of the s state in the FS

PA(ε) = A0 + ξ 2
eeNs

∑
�≥1

c�|dx�|2, (10.106)

with

c� = 2� + 1

�2(� + 1)2
,

while Ns is the number of s electrons in the FS. Writing

2� + 1

�2(� + 1)2
= 1

�2
− 1

(� + 1)2
,

we find that
∑

�=1 c� = 1. Since c1 = 3/4, and the overlap integrals dx� drop with
increasing �, we expect the term with � = 1 to give the main contribution to the
second term on the RHS of (10.106).

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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10.3.3 Energy Dependence of the Probability of Excitation
of the Fullerene Shell

While we did not employ the actual features of the FS excitation spectrum, the
equations obtained above are valid for the fullerenes C60 and C20 at ε � 45 eV.
However, at least in the case of C60, we can extend our approach to the smaller
energies, expecting it to be valid for ε >∼ 60 eV [34]. This is because the FS excitation
spectrumexhibits a strongpeak at ε ≈ 20eV.This is a plasmonexcitation inwhich the
240 valence electrons oscillate relative to the carbon ion core [35]. Also, at ε <∼ 70
eV the knockout of carbon ions such as C2+ is important [36]. These excitations
provide a large part of the oscillator strength, leaving little room for the others (see
(7.90)).

There is a large discrepancy between the experimental and theoretical results on
photoionization of the 4d state of the caged atom in the endohedral atomXe@C60 for
ω ≥ 140eV [36]. The corresponding photoelectron energies are ε ≥ 60eV. There is
the same tendency in photoionization of Ce@C+

82 [37]. These results can be easily
understood. The measurements of the photoionization cross section are based on
detection of the outgoing electron with energy ε = ω − I , with I the ionization
potential. There is a large probability for a photoelectron to lose a part of its energy
in interaction with the FS. Thus only a small number of the photoelectrons keep this
energy and are actually detected.

Now we trace the energy dependence of probability PA(ε). If the photoelec-
tron energy is smaller than the ionization potential of the core 1s electrons
Ic ≈ 315 eV, the probability PA(ε) is determined by (10.89), with N1 the num-
ber of valence electrons, i.e., N1 = 240 for C60 and N1 = 80 for C20. At ε close to
Ic, we obtain 1 − PA(ε) ≈ 2 · 10−5 for C60, while PA(ε) ≈ 0.97 for C20.

At ε > Ic, the core electrons are involved in the process as well. Thus N1 = 360
for C60 and N1 = 120 for C20. While the photoelectron energy is of order Ic, the
contribution of the core electrons cannot be calculated by employing closure, since
some of the excited states cannot be reached due to restrictions imposed by the
energy conservation law. However, (10.89), with N1 the number of valence electrons,
provides the upper limit for the value 1 − PA(ε) at these energies.

At larger energies ε � Ic, the probability PA(ε) is given by (10.91) with the
core electrons included. At ε = 2keV, we obtain 1 − PA(ε) ≈ 0.09 for C60. Hence,
PA(ε) is very close to unity. At ε = 5keV, we obtain PA(ε) ≈ 0.62, decreasing as
1/ε at larger energies, following (10.82). For C20, the ratio PA(ε) reaches this value
at ε ≈ 8keV. The FSI and the SO contributions to PA(ε) expressed by (10.82) have
the same order of magnitude at ε >∼ 50keV for C60, and at ε >∼ 8keV in the case of
C20. The dependence PA(ε) for the endohedral atoms A@C60 and A@C20 is shown
in Fig. 10.6.

Thus we have found that in a broad interval of the photon energies, almost each
event of photoionization of the caged atom is accompanied by a transition in the
fullerene shell. Therefore, the measured cross section of the one-electron photoion-
ization of the caged atom is much smaller than that of an isolated atom. An important

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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Fig. 10.6 Dependence of
the probability PA on the
photoelectron energy. The
latter is in keV units. Curves
1 and 2 are for the fullerenes
C60 and C20 respectively

outcome of this analysis is that a rigorous treatment of the interaction between a
photoelectron and the FS requires an optical potential rather than a simple effective
potential.
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Chapter 11
Annihilation of Positrons with Atomic
Electrons

Abstract We analyze various channels for the annihilation of positrons with atomic
electrons. Since in the annihilation process a large energy exceeding 1 MeV is
released, relativistic analysis is required even in the case of slow positrons. We
study in detail the dominative two-photon annihilation process on the Bethe ridge
and outside it. We calculate the characteristics of single-quantum annihilation and
annihilation followed by knockout of a bound electron to the continuum. In the latter
case, the role of the QFMmechanism described in Chap.9 is important. We consider
also annihilation followed by creation of a μ+μ− pair and annihilation accompanied
by creation of a mesoatom.

11.1 Two-Photon Annihilation

11.1.1 On the Bethe Ridge: Fast Positrons

Annihilation of a positron with a electron bound in an atom can be followed by
radiation of two photons. This process, illustrated by Fig. 11.1, has the largest cross
section, at least for small Z , among the various channels of annihilation of positrons
in their interactionswith atomic electrons, since it can take place on the free electrons.
The conservation laws for the free process

E + m = ω1 + ω2; p = k1 + k2 , (11.1)

with E andp the relativistic energy and three-dimensionalmomentumof the positron,
require that the difference between the energies of the radiated photons be limited
by the condition

ω1 − ω2

ω1 + ω2
≤

√
E − m

E + m
. (11.2)

Here we have assumed that ω1 ≥ ω2.
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If the condition (11.2) is satisfied and the positron kinetic energy is large enough,
i.e., ξ = αZE/p � 1, a momentum

q = k1 + k2 − p (11.3)

is transferred from the nucleus to the bound electron. Following our general approach,
we can write for the amplitude of annihilation with any bound electron at the Bethe
ridge (q ∼ μb)

F(E, ω1,q) = F0(E, ω1)S(q) , (11.4)

with S(q) defined by (9.146). In this chapter, we describe the electrons by single-
particle functions.

The amplitude of the free process F0 can be expressed in terms of the amplitude FC
of the Compton scattering on the free electron at rest. While dependence of the latter
on the energies of the incoming photon and the ejected electron is FC(EC , ω1C ), we
obtain F0(E, ω1) = FC(−EC ,−ω1C ). This is amanifestation of the general principle
of the crossing invariance of the amplitudes. The amplitude of the process in which
the system of the particles A and B converts to that of the particles C and D and that
in which a particle is changed to its antiparticle are described by the same analytical
function of kinematic variables.

Employing (2.80), we obtain for the energy distribution

dσ

dωi
= dσ0

dω2
= 2πr2e f0m

p2
, (11.5)

with dσ0/dωi the energy distribution for two-photon annihilation on the free electron,
while

f0 = 1

2

[ω1

ω2
+ ω2

ω1
+ 2

( m

ω1
+ m

ω2

)
−

( m

ω1
+ m

ω2

)2];

see (6.168). The angular distribution can be written as

dσ

dti
= dσ0

dti
= 2πr2e f0ω

2
1

p(E + m)
; ti = p · ki

pki
. (11.6)

The total cross section of annihilation is of order r2e for E − m ∼ m. In the ultra-
relativistic limit E � m, it becomes smaller, i.e., σ ∼ r2e m/E . One can see this
by employing (11.5). This equation demonstrates also that in the nonrelativistic
limit p � m (but still p � η), the energy distribution is larger than at p ∼ m
(E − m ∼ m). The increase of the total cross section is not so large, since the interval
of photon energy values diminishes, i.e., |ωi − m|/m <∼ p/m. Thus in the nonrela-
tivistic case, we obtain σ ∼ r2e m/p. The corrections to these equations are of order
α2Z2.

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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The total cross section for the two-quanta annihilation on a free electron is [1]

σ0(E) = πr2e
β + 1

[
β2 + 4β + 1

β2 − 1
ln

(
β +

√
β2 − 1

)
− β + 3√

β2 − 1

]
, (11.7)

with β = E/m. In the ultrarelativistic limit E � m,

σ0(E) = πr2e
m

E

(
ln

2E

m
− 1

)
. (11.8)

The cross section for annihilation in interaction with an atom containing N elec-
trons is

σ(E) = Nσ0(E). (11.9)

In the only experiment on two-quantum annihilation of positrons with atoms [2],
the cross section was measured for 300-keV positrons absorbed by atoms of silver
(IZ = 26keV). The theoretical results overestimate the measured ones.

In the free process, the values ti are determined by those of ωi , i.e.,

t1 = t10 = p2 + ω2
1 − ω2

2

2pω1
; t2 = t20 = p2 + ω2

2 − ω2
1

2pω2
. (11.10)

We shall see that after inclusion of the terms of order ξ , the distributions dσ/dωi dti
peak at ti , which differ from the values defined by (11.10) by values of order α2Z2.
We calculate the terms ∼ ξ for a hydrogenlike atom. We include the terms linear in
q in the amplitude F0 and the lowest-order correction for interaction between the
positron and the nucleus. As in the case of Compton scattering, Coulomb corrections
to the propagators provide contributions of order ξ 2. We obtain [3]

dσ

dω1dΩ1dΩ2
= 8r2e

π2

η5mω1ω2

pa4

[
f0 ·

(
1 − 2E

m
L
)

− f1
q · k1
mω1

− f2
q · k2
mω2

]
.

(11.11)

Here η = mαZ ,

a = q2 + η2; L = η

p
arctan

η

qn
+ n · q

2p

q2 + η2

(n · q)2 + η2
; n = p

p
, (11.12)

while fi = ωi∂ f0/∂ωi for i = 1, 2, i.e.,

f1 = 1

2

[ω1

ω2
− ω2

ω1
+ 2

m

ω1

( m

ω1
+ m

ω2
− 1

)]
; f2(ω1, ω2) = f1(ω1 ↔ ω2).

Writing
dσ

dω1dΩ1dΩ2
= ω2

1dσ

d3k1dΩ2
= ω2

1dσ

d3qdΩ2
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and integrating over q, we find that the terms proportional to L , f1, and f2 vanish,
and we come to the energy distribution dσ/dω2 in the lowest approximation of the
expansion in powers of ξ (11.5). Thus the corrections of order ξ manifest themselves
neither in the energy or angular distributions nor in the total cross section.

Integrating the distribution (11.11) over Ω2, we obtain

dσ

dω1dΩ1
= 8r2e

3π

mω1

pω2η

f0(ω1, ω2)

(1 + x2)3

[
1 + αZxF(ω1, t1)

]
. (11.13)

Here

F(ω1, t1) = λ(ω1) + E

p

Φ(x, t)

f0
; λ(ω1) =

(
1 − m

ω1
− m

ω2

)
f1
f0

+ f2
f0

− m

ω2
,

(11.14)

while
x = q1 − ω2

η
; q1 = p − k1; t ≡ pq1

pq1
= p − ω1t1

q1
. (11.15)

The function Φ is a rather bulky combination of elementary functions. We do not
present it here, referring the interested reader to the paper [3]. We provide only an
expression for

Φ(0, t) = 15

2t5

(
− 1 + 7t2

6
+ 3t4

10
+ 2 − 3t2 + t6

4t
ln

1 + t

1 − t

)
, (11.16)

which determines the shift of the positions of the peaks of the distribution (11.11) and
the shift of the differential cross sections dσ/dt1 at fixed ω1 and dσ/dω1 at fixed t1.

In free kinematics, x = 0, and thus

ω1 = ω10 = m(E + m)

E + m − pt1
; ω2 = ω20 = m(E + m)

E + m − pt2
. (11.17)

If we now include the corrections of order ξ , the peak of the distribution (11.13) is
reached at

x1 = αZ

6

(
λ(ω1) + E

p

Φ(0, t0)

f0

)
; t0 = p − Et10

E − pt10
, (11.18)

with t10 the value of t1 corresponding to the free kinematics determined by (11.10).
At a fixed value of ω1, the peak of the angular distribution is reached at

t1 = t10 − ω2η

ω1 p
x1 , (11.19)

with t10 determined by (11.10). The formula for the shift of the position of the energy
distribution peak is somewhat more complicated:
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ω1 = ω10 + α2Z2

6

ω1ω2

E + m

(
λ(ω1) + E

p

Φ(0, t0)

f0
+ ω2 f1 − ω1 f2

f0(E + m)
− 2

)
. (11.20)

Here t0 is defined by (11.18), and the RHS should be taken at ω1 = ω10, ω2 = ω20

corresponding to the free kinematics. The values of ωn0 (n = 1, 2) are given by
(11.17). In the nonrelativistic case, (11.17) can be simplified:

ω1 = ω10 + η2

12p

(
Φ(0, t0) − 3p

m
+ O(

p2

m2
)

)
. (11.21)

11.1.2 On the Bethe Ridge: Slow Positrons

Now we extend our analysis to the case in which the kinetic energy of the positron
is of order the electron binding energy. We must include interaction with the atomic
field in the positron wave function. If the ionization potential Ib is not too large,
i.e., Ib � m, the incoming positron can be described by the nonrelativistic function.
However, the positron in the intermediate state in Fig. 11.1 carries a large energy and
should be described by the relativistic propagator.

Due to the energy conservation law, ω1 + ω2 = 2m − Ib ≈ 2m. Introducing κ =
k1 + k2, we see that on the Bethe ridge, κ ∼ μb � ω1 + ω2. Thus the energies of
the radiated photons are close, i.e., |ω1 − ω2| ≤ κ ∼ μb, and

|ω1 − ω2|
ω + ω2

<∼
μb

m
� 1 . (11.22)

Each photon carries the energyωi ≈ m ≈ 500keV.The photons are radiated in nearly
opposite directions, with t12 = k1 · k2/ω1ω2 close to −1.

Fig. 11.1 Two-quantum
annihilation in the
interaction of positrons with
atomic electrons. The solid
lines stand for electrons
(positrons). The arrow marks
the positron, with the
direction of the arrow
opposite to that of the
positron momentum. The
dark blob labels the bound
electron. The helix lines are
for the photons
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We carry out calculations for annihilation with the K-shell electrons, describing
them by nonrelativistic Coulomb functions. Due to (11.22), the momenta of the
intermediate particles in the Feynman diagrams shown in Fig. 11.1 are large enough
(pa,b � η), andwith an error of order η/m ∼ αZ can be described by free relativistic
propagators.

To obtain the cross section of the process, we can employ results for differential
distributions of the Compton scattering on the K electrons with ejection of slow
electrons carried out in Sect. 6.4. The distribution dσC/dω2dt12 is represented by
(6.162). Employing this result, we obtain

dσ

dω1dκ
= r2e

27

3

mη4ξκ3(p2 + 3κ2 + η2)

[(p − κ)2 + η2]3[(p + κ)2 + η2]3 · N (κ)(1 + t212) (11.23)

for |ω1 − m| <∼ η and κ <∼ η. Here

N (κ) = N 2
+ exp(2ξχ); χ = arctan

(
2ηp

κ2 − p2 + η2

)
, (11.24)

with

N 2
+(ξ) = 2πξ

exp(2πξ) − 1
, (11.25)

in the squared normalization factor of the positron wave function. Recall that ξ =
η/p = (IZ/ε)1/2.

On the RHS of (11.23), the last factor is the only term depending on ω1 with
t12 = 1 − (4m2 − κ2)/2ω1ω2. Taking into account the identity of two photons, we
obtain

dσ

dκ
= 1

2

m+κ/2∫

m−κ/2

dω1
dσ

dω1dκ
= r2e

27

3

mη4ξκ4(p2 + 3κ2 + η2)

[(p − κ)2 + η2]3[(p + κ)2 + η2]3 · N (κ).

(11.26)
This determines the angular distribution

dσ

dt12
= m2

κ

dσ

dκ
,

where the distribution dσ/dκ is given by (11.26) with κ2 = 2m2(1 + t12). The total
cross section can be obtained by integration over κ , and the integral is saturated at
κ ∼ η. The cross section is of order r2e · m/p.

For very slow positrons with p � η, it is reasonable to evaluate

exp (2ξχ) = exp

(
4η2/(κ2 + η2)

)
(11.27)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
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on the RHS of (11.24). In this limit, σ ∼ r2e ξ
2e−2πξ /(αZ). The exponential quench-

ing is due to the strong repulsion between the nucleus and the slow positron.
At ε ≤ IZ , annihilation with the electrons of multielectron atoms is more com-

plicated, since the correlation between the positron and atomic electrons should be
included. The positron captures one of the atomic electrons, creating a new two-
particle bound state, the positronium. In the next step, the positronium decays into
two photons if the positronium has spin S = 0, or into three photons for S = 1. This
becomes the dominant annihilation mode [4]. The positron annihilation on mole-
cules is still more complicated, since the vibrational degrees of freedom become
involved [5].

11.1.3 Photon Distribution Outside the Bethe Ridge

If the photon energies satisfy the inequality (11.2), we can calculate the angular
distribution dσ/dt1 for every value of the angle t1. Recall that if t1 is close to t10 (i.e.,
their difference is of order αZ ), which corresponds to free kinematics and is given by
(11.10), the distribution is determined by small recoil momenta q ∼ η. If the values
of t1 are not close to t10, a large recoil momentum q � μb should be transferred to
the nucleus.

Following the analysis carried out in Chaps. 3 and 5, we can consider the process
as consisting of two steps. The first is scattering of the positron on the atom. In
this process, a large momentum q is transferred to the atom. As we have seen in
previous chapters, since q � η, this momentum should be transferred to the nucleus.
After the scattering, the positron carries momentum p′ = p + q′ with q′ ≈ q, i.e.,
|q′ − q| � q. Since the energy is not transferred in this collision, |p′| = p′ = p. In
the second step, the scattered positron is annihilated with the bound electron. Here
two photons are radiated and a small momentum of order μb is transferred to the
nucleus. The angle between the directions of the momenta k1 and p′ is determined
by free kinematics. Thus for t ′ = k1p′/k1 p′, we can write

t ′ = t10 , (11.28)

with t10 determined by (11.10).
Similar to the case of Compton scattering (8.31), the distribution in photon energy

and recoil momentum can be written as

dσ

dω1dϕdq2
= 〈ψi |r−2|ψi 〉

4π
· dσ0

dω1dϕ
· dσe+A(ε)

dq2
. (11.29)

Here ϕ is the angle between the planes determined by the vectors p, q and p′, k1;
dσ0/dω1dϕ is the differential cross section for the positron two-quanta annihilation
with the free electron, while dσeA is that for the scattering of the positron on the
atom. At q � η, the latter can be treated in the Born approximation. It is dominated

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_5
http://dx.doi.org/10.1007/978-3-319-32736-5_8
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by scattering on the nucleus and can be written similar to (8.32) as

dσe+A(ε)

dq2
= dσe+N (ε)

dq2
= |Ve+N (q2)|2

2π

E2

p2
(1 − q2

4E2
) , (11.30)

with the positron–nucleus interaction Ve+N (q2) = 4παZ/q2.
The distribution (11.29) can be written in terms of the angular variables of the

radiated photon. Writing q2 = 2p2(1 − tp) with tp = pp′/p2, we represent (11.30)
as

dσe+N (ε)

dq2
= 1

2p2
dσe+N (ε)

dtp
; dσe+N (ε)

dtp
= 4πα2Z2

p2(1 − tp)2
E2

p2

(
1 − p2(1 − tp)

2E2

)
.

(11.31)
The distribution

dσe+N (ε)

dt1
= dσe+N (ε)

dtp

dtp
dt1

can be obtained using the relation tp = t1t ′ + (1 − t21 )
1/2(1 − t ′2)1/2 cosϕ and

(11.28). Carrying out integration over ϕ, we obtain

dσ

dω1dt1
= α2

2

〈ψi |r−2|ψi 〉
p2

· E
2

p2
dσ0

dω1
·
(

1 − t1t10
(t1 − t10)2

− p2

2E2

1

|t1 − t10|
)

. (11.32)

This expression is true outside the Bethe ridge, i.e., at |t1 − t10| >∼ αZ . On the Bethe
ridge, |t1 − t10| ∼ αZ , and one should use the equations of Sect. 11.1.1.

Another important region outside the Bethe ridge is the one where the energy of
one of the photons is much smaller than that of the other one, e.g., ω2 � ω1. The
distribution of the soft photons is similar to that in Compton scattering; see (8.35):

dσ

dω2dΩ1
= α

π
· v2

ω2
·
∫

dΩ2

4π
· 1 − τ 2

(1 − vτ)2
· dσs

dΩ1
; τ = p · k2

pω2
, (11.33)

with v = p/E the velocity of the positron. Here dσs is the differential cross section
of the process without the soft photon. In other words, σs is the cross section of
annihilation with all initial energy converted into the energy of a single photon. This
process will be analyzed below.

http://dx.doi.org/10.1007/978-3-319-32736-5_8
http://dx.doi.org/10.1007/978-3-319-32736-5_8


11.2 Annihilation with Radiation of One Photon 331

11.2 Annihilation with Radiation of One Photon

11.2.1 Single-Quantum Annihilation

The possibility of single-quantum annihilation of a positron in its interaction with
a bound electron was predicted by Fermi and Uhlenbeck in 1933. They carried out
the first calculation of the cross section based on the Born approximation and the
Coulomb potential. The result is presented, e.g., in the book [1]. The corresponding
Feynman diagram is shown in Fig. 11.2. The process in which one of the bound
electrons is annihilated while the others do not change their states,

e+ + A = A+ + γ , (11.34)

with A and A+ denoting the atom, and the positive ion is crossing-invariant with
respect to the photoionization process

γ + A = A+ + e− .

Thus the cross section can be expressed in terms of the photoionization amplitude
Fph .

Denoting the four-vector of the photoelectron in the photoionization process by
Pph , we can write for the cross section of the single-quantum annihilation

dσ+
ann = 1

v
|Fph(−Pph)|2 ω2dΩ

(2π)2
; ω = E + Eb , (11.35)

where v is the positron velocity, and Eb is the total energy of the bound electron
annihilated in interaction with the positron. The upper index+ indicates that we have
a single-charged ion A+ in the final state. The recoil ion obtains large momentum
q ∼ m.

Fig. 11.2 Single-quantum
annihilation in interaction of
positrons with atomic
electrons. The notations are
the same as in Fig. 11.1
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The theory of the process mirrors that for photoionization. Employing the results
of Sect. 6.3, we estimate σ+

ann ∼ r2e α
4Z5. In the hydrogenlike approximation, the

cross section of annihilation with the K-shell electrons of the atom with nuclear
charge Z is

σ+
ann(E) = 4πr2e α

4Z5

(β + 1)2
√

β2 − 1

[
β2 + 2

3
β + 4

3
− β + 2√

β2 − 1
ln (β +

√
β2 − 1)

]
,

(11.36)

where β = E/m. This equality is true in the lowest order in ξ = αZ/v [1]. The
cross section reaches its largest value at E ≈ 2m. For annihilation of nonrelativistic
positrons with E − m � m,

σ+
ann(E) = 4πr2e α

4Z5

3

p

m
, (11.37)

while in the ultrarelativistic limit E � m,

σ+
ann(E) = 4πr2e α

4Z5m

E
. (11.38)

These expressions are true in the lowest order in powers of ξ = αZ/v. Besides the
hydrogenlike calculations, the cross section of annihilation with K and L electrons
was obtained for a number of atoms by employing the screened Coulomb functions
[6, 7]. Also, the Z -dependence of the angular distribution has been traced experi-
mentally [8].

11.2.2 Annihilation Followed by Ionization

Single-quantum annihilation can be followed by the knockout of a bound electron
to the continuum. In the process,

e+ + A = A++ + e− + γ, (11.39)

the energy of the positron E , is shared between the electron with energy E1 and the
photon carrying the energy ω. Neglecting the binding energies, we can write

E + 2m = E1 + ω . (11.40)

In this reaction, a three-dimensional momentum

q = p1 + k − p (11.41)

http://dx.doi.org/10.1007/978-3-319-32736-5_6
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is transferred from the nucleus. One can see that this reaction is crossing-invariant
with respect to the double photoionization considered in Chap. 9.

Here we focus on the case in which the positron annihilates with one of the 1s
electrons, and the second 1s electron is knocked out to the continuum. Let us analyze
the contributions of the main mechanisms to the cross section of the process σ++

ann .
The annihilation removes one of the bound 1s electrons and thus changes the

effective charge felt by the second one. This is the familiar shakeoff (SO) mechanism
described in Chaps. 3 and 9. The SO determines the spectrum of the electrons at
small values of their kinetic energies ε1 = E1 − m ∼ Ib. Here the energy of the
radiated photon is close to its largest valueω = E1 + m − Ib. It follows from (11.40)
that ε1 + ω ≥ 2m, and we can employ the asymptotic expression (9.37). Thus the
contribution of the SOmechanism to the cross section σ++

ann of the reaction expressed
by (11.39) is

σ SO
ann(E) = σ+

ann(E)C0; C0 = m

2π2Φ2
1s

∫ ∞

0
dε1 p1|Φ(ε1)|2. (11.42)

Recall that for helium, C0 ≈ 0.016, while the Z -dependence of C0 is traced in
Sect. 9.2.

Before annihilation with the atomic electron, the positron can knock out another
electron from a bound state. Note that while single-quantum annihilation with a
free electron is not possible, a similar process of interaction of the positron with
a system of two free electrons in a spin-singlet state can take place [9]. In such a
process, the recoil momentum is q = 0. To find the conditions for this quasifree
mechanism (QFM), note that in free kinematics, (p − k)2 = p21, and E1 = E0 − ω,
with E0 = E + 2m the largest energy available for the outgoing electron. Since
E2
1 − p21 = m2, we obtain

ω = 2mω0

E0 − pt
; t = p · k

pk
, (11.43)

with ω0 = E + m the largest energy available for the photon. Thus the limits for the
photon energy are

2mω0

E0 + p
≤ ω ≤ 2mω0

E0 − p
. (11.44)

For nonrelativistic positrons with p � m, the energy of the photon and the kinetic
energy of the outgoing electron are ω ≈ 4m/3 and ε1 ≈ 2m/3 respectively. They
vary in small intervals of order p/m near these values. In the ultrarelativistic limit
E � m, the energy carried by the photon is limited by the condition m ≤ ω ≤ E .

The QFM amplitude is proportional to that of the process on the free electrons; see
(9.145). The energy distribution of the radiated photons in the interval determined
by (11.44) is

dσ++
ann

dω
= σ1Z

3W (ω)
m

p2
I ; σ1 = πr2e α

4, (11.45)

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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with I determined by (9.176);

W (ω) =
(

ε1 + ω0

ε1ω0

)2[
EE1 − m2 − κ2 + (

mω

ω0ε1
)2(EE1 − 2ε1ω0 + m2 + κ2)

]
;

(11.46)

κ2 = (E2 − E2
1)

2 − ω4

4ω2
; ω0 = ε1 + ω;

see (9.200). Introducing the dimensionless parameters x = ω/ω0 and γ = m/ω0,
we can write (11.45) and (11.46) as

dσ++
ann

dx
= σ1Z

3W (x)
m

ε
I , (11.47)

with

W (x) = γ
(2 − x

1 − x

)2
[
2(x − γ ) +

[
1 −

( γ x

1 − x

)2][4(1 − x)

x
− γ

(2 − x)2

x2

]]
.

(11.48)

The QFM contribution to the cross section σ++
ann is

σ QFM
ann (E) = σ1Z

3 f (E); f (E) = I
m

ε
·
∫ x2

x1

dxW (x), (11.49)

with the limits of integration

x1 = 2m

E0 + p
; x2 = 2m

E0 − p
, (11.50)

corresponding to (11.44).
We write σ+

ann(E) = σ1Z5ϕ(E), with

ϕ(E) = 4m3

p(E + m)2

( E2

m2
+ 2

3

E

m
+ 4

3
− E + 2m

p
ln

E + p

m

)
,

determined by (11.36). We write also σ QFM
ann (E) = σ1Z3 f (E), with f (E) defined

by the second equality of (11.49). Similar to the case of double photoionization, the
double-to-single ionization ratio can be written as

R(E) = σ++
ann (E)

σ+
ann(E)

= σ SO
ann(E) + σ QFM

ann (E)

σ+
ann(E)

= C0 + σ QFM
ann (E)

σ+
ann(E)

. (11.51)

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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Here we neglected the terms of order Ib/ε. Employing (11.35) and (11.48), we
represent the ratio (11.51) as

R(E) = c + β(E)

Z2
; β(E) = f (E)/ϕ(E) . (11.52)

Note that the functions f (E) and β(E) depend on the quantum number of ionized
states through the factor I .

Now we focus on elimination of two 1s electrons. We employ the perturbative
model developed in Sect. 9.2.2. The amplitude is described by the Feynman diagrams
presented in Fig. 11.3. Recall that in this case, the values of the parameters that enter

Fig. 11.3 Annihilation of
positrons with atomic
electrons accompanied by
ionization. a Corresponds to
the shakeoff (SO)
mechanism. b Illustrates the
quasifree mechanism
(QFM). The notation is the
same as in Fig. 11.1

Fig. 11.4 Energy
dependence of the cross
sections. The horizontal axis
is for the positron energy E
related to the positron mass
m. The vertical line is for the
functions f (E), ϕ(E), and
β(E) defined in Sect. 11.1.2.
Reproduced from [9]

http://dx.doi.org/10.1007/978-3-319-32736-5_9
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(11.45), (11.49), and (11.52) areI = 1/8 and c = 0.09 respectively. The functions
f (E), ϕ(E), and β(E) are shown in Fig. 11.4. For nonrelativistic positrons with
ε � m (but ε = E − m � IZ ), we obtain

β(E) = 1

9
· m

E − m
. (11.53)

Thus at small values of Z and ε, the ratio R can become larger than unity. Hence
double ionization can becomemore probable than a single one. In the ultrarelativistic
limit, the two lowest terms of the expansion in powers of m/E provide

β(E) = 1

4

[
1 + m

4E

(
11 ln

E

m
+ 6 ln 2 − 35

2

)]
. (11.54)

The ultrarelativistic asymptotics for the ratio R corresponds to β = 1/4 and is:

R = 0.34

Z2
. (11.55)

Hence it is just the same as for the double-to-single photoionization ratio. However,
in contrast to that case, R(E) exceeds its asymptotic value for every value of the
positron energy.

11.3 Annihilation Without Radiation

11.3.1 Annihilation with Ionization

The energy released in the annihilation of a positron with a bound electron can be
absorbed by another bound electron. The latter moves to the continuum. Thus the
final state of the process consists of the ion with two holes in the electron shell and
the ejected electron in the continuum. In this process,

e+ + A → A++ + e−,

illustrated by Fig. 11.5a, the ejected electron obtains the energy

E1 = E + 2m (11.56)

(here we neglected the values of the binding energies). The process cannot take place
in a system of free electrons, since it requires a large momentum

q = p − p1 (11.57)

to be transferred to the nucleus. Since q ≥ p1 − p, we find, employing (11.56), that
q2 ≥ 4m2.
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Fig. 11.5 Annihilation of
positrons with atomic
electrons without radiation. a
Ionization; b Creation of
μ+μ− pairs. The muons are
shown by bold lines. The
other notation is the same as
in Fig. 11.1

(a) (b)

The amplitude of the process can be written as

F = 4πα

∫
d3r ′ψ̄−p(r′)γ μψa(r′)

∫
d3r Dμν(ρ)ψ̄p1(r)γ

νψb(r) − (a ↔ b).

(11.58)
Here ψ−p and ψp1 are the wave functions describing the positron and the ejected
electron, ψa,b are the wave functions of the bound electrons in the states a and b,
and ρ = r − r′. The photon propagator Dμν in the Feynman gauge written in spatial
representation is

Dμν(ρ) = gμν

∫
d3 f

(2π)3

exp(ifρ)

f 2 − ω2 − i0
; ω = E + m. (11.59)

Hence, (11.58) can be written as

F = 4πα

∫
d3 f

(2π)3

Aμ(−f, a)Bμ(f, b)
f 2 − ω2 − i0

− (a ↔ b), (11.60)

with

Aμ(−f, a) =
∫

d3r ′ψ̄−p(r′)γ μψa(r′) exp(−ifr′),

Bμ(f, b) =
∫

d3rψ̄p1(r)γμψb(r) exp(ifr).

Note that Aμ(−f, a) is the matrix element of the single-quantum annihilation of the
positron with the bound electron in the state a. Also, Bμ(f, b) is the matrix element
for photoionization of state b.

As we have seen in Sect. 3.1.2, a large momentum q � μb can be transferred to
the nucleus by a bound electron or by a positron in the initial state or by a continuum
electron in the final state, and the corresponding contributions to the amplitude are of
the same order of magnitude. Thus, although the ejected electron carries the kinetic
energy ε1 ≥ 2m, its interaction with the recoil ion should be included. On the other

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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hand, for αZ � 1, it can be treated perturbatively. The same refers to a description
of the positron while its energy is large enough, ε1 � IZ .

We carry out calculations for the K electrons of the hydrogenlike atom. To obtain
the amplitude in the lowest order of the expansion in powers of αZ , we describe all
electrons and the positron by the FSM functions; see (6.24) and (6.29) [10]. Note
that there were earlier calculations for this process in which the bound electrons were
described by the Coulomb functions, while the positron and the ejected electron were
described by plane waves. As we said before, such calculations do not include all
the terms contributing in the leading order in αZ .

We obtain for the angular distribution

dσ

dΩ
= r2e (αZ)8

4

N 2(ξ1)N 2+(ξ)p1m4

pω4
T (θ); ξ = αZE

p
; ξ1 = αZE1

p1
. (11.61)

Here N 2 and N 2+ are the squared normalization factors of the ejected electron and of
the positron determined by (3.19) and (11.25); θ is the angle between the directions
of the positron and electron momenta p and p1. The angular factor

T (θ) = 16m2

q2

(
1 − 4m2

q2

)
(11.62)

is the same for all Z . It reaches its largest value Tmax = 1 at q2 = 8m2, i.e., at

θ = θ0 = arccos

(
1 − 4m2

ω2

)1/2

. (11.63)

For nonrelativistic positrons θ0 → π/2. For ultrarelativistic positrons with E � m,
we obtain θ0 → 0, i.e., the ejected electron moves in the same direction as the
positron. An example of the angular distribution is given in Fig. 11.6.

Integration of the angular distribution (11.61) provides

σ = 8πr2e (αZ)8
N 2(ξ1)N 2+(ξ)m6

p2ω4

(
ln

p1 + p

p1 − p
− pp1

2ω2

)
. (11.64)

The cross section obtains its largest values, which are of order r2e (αZ)8, at ε ∼
m. In the ultrarelativistic region E � m, it decreases as r2e (αZ)8m6/E6. For the
nonrelativistic positrons with ε, p � m, we obtain, putting E = m, E1 = 3m, and
p1 = 2

√
2m,

σ = 21/2πr2e (αZ)8

8

N 2(ξ1)N 2+(ξ)m

p
. (11.65)

Note that if the positron energy is so small that 2πξ >∼ 1, the factor N 2+(ξ) ∼
2πξe−2πξ provides exponential quenching of the cross section.

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Fig. 11.6 Angular distribution for annihilation with ionization at E = 2m. The horizontal line is
for the angle θ between the directions of the momenta of the incoming positron and the outgo-
ing electron. The vertical line is for the differential cross section dσ/dΩ in μb/sterrad units.
Reproduced from [10]

To obtain more accurate expressions for the cross section, we represent the next-
to-leading correction in powers of αZ [11]. We must include the α2Z2 terms in the
expansion of the wave functions of the bound and continuum electron and that of the
positron. Such a term for the 1s wave function is determined by (6.53). It is given
by the third term on the RHS of (6.48) for the wave function of the ejected electron.
Including also a similar correction for the wave function of the positron, we obtain
for the angular distribution

dσ

dΩ
= 4r2e (αZ)8N 2(ξ1)N

2
+(ξ)

p1m6

pω4q2
T1(θ) , (11.66)

with

T1(θ) = 1 − 4m2

q2
+ πη

p1

(
8mE1

q2
− 2p1

q
− 1

)
. (11.67)

The total cross section, which includes the lowest αZ correction, is

σ = 8πr2e (αZ)8
N 2(ξ1)N 2+(ξ)m6

p2ω4

[
ln

p1 + p

p1 − p
− pp1

2ω2
− πη

p1

(
ln

p1 + p

p1 − p
− pp1

ω2

)]
.

(11.68)

Recall that m/E1 < 1/3.
For example, for Z = 82, we find that (11.64) provides σ = 18μb for the

cross section. Inclusion of the lowest-order correction (11.68) changes the value to
σ = 15μb.

http://dx.doi.org/10.1007/978-3-319-32736-5_6
http://dx.doi.org/10.1007/978-3-319-32736-5_6
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11.3.2 Annihilation with Creation of μ+μ− Pairs

If the positron is fast enough, it can annihilate with the bound electron, creating a
μ+μ− pair; see Fig. 11.5b. The process e+e− → μ+μ− can take place for the free
electrons. The threshold positron energy in the rest frame of the electron is

E0 = 2m2
μ/m ≈ 44GeV, (11.69)

with mμ ≈ 105MeV the muon mass. To obtain the value, we denote the four-
momentum of the positron by p = (E,p) and that of the electron at rest by
p′ = (m, 0); the momenta of μ+ and μ− are p1 = (E1,p1) and p2 = (E2,p2). The
value of the threshold energy can be obtained by squaring the momentum conserva-
tion equation p + p′ = p1 + p2 and noting that (p1 p2) ≥ m2

μ.
If the electron is in a bound state, the three-dimensional momentum q = p − p1 −

p2 can be transferred to the nucleus in the process,

e+ + A → A+ + μ+ + μ−.

The energy conservation law is E + m − Ib = E1 + E2, and the annihilation can
take place for E ≥ E , where the threshold for creation of free μ− and μ+ is [12]

E = 2mμ ≈ 211MeV (11.70)

(here we neglected terms of order m/mμ and Ib/mμ).
The amplitude of the process can be written as

A = α

∫
d3r ′ϕ̄p2(r

′)γμϕ−p1(r
′)

∫
d3r

eiωR

ωR
ψ̄−p(r)γ μψb(r); R = |r − r′|.

(11.71)

Here ω = E1 + E2 is the total energy of the μ+μ− pair; ψ−p(r) and ψb(r) are
the wave functions of the positron and the bound electrons. The wave functions
ϕ−p1 and ϕp2 describe the positive and negative muons carrying momenta p1 and p2
respectively. We employ the Feynman gauge for the photon propagator.

The muon wave functions should be calculated in the atomic field with nucleus
of finite size. At large E � mμ, the positron can be described by the FSM functions.
Recall that the accuracy of the latter can be estimated as α2Z2/�e f f , with �e f f the
effective value of the orbital moment. Since a large momentum q ∼ mμ should be
transferred to the nucleus, the process takes place at distances r ∼ 1/mμ from the
center of the nucleus. Thus we can estimate �e f f = pr � 1.

We shall carry out the calculations in the lowest order of αZ . A large momentum
q ∼ mμ can be transferred to the nucleus by any of four charged particles. As we
know, transfer of large momenta can be treated perturbatively, and we represent the
amplitude A as the sum of four terms,
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A = Aa + Ab + Ac + Ad ,

corresponding to transfer of the momentum q by the bound electron, by the incoming
positron, and by the final-state muons μ± respectively.

We begin with the transfer of the large momentum by the bound electron. At
q ∼ mμ, we must take into account the finite size of the nucleus. For the wave
function of an electron bound in an atom with a nucleus of finite size, we can write,
analogously to (2.94),

ψb(q) = −8πη

q4

αq
2m

ψb(r = 0)F(q)u0 , (11.72)

with the nonrelativistic function ψb(r = 0) on the RHS. In further calculations, we
employ the notation Nb = ψb(r = 0). The charge form factor F(q) is normalized
by the condition F(0) = 1. Describing the continuum particles by plane waves, we
write in momentum representation

Aa = −(4π)2α2ZNbF(q)
ū(p2)γμu(−p1)ū(−p)q̃γ μu0

q4s
, (11.73)

with s = (p1 + p2)2 = (E1 + E2)
2 − (p1 + p2)2 = (m + E)2 − (p − q)2 = 2mE +

2pq − q2 the denominator of the photon propagator. Note that s ≥ 4m2
μ.

Transfer of the momentum q by the incoming positron is determined by the
lowest-order correction to the plane wave:

Ab = 4πα
ū(p2)γμu(−p1)

s

∫
d3 f

(2π)3
ū(−p)γ0(k̂ + m)γ μu0

k2 − m2 · −4παZF(q + f)

(q + f)2
ψ(f);
(11.74)

k = (−E,q − p + f) .

Since the integral over f is saturated by f ∼ η � q, we can neglect f everywhere
except in the argument of the bound-state wave function. This leads to

Ab = (4π)2α2ZNbF(q)
ū(p2)γμu(−p1)ū(−p)(2E + q̃)γ μu0

q2as
; a = 2pq − q2.

(11.75)
In a similar way, one can find the contribution of the terms corresponding to the

transfer of momentum q by the final-state muons:

Ac + Ad = (4π)2α2ZNbF(q)

s ′q2

[
2
( E2

a2
− E1

a1

)
ū(p2)γ

μu(−p1)

− ū(p2)γ μq̃u(−p1)

a1
− ū(p2)q̃γ μu(−p1)

a2

]
ū(−p)γμu0 . (11.76)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Here s ′ = (p + p′)2; ai = 2piq + q2. Since ψb(r = 0) = 0 for the bound states
with � �= 0, only the s states contribute to the amplitude.

Note that the denominator of the photon propagator s ′ = (p + p′)2 ≈ 2mE is
much smaller than that in the amplitudes Aa and Ab, i.e., s ′/s ∼ mE/m2

μ. Consid-
ering the energies

E � E0, (11.77)

we can put A = Ac + Ad in the main part of the phase volume, since here, |Aa +
Ab| � |Ac + Ad |. Thus the large momentum q is transferred to the nucleus mainly
by the final-state muons. In the configuration with p1 = p2 directed along p, the
sum of the contributions is Ac + Ad = 0. Hence, in the vicinity of this point, all the
terms on the RHS of (11.71) are important. Also, at p1 ≈ p2, the relative velocity of
the outgoing μ+ and μ− is small, and they undergo strong attraction; see a similar
situation in pair creation by a photon in the field of the nucleus [13].

The differential cross section of the muon pair creation in annihilation with the
electrons in the s state can be written as

dσ = 2πα
N 2
b

m2E
dσγμ+μ− , (11.78)

with σγμ+μ− the cross section for muon pair creation by a photon with energy E
and three-momentum p. We consider energies E ≥ 2mμ � m, and thus we can put
E2 = p2. In the limit of a point nucleus F(q) = 1, the cross section σγμ+μ− can be
evaluated analytically. However, this limit works only for very light atoms, for which
the cross section is very small. We carry out analysis that takes into account the finite
size of the nucleus.

The differential cross section (11.78) can be written as

dσ = τ(Z)
m4

μ

q4

p1 p2
E2mμ

F2(q)S(p1,p2)dE1dt1dt2dϕ . (11.79)

Here ti = cos θi , θi are the angles between momenta pi and p, ϕ is the angle between
the planes determined by the vectors p1,p and p2,p,

S(p1,p2) = 4m2
μ

( E2

a2
− E1

a1

)2 − m2
μq

2
( 1

a2
− 1

a1

)2+ (11.80)

2

a1a2

(
[p1q]2 + [p2q]2

)2
,

and

τ(Z) = 4r2μ(αZ)2
N 2
b

m2mμ

; rμ = α

mμ

. (11.81)
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Note that for the K shell of the hydrogenlike atom with point nucleus, we have
N 2
b = η3/π , and

τ(Z) = 4

π
r2μ(αZ)5

m

mμ

= 0.0114(αZ)5μb (11.82)

provides the scale for the cross section σ . Assuming a uniform distribution in the
sphere of radius R for the electric charge of the nucleus, we obtain for the form factor

F(q) = 3(sin qR − qR cos qr)

q3R3
; R = 1.2 · A1/3 Fm (11.83)

(recall that 1Fm=10−13 cm), with A the number of nucleons in the considered
nucleus. Since the nonrelativistic wave functions with � �= 0 become zero at the
origin, only the s atomic electrons contribute to the process. The K electrons provide
the leading contribution.

The final-state muonμ− can be captured to the atomic bound state. In the process,

e+ + A → A(μ) + μ+;

A(μ) denotes the mesoatom, i.e., the atom in which one of the electrons is replaced
by the muon μ−. The amplitude is represented by (11.71) with the wave function
ϕp2(r

′) of the continuum muon μ− replaced by its bound-state function in the field
of the atom with the nucleus of finite size. The energy conservation law is now
E + m − Ib = E1 + mμ − I (μ)

b , with the last term the ionization potential of the
mesoatom.The cross section is connectedwith the cross sectionσ b

γμ+μ− of the process
in which the photon with energy E and three-momentum p creates aμ+μ− pair with
the negative muon bound in the atom. In the lowest order of the αZ expansion,

σ = 2α(αZ)3
m

E
σ b

γμ+μ− . (11.84)

To calculate the cross section σ b
γμ+μ− , one needs thewave function of the boundmuon

in the field of the finite-size nucleus. It can be found by numerical solution of the
Dirac equation. Using the relativistic Coulomb functions for describing the bound
electrons and the FSM positron wave functions enables us to trace the nuclear charge
dependence of the cross section [14]. At characteristic energy E = 10mμ ≈ 1GeV,
it is σ = 10−5μb for Z = 60, yielding 1.5 · 10−5μb for Z = 92.

At E >∼ E0, annihilation on the free electrons becomes possible. In annihilation
on a bound electron, a small momentum q ∼ η is transferred to the nucleus. The total
cross section for annihilation on a bound electron is equal to that on a free electron.
The latter is [15]

σ0 = 2π

3
r2e

m

E

(
1 + E0

2E

)(
1 − E0

E

)1/2
. (11.85)
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Thus the cross section for annihilation with an atom containing Ne electrons is
σA = Neσ0. In the vicinity of the threshold E − E0 ∼ mμα2, (11.85) is invalid, since
the interaction of the outgoing muons should be taken into account. The RHS of
(11.85) obtains a factor that is the wave function of the relative motion of the muons
at the origin [13]. Thus at E → E0, the cross section has a finite value.

Note that μ− and μ+ can form a bound state with binding energy mμα2/4 ≈
1.4keV. The threshold of this channel is smaller than E0 by that value.

The cross sections σ0 and σA reach their largest values at E ≈ 1.7E0. Here σ0 ≈
r2e m

2/m2
μ ≈ 1μb, and thus σ ≈ Ne[μb].
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Chapter 12
Nuclear Transitions and the Electron Shell

Abstract We consider the mutual influence of nuclear and electron transitions. We
investigate the influence of the electron shell on the energy distribution of electrons
ejected in nuclear β decay, employing the approach presented in Chap.3.We demon-
strate how the considered effects manifest themselves in experiments on detection
of the neutrino mass. We show how the analysis of interactions between the beta
electron and the bound electron in the decay of tritium helped to solve the “heavy
neutrino” problem. We present the results for probabilities of creating vacancies in
the atomic shell in β− and β+ nuclear decay. For the case of nuclear γ decay, we
analyzed the calculations of probabilities of internal nuclear conversion. Using the
perturbativemodel developed in Chap.9, we calculated the probability for ejection of
two electrons from the electron shell during the same nuclear γ transition. Employ-
ing the results obtained in Chap. 4, we clarify the mechanism and calculate the cross
section for the nonresonant photoexcitation of nucleus. We also present analysis of
some less-explored influences of the electron shell on the probability of α decay.

12.1 Role of Atomic Electrons in Nuclear Beta Decay

12.1.1 Amplitude of Nuclear Beta Decay

Due to the weak decay of one of the neutrons composing the nucleus,

n → p + e− + ν̄e ,

the latter can undergo the transition

(A,Z) → (A,Z + 1) + e− + ν̄e .

Here (A,Z) denotes a nucleus containing A nucleons and having charge |e|Z . The
amplitude of the process can be represented asthe matrix element of the products of
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the lepton and nucleon weak currents. Each of them is a composition of the vector
and axial currents. The lepton current is

jμ(r) = ψ̄e(r)γμψν(r) + ψ̄e(r)γμγ5ψν(r), (12.1)

with the two terms on the RHS corresponding to the vector and axial currents. The
matrix γ5 is defined by (2.15). The amplitude of the beta decay can be written as [1]

Aβ = GW 〈f |
∑
k

t(k)+ (γ μ(k) + gAγ
μ(k)γ5)jμ(rk)|i〉 . (12.2)

Here GW is a constant, gA ≈ 1.24; |i〉 and 〈f | are the initial and final states
of the nucleus, and k labels the neutrons. The operator t+ adds one unit to the
projection of isospin, i.e., it transforms the neutron to a proton, t+|n〉 = |p〉. We
neglect the higher-order weak interactions and describe the antineutrino by a plane
wave. Writing ψe(rk) = F(rk) exp (ip · rk)ue, with F(rk) describing the interaction
of the beta electron with the final-state proton, we write

jμ(rk) = ūeγμ(1 + γ5)F(rk)uνe
−ip·rk−ipν ·rk , (12.3)

with ue,ν the Dirac bispinor of the free motion, p and pν the three momenta of the
beta electron and antineutrino.

Note that the sizes of the heaviest nuclei are of orderR <∼ 8Fm≈ (25MeV)−1, see
(11.83), while the energy shared by the beta electron and the antineutrino does not
exceed several MeV. Thus one can carry out an expansion of the exponential factors
on the RHS of (12.3). If the initial and final states have the same parity and their
spin difference is Ji − Jf = 0,±1, we can neglect the variation of the lepton wave
functions inside the nucleus, putting exp (−ip · rk) = exp (−ipν · rk) = 1. Also, the
characteristic kinetic energies of the nucleons composing the nucleus are of order
50MeV (the rest energy of the nucleon is about 940MeV), and thus the operators
γ μ(k) and γ μ(k)γ5 on the RHS of (12.3) can be replaced by their nonrelativistic limits
1 · δμ0 and σiδμi respectively. For such transitions, which are called the “allowed
transitions,”

Aβ = GW

(
〈f |

∑
k

t(k)+ |i〉j0 + gA
∑
k

〈f |
∑
k

t(k)+ σ
(k)
i |i〉ji

)
, (12.4)

where jμ = ūeγμ(1 + γ5)uν · N0, with N0 the electron function on the surface of the
daughter nucleus. The first term on the RHS of (12.4) causes the transitions with
Jf = Ji, and the leptons do not carry the angular momentum. These are the Fermi
transitions. The second term leads to transitions with |Jf − Ji| = 1. These are the
Gamow–Teller transitions. In both cases, the parity of the initial and final states of
the nucleus does not change.

In beta decay for which the conditions of Fermi or Gamow–Teller transitions
are not satisfied, a nonzero value of the matrix element (12.2) can be obtained

http://dx.doi.org/10.1007/978-3-319-32736-5_2
http://dx.doi.org/10.1007/978-3-319-32736-5_11
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by including the higher-order terms of the expansion of the exponential factor
exp (−ip · rk − ipν · rk) = 1+∑

n=1(−ipν · rk − ip · rk)n/n! in (12.3) for the lepton
current. The decay is called “L-forbidden” if L is the smallest value of n for which
the matrix element (12.2) obtains a nonvanishing value.

12.1.2 Neutrino Mass Measurements

The influence of the electron shell on the spectrum of beta electrons manifests itself
brightly in experiments on the measurement of the mass of the electron neutrino.
Recall that in 1930 Pauli explained the continuous spectrum of beta electrons assum-
ing that there is a neutral particle that is much lighter than the electron and interacts
with the other particles very weakly. The existence of such a particle, which is called
a “neutrino,” was confirmed experimentally in 1956. Is the neutrino indeed massless,
or does it have a small mass? There were numerous attempts to answer this question.
The answer is important, e.g., for astrophysical applications.

There are three observed charged leptons, e−, μ−, and τ−. According to the
Standard Model of electroweak interactions, each of them has a massless neutral
spin-1/2 partner. Thus there should be three types of neutrino, νe, νμ, and ντ . They are
indeed observed, and they aremuch lighter than the corresponding leptons. However,
it was found in experiments carried in 1998 [2], and confirmed in later ones (see, e.g.,
[3]), that νe,μ,τ are not pure states and can convert into one another. This is called
neutrino oscillations. The results are inconsistent with a zero value of neutrino mass.
Thus we can conclude that Me �= 0.

The direct electron neutrino mass search is based on an analysis of the β spectrum
in the allowed nuclear decays. In allowed transitions, the nucleon and lepton variables
are factorized. The spectrum of beta electrons can be written as

dW

dE
= CNf (E) , (12.5)

withW the probability of the beta decay.Thenucleon factor isCN = C|〈f | ∑k t
(k)
+ |i〉|2+

g2A|〈f |
∑

k σ (k)t(k)+ |i〉|2; the value of the numerical coefficient C will not be important
for us. The dependence on the lepton variables is contained in the function

f (E) = F(E,Z + 1)pEpνEν , (12.6)

with E and p the total energy and the modulus of the three-dimensional momentum
of the beta electron, while Eν and pν are those of the antineutrino. The function
F(E,Z + 1), called the Fermi function, is the squared wave function of the beta
electron on the surface of the daughter nucleus.

Now we assume that the antineutrino has a nonzero mass M. Due to the
CPT invariance, the mass of the electron neutrino also is M. Now we must put
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pν = ((E0 − E)2 − M2)1/2 on the RHS of (12.6), with E0 the endpoint of the beta
spectrum. One finds that a nonzero value of M would lead to a radical change in
the shape of the function f (E) near the endpoint. For M = 0, we have df /dE → 0
at E → E0. If M �= 0, the endpoint shifts to E′

0 = E0 − M, and df /dE → ∞ at
E → E′

0.
Another important characteristic is the Kurie plot, defined as

K(E) =
(

dW/dE

CNF(E,Z + 1)pE

)1/2

, (12.7)

taking the form K(E) = E0 −E ifM = 0. A nonzero value ofM provides deviations
from the linear behavior. Considering the region near the endpoint E0, we define

Δ = E0 − E. (12.8)

In the lowest order of expansion in powers of Δ/E0, we represent (12.6) in the
form

f (E) = F(E0,Z + 1)E0(E
2
0 − m2)1/2t(Δ,M2); t(Δ,M2) = Δ(Δ2 − M2)1/2,

(12.9)

and focus on analysis of the functions t(Δ,M2) and K(Δ,M2) = √
t(Δ,M2).

In fact, the decay of tritium,

3H →3 He+ + e− + ν̄e, (12.10)

with the endpoint ε = E0 − m ≈ 18.6 keV, has been used in experiments to detect
the neutrino mass since the late 1940s. It is the allowed decay with a suitable lifetime
of T1/2 = 12.3 years. In experiments carried out in the 1970s (ITEP, Moscow) and
1980s (INS, Tokyo), researchers employed atoms of tritium implanted into complex
organic molecules. In current experiments, molecular tritium is used. We shall carry
out our analysis for the general case of allowed beta decay. Since the decaying nucleus
can be a part of a complex system, we shall speak about the “parent system” and
“daughter system.”

The existence of the electron shell surrounding the nucleus modifies the expres-
sions presented above. We begin with an expression for the function t(Δ). The
electron shell is in the ground state |Ψ0〉 with (nonrelativistic) energy ε0(Z) before
decay. It can remain in the ground state 〈Φ0|, corresponding, however, to the nuclear
charge Z + 1. Also, it can be in an excited state 〈Φn| (n ≥ 1) with energy εn(Z + 1)
after decay. The probabilities of transitions of the electron shell fn are normalized
by the condition Σn=0fn = 1. If the atomic shell of the daughter system remains in
the ground state, it transfers the energy ε0(Z) − ε0(Z + 1) > 0 to the beta electron.
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If the atomic shell of the daughter system is excited to state |Φn〉, the energy of the
beta electron becomes E − εn0, with

εn0 = εn(Z + 1) − ε0(Z) . (12.11)

The corresponding endpoints of the beta spectra are En
0 = E0 − εn0.

Thus

t(Δ,M2) =
∑
n=0

fn · (Δ − εn0)
(
(Δ − εn0)

2 − M2)
)1/2

. (12.12)

We define the moments of the distribution of the secondary electrons

〈εk〉 =
∑
n

fnε
k
n0 (12.13)

and the dispersion
σ 2 = 〈ε2〉 − 〈ε〉2. (12.14)

Assuming M to be very small compared to Δ, we can write

t(Δ,M2) = (Δ − 〈ε〉)2 − M2 − 2σ 2

2
. (12.15)

For values of Δ much larger than the characteristic values of excitation ε0n, the
Kurie plot is

K(Δ,M2) = Δ − 〈ε〉 − M2 − 2σ 2

4Δ
. (12.16)

Thus the electron shell imitates the value of M2 = −2σ 2.
The sums on the RHS of (12.13) are limited by the condition εn(Z+1)−ε0(Z) ≤

Δ. For the excitation energies strongly exceeding the single-particle ground-state
energy ε � I = |ε0(Z + 1)|, the probabilities fε decrease as 1/ε4 in the SO approxi-
mation. Thus themoments 〈ε〉 and 〈ε2〉 are saturated at εno ∼ I . Hence, the parameters
〈ε〉 and σ 2 on the RHS of (12.15) and (12.16) do not depend on Δ if Δ � I . Indeed,
the largest value of Δ is several hundred eV.

For analysis of the experimental data, it is instructive to write (12.15) and (12.16)
also in terms of other variables [4]. We introduce

ε∗
n0(Z + 1) = εn(Z + 1) − ε0(Z + 1) > 0, (12.17)

which is the electron excitation energy of the daughter systemmeasured with respect
to its ground state. Now εn0 = ε∗

n0(Z + 1) + ε00. The average excitation energy is
defined as

〈ε∗〉 = 〈ε〉 − ε00. (12.18)
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The shifted endpoint of the beta spectrum is

E′
0 = E0 − ε00 . (12.19)

Introducing Δ′ = E′
0 − E, we represent (12.15) and (12.16) as

t(Δ,M2) = (Δ′ − 〈ε∗〉)2 − M2 − 2σ 2

2
(12.20)

and

K(Δ,M2) = Δ′ − 〈ε∗〉 − M2 − 2σ 2

4Δ′ . (12.21)

In the shakeoff (SO) approximation (see Chap.3), the probabilities of excitation
are fn = |〈Φn|Ψ0〉|2. They can be represented as the values of certain operators
averaged over the initial state of the electron shell of the decaying system. Employing
the closure condition for the states 〈Φn|, we obtain

〈ε〉 =
∑
n

〈Ψ0|Φn〉εn0〈Φn|Ψ0〉 = 〈Ψ0|ΔH|Ψ0〉, (12.22)

whereΔH is the difference between the Hamiltonians of the parent and the daughter
systems. Thus

〈ε〉 = −〈Ψ0|
∑
k

α

rk
|Ψ0〉 < 0 . (12.23)

The negative value of 〈ε〉 means that the beta electron gains some energy from
the secondary electrons in the SO process. In a similar way, one obtains

〈ε2〉 = 〈Ψ0|(
∑
k

α

rk
)2|Ψ0〉 . (12.24)

One can calculate the probabilities fn beyond the SO by employing (3.94) and
(4.62). While the SOmechanism makes it possible to excite only the states without a
change of orbitalmomenta, the latter can change due to the FSI. TheFSI contributions
to the probabilities fε for excitation of the bound electrons to the continuum states
with energies ε � I decrease as 1/ε2 at ε � I; see Sect. 4.2. Thus the expectation
value 〈ε〉 is determined by all energies ε � Δ, including the region I � ε � Δ.
The expectation value 〈ε2〉 is determined by the energies ε ∼ Δ. Hence, both 〈ε〉
and 〈ε2〉 depend on Δ [5].

At the high-energy endpoint of the tritium decay beta spectrum, the squared Som-
merfeld parameter is ξ 2

ee ≈ 7 · 10−4 � 1. This enables us to include the FSI only in
the lowest nonvanishing order. Employing the results of Sect. 4.2.2, we obtain

〈ε〉 = 〈ε〉SO + ξ 2
ee

〈r−2〉
2m

ln
Δ

B
; 〈r−2〉 = 〈Ψ0|

∑
k

r−2
k |Ψ0〉 (12.25)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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for the Δ-dependence of the beta electron energy loss. The first term on the RHS is
given by (12.23). Determination of the value B ∼ I requires a special calculation for
the particular system.

For the dispersion, we obtain

σ 2 = σ 2
SO + ξ 2

ee

〈r−2〉
2m

Δ + 0(Ib/Δ). (12.26)

Employing (12.15), we obtain for the Kurie plot, similar to (12.16),

K(Δ,M2) = Δ − 〈ε〉 − M∗2

4Δ
, (12.27)

with 〈ε〉 determined by (12.25). The “observable” squared neutrino mass is

M∗2 = M2 − 2σ 2
SO − 2ξ 2

ee

〈ε〉SO〈r−2〉
m

. (12.28)

The deviations from the linear behavior of the Kurie plot manifest themselves in
a nonzero value of the second derivative:

d2K(Δ,M2)

dΔ2
= −M2 − 2σ 2

2Δ3
+ ξ 2

ee

〈r−2〉
2mΔ2

. (12.29)

Note that the RHS does not contain the parameter B, which enters (12.25).
Here we calculate the characteristics mentioned above for the simplified case of

an isolated atom of tritium. There is only one electron in the electron shell. It can
be described by the nonrelativistic Coulomb functions with Z = 1 in the decaying
atom and Z = 2 in the daughter atom. We obtain immediately ε00 = −40.8eV.
Employing (12.23) and (12.24) for the case of a single electron, we find that in the
SO approximation,

〈ε〉 = −ν2

m
= −27.2 eV; 〈ε∗〉 = ν2

2m
= 13.6 eV; σ 2 = 4I21 = 740 eV2.

(12.30)
Recall that ν = mα; I1 = ν2/2m = −ε0(Z = 1) = 13.6 eV.

Now we calculate the occupancies of the final states, taking into account the FSI
[6, 7]. Employing (3.94), we have

fn = Sn
S

; S =
∑
n

Sn , (12.31)

with Sn = An + ξ 2
eeBn, where

An = 〈ϕn|ψ0〉2; Bn = −An + Dn; Dn = 〈ϕn|�|ψ0〉2 − 〈ψ0|ϕn〉〈ϕn|�2|ψ0〉;
(12.32)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Table 12.1 Occupancies of the final states of He+ (in percent) at the endpoint of the β electron
spectrum in the decay of tritium.

State Shakeoff Inclusion of FSI

1s 70.23 70.16

2s 25.00 25.03

2p 0.00 0.04

� = ln (r(1 − t)λ),

and S = 1 − ξ 2
ee. Hence, we can write

fn = αn + ξ 2
eeβn; αn = An; βn = Dn;

∑
n

αn = 1;
∑
n

βn = 0. (12.33)

Direct calculation provides β1s = −0.98, β2s = 0.37, β2p = 0.56. The modifi-
cation of the occupancies of the final states due to the FSI near the endpoint of the
beta spectrum is presented in Table12.1. One can see that the FSI diminishes the
occupancy of the ground state in favor of that of the L shell.

We turn now to calculation of the average energy loss of the beta electron:

〈ε〉 = Σnεn0Sn = 〈ε〉1 + 〈ε〉2 . (12.34)

Here 〈ε〉1 is the SOcontribution,while 〈ε〉2 is that of the FSI and of the interference
between the SO and FSI terms. We have seen already that 〈ε〉1 = ∑

n εn0An =
−〈ψ0|α/r|ψ0〉 = −mα2 = −2I1. Employing (12.32), we find that

〈ε〉2 = ξ 2
ee

(
2I1 +

∑
n

εn0Dn

)
. (12.35)

Now we evaluate

∑
n

εn0Dn = 2I1〈ψ0|�2|ψ0〉+α〈ψ0|�
2

r
|ψ0〉+κ; κ =

∑
εn0<Δ

εn|〈ϕn| ln(r − rz)|ψ0〉|2.
(12.36)

The first two terms on the RHS of the first equality are obtained by employing
closure. They are saturated by the states with εn0 ∼ Ib, while κ is saturated by all
εn0 < Δ, and κ ∼ lnΔ at Δ � Ib.

The calculations can be simplified by noting that κ can be obtained by employing
the plane waves ϕ(0)

n instead of the Coulomb functions ϕn. To prove the statement,
note that both ϕn and ϕ(0)

n constitute complete sets of functions

∑
n

|ϕn〉〈ϕn| =
∑
n

|ϕ(0)
n 〉〈ϕ(0)

n | = 1.
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Writing for the continuum states |ϕn〉 = |ϕ(0)
n 〉 + |χn〉, we find that

∑
εn0<Δ

εn0

[
|ϕn〉〈ϕn| − |ϕ(0)

n 〉〈ϕ(0)
n |

]
= Hd

∑
εn0>Δ

[
|ϕ(0)

n0 〉〈χn| + |χn〉〈ϕ(0)
n0 | + |χn〉〈χn|

]
,

withHd the Hamiltonian of the daughter system. At large ε, the functions χn contain
an additional factor of order ε−1 relative to ϕ(0)

n . Hence using the functions ϕ(0)
n

instead of ϕn for calculation of κ leads to small errors of order I1/Δ. We obtain

κ =
∫

d3f

(2π)3
· f 2

2m
|〈ϕ(0)

f | ln (r − rz)|ψ0〉|2. (12.37)

Here f is the momentum carried by the electron ejected from the atom; the lower
index f labels the continuum electron with momentum f . The upper limit of integra-
tion over f is fmax = √

2mΔ � ν = mα. Calculating

〈ϕ(0)
f | ln (r − rz)|ψ0〉 = 4π1/2ν3/2

f 2 + ν2

(
ν

f 2z + ν2
− i

1

fz + iν

)
, (12.38)

with fz the projection of f on the direction of the momentum of the beta electron we
find

〈ε〉2 = 2ξ 2
eeI1

(
ln

Δ

I1
+ C

)
, (12.39)

with C = 7/16 − 2 ln 2 − π2/36 ≈ −1.19, or

〈ε〉2 = 2ξ 2
eeI1 ln

Δ

B
; B ≈ 45 eV. (12.40)

The current upper limit for the value of the neutrino mass was obtained by the
Lobashev Troitsk group [8, 9]:

M < 2.05 eV. (12.41)

A similar result was obtained by theMainz group [10]:M < 2.3eV. TheKarlsruhe
Tritium Neutrino Experiment (KATRIN), in which a number of groups collaborated,
is planned to reach the sensitivity of M ∼ 0.2eV.

12.1.3 A Tale of a Heavy Neutrino

Thirty years ago, Simpson [11] reported a surprising result. Tracing the shape of
the electron spectrum of tritium beta decay and diminishing the value of the elec-
tron kinetic energy ε = E − m, he observed a broad maximum in the interval
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0.75keV< ε < 1.5keV. The spectrum curve had a characteristic shape correspond-
ing to the threshold for creation of a particle with massM = E0−1.5 keV ≈ 17 keV.
It was called a “heavy neutrino.”

The existence of a “heavy neutrino” would require a revision of the Standard
Model, which was believed to be the foundation of the theory of electroweak inter-
actions. Astrophysics could not accommodate a stable new particle with a mass of
more than a few tens of eV. It would fill the universe, giving it an unacceptably large
mass. Thus in accepting the “heavy neutrino,” we should assume that there is at least
one more unknown scalar particle s that is still lighter, and the “heavy neutrino”
decays to an electron neutrino and the scalar s.

The relative magnitude of the surplus observed in [11] was on the order of several
units of 10−3. The squared Sommerfeld parameter ξ 2

ee of the interaction between the
beta electron and the electron bound in tritium ξ 2

ee ranges between 10
−2 and 2·10−2 in

the considered energy interval. Thus it is reasonable to check whether the corrections
of order ξ 2

ee, often referred to as “screening corrections,” are included properly.
Since in this part of the spectrum we have ξ 2

ee � 1, the screening corrections can
be treated perturbatively. The energy is small enough for applying the nonrelativistic
equations. The lowest-order correction to the beta spectrum is determined by (3.102).
Thus the beta spectrum of the decay of the tritium atom dW/dE and that of the bare
tritium nucleus are related as

dW

dE
= dW0

dE

(
1 − ξ 2

ee〈ψ0| r0
r

|ψ0〉 + 0(ξ 2
eeξ

2, ξ 4
ee)

)
. (12.42)

Here ψ0 is the wave function of the tritium atom. Note that the interaction of
the beta electron with the daughter nucleus is determined by the parameter ξ =
(IZ+1/ε)

1/2, with Z = 1 in our case. The small-distance interactions taking place at
r <∼ (2mε)−1/2 with ε = E−m compose the Fermi function (see (12.6)). Interactions
with the bound electron take place at much larger distances from the nucleus, r ∼
1/mα, i.e., at distances on the order of the size of the atom. Thus the influence of the
FSI on the Fermi function manifests itself in the neglected terms of order ξ 2

eeξ
2 [12].

In [11], the screening corrections were included in another way. The bound elec-
tron was treated as the source of an electrostatic field. It was assumed that the main
screening effect is modification of the Fermi function. The latter is formed at small
distances of order 1/p from the nucleus, where the field of the bound electron is
essentially constant. Therefore, interaction with the bound electron adds the value
〈V 〉 = 〈ϕ0|α/r|ϕ0〉 to the potential energy of the beta electron (ϕ0 is the ground state
of the bound electron in the parent atom). The beta electron energy E is shifted to
E′ = E + 〈V 〉, and

dW

dE
= dW0

dE

p′E′F(E′,Z + 1)

pEF(E,Z + 1)
. (12.43)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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In the case of tritium decay, we can neglect effects connected with the finite size
of the nucleus. Thus F(E,Z + 1) is just the squared nonrelativistic function of the
beta electron at the origin:

F(E,Z + 1) = 2πξ

1 − exp (−2πξ)
; ξ = mα · 2

p
. (12.44)

The main effect comes from the shift of the energy in the Fermi function. In the
lowest order of expansion in powers of 〈V 〉/ε,

dW

dE
= dW0

dE

(
1 − 〈V 〉

2ε
· 2πξ

exp (2πξ) − 1

)
. (12.45)

Note that although ξ 2 <∼ 0.1, the value of πξ is not small. It is 0.73 at ε = 1keV.
Thus we do not carry out expansion in powers of πξ . Note that (12.45) is in contrast
with the consistent calculation that leads to (12.42). The corrections to the Fermi
function should manifest themselves in next-to-leading orders of the perturbation
theory.Also, (12.45) contains the value of 〈V 〉 for the daughter atom. In our approach,
the screening corrections actually contain the matrix element of the parent atom
〈ψ |1/r|ψ〉.

Using (12.42) instead of (12.45) for inclusion of the screening corrections, we
must change the theoretical results for the Kurie plot by the value

δK

K
= −1

2

(
− ξ 2

ee〈ψ0| r0
r

|ψ0〉 + 〈V 〉
2ε

2πξ

exp(2πξ) − 1

)
. (12.46)

In Fig. 12.1, we show the experimental and theoretical results after the correction
given by (12.46) is included [13]. In the first step, we neglect the influence of the
environment on the tritium atom, considering it an isolated one. Employing the
nonrelativistic Coulomb functions, we find that the discrepancy at 1keV< ε <

1.5keV is removed.
Now we try to estimate the influence of the environment. In an experiment [11],

an atom of tritium was implanted into a silicon crystal. It is known that the value
of the squared wave function at the origin |ψ(0)|2 of a muonium atom (the bound
state of muon μ+ and an electron) implanted in Si is quenched more than twice as
much as for an isolated atom |ψ0(0)|2. Indeed, |ψ(0)|2 = 0.45|ψ0(0)|2 [14]. The
result can be extended to the case of tritium. Assume that ψ(r) has a Coulomb
shape with a certain effective value of the nuclear charge Zeff . We know that in the
Coulomb field, |ψ(0)|2 ∼ Z3

eff , while 〈ψ |1/r|ψ〉 ∼ Zeff . Thus for tritium implanted
in Si, we have 〈ψ |r0/r|ψ〉 ≈ 0.77. The results based on this estimation are given
in Fig. 12.1. They remove the discrepancy between the experimental and theoretical
results for ε > 700eV. The discrepancy that remains at 500eV < ε < 700eV is
due to the background, which was not subtracted properly during the analysis of the
experimental data [15].
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Fig. 12.1 Relative modification of the Kurie plot δK/K caused by employing (12.42) multiplied
by 103. The horizontal axis is for the beta electron kinetic energy in keV. The dots correspond to the
experimental results obtained in [11]. The solid line is the theoretical result with the vacuum value
of 〈ψ |r0/r|ψ〉. The dashed curve is for the rough estimation of the influence of the environment on
the value of 〈ψ |r0/r|ψ〉 described in the text [13]

Thus the proper inclusion of the screening corrections in beta decay of tritium
leaves no room for the “heavy neutrino.”

In a further development of the story, the lower part of the beta spectrum in decays
of heavier nuclei was investigated in the search for the “heavy neutrino.” By 1991,
three groups reported the observation of an anomaly similar to that in [11]. New
experiments with an improved technique (magnetic spectrometer) were carried out.
More than ten groups did not see the “heavy neutrino.” This stimulated the discussion
of themethods applied in the analysis of the experimental data. Thedetails are given in
[15]. Finally, all three groups that obtained a positive result removed their statements.
By the end of 1993, the community agreed that there is no such thing as the “heavy
neutrino.”

AsD.Morrisonwrote, thewhole story “raised questions about the StandardModel
of particle physics and about cosmological theories, stimulated many theoretical
papers and pushed experimental techniques to their limit” [16].

12.1.4 Creation of Vacancies in the Electron K Shell
in β− Decay

Until now, we have analyzed the influence of the electron shell on the spectrum of β

electrons. Now we study the rearrangement of the electron shell caused by nuclear β

decay. We focus on the case of the best-studied creation of vacancies in the electron
K shell. The 1s electron can be moved to an excited state of the discrete spectrum or
to a continuum state. If the β electron carries the kinetic energy ε = E − m ∼ Ib,
all interactions in the final state are important, and one should consider the wave
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function of Z +1 electrons with at least one of them belonging to the continuum and
at least one of the others belonging either to the continuum or to an excited state of
the discrete spectrum.

For the fast β electrons, one can single out two mechanisms of the process. As we
have seen in Chap.3, the final-state interactions of the beta electron can be treated
perturbatively. In the lowest order, we can neglect interactions of the β electrons
with the bound ones. The K electron moves to an excited state due to the sudden
change of the charge of the nucleus, and the amplitude of the process is An = FTn.
HereF is the amplitude of the β decay of the bare nucleus, while the transitions of
the atomic electrons are described by the matrix element Tn = 〈Φn|Ψ0〉. Here Ψ0 is
the ground state of the system consisting of Z electrons in the field of the decaying
nucleus with charge Z . The function Φn describes the state of these electrons with a
hole in the 1s state in the field of the nucleus with the charge Z + 1. The β electron
spectrum of the decay during which the vacancy in the 1s state of the electron shell
is created can be written for ε � Ib as

dW

dε
= dW0

dε

∑
n �=0

Sn; Sn = |〈Φn|Ψ0〉|2. (12.47)

Here dW0/dε is the spectrum of the beta decay of the bare nucleus. Note that the
ground state (n = 0) is not included in the sum. To obtain the total probability W ,
we must integrate each term on the RHS over ε with the upper limit depending on
n. However, as we have seen in Chap.3, the sum over n is saturated by the states
with energies εn ∼ Ib. Thus we can neglect the n-dependence of the upper limit of
integration, making the error Ib/ε � 1. One can see that

∑
n Sn = 1, due to the

closure condition for the functions Φn, and

P ≡ W

W0
= 1 − S0; S0 = 〈Φ0|Ψ0〉2. (12.48)

For the simplest case of the beta decay of an ion with one 1s electron, the states
|Ψ0〉 and 〈Φn| can be described by the functions ψ0 and ϕn of the Coulomb field with
the charges Z and Z + 1 respectively. For not very large Z , these can be nonrelativis-
tic functions. Hence, we can calculate the probabilities for transition of the bound
electron to any final state. The probability to remain in the 1s state is

S0 = 64Z3(Z + 1)3

(2Z + 1)6
. (12.49)

For the beta decay of the tritium atom, S0 = 0.70, and thus the bound electron
undergoes transitions with probability P = 0.30. The probability that the 1s electron
moves to the continuum is Pc = 0.04, for the case of tritium making about 13% of
all transitions. For large Z � 1, we obtain S0 = 1− 0.75/Z2 +O(1/Z3), providing
P = 0.75/Z2. The role of excitation to continuum states increases, and we obtain
Pc ≈ 0.32/Z2, which constitutes more than 40% of all transitions.

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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For two electrons in the 1s state, the probability for both of them to remain in
the ground state is P0 = S20 in the hydrogenlike approximation. Applying closure
for the many-electron atom, we must subtract the probabilities for excitations to the
occupied states Pexc > 0. Thus P = 1−S20 −Pexc, and closure can provide the upper
limit for the probabilityP. Say, for Z � 1, we obtainP < 1.5/Z2 in the hydrogenlike
approximation.

The first systematic SO calculations of the probability P based on the closure
condition with subtraction of the contribution of the occupied states were carried out
by Carlson et al. [17]. Computations carried out later employed more precise wave
functions.Rather large deviations between the calculated results and the experimental
data in a number of cases [18] stimulated researchers to calculate the contribution of
the FSI [19] (the term “direct collisions” is often used in the literature on the subject).

Now we include the FSI corrections to the beta spectrum for ε � Ib. We employ
the results obtained in Chap. 3. Representing Sn defined by (3.94) as Sn = An+ξ 2

eeBn,
we obtain

dW

dE
= dW0

dE
(X1 + ξ 2

eeX2); ξee = αE

p
, (12.50)

with X1 the SO contribution, while X2 includes the FSI terms and their interference
with the SO terms. Thus

X1 = 1 − A0 = 1 − |〈Φ0|Ψ0〉|2, (12.51)

while X2 = ∑
n Bn − B0. Employing (3.94) and (3.100), we obtain X2 = X2a + X2b

with

X2a = −|ImT (0)
0 |2 − 2ReT (2)

0 T (0)
0 ; X2b = 2

∑
n

ReT (1)
n T (0)

n − 2ReT (1)
0 T (0)

0 .

(12.52)

Neglecting the terms of order 1/Z in the FSI contributions,we can put |Φ0〉 = |Ψ0〉
in the term X2. This provides

X2a = 〈Ψ0|
∑
k,k1

ln((r(k) − r(k)
z )λ) ln((r(k1) − r(k1)

z )λ)|Ψ0〉−|
∑
k

〈Ψ0| ln((r(k)−r(k)
z )λ))|Ψ0〉|2;

(12.53)

X2b = 0.

Since the SO contributions are of order 1/Z2, the relative contribution of the FSI
is of order IZ/ε for nonrelativistic ε � m. It is of order α2Z2 for ε >∼ m. Taking
into account that there are two electrons in the 1s state, we write, in terms of the
single-particle functions,

X2 = 2〈ψ0| ln2((r − rz)λ|ψ0〉 − 2|〈ψ0| ln((r − rz)λ)|ψ0〉|2. (12.54)

http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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To feel the size of the effect, one can calculate the RHS employing the nonrela-
tivistic Coulomb functions. This provides

X2 = 2(1 + ψ ′(3)) ≈ 2.79. (12.55)

Hereψ(x) = d lnΓ (x)/dx,withΓ (x) theEuler gamma function;ψ ′(3) = π2/6−
5/4.

To obtain the contribution of the FSI to the probability of creation of a vacancy
in the allowed beta transitions, we write, employing (12.5) and (12.6) and assuming
the neutrino to be massless,

P =
∫
dEpEF(E)

∑′
n(E0n − E)2Sn∫

dEpEF(E)(E0 − E)2
= PSO + PFSI , (12.56)

with PFSI consisting of the contribution of the FSI and its interference with the SO.
The prime means that the ground state (n = 0) is not included in the sum. The sum
over n in the numerator is saturated by the states with εn ∼ Ib, and we can neglect
the difference between the high-energy endpoints E0n with an error of order Ib/ε0.

The case of a very large value of the endpoint energy ε0 = E0 − m � m is the
simplest for analysis. The probability is determined by large ε � m with accuracy
m3/E3

0 . For these energies of the beta electron, we can put ξ 2
ee = α2, i.e., it does not

depend on E. Thus
PFSI = α2X2 . (12.57)

The FSI terms provide corrections of order α2Z2 to the contributions of the SO.
Thus the calculation of the FSI terms should be carried out together with inclusion
of relativistic corrections to the wave functions of the bound electrons at least in the
lowest order.

The results for the endpoint energies ε0 <∼ m can be obtained by numerical
integration on the RHS of (12.56). The results appear to be several times the expected
value PFSI ≈ ξ 2

ee(E0). To understand why this happens, consider the simplest form
(12.44) for the Fermi function. If πξ(E0) � 1, i.e., ε0 � 10 · IZ , we can put
F(E,Z + 1) = 1. Of course, this is possible only for atoms with light nuclei. The
integrals on the RHS of (12.56) are dominated by the part of the spectrum with
πξ(E) � 1. If also ε0 � m, i.e., the beta electron can be treated in nonrelativistic
approximation, then direct calculations provide

PFSI = 7ξ 2(E0)X2 = 7
IZ+1

ε0
X2 . (12.58)

For the transitions with smaller endpoint energies with πξ(E0) >∼ 1, we can
put F(E,Z + 1) = 2πξ(E) for the energies with πξ(E0) >∼ 1. The integral in
the numerator of (12.56) behaves as

∫
dε/ε for πξ(E) <∼ 1. Thus there is a large

contribution from ε ∼ IZ+1. At such energies, a perturbative treatment of the beta
electron interactions with the electron shell is still possible. However, its interactions
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with the daughter nucleus at distances of order the size of the atom determined by
the parameter ξ become important. Thus our approach does not work for ε ∼ IZ+1.
This can be illustrated by the nonrelativistic equation

PFSI = 3ξ 2(E0)

(
X2 ln

ε0

IZ+1
− 3

2

)
, (12.59)

while the region ε ∼ IZ+1 adds values of order of unity to the expression in parenthe-
ses. Thus in this case, our approach gives only a rough estimate but not a quantitative
result.

For the L-forbidden transitions,

P =
∫
dEpEF(E)

∑′
n(E0n − E)2gL(E)Sn∫

dEpEF(E)(E0 − E)2gL(E)
, (12.60)

with gL(E) called the shape-factor

g0(E) = 1; g1(E) = (E0 − E)2 + E2 − m2. (12.61)

One can see that for β decays with E0 � m, (12.57) is true for the forbidden
transitions as well. For the forbidden transitions, the relative contribution of slow
electrons with ε ∼ IZ is less important than in the allowed ones. In particular, for
L = 1, we obtain for the decays for ε0 � m and πξ(E0) ∼ 1.

PFSI = 4ξ 2(E0)

(
1 + 3

2

ε0

m
ln

ε0

IZ+1

)
(12.62)

In the nonrelativistic limit with ε0 � m,

PFSI = 4
IZ+1

ε0
. (12.63)

The results of calculations including theFSI carried out in [19] in theHartree–Fock
approximation are presented in Table12.2. One can see that they remove or strongly
diminish the discrepancy between the experimental data and the SO calculations.

12.1.5 Creation of Vacancies in the Electron K Shell
in β+ Decay

Due to the interplay of nuclear forces, a bound proton can appear to be heavier that
a neutron in the same bound state. It can undergo beta decay

p → n + e+ + νe ,
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Table 12.2 Experimental and theoretical data on creation of vacancies in electronic K shell for
allowed and L-forbidden β− decays

Nucleus Z IK ,keV ε0, keV L P × 104 (exp) P × 104 (SO) P × 104 (SO+FSI)
35S 16 2.5 145 0 28 ± 5 17.6 34
36Cl 17 3.2 714 2 22 ± 4 18.8 23.5
45Ca 18 4.5 261 0 24 ± 4 18.8 23.0
64Cu 29 9.7 571 0 12 ± 0.8 10.8 11.3
89Cu 38 17.0 1463 1 8.6 ± 0.7 4.1 6.6
90Y 39 18.0 2273 1 7.4 ± 1.5 4.12 6.1
114In 49 20.2 1989 0 5.4 ± 0.4 2.62 4.7
143Pr 59 43.6 933 1 2.8 ± 0.2 1.46 1.8

For allowed transitions L = 0. The experimental data for 35S is from [20]. The data for the other
nuclei are from the review paper [18]. The SO results are from [21], except the case 64Cu (there are
no data for this decay in [21]) for which it is taken from [17]. The calculations including the FSI
were carried out in [19] in the Hartree–Fock approximation

while the nucleus undergoes the transition

(A,Z) → (A,Z − 1) + e+ + νe .

The processes in the electron shell are described by the general expression (3.94).
The FSI contribution to the probability is described by the same general equation
(12.52) as in the case ofβ− decay.However, the real parts of the first-order amplitudes
are now

ReT (1)
n = −ξ 2

ee

2

m

E
〈Φn|

∑
k

r0(
∂

∂r(k)
− 1

r(k)
)|Ψ0〉 − ξ 2

ee

2

m2

E2
〈Φn|

∑
k

r0
r(k)

|Ψ0〉γ0,
(12.64)

with the sign of the first term opposite that for β− decay. Neglecting the terms of
order 1/Z in the FSI terms, we find that (12.53) and (12.54), which are true for β−
decay, are true for the β+ decay as well.

The probabilities for creation of vacancies in the electron K shell during β+ decay
are given by (12.56) and (12.64). The simplest form for the Fermi function is just
the squared nonrelativistic positron wave function at the origin in the Coulomb field
of the point nucleus with the charge Z − 1:

F(E,Z − 1) = 2πξ

exp(2πξ) − 1
; ξ = α(Z − 1)E

p
. (12.65)

Note that the accuracy of our approach for β+ decay is greater than that for β−
decay for similar values of E0 and Z . For slow β particles with πξ(E) >∼ 1, we

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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obtain F ∼ 2πξ for β− decay and F ∼ 2πξ exp (−2πξ) for β+ transitions. Thus
the contribution of this part of the spectrum is quenched in the latter case.

The results of calculations including theFSI carried out in [19] in theHartree–Fock
approximation for several allowed β+ decays are presented in Table12.3. One can
see that as in the case of β− decay, they remove or strongly diminish the discrepancy
between the experimental data and the SO calculations.

One more peculiarity of β+ decay is the annihilation mechanism for creation of a
vacancy in the electron shell. The positron emitted in β+ decay can annihilate with
a bound electron. This mechanism is indistinguishable from the electron capture
p + e− → n + νe, in which the proton captures a bound electron, converting to a
neutron and a neutrino.

For large positron energies ε � Ib, all its interactions with the daughter nucleus
take place at its surface and are described by the Fermi function. Interaction with
the bound electron takes place at distances of order its classical orbit, transferring a
small momentum to the nucleus. Following our general approach, we can write for
the contribution of this mechanism to creation of a vacancy in the electron shell

dW

dE
= dW0

dE

〈r−2〉
4π

σ (0)
an (E) . (12.66)

Here r−2 is averagedover the electron state inwhich thevacancy is created;σ (0)
an (E)

is the cross section for two-quanta annihilation of the free positron with energy E on
the free electron. Note that this expression is true for every channel of annihilation.
Two-quanta annihilation is possible if the positron and the bound electron compose
the spin-singlet state. For energies E � m, the cross section of the two-quanta
annihilation obtains an additional small factor m/E, and the contribution of the
annihilation mechanism becomes negligible relative to the SO and FSI contributions.

Table 12.3 Experimental and theoretical data on creation of vacancies in electronic K shell for β+
decays

Nucleus Z IK ,keV ε0, keV P × 104 (exp) P × 104 (SO) P × 104(SO+FSI)
58Co 27 8.3 474 13.8 ± 2.4 6.7 10.0
64Cu 29 9.7 657 13.3 ± 1.1 5.8 9.9
65Zn 30 10.4 325 16.1 ± 3.0 10.8 13.6
68Ga 31 11.1 1880 10.3 ± 1.1 9.7 11.5

The experimental data are from [18]. The SO results are from [22] for Co and Cu, and from [17]
for Zn and Ga. The calculations including the FSI were carried out in [19] in the Hartree–Fock
approximation
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12.2 Interactions of Gamma Quanta with the Electron Shell

12.2.1 Amplitude for Electromagnetic Transition of the
Nucleus

Electromagnetic transition of the nucleus between the states ψin and ψf , often called
the γ transition, is described by the amplitude

Fem = −N(ω)e · h, (12.67)

where

h(ω,k) =
∫

d3rψ̄f (r)γ e−ik·rψi(r); ω = εf − εi, (12.68)

are the spatial components of the conserved four-current hμ. The conservation of
current requires its time component to be

h0(ω,k) = k · h(ω,k)

ω
. (12.69)

Note that we consider ω = k0 and k = |k| as separate variables and do not require
that ω = k ≡ |k|.

The angular momentum of the radiated photon L is limited by the triangle inequal-
ity |Ji − Jf | ≤ L ≤ Ji + Jf , with Ji and Jf the spins of the nucleus in the initial and
final states respectively. The angular momentum L is a composition of the photon
orbital momentum L′ and its spin S = 1. Thus L−1 ≤ L′ ≤ L+1. Since the energies
of the γ transitions do not exceed several MeV, i.e., the wavelength of the radiated
photon is much larger than the size of the nucleus, we can assume that

kr � 1 . (12.70)

We carry out calculations in the lowest nonvanishing order in kr, at least in the
first steps of our analysis. In this approximation, L = |Jf − Ji|.

Now we must consider separately the cases of different spatial parities of the
photon states. In electric (EL) transitions, the parities of the initial and final states
of the nucleus Pi and Pf satisfy the condition Pi(−1)LPf = 1. For EL transitions,
one can easily calculate the time component h0 of the current. The operator γ0 on
the RHS of (12.68) can be replaced by its nonrelativistic limit γ0 = 1. Due to
(12.70), the term with n = L provides the leading contribution in the expansion
e−ik·r = ∑

(−ik · r)n/n!. Thus we obtain

h0(ω,k) = 4π

cL
kLYLM(k/k)Q(E)

LM; Q(E)
LM =

∫
d3rψ̄f (r)rLYLM(r/r)ψi(r),

(12.71)
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with cL = (2L + 1)!!. The spatial components of the current h can be obtained
by replacing the operators γi on the RHS of (12.68) by their nonrelativistic limits
−i∇i/m. The photon carries the orbital momentum L′ = L − 1 and is described
by the spherical vector YL,L−1,M with YL,L−1,M(n) = ∑

μ CLM
L−1m,1μYL−1m(n)χμ,

where CLM
L−1m,1μ are the Clebsch–Gordan coefficients, while χ is the photon spin

function (see [23] for a more detailed description of the spherical vectors). The term
with n = L − 1 in the expansion of the exponent gives the main contribution. The
components of the vector h are proportional to kL−1. Due to (12.69), they are also
proportional to ω. Finally, we obtain

h(ω,k) = 4π

cL

√
2L + 1

L
ωkL−1YLL−1M(k/k)Q(E)

LM . (12.72)

In magnetic (ML) transitions, Pi(−1)LPf = −1. Now in the spatial components
of the current, L′ = L, while h0 = 0. In this case,

h(ω,k) = 4π

cL

√
L + 1

L
kLYLLM(k/k)Q(M)

LM ; Q(M)
LM =

∫
d3rrL[rι(r)] · ∇YLM(r/r).

(12.73)

Here ι(r) = ψf (r)γψi(r), and YL,L,M(n) = ∑
μ CLM

Lm,1μYL,m(n)χμ. These for-
mulas do not cover the case of transitions between the states with Ji = Jf = 0,
when

h0(ω,k) = k2Q0; h(ω,k) = kωQ0; Q0 = −1

6

∫
d3rψ̄f (r)r2ψi(r). (12.74)

12.2.2 Internal Nuclear Conversion

The energy released in the electromagnetic transition of the nucleus can be totally
absorbed by an atomic electron. The latter moves to the continuum. In other words,
the energy of the electromagnetic transition of the nucleus converts into the energy
of motion of the atomic electron. In terms of single-electron functions, the amplitude
of the internal conversion in the nuclear transition with energy ω can be written as

Fconv = −eNb

∫
d3q

(2π)3
hμ(ω,q)Dμν(ω,q)jν(ω,−q), e = −α1/2. (12.75)

Here ω is the energy of nuclear transition, Nb is the number of electrons in the
bound state b, the nuclear current hμ(q) is given by (12.71)–(12.74), while Dμν(q)
is the photon propagator. In the electron current
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jν(ω,−q) =
∫

d3rψ̄p(r)γνψb(r)eiq·r, (12.76)

ψb(r) is the wave function of the bound electron; p is the asymptotic momentum of
the conversion electron. The process is illustrated by Fig. 12.2.

The probability of conversion for electrons in the bound state b is thus

dWb = 2πδ(Eb + ω − E)Nb|Fconv|2 pEdEdΩ

(2π)3
. (12.77)

For EL and ML transitions, the probability (12.77) is usually compared with the
probability of photon radiation in the same transition,

dWem = 2π |Fem|2 ω2dΩ

(2π)3
, (12.78)

with Fem determined by (12.67). The ratio

αb(ω) = Wb

Wem
(12.79)

is called the internal conversion coefficient (ICC) of the state b. The sumover all occu-
pied states constitutes the total ICC αT = ∑

b αb. In the case of 0 → 0 transitions,
a single-photon radiation is impossible, and one can discuss only the probability of
conversion.

For ω >∼ m ≈ 500keV the ICCs are very small, αb � 1. However, at ω � m,
the ICCs become much larger than unity. To understand how this happens, assume
that the states b are not too strongly bound, i.e., Ib = m − Eb � m. Consider the

Fig. 12.2 Feynman diagram
describing internal nuclear
conversion. The solid lines
stand for electrons. The bold
lines denote the nucleus. The
dark blob is for the nuclear
transition. Excited and
ground-state nuclei are
labeled N∗ and N . The
virtual photon shown by the
dashed line transfers the
energy of the nuclear γ

decay
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transitionswithω � m butω � Ib. This enables us to describe the outgoing electrons
by plane waves and to carry out calculations in the nonrelativistic limit. Employing
the Feynman gauge for the photon propagator, one can see that the time components
D00 provide the leading contribution. In the considered limit, j0(ω,−q) = ψ̃b(p−q),
and

Fconv = e
∫

d3f

(2π)3

4πh(ω,q)

ω2 − q2
ψb(f); q = p − f; q2 = |q|2. (12.80)

Since the bound-state wave function is strongly quenched outside the region f ∼
(2mIb)1/2, we can assume that f � p, putting q = p on the RHS of (12.80). Thus

Fconv = 4πe
h0(ω,p)

ω2 − p2
ψb(r = 0); p ≡ |p| ≈ (2mω)1/2. (12.81)

Thus in the internal conversion the virtual photon carries momentum k ≈ p ≈
(2mω)1/2. In the radiation process the momentum of the real photon is k = ω �
p. This explains why the ICCs increase when ω becomes much smaller than m.
Combining (12.81), (12.77), and (12.78), we obtain for the ICC in EL transitions at
Ib � ω � m.

αb(ω) = 2πα
|ψb(0)|2

m3

2L−1/2L

L + 1

(m
ω

)L+3/2
(12.82)

In the case of the ML transitions, h0 = 0, and only the spatial components of the
photon propagator contribute. Calculations similar to those carried out for the EL
case provide

αb(ω) = 2πα
ψ2

b (0)

m3
2L+1/2

(m
ω

)L+3/2
. (12.83)

Thus for the energies Ib � ω � m, the ICC for each shell is dominated by
contributions of s states. For the states with � �= 0, when ψb(0) = 0, the ICCs are
quenched by the powers of Ib/ω. For ω >∼ m, we estimate the ICC on the K shell as
αK ∼ α(αZ)3 � 1 (in the limit ω � m, the ICCs for the ML transitions obtain an
additional small factor m/ω), with still smaller values for the other shells. However,
the ICCs for ω � m are much larger, changing crucially the lifetimes of the excited
states of the nuclei. The effect is more pronounced for large values of L. For example,
a detailed paper by Raman et al. [24] gives αK = 0.09 for the M4 transition with
ω = 1064keV in 207Pb, but αK = 2.6 for the E3 transition with ω = 128keV in
134Cs and αK = 1620 for the M4 transition with ω = 66keV in 119Sn.

There are experimental data for more than 100 values of ICCs (αK and the sums
over all occupied states αT = ∑

b αb). About 20 of them had a relative accuracy of
2% or better. Also, a number of tables containing theoretical ICC values have been
published. In the tables of Band et al. [25], the ICCswere calculated by employing the
relativistic Dirac–Fock (DF) method, in which the exchange between the electrons
was treated exactly. In tables published earlier, the calculations were based on the rel-
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ativistic Hartree–Fock Slater (HFS) approach, in which the nonlocal exchange inter-
action was approximated by an effective local interaction (see Chap.7). Employing
theDFapproach instead of theHFSappeared to be important for reaching consistency
with the experimental data. For example, in the M4 transition with ω = 315keV in
117In, the HFS calculation provides αT = 1.47, while the HF result αT = 1.43 is
closer to the experimental value αT = 1.41 [24].

The accuracy of computations depends also on the treatment of the wave function
of the outgoing electron. Usually, the latter was described as moving in the field of
the neutral atom. The vacancy in the atomic shell created by the conversion process
was ignored. It was demonstrated in [26] how inclusion of the vacancy improves
the agreement between the measured and calculated ICCs. For example, the relative
difference between the experimental and theoretical values of αK in theM4 transition
with ω = 66keV in 119Sn makes 5% without inclusion of the vacancy, dropping to
1% after the vacancy is included.

12.2.3 Two-Electron Processes in the Electron Shell

Two and more bound electrons can change their states during the γ transition of a
nucleus. We focus on the case in which two electrons are moved to the continuum.
We can single out two mechanisms of the process. In the nuclear mechanism, the
nucleus undergoes a two-quantum transition in which each of the quanta knocks
out a bound electron to the continuum. In the electron mechanism, the energy of a
single-quantum transition is shared between the two knocked-out electrons due to
their interactions.

Theoretical investigations of the nuclear mechanism did not provide numerical
estimates. Some experiments on detecting the creation of two vacancies in the atomic
K shell during γ transitions carried out about 40years ago gave upper limits for
the probability of the effect. They could be treated as upper limits for the nuclear
mechanism. However, other experiments provided finite values for the probability
of ejection of two electrons from the K shell WKK . Was the result due to the nuclear
or electron mechanism? To answer the question, we try to calculate the contribution
of the electron mechanism to the creation of two vacancies in the K shell.

The analysis can be simplified for energies strongly exceeding the binding energy
I1s of the 1s state. At least one of the electrons obtains a large energy εi ∼ ω � I1s.
As in the cases of double photoionization and β decay, we can treat the interaction
of the fast electron with the atomic shell (FSI) as a perturbation. The process can
take place even if the FSI are neglected. After a γ quantum knocks one of the bound
electrons to the continuum, the self-consistent field created by the bound electrons
changes. Thus the field “felt” by the second 1s electron changes as well, and it can be
moved to the continuum. One can see that in this picture, the mechanism that knocks
out the second electron is the direct analogue of the shakeoff (SO) in beta decay.
However, in the latter case, it was the charge of the nucleus that changed. Now we
have the change of some “effective nuclear charge.”

http://dx.doi.org/10.1007/978-3-319-32736-5_7
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This approach was applied in [27, 28], where the 1s electrons were described by
the screenedCoulomb relativistic functions. The screening parameters were obtained
from the self-consistent field calculations for the atom and for the ion with vacancies
in 1s state created by internal conversion. However, as we have seen in Sect. 9.2.2, the
correlations beyond the effective field are important for describing such a process.

An alternative approach is based on the perturbativemodel developed inSect. 9.2.2
[29]. Quite similar to double photoionization, the energy ε is shared by the outgoing
electrons unequally strongly. The electron that interacts with the γ quantum directly
carries most of the energy ε1 ≈ ω, while the secondary electron gets only a small part
ε2 ∼ IK . The model is illustrated by Fig. 12.3. The diagram of Fig. 12.3a describes
correlations in the K shell in the initial state. That of Fig. 12.3b illustrates the final-
state interactions (FSI) of the outgoing electrons. Neglecting the FSI, we obtain for
the ratio of probabilities for knockout of two and one electrons from the K shell
during γ decay

PKK = WKK

WK
= 0.090

Z2
, (12.84)

similar to (9.67). Recall that this result is based on calculations with nonrelativis-
tic functions. Thus it contains uncertainties of order α2Z2. Also, the derivation of
(12.84) employs the total Coulomb propagator, which includes the contribution of
the occupied electron states. The latter can be subtracted after explicit calculation
(note that only the s states contribute). The procedure diminishes the value of PSO

KK
by about 10%.

Now we include the final state or direct interactions between the conversion elec-
tron and the atomic shell. Since ω � IK , we can use the perturbative approach
developed in Chap.3. Note that the probability for the second electron to move to an
excited state of the discrete spectrum is much smaller than the probability of being
knocked out to the continuum. At large Z , the characteristic size of an unoccupied
state is much larger than that of the 1s state. Thus the wave functions ψn of the

(a) (b)

Fig. 12.3 Perturbative model for ejection of two electrons from the atomic shell during the γ

transition of the nucleus. The solid lines denote the electrons in the Coulomb field of the nucleus.
The arrows label the ejected electrons. The dashed lines denote the virtual photons exchanged
between the nucleons and the electrons and between the electrons. Other notation is the same as in
Fig. 12.2. a The electrons interact only in the initial state. b They interact only in the final state

http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_9
http://dx.doi.org/10.1007/978-3-319-32736-5_3
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excited states enter the amplitudes T (i)
n (i = 0, 1, 2) on the RHS of (3.94) through

their values at the origin. This provides an additional small factor ψ2
n (0)/ψ

2
1s(0)

in the corresponding probability. Hence the probability of moving the secondary
electron to the continuum can be replaced by the sum of the probabilities of the
inelastic processes. This enables us to write PKK = Pa

KK + Pb
KK , where the first term

includes electron correlations only in the initial state described by the diagram shown
in Fig. 12.3a, while the second term includes the FSI contribution (Fig. 12.3b) and
its interference with that of correlations in the initial state. In the lowest order of
electron interactions, we obtain

Pb
KK = ξ 2

ee

(
〈ψ0| ln2((r − rz))λ|ψ0〉 − |〈ψ0| ln((r − rz)λ)|ψ0〉|2

)
; ξ 2

ee = α2E2

E2 − m2
,

(12.85)

with E ≈ m + ω (see (12.54)). Employing (12.55), we arrive at [30]

PKK = 0.09

Z2
+ 1.4ξ 2

ee . (12.86)

The experimental and theoretical results for PKK are presented in Table12.4. One
can see that for the lightest nucleus of Fe, the initial-state correlations are as important
as the FSI. For heavier nuclei, inclusion of the FSI contribution is decisive.

The process in which one electron is ejected from the K shell and another one
from the L shell can be considered in a similar way. We can find the probabilities
for simultaneous knockout of the electrons from the 1s and 2s states W1s2s and from
the 1s and 2p states W1s2p. Similar to (12.84), we define the relative probabilities
P1s2s = W1s2s/WK and P1s2p = W1s2p/WK . They compose the total relative proba-
bility of the KL conversion PKL = P1s2s + P1s2p. In the perturbative approach with
only the initial-state correlations included, we obtain

P1s2s = 0.29

Z2
; P1s2p = 3.1

Z2
; PKL = 3.4

Z2
, (12.87)

while the FSI contribution is much smaller. Inclusion of screening for the functions
of the L-shell electrons [36] increases the value of PKL by 25% for 57Fe and by less
than 10% for 137Ba. One can see that the effective field model and the perturbative
model provide rather close results in the case of KL conversion (Table12.5).

12.2.4 Excitation of Nuclear Levels by Electronic Transitions

The excitation of nuclear levels by energy transferred from the excited atomic shell
becomes possible if a transition in the atomic shell is close in energy and type to a
nuclear transition. Nuclear excitation by electron transition has been observed in a

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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Table 12.4 Experimental and theoretical data on creation of two vacancies in electronic K shell in
γ decays

Nucleus Z IK ω PKK × 105 (exp) PKK × 105(I) PKK × 105(II) PKK × 105(III)
57Fe 26 6.5 122 12 ± 8 [31] 15 13 25
109Ag 47 25.5 88 25 ± 3 [32] 0.92 4.2 34
114In 49 27.9 192 10.2 ± 0.6 [33] 2.06 3.9 15
131Xe 54 34.5 164 11 ± 2 [34] 1.1 3.2 15
137Ba 56 37.4 662 7.7 ± 4 [35] 3.8 3.0 12

The ionization potential of the 1s state IK and the energy of the nuclear transition are given in keV.
The theoretical data obtained in the effective field model [28] are labeled by I . The results obtained
in the perturbative model [29] corresponding to (12.84) are labeled by II . The perturbative model
results (12.86) which include the FSI [30] are marked as III

Table 12.5 Experimental and theoretical data on creation of vacancies in electronic K and L shells
in γ decays of the nuclei

Nucleus Z IK ω PKL × 103 (exp) PKL × 103(I) PKL × 103(II)
57Fe 26 6.5 136 9.0 ± 4.5 [31] 3.0 5.0 (6.2)
97Tc 43 22.1 96 2.0 ± 0.3 [37] 1.4 1.9
137Ba 56 37.4 662 1.0 ± 0.5 [31] 1.0 1.1 (1.2)
137Ce 58 40.5 255 1.2 ± 0.4 [38] 1.0
150Sm 62 48.5 334 0.38 ± 0.16 [39] 0.86 0.88

The ionization potential of the 1s state IK and the energy of the nuclear transition are given in keV.
The label I is for the effective field model results [27]. The results obtained in the perturbative
model corresponding to (12.87) are labeled by II . The numbers in brackets are for the results with
the screened Coulomb functions for L-shell electrons

number of nuclei (see, e.g., [40]). If the ion has a vacancy in the state a, the amplitude
F of nuclear excitation by electron transition (NEET) from occupied electron state
b to the vacancy a is given by (12.75) with the function ψ̄p(r) replaced by ψ̄a(r) in
the current jν(ω,−q) determined by (12.76). Further evaluation enables us to obtain
an expression for the NEET probability [41]:

dW

dωA
= |F|2(Γa + Γb)

(ωA − ωR)2 + Γ 2/4
. (12.88)

HereωA = εb−εa is the energy released in the atomic transition,ωR is the nuclear
excitation energy, and Γ = Γa + Γb + ΓN is the sum of the width of the electron
states Γa + Γb and that of the nuclear state ΓN involved in the process.

One of the reasons why theNEET is interesting is that it probes thewave functions
of the outer electrons at small distances, of order the size of the inner shells. For ns1/2
and np1/2 states (beyond the nonrelativistic approximation in the latter case), thewave
functions are not quenched in this region and are sensitive to the finite size of the
nucleus.
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In the inverse NEET (INEET) process, the low-energy nuclear transition can
be accompanied by a bound electron transition to an excited state of the discrete
spectrum. This can be viewed as a special case of internal conversion.

The electron shell can assist in nonresonant photoexcitation of the nucleus. In this
process, excitation of the nuclear state with energy ωR can be caused by interaction
of the atom with a photon carrying the larger energy ω > ωR [42]. To understand
how this happens, recall the mechanism of the inverse process in which the electro-
magnetic transition of the nucleus with energy ωR is accompanied by knockout of
the bound electron and by irradiation of the photon (the internal Compton effect).

It was demonstrated in [43] that the cross section of the internal Compton effect
is dominated by the two-step mechanism. In the first step, the nucleus radiates a real
photon, which undergoes Compton scattering on the bound electron in the next step.
For sufficiently large values of ωR, we shall obtain a similar picture for nonresonant
photoexcitation. In the first step, the photon with energy ω undergoes Compton
scattering on a bound electron. In the second step, the scattered photon with energy
ωR excites the nucleus. The probability of the process can be expressed by a simple
analytical formula [44].

In nonresonant photoexcitation, the incoming photon carries the three-momentum
k with k = |k| = ω. The outgoing electron carries momentum p, while the large
momentum q = k − p (q � μb) is transferred to the nucleus. We can single out the
act of excitation in which the nucleus absorbs the energy ωR and the momentum that
differs from the largemomentumq by small values of orderμb. In otherwords, a small
momentum f with f ∼ μb is exchanged between the electron and the nucleus with no
energy transferred, while in the act of excitation, the electron transfers momentum
q + f and energy ωR to the nucleus; see Fig. 12.4. The amplitude of the process can
be written in terms of the amplitude FC for the Compton scattering on the bound
electron, in which the radiated photon obtains the energy ωR. Note that FC contains
the normalization factorN(ωR) = √

4πα/(2ωR) of the wave function of the radiated
photon. Hence one can write FC(ω, ωR; f) = eμXμ(ω, ωR; f)N(ωR). Here eμ are the
components of the polarization four-vector of the radiated photon. The amplitude of
the nuclear nonresonant photoexcitation is thus

FNR =
∫

d3f

(2π)3
Xμ(f)Dμν(ωR,q + f)hν(ωR,q + f); q = k − p. (12.89)

At ω,ωR >∼ m, the cross section of the process is dominated by large q � μb.
The integral on the RHS of (12.89) is dominated by small f ∼ μb � ωR. As we
know from Chap.2, a small momentum f is transferred to the nucleus mainly by the
bound electron. Thus we can neglect f in the amplitude Xμ and in the hadron current
hν . Employing the Feynman gauge for the propagator Dμν , we obtain

FNR = Xμ(0)hμ(ωR,q)Λγ (ωR,q); Λγ (ωR,q) =
∫

d3f

(2π)3
ψ̃b(f)

4π

ω2
R − (q + f)2

.

(12.90)

http://dx.doi.org/10.1007/978-3-319-32736-5_2
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Fig. 12.4 Nonresonant excitation of the nucleus. The helix line denotes the incoming photon
carrying energy ω > ωR. The other notation is the same as in Fig. 12.2

Note that Xμ(0) corresponds to the Compton scattering on the free electron.
One can see that Λγ differs from the function Λ defined by (4.3) only by a

constant factor, i.e., Λγ = 2π/m · Λ. Thus we can use the results obtained in Chap.
4. For example, describing the bound 1s electron by the nonrelativistic function of
the Coulomb field, we obtain, employing (4.14)

Λγ = −4πN1s

q2 − (ωR + iη)2
; η = mαZ.

The probability of nonresonant excitation is determined by the values of q close
to ωR.

Thus we came to the two-step picture of the process. In the first step, Compton
scattering on the bound electron takes place with the photon carrying momentum q
and energy ωR in the final state. Only a small momentum f ∼ μb is transferred to
the nucleus. The process takes place at distances r ∼ 1/μb, i.e., those of order the
size of the bound state. Being approximately on the mass shell (ωR ≈ q), the photon
passes distances of order the size of the atom, approaching the nucleus at distances
of order q−1 � 1/μb. Here the excitation of the nucleus takes place as the second
step. Both Compton scattering and the excitation take place at small time intervals
t ∼ ω−1, ω−1

R . The two steps are separated by a time interval t1 ∼ μ−1
b and t1 � t if

ωR � μb.
The mechanism requires that the Compton scattering with the energies of incom-

ing and scattered photonsω andωR be possible. The condition (8.12) can bewritten as

ω(1 − 2ωR

m
) ≤ ωR .

Thus forωR > m/2 ≈ 250keV, the describedmechanismworks at everyω > ωR.
For ωR < m/2, we obtain the limitations

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_8
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ωR < ω <
ωR

1 − 2ωR/m
.

Employing (4.50) and (4.53), we obtain for the cross section of the nonresonant
photoexcitation

σNR(ω) = 〈ψb| ∑k(r
(k))−2|ψb〉

4π

σ(ωR)

N2(ωR)

dσC(ω, ω2)

dω2
|ω2=ωR , (12.91)

with σ(ωR) the cross section of the direct photoexcitation, σC the cross section of the
Compton scattering on the free electron with ω2 the energy of the scattered photon.

For energies ωR � m, the cross sections for EL excitations at L > 1 and for ML
excitations are dominated by q � ωR since the amplitudes are proportional to qL−1

and qL respectively. The cross sections of nonresonant excitations can be estimated
as σNR ∼ α2(mω/ω2

R)
L−λσ (ωR) with λ = 1 for the EL transitions, while λ = 0 for

theML transitions.
Nuclear Raman scattering is the alternative mechanism of the process. Here the

energy ω − ωR is carried by the outgoing photon. There were numerous attempts to
detect the relative process of irradiation of two γ quanta in a single electromagnetic
transition. Two-photon emission has been observed for three 0+ → 0+ transitions
when radiation of one photon is impossible (see [45] for references). A number of
experiments provided the upper limit τ ≤ 10−6 for the double-to-single γ radiation
ratio τ = Wγ γ /Wγ instead of the simple QED counting Wγ γ /Wγ ∼ α. Thus there
is some additional suppression of nuclear matrix elements that contribute to the two-
quantum transitions. There is also additional suppression for the dipole transitions
caused by the selection rules for angular momentum.

12.3 Electron Shell in Alpha Decays

12.3.1 Transitions in Internal Shells

Due to the interplay of the nuclear forces, some of the nuclei can undergo α decay.
The nucleus containing A nucleons, Z of which are protons, decays as

(A,Z) → (A − 4,Z − 2) + α,

with the α particle being a bound system consisting of two protons and two neutrons
(the nucleus of a helium atom). The nuclei (A,Z) and (A−2,Z −2) will be referred
to as the parent nucleus and the daughter nucleus respectively. Their masses are mp

andmd , whilemα is the mass of the α particle. The energy released in the alpha decay
of the bare nucleus,

Q = mp − md − mα , (12.92)

http://dx.doi.org/10.1007/978-3-319-32736-5_4
http://dx.doi.org/10.1007/978-3-319-32736-5_4
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is shared in the asymptotics between the kinetic energies of the alpha particle and
the daughter nucleus,

Q = εα + εd . (12.93)

The asymptotic kinetic energies of the alpha particles εα vary between 2 and
8MeV. Thus for estimates, we can assume that the asymptotic velocity of the α

particle is vα ≈ 0.05.
In the alpha decay of the atom, the daughter atom cannot tie all Z electrons

of the parent atom. Since the characteristic energy of the outer electrons is I1 =
mα2/2 ≈ 13.6eV, it is energetically profitable that two of them are captured by the
alpha particle, forming an atom of helium. Another possibility is the capture of one
electron with formation of the ion He+.

The inelastic transitions of the electron shell proceed at distances of order the size
of the bound state. Here the energy of interaction between the alpha particle and the
daughter nucleus can be neglected relative to the kinetic energy of the alpha particle.
Thus the latter can be considered as traveling with the constant velocity vα .

Since the velocity of the outer electrons is of order α � vα , their knockout to
the continuum by the α particle can be calculated by employing the perturbative
approach developed in Chap.3.

The characteristic velocities of the internal shell electrons v are much larger than
the velocity of the alpha particle vα . For the K-shell electrons, we can estimate
v ≈ αZ . Thus we can use the perturbative expansion in powers of v2α/v2. Following
[46, 47], we employ the time-dependent perturbation theory. Denote the time by t and
assume that the α decay takes place at t = 0. At t < 0, a bound electron moves in the
field of the parent nucleus and that created by the other electrons U1(t) = Upθ(−t).
At t ≥ 0, it moves in the field U2(t) = Udα(t)θ(t) of the system consisting of the
daughter nucleus and the alpha particle instead of the field of the parent nucleus
Up. We treat the difference U2(t) − Up as a perturbation acting at t > 0. This can
be expressed by introducing U(t) = U1(t) + U2(t), which represents the potential
energy at every t. The perturbation can be expressed as Û(t) = U(t) − Up, since
Û(t) = U2(t) − Up at t > 0 and Û(t) = 0 at t < 0.

The amplitude for transition of the bound electron from the state |b〉 to a state 〈n|
can be written as

F = 〈n|V |b〉Fα; V = −i
∫ ∞

0
dteiωt Û(t); ω = εn − εb , (12.94)

with Fα the amplitude of the alpha decay. Neglecting the change of the field of the
electron cloud and assuming that the alpha particle moves along the z-axis, we can
write

Û(t) = Udα(t) = − e2Zα

rα(t)
− e2Zd

rd(t)
. (12.95)

In this section, we write the fine structure constant as e2 = 1/137. Recall that
Zα = 2 and Zd = Z − 2 are the charges of the alpha particle and the daughter

http://dx.doi.org/10.1007/978-3-319-32736-5_3
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nucleus. The distances between the bound electron and the alpha particle and between
the bound electron and the daughter nucleus are rα(t) and rd(t) respectively. Due to
conservation ofmomentum, the daughter nucleus alsomoves along the z-axis. Hence,
the distances are

rα(t) =
√

ρ2 + (z + vαt)2; rd(t) =
√

ρ2 + (z + vdt)2 , (12.96)

whereρ2 = x2+y2 does not dependon time; vd is the velocity of the daughter nucleus.
Due to the low kinetic energy of the alpha particles, they can be treated in nonrel-
ativistic approximation. The same refers to the daughter nuclei. The conservation
of momentum provides mdvd = −mαvα . Neglecting the very small neutron–proton
mass difference (it is to about 1.3MeV in vacuum), we can write

vd = − 4

A − 4
vα . (12.97)

Integration by parts on the RHS of the second equality of (12.94) provides in the
lowest order

〈n|V |b〉 = −i
2e2vακ

ω2
〈n| z

r3
|b〉; κ = A − 2Z

A − 4
. (12.98)

One can write 〈n|z/r3|b〉 = ∇zVC/(e2Z), where VC = −e2Z/r is the electron
potential energy in theCoulombfield of the parent nucleus. Employing (7.71), (7.72),
and (7.68), we obtain

〈n|V |b〉 = −i
2e2vακm

Z
〈n|z|b〉 . (12.99)

Thus the electron transition is determined by the matrix element of the dipole
momentum.

The relative probability of ionization of the bound state b is thus

Pb = Wb

W0
= 8e4v2ακ2m2

Z2

∑
n

|znb|2, (12.100)

with the sum over all the vacant states, W0 the probability of α decay of the bare
nucleus. Here we included two electrons bound in the state b. The sum is saturated
by the states with energies of order the ionization potential Ib. The probabilities for
transitions of the bound s states to the continuum states with εn � Ib fall off as ε

−9/2
n .

The matrix element 〈n|z|b〉 on the RHS of (12.99) is of order v−1
b , with vb the

characteristic velocity in the bound state. Thus the amplitude is proportional to the
ratio vα/vb. Further integration by parts in the second equality on the RHS of (12.94)
provides the higher-order terms of the expansion in powers of this parameter. On the
other hand, for A � 1, one has |κ| � 1, since the numbers of neutrons and protons
do not differ much in heavy nuclei. Hence the dipole terms have an additional small
factor, and for vα/vb >∼ κ , the next term of the expansion needs to be calculated.

http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
http://dx.doi.org/10.1007/978-3-319-32736-5_7
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The numerical calculations have been carried out in [47] for the alpha decay
of the nucleus 210Po. For the K electrons, vα/vK ≈ 0.087, while κ = 0.20, and
the dipole contribution is expected to dominate. The computation with employing
the Coulomb functions provided PK = 1.0 × 10−7, with the quadrupole terms
contributing about 4% of the value. For the L electrons, vα/vL ≈ κ , and due to
interplay of numerical coefficients, the probability PL ≈ 10−4 obtained using the
Coulomb functions is dominated by the quadrupole term. However, the accuracy of
the Coulomb calculation is obscure.

12.3.2 Influence of the Electron Shell on the Probability
of Alpha Decay

The possibility of inelastic processes in the electron shell discussed above opens
new channels of the reaction. This leads to a small increase in the probability of the
process. However, the influence of the elastic scattering on the electron shell appears
to be more important. To understand this, recall the main features of alpha decay.

Consider first the decay of the bare nucleus (or the totally ionized atom), tracing
the dependence of interaction between the alpha particle and the daughter nucleus
on the distance R between them. The products of the decay can be viewed as separate
particles at R exceeding the sum of their sizes determined by the second equality of

(11.83), i.e., at R ≥ R1 = 1.2
(
(A − 4)1/3 + 41/3

)
∼ 10Fm. At smaller values of R,

the nucleons of the system are bound by a strong short-range field VN (R). Thus the
total field Vt is the sum of the field VN and the Coulomb field

VC(R) = e2ZαZd
R

, (12.101)

i.e., Vt(R) = VN (R) + VC(R). At R ≥ R1, the strong field can be neglected, while
VC is about 40MeV at R = R1. The interaction VC(R) decreases with increasing R.
At a certain R2 > R1, it obtains the value

VC(R2) = Q, (12.102)

withQ the energy released in the decay expressed by (12.92). At R ≥ R1, the energy
Q is shared between the potential energy of interaction VC(R) and the kinetic energies
of the products of the decay. Thus Q − VC(R) = ε(R) = εα(R) + εd(R). The alpha
particle carries the kinetic energy εα = ε · (A − 4)/A. The kinetic energy of the
daughter nucleus, εd = ε · 4/A, is much smaller, since only the heavy nuclei with
A � 1 can undergo α decay. To reach the region where R > R1, the alpha particle
should penetrate under the potential barrier VC . Following the Gamow theory of
alpha decay, its probability can be written as

http://dx.doi.org/10.1007/978-3-319-32736-5_11
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Wα = W0P; P = e−2S, (12.103)

with

S =
∫ R2

R1

dR
√
2mr(VC(R) − Q) (12.104)

the action of the alpha particle with the reduced mass

mr = mαmd/(mα + md) ≈ mα . (12.105)

The factor P can be evaluated analytically:

P = exp
−2ZαZde2

vα(π − 2ϕ − sin 2ϕ)
; ϕ = arcsin

(
QR1

e2ZαZd

)1/2

. (12.106)

We turn now to the decay of the atom. The energy released in the decay becomes

QA = Q + B(Z) − B(Z − Zα) − B(Zα); Zα = 2, (12.107)

with B(X) < 0 (X = Z,Z − 2, 2) the energy of the atomic electrons, X the nuclear
charge. The probability of the alpha decay can be written as

Wα = W0PA; PA = e−2SA , (12.108)

with

SA =
∫ R2A

R1

dR
√
2mr(VC(R) + Ve(R) − QA) . (12.109)

Here Ve(R) is the potential energy of interaction between the alpha particle and
the electron cloud. The turning point R2A is determined by the condition VC(R2A) +
Ve(R2A) − QA = 0. Note that the values of R2 and R2A are less than one-tenth the
size of the K shell. Thus the factors P and PA are determined by the displacements
of the alpha particle, which are very small in the atomic scale.

The difference Q −QA behaves as Z4/3 at large Z � 1, since the Thomas–Fermi
approach predicts B(Z) ∼ Z7/3. A typical value is Q − QA ≈ 40keV in the decay
of the nucleus 226Ra (Z = 88). In this case, Q ≈ 4.9MeV, while (Q − QA)/Q ∼
10−2. However, the deviation of the ratio PA/P from unity is much smaller, due to
cancellation of the leading terms in the difference Q − QA and Ve(R).

The interaction of the alpha particle with the electron cloud can be written as

Ve(R) = −e2Zα

Z∑
k=1

∫
dV

ρ(r1, . . . )
|rk − R| , (12.110)
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with the electron density ρ depending on the coordinates of the bound electrons.
Since we need this potential at R � rk , it is reasonable to write [48]

Ve(R) = V0 + δVe(R); V0 = Ve(R = 0); δVe(R = 0) = 0, (12.111)

and |δVe(R)| � |V0|.
The cancellation between the contribution V0 and the leading term of expansion

of the difference Q − QA in powers of 1/Z can be demonstrated by employing the
Hellmann–Feynman theorem (HFT). The HFT states that for the solutions of the
Schrödinger equation H(λ)Ψ (λ) = ε(λ)Ψ (λ) depending on a parameter λ, one can
write ε′(λ) = 〈Ψ |H ′|Ψ 〉, with the prime denoting the partial derivative with respect
to λ.

This can be demonstrated by straightforward calculation of the derivatives of both
sides in the equality ε(λ) = 〈Ψ (λ)|H(λ)|Ψ (λ)〉. We can write

ε′(λ) = 〈Ψ (λ)|H ′(λ)|Ψ (λ)〉 + δε,

with
δε = 〈Ψ ′(λ)|H(λ)|Ψ (λ)〉 + 〈Ψ (λ)|H(λ)|Ψ ′(λ)〉 .

Employing the equation of motion, we obtain

δε = ε(λ)
(
〈Ψ ′(λ)|Ψ (λ)〉 + 〈Ψ (λ)|Ψ ′(λ)〉

)
.

The expression in parentheses is

〈Ψ ′(λ)|Ψ (λ)〉 + 〈Ψ (λ)|Ψ ′(λ)〉 =
∫

dV
(
Ψ ∗′

(λ)Ψ (λ) + Ψ ∗(λ)Ψ ′(λ)
)

= J ′,

with J = ∫
dVΨ ∗(λ)|Ψ (λ). Since J is just the normalization integral, it does not

depend on λ, and J ′ = 0. Hence δε = 0.
Applying the HFT to the Hamiltonian of the parent atom H in which we treat the

charge of its nucleus Z as a parameter, we obtain

〈Ψ |H ′|Ψ 〉 = −e2
Z∑

k=1

∫
dV

ρ(r1, . . . )
rk

,

with the prime denoting the partial derivative with respect to Z . Thus we can write
〈Ψ |H ′|Ψ 〉 = V0/Zα = B′(Z), with the latter equality being due to the HFT. On the
other hand, we can carry out an expansion of the difference QA − Q expressed by
(12.107) in powers of 1/Z . One can see that the leading terms of the expansions of
B(Z) and B(Z −Zα) cancel, andQA −Q = ZαB′(Z)+ δA, with |δA| � Q−QA. Thus
in (12.109),
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Ve(R) − QA =
(
V0 − ZαB

′(Z)
)

+ δVe(R) − δA − Q , (12.112)

with the term in parentheses becoming zero due to theHFT.Hence every approximate
expression for Ve(R) employed for computations should satisfy the condition

Ve(0) = ZαB
′(Z) ; Zα = 2. (12.113)

Otherwise, they will greatly overestimate the deviations of the ratio PA/P from
unity. Finally, we obtain

SA =
∫ R2A

R1

dR
√
2mr(VC(R) + δVe(R) − δA − Q) . (12.114)

The calculations carried out in [49] are based on the adiabatic approximation.
The wave function describing the final state of the system Ψ (R, r) satisfies the wave
equation

HΨ = εf Ψ . (12.115)

Here R and r are the coordinates of the nuclei and electrons respectively. The
Hamiltonian can be represented as

H = TR + VC(R) + Tr + Ve(R, r) . (12.116)

Here TR is the operator of the kinetic energy of the alpha particle and the daughter
nucleus. The operator TR can be represented as that for the α particle with reduced
massmr ; see (12.105). The potential energy of the alpha particle VC(R) is determined
by (12.101) (we neglected the strong interaction term VN ). The operators Tr and
Ve(R, r) compose the Hamiltonian of the atomic electrons. Their potential energy
can be written as

Ve(R, r) = V α
e (R, r) + V d

e (R, r). (12.117)

The two terms on the RHS describe interactions of the electrons with the alpha
particle and with the daughter nucleus:

V α
e (R, r) = −

∑
k

e2 · Zα

|rk − rα| ; V d
e (R, r) = −

∑
k

e2 · (Z − Zα)

|rk − rd | ; Zα = 2.

(12.118)

Here the sum is taken over the electrons of the system. The vectors rα and rd are
the coordinates of the α particle and the daughter nucleus in the frame of reference
with the origin in the center of the parent nucleus. They can be expressed in terms
of the vector R = rα − rd , with

rα = md

mα + md
R ≈ R; rd = − mα

mα + md
R . (12.119)
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The final-state energy εf on theRHSof (12.115) can be replaced by the initial-state
energy

εi = Q + εA(R = 0) , (12.120)

where εA(R) is the energy of the atomic electrons at fixed value of R; εA(0) = B(Z).
Now we look for the solution of (12.115) in the form

Ψ (R, r) = ϕ(R, r)u(R) . (12.121)

Here the function ϕ(R, r)), in which the vector R is assumed to be a parameter,
is the solution of the wave equation

Heϕ(R, r)) = εA(R)ϕ(R, r) , (12.122)

with the Hamiltonian of the atomic electrons He = Tr + Ve(R, r). Substituting
(12.122) into the LHS of (12.115), we obtain

ϕ(R, r)
(
TR + VC(R) + εA(R)

)
u(R) + u(R)TRϕ(R, r)

− ∇Rϕ(R, r) · ∇Ru(R)

2mr
= εiϕ(R, r))u(R). (12.123)

The two last terms on the LHS contain the derivatives of thewave function ϕ(R, r)
with respect to R. The key idea of the adiabatic approximation is that the function ϕ

varies with R so slowly that these derivatives can be neglected (see, e.g., [50]). Thus
(12.115) in the adiabatic approximation can be written as the equation of motion for
the α particle (recall that R ≈ rα):

(
TR + VC(R) + εA(R) − εA(0)

)
u(R) = Qu(R). (12.124)

Note that in decay of the bare nuclei, the alpha particle was described by the
equation (TR + VC(R))u(R) = Qu(R). Thus the influence of the electron shell
manifests itself in the change of the potential energy of the alpha particle from VC

to VC + εA(R) − εA(0).
Since the difference εA(R)− εA(0) is expected to be small, we can try to calculate

it in the lowest order of perturbation theory. We can write

εA(R) − εA(0) = δεA(R); δεA(R) = 〈Ψi|δVe(R, r)|Ψi〉; δVe = Ve(R, r) − Ve(0, r),
(12.125)

with Ve(R, r) determined by (12.117). Here Ψi is the wave function of the parent
atom. We begin with interactions between the electrons and the alpha particle. Since
we consider the diagonal matrix element of the operator V α

e defined by (12.118), only
themonopole termof the expansion inLegendre polynomials contributes. Employing
(5.148), we obtain

http://dx.doi.org/10.1007/978-3-319-32736-5_5
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δV α
e (R, r) = −e2Zα

(
1

R
− 1

r

)
θ(R − r). (12.126)

Hence the difference δεα
A(R) = 〈Ψi|δV α

e (R, r)|Ψi〉 is determined by the elec-
tron distances r, which are much smaller than the size of the bound state. Since
the distance between the electron and the daughter nucleus is about 1/A times
smaller than that between the electron and the alpha particle, the correction δεdA(R) =
〈Ψi|δV d

e (R, r)|Ψi〉 appears to be 1/A times smaller than δεα
A(R). Thus (12.109) can

be written as

SA =
∫ R2A

R1

dR
√
2mr(VC(R) + δεA(R) − Q) , (12.127)

with

δεA(R) = 〈Ψi|δV α
e (R, r)|Ψi〉; δV α

e = Ve(R, r) − Ve(0, r). (12.128)

Note that we obtained (12.114) with δA = 0.
We found that the difference δεA(R) is determined by very small subbarrier elec-

tron distances r. They are two orders of magnitude smaller than the size of the atomic
K shell. Hence the contribution is determined by the electron states with nonzero
values of the wave functions at the origin. In nonrelativistic approximation, these
would be only the s states. However, only certain heavy nuclei undergo α decay, and
the relativistic effects should be accounted for. With an account of the relativistic
effects, the p1/2 states also contribute. The computations require taking into account
the finite size of the decaying nucleus.

One can see that δεA(R) > 0. Thus the electron shell makes the Coulomb barrier
higher. The probability for the alpha decay of the atom becomes smaller than it was
for the bare nucleus. The relative change in the probability (PA − P)/P is several
units of 10−3. In the characteristic case of the alpha decay of 226Ra, one obtains
(PA−P)/P = −2.3 × 10−3. The 1s electrons provide about 80% of the contribution.
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